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All models are wrong but some are useful.
George E. P. Box

What I cannot create, I do not understand.
Richard Feynman





Abstract

Protein-protein interactions are involved in virtually all important biological pro-
cesses in the cell. Methods like X-ray crystallography or nuclear magnetic reso-
nance spectroscopy have yielded atomic structural insights into many assemblies.
However, experimental structure characterization is highly challenging and for a
large fraction of complexes, atomic structural knowledge is lacking to date. Com-
putational protein-protein docking methods aim to complement experimental stud-
ies by modeling the structure of protein-protein complexes from the structures of
the individual constituents. In addition to elucidating unknown structures, design-
ing accurate docking methods gives insights into the physical principles that govern
non-covalent protein association and hence helps to understand the requirements
for speci�c and nonspeci�c recognition in the cell. Due to the complexity of the
problem, most docking programs keep the internal structure of the proteins rigid
and explore only rotational and translational degrees of freedom. But in many cases,
proteins undergo signi�cant conformational changes upon binding and rigid-body
docking may fail to correctly predict the native structure. Flexible docking methods
aim to incorporate protein conformational �exibility, balancing the required level
of detail with computational e�ciency. �is thesis presents several methodological
advances that were implemented in the ATTRACT docking engine. �e developed
protocols expand ATTRACT’s capabilities towards atomistic �exible docking and in-
corporating additional types of low-resolution experimental data. �e protocols were
tested on large benchmark sets and achieved signi�cant improvements compared to
previous approaches. �is thesis also describes two applications of developed proto-
cols in collaboration with experimental groups. In the �rst application, we studied
peptide recognition in the chaperone cofactor ERdj5. In the second project, the full-
length multi-domain structure of the �exible ISWI nucleosome remodeling enzyme
was modeled. In the future, the developed protocols can be employed to study a
broad variety of transient and �exible protein-protein complexes.
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Zusammenfassung

Protein-Protein Wechselwirkungen sind an allen wichtigen zellulären Prozessen be-
teiligt. Durch Röntgenkristallographie und NMR Experimente konnte die Struktur
von vielen Komplexen auf atomarer Skala aufgelöst werden. Allerdings stehen der-
artige Informationen aber für eine Vielzahl von Wechselwirkungen momentan nicht
zur Verfügung. In Fällen, in denen die Struktur des Komplexes unbekannt ist aber ex-
perimentelle Strukturen für die einzelnen Komponenten vorhanden sind, kann der
Bindungsmodus mit Protein-Protein Docking Computersimulationen vorhergesagt
werden. Zudem bieten Dockingsimulationen und das Design von präzisen Docking-
algorithmen die Möglichkeit unser Verständnis von den physikalischen Krä�en, die
die Proteinassoziation bestimmen, zu testen und zu vertiefen. Das Protein-Protein
Docking Problem ist hochkomplex, da es sich um Systeme mit vielen Atomen und
dementsprechend vielen Freiheitsgraden handelt. Deshalb wird typischerweise in
den meisten Dockingprogrammen die “Starre Körper” Näherung verwendet, die er-
laubt den Bindungsprozess nur in Rotation und Translation des Schwerpunkts zu be-
schreiben. Allerdings verändern viele Proteine ihre Struktur, wenn sie an ihren Part-
ner binden, und Docking in der “Starren Körper” Näherung kann in solchen Fällen
o� die native Komplexstruktur nicht mehr korrekt vorhersagen. Flexible Dockingme-
thoden versuchen die Protein�exibilität in der Strukturvorhersage in angemessenem
Detail e�zient zu berücksichtigen. In dieser Arbeit werden mehrere neue Erweite-
rungen des ATTRACT Dockingprogramms beschrieben, die es erlauben atomistische
Flexibilität und zusätzliche experimentelle Daten während des Dockings einzubauen.
Die entwickelten Protokolle wurden auf großen Benchmarks getestet und stellen kla-
re Verbesserungen zu vorhandenen Methoden dar. Zudem wurden die neuen Proto-
kolle in Kollaboration mit experimentellen Gruppen auf zwei spannende biologische
Fragestellungen angewendet: 1. die Untersuchung des Peptiderkennungsmechanis-
mus des Chaperoncofaktors ERdj5 im endoplasmatischen Retikulum, 2. die Modellie-
rung der Struktur des Multidomänenproteins und Nukleosomremodelers ISWI. Die
in dieser Arbeit vorgestellten Protokolle können in Zukun� zur Strukturvorhersage
vieler kurzlebiger und �exibler Protein-Protein Komplexe verwendet werden.
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1. Introduction

Proteins are truly the molecules of life governing all aspects and scales of cellu-
lar function. �ese molecular “machines”–linear polymers of 20 di�erent building
blocks–carry out most of the work in cells. Proteins catalyze a large array of di�er-
ent chemical reactions from breaking down nutrients, transport and motion to DNA
replication and cell division. �ey also provide mechanical stability, act as messen-
gers, storage facilities and cleaners, and defend the cell against external threats. In
all these processes, they work in close association with other macromolecules such
as nucleic acids, lipids, and of course other proteins. Proteins bind to each other
to either jointly carry out a speci�c biological function, to regulate each other’s ac-
tivity or to pass on molecular signals. �e number of interaction partners can vary
from just two proteins associating to large assemblies of hundreds of protein compo-
nents. �e interactions are o�en transient and reversible and may depend on cellular
conditions. Hence, protein-protein interactions (PPI) add an additional layer of com-
plexity to cellular processes. �is complexity greatly increases the versatility of the
cell allowing it to respond to changing environments; e.g., changes in temperature or
oxygen levels, and tightly control all its di�erent biological functions. Furthermore,
PPIs enable cells to communicate with each other. �e ability to send and receive
signals from di�erent parts of the organism through interacting proteins is a prereq-
uisite for multi-cellular life. �e importance of these �ne-tuned networks is further
illustrated by their role in pathological disorders: aberrant interactions have been
linked to severe diseases like Alzheimer’s and cancer. In addition, many viruses hi-
jack PPI networks to use them for their own ends. �is therapeutic relevance and
their abundance has put PPI targets into the focus of recent drug design e�orts with
several inhibitors advancing now to clinical trials [317].

Over the past decades, studies on proteins and PPIs using di�erent methods from
molecular biology, biochemistry and genetics have elucidated many of their func-
tions and greatly increased our insights into the intricate processes that govern life.
Still, a detailed understanding of how proteins work together can only be obtained
by atomic-level knowledge of the three-dimensional (3D) structure of protein-protein
complexes. Structural data can reveal the functional mechanisms like binding a�n-
ity and speci�city, mechanical properties and conformational transitions in molecu-
lar detail. Only in this way, the biological role of the interaction can be completely
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1. Introduction

understood. Furthermore, knowledge of the complex structure can be used to specif-
ically modulate the interaction either by rationally designing small molecules as in-
hibitors or by mutations. �e aim of structural biologists is to provide this knowledge
by experimentally characterizing protein-protein complexes at atomic precision.

X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy and re-
cently cryo-EM experiments have resolved high-resolution 3D structures of many
proteins and protein assemblies. �e Protein Data Bank [40] contains over 100,000
structures of individual proteins and also several thousands of structures of two or
more interacting proteins. Still, this is only a very small fraction of all known and pu-
tative interactions with estimates for the size of the human interactome ranging from
250,000 to 650,000 [429, 235]. Achieving su�cient structural coverage of this large
interaction space experimentally may take several decades [148]. High-resolution
studies of protein complexes are extremely challenging and laborious due to the
strict requirements for pure and homogeneous samples, especially when it comes to
characterizing large multimeric complexes. Moreover, many complexes–in particu-
lar those involved in signal transduction–exhibit weak binding which makes large-
scale expression and puri�cation even more demanding. On top of this, proteins are
dynamic molecules which are subject to thermal motions and also complexes can
display a range of di�erent conformational states and intrinsic �exibility. �e re-
sulting conformational heterogeneity further complicates high resolution structure
determination and in some cases even makes it impossible. However, on the bright
side, even in such problematic cases, low-resolution structural information can o�en
be obtained by other experimental techniques.

To complement experimental structure characterization, a variety of computa-
tional modeling approaches have been developed with the goal to shed light on
protein-protein complexes. �is thesis deals with the �eld of protein-protein dock-
ing. In many cases, structures of the individual protein partners are available or can
be reliably modeled by homology. Docking methods aim to predict the 3D structure
of the complex from the structures of the individual protein components. In other
words, docking intends to expand structural knowledge for protein-protein inter-
actions making use of the good coverage at the single protein level. �e ATTRACT
docking program [99] was developed in our group and can be used to model a variety
of biomolecular complexes. However, the success of the approach is o�en limited to
interactions that only exhibit small-scale conformational change upon binding. �e
aim of this thesis is to improve and extend the ATTRACT protein-protein docking
approach by explicitly including atomistic protein �exibility and di�erent types of
low resolution experimental data.

�e thesis is organized as follows. An introduction to physical and structural
aspects of PPIs is given in Chapter 2, followed by a general overview on protein-

2



protein docking strategies and methodologies in Chapter 3. Chapter 4 presents the
ATTRACT docking engine outlining its main features. �e next chapters describe
new methodological developments in ATTRACT. Chapter 5 introduces the �exible
interface docking re�nement approach iATTRACT. iATTRACT performs simultane-
ous optimization of global rigid-body and the local interface residue degrees of free-
dom of protein-protein complex geometries. In Chapter 6, ATTRACT is expanded to-
wards ab-initio docking of highly �exible peptide-protein complexes. A new protocol
for modeling interface loops on a given protein-protein complex geometry is tested
in Chapter 7. Chapter 8 describes an integrative modeling approach in ATTRACT
driven by small angle X-ray sca�ering data. ATTRACT’s performance in rounds
28-36 of the blind prediction challenge CAPRI is discussed in Chapter 9. Chapter
10 describes an application of the pepATTRACT protocol (Chapter 6) to studying
peptide binding to the co-chaperone ERdj5 that is involved in protein folding and
quality control in the endoplasmic reticulum. Finally, in Chapter 11, di�erent dock-
ing protocols in ATTRACT (including the one presented in Chapter 6) are applied to
elucidate structural features of the ISWI nucleosome remodeling enzyme. Nucleo-
some remodelers are very �exible molecules and have been known to adopt di�erent
functional states in solution. �ese properties have made them elusive to traditional
structural biology approaches. In order to deal with conformational heterogeneity
and ambiguity, a new docking protocol driven by cross-linking/mass spectrometry
data (ATTRACT-XL) data has been developed. �is approach is also described in
Chapter 11. �e thesis concludes with a short perspective on the docking �eld, fu-
ture challenges and expected developments (Chapter 12).
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2. Protein-Protein Complexes

Protein-protein interactions are involved in virtually all biological processes
in the cell. �is chapter gives an overview on the physical principles and the
architecture of protein-protein complexes. Di�erences between homomeric
and heteromeric, and domain-domain and peptide-mediated interactions
are discussed. Finally, methods for experimental structure characterization
of protein-protein complexes at various resolutions are presented.

2.1. Introduction

Proteins are the “workhorse molecules” of the cell and they make great team play-
ers. Even though several proteins are already active in their monomeric form, most
proteins interact with other proteins forming large assemblies in order to do their
job. Protein-protein interactions (PPIs) are abundant in the cell and involved in im-
portant processes such as metabolism, transport, signal transduction, cell division
and immune response. It was estimated that the number of PPIs in yeast exceeds
the number of single proteins by a factor of 5 to 8 excluding self-assembly [162].
�is allows proteins to contribute to di�erent functions in the context of di�erent
complexes. �e importance of PPIs is also underlined by their role in cellular mal-
function; aberrant interactions can be traced to a variety of human diseases [379]. In
these cases, the interaction between the proteins is either lost or the complex may
form at an inadequate time or location. Viruses like the papilloma and the HI-virus
produce proteins that bind to target proteins in their hosts [379, 117]. Current ef-
forts in the �eld of cancer genomics have mapped out entire networks of modi�ed
PPI networks in tumors [211, 217]. Furthermore, dysfunctional interactions have
been linked to bacterial infections and amyloid-related neurodegenerative diseases
[379].

Large e�orts have gone into characterizing PPIs. Interactomes for several organ-
isms have been studied using high-throughput methods like two-hybrid assays and
tandem a�nity puri�cation tagging [205, 268, 369, 428, 227]. Unfortunately, the fact
that two proteins interact does not always give insights into how this interaction
is actually established and how it can be potentially modulated. For this, structural
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2. Protein-Protein Complexes

knowledge of the complex needs to be obtained. Since the structures of many individ-
ual proteins have been solved experimentally and are available through the Protein
Data Bank [39, 40], the structure of the complex can in principle be inferred based on
possible physical contacts between the proteins (see Chapter 3). In the following, I
will present the main physical rules governing protein-protein association. �en the
architecture of known complexes will be discussed. �is chapter concludes with an
overview on experimental methods for studying protein-protein complex structures
at various resolutions.

2.2. Physical principles

Proteins are linear polymers consisting of 20 di�erent amino acids (also termed residues)
as building blocks. Most proteins fold into one or more three-dimensional speci�c
conformations to carry out their biological function (Figure 2.1). �e speci�c con-
formation is directly encoded in the amino acid sequence. Protein-protein complex
formation; i.e., the non-covalent association of multiple protein chains, can be un-
derstood as a subset of the general protein folding problem (quaternary structure
formation, Figure 2.1). Since no chemical bonds are formed between the interaction
partners, the assembly is purely driven by physical forces and the binding process
can be described in a statistical mechanics framework using an energy landscape con-
cept. When describing the internal energy and the entropy of the system accurately,
we can in principle determine the native structure for a protein-protein complex by
locating the global minimum in the free energy landscape. �is idea is the basis for
many of the protein-protein docking programs discussed in Chapter 3. However, due
to the large system size, structural inhomogeneity, ensemble properties and protein
�exibility, it is in practice highly challenging to apply physical concepts and descrip-
tions to protein-protein complex formation.

2.2.1. Thermodynamics

Binding of two or more proteins is a dynamic process. It is o�en assumed that the
structures of the unbound proteins and the bound complex are in equilibrium (al-
though this might not always be the case in vivo where proteins can be constantly
synthesized and degraded). In thermodynamic equilibrium, the probability of the
proteins to assemble depends on the free energy di�erence ∆Gbind between the
bound and the unbound state

pbound
punbound

= e−β∆Gbind ,

6



2.2. Physical principles

where β is the Boltzmann factor β = 1
kBT

. �e free energy di�erence can be decom-
posed in an enthalpic (energetic when neglecting volume changes) and an entropic
contribution

∆Gbind = ∆H − T∆S.

�is can be further split up into terms resulting from changes in protein-protein,
solvent-solvent (water) and interactions between solvent and proteins

∆Gbind = ∆Hpp − T∆Spp︸ ︷︷ ︸
protein-protein

+ ∆Hps − T∆Sps︸ ︷︷ ︸
protein-solvent

+ ∆Hss − T∆Sss︸ ︷︷ ︸
solvent-solvent

.

Hence, the equilibrium of complex formation depends not only on the interactions
between the biological macromolecules but also on solvent conditions; e.g., salt con-
centration. In order for a complex to be stable, ∆Gbind needs to be negative resulting
from a decrease in energy or an increase in entropy or both. In particular, loss of
entropy upon binding, especially for highly �exible proteins and peptides, has to be
compensated by favorable enthalpic changes.

