

INSTITUT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Dissertation zum Erreichen des akademischen Grades eines

Dr. rer. nat. (Doktor der Naturwissenschaften)

Improving Copy Protection for Mobile Apps

Nils Timotheus Kannengießer

INSTITUT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Improving Copy Protection for Mobile Apps

Nils Timotheus Kannengießer

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität

München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzende/r: Univ. Prof. Dr. Claudia Eckert

Prüfer/in der Dissertation: 1. Univ. Prof. Dr. Uwe Baumgarten

 2. Prof. Sejun Song, Ph.D.

Die Dissertation wurde am 10.08.2016 bei der Technischen Universität München eingereicht

und durch die Fakultät für Informatik am 16.11.2016 angenommen.

“Copy protection is never perfect” [1]

Thomas Aura, Dieter Gollmann

Acknowledgements

6

1 Acknowledgements

First of all, I would like to thank my main supervisor Prof. Dr. Uwe Baumgarten, who was

always available to discuss any open questions. He also provided many helpful hints during the

writing of this dissertation. Ultimately, he gave me the required workspace and utilities as part

of my job at TUM, which surely helped me in finishing this document within the recent years.

During this time, I highly enjoyed my work as a Teaching/Research Associate at TUM in

introducing students to Android, and working closely together on interesting projects with

major industry partners from both Germany and the US.

Moreover, I would like to thank Prof. Sejun Song, PhD for the feedback he provided as well as

his engagement in related research papers throughout these years. He also provided students

and me helpful hints in paper writing. In addition, I’d like to thank him for the support during

my international research visit in September 2015.

In addition, I would like to thank our industry partner, Giesecke & Devrient and in particular

Mr. Rizvanovic and Dr. Sterzinger for their support and for providing me their MSC product.

I would also like to thank all industry partners that are not mentioned or their provided and

helpful inputs for this work.

Furthermore, I appreciate the helpful replies by Mrs. Dr. Weinl from the TUM library on my

questions regarding the best quotation techniques.

Moreover, I want to thank all my students for helping me on various aspects of this work by

investigating subtopics, implementing my proposed ideas or just for evaluating the solution

ideas, while also providing helpful information used in this research work. A big thanks to all

of them and in particular the following: Sebastian Schleemilch, Yixiang Chen, Magnus Jahnen,

Marius Muntean, Michael Bichlmeier, Patrick Bernhard, Norbert Schmidbartl, Janosch Maier,

Philipp Schreitmueller, Ioana Negoita, Ozan Pekmezci, Johannes Neutze, Lorenz Stadler, Hans

Kirchner, Lucas Jaros, Nam Bui, Jochen Hartl, Arves Baus, Thomas Petting, Tomas Ladek,

Florian Gareis, Aser Abdelrahmen, Mohamad Ayad, Shiffudin Al Masud, Gabriel Michels,

Jonas Raedle, Vadym Strelchenko, Tuba Topaloglu, Nikolaos Tsiamitros, Felix Weissl and

Konrad Weiss.

A special thanks is also extended to Kordian Bruck and Philipp Fent, who did not contribute to

this research work directly, but indirectly by developing and supporting one of our most

ambitious apps, the TUM Campus App that was used for the performed surveys of this

dissertation in recent months.

Moreover, I would like to thank my family, including my brother Simon, as well as my parents,

Fritz and Irmgard Kannengiesser, for their general support on my studies throughout all these

years.

Last but not least, I would like to thank Nancy Lorenz for the feedback she provided regarding

the improvement of the English writing styles in this dissertation.

Thank you everyone.

Abstract

7

2 Abstract

English:

This dissertation identifies existing issues with major copyright protection mechanisms used on

the Android operating system by Google for mobile devices like smartphones and tablets. First,

the general problem of weak copyright protections used on major app stores is introduced, and

the fundamentals on Android itself are presented to make the reader familiar with the operating

system and reengineering of the apps themselves. Furthermore, related research topics are

reviewed and discussed. A security analysis of possible protection methods highlights the

current situation of existing solutions used to protect Android software from piracy these days,

while possible solutions to improve copyright protection on Android using e.g., secure elements

or native code, are analyzed as well. In addition, other practical and conceptual ideas related to

e.g., secure elements and trusted execution environments, are introduced that have

responsibilities to stakeholders like Google and hardware manufacturers and need to be

honored. Moreover, improved solutions using native code are shown. Based on the presented

ideas, several sample implementations have been developed and evaluated, and show a

significant improvement to the existing solutions provided by Google and Amazon already. An

outlook on further research possibilities is given as well.

German:

Diese Dissertation behandelt die Thematik von Kopierschutzmaßnahmen für mobile Apps mit

dem Schwerpunkt des Betriebssystems Android für Smartphones und Tablets. Hierbei werden

zunächst das Problem eines schwachen Kopierschutzes bei Apps in den großen App-Stores

aufgezeigt, sowie ein Überblick über Android und das einfache Reengineering von Android

Anwendungen selbst gegeben. Ebenfalls werden vorhandene Lösungen und Forschungen

diskutiert. In einer Sicherheitsanalyse zu möglichen, aktuellen Kopierschutzverfahren zur

Vermeidung von Softwarepiraterie unter Android werden vorhandene Risiken und Probleme

genannt, wobei auch bereits Lösungsvorschläge unter Verwendung von, z.B. Secure Elements

oder nativen Code, in die Analyse einbezogen werden. Zusätzlich werden praktische und

konzeptionelle Lösungsideen mit Bezug zu Secure Elements oder Trusted Execution

Environments vorgestellt, deren tatsächliche Realisierung in Abhängigkeit zu weiteren

Stakeholdern (Google, Hardwareherstellern) steht. Ebenso werden Möglichkeiten zur

Verbesserung mit nativen Code aufgezeigt. Im Zuge praktischer Evaluierungen wurden

ausgewählte Methoden exemplarisch untersucht, deren Ergebnisse signifikante

Verbesserungen beim Kopierschutz im Vergleich zu bestehenden Lösungen - von

beispielsweise Google oder Amazon - erkennen lassen. Darüber hinaus werden weitere Ideen

und Möglichkeiten für künftige Forschungsarbeiten aufgezeigt.

Assumptions

8

3 Assumptions

Target versions and available hardware

This dissertation aims to provide information for the recent Android versions using the ART

VM (6.x). Therefore, methods that apply to older versions of Android are not presented in

detail. For evaluations, only official Google-branded devices like the Nexus series were

used and available. Smartphones by other vendors (e.g., Samsung S5, S7, etc.) were not

available and were only examined in a theoretical way.

Research Group / Students’ theses

The theses of students involved in the research of the author are not listed under related

work, but are referred to as work done in the research group “we”, while quoting them as

usual. The topics, as well as initial ideas, were usually defined by the author of this

dissertation and guided in the required direction, while requesting certain implementations

based on the author’s ideas like, e.g., the nLVL, or the analysis of Lucky Patcher.

Reader requirements

Even the fundamental section tries to cover many topics; this dissertation requires general

knowledge on all computer science topics, particular IT-security in general and a basic

Android developer’s knowledge. A master’s degree in either computer science or a related

field is highly recommended.

Additional guidance by hardware designer suggested (NDA requirement)

Furthermore, the presented ideas using secure elements (SE) try to show general methods

that may be used with hardware from several manufacturers. The specialties of the used

security equipment (like the MSC by Giesecke & Devrient) are not reviewed, however, the

hardware is assumed to be safe, and evaluations (e.g., side-channel attacks, etc.) are out of

scope and not performed in this dissertation. Based on the used product, further support by

the hardware manufacture is recommended and was not available upon creation of this

dissertation regarding used hardware and software (cf. G&D’s MSC). All information that

is assumed to be protected by our NDA is either blackened or omitted.

References

In general, this work was created by taking the suggestions of TUM’s Quotation Guide1 in

mind.

In addition, open questions were discussed with my first advisor (Prof. Dr. Baumgarten)

and library employees (Mrs. Dr. Weinl) and led to the following, additional guidelines:

 Videos: Any statements made here are quoted as direct quotations with their sources

closely attached, while mentioning “transcript by author” in a footnote.

 Sources mentioned at the beginning or end of a section represent reported speech

for that whole section.

1 https://mediatum.ub.tum.de/doc/1231945/1231945.pdf

Assumptions

9

 Single or short phrases (e.g. Secure Element) are not quoted. Instead, their sources

may be found at the end of the particular phrase or closely attached to that section.

Exception: Special terms defined by the author only.

 In cases of reported speech of reported speech, attempts were made to discover and

mention the original source or to highlight the used source with its used sources at

least, (e.g., [Sch] (based on [13])).

 Since it is less common to mention sources for abbreviations, only general sources

are mentioned and most keywords are referenced in the work or commonly known

anyway.

Moreover, the following methods were applied:

 Source codes are used without quotations for easier reading, and the used sources

are mentioned below each source code table (e.g., based on [Sch]).

 The latin abbreviation “cf.” is used in a similar sense to “see”. It may also represent

the source for a section, while providing further details on the discussed topic as

well.

Publications

10

4 Publications

4.1 Recently published / topic-related

15th International Symposium on Ambient Intelligence and Embedded Systems,

Heraklion, Greece, 2016

Talk/Paper, Authors: Nils Kannengiesser, Johannes Neutze, Uwe Baumgarten, Sejun Song

Title: “An Insight to Cracking Solutions and Circumvention of Major Protection Methods for

Android”

15th International Symposium on Ambient Intelligence and Embedded Systems,

Heraklion, Greece, 2016

Talk/Paper, Authors: Nils Kannengiesser, Yixiang Chen, Uwe Baumgarten, Sejun Song

Title: “Securing License Verification by using Native Code, Fusing Options and Indirect

Method Triggering on Android”

Android Security Symposium

Vienna, Austria, 2015

Talk, Author: Nils Kannengiesser

Title: “Secure Copy Protection for Mobile Apps”

Content: Introduction and latest ideas on the topic and research results

13th International Symposium on Ambient Intelligence and Embedded Systems

Aveiro, Portugal, 2014

Talk/Paper, Authors: Nils Kannengiesser, Uwe Baumgarten, Sejun Song

“Secure Copy Protection for Mobile Apps”

Content: Further ideas on the topic and early research results

12th International Symposium on Ambient Intelligence and Embedded Systems

Berlin, Germany, 2013

Talk/Paper, Authors: Nils Kannengiesser, Uwe Baumgarten, Sejun Song

“Secure Copy Protection for Mobile Apps”

Content: Introduction of the idea and initial approaches

Publications

11

4.2 Former publications / in general

9th Intl. Conference and Workshop on Ambient Intelligence and Embedded Systems

Geel, Belgium, 2010

Talk, Nils Kannengiesser, Sejun Song, Helmut Dispert

“Development of an Android smartphone application for surveillance systems employing

Cisco video cameras”

8th Intl. Conference and Workshop on Ambient Intelligence and Embedded Systems,

Madeira, Portugal, 2009

Paper, Authors: Nils Kannengiesser, Thomas Ladehoff, Thorsten Knutz, Helmut Dispert

"Implementation of a platform independent client software for the GO Bluebox System”

7th Intl. Conference and Workshop on Ambient Intelligence and Embedded Systems,

Kiel, Germany, 2008

Paper / Talk, Authors: Nils Kannengiesser, Helmut Dispert

 “Implementation of a Security System based on RFID and WSN technology"

Content

12

5 Content
1 Acknowledgements ... 6

2 Abstract ... 7

3 Assumptions .. 8

4 Publications ... 10

4.1 Recently published / topic-related ... 10

4.2 Former publications / in general .. 11

5 Content .. 12

6 Introduction ... 18

6.1 Topic introduction ... 18

6.1.1 History and market share of mobile devices .. 18

6.1.2 Typical app development and platform comparison of Android and iOS 19

6.1.3 Available devices on the markets ... 20

6.2 Motivation (and security concerns) ... 21

6.3 Problem statement ... 25

6.3.1 Root access on Android devices ... 26

6.3.2 Reengineering of Android apps .. 27

6.3.3 Interception of Android apps .. 27

6.3.4 Existing copyright protections ... 27

6.3.5 Customers prefer free apps ... 28

6.3.6 Objectives and research questions .. 29

6.4 Contribution summary ... 29

6.5 Dissertation outline .. 31

7 General background .. 33

7.1 History – An introduction to the beginnings of software piracy 33

7.2 Definition of software, piracy and licensing ... 34

7.2.1 Software ... 34

7.2.2 Piracy .. 34

7.2.3 Licensing .. 34

7.3 Android .. 34

7.3.1 Android versions .. 35

7.3.2 Android architecture ... 39

7.3.3 Android app development in general ... 42

7.3.4 Native app development ... 43

7.3.5 App distribution channels ... 44

Content

13

7.3.6 The Dalvik VM .. 44

7.3.7 Zygote ... 46

7.3.8 The ART VM ... 47

7.3.9 APK, DEX, ODEX and ART, OAT format ... 49

7.3.10 Compilation of Android apps ... 51

7.3.11 Compilation of Android apps using native code .. 53

7.3.12 Installation of Android apps ... 54

7.3.13 Execution of Android apps ... 54

7.3.14 Lifecycle of Android apps .. 55

8 Topic-specific background .. 57

8.1 OP codes, mnemonics and related terms ... 57

8.2 An introduction to smali (assembly) ... 57

8.2.1 Dalvik bytecode and its general issues ... 59

8.2.2 Available tools used for reengineering / modifications / hacking 60

8.2.3 Available tools and options to extend time on reengineering 62

8.3 Basics on copyright protection .. 63

8.3.1 Copy protections on desktop computers .. 63

8.3.2 Copy protections on mobiles .. 65

8.4 Basics on attacks on copyright protection ... 68

8.4.1 Cracking methods on desktop computers ... 69

8.4.2 Cracking methods on mobiles .. 70

8.5 Data protection and available soft- and hardware solutions 70

8.5.1 Secure Elements ... 72

8.5.2 Trusted Execution Environments ... 78

8.5.3 Enhanced Operating Systems ... 79

9 Related work and discussion ... 81

9.1 Securing and protecting Data .. 81

9.1.1 Stealth techniques ... 83

9.1.2 Exploit prevention and access control .. 84

9.2 Copyright protection .. 85

9.2.1 By smart cards or similar devices .. 85

9.2.2 By additional virtualization .. 86

9.2.3 To identify software piracy .. 87

9.2.4 By using encryption and server-based solutions .. 87

9.2.5 By using a library ... 89

Content

14

9.2.6 Used on x86 desktop computers recently ... 90

9.3 Protection against reengineering attacks ... 90

9.4 Reengineering tools ... 90

9.5 Device- and user identification .. 91

9.6 Manipulation of sensors ... 93

9.7 Section conclusion ... 93

10 Existing solutions and their challenges ... 95

10.1 Circumvention of default copyright protections on Android 95

10.1.1 Copy protection means license verification ... 95

10.1.2 Android remains unsafe (rooting) .. 96

10.1.3 Tools available to the general public .. 97

10.1.4 Static analysis and disassembler tools (Dalvik bytecode) 101

10.1.5 Dynamic analysis and tools for interception/manipulation (Dalvik bytecode) 103

10.1.6 Further options of Xposed Framework .. 107

10.1.7 Section conclusion .. 107

10.2 Available copyright protections by third parties for Android 108

10.2.1 Solutions for dynamic code loading ... 108

10.2.2 Solution for identifications ... 108

10.2.3 Solutions to prevent reengineering ... 108

10.2.4 Existing copyright protection and DRM solutions ... 109

10.2.5 Native code copyright solutions ... 110

10.2.6 Section conclusion .. 110

10.3 Using native code (Android NDK/ARM binaries) .. 110

10.3.1 Simple native code example ... 111

10.3.2 Native code example using the Android NDK ... 111

10.3.3 Examples for existing native code obfuscation techniques 112

10.3.4 Hooking native code ... 113

10.3.5 Survey ... 114

10.3.6 Section conclusion .. 116

10.4 Existing hardware solutions and comparisons ... 116

10.4.1 Secure Elements ... 116

10.4.2 Trusted Execution Environments ... 119

10.4.3 Section conclusion .. 121

10.5 Overall conclusion ... 121

11 Proposed solutions ... 123

Content

15

11.1 Proposed approaches in general .. 123

11.1.1 Individualism .. 124

11.1.2 Native code ... 124

11.1.3 Verify and monitor cracking solutions ... 125

11.1.4 Trust own code only ... 125

11.1.5 Using of basic protection .. 125

11.2 Stakeholders ... 126

11.2.1 Google .. 126

11.2.2 Manufacturers ... 129

11.2.3 Developers .. 130

11.2.4 User (customer) .. 130

11.3 License options for mobile apps .. 130

11.4 Improving copyright protection (developers) .. 131

11.4.1 Identification to enforce target license ... 131

11.4.2 Requesting and storing of information in a more secure manner..................... 142

11.4.3 Dynamic code loading .. 143

11.4.4 Process memory modification .. 146

11.4.5 Indirect method triggering .. 147

11.4.6 Code fusing / fusing options ... 149

11.4.7 Secure Element and its options for copy protection ... 150

11.4.8 Native license verification library (nLVL) ... 151

11.4.9 Remote attestation to improve LVL ... 155

11.4.10 Section conclusion .. 156

11.5 Further copyright protection options by third parties .. 156

11.5.1 Preventing static and dynamic analysis .. 157

11.5.2 Methods for protecting Java code .. 157

11.5.3 Methods for protection native Code ... 159

11.5.4 Identification of pirated apps .. 160

11.6 Open possibilities for using SE and native code ... 161

11.6.1 Secure local storage .. 164

11.6.2 Secure local license provider .. 164

11.6.3 Verifying the LVL signature within the secure element 165

11.6.4 Secure server access ... 165

11.6.5 Outsourcing program logic ... 166

11.7 Overview and best solution approach (example) .. 167

Content

16

11.7.1 Best approaches in general ... 167

11.7.2 Best solution approach by example .. 167

12 Prototypic implementation .. 171

12.1 Demo applications ... 171

12.1.1 ReGeX .. 171

12.1.2 SignPosts .. 171

12.2 Actual implementation/injection of the protection .. 173

12.2.1 CP implementations for eval. 1 using SEs and ReGeX 173

12.2.2 CP implementations for eval. 2 using the nLVL/minor fusing and SignPost .. 175

12.2.3 CP implementations for eval. 3 using the nLVL/heavy fusing and SignPost .. 177

13 Evaluation / target state (security analysis) ... 179

13.1 Review of the used methods and expected protection level 179

13.1.1 Android is insecure ... 180

13.1.2 Android app vs. native library .. 180

13.1.3 Android apps vs. secure world (SE and TEEs) .. 180

13.1.4 Security improvements ... 180

13.1.5 Remaining attack surfaces .. 181

13.1.6 Protection level ... 181

13.1.7 Comparison .. 181

13.2 Evaluation introduction ... 183

13.2.1 Attackers ... 183

13.2.2 Effects on the evaluation .. 183

13.3 Evaluation of initial (Java-based) approach .. 184

13.3.1 Group assignment ... 184

13.3.2 Evaluation setup, goals and deadlines .. 184

13.3.3 Expectations ... 184

13.3.4 Results, discussion and section conclusion .. 185

13.4 Evaluation of native code approaches ... 186

13.4.1 Group assignment ... 186

13.4.2 Evaluation setup, goals and deadlines .. 187

13.4.3 Expectations ... 187

13.4.4 Results, discussion and section conclusion .. 189

14 Summary ... 194

14.1 Review research questions ... 194

14.2 Contributions ... 195

Content

17

14.3 Conclusion ... 196

14.4 Future work .. 197

14.5 Legal .. 199

15 Appendix ... 200

15.1 Source codes .. 200

15.1.1 Code for intercepting LVL and manipulating license response 200

15.1.2 Android project with native code (Android Studio) ... 200

15.1.3 Simple JNI Code Sample and its decompiled source code 201

15.1.4 Small C program and its decompiled source code ... 202

15.1.5 Conversion of code using control flow flattening and instruction substitution 204

15.1.6 Example source code and decompiled code protected by Obf.-LLVM 205

15.1.7 Example source code using JNI and its corresponding decompiled code 206

15.1.8 Example for intercepting a library method using LD_PRELOAD directive ... 210

15.1.9 Dynamic code loading (Java) ... 210

15.1.10 Dynamic code loading (Native / *.so) .. 211

15.1.11 Dynamic code loading from memory ... 211

15.1.12 Dynamic memory modification using native code for copyright protection 212

15.1.13 PHP Script to verify license resp. by Google’s license servers externally ... 215

15.1.14 Example for a static C function and its protection feature 216

15.1.15 Assembly code using strip flag and without it ... 216

15.1.16 Using pragmas and visibility attribute to hide symbols 216

15.1.17 Using GCC’s naked attribute to hide data .. 217

15.1.18 Modification to SignPost for the integration of nLVL and fusing options .. 217

15.1.19 Mod. to SignPost for the integr. of nLVL, device ident. & fusing options .. 220

15.2 Proofs ... 223

15.2.1 libUSB issue used by native libaums due to SE Android 223

15.2.2 TCA survey results ... 223

15.3 Forms ... 224

15.3.1 Question from for the 1st evaluation and group assignment 224

15.3.2 Question form for the 2nd/3rd evaluation to assign the students to groups 225

16 Abbreviations .. 227

17 List of figures .. 231

18 List of tables .. 234

19 References ... 237

Introduction

18

6 Introduction

This section should give the reader an introduction to the topic by providing a quick and

summarized overview on fundamental knowledge for understanding the issues discussed in this

dissertation. Furthermore, the actual motivation and problem statement is explained, and the

different sections of the work are introduced.

6.1 Topic introduction

6.1.1 History and market share of mobile devices

In recent years, smartphones have become essential tools for our daily lives. When Apple

revealed the first iPhone to the market in 2007, it brought many advantages of modern desktop

computers to a single mobile device [2].

Nevertheless, Apple Inc. was not the only company working on these modern phones, and as

early as in 2003, Andy Rubin ran a company called Android with its focus on building software

for phones and cameras. Google purchased Rubin’s company in 2005, and started the actual

development of today’s most successful mobile operating system – Android [3].

The latest figures (see Figure 1) confirm the current trend that Android leads the market with

differences based on the country, e.g., having a market share of 76.8% in Germany vs. 67.6%

in the US (April 2016). In addition, one can see that Android is more frequently used in

Germany than in the US, while Apple’s iOS is more dominant on the US market [4]. Due to the

high market share of Android, it is important to provide secure solutions in terms of copy

protection to developers.

Figure 1 - Comparison of market shares (US/Germany – April 2016) (based on screenshots from [4])

Introduction

19

6.1.2 Typical app development and platform comparison of Android and iOS

While applications2 are written for Apple devices using swift3 [5], Android applications may

be developed using Java or even C/C++, but Java is the preferred language to use [6].

In general, app types can be categorized in native apps and non-native apps. Native apps are

running on the devices themselves, while, e.g., WebApps can run in the context of a browser

engine, or may be implemented as a browser frame for a mobile website only, and therefore,

representing a very lightweight app to be started on Android. In addition, Android differentiates

between native apps (developed in Java) and those that use native code (Java and C/C++), too

[7] [6]. Furthermore, Android offers another specialty by executing apps on top of a virtual

machine (see 7.3.2ff) [8]. Possible reasons for this approach are the platform independence of

Java as well as security (cf. 7.3.2 / predefined permissions) and stability reasons in comparison

to native apps with direct hardware access. For instance, the controlled access to resources also

has proven to be a good approach in the past, and Microsoft integrated this approach in its

operating systems for more stability (cf. “Built on top of the proven Windows NT Workstation

4.0 code base […] [it] adds major improvements in reliability” [9]). Nevertheless, virtualization

does not always prevent malicious attacks (cf. exploits) as explained later [10]. Moreover, the

usage of Java is beneficial to developers due to lots of existing frameworks that could be ported

to Android quite easily. Ultimately, Java language is much easier to use and it provides simple

to use interfaces to the hardware without complicated code requirements such as in C. In

addition, Java avoids difficult debugging and lots of other issues (cf. pointers/segmentation

faults, etc.). Moreover, Java is usually known by every computer science student (cf. TUM

students) allowing Google and app developers to find developers and employees much easier.

Instead, Apple did not only require developers to learn C, but a completely new C-dialect called

‘objective-C’, or ‘swift’ nowadays [5], which is certainly a reason for several engineers to avoid

that system. In the author’s opinion, it could even be another reason for Android’s success in

recent years. Nevertheless, one of the fundamental difference comes with the selection of that

language and apps for iOS are native apps and therefore better protected, resulting in far less

piracy (e.g., 95% Android vs. 60% iOS for Monument Valley [11]), while so-called jailbreaking

(rooting an iOS device) is not supported by Apple officially and more complicated, too. Apple

draws a reasonable relation between app piracy and jailbreaking, since by default it is not

possible to install apps from elsewhere, but the App Store itself, and Apple puts a high effort

on the protection of copyright holders [12]. Instead, Android’s philosophy is different and the

whole system is more opened, which results in disadvantages for the protection of intellectual

property as outlined later in more detail. Another core difference between iOS and Android

apps is that apps for Android may be developed and published within a day, and without the

severe security checks like Apple does for their apps. Instead, Android customers are in charge

of trusting an app, which sometimes leads to severe infections. In contrast, iOS developers need

to wait several weeks for the successful completion of the audit of their applications [13]. Other,

recent sources estimate that it takes 7 to 11 days for an app review by Apple [14] (based on

crowdsourced data). The advantage of these severe checks is that Apple customer benefit from

a more trustworthy App Store and ultimately, more credible apps; disadvantages may be that

developers face longer waiting times and Apple may reject their app if it does not satisfy their

2 also called apps on mobile platforms
3 based on Objective-C

Introduction

20

requirements, which can certainly be a burden. These requirements include insufficient

information, apps with bugs, insufficient designed user-interfaces, misleading icons, or

personal information requirements [15]. Instead, Android Developers have the advantage to

design their apps in any way they like, and publish it almost instantly on Google Play.

Nevertheless, over the recent years Google improved the requirements that developers need to

add for a publication like privacy statements or mandatory screenshots. In addition, a design

guide was released [16], but it is still up to the developers to make the decisions. For basic

customer protection within Google’s Play Store they use a service called “Bouncer” [17] that

scans the market for malicious apps. Unfortunately, security researchers found loopholes quite

early and as of today Google needs to update its service frequently to face new threats [18]

(based on statements by Miller and Oberheide). In summary, one may say that Google’s

Android offers more freedom with certain risks, especially for new users, while Apple’s iOS

takes away the freedom in customizing the phone in every possible way, while providing their

customers (including app developers) more security, which may be more suitable for beginners

[19]. Nevertheless, in the author’s opinion, Google tries to improve security more and more by

locking the devices down (the operating system) and adding further restrictions with every

release. This even had a negative impact on our solution (see 11.4.7); copy protection

sometimes uses similar techniques as malware (see 9.1.1) and has similar goals of hiding its

mechanisms.

6.1.3 Available devices on the markets

Figure 2 - Device Fragmentation by August 2015 (based on screenshots from [20])

Furthermore, Android is available to several devices with numerous different properties and is

open-source4 [21], while iOS is commonly known as being closed-source and customers are

fixated in their choices of only a few available devices.

Google’s own branded devices are the most well-known – the Nexus series (e.g., Nexus 5), is

intended for developers and for keeping the balance between these expensive high-end devices

4 exceptions apply, e.g., radio firmware

Introduction

21

offered by Samsung or perhaps LG, while providing all new hardware and functions for testing

purposes by developers. For that reason, all these devices can be rooted by default. Google also

sells Android-based wearables and tablets [22]. In fact, its selling is not limited to developers,

which is important in terms of the dissertation topic and rooted devices (as outlined later) are a

threat to any protection at the moment.

In addition, many other vendors market their own smartphones these days, e.g., Samsung, LG,

and HTC as one can find these products in every smartphone store. They integrate all kinds of

additional features to fit the consumers’ wishes in addition to their own apps and solutions on

various topics. For instance, Samsung announced the “Trustonic for KNOX” [23] solution in

cooperation with the Trustonic Company in order to enrich their devices with “enterprise and

professional mobile security” [23], as Rick Segal5 said. “Trustonic for KNOX combines the

advanced and robust integrated security features of Samsung KNOX with Trustonic TEEs’

hardware-based security to provide a trusted platform for service providers” [23].

In fact, Trusted Execution Environments (TEEs) may be the key to many issues and are also

discussed in this dissertation, too (see 10.4ff). Nevertheless, TEEs are not available on all

devices and require additional special hardware or cooperation. In general, one can identify [20]

that we have several different devices with different sensors, screen sizes, and different Android

versions. Figure 2 shows the device fragmentation based on data provided by users and

collected by the OpenSignal apps for more than half a million devices [20].

6.2 Motivation (and security concerns)

“Android is insecure”

Providing secure solutions to most of these devices requires different solutions. Better security

may affect numerous different areas from data protection to software protection. Right now,

most applications face the issue of having no real private space. Many devices are often shipped

in a locked state6; it is possible and even permitted by many vendors to unlock (and so-called

root7) the devices as explained next (see 6.3.1), which is a real threat to data privacy and

protection under certain circumstances. Besides the official permitted ways to root devices, it

is possible to root phones by exploits. This method is also often used by malware.

The Security Bulletins by Google [24] as well as the CVE website filtered for Android related

privilege-escalations [25] allowed us to gain insight on this severe threat of exploits for years.

From the experiences in the past, it has to be assumed that there is a privilege-escalation exploit

for any Android version soon after its release. Especially in 2015, Android faced extremely

severe exploits that affected billions of devices and several versions of the “Stagefright” exploit

[26], followed by further root exploits for millions of devices using Qualcomm chipsets as

released by researchers recently [27]. Furthermore, as result of such a root exploit, an attacker

can access any privately stored files by an app now, while it is possible to intercept and even

manipulate the communication between apps and servers. This issue is covered in 10.1.5 for

manipulating LVL communication, while fundamental knowledge about folder security is

5 Vice President of Enterprise Business Team, IT & M.C. division at Samsung Electronics [23]
6 limited access rights to folders and hardware (also commonly known as “not rooted”)
7 cf. relation to Linux’s user with all system rights: root

Introduction

22

introduced in 7.3.2. The application package file (APK file) can be received even without root

rights for decompilation purposes (see 8.2ff).

“Insecurity supports software privacy”

A huge issue that derives from these security flaws is the effect on app- or service-sales as well

as company secrets (e.g., hidden APIs). Software piracy is a huge problem in our modern world

in general and not surprisingly so Android is affected here, too. According to a report by [28],

developers try to adapt to the issue by offering free versions with buyable add-ons, while

Google refuses to comment on that issue. This confirms a recent experience with Google by the

author himself that Google showed little interest in supporting native copyright protection

solutions for unknown reasons (see 11.4.8). Furthermore, in comparison to iOS, which is using

native code apps, reengineering an Android app is fairly easy in most cases and requires skilled

developers to avoid only basic issues already here (cf. 8.2 for more details on reengineering).

Smaller companies especially might be affected quite hardly by software piracy due to their

limited assets. The figures are sometimes dramatically, e.g., ustwogames released information

that “Only 5% of Monument Valley installs on Android” [11] were legally bought, while the

majority uses the game illegally [11]. Also, the developer of “Today Calendar” mentioned that

about 85% of their users use a pirated version [29]. In the past other vendors (e.g., Epic Games)

even decided not to release their games due to severe issues with software protection on

Android as reported by Giga [30], while digital content companies like Netflix avoided Android

at the beginning due to “the lack of a generic and complete platform security and content

protection mechanism available for Android” [31]. In a recent move Microsoft announced (as

reported by BR8 [32]) the end for project Astoria that had the goal to port Android apps to

Windows smartphones. According to that article, Microsoft made the decision due to IP9

concerns by developers. While Google might have changed the situation for DRM protected

content like movie-streaming by acquiring 3rd party technology [33], we still face the issue of

an inefficient copyright protection mechanism on Android on the major app stores by Google

or Amazon and their offered solutions for developers (see 10.1ff).

“Issues known and fixed in the desktop world”

One of the general issues derives from the usage of Java technology and its included references

for cross-platform compatibility. Many of the current issues on Android are not new and

solutions have already existed in the desktop world for decades (e.g., DashO Java Obfuscator

[34]), but have to be adapted to the mobile world now. It appears that (especially at the

beginning) Google did not focus on security that much, and this author recognized that

integrated obfuscation solutions were not activated by default in recent years. In fact, it seems

that many developers were and are not aware of the issues. Moreover, around 2013, we

discovered some apps by major companies that were not protected at all, and this resulted in

viewable hidden APIs or access codes. Examples of this might be the apps by BMW or games

like “Worms” by Team1710. Only a slight margin of companies uses advanced protection tools

like DexGuard [35].

8 German TV broadcaster
9 Intellectual Property
10 Both companies were notified by the author and BMW even got in contact with the author to meet for detailed

discussions and solution approaches immediately

Introduction

23

“Copy Protections have a long history in the desktop world”

License Verification and Copyright Protection are well-known topics in the computer industry,

and extend from the era of simple registration codes to specially prepared floppy disks, compact

discs, and even later, downloadable software with online activation. In comparison, there are

only a few of the technologies that can be seen on Android so far. For instance, in former days

most copy protection techniques relied on simple activation, registration codes or type of a

riddle that were shipped with a product (e.g., the PC game Monkey Island 2). Of course, this

method was not that effective, and with the availability of inexpensive devices and mediums,

companies were forced to look for more advanced approaches to protect their software from

piracy. An example might be the usage of artificial sector errors on floppy disks [36] or later

CDs. These artificial errors were difficult to copy for regular customers and required special

manufacturing techniques or software at least. Famous protection techniques that should be

mentioned here are SecuROM, StarForce and SafeDisc [37] [38] [39]. Over the years these

mechanisms were improved by adding encryption, obfuscation, or other special attributes to

make copying of protected software as difficult as possible [40]. Besides these software-related

solutions, more expensive software products were often protected by so called (hardware-)

dongles that provided a special reply to the software on request and are even used today, e.g.,

“USB-eLicenser” [41]. In the end, most of these techniques were cracked, disappeared from

the market, or were improved.

Nowadays, most companies of the desktop world rely on encryption, online activation, are still

using dongles [41], or simply force their customers to pay a monthly fee to be allowed to use

the mandatory11 server infrastructure in order to receive the actual game data, use the

multiplayer option of a game, or communicate with friends (in a game). “World of Warcraft”

[42] by Blizzard Entertainment is an example for such a game. Other vendors (e.g., Valve’s

Steam [43]) provide their very own community and sales service platforms that offer lots of

advantages against pirated software (e.g., ranking, gaming with friends, automatic updates,

etc.12). Right now, this is one of the best approaches to get customers to buy a product, since it

is simply not possible to use the complete product without a valid account (= paid product).

Measurements that build on top of this requirement are cheating prevention systems like

Valve’s Anti Cheat (VAC) [44]. It can be assumed that even however, there seems to be no

public figures, this results in careful players trying to keep their accounts alive, while they

benefit from its advantages (e.g., quick availability) as a former software pirate stated in a report

by [45]. This report is also, where he acknowledged that he stopped software-piracy with the

introduction of steam.

“Copy Protection on mobiles is in development”

Thinking about the mobile world and mobile devices (in terms of Android) it is still very

different. We observed that the used techniques are often a few years behind the desktop-

computer-era. This applies to the actual user interfaces of games or apps as well as to the used

digital rights management (DRM) techniques (cf. security analysis in 10.1ff).

For now, smartphone apps or games are often - not always – played/user by a single user and

most app content is shipped with the initial application, while the protection mechanism are

based on rather simple protections like the License Verification Library (LVL) by Google or

11 playing e.g. these games without its servers is not an option
12 author’s experience

Introduction

24

Amazon’s DRM (see 10.1ff for details) [46] [47]. However, it ultimately relies on the

developers and their skills. For instance, some apps revealed the default implementation of

Google’s LVL like the gaming app “Worms” by Team17, while other vendors have already

thought about ways to improve it by renaming some packages or variables. It is also

recommended by Google to add modifications [47]. Nevertheless, it has to be assumed that

Google leaves copyright security once more to the third parties. As compared to Valve’s steam

platform, it would be more reasonable that Google as well as the hardware manufacturer, take

care of it and provide customers, as well as developers, with a better solution. As outlined

previously and experienced by the author himself, Google shows little interest in this area so

far.

Summary

In general, we can sum this up by stating that consumers must be careful in choosing apps for

installations (cf. danger of malware), while developers have to be cautious to implement

necessary security techniques. Otherwise, they will face the general issues with software piracy

such as mainly lost revenue or maybe even worse, the sale of cracked, “’piggybacked’ apps” 13

[48] by criminals.

While attackers might be average users that use tools like “Lucky Patcher” [49] (see 10.1.3 for

details) to crack certain apps for leisure purposes, we also face the increasing issue of organized

crime, who repackage and redistribute apps with malware, and thereby gain money for

exchanged commercials or for illegal sale [50]. More information on their reasons for this and

the history of these and other groups are found in chapter 7.1.

What all of these attackers have in common is that they usually have access to the APK file,

owning root rights on their phones, and therefore, they can access any part of a smartphone or

intercept communications. For instance, in advance of cracking an app, it first needs to be

analyzed and reengineered to allow for the desired modifications.

A reader might ask the question, why are there still so many issues on mobile platforms that

seem to be solved on desktop computers already? This author assumes that one reason might

be that Google chose to use Java language for their system because it is known to have these

issues with easy decompilation possibilities, and they were able to solve a different issue that

way, which Apple still faces today. Java is platform-independent and allows an unlimited

amount of different devices, while there are only a few Apple smartphone devices available as

of today. This might also be caused by the fact that Apple’s iOS is closed source and wants to

remain the only reseller. Nevertheless, Google’s selection comes with some disadvantages that

need to be solved separately now and sometimes it is possible to use well-known measurements

from the desktop world on mobile computers to fight the issues as highlighted in this

dissertation in the upcoming chapters.

13 Infected app with malware

Introduction

25

6.3 Problem statement

The main issues of copyright protection are shown in Figure 3 and can be summarized in one

sentence by the fact that there are now software pirates circumventing copy protections that are

mostly very weak, and the goal of this dissertation is to analyze and improve currently available

methods for existing smartphones and tablet devices using Android. Additional details are

outlined in the upcoming subsections.

Google PlayStore

Amazon AppStore

Other stores / websites

Android Device

Developers

provide apps

provide apps

use Amazon DRM

Consumers

Pirates
(special consumers)

provide illegal apps

Device Manufacturer

create devices

provides services
(Store, LVL etc.)

Google

Amazon

provides services
(Store, DRM etc.)

Amazon DRM
(Copy Protection)

collects user/device
information

verifies user/device

use pirated apps

use apps

provide illegal apps

use LVL/apps

provide illegal apps

download apps
from store

provide apps

Google LVL
(Copy Protection)

verifies user/device

Figure 3 - Simplified situation overview (big picture of piracy- and copy protection issues)

Introduction

26

6.3.1 Root access on Android devices

One of the key issues on current Android systems in terms of copy protection is the fact that

devices may be rooted14 either legally (option by the manufacturer, e.g. HTC [51]) or by using

an exploit (see 10.1.2 for details). A rooted device permits its owner a modification of the

system and access to all data privately stored by apps as well as data passing network and local

connections. Therefore, any rooted device needs to be considered insecure in terms of copyright

protection, since it may reveal the details of the mechanism to allow its circumvention.

Nevertheless, in theory, for root users even the access to certain resources can be restricted with

the introduction of Security-Enhanced Linux on Android (SEAndroid) with version 4.3 and

finally, when it is enabled (enforced) in Android 5.0 [52]. For instance, this feature is used by

Samsung KNOX, a security enhancement on Samsung devices, to ensure that only valid apps

can access their data [53]. Enabling this feature in combination with other security measures

like secure boot15 and usage of TEE/SEs may tighten Android’s security immensely and it

ultimately relies on Google and the devices manufacturers to secure it [54].

Nevertheless, Android offers a sufficient attack surface that can still be rooted temporary at

least (cf. exploits), while the bootloader may remain locked and it is up to its implementation

how modifications on system partitions might be handled on a future reboot. For instance, this

applies to some Verizon devices as stated by a user [55] on reddit and the phone can be rooted,

while the bootloader stays locked. In fact, it would require severe interaction between many

stakeholders to highly tighten the security of a device covering several existing issues in

hardware and software. It must be assumed that any device may be rooted after a certain time

due to upcoming exploits. Developing a copyright protection for rooted devices is not

impossible, but it is not currently supported. Here, it would be preferred to have devices more

secured and licensed data must be protected even from root access. Of course, “securing a

device” could be understood in many different ways. In fact, there are devices available like the

“Black” [56] by Boeing that provides highly sophisticated security measures against hardware

manipulation or other tampering, and will render itself useless in case of any break-in attempts.

Another meaning of securing a device may be related to data privacy and the protection of user

data. In terms of this dissertation “securing a device” refers to hardening its copy protection.

Unfortunately, many device manufacturers like HTC [51], Motorola [57], Sony Ericsson [58],

Samsung [59] and others allow the rooting of their devices, and permit customers to install a

so-called custom rom16 by unlocking the bootloader and flashing the desired data to partitions.

Sometimes the manufacturers may even permanently flag a device as Samsung does [60]. In

theory, Samsung’s approach of blocking further KNOX container-usage, as stated in [60] might

be an acceptable way for copyright-protection and the usage of certain apps may be prohibited

in that case. Nevertheless, that technology is available on Samsung devices only, but it is

questionable if customers will accept such intense limitations on purchased smartphone

devices. Instead, on other devices like gaming consoles, it seems to be widely accepted already,

14 rooted means the user and apps are able to acquire root rights on the underlying Linux system and control

almost anything on the device.
15 secure boot describes a secured way of booting by validating the signature of the loaded code before

proceeding to boot it [54]
16 Firmware by third parties, e.g., CyanogenMod

Introduction

27

and there is most often no legal option to unlock a gaming console and modders17 face the risk

of getting their consoles banned permanently [61].

6.3.2 Reengineering of Android apps

Easy reengineering opportunities (cf. section 8.2ff for details) are another key issue on current

Android systems. Exchanging and hiding licensing information or other confidential

information is a tough challenge, but root access makes reengineering much easier, too. For

example, the APK files and other internal files may be viewed (cf. ls –l /data/ not denied

anymore) now, and some developers store secret codes within the shared preferences that are

saved in the private app directories.

6.3.3 Interception of Android apps

A further key issue based on root-rights is the interception of any function calls or network

traffic. For instance, it was used within our research to reengineer Java-based frameworks by

Google (cf. section 11.4.8 about the nLVL as original outlined by [62]). The fact that all

information may be intercepted as soon as an app (e.g., an attacker) runs with root privileges (

(assuming access is not restricted for root users either (cf. even Android SE has exploits, too

[63])), one can imagine the huge impact on hidden and protected sensitive information like

license data, and encryption keys that may be revealed by tools like Frida18 or the Xposed

Framework19 as already explained by [64, p. 54ff]. Moreover, it is covered in this dissertation

in more detail in section 10.1.5.

6.3.4 Existing copyright protections

Android (Google) offers the License Verification Library (LVL) for app developers so far [47]

to ensure that their apps have been bought and they own a valid license. Instead, Amazon

automatically applies its “Amazon DRM” protection [46]. Alternative app markets like

SlideMe provide further solutions, too [65]. Moreover, researchers provided some improved

ideas (see 9.2ff), but there are no available figures about its usage and the mainstream apps are

probably protected by Google’s or Amazon’s solutions only.

While Amazon’s solution may be circumvented easily (see section 10.1.4), it needs to be

assumed that SlideMe’s SlideLock can be surrounded in a similar way like the LVL by

modifying a single function (not practically verified). Other solutions do not seem to be

available publically and therefore, are not analyzed. We also discovered that some developers

implemented Google’s LVL library improperly (= without any changes). Examples are the

“Worms” app by Team17, and we notified them as well (see 14.5). Using the default

17 People who modify a firmware
18 http://www.frida.re/
19 http://repo.xposed.info

Introduction

28

implementation allows software pirates an easy removal of that protection. For instance, by

using method call interception as presented in detail in 10.1.5, which was requested by and

based on [64, pp. 30ff, 54], or by using tools like “Lucky Patcher” [49] (details here in section

10.1.3 as originally outlined in and requested from [66]).

Also, it has to be assumed that many developers are unaware of the available reengineering

tools and their easiness of use. Likewise developers are most often not educated about the

issues, while performing app development in the suggested manner (cf. design patterns), which

also makes it easier for reengineers. One certain issue is that even basic protection methods

included with the Android SDK (e.g., ProGuard) were not enabled by Google for years by

default. For instance, Gartner released a press release stating that “75 Percent [sic!] of Mobile

Applications will Fail [sic!] Basic Security Tests” [67], which can be used as an indicator for

the security knowledge of developers on copyright protection, too. As of today, it can be

assumed that many apps use ProGuard’s optimizations due to Google’s recommendation on

shrinking code [68]. This was backed at the recent Google IO as well [69]. Nevertheless, as

recognized in our evaluations (see section 13ff), the obfuscation applied by ProGuard to our

testing apps did not really stop attackers at all and it is simply too weak on the Java level. In

fact, there are paid commercial tools (like DexGuard), but with the exception of its usage by

financial institutes, there are no known statistics on its general distribution level. This was

confirmed by Eric Lafortune20 [35].

Nevertheless, even advanced developers cannot protect their software securely using the default

developer tools provided by Google. They face similar issues with a time advantage (e.g., by

using ProGuard) only. We analyzed this topic and freely available tools in more detail in several

research works that are included in the “security analysis” (see chapter 10).

Tools by third parties, which were not available without costs (e.g. DexGuard) are observed,

but not analyzed in detail and any information is based on provided, publicly available

information.

6.3.5 Customers prefer free apps

As outlined in [70] most sales happen in the first 30 days of an app’s release, and the key is to

find protection that protects the app that long. Naturally, customers prefer free apps against paid

apps. While there are students, who would like to play a game, but do not have the money for

it, it is common knowledge that in general, “Nobody likes to pay bills” [71]. A typical user does

not feel bad about software piracy and most often will say common statements like “everybody

does it”. In an evaluation by [72], this common assumption is confirmed: 68.3% of 640 students

pirated software. Also, around 54% of both, pro-piracy and anti-piracy students, “believe that

software is public property” [72, p. 73].

In general, there are at least two rivaling groups – on the one hand, the copyright holders claim

it is theft, and other parties claim it has to be free as outlined in a report by [73]. For example,

the lastter view is often found in research communities, where journals hold the copyrights, and

scientists want everyone to have access to the information. In terms of Android apps, the author

believes that it is simply theft, and companies developing these games sell the apps to gain

20 Co-founder and CTO of GuardSquare ; producer of ProGuard/DexGuard

Introduction

29

income. Others see the piracy related cracking just as a sport to crack the newest protection for

fun (as outlined in 7.1 in more detail). Of course, some would like to try out games for free

first, and the gaming industry satisfied customers’ requests by adapting the model of freemium

apps in recent years that offer additional services via in-app-billing [74]. For developers, it is

important that both, copy protections as well as in-app-billing methods (see [75] for an attack

example on in-app-billing), are prone to similar attack vectors and should be reviewed with the

suggestions of this dissertation, since some of the ideas (e.g., porting to native code) can

improve it as well.

6.3.6 Objectives and research questions

The main objective of this dissertation is to a identify better solutions for copyright protection

on Android, while the proposed techniques may be of interest for related topics like data privacy

and data protection in general.

We can specify the following research questions that are related to that goal:

No. Question

0 Fundamental question: Are the current copyright protections for Android

sufficiently secure?

1 If that is not the case, how can we ensure that an app is used on a valid device or

by the valid user only?

2 Is it possible to store sensitive information like licensed data more securely, maybe,

e.g., by using a secure element or alternatives?

3 Is it actually possible to use a secure element on Android (as a developer)?

4 How can we improve copyright protections and how can we implement them on

Android?

5 How can we protect apps against reengineering (cf. static- and dynamic analysis)

and is that actually possible with usual Android versions?

6 Might it be a better approach to use native code for security related issues instead

of Java (cf. desktop world is dominated by native code and iOS uses it as well)?

7 What needs to happen elsewhere to improve the situation, (e.g., hardware

modification and/or better cooperation by different manufacturers)?

6.4 Contribution summary

While it is recommended to read the full contribution/conclusion section at the end, a short

summary should be presented in advance not requiring the details of all other chapters.

As outlined in 14.2, we were able to confirm earlier findings by others about the severe

reengineering issues on Android in regard to its copyright protection (cf. License Verification

Library (LVL) by Google) and even extend it to other security solutions like Amazon’s DRM,

while showing the proofs for the insecurity of Android in general.

Introduction

30

In analyzing different options for gaining more security, the choice of using native code turned

out to be the most effective one by comparing several examples of reengineered code and

available methods for its protection (obfuscation). Ultimately, that led to the development of

our proposed solutions of a native code version of the aforementioned LVL while researching

additional methods - called fusing options - to bind native code (in our cases primarily used for

licensing) and the app together to prevent not only their separation, but also attacks replacing

function calls (or return values). In addition, methods for information exchange between

different program parts (called indirect method triggering) allow more secured communication

between different security functions across the app without revealing too much information to

an attacker right away in comparison to usual function calls.

In addition, several conceptual solutions are presented using, e.g., Secure Elements (SEs).

Furthermore, ideas that require the actions of stakeholders (like Google and device

manufacturers) show and highlight even more secure solutions, which cannot be realized at this

time.

Finally, we evaluated the security increase with different testing groups showing a significant

improvement against the existing solutions used by major app markets.

Introduction

31

6.5 Dissertation outline

Introduction (Section 6, including previous chapters)

The introduction chapter should give the reader a synopsis of the topic, providing a quick and

summarized overview on fundamental knowledge for understanding the issues discussed in

this dissertation. Furthermore, the motivation and actual problem are introduced, and the

research questions of this work are highlighted.

General background (Section 7)

This section covers the fundamentals from an introduction to the history of software piracy to

all important Android and hardware topics that should be known by a reader like, e.g.,

information on different Android versions, the development of apps, system internals and

possible security solutions in hardware.

Topic-specific background (Section 8)

The main topic of reengineering is explored in high detail in Section 8. Here, typical

reengineering tools are introduced. Moreover, information about possible, existing protections

and attack vectors are presented and compared to those used in the desktop world.

Related work (Section 9)

This section presents an overview and short introduction on recent works in related areas as

well as a comments about the relations to this work and/or issues with the proposed solutions.

Any theses by our students are not included here, since they belong to our research group

instead; Implementations and analyses were performed upon the author’s request and under his

guidance.

Existing solutions and their challenges (Section 10)

The security analysis in this section highlights the current state of issues on Android security in

general, along with all related issues in terms of copy protections by reviewing circumvention

options using static or dynamic reengineering options. Furthermore, currently existing solutions

by other vendors are elaborated and approaches such as using native code, in terms of Android

are reviewed, while taking hardware protections options in mind as well.

Proposed Solution (Section 11)

While the security analysis offered insights on alternative options that provide more protection

already, this section focuses on possible options to improve the current issues with copyright

protection on Android. Besides reviewing the options for global players like Google or device

manufacturers, several options for developers are introduced that allow a sufficiently secure

implementation of copyright protections for Android than the existing solutions used by the

major app markets.

Prototypic Implementation (Section 12)

While there are many options for creating a unique copyright protection based on the proposals

of the previous section, this chapter introduces three possible implementations using different

features that will be evaluated in the evaluation chapter.

Introduction

32

Evaluation (Section 13)

The evaluation section reviews the implemented example apps, while also presenting the results

from the performed evaluations in our Android practical course as well as any conclusions.

Summary (Section 14)

The summary section reviews the results of this work and highlights the contributions, while

taking an outlook to future possibilities and open research issues.

Appendix (Section 15)

The appendix lists most sources codes that are referred in the text, while including proofs and

other forms for information.

Further chapters

All further chapters are dedicated to abbreviations, lists and references.

General background

33

7 General background

The following chapter should provide an introduction to fundamental Android topics such as

its architecture, an overview to its versions, the general development of apps, its distribution

channels, further details on the execution of these apps and their used runtime environment as

well as details on files, important directories and other related topics that might be required in

later chapters, while the reengineering of Android apps is covered in an own chapter due to its

importance to this dissertation.

7.1 History – An introduction to the beginnings of software piracy

These (piracy) groups [76] have their origin in the so-called “The Scene” (also known as Warez

Scene) that founded itself in the early 70-80s as a response to initial copyright protection

mechanisms and consisted of hundreds of groups till the early 90s. They rivaled against each

other for being the first in releasing an illegal copy. It is like a sport to them [77]. With the rise

of the internet, they were able to initiate even more advanced structures to fulfill their goal of

releasing any new software, movie, or music to the internet as soon as possible and also for

free. After all of this, they drew the attention of the FBI and forced President Bill Clinton to

sign the “No Electronic Theft Act”21 [76] into law by 1997. That law enabled the FBI to file

cases against piracy followed by razzias in 2001 (“Operation Buccaneer” [76]), as well as in

Germany [77]. Feeling still powerless, the content industry started to notify usual customers

about the issue and related penalties (e.g., the warnings before movies in theaters). Up until

today, these groups continue their fight against the industry joined by researchers on one or the

other side according to their personal interest. Of course, researchers should only follow legal

paths and usually work closely with industry. While some of these release groups do it for fun

and honor, others try to gain profit by placing commercials on their frequently visited websites

[78] or use “’piggybacked’ apps”22 [48]. Nowadays, organized crime is also trying to gain profit

with it [79]. It is an everlasting fight between the software industry and the crackers23.

Over the years, people split up in different groups and according to their interest joined one side

or the other; whichever propagated their way of thinking. For instance, the Free Software

Foundation, Pirate Party, or Electronic Frontier Foundation should be mentioned because they

engage themselves in supporting open-source and fair-use of software, as well as open-culture.

On the other side organizations like the Business Software Alliance (BSA) or International

Intellectual Property Alliance (IIPA) correspond with the interest of the copyright holders to

claim their rights and criminalize anyone, who shares commercial software (or other data) but

not in the same way they claim it (cf. complicated license agreements).

21 Transcript from video by author
22 Infected app with malware
23 Person, who cracks software. The scene itself subdivides in different positions according to their tasks.

General background

34

7.2 Definition of software, piracy and licensing

7.2.1 Software

Specifying the term software is not an easy task and there may be several definitions, e.g., as

explained by [80] application software is the application everyone is using like Microsoft

Word, while the underlying software is system software and refers to the operating system.

Middleware describes software that acts in-between these layers like frameworks, also known

from Android. In the end, software is a collection of processor instructions that are combined

into an application binary file to be executed on the preferred platform/processor, e.g., x86 or

the Dalvik VM.

7.2.2 Piracy

“Software piracy is the unauthorized copying, reproduction, use, or manufacture of software

products” [81]. It may have its name origin from the real pirates that stole gold and other

valuables in the Caribbean Sea around the 17th century. In addition to the provided definition

by Microsoft, license violations such as using a purchased (or stolen) product on hundreds of

computers while the license permits the installation only on a single computer, is also

commonly known under the term software piracy.

7.2.3 Licensing

Software licensing describes a legal agreement between a customer and the copyright holder

about “the legal rights pertaining to the authorized use of digital material” [82]. It can come in

all variations from permitting customers to use an application on a single device by a single

user or by the whole family or even for hundreds of computers. For example, many

companies ask customers (in their software) to agree to a so-called EULA, the “End User

License Agreement” [83] upon the installation of software. In addition, there are several open-

source licenses, e.g., GPL, that permit, e.g., free and almost unlimited usage, in accordance

with the license [84].

7.3 Android

Android is a mobile operating system by Google and the major target platform in this

dissertation. Originally, Android Inc. was founded by Andy Rubin in 2003 before Google took

it over in July 2005 [85]. Android is supported by the Open Handset Alliance - a group of

companies, who are “committed to greater openness in the mobile ecosystem” [86]. Android is

their first product and open-source [86].

Nowadays, its market share is enormous, and Android covered more than 80% of the market

worldwide by 2015/Q2 [87], and with similar figures, e.g., 77% in Germany, in recent times

(May 2016) [4]. Figure 4 illustrates its market share in comparison to other mobile systems on

General background

35

a timeline. One of the reasons for its success might be its openness and customization

possibilities besides the fact that Google pushes it a lot as well. For instance, smaller start-up

companies may use the system to turn it into a new product and one can find many examples

across the internet and on platforms like Kickstarter24. Examples that can be mentioned here

are the outdoor smartphones by TakWak Company or the modified Android versions like

CyanogenMod by the company CyanogenMod LLC.

Figure 4 - Market shares [87]

7.3.1 Android versions

The most recent Android version released by Google is Android 6.025, codename Marshmallow

and its updates, while “Nougat” [88] is still in preparation. Over time, Google (see Figure 7)

has released several Android versions where (until today) each one features new functions and

sometimes supports new hardware. Often Google releases a demo device that shows all new

features. It is the Nexus series. Figure 5 shows the distribution of Android versions among

registered Android devices as gathered by Google [89].

24 Kickstarter.com is a platform for private individuals or smaller companies to raise money to cover initial

development costs etc. ; Anyone can make a pledge and support the presented ideas
25 according to Android.com by July 13th 2016

General background

36

Figure 5 - Different Android versions among the Google ecosystem collected by August 1st 2016 [89]

Depending on the version (see Figure 6 and Figure 7), Android offers a different feature set

(API/NDK version). For instance, to use external SEs (Secure Elements) USB-OTG is required

and it was introduced to Android in 2011 with the release of Android 3.1 aka Honeycomb (see

Figure 7) for tablet devices [90]. Moreover, different branches for smartphones and tablets were

resolved in 2011 with the release of Android’s ‘Ice Cream Sandwich’ (see Figure 7). In addition

to the official Android versions, the Internet community worked on several modifications of

Android and released them under different names, each with a different feature set. Some of

these modifications (commonly known as mods) focus on privacy related issues, while others

try to improve the performance by adding additional features (e.g., root rights) in general.

Famous examples that can be mentioned might be CyanogenMod and MIUI [91] [92].

General background

37

Figure 6 - Android versions, their names and related API levels [93]

General background

38

Figure 7 - Android versions on a timeline (based on [94])

General background

39

7.3.2 Android architecture

Android was originally optimized for low-performance devices and was mainly intended to

work on ARM CPUs [95]. Nevertheless, new Android versions such as Lollipop support x86-

and also MIPS-based devices [96].

Android and its relation to Linux

Figure 8 illustrates Android’s general architecture as presented by Bornstein in the beginnings.

It shows that Android is based on Linux and many open-source libraries. On top of everything

the Android applications run by using their required frameworks and then they are executed by

the Dalvik or — nowadays — ART VM. Figure 9 reveals further details and a comparison to

Linux itself. For instance, Android uses a reduced glibc library (called bionic) in comparison to

Linux and Android apps are using the desired frameworks (see Figure 8) to access the hardware,

while running in a virtual machine [97].

Thinking about the system startup [98, p. 809f], the first process initiated by the kernel is ‘init’

as in a traditional Linux system. It is the root of all further processes. It starts daemons that are

focused on low-level tasks, e.g., adbd and Zygote. Zygote itself starts all “higher-level Java

language processes” [98, p. 809] like the “system_server” [98, p. 809] daemon responsible for

the core services including the “power manager, package manager, window manager, and

activity manager” [98, p. 810].

Figure 8 - Android Architecture [95]

General background

40

Figure 9 - Android Architecture vs. Linux Architecture [[99] as quoted in [100, p. 5]]

Differences to typical Linux computer systems (examples)

While Android is based largely on a stock Linux kernel, it provides different features

sometimes. For instance, a feature special to mobiles is the wake lock option providing different

power states to keep the hardware partially turned on to react to incoming calls or even cloud

messaging [98, p. 810ff].

Further differences are the way it handles low memory situation. The implementations on

Android act much more aggressively and Android uses no swap space. Therefore, low-memory

situation are more common than on desktop computers. On typical desktop systems the

implementation acts more like an emergency procedure killing the largest process, while

honoring some other properties, too [98, p. 813]. Instead, “Android’s out-of-memory killer uses

[…] parameter oom_adj [for scoring] […], but with strict ordering: processes with higher

oom_adj will be killed before those with lower ones” [98, p. 814]. The file /proc/pid/oom_adj

is used by Linux for scoring purposes to make a decision on which process should be killed in

low memory situations [101].

Security architecture

Android makes use of Linux’s user and group model for defining access rights to certain

resources and apps as well as corresponding app directories get a user and group id [102].

With the release of Android L, Google activated another security feature called “SELinux” [52]

(also called “SEAndroid” [103]) to intensify the access control even further and block the usage

of resources (e.g., access to device files) for unprivileged apps and services.

Furthermore, Android’s general security architecture and therefore, the access to the hardware

or services is regulated on Android with regard to apps using predefined permissions, e.g.,

“android.permission.RECEIVE_SMS” [102] to receive text messages. Each developer is

required to define them in the Manifest file26 of an app, while the user has to accept all required

permissions upon the installation of an app. Newer Android versions (>6.0) support permission

granting on demand, too [102].

26 Basic app configuration file containing name, version, required permissions etc.

General background

41

Partitions, filesystems and access rights

Moreover, Android has several partitions [104] for different purposes that may be gathered by

executing “cat /proc/mtd” [104] on a device within a terminal application. While the misc-

partition may be used for device-specific configurations, the boot- and recovery-partitions are

both providing a “kernel […] [and] initrd with rootfs” [104]. The system-partition includes the

actual Android operating system, while all data by the users are stored on the userdata-partition.

Temporary data and related files are instead stored on the cache-partition [104].

The partitions, namely system, cache, and userdata [104] are mounted within Android’s

filesystem at /system, /cache, and /data (same order). While the boot-partition always belongs

to the corresponding Android system, the recovery-partition may be flashed with an alternative

recovery software (e.g., ClockworkMod27 or TWRP28) for increased features such as backing

up the whole device. One of the default tools within the Android SDK for this purpose is

fastboot. Originally Android used YAFFS2 as its filesystem, but changed it to EXT4 by 2010

to avoid (“bottleneck” [105]) issues with upcoming multicore CPUs [105].

