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Some regularization methods for a thermoacoustic
inverse problem
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Abstract. In this paper we consider the thermoacoustic inverse problem of identifying
the oscillatory heat release from pressure measurements. We consider the spatially one-
dimensional and time harmonic case. Three different regularization methods for the stable
solution of this ill-posed inverse problem are proposed: Lavrent’ev’s method, regulariza-
tion by discretization, and a method based on an explicit formula combined with regular-
ized numerical differentiation. For these methods, the results of numerical experiments
are documented.
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1 Introduction

In combustion technology, unsteady fluctuations of the heat release rate can ad-
versely affect pollutant emissions, noise production, and combustion stability. The
physical background for the latter phenomena is the fact that oscillatory heat re-
lease acts as a monopole source of sound in compressible flows. Unfortunately, it
is quite difficult in experiment to determine the spatio-temporal distribution of
heat release rate in a combustor even with advanced measurement techniques.
For perfectly premixed combustors with good optical access, imaging of OH *
chemiluminescence over the entire extent of the flame does provide a qualitative
measure of the spatial distribution of heat release rate and its fluctuations [1, 18].
However, this measurement technique is in general not applicable to technically
relevant combustor configurations. On the other hand, it is fairly easy to measure
the oscillatory pressure p at the combustor walls with wall-mounted microphones
or pressure transducers. Therefore, the possibility of recovering oscillatory heat
release distribution solely from acoustic pressure measurements has been consid-
ered [2, 13,19,22]. However, this represents an ill-posed problem and therefore
has to be regularized, see e.g. [4,5,10,15,17,23,24].
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998 B. Kaltenbacher and W. Polifke

Indeed, Bala Subrahmanyam et al. [2] show that the thermo-acoustic inverse
problem can be formulated as a Fredholm integral equation of the first kind, which
involves the Green’s function for acoustic wave propagation. Furthermore, they
provide a re-formulation of the thermo-acoustic inverse problem in terms of a
Volterra integral equation of the second kind, with the integral over the fluctu-
ating heat release rate as the unknown, thus leading to a problem of numerical
differentiation. More recently, Pfeifer et al. [19] proposed an algorithm for the
determination of location and strength of monopole sources in a closed chamber
by evaluation of pressure signals measured by wall-mounted microphones. Based
on the theory of near-field acoustic holography, the acoustic field in the chamber
was represented by Green’s Functions, taking into account also higher-order, pos-
sibly evanescent acoustic modes. In this manner, a linear mapping from N sound
sources to M sensor positions was formulated. This mapping was inverted with
Tikhonov regularization and truncated singular value decomposition (SVD), thus
providing a solution to the thermo-acoustic inverse problem for the configuration
considered.

The aim of this paper is to develop and apply more problem adapted regu-
larization strategies than Tikhonov regularization or truncated SVD. Indeed, the
formulations we will consider allow to make use of the problem structure as a
Volterra integral equation or an inverse problem for an ordinary differential equa-
tion (ODE).

In Section 2 we specify the underlying model for our thermoacoustic inverse
problem. Section 3 provides a discussion of some regularization strategies taking
into account the Volterra structure of the problem. It also contains a new approach,
that is based on an explicit formula for the inverse problem by solution of some
ODE, as well as numerical differentiation. Finally, in Section 4, we compare the
proposed methods in numerical tests.

2 Preliminaries

The oscillatory heat release ¢ appears as a source term in the acoustic wave equa-
tion for the pressure fluctuations p, which for example in the limit of vanishing
Mach number M = u/c — 0 (where u is a characteristic flow velocity and ¢ the
average speed of sound) reads as
1 9%p 1 Kk —10dq

— 2 _5v.[Zvp]) = =,

2oz P (,5 p) 2 ot
where p is the average density, and « the ratio of specific heats. We therefore refer

to, e.g., [9, 11,21, 25] for important results on uniqueness and stability of inverse
source problems for second order hyperbolic equations.
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Figure 1. Experimental setup.

Following [2], we work in frequency domain, assuming time harmonic be-
haviour at frequency w, and formulate the problem as a one-dimensional differ-
ential equation

pxx+lex+22p:Z3(ikq+M‘Ix)» X € (OsL)7 (21)

which is justified in an appropriate experimental setup as shown in Figure 1 at
frequencies below the cut-on frequency of non-plane acoustic modes, cf. [2]. Here
p denotes the acoustic pressure, g the heat release, and the constants Z1, Z,, Z3
are given by

%M
S TER
k2
Zop= —
2T 1-Mm2
y —1
Zy=——t
2T T - M)

where y is the ratio of specific heats, k = w/c the wave number, M = u/c the
mean Mach number, u the mean axial velocity, ¢ the mean speed of sound, and L
the length of the combustor.