2.2.2. Energy

�e strength of PPIs is largely determined by the chemical properties of the amino
acids at the interface both with respect to residue-residue interactions and with re-
spect to residue-solvent interactions (desolvation properties). Amino acids consist of
a backbone containing the amine and carboxylic functional groups and a side chain
that is a�ached to the Cα carbon. Di�erent functional groups are present as side
chains in di�erent amino acids and their atomic composition and chemical structure
can vary widely (Figure 2.1). �e electronic con�guration or charge distribution on
the amino acid determines its interaction characteristics. �e electronic con�gura-
tion can be obtained by solving the Schrödinger equation for the entire molecule.
However, obtaining solutions for such large multi-body problems is very di�cult.
Even when using approximations, quantum mechanical calculations are too demand-
ing to apply them to large systems like proteins that consist of thousands of atoms.
We will limit ourselves here to discussing a few general properties of the electronic
distribution of amino acids.

In general, electronic distributions from di�erent atoms or molecules cannot over-
lap leading to a repulsion of non-bonded atoms at small separation distance (Pauli
principle). In addition to this steric repulsion, there are several types of a�ractive in-
teractions for amino acids (Figure 2.2). �e electronic con�gurations from di�erent
amino acids can interact by induced dipole-dipole interactions (van der Waals inter-
actions). Protein-protein interfaces are typically densely packed [86] to maximize
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2. Protein-Protein Complexes

Figure 2.1. Twenty-one natural amino acids used as building blocks in proteins and main levels of
protein structure. For each amino acid, its name, three-le�er and one-le�er code, its chemical prop-
erties and its chemical structure are shown. �e �gures were created by Dancojocari [CC BY-SA 3.0
(creativecommons.org/licenses/by-sa/3.0)] and by LadyofHats [Public domain], and obtained via Wiki-
media Commons.

8
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such favorable short-ranged van der Waals contacts. In many cases, the electronic
distribution along the bonds is not uniform and the bond has a dipole moment (po-
lar bond). In some molecules, the individual bond dipole moments do not add up
to zero resulting in an overall dipole moment (water is an example of such a po-
lar molecule). Amino acids contain polar OH and NH groups both in the backbone
and the side chains. An interesting property of these polar groups is that they can
form additional electrostatic interaction with each other (hydrogen bonds). Hydro-
gen bonds are directional and strong dipole-dipole interactions: the energy asso-
ciated with hydrogen bond formation is in the range of a few kcal/mol (for refer-
ence, kBT ≈ 0.5 kcal/mol at room temperature). �erefore, formation of hydrogen
bonds between two protein partners also contributes to the stability of the complex.
Furthermore, hydrogen bonding is related to the e�ects of the solvent on complex
formation. Water molecules form strong hydrogen bond networks with each other
and introducing a solute can potentially destroy these favorable interactions. Polar
amino acids that can replace inter-solvent hydrogen bonding with hydrogen bonds
between its side chain and water are therefore more easily solvated. In contrast, non-
polar residues tend to be excluded from the solvent to avoid disrupting the natural
water-water hydrogen bonding network. In other words, such hydrophobic residues
form favorable interactions at protein-protein interfaces (hydrophobic e�ect). Since
water molecules can engage in multiple hydrogen bonds simultaneously, they have
also been found at interfaces forming hydrogen bonds between residues on both
partners (water-mediated hydrogen bonds). Another potential energetic contribu-
tion can come from stacking interactions. Some amino acids like phenylalanine and
tryptophane contain aromatic rings. �ese special chemical structures result in a
particular electronic con�guration with delocalized electrons in p-orbitals that can
engage in quadrupole interactions. �is interactions are termed π-stacking interac-
tions and have been frequently observed in nucleic acids, in protein structures and
in protein-small molecule complexes. Finally, electrostatics also play an important
role in complex formation. Several amino acids (histidine, lysine, arginine, gluta-
mate, aspartate) can carry a net charge at physiological pH and therefore interact by
Coulombic interactions (salt bridge/ionic bond). �e total enthalpy changes can be
determined by summing over the changes in all interaction types for all atoms in the
system

∆H = ∆EvdW + ∆ECoulomb + ∆Ehydrophobic + ∆Ehbond + ∆Estacking.

�e electronic con�guration of the amino acids additionally depends on the local
environment; i.e., the location of a particular amino acid within the protein and its
neighboring residues. �is can lead to changes in e.g. the protonation state of the
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(a) Van der Waals interaction (PDB 2UUY) (b) Hydrophobic interaction (PDB 2OUL)

(c) Salt bridge between charged residues (PDB
1A2K)

(d) Water-mediated hydrogen bonds (PDB 1PPE)

Figure 2.2. Interactions driving protein-protein complex formation. �e protein partners are shown
in green and cyan. Water molecules are drawn in red.

10



2.2. Physical principles

charged amino acids. �e electronic properties of interface residues might poten-
tially change during the association process and calculating the energies using the
same electronic con�gurations for the individual proteins in bound and unbound
state might not be accurate. �ese polarization e�ects could only be considered in
a quantum mechanical description. However, such calculations are not feasible for
large systems like proteins and protein-protein complexes. Hence, many approxima-
tions have to be made when evaluating the energy of protein-protein complexes in
practice (see also Section 3.5.2).

2.2.3. Entropy

�e energetic description of protein-protein interactions is already challenging, how-
ever, considering entropic e�ects is even more so. Conformational entropy and sol-
vent entropy play a major role in protein-protein interactions. Upon protein-protein
complex formation, conformational entropy is usually lost for the interface residues,
whereas desolvation of hydrophobic residues typically increases the solvent entropy.
However, in some cases, other non-interacting parts of the proteins can become more
�exible [167] and in principle conformational entropy change can be either positive
or negative. In principle, the entropy S of a system can be calculated using the Boltz-
mann formula

S = −kB
∑
i

pi ln pi

where kB is the Boltzmann constant, and the probability pi for state i is proportional
to e−βUi with Ui the potential energy of con�guration i. However, this calculation
entails two problems: a) the possible conformations of the system have to be known
and b) the energy U has to be accurately modeled.

In practice, entropy changes are usually decomposed into di�erent contributions;
e.g., side-chain conformational entropy, backbone conformational entropy or solvent
entropy. In cases of a �nite number of states with similar energy, the entropic change
can be approximated by

∆S ≈ −kB ln

(
n2

n1

)
with n1 and n2 being the number of accessible conformations in the initial and �nal
state. Such an approach can be used for estimating the side chain entropic changes
by counting accessible rotamers. For degrees of freedom which are governed by a
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harmonic potential, the change in entropy can be calculated by

∆S ≈ −kB
2 ln

(
k2

k1

)
= −kB ln

(
ν2

ν1

)
where k1 and k2 are the force constants and ν1 and ν2 the frequencies connected
to the motion. �e frequencies can be obtained from normal mode calculations and
from this, vibrational entropies for global backbone deformations can be calculated
[55].

�e main problem remains to determine the possible conformations of the proteins
in the unbound and the bound state in the �rst place. Due to the large system size
with in principle 3N degrees of freedom (N being the number of atoms), sampling
the entire conformational landscape of proteins and protein-protein complexes is
practically impossible. �is is illustrated by several unsuccessful a�empts to calculate
conformational entropy changes by molecular dynamics simulations [167, 153, 191].
Similar problems arise for determining the solvent entropy changes.

2.3. Structural aspects

In order to be�er understand their biological function at the molecular level, many
protein-protein complex structures have been resolved experimentally by methods
like X-ray crystallography or NMR spectroscopy. �ese 3D structures have given
important insights into the function of PPIs and the physical principles that govern
protein association. Protein-protein complexes can be classi�ed by their composi-
tion, the lifetime of the complex and the strength of the interaction (which directly
relate to its binding free energy), and the characteristics of the interface. Homo-
meric complexes are formed from multiple identical or homologous chains, whereas
heteromeric complexes contain at least two di�erent subunits. Complexes can be dis-
tinguished on the basis of whether they are obligate or non-obligate. In an obligate
complex, the individual constituents are not found as stable structures in the cell,
whereas proteins from non-obligate complexes can exist independently. In terms of
lifetime, complexes are classi�ed as transient or permanent. Furthermore, weak and
strong binders can be distinguished by measuring the binding a�nity [292]. Inter-
actions can further be classi�ed based on the size and the degree of �exibility of the
association partners (domain-domain interactions, peptidic interactions and interac-
tions involving intrinsically disordered proteins). In the following, I will introduce
some general interface properties and global structural features of protein-protein
complexes and also discuss the role of protein �exibility. From this point on, I will
only consider non-obligate, transient complexes.
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2.3.1. General properties of protein-protein interfaces

Protein structures deposited in the Protein Data Bank (PDB, www.pdb.org) [39, 40]
contain two types of information: the chemical identity of each atom and its 3D po-
sition. Hence, the structure of interfaces in protein-protein complexes can be char-
acterized both by geometric and chemical properties. Typical geometric criteria are
the number and type of atom-atom contacts (evaluated within a chosen cuto� dis-
tance) and the buried surface area; i.e., the surface patches that are part of the solvent
accessible area (SASA) in the unbound proteins but not in the complex

BSA = SASAA + SASAB − SASAAB.

�e solvent accessible surface area can be calculated by rolling a particle with the
radius of a water molecule (rprobe = 1.4 Å) over the surface and determining the
border. Atoms are de�ned to be in the interface if they contribute to the BSA or if
they are located within a certain distance of the partner molecule. �e size of the in-
terface as measured by BSA is widely-used for classifying protein-protein interfaces.
�e interface can also be analyzed in terms of its chemical nature. Amino acids can
be either hydrophobic, polar, nonpolar or charged depending on the electronic side-
chain properties (see also Section 2.2.2). Based on this, the interface composition in
terms of e.g. non-polar, neutral polar and charged BSA can be assessed. Similarly,
the contacts can be evaluated by the chemical properties of the residues. Another im-
portant property of protein interfaces is atomic packing. Protein-protein interfaces
are closely packed similar to the interior of proteins [86] and in many cases form a
single contiguous patch [62]. �e high packing density and the connectivity of the
interacting surfaces re�ect the high degree of shape complementarity between the
association partners (an example is shown in Figure 2.2 (a)). In general, amino acid
composition at protein-protein interfaces is signi�cantly di�erent from the composi-
tion of the rest of the protein surface. Interfaces tend to be enriched in hydrophobic
and aliphatic residues (phenylalanine, tyrosine, tryptophane, alanine, leucine, valine,
methionine) relative to the protein surface and depleted in most charged residues (ex-
cept arginine) [86]. Interfaces can be divided into a hydrophobic core region which is
o�en very conserved and a more evolutionary variable, polar rim region [62, 170, 20].
Furthermore, not all interface residues are born equal: early on it was noted that cer-
tain residues contribute the major part of the interaction energy. �ese residues were
termed “hot-spot” residues and o�en involve large amino-acids like tyrosine, argi-
nine and tryptophane that anchor themselves into small pockets across the interface
[76, 48, 104]. London et al. [276] proposed an extension to this concept by identifying
so-called “hot segments”; i.e., short linear motifs in domain-domain interactions that
dominate the binding energy. Hot segments can be found in approximately 50% of
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globular interactions [276] and probably make these complexes more amenable for
modulation by small molecules [277].

2.3.2. Homomeric complexes

�e majority of protein structures in the PDB are found with multiple copies in the
asymmetric unit and the majority of protein-protein interactions falls into the cate-
gory of homomeric assemblies. Most homooligomeric complexes of known structure
display symmetry. �e evolutionary origins of this symmetry are still under debate
with proposed advantages in folding e�ciency [34], reduced aggregation [158], po-
tential of allosteric regulation [312] and adaptability [158, 312]. Interestingly, Baker
and coworkers showed that symmetry can potentially arise as a feature of a su�-
ciently favorable interaction energy and thus might be an intrinsic property of the
free energy landscape [10]. Based on symmetry operations, the overall architecture
can be classi�ed into a small number of groups. Examples of di�erent symmetry
groups are shown in Figure 2.3. Symmetric dimers (C2 symmetry group) are the sim-
plest homomeric assemblies. Due to the two-fold rotational symmetry, the proteins
necessarily interact via identical surface patches (isologous interface). In contrast,
higher-order cyclic multimers (Cn) are built from asymmetric interactions between
distinct parts of the surface (heterologous interfaces) and form closed rings. Com-
plexes of dihedral symmetry (Dn) are characterized by two orthogonal symmetry
axes (e.g., a D2 complex is a dimer of dimers). In addition, cubic, helical and asym-
metric complexes have been observed [292]. Knowing the symmetry of a complex
can greatly increase the accuracy of computational modeling (see Chapter 3). Note
that even though homomeric complexes o�en display global symmetry, individual
subunits can undergo local structural variations.

Bahadur et al. analyzed the interfaces of homodimers and found that the size of
the interfaces as measured by BSA ranged from 1000 Å to 14 000 Å with an average
size of ≈ 3900 Å. �e interface are composed to 35% of polar groups and 65% of
nonpolar atoms. �is makes homodimeric interfaces signi�cantly more hydrophobic
than the average protein surface with a clear enrichment in Leu, Ile, Val and Met.
Still, hydrogen bonds are also frequently found at the interfaces with on average one
hydrogen bond per 210 Å BSA [20, 505].

When studying homomeric complexes by crystallographic experiments, distin-
guishing the biologically relevant interfaces from crystallographic interfaces is very
challenging. In the PDB, the quaternary structure of a protein in vivo is usually
determined by the authors and reported as the “biological unit”. However, this in-
formation is not available in all PDB entries and if present, the annotations might
not always be reliable [494, 495]. A few computational methods have been devel-
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(a) Dimeric (C2), superoxide dismutase, PDB 3F7L. (b) Cyclic (C6), glutamine synthetase, PDB 3O6X.

(c) Dihedral (D2), aldolase, PDB 1UB3. (d) Cubic (Octahedral), apoferritin, PDB 4V1W.

Figure 2.3. Examples of symmetry found in homomeric protein complexes. For each example, the
quaternary structure, the name of the protein and its PDB ID are shown.
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oped for discriminating between biologically relevant interfaces and la�ice contacts,
however, the methods typically have an error rate of at least 10 % [116, 238]. In
general, it would be desirable to independently determine the quaternary structure
in solution and submission/annotation standards in the PDB should be adapted to-
wards this goal in the future. �e problems arising from uncertainties in quaternary
state assignment have also featured prominently in the recent CASP-CAPRI blind
prediction experiment [262].

2.3.3. Heteromeric complexes

Only a small fraction of all possible heteromeric assemblies have been characterized
structurally to date [148], however, these structures already reveal a vast diversity in
quaternary structure and interaction types. Heteromers can display symmetry (espe-
cially when composed of paralogous subunits), sometimes mixing di�erent types of
symmetry. Symmetry o�en occurs in larger heteromeric multimers with repeating
subunits. In contrast, complexes composed only of very few components are o�en
asymmetric [292]. When looking at the interface properties, it was found that het-
eromeric interfaces tend to be smaller than homomeric interfaces (average BSA ≈
1.900 Å), although in both cases the distribution varies widely. Heteromeric inter-
faces contain a higher fraction of polar groups (≈ 42%) compared to homomeric inter-
faces but are still enriched in hydrophobic residues compared to the average protein
surface. On average one hydrogen bond is found per 190 Å BSA so per unit interface
area heteromeric complexes form more hydrogen bonds than homomeric complexes
[62, 505]. �e observed di�erences between homomeric and heteromeric complexes
most likely re�ect the fact that homomeric complexes tend to form relatively long-
lived assemblies whereas heteromeric complexes o�en associate and disassociate in
a more dynamic manner.

2.3.4. Peptide-protein complexes

Protein-protein interactions can also be classi�ed by the degree of �exibility present
in the association partners. �e majority of interactions involve binding of two or
more ordered domains/proteins (as described above), but the importance of inter-
actions mediated by �exible peptides or by intrinsically disordered protein (regions)
has become more and more apparent [442]. Furthermore, even in domain-domain in-
teractions, signi�cant binding-induced conformational change can be observed (see
also Section 3.6).