By default, users do not have full access to the partitions with the exception of the (virtual29)

SDcard directory that is mounted within the userdata partition for reading and writing.

Nevertheless, this limitation may be removed on rooted devices, which is also a critical issue

in terms of data and software security. Details are addressed in 10.1.2.

A view at a listing of Android’s root filesystem (see Figure 10) reveals its close relation to

Linux and many directories (e.g., /dev/, /root/, etc.) may also be found on a usual Linux system.

One important fact to mention is that most files and directories belong to the system or root user

and are mostly not readable by the actual device-user. For instance, system permissions are

required for upgrading the system as well as viewing the private data files of an application.

Again, this limitation may be circumvented on rooted devices.

Figure 10 - Root filesystem of Android [106]

27 https://www.clockworkmod.com/
28 https://twrp.me/
29 nowadays mostly emulated and many phones do not provide a SDcard slot anymore

General background

42

Storage of apps and related security facts

By default, apps are stored as APK-files in the directory /data/app (see Figure 10) and all its

corresponding data in /data/data/_app-name_. Here (see Figure 11), possible files and

directories are the databases by an app as well as any created, private files. The owner and group

of that directory will always be the app itself (cf. user- and group id) and it can manage the

access correspondingly with an exception for the native libraries that the system owns. One of

the key security features of Android [102] is to use Linux’s user and group model to manage

the access to resources. Each application is sandboxed that way and cannot access other apps’

files. On newer Android versions there are additional security measures integrated, such as SE

Android that enforces mandatory access control, which may limit the possibilities of a root user

and ultimately, the effect of a compromised device to its owner [52]. As outlined in 11.4.7,

there not only are advantages to this, but it may even lower security by preventing access to

secured external devices (e.g., Secure Elements (SEs)).

Figure 11 - Directory of an Android App (example) [106]

In general, Android improves embedded binary files in APK files and stores optimized versions

of apps in /data/dalvik-cache [64, p. 62]. These optimized versions are called ODEX files

(“Optimized Dalvik Executable” [75, p. 23]) and stored in a file following the naming

convention “data@app@PACKAGE_NAME.apk@classes.dex” [75, p. 23].

Instead, on newer Android versions (see 7.3.9) the OAT file is stored as

“data@app@PACKAGE_NAME.apk@base.apk@classes.dex” [75, p. 27] and the folder

/data/dalvik-cache/profiles instead. It is important to know that it is not a DEX file anymore as

even the name surrogates something else [75, p. 27].

7.3.3 Android app development in general

Java by default (Android SDK) is used to develop applications for Android. In addition, it is

possible to use C/C++ (Android NDK) [107].

There are different Integrated Development Environments (IDEs) available today. On the one

hand the first tool available - also used by the author - was Eclipse with additional Android-

related plugins to allow the editing of layouts and the actual compilation process.

By the end of 2014 [108] Google upgraded Android Studio from its beta stage to its official

Android IDE and version ‘1.0’. For instance, this IDE offers improved layout editors with

preview options for different screens and hardware types. Moreover, the structure of projects is

General background

43

slightly modified and other configuration files are required due to the usage of gradle30 for

building apps.

In addition to the official IDEs, it is possible to use and develop apps using third party tools.

Famous tools to be mentioned might be Xamarin [64] that allows cross-platform development

of apps as well as Codename One [109]. For platform-independent convenience, there are also

cloud-based IDEs (e.g., Codeenvy31) that allow the whole development process from any

browser on any system. Also, for beginners, Google worked within its Google Labs division on

a tool named “App Inventor” [110]. Nowadays, it’s still supported and improved by MIT [110].

7.3.4 Native app development

While Android apps are usually developed using Java, Google provides app developers the

option to integrate native code (C/C++ code) into their apps by using the Android NDK [7].

Depending on the IDE used, the approach to use it for development is slightly different. A full

guide for Android Studio - the current official IDE for Android - may be obtained from [7] as

well as in illustrated form in [111].

Figure 12 - Android project with native Code (Android Studio) [100, p. Appendix A]

By default, as explained in [100, p. 33ff] (based on [7] and [111]), an Android project with

integrated native code is structured as shown in Figure 12. Here the jni-folder contains the

important native code- and make-files. The libs-folder includes the compiled versions of that

code (shared libraries / *.so) for different platforms, e.g., x86 and armeabi. Related example

30 Open-Source build system- https://gradle.org/
31 https://codenvy.com

General background

44

source codes may be found in the Appendix (see 15.1.2). Information on the actual build process

may be found in 7.3.11.

In general, Android uses JNI, the “Java™ Native Interface” [112] like Java itself, too. It is the

standard interface to provide native methods and use Java functions from native code [112].

7.3.5 App distribution channels

At the beginning Google’s Play Store (initially named app market) provided the only access to

apps (excluding the user’s option to install APK files). Over time, additional companies and

other developers discovered the idea of offering alternatives for customers to receive apps.

Reasons for this might be to have a more favorable revenue share, better content control, or less

restrictions compared to Google’s Play Store, besides offering improved focus on different

topics (e.g., open-source apps only as addressed by FDroid32). One of the larger competitors is

probably Amazon with its Amazon AppStore. Others might be Wandoujia and AppChina

known mainly on the Chinese market. Further options are GetJar, the Opera Mobile Store, and

SlideMe as well as many others. Despite publishing apps on each app market, developers may

use the services of publishing companies like CodeNgo that submits an app to multiple app

stores programmatically [113].

7.3.6 The Dalvik VM

The Dalvik Virtual Machine [95] (DVM) and its name refers to a town in Iceland and is related

to its creator Dan Bornstein. It is a register-based machine in contrast to usual stack-based CPUs

or other virtual machines. For instance, this was done to “avoid instruction dispatch […] [and]

unnecessary memory access” [95]. Figure 13 shows a comparison highlighting a much smaller

code size for the same source code. An explanation on the used OPcodes in these figures is

provided inline. The full references (see [114] [115] [116]) are of importance for understanding

larger examples only. Originally, the Dalvik VM was optimized for slower CPUs with minimal

RAM and acts gently on resources, while also being powered by battery [95]. Nowadays, some

of these original goals are not valid anymore and current smartphones offer plenty of space,

memory, and CPU power, while battery-life remains an issue. Basically, the “DVM is a

customized and optimized version of the Java Virtual Machine (JVM) […] [and] Even [sic!]

though it is based on Java, it is not fully J2SE or J2ME compatible since it uses 16 bit opcodes

and register-based architecture in contrast to the stack-based standard JVM with 8 bit opcodes”

[66, p. 15] (based on [117] and [118]).

32 https://f-droid.org/

General background

45

Figure 13 - Comparison of bytecode in Java (b) and DEX (c) files (based on [64, p. 18] [114] [115] [116])

General background

46

Another example (see Figure 14) taken from Dan Bornstein’s slides [95] reveals optimized

dispatches, writings as well as a smaller code size, while increasing the reading of certain

registers, even more.

Figure 14 - Assembler of a DEX file [95, p. 40]

The compilation process for this VM is quite similar to the one for Java applications, but in an

additional step the created JAR file with its CLASS files is converted into a special file-format

called the DEX file that is optimized for embedded devices, differently structured and often

smaller than the original JAR file. This conversion is called “cross-compilation”, since the

target platform (ARM) is other than the local one (e.g., x86). Figure 15 illustrates this

conversion process and reveals, e.g., a shared constant pool as one of the differences [95].

Figure 15 - DEX Conversion [119]

7.3.7 Zygote

On Android itself, the applications get executed by a parent process called “Zygote” that shares

core libraries with its children (all apps) to once again save some memory (see Figure 16) [95]

and for speeding up the app start significantly [100, p. 10] (based on [120]). The figure also

General background

47

highlights the different user ids for each app that represent one of the key security features of

Android, since each app has its own id (and therefore, limited access rights) as seen below.

Figure 16 - Zygote and its child processes (based on [106])

7.3.8 The ART VM

In recent years the way of executing applications changed and first Google introduced its JIT

(Just-In-Time) compilation [121] for the Dalvik VM followed by its OAT (Ahead-Of-Time)

compilation for the new virtual machine called ART VM [122]. The main difference is the pre-

compilation of DEX-files to native code, which slows down the installation process (and

sometimes the system updates due to renewed optimizations), but increases the speed upon

execution besides other benefits for battery life (e.g., no more wasteful JIT), multitasking, and

- for future purposes - 64-bit support [122]. Figure 17 shows the differences in a diagram, when

handling the APK and its embedded DEX-file.

Figure 17 - Dalvik vs. ART VM [122]

The ART VM uses several files for execution including boot.art, boot.oat and (referring to any

app) the ODEX file(s) (in OAT format now) [117, p. 11]. Further details are available in the

next section.

In fact, the pre-compiled files represent an ELF file as “specified by UNIX System Laboratories

(USL) and later by Tool Interface Standards (TIS) and is a common standard for executables,

object code and shared libraries on UNIX [Linux] systems” [100, p. 13].

General background

48

As mentioned in [100, p. 13] it is important to highlight that these files are shared object files

and cannot be directly executed. In addition [100, p. 15] concludes that Android ELF files

contain considerably less sections and segments than usual programs with over 30 estimated

sections.

Figure 18 - ART Executable [100, p. 18] (based on [123] [124])

Figure 18 illustrates the structure of such a file. As explained by [100, p. 18] (based on [123]

[124])

 the ELF header starting “at address 0x00 […] contain[s] information about the

version, file type, target machine and offsets to the program- and section header

tables” [100, p. 13] (based on [123])

 the program header table “is an array of structures, each describing a segment or

other information the system needs to prepare the program for execution” [125]

 the symbol table (.dynsym) provides “information for locating and relocating a

program’s symbol definitions and references” [100, p. 13] (based on [123]), e.g.,

oatexec

 the string table (.dynstr) includes strings

 the symbol hash table (.hash) provides the symbol hash table

 the .rodata (oatdata) section may contain any data and stores the OAT files with its

embedded DEX files (see separated section about OAT and DEX files below)

 the .text (oatexec) section holds the program code

 the .dynamic linking info (.dynamic) “includes dynamic linking information” [100,

p. 13] (based on [123])

 the section header string table (.shstrtab) includes the section names

General background

49

 the section header table is an array of structures that allows the location of all file

sections [125]

7.3.9 APK, DEX, ODEX and ART, OAT format

Android Application Packages (APK files)

APK files [100] contain resources and executable codes and are the default shipping format for

Android applications. A standard APK file may look like what is shown in Figure 19 and

includes an AndroidManifest.xml file with basic settings, the actual executable code in

classes.dex, resources (layouts, images etc.) within the res folder, native libraries in the lib

folder, certificates/signatures in the meta-inf folder, as well as more information about the

actual resources in the previously mentioned folder in the file resources.arsc.

Figure 19 - APK file structure [100] (draft version – not published)

Dalvik Executables (DEX files)

DEX files (cf. classes.dex above) contain [64] the actual program logic and are structured as

presented in Figure 20 with typical information such as an identifier (Magic), a checksum, its

file size, offset information to Strings and lots of other properties [126, p. 12ff]. Detailed

knowledge on the format is of interest to advanced reengineers only, and perhaps those who

encounter junk bytes on older Android versions. Instead, most reengineers will benefit from

existing tools that convert DEX files to high-level assembly (see 8.2.2). Therefore, further

information on the fields and structures of Figure 20 may be found in [126] [64, p. 14ff] and

are of no imminent interest to the reader and also not in terms of this dissertation.

General background

50

Figure 20 - DEX file format [126, p. 12]

ODEX file

ODEX files are “Optimized Dalvik Executables” [75, p. 23] only, and generated by Android

for improved runtime execution.

ART file

The ART file is used on newer Android versions and is “an image file with a heap of pre-

initialized classes and objects”33 [122]. Its code may be called by the following OAT files [127].

Actually, there is only one ART file called boot.art [117, p. 11].

Optimized Ahead of Time file (OAT file)

OAT files [75, p. 25ff] are used on newer Android versions and the aforementioned DEX files

are converted using the tool “dex2oat” by Android. It’s basically “An ELF [‘dynamic object’

[127]] file with DEX code, compiled native code and metadata” 34 [122]. OAT files are

structured as shown in Figure 21.

33 transcript by author
34 transcript by author

General background

51

Figure 21 - File format of an OAT file [100] (based on [123])

An interesting fact is the stored DEX file(s) (see Figure 21) within the OAT file, in addition to

the actual OAT code. While that native code might be the better approach in terms of securing

code against reengineering, we found out that current Android versions still require the DEX

files (e.g., for debugging purposes [122]).

There are several OAT files used on Android. The major one is boot.oat and contains the

frameworks. In addition, each application provides its own OAT file stored in the former ODEX

file [117, p. 11]. Further information on the OAT Header and OAT DEX File Header may be

found in [127] and [117].

7.3.10 Compilation of Android apps

The summarized procedure, as shown in [128] and outlined in Figure 22 in detail for the

compilation of Android Apps, is the compiling from Java source codes to class-files that get

cross-compiled to the Dalvik Bytecode. It is named the Dalvik Executable or DEX file. In

addition, all resources, references as well as the Android Manifest file are collected and stored

together with the executable in an application package file (APK file) that gets signed by the

developer key for further distribution on app markets. The shown R-file (in Figure 22) includes

references to resources, while aidl is Android’s Interface Definition Language [129] to allow

the usage of RPC services (optional). Moreover, native libraries get included almost at the end

(see “Other Resources” in Figure 22), before the whole package gets finalized and signed. The

signature is a security feature as well. It should prevent malicious replacements of apps on a

phone, while it can also be used to detect modifications.

General background

52

Figure 22 - Building APK files [128]

General background

53

7.3.11 Compilation of Android apps using native code

A special case is the usage of native code (C/C++) in Android Apps that requires special tools

(Android NDK) and IDE configurations as outlined previously. In this section, the compilation

process, as shown in Figure 23 is explained. Developers are required to create a Java Native

Class within their Android Project in the jni-folder that can be compiled to a class-file and used

to create the C-header file, which is also the base for the actual C/C++ source file. In addition,

two make-files are required, which may define further configuration settings, e.g., to be

included libraries (e.g., LOCAL_LDLIBS := -llog for integrating Android’s logging feature).

Then the NDK tools35 can be used to compile and link the code into a shared library (*.so). The

compilation process is almost independent from Android’s app compilation and the SDK only

includes the most recent shared libraries into the package file (APK) upon compilation of the

Android app itself (see “Other Resources” as shown in Figure 22, see 7.3.10) [130].

Figure 23 - Build process of native code using the NDK [130]

35 Command: ndk-build all

General background

54

7.3.12 Installation of Android apps

As described in [100, p. 8ff], an APK file is handled by Android’s Package Manager that copies

the original file to a file named base.apk stored in the directory /data/app/ and there within a

directory called after its app name, in addition to an appended “-1” (see Figure 24 below).

Furthermore, the native libraries are copied to that directory, too. Depending on the used

Android Runtime, the dex2oat (ART) or dexopt (Dalvik VM) tool is used on the extracted

classes.dex file and its output is stored in /data/dalvik-cache/<arch>/ using the format

“data@app@<packagename>.<appname>-1@base.apk@classes.dex” [100]. It is important to

mention that this file is actually an ODEX file (DVM) or OAT file (ART) internally. Finally,

the Package Manager adds an entry to the files packages.xml and packages.list within

/data/system that contains meta information like UID/GID or required permissions.

Figure 24 - Installation procedure [100, p. 9]

7.3.13 Execution of Android apps

The basic execution of Android Apps takes place as follows [100, p. 10] (based on [120]):

The entry point for the execution is the ODEX file that either contains optimized code for the

Dalvik VM or pre-compiled code for the ART VM. Upon request, and by a click on the icon

by the user, a forked version of the Zygote process launches so that the created child process

(the app) inherits several resources and loaded libraries of its Zygote parent process (Notice:

This is also how Xposed is injected into apps [131]), while app-specific resources or libraries

are additionally loaded.

Furthermore, native libraries of the app are linked either with the created executable of Dalvik’s

JIT compiler or the native code version of that app in case of the ART VM. Figure 25 illustrates

that process in a simplified diagram.

General background

55

Additional details on the startup process and Zygote’s deep internals may be obtained from

[100, p. 22ff].

Figure 25 - App Execution by Dalvik- and ART VM [100, p. 11]

7.3.14 Lifecycle of Android apps

Android provides several components and one of them is the activity. Basically an activity

represents the screen content a user is watching on the display. It may consist of layouts,

buttons, pictures and other so-called view objects that can be added to an activity and ultimately

shown to a user [132]. In terms of the proposed copy protections (cf. 11.4.4) some knowledge

about the lifecycle of activities (see Figure 26) is important. For instance, thinking about the

best functions on where to initialize variables, while observing the specialties of Android that

a background activity might get destroyed upon memory requirements by other apps.

General background

56

Figure 26 - Lifecycle of an Android Activity [132]

Topic-specific background

57

8 Topic-specific background

Due to the focus of this dissertation on copy protection and related issues the current chapter is

dedicated to Android reengineering and its fundamentals. First, related terms are introduced,

before the used assembly dialect for Android called “smali” [133] is presented in more detail.

In addition, the currently available tools for reengineering purposes are shown, and those ones

to prevent it. Also, the basics and history of copyright protections for mobile and desktops

operating systems are introduced as well as some fundamental information on attacking options.

Moreover, existing solutions in software and hardware for data protection are introduced.

8.1 OP codes, mnemonics and related terms

As described in [134], an OP-Code or operation code is a number representing a machine

command that gets executed by a machine (processor) or virtual device, e.g., 0x32 represents

the command if-equals on the Dalvik VM [116].

Instead, a Bytecode often refers to a virtual machine or interpreter only [134].

The human-readable representation of such an OP code, e.g., if-eq for 0x32 [116], is called

mnemonic [134].

A group of these OP codes with their parameters is called Assembly again [134].

Finally assembly source codes get compiled to a machine code that is basically an ongoing

formation of numbers only [134].

8.2 An introduction to smali (assembly)

“Smali” is the “Icelandic equivalent […] of ‘assembler’” [133] and represents a programming

language that results from reengineered apps by using the tools smali and baksmali. Developers

familiar with any assembler dialect as well as Java in general will be able to adapt to that

language within a few days, while editing the source code might require additional studying.

The following sub-sections (based on [133]) will explain the most important commands and

structures in a quick summary. Further details on the actual OPcodes may be viewed in the

Dalvik documentation (cf. [135]).

Registers [136]

“Registers are always 32 bits [in size], and can hold any type of value [while] 2[sic!] registers

are used to hold 64 bit types (Long and Double)” [136].

Registers may be separated into local and parameter registers:

 v0 and v1 are the first and second local registers

 v2/p0, v3/p1 and v4/p2 are the first, second, and third parameter register

Topic-specific background

58

The amount of registers used by a function may be specified in two ways:

 “The .registers directive specifies the total number of registers in the method” [136]

 “The […] .locals directive specifies the number of non-parameter registers in the

method” [136]

Variables [137] [136]

Variables are usually represented by a register that holds the corresponding value, e.g.,:

const/high16 v0, 0x1

const/high16 v1, 0x12

“const-wide/high16 v0, 0x4014“ [138]

Also, it is important to know that float and double values are stored in two consecutive

registers, while the smali code seems to address one register (see example above), only [138].

Data Types and Primitives [139]

The primitives and data types are defined by Oracle as follows [140] and are also used by smali.

Figure 27 – Primitives [139]

Objects are indicated by an L, e.g. Ljava/lang/String represents a string object.

Arrays, such as an integer array, are represented by leading brackets that define the dimensions,

e.g., [I means a single dimension integer array. Of course, the same applies to objects.

Functions [139]

Functions are defined in a detailed way by its name, types, parameters, and return values, e.g.,

Smali: Ljava/lang/String;->getBytes(Ljava/lang/String;)[B

Java: ByteArray = SomeString.getBytes(“UTF8”);

Topic-specific background

59

8.2.1 Dalvik bytecode and its general issues

As already explained earlier, Dalvik Bytecode is a compressed and restructured version of usual

Java Bytecode. Initially, the Java source code is compiled to Java Bytecode and afterwards

converted to Dalvik Bytecode [141].

Due to the included references, the resulting assembly code (smali code) can be much more

easily understood in comparison to disassembled native code (ARM binaries; see 10.3ff for a

native code evaluation). Table 2 shows a code snippet of an example for a decompiled Android

application using the APKtool36. It is probably the most commonly known reengineering tool

for Android. It requires little practice and some knowledge about the used data types37 by

Java/Oracle only to allow skilled developers to understand a code’s meaning (e.g., I equals

Integer and V means void as already previously outlined). The reengineered assembly code

includes even the names of variables and functions by default. It represents the Java source as

shown in Table 1.

 […]

setContentView(R.layout.main);

int a, b;

a = b = 5;
[…]

Table 1 - Java Source Code Snippet (based on [106])

[…]

a function gets called with an integer and has no return value (void)

invoke-virtual{p0, v2},Lde/tum/EasyApp/EasyApp;->setContentView(I)V

.line18

const/4 v1, 0x5 # value of 5 stored in register 1

.local v1, b:I # the name is b and of type integer

move v0, v1 # it is copied to register 0

.line 19

.local v0, a:I # the name is a and of type integer

 […]

Table 2 – Smali Source Code Sample (based on [106])

As anyone might notice, it is easily possible to change values or even the code (logic) itself and

recompile everything. Therefore, we can summarize that it is (with practice) fairly easy to

reengineer and modify Android applications as previously stated in a related paper by the author

[142].

36 Reengineering Tool from https://code.google.com/p/android-apktool/
37 https://github.com/JesusFreke/smali/wiki/TypesMethodsAndFields

Topic-specific background

60

8.2.2 Available tools used for reengineering / modifications / hacking

This section represents a selection of tools important for reengineering. One of the first tools

available to researchers and hackers to reengineer Android Applications was the previously

introduced Smali and Baksmali with its equally-named tools combined in a tool collection

[133]. Other tools are based on this tool collection (e.g. APKtool), while other programs focus

on a specific issue to support the reengineering by other tools again (e.g. dex2jar or dextra).

Figure 28 shows an overview on the most common tools, while these tools and further ones are

explained below.

Figure 28 - Overview of De-/Compilation and convertation options by example (based on tool information sources below)

Smali / Baksmali

Smali/Baksmali [143] is an Assembler-Disassembler tool collection to reengineer Android

apps. It requires the classes.dex file included in every APK-file (or OAT-files nowadays [144]).

The resulting code is a type of a high-level assembler code that still includes lots of references

by default. The “syntax is loosely based on Jasmin's/dedexer's syntax” [143]. An example for

smali code may be found on the previous page.

APKtool

The APKtool [145] is used to disassemble and assemble Android apps with all additional

resources. It is based on the aforementioned tool collection. It provides a debugging feature and

is able to reengineer the APK-files and to rebuild them after any modifications.

DEX2JAR

DEX2JAR [146] transforms DEX-files to JAR-files. It is meant to convert DEX files used on

Android to the different-structured JAR format to allow further processing of that file with

reengineering tools available for usual Java, e.g., a Java Decompiler.

Topic-specific background

61

JD-GUI

JD-GUI [147] is an easy to use Java-Decompiler. JAR files may be dragged on the application

for instant decompilation. The resulting code most often reveals the logic, but is not well

composed to be used for future compilation again.

AndroGuard

Similar to the APKtool, AndroGuard [148] is a tool to decompile Android apps. In addition, it

offers some additional features like call graphs that enable reengineers to understand code more

easily.

Virtuous Ten Studio (VTS)

VTS [149] is an IDE specially designed for reengineering of Android smali-code. It provides

highlighting and instant help.

Online Decompiler

There are also cloud-based solutions available that combine the aforementioned tools in a web

service to provide users an even easier reengineering solution. For example, it provides all

smali- and java-sources in one easy step like http://www.decompileandroid.com.

Xposed Framework

The Xposed Framework [150] is used on rooted Android devices to modify any Android

applications on-the-fly. It is possible to intercept methods and to change any values. It is often

used to add additional functionalities or to remove size limits. For instance, in our research we

used it to circumvent Android’s License Verification Library by exchanging the necessary

parameters in its functions to simulate a valid license (see 10.1.5).

Cydia Substrate

The tool Cydia Substrate [151] was released for Android a few years ago. It provides similar

functionality like the Xposed framework to intercept and manipulate Java code, while also

allowing the same for Android native code (cf. Android NDK). Unfortunately, so far it is not

supported by newer Android versions and it was updated in 2013 [152] for the last time.

Frida

Frida [153] is a framework to intercept processes of various operating systems including

Android. It uses JavaScript and Python.

Lucky Patcher

Lucky Patcher [64] is not a typical reengineering tool, but more of a generic cracking tool to

circumvent (illegally) any copyright protections and to remove ads in Android apps. For

cracking apps, it provides several modes. An analysis and more detailed description is found in

10.1.3.

Dextra

Dextra [154] is developed as a better alternative to the standard dexdump tool by Google. In

addition, it has the unique feature to extract DEX files from OAT files, which is an important

fact for reengineering on modern Android versions; however the current ways to gather DEX

Topic-specific background

62

files from APK files are still available and require an usual unpacker only (cf. APK file = ZIP

file).

Tool suites

In addition to the single tools outlined above, there are collections of tools available and

included in special purpose Linux distributions. One of them is Santoku Linux38 that focuses

on Mobile Security and all related topics including reengineering and forensics. Another tool is

Bytecode Viewer39 that integrates several decompilers and others tools. It may be called an all-

in-one tool for reengineering.

Tools for native code

In general there are lots of reengineering tools for analyzing binaries (cf. libraries created by

the Android NDK) available [155] like IDA40, Hopper41, ODA42 or the online Retargetable

Decompiler43. Native code is much harder to reengineer and most often, there are no longer

references available. Chapter 10.3ff offers a more detailed analysis.

Further information and tools

While the list of tools available is still not completed, further information (as well as more

detailed information) are shown in the slides provided by Tim Strazzere and Jon Sawyer in

[156].

One of the best compendiums, with a focus on security and that introduces hundreds of tools,

books, and talks is the Mobile Security Wiki (see [157]) by Philippe Arteau et al.

8.2.3 Available tools and options to extend time on reengineering

Preventing reengineering is simply not possible and as long as customers have access to the

hardware or software it is only a matter of time until someone cracks a certain protection.

Nevertheless, it is possible to extend this time. A common method for Java and therefore for

Android as well is the usage of obfuscation. Typical and general obfuscation methods as

outlined in [158] include features to prevent the debugging like methods for identifying

emulators or virtual machines, methods to detect or even prevent debuggers, options to prevent

actual disassembly as well as protection against tampering. Further possibilities are

virtualization-obfuscation that uses emulation to execute a random instruction set to prevent

disassembly [159]. The usage of packing tools (polymorphism) is also a common way to protect

actual code besides adding a lot of nonsense to confuse attackers (metamorphism) [158].

Focusing on Android and since decompiled Java code still contains many references (cf. 8.2.1/

smali code) by default, an obvious method to increase the difficulty on reengineering is to

remove all possible names and references. Further methods might be the encryption of resources

38 https://santoku-linux.com/about-santoku/
39 https://github.com/Konloch/bytecode-viewer
40 https://www.hex-rays.com/products/ida/
41 http://www.hopperapp.com/
42 https://www.onlinedisassembler.com/odaweb/
43 https://retdec.com/

Topic-specific background

63

and all used strings. As a side effect, the optimization also decreases the file size. Tools that

need to be mentioned providing these mechanisms are ProGuard and its commercial version

DexGuard [160] [161].

In addition, researchers invented further methods for obfuscation on Android. An interesting

approach (see details in 9.2.2 about “Divilar”) is the obfuscation by exchanging all opcodes,

while restoring them on-the-fly upon execution. This approach prevents the protected app from

being decompiled by all typical reengineering tools [162], while unfortunately this approach

can no longer be used effectively on modern Android (cf. pre-compilation requirement).

Taking the easy reengineering options of Dalvik Bytecode (resulting from Java code) in mind,

a suggested option could be to use native code (e.g., Android NDK) for security related tasks,

since it is commonly known that it is much harder to reengineer. This assumption is even

confirmed by Mr. Kralevich44 stating “Speaking for myself (not Google). […] I agree that native

code is more resistant to reverse engineering, so it's likely more secure for your copyright

protection mechanism” [163]. In general Google recommends using Java code instead, since

handling native code is more difficult [7].

In addition, there are several other options as mentioned in the related work section including,

e.g., encryption and dynamic code loading solutions.

8.3 Basics on copyright protection

The following section covers the basics in terms of copy protection in general, in addition to its

history for both the desktop and mobile world and available methods by example.

8.3.1 Copy protections on desktop computers

As previously mentioned in the introduction section, and since the early days of computing,

content- and copyright protection have existed. Also, the used methods improved over time to

compete with available technologies in order to provide a reasonable protection against

software piracy.

In general, one can assume the following reasons for using copyright protections [75] [50]

[164]:

 Loss of money due to piracy

 Repackaged applications might be modified to gain interests for the attackers

 Customers are at risk, since repackaged applications might contain Trojans etc.

At the beginning in the early 1990s, so called “code wheels” [165] were used. Most of the time

they consisted of two paper-disks that were moveable in order to calculate different results.

Gamers45 were required to solve a type of riddle using that tool. At that time, it was still difficult

44 “Nick Kralevich is head of Android platform security at Google and one of the original members of the

Android security team” [358]
45 refers to computer users, who are gaming

Topic-specific background

64

and expensive to produce copies of these disks, and scanners and copy machines were not as

readily available like they are today, not speaking about missing internet possibilities by that

time.

Nevertheless, the companies noticed quickly that these ideas were not sufficient to protect

against illegal copies and they came up with more advanced ideas that required special hardware

or software. Again, this was to fulfill a reasonable protection for that time. Examples for these

types of protection as outlined in [36] are as follows:

 The usage of additional floppy disk tracks out of scope (not copied by default copy

commands) to place additional data not found on copied disks anymore (cf. “40 tracks

on a 5.25" disk, and 80 tracks on a 3.5" disk” [36])

 The usage of intentional disk errors or other damages not copied with the default OS

copy commands, and therefore, copies (without these errors) are easily identified

 Custom formats to hide the data and prevent DOS from accessing any files

 By using “weak […] fuzzy […] [or] strong Bits” [36] that influence physical properties

and may be detected by a disk drive / the copyright protection methods

There are several other possibilities found in [36].

Then, by around 1995 [166] [167], Microsoft released its famous operating system “Windows

95” [166] that started a new era for home computers, since the initial version of “DirectX”46

[167] was released. Moreover, slowly the gaming industry adapted to this new operating

system. At the beginning of this new era many games were still developed for DOS as well as

Windows (e.g., Westwood’s Command and Conquer: “Red Alert”/two binaries for each OS on

the same CD) and disk space was still limited to a few gigabytes [168]. While it appeared

impractical to copy these huge CDs — each one around 700MB in size — by that time, most

games on CDs already had copyright protection. Examples of protection methods are SafeDisc,

SecuROM and LaserLock [169]. Similar to the known and presented methods for the floppy

discs above, these techniques made use of manipulating special properties of discs once again.

For instance, LaserLock [40] does this by not only encrypting the original executable and

adding its security code, but it also manipulates the disc format by adding data in hidden areas

to apply a physical signature to the disc, which is verified later by the protection method [40].

While the quality of the games (especially graphics) improved over time and their file sizes

quadrupled with the introduction of at least DVDs and BluRay Discs, the copyright protections

adapted themselves to the new formats only and, e.g., LaserLock was also applied to protect

DVD-based software [170].

While games are still available on DVDs — commonly known as “boxed […] games” [171] —

an increasing number of software is also sold on online platforms nowadays [171]. At the

beginning, producers sold their own games on these platforms only (e.g., Steam by Valve), but

one can find almost any game at these online shops today (e.g., Steam and Gamesload.de). Of

course, these downloadable games do not require any physical discs anymore and therefore lack

the typical copyright protection mechanisms. Instead most of these games are shipped with a

registration or activation key that is linked to a user account [172]. For online multiplayer games

it is most often an essential requirement now.

46 DirectX provides developers multimedia APIs and is most often used for games

Topic-specific background

65

This new approach is quite convenient for users as well as companies. While users may benefit

from a ranking system among games (cf. Battle.Net for games like Starcraft47 and Steam for

games like Counter-Strike48), they can frequently download games according to the license, and

still, even after years, by using their credentials only. A slight disadvantage might be the fact

that these games usually require a permanent internet connection. In contrast, the companies

often acquire usage information and customers, who use games without their credentials

(besides linked activation keys) are frequently unable to use the games anymore, because using

the server infrastructure is limited to legal accounts. This is a great advantage for copyright

holders. Exceptions are single player games that do not require a permanent internet connection

for gaming. These types of games still face the danger of being cracked and copied illegally, as

addressed in 8.4ff.

In addition, pricy software products, or those that require special protection (e.g., the IDE for

G&D’s MSC) are using so called dongles to protect their applications [41]. In its most basic

version, a hardware dongle may be represented by a small device that is attached by a USB or

another interface with special wiring inside. Nevertheless, modern dongles may include a small

microcontroller to deliver encrypted data or keys to an application to fulfill some sort of

handshake [173].

8.3.2 Copy protections on mobiles

When observing the mobile world with its app markets, one can find a similar approach to the

recent example in the desktop world. This includes the usage of an account (e.g. Google

account, Amazon account) that is linked to all installed and bought apps and is combined with

a simple protection mechanism to check that an executed app belongs to a legitimate account

before other parts get executed. In fact, it is not a real copy protection, but a license verification

only. The app itself can be copied, but does not work on other devices anymore. Depending on

the app, market-providers like Google or Amazon offer different solutions here and are

presented next in more detail.

Google’s “License Verification Library”

The “License Verification Library (LVL)” [47] released in 2010 [174] provides basic protection

for developers. Only apps supplied through the Google Play Store49 are covered and that

requires the Google Play services to be installed, while preventing the app from running

otherwise [66, p. 20]. This allows developers an easy solution to integrate basic copyright

protection (actually license verification) into their apps that sell through the Google Play Store.

Internally, an application uses a method call while implementing a callback to handle the actual

license response by Google. The communication with the Google servers is arranged by the

Google Play client that gets involved by a remote IPC50 request from the app. The usage of a

nonce, as well as public/private key procedures (using RSA51), should ensure a safe and valid

response. Only Google knows the private key to sign any responses, while the app can verify it

47 PC game - http://us.blizzard.com/en-us/games/sc/
48 PC game - http://store.steampowered.com/css
49 Google’s Platform for offering apps - play.google.com
50 Inter-Process-Communication
51 Encryption by Rivest, Shamir und Adleman (Inventors)

Topic-specific background

66

by using the embedded public key in the app (included by the developer). The Google Play

client provides the Google servers basic user information for identification purposes and

validation of the license request, too. Figure 29 illustrates the basic implementation [64, p.

55ff].

Figure 29 – How Google’s License Verification Library works [47, p. top]

A sample and minimal implementation is provided below as described in [66, p. 18ff]. Besides

the basic requirements such as a Google Publisher Account for developers, the app needs to sell

through the Google Play Store, and users’ devices need to have the Google Play Services

installed. For integrating the LVL in an app, it needs to acquire permission to use the licensing

service first. In addition, the app’s public key needs to be fetched from the Developer Console.

It must be integrated into the code snippet of Figure 31. Here is also where the basic

configuration takes place, by providing the LVL a unique Android ID that is a “64-bit number

(as a hex string) […] randomly generated when the user first sets up the device” [175]. A salt

consisting of random bytes, is also required in addition to the package name. The

‘AESobfuscator’ here is used to store license responses hidden. Finally, the actual license

request is triggered by passing the callback. Of course, in advance the callback methods - as

shown in Figure 32 - need to be integrated into the own code providing the implementations to

the cases/functions applicationError(), dontAllow() and allow().

Figure 30 - Permission to use LVL [66, p. 18]

Figure 31 - LVL Configuration [66, p. 19]

Topic-specific background

67

The details of these methods are found in Figure 33. “The applicationError() [method] is used

when the license verification cannot be made, e.g. because no internet connection could be

established or because the application is not registered with the Google Play server” [66, p. 18]

(based on [176] [47]). Additional details may be found in [47] and [177] as well as in our

analysis chapter (see 10.1.5). Even further internals are outlined in 11.4.8 obtained by

reengineering of Google’s services.

,

Figure 32 - LVL Callback methods [66, p. 19]

Figure 33 - Overview license check [177]

Amazon’s DRM

Amazon’s approach [64, p. 23] within its Amazon App Store, is different from the one presented

by Google. While developers of Google’s LVL are required to integrate and modify it on their

own, Amazon applies its own protection mechanisms upon the upload of an APK file by

decompiling and repackaging the app, and while adding and modifying the code as well as

applying a new signature that is unique for the developer [46]. Details on this protection are

found in 10.1.4.

SlideMe’s SlideLock

SlideMe [65] is an alternative, but rather small, app market similar to Amazon’s AppStore and

offers its own license verification and service. Therefore, developers are required to integrate a

jar-based library into their app. It is based on identifying a device by using either IMEI or the

WiFi MAC address, besides requesting license information from a license server. It features,

Topic-specific background

68

e.g., periodical checks and leaves it up to the developer to define actions such as a grace period,

e.g., upon travelling of the user with no available internet connection.

8.4 Basics on attacks on copyright protection

For understanding and ultimately cracking copyright protection the reengineering of an

application is an essential first step. Nevertheless, one huge difference is the format of

applications on different architectures. While most applications and protection-drivers in the

desktop-world are likely only available as native code (e.g. x86 binary code), its reengineering

may be considered extremely difficult due to missing references and pure assembly code, while

applications on Android are available as Dalvik bytecode instead. Figure 34 shows an example

for a reengineered x86 application of the strcpy function. It is compared to the Dalvik Bytecode

example in Table 1 and Table 2 in 8.2.1. Here, one can clearly recognize the differences of

defined variables and included references in the smali-code in comparison to the x86-assembly-

code (blue) below (Notice: the explanations in green usually are not available and provided by

the author of the website).

Figure 34 – Example (blue code) for a disassembled x86 code using the online disassembler for strcpy [178]

This issue even applies to the latest Android versions using the ART Runtime, since they still

embed the DEX file (as indicated in 2016 by [100] (based on [123] [124])) in the OAT file (see

Figure 18 in 7.3.8). As already presented in 8.2.1 the reengineering of the Dalvik bytecode

(DEX file) is much easier and may even include references and names depending on the used

obfuscation method (if any was used at all).

In general, all protection mechanisms face the risk of getting cracked after a while. Here we

need to distinguish between the desktop-world and the mobile-world again, as well as different

protection mechanisms and its countermeasures.

Topic-specific background

69

8.4.1 Cracking methods on desktop computers

Cracking floppy disc protections

Back in the old days and recognized by the author himself, copy-protected software was most

often cracked by special cracking tools that replaced the desired patterns within executable and

specific versions of a program. Either the software pirates shipped a special tool (called crack)

or they provided the cracked binary already. Since the internet was almost unknown at that

time, it was much harder for users to obtain any illegal copies or cracks. Pirated software was

mainly shared among groups and friends, or friends of friends, via physical floppy discs.

Cracking CD/DVDs/etc. protections

With the rise of modern multimedia computers, Windows95/98, CDs, and the Internet, the

situation slowly changed around 1995 to the end of the millennium. Manufacturers started to

deliver their software on CDs and updates over the Internet happened more frequently. Also,

software pirates probably got annoyed by the constantly updated executables that required new

cracks for each version. In addition, cracked software often lacked features such as the

background music on the CDs, and cracks most often only disabled the checks for a legitimate

CD, while the so called key-generators delivered any required license codes. In fact, people

were probably fascinated about the idea of emulation while most users claimed their interested

was based on the idea of creating a (legal) backup copy and protect the original disc. One of the

tools that came up during that time was, e.g., CloneCD52. It allowed users to backup an original

CD and store it in a file on the hard disk. This file can be used to burn the copy on another CD,

if the pirate owned the correct hardware. It also featured a Virtual-CD drive to mount such a

copy into the system. Later on, it also provided features for DVDs and Blu-rays. In all cases,

requirements by the copy protections were emulated by this software. The application

recognized it as a real, physically present, and original CD [179].

Cracking internet-related games

As previously presented at the end of chapter 8.3, software today is most often distributed across

the Internet and in online stores, and someone can still even buy games in usual stores on, e.g.,

CDs or DVDs.

For instance, games might be acquired from Steam53 by registering and buying the games for

an account. Many of these games require a permanent internet connection with a producer’s

server, since they are often multiplayer-based and require interaction with other players

worldwide. Nevertheless, even popular server-based games cannot be wholly protected by this

approach, as crackers54 may just start to emulate the whole server-infrastructure to allow pirated

games to be played within a limited environment (e.g., World of Warcraft’s server emulation,

also known as “private servers” [180] like the (recently shutdown) “Nostalrius” [181] servers

with ~800.000 users [181]). Of course, these (illegal) private servers do not represent the actual

game and lack many features that the producers add to a game over time, but it essentially

allows the free gaming of a paid game/service. In general, these servers are usually illegally

implemented by reengineering and sniffing the network traffic. They emulate the real server

52 The tool is not permitted in Germany anymore - http://www.slysoft.com/de/clonecd.html
53 http://store.steampowered.com/
54 Someone, who cracks apps or games to get illegal copies working

Topic-specific background

70

step-by-step. Therefore, it can already be noted that a secure network traffic encryption also is

essential.

Of course, even nowadays, cracks are still available to separate games from the requirement of

such a mandatory platform. Nevertheless, this mainly applies to single-player games sold on

these platforms, since they do not require a permanent server connection to function properly.

8.4.2 Cracking methods on mobiles

As stated earlier, Android apps also combine some of the former ideas for protection as well as

for cracking them. It is essential to know that many games are meant for single players and

therefore the interaction with others or a permanent connection is not required nor desired (cf.

limited data plan), even this starts to change slowly now (cf. Pokemon Go app) and carriers

provide special data plans [182].

Most often a user has some sort of market account (e.g., Google Play or Amazon AppStore

account) and downloads purchased or free apps to his device that get associated with the

account. Therefore, apps are most often related to the used user account (if received from a

store) and may be installed on other Android devices with the same account. This information

is stored on the server-side only, and usually not embedded into the app itself. Copying the

APK file to a different device that has a different account will certainly trigger the copyright

protection, and prevent the application from execution (when it is a protected app), but the

actual copying is possible and not prevented by Android.

Nevertheless, apps might be easily cracked with the appropriated tools or by manually

performing the required tasks. One of these tools is, e.g., “Lucky Patcher” [49] that acts as a

general cracking tool and gained extreme popularity among mobile app pirates. It may perform

various actions against an app itself and the used services on a device (e.g., to disable signature

verification and to circumvent license verification [64, p. 60]). A detailed analysis of this tool

is presented in 10.1.3.

Also, our research revealed that the often used LVL is vulnerable against an MITM attack on

rooted devices to intercept the communication and exchange license parameters as well as used

signatures on the fly [64, p. 54ff] (see 10.1.5). Apps protected by Amazons DRM may even be

cracked more easily, by only removing certain lines of code [64, p. 30ff] as outlined in more

detail in 10.1.4.

8.5 Data protection and available soft- and hardware solutions

As outlined below, we see that data protection, either for privacy or security reasons, is always

an important and difficult task and many factors need to be considered, depending on the actual

way it is implemented and the preferred security level.

Topic-specific background

71

For instance, it might be more than sufficient [183] for regular users to encrypt their data at

128bits55, while governmental agencies certainly need to use 256bits or even higher (cf. “TOP

SECRET” requirement) [184]. While a thief will most certainly be unable to decrypt the user’s

data encrypted at, e.g., 96bits, a foreign state with access to high computational power might

crack it within days to a few months. Nevertheless, there might be a performance benefit for

that user when using a smaller key size, and the required security level has to be weighted

carefully depending on the desired needs.

In terms of mobile development and its copyright protection a good performance by the

applications is the most desired goal. Any implemented methods should not affect the user’s

app experience. Upon the start of an application, a few seconds delay is probably acceptable by

most users, but any annoying disruptions during the runtime should be avoided at all costs. That

becomes important when proposing, e.g., the usage of fairly slow SEs by us in the proposed

solution section.

Due to the fact that Android devices may be rooted either by exploit or a predefined way by the

manufacturer (cf. 6.3.1), data stored on the phone or exchanged over a network is not secured

from eavesdropping, illegal access by its user (important in terms of copy protection), or by a

trojan (in terms of privacy).

Any Android application stores its data (including settings, files and SQL databases) in the

corresponding directory referred to its package name, e.g., /data/data/de.tum.nilsapp.

All data stored here belong to the corresponding user/group ID of that application with the

exception of native libraries that are assigned to the system user. Nevertheless, a user with root

permissions may access any files here. Thinking about any network activity, a root user may

also intercept the network traffic.

Therefore, a basic encryption of files, databases and traffic is essential for simple protection

already today. While any files may be encrypted using the typical Java Crypto or OpenSSL

APIs [185], SQLite features the usage of extensions for encryption, too. A possible solution

might be SQLcipher56. By default, there are secure versions of all major network protocols

available (e.g., HTTPS instead of HTTP) and should be used whenever possible.

Ultimately, simple protection does not shield against sophisticated attacks such as interception

of functions calls (see 10.1.5), but raises the time barrier until there is a breach of protection

that protects the user’s data against theft (cf. Trojan).

In addition, use of obfuscation techniques is recommended that exist for Java and other

languages to remove, e.g., references that would allow an easier reengineering of an application.

A default tool available for Android is ProGuard [161]. It is shipped with Android Studio and

provides basic protection already.

55 Key length and a factor to describe the assumed security level
56 https://www.zetetic.net/sqlcipher/

Topic-specific background

72

8.5.1 Secure Elements

General information

In general, SEs are available “in form of UICCs57, commonly known as SIM cards, as an

external flash memory card or even already embedded in the hardware of the phone itself” [186]

(based on [187]).

Even Secure elements (SEs) [186] [187] are similar to smartcards, they have a “deutlich

komplexeren Lebenszyklus […] was jedoch auch zu deren Flexibilität beiträgt“58 [187] and

may be changed dynamically by exchanging the installed applets59. The applets are created by

using a special IDE (e.g., JCS Suite by Giesecke and Devrient) and developed using Java

language.

Unfortunately, the internal SE as well as the SIM cards are of no practical interest to usual

developers, and would require cooperation with carriers like Telekom, Vodafone, etc., or huge

companies like Google, which is obviously very unlikely to happen for a smaller company. In

addition, it appears Google does not want to support the UICC to be used as a SE due to

disconnected SWP lines60 between the NFC chip and the UICC [188], while the access codes

to load applets to the internal one are unknown as well [189].

An alternative are SEs in form of external devices or to be used in an internal slot. There are

SEs available by lots of manufacturers with each one featuring different options and feature

sets or sizes. Besides different versions for the used card operating system, each card may

support different cryptographic algorithms or holds different certifications to prove its security.

Examples might be the “IDPrime MD” [190] by Gemalto, the “PS-100u SE” [191] by SwissBit

or the “Mobile Security Card” [192] by Giesecke & Devrient.

Dissertation related decisions and options

In this dissertation the Mobile Security Card (MSC), an SD card with an embedded SE, by

(formerly) Giesecke & Devrient Secure Flash Solutions was used mainly due to existing

cooperation and freely61 available tools (see Figure 35).

Figure 35 - Mobile Security Card [193]

Its parent company decided to shut down the Secure Flash division and discontinued the support

for its cards. However, we decided to continue usage of the MSC, since it is used for

57 Universal Integrated Circuit Card
58 Translation by author: more complex life cycle […] [and offer] more flexibility
59 programs on a SE
60 Single Wire Protocol connecting a secure element and NFC modem [357]
61 Sponsored by G&D SFS

Topic-specific background

73

demonstration purposes only. Especially, due to the fact that similar products became available

that may be used with our presented methods in the future, e.g., the ones by SwissBit.

Development Tools

The IDE used for development of applets by Giesecke & Devrient consists of a modified

Eclipse version featuring additional tools like an emulator of the SEs as well as a Macro Editor

to verify and test the developed applets. Figure 36 shows the Macro Editor for testing the created

applets and, e.g., selecting the applet with the AID62 31 32 33 34 32 36 as the first step.

In addition, and for debugging purposes, the communication between a (here: simulated) SE

and an applet may be monitored and measured as shown in Figure 37. An interesting figure is

the used time in milliseconds as it allows the assumption that the performance is quite low as

outlined in more detail at the end of this chapter using a real device.

Figure 36 - Giesecke & Devrient JCS Suite's Macro Editor

Figure 37 - Giesecke & Devrient JCS Suite's Communication Log (without details due to NDA)

62 Application Identification Number

Topic-specific background

74

Architecture of the Mobile Security Card

Internally, the MSC consists as shown in [194] and Figure 39 of a typical flash controller, the

flash memory as well as the SE. It features the Java Card operating system and therefore, the

dynamic installation of Java Card applets that run on top of a Java Card Virtual Machine

(JCVM) within the Java Card Runtime Environment (JCRE). This includes management for

memory, applets, and security as well. It provides a Java Card API for developers. The lifetime

of the JCVM equals the lifespan of the card itself and any information is preserved upon power

failure. Figure 38 shows the typical architecture of Java Card OS.

Figure 38 - Architecture of the Java Card OS [194]

The flash memory is available to any connected device by default methods (e.g., by mounting

the device within the filesystem of the host computer). An important fact is that access by the

SE to the flash memory is not possible [195], which reduces the possible functionality

enormously, since data is limited to the provided internal memory of the SE of 78KB [192].

Also, the access to the secure element is limited, and may be established by using the ASSD63

interface or by using the “Generic Security Interface (GSI)” [194] that uses a usual file I/O

operation (special file) for the communication of an app with the secure element [194].

Figure 39 - Internal Architecture of the MSC [194]

63 Advanced Security SD - Specified by the SD Associations [194]

Topic-specific background

75

Card Management and Security configuration

The actual application management (dynamic updating of applets) is of no importance here and

was not used in the solution proposal, since the existing framework was not compatible with

modern phones (see next section) during the practical phase of this research work. Therefore,

features had to be left out, and that feature was unimportant within our demonstrator solution.

However, we assumed that the card is used by a single company only, which is relevant in terms

of security (see 10.4.1 for details).

By default, the so-called “Issuer Security Domain” [196, p. 39ff] is responsible for managing

the keys and delegating permission to others, e.g., to modify the card content by installing

another applet.

In general, the MSC also “complies with the Global Platform” [194] standard that fills the gaps

by the Java Card standard. The Global Platform standard defines default methods like the

requirement of an “Issuer Security Domain” [196, p. 40] and secured channels for the

management.

Communication with the Secure Element (applet)

The communication between the flash controller (and external requests) and the Secure Element

is specified by ISO781664. All requests are encapsulated in an APDU, an “Application Protocol

Data Unit” [194] that may be interpreted on the card by the process method (see Figure 40 for

a basic example of such an applet) [194].

Figure 40 - Example Code of the default applet structure [197, p. 22]

APDUs contain instructions that may initiate different methods on the card besides having

parameters. In the current implementation each APDU may contain data of up to 255 bytes

[197].

Figure 41 and Figure 42 illustrate the default possibilities for the message structure of these

APDU requests. The different fields are defined as follows [196, p. 158]:

64 International Standard, cf. http://www.cardwerk.com/smartcards/smartcard_standard_ISO7816.aspx

Topic-specific background

76

CLA The bits of CLA define the command type (b8 to b5), b4/b3 for secure messaging

indication and b2/b1 represent the used logical channel (see ISO 7816-4 for details).

INS This byte represents the instruction byte and may be defined by the developer in its

applet.

P1/P2 Parameter bytes

Lc “Length of command data” [196, p. 158]

Le “Length of expected response” [196, p. 158]

Data Payload

Figure 41 - APDU default structure [196, p. 158]

Figure 42 - Format of APDU requests [197, p. 25]

Issues on modern phones and new USB-OTG requirement

Since most modern phones (e.g., Nexus 4, Nexus 5, etc.) [186] [164] do not feature an SD card

slot anymore, any solutions are already limited to the GSI interface from the beginning. The

solution to access the MSC on modern phones (before Android Lollipop, see next section) is,

e.g., the usage of a Micro-SD-Micro-USB-Adapter using USB-OTG. USB-OTG is a

technology to support the host-mode on smartphones or other devices for connecting

peripherals such as, e.g., an USB flash drive [198]. As evaluated by a student group, Figure 43

shows an overview on major devices that support (green), partially support (yellow), or do not

support (red) USB-OTG. Those devices marked red will not be able to use any of our presented

solutions.

One additional issue is that mounting any external device requires root rights on many devices,

and most smartphone users would not be able to fulfill this requirement. In addition, we

discovered that some Android versions do not support the O_DIRECT flag, which allows

Topic-specific background

77

unbuffered read/write access – a critical requirement to read the reply to a command. As a

possibility to address the issue of mounting the MSC without root rights (see [199] for technical

details on the following library) and surrounding the O_DIRECT problem that affects some

Android versions, the library libaums65 was developed and later extended by MSC capabilities

to be used in this research project. A disadvantage of this approach is the raw communication

with the SE, which is usually handled by the appropriated framework, e.g., the “MSC Smartcard

Service” [200] by Giesecke & Devrient. For this reason and to increase the security once more,

it was decided to define our own protocols for the communication between an applet and an

Android application, asides from the usage of some default, standardized commands (e.g., for

selecting an applet).

Figure 43 - Devices supporting USB-OTG (as of 2015) [201]

65 “Library to access USB Mass Storage devices”, M. Jahnen, https://github.com/mjdev/libaums

Topic-specific background

78

Issues on modern phones using Android Lollipop or higher

While USB-OTG is a mandatory requirement, using native code is an additional, mandatory

requirement in terms of gaining additional security (see 10.3ff). By using a native port of the

aforementioned libaums library, we noticed that it is not working on Android versions higher

than or equal to Lollipop. Further details and remaining options are found in 11.4.7.

Performance of Secure Elements

Another important fact [197] about SEs is the weak performance. A typical I/O request to the

secure element performing a request and receiving a reply takes about 200ms with a payload of

255 bytes (with our implementation). We evaluated the results of a student’s thesis and found

(as shown in Figure 44) that a file size of 1kB generated data in Android, was already transferred

and stored within the SE in 2.4 seconds. Reading the same data from the SE back to Android

took additional 1.5 seconds. This low performance limits the usage of SEs dramatically and we

cannot justify more than a few seconds in terms of a copy protection in general. In fact, it is

preferred that the impact of any methods is not detectable by a user (< 2 seconds).

Figure 44 -Performance test of the MSC using libaums in an Android App (10kB and more were calculated) [197]

8.5.2 Trusted Execution Environments

As previously introduced in the related work section (see 9.1), Trusted Execution Environments

(TEEs) may provide a secure setting for confidential app data by separating the exploitable

operating system (Android) from a 2nd secured operating system on a device. Advanced TEEs,

like Samsung’s Trustonic for KNOX, may even provide dedicated hardware access to allow a

secured interaction with a user [202]. A simplified figure explaining an Android device that

provides a TEE is displayed in Figure 45.

As clarified by Mr. Ekberg66 in [203] for the Trustonic TEE, their solution also separates the

TEE OS into user-space and privileged-space. By default, that side is assumed to be secure and

each TA (Trusted Application) acts within its own (user) address space within the TEE OS.

Typical use cases for TEE in general might be, e.g., mobile payment, BYOD, secure hardware

tokens, runtime integrity verification, but also DRM including HDCP and similar protections

[204, p. 7].

66 Employee of Trustonic

Topic-specific background

79

Figure 45 - Simplified overview of an Android device providing a TEE (based on [203])

Nevertheless, there are [205] several TEEs options available (e.g., QSEE, HTC’s modified one

or the already mentioned solution by Trustonic), and it seems each manufacturer is creating its

own (cf. “ARM TrustZone® is one way […] [it is] not the only way” [204]).

Therefore, and similar to Android, TEEs, for now, face a similar fragmentation based on the

used chipset. It may even happen that two TEEs share a SoC67, e.g., QSEE and Trustonic [206].

Similar to SEs, the Global Platform standard also defines default methods for TEEs [206].

Current systems “build on trust […] that you as an attacker should not be able to do anything

in that world [...] [and that it is] unreachable"68 [205]. Most TEEs come as integrated hardware

solutions within a SoC, e.g., “Qualcomm’s Secure Execution Environment” (“QSEE”) [205]

on a SnapDragon processor.

8.5.3 Enhanced Operating Systems

For the sake of completeness another option for increasing data protection is to harden the

system against possible exploits by limiting the access to system files or other relevant files that

do not require permanent accessibility by a user.

For instance, the NSA, along with SEAndroid (originally SELinux), developed an improved

system with mandatory access control that was later integrated into Android itself [103, p. 12]

67 System on a Chip
68 Transcript by author

Topic-specific background

80

[207]. It is also responsible for limiting the access to SEs in later Android versions due its access

limitations for device files. This restriction deeply affects our ideas of using SEs with native

libraries as outlined in 11.4.7 in more detail. While meant as an additional security

measurement, it has the very opposite effect in this special case.

Moreover, a similar approach to secure Android, was presented by Sven Bugiel et al. with their

modified Androidsystem called “TrustDroid” [208]. Moreover, the solution approach by TUM

I20 and FORSEC (“TP1: Security Architecture for Mobile Devices” [209]) is another solution

in that category.

Further details on these approaches are not of importance, since hardening Android itself is out

of scope of this dissertation and not considered the correct way for copyright protection due to

Android’s large size with many vulnerabilities in several services and by a large number of

developers (cf. common saying “too many cooks spoil the broth”). From the author’s

perspective it is difficult to secure Android without hardware modifications and recently

discovered exploits with regard to Qualcomm chipsets and their drivers perfectly confirm that

assumption affecting millions of devices once again [27].

Related work and discussion

81

9 Related work and discussion

Due to its openness Android is also a target for security researchers and hackers of all kinds.

While this dissertation is about copyright protection by using e.g. native code and secure

elements, other researchers in related areas focus on copyright protection mechanism in

hardware or software, general security or privacy issues and possible solutions instead.

The following section should present an overview and short introductions on recent works in

related areas as well as a comment about the relations to this work and/or issues. Moreover, the

last section provides a short comparison to my proposed solutions.

Any theses by my students are not included here, since they belong to our research group.

9.1 Securing and protecting Data

For instance, in their paper Tim Cooijmans et al. [210] analyzed secure key storage solutions

and confirmed that keys might be securely stored depending on the used solution (cf. ARM’s

TrustZone vs. Bounty Castle69), which are non-accessible to root attacker(s), and even those

intercepting communication. Ultimately, however, they may still be used by the attackers as by

any legitimate app. Depending on the device, keys might be secured and perhaps not viewable,

but can still be used illegally by faking legitimate app requests.

Comment: Even if the keys are stored securely, the issue of an insecure Android world is

clearly visible.

On the Google IO in 2015, Peiter Zatko [211] introduced the community to “Project Vault”

[211] after Google realized that customers do not yet have their own secure elements. For the

moment they focus on enterprising customers first and use it internally (e.g., “Project Abacus”

[211]). “Project Vault” [211] is a microSD card that features an ARM processor running an

RTOS (realtime operating system). Therefore, it can act independently from the host OS. Also

it includes an NFC chip and an antenna, which are used for authorization purposes.

Furthermore, it supports various security features for “hashing, signing, bulk encryption,

streaming encryption, a strong hardware random number generator and four gigabytes of

isolated sealed storage”70 [211]. For the moment the communication works by using two files.

One for sending requests and one for receiving information. Everything is still experimental

and Google released “Research Hardware […] [and a] Development Kit” [211] only (status in

2015). According to Spiegel [212] it should be also used to make passwords unnecessary.

A quite similar product is the “FIDO U2F Security Key” [213] by Yubico; it uses a secure

element internally (cf. [213]‘s FAQ). It may be used to authenticate against various services

including Gmail or any other website supporting the FIDO U2F protocol.

Comment: From a technological point of view, “Project Vault” [211] and the “FIDO U2F

Security Key” [213] are each close matches in terms of related works available, even though

69 Software solution
70 video transcript by author (starting ca. 52:57)

Related work and discussion

82

they are obviously not focused on copy protection yet. Nevertheless, if they would be available

for a broad range of devices and customers, it may allow for the future usage of current,

conceptual, and proposed methods that cannot be used due to USB access issues caused by

SEAndroid (see 11.4.7 for details).

Another topic of interest is Trusted Computing. Usually trust is generated by using a hardware

module “known as […] Trusted Platform Module (TPM)” [[214] as cited in [215]]. While

TPMs are “dedicated microprocessors designed to secure hardware” [216, p. 5], TEE “is a

separated execution environment that runs alongside the Rich OS […] [and provides] isolated

access to its hardware” [216, p. 4] instead. Trustonic is one of the leading companies providing

TEE [217] that derived from existing products like ARM’s TrustZone, G&D’s Mobicore and

other vendors [218]. Even “mobile phones with hardware-based TEEs appeared almost a

decade ago, and today almost every smartphone” [219] includes one, “the use of TEE

functionality has been largely restricted […] [and there] has been no widely available means

for application developers” [219]. With “Trusty” [205] Google is working on its own TEE.

However, on its website it is still declared “subject to change” [220] and appears unfinished.

Comment: As highlighted in the security analysis chapter for hardware (see 10.4.2), TEEs are

introduced to the market, but still require improvements and are not the Holy Grail for solving

all kinds of security issues. While performing research for this dissertation, it was not possible

to obtain developer access for hardware and software in a reasonable amount of time, but based

on the results by others (see 10.4.2), we believe its market introduction is still ongoing and

various research is and has to be performed before a standard solution becomes available. First,

that solution might be the base for research of copyright protection using TEEs.