In here, to keep notation similar to existing literature on this application, we
write a subscript x for the derivative with respect to space, although (2.1) is ob-
viously an ordinary differential equation. Considering (2.1) as an ODE for ¢, we
see that ¢ is only uniquely determined if we specify in addition to (2.1) an initial
value for g. We will simply set

q(0) =0, (2.2)

which is physically justified by the fact that ¢(0) can be regarded as a selectable
offset value.
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Unique identifiability of ¢ from measurements of p follows from the Picard—
Lindelof theorem provided p is sufficiently smooth. One can even derive the fol-
lowing explicit formula

q(x)
= exp(—i(k/M)x)(q(0) + 1M Z3(—px(0) + (i(k/M) — Z1) p(0)))
+ 1M Z3(px(x) — (i(k/M) — Z1) p(x)) (2.3)

+ 1AM Z3(—(k/M)* = Zyi(k/M) + Zz)/0 exp(i(k/M)(§ —x))p(§) d§.

This expression contains derivatives of the data p and is therefore not directly
applicable for stable inversion, but it may be used for defining a reconstruction
method if regularization is applied, see Subsection 3.3 below.

3 Regularization methods for the identification of the heat release

The problem of identifying the heat release from pressure measurements according
to (2.1) is ill-posed in the sense that small perturbations in the data can lead to large
deviations in the solution. As a matter of fact, in place of the exact pressures p only
measured values p‘S are available, which are contaminated with noise (indicated
here and below by a superscript §). Consequently, regularization has to be applied.
In this section we will propose three different methods for this purpose.

For appropriately choosing regularization parameters, we will assume that the
noise level 6, in

Ip(x) — pP(x)| < 6, 3.1)

is known.

3.1 Lavrent’ev’s method

Integrating twice with respect to space, we can reformulate (2.1) as a Volterra
integral equation of the first kind

[0 K(e.5)q(€)dE = f(x). xe(O.L), (3.2)

where

F(0) = —p(x) — /0 (Z1 + Za(x — ) p(§) dE + (1 + Z1)p(0)
4+ xpx(0) + Z3M xq(0)

(3.3)
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and the kernel takes the simple (convolution type) form
k(x,§) = —Z3(M +ik(x —§)) (3.4)

cf. [2].
The degree of ill-posedness of (3.2) is given by the smoothing properties of the
integral operator

T:vis fo.k(-,é)v(g)dé, (3.5)

cf. [12]. Due to the fact that by k(x,x) = —Z3M > 0, (3.2) can be written as a
(well-posed) second kind Volterra integral equation

0
Krng(0) + [ . 00@ d€ = £ (36)

containing first derivatives of the data in f, we can regard (3.5) as a one-smoothing
operator which implies that (3.2) is as ill-posed as one numerical differentiation.

While most “classical” regularization methods like Tikhonov regularization
would destroy the non-anticipatory structure of problems of the form (3.2), several
regularization methods have been proposed and analyzed in the literature, that re-
spect the causal behaviour of Volterra type integral equations, see e.g., the survey
paper [12]. Perhaps the most well-known among them is Lavrent’ev’s method,
which, given a small regularization parameter o > 0 defines the solution g4 to the
second kind (hence well-posed) Volterra integral equation

ag(x) + fo K(x.£)q() dE = f3(x) 3.7)

as a regularized approximation to the solution of (3.2). For a convergence analysis
of this method we refer to [3] and further references in [12]. The choice of the
regularization parameter « is crucial for an appropriate trade off between stability
and approximation and should be chosen in dependence of the noise level § on
the right hand side f, which derives from the noise level §,, §o in the data p(x),
x € [0, L], px(0). If the derivative p(0) has to be computed numerically by a
one sided difference quotient Dg p3

(a) Px(o)=w+0(h) if peC? or
————
=:D2p
b pe(0) = PN +42’;l(h) =3O L ouryitpecd. G
=:D2p

- 10.1515/jiip.2011.017
Downloaded from De Gruyter Online at 09/28/2016 09:25:42PM
via Technische Universitat Minchen



1002 B. Kaltenbacher and W. Polifke

then an optimal choice of the stepsize
h ~ 811,/2 incase (a) and h ~ 8;/3 in case (b) 3.9)
yields
8o ~ 811,/2 in case (a) §g ~ 8;/3 in case (b)

for
| px(0) — pS(0)| < o, (3.10)

where pf;(O) =: Dgps.
By (3.3), (2.2), we can use

§=Q2+2Z 1L+ Z2L*)8, + Lo
as noise bound in

1f(x) = fox)] <6

provided that (3.1), (3.10) holds.
According to Theorem 1 in [12] (quoted from [3]) & = «(§) should be chosen
such that

a—>0 and §/a —0 asé— 0.