Peptide-mediated interactions are complexes between an ordered protein domain
and a peptidic motif. �e motif can be an isolated peptide but more o�en this refers to
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short linear motifs from an intrinsically disordered protein region (IDR). Intrinsically
disordered proteins (IDPs) do not adopt a �xed fold in solution and are o�en found as
hub proteins in protein-protein interaction networks [487]. IDPs provide functional
and evolutionary �exibility to interaction networks, since IDPs can be �ne-tuned and
adapted to a variety of interaction partners due to their structural �exibility and the
possibility for regulation by post-translational modi�cations [202, 442]. A common
feature of IDPs/IDRs is that they o�en interact via short recognition motifs [458].
Several complexes of such motifs bound to their partners have been characterized
experimentally (e.g., in [159, 44, 32]) and currently several thousands of motifs have
been identi�ed [108]. However, the actual number of motifs might be above one
million [441].

�e structure of peptide-mediated interactions di�ers in some aspects from the
structure of protein-protein complexes. A few typical features of peptide-protein
complexes are shown in Figure 2.4. Since the motifs are typically very �exible in so-
lution, the loss in peptide conformational entropy upon binding has to be e�ciently
compensated. London et al. conducted a systematic analysis of known peptide-
protein complexes to unravel several peptide-protein binding strategies [275]. �e
protein usually undergoes only li�le conformational change upon peptide binding.
�is is in contrast to protein-protein interactions, where large conformational changes
can be observed. �e fact that the protein does not need to adopt its conformation
reduces the overall entropic cost of binding. Since peptides can only form small
interfaces due to their limited size, the interactions have to be highly optimized.
Peptide-protein complexes therefore display higher packing density and form more
hydrogen bonds per interface area than protein-protein complexes. A main contribu-
tion to this increase in hydrogen bonds is the increased ability of the �exible peptide
to form hydrogen bonds between its main chain groups and the protein’s side chains.
�e amino acid composition of the interface is in general similar to that of protein-
protein complexes with an over-representation of leucine. Similar to protein-protein
complexes, peptide-protein complexes also contain hot-spot residues (mainly pheny-
lalanine, leucine, tryptophane, tyrosine and isoleucine). In the majority of complexes,
these residues contribute more than 70% of the interaction energy [275].

2.4. Experimental methods

Experimental methods like X-ray crystallography and nuclear magnetic resonance
spectroscopy have resolved high-resolution structures for many proteins and also
many protein-protein complexes. As of April 2016, the Protein Data Bank (PDB,
www.rcsb.org) [39, 40] contains roughly 110,000 protein structures, 13% of which
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(a) Preordered protein interface, PDB 1AWR. (b) Extensive hydrogen bonding, PDB 1CZY.

(c) Hydrophobic interactions, PDB 3DAB. (d) Hot-spot residue anchoring the peptide, PDB
1MFG.

Figure 2.4. Interactions in peptide-protein complexes. �e protein is shown in gray in its peptide-
bound form and in green in the unbound form. �e peptide is drawn in black. Hydrogen bonds are
shown in yellow.
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represent heteromeric protein-protein complexes from di�erent organisms. Also
when including template-based models, only a minority of all possible interaction
types has been resolved [148]. Compared to the progress in high-resolution struc-
tural coverage achieved for individual proteins, progress for complexes is still limited
by technical di�culties and the high costs of the methods. However, even in the ab-
sence of high-resolution data, structural insights can be gained from a variety of
biophysical and biochemical experiments. �is section introduces some of the most
widely used techniques and explains which type of data can be obtained.

2.4.1. X-ray crystallography

Structural studies of proteins by X-ray crystallography date back to the 1950s and
the vast majority of protein and nucleic acid structures in the PDB has been solved
by this method. �e molecular structure is inferred from the di�raction pa�ern of
an X-ray beam sca�ered elastically at a protein crystal. X-ray crystallography can
be applied to proteins of arbitrary size. Due to the repeated sca�ering in the crystal
and the interference, the two-dimensional di�raction pa�ern recorded at di�erent
orientations of the crystal relative to the beam can be used build a three-dimensional
model of the electron density by Fourier transform. Combined with knowledge of
the sequence, the protein structure can then be reconstructed at resolutions typically
higher than 3 Å. �e major limitation in X-ray crystallography is the need to obtain
di�racting protein crystals of su�cient size. Protein crystallization is very challeng-
ing, especially for (weak) complexes and membrane proteins. �e use of free electron
lasers might o�er ways to overcome some of these limitations [64, 321, 286], but the
levels of protein concentration and sample purity required for X-ray crystallography
will remain the major bo�leneck for studying protein-protein complexes.

2.4.2. NMR

Nuclear magnetic resonance spectroscopy experiments are o�en used to study the
structures and dynamics of biomolecules. In contrast to X-ray crystallography, the
molecules can be characterized in solution at near-physiological conditions and do
not require protein crystallization. Still, relative large amounts of proteins and pure
samples are needed. For structure determination by NMR, the key data are upper
distance restraints derived from NOEs (Nuclear Overhauser E�ect). NOEs arise from
cross-relaxation due to dipole-dipole interactions. �e inherent r−6 dependence of
NOEs can be used to extract information on distances between hydrogen atoms. �e
distances are typically in a range of up to 6 Å. �e main di�culty is to assign the
cross-peaks in the spectra to a given pair of hydrogen atoms, for which additional

19



2. Protein-Protein Complexes

experiments need to be performed. For this reason, data collection can be very time-
consuming. Furthermore, NOE assignment can o�en only be made in an ambiguous
manner. Based on the assigned distances, structures can be calculated using spe-
cialized so�ware [172, 405, 179]. For ab-initio structure determination by NMR, hun-
dreds to thousands distances are needed already for small complexes making a large-
scale application of NMR to resolve protein-protein complexes very di�cult. Due
to di�culties in assigning backbone resonances, structure determination by NMR
is typically limiting to proteins/protein complexes smaller than 80 kDa, although
recent technological advances might make NMR studies of large assemblies more
frequent [288].

If the structures of the individual subunits are known, less information is required
to solve the structure of the complex. NMR experiments can provide a wide range
of suitable low-resolution information. Interface residues can be identi�ed based
on chemical shi� perturbation (CSP), NOEs, cross-saturation, hydrogen-deuterium
exchange and solvent paramagnetic relaxation enhancements. Furthermore, the rel-
ative orientation of the association partners can be inferred from relaxation rates
and residual dipole couplings (RDCs) [152]. �ese sparse data, which do not provide
su�cient information for ab-initio structure determination, can then be combined
with computational modeling to solve the structure of the protein-protein complex
based on the structures of the individual partners (see also Section 3.7.2) [112, 144,
82]. Experimental NMR data are available through the BioMagResBank (Biological
Magnetic Resonance Bank, www.bmrb.wisc.edu) [452].

2.4.3. cryo-EM

Instead of X-ray photons, electron sca�ering can be used to investigate biomolecular
structures (electron microscopy). 2D sca�ering images are recorded for di�erent ori-
entations of the molecules and can then be assembled into a 3D reconstruction of the
structure. �e �rst electron microscope was already constructed in the 1930s [377],
however, the wide-spread application to biological macromolecules was hindered by
the requirement of a vacuum to avoid electron sca�ering by air molecules and the
heavy radiation damage that o�en destroyed the sample. �ese issues were largely
resolved by rapidly freezing the biological sample in vitreous ice and using this frozen
sample for image collection (cryo-EM). Still, for many years, the resolution of images
recorded by cryo-EM remained low (> 7 Å). However, in the last three years, the
�eld has made tremendous progress due to the development of direct-electron de-
tectors and improved image processing procedures [22]. �is fast advance has even
been termed a “resolution revolution” [244], since 3D reconstructions of resolutions
higher than 4 Å have been obtained for many large protein assemblies (e.g., [57, 420,
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476, 42]). �is allows to build structures de novo into the cryo-EM density simi-
lar to the procedures used in X-ray crystallography. Even more exciting, cryo-EM
studies can go beyond resolving a single, static structure allowing to study di�er-
ent functional states, �exibility and even dynamics of complexes [133]. Despite the
great progress in the �eld, high-resolution structure determination of protein-protein
complexes still faces several challenges. In order to obtain high resolution, the sam-
ple needs to be very pure and homogeneous and biochemical sample preparation
will probably become the main bo�leneck for studying protein-protein complexes
by cryo-EM (Stark, personal communication). Also, currently high-resolution struc-
tures can only be obtained for large assemblies (> 1 MDa) due to di�culties in image
alignment for smaller complexes. For smaller, unstable or �exible complexes, obtain-
ing near-atomic resolution maps may remain challenging and time-consuming if not
impossible [22]. However, if the structures of the individual constituents are known
or can be modeled, low-resolution maps can still be used to guide the computational
assembly of the complex [94, 459, 443, 333]. �e majority of density maps stored in
the EMDB (Electron Microscopy Data Bank, www.emdatabank.org) [433] are still of
low resolution (60% > 12 Å as of May 2016) and even half of the maps deposited in
2015 had a resolution lower than 8 Å.

2.4.4. SAXS

Similar to NMR, in small-angle X-ray sca�ering (SAXS) experiments, the structure of
biomolecules can be studied in solution at near-physiological conditions. In a SAXS
experiment, the sample is illuminated by an X-ray beam and the X-ray photons scat-
ter elastically on the sample. �e di�use sca�ering pa�ern (in contrast to sca�ering
at a crystal, there are no sharp di�raction peaks) is recorded as a 2D image. Sub-
sequently, the sca�ering image from the background solution (usually a bu�er) is
collected. Since the proteins are oriented randomly in solution, the sca�ering pat-
tern represents the orientational average of the sca�ering on an individual particle.
Hence, the 2D images can be radially averaged to obtain a 1D sca�ering intensity
pro�le. �e sca�ering of the protein solution is then subtracted from the sca�ering
of the bu�er and this di�erence sca�ering pro�le is the typical data obtained from
a SAXS experiment. SAXS data contain low-resolution (10-50 Å) information on
the overall macromolecular shape and several structural quantities can be extracted
from the pro�le (e.g., radius of gyration, molecular mass, overall shape and maxi-
mum intraparticle distance). Data collection by SAXS experiments is fast (typically a
few minutes on a well-equipped beamline) and sample preparation is relatively easy.
Still, large amounts of puri�ed proteins/protein complexes need to be obtained and
measuring high-quality SAXS data is not always straightforward, since the data are
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highly sensitive to the experimental technique and sample quality. Protein aggre-
gation, poly-dispersity and poor background subtraction can dramatically a�ect the
interpretability of the pro�les [421]. Even in the case of high data quality, SAXS data
of protein-protein complexes can still be challenging to interpret due to structural
ensembles/�exibility of the complexes in solution and possibly incomplete complex
formation. Still, SAXS has become more and more popular [160] and in the last years,
SAXS experiments have been used to study several protein-protein complexes [367,
395, 9, 119, 115]. SAXS data can be also used for quaternary structure assignment
[350] (see Section 2.3.2). Experimental SAXS data can be deposited in the SASBDB
(Small Angle Sca�ering Biological Data Bank, www.sasbdb.org) [455] and the BIOI-
SIS (www.bioisis.net) [198] databases.

2.4.5. Mass spectrometry

Over last couple of years, several mass spectrometric methods have been developed
for obtaining low-resolution structural data of biomolecular complexes (typically 15-
35 Å). �e data can be combined with computational modeling to gain insights into
the overall structure of the assembly [360] and such protocols have been applied
successfully to a variety of molecular machines [250, 180, 72]. Mass spectrometry
experiments require only very small amounts of protein and are in general not lim-
ited by protein size. Also the analysis is relatively fast. For studying protein-protein
complexes, there are four main mass spectrometric methods: chemical cross-linking
mass spectrometry (CX-MS or XL-MS), native mass spectrometry (analysis of in-
tact assemblies), hydrogen/deuterium exchange mass spectrometry (H/DX-MS) and
a�nity-puri�cation mass spectrometry (AP-MS) [165]. Native MS and AP-MS can
yield information about subunit composition and connectivity and stoichiometry of
the complex and subcomplexes. H/DX-MS can give insight into changes in solvent
accessibility (similar to hydrogen/deuterium exchange combined with NMR experi-
ments). In contrast, XL-MS can be used to extract information on residue distances
within the complex which is the most useful data type for integrative modeling ap-
proaches [360]. In a XL-MS experiment, the protein complex is treated with a chem-
ical agent that can form covalent bonds between adjacent amino acids. �e complex
is then split into peptides that are analyzed by mass spectrometry. Identi�cation of
cross-linked peptides/residues can give upper limits on the spatial proximity of these
residues in the complex. Typical cross-linking agents yield upper distance limits of≈
30 Å between theCα atoms of residue pairs. For a long time, the broad application of
XL-MS to protein-protein complexes was hindered by the lack of suitable methods to
speci�cally enrich and reliably identify cross-linked peptides from the large mixture
generated by the digestion of protein assemblies [256]. However, recent advances in
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instrumentation, cross-linking chemistry, and analysis so�ware have helped XL-MS
become a well established and versatile part of the structural biologist’s toolbox [255].
Di�culties with using XL-MS data for structure determination are that they might
potentially be incoherent (originating from multiple conformations) and can contain
false positives. Also the cross-linked conformation might not necessarily be the bi-
ologically functional conformation. �erefore, XL-MS data should be combined and
validated with other experimental data. XL-MS data are not as easily publicly avail-
able as other experimental data. As of May 2016, there are only two small databases:
XLink-DB (brucelab.gs.washington.edu/xlinkdb) [518] and XLdb (manually curated
from literature, no submission system) [213].

2.5. Conclusion and Outlook

Protein-protein interactions are involved in all aspects of cellular life. Due to their
size and the large number of degrees of freedom, it is very challenging to apply
physical concepts to these highly complex systems and understand their biologi-
cal function and the driving forces of the interaction from �rst principles. Experi-
mental methods like X-ray crystallography and nuclear magnetic resonance spec-
troscopy have provided atomistic insight into the structure of a large number of
complexes. However, for the majority of the interactome, atomic structural data
are lacking to date. Experimental structure determination for protein-protein com-
plexes is very di�cult, time-consuming and expensive. �e major bo�lenecks are
sample preparation (expression and puri�cation of complexes) and protein �exibil-
ity/conformational heterogeneity. Hence, obtaining high-resolution structures for
hundreds of thousands possible complexes will not be feasible in the near future.
Nevertheless, for many systems, low-resolution structural data from SAXS and XL-
MS experiments are becoming more and more easily available.
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3. Protein-Protein Docking

Protein-protein interactions are abundant in the cell, however, atomic struc-
tural data is only available for a small fraction of complexes. Compu-
tational protein-protein docking methods can complement experimental
structure characterization by predicting the structure of protein-protein
complexes from the structures of the individual constituents. �is chapter
gives an overview on the basic concepts and strategies in docking. Di�erent
docking programs are introduced.

3.1. Introduction

Most biological macromolecules exert their function in complexes. �ese complexes
can consist of just two molecules but more o�en involve a multitude of biomolec-
ular entities that form huge macromolecular machines like the ribosome or the nu-
clear pore complex. Atomic structural knowledge of these assemblies is necessary
for be�er understanding their biological roles and hence the processes that govern
life. However, only a small number of protein-protein complex structures has been
characterized experimentally so far. In contrast, the structural coverage for individ-
ual proteins is a lot higher (an example for binary interactions is shown in Figure
3.1) [314]. Hence, being able to predict the three-dimensional structure of these as-
semblies has been a goal of theoretical modeling, ever since su�cient structural in-
formation on the building blocks; i.e., proteins and nucleic acids, became available.
However, due to the size of biomolecular assemblies, progress in modeling and dock-
ing has been closely tied to progress in computing power and storage capacities. Still,
already in 1978, Wodak and Janin performed the �rst protein-protein docking simu-
lations [485] establishing many of the principles that guide docking methods today.
�is pioneering work already illustrated the major problem speci�c to docking—the
extensive exploration of the degrees of freedoms when assembling macromolecular
complexes—and the strategy for resolving this problem: simplifying the problem as
much as possible while at the same time ensuring that these simpli�cations still allow
sampling a near-native geometry and ranking it successfully. �is chapter presents
the di�erent choices modelers face with regards to the complexity of the system rep-
resentation, possible sampling algorithms and the degree of accuracy and level of
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Figure 3.1. Structural coverage for single proteins and complexes in the binary interactome for sev-
eral model organisms. �e �gure was created using data from [314].

detail of the scoring function. Current docking programs and their strategies are a
result of an e�cient combination of such choices. �is chapter gives on overview on
current docking methods and their underlying strategies. It also presents the crite-
ria used to evaluate the performance of docking methods which have mostly been
established by the blind prediction docking experiment CAPRI (Critical Assessment
of PRediction of Interactions, www.ebi.ac.uk/msd-srv/capri). Since its initiation in
2001, the CAPRI challenge has taken place 36 times and covered more than 100 tar-
gets (as of April 2016). Regular evaluation meetings identify the limitations of current
docking methods and provide a comparative assessment of diverse docking strate-
gies (Section 3.8). �e general challenges and bo�lenecks for further development of
docking methods will also be discussed in this chapter.