Figure 46 - Trustonic for Samsung KNOX [202]

Related work and discussion

83

In addition, Samsung developed “Samsung KNOX” [221] that integrates (enhanced) security

solutions like TrustZone (“TIMA”71) and SEAndroid, while also featuring, e.g., secure boot

capabilities and container solutions. Furthermore, it is meant for governmental and enterprise

usage due to its management features and certifications [221]. The name is related to the famous

Fort Knox [222], which is known to be one of the most protected facilities worldwide.

An even more advanced TEE version by Trustonic is “Trustonic for Samsung KNOX” [202],

since it adds isolated access to the display and touchscreen for entering credentials in a secure

manner and is separated from the insecurity of the Android OS. Figure 46 illustrates the

architecture in a diagram.

Comment: Secure access between the user (touchscreen/keyboard) and the secured world is an

essential advantage of Trustonic’s solution, while TEE may greatly improve the security in

terms of copy protection in the future. As outlined before, it would be necessary to define the

standard available on all Android devices. An outlook for such a solution using an Android-

based TEE is given in 11.2.2. Of course, this cannot apply to older (existing) systems, which is

the goal in our research approach.

In [223] Luca Flasina et al. presented a secured DexClassLoader72 library called “Grab ’n

Run” [223] that allows, e.g., the dynamic loading of remote code into the current program in a

more secure way by wrapping the existing DexClassLoader provided by Android (Google),

while also verifying integrity and signatures.

Comment: The library and research results are of interest to developers trying to dynamically

load code in a more secure way, so to prevent malicious injections (cf. MITM attack) and in

terms of data privacy maybe. In terms of copy protection their approach would be of interest in

a native code version instead, since it is more protected against reengineering (see 10.3ff), while

allowing the loading of additional program parts upon successful license verification.

9.1.1 Stealth techniques

In addition, all topics related to malware such as those in the paper introduced by Thansis

Petsas et al. [224] are of interest, since malware-methods may hide our protection techniques

against analyses by attackers. For instance, their work introduced the issues of “dynamic

analysis of […] malware” [224] and possible techniques to prevent analyzes. For example,

many emulators intend to have unrealistic “values for static properties like the serial number

[or] […] [outputs of] the accelerometer” [224] and other sensors. These methods can be used

to prevent analysis and even the use of different opcodes, as presented in the paper by Wu Zhou

et al. [162] might complete stealth technologies, while helping to block the usage of certain

reengineering apps completely [224].

Comment: While the identification of emulators or dynamic analysis tools sounds reasonable,

the more than interesting approach by Wu Zhou et al. is no longer useable on newer Android

71 TrustZone-based Integrity Measurement Architecture for monitoring the Linux Kernel [221]
72 The DexClassLoader class allows the dynamic loading of application code from APK/JAR files [223]. See

11.4.3 for further details.

Related work and discussion

84

versions due to ART’s pre-compilation. It can still be used as a type of encryption and for

loading libraries.

In general, all related research work for recognizing reengineered and repackaged apps is also

interesting for a copyright protection. Hugo Gonzales et al. [225] discovered the so called

“String Offset Order” to identify repackaged apps. This affects “the data section of the .dex

file” [225] and its included, “string identifiers list” [225], where strings are arranged in

alphabetical order. Tools for repackaging use a different method and therefore, may be

discovered.

Comment: The possibility to discover manipulations is interesting in general and the original

APK file used for the installation, is stored as base.apk by Android in unmodified73 form (see

7.3.12 for details). Nevertheless, when a repackaging takes place, it needs to be pointed out that

while signing the APK with a different key, the signature will be different anyway.

Besides system modifications and –hardening, an interesting approach by Daniel Hugenroth

et al. [226] is the “Obfuscation using Self-Modifying Code” [226] in Android apps themselves.

Here the code is modified during runtime to allow the execution in the right manner, while the

decompiled code leads the attackers to false assumptions.

Comment: The dynamic manipulation of variables is an interesting approach that we try to

improve by using secure elements and native code in a slightly different way in the proposed

solution section of this work.

In [227] Patrick Colp et al. introduce methods to store data on SoCs instead of DRAM to

prevent memory attacks, while unencrypted data is not ever stored in DRAM. They are using

mechanisms intended for embedded systems originally and that are ARM-specific. According

to their paper, they are still available on mobile devices.

Comment: While their paper provides interesting information on all kinds of hardware attacks,

their solution might be of interest to hide information (e.g. encryption keys) even better, while

typical attackers may probably dump the main memory only. It certainly extends their research

time and most developers (attackers) do certainly not include the processor cache in their

thoughts.

9.1.2 Exploit prevention and access control

Despite these trusted computing methods developers tried to harden Android by adding several

security features in former days. A famous approach that got included into Android was

developed by the NSA called “Security Enhanced (SE) Android” [103, p. 12] (or short

SEAndroid) and includes several improvements like Mandatory Access Control and the

possible avoidance of privilege escalations. In addition, other researchers including Sven

73 verified with an app by July 10th 2016

Related work and discussion

85

Bugiel et al. [208] implemented a modified Android system called “TrustDroid” [208] that for

example enforced “mandatory access control on the file system and on Inter-Process

Communication (IPC) channels [as well as] […] the network layer” [208].

Comment: Software related solutions always risk exploits and provide all kinds of gateways

for malicious issues that they cannot handle, e.g., driver issues by third parties that lead to root

access (cf. “Quadrooter” [27]).

Furthermore other researchers and companies like Zertisa have the goal to separate private

and commercial data or apps by introducing virtual machine concepts to Android devices [228].

Moreover, FORSEC, in cooperation with TUM I20, introduced in a poster [209] the “TP1:

Security Architecture for Mobile Devices” [209] that is based on TrustZone and XEN

virtualization. They have the goals to provide, e.g., “Secure, reliable multi-tiered architecture

for hand-held and mobile devices” [209], while performing an “Evaluation of machine learning

approaches for automated incident detection and response” [209] in addition to other goals.

Comment: These approaches require a rooted smartphone or one that already includes the

required firmware by default. Instead in our research, we try to avoid this and the solution

should be usable on stock Android devices (primarily phones/tablets). Moreover, the research

work is more related to protecting data from malware than dealing with license issue. Even the

same security measures may protect it.

9.2 Copyright protection

9.2.1 By smart cards or similar devices

More than a decade ago Thomas Aura et al. [1] already worked on the topic of smartcards in

combination with licenses. Their paper describes methods to use smartcards for storing licenses

and their secure distribution to other smartcards by using private-public key mechanisms, while

maintaining the license goals (e.g., one license for each copy). Even a decade ago these

researchers summarized that “there are always ways to work around the protection mechanisms

[and only] […] the time to market for pirated copies [may be increased] and that pirated

products cannot be sold as authentic” [1]. These statements still apply today and “copy-

protection is always to some extent security by obscurity” [1]. Furthermore, they mentioned

that reengineering of smart cards “must be too expensive or time-consuming” [1], while

“modifying the software to run without the card […] must be equally difficult” [1].

Comment: Unfortunately, the statements made ten years ago are still valid today, and certainly

will be forever; however it may be assumed to be very difficult to break security measurements

of, e.g., a secure element.

Shoaib et al. [229] took an approach by using smart cards for storing key information, while

encrypting the DEX file and supplying customers with an encrypted version. In addition, a

license server was used. The decryption was performed in memory and used the method

Related work and discussion

86

“private static int openDexFile(byte[] fileContents)“ [229] method for later on loading the

executable. Furthermore, assets and other resources are not protected.

Comment: Unfortunately, Google decided to remove the dynamic loading from memory in

newer Android versions and therefore their approach is not possible anymore, without updating

it (cf. discovered solutions in 11.4.3).

The company Aktiv Soft JSC [230] developed a “high-performance dongle [called e.g.

Guardant Code] with built-in cryptographic algorithms [and] up to 384KB of memory to store

loadable code” [230]. Depending on the version, it even features an RTC to allow timed license

models. By presenting itself as an HID device, it does not require additional drivers and is

available to most platforms, including Android. On Android platforms it requires a service that

allows Android applications to interact with connected dongles, while app developers are

provided with a Java API to use the dongle/service within their applications [231].

Comment: The presented solution is similar to available SE solutions like the MSC by G&D

that require developers to use a service for interaction with the MSC also by default.

Nevertheless, due to our cooperation, we circumvented this (insecure74) service-based access

and provided direct connections between the hardware and the application by using native code

for additional obfuscation up to the Android versions activating SEAndroid in enforcing mode,

which have unresolvable issues at the moment (see 11.4.7 for details). Furthermore, one key

difference is perhaps the much better performance of the Guardant Code dongle in comparison

to the MSC. Ultimately their product would be of interest if they would provide native C

versions of existing libraries, while Google or the manufacturers need to permit USB access for

the Android NDK.

In general, smart cards are known to be used in various DRM solutions of PayTV distributors.

For instance, “VideoGuard” [232] by Cisco Systems is one such example.

9.2.2 By additional virtualization

Wu Zhou et al. [162] also presented in their paper a very interesting approach by introducing

“the first VM-base [sic!] protection system for Android” [162]. It works by transforming Dalvik

Bytecode and its opcodes to a new format that results in rendering the known reengineering

tools (e.g., baksmali75 or dare76) useless, since they are unable to understand the unknown

opcodes. In terms “DIVILAR […] hooks into Dalvik VM” [162] to execute the code in the

correct manner again. According to their investigations the overall performance is not affected

that much and on average, as low as 16,2% more overhead time.

74 cf. interception with Xposed framework (details later)
75 Disassembler - https://code.google.com/p/smali/
76 Retargeting tool - http://siis.cse.psu.edu/dare/

Related work and discussion

87

Comment: Even that approach is very interesting, it is not usable on newer Android versions

anymore. The same applies to obfuscation by using junk bytes that prevented reengineering

tools from working [233].

9.2.3 To identify software piracy

Another approach by Joohyouk Jang et el. relates to apps themselves is called the

“Steganography-based Software” [234] watermarking of Android applications for proving “the

ownership of [an] […] application developer and [to] verify users who purchased and illegally

distributed their copies” [234]. For accomplishing these goals, the app receives a watermark by

the producer and each app-copy also includes user-specific watermarks. “The proposed scheme

embeds watermarks by reordering the sequence of instructions in the basic blocks in Dalvik

executable files” [234]. The watermarks are checked upon first installation or during its initial

run, and the desired action can be executed [234]. Hyunho Ji et al. [235] describe a similar

approach for detecting illegal apps by using fingerprinting technologies too.

Comment: The detection of modifications (Is the app cracked?) is of interest, but due to the

optimizations and - by ART - compilation (see 7.3.8 for details), it is complicated to verify safe

ways for these calculations. Common cracking tools like Lucky Patcher can work on both, the

APK files (detectable) and the optimized versions (changed checksum anyway) instead [66]

which are not covered by the method presented in the above papers. Their approach circumvents

these issues and affects the original APK file that is still available on modern phones and even

within the optimized compilation files created by ART VM (cf. OAT files / see 7.3.9). It may

identify an initially cracked app, but it will not work with the mentioned hacked/optimized

versions of the app on newer Android versions. In addition, it requires a different app market

that applies its methods to the APK file.

9.2.4 By using encryption and server-based solutions

Papers on copyright protection mechanisms propose various ideas. For instance, Sung Ryul

Kim et al. [236] recommend a combination of “Online Execution Class” [236] a technique that

loads app parts from a server as soon as they are required, and “Encryption-based Copyright

Protection” [236], which decrypts app content on the fly, when needed. Figure 47 below, taken

from another paper [237] explains their approaches in more detail.

Comment: The encryption and obfuscation of local code is a common way of protection.

Unfortunately, Google removed the possibility for loading DEX code from memory

dynamically on newer Android versions and their approach is not possible anymore without

storing an unencrypted version in a file or using native code instead as explained in [100] and

within this work in 11.4.3.

Related work and discussion

88

Figure 47 - "Online Execution Class" (top) and "Encryption-based Copyright Protection" (bottom) [237]

Youn-Sik Jeong et al. [238] presented a similar approach by dividing an app in an “Incomplete

Main Application (IMA) and Separated Essential Class (SEC)” [238]. Here the first part is

provided to users through markets, while the additionally required part becomes available after

successful authentication against a market server. In addition, this part is stored locally in a

secure space after the initial download. The secured space is created “by using a loadable kernel

module (LKM)” [238] that hooks the calls “sys_open and sys_create” [238]. Now it checks for

target process ids of permitted services and allows or declines the access.

Related work and discussion

89

Comment: The solution requires system modifications and/or root rights and therefore it is a

very theoretical solution that cannot be used on any existing platforms. It is not of interest to

our work, but surely an alternative solution.

Furthermore, Kuo-Yu Tsai [239] presented a copyright protection using a semi-trusted loader

that receives encrypted and required program parts from an alternative market and upon first

run, stores them encrypted and re-authenticates them upon each future run to receive required

keys for the decryption again. Tsai claims that it is safe against a rooted device since users

cannot use the APK file nor the encrypted files.

Comment: While the author’s claim seems to be true on first sight, it needs to be assumed that

any keys can be intercepted on a rooted device using, e.g., the Xposed framework instead (=

not safe on rooted devices), which can ultimately be used to build a fully decrypted app (see

10.1.5 for an example using Xposed). Also using Xposed, the app is not modified and internal

check routines are not triggered. The author did not mention any special routines against

memory attacks as performed by Xposed (see options in 11.5.2). An additional issue comes

with the publication of the detailed method, and in theory, an attacker can follow up the

provided guide (publication) to crack the protection; however the usage of Java code is not safe

either. For that reason, we recommend customization and native code in our solution proposal

(see 11.1.1). Also, it remains unclear how the author of the paper loads the code dynamically,

since the Android versions available in 2015 require a decrypted file for loading code. It is not

possible to load (decrypted) Java code from memory anymore (see 11.4.3 for details) and the

paper’s author presumably addresses an old Android version.

9.2.5 By using a library

Google offers the license verification library (LVL) that needs to be integrated by the developer

himself to check and act on the license response [47].

Instead Amazon integrates its Amazon DRM itself, when a developer publishes an app on the

Amazon App Store [46].

Samsung provides an additional library for their smartphones called “Zirkonia” [240] that

works similar to the LVL by Google and uses a native library, as well as a Java library, which

needs to be implemented by the developer, to check the license and act accordingly [240].

In addition, SlideMe offers developers a similar way by letting them integrate a protection

library to receive and act on the license replies [65].

Comment: The library solutions by SlideMe, Samsung and Google work in a similar way, and

it is up to the developer to integrate them into the applications in a secure manner. Instead,

Amazon handles the integration for the developer and may be more convenient. As described

in the security analysis (see 10.1.4) it needs to be noted that these protection methods may be

easily cracked (cf. [64] [75] [241]).

Related work and discussion

90

9.2.6 Used on x86 desktop computers recently

Another interesting copy protection available this year is a protection named after its company,

the Denuvo copy protection. While there is little information in their FAQ available [242], it is

apparently an anti-tamper protection ensuring that DRMs by Steam or Origin77 are not bypassed

affecting non-performance critical program functions only, while not constantly encrypting or

decrypting data. It is used for games as “Star Wars Battlefront, Just Cause 3, and FIFA 16

[keeping them] piracy free for months” [242]. According to various sources [243] [244] it

appears to be the pirates’ nightmare and is extremely difficult to crack. Nevertheless, as reported

by [245] recently, also Denuvo was circumvented recently. On request Denuvo replied in an

email [246] that the full protection is available for Windows only, while supporting a

“lightweight” version based on Google’s LVL and anti-debugging features for Android only.

9.3 Protection against reengineering attacks

Besides available papers several default solutions exist to protect apps against reengineering.

Default ones that should be mentioned for Java source code are ProGuard [161] and its

improved, commercial version DexGuard. The last one provides several features including size-

and performance improvements, name-, resource- and code protection as well as further

features [160].

Also native C code using Android’s NDK with maximum optimization enabled, can be further

protected by using an obfuscator like Obfuscator-LLVM. According to [247] Obfuscator-

LLVM should yet not be used for production code and is still under testing. It supports various

programming languages like C or C++ and works on all platforms supported by LLVM, e.g.,

ARM or x86, it is “working on the Intermediate Representation (IR)” [247] level.

9.4 Reengineering tools

Taking a look at the attacking side where Collin Mulliner et al. [248] described a similar

approach to ours’ (see comment below) in hacking Google’s In-App-Billing by intercepting

and replacing the target calls with their methods using their own library that “targets stock

Android devices and does not rely on replacing core components” [248].

Comment: In comparison to our approach (see 10.1.5) for hacking Google’s LVL, the Xposed

Framework was used for the interception/replacement and the method is slightly different in

general, since we targeted the LVL and not In-App-Billing. They discovered as one of the issues

that developers “solely [rely] on client-side enforcement […] [and confirm our impression] that

many app developers […] [are not] aware of dynamic attacks” [248].

77 Both sale platforms for games etc.

Related work and discussion

91

Ho Kwon Lee et al. [237] took a similar, but more generic approach in their paper by analyzing

the possibilities when watching the main memory. They discovered possible issues, since the

“App contents can be read off the main memory […] [and advised that] copyright protection

techniques must be enhanced to include this possibility” [237].

Comment: The general issue that Android belongs to the insecure world is a known fact.

Therefore, we can already conclude that it is very hard to provide additional security for such a

system and only obfuscations methods may be increased (without using new hardware).

In [249] Haiyang Sun et al. describe that existing dynamic program analysis (DPA) options

for Android that do not support generic tool creation and are mostly security focused. Also

Android’s multi-process architecture and missing APIs make it difficult for reengineers. In their

research they developed a framework to support and simplify the development of generic DPA

tools.

Comment: In fact, there are currently only a few tools available that can be used for dynamic

analysis, including the Xposed framework, besides the usual tools such as gdb maybe. Their

platform-independence and server/client approach are certainly beneficial.

In [250] Ashutosh Jain et al. illustrate methods for visualizing and detecting artifacts generated

by obfuscation tools. They also noticed that files generated by apktool look completely different

than the usual apps, since, e.g., its strings are not sorted anymore. In addition, their research

discovered that only a few developers use obfuscation tools.

Comment: An interesting fact in terms of copy protection is the result they gained of the way

apktool – often used for reengineering purposes – reorders the strings to an unsorted

presentation. Furthermore, the figures that only 23 of 505 apps use obfuscation confirm our

assumption about low security skills by many developers as described later.

9.5 Device- and user identification

Hristo Bojinov et al. [251] approached the hardware identification of mobile devices by taking

a look at using various sensors for fingerprinting. In their paper they focused primarily on the

acceleration sensor as well as the speaker and microphone. They approached the problem by

measuring the tiny imperfections (noise) of these sensors that result from manufacturing

processes. For instance, in a nutshell, and for the speaker/microphone case, they played sounds

and recorded them directly to identify any patterns; meanwhile, they measured the Z-axis of the

accelerometer to identity patterns for a certain device instead. They claim to have achieved an

identification rate of 95% in the speaker/microphone case and up to 15.1% by using the

acceleration sensor. Here, the weak rate may be improved by using additional information like

the user-agent string to increase the identification rate up to 58.7%.

Comment:

While the identification of devices using sensors sounds interesting, it is quite difficult to apply

it to the real world, and their research depends on further conditions. For instance, they

Related work and discussion

92

mentioned that the speaker/microphone case requires a quiet environment and depends on the

actual surface on which the device is lying. Ultimately, it also requires two unusual Android

permissions that make it less interesting for our copy protection. Instead, the identification rate

for the acceleration sensor is quite weak, and they already noted for their demo application in

the appendix that there is a significant interference of cables or objects under the phone that

causes problems here.

In a similar research conducted by Sanorita Dey et al. [252] it was tried to identify smart

devices by using the vibration motor in combination with the accelerometer. Here their results

show that they were able to identify devices with an accuracy of up to 99% assuming

sufficiently collected data.

Comment:

While a recognition rate of 99% sounds quite amazing, it has to be noted that this required 30

seconds of data collection. In terms of our topic of copyright protection it might drive a user

crazy if the phone vibrates for such a long time. While their approach is certainly interesting,

we need to summarize that it is not the identification option we are looking for.

In a research work by Anupam Das et al. [253] the speakers themselves were used for

identification, while playing a clip on a smartphone and recording it at an external device. Under

lab conditions, they were able to identify up to 94% of the clips/devices.

Comment: The solution is similar to the first research work of this section by Hristo Bojinov

and limited to lab conditions, since they mention missing tests with different environments, the

effect of the distance between source and recorder, and the presents of background noise.

Jan Lukas et al. [254] were one of the teams discovering the basics for identifying cameras

based on a unique pattern noise. Their approach is based on the pixel nonuniformity noise that

is caused by a different reaction of each pixel to light. They propose that this method is better

than other methods using dark current noise maybe (cf. dark frames).

In K. Kurosawa et al. [255] the goal was to identify camcorders based on a unique pattern

noise. They were able to obtain these pattern by examining about 100 frames where each device

had its own pattern. Their method is based on dark current.

In [256], Tomas Filler et al. used the “photo-response non-uniformity (PRNU)” [[254] as

quoted in [256]], “a multiplicative noise that is unintentionally embedded by the digital camera

into every image” [256] , to identify camera models and brands by the fingerprints added by in-

camera processing. Their method allowed correct identifications of up to 90.8% in their

evaluation of 4500 cameras with 17 models and 8 different brands.

Comment: Using the camera sensor for identification purposes seems to be an interesting

approach and Android offers access to existing images as well as the camera itself by obtaining

the required permission. Depending on the method other factors such as no light during

recording (dark frames) reduce the real world usage, of course. Instead other methods like PNU

and PRNU sound promising.

Related work and discussion

93

9.6 Manipulation of sensors

By developing “SMASheD” [257] Manar Mohamed et al. created a framework to manipulate

sensor data even on unrooted devices by using a native service executed via adb78. Besides the

possible modification of sensor data, it can also be used to log various data, e.g., touch-sensor

inputs. That way, it may be also used to control a device in any possible way that a user can do

it. They also highlighted that it is possible to fake data provided by physical sensors that are

often used for security purposes.

Comment: The fact that physical sensors may be overwritten on unrooted devices is alarming

and affecting several security related applications that may use those sensors as their source for

randomness. In terms of our user- and device identification section, the finally selected

information sources (see evaluation) are not directly affected, but it highlights the suggestion

of using multiple information source (including sensors) for additional security (see 11.4.1),

while requiring all of them to be fulfilled or to have a low failure tolerance.

9.7 Section conclusion

Summarizing the available related work in the defined categories, it is noted that researchers

are working on increasing the data/authentication security on Android by the introduction of

SEs (e.g., Project Vault, etc.) and TEEs to Android devices as well as optimized Android

versions. Most of that research is only beginning (cf. Google’s Trusty) and solutions are still

being developed and researched, while available products sometimes show severe flaws (cf.

exploits for QSEE / see 10.4.2).

Thinking about the more relevant topic of copy protection it is noticeable that, e.g., smartcards

(similar to SEs) were already used in the past for licensing on desktop computers, while the

encryption of software to prevent piracy has been known in the desktop world for years, in

addition to the usage of native code. Researchers already adapted some solutions such as

encryption and dynamic code loading for Android, but the presented ones are outdated by now

due to the newly introduced ART VM around 2015. Those that are available, secure the actual

transport of code (e.g., “Grab 'n Run” [223]), while they do not solve reengineering issues and

related requirements (e.g., loading code from memory instead; see 11.4.3 for a proof-of-

concept). In general, one can observe that solutions for desktop computers are much more

advanced, and it is recommended to verify the possibilities of using these well-known options

available to desktop computers on mobile operating systems as well. For instance, this most

assuredly applies to obfuscation methods available to native code compilers outlined in 11.5.3.

In addition, the issues with Java code and its easy reengineering are not new either and

obfuscation solutions have existed for years, while they were only adapted to Android in recent

years. For instance, the encryption of strings belongs to these methods and one needs to be

careful not to reinvent the wheel a second time.

78 Android’s tool to connect to devices from a terminal via USB to perform various operations

Related work and discussion

94

There is also some research available on attacking Android itself and we need to highlight

severe research results such as sensor value overwriting that affects many security solutions in

theory (see 9.6).

In addition, the device and user identification have also been fairly well researched; however,

the ideas need to be verified again for their usage on smartphone devices. For instance, the

previously introduced PNU method was conducted by using professional camera equipment. It

remains unknown if it is really usable on smartphones- and tablet devices even if it is assumed

to work.

Last, but not least, Android’s official copyright protections that are currently used on the major

app markets (see 9.2.5) are not yet using secure solutions. Nevertheless, third parties are starting

to focus on Android and offer solutions (see 9.2ff) using dongles, encryption, code loading or

other options. Most of them seem to be presented at on some conferences in the past, but are

not yet readily available to developers.

Therefore, we believe there is still some space for further improvements in terms of this work

As explained in detail in the proposed solution sections (see 11.4ff), porting the existing LVL

has not been done in advance, even other researchers invented their own licensing solutions.

Moreover, our dedication to fuse Java and native code does not seem to be researched by others

so far, even the idea of self-modifying code is not completely new. Moreover, third party

researchers worked on general ideas like the whole encryption of apps instead. The same applies

to the usage of smart cards that was already performed for mobiles and desktop systems, but in

a slightly different way and by using other products.

Existing solutions and their challenges

95

10 Existing solutions and their challenges

This current section analyzes the most recent standing regarding copyright protection on

Android by presenting general information and issues. Moreover, framework-specific problems

based on the information provided in the fundamental section are extended here. In addition,

ideas from the related work section are reviewed and some of those presented methods can no

longer be used or have to be adapted. Furthermore, the possibility of using native code that is

commonly known and possible on Android (by using its NDK) is also reviewed. Ultimately,

evaluated examples of hardware protections such as SEs and TEEs are also found in this section.

10.1 Circumvention of default copyright protections on Android

This section covers an introduction to existing issues on current Android platforms related to

copyright protection. It also gives an analysis on basic reengineering by gaining the program

logic only (static analysis) and on the advanced reengineering used to obtain protocols besides

the program logic (dynamic analysis). It covers the used tools and our approaches to circumvent

current protections by the two major app markets – Google Play Store and Amazon’s App Store,

in addition to presenting some of the major issues in general.

10.1.1 Copy protection means license verification

Nowadays, apps are mostly shipped digitally only, and customers download apps to their

devices, while binding them to their accounts, e.g., the Google Play account. Therefore, modern

copy protection describes more of the licensing of apps, and if a defined user is permitted

(licensed) to use an app rather than actually owning it outright. This is probably Google’s reason

for calling their protection library License Verification Library (LVL), while the previous

version was initially a copy protection [258].

For that reason, a more generic issue regarding current Android platforms (like Google’s Play

Store) is that APK files cannot be identified by their actual owner by viewing at the file only,

because each APK file on any Android device is identically. Even if they are signed by the

developer, it is not possible to distinguish between the APK files from different devices and

copying them around is not prevented by Android. Moreover, it is not possible to implement

any methods to verify if a user or device is allowed to execute the app and the question (by the

implemented LVL in an app) is always if the logged on user is allowed to execute the app [47]

after it was executed already.

So in summary, the raw copying of APK files is not prevented on Android and the general term

‘copy protection’ is a little misleading nowadays. It is a term that remains from several years

ago when copy protection was really copy protection and applications were shipped on physical

mediums.

Existing solutions and their challenges

96

In terms of our proposed methods, the missing identification possibility is an issue and

addressed in 11.2.1 that shows options to apply kind of a real copy protection to apps again by

binding the APK file itself to a user or device by adding these attributes to the file.

10.1.2 Android remains unsafe (rooting)

Rooting is a major issue for any type of protection and in particular, for hiding sensitive license

data that need handling by an app, stored locally, or received upon runtime each time.

The reason to call it an issue is that it is a basic requirement (for reengineering) to access any

app’s private data or to intercept its communication with external servers; This would most

likely be impossible without root rights. While the same issue exists on desktop computers, it

is not considered a severe issue for them and all programs, especially protected ones, are only

available in binary form (compiled native code), which is different than on Android.

Rooting an Android device is possible in two ways – either by permitted options through the

manufacturer (e.g., Google’s Nexus series allows it by default) or by using an exploit. So far,

one can recognize at least one severe exploit that permits access to confidential data (or even

root access) that is available every few weeks or few months; 2015 topped the lists with several

severe exploits (see [25] [24]). Some of these exploits affected the kernel and even had the

potential to breach sophisticated security measures like SEAndroid (aka79 SELinux [52]).

Summarizing this information, hackers found vulnerabilities for nearly all Android versions

and Android became infamously in the news headlines in 2015 for issues affecting billions of

devices [259]. Just recently, another research team discovered several root exploits affecting

millions of devices using Qualcomm chipsets once again [27].

The following diagram, by researchers from the University of Cambridge [260], shows an

estimation on the number of vulnerable devices by major exploits. For doing so they selected

13 vulnerabilities (as of the writing of this text), including, e.g., “TowelRoot” and “Stagefright”

and validated the available testing devices against these exploits by checking if the installed

Android version is affected. The amount of testing devices was specified to be 21,713 that

actually took “part in the Device Analyzer study” [260].

They categorized devices into three categories [260]:

“secure” – devices that “are not vulnerable to any of the vulnerabilities” [260]

“maybe secure” – devices with insecure Android versions that received a patch in general

“insecure” – devices with an insecure Android version and no available patches

Figure 48 illustrates their results that show the times with no secure devices at all, while – in

general – and most often only the latest releases remained safe for a while. Of course, this is a

severe issue assuming the commonly known fact that many carriers/manufacturers are still way

behind the currently available version with their released phones.

79 also known as

Existing solutions and their challenges

97

Figure 48 - Estimation on secure and insecure Android devices [260]

Conclusion on the rooting issue

From the current point of view, only the very latest Android versions are those that most often

are secured against all major and newest root exploits. However, in watching the situation in

the past, there are usually exploits right after the release of a new Android version (e.g., the

Marshmallow-release in October 2015 [94] and “CVE-2015-6610”80 shortly after). As outlined

before, a privilege escalation is a severe threat in terms of copyright protection besides the

permission/option by manufacturers to root a device and a customer may use the gained

privileges to circumvent the protection.

In general, known as one of the benefits of Android, many technically skilled users prefer to

root their smartphone to increase functionality. Depending on the required security level,

companies need to decide if existing root access should be handled as a threat to an app and if

its execution should be prevented. For instance, mobile banking apps sometimes have these

requirements like the one by DKB, since it is simply more likely that the security is at risk on

rooted devices (cf. reengineering, interception, malicious root apps like Trojans, etc.). In

advance, it needs to be noted that the rooting may be hidden from apps by using specialized

modules81 available to the “Xposed Framework” [150]. It has to be concluded that a user can

manipulate and intercept an app on a rooted device in almost any possible way using this tool.

This is a huge issue for copy protection and an example is shown in 10.1.4.

10.1.3 Tools available to the general public

Besides the tools (see 8.2.2) that are available to developers, security engineers, or crackers,

there are tools available for the usual public users, who often do not have the required skills to

circumvent or crack any protections, but are enabled to do so by using the presented tools. This

80 exploit - https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-6610
81 http://repo.xposed.info/module/com.devadvance.rootcloak2

Existing solutions and their challenges

98

section does not only introduce an example for one of these tools, but it also tries to present the

details so that developers can take precautions against it.

Lucky Patcher

Lucky Patcher82 (LP) is a tool that may be categorized in the basic reengineering section that is

available to the general public and to all those, who are looking for tools to circumvent

Android’s license protection and perhaps others. It is able to patch almost any app protected by

Google’s LVL, Amazon’s DRM, or Samsung’s solutions based on universal patches and

custom recipes. It also includes general cracking solutions that modify the underlying system.

While it includes a feature to crack APK files for redistribution, it usually works on the

optimized version of an app stored in the /data/dalvik-cache directory for restoring purposes.

This makes it harder for developers to detect any manipulations by perhaps using checksums.

Here, the reason is that the optimized version depends on the device’s attributes and is always

different [64, p. 62ff] [66, p. 30ff].

As described in [66, p. 33ff], a blackbox approach was used to analyzed LP due to the

unavailable source codes and protections that made it time-consuming to totally reengineer it.

The blackbox approach provided a sufficient outcome to gain an insight on LP’s efforts to crack

the protection schemes. Also, the application provides itself some relevant information on the

used patches.

As outlined in [66, p. 34] LP provides several modes to crack applications:

 The “Auto Mode” using a minimal amount of patches to circumvent apps with basic

protection

 The “Auto Mode (Inversed)” with a similar functionality as the one before and with

slight changes

 The “Other Patches (Extreme Mode!)” using further available patches online

 The “Auto Mode (Amazon Market)” for disabling Amazon App’s DRM protection

 The “Auto Mode (SamsungApps)” for disabling the protection of Apps from Galaxy

Apps83

According to [66, p. 35ff] LP provides seven modes that may apply up to 10 so-called ‘patch

patterns’ (described below) as shown in Figure 49; each patch pattern may come with a series

of so called ‘search patterns’ as illustrated in an example in Figure 50. The patch patterns N1

to N7 target Google’s LVL, while the patch pattern A relates to Amazon’s DRM, and S to

Samsung Apps. The patching takes place on the bytecode level and according to the chosen

mode (see above), LP tries to apply the patches using the search patterns to modify a series of

bytes to have the desired result (e.g., valid license or an ignored license code, etc.).

82 http://lucky-patcher.netbew.com/
83 Samsung’s App Store

Existing solutions and their challenges

99

Figure 49 - LP Modes and related Patch Patterns [66, p. 35]

Figure 50 - Search and Replace Patterns with blue fixpoints and placeholders marked as ?? 84 [66, p. 36]

The following table shows the high-level details of each patch pattern taken from [66, p. 37ff]

in a summarized way, while further details, e.g., on actual bytecode changes, may be obtained

from the original work, if necessary. A basic knowledge about the LVL as found in the

fundamental section (see 8.3.2), as well as further information from the licensing reference by

Google (see [176]), are required to understand the following patch pattern descriptions in full

detail, even short descriptions on the responsibilities of target classes are provided inline.

Patch

Pattern

Modification Responsibilities / Result

N1 switch statements in verify() method

of LicenseValiditor class modified

Responsibilities:

Method decrypts and verifies

response from license server [176]

Result:

Case “LICENSED” and

“NOT_LICENSED” are treated as

valid now. Instead

“LICENSE_OLD_KEY” that should

be fine (updated signature by

developer), triggers an error now.

N2 if-statement disabled in verify()

method of LicenseValiditor class

modified

Responsibilities:

Method decrypts and verifies

response from license server [176]

84 Mr. Neutze chose that hexadecimal value representation for improved readability, e.g. 0f instead of 0x0f

Existing solutions and their challenges

100

Result:

The result of the signature

verification is ignored and the

program flow continues as if the

signature was valid

N3 return-value of method

allowAccess() set to “true” inside

APKExpansionPolicy and

ServerManagedPolicy class modified

Responsibilities:

Default policies that e.g. manage

storage of license data/validity etc.

[176]

Result:

The app may be cracked, but the user

has to verify the success of the

operation

N3i return-value of method

allowAccess() set to “false” inside

APKExpansionPolicy and

ServerManagedPolicy class modified

Responsibilities:

Default policies that e.g. manage

storage of license data/validity etc.

[176]

Result:

The app may be cracked, but the user

has to verify the success of the

operation

N4 if-statement in LicenseChecker class

modified that initiates license check

of checkAccess() method by

modifying the condition to an

inequality check to two calls of

mPolicy.allow(), which is always

false now

Responsibilities:

Class used for initiation of license

check [176]

Result:

mPolicy.allow() result ignored and

due to inequality check the execution

of the condition block prevented. It

means the result of checkAccess()

method is not considered.

N5 if-statement in verify() method of

LicenseValidator class modified by

changing condition to a comparison

with LICENSED (value = 0)

Responsibilities:

Method decrypts and verifies

response from license server [176]

Result:

The response code by the server is

still parsed, but its result ignored

N6 if-statement and variable in verify()

method of LicenseValidator class

modified by setting responseCode to

LICENSED and modification of if-

statement so that it can never execute

Responsibilities:

Method decrypts and verifies

response from license server [176]

Result:

This prevents the verify() method

from handling cases that are neither

LICENSE_OLD_KEY,

NOT_LICENSED nor LICENSED.

N7 variable exchange in verifyLicense()

in onTransact() of

Responsibilities:

ILicenseResultListener (IPC

Existing solutions and their challenges

101

ILicenseResultListener class as well

as all classes of /com/android/

package. This is done by exchanging

the responseCode with LICENSED

(value = 0)

Callback) handles asynchronous

replies from the license server [176]

Result:

License code manipulated.

Furthermore the patch pattern

(=initializing a variable instead of

moving a result) may apply

elsewhere, which may lead to

instability.

A if-statement in obfuscated class

com/amazon/android/licensing/b.java

modified by inequality check of a

comparison of the same string as

well as modifications of comparisons

for checking strings for not being

null in com/amazon/android/o/d.java

Responsibilities:

b.java verifies the license and d.java

the license expiration

Result:

b.java / Condition, if application is

licensed, is always licensed now.

d.java / obfuscated function returns

true always

S if-statement and return value

modification in obfuscated

LicenseRetriever class and Zirkonia

class’ checkerThreadWorker()

method by executing

LicenseRetriever’s

receiveResponse() method, but

comparing v0 to itself and modifying

the result variable in Zirkonia class

to true instead of using the actual

receiveResponse()’s return value

Responsibilities:

License checks and local storage of

license

Result:

License file checks deactivated by

returning true within the verification

always. Also any other response code

than LICENSED is accepted.

Table 3- Patch Patterns, high level modifications and its results (based on [66, p. 37ff])

10.1.4 Static analysis and disassembler tools (Dalvik bytecode)

As presented in the fundamental section (see 8.2.1) already, it is fairly easy to reengineer

Android applications up to the most recent Android versions with some training on smali.

The only requirement to do this is the access to the DEX file (classes.dex) that is usually

available within the APK files to reveal its internal program logic using the aforementioned

tools (see 8.2.2), and to transform the bytecode to assembly (smali) or even Java code.

Depending on the used obfuscation tools by an app developer and actual obfuscation level, the

only limiting factor is time.

In this section, we want to review Amazon’s DRM that can already be circumvented by basic

reengineering techniques. In a requested thesis in order to analyze used protections on Android

it was discovered [64, p. 30ff] that all applications (of the Amazon AppStore) are installed into

the less-protected directory /data/app and may be easily received on any device. Using the

aforementioned reengineering tools, the protected apps reveal themselves with several

additional framework codes by Amazon, in addition to the actual program logic. Even given

Existing solutions and their challenges

102

the fact that the code is protected by obfuscation tools (as seen in Figure 51), it is noticeable

that not all code is obfuscated, especially the “com.amazon.android.Kiwi” [64, p. 31] class and

related files. By default, the AndroidManifest.xml file reveals the initially launched activity by

Android for an app. It appears that Amazon adds calls to the “com.amazon.android.Kiwi” in

the “onCreate, onPause, onResume, onStop, [and] onCreateDialog” [64, p. 31] methods of that

file, which redirect to a “preprocess” [64, p. 31] method that is not involved in the app logic

itself. We assume that Amazon clearly separates the app logic from its DRM code, which makes

it much easier for attackers to separate it.

Figure 51 - Obfuscated code by Amazon added to an app (extract) [64, p. 31]

The actual cracking process [64, p. 32] was done (in 2014) by simply removing all calls in the

launching activity towards the aforementioned kiwi class, as well as any references to that file,

in several files of the “com.amazon.android” package. Here, the “calls are routed indirectly to

the static method addCommandToCommandTaskPipeline from the Kiwi class” [64, p. 32]. It

activates Amazon’s key verification in another file. For deactivating the verification and

ultimately cracking the protection, the calls to the “addCommandToCommandTaskPipeline”

[64, p. 32] method simply needed removal.

While Amazon did not change its way of protection for a long time (as reviewed and confirmed

in another requested student’s thesis in 2015 [75, p. 33]), recently renewed analyses by the

author himself (March 2016) revealed that Amazon modified it and the aforementioned

approach did not seem to work anymore. Nevertheless, basic investigations allowed us to

assume that the new protection mechanism offers different flaws. For instance, even a failed-

license message appeared after uninstallation of the related App Store app, but the tested app

itself continued to run and was even controllable. Approaches that just tried to hide the message,

triggered a CRC check and error, but in theory, it could have been sufficient to hide that

message.

Existing solutions and their challenges

103

Therefore, students were asked to conduct further investigations [241] while participating in

our research in the Android Practical Course. It was then discovered that besides the removal

of the aforementioned invocations of “addCommandToCommandTaskPipeline” [241] within

the KiWi class, the constructor had to be modified to set a Boolean variable DRMenabled to

false in order to deactivate the protection, which was once more verified by the author with

another app in June 2016. The whole cracking is essentially a task of several seconds for an

attacker only. Also, Amazon was notified about this issue and its upcoming release with this

dissertation (see 14.5). We assume that it is now fixed.

10.1.5 Dynamic analysis and tools for interception/manipulation (Dalvik bytecode)

Besides the decompilation of Android Apps, a more sophisticated attack is to analyze the traffic

on network- and local interfaces as well as between apps and services by an app (cf. function

calls). Since Google infamously made it to the headlines in 2014 for missing advisable MITM

protection in its Gmail app [[261] as quoted in [262]], the author of this dissertation requested

in a related student thesis (cf. [64]) to look for similar flaws. Ultimately, the tool Xposed

framework85 was discovered – and by that time, it was mostly used for tiny modifications of

apps as well as by the aforementioned student’s thesis in order to analyze the communication

of the LVL with other services and ultimately to circumvent it.

Technically, the Xposed Framework, as outlined in [131], replaces a system file on a rooted

device namely, the “/system/bin/app_process” [131] with an extended version, and therefore

allows it to “act in the context of the Zygote process” [64, p. 54] that runs with root privileges.

Meanwhile, all applications are its child processes as shown earlier in the fundamental section

in Figure 16 (see 7.3.7). Therefore, all newly spawned child processes inherit the Xposed

capabilities and can be modified dynamically now.

Developers, or here aka the ‘attackers’, can create modules for this framework that are

configured within the framework’s management tool. “The power of XPosed [sic!] comes from

the fact that it is able to intercept any Java method call in the context of the current Zygote

process.” [64, p. 54]. For instance, the framework allows the following: the manipulation of

any app, changes to its layout, and changes to its behavior, and all of it “on-the-fly”. It is used

to extend app functionalities, remove limitations or (as in the following case) disable the license

verification.

The LVL by Google is available as an example code for integration86 into anyone’s own project

as previously introduced in 8.3.2. Therefore, all required methods to disable, manipulate the

encrypted, and in theory, protected license responses, are publicly known. The novel approach

of the following method is that it works on-the-fly, and in theory with any app implementing

the LVL in the default way. Unlicensed apps will receive a valid signature (faked, valid license

response) and there is not any way for an app or Google to detect if this actual attack has taken

place [64, p. 54ff]. Of course, it is possible to implement special countermeasures against this

hooking assuming that such an attack could take place and assuming app developer know about

it. These ideas are presented in 11.5.2 as part of our proposals.

85 http://repo.xposed.info/
86 Instruction: http://developer.android.com/google/play/licensing/setting-up.html

Existing solutions and their challenges

104

As outlined earlier, we discovered this issue while investigating possible MITM attacks to

underline our theory that the current protection library by Google needs further improvement.

For attacking the actual implementation, it is required to first review the license requests in a

more detailed way (see 8.3.2 for fundamental details first).

By default, the app formulates a license request, which includes a “timestamp and a nonce.

These values must also be present in the response to guarantee […] no man-in-the-middle

attack[s]” [64, p. 55]. When a developer “registers a new app to use the LVL […] a new pair of

public/private keys is generated. The developer only gets to see the public key [cf. developer

console], which must be embedded in the application” [64, p. 55].

Any license response’s signature receives validation with that public key, which only returns a

match, when it is signed by the private key. Only Google has access to the private key. In the

event that this is successful the actual response is parsed [64, p. 55]. The proper license check

and interpretation takes place “in the ILicensingService interface […] [, where] the Stub class

extends the android.os.Binder class and […] must override the onTransact method. This is the

entry point of the licensing response that comes from the [Google] PLAY STORE [sic!] app.

The response data are packaged as an android.os.Parcel containing […] [an] integer

representing the server response code” [64, p. 55] (e.g., 0x00 for licensed / cf. 87). This whole

LVL request using the binder is illustrated in Figure 52 showing the initial registration from the

LVL service (1 to 7), to the actual license request (step 8ff) of an app that consists of marshalled

Figure 52- Communication of a performed license check using the LVL [62, p. 22] (based on [263])

information (see 11.4.8 for all reengineered details) that get transported to Google’s license

server to reply with the license status finally [62, p. 22].

87 https://code.google.com/p/marketlicensing/source/browse/

library/src/com/android/vending/licensing/LicenseValidator.java

Existing solutions and their challenges

105

Returning to the aforementioned parcel, it contains “A string representing the server response

data, composed of six concatenated values using the symbol ‘|’ as a delimiter” [64, p. 55]. These

six values are the actual response code, the nonce, the package name, the “version code of the

app”, “an app-specific user id” and the “timestamp included in the request” [64, p. 55].

Additionally, there is a “Base64-encoded string representing the signature of the previous string

of concatenated values (for authenticity)” [64, p. 56].

In the mentioned “onTransact method the data is extracted from the Parcel and forwarded to an

instance of ”the LicenseValidator for checking, interpreting and actual handling” [64, p. 56],

which takes places “in the verify (…) method” [64, p. 56]. A valid license requires 0x00 as a

response code [64, p. 56].

Figure 53 - Handling of the server response by Google and manipulated methods [64, p. 57]

For attacking the LVL, “The OnTransact method [see Figure 53] is the first one that needs to

be intercepted. Its second parameter is the Parceled [sic!] data, containing the server response

code, the response data, and its signature. This is the parameter that needs to be altered” [64, p.

57] by creating a new parcel.

It is “created and the string ‘com.android.vending.licensing.ILicenseResultListener’ is written

to it as an interface token. This assures the receiver that the Parcel [sic!] is really intended for

it. Next, the value 0 is written to it […] (= licensed) […] The next value is the response string,

which is copied directly from the old Parcel [sic!], except that the first concatenated value is

overwritten with a 0. The final value in the new Parcel [sic!] is the signature of the previous

string” [64, p. 57]. Due to the missing private key, it cannot be computed here. In the end, “the

data position in the new Parcel [sic!] is reset and the new parameters are forwarded to the

onTransact method” [64, p. 57].

Since the modified response’s signature is not valid yet, another method needs to be intercepted.

The signatures are validated within the LicenseValidator’s verify() method. For “passing this

test, the public key and the signature of the new server data [(=faked data)], which the method

receives as parameters, must match” [64, p. 58]. This can be done by “generating a new pair of

public/private keys […] [where] the private key” is used to compute the valid signature for the

Existing solutions and their challenges

106

faked response. “Finally the newly generated public key and the newly computed signature are

forwarded to the verify (…) method” [64, p. 59]. Figure 54 shows the logging output within the

Xposed Framework tool that represents the above in a visualized way hiding the cracked app

name and other details.

Figure 54 – Xposed’s logging of an attack by the developed Xposed Module

for LVL circumvention (app information hidden)

While Google’s servers are aware of this license request (and replied with a license code

representing an invalid license), the LVL as well as the app will receive a legitimate reply with

the status code “licensed”, which equals 0x00. The code used for the above attack may be found

in the Appendix (see 15.1.1). There is no way for an unprepared app to know that this actual

attack took place yet [64, p. 59] and the app execution is simply paused by Xposed and

continued afterwards. 11.5.2 illustrates some options to recognize possible Xposed attacks.

In addition, our research to improve the LVL by porting it to a native code version called

“nLVL” [62] was undertaken using, e.g., the above Xposed tools for analyzing and

reengineering the secured communication between the Google Play Services and the license

servers by Google, as explained by [62] in its LVL analysis section. That this was even possible,

reveals how seriously insecure Java-only implementations are and the must requirement for

alternative solutions.

Existing solutions and their challenges

107

10.1.6 Further options of Xposed Framework

The previously shown attack on the LVL shows the possibilities of the Xposed framework that

was raised in recent years to the default tool used by modders to apply all kinds of methods to

existing apps from simple UI changes to the removing of limitations. A large community

provides more than 887 Xposed modules by now (June 2016) [264].

Particularly of interest to this work, besides our own module, are modules affecting the DRM

of Android. For instance, a module [265] by the author “veetip” disables the new secure flag

used by many applications to block the taking of screenshots by a user. It needs to once again

firmly stated that anything executed on Android is not secure; it can be intercepted and modified

– no matter how good an encryption might be. While Java implementation are extremely easy

to reengineer, native code implementations provide attackers much less information. The

Android NDK is analyzed separately (see 10.3).

10.1.7 Section conclusion

As outlined previously, root access on Android is quite common. Moreover, the available

copyright protection mechanisms used by the major app markets are seriously broken. While

Amazon supports an interesting way of integrating the protection automatically, Google’s Play

Store developers have to implement everything manually and it depends on the skills of these

developers to increase or decrease the difficulty in terms of cracking an app. This also applies

to Samsung’s protection library Zirconia as well as SlideMe’s SlideLock presented in the

related work section, since their implementations are very similar.

Solutions using native code, as introduced in the related work sections, were not considered and

their usage by developers remains unknown. It is assumed that only a few developers are aware

of the issues in general and even fewer may apply sophisticated protections. Eric Lafortune,

CTO of GuardSquare, and developer of Pro- and DexGuard, shares this assumption. He also

provided us “some statistics on the protection of the top European banking apps. It seems that

about 65% use ProGuard, 15% use DexGuard, and 20% are unprotected […] Considering that

ProGuard only offers very basic protection (name obfuscation), most developers indeed seem

to be unaware [of the problems related to Android reengineering]” [35]. In addition, Ashutosh

Jain et al. [250] confirm with their research results based in 2015 that only a few developers

used obfuscation tools. Only 23 out of 505 apps (less than 5%) were protected by DexGuard or

ProGuard, while, even worse, 400 of these apps included debug information88. At this point, it

needs to be noted that they used the top free apps from each category and developers here

(instead to commercial companies) may not try to gain profit and protect their apps (exception:

freemiums89).

88 This allows to restore the source code quite well
89 Apps that appear to be free, but offer paid services

Existing solutions and their challenges

108

10.2 Available copyright protections by third parties for Android

The following section should review the solutions presented by other researchers and

companies or general solutions that are available today and intended to prevent or identify

illegal copies of an app. These were already presented in detail, as well as with an initial

comments, in the related work section (see 9ff). Research work requiring system modifications

is out of the scope of this dissertation and not reviewed, since a major goal of this dissertation

is to highlight solutions for existing platforms.

10.2.1 Solutions for dynamic code loading

Many of the presented solutions that use dynamic code loading are no longer usable on newer

Android versions or with reduced security protection in addition to requiring modifications (see

11.4.3 for details and possible options). This applies to the VM-based idea by Wu Zhou et al.

[162], the encryption/server-based approach by Sung Ryul Kim et al. [236] as well as the

encryption/license solution based on smartcards by Shoaib et al. [229]. Here the reason is

because Google introduced the ART VM that requires valid opcodes besides removing the

DexLoader function accepting a byte array to load code from memory [100, p. 31]. Nowadays,

it is required to store the code in a file on a disk first, in order to load it upon runtime. This

decreases the protection extremely, and it would have been much harder to extract the DEX file

from memory instead of watching for any DEX files (and their optimized code versions created

by Android) in the private directory of an app.

10.2.2 Solution for identifications

Reviewing methods that merely identify manipulations by fingerprinting or watermarking using

different methods as those presented by Joohyouk Jang et al. [234] and Hyunho Ju et al. [235]

and Hugo Gonzales et al. [225] may still be used, but do not represent full copy protection

mechanism like the license protection solutions introduced earlier.

10.2.3 Solutions to prevent reengineering

No full copy protection also applies to methods preventing (=increasing time) analyses as

presented by Thansis Petsas et al. [224] as well as for self-modifying code ideas by Daniel

Hugenroth et al. [226] and ultimately, the obfuscation solutions like ProGuard [161] and

DexGuard [160], too.

Additionally, well-known obfuscation techniques like JunkBytes [266] (based on [267]) that

make use of faulty opcodes that were not executed by Android, but which tried to be interpreted

by disassemblers that cause them to stop working, are not usable on modern Android systems

anymore due to the pre-compilation requirement for ART VM [100] as well as the fixed bugs

according to [233]. Also, recent verifications using the supplied app from [268], show that it

Existing solutions and their challenges

109

worked on Android versions prior to ART VM, while crashing the app on modern Android

versions as expected by the author.

Furthermore, the ‘hidden method’ invocation, as introduced in [64, p. 82] (based on [269])

cannot be used securely on modern Android versions using ART VM, since the

OpenDexFile(Byte[] …) function to open DEX code from memory got removed [100, p. 31]

and the remaining openDexFile(File…) function requires a local file that would tremendously

decrease the security benefit. Due to ART’s pre-compilation, ‘hidden methods’ are already

ignored for the compilation now and certainly will be ignored in the future. They are probably

not copied to OAT file’s embedded DEX structure by today (not verified; solution not of

interest due to the mentioned issue above).

Moreover, it is important to note that current obfuscation techniques like ProGuard are the

target of deobfuscation tools like “Simplify” [270] and “Oracle” [271] that try to bring some

logic back to the obfuscated code (see Figure 55 for an example). As of now, these approaches

provide limited results, and the obfuscation still needs to be analyzed by a human instead.

While some of the mentioned approaches may still be used, but do not represent a full copy

protection solution yet, we aim to include the one or another to offer a full solution as outlined

in the proposed solution section (see 11.4).

Figure 55 - Example for Simplify conversion (based on graphics from [270])

10.2.4 Existing copyright protection and DRM solutions

In addition to the more deeply analyzed solutions by Google (LVL) and Amazon (DRM) earlier,

other app markets provide different solutions. For instance, “Zirkonia” by Samsung is a full

copyright protection solution, but faces the same issues as Google’s LVL solution since it was

Existing solutions and their challenges

110

implemented almost in the same manner, and manually crackable by Lucky Patcher as analyzed

in [66, p. 22f].

Instead, multimedia distributors profit from sophisticated DRM solutions by Google called

“Widevine” [33] for their media content released on various video platforms and even

integrated TAs in Trusted Execution Environments by major distributors [205]. Usually, app

developers have no access to this protection level. Either they need to apply for it themselves

and choose the target TEE (license costs!) or have to develop their very own solution (e.g, our

proposal of using SEs).

10.2.5 Native code copyright solutions

Since Google does not recommend [7] to use the NDK, there are no available native copyright

protection mechanism by Google available. Also, Amazon or other markets seem not to provide

any native code solutions yet.

Nevertheless, as outlined in the related work section (see 9.2ff), researchers already created

several solutions for copyright protection using native code for obfuscation reasons in their

solutions. These solutions were examined previously (see 10.2.1), while the general benefit of

using native code is analyzed in its own subsection next (see 10.3).

10.2.6 Section conclusion

There are few available solutions that work with modern Android versions, and most of the

existing solutions either require an update (cf. removed dynamic code loading functionality) or

are seriously broken (e.g. Google’s LVL, Amazon’s DRM, etc.).

Nevertheless combinations of existing solutions and the implementation of provided license

verifications in a recommended way (cf. best practices and Google’s request of modifying the

LVL implementation [47]) in combination with tools like ProGuard [161]or better DexGuard

[272] can increase the security protection already. A remaining issue is that all the framework

calls remain visible and reveal the functionality of an obfuscated file most often, even it requires

more time to understand complex codes in all details.

Ultimately, the main issue remains that DEX files can be reengineered easily and Google shows

no intention on removing that threat anytime soon, since DEX files are even embedded in OAT

files used by the newer ART VM again [100, p. 18].

10.3 Using native code (Android NDK/ARM binaries)

The idea of using native code is not new and Google permitted developers the inclusion of

native code parts using the Android NDK since the early days of Android. The general question,

whether or not to use it for obfuscation already came up earlier (e.g., [273]) in addition to the

ideas that are based on using native code for protection (e.g., [162]).

Existing solutions and their challenges

111

By default, it needs to be noted that native ARM binaries do not include as many references as

the Dalvik Bytecode anymore. Moreover, it needs to be understood that the decompilation of

binaries is much harder, and (as introduced in [274] about the requirements for decompilation)

that, e.g., “information about the originally used programming language and compiler is

valuable during the decompilation process because each compiler generates quite unique code”

[274]. Since many references are missing, a decompiler is required to recover, e.g., “local

variables, used ABI[90], functions and their arguments” [274], as well as to perform a

“reconstruction of high-level control-flow constructs, such as loops and conditional

statements”. Furthermore, “a sequence of machine-code instructions” [274] needs to be

translated back to a high-level instruction. Nevertheless, the authors of that work and developer

of the Retro Decompiler claimed to achieve “comparable [results] with […] existing com-

mercial non-targetable decompilers, such as Hex-Rays decompiler [and] […] achieve over 90%

accuracy of successfully recovered functions and 91% of recovered function arguments” [274].

Therefore, their decompilation tool91 is used in the following chapters to make assumptions on

how easy or difficult it is to reengineer typical native code, while the ARM assembly code itself

is considered secure enough (cf. majority of CS students not even familiar with it, see 10.3.5).

10.3.1 Simple native code example

The conducted experiments using simple C source code examples as shown in Table 45 and

Table 43 in the Appendix (see 15.1.3 and 15.1.4) reveal the issues with decompilation of ARM

binaries using maximum optimizations during its compilation. Viewing their corresponding

decompilation results in Table 46 and Table 44, it is certainly already beneficial to use it for

obfuscation reasons.

For instance, the example in Table 45 (see 15.1.4) shows a simple calculation within a function

that is printed to the console. The corresponding decompiled version (Table 46) does allow

picking up the rough function structure. However, there are still some errors, and it can be

assumed that the protection is already better than using Java code, where calculations and

reengineered code might be obfuscated, but logically always completely correct.

10.3.2 Native code example using the Android NDK

A more realistic example for Android using the Android NDK for compilation is shown in the

Appendix (see 15.1.3) in Table 43. The example exposes an extreme increase in program code

in the decompiled version (Table 44), while the original meaning of that function is not

completely recovered by the aforementioned decompiler.

Here, the reason is the used optimization during compilation (cf. parameter -O3) that makes it

very difficult for the disassembler and ultimately, the used decompiler to restore the original

functionality. The Android NDK compiles source files with that high optimization setting by

90 Application Binary Interface [359]
91 https://retdec.com/decompilation-run/

Existing solutions and their challenges

112

default, if not specified otherwise [275], while there are several additional protection options

as outlined next.

10.3.3 Examples for existing native code obfuscation techniques

The idea of protecting code by, e.g., hiding useful names, is also not new, and almost as old as

the used programming languages themselves. For instance, the 1st International Obfuscated C

Code Contest took place as early as 1984 [276] and since then the idea remains the same: to

remove useful information as much as possible, change all of the structure from simple to

confusing, and to make it more difficult for humans, while compilers do not care about the

complexity level that much, it might cost performance only. Since there are obviously many

possibilities for obfuscation, the current section will introduce examples only.

Hiding information and increasing complexity

Currently, there is a quite simple method that is generally known and is in some of the contest’s

source codes as well [276]. It removes function names and replaces them by random unique

letters. This is because they allow attackers to gain a first insight into the functionality of a

defined method based on its name.

In terms of Java and Android (cf. JNI) at least the entry function has to follow a specially

defined format and libraries not following that name convention cannot be loaded, which turns

out to be an issue in our later proposings and each java file/class expects its very own native

function calls.

For instance, “Java_de_tum_in_GeoGame_StartGameActivity_getLicenseStatus” is a native

function getLicenseStatus() that can only be called within the StartGameActivity class.

Declaring the native function in another file resulted in an error during the development of our

evaluation apps.

Obfuscator LLVM

In addition to the used -O3 optimization that already works as a soft-obfuscation, tools like

“obfuscator-LLVM” [277] may be currently used to also bring obfuscation to native code, too.

The LLVM project was originally founded by the University of Illinois and basically provides

a middle layer allowing static or dynamic compilation even during runtime. LLVM is an

initialism and not an acronym, even one may assume that the original naming intention was

Low Level Virtual Machine in the beginning [278].

Obfuscator-LLVM uses this toolchain (LLVM) while providing control flow flattening,

instruction substitutions and bogus control flow as options to obfuscate existing source codes

[277]. For instance, control flow flattening increases the code by adding additional branch

instructions to the code, while instruction substitutions try to represent the same functionality

in a more complex way by making it more difficult to recognize, e.g., a calculation. Table 47

and Table 48 in the Appendix (see 15.1.5) show practical examples for some of these methods

taken from the website.

Existing solutions and their challenges

113

An example taken from [279] in Table 49 and Table 50 as shown in the Appendix (see 15.1.6)

highlights the effects of obfuscator-LLVM on a decompiled source code, and it can be assumed

already that it must be much harder now for decompilers, like the Retro Decompiler, to produce

equivalent C source code from an obfuscated binary and the resulted, decompiled code is

senseless.

The security benefit by using Obfuscator-LLVM was analyzed by Francis Gabriel from

QuarkLabs, which is a cybersecurity company from Paris; [280] explains it in more detail.

Gabriel concludes that “[even their] script [that they used for deobfuscation] is a good start, it

doesn't and will never break all functions protected by OLLVM [(meaning obfuscator-LLVM)]

[…] The OLLVM project is really interesting and useful because it shows by the example how

to manipulate LLVM in order to build your own obfuscator, which can support several CPU

architectures. Compared to commercial closed-source protections, we have seen having access

to the source code helps to break protections. But it also shows how strongly obfuscation relies

on secrets […] Conversely to what many people believe, code obfuscation is REALLY [sic!]

difficult. It is not about forbidding access to the code and data, it is about buying time and

thinking ahead of how one will break your layers of protection” [280].