Then the solution qg @) of (3.7) with noisy data in the right hand side is guaranteed
to converge to the exact ¢ as § — 0. The discrepancy principle is an a posteriori
parameter choice strategy that is well known to yield convergence with optimal
rates for many different regularization methods. Note, however, that the discrep-
ancy principle in general does not yield convergence of Lavrent’ev’s method (cf.
Remark 7 in [20]). For a convergence analysis of modified versions of Lavrent’ev’s
method with the discrepancy principle see [7,20] and the references therein.

Since f(0) = 0 according to (3.3), method (3.7) yields a solution qg with
qg (0) = O for any o > 0, which fits to (2.2). Therewith the problem of a boundary
layer at x = O (as it often arises in the context of Lavrent’ev’s method) does not
occur here due to (2.2).

3.2 Regularization by discretization

On one hand, for numerical computations the infinite dimensional problem (3.2) or
its regularized version (3.7) has to be discretized. On the other hand, discretization
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Some regularization methods for a thermoacoustic inverse problem 1003

leads to a finite-dimensional and therewith stable problem. Therefore regulariza-
tion by discretization is another option here, especially in view of the fact that we
deal with a mildly ill-posed problem (recall that the Volterra integral operator is
one-smoothing). To obtain convergence as § — 0, it is essential to choose an ap-
propriate kind of discretization. It has been shown (cf. [14]) that a combination of
collocation with the trapezoidal rule

k—1
1 1
h(zk(xk,xk)qk + D K(xe, x)gj + Ek(xk,xmo) = f* ().
j=1
L
k=1,....N, h:=—, xx =kh
N
for finding approximations ¢; ~ ¢(jh), j = 1,..., N is numerically unstable,

whereas combining collocation with the midpoint rule

k
hY k(e Xj1/2)j-172 = £ (), (.11
j=1
L 1
k = 1,...,N, h = N, Xk :kh, xj—1/2 = (] —E)l’l
forq; 12 ~ q((j — %)h), j = 1,..., N leads to a convergent method at least

for exact data. The step size h acts as a regularization parameter in place of o
appearing in Lavrent’ev’s method and should be chosen such that

h—0 and §/h—0 asé— 0, (3.12)

to yield convergence, see [8]. Convergence and convergence rates for regular so-
lutions can be obtained if in place of the a priori choice (3.12), the discrepancy
principle is used

hy = max{h = 'L |

eemax T (o) = (Tq) )] = [ (o) = 7 (o)l

<2¢8, 1 € Ny}, (3.13)

where B > 1 and t > 1 are a priori fixed constants, (in our computations we used
B =2and t = 1.1)and N = L/ hs. see [8], where also well-definedness of /.
according to (3.13) is shown.
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1004 B. Kaltenbacher and W. Polifke

3.3 An explicit formula using numerical differentiation of the data

Another possibility for transforming (3.2) to a well posed problem is to use its
differentiated version (3.6) applying regularized numerical differentiation (see,
e.g., [5,6,16]) to obtain a stable approximation of fyx from the given data f 5 In
our case, this is equivalent to applying only one integration with respect to space
in (2.1), which, in its turn, is equivalent to regarding (2.1) as differential equation
for g

Z3(ikqg + Mgx) = — fxx, (3.14)

with f as in (3.3). This ODE (3.14) can be solved explicitly for ¢, which gives
the solution formula (2.3). To be able to apply this formula to noisy data ps, we
have to approximate the derivative p, by a difference quotient with appropriately
chosen stepsize. Therewith we end up with the method
~ 0
q(xk) ~ q;
= exp(—i (k/M)xi)(q(0) + 1M Z3(=Djp’ + (i(k/M) = Z1)p* (0))
+ 1M Z5 (D) — i (/M) = Z1) p’ (xp) (3.15)

+ IMZ3(—(k/M)? — Z1i(k/M) + Z2) Q(exp(i (k/ M) (- — x)) p° (-); x¢)
where

P(Xj1172) — p(Xj—1/2)
(Dyp®); = RavE h o2 ~ px(x;),

D2 is as in (3.8), and Q(g; x) denotes some quadrature rule with error of order
O(h?) for approximating f(f g(&) d& (we here used the midpoint rule again). The
stepsize / is chosen according to (3.9), depending on whether