3.2. Terminology

�e term protein-protein docking refers to any theoretical method that is capable
of predicting the three-dimensional structure of protein-protein complexes from the
structures of the individual constituents. A wide range of di�erent docking programs
have been developed to date covering a large spectrum of docking applications. �is
ranges from local, high-resolution docking to large-scale, o�en simpli�ed/coarse-
grained explorations of all possible positions and orientations of the binding part-
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ners (global docking). In high-resolution docking, information about the interface is
available for at least one partner and the main goal is to uncover the details of the
interactions (local docking). High-resolution docking methods use a very detailed
description of the interaction potentials and are therefore o�en computationally ex-
pensive. In contrast, global/ab-initio docking requires fast methods in order to screen
many possible complex geometries. �ese methods o�en approximate parts of the
precise interaction; representing all the atomic details is not required as long as the
overall predictive power is retained. A speci�c terminology has been established in
the docking �eld. For binary docking, the association partners are typically referred
to as the receptor (typically the larger protein) and the ligand. For preliminary tests
of docking algorithms, crystallized protein-protein complexes can be separated and
the separated structures can be used to “redock” the complex. �is problem is re-
ferred to as “bound-bound” docking, since the protein structures from the bound
complex are used. Since all the residues are in the perfect position for association (as
envisioned in the “lock-key” mechanism by Fischer [131]), bound-bound docking is
considered an easy problem in the �eld [43]. Typically, docking algorithms should
be tested in an “unbound-unbound” docking scenario. Unbound-unbound docking
best represents the situation in a “real life” application where the free forms of the
proteins or structures from complexes with other partners or homology models are
used. Such a structure is referred to as the “unbound” form of the protein. Many
methods that perform well in the bound-bound case fail in an unbound-unbound
scenario. �is bias towards bound-bound docking is a well-known problem in the
docking �eld (see also Section 3.6).

3.3. General strategy

In general, protein-protein docking methods consist of three main components (Fig-
ure 3.2):

1. Choosing a protein representation together with the de�nition of the degrees
of freedom that will be sampled.

2. Sampling/generating many possible models of the complex.

3. Classifying the generated models by a scoring function and identifying the
best/near-native prediction.

Di�erent levels of complexity can be found in di�erent docking programs for each
of these three components. �e protein representation can range from a simpli�ed,
geometric surface representation via di�erent levels of coarse-graining to detailed,
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Figure 3.2. Overview of the docking process. First, a large number of possible models of the complex
is generated (sampling). �en, these models are ranked to identify the near-native prediction (scoring).
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atomistic models. In terms of degrees of freedoms, the di�erent docking methods
also vary: from considering only the six rigid-body degrees of freedom (for binary
interactions) via including global motions of the proteins to sampling local conforma-
tional changes at the residue level. Similarly, docking scoring functions are diverse
both in origin and complexity. Some of them were derived from statistical analy-
sis or machine learning on crystallized protein-protein interfaces (knowledge-based
potentials). Others are based on physical potentials using the system’s free energy.
Yet another type of scoring functions relies only on surface complementarity. Note
that the level of detail of the protein representation, degrees of freedom and scoring
function have to be adapted with respect to each other. In order to balance accuracy
and sampling e�ciency, docking methods typically carry out two phases:

1. a large-scale search using a low resolution protein representation, few degrees
of freedom and a simple scoring function during which the overall geometry
of the complex is exhaustively explored,

2. a re�nement phase during which a subset of structures obtained from the low-
resolution phase is optimized at higher resolution with more degrees of free-
dom and a more accurate and computationally demanding scoring function.

In practice, each of these two phases o�en consist of multiple sampling and scoring
steps. A number of di�erent docking methods have been developed to date (Table
3.1). Di�erent approaches to initial sampling (large-scale search), re�nement and
scoring, and incorporating external information in docking will be discussed in the
following.

3.4. Large-scale search

3.4.1. Exhaustive methods

Di�erent docking programs employ di�erent search algorithms to generate possible
models of the complex. During the initial large-scale search, most methods con-
sider the internal structure of the protein partners as rigid which limits the problem
to sampling the three rotational and the three translational degrees of freedom. In
an exhaustive enumeration scheme, the sampling over rotational and translational
degrees of freedom is typically separated and Euler angles and center-of-mass trans-
lations are explored independently. For a given rotation of the molecule, the protein
is moved relative to its partner (3D translational search). �is process is then re-
peated for all possible rotations (at a speci�ed level of discretization). In principle,
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Table 3.1. Comparison of selected protein-protein docking methods.
Name Method type1 Molecule types Flexibility Multi-body2 Symmetry Re�nement Support for experimental data

ATTRACT MIN, MC Protein, DNA,
RNA, small molecule

Normal modes, ensemble
and domain docking

X X X Contact and interface data,
cryo-EM, SAXS

ClusPro FFT Protein - - X - Contact data, SAXS
FiberDock MC, MIN, R Protein Normal modes,

side chain rotamers
- - X -

FTDock FFT Protein - - - - -
GRAMM-X FFT, MIN Protein, small molecule - - - - Interface data
HADDOCK MD Protein, DNA,

RNA, small molecule
Full �exibility, ensemble

and domain docking
X X X Contact and interface data,

RDCs, cryo-EM, SAXS, IM-MS
Hex FFT Protein, DNA,

small molecule
Ensemble docking - X X Interface data

IDOCK FFT Protein - - X X Contact and interface data,
cryo-EM, SAXS

PatchDock G Protein Domain docking (FlexDock) - X - -
pyDock FFT Protein - - - - Contact and interface data,

SAXS
Rose�aDock MC Protein, small molecule Ensemble docking, backrub,

side chain rotamers
- X X Contact and interface data

SwarmDock PSO, MIN Protein Normal modes - - - Interface data
ZDOCK FFT Protein - - X - Contact and no-contact data

1 Type of methods categorized into fast Fourier transform (FFT), geometric (G), Monte Carlo (MC), minimization
(MIN), Particle Swarm Optimization (PSO) and molecular dynamics (MD). Re�nement methods are marked additionally
as R.
2 Supports docking of more than two distinct (protein) bodies (heteromers).

the 6D rigi-body phase space can be sampled completely with such an exhaustive ap-
proach. For a typical protein size and a discretization of an Euler angle interval of 12
and 1.2 Å steps in the translational coordinates, a total of ≈ 1010 putative complex
geometries have to be explored. In order to evaluate this huge number of possible
conformations e�ciently, two types of approaches have been developed: fast Fourier
transform (FFT) correlation-based methods and shape matching algorithms.

Correlationmethods FFT-based docking programs accelerate the sampling of the
three translational degrees of freedom by performing a part of the calculation in
Fourier space. Due to the high computational e�ciency, the majority of currently
used docking methods make use of an FFT correlation-based approach [144, 446, 69,
346, 348, 224, 149, 23, 237, 365, 326, 332, 267] and several web-servers based on FFT-
based docking programs have been made available to the structural biology commu-
nity [446, 287, 347, 83, 359]. I will describe the basic principle using a simple shape
complementarity scoring scheme. �e computation strategy is similar for di�erent
FFT-based search methods, however, they di�er in terms of the potentials/scoring
functions to describe the interaction between the proteins and in how these poten-
tials are mapped to the grid. For both receptor and ligand protein, an energy grid is
constructed with dimensions N ×N ×N in Cartesian space. �e respective protein
is centered in its discretized grid. At each grid point (i, j, k), the scoring function
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E is precalculated and stored. In our simple example, the protein grid Eijk at voxel
(i, j, k) with 1 5 i, j, k = N is given by

Eijk =


1 : on the surface of the protein
% : inside the molecule
0 : outside of the protein.

For both receptor and ligand protein, this grid representation is created with % being
a large negative value (%� −1) for the receptor protein and % a small positive value
(0 5 % = 1) for the ligand protein. A complex geometry for a translation (l,m, n)
of the ligand protein relative to the receptor protein can now be evaluated based on
shape complementarity by calculating the overlap product C(l,m, n) between the
two grids

C(l,m, n) =

N∑
i=1

N∑
j=1

N∑
k=1

ERi,j,k ×ELi+l,j+m,k+n.

Periodic boundary conditions are applied if the indices are greater than the dimen-
sion of the grid. For our simple protein representation, the overlap function adopts
a favorable score (positive correlation) for surface contacts with a penalty for large
overlap/penetration between the proteins (negative correlation). �e overlap or cor-
relation score has to be evaluated for all possible translations (∀l,m, n ∈ {1, . . . , N});
i.e. N3 calculations have to be carried out. �e entire calculation forC = {C(l,m, n)}
can be carried out in one step according to the cross-correlation theorem by calcu-
lating the product of the Fourier transforms of the grids and transforming back into
real space

C = F−1
(
F(ER)× F(EL)

)
.

�e FFT-based search in the translational degrees of freedom is then repeated for each
rotation of the ligand protein. Instead of the simple shape complementarity score
shown here, more elaborate scoring functions like pair-wise shape complementarity,
electrostatic potentials, desolvation, hydrophobic complementarity and knowledge-
based functions, can also be employed a�er mapping to the grid.

A drawback of FFT-based methods is that they need to employ a grid-based score.
�e docking results are hence not only sensitive to the choice of the potential but
also to the discretization of the grid. Discretization can introduce large errors in the
calculated score, especially when it comes to evaluating short-range interactions. To
compensate for these discretization errors, the scoring function is typically so�ened.
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But these inaccuracies o�en result in the production of false positive solutions; i.e.,
docking models that are far from the native structure but still have a good score. So
false positive minima in the energy landscape are enhanced by the combined e�ect
of so�ening the potentials and the remaining discretization error. In addition, as
a result of the so� potentials, the resulting models o�en contain steric clashes and
have to be optimized by further re�nement stages (see Section 3.5). Even though the
translational search is accelerated, the procedure still has to be carried out for all
possible orientations of the partners. Several methods have tackled this problem by
accelerating the search also in the rotational degrees of freedom [149, 364]. Note that
the expansion in rotational degrees of freedom is usually only performed to a maxi-
mum shell radius and hence these methods cannot be applied for larger separations
of the molecules. �e strength but also the drawback of the FFT-based approaches
is that inherently all possible geometries have to be sampled. However, a large frac-
tion of these possible complex models are unphysical because they contain either
large steric overlaps or only very few contacts. �ese geometries have an unfavor-
able score but are explored nevertheless in the FFT framework. Other drawbacks of
FFT-based methods are that they are harder to adapt for multi-body docking prob-
lems and that experimental data can o�en not be directly included in the sampling
process but have to be applied as a �lter [492].

Geometric surface matching �e second type of systematic/exhaustive search
methods focuses on creating geometries that present a local shape complementarity
between the partners leaving out some of the unphysical conformations generated
by FFT-based approaches. �e proteins are represented by molecular shapes (e.g.,
the Connolly surface [84]). �e surfaces can be segmented into di�erent parts; e.g.,
concave, convex and �at. Parts with high complementarity are then matched by
an algorithm. Instead of explicit sampling, the six rigi-body degrees of freedom are
only calculated when a binding orientation has been established based on a surface
match. Since shape matching is local, many of the generated models contain steric
clashes and the structures have to be relaxed in re�nement phases. Several docking
programs employ a geometric surface matching-based search including the small
molecule docking program DOCK [416] and the protein-protein docking programs
PatchDock [400], LZerD [467] and GAPDOCK [147]. O�en geometric hashing algo-
rithms are used to �nd local matches of shape descriptors [130] (e.g., surface patches
in PatchDock and 3D Zernike descriptors in LZerD). Geometric surface matching
methods have also been expanded towards modeling multi-component assemblies
[123, 203, 252, 400] and including protein �exibility [400]. Similarly to FFT-based
methods, experimental information is typically only applied as an a posteriori �lter
[403].
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3.4.2. Guided methods

Similar to local shape matching, guided search algorithms do not explicitly explore
all six rigi-body degrees of freedom but rather generate favorable complex geome-
tries guided by an energy-like function. Exploration algorithms can be determin-
istic like multi-start energy minimization [506] and molecular dynamics (MD) [112,
283], or stochastic like Monte Carlo (MC) simulations [517, 516], Brownian dynamics
[304] and genetic algorithms [147], or a combination of stochastic and determinis-
tic sampling [310, 161, 1]. Typically, the proteins are represented in atomic detail
with a force �eld where each atom is assigned van der Waals parameters and a (par-
tial) charge. �e interaction between the protein is then evaluated as the sum of all
pair-wise atomic van der Waals and electrostatic interactions. Some methods also
consider further energy terms like desolvation energy [128, 73] or hydrogen bond
potentials [234]. �e search uses at least the six rigi-body degrees of freedom and
can also easily include other degrees of freedom to represent protein �exibility. �e
di�erent terms in the interaction energy contribute di�erently according to the dis-
tance between the partners. At larger separation, electrostatic steering dominates
the association. Desolvation becomes important when the partners get in contact,
and van der Waals interactions dictate the scoring of closely packed interfaces. Due
to the shape of the potential, van der Waals terms are very sensitive to slight mis-
alignments/steric overlaps at the interface. �is has to be considered when docking
with unbound protein structures where conformational change at the interface could
disfavor sampling near-native geometries.

Due to the rather detailed energy function, guided search methods are more com-
putationally expensive than FFT and geometric matching methods. �e calculations
can be accelerated by either pre-calculating the energy function around the receptor
protein on a grid or by employing a coarse-grained protein representation. �e grid
can be constructed for each of the energy terms (e.g., van der Waals and Coulomb
interactions). �e energy is then interpolated between the grid points (e.g., as in
[127]). Interpolation errors for this classical grid-based energy evaluation increase
signi�cantly when the two proteins get closer and these inaccuracies might hamper
the sampling process. Flexibility in the receptor protein may additionally modify the
energy at the grid points and enlarge the approximation error.

Several docking programs employ coarse-grained protein representations in the
initial large-scale search [506, 161, 422, 46]. Coarse-grained models group several
heavy atoms into larger beads and hence reduce the number of particles that have
to be considered in the pairwise energy calculations. In addition to accelerating the
docking calculations, these reduced representations implicitly consider protein �exi-
bility and are coupled to simpli�ed force �elds. �ese force �elds o�en smoothen the
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Figure 3.3. Schematic comparison of coarse-grained and atomistic potential energy landscapes. Dur-
ing the initial large-scale search, a low-resolution, so� scoring function is used that aims to retain the
basic features of the energy landscape (thick line). During re�nement, the resolution of the protein
representation is increased and a more detailed search process is required to sample the details of the
energy landscape.

energy landscape which again accelerates the sampling. However, on the downside,
similar to grid acceleration, the coarse-grained representation might create new false
positive minima in the energy landscape (Figure 3.3).