Using JNI to protect Java Function Calls

Since native code is more secure, due to less available references as outlined before, an idea

was to analyze code using JNI calls with the chosen decompiler. Table 51 in the Appendix (see

15.1.7) shows an example class called “Account” that offers a function “getUsername”

returning a string, while the native code example in Table 52 calls that function by providing

the parameters and return values for it in a special low level format92.

Reviewing the restored code in Table 53 by decompiling the related binary file reveals the great

obfuscation that this approach offers already, and without a much deeper understanding of

ARM assembly as well as NDK/JNI knowledge the intended functionality may not be obtained

at all. It can be assumed that it is very time consuming to trace all memory operations that make

no immediate sense to a developer. Other researchers like [100] in our research group share this

assumption (statement in his final presentation related to that thesis).

10.3.4 Hooking native code

Hooking native code (shared libraries for Linux/ARM) as produced by the Android NDK would

be beneficial for any attackers and the current available options should be reviewed as part of

this security analysis section. There are a few solutions available as outlined next for that

purpose.

Since there are no official native code protections by major app markets available, this

technology is mainly of interest to verify 3rd party research or our own solution in the evaluation

chapter of this dissertation and it will be introduced to the simulated attackers (students).

Moreover, for the sake of completeness the options are introduced next as well, since they

belong to the currently available reengineering tools for native code, and 3rd party developers

provided native code solutions as outlined in the related work section already, too.

92 It may be obtained from a compiled class by using the the tool javap, e.g. javap -s -p example.class

Existing solutions and their challenges

114

Cydia Substrate

Similar to the Xposed Framework for Java [150], Cydia Substrate also provides a similar

functionality with the additional capabilities for Android native code (C/C++ code) [151].

Nevertheless, it was not updated since 2013 [152] and does not work on recent Android

versions. Therefore, it is not be reviewed further in terms of this work. Interested readers may

find a tutorial for creating so-called substrate modules to be used on older Android versions

(“2.3 through 4.3” [151]) at [281].

LD_PRELOAD

Another option for intercepting and overriding functions in native code is to use the

LD_PRELOAD directive as introduced in [282]. In this approach the target method of a library

is developed with the same function signature and the desired functionality. It needs to be

compiled as a shared library and uploaded to the device, while setting LD_PRELOAD for the

targeted Android app93. The trick is that this library is loaded in advance of all other libraries.

A short example that works on modern Android versions is illustrated in the Appendix (see

15.1.8) to replace the sendRequest() method call of the nLVL used by the entry JNI method of

our evaluation game. The names of these methods may be obtained by viewing the exported

symbols (function names) using the Linux tool nm94.

Frida

Frida (as introduced in [153]) is a framework to intercept processes of various operating systems

including Android. It uses JavaScript and Python.

ARM Inject

ARM Inject is a tool to inject shared libraries into running processes for replacing all kinds of

functions to intercept and modify communication or to print out interesting information like

variables or encryption keys maybe [283].

10.3.5 Survey

By assuming that typical customers are not familiar with any reengineering techniques, students

and skilled developers may know aforementioned tools to disassemble and decompile Android

Apps. Nevertheless, we get the impression that many students in related computer science

majors are not sufficiently familiar with ARM assembly, and therefore, using native code is

already an interesting protection option. In proving this assumption, we conducted a survey on

this and other impressions. Having access to our own app and developers, our survey feature

was included in the TUM Campus App in June 2016 to provide researchers the ability to ask

users simple questions based on their faculty assignment. The survey occurred over a duration

of about 14 days. The following diagrams show the results, while the conclusion is presented

below and the screenshot of the actual survey is provided in the Appendix (see 15.2.2). App

users studying at the TUM Faculty of Computer Science (CS) were asked question Q1 and Q2.

93 e.g. setprop wrap.de.tum.in.nilsapp LD_PRELOAD=/data/override.so (based on [282])
94 nm -aDC --defined-only libMyTest.so [281]

Existing solutions and their challenges

115

Question Q3 addressed non-technical majors (including the faculties for architecture,

chemistry, mechanical engineering, medicine, economy, education and sports).

Taking the (non-representative95) results into account, they still confirm our assumption that

even computer science majors are less familiar with ARM assembly, which is an indicator that

such a solution provides more security. We also need to acknowledge that many other students

that have a technical major are not familiar with Android reengineering by default.

Nevertheless, keeping the reports used in our evaluation in mind (cf. [284] [285] [286]), all

students of all skills levels were able to obtain basic reengineering knowledge within the first

hours, and tools like the APKtool and others can be found relatively quickly. Ultimately

understanding smali language to apply modifications most assuredly requires some existing

knowledge in a computer science major. Question Q3 that addressed all other non-technical

95 due to few participants

10

18

Q1/CS: Are you familiar with ARM assembly?

Yes No

12

14

Q2/CS: Do you have reengineering skills for Android Apps?

Yes No

2

29

Q3/other: Do you have reengineering skills for Android Apps?

Yes No

Existing solutions and their challenges

116

majors showed the expected outcome that almost no one is familiar with reengineering Android

apps. Assuming that many customers do not have profound knowledge of these matters, then

using typical obfuscation might already be safe. Unfortunately, and due to available tools like

“Lucky Patcher” [49], even non-professionals are able to circumvent existing and default

implemented protections. Therefore, better solutions are a mandatory requirement.

10.3.6 Section conclusion

Using native code is a perfect alternative to protect sensitive code parts that need to be executed

in an insecure environment like Android itself because Java code is obviously not secure, and

usual obfuscation had almost no effect in our own evaluations (see 13.3 ; cf. visible framework

calls), while most developers – even computer science students – are not familiar with ARM

assembly (see 10.3.5). Therefore, even trained professionals (= graduated students) will

certainly have to spend much more time investigating and obtaining the original functionality

than on Java-only solutions. This can solve the critical time requirement of distributors to

survive the initial weeks (e.g., about 30 days as suggested by [70]) of a new release without a

cracked version being available to have the required earnings.

Native code protection is fairly well researched as highlighted previously (see 10.3.3) and in

the proposal section (see 11.5.3). A more complex example using native code to improve the

license verification for gaining additional security benefits is in section 11.4.8 about the

developed nLVL.

Nevertheless, as outlined in 10.3.4, native code is also vulnerable to attacks and we pointed out

improvement ideas for fixing some of these issues in the proposed solutions sections (see

11.5ff). A special issue that arises with this finding is the required combination of Java and

native code in a secure manner. That is addressed in 11.4.4, 11.4.5 and 11.4.6 in more detail

and developing an app in Java is still the preferred way and much easier than C/C++.

10.4 Existing hardware solutions and comparisons

In recent years, manufacturers started to introduce additional, secured hardware to provide the

necessary security level for Android in terms of confidential application data. So far, there are

two major technologies available - Secure Elements (SEs) and Trusted Execution Environments

(TEEs). Both options are analyzed in this section for their designated purposes of copy

protection.

10.4.1 Secure Elements

As briefly introduced in the fundamental section (see 8.5.1), SEs can be programmed by using

small Java applets, which are separated from each other due to the virtualization.

Existing solutions and their challenges

117

Comparing SE to TEE

However, a key difference to TEEs might be an easier and less expensive exchange possibility

that would allow for one responsible manufacturer (in terms of copyright protection only), and

who is responsible for the card content (cf. usage as dongle). The aforementioned exploit issues,

which apply to TEEs, may also be surrounded in that manner, since they apply to SEs as well

(see next section).

In an email, Hubertus Grobbel96 stated further SE advantages when he wrote that even an “SE

is exposed to the full range of system attacks. The number of successful attack vectors on

smartcards is however close to null.” [287] Here, the reasons are “the narrow band / strict

interfacing of ISO 7816 and Global Platform standard […] [besides] the highly secured

hardware […] that is resistant against DPA/SPA” 97 [287]. Furthermore he confirms the

assumption that “An Android host relying on SW security only will never be able to offer […]

protection for […] assets like keys […] [and for] processing critical data [. Nevertheless,] End

to end security between the two end points of application and the SE is suffering a systematic

problem […] [and] valuable data […] available on the Android host […] depends solely on the

security of the VM/OS or the application. [However using] […] a secure microSD […] limits

the scalability of a successful attack to exactly one endpoint [while] In [sic!] pure SW security

a successful attack grants control over the complete system” [287]. Moreover, he stresses that

TEEs “are typically wrong marketed promising a secure runtime environment, which is not true

in general […] [and its real advantages might be in the field of] ‘Secure Display’ and ‘Secure

Keyboard’ [suggesting that a combination] […] of TEE and SE is therefore the most […]

[promising option realized in a] swedish [sic!] Secure Voice solution […] [by] vendor Sectra”

[287].

Possible threats and exploits for SE

Introducing available exploit examples targeting Java Smartcards, they are utilizing, for

example, “a known technique of type confusion of the card’s Java Virtual Machine by

exploiting the faulty transaction mechanism implementation” [288]. It results in access to

“arbitrary memory locations on the card” [288], but a requirement is to be able to install the

malicious applet on the card first [288] (cf. our previous request was to have one device

administrator for full security only).

Other attacks include the muting of the card by executing an endless loop [289]. It’s fair to

assume that there might be similar exploits on newer cards, too. Nevertheless, Michael Roland,

a researcher on SEs from Austria, stated that attacks addressing missing bytecode verification

should have been fixed (on existing solutions98) by now [290]. Nevertheless, all of the found

exploits assume access to the card content. While this might not be possible on the logical side

(cf. [291] where “Issuer Security Domain” [291] and “DAP Verification” [291] limit card

content modifications to trusted entities), and the available APDU interface offers very few

attack surfaces [287], different cards provide different security certifications for hardware.

96 Hubertus Grobbel is the Head of BU Security at Swissbit AG
97 “Simple Power Analysis (SPA) and Differential Power Analysis (DPA)” [360]
98 Added by author

Existing solutions and their challenges

118

Therefore, hardware attacks are unlikely, too. For instance, the MSC’s chip is “Common

Criteria[99] EAL 5+ certified” [192].

In concluding the aforementioned issues, we can fairly assume that SEs provide high level

security whenever there is one responsible security domain (= company) only that ensures safe

policies for updating and modifying the card content.

SE and its limitations

Unfortunately, SEs need to interact with a host system (e.g., in terms of copyright protection to

exchange a key with the more performant Android system) that is most often vulnerable to other

exploits (cf. 10.1.2), too. The application side (including drivers) may be reengineered and the

actual communication between an app (or driver) and the SE can be intercepted and ultimately

understood by an attacker, since the Android assembly code may reveal the codes as long as

Android is not used for proxy-purposes only (cf. secure connection to server, see details in

11.6). Therefore, the communication between an application and the SE (maybe inside a

MicroSD) may be considered a huge security risk. The actual usage of this exchanged

information within the app (cf. Figure 56) is confirmed by [287], too. In contrast, using an

Android app that just forwards the information to an external provider (e.g., website) may be

considered fairly safe, since that connection may be encrypted, and any modifications can be

discovered.

Figure 56 - Trusted and untrusted services

This fact is certainly an issue for copyright protection, and at some point, some information

must be released to the insecure world of Android, e.g., to decrypt resources that are used in the

applications and shown to the user in perhaps the form of graphics or music. The performance

of the secure element is not sufficient to perform this task for larger quantities of data (cf.

performance section in 8.5.1) in a secure manner and internally.

Another issue known and (sometimes) addressed by PayTV distributors is the so-called

“cardsharing [sic!]” [292]. Here, the pirates use a legit card to share encryption keys for PayTV

with others over the internet that are valid for a certain time frame only. This issue may be

addressed by “behavioural[sic!] contracts” [293], e.g., monitoring the states of an applet and its

99 Common Criteria (also known as CC) is an international agreement on the requirements of security

evaluations [361]

Existing solutions and their challenges

119

called order, or by expecting requests after a certain time frame while too many requests may

indicate a misusage [293].

Of course, in theory, this problem may occur with SEs under Android, since, e.g., any key-

exchanges cannot be validated after these keys enter the insecure world of Android (cf. Figure

56) and they may be forwarded to another device to be used illegally there, too (cf. methods

that usually require an SE. For instance, temporary access keys for a server provided by the

SE). An issue for realizing similar protection is the missing RTC100 of SEs, and the reoccurrence

of attacks in a short amount of time, are difficult to discover.

10.4.2 Trusted Execution Environments

As already presented in the fundamental- and related work section, TEEs have a high potential

to provide a secure environment with high performance. Its typical architecture is in Figure 57

and shows the Rich Execution Environment (e.g., Android) on the one side and the TEE with

its Trusted Applications (TAs) on the other, as well as possible communication channels. In

this section examples for TEEs are reviewed regarding their provided security.

Figure 57 - General TEE architecture [294]

QSEE

QSEE is Qualcomm’s TEE, which actually refers to Qualcomm’s Secure Execution

Environment and is executed in SnapDragon processors that are used by lots of current

100 RTC = real time clock

Existing solutions and their challenges

120

smartphones [205]. Unfortunately, Atredis101 [205] found out that several (major) companies

are trying to integrate their code into current TEEs like, e.g., QSEE (e.g., Netflix, Disney, etc.).

For instance, Atredis stated in a talk about QSEE in 2015 that this reduces the security benefit

a lot, since just one of these implementations needs to be hacked to render the whole system

insecure. They claim that instead of perhaps providing more security (for banking maybe102),

TEEs are majorly used for DRM and hiding data from the users. Besides that, TEEs may

organize several other features like a SIM unlock, boot loader unlock and protecting the

hardware configuration using fuses103 [205].

In their research [205], they focused on HTC and it turned out that, e.g., in HTC’s Qfuses some

fuses disabled and others re-enabled functionalities again, which seems not very logical. Also,

they claimed that 3rd party companies integrating their code ignored the common Qualcomm

specifications and showed insufficient knowledge by leaving the debug code for functions like

“tzbsp_oem_do_something” in the production build. They outline that the result is a blackbox

with code by many manufacturers and possible security issues. Furthermore, they discovered

several architectural issues like missing IOCTL interfaces, no ASLR104 & DEP105, an easily

cloneable TrustZone image (cf. TEE OS), and physical memory pointers everywhere and so on.

Presenting the details, they showed how easy it is on HTC devices to dump the TrustZone

operating system to an image file as soon as an attacker got root permissions on Android’s

system side to act from kernel space. They noted [205] by default that only the Android Kernel

was allowed to communicate with the TEE by using secure monitor calls (SMCs) that included

OEM’s calls like “tzbsp_oem_do_something” and were meant to be available outside the secure

world. They revealed that the (TrustZone) image includes a list of all available SMC functions

and they were able to discover a write-zero vulnerability in one of the OEM’s function calls,

which allows overwriting the validation code in the OEM’s memcpy function. Of course, that

allowed the injection of any code to be executed within the secure world. According to Atredis

HTC did not properly reply to the issue. Therefore, TEE solutions by HTC devices in 2015

need to be assumed insecure and not ready for productive use in terms of gaining additional

security.

Nevertheless, there are similar approaches for many other devices, including the Nexus 5 and

Samsung’s Galaxy S5 that also use QSEE. At least in these cases, it is assumed that Qualcomm

fixed the issues already [295].

Trusty

Besides aforementioned alternatives, “Trusty” [205] might be a future TEE solution that

addresses the improvement ideas by Atredis to release certain codes to the public for

verification of the security model. On its website it is still declared “subject to change” [220]

(June 2016) and appears unfinished. It is a product by Google.

101 Security Company www.atredis.com
102 Added by author
103 Hardware switches that may be used once to indicate a certain hardware state forever
104 “Address space layout randomization (ASLR) is a memory-protection process for operating systems (OSes)

that guards against buffer-overflow attacks by randomizing the location where system executables are loaded

into memory.” [362]
105 “Data Execution Prevention (DEP) is a set of hardware and software technologies that perform additional

checks on memory to help prevent malicious code from running on a system […] [e.g.] execution from data

pages” [363]

Existing solutions and their challenges

121

Trustonic

Another solution in terms of TEEs is the one by Trustonic. Previously introduced in the

fundamental section (see 8.5.2), Mr. Ekberg added [203] that a bug in one of the TAs106 (cf.

attacks by Atredis above) would have no effect on other TAs due to separated memory space

by different TAs and the TEE OS in general. The reason is that their architecture is similar to

user-space and privileged-space on Linux. Nevertheless, Ekberg acknowledged that not all

TEEs have this security barrier, and also any bugs within the memory space of the TEE OS

would affect other TAs ultimately, too. Right now, their solution does not include ALSR for

the 400 million devices available, but they (Trustonic) are continuously improving the product.

The solution “Trustonic for Knox can be seen as a strengthened overall solution” [203] that also

supports sandboxing of Android Apps for improved security. While a full list of supported

devices with their solutions is not available to the public, Ekberg confirmed that it is available

in “more or less any Samsung device (phone, tablet) newer than a Samsung S3, newer HTC,

Sony, LG (mostly higher-end devices) […] [and for] Android [in most of the] top OEMs” [203].

10.4.3 Section conclusion

From the current point of view, it can be concluded that major TEE solutions like QSEE are not

ready yet and further exploits (cf. bad implementation) should be expected until a more secure

version becomes available. Moreover, other manufactures like Trustonic are still working on

improving their solution and it seems reasonable to wait for the mentioned idea by Atredis of

an open-source version that includes available security measures like ASLR, etc. Trusty, as

powered by Google, might be a suitable candidate, but is not ready yet either.

Also, due to their high-performance, TEEs are of high interest for future copy protection

solutions as illustrated in 11.2.2.

In the meantime, SEs can be used perfectly to bring more security to Android by offering

various opportunities, and not only in terms of copy protection. As outlined earlier, even if their

performance and data space are limited, they still provide a highly secured environment to

perform calculations of encryptions keys or signatures, while any private keys remain secure in

the SE itself (in case Android gets rooted). Even Android limits the usage of SEs to insecure

Java solutions at the moment (see 11.4.7 for details on the issue), there are still possibilities for

securing server access (see 11.4.7), while other solutions do not provide that much more

security when realized as a Java solution at the moment (see 11.6ff).

10.5 Overall conclusion

Currently available techniques on Android for software protection and as confirmed in various

related student theses (see [75] [64] [66] [100] [62]) and outlined in the previous sections,

cannot be considered secure.

106 Trusted Applications executed in the TEE OS

Existing solutions and their challenges

122

As outlined previously and analyzed by these different theses, available copy protection

mechanisms can be easily circumvented. The issue of an available global cracking tool (Lucky

Patcher, cf. [66]) highlights another general problem, too. Developers do not often focus and

specialize on this topic and fall back on provided example solutions – the provided sample code

by Google maybe. Moreover, in earlier days even obfuscation tools like ProGuard were not

enabled by many developers (and unfortunately not by default by Google either), which led to

several applications in recent years that may be reengineered easily and even still today. While

their figures decrease now, and Google improved the LVL by signed replies [47], Amazon

added slight modifications in their DRM version from 2014 to 2016 as well [241].

Unfortunately, the overall issue persists and apps are still easy to reengineer, interceptable (cf.

Xposed framework) and are ultimately crackable – in worst case within minutes.

Using the same framework for billions of apps like Googles LVL with few modifications by

developers (even Google recommends it [47]) makes matters worse. Moreover, applications

lack a secure place to store sensitive information besides secure execution, since they run on

Android and store most information within Android’s filesystem or its memory (RAM), which

is both accessible by root users (assuming the right exploits to deactivate SEAndroid, too).

Nowadays, that issue may be addressed by using SEs and TEEs as it is already used for DRM

in terms of media content and its keys. However, it is not used in terms of copy protection for

apps yet, and there are not any frameworks designated to allow its usage especially for apps.

Instead, there is a DRM framework by Google meant for media content only [296]. It is no

surprise that this DRM is realized in native libraries, which provokes the question as to why

Google (Android) does not provide similar solutions for apps.

While SEs may provide a secured space and low performance, they are easily exchangeable.

Instead, TEEs provide the same performance as the operating system as well as secure space,

but are likely to be used by many companies, which may limit their security benefits and

increase their attack surfaces, as outlined previously. Both environments may face the issue of

exploits, but SEs may be assumed to be more secure when there are responsible policies for

managing card content (cf. one administrator, who is allowed to install applets). An issue for

SEs, which came up in recent months, is their limitation to be used by (insecure) Java code

only, since SEAndroid limits the usage of libUSB and using more secure native code for access

is not possible at this moment anymore (for more details see 11.4.7).

Another conclusion that can be drawn is the more secure approach of using native code for

apps. While Google introduced the ART VM and allows even performance intensive tasks to

be executed smoothly now without native libraries (cf. evaluated in a video app in cooperation

with Weptun company in one of our Android practical courses), the embedded DEX code is

still a serious issue for hiding protection mechanisms. Therefore, using native code (Android

NDK) to handle license requests, as well as many app parts, is still a reasonable solution at this

time, even it might not be required for performance reasons anymore. Therefore, the upcoming

proposals in the next section are based on the assumption of more secure native code and

propagate its usage.

Proposed solutions

123

11 Proposed solutions

This section covers the possible solutions to improve the current situation of insufficiently

secure copyright protection methods on Android as outlined in previous chapters.

Note that these approaches can increase the security only without being able to solve the

fundamental and severe issues of Android‘s insecure operating system and its insecure

hardware. Additional suggestions in terms of that matter are addressed in 11.2 requiring the

cooperation of external entities like Google or device manufacturers.

The proposed methods that target app developers are sometimes based on approaches by other

researchers or companies (see information in each section) and often implemented by requests

in related student theses. These range from gaining additional security by reimplementing real

copy protection towards APK files by injecting user/device details as a requirement for running

an app (see 11.4.1 and 11.2.1), to the ported license verification library using native code for

additional security instead (see 11.4.8), while proposing methods to glue insecure Java code

and more secure native code together besides presenting known protection options (see 11.4.4,

11.4.5, 11.4.6). Moreover, updated methods for known ideas of loading code dynamically with

a focus on Android using ART VM are presented (see 11.4.3). In addition, the question towards

secure storage space is discussed (see 11.4.2) and remaining options for using SEs are covered

(see 11.4.7), before concluding everything in a best solution proposal in 11.7.

As outlined before, the use of native code is highly suggested. In our evaluations (see 13.4ff),

the included methods of using a native license verification library (see 11.4.8) besides the

proposed methods to bind Java and native code together, proved to be effective, while Java-

only protections (see 13.3ff) have been successfully circumvented by the participants.

The use of SEs in combination with dynamic code loading were not evaluated, but it can be

assumed - from a logical point of view – that we can increase the security once more as well,

since data and code are stored outside the insecure system and are ultimately revealed by

dynamic analysis upon runtime only. The reason for leaving it out is addressed in 11.4.7, while

conceptual ideas are presented in 11.6ff.

11.1 Proposed approaches in general

During the most recent years of our research five essential approaches evolved in the sum of all

available methods to improve the security in general and to prevent app piracy as presented

next in more detail for each item.

 Individualism for implementing protections (each app unique)

 Usage of native code for preventing reengineering

 Regular monitoring of cracking solutions to act on it

 Inclusion of security-relevant libraries for trust

 Apply a basic protection (encryption) for files, databases and network traffic

Proposed solutions

124

11.1.1 Individualism

As recommended initially by Google [297] [47] in their description about how to integrate the

LVL, it has to be noted that customized programming of security features greatly improves the

overall security level of each app. For instance, the LVL may be implemented natively (see

11.4.8) and combined with actual (converted) program code to glue the Java app and native

code even further together. This way attackers are not able to separate a well-protected native

code from the actual app (see details in 11.4.5 and 11.4.6 with related fundamentals presented

in 11.4.4), while the native library looks different to other apps. General cracks – like using

simple search – and replacing the pattern (as done by Lucky Patcher [66]) cannot work out.

In addition, the copy protection mechanism may use all kinds of devices- or user-attributes for

identification purposes in order to enforce the target license (see 11.4.1). In the end, each app

can also be based on other attributes (compiled for a different user/device, see idea in 11.2.1).

In this case, crackers would be required to develop a crack specially designed for an application,

and none of the general available tools (see 10.1.3) would be available to circumvent the used,

individual copyright protection. One of the key issue as outlined in earlier chapters is that any

DEX code is not sufficiently protected against reengineering attacks, which is the reason for

recommending the use of native code as explained next.

11.1.2 Native code

Even Google does not recommend using native code [7] and we experienced in recent

projects107 that even the streaming of HD video files (usually implemented in native code for

performance reasons) no longer requires native code implementations on ART VM (cf. ART

VM compiles everything to native code anyway). We have to point out that using native code

for security purposes is still highly recommended and even confirmed by a Google employee

[163]. A major difference is that there is no insecure DEX code available when using native

code right away. Moreover, the obfuscation benefit is already clearly visible in earlier analyses

(see 10.3ff). The question about using native code to obfuscate Java is not new in the end (cf.

[273]), but as outlined previously, it is also not realized in terms of copy protections by major

app markets yet, while other researchers also used it for their solutions already.

In addition, programming a whole application in C/C++ might not be the most preferred way

in terms of Android programming. However, it certainly is the preferred way for securing the

application right now, since all current Android versions are including the insecure (in terms of

reengineering) DEX code in installation files (APK files) as well as embedded in the compiled

files (OAT files), as outlined earlier in 7.3.8.

Unfortunately, a huge disadvantage is that Android’s NDK is much less powerful than their

SDK, and many functions that are easily available by calling the required method in the Android

SDK (e.g., to receive the username of the currently logged-in user) cannot be called from the

NDK without using Java functions through JNI. This is most often due to missing rights.

Sometimes it is possible to implement a method in pure C source code instead (e.g., accessing

107 Weptun App / Android Practical Course WS15/16

Proposed solutions

125

accelerometer sensors), but that is quite rare. We analyzed this further in 11.4.1 when reviewing

available sensors and other sources for device- and user identification possibilities.

11.1.3 Verify and monitor cracking solutions

While developers may not be able to ultimately prevent the cracking of a protection, they want

to verify that available general cracking solutions are not working after an app-release and test

their apps frequently for any incidents. One of the most famous tools known by customers is

the “Lucky Patcher” [49]. Further details on the internal algorithms of this tool are found in

chapter 10.1.3.

11.1.4 Trust own code only

“Better safe than sorry” is a famous quote by an unknown author and highlights the way

developers want to use provided, external services. For instance, the Google Play Store may be

modified on rooted devices (also called “Modded Play Store” [49]) and also, security related

libraries and services like the LVL may frequently return false results.

For instance, our solution of a native LVL library called nLVL [62] (see 11.4.8 for details)

avoids the usage of existing services by Google and communicates to the Google servers

directly, while bypassing any proxy tools used by most other Android applications (cf. J.

Raedle’s report [285]). Unfortunately, it requires several unusual permissions that are a

disadvantage and due to the fact that our code is not yet endorsed by Google to receive special

access permissions. Instead, Google’s frameworks do not require these permissions and they

are permitted to access most information as defined by Google.

Ultimately, it is a question of trust, as to whether or not the developers wants to trust the services

provided by the system or provide the app its own frameworks for security reasons. In terms of

license verifications and by knowing the issues with a “Modded Play Store” [49] the question

needs to receive a positive reply, and it is highly recommended to implement solutions self

instead.

Nevertheless, trusting Android frameworks in general, cannot be avoided, since verifying every

single function and framework seems unpractical. However, it is possible to prevent certain

attacks. For instance, an attack by the Xposed framework can be detected [298] and alarms

triggered (see 11.5.2 for details) if these detection methods are not already deactivated by the

attacker in advance.

11.1.5 Using of basic protection

As introduced, e.g., in 8.5, the basic encryption of files, databases and any network traffic is

suggested to prevent many problems such as emulated servers or cracked apps. Due to the

known reengineering issues of Android these methods can buy some time only. Nevertheless

combined with other methods, e.g. using native code, this time advantage can be raised highly.

Proposed solutions

126

11.2 Stakeholders

In general, we can identify four main stakeholders on the stage that need to improve their

collaborations to rectify the current issues on copyright protection. While each one by itself

may already strengthen the protection, better cooperation and guidance would result in better

copyright protection and other related topics, like data privacy that also depends on similar

goals of securing private and confidential (app) data. These four stakeholders are essentially

Google itself, the hardware manufacturers, each app developer and ultimately the customer

himself, too. For each stakeholder, we propose different possibilities in the following sections

with a main focus on developers, as presented in broad detail in section 11.4.

11.2.1 Google

Background information

Google represents the operating system manufacturer that is responsible to maintain system

security on a software level and in cooperation with hardware manufacturers on the hardware

level. Google is mainly responsible to maintain the system security by providing safe and

ultimately exploit-free services. Of course, this is a major task and due to lots of integrated third

party code and libraries (e.g., Linux Kernel, OpenSSL, 3rd party drivers, etc.), as well as many

developers, it is an almost impossible one. Most assuredly, Google and their open-source

community try to maintain system security and solve rising issues. One of the highlights has

certainly been the integration of “SELinux in enforcing mode” [207] that prevents access to

files even when acting at the level of a root user. Unfortunately, Google did not manage to

create a fast way of distributing system updates in earlier times, in order to apply security

patches to available devices more quickly. Everyone knows that each carrier in cooperation

with manufacturers, created its own Android system with its very own look and feel. It is

recommended to separate the Android system itself from those parts that may be customized

by carriers. Apparently, with Android 6, such a system was enabled and the “Android Security

Patch Level” is viewable in the about-section of Android now. These devices (we only reviewed

the Nexus 5) receive security patches every few weeks now. Nevertheless, it remains unknown

to us if it is already enabled for other devices and manufactures in general.

Google is not focused on IP protection at the moment

During our investigations, we got the impression that Google focuses on performance at the

moment, since the introduction of native code with the ART VM certainly improved Android’s

performance. However, thinking about the known issues of Dalvik Bytecode, we can still

discover it in most recent Android versions using OAT files (cf. 7.3.8) [100, p. 18].

In addition, other companies (like Amazon, GuardSquare etc.) showed interest in our research.

Google was informed, too. Moreover, Google Android’s security team classified severe threats

to IP (see 10.1.5 regarding our dynamic, universal crack) as low security issues (see 14.5 and

[164]), since it applies to rooted devices only. It needs to be understood that according to figures

collected by researchers in Cambridge [260] (see 10.1.2), by the end of 2014 approximately

Proposed solutions

127

90% of the screened devices were insecure, while security patches were available to the

remaining 10% in theory only. Therefore, rooting a device is more a question of if the user

wants to do it. In addition, a recent report confirmed our impression and “Google

representatives declined to comment on the Android piracy issue” [28].

Proposal 1 – Native Code and new market implementation

Similar to the idea of watermarking apps for identifying illegally shared app copies [234], it is

recommended to provide customers a new Play Store that offers native code versions with

embedded device/user details and getting rid of the embedded DEX code in OAT files. This

also includes the current format of APK files that adds the platform independent DEX code

once more, too.

One of the reasons, and huge advantages, for using APK files is their platform independent

format that gets optimized on each device based on the specific hardware properties as

introduced before. That is the reason that Android runs on so many different devices, while

Apple’s iOS and their apps are optimized and runnable only on a handful of devices.

Nevertheless, a possible approach for keeping that benefit and improving security might be the

introduction of a new app store that compiles an application for the target platform based on

parameters transmitted by the store’s client app and therefore, solves the copyright protection

issue right away as outlined next.

The provided native application can not only be optimized for that single customer device, but

even compiled with certain properties of that specific hardware or user details and is therefore

runnable on that device only [164]. Figure 58 illustrates this approach. The disadvantage of this

idea is the CPU and memory intensive operations on the market side, but with raising and

dynamic adjustable cloud computing power it should not be an issue at all.

While it would be relatively easy to develop the necessary market application and server-based

services for the compilation, it would be required to modify Android itself. Within our research

[100] and limited knowledge on the ART VM, as well as it formats, this is an almost impossible

task. There is almost no documentation (except for the source codes) and implementing a

modified Android that does not require DEX code anymore, cannot be performed without

additional help by Google.

Figure 58 - Proposal for new Google Play Store Implementation [164]

As of now, the Android Operating system does not support this approach, and in our research

approaches (as performed by [100]), we were not able to get an app running without embedded

and available DEX code. The only possibility to satisfy the requirement of DEX code and our

idea, is to use a base app that is extended by loading native code dynamically. So, in turn, it

Proposed solutions

128

would be required to develop the app in pure C/C++. My student and I discussed this whole

approach and he came up with similar ideas as well [100, p. 58].

In addition to the proposed idea and as an additional benefit while updating market services,

Google may think about integrating certified services for apps as presented by [299] to also

provide customers more trustworthy apps.

Proposal 2 – Native License Verification Library and secure local storage

While the above proposal requires heavy changes for Android’s ecosystem, there is another

possibility to improve current issues with the existing LVL.

The idea is to provide app developers better native access to Android services (cf. many method

calls are not available within the NDK, see 11.4.1 for examples) and ultimately an official native

version of the LVL not requiring special permissions (cf. current nLVL / see 11.4.8), too.

In a proof-of-concept, the nLVL was developed on request in [62] by us, but due to the fact that

it is not being a Google service framework, it requires “strange”108 permissions to obtain user

details like an access token. A protected app is required to obtain these permissions at the

moment, of course. The details on the nLVL are presented in 11.4.8 separately and it can already

be used by developers (available on request109).

Ultimately, Google may pick up that idea to remove the additional, required permissions, while

providing app developers a much more secure LVL solution110 that way.

Furthermore, Google may open up available secure elements to store license information in a

more secure manner than in an app’s private directory while providing required NDK APIs for

access. Figure 59 illustrates the approach in combination with the nLVL introduced above.

Figure 59 - Native License Verification Library with attached secure storage [164]

Proposal 3 – Port access to user- and device information to the NDK

As outlined in 11.4.1 one of the biggest challenges was to identify available information sources

that can be accessed from the NDK and used in native code. It needs to be noted that accessing

108 from a user’s point of view
109 as of now, the nLVL is not publicly released due to open legal questions (cf. reengineering of Google’s

interfaces)
110 assuming to fix left MITM issues by adding the signature validation (see 11.4.8 / known issues)

Proposed solutions

129

it via NDK is preferred to hide the actual usage of any functions (sources) of that information

even better. While some information could be read from system files or environmental variables

using native code, simple information (like the used Google account) are inaccessible and have

to be obtained through the Java frameworks using JNI. Here and as a proposal, Google is

requested to provide these information within the NDK APIs. Of course, the access needs to be

regulated by Android’s permissions to prevent malicious usage and the same ones as for the

Java code may apply here, too.

11.2.2 Manufacturers

While the Operating System is provided by Google, the hardware is manufactured by different

companies including Motorola, HTC, Samsung, and LG, to mention a few. It is their

responsibility to add the required security hardware layers, e.g., disable debugging ports like

JTAG111 for production builds or add fuses (= “one-time programmable bit” [60]) to allow

sophisticated security measurements (e.g., blocking of services based on that information as

Samsung does [60]), in addition to also providing TEEs with secured space and memory

separation on a hardware level.

Currently, there are still many different devices available that already offer one or the other

feature. For instance, Samsung with “Trustonic for Samsung KNOX” [202] as introduced in

the related work section (see 9.1), now provides an interesting approach by prohibiting the

usage of secure containers for business applications. Here, when a device’s bootloader gets

unlocked, a fuse bit is used that can be set “from 0x0 to 0x1 (i.e. burned)” [60] once, marking

the device forever.

The question is why such an unlocked bootloader is rated a threat, and if there are no

possibilities to maintain security, even a custom OS may get installed. While many current

devices suffer an immediate security risk once the bootloader is unlocked (and a custom OS

usually with available root rights for users installed), it would be recommended to either

improve and introduce TEEs even further, or lock the devices down.

In terms of copy protection a more strict policy is preferred (cf. “copy-protection is always to

some extent security by obscurity” [1]) and the techniques are mostly available:

For instance, enabling secure boot (also known as “verified boot” [54]) may be a technique to

protect a device’s software (bootloader, boot partition, etc.) from modifications and to make

sure that only validated ones can be executed. Here, “each stage […] [can verify] the integrity

and authenticity of the next stage before executing it” [54]. Nevertheless, thinking about OS

updates, this would require cooperation and ultimately standardization between Google and the

device manufacturers.

In terms of users’ requests for their freedom in choosing the preferred operating system, TEEs

may hold the key to protect apps, critical business data, and ultimately sensitive license

information, too. For instance, trusted and checked apps may be downloaded and executed

within the TEE (which needs to be Android in our approach) and literally streamed [164] to the

111 JTAG is a programming & debugging interface for embedded hardware like processors, FPGAs etc. [364]. Of

course, still available ports in productive hardware are a perfect interface for attacks

Proposed solutions

130

user in his insecure OS, who is able to control an app by sending input signals. Basically the

user watches the rendered UI output in that case only and does not own the app to manipulate

or copy it in any way. We assume this provides maximum protection. A possible

implementation approach might be that the TEE must have direct access to the framebuffer so

that a user might expect a smooth execution. While this approach might be more user-friendly,

it maintains the copyright holder’s requirements for protecting of their IP/apps, too. Of course,

it requires new hardware and new TEE OS based on Android. Currently available TEEs can be

used to outsource parts only.

11.2.3 Developers

Ultimately, app developers are in charge of protecting their apps in general (as stated by Google

as well [47]) and to implement better solutions to existing protections that are preferably even

useable across different markets. Section 11.4 covers several proposals that can be used to

improve copyright protection as well as license verification.

It needs to be firmly restated (as mentioned previously in 11.1) that the key to successful

protection is customization, and the available cracking tools usually only target default

implementations. Therefore, having a different protection scheme in each app, makes it much

more difficult for attackers and increases the time until a pirated version becomes available.

(Note that LP can offer custom recipes to provide cracks for those apps through [66]).

11.2.4 User (customer)

Besides the aforementioned stakeholders, the user himself is another actor, who is asked to only

use the services in the designated way, of course. Furthermore, the customer himself offers

various information sources, like fingerprints, that may be used for identification. Also, the

behavior of using the device or the used Google account can be used to improve copy protection

methods, too.

11.3 License options for mobile apps

While there are certainly endless options for software licensing taking the amount of devices or

other factors in mind, licenses for Android apps can be classified in only a few categories. Most

vendors apply the one device/one user license option that most often implies one device/many

users (cf. a user and his family).

One Device, One User

One option might be to limit the app usage to a single device and a single user on that device.

Current solutions by the major app markets are not using this option.

Proposed solutions

131

Many Devices, One User

Having multiple devices and one user only, it is the preferred license model used by the major

app markets like Google Play Store and Amazon AppStore. Customers register an account that

they use for downloading, installing and actual usage of an app. In addition, they are able to use

their account across several devices to use the apps there, too.

One Device, Many Users

Another option is to allow customers the usage of their app on one device only, while it may be

used by an unlimited amount of people, e.g., the customer’s family. In reality this license is not

officially used, but indirectly used by the customers, since it is assumed that most of them are

only using one account per device.

Many Devices, Many Users

It might be interesting to allow customers to use an app on several devices, while also permitting

the usage of an unlimited amount of customers. For instance, this option may be used in

conjunction with subscriptions and companies, who charge users different amounts based on

the amount of devices (volume licenses). This license option is not addressed by Google nor

Amazon yet, but can be realized using the proposed methods of the following chapters and

becomes important when Android emerges to desktop computers with recent releases like

“RemixOS” [300] in the near future.

11.4 Improving copyright protection (developers)

One of the key features of copyright protection for mobile applications must be to enforce the

desired license by the developer, e.g., that one app may be used on the same device by an

unlimited amount of users, or to limit the usage to a single person maybe instead.

For instance, Google and its LVL [47] limit the usage to a person that belongs to an account,

but apps may be used across devices and even by other users (e.g., relatives), who know the

required credentials for that specific Google account. Of course, as seen earlier, the LVL can

be easily circumvented and should be replaced by more secure solutions as explained next.

11.4.1 Identification to enforce target license

The identification of users, digital content or devices is an interesting approach and other

researchers analyzed this already (cf. [234], [235] and [225]). According to an article [public

online sources as quoted by [301]], Google is also working on providing developers functions

to identify users based on voice or behavior. Ultimately, Google’s LVL uses several user- and

device attributes to validate the license status, too (cf. [62] / 11.4.8).

Besides the usage of a single piece of information, it is recommended to obtain further details

and preferably, information that cannot be faked that easily anymore. In a related research work

[302], we approached the details of identifying users and devices without any limitations to

Proposed solutions

132

available rights or accessible APIs, rated the gained information in different criteria, and created

a framework for demonstration and evaluation purposes. Moreover, [251] [254] [252] describe

methods for identifying devices using various sensors.

Based on the results by [302, pp. 20-57] [251] [254] [252], the information sources that fulfill

our minimal goals of being available on any Android device and that do not require root access,

need to be examined. This is because root access is not available to the usual customers, while

we target solutions for a broad range of (existing) devices, including smartphones and tablets,

in general.

In addition, developers need to try to limit the used permissions for the copyright protection to

those ones that are gathered for the app anyway, which may also be preferably the most common

permissions. For instance, the top-5 permissions that can be used typically were discovered in

a report by the PEW Research Center [[303] as quoted in [304, p. 22]]. Their research report

is based on 1,041,336 apps analyzed from June to September 2014 and their results of the most

commonly used Android permissions are as follows (while indicating the actual usage in

brackets (x of 1,041,336 apps)):

 Full network access (83%)

 View network connection (69%)

 Test access to protected storage (54%)

 Modify or delete the contents of your USB storage (54%)

 Read phone status and identity (35%)

Any additionally used permissions increase the risk that users dislike using the app or even

uninstalling an app, when they are concerned about the usage of their information. In fact, PEW

Research Center [304, p. 12] discovered that 60% of their analyzed app-downloaders did not

install an app after noticing a larger requirement of personal information, while for similar

reasons, 43% even decided to uninstall it afterwards again.

In addition, we require information resources that deliver the same and unique information over

a long period of time (e.g., even present after a factory reset), and preferably in a short amount

of time to allow a quick license response. In [302, p. 55ff] several identifiers mentioned below

are already classified by their uniqueness, persistence, availability, required time and required

permissions. Nevertheless, the ratings were reviewed and redefined by the author of this work

for most sources now.

Besides keeping these considerations in mind, there is another requirement for information

sources that these sources preferably need to be accessible through the Android NDK. This is

because our solution approach should already use native code as outlined in 11.1.2.

Nevertheless, due to permission restrictions or complicated native code constructs (no

APIs/own low-level implementation), a combination of native and Java code through JNI might

be an additional option for executing Java calls in a safe manner as described in 10.3.3.

Furthermore, from a security point of view, methods that are called and return a single string

(e.g., a serial number) should be the 2nd choice, since it is much easier to identify and fake these

calls than a more complex computation (e.g., some sort of “sensor fingerprinting” [251]) deeply

hidden and obfuscated in the (native) code. Of course, an additional prerequisite is that it can

offer a good recognition rate, because nobody wants a customer to be branded as a software

pirate. Therefore, we require any method to have identification rates of 99% or more.

Proposed solutions

133

Summarizing the requirements above, information sources are needed that fulfill the following

strong and preferable requirements as shown in Table 4.

Must requirements Further (preferable) prerequisites

 (A) no root permission needed

 (B) available on typical Android

devices like smartphones and tablets

 (C) require typical, most used

permissions (see above) only, or

none

 (D) unique and persistent

information over a long period of

time (even available after a factory

reset)

 (E) quick collection (within seconds)

 (F) high identification rate (>= 99%)

 (G) can be gathered using the

Android NDK

 (H) more complex method (> 10

loc112) e.g. calculation with several

inputs that produce a lot of assembly

code (= complicated to understand

by the attacker)

Table 4 - Requirements for the copyright identification mechanisms

The aforementioned criteria are transferred into a table in the schema of Table 5 and presented

below in detail with each sensor or information source (see Table 6 and all of the following

ones) as analyzed by the author based on mentioned sources or examinations.

Information Source Description of the sensor/information source

1) explanation for chosen value regarding B

2) * or just a comment

 = requirement fulfilled ; = requirement not fulfilled

A * B 1) C 2)

D E F Here required Android SDK permissions are mentioned

(may not be required for NDK approach; otherwise

mentioned)

G H Identifies

User or

Device

Details regarding Android NDK approach

Table 5 - Default table with descriptions

Rating of sensors for their usage as information sources

SIM The SIM card offers lots of unique information like the ICCID

for identifying a SIM card, IMSI for identifying the user

against the network, and the ADN with phone numbers

including the owner’s [302, p. 23f].

1) Typically Smartphone only.

A B 1) C

D E F android.permission.READ_PHONE_STATE [302, p. 23f]

G H U There is no NDK method to obtain these information other

than using JNI.

Table 6- Identification by SIM (generally based on [302, pp. 20-57])

112 Lines of code

Proposed solutions

134

Wireless Networks

Hardware

Up to the most recent Android versions it is possible to obtain

unique hardware identifiers such as MAC addresses [302, p.

26f]. Due to Google’s move to protect each user’s privacy this

information may not be available on future versions

anymore113 [305].

A B C *

D E F (*not valid for bluetooth) android.permission.BLUETOOTH

android.permission.BLUETOOTH_ADMIN [302, p. 26f]

G H D Obtain wireless MAC adddress by reading possible (without

permissions), e.g. /sys/class/net/wlan0/address

Table 7 - Identification by Wireless Network Hardware IDs (generally based on [302, pp. 20-57])

Wireless Networks’

SSIDs

Beside aforementioned information, wireless networks

surrounding the device may be used for identification

purposes, too. A typical list of configured networks is

available without special permissions by using a dynamic

broadcast receiver [106] [302, p. 20].

1) There is the possibility of new networks and any existing

ones could be removed by the user.

A B C

D 1) E F 1) none

G H U There is no NDK method to obtain this information other than

using JNI.

Table 8 - Identification based on Wireless Networks (generally based on [302, pp. 20-57])

MMC IDs Besides using the files for identification (see below), unique

IDs from memory cards are available [302, p. 28f]. Most

devices do not support physical SD cards anymore, while still

using MMCs.

A B C

D E F none

G H D It is possible to obtain a unique114 id by reading the files

(without permission) “/sys/block/mmcblk#/device/cid […] [#

= id ; * = wildcard] /sys/class/mmc_host/mmc#/mmc#:*/cid”

[302, p. 28f]
Table 9 - Identication based on files and SDcard IDs (generally based on [302, pp. 20-57])

Files By looking for files that exist for a long period of time

identification is possible as well [302, p. 28f] and the locally

stored files are unique to a device, while certain changes are

possible. (*device reset. Files may not get copied again.)

A B C

D * E F android.permission.READ_EXTERNAL_STORAGE

G H D Files are accessible from the NDK and can be analyzed, e.g.

by taking the oldest ones and store their names or hash values
Table 10 - Identication based on files and SDcard IDs (generally based on [302, pp. 20-57])

113 Tests reading the raw files like /sys/class/net/eth0/address succeeded on 6.0.1 without root rights (bug?)
114 Verified using Nexus 7 and 4. Nexus 4 with factory reset and different Android versions. Same IDs.

Proposed solutions

135

Accounts Android offers a list of used accounts on a device that may be

used to identify a user. It’s not a strong requirement [302, p.

24f], but it’s fair to assume that most users have one.

A B C

D E F android.permission.GET_ACCOUNT [302, p. 24f]

android.permission.AUTHENTICATE_ACCOUNTS [302, p.

24f]

G H U It is not possible to access the required database file

“accounts.db”115 in /data/system/users/0 without system

rights. Therefore the only way to receive this information is

using JNI.
Table 11- Identification based on Accounts (generally based on [302, pp. 20-57])

Contacts The contacts of each user are unique information to identify a

user [302, p. 29ff]. Changes are rare(*), but new ones can be

added. Usually they are being synced to other devices by

Google, which sometimes takes a while.

A B C

D * E F android.permission.READ_CONTACTS [302, p. 29ff]

G H U There is no NDK method to obtain this information other than

using JNI.

Table 12 - Identification based on Contact information (generally based on [302, pp. 20-57])

Calling Lists The calling lists of each user offer unique information to

identify a user [302, p. 29ff] until the next device reset.

Furthermore it is not available on tablets.

1) Smartphone only.

2) Upon device reset all information is gone.

A B 1) C

D 2) E F android.permission.READ_CALL_LOG [302, p. 29ff]

G H U There is no NDK method to obtain this information other than

using JNI.

Table 13 - Identifcation based on Calling Lists (generally based on [302, pp. 20-57])

Location The positions of a user measured for a longer period of time

may identify a user. For instance, his home or place of work.

Android offers different option to acquire the position, e.g.,

via GSM network, WiFi or GPS sensor [302, p. 37ff].

Usually this information is persistent and the user does not

change it that often.

1) It requires several days to acquire accurate data.

2) The user may completely change his position during

vacation or due to moving.

A B C

115 see Android’s source code file

/frameworks/base/services/core/java/com/android/server/accounts/AccountManagerServer.java

Proposed solutions

136

D E 1) F 2) android.permission.ACCESS_FINE_LOCATION [306]

G H U There is no NDK method to obtain this information other than

using JNI.

Table 14 - Identification based on locations (of a device) (generally based on [302, pp. 20-57])

Music Similar to other stored files, music files [302, p. 34] and even

their meta data may be used for identification purposes.

1) Nevertheless it needs to be emphasized that cloud services

push back local music usage. Therefore, we conducted a

survey among all majors, and 57 of 86 or 66% (see 15.2.2)

indicated to use local music files still. (*device reset. Files

may not get copied again.)

A B 1) C

D * E F android.permission.READ_EXTERNAL_STORAGE [302, p.

34]

G H U The music files can be accessed and data extracted with usual

NDK calls.

Table 15 - Identification based on music files (generally based on [302, pp. 20-57])

Installed Packages In theory, there are millions of apps available that allow fine

fingerprinting. In fact, many users rather have the most

common apps installed. This limits the identification options

here [302, p. 31ff]. Instead, date stamps (creation date, etc.)

allow the desired fingerprinting. (*device reset. Date stamps

will change or apps are not installed anymore.)

A B C

D * E F No special permissions required [302, p. 31ff], even /data/app

is private

G H D By using the output of the tool “pm list packages -f”, installed

apps may be identified, while using “stat” can reveal date

stamps for fine fingerprinting.
Table 16 - Identification based on installed applications (generally based on [302, pp. 20-57])

Magneto-/Accelerometer For measuring a device’s orientation, the accelerometer and

magnetometer are most often used. That way, the typical

positions throughout the day can be obtained and ultimately

used to identify a device or user [302, p. 39f].

1) It needs to be analyzed for a few days to identify

reoccurring patterns.

2) Other users may have similar habits and users can have a

busy life resulting in issues recognizing patterns to identify a

specific person.

A B C

D E 1) F 2) No special permissions required [302, p. 39f].

G H U The accelero-/magneto meter is accessible within the NDK

(cf. [307]).
Table 17 - Identification based on device orientation using Magnetometer and Accelerometer

(generally based on [302, pp. 20-57])

Proposed solutions

137

IMEI The IMEI number is a unique source of information that is

available on smartphones only. Unfortunately, it has the

disadvantage that it can be modified (*) by the user and there

might be more than one IMEI number depending on the

available SIM card slots [302, p. 42f].

1) Smartphones only.

A B 1) C

D * E F android.permission.READ_PHONE_STATE [302, p. 42f].

G H U There is no NDK method other than JNI to acquire the IMEI.

Table 18 - Identification based on IMEI (generally based on [302, pp. 20-57])

Serial number Even devices may not offer an IMEI number (e.g. tablets), but

they at least provide a serial number [302, p. 44].

A B C

D E F It can be fetched without special permissions by using

reflections from the system properties, since it is a hidden API

[302, p. 44] [308].

G H D The information may be fetched from the output of a getprop

command (system properties ro.serialno) [309].
Table 19 - Identification based on device serial number (generally based on [302, pp. 20-57])

Camera / Pixel errors Pixel errors arising in camera pictures are very unique

identification factors, but they also appear too rarely. They

may be discovered in existing or newly taken pictures [310]

[302, p. 45ff].

A B C *

D E F android.permission.CAMERA [302, p. 45ff]

G * H D * Existing images may be processed, while accessing the

camera is possible using libcamera2ndk [311].

Table 20 - Identification based on specific pixel errors (generally based on [302, pp. 20-57])

Camera / Dark Frames Dark frames based on dark current (also called “fixed pattern

noise” [255]) may be used for identification purposes and

provide unique patterns. A huge disadvantage is that the

photos must be taken in darkness [255] [302, p. 47ff] [312].

A B C

D E * F android.permission.CAMERA [302, p. 47ff]

G * H D * Since it can be assumed that no images are available to fulfil

the above condition, the camera needs to be used by

libcamera2ndk [311], while using the light sensor to detect

darkness [302, p. 47ff].
Table 21 - Identiication based on Dark Frames (generally based on [302, pp. 20-57])

Proposed solutions

138

Camera / PNU [254] [256] investigated the so called pixel nonuniformity

(PNU) and photo-response non-uniformity (PRNU) noise in

camera sensors that has its origin in “different sensitivity of

pixels to light […] [due to] imperfections” [254]. It can be

extracted from existing images and under daylight conditions

that had an identification rate of 90.8% in tests by [256].

A B C *

D E F android.permission.CAMERA

G * H D *The method may use existing images or access the camera

via libcamera2ndk [311].

Table 22 - Identification based on PNU [254]

ANDROID_ID This ID number is a randomly generated 64-bit number called

“Android_ID” [175]. Unfortunately newer Android versions

generate such an ID per device-user, but also make this

method less attractive/more complicated [302, p. 50f].

* Device reset triggers a new number generation.

A B C

D * E F none [302, p. 50f]

G H D There is no NDK method to obtain the Android_ID and JNI

must be used.

Table 23 - Identification based on the Android ID (generally based on [302, pp. 20-57])

GSF ID The GSF ID, Google Service Framework ID, is uniquely

created upon first usage of the Google Service Framework.

The ID remains the same as long as there is no factory-reset

initiated or the data reset by the framework (*) [302, p. 51].

A B C

D * E F none [302, p. 51]

G H D There is no NDK method to obtain the GSF ID and JNI must

be used.

Table 24 - Identification based on the GSF ID (generally based on [302, pp. 20-57])

Microphone (env.) The microphone may be used to identify the environment

surrounding the device or in other words, the user’s typical

environment. Storing all sound events may produce too much

data, but storing sound levels every few hours may allow

gathering unique ident.-data (e.g., computer fans) [302, p.

51ff].

1) Environment sounds may change often.

2) The collection of reoccurring patterns takes several days.

3) Background noises may disturb results.

A B C

D 1) E 2) F 3) android.permission.RECORD_AUDIO [302, p. 51ff]

Proposed solutions

139

G H U It is possible to record audio using OpenSL as supported by

the NDK [313].

Table 25 - Identification based on the device's environment (generally based on [302, pp. 20-57])

Microphone/Speaker As outlined in [251] another option for identifying unique

device patterns is the usage of the speaker and microphone.

Nevertheless they mentioned it requires a quiet environment

in addition to being dependent on the used surface. *High

identification rate of 95%.

1) It is required to wait for quite audio conditions.

A B C

D E 1) F * android.permission.RECORD_AUDIO [251]

android.permission.MODIFY_AUDIO_SETTINGS [251]

G H D It is possible to record audio using OpenSL as supported by

the NDK [313].

Table 26 - Identification based on device specific properties of speaker and microphone [251]

User’s Fingerprint Modern devices may provide a fingerprinting sensor that can

be used in Android 6.0+ for user authentication [314].

A B C

D E F android.permission.USE_FINGERPRINT [314]

G H U There is no NDK method to obtain the fingerprint and JNI

must be used.

Table 27 - Identification based on the user's fingerprint [314]

User’s Face While using the face to unlock a phone is a common feature

on Android 4.0+ [315], we propose to use a movie asking the

user to guide the camera, e.g., from his right ear to his nose to

take additional biometrical data from many frames for ident.-

purposes that are not that easily faked like a single picture.

A B C

D E F android.permission.CAMERA

G H U There is not any NDK method to obtain that live video data

and JNI must be used to record the video(s).

Table 28 - Identification based on the user's face

Accelerometer

(Vibration)

In [252], Sanorita Dey et al. propose to use a device’s

vibration in combination with the accelerometer for

identification purposes. While the recognition rate is very

high, letting a device vibrate for 30 seconds or more does not

seem applicable for most use cases.

A B C

D E F none

Proposed solutions

140

G H D The accelero-/magneto meter is accessible within the NDK

(cf. [307]).

Table 29 - Identification based on the vibration measured using the accelerometer [252]

Summary of the rating of sensors for their usage as information sources

The following table shows an overview on the available information sources rated to our

defined criteria as outlined earlier in more detail.

Source A116 B117 C118 D119 E120 F121 G122 H123 De/Us124

SIM Us

Wi.Ne.’s HW De

WN’s SSID Us

MMC IDs De

Files De

Accounts Us

Contacts Us

Calling Lists Us

Location Us

Music Us

Ins. Packages De

Magn./Accel. Us

IMEI Us

Serialnumber De

Cam.PixelErr. De

Cam. Dark.F. De

Cam. PNU De

Android ID De

GSF ID De

Mic. (env.) Us

Mic./Speak. De

Fingerprint Us

Face Us

Acc. (Vibra.) De
Table 30 - Overview of information sources rated according to our criteria as outlined in Table 4

(based on aforementioned sources)

While options A-F are strong requirements, option G is required for our proposed solution

approach (cf. native code). Nevertheless, developers may decide to use a certain source anyway,

even though using the Java code version (insecure) and the JNI approach (more secure) are the

only ones available. It has to be stated that only native code offers the best protection as outlined

116 No root permission needed
117 Available on typical Android devices
118 Requires typical, most used permissions
119 Unique and persistent (cf. survives factory reset)
120 Quickly collectable (seconds)
121 High identification rate (>=99%)
122 Android NDK option
123 More complex method (cf. obfuscation by amount of code)
124 Information source may be used for recognizing devices (De) or Users (Us)

Proposed solutions

141

earlier. Furthermore, option H (cf. complex method) may provide additional security due to the

complicated fetching of the information that once again increases the assembly code.

In addition, it needs to be noted that most developers have issues with pure assembly sources

due to missing references and pure moving of values in memory, which is difficult to understand

in full detail. In addition, it needs to be highlighted that a majority of technical major students

is likely not having the required ARM assembly skills (see 10.3.5). If not them, then who else

should have these skills? Of course, there are decompilers that produce C source code (see

10.3.1), but native code can be much better obfuscated than Java source code (see 10.3.3,

11.5.3) and the resulting decompiled code might not be helpful.

Applying all these filters (A-G, H optional) to the aforementioned sources, a developer can use

the following options for device- and user-identification and for the proposed native solution

approach in general.

Source A B C D E F G H De/Us

Wi.Ne.’s HW De

MMC IDs De

Serial

number
 De

Cam. Pixel

Err.125
 De

Table 31 - Remaining identification sources providing the best security benefit (based on aforementioned sources)

A visible issue becomes the user identification that depends on information that is non-

accessible by the Android NDK (cf. proposal to Google in 11.2.1) or identification methods

that are too weak and do not fulfill our high identification rate criteria.

Furthermore, several sources - having less preferred recognition rates - may be combined to

achieve a recognition based on probability, but this implies the risk of false identifications.

Therefore, it is recommended to rely on the endorsed sources instead.

If user identification is mandatory for a target app license, there is no other option than picking

one of the less securable methods on Table 30, while using JNI in native code instead of the

actual Java version for at least improved security. It needs to once again be strongly mentioned

that developers can choose different sources from Table 30, but this may decrease the security

benefits since these methods cannot be hidden as well as the ones in Table 31.

Based on the results of Table 31, two of these methods were selected for the actual

implementation in the 3rd evaluation app (see 12.2.3 and its implementation in 15.1.19);

however it is up to the developers to choose the amount of implemented and desired methods

themselves with regard to the chosen license model (moreover the customization aspect needs

to be honored).

In theory, each additional used method can increase the security thinking about the fact that an

attacker needs more time to understand it. Ultimately, it highly depends on the implementation

and developer skills. In addition, if possible, different recognitions and protection methods

should be separated from each other. For instance, instead of collecting the results of all sources

to make a decision, the implementations could be separated from each other in different

modules of an app and act independently, thus making it difficult for any attacker to find all of

125 Unfortunately pixel errors are unlikely, but if they exist it is a 100% identification factor

Proposed solutions

142

them. This requirement counteracts common software engineering guidelines to sort everything

well, but is highly recommended to archive more protection. Methods confusing a developer

will certainly confuse attackers, while developers can use comments in the source code to help

them keeping the overview.

11.4.2 Requesting and storing of information in a more secure manner

While the identification attributes of Table 31 may be obtained in a more secure manner by

using the Android NDK (C/C++ sources), the questions remains where to store this critical

information, since most local storage options are considered unsafe:

For example, the external storage126 is accessible by any app holding the required Android

permission. However, the private app space127 is protected (cf. access rights for app only) and

may be accessed only in case the phone is rooted by the user. While rooting causes several

issues in general (as outlined in 10.1.2), external sources may provide additional security as

Google recommended [316] years ago, too. Unfortunately, using a server - as proposed by

Google - would limit the usage of an app by the user (cf. areas without internet connection /

flights are not covered). Here, an interesting alternative can be the usage of SEs to fill the gap

at least partly128.

Usage of a SE

By using a SE the information can still be stored locally and permanently attached, but

inaccessible to a rooted phone and its user at first view. It would require the reengineering of

the application to obtain the access code for the SE and ultimately its stored data besides

reengineering the used protocol (we implemented our own file storage and protocol in [197]).

Depending on the Android version, the actual implementation and enabled SEAndroid the

access code may be hidden in (insecure) Java code or (more secure) native code (see 11.4.7 for

details on that issue).

Of course, an additional, remaining issue is that all information exchanged and used on Android

may be intercepted. Therefore, we looked for further protection measures in terms of Android.