(a)peC2 or (b)peC3,
which yields

lg(xr) — q,‘§| ~ 811,/2 incase (a) |q(xg) — q,‘Z| ~ 511,/3 in case (b).
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4 Numerical experiments

In our computations, we used the values M = 0.1, k = 0.5, y = 1.2 taken
from [2].
As a first test example, we considered

p(x) = exp(i($2/L)x)
with the exact solution according to (2.3) given by
q(x) = exp(—i(k/M)x)q(0) 4.1

Z>— (Q/L)? + Z1iQ/L
i((k/M)+ (2/L)MZ35

(exp(i (2/L)x) — exp(—i(k/M)x))

Note that availability of an analytic formula for the solution helps to avoid an
inverse crime (i.e. produce non-representative numerical results by restriction of
the whole problem to a finite dimensional subspace). Synthetic noise of relative

level ”pr‘np" = 8, % 0.01 with §, = 14,12, 1,2, and 4 in the data is generated
by adding rescaled standard normally distributed random numbers to the exact
values of p. Figure 2 shows the respective results for the methods described in
Subsections 3.1, 3.2, 3.3 for test example (4.1) with L = 1, Q = 2.

To compare the methods directly, we plot their performance at different relative

noise levels according to the formula

||P8 =l _ 10—SNR/20
Il

(cf. [19]) see, Figure 3.
As a second test example, we consider a heat release distribution with two peaks

_ 2 _ 2
q(x) = Ajexp ((360—261)) + Az exp (()CO—;CZ)) 4.2)

1 2

with corresponding pressure distribution according to (2.1) computed by finite dif-
ferences on a fine grid in order to avoid an inverse crime.

Figure 4 shows the respective results for the methods described in Subsec-
tions 3.1, 3.2, 3.3 for test example (4.2) with x; = L/3, x5 = 3L/4,0, = 1.e-3,
03 = 3.e—3, A; = 100, A, = 50.

In Figure 5, we show a comparison of the methods at different noise levels.

Methods (3.11) and (3.15) appear to be more robust against noise as compared
to (3.7) for the smoother test example (4.1). For the less regular test example (4.2),
performance was worse for all methods, as expected from the well-known fact that
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Figure 2. Method (3.7) (left) (3.11) (middle), (3.15) (right) for test example (4.1) ap-
plied to data with 14,12, 1, 2, and 4 per cent noise (solid line) versus exact solution
(dashed line).
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—*—Lavrentev
—t—reg. by discr.
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Figure 3. Relative error w for test example (4.1) in the reconstruction g”¢¢
for SNR between 5 and 65

convergence of regularization methods depends on smoothness of the solution.
Method (3.11) very well locates the peaks and to some extent even their heights,
but yields somewhat oscillatory solutions. Methods (3.7) and (3.15) behave simi-
larly for (4.2) at lower noise levels, where they succeed in avoiding oscillations but
give poor approximations to the peak heights. For the highest noise level, method
(3.15) misses the peaks completely. In summary, method (3.11) performs best for
the two test cases considered.

5 Conclusions and outlook

In this paper we considered the inverse thermoacoustic problem of identifying the
oscillatory heat release distribution from acoustic pressure measurements in the
spatially one-dimensional time harmonic case. We applied three different regular-
ization methods and compared their numerical behaviour on synthetic data.

Future research will be devoted to the spatially higher dimensional case in gen-
eral combustor geometries, as well as with applications to realistic data represen-
tative of turbulent combustion.

In the 2- and 3-dimensional situation, (2.1) becomes a damped Helmholtz equa-
tion for p with a term of the form Z3(ikg + I;Vq) on the right hand side. Note
that also in this case, techniques of numerical differentiation applied to p, in com-
bination with numerical solution methods for a transport equation for ¢, as well
as regularization by discretization, are expected to yield efficient and robust re-
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Figure 4. Method (3.7) (left) (3.11) (middle), (3.15) (right) for test example (4.2) ap-
plied to data with 14,12, 1, 2, and 4 per cent noise (solid line) versus exact solution
(dashed line).
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—d—Lavrent'ev H
—t+reg. by discr. [|
—A— numer. diff.

relative error of reconstruction

llg™—qll

Figure 5. Relative error Tl for test example (4.2) in the reconstruction g™ for
SNR between 5 and 65.

construction methods. Due to their relation to (3.11), (3.15), the present paper
might serve as a first study for the higher dimensional case. On the other hand,
already this 1-d setting corresponds to a practically relevant experimental setup
and therefore provides valuable information.
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