3.5. Refinement and Scoring

Most docking methods select a subset of generated models from the initial sampling
and optimize and rerank these during further re�nement stages. �e reason for this is
that the scoring functions and the resolution used in the initial stage are o�en not suf-
�cient to reliably generate and distinguish near-native solutions from false-positive
predictions. Typically, a few hundreds to thousands conformations are selected for
re�nement. Re�nement can also be performed independently of docking methods;
e.g., for models obtained from comparative modeling.

3.5.1. Increasing sampling resolution

A possibility to re�ne a prediction is to reproduce the search process at higher search
resolution while using a more accurate scoring function. For discrete search pro-
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cesses like FFT or MC docking, this corresponds to decreasing the step size in rota-
tional and translational degrees of freedom. Typically, the vicinity of the previous
docking models is explored in more detail (local search). �is can also be done by
switching to continuous sampling methods like energy minimization or MD simula-
tions. Energy minimization can be performed in Cartesian coordinates of the protein
atoms or in internal degrees of freedom (e.g., torsion angles). Cartesian minimizers
are available through several molecular dynamics packages (e.g., GROMACS, AM-
BER, Charmm). Furthermore, the sampling resolution can be increased by consider-
ing additional degrees of freedom (see also Section 3.6). FiberDock, SwarmDock and
ATTRACT include global backbone motions of the proteins through normal mode
deformations [310, 297, 293]. ICM-DISCO and Rose�a sample local side chain con-
formations extensively using rotamer libraries [127, 161]. Sampling of side chain
conformations has to be combined with adjustments of the relative positioning of
the partners in order to improve the overall accuracy of the prediction [161] (see
also Chapter 5). Molecular dynamics-based (MD) re�nement allows to consider in
principle full atomistic �exibility of the docking partners. However, MD simula-
tions are limited by the restricted ability to overcome energy barriers in the short
time scales accessible during the simulation. �erefore, MD re�nement can o�en
only yield slight improvements of the overall complex geometry [240]. It is possible
to overcome the sampling limitations in MD by enhanced sampling methods such
as simulated annealing or replica exchange [112, 216, 283, 284] or by coupling the
atomistic simulations to a coarse-grained representation of the molecules [504].

3.5.2. Increasing representation resolution

During re�nement and for the �nal ranking, a more detailed protein representation
and scoring function are used. In most cases, the proteins are represented in atom-
istic detail. �e scoring function can be either derived from a physics-based rep-
resentation of the interaction or from training on known protein-protein interfaces
(knowledge-based scoring functions).

Physical scoring functions Physical scoring functions aim to re�ne and rank
docking models by calculating their total free energy. In principle, biomolecules
should be described in a quantum-mechanical framework, however, this is com-
putationally expensive and currently limited to representing systems of up to 100
atoms (see also Chapter 2). �e majority of re�nement methods are therefore based
on a molecular mechanics force �eld description of the biomolecules (e.g., Rose�a
[161], HADDOCK [112] and ATTRACT [393]). Molecular mechanics force �elds
have been used successfully in MD simulations to study the structure and dynamics

35



3. Protein-Protein Docking

of biomolecules and can accurately reproduce thermodynamic and kinetic proper-
ties of biological systems. Force �elds approximate the quantum mechanical energy
landscape resulting from the distribution of electrons and nuclei in the molecule by
potentials which only depend on the position of the atoms (Born-Oppenheimer ap-
proximation). �e total potentialV consists of several additive terms which represent
chemical bonds and nonbonded interactions

V =

Nbonds∑
i=1

1
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i
b
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�e �rst three terms are referred to as the bonded terms and sum over all bonds,
angles and dihedral angles of the protein structure. Bond lengths and bond angles
are controlled by harmonic potentials. Torsion angle potentials are represented by
linear combinations of periodic functions. Non-bonded interactions are described
by van der Waals and Coulomb potentials. Non-bonded interactions are also evalu-
ated between proteins and solvent molecules. Solvation e�ects play a very important
role for the association and stability of protein-protein complexes [265, 387, 5]. Wa-
ter acts as a dielectric medium and favors association of hydrophobic residues due
to entropic e�ects. Furthermore, water molecules are also found at the interface
bridging the proteins via water-mediated hydrogen bonds [207]. A few groups have
proposed methods to represent the solvent explicitly during docking [456, 222, 223,
334]. Most notably, van Dijk et al. docked the protein partners solvated by their �rst
hydration shell using HADDOCK. �ey simulated desolvation in the encounter com-
plex by expelling the initially present water molecules during association by a Monte
Carlo procedure [456, 222, 223]. �e HADDOCK program also routinely re�nes a few
hundred docking models in a molecular dynamics simulation using explicit solvent
(it2) [112, 97, 98]. Other methods consider water implicitly–if at all–either through
knowledge-based potentials (see below) or by considering additional terms in the
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scoring function such as

E = α1Ebonded + α2EvdW + α3Eele + α4Ehb + α5EBSA + α6Enon-interacting

where Ehb is a hydrogen bonding potential, EBSA accounts for buried (hydrophobic)
surface area andEnon-interacting considers the properties of the non-interacting protein
surface. �e weights of the di�erent terms αi can be chosen to improve the rank-
ing of near-native docking models. Such scoring functions with optimal weights for
each energy term are for example implemented in Rose�a [161], HADDOCK [112],
ZRANK [349] and pyDock [73]. Atomic energy-like scoring functions always re-
quire a thorough sampling of side chain conformations and precise positioning of
the protein partners.

Knowledge-based scoring functions With the increasing availability of 3D protein-
protein complex structures in the PDB, knowledge-based scoring functions have be-
come a powerful alternative to physics-based approaches. In many cases, it is very
di�cult and computationally expensive to accurately calculate the free energy for
protein-protein binding (e.g., accounting for solvation e�ects, see Chapter 2 and
above). Knowledge-based scoring functions circumvent this problem by extracting
information from a set of known protein-protein interfaces to implicitly consider all
these di�erent e�ects.

In a statistical potential, the observed frequency of interface residue-residue con-
tacts is compared to the expected contact frequency and over-or underrepresenta-
tion then is translated into a favorable; i.e., a�ractive or unfavorable; i.e., repulsive
interaction potential. Expected contact frequencies are obtained by calculating the
probability for random contacts of surface amino acids. In statistical mechanics, the
N -body correlation function for a set of N particles is given by

g(N) (r1, r2, . . . , rN ) =
p (r1, r2, . . . , rN )

p1(r1)p2(r2) . . . pN (rN )

where p (r1, r2, . . . , rN ) is the probability to �nd the N particles at r1, r2, . . . , rN
and pi(ri) is the probability to �nd particle i in con�guration ri. �eN -body interac-
tion potential (potential of mean force) can be calculated from g using the following
formula

V (N) (r1, r2, . . . , rN ) = −kBT ln g(N) (r1, r2, . . . , rN )

with kB the Boltzmann constant and T the temperature of the system. For biolog-
ical systems, typically a temperature of T = 300 K is used (kBT ≈ 0.5 kcal/mol).
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For deriving a statistical potential, a set of native 3D structures has to be supplied.
In practice, the available data is not su�cient to derive the N -body potentials and
therefore the evaluation is o�en limited to pairwise correlations and interactions.
Hence, most knowledge-based potentials are based on contacts or distances between
residues or atoms observed in experimental protein-protein complex structures (with
a few recent exceptions [150, 388]). For residues A and B, a distance dependent po-
tential VAB(r) can then be obtained by a Boltzmann inversion

VAB(r) = −kBT ln

(
Nobserved(A,B, r)

Nexpected(A,B, r)

)
with Nobserved(A,B, r) the number of observed contacts at distance r (within a dis-
tance interval) between residues A and B and Nexpected(A,B, r) the number of ex-
pected contacts if contacts were randomly distributed (no interactions between residues).
�e main di�erence between di�erent knowledge-based potentials results from the
calculation of the expected contact frequency; i.e., the determination of a reference
state. Choosing the reference state is o�en the main hurdle in constructing statistical
potentials. However, reference state-free scoring functions can also be derived [194].

Instead of a statistical analysis, scoring functions can also be directly trained on
sets of decoy structures to distinguish near-native from non-native structures. For
this di�erent machine learning approaches like linear regression, neural networks
and support vector machines can be used [242]. In the past, knowledge-based poten-
tials have been applied successfully to several protein structure prediction predic-
tion problems [309, 308, 514, 515, 489, 490, 103, 281, 521, 33, 509, 522, 412, 270, 388]
and protein-ligand docking [154, 313, 195, 232, 125, 508, 163, 519]. Over the years,
a large number of knowledge-based scoring functions for protein-protein docking
have been developed as well [507, 506, 113, 56, 241, 11, 246, 523, 311, 460]. As men-
tioned above, most potentials are based on an analysis of contacts/pairwise distances.
�e potentials can be distinguished by the level of resolution used for the interface
(atomic, residue based or larger parts of the interface), the type of interaction poten-
tials used (distance-dependent or non-distance dependent), the number of atom/bead
types used in the interaction potentials (which corresponds to the number of parame-
ters for optimization of the potential) and the de�nition of the reference state. For ex-
ample, the DFIRE (Distance-scale Finite Ideal Gas REference state) potential is an all-
atom potential that represents proteins by 19 di�erent atom types and was originally
developed for protein structure prediction and stability analysis [522]. PISA (Protein
Interactions Scored Atomically) also uses an atomic representation but trains a num-
ber of interpolated step potentials directly on a set of previously generated docking
decoys to improve the ranking of near-native solutions [470]. Tobi used a linear
programming approach to design side-chain based (coarse-grained) and atomistic
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potentials for distinguishing a native complex from non-native decoys. �e interac-
tions between di�erent atoms/residues were described by step potentials for which
optimal distance cuto�s and depths of the potential were determined. Due to the
simple shape of the potential (in comparison to Lennard-Jones type potentials), the
resulting scoring functions were found to be less sensitive to conformational change
when tested on unbound-unbound docking models [439]. Recently, a general tool
box for designing scoring functions by machine learning on a set of decoy structures
was developed in our lab [389].

3.6. Protein flexibility

In many experimentally known protein-protein complexes, the association partners
undergo only li�le conformational change upon complex formation. �ese type of
complexes can be e�ciently treated by a rigid-body docking protocol combined with
a �exible re�nement step and rescoring as described above. However, in a large frac-
tion of cases, the proteins undergo binding-induced conformational changes; i.e., the
unbound forms of the proteins di�er signi�cantly from the bound form. �ese di�er-
ences can range from small, local alterations (mostly, side chain rotamer changes or
slight backbone changes at the interface) to large, global changes (loop and domain
rearrangements, change in secondary structure or folding of disordered regions). Fig-
ure 3.4 illustrates some of these conformational changes upon complexation. Many
rigid-body docking methods that perform well in the bound-bound case and in cases
where li�le conformational change occurs, fail in dealing with increased protein �ex-
ibility. Hence, for the cases where the protein structures changes upon binding, it is
necessary to consider conformational �exibility throughout the entire docking pro-
cedure. �is is also desirable when using protein structures that have been obtained
from comparative homology modeling. Depending on the degree of sequence iden-
tity, these models can deviate signi�cantly from the native structure [124]. Further-
more, even in the case of high average target-template similarity, there may be re-
gions that are less well aligned and that display structural inaccuracies which may
a�ect the prediction. A range of di�erent strategies have been developed to incor-
porate di�erent types of protein �exibility in the docking process.

3.6.1. Ensemble docking

Rigid-body docking methods can be easily extended to include �exibility by repre-
senting the protein partners as an ensemble of structures. �e structural ensem-
ble can be obtained from experiments (e.g., from nuclear magnetic resonance spec-
troscopy or from multiple crystal structures) or from simulations (e.g., from molec-

39



3. Protein-Protein Docking

(a) Side chain conformational change (PDB 3D5S). (b) Loop conformational change (PDB 1ATN).

(c) Global domain motion (PDB 1FAK). (d) Change in secondary structure (PDB 1IBR).

Figure 3.4. Illustration of types of binding-induced conformational changes. �e unbound protein
structures were superimposed on the bound complex. �e unbound proteins are shown in red and
green, the bound form in gray. �e interface is highlighted in yellow.
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ular dynamics, elastic network calculations or homology modeling based on di�er-
ent template structures). In the simplest possible setup, the docking procedure is
repeated for each ensemble member independently, although switching between en-
semble members can also be performed on-the-�y (Zhang, unpublished data). En-
semble docking mimics a conformational-selection-type process and selecting a struc-
ture that is more similar to the bound state can signi�cantly improve docking accu-
racy. Obviously, ensemble docking is computationally more expensive. It may also
increase the number of false positive solutions due to the large number of protein
conformations (many of which deviate from the bound form). Ensemble docking
has already been used successfully in the �eld of small-molecule docking [445, 196]
and several protein-protein docking methods have adopted this strategy as well [65,
29, 112]. Gray and coworkers tested the e�ect of including computational and NMR
ensembles in a �exible backbone protein-protein docking approach in Rose�a [65].
�ey recently also explored the possibility of generating an ensemble closer to the
bound form based on the unbound protein structure with several tools in Rose�a,
but found rather small improvements (Gray, personal communication). Zhang and
Zacharias explored ensemble generation by molecular dynamics simulations and
Rose�a tools and found similar results (Zhang, unpublished data). Hence, the main
obstacle to successful ensemble docking is to generate a suitable structural ensemble
and reliable strategies towards this goal have yet to be determined.

3.6.2. Loop modeling

Many loop modeling methods have been developed in the protein structure predic-
tion �eld [134, 229, 290, 423, 254, 427, 4, 323, 185, 92, 335] and can in principle also be
applied to modeling interface loop �exibility during protein-protein docking. Bas-
tard et al. assessed a multi-copy/mean-�eld approach to include di�erent loop con-
formations during docking with ATTRACT [29]. During docking, the energy of each
loop copy is evaluated and a weight/probability is assigned to each copy according
to the Boltzmann distribution. �e higher the weight the stronger the interactions of
a given loop copy and eventually the loop copy with the highest weight completely
drives the docking minimization. Hence, the most suitable loop conformation is se-
lected on-the-�y. �is approach can also be applied to multiple loops simultaneously
[29]. Note that in the ATTRACT approach the loop conformations have to be mod-
eled prior to docking. Another strategy would be to model the loops a posteriori (see
also Chapter 7). For CAPRI target 20 [206], Wang et al. used such a sequential mod-
eling procedure in Rose�a to predict a protein-protein complex with �exible loops
at the interface [478]. Flexible loops were identi�ed prior to docking by comparison
to orthologous complex structures. Initial models of the complex were generated
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without �exible loops. �e loops were then rebuilt onto the lowest energy docking
models and resulting models were �ltered with respect to additional constraints on
the biological function of the complex. By combining available functional and struc-
tural information, it was possible to accurately model this extremely challenging
target [478]. �is CAPRI target demonstrated the importance of accurately identify-
ing �exible regions prior to docking. �e docking success achieved by the Baker lab
most likely results from this accurate �exibility representation in combination with
reducing the sampling space by available experimental information [478].

3.6.3. Multi-body domain docking

Several methods have adopted a ”divide-and-conquer” strategy to deal with large-
scale domain rearrangements. �e �exible protein is partitioned into rigid-body
domain and connectivity restraints between the domains are employed during the
docking. �e hinge regions can be predicted; e.g., using an elastic network model
[122]. �is allows to include global conformational changes already in the initial
rigi-body docking stage. MolFit splits the proteins into domains and sequentially
docks them with a multi-stage two-body docking protocol [236]. A similar sequen-
tial strategy is adopted by the FlexDock method that performs docking with Patch-
Dock on rigid domain pairs [400]. Rose�a uses a fold-tree representation to de�ne
�exible regions between centers of rigid molecules and hence enables domain re-
arrangement during the rigid-body sampling stage [477]. Karaca et al. developed
a �exible multi-domain docking protocol in the HADDOCK so�ware [218]. Again,
the proteins were split into rigid domains with restraints imposed on the linkers.
�e domains were simultaneously docked in a rigid-body stage and then the result-
ing models were subjected to a semi-�exible re�nement in internal coordinates and
a fully �exible re�nement in water to improve backbone and side chain conforma-
tions. For a benchmark of 11 protein-protein complexes, the authors found that this
approach was capable of modeling domain rearrangements as large as 19.5Å. �ey
also identi�ed indicators that might allow to predict the extent of protein �exibility
in order to choose the appropriate docking strategy [218].