Other researchers in the desktop world already focused on that issue, or related ones, e.g.,

memdlopen() [317]. This is described by its author as a proof-of-concept for dynamically

loading and executing code from memory on x86_64 systems. The reason for its

implementation is that the usual system function dlopen() requires an input file129 that has to be

considered unsafe (file easily accessible by an attacker).

In addition, the combination with an approach that uses a SE, as outlined above, allows the

setup of additional defense layers, while certain issues, e.g., signing small amounts of data, may

be even highly secured, since keys used for signing are not required to leave their secured space

on the SE ever. 11.4.7 outlines an idea for accessing servers more securely in more detail.

126 /sdcard/ (on Android)
127 e.g. /data/data/com.example.test
128 not all data/logic can be stored on the SE due to its performance and general limitations (e.g., other databases,

etc.). It can act more like a mirror of it.
129 cf. man dlopen

Proposed solutions

143

As already outlined in the related work section (see 9.1), even Google is still internally

investigating the options in their project with the codename “Vault” [211]; besides, there is the

fact that many devices use SEs, but those are so far inaccessible to default app developers to

install on their own applets (see 8.5.1).

11.4.3 Dynamic code loading

In a seminar paper by Mr. Hugenroth et al. [226] and Mr. Schulz [266, p. 14], ideas for dynamic

code manipulation were previously discussed. In this section, we now propose and verify some

of their approaches in a modified way for Android. If not mentioned otherwise, the presented

possibilities are usable under the ART VM.

Dynamic Java Code loading

Originally introduced to Android by Google and hidden in its source code (see Androids Open

Source project) as outlined in [64, p. 78f] as well as [266], and then reanalyzed for modern

Android versions in [100, p. 29ff] (based on [266]), it was possible on former Android versions

to load executable DEX Bytecode provided dynamically. Either from any source in a byte array

by using reflections for these private methods, or by calling them from native code using system

call dlopen() and libdvm.so as the target library. An issue on modern Android versions using

ART VM is that these calls were removed from Android, since the ART VM cannot execute

Dalvik Bytecode anymore [100, p. 31].

The remaining public function executing Dalvik Bytecode dynamically is only possible by

providing a DEX file stored on the file system (very insecure) that gets compiled by Android

on-the-fly, while being stored directly again [100, p. 30ff]. An example taken from [100, p.

30ff] is shown in Figure 82 in the Appendix (see 15.1.9). Here, the DexClassLoader is

initialized with two files – one representing the actual DEX file and the second one the actual

file that gets overwritten with the compiled version in OAT format. The dynamically loaded

class as shown in Figure 81 in the Appendix (see 15.1.9) provides a simple multiplication

method that can now be invoked. The whole process comes with a decrease in performance due

to the compilation procedures required by ART VM. The required time depends on the actual

size of the DEX file [100, p. 31].

Since all input and output files are in control of the app developer, the method may already be

considered more secure, even though the temporary existence of these files provides an

unwanted attack surface. Former Android versions apparently [266, p. 11] even created an

optimized version in the known system folder. However, this is inaccessible due to missing

permissions providing an additional threat on these versions. This was likely the reason for

using and calling the removed functions in former security solutions that required a byte array

of DEX code only (= memory-only solution; see related work section, e.g., 9.2.4).

If an attacker gets access to the dynamically created files, the security benefit decreases

completely and the Dalvik Bytecode may be decompiled to easily-understandable smali or even

Java Code, as outline in 10.1.4.

Proposed solutions

144

Dynamic loading of Native Code (C/C++) from a file

Similar to the presented method of dynamic code loading in Java code, the same also exists for

native code by using systemcall dlopen(). The example taken from [100, p. 35ff] in the

Appendix (see 15.1.10) shows the possibility to load a native shared library. It requires as a

parameter the native code that will be loaded by dlopen(). Using systemcall dlsym(), the actual

symbol name (function name) needs to be found, before it can be invoked. A possible input file

is the (compiled version) of the code shown in Figure 84.

Dynamic loading of Native Code (C/C++) from memory

Fortunately, the old and better method for loading code from memory still exists with the

limitation that it might only be used momentarily for smaller pieces of native code. Based on

the initial idea by [317] [266], we evaluated the possibilities on Android to create a similar

function to load native assembly code on-the-fly [100, p. 41ff].

For recognizing how this is done, some additional Linux knowledge is required regarding the

memory management of processes on Linux. As explained in [318] Linux (used by Android),

maps different parts of an app to various addresses in memory. This information may be

obtained in detail by viewing /proc/$PID/maps that reveals a table, as shown for demonstration

purposes, in Figure 60. The first column represents the memory region, where that specified

section (see column pathname) is stored. The perms (permission) column describes the access

rights of that region. Besides known possibilities such as read/write/execute, a region may be

shared with other processes (indicated by s) or defined as private (p). Illegal access results in a

segmentation fault error. Systemcall mprotect() may be used to modify these settings. The third

column represents the file offset, where the mapping started (in case a file was used), otherwise

it remains just 0. The fourth column shows the device number (in case of a file), while the fifth

one represents the inode of that file. The last column shows the actual path in addition to special

names like [heap] or [stack]. Another specialty is a blank field in case of anonymous mapped

regions that are also used in our approach.

Figure 60 - Memory mapping of a e.g. a process [100, p. 43]

In terms of Android processes the own memory mappings of each process may be read and

even modified by the process itself, while reading other processes’ memory mappings would

require root rights instead [100, p. 42].

The actual code execution is initiated by storing the machine code in memory first, as explained

in [100, p. 43ff]. This may be done by using systemcall mmap() as recommended by [319],

since it offers some advantages against the famous systemcall malloc() that would require a

developer to take care of additional issues, e.g., that “the allocation is aligned at a page boundary

Proposed solutions

145

[to avoid] […] unwanted effects […] [with systemcall mprotect()] […] enabling/disabling more

than actually required” [319].

By default, as mentioned in [100, p. 43], ELF binaries, or shared object files, may be used, and

loaded either statically or dynamically, while the linker takes care of the linking of executable

data to the main binary. While this approach would be the preferred one in terms of this work,

it is not trivial to realize such a functionality and would require modifying existing linker

capabilities as previously done in [317] for x86_64 systems in his proof-of-concept.

Therefore, it was decided to look for a different approach that still fulfills our requirements of

loading code to enable developers to execute smaller security measures strongly and

dynamically hidden, even if it resulted in limitations, since complex function calls may not be

realized that way. For instance, functions or library calls cannot be performed without adding

these additional (linker) capabilities [100, p. 46].

Inspired by ideas from [316] [226] [266] the security ideas provided by dynamic native code

here may be endless, and interesting options, which are not limited to memory-only code, might

be, e.g.,

 the modification (correction) of statically stored wrong encryption keys within the code

to confuse attackers analyzing the app statically, while using the correct keys upon

runtime

 decryption of previously encrypted data with a dynamically loaded algorithms from an

external source (e.g., SE)

 enabling or disabling code sections (e.g., functions that quit the app if not disabled

during runtime) by using so-called eggs for easy identification and modification, e.g. if

(“treeCP” == “treeCP”) then exit() ; (see 11.4.4 for an example implementation)

 provide a copy protection with interesting actions in case of a license failure, e.g., crash

the app by writing to protected areas resulting in a segmentation fault and making it

much harder to understand stack traces (see an example in Figure 62) [100, p. 50]. In

addition, native code obfuscation may be used to remove any useful information in

function names. Since the code is loaded dynamically it will not be possible to track the

code without dynamic analysis tools (e.g., debugging using gdb and pure assembly).

Figure 61 - Example code to trigger a native crash (SIGSEGV) [100, p. 50]

Figure 84 in the Appendix (see 15.1.11) shows a small portion of C source code to be used as

dynamically loaded code as described in [100, p. 44ff]. This may be based originally on [319],

too. By using one of the available cross-compilers, e.g., GCC’s one, an object file can be

generated using the command “arm-none-eabi-gccc –O3 –c source.c –o output.o”. Next the

tool objdump can be used to disassemble the binary code to human-readable mnemonics by

executing “arm-none-eabi-objdump –D output.o”, resulting in a representation as shown in

Figure 85 in the Appendix (see 15.1.11). Here, “byte sequence 0xe0000091 represents the raw

machine code for the mnemonic equivalent of a multiplication (r0 = r1 * r0) and the following

sequence is responsible for exiting the function and returning the value. Since object files are

normally Little Endian, the bytes written to memory have to be reordered (0xe0000091 turns to

0x910000e0) before execution.” [100, p. 44].

Proposed solutions

146

Figure 62 - Resulting native stack traces after execution of code in Figure 61 [100, p. 50]

The next step [100, p. 44f] is to allocate the memory for that byte sequence using systemcall

mmap() while setting the required flags for future execution as shown in Figure 86 in the

Appendix (see 15.1.11). Since mmap() is not using a file here, the MAP_ANONYMOUS flag

needs to be used. For security reasons, the authors of [100, p. 45] [319] recommend the common

idea, known from other topics, to use only the required permissions for each step, e.g., to instead

permit execution right ahead of the actual execution. This may be realized using the systemcall

mprotect().

In addition, the previously created machine code bytes need to be copied to that special memory

area now (Appendix (see 15.1.11) / Figure 87 ; hardcoded for demonstration purposes only)

and cast to a function pointer using typedef as seen in Figure 88. The code needs to be

surrounded by the typical JNI structures to ultimately also be used on Android [100, p. 45f].

11.4.4 Process memory modification

As outlined above, a possible idea for a copy protection might be to place a great deal of code

into an app that quits or renders an app inoperable, while deactivating these calls upon

successful license verification. Based on [100, p. 51f] a sample application with its related

native code function as shown in the Appendix (see 15.1.12) in Table 58 and Table 59 was

created. This idea was inspired by similar ideas from [226].

The code in Table 58 shows the comparison of two byte arrays that would be executed by

default forcing the application to quit. Nevertheless assuming that the native code in Table 59

was executed previously, which also checks for a valid license in a real-world scenario, the byte

arrays get modified dynamically in memory, which again disables the quitting.

Proposed solutions

147

For further protection these sort of methods may be used more often so that an attacker cannot

remove the protection by eliminating just one of these conditions. Furthermore, many other

eggs (cf. “NILS2K”130) may be used and even acquired from an external source, such as a SE

or generated dynamically upon runtime. For example, a SE may have fetched the required eggs

in advance that need modifications for a specific app version, while providing these information

to the app (native code) dynamically for even increased security.

A known issue comes with that fact that Android must have loaded the structures to memory to

be available and modifiable by the native code. Therefore, the declaration of variables must

have taken place before the native code function gets called. For better hiding and usage in

other activities that are not loaded at that moment, a singleton pattern can be used as shown in

the Appendix (see 15.1.12) in Table 57 while initializing it in the OnCreate() or onStart()

method of the MainActivity by “Global.getInstance();” and before the execution of the native

code. Basically, it provides Android global-variable functionalities.

11.4.5 Indirect method triggering

Figure 63 - Illustration of Indirect Method Triggering (example using files)

While any developer usually learns to create applications in a good structure, one of the best

obfuscation methods is to ignore some of these guidelines adding, e.g., non-sense code or

apparently dead-code that gets called elsewhere.

Indirect communication using files

An interesting combination comes here by using Java and C Native Code that may be called

directly or indirectly from each other. While a native copy protection verification method could

issue the call to quit the application, it may instead modify some settings elsewhere instead that

have no immanent impact (e.g., creating a file; cf. Figure 63), and cannot be traced right away

by an attacker for that reason, since no one assumes a relation here. Nevertheless, either a

service, or just a function in Java, may watch for such modifications like a created file on the

SD-card to either initiate quitting now, or to render the application useless by modifying

important app settings that have a negative impact on the user experience131. For example, the

German company and game-creator BlueByte used such a protection years ago in their famous

computer game “The Settlers”. Here, gold mines produced pigs instead of delivering gold

nuggets, which prevented gamers (here software pirates) from enjoying the game after already

playing it for a while. Moreover, a sequence of these options may be used, e.g., in case of a

130 Notice the representation as byte array, since Strings cannot be found in memory that easily [100, p.52]
131 Notice: Here the app is pirated and in our work we assume that pirates can face issues even it may result in

negative feedback or comments on gaming websites or forums etc.

Proposed solutions

148

negative license reply then a file can be created. Another function detecting that file increases

a value, while a different function creates another file elsewhere. This triggers another function

at some point that activates different events like app instability or malfunction (e.g., changing

game settings that bother the user (here: pirate) such as reducing a players score in a gaming

app).

Indirect communication using environment variables

In a similar way the environment variables may be used. They are visible to the actual process

and its childs only, and allow interesting options for activating protection measurements in any

class and any later program point making it extremely difficult to trace its origin. For example,

a native library may set an unsuspicious variable loadTime with value 1 by using the common

method setenv(), while it can be read from the actual (Java) app to trigger protection measures,

like increasing loading times drastically, modifying resource paths leading to app crashes etc.

– there are lots of possibilities and depend on the actual app and the developer’s preference to

handle such a possible piracy case.

Indirect communication using dynamically loaded code

Moreover, dynamically loaded native code from memory introduced previously may be used

to modify a variable almost untraceable, and triggering protection mechanisms upon license

failure such as crashing the app with that dynamically loaded code (see 11.4.3 for details).

Indirect communication using broadcast receivers / settings

In addition, enabling and disabling hardware (or its settings) within a certain time frame (e.g.,

GPS) using resulting broadcast messages can be used to exchange information between

different program parts to trigger copy protection actions as explained previously.

Indirect app disabling by using killProcess

One of the method calls that also falls under this category is the function killProcess() used to

finish the current, or another process, in theory. While one may assume that it instantly kills the

process with its displayed activity, it needs to be stated that this is not the case. Instead, by

killing the process id of the app, it is only partly shutdown, and that results in strange behaviors.

Attackers are not able to identify the actual reason for this erroneous app behavior that makes

the app pretty much unusable. Every action results in a crash referring to the NullPointer

exception, as shown in Figure 64. There is no indication anywhere that in our program line 145

of startActivityGame.java (example) triggered the whole issue with the execution of

killProcess(). Furthermore, it is recommend to execute the kill function in native code, since it

is even harder for attackers to identify it and link it to the fatal exception below.

Proposed solutions

149

Figure 64 - Crash log after the process was killed using android.os.Process.killProcess(android.os.Process.myPid());

Impact on the attacker

Using the proposed indirect methods, a static analysis may not reveal the issues for instability

right away, and the attacker would be required to identify the long-sequence-tail until finally

identifying the actual reasons by using dynamic analyses. Ultimately, it is like playing hide and

seek with an attacker. The more complicated and confusing the queue of methods is, the more

difficult it becomes for an attacker to reveal and circumvent it; and then, he may not discover

the initial reason at all – creating a file is as innocent as turning GPS on and off. Of course, the

impact of the methods on other apps must be considered. Using the GPS status for

communication, it is recommend to use that resource shortly only to avoid disadvantages for

other apps running in background.

11.4.6 Code fusing / fusing options

While assuming that the native code (optionally using an SE for storing data or using encrypted

files) takes care of the licensing and the actual app is implemented in Java mainly, a suggested

option is to combine (fuse) these different worlds together by converting some of the Java code

to C source code and making the native library a mandatory part of the application. In that case,

the native code is not only used for license verification, but in addition, a separation from the

less protected Java code is not easily possible anymore.

As presented in 11.4.3, 11.4.4, and 11.4.5 in detail the following options belong to this category

as well:

 Using environment variables to exchange information about the license status between

native code and Java code to take appropriate actions, e.g., set a correct path to

mandatory program files in a valid license state only. Obviously, without the native code

being executed, the Java application will fail to run now.

 In a similar way, files or Broadcast messages may be used to trigger certain actions on

both sides.

 Moreover, the presented option for modifying coded variables dynamically allows

interesting implementations that appear to have no sense to the usual developers (cf.

comparison of equal byte arrays leading to quitting an app)

Proposed solutions

150

These ideas were partly implemented in the 2nd and 3rd evaluation app (see 12.2.2 and 12.2.3

for details), while securely protecting the 3rd application from a separation from the well-

secured native code (see full evaluation in 13.4).

11.4.7 Secure Element and its options for copy protection

Unfortunately, the planned solutions for using a SE for improved copyright protection are not

possible anymore on targeted Android versions using the ART VM (mainly Android Lollipop,

Marshmallow and future ones) in a native code version, which is the desired implementation in

terms of security gain.

The reason is the switching of SEAndroid to an enforcing-mode with the Android L release

[52], which results in access-issues and related crashes of the used libUSB library – a mandatory

library used by our native libaums version (see Appendix 15.2.1 for logging outputs).

Implementing the same ideas in Java code is not an option due to the known security issues

related to easy reengineering while having almost no security benefits in that case. Attackers

may easily acquire access keys and intercept the communication between the app and a SE. The

remaining options for possible solutions using SEs are illustrated below. Even they require

placing the general access key132 in insecure Java code, too.

In the end, it is preferred that global players like Google or device manufacturers enable USB

access for certain applications again to allow the usage of native SE solutions or to open up

available SEs so others can use them.

Therefore, most ideas are now presented in section 11.6 instead. They cannot be currently

realized in a secure manner and are presented as conceptual ideas only.

Remaining option (example)

Nevertheless, there are exceptions, and using an SE for providing unique and temporary access

to a server does not depend on a secure native version of libaums library, since the access code

(here, a signed timestamp by both entities – server and SE) is meant to be used by Java code

anyway, and valid only temporarily, too. Initially, the client app requests a signed timestamp

from the server (cf. server has shared secret with SE) that gets validated by the SE using the

shared secret. It is then signed once more to allow the server the verification. This approach

does not only secure the access to clients owning an SE, but it also allows limiting the reply

time by the client to avoid issues with sharing the access option with non-legitimate clients (cf.

cardsharing issues [292] and solutions [293]). Figure 65 illustrates this approach in a sequence

diagram.

The signature itself can be realized using a timestamp, while appending a secret key - known

by the server and SE only - and hashing that concatenated string, while appending the resulting

hash-value to the original timestamp divided by a delimiter.

132 Libaums is used for file IO access, while the SE requires a special, unique key to reply to any requests first

Proposed solutions

151

App libaums SEServer

signed timestamp request

signed timestamp response

signed signed timestamp

generation
of signed
timestamp

signed signed timestamp

server access with sign. sign.
timestamp

server reply

request signed timestamp from SE via libaums

validate signed timestamp
and sign it again

verification and
request reply (or error)

Figure 65 - Possible implementation of a secured server access requiring a SE on the client side

11.4.8 Native license verification library (nLVL)

Based on the discovered issues by others [320] and own investigations performed in [64] as

outlined in 10.1.5, an idea arose to port the existing LVL to native code, while solving issues

with interceptable and possibly faked services (cf. “Modded Play Store” [49] / 10.1.5) at once,

too.

For the implementation of a proof-of-concept of such a native library, the LVL as well as the

communication between the Android frameworks and services, and ultimately the Google

License servers had to be analyzed (reengineered/intercepted) first, before an implementation

focusing on the main functions was possible. The analysis and implementation was performed

by request in [62].

The fundamentals on the LVL were already presented in 8.3.2, while even further information

on the detailed process using IPC for the communication with the Google services, were

presented in 10.1.5. In an even more detailed analysis (for details see [62, p. 26ff]), the actual

network communication performed by these services was analyzed. It is arranged on Android

by a special network scheduler called “Volley” [321] to prioritize different network requests.

For simplification the nLVL implementation focuses on providing the main functionality only

and does not use it [62].

As mentioned above, and by circumventing Googles local services (cf. 8.3.2 and 10.1.5), issues

with “modded Play Store[s]” [49] may be avoided, and the nLVL library directly now

communicates with Googles’ servers by using CURL133 library as described in great detail in

[62, p. 55ff] and shown as the architectural overview in Figure 66 below.

133 library to allow file transfers - https://curl.haxx.se/libcurl/

Proposed solutions

152

Figure 66 - Overview on the Architectural Design of an application protected by the nLVL [62, p. 55]

Since there was no official support and protocol information by Google available, most

information was obtained by reengineering techniques [62, p. 82], which again underlines the

insecurity (cf. reengineering possibility) of compiled Java code that is widely used across

Google’s frameworks as well.

A downside of this approach is that additional permissions and user data now need to be

requested by the protected app from Android, since our code is not privileged by Google to be

allowed to access this information by default (cf. Google’s services have system privileges).

Moreover, the user needs to confirm that action upon first start once more. For this reason, we

requested that Google considers our solution for official use in the future and invited Google to

join a meeting to discuss possible ideas in June 2016 to avoid these additional requirements

while looking for options on how to provide the solution to a broad range of developers.

For now, the required permissions are (as indicated in [62, p. 92] and they are now partially

minimized in our evaluation efforts):

 android.permission.USE_CREDENTIALS

 android.permission.GET_ACCOUNTS

 android.permission.AUTHENTICATE_ACCOUNTS

 com.google.android.providers.gsf.permission.READ_GSERVICES

However, while the actual information needed to be provided to the native library via JNI [62,

p. 90f], some information may even be replaced by fixed values, and did not seem important

for the actual license verification and reception of the license response (as elaborated in our

evaluation in May 2016, see “fixed” comments in the list below). They are probably used by

Google for statistical purposes only. Some devices do not even provide all these attributes (e.g.,

the market-ID on emulators and loggingID on a Nexus 5 are missing).

According to [62, p. 90f] and the nLVL source codes, this information is as follows, while

Figure 67 shows example logging data taken from one of the tests during the development of

Proposed solutions

153

the evaluation apps. Googles frameworks provide and define this information, while collecting

them from different sources (e.g., SIM operatorname from the SIM card).

 User Auth.-Token134 [unique to user]

 Market-ID [fixed]

 Logging-ID [fixed]

 Device name [fixed]

 User country [fixed]

 User language [fixed]

 Android-ID135 [unique to device]

 Softwareversion136 [fixed]

 Operatorname [fixed]

 Operatorname numeric [fixed]

 SIM Operatorname [fixed]

 SIM Operatorname numeric [fixed]

 Packagename [unique to app]

 App Version Code [unique between app versions]

 Nonce [random figure, e.g.1706304994]

Figure 67 - Example logging data from the nLVL taken from a Nexus 5 device

After acquiring the above information (as originally outlined in [62, p. 58ff]), the properties

are placed in a special format that is base64-encoded. This generated string can be send to

the Google License server for the actual verification of the provided information. Such a

request link may look like the following, shortened example URL call in Table 32 with the

string attached in the request parameter.

https://android.clients.google.com/market/api/ApiRequest?

version=2&request=CtHY3fJKHFF344k8fdGH […]
Table 32 - URL request to the license servers [based on network.c of nLVL]

As described in [62, p. 65ff] and shown in an overview in Figure 68, in reply, the Google

license server returns a zipped licensed information that provides a file “ApiRequest”

containing the license response as shown in Table 33. Here the response code is 0 (=

licensed), the nonce 1706304994 provided by the developer during the request, the package

134 Token with limited validity
135 “64-bit number (as a hex string) […] randomly generated when the user first sets up the device” [175]
136 of Play Store App

Proposed solutions

154

name equals com.appsolution.testnlvl and the version is 2, while that response includes a

timestamp as well as an “app-specific user id” [64, p. 55] in addition to a signature, too.

Figure 68 - Sequence of a license request and its response [62, p. 65]

[…]0|1706304994|com.appsolution.testnlvl|2|ANlOHQO/GvkUimLYxfoEAPdD43fei

x23YQ==|1463473270645Øa/+dAvsn3YqScqnmGcVM […]
Table 33 - Example content of ApiRequest file as supplied by Google License Server

 in reply to Mr. Chen’s example app

In theory (see known issues below) the next step is to verify the provided data and their

signature with the public key as provided by Google in the Developer console of every app. By

default, the public key needs to already be embedded in the app project during the development.

For additional security, the verification step may be outsourced to a server (see 11.4.9) or to a

local secure element (see 11.6.3), before permitting the app access to any server resources, for

example. Based on the response code, appropriate measures have to take place (e.g., kill the

app upon a negative license reply).

Known issues of the nLVL (proof-of-concept implementation)

The currently implemented proof-of-concept of the nLVL as performed by [62], which is

ultimately used in our evaluations as well, still lacks some security issues and the license

response’s signature is not currently verified. Moreover, the used library CURL should be

shipped with built-in certificates and to allow verification of server certificates. At least one of

these features needs to be integrated into a productive version to avoid possible issues with

MITM attacks.

Furthermore, the required parameters (see list above) are acquired via JNI and these methods

have to remain visible (no ProGuard obfuscation) in order to be accessible from the native code.

In theory, attackers are able to modify these functions to provide fake data and use fixed values

in a recompiled app to use it across several devices afterwards. Here, Google is in charge of

providing more secure native APIs to gain this information without using Java. In general,

attackers need to understand the nLVL implementation and its details to circumvent it and many

things are not obvious, e.g., within the Java app the methods to provide aforementioned

Proposed solutions

155

parameters appear to be dead code that is never used. Moreover, our own solutions like indirect

method triggering may be used to exchange these information more securely.

11.4.9 Remote attestation to improve LVL

The “remote attestation” [75, p. 85ff] (based on ideas by [322] and [316]) to verify the LVL

license status on the server side is another option for improving the license verification and

keep access to the servers most assuredly unavailable to pirates.

By default [62] [47], the client app requests a license confirmation from the Google license

servers. This is accomplished by collecting various user and device information (see 11.4.8 for

further details) and requesting the license server to provide a license response. This response

includes the licensing status alongside other data (see 11.4.8 for further details) as well as a

signature. This signature and the provided data can be verified using the public key given to

every app developer in the Developer Console of the Google Play Store.

Instead of verifying the response by Google’s license servers, only locally (it is the usual

implementation and from a security point of view very weak one), the goal is to export the

license reply including its signature to verify it externally with the public key. This approach is

safe against any modifications (cf. attack on LVL by Xposed / 10.1.5 or a modified Google

Play Store from [49]), and any changes will be noticed during the external check to allow

appropriate actions, e.g., denying server access. In terms of the nLVL that data is available for

further processing by default. However, that approach requires small modifications to the

LicenseChecker class (LVL Java version) to obtain the license reply data along with the

signature by the Google servers, since it is not forwarded to the developer by default [62] [75,

p. 85ff].

Based on the publicly available LVL source codes by Google, a PHP Script to verify the

transferred data was created in [75, p. 85ff] and is listed in the Appendix (see 15.1.13). It

requires the public key of an application, which may be obtained from the developer console137,

for a specific app and enables developers to verify the submitted data in a secure manner without

any possibilities of undetected manipulations. It does this by taking the license response (see

Table 34), its signature and verifying it using the public key on the external server [75, p. 86ff].

License response

0|18823373|patrick.lvltest|1|ANlOHQN5Ulh/CIL49nle1l01usO14SSVvQ==|143036338528

4”138

Signature to license response
Tg1SxIlWAePYAI3j9Pi2 […]

137 https://play.google.com/apps/publish/
138 The six values are the actual response code, the nonce, the package name, the “version code of the app”, “an

app-specific user id” and the “timestamp included in the request” [64, p.55]

Proposed solutions

156

Public Key (cf. Google Play developer console ; only Google owns the private key)
MIIBIjANBgkqhkiG9w0BAQE […]

Table 34 – Example for a license response, its signature and a public key [based on [75, p. 85ff]]

11.4.10 Section conclusion

Improving protection in a mostly insecure environment is not an easy task, but as outlined in

the recent sections there are several options that can improve the situation, while very few (e.g.,

SE’s generation of a server access token) techniques can even significantly improve the

situation for some issues.

Furthermore (see 11.4.1) using more information about the user and the device in combination

with copyright protection is reasonable and cannot be faked by others that easily.

The rediscovered methods for dynamic code loading - after Google’s removal - provide possible

solutions to existing research work that can no longer be used anymore, while generally

providing options for hiding code even further. Moreover, the author recommends intensifying

the research on providing a method to load shared libraries from memory again, while our

current approach allows simply implementations without using any external functions only (see

11.4.3).

The ideas we presented, of fusing Java and native code as shown in 11.4.6 and 11.4.5 that are

based on 11.4.4, are of high interest and may be further researched in future research work. We

suggest putting any license verifications methods in native code for gaining at least additional

security (cf. nLVL / 11.4.8). Moreover, app codes may be ported to native code, while using

aforementioned fusing options in addition to prevent the separation.

Ultimately, the usage of different and more secure storage options (e.g., SE) is of interest.

Unfortunately with its recent restrictions (cf. 11.4.7), Google limits the possibilities for secure

solutions here.

11.5 Further copyright protection options by third parties

The aforementioned sections introduced several options that should prevent users from illegally

copying apps, while its protection against static analysis is mainly related to the fact of using

native code, since it is much more difficult to understand than the resulting assembly code of

DEX files. In addition, we proposed dynamic code loading options that are partly invisible to

static analysis tools, e.g., native code obtained from an external source is not visible, while the

surrounding methods to call that code can certainly be revealed.

Instead, the presented methods in this section were discovered by other researchers and can be

used in combination with the proposals outlined previously.

Proposed solutions

157

11.5.1 Preventing static and dynamic analysis

In comparison to the methods introduced in the previous chapter that outlined ideas to increase

the difficulty of reengineering attempts, the following two methods try to totally prevent all of

the reengineering by stopping it right away. The possible options are highly limited and

sometimes are a result of bugs in reengineering tools as in the case of junk bytes.

Junk-Bytes

An option used in the past for preventing the reengineering of DEX files was the use of junk-

bytes. As outlined in [[268] as quoted in [64, p. 68]] the method was based on the fact that

disassembler by using, e.g., linear-sweep139 are not able to identify conditional branches like

“if (true) jump to address xy”, while (see Figure 69) an instruction following the branch (lines

2 and 3) would have been interpreted by the disassembler and the instructions (here lines 4-6)

ignored, and assumed to be the data payload, as shown on the right side of Figure 69.

Figure 69 - Explanation to linear sweep issue [64, p. 68]

Obviously this method cannot be applied to modern Android versions using the ART VM, since

the code gets compiled and dead code removed upon first installation. Also, it is only a matter

of time until the reengineering tools adapt to it, too. Apparently it cannot be used anymore and

bugs are resolved in the Dalvik verifier [233].

Emulator discovery

In [224] techniques used by malware were introduced. Since malware often tries to hide its

actions, their research results are also of interest for copy protections. Similar to malware, we

also want to hide our used methods, too.

For instance, an app may recognize its execution in a simulated environment and instead of

using the default methods for license verification it branches directly into the not-licensed case.

The recognition is possible, since emulators, as explained in [224], are using unrealistic sensor

values or static values for serial numbers. In fact, during the evaluation phase we found out that

recent emulators by Google do not have a defined “ro.serialno” value (see 12.2.3 for details)

nor the wifi0 interface, but eth0 instead. This information may be used to detect such an

emulated environment.

11.5.2 Methods for protecting Java code

Protecting Java code itself is far more difficult than protecting native code, since many default

entry functions (e.g., onCreate(), onStart(), etc.) cannot be obfuscated in any way besides all

139 Linear-sweep means to execute code line by line without observing conditions

Proposed solutions

158

these calls to the Android frameworks. Nevertheless, there are options available that may be

used in addition to our proposals.

Obfuscation

One of the default tools to be used is ProGuard [161] and is shipped with Google’s Android

SDK. Also, the existing commercial solution DexGuard uses lots of obfuscation methods [272]

like arithmetic obfuscation, control flow obfuscation, name obfuscation or resource obfuscation

aside from many others.

Furthermore, manual obfuscation (= renaming of functions/variables, concatenating strings

with several variables, adding nonsense [158] code like calculations in-between etc.) may be

an option in cases where the usual automatic obfuscation cannot be used. For example, native

code requires to know function names (hardcoded) that will be called from native code (cf.

nLVL and required user/device details) and ProGuard needs configuration in a way that

exempts files from obfuscation. For instance, this applies to Amazon’s DRM as well and using

manual obfuscation may have increased the difficulty for reengineering, since the Boolean

variable “drmenabled” in the kiwi class (= main class of Amazon’s DRM) revealed its function

with its name completely and allowed to disable the protection within seconds [241].

Encryption

A typical way to hide information is to encrypt data, while using obfuscation and complex

algorithms to make decryption for third parties that do not know the details, more difficult. For

instance, in [236] researchers used encrypted program code, while dynamically executing it.

Besides the previously mentioned limitation (see 11.4.3 regarding dynamic code loading), that

approach is still possible today. Moreover, the commercial tool DexGuard provides several

encryption methods [272] like class-, string- and WebView encryption.

The “DIVILAR” [162] solution instead is using different opcodes as a reengineering protection.

That approach is not possible with modern Android versions anymore, and it would not get

compiled by Android >5.x (using ART VM) upon installation. It can still be of interest as a

special encryption variation for dynamically loaded code that gets modified on-the-fly (=

decrypted) to load it afterwards (see 11.4.3 for details on dynamic code loading).

Protection against dynamic analysis / attacks

As one of the more advanced tools, DexGuard has to again be mentioned for providing many

methods against reengineering, e.g., certificate checks, emulator detection, debug detection,

root detection, tamper detection, and SSL pinning that allows developers to take actions against

these attacks [272].

Countermeasures against hooking of functions

The hooking of functions is a threat to both Java and native functions. Most developers often

are not aware of that issue, nor is it possible for them to detect a manipulation at runtime (cf.

LVL hack in 10.1.5) without specialized countermeasures.

In [298], several options are mentioned that allow detection and acting on it by:

1) using the Package Manager to look for suspicious applications (e.g.,

de.robv.android.xposed.installer or com.saurik.substrate)

Proposed solutions

159

2) monitoring app’s stack traces for abnormal calls (e.g.,

de.robv.android.xposed.XposedBridge->handleHookedMethod) to detect active

hooking

3) checking the memory mappings /proc/[pid]/maps for libraries by these hooking

frameworks (cf. pathname and values like

/data/data/de.robv.android.xposed.installer/bin/XposedBridge.jar or /data/app-

lib/com.saurik.substrate-1/libsubstrate.so) to detect active hooking as well

In case of a detected hooking, an application can perform several tasks, such as notifying the

developers of such an attack. This can be done by providing the IP address and other

information to take legal actions, since hacking an application is considered a crime in many

countries now (e.g., Germany: §95a UrhG, which describes that it is not permitted to circumvent

a protection [323]). If such a notification is legal in this case needs to be discussed with a data

privacy officer and was not further reviewed, since legal questions are out of scope of this

dissertation.

11.5.3 Methods for protection native Code

Static functions

A heavily missed feature in Java language to hide functions is the “static” directive. This is

available in C to restrict functions to local usage that will not get exported or be available for

linking. An example taken from [62, p. 75f] is shown in the Appendix (see 15.1.14). By using

the tool nm140 on Linux, it is possible to take a look at the exportable functions of a library and

those using static will not be mentioned anymore. In theory, (using outdated “Cydia Substrate”

[152]) and without obfuscation involved, it is possible to recover these hidden functions by

knowing some internal information. This information can be used methods or return values to

locate the address of the target function within a native library that may be used at runtime, and

in combination with the (upon the runtime available) base address of that library to make it

callable again [281].

Strip

The strip command, as explained in [62, p. 77], can be used to remove any debug information

as well as the symbol table from an executable file. This method can also be added to the

compiler flags with parameter “-s” to be used by the Android NDK. An example taken from

[62, p. 77] showing the differences on assembly level can be viewed in the Appendix (see

15.1.15). Due to dynamic loading of libraries, the addresses that any symbols point to, are

specified during runtime anyway while some symbols names will remain in the .dynsym

section.

Pragmas, visibility-attribute and -flag

Hiding symbols GCC 4.x, as explained in [324] and [325], offers two additional options using

either pragma statements to hide several symbols (function names), or by using the visibility

attribute as shown in the source code samples the Appendix (see 15.1.16). Furthermore, there

140 e.g. nm -aDC --defined-only example-arm.lib [281]

Proposed solutions

160

is a compiler flag “-fvisibility=hidden” that may also be applied. Asides from the security

benefit, not exporting all symbols can significantly decrease the loading times of the shared

libraries.

Hiding data in binaries

In thinking about hiding decryption keys or encrypted data, GCC provides an interesting option

to hide information, as discovered by [326] by using the naked attribute. By default, gcc adds

several operations to a defined function like saving “the current frame pointer and load[ing] the

function arguments into the appropriate registers […] [, restoring] the original stack […] and

eventually […] jump[ing] back to the previous address” [326]. These extra operations can be

avoided by using the aforementioned attribute “naked” as shown in the sample source codes in

the Appendix (see 15.1.17). According to [326], it results in confusion of all major

disassemblers like objdump, Hopper, or IDA that are trying to recognize opcodes with their

parameters instead of data.

Hardware Dongles

Pure native code is best protected when it is inaccessible to attackers. The introduced SEs allow

embedding of Java code applets only141. A similar solution called “Guardant Code” [230]

allows the executing of native code in an external device, while returning the execution results.

Nevertheless, their currently provided framework lacks the same issues as any java-based

framework used by many SE vendors and may be intercepted quite easily (cf. Xposed

Framework). By assuming it is used for performant decryption of data, it could still be an

interesting solution and any decryption keys can remain safely stored in the dongle.

Protection Software

In the most recent version, DexGuard provides native code obfuscation and -encryption [272].

Moreover, the introduced Obfuscator-LLVM (see 10.3.3) can be used to obfuscate the native

code.

11.5.4 Identification of pirated apps

Besides actual copyright protection, a subtopic identifies those that distributed an app illegally,

while it is currently not possible to identify the source when an app is provided on a warez

website142. Right now and as mentioned before, APK files on each system are still equal when

bought on the Google Play Store. As a solution, researchers propose in [234] using watermarks

specific to a user to be integrated into the DEX file by “reordering the sequence of instructions”

[234]. This idea is similar to our idea of including device- and user specific attributes for

copyright protection. Both ways may be used for the proposed identification and ultimately to

take legal actions against those distributing apps.

141 by default. The flash controller can be programmed in C by G&D only.
142 Website offering illegal goods such as pirated software etc.

Proposed solutions

161

11.6 Open possibilities for using SE and native code

As previously mentioned, using the native libaums library for improved security access and

interaction with SEs is not possible, the following ideas cannot be realized right now either and

require modifications to stock Android by either Google or a device manufacturer that permit

the native code to access USB devices again. The detailed reasons and proofs are in 11.4.7.

Assuming that these issues are solved, the following pages present several solution ideas for

using SEs in combination with Android Apps for improved copyright protection. As stated in

the fundamental section, a secure element provides a secure space by definition [327]. While

some logic may be executed internally (e.g., calculate checksum of 1KB of data), other

performance-intensive tasks (e.g., decryption of 1GB data files) need to be outsourced to

Android and preferably in a secure manner (= usage of native code and obfuscation options to

protect keys in the insecure Android environment).

During the early days of this research work, our initial approaches still targeted Android on the

Java level, and we were not aware of the severe security issues of Android. These approaches

included the following:

 library “libaums”143 [199] for accessing a via a microUSB adapter144 connected

SDcard like the MSC by Giesecke & Devrient (embedded SE)

 a Java-based proxy application that allows a secure information exchange between a

SE with JavaCard 2.x (usually just a slave device) and a server (cf. license information

exchange) as implemented in [197]

 a first attempt at creating a simple copyright protection using both previous works as

outlined in [328] and shown in the form of a sequence diagram in Figure 70. Here, the

MSC represents the SE that is used for storing the decryption keys to protect the app

content. This application was used in the first evaluation approach.

Nevertheless, these solutions were abandoned when discovering the confirmation for previous

assumptions (see 13.3) that using Java code cannot be the best approach at the current time145.

For that reason and with that early assumption in mind, a native version of the libaums library

was created and implemented in [201]. Even Google does not recommend using the native code

stating it “has little value for many types of Android apps” [329], which is obviously not true

for security-related purposes. Moreover, the development process of the native libaums allowed

an early insight into the issues with using native code only, since the Android NDK does not

support accessing USB devices. The workaround was to acquire the file identifier via Java (cf.

required Android permission) and hand over this information to a modified version of libUSB

in the native C source code. Unfortunately, that solution does not seem to work anymore on

newer Android versions, as outlined earlier. An overview on the implementation is shown in

Figure 72, while providing an overview on the original Java version of that library in Figure

143 https://github.com/mjdev/libaums
144 e.g. http://www.meenova.com/st/p/m3r.html#devList
145 Notice: This might change when Google decides to use native code within ART VM only, and it is the

recommended solution for both app developers and Google to use native code as much as possible. Further

information on this are presented in the native code related sections of this chapter

Proposed solutions

162

71. It needs to be noted that the libUSB used by the Android frameworks has the required

privileges and therefore the Java version still works.

Figure 70 - Sequence diagram of our initial copyright protection approach using SE and Java only (based on [330])

By now having access to a native libaums, it is possible (cf. issue / target Android version <

Android L only) to use the secure element in combination with native C source code to store

and exchange encryption keys, license information or trigger small applets within the secure

element. This allows us to execute various tasks and everything in a much more secure manner

other than by using the original libaums Java version.

Proposed solutions

163

Figure 71 - Libaums implementation (Java code only) [based on [201] and [199]]

Figure 72 - Overview on the native libaums implementation (native code with minor Java code parts) [201]

The following sections present conceptual examples for using secure elements, in combination

with Android for improved copyright protection.

Proposed solutions

164

11.6.1 Secure local storage

As mentioned by GlobalPlatform [327], an SE provides a secure space for confidential

information, like in the current case, licensing information.

For instance, the SE may provide access to stored data by entering a PIN only (typical example

applet provided by G&D). While the used PIN would be very vulnerable in Java source code,

it can be highly protected in native code. Moreover, the information exchange between a SE

and the native code is more secure due to more difficult reengineering, too.

In terms of copy protection, the SE may be used to mirror licensing data from an external server

providing customers licensing options even without an internet connection, e.g., on a flight or

a long journey. See 11.6.2 for an example.

This approach may be considered as safe as using native code and file encryption, but even here

a SE may be used to store the used confidential data more securely, because presumably many

developers (attackers) are not used to secure elements and using them instead is an additional

barrier.

11.6.2 Secure local license provider

A license provider or a license server is a typical server that organizes the licensing of apps,

stores customer data and has information about the payments. A simplified database on such a

server to organize licensing may look like the one shown in Table 35. It consists of a unique

SE id as well as an app id and related user- and device data for identification purposes, while

storing the license status. For instance, the entries could be created upon the first run of the

application, while the license status can be verified externally depending on the app store and

its provided interfaces for payment verification.

Unique SE ID Unique App

ID

UserData DeviceData LicenseStatus

Table 35 - Possible database structure of a licensing server in combination with using SE and device/user identification

Here, a SE may be used to cache the licensing status in a secure manner, while acting as a

middle layer between the client (Android application) and a server (licensing management). A

great advantage is the possibility to provide many functionalities offline after an initial

information synchronization.

For instance, user and device identification information (cf. 11.4.1) may be transferred and

stored on the SE. It can be used to bind it to the smart device by checking these information

upon further requests (e.g., each time a native function is used), while several information (e.g.,

decryption keys) may be provided dynamically only, now. That makes the secure element

mandatory for the app.

Proposed solutions

165

In addition, the SE may transmit and validate the device and user information alongside a

unique app and unique SE ID to the licensing server (via aforementioned proxy app, but here

in a native version) to either initially register or later verify the licensing status based on the

given information.

The licensing server may keep track of the actual licensing status by verifying any payments

externally (e.g., by checking of banking account for transaction) on the server that cannot be

modified by the app attackers.

Right now, the available copyright protections like the LVL have the issue that license checks

as well as any signature checks take place on the insecure device locally, and therefore, in an

insecure way (Java), too.

Instead, app developers are requested to perform these checks in a secure manner at least (e.g.,

by using nLVL / 11.4.8) or to perform these checks even externally (see 11.4.9) for best security

protection, while providing access to server resources (e.g., game data or server connection for

multiplayer games) upon successful verification only.

11.6.3 Verifying the LVL signature within the secure element

Similar to the method introduce in 11.4.9, the secure element can be used as a local verification

option instead of outsourcing the check to an external server and updating the internal license

status accordingly. The information can be used to modify the future behavior of the secure

element. For instance, a negative check may result in blocking future requests by the

device/app, which naturally results in a non-working app.

11.6.4 Secure server access

While the secure element can hold the license status in addition to a license server in general,

it can also be used to limit access to server resources in a secure manner by making it the

mandatory tool for server access. This idea was outlined previously in 11.4.7.

Here, the server supplies a signed timestamp to add any time restrictions, since the SE does not

own an RTC and Android cannot be trusted. Using a shared secret (with the server) the SE can

verify the timestamp’s signature and once more sign the whole timestamp with its signature to

allow the server the verification and any time limitations for server requests. While using a

public-private-key method for the signing an even simpler approach can be to use a shared

secret on the server and SE that gets added to the timestamp and hashed by a “One-way [secure]

hash function” [331] like md5 as already explained in 11.4.7. While the shared secret cannot be

revealed that way, the server as well as SE can verify and reproduce the hashed values for

verification purposes.

In theory, this approach is not completely safe against so called “cardsharing” [292] (see more

details in 10.4.1). This is difficult to address, since many SEs do not provide an internal RTC

to detect rapid requests for more than one client app that is distributing the tokens to other

smartphones. Nevertheless, due to aforementioned implementation the server may be used to

Proposed solutions

166

fix that issue here, while now permitting requests within a certain time frame (cf. solutions for

cardsharing [293]). For instance, as illustrated in Table 36, a typical request takes 63.5ms

latency using 3G on average [332], and while accessing an SE using libaums library with up to

255 bytes (sufficient for a timestamp with two MD5 hash values) as the parameters (see 8.5.1)

that takes, on average, about 200ms. Therefore, the server should expect the clients request

within ca. 350ms, while illegal accesses by other smartphones (cf. forwarded access

information) can be expected about 65.5ms later. Of course, that is a very theoretical calculation

and delays might be caused by a busy CPU on the server as well as client side or network

failures that require resending of information. Moreover, Android itself is not a real-time OS,

too. Ultimately, there are lots of sources for delays. Nevertheless it is an approach to limit issues

related to cardsharing [293] and manufacturers are advised to integrate a clock feature into the

products to detect rapid access and assumed misuse of SEs.

App requests sign. timestamp from server

via 3g

(1) 63.5ms [332] + ~1ms calc. time

(assumed)

App contacts SE via libaums with signed

timest.

(2) 200ms (including processing time)

App contacts server with sign. signed

timestamp

(3) 63.5ms [332] + ~1ms calc. time

(assumed)

 = 329ms  ca. 350ms recommended

Attacker app forwards it to other clients over

3g

(3) 63.5ms [332] + ~1ms calc. time

(assumed)

Other smartphone accesses server (4) 63.5ms [332] + ~1ms calc. time

(assumed)

 = 394,5ms (expected arrival time / 3rd

party)
Table 36 - Required time till server access in comparison to 3rd party clients

11.6.5 Outsourcing program logic

Due to the aforementioned performance issues, the following approach is currently highly

limited for an actual implementation, and the performance of a SE is too weak, besides missing

typical Java frameworks within the SE’s Java environment (see 8.5.1 for details).

While it can be categorized as kind of a fusing option as well, by binding an SE and app

together, the idea is to outsource parts of that app to an SE to be called from the app for result

values. This approach might be used for calculation function requiring some input values, while

perhaps returning the computed results. Therefore, it depends on the app in such a way that it

is suitable for a specific app. The general idea is not new, and companies like Aktiv Soft JSC

provide such a solution with their product of an external dongle that already uses native code

[230].

In light of the upcoming Project ARA146 by Google, with shipments of early developer editions

expected this fall (2016) [333], the idea becomes even more realistic providing developers the

opportunity to develop their very own, specific, high-performance modules for such a purpose.

This will also allow companies to develop additional, more generic solutions for a module to

execute outsourced code from different vendors, previously installed through a secure channel

146 Project ARA is a modular phone consisting of lots of exchangeable modules to adjust the hardware [333]

Proposed solutions

167

and administrated by that company. The requirement for a physical, secured module would

limit piracy instantly due to the fact that the outsourced code is transmitted securely and never

available to customers except in form of a module that is yet to be developed.

11.7 Overview and best solution approach (example)

A question that is often raised is, is there a very best solution available? It is not easy to reply

to this question, but one certainly needs to quote a statement by Thomas Aura et al. that is still

valid after a decade - “Copy protection is never perfect” [1]:

It highly depends on the skills of the attackers, besides the chosen options for protecting apps

by the developers.

In this section, the best approaches are once again highlighted by taking a more generalized

view on the issue, before presenting an implementation idea with regard to the proposed

solutions of chapter 11.

11.7.1 Best approaches in general

 It is highly recommended to use native code, which is much better protected from

reengineering (see 10.3ff, 11.1.2 and 11.5.3).

 Therefore, implementing the nLVL (see 11.4.8), along with fusing options/indirect

method triggering (see 11.4.4, 11.4.5 11.4.6) is the suggested way. If parts of the main

app can be transformed to native code, then it is highly recommended to bind native and

Java code even more strongly together; thereby making them mandatory to each other.

 For additional security and in terms of huge applications, dynamic code loading (see

11.4.3) is suggested to load missing program parts after the license was verified using,

e.g., the nLVL. In general, our shown method of loading assembly code from memory

can be used to modify app parts on-the-fly, e.g., update embedded encryption keys to

correct ones.

 If the chosen license requires limiting the usage to a user or a device the desired

identification sources (see 11.4.1) need to be selected and combined with the license

check. Here the preferred options are those ones that can be realized using native code

only. If that is not possible due to the chosen license option, the realization using JNI

and calls from native code are recommended. The information itself needs to be stored

externally, e.g., on a secure element or an external server along with an identifier (e.g.,

the Google account) to reapply the license after a device reset.

 SEs should be used to provide access keys to servers (see 11.6.4 and 11.4.7)

 Existing obfuscation tools and other methods protecting source codes have to be applied

(see 11.5)

11.7.2 Best solution approach by example

The following best solution approach is an example only. The selected solutions depend on the

Proposed solutions

168

defined license. For instance, it is not required to integrate any user identifications, when the

target license is to run an app per device only. Instead if the license is defined to allow the usage

across devices and for a specific user only, then attributes about the user need to be integrated.

1) Define the license

First, the desired license (see 11.3) needs to be clarified by a developer. The recommended

license might be the aforementioned “One Device, One User/Many Users” license, since, e.g.,

family members will share their account on a tablet device anyway while the vendor wants to

resell the app, if it is simultaneously used on two devices.

In that scenario the device needs to be identified in addition to also verifying the actual payment

for the app by using Google’s LVL services or an external provider. This depends on the origin

of the app, where the user bought it initially. In this example we will think of the Play Store by

Google.

2) Select the preferred methods to verify the license

While Google’s license of one user account is enforced by using an app already purchased on

Google’s Play Store, the customized protection may now add an option for the device’s

identification. In general, all solutions should be implemented in native code (see evaluation

results in 13.4 and the results of previous chapters). Therefore, the nLVL needs to acquire the

license status of that app using the Google account in general, and then indirectly receives the

confirmation for a valid payment hereby (if the license is valid, the app was purchased).

As outlined in 11.4.1, the best options for identifying a device are those that can be used within

native code, and here preferably those ones that cannot be modified that easily. If the vendor

prefers a reliable identification, he needs to choose those that offer a 100% identification rate

like unique numbers, e.g., the serial number of a device or the hardware address of the used

wireless device. Both pieces of information can be fetched from system files or system

properties.

Using more than one method is recommended, and every additionally used option may block

an attacker from cracking that app. On the other hand, the performance of an app might suffer

from too many used methods, and it is ultimately a questions of performance tests by the

developer to include as many options as possible, while keeping the performance on an

acceptable level. While methods gathering static information return almost instantly, more

complex identification methods require several seconds and others even hours or days (see

11.4.1 for all these details).

Since a SE cannot be used at the moment to store information permanently, the Google user

account needs to be stored by the developer along with the device attributes, app package name

and app version on, e.g., a license server.

In case of the user installing the app on another device, the developer’s license server can

indicate towards the copy protection now that the app was installed on a different device that

now triggers the desired actions by the copy protection. Moreover, after a device reset and new

installation of the app the valid license can be restored.

Proposed solutions

169

3) Select the options to protect and enforce the license

While the actual license check could have already been done with existing solutions (e.g.,

default LVL) in an insecure way, the benefit of using native code for device identification,

asides license verification, is its better protection against reengineering (cf. 13.4 for evaluation

results). Since most codes of an app are developed in Java, another core issue is to keep native

code and Java together by trying to fight their separation. For instance, attackers may try to get

rid of the native library by hooking it (see 10.3.4).

Therefore, methods for “fusing code” (see 11.4.6) should be integrated into the code as much

as possible as long as it does not affect the performance and can be reasonably hidden, which

depends on the actual app size. Here the reason is that Java code remains highly insecure in

terms of reengineering (see 10.1ff), and it has to be assumed that attackers will identify the one

or another method (fusing option), especially if it looks suspicious such as triggering an exit

command (cf. evaluation / see 13.4). One of these methods might be the character array

comparison as introduced in 11.4.4 that triggers an action if the native code does not modify

the condition upon positive license reply.

In our evaluations we noticed that (simulated) attackers try to look for functions quitting the

app. Therefore, using options such as “Indirect Method triggering” (as indicated in 11.4.5) can

be used to trigger desired actions later, e.g., to render a game useless by modify game values

during the game that have a very negative impact on the gameplay, or by causing the app to

quit after a minute maybe. While this should be hidden as well as possible, e.g., by executing a

dynamically created shell script that quits the app or by loading dynamic code that triggers the

kill command or by accessing a wrong memory address resulting in a segmentation fault error.

The goal is that an attacker should have issues to understand how this function was triggered

and even if it was triggered at all. Of course, this results in a bad user experience and possibly

poor reviews by software pirates. It is up to the developer to select the desired actions in case

that a pirated app was identified.

4) Apply further protection options to harden it against reengineering

In addition to the mentioned proposals all existing protection mechanisms may be used, e.g.

ProGuard for obfuscation or its improved, commercial version DexGuard (see [161] [160]).

Here we note that Java code obfuscation and native code are prone to some issues and functions

used via JNI should not be obfuscated, since they are usually hard-coded in the native libraries

(e.g., the methods to get the user’s token in our nLVL implementation). A possible solution

could be the manual obfuscation and instead of using a meaningful name, codenames may be

used, while adding the actual name as a comment in the source code for the developer himself.

Morever, indirect method triggering can be used to exchange information in a more secure way,

e.g., by placing these parameters in environment variables instead.

Furthermore, Java code obfuscation - particularly on Android - is less effective than native code

obfuscation, e.g., function signatures remain intact (even using obfuscated names), while C

source code allows it to hide them instead (see 11.5.3). Moreover, many external library calls

in Java code remain the same, e.g., methods like onCreate() and onPause(). Furthermore, the

ProGuard obfuscation revealed itself as not a real barrier in the performed evaluations and

students (here: attacker role) simply looked for methods, such as exit calls, to identify the

interesting, obfuscated classes (for details see evaluation results in 13.3 and 13.4).

Proposed solutions

170

In addition, obfuscating native code is heavily researched by others and besides obfuscation

options like Obfuscator-LLVM (see 10.3.3) even usual compilers offer interesting flags and

directives (see 11.5.3) to hide information, like encryption keys using the naked attribute [326].

In general, app data can be shipped encrypted as an additional barrier, while decrypting it using

the aforementioned, hidden keys on-the-fly. Thinking about SQLite, there are even libraries

like sqlcipher147 providing that functionality. Nevertheless, it needs to be highlighted that

decryption procedures should take place in native code and strongly linked to the license status.

All these methods buy time only, but ultimately cannot prevent the cracking.

147 https://www.zetetic.net/sqlcipher/sqlcipher-for-android/

Prototypic implementation

171

12 Prototypic implementation

Based on some of the ideas in chapter 11, developers want to select their desired functions and

develop their very own unique protection solutions to prevent app piracy from happening within

a desired time frame, while observing the target license (see 11.3).

The actual time an attacker is required to circumvent a protection cannot be measured and

depends highly on the skills of an attacker and ultimately, on those of the developers trying to

hide certain methods.

While every additional used method may increase the security level, some of them may affect

the performance of an application. In the end, the author recommends following the best

practices (see 11.1 and 11.7) for improved protection.

The following chapter illustrates the protection of two apps that were protected differently. One

is a Java-only implementation, while the other one comes in two differently protected versions

that both are partly implemented in native code. They are explained in detail below and have

been used for the evaluation.

12.1 Demo applications

For testing our copyright protection mechanisms we used two different, existing programs to

apply the protections. The first one was an open-source game called ReGeX [334], as chosen

by the student implementing the protection based on the ideas of using a secure element and

content encryption. The author of this dissertation chose the second program as a result of our

first evaluation. Here, it turned out that knowing the source code (ReGeX is an open-source

game) allowed attackers to gain too much insight, in a very short amount of time to identify

certain protections more easily. Therefore, the 2nd implementation makes use of the closed-

source game SignPost, and was divided into a more java-based version (like in the 1st

evaluation, but some native code ideas) and a native-based version using native libraries and

several fusing options for protection heavily. The implementation sections below outline the

details.

12.1.1 ReGeX

ReGeX [334] is a open-source game that asks the players to find regular expressions that “match

[a] certain string, but doesn’t match others” [334].

12.1.2 SignPosts

Mr. Tim Falkenmayer, Mrs. Elisabeth Braendle and Mr. Alexander Ostrovsky, who kindly

permitted the usage for our research purposes, developed the game “SignPosts” [335] in a

Prototypic implementation

172

former Android Practical Course in 2012. As mentioned already, a significant reason for

choosing this app was the fact that is was closed-source, and also quite complex in order to

allow the hiding of certain protections within the source code.

The game consists of coins with city names that are dragged and dropped at the right angle and

distance between two defined cities to acquire points or lose lives as shown in Figure 73 [335].

The game uses “AndEngine” [336], which is a free and open-source 2D OpenGL Game Engine.

Figure 73 – SignPosts App (not published by authors) [335]

Figure 74 shows in a state chart the typical flow of a game for earning points by matching a

city, e.g., Hamburg in a correct angle to Frankfurt, and then a player guesses the correct

distance. If that guess was not good enough, the player will loss a life indicated by the hearts.

Figure 74 - State chart describing the game (classic- and action mode) [337]

Prototypic implementation

173

12.2 Actual implementation/injection of the protection

The current section focuses on the implementations of the Copyright Protection (CP) methods

injected into the existing apps, but it does not explain the implementations of the actual games.

This information can be obtained from the website or project-specific documentations instead

(see [337] and [334]).

12.2.1 CP implementations for eval. 1 using SEs and ReGeX

This app protection was implemented by [328], while the general implementation plan and

usage of previous works (cf. [197], [338]) was discussed in advance and in compliance with the

proposed ideas (cf. [186]). This solution consists of four major parts – the app with services

itself, the licensing server, the SE, and a desktop tool for developers. These four entities are

presented next in more detail.

App

Similar to real developers, the student implementing the protection on request was asked to

choose the preferred information sources himself (see 11.4.1 or [302]). The following

information was chosen and obtained by the protection outlined in [328, p. 11]:

 Android ID

 GSF ID

 Serial number

 IMEI

 Information about the device like manufacturer, model and CPU

 MAC address of the Bluetooth hardware

 MAC address of the Wireless hardware

The protection works in the way that this information [328, p. 11] is send to the server (using

an SE, see next sections) upon initial activation and on each app’s start. Furthermore, the

protection used the default ProGuard obfuscation in addition to further content encryption using

a key that was obtained from the server or later (after initial receiving) from the SE [328, p. 12].

Initially, the encrypted content was created by editing the app’s source code with a special tool

called either “PC” [338] (initial version in a previous thesis) or “PC-Tool” [330] that exchanged

strings with encrypted ones and functions that call for decryption (see next sections for details).

The used license, in these cases, was to bind the app to a single device/SE, and a one-time

license key was used for the initial registration of an app and its device/SE with the licensing

server [328, p. 12].

Licensing Server

The implemented server was mainly designed to organize the license verification, while

providing required keys used by the app for decryption purposes [328, p. 12].

In detail, the licensing server provides the following functionality as outlined in [328, p. 13f]:

Prototypic implementation

174

 Authentication: The SE connects to the server using a proxy service shipped with the

Android App including the access drivers for the SE provided by [197]. While this

connection is already encrypted it uses an internal SE ID for identification purposes.

 App Activation: Upon initial registration, the app is activated by supplying a predefined

license code (valid one time only), the name/version of the app, the SE ID as well as

device-specific information (see listing above). If the license code is accepted, the

server’s database is updated with the mentioned information.

 License Validation: From time to time the license status is verified and aforementioned

information (App name and version, SE ID, device information) sent to the server, while

receiving the appropriate response, if the SE ID owns a valid license.

 Key download: One of the key features in this approach is the content encryption. By

providing the app name and version as well as the SE ID the server verifies the

authentication of the SE and if it holds a valid license while providing the required

decryption keys in reply.

 Store device information: This function provides the ability that allows clients to

upload device information to the server.

 Register new apps: The username/password protected function is only provided to

developers and in conjunction with the so-called PC tool as explained next. This allows

the registration of an app with the used keys that the PC tool uses in regard to the app

encryption.

Further details on the detailed implementation and communication using PHP and Apache

server are available in the thesis itself (see [328, p. 17ff]). Even more details on the access on

SEs that are based on earlier implementation by the author himself (which are based on official

driver source codes by G&D itself) and improved in another thesis can be found in [197].

PC-Tool

The “PC-Tool” [328, p. 20f] is a desktop tool designed for use by developers for content

encryption of an app before its compilation. It also allows the initial app registration to provide

the license server the encryption key for a specific app version. Similar as performed by other

tools (e.g., DexGuard [160]), strings were selected for the encryption, by replacing them with

function calls with embedded and encrypted data that ultimately need the decryption key by the

server or a secure element upon runtime.