3.6.4. Collective mode deformations

Global conformational changes in the protein partners have also been successfully
modeled based on normal mode analysis in Elastic Network Models (ENM). �e low-
frequency eigenvectors can capture domain opening-closing motions and large loop
rearrangements. Several studies have investigated whether the bound form of the
protein is dynamically accessible from the unbound form through deformations in
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low-frequency eigenmodes [109, 310, 342, 21, 226, 440, 24]. ENMs provide a sim-
ple strategy to calculate these so� modes. �e protein is represented by distance-
dependent harmonic springs between the atoms and this approximation yields a
quite accurate description of the protein mobility [182]. ENM-based normal modes
have been previously used to detect �exible regions and hinges in proteins [122, 430]
and also to generate sets of conformations for ensemble docking [376]. Instead of
using discrete conformations derived from deformations along the eigenmodes, the
so� collective normal modes can also be used as additional degrees of freedom during
docking. Normal modes have been used in FiberDock [294, 293], Eigenhex [466] and
SwarmDock approach [310]. In the ATTRACT program, mode deformations have
also been applied in the initial large-scale docking stage using a coarse-grained pro-
tein representation. In cases where the proteins undergo conformational changes
that are captured by the normal mode deformations, the approach can improve the
sampling and the scoring of near-native docking geometries and also enrich the pool
of solutions that are close to the native state [297].

3.6.5. Folding and docking

Folding upon binding is a problem that extends beyond the �eld of docking as it re-
quires to include protein structure prediction into the docking procedure. Only a
few a�empts have been made so far to tackle this problem. Most notably, Baker and
coworkers developed a fold-and-dock protocol for predicting the structure of sym-
metric homo-oligomers from extended conformations of the individual monomers
[93]. In a recent joint CASP-CAPRI experiment (CAPRI round 30), structures of
homo-oligomers had to be both modeled and docked. �e results of this round
demonstrated the importance of accurate monomer modeling for the success of the
quaternary structure prediction [262]. Simultaneously predicting the tertiary and
the quaternary protein structure will also be important for modeling complexes in-
volving intrinsically disordered protein regions.

3.7. Including external information during docking

For many complexes, external information is available about the binding mode. In
contrast to ab-initio docking where no a priori knowledge about the structure of the
complex is assumed and all possible binding of proteins are explored, including exter-
nal information can signi�cantly reduce the sampling space and improve the scoring
of near-native geometries. External information can be either derived from biolog-
ical experiments, bioinformatic predictions or from similarity of the binding mode.
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We call methods that use information from experiments and bioinformatic analy-
sis ”integrative modeling” approaches and methods that use structural similarity to
known complexes ”template-based” docking methods.

3.7.1. Template-based docking

Since the 1980s, structures of individual proteins have been successfully modeled
by similarity/homology (comparative modeling). If the sequence of a protein with
unknown structure is su�ciently similar to the sequence of another protein with
known structure, the structure can be modeled by assuming a similar fold based on
the alignment of the target to the template sequence. �e critical aspect of such a
comparative modeling approach is the availability of a suitable template. Due to the
rapid growth of the PDB and the limited structural scope of the protein universe,
template-based modeling of individual proteins has become the dominant approach
for building protein structures and is more reliable and e�cient than ab-initio struc-
ture prediction.

Similarly, protein-protein complexes can also be modeled based on known com-
plex structures. An advantage of these methods is that they are capable of including
binding-induced conformational changes, provided that a suitable template is avail-
able. �e following steps need to be carried out:

1. �nding one or more appropriate templates,

2. aligning the target sequence with the templates,

3. building an initial model for the target by copying the structural segments from
the aligned regions,

4. re�ning the structures by replacing the sidechains and constructing missing
loops, insertions and termini.

�e template search and the alignment of the sequences may be applied to each part-
ner separately, but a template for the entire assembly also needs to be obtained. �e
alignment can be generated based on sequence, sequence pro�le, or a combination
of the sequence and structure feature information. �e quality of template-based
models strongly depends on the accuracy of the template identi�cation. Structures
of protein-protein complexes are still relatively rare in the PDB, since complexes are
generally more di�cult to crystallize than individual proteins. While estimates for
the number of protein interaction types vary [8, 148], it is clear that currently the
Protein Data Bank only encompasses less than 50% of all interaction types and it
may take probably decades to achieve su�cient coverage [148]. �is lack of suitable
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templates has generally hindered the broad application of template-based modeling
to the problem of structure prediction for protein-protein interactions.

In contrast to threading-based modeling approaches [316, 314, 143], template-
based docking uses a structural alignment of the individual docking partners onto
an interface template library. Unlike the whole protein-protein interaction space,
the interface structural space appears to be more limited and even chains with dif-
ferent folds o�en have similar interfaces. Structural alignments can be performed
either based on the global fold or for interface fragments. �e complex models are
then constructed from the templates by superimposing the monomers on the se-
lected interaction template. �ese tentative geometries are then evaluated by scor-
ing functions that measure both the structural similarity between model and com-
plex template and physiochemical properties of the resulting interface. Since the
initial template selection is based on structural alignment, these methods have the
potential to detect distant or even non-homologous templates. Vakser and cowork-
ers even showed that in principle suitable structural templates are available for all
complexes where the structures of the individual association partners are known.
However, the accuracy of template-based docking is still low (≈ 23% when at least
one of the chains has no homologous template with more than 40% sequence iden-
tity with the target) and it remains unclear how to exploit interface similarity to
model the global complex structure. Furthermore, the crude initial geometries de-
rived by template-based docking need to be optimized. �e quality of the complex
models depends strongly on the quality of the templates and template-based dock-
ing typically succeeds for cases where templates with a sequence identity of > 40%
are available [245, 418, 472]. For low-quality templates, e�cient full-length com-
plex structure re�nement methods are still lacking to date [432]. Several template-
based docking methods have been developed during the last 10 years. Kundrotas et
al. were among the �rst to use a template-based docking approach based on an in-
terface library. �is library was extracted from the DOCKGROUND database of ≈
12,000 complexes. Docking models were then built by partial or full alignment of
the partners to the template and scored by the TM-scores of this alignment [418].
�e protein-protein interaction database PrePPI stores information on experimental
and predicted protein-protein interactions. PrePPI generates models of the complex
by querying the PDB for structural neighbors of the individual proteins and struc-
turally aligning the docking partners to complexes involving the detected structural
neighbors. �e models are then assessed by a Bayesian network to determine the
probability that these proteins interact [511]. PRISM [451] uses an interface database
derived from non-redundant structures from the PDB and aligns the target protein
surfaces to the interface templates using MultiProt [411]. If complementary partners
of a template interface are similar to surface regions of the two target proteins, it is
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assumed that the two proteins can interact through these motifs. �e chains are su-
perimposed on the interface template and scored by their similarity to the template
and steric overlap between the partners. �ese initial models are then re�ned by the
FiberDock method [293]. Similarly, ISEARCH and iWrap use special domain-domain
interaction libraries to scan the surfaces of the association partners for interaction
sites and construct the models of the bound complex [173, 189]. Recently, Xue et al.
proposed a new template-based docking method (CA-CA docking). �ey derived in-
terfacial residue restraints by similarity to homologous complexes and used these to
drive a standard docking run in HADDOCK [496]. �is approach combines a proto-
col used successfully in integrative modeling/data-driven docking with information
derived from the interface templates and can therefore be considered intermediate
between template-based docking and free docking. Compared to a simple alignment
of the partners as used in most template-based docking methods, this protocol allows
for larger sampling �exibility. Interestingly, Xue et al. found that CA-CA docking
generates more accurate docking models than true interface-driven docking and re-
�nement of the bound-unbound superposition [496].

3.7.2. Integrative modeling

For many complexes, biochemical and biophysical experiments have provided a wide
range of low resolution structural information (see also Chapter 2). �is limited
amount of data can be combined with docking to yield more accurate models of
protein-protein interactions. Similarly, bioinformatic predictions (e.g.; interface pre-
dictions or co-evolution data) can be incorporated [95, 331]. During docking, the
scoring function is typically supplemented by a pseudo-energy term that accounts
for the available data. In the following, we will focus on discussing methods that
include experimental data. We can distinguish between experiments that give infor-
mation about the overall shape of the biomolecular complex, about the interface and
local contacts, and about orientation and symmetry. Considering experimental data
during docking is highly challenging, since the data may be sparse, noisy, ambiguous
and even incoherent due to conformational heterogeneity [402]. �e uncertainty in
the data a�ects the accuracy of the prediction, however, reliable standards for assess-
ing model error have yet to be established.

In general, an integrative modeling protocol consists of the following steps:

1. Collecting available experimental data,

2. Choosing an appropriate representation for the docking partners and the ex-
perimental data,
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3. Sampling possible complex models,

4. Analyzing and validating the models.

Integrative modeling approaches have been applied successfully to elucidate the
structure of large molecular machines like the 26S proteasome [250], the nuclear pore
complex [7, 386, 414], the Salmonella typhimurium Type III secretion system [279]
and the Mediator complex [366]. Many docking programs have been expanded over
the years to include di�erent kinds of experimental information and to cope with the
inherent uncertainty of the data [392, 112, 248, 371, 107, 491, 209, 94, 459, 378, 398].
Some of them are specialized towards one type of experimental data, but many allow
combining data from multiple types of experiments. �e Rose�a program works by
exhaustive Monte Carlo sampling considering the underlying stereochemistry and
physical principles of proteins and can also use experimental restraints from NMR
[248, 291], SAXS [371] or cryo-EM [107, 480] to improve the sampling process. �is
approach was applied successfully to several biological problems [279, 510, 371, 409,
408]. HADDOCK (High Ambiguity Driven DOCKing) was one of the �rst dock-
ing programs that specialized in dealing with a large variety of experimental input
[112]. Currently, ≈ 130 complex structures calculated with HADDOCK have been
deposited in the PDB. HADDOCK uses ambiguous interaction restraints (AIRs) in or-
der to include information about putative interface residues. Such information can
be obtained from site-directed mutagenesis, NMR spectroscopy (CSP, RDCs, NOEs),
cross-linking/mass spectrometry [178] or H/D exchange. HADDOCK distinguishes
between active residues; i.e., residues that are known to form contacts, and passive
residues; i.e., residues that might be at the interface. For every active residue A, an
AIR restraint is de�ned between this residue and all active and passive residues on
the partner molecule by calculating the e�ective distance de�

A

de�
A =

NA∑
i=1

NB
active+passive∑
j=1

1

d6
ij


−1

6

with NA the number of atoms in the active residue and NB
active+passive the number of

atoms in the active and passive residues on the partner molecule. An upper limit
of typically 2 Å for the e�ective distance is enforced by a �at bo�om harmonic po-
tential that becomes linear beyond a given cut-o� distance. For e�ective distances
shorter than the given limit, no penalty is applied. Due to the inverse summation, the
shortest distances dij essentially dominate the e�ective distance de�

A and typically a
residue-residue distance of 4-5 Å is su�cient to ful�ll the restraint. AIR restraints en-
force active residues to make contact but allow ambiguity with respect to the partner
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residue. Furthermore, in order to deal with false positives, 50% of the AIR restraints
are randomly removed during docking. HADDOCK also supports orientational re-
straints in the form of RDC or di�usion anisotropy restraints. Symmetry restraints
can be imposed as well. In the last years, protocols including shape data (SAXS and
cryoEM) have also been tested [459, 219]. However, these protocols are not yet able
to systematically deal with a high degree of ambiguity and noise in the same way as
it is done for interface data.

�e Integrative Modeling Platform (IMP) has been used repeatedly to study the
structure of individual proteins and large assemblies [6, 31, 250, 465, 126]. IMP is a
so�ware platform that was designed to facilitate writing integrative modeling appli-
cations. IMP can use a variety of representations for the biological macromolecules
ranging from atomistic scale to highly coarse-grained beads. �is allows to model
di�erent parts of the system at di�erent resolutions depending on the available in-
formation. A range of restraints for experimental data are available including SAXS
pro�les [399], proteomics data [251], EM images [465], FRET [403], cross-linking
[352] and NMR data [386]. To consider experimental uncertainty, the restraints are
o�en formulated using a Bayesian approach [50]. IMP also provides a large collection
of sampling algorithms and analysis tools [378].

IDOCK [403] is an integrative modeling approach based on the PatchDock dock-
ing method [400] that can �lter docking models by a large number of experimental
data. IDOCK can handle SAXS pro�les, 3D cryo-EM densities, 2D cryo-EM class
averages, residue-type content at the interface and cross-linking/mass spectrometry
data by making use of functions implemented in IMP [378]. �e authors also tested
a combination of di�erent experimental data and found that combining global shape
data with local contact data was especially bene�cial [403].
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3.8. Assessment of docking methods

Very early in its development, the docking community decided to organize a com-
mon evaluation procedure. As a result, in 2001, the CAPRI blind prediction experi-
ment (www.ebi.ac.uk/msd-srv/capri) was initiated as a community-wide experience.
In close dialogue with the community, the CAPRI management team has designed
and established consensus assessment criteria for classifying the accuracy of docking
methods. Besides the CAPRI challenge, docking benchmarks have been created for
testing protocols on a common basis.

3.8.1. The CAPRI blind prediction experiment

In the CAPRI challenge, participating groups can test their docking algorithms on
not-yet published experimental structures of biomolecular complexes. Structural
biologists can bring a newly-solved structure from X-ray crystallography, NMR or
high-resolution cryo-EM to the CAPRI organizing commi�ee. �is structure can then
be o�ered to the docking community as a target. �e structural biologists need to
wait until the round closes before releasing their structure to the public. Predictors
are given typically between one and four weeks to submit 10 models for the target
(depending on the timeline for publishing the target and its di�culty). If possible,
unbound structures are supplied, but in recent rounds the participating groups o�en
had to model at least one of the structures by homology. In addition to the Predic-
tor round, there is also a scoring challenge. For this predictor groups can upload up
to 100 models. All uploaded models are supplied to the groups participating in the
scoring challenge. �e idea of this separate scoring round is that good predictions
may be overlooked during scoring and other scoring methods might be able to de-
tect them; scorers can therefore take advantage of all the models sampled to evaluate
their methods. �is corresponds to the generally accepted concept of separating the
docking problem in a sampling and a scoring problem.

Between 2001 and 2016, 36 rounds of CAPRI have been run with 107 targets. About
25 groups participated in the latest CAPRI rounds. Over the years, the targets have
become more and more diverse including e.g., predicting peptide-protein complexes,
interfacial water molecules, binding free energies and the e�ect of mutations. �e dif-
�culty of the targets has also increased, most recent targets presented a high degree
of protein �exibility. In general, the targets proposed during CAPRI have stimulated
the �eld and accelerated inclusion of experimental data and design of new proto-
cols (e.g., a range of peptide-protein docking protocols were created in response to
several peptide-protein targets in CAPRI between 2013 and 2016). �e failures for
certain targets in CAPRI also highlight the challenges faced by the docking commu-
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nity, namely binding-induced conformational change and its prediction based on the
unbound structure, and accurate (homology) modeling of the docking partners. In-
deed, in the last couple of rounds, there were several targets for which none of the
participating groups submi�ed any model close to the native form. Targets and re-
sults for the ATTRACT docking engine from the most recent CAPRI evaluation are
discussed in Chapter 9.

3.8.2. Docking benchmarks

In addition to the evaluation of docking methods provided by CAPRI, docking bench-
marks have been published for protein-protein [306, 199, 200, 473, 146, 228], peptide-
protein [275, 253], protein-DNA [457] and protein-RNA docking [28, 193]. Parts
of Weng’s protein-protein docking benchmark have been supplemented by binding
a�nity data [221, 473]. A small benchmark for multi-body docking has also been
proposed [220]. �e benchmarks contain non-redundant complex structures found
in the PDB. �e structures of the complex were determined by X-ray crystallography
at high resolution. In many benchmarks, the unbound structures for the components
have also been collected from the PDB allowing to create realistic test scenarios. In
some benchmarks, the unbound structures have been (homology) modeled to achieve
greater coverage ; e.g., in DOCKGROUND where input models with di�erent devi-
ations from the bound structure have been systematically created [228] and in the
large-scale benchmark PPI4DOCK that contains more than 1,000 test cases (Guerois,
unpublished data). Many benchmarks classify the complexes by their function/type
and the degree of docking di�culty. Docking di�culty is determined by the amount
of binding-induced conformational change. Benchmarks are useful for developing
docking methods and assessing their performance for a large variety of systems and
di�culty levels.

3.8.3. Assessment criteria

According to the standards introduced by CAPRI, the quality of a protein-protein
docking model is assessed by evaluating its interface root-mean-square-deviation
(IRMSD), ligand root-mean-square-deviation (LRMSD) and fraction of native con-
tacts (fnat) with respect to the native complex structure. �e interface is de�ned
by all residues that have heavy atoms within 10 Å of any heavy atom of the part-
ner. �e docking model is ��ed onto the interface of the native complex and the
deviation of the backbone interface atoms is then evaluated (IRMSD). For calculating
LRMSD, the docking model is ��ed onto the receptor protein of the native structure
and the RMSD between the backbone atoms of the ligand protein are evaluated. For
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Table 3.2. CAPRI quality measure used to evaluate protein-protein docking models.

�ality Criteria

High accuracy (? ? ?) (IRMSD 5 1 Å or LRMSD 5 1 Å) and fnat = 0.5

Medium accuracy (??) (IRMSD 5 2 Å or LRMSD 5 5 Å) and fnat = 0.3

Acceptable (?) (IRMSD 5 4 Å or LRMSD 5 10 Å) and fnat = 0.1

Table 3.3. CAPRI quality measure used to evaluate peptide-protein docking models.

�ality Criteria

High accuracy (? ? ?) (IRMSD5 0.5 Å or LRMSD 5 1 Å) and fnat = 0.8

Medium accuracy (??) (IRMSD 5 1 Å or LRMSD 5 2 Å) and fnat = 0.5

Acceptable (?) (IRMSD 5 4 Å or LRMSD 5 4 Å) and fnat ≥ 0.2

calculating fnat, the contacts are extracted from the native complex. Two residues
are in contact if any of their heavy atoms are within 5 Å of each other. �en the
contacts on the docking model are extracted and the fraction of native contacts that
is correctly reproduced by the model is evaluated. Based on these criteria, CAPRI
classi�es docking models as of high (? ? ?), medium (??) and acceptable (?) quality.
�e quality criteria are summarized in Table 3.2.

For peptide-protein complexes, tighter criteria have been introduced in the 2016
CAPRI evaluation to re�ect the smaller size of the peptide and the interface. �e
interface is de�ned by all residues where the Cβ atom is within 8 Å from any Cβ
atom on the partner. Contacting residues are de�ned as having heavy atoms within
4 Å distance. �e overall quality classi�cation has also been tightened as summarized
in Table 3.3.

3.9. Conclusion and Outlook

�e Protein Data Bank contains a large number of three-dimensional structures of
isolated proteins but rather few complexes. Computational docking methods can
help to �ll this gap by predicting the 3D structure of biomolecular complexes from
the structures of the individual constituents. As documented by the community-wide
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blind prediction experiment CAPRI, protein-protein docking methods have become
faster and more versatile and are now able to give insight into a wide range of bi-
ological systems. Bene�ting from enormous progress in computer technology and
algorithms, including the usage of GPUs, docking experiments can now be carried
out on large scales in reasonable time frames and genome-wide investigations of
biomolecular interactions are coming within reach. A major trend is the use of ever-
increasing amounts of data: be it by training new scoring functions on known struc-
tures of protein-protein complexes, by modeling the complexes themselves from ex-
perimental complex structures, or by including experimental data that could be even
extracted automatically from the literature via text mining [17]. But docking meth-
ods still face three large challenges. �e �rst one concerns the modeling of binding-
induced conformational change and (protein) �exibility. As assessed by CAPRI, accu-
rate predictions can be achieved for complexes that only present small-scale confor-
mational change between bound and unbound form. However, approximately 35 %
of all complexes found in docking benchmark 5 or among the CAPRI targets present
larger-amplitude conformational change upon complexation. Not considering �exi-
bility a�ects the scoring of near-native models. In the worst case, the docking proto-
cols might even fail to sample a near-native geometry due to clashes. Unfortunately,
it is very di�cult to predict when and what type of conformational change will occur,
since induced-�t processes can only be observed in an encounter complex close to
the native state. �e second challenge refers to modeling multi-component assem-
blies. Many complexes are composed of more than two entities and fast methods are
needed in order to deal with these large combinatorial sampling problems. Only few
methods can simultaneously dock multiple structures to date. �e third challenge
relates to including experimental data in docking. Dealing with new types of data,
the inherent experimental uncertainty and possible incoherence between multiple
data sources will become necessary.
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�e ATTRACT so�ware suite is a large collection of programs and tools for
modeling biomolecular complexes. ATTRACT has been successfully applied
to a range of interesting biological problems and also regularly participates
in the blind docking challenge CAPRI. �is chapter describes the most com-
mon features and characteristics of the ATTRACT docking program. Parts
of this chapter have been previously published in [394] and [99].

4.1. Introduction

Virtually all cellular processes involve the interaction of biomolecules. �ree-dimensional
(3D) structures of interacting complexes are essential for understanding their biolog-
ical function, regulation and potential modulation. However, experimental struc-
ture determination is highly challenging and has so far only succeeded in eluci-
dating a small fraction of complexes. Furthermore, it may not be feasible for all
low-a�nity/transient interactions. �erefore, reliable predictions of protein-protein
complexes and protein-nucleic acid complexes are in high demand and over the last
15 years a range of di�erent docking programs have been developed (Chapter 3).

�e ATTRACT docking engine [506, 296, 99] can perform structural modeling for
a large variety of biomolecular interactions. It has been developed for over a decade
in the Zacharias lab and as of April 2016 comprises a core program with approxi-
mately 20,000 lines of code and over 80 tools for input preparation, data processing
and analysis. ATTRACT has been applied to protein-protein, protein-DNA [406],
protein-RNA[407, 67] and protein-small molecule complexes [298] and successfully
predicted targets in various rounds of the blind protein-protein docking challenge
CAPRI [299, 101, 260] (rank 2 in 2016 CAPRI evaluation) (Lensink, personal com-
munication, see also Chapter 9). ATTRACT distinguishes itself from other dock-
ing programs by its coarse-grained force �eld, the possible use of protein �exibility
throughout the docking search, and the simultaneous docking of any number of (pro-
tein) bodies (Figure 4.1). In addition to predicting complexes ab-initio, ATTRACT
can also include a variety of experimental data in the docking process. It was ex-
panded to ��ing molecules in low-resolution cryo-EM density [94, 96] and supports
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4. �e ATTRACT Docking Engine

incorporating information obtained from e.g. NMR, cross-linking/mass spectrome-
try and mutational experiments. Recently, an integrative modeling approach based
on small-angle X-ray sca�ering data was developed (Chapter 8) [392]. Flexible in-
terface re�nement of ATTRACT-generated rigid-body models can be performed by
the iATTRACT protocol [393] (Chapter 5). A part of the functionality in ATTRACT
has been made easily accessible through web-interfaces [99]. In this chapter, I will
describe the ATTRACT docking engine, its characteristics and parts of its basic mod-
eling capabilities in more detail. I will present the di�erent protein representations
and interaction potentials, ab-initio rigid-body docking, di�erent ways of including
(protein) �exibility and the ATTRACT web interfaces.

4.2. Protein representation

4.2.1. ATTRACT coarse-grained force field

Coarse-grained protein representations have the advantage of being coupled to a
simpli�ed, smoothened energy landscape that contains fewer docking energy min-
ima and therefore allow for much rapid and fully converged energy minimization
compared with an atomic resolution representation. �e empirical, coarse-grained
protein representation in ATTRACT is intermediate between a residue-level and full
atomistic description. It represents each amino acid of a protein by up to four pseudo
atoms (Figure 4.2). �e protein main chain is represented by two pseudo atoms per
residue (located at the backbone nitrogen and backbone oxygen atoms, respectively).
Small amino acid side chains (Ala, Asp, Asn, Cys, Ile, Leu, Pro, Ser, �r, Val) are rep-
resented by one pseudo atom (geometric mean of side chain heavy atoms). Larger
and more �exible side chains (Arg, Gln, Glu, His, Lys, Met, Phe, Trp, Tyr) are repre-
sented by two pseudo atoms to be�er account for their shape and the dual chemical
character of some side chains. E�ective interactions between pseudo-atoms A and
B are described by so� distance-dependent Lennard-Jones (LJ)-type potentials of the
following form (Figure 4.2)

VAB(rij) =
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]
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for repulsive pairs if rij 5 rmin.

where σAB and εAB are e�ective pairwise radii and bonding energies for a�rac-
tive or repulsive LJ pairs. At the distance rmin =

√
4
3σAB between two pseudo
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Figure 4.1. �e ATTRACT docking engine, its functionality and its main features.
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(a)

r

V(
r)

(b)

Figure 4.2. �e ATTRACT force �eld. (a) �e ATTRACT coarse-grained force �eld represents each
amino acid by up to 4 pseudo-atoms (2 for the backbone and 1-2 for the sidechain). (b) Interactions
between pseudo-atoms are described by a�ractive (green) and repulsive (red) Lennard-Jones-type po-
tentials.

atoms, the a�ractive LJ-type potential has the energy emin ≈ −0.1εAB . In con-
trast to the original force �eld [506], this form allows for purely repulsive inter-
acting pseudo-atom pairs. For each pseudo-atom pair, a�ractive and repulsive LJ
parameters were initially derived from a statistical analysis of contact probabilities
at known protein-protein interfaces and then iteratively optimized by minimizing
the root-mean-square-deviation of near-native docking minima and comparing the
scoring of near-native minima with many high-scoring decoy complexes [129]. �e
LJ-type interaction potentials were parametrized to re�ect both surface complemen-
tarity and physico-chemical properties of protein-protein interfaces. �e LJ interac-
tions also implicitly include solvation e�ects by favoring association of hydrophobic
residues at the interface.

In addition to the LJ-type potentials, a Coulomb-type term accounts for electro-
static interactions between charged side chains (Lys, Arg, His, Glu, Asp)

V (rij) =
qiqj

ε(rij)rij
.

�e Coulomb potential is damped by a distance dependent dielectric constant ε(rij) =
15rij in order to mimic Debye-Hückel screening by the solvent molecules. AT-
TRACT also provides coarse-grained models for nucleic acids and their interactions
with proteins [406, 407].
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4.2.2. OPLS atomistic force field

In addition to the coarse-grained ATTRACT force �eld presented above, an atomistic
force �eld is also available in ATTRACT. �e force �eld uses a united-atom repre-
sentation for nonpolar hydrogen and represents all other atoms, including all polar
hydrogens, explicitly. �e force �eld employs standard Lennard-Jones (LJ) poten-
tials to describe van der Waals interactions and a Coulomb-type term to represent
charge-charge and dipolar interactions between atom types i and j

V (rij) = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

+
qiqj
εrij

where σij and εij are given by the combination rules σij =
σi+σj

2 and εij =
√
εiεj .

�e parameters σi, εi and qi are based on the OPLS force �eld [212] and were derived
from a modi�ed version of the parallhdg5.3.pro parameter �le [271]. �e dielectric
constant ε is typically set to 10 to account for solvent screening e�ects.

4.2.3. Grid-based energy calculation

Docking calculations can be accelerated by precalculating the potential energy on a
grid [100]. �is fast energy evaluation in combination with the coarse-grained dock-
ing approach makes it possible to scan hundreds of thousands con�gurations in the
initial docking stage of the ATTRACT program. �e grid represents the complete
spatially discretized interaction potential around one of the protein partners (which
is typically the larger partner and also referred to as the “receptor protein”). At each
grid point, energy and forces are stored. �e potentials are evaluated at run time
by trilinear interpolation between the values of neighboring voxels. In contrast to
previous grid-based approaches, ATTRACT still calculates short-range interactions
explicitly (for distances rij < dP with dP being the distance cuto� or plateau dis-
tance) using a stored neighbor list of atoms at each grid point and only uses the
interpolation to evaluate the long-range interactions (rij > dP )

Vtotal(ri) =
∑

rij<dP

V (rij)︸ ︷︷ ︸
explicit; short-range

+ V (ri)− V (dP )︸ ︷︷ ︸
precalculated; long-range

for atom i.

�is reduces the interpolation error signi�cantly [100] and also allows to include
moderate �exibility of the receptor protein during docking. Recently, this energy
calculation routine was ported to the GPU yielding a speed-up of up to 100 [121]
compared to the current implementation in ATTRACT [100]. Grid-acceleration is
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Figure 4.3. Grid-based energy calculation in ATTRACT. Short range interactions are calculated ex-
plicitly, long-range interactions are calculated implicitly by interpolation from the grid. Inset: Illustra-
tion of the energy calculation for one atom (red). Interactions with receptor atoms within the plateau
distance dp (yellow) are evaluated explicitly. A list of neighboring receptor atoms within a neighbor
distance dN is taken from the nearest grid point (dashed line). Long-range interaction energies are
interpolated from the nearest grid points. �e �gure was taken from [121].

compatible with multi-body docking, ensemble docking (for small conformational
changes within the ensemble) and the use of normal mode deformations during dock-
ing.

4.3. Standard docking protocol

Figure 4.4 shows a �owchart of a typical docking run in ATTRACT. For simplicity,
a protein-protein docking run is described, however, most of this is also valid e.g.
for protein-nucleic acids docking. As an input, the user needs to supply the atomic
coordinates for the two proteins of interest (PDB �les). �e docking run consists of
the following steps:

1. Structure processing and protein representation. �e structures of the
proteins are converted into the ATTRACT format with the ATTRACT tools
aareduce and reduce. aareduce uses PDB2PQR [111, 110] to rebuild
missing side chain heavy atoms and if necesssary adds hydrogens to the struc-
ture of the biomolecule.
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2. Starting positions. Starting positions for the docking minimization are gen-
erated by placing the ligand protein at various positions and orientations around
the receptor protein. �e position and orientation of the ligand protein is de-
�ned by its center-of-mass translational (x, y, z) and rotational (φ, θ,ψ) (Euler
angles) degrees of freedom.

3. ATTRACT rigid-body docking. Each of the starting positions is optimized
during a potential energy minimization in the six rigid-body degrees of free-
dom using a quasi-Newtonian minimizer (default se�ings). Alternatively, AT-
TRACT can also perform a Monte Carlo search in the translational and orien-
tational degrees of freedom. During the rigid-body docking, the proteins are
represented by the coarse-grained ATTRACT force �eld.

4. Ranking and data processing. �e generated docking models are ranked
according to their ATTRACT score evaluated within a short cuto�. Redun-
dant docking models (within 0.05 Å from a be�er scored model) are discarded
(ATTRACT tool deredundant).

5. Re�nement. Typically the top-ranked 200 models are selected for atomistic
re�nement with the iATTRACT protocol [393] (Chapter 5).