Applet on the SE

An additional component used in the implementation as outlined in [328, p. 20] is the SE with

its applet. Here, the introduced MSC by Giesecke & Devrient (see 8.5.1) was used. The applet

is compiled with a unique ID (cf. SE ID) for identification purposes. The SE is used to store the

decryption key after the successful authentication and key download as explained previously.

The access is protected by using a special code besides the general special SE access that needs

to be embedded into the Android app. This is an insecurity that cannot be avoided and which

Prototypic implementation

175

led to our additional ideas of using native code (see next implementation). In general, the key

exchange with Android is required, because of the weak performance of the SE (see

performance section of 8.5.1).

12.2.2 CP implementations for eval. 2 using the nLVL/minor fusing and SignPost

Based on the results of our evaluation in January 2016 (see 13.3), a closed-source application

(game) called “SignPost” [335] was selected for applying copy protection methods, while

preferably using native-code solutions this time. Due to the strong limitations of using secure

elements (see 11.4.7) any related methods were not evaluated here and remain conceptual ideas.

nLVL

In an approach to secure the license verification by Google known as LVL [47] the idea of a

native implementation was first introduced by the author at the Android Security Symposium

in Vienna [164] and implemented, on request in a thesis shortly thereafter [62]. The

implementation details of the nLVL were previously introduced in 11.4.8. The library was

added (in binary) to the game by calling it via the JNI attached native code. Therefore, the only

function visible and used in Java is the native function, getLicenseStatus().

Upon the creation of the protected game by the author of this dissertation, it was observed that

many previously fetched (see 11.4.8) parameters (that sometimes were not available and

resulted in native crashes in the original authors’ thesis implementation) were not required for

the actual license verification and here replaced by dummy data. Ultimately, it remains unclear

whether Google uses these other information for statistical reasons only, or if it is somehow

used for licensing, while providing fixed values works perfectly. In sum, the following

information is still acquired by calling the respective Java functions from native code via JNI148:

 user’s AuthToken

 AndroidID

 Package name

 Software version

Furthermore, open issues were detected that would allow MITM attacks in the current proof-

of-concept implementation by [62] and the LVL was not completely ported by the original

author. In particular, the verification of the signature of the supplied data by the Google servers

is missing (e.g., by using OpenSSL) and the used CURL library is not configured to verify a

server’s certificate. For productive usage one of these issues needs to be solved to avoid possible

MITM attacks. In terms of the evaluation, it was decided to leave these attack vectors open and

observe their possible discovery by the evaluation teams.

Fusing code

Exporting the license verifications to native code opens a new requirement and measurements

must be researched on how to prevent attackers from simply detaching the native code, while

148 Notice: The NDK does not provide options for fetching these information without Java code for using the

designated frameworks by Google. Therefore the information are obtained by Java code and forward to the

native code via JNI.

Prototypic implementation

176

replacing the designed getLicenseStatus() function at the same time. In the current

implementation the return value is not even used. This is done to confuse attackers and the

following fusing options are used instead.

Based on the general ideas of self-modifying code by other researchers (e.g., [226]), methods

for Android were analyzed and implemented in [100] and as introduced in 11.4.4. Based on the

sample implementation of modifying variables in memory, the idea was created to modify

variables of if-statements in a running app that would usually trigger an app to quit (or other

desired behaviors).

If the license reply by the Google servers is fine, the native code will edit these variables in

memory to deactivate quitting so that the if-statement does not trigger any actions. Otherwise,

quitting, by killing the app’s process would be initiated and results in a desired behavior of null-

pointer exceptions without traces to the killing of the process itself as previously outlined in

11.4.5.

In detail, the following modifications were added to the Java-based game (besides the inclusion

of required native libraries / cf. nLVL guide by [62]), while providing the corresponding source

code snippets in the Appendix (see 15.1.18).

 ApplicatioInfo.java

The applicationInfo.java file comes with the nLVL source codes and supplies the

methods, called by the native code, to provide user- and device information used by the

nLVL [62].

 Global.java

A condition to allow the modification of variables in memory by native code is that the

desired variables have to be initialized in advance of calling the native code, while the

intention was to use that method across several activities. Therefore, the idea is to use

global variables. A possible way to do this on Android is the usage of Singleton Pattern

as outlined in 11.4.4 and based on samples source codes by [339]. A Singleton Pattern

is technically a class that, once created, can persist in memory and may be accessed

from different activities. Here, the byte arrays used in later comparisons were defined,

while instantiating the Single Pattern within the onCreate() method (alternatively

onStart(), see 7.3.14) of the startGameActivity.java, which is the initial activity of the

game checking requirements and showing the main menu to the user (more details next).

 GeoGameActivity.java

The aforementioned global variables were used in the onResume() function in that

activity to trigger a timer of 13 seconds to kill the process, if the two global variables

remain identical, which occurs either upon a negative license reply or upon an attack by

separating the java part from the native part.

 startGameActivity.java

This activity takes care of checking game requirements, initializing demo limitations

(with a time limit of 120 seconds), and ultimately starting up the main menu. In terms

of our protection, a call via JNI to our native code was added, while providing all the

Java methods called from the native code and related to the aforementioned

ApplicationInfo.java that implements the provided methods in detail. For confusion, a

Prototypic implementation

177

system property called “SystemSecure” was set to “true”, but it has no function at all.

Moreover, the aforementioned Singleton Pattern gets initialized, before defining two

identical byte arrays (cf. “NILS2K”), and before the native code library (“myTest”) is

loaded and executed (see its details next). By default, an if-statement compares the byte

arrays is called next, and which either kills the app process (byte arrays still equal) or

does nothing (license fine & modified by native code).

 Native library myTest

The native library myTest as shipped with the nLVL source codes [62] takes care of

setting up the requirements of the nLVL library like gathering the device and user

information from Java code (applicationInfo.java, see above). It also prepares the

request-string (encoded URL call) for Google’s license server, before initiating it by

using the functions provided by the nLVL library and returning the result to the Java

code. In our implementation the Java code did not use the return value and the protection

relies completely on the fusing methods, which definitely confuses the attackers.

 Native library nLVL

The nLVL [62] provides the actual functions for encoding various device- and user

information into a request-string, submitting it to Google’s license server (using its

embedded library CURL) and taking care of the response. In terms of our fusing

protection here, another function called CP() was added that performs the memory

modifications upon a positive license reply. Basically it modifies any of the predefined

byte arrays (namely “NILS2K”, “ALLES3”, “BAUM__”) so that the if-statements no

longer execute their malicious behaviors (e.g., kill the app process).

12.2.3 CP implementations for eval. 3 using the nLVL/heavy fusing and SignPost

In addition to the modifications presented previously in 12.2.2, the fusing methods intensified,

since it was noticed in the 2nd evaluation (see 13.4) that the simulated attackers tried to attack

the interfaces between native and Java code, or they looked for special strings and instructions

that forced the app to quit and removed them.

Therefore, further possibilities for information exchange between native and Java code were

researched and found in the environment variables. This was in addition to applying obfuscation

possibilities to hide commands for quitting the app in terms of a negative license reply.

Furthermore, evaluation 3 verifies the idea of device-specific compilations using a different

app-market application that gathers some device details in advance for providing the user a

specially, compiled application of his desired app for that single device only. In terms of the

evaluation this was emulated by fetching the details in advance and providing each student a

compiled app designed for a special device only.

The source code with the following modification is found in the Appendix (see 15.1.19).

In detail the following, additional modifications were added:

 GeoGameActivity.java

The indication to quitting the app was hidden by using the command shell for executing

Prototypic implementation

178

the kill command of the current process instead. Furthermore the string itself (cf. “kill

PID”) was distributed among the whole file to hide its usage and concatenated once and

a while. The used process id was gathered from a previously set global variable (cf.

StartGameActivity.java) instead. Furthermore the self-defined environment variable

“A_SECURE” was used to modify the path to GFX resources (used for graphics), which

led to severe, non-traceable149 issues, if it was not previously defined by the native code

upon a valid license status. Another similar protection was hidden to put the used thread

to sleep for several hours using the environment variable “A_WAIT”, which was set

upon a negative license reply. It results in an essential hang-up (blank screen) of the

game and ANR150 is not triggered, since the main-thread is not affected.

 Native library nLVL / codeinput.c

Besides setting the environment variables “A_SECURE” and “A_WAIT” to its desired

values for each use case (cf. license vs. not-licensed), the systemcall kill() was added to

native code to prevent its removal from the Java source code as it was performed by

attackers in the 2nd evaluation. Furthermore, two device identification methods were

integrated, and compared the current device’s wlan0 MAC address and serial number

to the hard-coded device information. In the evaluation each app was designed for a

specific device. In a real-world application this information may either be provided

within the app (cf. different app market approach / see 11.2.1) or dynamically from an

internet source or even a local SE.

 Native library myTest / MyTest.c

An exported function killer() was added using the systemcall kill(). Nevertheless it is

never called and is placed as a trap for confusion only.

 Global.java

In addition to the existing information, the process-id is set upon instantiation of the

Single Pattern (cf. StartGameActivity.java).

149 to this code line
150 ANR is some sort of crash-dialog usually triggered when the main thread is not responsive [365]

Evaluation / target state (security analysis)

179

13 Evaluation / target state (security analysis)

This evaluation chapter consists of a review of selected methods from the previous proposed-

solution-section that are partly used in our evaluation apps, too. Moreover, the actual results

from the performed evaluations with the student testing groups are presented in this chapter.

13.1 Review of the used methods and expected protection level

While it is possible to prove the security of an encryption algorithm by estimating the time

required to find the key, a difficult question arising in our research was how to prove the security

increase of the presented methods. One needs to observe several factors:

 Applications are always different, and therefore methods, are hidden differently each

time. Smaller applications cannot be protected as well as more complex applications

and our fusing options can be hidden in more complex code much better.

 Attackers have different skills and sometimes might be an average person applying

tools, while at other times, they use sophisticated reengineering equipment.

 The type of attacker also depends on the product. While less popular apps might be of

interest to only smaller groups only and the attackers might have only average IT skills,

the crackers that specialize in cracking software will focus only on the famous apps.

 The security of the implementation depends on the developer’s skills. While this

dissertation shows possible ways, it is up to the developer to integrate them safely. Even

a best practice guide, as introduced earlier, is them provided.

 The chosen selection of security measurements affects the gained protection (e.g. LVL

vs. nLVL).

 Ultimately, there are no figures available on the effectiveness of a method that can be

used for probability calculations or risk/security analysis, while being influenced by the

above factors again.

Asking an industry representative about the issue on how to prove the effectiveness and sell a

security product, Thomas Goebl151 outlined in [340] that the market regulates himself using

four general guidelines, since there is no independent certification available. First of all the

effectiveness is shown by how long a protection can withstand an attack (“Crack Free Window”

[340]), with regard to the critical first weeks (e.g., 30 days [70]). Furthermore, the effect on the

end users’ experience is of importance, and in the best case, the protection has no noticeable

effect. In addition, the integration factor for developers is significant and any protection needs

to be applied in a reasonable amount of time, while ultimately the price for such protection is

of relevance to a company applying the protection to their products. Furthermore, the VdS152

confirmed that there are no standards or guidelines to evaluate a copyright protection [341].

Moreover, a representative by the BSI153 confirmed that they are unable to provide guidelines

as well [342].

151 Director of Sales & Marketing, Denuvo Software Solutions GmbH, Austria
152 The VdS is one of the leading companies known for security certification - https://www.vds.de
153 The BSI is Germany’s federal agency for security in information technology - https://www.bsi.bund.de/

Evaluation / target state (security analysis)

180

Therefore, in the end it was decided to keep the currently selected way, and evaluate selected

protection methods with students acting in the role of an attacker to gain details on possible

attack approaches and improve the protection based on the results. The following subsections

once more review the methods in general, before the evaluation is introduced and presented

with its results.

13.1.1 Android is insecure

For instance, Android (verified up to 6.01) itself remains an insecure environment (see 10.1.2),

and any process or data running on Android can be extracted from the internal disk (e.g., APK

file with its included native libraries) or from memory (e.g., any used encryption keys used by

apps or native code). Many of these actions require root rights, so we assume that almost any

available device can be rooted as outlined before and any logic executed on Android itself or

exchanged data is vulnerable to interception/manipulation.

13.1.2 Android app vs. native library

Nevertheless, it needs to be noted that native code that is used by native libraries, and created

with the Android NDK already provides more security. Reengineering or modifying that code

requires many more technical skills (see 10.3.4 and 11.4ff) than the rather simple decompilation

of a usual Android app (e.g., cracking Amazon’s DRM in 10.1.4). Therefore, it was used in

several solutions including the nLVL and fusing options by example.

13.1.3 Android apps vs. secure world (SE and TEEs)

While data and logic remain secure within SEs or TEEs (excluding exploit options), their

interfaces to Android and any access keys or exchanged encryption keys used by the app can

still be intercepted on the Android level. Due to performance reasons, outsourcing logic to SE’s

provided secure world is limited, while neither do the TEEs provide a full featured Android OS

(see 8.5.1, 8.5.2 and an analysis in 10.4). As described in 11.4.7 and 11.6ff, there are certain

options to use a secure element for improved security, while a conceptual idea presented for

TEEs (see 11.2.2) is also for additional security improvements of copyright protection.

13.1.4 Security improvements

By reviewing the previous situation of an insecure LVL and by developers not using native

code at required levels to protect their apps against software piracy, this dissertation outlines

several ideas (see 11 in general and extracts next) that already greatly increase the protection

level. The whole situation cannot be solved completely, and Android remains an insecure

Evaluation / target state (security analysis)

181

operating system, while momentarily it is required to run the apps on this insecure environment

at least once.

The provided nLVL solution (see 11.4.8) provides a much more secure license verification

(assuming fixing the open MITM issues like integrating signature verification and proposed

obfuscation methods from 11.5ff) compared to the existing Java solution of the license

verification library.

In combination with methods (see 11.4.4, 11.4.5, 11.4.6) to fuse native code and Java code to

make them mandatory to one another, the situation for attackers gets far more complicated and

just dividing native code from the app (see 12.2.2 for implementation ideas) is no longer an

option anymore. In addition, SEs (see 11.4.7 and assuming the SEAndroid issue is fixed) can

be used to store license data more securely and act as some type of local license issuer, while

limiting the access to servers to legitimate clients who have the required keys that the SE

provided upon correct license verification only. In general, native code has been researched

fairly well and there are many existing possibilities to make reengineering extremely difficult

(see 11.5.3 for examples).

13.1.5 Remaining attack surfaces

The requirement to run most app parts on the insecure Android system remains an issue that

cannot be fixed at the moment.

So far, there is no native Play Store alternative (see 11.2.1) nor a streamed local app solution

using an Android-based TEE (see 11.2.2) available to bring desktop-level security to mobiles.

It requires the contribution by the global players that hold the technical documents and

resources to immensely improve that situation.

As long as the binary code of apps can be obtained, it remains vulnerable to reengineering.

Known and presented obfuscation techniques can buy time to survive the critical days of a

product introduction and related major sales weeks only. Ultimately, no solution is 100%

secure, but it is possible to make it that difficult that we are close at that security level.

13.1.6 Protection level

As outlined at the beginning, it is not possible to categorize the protection in detail and the

gained protection levels depend on the aforementioned factors. Nevertheless, based on the

experimental results shown in the evaluation chapter next, there is a noticeable security gain

against solutions provided by Google or Amazon. Further details are available in these chapters.

13.1.7 Comparison

While the advantages of the proposed solutions were previously introduced in prior chapters,

Evaluation / target state (security analysis)

182

they can be summed up by saying that they offer a much better protection against software

piracy.

One of the biggest disadvantages of the currently, proposed methods related to the efforts for

developers is the increased complexibility. This comes by using C/C++ language, which is one

of the reasons why Google does not recommend C/C++ usage in general [329] and Java is much

easier to handle and even safer in terms of memory leaks and other issues related to C/C++

development.

Nevertheless, by providing developers the libraries (nLVL) and sample source codes on

request154, it is straightforward to integrate the solution into an own project, while customizing

certain aspects like placing fusing options randomly and then differently implemented in the

Java code while adjusting the native source code to fit that customized protection. Moreover,

general obfuscation tools still need to be applied (e.g., ProGuard). An automation of the earlier

steps might be possible at the cost of customization and, is therefore, not further researched for

the moment.

Another issue when developing protections using the proposed SEs, is the additional

requirement of skills for that technology. While most developers are familiar with C/C++

programming and even more with Java programming, almost no one is familiar with the

development of applets for SEs and its reduced functionality (cf. Javacard OS), while our access

solution (cf. libaums) for earlier Android versions is also highly customized. While this fact is

an advantage in terms of gained security and reengineering, it is a disadvantage for developers

that are required to dive into the new topics.

Comparing these requirements to the usual LVL or even the DRM protection by Amazon for

apps, we can conclude that a more secure solution requires considerably more efforts by app

developers. The automatization of our approaches needs to be addressed in a separated research

work and modifying code that is equally good implemented as by a real developer is not a trivial

task.

Moreover, performance differences rely heavily on the actual implementation used. In our

evaluation, we noticed that the startup of protected applications is a few seconds slower. This

is caused by loading the native libraries, applying the changes to the running process (cf. fusing

options), and immediately checking on the license. The actual amount of seconds is influenced

by the Internet connection speed and in the current implementation, the nLVL will even block

the execution until a reply is received.

154 nLVL not publicly released yet due to open legal questions (cf. reengineering of Google’s services/interfaces)

Evaluation / target state (security analysis)

183

13.2 Evaluation introduction

13.2.1 Attackers

The possible attackers trying to crack our apps range from sophisticated and very skilled

developers (commercial crackers) to usual customers that have almost no IT knowledge such

as teenagers looking on the internet for tools to circumvent protections. For instance, in 2014

[343] more than 71% of adults owned a smartphone in the US, while millennials even reach

85%. Therefore, it is fair to assume that today’s customers are from all sorts of majors, having

some or even no IT skills at all. Therefore, we can identify the following groups of users as

possible attackers:

 non IT majors, e.g., usual customers being new to computers/smartphones

 non IT majors, with some IT skills, e.g., customers using a PC/smartphone for gaming

 non IT majors, with advanced IT skills, e.g., skilled PC/smartphone users working with

them for years

 IT majors, e.g., students with profound knowledge

 IT majors, e.g., graduated students / young professionals

 IT majors, e.g., professionals

 IT majors, e.g., professionals specialized on IT security

13.2.2 Effects on the evaluation

Based on the previously, recognized attacker groups, we decided to verify the security level of

different groups of attackers with different skill sets and let each group try to circumvent the

developed protection, while monitoring their approaches described in detail below.

Of course, due to limited resources the results may not represent any results gathered in a large

hallway test, but it certainly allows a profound assumption, if the proposed protection provides

a sufficient security benefit in terms of average users / developers in general.

In addition, we verified two different kinds of protections. While our initial approach was Java-

based only, our final approach of protecting an application consisted mostly of native code ideas

as outlined in the proposed-solution section (see chapter 11).

The available groups in both evaluations were selected and assigned to the different attacker

groups based on a questionnaire (details below). We differentiated between the following

attackers:

 Beginners (Computer Science students with little Android knowledge)

 Intermediate (CS students with Android skills and few IT-security skills)

 Experts (CS students showing a good understanding of Android reengineering and IT-

security in general)

 Experts 2 (same as Experts, but additionally trained with Android reengineering skills

and insights to the used copyright protection solution)

Evaluation / target state (security analysis)

184

13.3 Evaluation of initial (Java-based) approach

In terms of our first evaluation performed in January 2016 we had four different teams

consisting of two computer science students per group as outlined before. For privacy reasons,

we refer to these groups as beginners, intermediates, experts 1 and experts 2.

13.3.1 Group assignment

For determining the target group of a student, the instructor used a questionnaire form (see

15.3.1) to categorize each student in one of the three main groups (beginners, intermediates,

experts). In addition, the expert 2 group was specially trained by us regarding the details of the

protection, while the usual experts received a reengineering introduction only.

While the students were requested to rate their skills themselves first, the statements made were

validated by viewing the answers to the questions. Based on these results it was up to the

instructor’s impression to categorize a student into a designated group.

13.3.2 Evaluation setup, goals and deadlines

Each team received a prepared device with the following conditions:

 Nexus 7 with Android 5.1.1

 Preinstalled, pre-activated and copyright-protected game (cf. one time license key ; see

12.2.1 for implementation details)

 Unlocked (but not rooted)

We next requested each group to try to break the protection by copying the app to another device

and successfully executing the app.

Each group received a time limit of 20 hours (per student) for performing the possible attacks,

while documenting each taken step in a report.

Furthermore, the expert 1 team got an introduction to Android reengineering, additionally the

expert 2 team was introduced to the details of the solution (used copyright protection methods).

13.3.3 Expectations

In general, and due to the known issues with reengineering of Android Apps, we expected that

the protection may be circumvented by at least one of the expert teams. The following is an

overview on possible attacks/steps that could have been performed by each group in theory

(marked green). Of course, we expected the more advanced groups to have the same or similar

ideas like the other, lower teams (marked bright green) as shown in Table 37.

Attack / Step Beginner Intermediate Exp. 1 Exp. 2

Acquire reengineering skills

Understand rough protection measurements

Evaluation / target state (security analysis)

185

Discover and get APK file

Root device

Decompile APK

Sniff network traffic to get a deeper

understanding

Understand copy protection in general

Modify decompiled code / create modified

app

Circumvent protection (exit) on start-up

Modify server communication

Get details about exchanged information

Deactivate copy protection

Get decryption key by app manipulation

Sniff and attack communication

Using Xposed for attacks (network / SE)
Table 37 - Expectations on each group (based on [330, p. 23ff])

13.3.4 Results, discussion and section conclusion

Based on the previous assumptions, this section shows an overlapping with our expectations as

well as additional performed steps (results) by the teams (indicated with an X), while the

cracking-level is indicated, too (1 to 4, where 4 means completely cracked). If there was more

than one student per level, the table shows a summary of all of them. Empty fields do not

necessarily mean that the students did not perform it, but it was not mentioned in their reports.

Attack / Step Beginner Intermediate Exp. 1 Exp. 2

Acquire reengineering skills X X X155 X155

Understand rough protection measurements X X X X155

Discover and get APK file X X X X

Root device X X

Decompile APK X X X X

Sniff network traffic to get a deeper

understanding

X

Understand copy protection in general X X155

Modify decompiled code / create modified

app

 X X

Circumvent protection (exit) on start-up X X

Modify server communication

Get details about exchanged information

Deactivate copy protection X

Get decryption key by app manipulation X

Sniff and attack communication

Using Xposed for attacks (network / SE)

Additional actions

obtain info / analyze SE / Papers X

155 Introduced by N.T. Kannengiesser (Exp.2: by Mr. Stadler as well)

Evaluation / target state (security analysis)

186

compare to open source code X

code adding for info. printing X

replacing functions / fake key X X

Cracking level 2 1 4 3
Table 38 – Expectations vs. Results on each group (based on [330, p. 23ff], [[286] as quoted in [330, p. 23ff]], [286])

Discussion

As expected, one of the expert teams (see [[286] as quoted in [330, p. 23ff]] and [286])

succeeded in cracking the java-based copy protection, and even used an approach that we did

not initially observe, by comparing the decompiled code to the reengineered code of the open-

source app, which saved them lots of time in finding the responsible functions of the copyright

protection. By requesting an additional license key, they simply printed out the used encryption

key to hardcode it into a modified app, besides removing any protection methods and

requirements for an attached MSC. In the end, the app was also cracked and worked on another

device. To our surprise the Intermediate and Exp.2 teams did not succeed in even rooting the

device, which is a fundamental requirement for advanced reengineering approaches.

Nevertheless, the Expert 2 team succeeded in creating a modified, still encrypted (protected)

app.

Conclusion

While there might be other and even more complex java-based protections available in

commercial products like DexGuard, the evaluation shows that using Java code is not the

desired way of programming secure, copy-protected applications. The identified parameters

may be printed out either by adding the code (or using interception frameworks such as the

Xposed Framework). For another evaluation a native code approach will be used, while using

a closed source application to prevent the identification of designated copy protection methods.

13.4 Evaluation of native code approaches

In terms of our second and third evaluation performed in June 2016, two different

implementations were analyzed. While the first groups got an application protected by the

nLVL and minor fusing options as outline in 12.2.2, the second groups were issued an even

more protected application still using the nLVL, but with additional device identification

routines and even more fusing options, as presented in 12.2.3.

Due to the amount of available students, the simulated attack was performed by one student per

group only, while again distributing them according to their skills in different groups. For

privacy reasons we will refer to these groups as beginners, intermediates, experts 1 and experts

2 on the 2nd and 3rd evaluation.

13.4.1 Group assignment

For determining the target group of a student a new question form similar to the previous one

(see 15.3.2) was used to allow the instructor to categorize each student in one of the three main

groups (beginners, intermediates, experts). The expert 2 group was specially trained by us about

Evaluation / target state (security analysis)

187

the details of the protection in addition, while the usual experts only received a reengineering

introduction.

While the students were requested to rate their skills themselves first, the statements made were

also validated by viewing the answers to the questions. Based on these results, it was up to the

instructor’s impression to categorize a student into the designated group.

For the 2nd evaluation there were five students available (2 x beginner, 1 x intermediate, 1 x

expert 1, 1 x expert 2), while for the 3rd evaluation four students were distributed among the

levels (1 x beginner, 1 x intermediate, 1x expert 1, 1 x expert 2).

13.4.2 Evaluation setup, goals and deadlines

2nd evaluation

In the 2nd evaluation each student (single person team) received the protected application by

email, while they provided a Google account in advance. In the developer console156 these

provided accounts were added to the testing access for licensing that provided a “LICENSED”-

response to each LVL requests using these accounts. Using this option it was not required (as

initially thought – see question form) to buy the app. The students were offered optional rental

devices, while it is not an evaluation requirement.

3rd evaluation

While the setup was similar to the aforementioned 2nd evaluation (e.g., APK file emailed), the

students received a specific rental device and an app designed for that device only (cf. device

identification routines, see details in 12.2.3).

Each student (single person team) received a prepared device with the following conditions:

 Nexus 5 or 7 with Android 5.1.1

 Unlocked (but not rooted)

2nd and 3rd evaluation

Next, we requested each group to try to break the protection by copying the app to another

device using a different Google account and successful executing/use the app on that device.

Each group received a given time limit of 20 hours (per student) for performing the possible

attacks while documenting each taken step in a report.

Furthermore, the expert 1 team got an introduction to Android reengineering. Additionally, the

expert 2 team was also introduced to the details of the solution (used copy-protection).

13.4.3 Expectations

In general, and due to the known issues with reengineering of Android Apps, we expected that

students would try to target the Java code, even though it required advanced security skills to

156 See https://play.google.com/apps/publish/  Settings  License Testing

Evaluation / target state (security analysis)

188

target the native code protection. However, it offered some known flaws due to present MITM

issues in the current proof-of-concept of the nLVL (see 11.4.8 for details).

The following tables are an overview on possible attacks/steps that could have been performed

by each group in theory (marked green). Of course, we expected from the more advanced groups

to have the same or similar ideas like the other, lower teams (marked bright green) as shown in

Table 39 (evaluation 2) and Table 40 (evaluation 3).

Attack / Step Beginner Intermediate Exp. 1 Exp. 2

Acquire reengineering skills

Acquire information on LVL by Google

and others

Understand rough protection measurements

Root device

Decompile APK

Sniff encrypted network traffic

Understand copy protection in general

Modify decompiled code / create modified

app

Circumvent a fusing method (e.g. disable

exit)

Approached reengineering of native code

Understand copy protection in high detail

Circumvent all fusing methods

Using Xposed (Cydia Subs. or other) for

attacks

Using native code overloading etc. for

attacks

MITM / Sniff and attack LVL

communication

Table 39 – Expectations on each group in terms of evaluation 2 (based on [330, p. 23ff])

Attack / Step Beginner Intermediate Exp. 1 Exp. 2

Acquire reengineering skills

Acquire information on LVL by Google

and others

Understand rough protection measurements

Root device

Decompile APK

Sniff encrypted network traffic

Understand copy protection in general

Modify decompiled code / create modified

app

Circumvent a fusing method (e.g. disable

exit)

Approached reengineering of native code

Understand copy protection in high detail

Using Xposed (Cydia Subs. or other) for

attacks

Circumvent all fusing methods

Circumvent device identification methods

Evaluation / target state (security analysis)

189

Using native code overloading etc. for

attacks

MITM / Sniff and attack LVL

communication

Table 40 – Expectations on each group in terms of evaluation 3 (based on [330, p. 23ff])

13.4.4 Results, discussion and section conclusion

Based on the previous assumptions, this section shows an overlapping with our expectations as

well as additional performed steps (results) by the teams (indicated with an X), while the

cracking-level is indicated, too (1 to 4, where 4 means completely cracked). If there was more

than one student per level, the table shows a summary of all of them. Empty fields do not

necessarily mean that the students did not perform it, but it was not mentioned in their reports.

Attack / Step Beginner Intermediate Exp. 1 Exp. 2

Acquire reengineering skills X X X157 X157

Acquire information on LVL by Google

and others

X X X157 X157

Understand rough protection measurements X X X X157

Root device

Decompile APK X X X X

Sniff encrypted network traffic

Understand copy protection in general X X

Modify decompiled code / create modified

app

X X X X

Circumvent a fusing method (e.g. disable

exit)

X X X

Approached reengineering of native code X X X X

Understand copy protection in high detail

Circumvent all fusing methods X158 X159 X X

Using Xposed (Cydia Subs. Or other) for

attacks

 X

Using native code overloading etc. for

attacks

MITM / Sniff and attack LVL

communication

Additional actions

Acquire Java source codes (dex2jar or

other tool)

X X X

Tried to analyze obfuscated Java codes X X X

Tried decoupling Java/Native code X

Looked for values & string (e.g. 120 / exit

calls)

X X

Tried cracking tools (e.g. AntiLVL) X

Used insight knowledge to find fusing

methods

 X

157 Introduced by N.T. Kannengiesser
158 After hint that the app still terminates after 13 seconds (not counting – severe cracking level)
159 Removed timer tasks to remove demo limitation and 2nd fusing option (timed exit) apparently by accident

Evaluation / target state (security analysis)

190

Cracking level 3 4 4 4
Table 41 – Expectations vs. Results on each group in terms of evaluation 2 (based on [330, p. 23ff] and [284])

Attack / Step Beginner Intermediate Exp. 1 Exp.

2

Acquire reengineering skills X X X160 X160

Acquire information on LVL by Google

and others

 X X160 X160

Understand rough protection measurements X X X X160

Root device

Decompile APK X X X X

Sniff encrypted network traffic

Understand copy protection in general X

Modify decompiled code / create modified

app

X X X X

Circumvent a fusing method (e.g. disable

exit)

X X X X

Approached reengineering of native code X X

Understand copy protection in high detail

Using Xposed (Cydia Subs. Or other) for

attacks

Circumvent all fusing methods

Circumvent device identification methods

Using native code overloading etc. for

attacks

MITM / Sniff and attack LVL

communication

Additional actions

Acquire Java source codes (dex2jar or

other tool)

X X X

Tried to analyze obfuscated Java codes X X

Tried decoupling Java/Native code X X X

Looked for values & string (e.g. 120 / exit

calls)

X X

Tried cracking tools (e.g. AntiLVL) X X

Used insight knowledge (sniff network

traffic)

 X

Tried DeObfuscation tool X

Using advanced tools gdb, IDA, other

disassem.

 X

Replacing OP codes in native code X

Tried to sniff traffic using proxy app (no

success)

 X

Cracking level 1 1 1 1

Table 42 – Expectations vs. Results on each group in terms of evaluation 3 (based on [330, p. 23ff], [285])

160 Introduced by N.T. Kannengiesser

Evaluation / target state (security analysis)

191

Discussion

 2nd Evaluation

As expected and written in [284], the students mainly tried to target the Java code (and

the fusing options) and identification was fairly easy due to the used exit calls. Some

may not have completely understood its logic and relation to native code, describing the

if-statement of comparing two identical byte arrays as “unnecessary or suspicious”

[284], but they removed the exit calls. That disabled the protection, of course.

Nevertheless, they had severe issues with the native code commenting that it was “time-

consuming and nerve-wrecking […] [and] only clues [are] […] imported Java or

Android libraries” [284]. Even the expert teams (here expert 2), who made the most

progress on analyzing it by identifying the performed memory modification by the

native code, were not able to deactivate the nLVL itself within the given time frame of

20 hours. The results were observed for our third evaluation making the fusing options

harder to discover than ever, besides the usage of further protections methods (cf. device

identification).

 3rd evaluation

As assumed and written in the reports [285] the students had significant problems in

discovering all used fusing options, while still focusing mainly on the Java code.

Nevertheless, they were able to discover one of these fusing options in most cases, but

they were not able to prevent the application-killing executed by the native code or Java

code upon negative license reply, or issued by the Java code when a decoupling (=

attempted cracking) took place. Since the nLVL uses its own network libraries (CURL),

it remains immune to the performed proxy ideas as well and only sophisticated MITM

attacks could have been a threat due to the existing and known limitations in the current

proof-of-concept of the nLVL (cf. missing signature verifications or HTTPS certificate

verification). Moreover, the inclusion of faked functions like the killer() one in myTest.c

proved to be a good (time-consuming) idea. In general, using native code had the desired

effect and students described it by saying “we weren’t able to identify how the code

work [sic!] because the assembly was very hard to understand” [285] and “Immerhin

scheint der Schutz auf jeden Fall wirkungsvoller zu sein, als der Vergleichsschutz aus

der Amazon DRM, was ein aussagekräftiges Statement ist”161 [285], even our expert 2

team used various disassemblers including top-notch tools such as IDA and other

sophisticated disassemblers. All of them failed in pirating the app.

Conclusion

While our initial ideas and Java-based approaches were still vulnerable to attacks, the more our

solutions moved to the native code versions, we were able to notice an increase in the protection

of our solution.

161 transcript by author: At least, the used protection seems more effective than the protection provided by

Amazon DRM, which is a meaningful statement

Evaluation / target state (security analysis)

192

For instance, in the 2nd evaluation the protection was still largely based on Java code (cf. few

fusing options), while the native code handled the licensing only.

Instead, in the 3rd evaluation, the fusing between native code and Java code got intensified,

increasing the protection quite a lot and ultimately protecting the app within the desired time

frame. While the students were able to discover a fusing option, they were not able to identify

the deeply hidden ones using indirect method triggering by using the environment variables for

the transport of messages. Of course, that is a current idea and attackers may observe this option

in the future. Nevertheless, it illustrates the need to increase the research on this topic, while

the current research work can only act as an introduction to this.

Moreover, the current small evaluation group of computer science students that specialized on

Android may not reflect a huge hall way test due to our limited resources. Nevertheless, it still

underlines our assumptions that using native code provides a real benefit for the security of

Android applications executed in an insecure environment.

Evaluation / target state (security analysis)

193

“You can make hamburgers with a cow, but you can't make a

cow with hamburgers.” [344]
Carlos Gutierrez

(on the issue of reengineering of native code)

Summary

194

14 Summary

14.1 Review research questions

Before summarizing the results in the conclusion below, the earlier research questions should

be reviewed, once again as well:

No. Question

0 Fundamental question: Are the current copyright protections for Android

sufficiently secure?

1 If that is not the case, how can we ensure that an app is used on a valid device or

by the valid user only?

2 Is it possible to store sensitive information like licensed data more securely, maybe,

e.g., by using a secure element or alternatives?

3 Is it actually possible to use a secure element on Android (as a developer)?

4 How can we improve copyright protections and how can we implement them on

Android?

5 How can we protect apps against reengineering (cf. static- and dynamic analysis)

and is that actually possible with usual Android versions?

6 Might it be a better approach to use native code for security related issues instead

of Java (cf. desktop world is dominated by native code and iOS uses it as well)?

7 What needs to happen elsewhere to improve the situation, (e.g., hardware

modification and/or better cooperation by different manufacturers)?

No. Short Answer Details

0 No Here it needs be outlined that other researchers investigated the

LVL in 2010 already [320], while investigations on the Google’s

LVL and Amazon’s DRM (besides other Java solutions)

performed in this research confirmed their earlier findings that

the protection is severely broken. Even additional solutions (cf.

third party research) exists, they are not used by major app

markets.

1 Many options There are various options like integrating user/device attributes,

storing information on SE or using native code safely, besides

using several native code protections (see chapter 11 for details

and related question answers below).

2 Yes Besides using native code and (native) file encryption that can

be protected much better from reengineering (see analysis in

10.3), using a SE is an option when certain issues are solved

(11.4.7).

3 Partly As outlined in 11.4.7 there are remaining, secure options, but due

to enforced SEAndroid in recent versions, a secure, native code

version cannot be used right now. That limits the possibilities

and a Java version is vulnerable to the severe reengineering

issues (cf. 10.1ff), with limited solutions left (cf. 11.4.7).

4  Using native code is more secure than using Java code (see

chapter 11 for details and related question answers below).

Summary

195

5 Partly It is not possible to prevent reengineering in total (exceptions:

11.5.1), since Android remains an insecure OS (see 10.1.2).

Nevertheless comparing the reengineering of Java code with the

problems that attackers have when reengineering native code (cf.

13.4), we found sufficiently secure solutions to that issue.

6 Yes Definitely. While we already assumed an increased protection in

our analysis of native codes (see 10.3), the simulated attackers

were not able to circumvent the native solutions (see 13.4.4) and

outlined their severe issues with it.

7  The best solution would be to get rid of DEX code that is very

vulnerable to reengineering. Unfortunately that is a major task

and requires support by Google due to fundamental VM changes,

while there is almost no documentation available. Furthermore

hardware manufactures can cooperate with Google to provide

users/developers access to SE/TEEs (see 11.2 for details).

14.2 Contributions

This section presents our own contributions and outcomes of this research work, while it does

not cover any third party solutions that may have been mentioned in the solution sections. Our

contributions are separated into different stages to allow a greater overview.

Confirming the assumed issues (the problem statement)

 We were able to confirm the severe reengineering issues (cf. LVL cracking by

others [320]) that apply to DEX files and any Android version in general, while

showing that it applies to other protection solutions, e.g., by Amazon (see 10.1.4)

and outlining even more advanced, universal cracking solutions (see 10.1.5).

Moreover, we revealed the procedures of commonly used cracking solutions in

high detail (see 10.1.3) to allow developers an insight and possible solutions (see

11.4).

 Furthermore we analyzed Android itself and can confirm the intense insecurity

of the system due to rooting possibilities for any version (see 10.1.2), which

highly affects copyright protection solutions and puts them at danger.

Confirming the security gain

 By using a sophisticated decompiler of another dissertation, we showed the

security gain by using native code and comparison of the reengineering results

(see 10.3ff). Moreover, assumptions that typical, future developers (computer

science students) are not familiar with native code and especially ARM

assembly, were confirmed by conducted surveys (see 10.3.5).

Implementing possible solutions

 Based on the results of a more secured native code, a native version of the LVL

called nLVL was developed (see 11.4.8) and new issues (cf. “How to prevent

the simple separation of the native part?”) addressed by introducing options like

“code fusing” and “indirect method triggering” (see 11.4.6 and 11.4.5) to

Summary

196

counteract that issue, while researching required foundations for live process

modification on Android in advance (see 11.4.4).

 Furthermore, options to load code dynamically in Java and native code were

shown. A special solution is loading native code from memory (see 11.4.3) that

allows developers to hide simple actions even better.

Showing further possible solutions (conceptual)

 Since the secure implementation of using SEs by using native code was not

possible at one point, several ideas were shown as conceptual only (see 11.4.7

and 11.6).

 Due to unknown details of the ART VM as well as implementation requirements

that are out of scope for this work, an idea for the realization of a native and

even more secure app store was introduced (see 11.2.1) requiring the

participation of Google for its actual realization.

 Partly implemented by assuming the existence of the aforementioned native app

store, options for the device- and user identification to be integrated as part of a

copyright protection were analyzed and outlined (see 11.4.1).

 Moreover, the same approach can be used to prevent piracy by allowing the

identification of APK’s owners by the embedded user attributes (see 11.5.4).

 In addition, an even more secure idea of streaming an apps’ UI for an ultimate

copyright protection using a TEE was shown (see 11.2.2) and requires

modifications to Android and a TEE to execute apps. Here, a cooperation of

Google and a device manufacturer is required.

Verification of the expected security gain

 The proposed, implemented solutions were reviewed (see 13.1), adapted to

sample implementations, and applied to a usual Android apps (see 12), for

demonstration and verification purposes. The desired security increase was

confirmed and simulated attackers did not succeed in breaking the final, native

protection (see 13.4).

14.3 Conclusion

At the beginning, the topic was defined by investigations into the security of Android that

proved to be quite insecure thinking about app-, data-, and license protection (see 10.1.2, 10.1.3,

10.1.4 and 10.1.5).

Therefore, the goals of this dissertation were defined to identify ways to improve available

copyright protection mechanisms that increase the difficulties on reengineering and introduce

(mainly) developers to the necessary skills and methods to avoid the most prevalent and

common issues by outlining the problems and several examples to picture the current situation

in a detailed analysis (see chapter 10) and to provide solution ideas (see chapter 11). The fact

that the nLVL idea was realized by reengineering Google’s frameworks underlines the severe

security issues on Android once more.

Summary

197

In addition, ideas for the global players were identified that cannot be realized by usual app

developers (this author) without the help and services of companies like Google that provide

the manpower and missing knowledge on undocumented features (see 11.2ff).

In general, it is not possible to avoid reengineering in total, and therefore, an attack surface

always remains, even if the shown approaches try to lower the risks. In summary (see 11.4ff

for all details), these are methods to include user and device attributes for recognizing valid

users and devices, besides ideas to store data in a more secure manner, while showing

possibilities for modern Android versions to load additional program parts dynamically again.

Moreover, methods to manipulate the app process’ memory and use it in terms of the copyright

protection to bind program parts (here Java and native code) more securely together were

presented, and suggested solutions like a proof-of-concept of a native version from Google’s

LVL for gaining additional security was shown. In addition, ideas to use SE for copyright

protection were presented as well (11.6ff), even though most of the ideas cannot be realized

due to access restrictions by SEAndroid (cf. 11.4.7).

Unfortunately, one must assume that the situation for using secure native code gets even worse,

since Google is about to enable even further restrictions on the NDK with its upcoming N

release [311] and so far – to the author’s knowledge - without presenting adequate copyright

protection solutions. For the sake of completeness, further methods by third parties were

presented (see 11.5ff) as well as general solutions for protecting Java- and native code.

As pointed out in the 3rd evaluation (see 13.4.4) that included most of our proposed methods to

protect an application from being copied, all evaluation groups were not able to circumvent the

most recent protection. This included computer science students with some Android experience

as well as those that were rated at an expert level and even specially trained by us on the used

methods. They all tried to attack the protection with no success. Therefore, one can fairly

assume that the proposed methods are sufficiently secure to protect apps against usual

customers trying to circumvent the protection, while one can also assume that even more skilled

customers with certain IT skills will have issues on cracking the protection. Furthermore, the

presented solutions are meant for Android only, as even the title suggests more general

solutions.

In summary, we were able to discover methods to improve the current situation, but there is

still space for further improvements that requires the help and cooperation of global players like

Google and the device manufacturers (see 11.2.1 and 11.2.2).

14.4 Future work

Obviously implementing copy protection for Android remains an unfinished task and while this

dissertation outlines several solution approaches, we discovered new issues that may be

addressed in the future.

For instance, an interesting way for protecting code is dynamic code loading after the license is

verified. Unfortunately, Google limited the options with the introduction of the ART VM as

outlined earlier (see 11.4.3 for details). Even we were able to find adequate solutions for native

code instead. However, the execution of dynamically loaded native code is currently highly

limited to simple tasks due to missing linker functionalities in our current implementation.

Summary

198

Therefore, investigating solutions for providing that capability can be researched even further,

by combining them with the ideas of [223] to allow the secure loading of external code in

addition.

Moreover, it needs to be noted that many of the current issues with copyright protection on

Android may be fixed by using Trusted Execution Environments (TEE) in the future. They limit

the access rights of apps in addition to granting exclusive hardware access for privileged apps

[217] to exchange data with the customer in an isolated manner [202]. Early, conceptual ideas

were presented in 11.2.2. The downside is that it requires new hardware or system software at

least, and development is limited by the costs, while Android development in general and our

presented solutions are freely available. At a recent conference [345], the Trustonic Company

announced that, e.g., their TEE solution is already available on a major number of Samsung

devices, but it is not available on all devices worldwide.

In one of its recent releases (e.g., Android KitKat) Google tried to implement some security

features that act similar to TEE (e.g., limit file access), but it is implemented in software only

using SELinux [346] and cannot completely solve the issues discussed above due to possible

exploits in hardware or software. Originally SELinux (aka SEAndroid) was developed by the

NSA [103]. Unfortunately, SEAndroid’s enforced policies are the major reasons that the usage

of external SEs is not securely possible (cf. native code) these days either. While there seems

to be no immanent solutions to that issue, the libUSB team may address that issue in the future,

allowing the presented, conceptual ideas (see 11.6) to be implemented in a more secure manner,

since the realization as a Java version is senseless and it does not provide hardly any security

benefit.

Furthermore, the research by third parties to protect and hide data in the processor cache by

Patrick Colb et al. [227] could be researched in terms of copyright protection to hide and encrypt

data even further.

Another technology coming up soon is Project ARA by Google with shipments of early

developer editions in fall 2016 [333]. While demo applications of higher-priced apps may still

be available on app stores, the idea could be to use (to be developed) memory modules with

integrated and performant SEs to gain additional security, outsourcing program logic to it to

make it a mandatory requirement to have a physical module. It is similar to the cartridges known

from manufactures like Nintendo for their devices. Furthermore, more generalized protections

may be provided by allowing others to use a security module to outsource code parts.

In addition, the identified methods for copyright protection (cf. user and device identification)

can be used to address future license options (see 11.3 for a general overview of options), since

Android is just emerging to desktop computers (cf. Remix OS162) and typical licenses

addressing many devices and one user only (current mostly used license option) have to be

adapted to allow volume licenses. Typical volume licenses allow the installation on several

devices and are used by various users. These cases cannot be addressed with the currently

available methods and Google’s and Amazon’s solutions are meant to be used with one account

and one user (maybe his family) only.

Due to our discoveries in terms of attacking libraries (cf. LVL), it is recommended to review

other related frameworks. For instance, the in-app-billing libraries by Google should be

162 http://www.jide.com/remixos

Summary

199

carefully reviewed, since they work quite similar to the LVL. In fact, in-app-billing has been

circumvented in a research performed by [248] already. It is certainly preferred to port it to a

native version as well.

14.5 Legal

All presented information may be used for research purposes only.

The goal of this work is to raise the awareness of industry and developers for the security issues

related to copyright protection on Android.

Months in advance of the release of this dissertation and following a guideline by Google that

90 days are sufficient to fix any issues [347], we informed all affected companies, which are in

charge of the used protections by thousands of developers, of our findings.

These global players need to act and raise the awareness of the issues at least, and preferably

provide developers even better solutions in the future. Our results could be the base for these

solutions.

Notified companies

We notified Google about the issues with the LVL by September 2014 and they classified it in

their reply “as a low security issue since it requires the device to be rooted” [348]. Furthermore,

we also provided them information about our native LVL approach by May 2016 and invited

them to participate.

We also notified Amazon about possible issues with their DRM protection by February 2016

[349]. In further discussions with their security team, it turned out that the protection was

already modified, but we were able to circumvent it once more and provided Amazon additional

information in June 2016.

Samsung was notified about issues with their Zirkonia library by April 2016 [350].

Further companies that received notifications about issues by us as well as early suggestions

were BMW (2013) and Team17 (June 2016).

NDA exceptions

The presented information about the used and presented MSC by Giesecke & Devrient in

section 8.5.1 was verified and approved by Dr. Sterzinger for publication.

Appendix

200

15 Appendix

15.1 Source codes

15.1.1 Code for intercepting LVL and manipulating license response

Due to the fact that these source codes may be misused, they are available by request only and

internally accessible in the unpublished thesis of Mr. Marius Muntean [64, pp. 58,59].

15.1.2 Android project with native code (Android Studio)

The following source examples illustrate the basic integration of native code into an Android

Studio project. Further information may be found in the fundamental section on p. 43.

Figure 75 – MainActivity.java /Main Activity of the example project [100, p. Appendix A]

Figure 76 - MyNDK.java / Class for providing native code [100, p. Appendix A]

Appendix

201

Figure 77 - mylib.cpp / C++ file with native code implementation [100, p. Appendix A]

Figure 78 - Android.mk / Android Makefile [100, p. Appendix A]

Figure 79 Application.mk / Application Makefile [100, p. Appendix A]

Figure 80 - build.gradle / Gradle Build File [100, p. Appendix A]

15.1.3 Simple JNI Code Sample and its decompiled source code

#include <com_example_testnative_TestLib.h>

JNIEXPORT jlong JNICALL Java_com_example_testnative_TestLib_testNativeValue

 (JNIEnv *env, jclass clazz, jlong b) {

 jlong a = 20 * b;

 return a;

}
Table 43 - Simple C code to be used within the Android NDK [106]

// This file was generated by the Retargetable Decompiler

// Website: https://retdec.com

// Copyright (c) 2016 Retargetable Decompiler <info@retdec.com>

// modified by N.T. Kannengiesser and reduced to important functions (36

// of 2175 lines); original binary file was compiled with -O3 and no

// symbols by Android NDK

Appendix

202

#include <math.h>

#include <stdbool.h>

#include <stdint.h>

#include <stdlib.h>

#include <string.h>

// ---------------- Integer Types Definitions -----------------

// [...]

// ----------------- Float Types Definitions ------------------

// [...]

// ------------------------ Structures ------------------------

// [...]

// ------------------- Function Prototypes --------------------

// [...]

// --------------------- Global Variables ---------------------

// [...]

// ------------------------ Functions -------------------------

// Address range: 0xc18 - 0xc27

int32_t Java_com_example_testnative_TestLib_testNativeValue(int32_t a1) {

 // 0xc18

 return 20 * g15;

}

// [...]
Table 44 - Modified and decompiled example code of Table 43 using -O3 and no symbols upon compilation by Android NDK

(based on output of [351])

15.1.4 Small C program and its decompiled source code

#include <stdio.h>

long func(long value);

int main() {

 printf("%ld\n", func(20.00));

 return 0;

}

long func(long value) {

 long a = 20 * value;

 return a;

}
Table 45 - Simple C code example

Appendix

203

// This file was generated by the Retargetable Decompiler

// Website: https://retdec.com

// Copyright (c) 2016 Retargetable Decompiler <info@retdec.com>

// modified by N.T. Kannengiesser and reduced to important functions (45

// of 189 lines); original binary file was compiled with -O3 by retdec

//

// This file was generated by the Retargetable Decompiler

// Website: https://retdec.com

// Copyright (c) 2016 Retargetable Decompiler <info@retdec.com>

//

#include <stdbool.h>

#include <stdint.h>

#include <stdio.h>

#include <stdlib.h>

// ------------------- Function Prototypes --------------------

int32_t __do_global_dtors_aux(int32_t a1);

void __libc_csu_fini(void);

int32_t __libc_csu_init(int32_t result, int32_t a2, int32_t a3, int32_t a4, int32_t a5, int32_t

a6, int32_t a7, int32_t a8, int32_t a9, int32_t a10);

void _fini(void);

void _init(void);

int32_t _start(int32_t a1);

void call_weak_fn(void);

void deregister_tm_clones(int32_t a1);

int32_t frame_dummy(int32_t a1, int32_t a2, int32_t a3, int32_t a4);

int32_t func(void);

int32_t function_845c(int32_t a1);

int32_t register_tm_clones(int32_t a1);

int32_t unknown_83d4(void);

// ------------------------ Functions -------------------------

// Address range: 0x83ec - 0x8407

int main(int argc, char ** argv) {

 int32_t v1; // 0x10650

 char v2; // 0x10774

 // 0x83ec

 printf("%ld\n", 400);

 return 0;

}

// Address range: 0x853c - 0x8547

int32_t func(void) {

 int32_t v1; // 0x10650

 char v2; // 0x10774

Appendix

204

 // 0x853c

 int32_t v3;

 return 20 * v3;

}

[...]
Table 46 - Modified and decompiled code of Table 45 using -O3 upon compilation (based on output of [351])

15.1.5 Conversion of code using control flow flattening and instruction substitution

Control flow flattening

Original Code Modified Code using Control Flow

Flattening

#include <stdlib.h>

int main(int argc, char** argv) {

 int a = atoi(argv[1]);

 if(a == 0)

 return 1;

 else
 return 10;

 return 0;

}

#include <stdlib.h>

int main(int argc, char** argv) {

 int a = atoi(argv[1]);

 int b = 0;

 while(1) {

 switch(b) {

 case 0:

 if(a == 0)

 b = 1;

 else
 b = 2;

 break;
 case 1:

 return 1;

 case 2:

 return 10;

 default:

 break;

 }

 }
 return 0;

}
Table 47 - Example for Control flow flattening performed by Obfuscator-LLVM (based on [352])

Instructions Substitution

Original Code Modified Code using Instructions

Substitution

Addition

a = b + c;

a = b - (-c);

OR

r = rand (); a = b + r; a = a + c; a = a – r;
Table 48 - Example for Instruction Substitution performed by Obfuscator-LLVM (based on [353])

Appendix

205

15.1.6 Example source code and decompiled code protected by Obf.-LLVM

#include <stdio.h>

int main(void){

printf("Hello, world\n");

return 0;

}
Table 49 - Simple C source code example to be used with Android NDK and Obfuscator-LLVM [279]

//

// This file was generated by the Retargetable Decompiler

// Website: https://retdec.com

// Copyright (c) 2016 Retargetable Decompiler <info@retdec.com>

// Comment by N.T. Kannengiesser: used binary taken from [279]

#include <stdint.h>

#include <stdio.h>

#include <stdlib.h>

// ------------------- Function Prototypes --------------------

int32_t entry_point(void);

void function_8284(void);

void (*function_8338(void))();

int32_t function_834c(char * str, int32_t a2, int32_t a3, int32_t a4, int32_t a5, int32_t a6,

int32_t a7);

// ------------------------ Functions -------------------------

// Address range: 0x8284 - 0x82bb

void function_8284(void) {

 int32_t v1 = 0; // 0xa000

}

// Address range: 0x82bc - 0x8337

int32_t entry_point(void) {

 int32_t v1; // 0xa000

 __libc_init();

 int32_t v2;

 return &v2;

}

// Address range: 0x8338 - 0x834b

void (*function_8338(void))() {

 // 0x8338

 int32_t v1; // 0xa000

 return (void (*)())__cxa_atexit(NULL, NULL, (char *)&v1);

}

Appendix

206

// Address range: 0x834c - 0x8363

int32_t function_834c(char * str, int32_t a2, int32_t a3, int32_t a4, int32_t a5, int32_t a6,

int32_t a7) {

 int32_t v1; // 0xa000

 // 0x834c

 return puts(str);

}

// --------------- Dynamically Linked Functions ---------------

// int __cxa_atexit(void(*func)(void *), void * arg, void * dso_handle);

// void __libc_init(void);

// int puts(const char *);

// --------------------- Meta-Information ---------------------

// Detected compiler/packer: gcc (4.6)

// Detected functions: 4

// Decompiler release: v2.1.2 (2016-01-27)

// Decompilation date: 2016-03-08 14:02:05
Table 50 - Decompiled version of the source code of Table 49 (output of [351])

15.1.7 Example source code using JNI and its corresponding decompiled code

/**

 * Created by nils on 22.03.2016.

 * [...]

 */

public class Account {

 public Account(){

 };
 public String getUsername(Context c) {

 // [...]

 return "Nils-Teststring";

 }

}
Table 51 - Account class to be called from native code

/**

 * Created by nils on 22.03.2016.

 * code based on source below

 * [...]

 */

JNIEXPORT jstring JNICALL

Java_com_example_nils_myapplication_MyNDK_getMyString

Appendix

207

 (JNIEnv * env, jobject thiz, jobject thiz2) {

 const char *str;

 jclass myclass_class =(jclass) env->NewGlobalRef

 (env->FindClass ("com/example/nils/myapplication/Account"));

 jmethodID constructorID = env->GetMethodID

 (myclass_class, "<init>", "()V");

 jmethodID methodID = env->GetMethodID

 (myclass_class, "getUsername", "(Landroid/content/Context;)Ljava/lang/String;");

 jobject myclass_object = env->NewObject

 (myclass_class, constructorID);

 jstring s = (jstring) env->CallObjectMethod

 (myclass_object, methodID, thiz2);

 str = env->GetStringUTFChars(s, 0);

 __android_log_print(ANDROID_LOG_ERROR,"NATIVE-CODE", "str %s", str);

 env->ReleaseStringUTFChars(s, str);

 return s;

}
Table 52 - Native code that calls the Java function getUsername (based on [354])

// This file was generated by the Retargetable Decompiler

// Website: https://retdec.com

// Copyright (c) 2016 Retargetable Decompiler <info@retdec.com>

// modified by N.T. Kannengiesser and reduced to important functions (120

// of 3022 lines); original binary file was compiled with -O3 by Android NDK

#include [...]

// ----------------- Float Types Definitions ------------------

[...]

// ------------------------ Structures ------------------------

[...]

// ------------------- Function Prototypes --------------------

int32_t _ZN7_JNIEnv16CallObjectMethodEP8_jobjectP10_jmethodIDz(struct struct_1 a1,

int32_t a2, int32_t a3, int32_t a4, int32_t a5, uint32_t a6, int32_t a7, int32_t a8, int32_t a9,

int32_t a10, int32_t a11);

int32_t _ZN7_JNIEnv9NewObjectEP7_jclassP10_jmethodIDz(struct struct_1 a1, int32_t

a2, int32_t a3, int32_t a4, int32_t a5, uint32_t a6, int32_t a7, int32_t a8, int32_t a9, int32_t

a10, int32_t a11);

// [...] around 80 function prototypes

Appendix

208

int32_t function_f48(void);

int32_t function_fec(int32_t a1);

int32_t Java_com_example_nils_myapplication_MyNDK_getMyString(struct struct_1 a1,

int32_t a2, int32_t a3, int32_t a4, int32_t a5, int32_t a6, int32_t a7, int32_t a8, int32_t a9,

int32_t a10, int32_t a11, int32_t a12, int32_t a13, int32_t a14, int32_t a15);

int32_t unknown_1928(void);

// [...] 6 function prototypes with unknown*

// ------------------------ Functions -------------------------

// Address range: 0xd78 - 0xdab

// Demangled: _JNIEnv::NewObject(_jclass *, _jmethodID *, ellipsis)

int32_t _ZN7_JNIEnv9NewObjectEP7_jclassP10_jmethodIDz(struct struct_1 a1, int32_t

a2, int32_t a3, int32_t a4, int32_t a5, uint32_t a6, int32_t a7, int32_t a8, int32_t a9, int32_t

a10, int32_t a11) {

// [...] looks similar to the function below

 return result;

}

// Address range: 0xdac - 0xddf

// Demangled: _JNIEnv::CallObjectMethod(_jobject *, _jmethodID *, ellipsis)

int32_t _ZN7_JNIEnv16CallObjectMethodEP8_jobjectP10_jmethodIDz(struct struct_1 a1,

int32_t a2, int32_t a3, int32_t a4, int32_t a5, uint32_t a6, int32_t a7, int32_t a8, int32_t a9,

int32_t a10, int32_t a11) {

 int32_t v1;

 struct struct_1 v2; // bp+10

 struct struct_1 v3; // bp+14

 int32_t (*v4)[2]; // bp+38

 int32_t v5; // 0x4000

 int32_t v6;

 struct struct_1 v7;

 struct struct_1 v8;

 int32_t v9;

 int32_t v10;

 int32_t v11;

 // 0xdac

 int32_t v12;

 ((int32_t (*)())(v12 & -2))();

 int32_t v13;

 if (v13 != a6) {

 // 0xdd0

 function_1d10();

 // branch -> 0xdd4

 }
 // 0xdd4

 ((int32_t (*)())(a10 & -2))();

 int32_t result;

 return result;

}

// Address range: 0xde0 - 0xe93

Appendix

209

int32_t Java_com_example_nils_myapplication_MyNDK_getMyString(struct struct_1 a1,

int32_t a2, int32_t a3, int32_t a4, int32_t a5, int32_t a6, int32_t a7, int32_t a8, int32_t a9,

int32_t a10, int32_t a11, int32_t a12, int32_t a13, int32_t a14, int32_t a15) {

 struct struct_1 v1; // bp+14

 struct struct_1 v2; // bp+14

 int32_t v3;

 struct struct_1 v4; // bp+10

 struct struct_1 v5; // bp+14

 int32_t (*v6)[2]; // bp+38

 int32_t v7; // 0x4000

 struct struct_1 v8;

 struct struct_1 v9;

 int32_t v10;

 int32_t v11;

 int32_t v12;

 // 0xde0

 int32_t v13;

 int32_t v14 = v13;

 int32_t v15;

 int32_t v16 = v15;

 v13 = a1.e0;

 int32_t v17;

 ((int32_t (*)())(v17 & -2))();

 int32_t v18;

 ((int32_t (*)())(v18 & -2))();

 int32_t v19;

 ((int32_t (*)())(v19 & -2))();

 int32_t v20;

 ((int32_t (*)())(v20 & -2))();

 v15 = v13;

 v1 = (struct struct_1){

 .e0 = 0,

 .e1 = 0

 };
 v1.e0 = v13;

 int32_t v21;

 int32_t v22;

 int32_t v23;

 int32_t v24 = _ZN7_JNIEnv9NewObjectEP7_jclassP10_jmethodIDz(v1, v13, v13,

0x2042, v21, a3, a3, v14, v22, v16, v23);

 v2 = (struct struct_1){

 .e0 = 0,

 .e1 = 0

 };
 v2.e0 = v13;

 int32_t v25;

 _ZN7_JNIEnv16CallObjectMethodEP8_jobjectP10_jmethodIDz(v2, v24, v15, a6, v25,

a3, a3, v14, v22, v16, v23);

 _ZN7_JNIEnv16CallObjectMethodEP8_jobjectP10_jmethodIDz(v2, v24, v15, a6, v25,

a3, a3, v14, v22, v16, v23);

 int32_t v26;

Appendix

210

 ((int32_t (*)())(v26 & -2))();

 int32_t v27;

 function_1d20(v27);

 int32_t v28;

 ((int32_t (*)())(v28 & -2))();

 ((int32_t (*)())a12)();

 int32_t v29;

 return v29 / 256;

}
Table 53 - Decompiled version of the source code of Table Table 52 (output of [351])

15.1.8 Example for intercepting a library method using LD_PRELOAD directive

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := nativeHook

LOCAL_CFLAGS += -O3 -fPIC

LOCAL_SRC_FILES := nativeHook.c

LOCAL_C_INCLUDES := $(LOCAL_PATH)

include $(BUILD_SHARED_LIBRARY)
Table 54 - Android.mk

APP_ABI := armeabi,armeabi-v7a,x86
Table 55 - Application.mk

char * sendRequest(char* userAgent, char* properties){

 return "TEST";

}
Table 56 - nativeHook.c

15.1.9 Dynamic code loading (Java)

Figure 81 - Simple Java class used in the example [100, p. 30]

Appendix

211

Figure 82 - Dynamic method calling using public APIs [100, p. 31]

15.1.10 Dynamic code loading (Native / *.so)

Figure 83 - Dynamic native code loading (*.so as parameter) using dlopen() [100, p. 37]

15.1.11 Dynamic code loading from memory

Figure 84 - Simple C source to be used as dynamic inserted executable code [100, p. 44]

Figure 85 - Assembly code of Figure 84 using objdump [100, p. 44]

Appendix

212

Figure 86 - Required function to allocate the space in memory for dynamic and future execution [100, p. 45]

Figure 87 - Copying the desired machine code to the allocated memory [100, p. 45]

Figure 88 - Casting of memory area to callable function [100, p. 46]

15.1.12 Dynamic memory modification using native code for copyright protection

Global.getInstance(); // place in OnStart() of main activity

public class Global {

 private static Global mInstance = null;

 // byte arrays to be replaced by native code

 public byte [] str1 = {66,65,85,77,95,95};

 public byte [] str2 = {66,65,85,77,95,95};

 protected Global(){}

 public static synchronized Global getInstance(){

 if(null == mInstance){

 mInstance = new Global();

 }
 return mInstance;

 }

}
Table 57 - Singleton Pattern to provide Android a global variable functionality [based on [339]]

Appendix

213

// Call native code in advance

if (Arrays.equals("NILS2K".getBytes(), "NILS2K".getBytes()) {

 Toast msg = Toast.makeText(c, "CP-EXIT / LICENSE FAILURE",

 Toast.LENGTH_LONG);

 msg.show();

 System.exit(0);

} else {

 Toast msg = Toast.makeText(c, "CP-EXIT DISABLED", Toast.LENGTH_LONG);

 msg.show();

}
Table 58 - Java Source Code quitting the application

#define NULL 0

#define LOG_TAG "NDK-Logging"

#define LOGD(...) __android_log_print(ANDROID_LOG_DEBUG, LOG_TAG,

__VA_ARGS__)

#define LOGE(...) __android_log_print(ANDROID_LOG_ERROR, LOG_TAG,

__VA_ARGS__)

#include "com_example_nils_myapplication_MyNDK.h"

#include <android/log.h>

#include <jni.h>

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

JNIEXPORT jstring JNICALL

Java_com_example_nils_myapplication_MyNDK_getMyString

 (JNIEnv * env, jobject thiz, jobject thiz2) {

 LOGD("DYNAMIC CP DEACTIVATION INITIATED");

 char adress[13];

 FILE* fp;

 char line[2048];

 // place any license checks here and adjust the code

 fp = fopen("/proc/self/maps", "r");

 if (fp == NULL){

 LOGE("Could not open /proc/self/maps");

 }
 long long int mp;

 void* vp;

 char* lowerLimit;

 char* upperLimit;

 char *egg_end = 0;

 int asize, incre;

 while (fgets(line, 2048, fp) != NULL) {

 if((strstr(line, "rw-p") != NULL)) {

Appendix

214

 if (line[8] == '-') {

 asize = 8; // address 0x00001111

 incre = 9;

 } else {
 asize = 12; // address 0x000011112222

 incre = 13;

 }
 strncpy(adress,line,asize);

 adress[asize+1] = '\0';

 mp = (long long int)strtoll(adress, NULL, 16);

 vp = (void*)mp;

 lowerLimit = (char*) vp;

 strncpy(adress,line+incre,asize);

 adress[asize+1] = '\0';

 mp = (long long int)strtoll(adress, NULL, 16);

 vp = (void*)mp;

 upperLimit = (char*) vp;

 LOGD("Range: %p - %p -> %s", lowerLimit, upperLimit,

 line);

 int egg_count = 65;

 char* string_a = 0;

 for (char* i = lowerLimit; i < upperLimit - 6; i++){

 if (i[0] == 'N' && i[1] == 'I' && i[2] == 'L' &&

 i[3] == 'S' && i[4] == '2' && i[5] == 'K'){

 i[0] = (char) egg_count;

 i[1] = (char) egg_count;

 i[2] = (char) egg_count;

 i[3] = (char) egg_count;

 egg_count++;

 }

 if (i[0] == (char)66 && i[1] == (char)65 && i[2] ==

 (char)85 && i[3] == (char)77 && i[4] ==

 (char)95 && i[5] == (char)95){

 i[0] = (char) egg_count;

 i[1] = (char) egg_count;

 i[2] = (char) egg_count;

 i[3] = (char) egg_count;

 egg_count++;

 }

 }

 }

 }
 fp->_close;

 return env->NewStringUTF("CP FINISHED");

}
Table 59 - Native C source code disabling the app quitting (based on source code of [100, p. 51f])

Appendix

215

15.1.13 PHP Script to verify license resp. by Google’s license servers externally

<?php

 $key = "-----BEGIN PUBLIC KEY-----\n" .

 chunk_split("MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAh+3zcF

 /4U+xz1OD1DQnzXSUUUxvxVQsjoxBPqf1J7iBbUQt81I+AV9PjpFxp86fqYw4GK

 T2IotFbN7pXXM0heIP9g78MwROMxtUGw5isrDl+LQBR3FeKbltSYhsDdXdAE5lz

 0zvkZQd0g1Ix9qsUmGSfNF5TE5vpVdXKfZnanVHtbWP2jgeh03DLS+J5/ZnBZZR

 WOXZyHSYJrc1RF1UultQVs7kMbuNC8+cjl/U+f28iIN6YdCUHLYVdbn5zRpfSpk

 f3g8zAfj5mOTAwbdZ3c96mpKLF6j9TLJ4ZY6UTTKSyAgR2c2xpXMbhlsqYi0QD5

 9Gw90gityO167J3TKvr2wIDAQAB", 64, "\n") . '-----END PUBLIC KEY-

 ----';

 $key = openssl_get_publickey($key);

 // Is sent from the app and has the following format:

 /*

 0|18823373|patrick.lvltest|1|ANlOHQN5Ulh/CIL49nle1l01usO14SSVvQ==

 |1430363385284

 “These six values are the actual response code [...], the nonce,

 the package name, the 'version code of the app', 'an app-specific

 user id' and the 'timestamp included in the request'” [64, p. 55]

 */

 $responseData = "";

 // Is sent from the app and looks like:

 /*

 Tg1SxIlWAePYAI3j9Pi23zcHaVRe07zM […]

 */

 $signature = "";

 $result = openssl_verify($responseData, base64_decode($signature),

 $key);

 $isLicensed = explode("|", $responseData)[0]; // 0 = LICENSED SRC

 if(isLicensed == "0" && $result == 1){

 return true; // everything fine

 } else {

 return false;

 }

?>
Table 60 - PHP Script to verify a license response by the Google LVL servers for authenticity (based on [75, p. 87f]).

Appendix

216

15.1.14 Example for a static C function and its protection feature

static int pre_add(){

 return 10;

}

int test_add(int a, int b){

 int c = a + b + pre_add();

 return c;

}
Figure 89 - Simple C example code [62, p. 75f]

without static with static

00041f98 <test_add>:

41f98: b510 push {r4, lr}

41f9a: 1844 adds r4, r0, r1

41f9c: f7ff fffa bl 41f94 <pre_add>

41fa0: 1820 adds r0, r4, r0

41fa2: bd10 pop {r4, pc}

00041f74 <test_add>:

41f74: 1840 adds r0, r0, r1

41f76: 300a adds r0, #10

41f78: 4770 bx lr

41f7a: 46c0 nop ; (mov r8, r8)

Table 61 - Static C function vs. none static C function [62, p. 76]

15.1.15 Assembly code using strip flag and without it

same code without using strip same code using strip command/flag

00000e0c <test_add>:

e0c:e52db004 push {fp} ; (str fp, [sp, #-4]!)

e10:e28db000 add fp, sp, #0

e14:e0800001 add r0, r0, r1

e18:e24bd000 sub sp, fp, #0

e1c:e49db004 pop {fp} ; (ldr fp, [sp], #4)

e20:e12fff1e bx lr

00000e38 <test_add>:

e38: 1840 adds r0, r0, r1

e3a: 4770 bx lr

Table 62 Comparison assembly code using and not using strip [62, p. 77]

15.1.16 Using pragmas and visibility attribute to hide symbols

Hiding symbols by visibility attribute

int __attribute__ ((visibility ("hidden")))test_add(int a, int b){

int c = a + b;

return c;

}
Table 63 - Using visibility attribute to hide symbol [62, p. 78]

Hiding symbols using pragma (difference to above: may apply to several functions)

#pragma GCC visibility push(hidden)

int test_add(int a, int b){

int c = a + b;

Appendix

217

return c;

}
#pragma GCC visibility pop

Table 64 - Using pragma to hide symbols [62, p. 79]

15.1.17 Using GCC’s naked attribute to hide data

__attribute__ ((naked)) void my_mum_said_im_special(){

 asm (".long 0x6C6C6548");

 asm (".long 0x6f57206f");

 asm (".long 0x00646c72");

}
Table 65 – Hiding "\0dlroW olleH" (= Hello World) [326]

const char *s = (const char *)&my_mum_said_im_special;

printf("%s\n", s);
Table 66 - Required code to print out aforementioned data [326]

15.1.18 Modification to SignPost for the integration of nLVL and fusing options

 // ApplicationInfo.java

 // see nLVL source codes

 // default implementation besides renewing the AuthToken always
Table 67 - ApplicationInfo.java provides methods for gathering user- and device information

 // StartGameActivity.java Modifications

 // class head

 public native String getLicenseStatus();

 public String getUserAuthToken(){

 return ApplicationInfo.getUserAuthToken

 (this.getBaseContext(),this);

 }

 public String getAndroidId() {

 return ApplicationInfo.getAndroidId(this);

 }

 public String getSoftwareVersion() {

 return ApplicationInfo.getSoftwareVersion(this);

 }

 // String getPackageName() is available by default

 // [...] onCreate()

 Global.getInstance();

 // [...] onStart()

 System.setProperty("SystemSecure", "true");

Appendix

218

 byte [] str1 = "NILS2K".getBytes();

 byte [] str2 = "NILS2K".getBytes();

 try {

 System.loadLibrary("MyTest"); // helper library calling nLVL

 getLicenseStatus(); // actual native code call

 } catch (UnsatisfiedLinkError e) {

 Log.d("NATIVE", "Unsatisfied Link error: " + e.toString());

 }

 if (Arrays.equals(str1, str2)) { // quit app if not deactivated by native code

 android.os.Process.killProcess(android.os.Process.myPid());

 }
Table 68 - Modifications made to StartGameActivity.java by GeoGame (based on sample code by [62])

 // [...] onResume()

 if (Arrays.equals(Global.getInstance().str1, Global.getInstance().str2)) {

 new Timer().schedule(new TimerTask() {

 @Override

 public void run() { // quit app after 13 seconds if not deactivated by native code

 android.os.Process.killProcess(android.os.Process.myPid());

 }
 }, 13000);

 }
Table 69 - Modifications to GeoGameActivity.java by GeoGame

public class Global {

 private static Global mInstance= null;

 public byte [] str1 = {66,65,85,77,95,95}; // small obfuscation

 public byte [] str2 = {66,65,85,77,95,95};

 protected Global(){}

 public static synchronized Global getInstance(){

 if(null == mInstance){

 mInstance = new Global();

 }
 return mInstance;

 }

}
Table 70 - Singleton Pattern class to store global variables (based on sample code by [339])

 // other nLVL source code [...]

 if(checkLicenseResponse.responseCode == 0){

 CP(); // deactivate CP methods in code upon runtime

 sprintf(parse, "status:licensed\nresponseCode=%d\nsignedData=%s\nsignature=%s\n",

 checkLicenseResponse.responseCode,checkLicenseResponse.signedData,

 checkLicenseResponse.signature);

 }else{
 sprintf(parse, "status:not licensed\nresponseCode=%d

Appendix

219

 \nsignedData=%s\nsignature=%s\n",

 checkLicenseResponse.responseCode,checkLicenseResponse.signedData,

 checkLicenseResponse.signature);

 }

 freeArray(arrResult);

 return parse;

}

void CP() {

 //LOGD("DYNAMIC CP DEACTIVATION INITIATED");

 char adress[13];

 FILE* fp;

 char line[2048];

 fp = fopen("/proc/self/maps", "r");

 if (fp == NULL){

 // LOGE("Could not open /proc/self/maps");

 }
 long long int mp;

 void* vp;

 char* lowerLimit;

 char* upperLimit;

 char *egg_end = 0;

 int asize, incre;

 while (fgets(line, 2048, fp) != NULL) {

 if((strstr(line, "rw-p") != NULL)) {

 if (line[8] == '-') { // address 0x00001111

 asize = 8;

 incre = 9;

 } else { // address 0x000011112222

 asize = 12;

 incre = 13;

 }

 strncpy(adress,line,asize);

 adress[asize+1] = '\0';

 mp = (long long int)strtoll(adress, NULL, 16);

 vp = (void*)mp;

 lowerLimit = (char*) vp;

 strncpy(adress,line+incre,asize);

 adress[asize+1] = '\0';

 mp = (long long int)strtoll(adress, NULL, 16);

 vp = (void*)mp;

 upperLimit = (char*) vp;

 // LOGD("Range: %p - %p -> %s", lowerLimit, upperLimit, line);

 int egg_count = 65;

 char* string_a = 0;

 for (char* i = lowerLimit; i < upperLimit - 6; i++){

Appendix

220

 if (i[0] == 'N' && i[1] == 'I' && i[2] == 'L' && i[3] ==

 'S' && i[4] == '2' && i[5] == 'K'){

 // LOGD("##### FOUND EGG ##### at %p",i);

 // LOGD("%s",line);

 // LOGD("##### DISABLING CP FORCED EXIT ##### at %p",i);

 i[0] = (char) egg_count;

 i[1] = (char) egg_count;

 i[2] = (char) egg_count;

 i[3] = (char) egg_count;

 egg_count++;

 }

 if (i[0] == 'A' && i[1] == 'L' && i[2] == 'L' && i[3] ==

 'E' && i[4] == 'S' && i[5] == '3'){

 i[0] = (char) egg_count;

 i[1] = (char) egg_count;

 i[2] = (char) egg_count;

 i[3] = (char) egg_count;

 egg_count++;

 }

 // B A U M _ _

 if (i[0] == (char)66 && i[1] == (char)65 && i[2] == (char)85 && i[3]==

 (char)77 && i[4] == (char)95 && i[5] == (char)95){

 i[0] = (char) egg_count;

 i[1] = (char) egg_count;

 i[2] = (char) egg_count;

 i[3] = (char) egg_count;

 egg_count++;

 }

 }

 }

 }
 fp->_close;

}
Table 71 - Modifications to nLVL's codeinput.c (based on source codes by [62] [100])

15.1.19 Mod. to SignPost for the integr. of nLVL, device ident. & fusing options

In addition to the modifications presented in 15.1.18 the following changes were added for

additional protection.

 char c2 = 'i';

 char c3 = 'l';

 // [...] other code [...]

 char c1 = 'k';

Appendix

221

 // [...] other code [...]

 // within onResume()

 final String c5 = ""+c1+c2;

 if (Arrays.equals(Global.getInstance().str1, Global.getInstance().str2)) {

 try {

 Process proc =

 Runtime.getRuntime().exec(c5+c3+c3+""+Global.getInstance().id);

 } catch (IOException e) {

 }

 // within onCreateResources()

 if(System.getenv("A_SECURE").equals("1")){

 BitmapTextureAtlasTextureRegionFactory.setAssetBasePath("gfx/");

 } else {
 BitmapTextureAtlasTextureRegionFactory.setAssetBasePath("gfx3/");

 }
 // within onCreateEngineOptions()

 try {

 Thread.sleep(Integer.parseInt(System.getenv("A_WAIT")));

 } catch (NumberFormatException e) {

 } catch (InterruptedException e) {

 }
Table 72 – Additional Modifications to GeoGameActivity.java (based on source codes by [337])

public int id = android.os.Process.myPid();
Table 73 – Additional Modifications to Global.java

 if(checkLicenseResponse.responseCode == 0 && verifyDevice()){ // see function below

 CP(); // see 15.1.18

 setenv("A_SECURE", "1", 1);

 setenv("A_WAIT", "1", 1);

 sprintf(parse, "status:licensed\nresponseCode=%d\nsignedData=%s\nsignature=%s\n",

 checkLicenseResponse.responseCode,checkLicenseResponse.signedData,

 checkLicenseResponse.signature);

 } else {
 kill(getpid(), SIGKILL);

 setenv("A_SECURE", "0", 1);

 setenv("A_WAIT", "10000000", 1);

 sprintf(parse, "status:not

licensed\nresponseCode=%d\nsignedData=%s\nsignature=%s\n",

 checkLicenseResponse.responseCode,checkLicenseResponse.signedData,

 checkLicenseResponse.signature);

 }
 freeArray(arrResult);

 return parse;

}

// [...]

int verifyDevice() {

 if ((v1() == 1) && (v2() == 1))

Appendix

222

 return 1;

 else
 return 0;

}

int v1() {

 int i = 0;

 char c, buffer[50];

 char MAC[] = "08:60:6e:7a:d3:b9"; // hardcoded MAC address (example)

 char file[] = "/sys/class/net/wlan0/address"; // notice: emulators do not have it, but eth0

 // instead

 FILE* fp = fopen(file,"r");

 if(fp == NULL)

 {
 //printf("DEBUG1 Error while opening the file.\n");

 } else {
 while((c = fgetc(fp)) != -1 && i<17) {

 buffer[i++] = c;

 }
 buffer[i] = '\0';

 if (strcmp(MAC, buffer)==0) {

 fclose(fp);

 return 1; // fine match

 } else {
 fclose(fp); // return 0 next

 }

 }
 return 0;

}

int v2() {

 char ID[] = "015d483bf10c140g"; // serial number hardcoded (example)

 FILE* file = popen("getprop ro.serialno", "r"); // use Android tool to get serial number

 char deviceID[17];

 fscanf(file, "%16s", deviceID);

 deviceID[16]='\0';

 pclose(file);

 if (strcmp(ID, deviceID)==0) {

 return 1; // fine match

 } else {
 return 0; // no match

 }

}
Table 74 - Additional modification to nLVL's codeinput.c (based on source codes by [62], [355])

Appendix

223

15.2 Proofs

15.2.1 libUSB issue used by native libaums due to SE Android

The USB device file is protected by SEAndroid in Lollipop and future versions. There seems

to be no working libUSB version available by the beginning of June 2016 (see [356]) that is a

fundamental requirement of the native libaums versions.

06-01 00:10:54.727: D/Debug(20098): UsbMassStorageDevice.c init()

06-01 00:10:54.727: E/Debug(20098): UsbMassStorageDevice.c init(): Error in

libusb_init: -99

06-01 00:10:54.727: A/libc(20098): Fatal signal 11 (SIGSEGV), code 1, fault addr 0x2c in

tid 20098 (bbrowserandroid)

06-01 00:11:11.074: W/bbrowserandroid(20210): type=1400 audit(0.0:630): avc: denied {

read } for name="usb" dev="tmpfs" ino=130527 scontext=u:r:untrusted_app:s0:c512,c768

tcontext=u:object_r:usb_device:s0 tclass=dir permissive=0
Table 75- Error Logging of native libaums testing app (here: SEandroid denies access to USB device)

15.2.2 TCA survey results

The following is a screenshot of the TUM Campus App showing the survey results of

questions performed for a duration of 14 days and in June/July 2016.

Figure 90 - Survey results / Screenshot of TUM Campus App by July 24th 2016

(Question 1/2 targeted CS students. Question 3 targeted other majors. Question 4 targeted all majors.

Dark blue means yes, bright blue means no)

Appendix

224

15.3 Forms

15.3.1 Question from for the 1st evaluation and group assignment

Appendix

225

15.3.2 Question form for the 2nd/3rd evaluation to assign the students to groups

Appendix

226

Abbreviations

227

16 Abbreviations

The list of abbreviations is based on outputs of the tool “Acronyms Master” and its used

sources (e.g., Abbreviations.com) for the automatic definition of acronyms. Further sources

are this dissertation (and mentioned sources of acronyms), any company websites (cf. brand

names) as well as the Google search with its quick definition function that is based on, e.g.,

Wikipedia. Moreover, initial Google search results listing the desired abbreviation were used

for definitions.

ABI

Application Binary Interface 111, 210

ADK

Android Open Accessory API and Development Kit

244

AID

Application ID 73

AIDL

Android Interface Definition Language 246

ALSR

Address space layout randomization 120, 121, 264

AND

Abbreviated Dialing Numbers (telephone numbers

stored on SIM card) 133

ANR

Application Not Responding (warning message used

on Android) 178

APDU

Application Protocol Data Unit 75, 76, 117, 232

API

Application Programming Interface 36, 37, 74, 86,

137, 231, 244, 248, 253

APK

Application Package (file) 13, 22, 24, 27, 42, 44, 47,

49, 51, 52, 53, 54, 60, 62, 67, 70, 83, 84, 87, 89, 95,

96, 98, 101, 123, 124, 127, 160, 180, 185, 187, 188,

189, 190, 196, 231, 254

ARA

Codename by Google (Project ARA) 166, 198, 262

ARM

Advanced RISC Machines (Company creating chip

layouts) 14, 39, 46, 59, 79, 81, 82, 84, 90, 110,

111, 113, 114, 115, 116, 141, 195, 252, 258, 259,

261

ART

Codename by Google (ART VM for Android) 8, 13,

39, 47, 48, 49, 50, 54, 55, 68, 84, 87, 93, 108, 109,

110, 122, 123, 124, 126, 127, 143, 150, 157, 158,

161, 196, 197, 231, 232, 237, 246

ASSD

Advanced Security SD interface 74

BMW

Bayrische Motoren Werke AG (car manufacturer) 22,

199

BR

Bayrischer Rundfunk (TV broadcaster) 22, 239

BR24

Bayrischer Rundfunk (TV broadcaster) 259

BSA

Business Software Alliance (organization fighting

against software piracy) 33

BYOD

Bring Your Own Device 78, 253

CD

Compact Disc 64, 69, 240, 249

Central Processing Unit 44, 113, 127, 166, 173

CLA

Class 76

CP

Copyright Protection 16, 173, 175, 177, 213, 214,

218, 219, 220, 221

CRC

Cyclic Redundancy Check (e.g., used for error

detection) 102

CTO

Chief Technology Officer 28, 107

CVE

Common Vulnerabilities and Exposures 21, 97, 239

DAP

Data Authentication Pattern 117

DEP

Data Execution Prevention 120, 264

DEX

Dalvik Executable 13, 42, 45, 46, 47, 48, 49, 50, 51,

60, 61, 68, 85, 87, 101, 108, 109, 110, 122, 124,

127, 143, 156, 157, 160, 195, 231, 246

DKB

Deutsche Kreditbank (Name of German bank

institute) 97

DOS

Disk Operating System 64

DPA

Dynamic Program Analysis or Differential Power

Analysis 91, 117, 264

DRAM

Dynamic Random Access Memory (RAM) 84

DRM

Digital Rights Management 14, 22, 23, 24, 27, 29, 67,

70, 78, 86, 89, 98, 101, 107, 109, 110, 120, 122,

158, 180, 182, 191, 194, 199, 240, 255, 259, 263

DVD

Digital Versatile Disc 64, 240, 249

DVM

Dalvik Virtual Machine 44, 54

EAL

Evaluation Assurance Level 118

ELF

Executable and Linkable Format (binary file used on

Linux) 47, 48, 50, 145, 246

EULA

End User License Agreement 34

EXT4

Abbreviations

228

Fourth extended filesystem 41

F13

Division at TUM (Prof. Baumgarten) 252

FAQ

Frequently Asked Question 81, 90, 245, 249, 255

FBI

Federal Bureau of Investigation (American police) 33

FIDO

Fast IDentity Online 81, 253

G&D

Giesecke & Devrient (German company) 8, 65, 72,

82, 86, 160, 164, 174, 251

GCC

GNU Compiler Collection 17, 145, 159, 160, 216,

217

GFX

Graphics 178

GIGA

German TV show related to computing and games

239

GmbH

German company with limited liability 179, 249, 252,

258

GPL

General Public License 34

GPS

Global Positioning System 135, 148, 149

GSF

Google Service Framework 138, 140, 173, 235

GSI

Generic Security Interface 74, 76

GSM

Global System for Mobile Communications 135

HD

High Definition 124, 243

HDCP

High-bandwidth Digital Content Protection 78

HID

Human Interface Device 86

HTC

Producer of smart devices 21, 26, 79, 120, 121, 129,

241

HTTP

Hyper Text Transfer Protocol 71

HTTPS

HTTP Secure 71, 191

HW

Hardware 140, 141

I/O

Input/Output 74, 78, 242, 244, 246, 247, 252

I20

TUM Division I20 (Prof. Eckert) 80, 85, 252

IBM

International Business Machines (company) 246, 256

ICCID

Integrated Circuit Card ID (GSM - UMTS) 133

ID

Identification number 66, 71, 138, 140, 152, 153, 164,

165, 173, 174, 222, 235

IDA

Interactive Disassembler (software name) 62, 160,

190, 191, 248

IDE

Integrated Developer Environment 42, 43, 53, 61, 65,

72, 73

IIPA

International Intellectual Property Alliance 33

IMEI

International Mobile Equipment Identity (GSM -

UMTS) 67, 137, 140, 173, 234

IMSI

International Mobile Subscriber Identity (GSM -

UMTS) 133

INS

Instruction 76

IOCTL

Input/Output Control 120

iOS

Operating System by Apple Inc. 12, 18, 19, 20, 22,

24, 29, 127, 194, 237, 238, 256

IP

Internet Protocol or Intellectual Property 22, 126,

130, 159

IPC

Inter Process Communication 65, 85, 100, 151

ISO

International Standards Organisation 76, 117

IT

Information Technologies 8, 21, 179, 183, 197

J2ME

Java 2 Platform Micro Edition 44

J2SE

Java 2 Platform Standard Edition 44

JAR

Java Archive 46, 60, 61, 83

JCRE

Java Card Runtime Environment 74

JCS

Name of IDE by G&D to develop secure element

applets 72, 73, 232

JCVM

Java Card Virtual Machine 74

JIT

Just In Time 47, 55, 246, 261

JNI

Java Native Interface 17, 44, 112, 113, 114, 124, 129,

132, 133, 134, 135, 136, 137, 138, 139, 140, 141,

146, 152, 154, 167, 169, 175, 176, 201, 206, 247

JTAG

Joint Test Action Group (and synonym for an

debugging interface of embedded hardware) 129,

264

JVM

Java Virtual Machine 44, 245

KitKat

Android version codename 198, 263

KiWi

Class in Amazon’s DRM 103

KNOX

Brand name of Samsung’s security solution 21, 26,

78, 82, 83, 129, 232, 238, 241, 252, 253

LG

Manufacturer of smart devices (company) 21, 121,

129

LKM

Loadable Kernel Module 88

Abbreviations

229

LLVM

Brand name (formerly known as Low-Level-Virtual-

Machine) 17, 90, 112, 113, 160, 170, 204, 205,

235, 257

LP

Lucky Patcher (Cracking tool for Android) 98, 99,

130, 232

LVL

License Verification Library (Android) 15, 17, 21, 23,

27, 29, 30, 65, 66, 67, 70, 89, 90, 94, 95, 98, 99,

103, 104, 105, 106, 107, 109, 110, 122, 124, 125,

128, 131, 151, 155, 158, 165, 168, 169, 175, 179,

180, 182, 187, 188, 189, 190, 194, 195, 197, 198,

199, 200, 215, 232, 236, 240, 242, 261

MAC

Media Access Control 67, 134, 173, 178, 222

MD5

Name of a hash function 166

MIT

Massachusettes Institute Of Technology 43, 245

MITM

Man-In-The-Middle (attack) 70, 83, 103, 104, 128,

154, 175, 181, 188, 189, 190, 191

MIUI

Brand name (Android mod) 36

MMC

Multi Media Card 134, 140, 141

MSC

Mobile Security Card (product by G&D) 6, 8, 65, 72,

74, 75, 76, 77, 78, 86, 118, 161, 174, 186, 199, 232,

251

NDA

Non-disclosure Agreement 8, 73, 199, 232

NDK

Native Development Kit (Android) 14, 36, 42, 43, 53,

61, 62, 63, 86, 90, 95, 107, 110, 111, 113, 122, 124,

128, 132, 133, 134, 135, 136, 137, 138, 139, 140,

141, 142, 159, 161, 175, 180, 197, 201, 202, 205,

207, 213, 231, 235, 237, 245, 246, 252, 258, 260,

261, 264

NFC

Near Field Communication 72, 81, 251

nLVL

Native License Verification Library 8, 15, 16, 17, 27,

106, 114, 116, 125, 128, 151, 152, 153, 154, 155,

156, 158, 165, 167, 168, 169, 175, 176, 177, 178,

179, 180, 181, 182, 186, 188, 191, 195, 196, 217,

218, 220, 222, 233, 235, 236

NSA

National Security Agency (American organization)

79, 84, 198, 245, 250

NT

New Technology (Windows) 19

OAT

Ahead of time 13, 42, 47, 48, 49, 50, 51, 54, 60, 61,

68, 87, 109, 110, 124, 126, 127, 143, 231

ODA

Brand name (Online Disassembler) 62, 250

ODEX

Optimized Dalvik Executable 13, 42, 47, 49, 50, 51,

54

OEM

Original Equipment Manufacturer 120, 241

OLLVM

Obfuscator LLVM 113, 258

O-LLVM

Obfuscator LLVM 258

OP

Operation 13, 57, 190

OP-Code

Operation Code 57

OpenGL

Open Graphics Library 172

OpenSL

Open Sound Library 139, 260

OpenSSL

Open Library used to provide security functions to

applications 71, 126, 175

OS

Operating System 64, 74, 78, 81, 82, 83, 117, 120,

121, 129, 130, 166, 180, 182, 195, 198, 232, 243,

259

PC

Personal Computer 23, 65, 173, 174, 183, 249, 255,

259, 264

PHP

PHP Hyptertext Proprocessor (scripting language used

for websites) 17, 155, 174, 215, 236

PID

Process ID 144, 178

PIN

Personal Identification Number 164

PNU

Pixel nonuniformity noise 92, 94, 138, 140, 235

PRNU

Photo-response non-uniformity noise 92, 138

Q1

Question 1 114

Q2

Question 2 34, 114, 243

Q3

Question 3 115

QSEE

TEE by Qualcomm 79, 93, 119, 120, 121

RAM

Random Access Memory 44, 122

ReGeX

Open Source Game 16, 171, 173

RemixOS

Android x86 Operating System 131

RFID

Radio-Frequency Identification 11

ROMs

Read-Only Memory (here

refers to Android images) 244

RPC

Remote Procedure Call 51

RSA

Rivest Shamir And Adleman (Encryption) 65

RTC

Real time clock 86, 119, 165

RTOS

Realtime Operating System 81

SD

Secure Digital (usually refers to SD-cards) 72, 74, 76,

134, 147

Abbreviations

230

SDK

Software Development Kit 28, 41, 42, 53, 124, 133,

158

SE

Secure Element 8, 15, 16, 17, 27, 42, 72, 73, 74, 77,

78, 84, 86, 117, 118, 119, 121, 142, 145, 147, 149,

150, 151, 156, 160, 161, 162, 164, 165, 166, 168,

173, 174, 178, 180, 181, 185, 194, 195, 197, 223,

233, 235, 242, 245, 251, 258

SecuROM

Copy Protection for CDs 23, 64

SEEK

Secure Element Evaluation Kit 252

SELinux

Security Enhanced Linux 40, 79, 96, 126, 198, 241

SIM

Subscriber Identity Module 72, 120, 133, 137, 140,

153, 234, 263

SMS

Secure Memory Calls (refers to TEEs) 120

SoC

System on a Chip 79

SPA

Simple Power Analysis 117, 264

SPSM

Conference name 252

SQL

Structured Query Language 71

SQLite

Structured Query Language (lite version) 71, 170

SSID

Service Set Identifier 140

SSL

Secure Sockets Layer 158

SW

Software 117

SWP

Single Wire Protocol 72, 263

TA

Trusted Application 78

TCA

TUM Campus App 17, 223

TEE

Trusted Execution Environment 26, 78, 79, 82, 83,

110, 117, 119, 120, 121, 129, 181, 196, 198, 232,

253, 259

TIMA

TrustZone-based Integrity Measurement Architecture

(cf. TEE) 83

TIS

Tool Interface Standards 47

TPM

Trusted Platform Module 82, 253

TUM

Technische Universitaet Muenchen 6, 8, 19, 80, 85,

114, 223, 233, 242, 244, 245, 249, 252, 255, 258,

261, 262

TV

Television 22, 259

TWRP

Recovery Alternative from TeamWin for Android 41

U2F

Universal 2nd Factor 81, 253

UI

User Interface 107, 130, 196

UICC

Universal Integrated Circuit Card (also SIM card) 72,

251, 263

URL

Universal Resource Locator (WWW) 153, 177, 235

USB

Universal Serial Bus 23, 36, 65, 76, 77, 78, 82, 86,

93, 132, 150, 161, 223, 232, 236, 240, 251, 252

USB-OTG

Universal Serial Bus – On The Go 36, 76, 77, 78, 232

USL

UNIX System Laboratories 47

VAC

Valve Anti Cheat 23, 240

VdS

Vertrauen durch Sicherheit (company) 179

VM

Virtual Machine 8, 13, 34, 39, 44, 46, 47, 54, 55, 57,

86, 87, 93, 108, 109, 110, 117, 122, 123, 124, 126,

127, 143, 150, 157, 158, 161, 195, 196, 197, 231,

232, 244, 246

VTS

Virtuous Ten Studio (Reenginering tool) 61, 248

WoW

World of Warcraft (Game by Blizzard Entertainment)

250

XEN

Brand name (virtual machines) 85

List of figures

231

17 List of figures

Figure 1 - Comparison of market shares (US/Germany – April 2016) (based on screenshots

from [4]) ... 18

Figure 2 - Device Fragmentation by August 2015 (based on screenshots from [20]) 20

Figure 3 - Simplified situation overview (big picture of piracy- and copy protection issues) . 25

Figure 4 - Market shares [87] ... 35

Figure 5 - Different Android versions among the Google ecosystem collected by August 1st

2016 [89] .. 36

Figure 6 - Android versions, their names and related API levels [93] 37

Figure 7 - Android versions on a timeline (based on [94]) .. 38

Figure 8 - Android Architecture [95] ... 39

Figure 9 - Android Architecture vs. Linux Architecture [[99] as quoted in [100, p. 5]] 40

Figure 10 - Root filesystem of Android [106] .. 41

Figure 11 - Directory of an Android App (example) [106] .. 42

Figure 12 - Android project with native Code (Android Studio) [100, p. Appendix A] 43

Figure 13 - Comparison of bytecode in Java (b) and DEX (c) files (based on [64, p. 18] [114]

[115] [116]) .. 45

Figure 14 - Assembler of a DEX file [95, p. 40] .. 46

Figure 15 - DEX Conversion [119] .. 46

Figure 16 - Zygote and its child processes (based on [106]) ... 47

Figure 17 - Dalvik vs. ART VM [122] ... 47

Figure 18 - ART Executable [100, p. 18] (based on [123] [124]) .. 48

Figure 19 - APK file structure [100] (draft version – not published) 49

Figure 20 - DEX file format [126, p. 12] ... 50

Figure 21 - File format of an OAT file [100] (based on [123]) ... 51

Figure 22 - Building APK files [128] ... 52

Figure 23 - Build process of native code using the NDK [130] ... 53

Figure 24 - Installation procedure [100, p. 9]... 54

Figure 25 - App Execution by Dalvik- and ART VM [100, p. 11] .. 55

Figure 26 - Lifecycle of an Android Activity [132] ... 56

Figure 27 – Primitives [139] .. 58

Figure 28 - Overview of De-/Compilation and convertation options by example (based on tool

information sources below) .. 60

Figure 29 – How Google’s License Verification Library works [47, p. top] 66

Figure 30 - Permission to use LVL [66, p. 18] .. 66

Figure 31 - LVL Configuration [66, p. 19] .. 66

Figure 32 - LVL Callback methods [66, p. 19] .. 67

Figure 33 - Overview license check [177] ... 67

Figure 34 – Example (blue code) for a disassembled x86 code using the online disassembler

for strcpy [178] ... 68

Figure 35 - Mobile Security Card [193] ... 72

Figure 36 - Giesecke & Devrient JCS Suite's Macro Editor .. 73

Figure 37 - Giesecke & Devrient JCS Suite's Communication Log (without details due to

NDA) .. 73

Figure 38 - Architecture of the Java Card OS [194] .. 74

List of figures

232

Figure 39 - Internal Architecture of the MSC [194] .. 74

Figure 40 - Example Code of the default applet structure [197, p. 22] 75

Figure 41 - APDU default structure [196, p. 158] ... 76

Figure 42 - Format of APDU requests [197, p. 25] .. 76

Figure 43 - Devices supporting USB-OTG (as of 2015) [201] .. 77

Figure 44 -Performance test of the MSC using libaums in an Android App (10kB and more

were calculated) [197] .. 78

Figure 45 - Simplified overview of an Android device providing a TEE (based on [203]) 79

Figure 46 - Trustonic for Samsung KNOX [202] .. 82

Figure 47 - "Online Execution Class" (top) and "Encryption-based Copyright Protection"

(bottom) [237] .. 88

Figure 48 - Estimation on secure and insecure Android devices [260] 97

Figure 49 - LP Modes and related Patch Patterns [66, p. 35] .. 99

Figure 50 - Search and Replace Patterns with blue fixpoints and placeholders marked as ??

[66, p. 36] ... 99

Figure 51 - Obfuscated code by Amazon added to an app (extract) [64, p. 31] 102

Figure 52- Communication of a performed license check using the LVL [62, p. 22] (based on

[263]) .. 104

Figure 53 - Handling of the server response by Google and manipulated methods [64, p. 57]

 .. 105

Figure 54 – Xposed’s logging of an attack by the developed Xposed Module for LVL

circumvention (app information hidden) .. 106

Figure 55 - Example for Simplify conversion (based on graphics from [270]) 109

Figure 56 - Trusted and untrusted services .. 118

Figure 57 - General TEE architecture [294] ... 119

Figure 58 - Proposal for new Google Play Store Implementation [164] 127

Figure 59 - Native License Verification Library with attached secure storage [164] 128

Figure 60 - Memory mapping of a e.g. a process [100, p. 43] ... 144

Figure 61 - Example code to trigger a native crash (SIGSEGV) [100, p. 50] 145

Figure 62 - Resulting native stack traces after execution of code in Figure 61 [100, p. 50] . 146

Figure 63 - Illustration of Indirect Method Triggering (example using files) 147

Figure 64 - Crash log after the process was killed using

android.os.Process.killProcess(android.os.Process.myPid()); ... 149

Figure 65 - Possible implementation of a secured server access requiring a SE on the client

side ... 151

Figure 66 - Overview on the Architectural Design of an application protected by the nLVL

[62, p. 55] ... 152

Figure 67 - Example logging data from the nLVL taken from a Nexus 5 device 153

Figure 68 - Sequence of a license request and its response [62, p. 65] 154

Figure 69 - Explanation to linear sweep issue [64, p. 68] .. 157

Figure 70 - Sequence diagram of our initial copyright protection approach using SE and Java

only (based on [330]) ... 162

Figure 71 - Libaums implementation (Java code only) [based on [201] and [199]] 163

Figure 72 - Overview on the native libaums implementation (native code with minor Java

code parts) [201] ... 163

Figure 73 – SignPosts App (not published by authors) [335] .. 172

Figure 74 - State chart describing the game (classic- and action mode) [337] 172

List of figures

233

Figure 75 – MainActivity.java /Main Activity of the example project [100, p. Appendix A]

 .. 200

Figure 76 - MyNDK.java / Class for providing native code [100, p. Appendix A] 200

Figure 77 - mylib.cpp / C++ file with native code implementation [100, p. Appendix A].... 201

Figure 78 - Android.mk / Android Makefile [100, p. Appendix A] 201

Figure 79 Application.mk / Application Makefile [100, p. Appendix A] 201

Figure 80 - build.gradle / Gradle Build File [100, p. Appendix A] 201

Figure 81 - Simple Java class used in the example [100, p. 30] .. 210

Figure 82 - Dynamic method calling using public APIs [100, p. 31] 211

Figure 83 - Dynamic native code loading (*.so as parameter) using dlopen() [100, p. 37] .. 211

Figure 84 - Simple C source to be used as dynamic inserted executable code [100, p. 44] .. 211

Figure 85 - Assembly code of Figure 84 using objdump [100, p. 44] 211

Figure 86 - Required function to allocate the space in memory for dynamic and future

execution [100, p. 45] ... 212

Figure 87 - Copying the desired machine code to the allocated memory [100, p. 45] 212

Figure 88 - Casting of memory area to callable function [100, p. 46] 212

Figure 89 - Simple C example code [62, p. 75f] .. 216

Figure 90 - Survey results / Screenshot of TUM Campus App by July 24th 2016 (Question 1/2

targeted CS students. Question 3 targeted other majors. Question 4 targeted all majors. Dark

blue means yes, bright blue means no) .. 223

List of tables

234

18 List of tables

Table 1 - Java Source Code Snippet (based on [106]) ... 59

Table 2 – Smali Source Code Sample (based on [106]) .. 59

Table 3- Patch Patterns, high level modifications and its results (based on [66, p. 37ff]) 101

Table 4 - Requirements for the copyright identification mechanisms 133

Table 5 - Default table with descriptions ... 133

Table 6- Identification by SIM (generally based on [302, pp. 20-57]) 133

Table 7 - Identification by Wireless Network Hardware IDs (generally based on [302, pp. 20-

57]) ... 134

Table 8 - Identification based on Wireless Networks (generally based on [302, pp. 20-57]) 134

Table 9 - Identication based on files and SDcard IDs (generally based on [302, pp. 20-57]) 134

Table 10 - Identication based on files and SDcard IDs (generally based on [302, pp. 20-57])

 .. 134

Table 11- Identification based on Accounts (generally based on [302, pp. 20-57]) 135

Table 12 - Identification based on Contact information (generally based on [302, pp. 20-57])

 .. 135

Table 13 - Identifcation based on Calling Lists (generally based on [302, pp. 20-57]) 135

Table 14 - Identification based on locations (of a device) (generally based on [302, pp. 20-

57]) ... 136

Table 15 - Identification based on music files (generally based on [302, pp. 20-57]) 136

Table 16 - Identification based on installed applications (generally based on [302, pp. 20-57])

 .. 136

Table 17 - Identification based on device orientation using Magnetometer and Accelerometer

(generally based on [302, pp. 20-57]) .. 136

Table 18 - Identification based on IMEI (generally based on [302, pp. 20-57]) 137

Table 19 - Identification based on device serial number (generally based on [302, pp. 20-57])

 .. 137

Table 20 - Identification based on specific pixel errors (generally based on [302, pp. 20-57])

 .. 137

Table 21 - Identiication based on Dark Frames (generally based on [302, pp. 20-57]) 137

Table 22 - Identification based on PNU [254] ... 138

Table 23 - Identification based on the Android ID (generally based on [302, pp. 20-57]) 138

Table 24 - Identification based on the GSF ID (generally based on [302, pp. 20-57]) 138

Table 25 - Identification based on the device's environment (generally based on [302, pp. 20-

57]) ... 139

Table 26 - Identification based on device specific properties of speaker and microphone [251]

 .. 139

Table 27 - Identification based on the user's fingerprint [314] .. 139

Table 28 - Identification based on the user's face .. 139

Table 29 - Identification based on the vibration measured using the accelerometer [252].... 140

Table 30 - Overview of information sources rated according to our criteria as outlined in

Table 4 (based on aforementioned sources) .. 140

Table 31 - Remaining identification sources providing the best security benefit (based on

aforementioned sources) .. 141

Table 32 - URL request to the license servers [based on network.c of nLVL] 153

List of tables

235

Table 33 - Example content of ApiRequest file as supplied by Google License Server in reply

to Mr. Chen’s example app .. 154

Table 34 – Example for a license response, its signature and a public key [based on [75, p.

85ff]] ... 156

Table 35 - Possible database structure of a licensing server in combination with using SE and

device/user identification ... 164

Table 36 - Required time till server access in comparison to 3rd party clients 166

Table 37 - Expectations on each group (based on [330, p. 23ff]) ... 185

Table 38 – Expectations vs. Results on each group (based on [330, p. 23ff], [[286] as quoted

in [330, p. 23ff]], [286]) ... 186

Table 39 – Expectations on each group in terms of evaluation 2 (based on [330, p. 23ff]) .. 188

Table 40 – Expectations on each group in terms of evaluation 3 (based on [330, p. 23ff]) .. 189

Table 41 – Expectations vs. Results on each group in terms of evaluation 2 (based on [330, p.

23ff] and [284]) .. 190

Table 42 – Expectations vs. Results on each group in terms of evaluation 3 (based on [330, p.

23ff], [285]) .. 190

Table 43 - Simple C code to be used within the Android NDK [106] 201

Table 44 - Modified and decompiled example code of Table 43 using -O3 and no symbols

upon compilation by Android NDK (based on output of [351]) .. 202

Table 45 - Simple C code example .. 202

Table 46 - Modified and decompiled code of Table 45 using -O3 upon compilation (based on

output of [351]) .. 204

Table 47 - Example for Control flow flattening performed by Obfuscator-LLVM (based on

[352]) .. 204

Table 48 - Example for Instruction Substitution performed by Obfuscator-LLVM (based on

[353]) .. 204

Table 49 - Simple C source code example to be used with Android NDK and Obfuscator-

LLVM [279] ... 205

Table 50 - Decompiled version of the source code of Table 49 (output of [351]) 206

Table 51 - Account class to be called from native code ... 206

Table 52 - Native code that calls the Java function getUsername (based on [354]) 207

Table 53 - Decompiled version of the source code of Table Table 52 (output of [351]) 210

Table 54 - Android.mk ... 210

Table 55 - Application.mk ... 210

Table 56 - nativeHook.c ... 210

Table 57 - Singleton Pattern to provide Android a global variable functionality [based on

[339]] .. 212

Table 58 - Java Source Code quitting the application .. 213

Table 59 - Native C source code disabling the app quitting (based on source code of [100, p.

51f]) .. 214

Table 60 - PHP Script to verify a license response by the Google LVL servers for authenticity

(based on [75, p. 87f]). ... 215

Table 61 - Static C function vs. none static C function [62, p. 76] .. 216

Table 62 Comparison assembly code using and not using strip [62, p. 77] 216

Table 63 - Using visibility attribute to hide symbol [62, p. 78] ... 216

Table 64 - Using pragma to hide symbols [62, p. 79] .. 217

Table 65 – Hiding "\0dlroW olleH" (= Hello World) [326]... 217

List of tables

236

Table 66 - Required code to print out aforementioned data [326] ... 217

Table 67 - ApplicationInfo.java provides methods for gathering user- and device information

 .. 217

Table 68 - Modifications made to StartGameActivity.java by GeoGame (based on sample

code by [62]) .. 218

Table 69 - Modifications to GeoGameActivity.java by GeoGame .. 218

Table 70 - Singleton Pattern class to store global variables (based on sample code by [339])

 .. 218

Table 71 - Modifications to nLVL's codeinput.c (based on source codes by [62] [100]) 220

Table 72 – Additional Modifications to GeoGameActivity.java (based on source codes by

[337]) .. 221

Table 73 – Additional Modifications to Global.java .. 221

Table 74 - Additional modification to nLVL's codeinput.c (based on source codes by [62],

[355]) .. 222

Table 75- Error Logging of native libaums testing app (here: SEandroid denies access to USB

device) .. 223

References

237

19 References

[1] T. Aura and D. Gollmann, "Software license management with smart cards", in

USENIX Workshop on Smartcard Technology, Chicago, Illinois, USA, 1999.

[2] N. Kerris and S. Dowling, "Apple Reinvents the Phone with iPhone", Apple, 09 01

2007. [Online], Available: https://www.apple.com/pr/library/2007/01/09Apple-

Reinvents-the-Phone-with-iPhone.html [Accessed 15 06 2015].

[3] S. Kovach, "How Android Grew To Be More Popular Than The iPhone", 13 08 2013.

[Online], Available: http://www.businessinsider.com/history-of-android-2013-

8?op=1&IR=T [Accessed 15 06 2015].

[4] ComTech, "Kantar Worldpanel", ComTech, 04 2015. [Online], Available:

http://www.kantarworldpanel.com/global/smartphone-os-market-share/ [Accessed 08

08 2015].

[5] Apple, "iOS 8 for Developers", [Online], Available: https://developer.apple.com/ios/

[Accessed 15 06 2015].

[6] Google, "Introduction to Android", [Online], Available:

https://developer.android.com/guide/index.html [Accessed 03 07 2016].

[7] Google, "Android NDK", Google, [Online], Available:

http://developer.android.com/tools/sdk/ndk/index.html [Accessed 26 11 2015].

[8] Google, "ART and Dalvik", Google, [Online], Available:

https://source.android.com/devices/tech/dalvik/ [Accessed 07 10 2015].

[9] Microsoft, "A history of Windows", [Online], Available:

http://windows.microsoft.com/en-us/windows/history#T1=era5 [Accessed 22 06

2016].

[10] D. Thomas, A. Beresford, A. Rice and D. Wagner, "AndroidVulnerabilities.org",

University of Cambridge, 2015. [Online], Available:

http://androidvulnerabilities.org/#vulnerabilities [Accessed 17 10 2015].

[11] ustwo games, "Twitter account by ustwo games", 05 01 2015. [Online], Available:

https://twitter.com/ustwogames/status/552136427904184320 [Accessed 22 06 2016].

[12] A. Kazmucha, "Jailbreak, app piracy, and the true cost of theft", 26 05 2012. [Online],

Available: http://www.imore.com/jailbreak-app-piracy-cost-theft [Accessed 29 07

2016].

[13] A. Bernhofer, Interviewee, personal communication. [Interview]. 2013.

[14] Shiny Development, "iOS App Store - Rolling Annual Trend Graph", Shiny

Development, 13 12 2015. [Online], Available:

http://appreviewtimes.com/ios/annual-trend-graph [Accessed 13 12 2015].

References

238

[15] Apple, "Common App Rejections", [Online], Available:

https://developer.apple.com/app-store/review/rejections/ [Accessed 03 03 2016].

[16] Google, "Up and running with material design", [Online], Available:

https://developer.android.com/design/index.html [Accessed 03 07 2016].

[17] H. Lockheimer, "Android and Security", Google, 02 02 2012. [Online], Available:

http://googlemobile.blogspot.de/2012/02/android-and-security.html [Accessed 03 03

2016].

[18] M. Kassner, "Google Play: Android's Bouncer can be pwned", TechRepublic, 02 07

2012. [Online], Available: http://www.techrepublic.com/blog/it-security/-google-

play-androids-bouncer-can-be-pwned/ [Accessed 03 03 2016].

[19] S. Hurtz, "Warum Android-Nutzer neidisch auf Apple-Kunden sein sollten",

Sueddeutsche Zeitung, 02 12 2015. [Online], Available:

http://www.sueddeutsche.de/digital/sicherheit-bei-smartphones-warum-android-

nutzer-neidisch-auf-apple-kunden-sein-sollten-1.2763408 [Accessed 22 06 2016].

[20] OpenSignal, "Android Fragmentation Visualized", 08 2015. [Online], Available:

http://opensignal.com/reports/2015/08/android-fragmentation/ [Accessed 22 06

2016].

[21] Google, "Welcome to the Android Open Source Project!", Google, [Online],

Available: https://source.android.com/ [Accessed 22 06 2016].

[22] Google, "Google Store", [Online], Available: https://store.google.com [Accessed 01

06 2015].

[23] Samsung, "Samsung and Trustonic Launch Trustonic for KNOX, Delivering a Whole

New Level of Trust Enhanced Experiences on Samsung Mobile Devices", 19 05

2015. [Online], Available: http://www.samsung.com/uk/news/local/samsung-and-

trustonic-launch-trustonic-for-knox-delivering-a-whole-new-level-of-trust-enhanced-

experiences-on-samsung-mobile-devices [Accessed 22 06 2015].

[24] Google, "Nexus Security Bulletins", Google, [Online], Available:

http://source.android.com/security/bulletin/index.html [Accessed 29 03 2016].

[25] CVE, "Common Vulnerabilities and Exposures (applied filter android privileges)",

CVE, [Online], Available: https://cve.mitre.org/cgi-

bin/cvekey.cgi?keyword=android,+privileges [Accessed 29 03 2016].

[26] J. Drake, "Stagefright: Scary Code in the Heart of Android", Zimperium, [Online],

Available: https://www.blackhat.com/docs/us-15/materials/us-15-Drake-Stagefright-

Scary-Code-In-The-Heart-Of-Android.pdf [Accessed 05 08 2015].

[27] Check Point, "QuadRooter: New Android Vulnerabilities in Over 900 Million

Devices", 07 08 2016. [Online], Available:

http://blog.checkpoint.com/2016/08/07/quadrooter [Accessed 08 08 2016].

References

239

[28] M. Brown, "Android’s Piracy Problem Is Forcing Developers To Give Away Games:

‘Alto’s Adventure’ Latest Freebie", International Business Times, 11 02 2016.

[Online], Available: http://www.ibtimes.com/androids-piracy-problem-forcing-

developers-give-away-games-altos-adventure-latest-2303552 [Accessed 22 06 2016].

[29] J. Underwood, "Google+ Account", 03 02 2015. [Online], Available:

https://plus.google.com/+JackUnderwood/posts/jWs84EPNyNS [Accessed 22 06

2016].

[30] A. Reinhardt, "Vorerst kein Infinity Blade für Android wegen zu großer

Softwarepiraterie", GIGA, 24 11 2011. [Online], Available:

http://www.giga.de/spiele/infinity-blade/news/vorerst-kein-infinity-blade-fur-android-

wegen-zu-groser-softwarepiraterie/ [Accessed 23 06 2015].

[31] G. Peters, "Netflix on Android", Netflix, 12 11 2010. [Online], Available:

http://blog.netflix.com/2010/11/netflix-on-android.html [Accessed 23 06 2015].

[32] A. Killer, "Keine Android-Apps unter Windows 10", BR, 29 02 2016. [Online],

Available: http://www.br.de/themen/ratgeber/inhalt/computer/astoria-eingestellt-

windows-10-android-apps-100.html [Accessed 03 03 2016].

[33] M. Queiroz, "On demand is in demand: we’ve agreed to acquire Widevine", Google,

03 12 2010. [Online], Available: http://googleblog.blogspot.de/2010/12/on-demand-

is-in-demand-weve-agreed-to.html [Accessed 23 06 2015].

[34] Preemptive Solutions, "The DashO Difference - Fifty Facts & Features", 2013.

[Online], Available:

https://www.preemptive.com/images/stories/data_sheets/Fifty%20Reasons%20to%20

Choose%20DashO.pdf [Accessed 23 06 2015].

[35] E. Lafortune, Interviewee, Email: Re: Statistics on DexGuard's usage? (not publicly

published). [Interview]. 24 06 2016.

[36] P. Rittwage, "Copy Protection Methods", [Online], Available:

http://diskpreservation.com/protection [Accessed 06 11 2015].

[37] CD Media World, "CD/DVD Protections", [Online], Available:

http://www.cdmediaworld.com/hardware/cdrom/cd_protections_safedisc_v4.shtml

[Accessed 30 06 2015].

[38] CD Media World, "CD/DVD Protections", [Online], Available:

http://www.cdmediaworld.com/hardware/cdrom/cd_protections_star_force.shtml

[Accessed 30 06 2015].

[39] CD Media World, "CD/DVD Protections", [Online], Available:

http://www.cdmediaworld.com/hardware/cdrom/cd_protections_securom.shtml

[Accessed 30 06 2015].

References

240

[40] LaserLock, "Product features", 2009. [Online], Available:

http://www.laserlock.com/product_features.html#disc_check [Accessed 09 11 2015].

[41] Steinberg, "USB-eLicenser (Steinberg Key)", [Online], Available:

http://www.steinberg.net/en/products/accessories/usb_elicenser.html [Accessed 22 06

2016].

[42] Blizzard Entertainment, "World of Warcraft", [Online], Available:

https://worldofwarcraft.com/de-de/start [Accessed 22 06 2016].

[43] Valve, "Steam", [Online], Available: http://store.steampowered.com/ [Accessed 22 06

2016].

[44] Valve, "Valve Anti-Cheat System (VAC)", Valve, 2015. [Online], Available:

https://support.steampowered.com/kb_article.php?ref=7849-Radz-6869 [Accessed 29

02 2016].

[45] Guest-Author, "How Steam stopped me from pirating games and enjoy the sweet

DRM kool-aid", TechCrunch, 05 07 2010. [Online], Available:

http://techcrunch.com/2010/07/05/how-steam-stopped-me-from-pirating-games-and-

enjoy-the-sweet-drm-kool-aid/ [Accessed 29 02 2016].

[46] Amazon, "Publishing Android Apps to the Amazon Appstore", Amazon, [Online],

Available: https://developer.amazon.com/public/support/submitting-your-app/tech-

docs/submitting-your-app [Accessed 30 06 2015].

[47] Google, "Licensing Overview", Google, [Online], Available:

http://developer.android.com/google/play/licensing/overview.html#LVL [Accessed

11 05 2015].

[48] W. Zhou, Y. Zhou, M. Grace, X. Jiang and S. Zou, "Fast, Scalable Detection of

"Piggybacked" Mobile Applications", in CODASPY, San Antonio, Texas, USA, 2013.

[49] ChelpuS, "Lucky Patcher", [Online], Available: http://lucky-patcher.netbew.com/

[Accessed 06 05 2016].

[50] W. Zhou, Y. Zhou, X. Jiang and P. Ning, "Detecting Repackaged Smartphone

Applications in Third-Party Android Marketplaces", in CODASPY, San Antonio,

Texas, USA, 2012.

[51] HTC, "Unlock Bootloader", [Online], Available: http://www.htcdev.com/bootloader

[Accessed 01 03 2016].

[52] Google, "SELinux concepts", Google, [Online], Available:

https://source.android.com/security/selinux/concepts.html [Accessed 30 01 2016].

[53] Samsung, "To lock down Android", [Online], Available:

https://www.samsungknox.com/en/products/knox-workspace/how-to/lock-down-

android [Accessed 29 02 2016].

References

241

[54] Google, "Verified Boot", [Online], Available:

https://source.android.com/security/verifiedboot/verified-boot.html [Accessed 27 06

2016].

[55] iamironman12345, "Why are Verrizon phones so hard to root?", Reddit, [Online],

Available:

https://www.reddit.com/r/Android/comments/23tcrm/why_are_verizon_phones_so_h

ard_to_root/ch0f4sx [Accessed 29 02 2016].

[56] D. Kerr, "Boeing's 'Black' smartphone will deactivate if tampered with", CNET, 26 02

2014. [Online], Available: http://www.cnet.com/news/boeings-black-smartphone-

will-deactivate-if-tampered-with/ [Accessed 29 02 2016].

[57] J. Crook, "Motorola Offers Unlocked Bootloader Tool For Droid RAZR, Verizon

Removes It", TechCrunch, 24 10 2011. [Online], Available:

http://techcrunch.com/2011/10/24/motorola-offers-unlocked-bootloader-tool-for-

droid-razr-verizon-removes-it/ [Accessed 01 03 2016].

[58] K.-J. Dahlström, "Sony Ericsson supports independent developers", Sony Ericsson,

28 09 2011. [Online], Available: http://developer.sonymobile.com/2011/09/28/sony-

ericsson-supports-independent-developers/ [Accessed 01 03 2016].

[59] Samsungsfour, "How To Perform OEM Unlocking On All Samsung Galaxy

Smartphones?", [Online], Available: http://www.samsungsfour.com/tutorials/how-to-

perform-oem-unlocking-on-samsung-galaxy-smartphone.html [Accessed 04 03

2016].

[60] Samsung, "What is a KNOX Warranty Bit and how is it triggered?", [Online],

Available: https://www.samsungknox.com/en/faq/what-knox-warranty-bit-and-how-

it-triggered [Accessed 01 03 2016].

[61] K. Parrish, "Fix Arrives for Banned Xbox 360 Consoles", tom's guide, 13 11 2009.

[Online], Available: http://www.tomsguide.com/us/Microsoft-Xbox-Consoles-Fix-

Banned,news-5111.html [Accessed 01 03 2016].

[62] Y. Chen, "Analysis and Reengineering of Google Frameworks for Development of a

Native Improved Version of License Verfication Library (LVL) (not published)",

TUM, Muenchen, 2016.

[63] V. Friedovitch, "The huge disappointment of SE Android", 12 03 2015. [Online],

Available: http://www.helix-os.com/the-huge-disappointment-of-se-android/

[Accessed 01 03 2016].

[64] M. Muntean, "Improving License Verification in Android (not published)", TUM,

Muenchen, 2014.

[65] SlideMe, "SlideLock", 03 05 2012. [Online], Available: http://slideme.org/slidelock

[Accessed 19 02 2016].

References

242

[66] J. Neutze, "Analysis of Android Cracking Tools and Investigations in

Countermeasures for Developers (not published)", TUM, Muenchen, 2016.

[67] Gartner, "Gartner Says More than 75 Percent of Mobile Applications will Fail Basic

Security Tests Through 2015", 14 09 2014. [Online], Available:

http://www.gartner.com/newsroom/id/2846017 [Accessed 23 06 2016].

[68] Google, "Shrink Your Code and Resources", [Online], Available:

https://developer.android.com/studio/build/shrink-code.html [Accessed 22 06 2016].

[69] Google, "Lean and Fast: Putting Your App on a Diet - Google I/O 2016", 18 05 2016.

[Online], Available: https://www.youtube.com/watch?v=xctGIB81D2w&t=26m20s

[Accessed 23 06 2016].

[70] K. Orland, "Major piracy group warns games may be crack-proof in two years", ARS

Technica, 07 01 2016. [Online], Available:

http://arstechnica.com/gaming/2016/01/major-piracy-groups-warns-games-may-be-

crack-proof-in-two-years/ [Accessed 01 03 2016].

[71] C. H. Matthews and R. Brueggemann, Innovation and Entrepreneurship: A

Competency Framework, Routledge, 2015.

[72] G. Teston, "Software Piracy among Technology Education Students: Investigating

Property Rights in a Culture of Innovation", 2008. [Online], Available:

https://scholar.lib.vt.edu/ejournals/JTE/v20n1/pdf/teston.pdf [Accessed 07 07 2016].

[73] C. Barry, "Is downloading really stealing? The ethics of digital piracy", The

Conversation, 13 04 2015. [Online], Available: http://theconversation.com/is-

downloading-really-stealing-the-ethics-of-digital-piracy-39930 [Accessed 23 06

2016].

[74] M. A. Torres, "App Monetization Statistics: Freemium vs Premium vs Paymium",

ThinkApps, 2014. [Online], Available: http://thinkapps.com/blog/post-launch/paid-

vs-freemium-app-monetization-statistics/ [Accessed 01 03 2016].

[75] P. Bernhard, "A Security Analysis of Apps for Android Lollipop and Possible

Countermeasures against Resulting Attacks (not published)", TUM, Muenchen, 2015.

[76] J. Krömer and W. Sen, "NO COPY - der Film (HD) Original-Ausstrahlung vom

Kölner Filmhaus", 18 12 2015. [Online], Available:

https://www.youtube.com/watch?v=QvOkqq9YeG8 [Accessed 18 01 2016].

[77] Spiegel, "Softwarepiraterie: Massen-Razzien gegen Warez-Hacker", Spiegel, 12 12

2001. [Online], Available: http://www.spiegel.de/netzwelt/web/softwarepiraterie-

massen-razzien-gegen-warez-hacker-a-172363.html [Accessed 30 01 2015].

[78] O. Reißmann, "Geschäft mit Raubkopien: Wie kino.to Millionen verdiente", Spiegel,

14 06 2012. [Online], Available: http://www.spiegel.de/netzwelt/netzpolitik/die-

References

243

geschichte-von-kino-to-wer-mit-den-raubkopien-verdiente-a-838816.html [Accessed

18 01 2016].

[79] D. Ammann, "Das neuste Programm der Mafia", Die Weltwoche, 2002. [Online],

Available: http://www.weltwoche.ch/ausgaben/2002-19/artikel-2002-19-das-neuste-

progr.html [Accessed 31 01 2016].

[80] M. Rouse, "Definition software", TechTarget, 04 2006. [Online], Available:

http://searchsoa.techtarget.com/definition/software [Accessed 24 06 2016].

[81] Microsoft, "What is software piracy? Why should I be concerned about it?", [Online],

Available:

https://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-

us/lic_what_is_piracy.mspx?mfr=true [Accessed 24 06 2016].

[82] TechTopia, "Software Licensing", [Online], Available:

https://www.techopedia.com/definition/2558/software-licensing [Accessed 24 06

2016].

[83] Apple, "LICENSED APPLICATION END USER LICENSE AGREEMENT",

[Online], Available: http://www.apple.com/legal/internet-

services/itunes/appstore/dev/stdeula/ [Accessed 24 06 2016].

[84] Free Software Foundation, "GNU General Public License", Free Software

Foundation, 07 08 2016. [Online], Available: https://www.gnu.org/licenses/gpl-

3.0.en.html [Accessed 08 08 2016].

[85] B. Elgin, "Google Buys Android for Its Mobile Arsenal", Bloomberg Business, 16 08

2005. [Online], Available: http://www.bloomberg.com/bw/stories/2005-08-

16/google-buys-android-for-its-mobile-arsenal [Accessed 09 10 2015].

[86] Open Handset Alliance, "Overview", [Online], Available:

http://www.openhandsetalliance.com/oha_overview.html [Accessed 09 10 2015].

[87] IDC Research, Inc., "Smartphone OS Market Share, 2015 Q2", IDC Research, Inc.,

08 2015. [Online], Available: http://www.idc.com/prodserv/smartphone-os-market-

share.jsp [Accessed 09 10 2015].

[88] Google, "Twitter - Android", 30 06 2016. [Online], Available:

https://twitter.com/ustwogames/status/748547400210472961 [Accessed 13 07 2016].

[89] Google, "Dashboards", Google, [Online], Available:

http://developer.android.com/resources/dashboard/platform-versions.html [Accessed

06 08 2016].

[90] M. Lockwood, E. Gilling and J. Brown, "Google I/O 2011: Android Open Accessory

API and Development Kit (ADK)", Google, 11 05 2011. [Online], Available:

https://www.youtube.com/watch?v=s7szcpXf2rE [Accessed 14 12 2015].

References

244

[91] Cyanogenmod, "Cyanogenmod", Cyanogenmod, [Online], Available:

https://www.cyanogenmod.org/about [Accessed 21 10 2015].

[92] A. Henry, "Five Best Android ROMs", LifeHacker, 03 06 2012. [Online], Available:

http://lifehacker.com/5915093/five-best-android-roms [Accessed 21 10 2015].

[93] Google, "Codenames, Tags, and Build Numbers", [Online], Available:

https://source.android.com/source/build-numbers.html [Accessed 27 11 2015].

[94] FAQware, "Android Timeline", FAQware, [Online], Available:

http://faqoid.com/advisor/android-versions.php [Accessed 27 11 2015].

[95] D. Bornstein, "Dalvik VM Internals", Google, 29 05 2008. [Online], Available:

http://sites.google.com/site/io/dalvik-vm-internals/2008-05-29-Presentation-Of-

Dalvik-VM-Internals.pdf [Accessed 21 09 2015].

[96] Google, "Android Lollipop", [Online], Available:

http://developer.android.com/about/versions/lollipop.html [Accessed 03 12 2015].

[97] M. Devos, "Bionic vs Glibc report - Master thesis", University Gent, 2014. [Online],

Available: http://irati.eu/wp-content/uploads/2012/07/bionic_report.pdf [Accessed 03

07 2016].

[98] A. Tanenbaum and H. Bos, Modern Operating Systems, Amsterdam: Pearson, 2014.

[99] J. Levin, Android Internals - Confectioner’s Cookbook - Volume I: The power users

view, Technologeeks.com, 2015.

[100] S. Schleemilch, "Research and Analysis of Copy Protection Mechanisms for Android

Apps, as well as implementing a Sample Application", TUM, 15 04 2016. [Online],

Available:

http://www.os.in.tum.de/fileadmin/w00bdp/www/Lehre/Abschlussarbeiten/MA_Schl

eemilch_Android_Copy_Protection.pdf [Accessed 08 08 2016].

[101] Linux Manual Team, "proc - process information pseudo-filesystem", [Online],

Available: http://man7.org/linux/man-pages/man5/proc.5.html [Accessed 14 07

2016].

[102] Google, "System Permissions", [Online], Available:

https://developer.android.com/guide/topics/security/permissions.html [Accessed 03

07 2016].

[103] Stephen Smalley NSA , "Security Enhanced (SE) Android", [Online], Available:

http://events.linuxfoundation.org/images/stories/pdf/lcna_co2012_smalley.pdf

[Accessed 11 05 2015].

[104] eLinux.org, "Android Fastboot", 01 07 2014. [Online], Available:

http://elinux.org/Android_Fastboot [Accessed 04 12 2015].

[105] R. Paul, "Ext4 filesystem hits Android, no need to fear data loss", arstechnica, 27 12

2010. [Online], Available: http://arstechnica.com/information-

References

245

technology/2010/12/ext4-filesystem-hits-android-no-need-to-fear-data-loss/

[Accessed 14 12 2015].

[106] N. T. Kannengiesser, "TUM Android Practical Course Slides (not published)", none,

Munich, 2011-2016.

[107] O. Lau, "FAQ: Eigene Android-Apps", Heise c't, 02 2011. [Online], Available:

http://www.heise.de/ct/hotline/FAQ-Eigene-Android-Apps-1155583.html [Accessed

17 10 2015].

[108] Google, "Android Studio Release Notes", [Online], Available:

https://developer.android.com/studio/releases/index.html [Accessed 03 08 2016].

[109] C. Mahlert, "Evaluierung und Umsetzung einer wiederverwendbaren effizienten

nativen mobilen Cross-Plattform-Entwicklung", 14 04 2014. [Online], Available:

http://www.os.in.tum.de/fileadmin/w00bdp/www/Lehre/Abschlussarbeiten/Mahlert-

Masterarbeit.pdf [Accessed 21 10 2015].

[110] A. I. Team, "About us", MIT, [Online], Available:

http://appinventor.mit.edu/explore/about-us.html [Accessed 21 10 2015].

[111] kernullist.gloryo, "Step by Step - How to create a c++ library with NDK on Android

Studio 1.5 (not experimental way)", 03 12 2015. [Online], Available: http://kn-

gloryo.github.io/Build_NDK_AndroidStudio_detail/ [Accessed 21 03 2016].

[112] Oracle, "Java™ Native Interface", 2016. [Online], Available:

http://docs.oracle.com/javase/7/docs/technotes/guides/jni/ [Accessed 29 07 2016].

[113] J. Giggs, "A List of Alternative App Stores for Distributing your App or Mobile

Game", mobyaffiliates, 28 01 2014. [Online], Available:

http://www.mobyaffiliates.com/blog/a-list-of-alternative-app-stores-for-distributing-

your-app-or-mobile-game/ [Accessed 19 02 2016].

[114] School of Informatics of Edinburgh, "Opcodes by Name", 12 04 2008. [Online],

Available: http://homepages.inf.ed.ac.uk/kwxm/JVM/codeByNm.html#codes_I

[Accessed 03 12 2015].

[115] J. Meyer and T. Downing, "Java Virtual Machine Online Instruction Reference",

O'Reilly Associates, [Online], Available: http://cs.au.dk/~mis/dOvs/jvmspec/ref-

Java.html [Accessed 04 12 2015].

[116] G. Paller, "Dalvik opcodes", [Online], Available:

http://pallergabor.uw.hu/androidblog/dalvik_opcodes.html [Accessed 04 12 2015].

[117] J. Levin, "Dalvik and ART", [Online], Available:

http://newandroidbook.com/files/Andevcon-ART.pdf [Accessed 18 01 2016].

[118] D. Ehringer, The Dalvik Virtual Machine Architecture, 2010.

[119] W. Enck , D. Octeau, P. McDaniel and S. Chaudhuri, "A Study of Android

Application Security", 08 2011. [Online], Available:

References

246

https://www.usenix.org/legacy/events/sec11/tech/full_papers/Enck.pdf?CFID=68777

6824&CFTOKEN=30544337 [Accessed 26 06 2015].

[120] J. J. Drake, Android Hacker’s Handbook, John Wiley and Sons, 2014.

[121] B. Cheng and B. Buzbee , "Google I/O 2010 - A JIT Compiler for Android's Dalvik

VM", Google, 27 05 2010. [Online], Available:

https://www.youtube.com/watch?v=Ls0tM-c4Vfo [Accessed 21 09 2015].

[122] Google, "Google I/O 2014 - The ART runtime", Google, 27 06 2014. [Online],

Available: https://www.youtube.com/watch?v=EBlTzQsUoOw [Accessed 21 09

2015].

[123] X. Kova, "The Life of Binaries", 2012. [Online], Available:

http://opensecuritytraining.info/LifeOfBinaries_files/2012_LifeOfBinaries3.pdf

[Accessed 22 03 2016].

[124] P. Sabanal, "Hiding Behind ART", IBM, [Online], Available:

https://www.blackhat.com/docs/asia-15/materials/asia-15-Sabanal-Hiding-Behind-

ART.pdf [Accessed 22 03 2016].

[125] Linux man-pages project, " elf - format of Executable and Linking Format (ELF)

files", [Online], Available: http://man7.org/linux/man-pages/man5/elf.5.html

[Accessed 24 06 2016].

[126] J. Levin, "Dalvik and ART (PDF)", [Online], Available:

http://newandroidbook.com/files/Andevcon-DEX.pdf [Accessed 08 08 2016].

[127] P. Sabanal, State Of The ART Exploring The New Android, HITBSecConf2014

Amsterdam: IBM, 2014.

[128] Google, "Build System Overview", [Online], Available:

http://developer.android.com/sdk/installing/studio-build.html [Accessed 03 03 2016].

[129] Google, "Android Interface Definition Language (AIDL)", [Online], Available:

https://developer.android.com/guide/components/aidl.html [Accessed 14 07 2016].

[130] A. Gargenta, "Intro to NDK 4/10", Marakana Inc., 27 04 2012. [Online], Available:

https://www.youtube.com/watch?v=RJiocrkn2Z8 [Accessed 29 03 2016].

[131] rovo89, "How Xposed works", 03 04 2016. [Online], Available:

https://github.com/rovo89/XposedBridge/wiki/Development-tutorial [Accessed 24 06

2016].

[132] Google, "Activity", Google, [Online], Available:

https://developer.android.com/reference/android/app/Activity.html [Accessed 19 06

2016].

[133] B. Gruver, "Smali", [Online], Available: https://github.com/JesusFreke/smali/wiki

[Accessed 08 08 2016].

References

247

[134] Aniket, "Difference between: Opcode, byte code, mnemonics, machine code and

assembly", StackOverflow, 14 07 2013. [Online], Available:

http://stackoverflow.com/questions/17638888/difference-between-opcode-byte-code-

mnemonics-machine-code-and-assembly [Accessed 24 05 2016].

[135] Google, "Dalvik Bytecode", Google, [Online], Available:

https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html [Accessed 23 06

2015].

[136] B. Gruver, "smali - Registers", [Online], Available:

https://github.com/JesusFreke/smali/wiki/Registers [Accessed 08 08 2016].

[137] B. Gruver, "Introduction", [Online], Available:

https://github.com/JesusFreke/smali/wiki/SmaliBaksmali20 [Accessed 08 08 2016].

[138] N. Kannengiesser, "StackOverflow - Android smali question", 10 12 2010. [Online],

Available: http://stackoverflow.com/questions/4353580/android-smali-question

[Accessed 23 09 2015].

[139] B. Gruver, "TypesMethodsAndFields", [Online], Available:

https://github.com/JesusFreke/smali/wiki/TypesMethodsAndFields [Accessed 08 08

2016].

[140] Oracle, "JNI Types and Data Structures", Oracle, [Online], Available:

http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/types.html [Accessed

23 09 2015].

[141] D. Bornstein, "Google I/O 2008 - Dalvik Virtual Machine Internals", [Online],

Available: https://www.youtube.com/watch?v=ptjedOZEXPM [Accessed 26 01

2015].

[142] Nils T. Kannengiesser, S. Song and U. Baumgarten, "Secure Copy Protection for

Mobile Apps", AmiEs, Berlin, 2013.

[143] JesusFreak, "About", 01 10 2015. [Online], Available:

https://github.com/JesusFreke/smali/blob/master/README.md [Accessed 23 10

2015].

[144] B. Gruver, "DeodexInstructions", 01 10 2015. [Online], Available:

https://github.com/JesusFreke/smali/wiki/DeodexInstructions [Accessed 05 03 2016].

[145] C. Tumbleson and R. Wiśniewski , "A tool for reverse engineering Android apk

files", [Online], Available: http://ibotpeaches.github.io/Apktool/ [Accessed 23 10

2015].

[146] B. Pan, "dex2jar", [Online], Available:

http://sourceforge.net/p/dex2jar/wiki/UserGuide/ [Accessed 21 11 2015].

[147] E. Dupuy, "Java Decompiler", [Online], Available: http://jd.benow.ca/ [Accessed 21

11 2015].

References

248

[148] A. Desnos and Zost, "androguard", [Online], Available:

https://code.google.com/p/androguard/ [Accessed 17 11 2015].

[149] Virtuous Team, "WHAT IS VTS", [Online], Available: http://virtuous-ten-

studio.com/ [Accessed 16 07 2016].

[150] rovo89 and Tungstwenty, "Xposed Installer", [Online], Available:

http://repo.xposed.info/module/de.robv.android.xposed.installer [Accessed 23 10

2015].

[151] J. Freeman, "Cydia Substrate", SaurikIT, LLC, [Online], Available:

http://www.cydiasubstrate.com/ [Accessed 28 05 2016].

[152] "Google Play - Cydia Substrate", SaurikIT LLC , 27 09 2013. [Online], Available:

https://play.google.com/store/apps/details?id=com.saurik.substrate [Accessed 29 05

2016].

[153] O. A. V. Ravnås, "Welcome", NowSecure, [Online], Available:

http://www.frida.re/docs/home/ [Accessed 29 05 2016].

[154] J. Levin, "Dextra*", [Online], Available:

http://newandroidbook.com/tools/dextra.html [Accessed 21 11 2015].

[155] Several authors, "Is there any disassembler to rival IDA Pro?", Stack Overflow,

[Online], Available: http://reverseengineering.stackexchange.com/questions/1817/is-

there-any-disassembler-to-rival-ida-pro [Accessed 17 11 2015].

[156] T. Strazzere and J. Sawyer, "ANDROID HACKER PROTECTION LEVEL 0",

Applied Cypersecurity LLC, 08 10 2014. [Online], Available:

https://www.defcon.org/images/defcon-22/dc-22-presentations/Strazzere-

Sawyer/DEFCON-22-Strazzere-and-Sawyer-Android-Hacker-Protection-Level-

UPDATED.pdf [Accessed 30 01 2015].

[157] P. Arteau, A. Gupta and H. Slatman, "Mobile Security Wiki - One Stop for Mobile

Security Resources", 2016. [Online], Available: https://mobilesecuritywiki.com/

[Accessed 30 01 2016].

[158] S. Choi, "API Deobfuscator: Resolving Obfuscated API Functions In Modern

Packers", Black Hat, 29 12 2015. [Online], Available:

https://www.youtube.com/watch?v=O4usD-11tTU [Accessed 31 01 2016].

[159] S. Banescu and A. Pretschner, "Reverse Engineering Virtualization Obfuscation /

thesis-proposal", TUM, [Online], Available:

https://www22.in.tum.de/fileadmin/pictures/thesis_proposals/Reverse_engineering_vi

rtualization_obfuscation.pdf [Accessed 31 01 2016].

[160] GuardSquare, "DexGuard - The strongest Android obfuscator, protector, and

optimizer", GuardSquare, [Online], Available:

https://www.guardsquare.com/dexguard [Accessed 10 08 2015].

References

249

[161] Google, "ProGuard", Google, [Online], Available:

http://developer.android.com/tools/help/proguard.html [Accessed 10 08 2015].

[162] W. Zhou, Z. Wang, Y. Zhou and X. Jiang, "DIVILAR: Diversitying Intermedia

Language for Anti-Repackaging on Android Platform", in CODASPY, San Antonia,

TX, USA, 2014.

[163] N. Kralevich, Interviewee, Email: Re: Feedback / native code for security related

tasks (not publicly published). [Interview]. 24 09 2015.

[164] N. Kannengiesser, "Secure copy protection for mobile apps (by Nils T.

Kannengiesser)", 09 09 2015. [Online], Available:

https://www.youtube.com/watch?v=rSH6dnUTDZo [Accessed 23 11 2015].

[165] DJ, "Mix 'n' Mojo - Voodoo Ingredient Proportion Dial OnLine", 2014. [Online],

Available: http://www.oldgames.sk/docs/Mix-N-Mojo/ [Accessed 06 11 2015].

[166] J. Hruska, "Start it up: Windows 95 turns 20 today", Extreme Tech, 24 08 2015.

[Online], Available: http://www.extremetech.com/computing/212781-start-it-up-

windows-95-turns-20-today [Accessed 09 11 2015].

[167] C. Eisler, "DirectX Then and Now (Part 1)", 20 02 2006. [Online], Available:

http://craig.theeislers.com/2006/02/20/directx-then-and-now-part-1/ [Accessed 09 11

2015].

[168] R. Farrance, "Timeline: 50 Years of Hard Drives", PCWorld, [Online], Available:

http://www.pcworld.com/article/127105/article.html [Accessed 09 11 2015].

[169] CD Media World, "CD/DVD Utilities", [Online], Available:

http://www.cdmediaworld.com/hardware/cdrom/cd_utils_2.shtml [Accessed 09 11

2015].

[170] LaserLock, "LASERLOCK MARATHON FOR DVD-ROM", 2009. [Online],

Available: http://www.laserlock.com/dvdrom.html [Accessed 09 11 2015].

[171] AP, "Boxed PC game sales decline; digital downloads on the rise", Lubbock

Avalance Journal, 24 03 2006. [Online], Available:

http://lubbockonline.com/stories/032406/nat_032406084.shtml [Accessed 09 11

2015].

[172] Gamesload, "FAQ - Haeufig gestellte Fragen", Dixero Media GmbH, [Online],

Available: https://www.gamesload.de/web/home#!hilfe [Accessed 09 11 2015].

[173] Joe, "Dongles, how do they work?", 14 02 2012. [Online], Available:

http://www.gironsec.com/blog/2012/02/dongles-how-do-they-work/ [Accessed 10 11

2015].

[174] red, "Kopierschutz von Android Market geknackt", http://derstandard.at/, 24 08 2010.

[Online], Available: http://derstandard.at/1282273487603/App-Piraterie-

Kopierschutz-vonAndroid-Market-geknackt [Accessed 15 11 2015].

References

250

[175] Google, "Settings.Secure", [Online], Available:

http://developer.android.com/reference/android/provider/Settings.Secure.html

[Accessed 18 03 2016].

[176] Google, "Licensing Reference", [Online], Available:

https://developer.android.com/google/play/licensing/licensing-reference.html

[Accessed 01 04 2016].

[177] Google, "Adding Licensing to Your App", [Online], Available:

http://developer.android.com/google/play/licensing/adding-licensing.html#impl-

Obfuscator [Accessed 18 03 2016].

[178] A. DeRosa, T. Keeley and B. Davis, "ODA", [Online], Available:

https://www.onlinedisassembler.com/odaweb/strcpy_x86 [Accessed 21 11 2015].

[179] SlySoft, "CloneCD TM", SlySoft, [Online], Available:

http://www.slysoft.com/de/clonecd.html [Accessed 23 11 2015].

[180] Several authors, "Emulate server", WoWWiki, [Online], Available:

http://wowwiki.wikia.com/wiki/Emulated_server [Accessed 09 11 2015].

[181] K. Orland, "Blizzard shuts down popular fan-run “pirate” server for classic WoW",

arstechnica, 07 04 2016. [Online], Available:

http://arstechnica.com/gaming/2016/04/blizzard-shuts-down-popular-fan-run-pirate-

server-for-classic-wow/ [Accessed 08 04 2016].

[182] T-Mobile , "Pokémon Go Mania Sweeps the Country … So T-Mobile Thanks

Customers with Free Pokémon Data and More", 14 07 2016. [Online], Available:

https://newsroom.t-mobile.com/news-and-blogs/free-pokemon.htm [Accessed 08 08

2016].

[183] B. Benz, "Verschlüsselte Festplatten schützen vor Datenklau", Heise, 21 03 2005.

[Online], Available: http://www.heise.de/ct/artikel/Datentresor-289846.html

[Accessed 27 11 2015].

[184] NSA, "Cryptography Today", NSA, 19 08 2015. [Online], Available:

https://www.nsa.gov/ia/programs/suiteb_cryptography/ [Accessed 26 11 2015].

[185] C. Bird, "Sample Code: Data Encryption Application", Intel, 17 01 2014. [Online],

Available: https://software.intel.com/en-us/android/articles/sample-code-data-

encryption-application [Accessed 01 12 2015].

[186] N. Kannengiesser, U. Baumgarten and S. Song, "Secure Copy Protection for Mobile

Apps", in AmiEs, Aveiro, Portugal, 2014.

[187] T. Zefferer, "Secure Elements am Beispiel Google Wallet", 28 04 2012. [Online],

Available: http://www.a-

sit.at/pdfs/Technologiebeobachtung/20120428%20Studie_Google_Wallet.pdf

[Accessed 25 11 2015].

References

251

[188] Several authors, "NFC Offhost routing to the UICC on the Nexus 5X and the Nexus

6P", StackOverflow, 17 01 2016. [Online], Available:

http://stackoverflow.com/questions/34251005/nfc-offhost-routing-to-the-uicc-on-the-

nexus-5x-and-the-nexus-6p/34414723#34414723 [Accessed 19 01 2016].

[189] Several authors, "Secure element Access Control on ICS 4.0.4", 2012. [Online],

Available: http://stackoverflow.com/questions/10494726/secure-element-access-

control-on-ics-4-0-4 [Accessed 16 01 2016].

[190] Gemalto, "IDPrime MD", Gemalto, [Online], Available:

http://www.gemalto.com/products/IDPrime_MD/8840_MicroSD.html [Accessed 12

01 2016].

[191] SwissBit, "PS-100u SE", SwissBit, [Online], Available:

http://www.swissbit.com/products/security-products/micro-sd-memory-cards/ps-

100u-se/ [Accessed 12 01 2016].

[192] G&D SFS, "Mobile Security Card SE 1.0 - Data Sheet (not published)", 2010.

[193] G&D, "Pressemeldung: Giesecke & Devrient bringt Mobile Security Card VE 2.0 mit

starker Authentisierung auf den Secure-Voice-Markt", G&D, 30 11 2010. [Online],

Available: http://www.gi-

de.com/de/about_g_d/press/press_releases/global_press_release_7234.jsp [Accessed

28 11 2015].

[194] G&D SFS, "Developing Software for the Mobile Security Card - Technical

Whitepaper (not published)", 2011.

[195] E. Rizvanovic, Interviewee, Phone Call to discuss features of the MSC (not publicly

published). [Interview]. 03 02 2015.

[196] Giesecke & Devrient, "Sm@rtCafé® Expert 5.0 - Reference Manual - Edition

04.2009", Muenchen, 2009.

[197] M. Bichlmeier, "Android Implementation of a Secure Connection between a Secure

Element and a Server (not published)", TUM, Muenchen, 2015.

[198] USB Implementers Forum, Inc., "USB On-The-Go and Embedded Host", USB

Implementers Forum, Inc., [Online], Available:

http://www.usb.org/developers/onthego/ [Accessed 13 12 2015].

[199] M. Jahnen, "Implementation of an Android Framework for USB storage access

without root rights", 15 04 2014. [Online], Available:

http://www.os.in.tum.de/fileadmin/w00bdp/www/Lehre/Abschlussarbeiten/Jahnen-

thesis.pdf [Accessed 28 11 2015].

[200] Giesecke & Devrient GmbH, "SEEK for android", Giesecke & Devrient GmbH.,

[Online], Available: http://seek-for-android.github.io/ [Accessed 28 11 2015].

References

252

[201] M. Kessner and M. Rella, "Libaums - from Java to NDK (not published)", TUM -

F13 - AP, Muenchen, 2015.

[202] Trustonic, "Trustonic for Samsung KNOX", [Online], Available:

https://www.trustonic.com/products-services/trustonic-for-samsung-knox [Accessed

29 06 2015].

[203] J.-E. Ekberg, Interviewee, Email: Trustonic & Android ; questions on your talk (not

publicly published). [Interview]. 30 11 2015.

[204] H. Nahari, "TLK: A FOSS Stack for Secure Hardware Tokens", 2014. [Online],

Available: http://www.w3.org/2012/webcrypto/webcrypto-next-

workshop/papers/webcrypto2014_submission_25.pdf [Accessed 30 11 2015].

[205] J. Thomas and C. Holmes, "An infestation of dragons: Exploring vulnerabilities in the

ARM TrustZone architecture", Atredis, 17 09 2015. [Online], Available:

https://www.youtube.com/watch?v=vxNGgOR-iVM [Accessed 30 11 2015].

[206] J.-E. Ekberg, "Android and trusted execution environments", 20 09 2015. [Online],

Available: https://www.youtube.com/watch?v=5542lEk3OAM [Accessed 30 11

2015].

[207] Google, "Security Enhancements in Android 4.4", [Online], Available:

https://source.android.com/security/enhancements/enhancements44.html [Accessed

01 12 2015].

[208] S. Bugiel, L. Davi, A. Dmitrienko, S. Heuser, A.-R. Sadeghi and B. Shastry,

"Practical and Lightweight Domain Isolation on Android", in SPSM, Chicago,

Illinois, USA, 2011.

[209] FORSEC, TUM I20, TP1: Security Architecture or Mobile Devices (poster), Munich:

TUM.

[210] T. Cooijmans, J. de Ruiter and E. Poll, "Analysis of Secure Key Storage Solutions on

Android", in SPSM, Scottsdale, AZ, US, 2014.

[211] Google, "Google I/O 2015 - A little badass. Beautiful. Tech and human. Work and

love. ATAP.", Google, 29 05 2015. [Online], Available:

https://www.youtube.com/watch?v=mpbWQbkl8_g&t=2940 [Accessed 14 07 2015].

[212] M. Kremp, "Project Vault: Google will Passwörter überflüssig machen", Der Spiegel,

01 06 2015. [Online], Available: http://www.spiegel.de/netzwelt/gadgets/project-

vault-google-will-passwoerter-ueberfluessig-machen-a-1036474.html [Accessed 23

06 2016].

[213] Yubico, "FIDO U2F SECURITY KEY", [Online], Available:

https://www.yubico.com/products/yubikey-hardware/fido-u2f-security-key/

[Accessed 23 06 2016].

References

253

[214] TCG, TCG Specification Architecture Overview v1.2, Trusted Computing Group,

2004.

[215] A. T. Othman, S. Khan, M. Nauman and S. Musa, "Towards a High-Level Trusted

Computing API for Android Software Stack", in ICUIMC (IMCOM), Kota Kinabalu,

Malaysia, 2013.

[216] J. Geater, "Implementing TCG technologies with TEE", 30 09 2014. [Online],

Available: http://www.trustedcomputinggroup.org/files/resource_files/C8421499-

1A4B-B294-D06A62797AFFC659/TPM_and_TEE_GEATER_20140930.pdf

[Accessed 29 06 2015].

[217] Trustonic, "Trusted Execution Environment", Trustonic, [Online], Available:

https://www.trustonic.com/products-services/trusted-execution-environment

[Accessed 11 05 2015].

[218] Trustonic, "Who We Are", [Online], Available: https://www.trustonic.com/about-

us/who-we-are/ [Accessed 23 07 2015].

[219] J.-E. Ekberg, K. Kostiainen and N. Asokan, "Trusted Execution Environments on

Mobile Devices", in CCS, Berlin, Germany, 2013.

[220] Google, "Trusty TEE", [Online], Available:

https://source.android.com/security/trusty/index.html [Accessed 26 06 2016].

[221] Samsung, "Samsung KNOX - White Paper : An Overview of Samsung KNOX™", 06

2013. [Online], Available: http://www.samsung.com/se/business-

images/resource/2013/samsung-knox-an-

overview/%7B3%7D/Samsung_KNOX_whitepaper-0-0-0.pdf [Accessed 23 07

2015].

[222] H. Nguyen, "Samsung KNOX Provides Privacy To BYOD Users", Uebergizmo, 25

02 2013. [Online], Available: http://www.ubergizmo.com/2013/02/samsung-knox/

[Accessed 23 07 2015].

[223] L. Falsina, Y. Fratantonio, S. Zanero, C. Kruegel, G. Vigna and F. Maggi, "Grab 'n

Run: Secure and Practical Dynamic Code Loading for Android Applications",

ACSAC, Los Angeles, 2015.

[224] T. Petsas, G. Voyatzis and E. Athanasopoulos, "Rage Against the Virtual Machine:

Hindering Dynamic Analysis of Android Malware", in EuroSec, Amsterdam,

Netherlands, 2013.

[225] H. Gonzales, A. A. Kadir, N. Stakhanova, A. J. Alzahrani and A. A. Ghorbani,

"Exploring Reverse Engineering Symptoms in Android apps", in EuroSec, Bordeaux,

France, 2015.

References

254

[226] D. Hugenroth and F. Kilic, "Seminar Reverse Code Engineering: Obfuscation of

Source Code and Intermediary Artifacts with Special Regard to the Android Platform

(not published)", 2014.

[227] P. Colp, J. Zhang, J. Gleeson, S. Suneja, E. de Lara, H. Raj, S. Saroiu and A.

Wolman, "Protecting Data on Smartphones and Tablets from Memory Attacks", in

ASPLOS 15, Istanbul, 2015.

[228] J. Maier, "Enhanced Android Security to prevent Privilege Escalation", 16 09 2013.

[Online], Available:

http://www.os.in.tum.de/fileadmin/w00bdp/www/Lehre/Abschlussarbeiten/bathesis_j

maier_final.pdf [Accessed 23 07 2015].

[229] M. Shoaib, N. Yasin and A. G. Abbassi, "Smart Card Based Protection for Dalvik

Bytecode - Dynamically Loadable Component of an Android APK", 04 2016.

[Online], Available: http://www.ijcte.org/vol8/1036-C040.pdf [Accessed 02 11 2015].

[230] Aktiv Soft JSC, "Guardant Code", [Online], Available:

http://www.guardant.com/products/all/guardant-code/ [Accessed 07 03 2016].

[231] Aktiv Soft JSC, "Mobile Software Protection", [Online], Available:

http://www.guardant.com/solutions/mobile/ [Accessed 07 03 2016].

[232] Cisco Systems, "Cisco VideoGuard Smart Card", [Online], Available:

http://www.cisco.com/c/en/us/products/video/videoguard-smart-card/index.html

[Accessed 15 01 2015].

[233] Several authors, "Junk byte injection in Android", StackOverflow, 13 10 2015.

[Online], Available: http://stackoverflow.com/questions/33110538/junk-byte-

injection-in-android [Accessed 29 01 2016].

[234] J. Jang, J. Jung, H. Ji, J. Hong, D. Kim and S. Ki Jung, "Protecting Android

Applications with Steganography-based Software Watermarking", in SAC, Coimbra,

Portugal, 2013.

[235] H. Ji and W. Kim, "Design of a Mobile Inspector for Detecting Illegal Android

applications using fingerprinting", in RACS, Montreal, QC, Canada, 2013.

[236] S. R. Kim, J. H. Kim and H. S. Kim, "A Hybrid Design of Online Execution Class

and Encryption-based Copyright Protection for Android Apps", in RACS, San

Antonio, Texas, USA, 2012.

[237] H. K. Lee, H. S. Chung and S. R. Kim, "Memory Hacking Analysis in Mobile

Devices for Hybrid Model of Copyright Protection for Android Apps", in RACS,

Montreal, QC, Canada, 2013.

[238] Y.-S. Jeong, J.-C. Moon, D. Kim, Y.-U. Park, S.-J. Cho and M. Park, "An Anti-Piracy

Mechanism based on Class Separation and Dynamic Loading for Android

Applications", in RACS, San Antonio, Texas, USA, 2012.

References

255

[239] K.-Y. Tsai, "Android App Copy Protection Mechanism with Semi-trusted Loader",

ICACT, 2015. [Online], Available:

ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7224838 [Accessed 08 07 2016].

[240] Samsung, "How to protect your app from illegal copy using Samsung Application

License Management (Zirconia)", 12 02 2015. [Online], Available:

http://developer.samsung.com/technical-doc/view.do?v=T000000062L [Accessed 01

02 2016].

[241] J. Rädle and G. Michels, "Android Practical Course - Workshop - Hacking Android

DRM (not published)", TUM, Munich, 2016.

[242] Denuvo, "Denuvo", [Online], Available: http://www.denuvo.com/#page-2 [Accessed

22 06 2016].

[243] Muhammad, "Pirates admit that games are becoming harder to crack", 07 01 2016.

[Online], Available: http://www.techworm.net/2016/01/pirates-admit-games-

becoming-harder-crack.html [Accessed 23 06 2016].

[244] M. Fischer, "PC-Spiel Doom: Dev-Mode ärgert Spieler, Denuvo ärgert

Raubkopierer", 18 05 2016. [Online], Available:

http://m.heise.de/newsticker/meldung/PC-Spiel-Doom-Dev-Mode-aergert-Spieler-

Denuvo-aergert-Raubkopierer-3210042.html [Accessed 23 06 2016].

[245] M. Fischer, "Kopierschutz Denuvo offenbar umgangen: Doom, Tomb Raider und Co

illegal im Netz", Heise, 08 08 2016. [Online], Available:

http://www.heise.de/newsticker/meldung/Kopierschutz-Denuvo-offenbar-umgangen-

Doom-Tomb-Raider-und-Co-illegal-im-Netz-3289641.html [Accessed 08 08 2016].

[246] T. Goebl, Interviewee, Email: TU Muenchen - Denuvo Anfrage (not publicly

published). [Interview]. 01 03 2016.

[247] P. Junod, "obfuscator-llvm/obfuscator - FAQ", 17 11 2015. [Online], Available:

https://github.com/obfuscator-llvm/obfuscator/wiki/FAQ [Accessed 07 03 2016].

[248] C. Mulliner, W. Robertson and E. Kirda, "VirtualSwindle: An Automated Attack

Against In-App", in ASIA CCS, Kyoto, Japan, 2014.

[249] H. Sun, Y. Zheng, L. Bulej, A. Villazón, Z. Qi, P. Tuma and W. Binder, "A

Programming Model and Framework for Comprehensive Dynamic Analysis on

Android", in MODULARITY 2015, Fort Collins, 2015.

[250] A. Jain, H. Gonzalez and N. Stakhanova, "Enriching reverse engineering through

visual exploration of Android binaries", in PPREW-5, Los Angeles, 2015.

[251] H. Bojino, D. Boneh and Y. Michalevsky, "Mobile Device Identification via Sensor

Fingerprinting", Stanford University, [Online], Available:

https://crypto.stanford.edu/gyrophone/sensor_id.pdf [Accessed 08 04 2016].

References

256

[252] S. Dey, N. Roy, W. Xu, R. R. Choudhury and S. Nelakuditi, "AccelPrint:

Imperfections of Accelerometers Make Smartphones Trackable", University of

Illinois, 23 02 2014. [Online], Available:

http://synrg.csl.illinois.edu/papers/AccelPrint_NDSS14.pdf [Accessed 14 04 2016].

[253] A. Das and N. Borisov, "Fingerprinting Smartphones Through Speaker", University

of Illinois, [Online], Available: http://www.ieee-

security.org/TC/SP2014/posters/DASAN.pdf [Accessed 14 04 2016].

[254] J. Lukas, J. Fridrich and M. Goljan, "Digital camera identification from sensor pattern

noise", 12 02 2006. [Online], Available:

ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1634362 [Accessed 15 04 2016].

[255] K. Kenji, K. Kenro and S. Naoki, "CCD fingerprint method-identification of a video

camera from videotaped images", National Research Institute of Police Science,

1999. [Online], Available: ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=817172

[Accessed 16 04 2016].

[256] T. Filler, J. Fridrich and M. Goljan, "USING SENSOR PATTERN NOISE FOR

CAMERA MODEL IDENTIFICATION", Dept. of Electrical and Computer

Engineering, SUNY Binghamton, [Online], Available:

http://ws.binghamton.edu/fridrich/Research/icip08paper_v7_camera_ready.pdf

[Accessed 15 04 2016].

[257] M. Mohamed, B. Shrestha and N. Saxena, "SMASheD: Sniffing and Manipulating

Android Sensor Data", in CODASPY 16, New Orleans, 2016.

[258] E. Chu, "Licensing Service For Android Applications", 27 07 2010. [Online],

Available: http://android-developers.blogspot.de/2010/07/licensing-service-for-

android.html [Accessed 25 06 2016].

[259] az/dpa, "IBM-Forscher entdecken neue Sicherheitslücke bei Android", Augsburger

Allgemeine, 13 08 2015. [Online], Available: http://www.augsburger-

allgemeine.de/digital/IBM-Forscher-entdecken-neue-Sicherheitsluecke-bei-Android-

id35132027.html [Accessed 01 12 2015].

[260] D. Thomas, A. Beresford, A. Rice and D. Wagner, "Proportion of devices running

vulnerable versions of Android", University of Cambridge, 2015. [Online], Available:

http://androidvulnerabilities.org/graph [Accessed 01 12 2015].

[261] Lacoon, 07 2014. [Online], Available: http://www.lacoon.com/blog/2014/07/security-

disclosure-googles-ios-gmail-app-enables-threat-actor/

[262] L. Tung, "Gmail app on iOS vulnerable to snooping, thanks to 'certificate pinning'

flaw", 11 07 2014. [Online], Available: http://www.zdnet.com/article/gmail-app-on-

ios-vulnerable-to-snooping-thanks-to-certificate-pinning-flaw/ [Accessed 25 06

2016].

References

257

[263] A. Gargenta, "Deep dive into android ipc/binder framework", in AnDevCon: The

Android Developer Conference, 2012.

[264] revo89, "Xposed Module Repository", [Online], Available:

http://repo.xposed.info/module-overview [Accessed 26 06 2016].

[265] veetip, "DisableFlagSecure", 29 09 2014. [Online], Available:

http://repo.xposed.info/module/fi.veetipaananen.android.disableflagsecure [Accessed

26 06 2016].

[266] P. Schulz, "Code Protection in Android", 07 06 2012. [Online], Available:

https://net.cs.uni-bonn.de/fileadmin/user_upload/plohmann/2012-Schulz-

Code_Protection_in_Android.pdf [Accessed 29 04 2016].

[267] C. Linn and S. Debray, Obfuscation of executable code to improve resistance to static

disassembly, 2003.

[268] P. Schulz, "Dalvik Bytecode Obfuscation on Android", DEXLabs, 21 07 2012.

[Online], Available: http://www.dexlabs.org/blog/bytecode-obfuscation [Accessed 25

04 2016].

[269] A. Apvrille, "Playing Hide and Seek with Dalvik Executables", 10 2013. [Online],

Available: https://www.fortiguard.com/paper/Playing-Hide-and-Seek-with-Dalvik-

Executables/

[270] C. Fenton, "https://github.com/CalebFenton/simplify", [Online], [Accessed 05 04

2016].

[271] C. Fenton, "Oracle", [Online], Available: https://github.com/CalebFenton/dex-

oracle/blob/master/README.md [Accessed 05 04 2016].

[272] Guardsquare, "DexGuard 7.1: Features", Guardsquare, [Online], Available:

https://www.guardsquare.com/dexguard-features [Accessed 12 06 2016].

[273] obfuscer, "Can I use native compilation as Java obfuscation", StackOverflow, 20 11

2010. [Online], Available: http://stackoverflow.com/questions/4232283/can-i-use-

native-compilation-as-java-obfuscation [Accessed 27 05 2016].

[274] L. Durfina, J. Kroustek, P. Matula and P. Zemek, "A Novel Approach to Online

Retargetable Machine-Code Decompilation", MIR Labs, 2014. [Online], Available:

http://www.mirlabs.net/jnic/secured/Volume2-Issue1/Paper24/JNIC_Paper24.pdf

[Accessed 20 02 2016].

[275] Google, "ndk-build", [Online], Available:

http://developer.android.com/ndk/guides/ndk-build.html [Accessed 20 02 2016].

[276] L. Broukhis, S. Cooper and L. C. Noll, "The International Obfuscated C Code

Contest", IOCCC, [Online], Available: http://www.ioccc.org/years.html [Accessed 27

05 2016].

References

258

[277] R. Julien, "obfuscator-llvm/obfuscator - Installation", 30 06 2015. [Online],

Available: https://github.com/obfuscator-llvm/obfuscator/wiki/Installation [Accessed

07 03 2016].

[278] C. Lattner, "The LLVM Compiler Infrastructure", University of Illinois, [Online],

Available: http://llvm.org/ [Accessed 26 05 2016].

[279] Fuzion24, "Example of obfuscating an Android NDK project using O-LLVM", 28 07

2014. [Online], Available: https://github.com/Fuzion24/AndroidObfuscation-NDK

[Accessed 08 03 2016].

[280] F. Gabriel, "Deobfuscation: recovering an OLLVM-protected program", QuarkLabs,

04 12 2014. [Online], Available: http://blog.quarkslab.com/deobfuscation-recovering-

an-ollvm-protected-program.html [Accessed 08 03 2016].

[281] J. Kozyrakis, "Substrate - hooking C on Android", 01 06 2015. [Online], Available:

https://koz.io/android-substrate-c-hooking/ [Accessed 28 05 2016].

[282] C. V. Bockhaven, "Intercepting Android native library calls", 2014. [Online],

Available: https://cedricvb.be/post/intercepting-android-native-library-

calls/#comment-9106 [Accessed 29 05 2016].

[283] S. Margaritelli, "ARM Inject", 2015. [Online], Available:

https://github.com/evilsocket/arminject [Accessed 13 06 2016].

[284] K. Weiss, T. Topaloglu, N. Tslamitoas, F. Weissl and A. Abdelrahmen, "Android

Practical Course SS16 - Research Task Reports Eval 2 (not published)", TUM,

Munich, 2016.

[285] J. Raedl, G. Michels, V. Strelchenko and S. Al Masud, "Android Practical Course

SS16 - Research Task Reports Eval 3 (not published)", TUM, Munich, 2016.

[286] H. Kirchner, J. Lucas, N. Bui, J. Hartl, A. Baus, T. Petting, T. Ladek and F. Gareis,

"Android Practical Course WS15/16 - Research Task Reports (not published)", TUM,

Munich, 2016.

[287] H. Grobbel, Interviewee, Email: AW: zur Information / Zitat in Dissertation (not

publicly published). [Interview]. 07 04 2016.

[288] J. Hogenboom and W. Mostowski, "Full Memory Read Attack on a Java Card",

Radboud University Nijmegen, [Online], Available:

http://www.uclouvain.be/crypto/wissec2009/static/13.pdf [Accessed 14 01 2016].

[289] M. Witteman, "Smartcard Security", CHI Publishing Ltd., 2003. [Online], Available:

https://www.riscure.com/archive/ISB0808MW.pdf [Accessed 14 01 2016].

[290] M. Roland, Interviewee, Email: Re: SE (not publicly published). [Interview]. 18 01

2016.

[291] GlobalPlatform, "GlobalPlatform Card Specification 2.1.1", 2003. [Online],

Available:

References

259

http://www.win.tue.nl/pinpasjc/docs/Card%20Spec%20v2.1.1%20v0303.pdf

[Accessed 16 01 2016].

[292] Sky Deutschland GmbH, "Cardsharing", [Online], Available:

https://info.sky.de/inhalt/eng/unternehmen_piraterie_cardsharing.jsp [Accessed 15 01

2016].

[293] L. Francis, W. G. Sirett, K. Mayes and K. Markantonakis, "Countermeasures for

Attacks on Satellite TV Cards using Open Receivers", in Third Australasian

Information Security Workshop (AISW2005), Newcastle, Australia, 2005.

[294] ARM, "Development of TEE and Secure Monitor Code", [Online], Available:

http://www.arm.com/products/processors/technologies/trustzone/tee-smc.php

[Accessed 26 06 2016].

[295] laginimaineb, "Full TrustZone exploit for MSM8974", 10 08 2015. [Online],

Available: http://bits-please.blogspot.de/2015/08/full-trustzone-exploit-for-

msm8974.html [Accessed 30 11 2015].

[296] Google, "DRM", [Online], Available: https://source.android.com/devices/drm.html

[Accessed 19 07 2016].

[297] Google, "Setting Up for Licensing", [Online], Available:

http://developer.android.com/google/play/licensing/setting-up.html [Accessed 13 02

2016].

[298] nb, "Android Anti-Hooking Techniques in Java", 23 12 2015. [Online], Available:

http://d3adend.org/blog/?p=589 [Accessed 13 06 2016].

[299] Y. Zhauniarovich, O. Gadyatskaya and B. Crispo, "DEMO: Enabling Trusted Stores

for Android", CCS 2013, Berlin, Germany, 2013.

[300] Jide Co. Ltd., "Remix OS for PC", [Online], Available: http://www.jide.com/remixos

[Accessed 28 07 2016].

[301] A. Killer, "Handy erkennt seinen Besitzer", BR24, 25 05 2016. [Online], Available:

https://br24.de/nachrichten/Deutschland%20%26%20Welt/handy-erkennt-seinen-

besitzer [Accessed 26 05 2016].

[302] N. Schmidbartl, "Analysis to identify users/devices based on different criteria and

integration into a framework", 15 02 2015. [Online], Available:

http://www.os.in.tum.de/fileadmin/w00bdp/www/Lehre/Abschlussarbeiten/Thesis_Fi

nal._Schmidbartl.pdf [Accessed 07 04 2016].

[303] Google, "Google Playstore", Google, [Online], Available: https://play.google.com

[304] K. Olmstead and M. Atkinson, "Apps Permissions in the Google Play Store",

PewResearchCenter, 10 11 2015. [Online], Available:

http://www.pewinternet.org/files/2015/11/PI_2015-11-10_apps-

permissions_FINAL.pdf [Accessed 07 04 2016].

References

260

[305] Google, "Best Practices for Unique Identifiers", Google, [Online], Available:

http://developer.android.com/training/articles/user-data-ids.html [Accessed 16 04

2016].

[306] Google, "Location Strategies", [Online], Available:

http://developer.android.com/guide/topics/location/strategies.html [Accessed 17 04

2016].

[307] Google, "Sensor", [Online], Available:

http://developer.android.com/ndk/reference/group___sensor.html [Accessed 17 04

2016].

[308] P. Verest, "using SystemProperties to get Serial (Brand, Device.. etc) on Android

[duplicate]", StackOverflow, 20 11 2014. [Online], Available:

http://stackoverflow.com/questions/27034848/using-systemproperties-to-get-serial-

brand-device-etc-on-android [Accessed 19 04 2016].

[309] unknown, "NDK android imei serial number", 21 02 2013. [Online], Available:

http://www.cnblogs.com/273809717/archive/2013/02/21/2921058.html [Accessed 19

04 2016].

[310] N. Mansurov, "Dead vs Stuck vs Hot Pixels", 17 08 2011. [Online], Available:

https://photographylife.com/dead-vs-stuck-vs-hot-pixels [Accessed 19 04 2016].

[311] D. Ivanov and E. Hughes, "Improving Stability with Private C/C++ Symbol

Restrictions in Android N", 21 06 2016. [Online], Available: http://android-

developers.blogspot.de/2016/06/improving-stability-with-private-cc.html [Accessed

28 06 2016].

[312] J. Medkeff, "photo.net", 2004. [Online], Available: http://photo.net/learn/dark_noise/

[Accessed 19 04 2016].

[313] Google, "Native Audio: OpenSL ES™ for Android", [Online], Available:

http://developer.android.com/ndk/guides/audio/opensl-for-android.html [Accessed 19

04 2016].

[314] Google, "Android 6.0 APIs", [Online], Available:

http://developer.android.com/about/versions/marshmallow/android-6.0.html

[Accessed 08 04 2016].

[315] Google, "Ice Cream Sandwich", [Online], Available:

http://developer.android.com/about/versions/android-4.0-highlights.html [Accessed

28 04 2016].

[316] Google, "IO 2011 - Evading Pirates and Stopping Vampires", 2011. [Online],

Available: http://www.youtube.com/watch?feature=player_embedded&v=TnSNCX

[Accessed 30 06 2013].

References

261

[317] m1m1x, "memdlopen", 26 04 2015. [Online], Available:

https://github.com/m1m1x/memdlopen [Accessed 29 04 2016].

[318] J. Conrod, "Understanding Linux /proc/id/maps", 09 09 2009. [Online], Available:

http://stackoverflow.com/questions/1401359/understanding-linux-proc-id-maps

[Accessed 30 04 2016].

[319] E. Bendersky, "How to JIT - an introduction", 05 11 2013. [Online], Available:

http://eli.thegreenplace.net/2013/11/05/how-to-jit-an-introduction [Accessed 30 04

2016].

[320] Justin Case, "[EXCLUSIVE] Report: Google's Android Market License Verification

Easily Circumvented, Will Not Stop Pirates", 23 08 2010. [Online], Available:

http://www.androidpolice.com/2010/08/23/exclusive-report-googles-android-market-

license-verification-easily-circumvented-will-not-stop-pirates/ [Accessed 2015 05

17].

[321] Google, "Transmitting Network Data Using Volley", [Online], Available:

https://developer.android.com/training/volley/index.html [Accessed 28 06 2016].

[322] T. Johns, "Securing Android LVL Applications", 01 09 2010. [Online], Available:

http://android-developers.blogspot.de/2010/09/securing-android-lvl-applications.html

[Accessed 26 06 2016].

[323] Bundesministerium der Justiz und fuer Verbraucherschutz, "Gesetz über Urheberrecht

und verwandte Schutzrechte (Urheberrechtsgesetz)", [Online], Available:

https://www.gesetze-im-internet.de/urhg/__95a.html [Accessed 28 06 2016].

[324] Apple, "Controlling Symbol Visibility", Apple, 09 10 2009. [Online], Available:

https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/

CppRuntimeEnv/Articles/SymbolVisibility.html [Accessed 12 06 2016].

[325] N. Douglas, "Why is the new C++ visibility support so useful?", 23 08 2013.

[Online], Available: https://gcc.gnu.org/wiki/Visibility [Accessed 12 06 2016].

[326] S. Margartelli, "Using ARM Inline Assembly and Naked Functions to Fool

Disassemblers", 02 05 2015. [Online], Available:

https://www.evilsocket.net/2015/05/02/using-inline-assembly-and-naked-functions-

to-fool-disassemblers/ [Accessed 12 06 2016].

[327] GlobalPlatform, "GlobalPlatform made simple guide: Secure Element", [Online],

Available: https://www.globalplatform.org/mediaguideSE.asp [Accessed 07 06 2016].

[328] L. Stadler, "Weiterentwicklung eines Tools zur Integration von

Kopierschutzmaßnahmen in Android Apps (not published)", TUM, Muenchen, 2015.

[329] Google, "Getting Started with the NDK", [Online], Available:

https://developer.android.com/ndk/guides/index.html [Accessed 07 06 2016].

References

262

[330] L. Stadler, "Final presentation / Weiterentwicklung eines Tools zur Integration von

Kopierschutzmaßnahmen in Android Apps (not published)", TUM, Muenchen, 2016.

[331] M. D. Ryan, "One-way secure hash functions", The University of Birmingham, 2004.

[Online], Available:

http://www.cs.bham.ac.uk/~mdr/teaching/modules04/security/lectures/hash.html

[Accessed 07 06 2016].

[332] Ofcom, "4G and 3G mobile broadband research", 02 04 2015. [Online], Available:

http://stakeholders.ofcom.org.uk/binaries/research/broadband-

research/april15/Ofcom_MBB_Performance_Report_April_2015.pdf [Accessed 07

06 2016].

[333] Google, "ARA", [Online], Available: https://atap.google.com/ara/ [Accessed 27 07

2016].

[334] P. K., "A Regular expression game for Android", 30 11 2015. [Online], Available:

https://github.com/phikal/regex [Accessed 13 06 2016].

[335] E. Braendle, A. Ostrovsky and T. Falkenmeyer, "Final Presentation - SIGNPOST (not

published)", TUM, Muenchen, 2012.

[336] Several authors, "AndEngine", [Online], Available: http://www.andengine.org/

[Accessed 13 06 2016].

[337] E. Braendle, A. Ostrovsky and T. Falkenmeyer, "SignPost - Final Documentation (not

published)", TUM, Munich, 2012.

[338] O. Pekmezci, "Implementation of a Framework for Advanced Obfuscation of an

Android App by using a Secure Element (not published)", TUM, Munich, 2015.

[339] Ramps, "Android global variable", StackOverflow, 22 12 2009. [Online], Available:

http://stackoverflow.com/questions/1944656/android-global-variable [Accessed 23 05

2016].

[340] T. Goebl, Interviewee, Email: RE: TU München - Denuvo Anfrage (not publicly

published). [Interview]. 26 07 2016.

[341] M. Edel, Interviewee, Email: AW: [RMX:ANHANG ENTFERNT]

Zertifizierung/Richtlinie Kopierschutz? (not publicly published). [Interview]. 28 07

2016.

[342] S. Bebel, Interviewee, Email: Re: Zertifizierung/Richtlinie Kopierschutz? (not

publicly published). [Interview]. 01 08 2016.

[343] Nielsen, "MOBILE MILLENNIALS: OVER 85% OF GENERATION Y OWNS

SMARTPHONES", 05 09 2014. [Online], Available:

http://www.nielsen.com/us/en/insights/news/2014/mobile-millennials-over-85-

percent-of-generation-y-owns-smartphones.html [Accessed 28 06 2016].

References

263

[344] C. Guitierrez, "How to view source code of dll files?", StackOverflow, 10 01 2010.

[Online], Available: http://stackoverflow.com/questions/2168794/how-to-view-

source-code-of-dll-files/2168826 [Accessed 22 06 2016].

[345] Sicherheitsnetzwerk-Muenchen, "Mobile Security im Unternehmen – Bericht zur

Konferenz am 4.12.2014", [Online], Available: http://www.it-security-

munich.net/?p=1116 [Accessed 11 05 2015].

[346] Google, "Android KitKat", [Online], Available:

http://developer.android.com/about/versions/kitkat.html#44-security [Accessed 11 05

2015].

[347] S. Dent, "Google posts Windows 8.1 vulnerability before Microsoft can patch it",

engadget, 02 01 2015. [Online], Available:

http://www.engadget.com/2015/01/02/google-posts-unpatched-microsoft-bug/

[Accessed 23 05 2016].

[348] J. Armour, Interviewee, Email: RE: [8-6607000004711] License Verification Library

issue (or actually a general security problem due to interception possibilities) (not

publicly published). [Interview]. 30 09 2014.

[349] A. I. S. Team, Interviewee, Email: Re: Amazon's DRM for Android (not publicly

published). [Interview]. 23 02 2016.

[350] S. S. Team, Interviewee, Email: Galaxy App Store and its license verification library

Zirconia (not publicly published). [Interview]. 14 04 2016.

[351] Retargetable Decompiler, "Retargetable Decompiler", [Online], Available:

https://retdec.com/decompilation-run/ [Accessed 16 02 2016].

[352] pyknite, cryptopathe, "Control Flow Flattening", 04 08 2014. [Online], Available:

https://github.com/obfuscator-llvm/obfuscator/wiki/Control%20Flow%20Flattening

[Accessed 05 04 2016].

[353] cryptopathe, pyknite, "Instructions Substitution", 04 11 2014. [Online], Available:

https://github.com/obfuscator-llvm/obfuscator/wiki/Instructions%20Substitution

[Accessed 05 04 2016].

[354] unknown, "Pass a string to/from Java to/from C", Real's HowTo, [Online], Available:

http://www.rgagnon.com/javadetails/java-0284.html [Accessed 26 07 2016].

[355] Sven, "linux command executing by popen on C code", StackOverflow, [Online],

Available: http://stackoverflow.com/questions/16127027/linux-command-executing-

by-popen-on-c-code [Accessed 19 06 2016].

[356] Several authors, "Does it support Android marshmallow?", StackOverflow, [Online],

Available: https://github.com/libusb/libusb/issues/188 [Accessed 06 06 2016].

References

264

[357] Infineon, "SWP SIM & UICC", [Online], Available:

http://www.infineon.com/cms/en/applications/chip-card-security/swp-sim-uicc/

[Accessed 31 01 2016].

[358] N. Kralevich, Google, 2015. [Online], Available:

https://usmile.at/symposium/program/2015/kralevich [Accessed 26 11 2015].

[359] unknown, "Android NDK: A guide to deploying apps with native libraries", 07 07

2015. [Online], Available: https://androidbycode.wordpress.com/tag/armeabi-v7a/

[Accessed 26 06 2016].

[360] S. Kladko, "SPA and DPA: Possible Testing Solutions and Associated Costs", BKP

Security Labs, [Online], Available:

http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-

3/physec/papers/physecpaper08.pdf [Accessed 14 01 2016].

[361] Common Criteria, "Common Criteria", [Online], Available:

http://www.commoncriteriaportal.org/cc/ [Accessed 14 01 2016].

[362] M. Rouse, "address space layout randomization (ASLR) definition", 06 2014.

[Online], Available: http://searchsecurity.techtarget.com/definition/address-space-

layout-randomization-ASLR [Accessed 19 01 2016].

[363] Microsoft, "A detailed description of the Data Execution Prevention (DEP) feature in

Windows XP Service Pack 2, Windows XP Tablet PC Edition 2005, and Windows

Server 2003", 22 05 2013. [Online], Available: https://support.microsoft.com/en-

us/kb/875352 [Accessed 19 01 2016].

[364] Xjtag, "What is JTAG and how can I make use of it?", [Online], Available:

https://www.xjtag.com/about-jtag/what-is-jtag/ [Accessed 27 06 2016].

[365] Google, "StrictMode", [Online], Available:

https://developer.android.com/reference/android/os/StrictMode.html [Accessed 19 06

2016].