In the end, models for the bound complex are obtained. ATTRACT usually generates
hundreds of thousands of complex models in a single docking run. A typical docking
run is executed in a few hours on a standard Desktop PC.

�e ATTRACT standard docking protocol has been tested on 226 protein com-
plexes from protein-protein docking benchmark 5.0 [473]. �e protocol yielded a
success rate of 48% among the top-ranked 100 models and an overall success rate of
96% when evaluating by the CAPRI one-star criterion (Schindler, unpublished data).
For docking cases in which both partners undergo no or only very li�le conforma-
tional change upon binding, this protocol already yields very accurate results placing
near-native predictions o�en among the top-ranked 50 models. However, in many
cases, the conformation of the proteins in the bound complex di�er signi�cantly from
their unbound structures in solution and this �exibility has to be taken into account
during docking.

4.4. Protein flexibility

Several di�erent possibilities are available to model �exibility throughout the dif-
ferent docking stages in ATTRACT: normal mode deformations, ensemble docking
and domain docking. Docking with so� harmonic mode deformations and ensemble
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+

Input

Convert into protein represention
ATTRACT coarse-grained and OPLS atomistic force �eld

Generate starting positions
Random center-of-mass positions and orientations

typically 100,000 initial positions

ATTRACT rigid-body docking
Coarse-grained ATTRACT force �eld

Energy minimization or Monte Carlo sampling
Optimization in center-of-mass rotation and translation

Ranking by ATTRACT score
Energy evaluated within cuto� of 7 Å

Remove redundant docking models
within 0.05Å cuto�
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�exible interface; atomistic

Select top-ranked models

Output

Figure 4.4. Overview of a typical docking run with ATTRACT.
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docking are available through the ATTRACT Easy web-interface. Multi-body dock-
ing scripts can be generated with the ATTRACT full web interface (see Section 4.5).

4.4.1. So� harmonic modes

Global backbone �exibility (e.g. domain-domain motion) can be included by energy
minimization along the directions of precalculated so� normal modes for each part-
ner structure [296, 297]. �e so� normal modes corresponded to eigenvectors of the
protein calculated using an approximate normal-mode analysis related to an elas-
tic network model (ENM) as described by Hinsen [182]. In an elastic network model,
the experimental structure serves as a reference (energy minimum) structure and the
mobility of a residue or protein segment depends on the local density and number
of short range contacts. �e calculation of modes based on ENMs is computationally
inexpensive and global protein �exibility can be included in the docking process at
moderate additional computational cost. �e normal modes are calculated with re-
spect to theCα atoms of the protein based on a pair-wise dependent energy-function

V (R1, . . . ,RN ) =
∑
i,j

kij
(
|Rij | − |R0

ij |
)2

(Ri −Rj)

where |R0
ij | = |R0

i −R0
j | is the equilibrium distance of the Cα pair derived from the

experimental/input structure and the distance-dependent force constant kij is given
by

kij(|Rij |) = λ exp
(
− |Rij |2

σ2

)
.

�e elastic network model hence has the parameters λ (coupling strength) and σ
(coupling cuto�) which are set by default to 1.2 and 5 Å in ATTRACT (ATTRACT
toolsmodes.py andmodes-aa.py). Harmonic modes with respect to the above
energy function can be obtained by diagonalization of the second derivative matrix of
the energy function [182]. Each residue is treated as a rigid-body during normal mode
deformations. ATTRACT typically uses deformations in the lowest 5 normal modes
as additional degrees of freedoms (in addition to center-of-mass rotation and trans-
lation). �e normal-mode deformations mimic an induced-�t process upon binding.
Normal modes can also be calculated for nucleic acids (Setny, unpublished data).

4.4.2. Ensemble docking

For modeling a conformational selection-type binding process, a set of multiple rigid
conformations (multi-model PDB �le) can be supplied for each partner allowing to
choose the most likely conformation during docking (ensemble docking). Recently,
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the ensemble docking approach in ATTRACT was expanded towards a replica ex-
change docking scheme where ensemble conformations can be exchanged based on
a Metropolis criterion (Zhang, unpublished data).

4.4.3. Multi-body docking and domain docking

�e ATTRACT program can dock up to 100 biomolecules simultaneously. In con-
trast, the widely-used HADDOCK docking program is limited to a maximum of six
individual docking partners [220]. �is multi-body docking property can also be
used to dock individual protein domains in order to represent domain-domain mo-
tions, an approach that was successfully employed earlier by Karaca et al. [218]. �e
fragment-docking approach for modeling protein-RNA complexes [67] also makes
extensive use of this feature.

4.5. ATTRACT web interfaces

Many docking programs can now be easily accessed via web interfaces and servers
[83, 401, 446, 285, 98, 287, 444, 347]. With the large user base acquired by many of
these web services, docking has been established as a valuable tool for the structural
biology community. Docking web services further o�er the possibility to systemati-
cally compare published methods and hence promote reproducible research.

�e ATTRACT docking engine can tackle a large variety of docking problems, due
to an extensive set of features and options. ATTRACT is implemented as a suite of
command line tools and options that can be combined at will. �erefore, ATTRACT
is typically invoked via a custom, hand-wri�en shell script. While this approach is
very �exible, it limits the accessibility of ATTRACT to expert users only. However,
with the Spyder framework (used in similar web servers [98, 95]), it is possible to
generate docking protocols automatically, based on a set of parameters that can be
edited in a web browser.

We developed �ve web interfaces for se�ing up docking runs in ATTRACT: the
ATTRACT Easy web interface, the pepATTRACT web interface, the ATTRACT stan-
dard web interface, the ATTRACT full web interface and the upload web interface.
�e protocols that can be generated allow for many di�erent docking applications
and expose a large fraction of the functionality present in ATTRACT. �e ATTRACT
web interfaces are not web servers: they return docking protocols (shell scripts) for
execution on a local machine (the user has to install the ATTRACT program). Alter-
natively, these docking scripts can be submi�ed to the servers at the Mobyle platform
(de Vries, personal communication).
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4.5.1. ATTRACT Easy web interface

�e ATTRACT Easy web interface (www.a�ract.ph.tum.de) provides a convenient
way to set up an ab-initio two-body protein-protein docking protocol and hence
a user-friendly, general-purpose entry point for protein-protein docking with AT-
TRACT. On the one hand, it is su�cient to provide just a PDB �le for both protein
partners. On the other hand, a number of options are available (but not required) to
customize the protocol. For example, the web interface o�ers several possibilities to
include protein �exibility in the docking search. If an induced �t model of binding
is hypothesized, the “harmonic modes“ option can be enabled, selecting collective
modes that will be calculated from an elastic network model [296]. �e protein will
then be deformed along these modes during the docking. Alternatively, an ensemble
of multiple rigid conformations can be provided as a multi-model PDB �le, allowing
the most likely conformation to be selected during the docking. �e initial rigid-
body docking search may be followed by a �exible re�nement using the iATTRACT
protocol [393] (Chapter 5). Finally, for benchmarking purposes, the docking results
can be assessed against a user-supplied reference structure with the same statistics
as used in CAPRI (IRMSD, LRMSD and fnat).

4.5.2. pepATTRACT web interface

Peptide-protein docking protocols [391] (Chapter 6) can be easily generated with the
pepATTRACT web interface (www.a�ract.ph.tum.de/peptide.html). �e web inter-
face helps the user set up a script that performs the rigid-body sampling stage and the
�exible interface re�nement starting from the structure of the unbound protein and
the peptide sequence. It also provides the option to specify residues for ambiguous
interaction restraints [322, 112] to include experimental information and restrict the
search for the peptide binding site to a portion of the protein’s surface. Furthermore,
conformational change on the protein side can be included by providing multiple
protein structures (ensemble docking). �is option is also useful if the protein struc-
ture has been derived from template-based homology modeling or derived from NMR
experiments. Snapshots from MD simulations could also be used as an ensemble in
docking. Instead of uploading a PDB �le containing a single protein structure to the
web interface, the user can upload a multi-model PDB �le and specify the number
of conformers. Like the ATTRACT Easy web interface, the pepATTRACT web inter-
face provides benchmarking options. �e usage of the pepATTRACT web interface
is illustrated in Figure 4.5. �e docking script generated by the web interface pro-
vides an easy entry point for non-expert users into fast peptide-protein docking in
ATTRACT.
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Upload protein structure
(PDB format)

Enter peptide sequence
in single le�er code

Known interface residues
optional

Generate protocol

Further options

Figure 4.5. Instructions for generating a peptide-protein docking protocol with the pepATTRACT
web interface. �e web interface is available at www.a�ract.ph.tum.de/peptide.html. Required input is
highlighted in red.

4.5.3. ATTRACT standard web interface

�e ATTRACT standard web interface (www.a�ract.ph.tum.de/services/ATTRACT/
standard.html) is an extension of the ATTRACT Easy web interface [99]. It can be
used to set up two-body protein-protein, peptide-protein, protein-DNA and protein-
RNA docking scripts for ATTRACT. In addition to the options available in the Easy
web interface, the standard web interface supports including experimental informa-
tion on interface residues via specifying active and passive residues for ambiguous
interaction restraints [322, 112] for both docking partners. Furthermore, informa-
tion on contacts can be supplied in CNS/HADDOCK tbl format in order to generate
distance restraints during docking (“Harmonic distance restraints �le”, section “Sam-
pling”). Instead of using the ATTRACT coarse-grained force �eld, the OPLS force
�eld can be selected for rigid-body docking (in general, this is not recommended).
�e standard web interface can be used for advanced peptide-protein docking with
a peptide ensemble speci�ed by the user.

4.5.4. ATTRACT full web interface

�e ATTRACT full web interface exposes the majority of the functionality present in
ATTRACT and is suitable for advanced users. It is available at www.a�ract.ph.tum.
de/services/ATTRACT/full.html. Most importantly, the full web interface allows the

64

www.attract.ph.tum.de/peptide.html
www.attract.ph.tum.de/services/ATTRACT/standard.html
www.attract.ph.tum.de/services/ATTRACT/standard.html
www.attract.ph.tum.de/services/ATTRACT/full.html
www.attract.ph.tum.de/services/ATTRACT/full.html
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user to set up multi-body docking scripts (currently up to 10 docking partners). In
contrast to the Easy and the standard web interface, users have to provide more in-
put parameters. In general, it is therefore recommended to set up a docking script
with one of the other web interfaces and only modify certain parameters with the
full web interface. �e full web interface o�ers a large variety of options to cus-
tomize the docking script. It allows to design the sampling process by specifying the
number of sampling iterations and se�ings for each iteration (section “Iterations”).
�e user can change the number of minimization steps (vmax) and also enable Monte
Carlo sampling instead of energy minimization. In the “Sampling” section, the user
can choose di�erent setups for generating the initial starting positions (“Docking
search”) and modify parameters for iATTRACT re�nement. Parameters for exper-
imental restraints (e.g., ambiguous interaction restraints) can be customized in the
“Energy and Interaction” section. For sampling without a physiochemical force �eld
(only so� repulsion between the docking partners), atom density grids can be spec-
i�ed. �e full web interface also supports symmetry restraints (e.g., for docking of
homo-multimers, cf. Section 2.3.2).

4.5.5. The upload web interface

�e upload web interface can be used to upload previously generated embedded pa-
rameter �les and modify them. It can also be used to convert parameter models (e.g.,
convert an ATTRACT Easy model to a full ATTRACT model). �e upload web inter-
face is available at www.a�ract.ph.tum.de/services/ATTRACT/upload.html.

4.6. Conclusion and Outlook

�e ATTRACT docking engine can model a wide range of biomolecular interactions.
�e program has evolved over the years and many new functions and protocols have
been added. ATTRACT can now harness the computing capabilities of GPUs to fur-
ther accelerate docking calculations [121]. We will integrate the GPU-accelerated
version into the main branch of ATTRACT and add support for modi�ed amino acids,
ions, and cofactors during docking. �en a new ATTRACT version (ATTRACT 2.0)
will be released (scheduled December 2016). �e release will contain all published
docking protocols [393, 391, 99], new tools for developing scoring functions [389],
example scripts [96, 392, 67] and web-interfaces to make ATTRACT docking cal-
culations available to the scienti�c community. In the future, this GPU-accelerated
ATTRACT version can be used to o�er docking computation services (web servers).
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5. iATTRACT: Simultaneous Global
and Local Optimization for
Protein-Protein Docking Refinement

A major caveat for docking success is accounting for protein �exibility.
Especially, interface residues undergo signi�cant conformational changes
upon binding. �is limits the performance of methods that keep partner
structures rigid or allow only limited �exibility. �is chapter describes a
new docking re�nement approach, interface-ATTRACT (iATTRACT). iAT-
TRACT combines simultaneous full interface �exibility (both backbone and
side chain �exibility) and rigid-body optimizations during docking energy
minimization. �e performance of the approach was systematically as-
sessed on a large protein-protein docking benchmark, starting from an en-
riched decoy set of rigidly docked protein-protein complexes. Large im-
provements in sampling and slight but signi�cant improvements in scor-
ing/discrimination of near-native docking solutions were observed. Im-
provements in the fraction of native contacts were especially favorable,
yielding increases of up to 70%. �e work presented in this chapter has
been previously published [393].

5.1. Introduction

Protein-protein interactions (PPIs) play an essential role in most biological events
within a cell. �e interacting macromolecules carry out cellular processes such as
DNA synthesis, gene expression, signal transduction, and immune responses. At
the same time, aberrant PPIs are at the heart of pathological processes, such as
Alzheimer’s disease and cancer. Atomic-level structural knowledge of protein-protein
complexes is vital for understanding their biological function, for predicting the ef-
fect of mutations [233] and for rationally designing new PPI-based therapeutic agents
[483]. For the la�er, it is particularly important to determine which protein residues
form the physical contacts between the macromolecules, i.e., to identify the native
residue contacts.
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Experimental structure determination methods based on nuclear magnetic res-
onance (NMR) spectroscopy or X-ray crystallography have been used successfully
to characterize many proteins and also protein-protein complexes. However, the
number of possible PPIs far exceeds the number of known proteins [429] and ex-
perimental characterization of all PPIs is currently not feasible. Computational pre-
diction methods like protein-protein docking aim to use available experimental or
homology-modeled structures of individual constituents to predict the structure of
protein-protein complexes. Hence, docking can complement experimental informa-
tion and is an extremely valuable tool for structural biologists.

Protein-protein docking methods perform satisfactorily, especially in cases with
li�le or no structural changes in the protein-protein interface upon complex forma-
tion. Progress in the protein-protein docking �eld in recent years has been monitored
and documented by the community-wide blind docking challenge CAPRI (Critical
Assessment of Predicted Interactions) [257, 259, 260]. Still, predicting the correct
three-dimensional structure of protein complexes and predicting the native residue
contacts remain an enormous challenge. Solutions of acceptable or even medium
quality according to standards used in the CAPRI challenge o�en only retrieve one
third or less of the interacting residues. �is is insu�cient for using such complexes,
for example in drug design applications. Major limitations of current docking al-
gorithms are the rigid-body assumption as well as simplistic and inaccurate force
�elds [51, 12, 502, 302, 192]. Typically, docking algorithms perform broad sampling
of protein complex conformations while keeping the internal structure of the protein
partners rigid. However, most proteins undergo conformational change upon bind-
ing and thus, sampling of the bound conformation is o�en not possible using rigid
unbound protein partners. Additionally, this sampling failure impairs the scoring to
distinguish near-native candidate structures with correct residue contacts from de-
coys which display few, if any, correct physical contacts. To tackle these problems,
re�nement protocols optimize a subset of rigid-body candidate structures using a
computationally more demanding, detailed energy function and including a greater
portion of protein �exibility. Ideally, re�nement protocols should establish more na-
tive contacts between the protein partners, increase interface complementarity and
yield improved structural agreement with respect to the native complex structure.
In addition, the energetic evaluation or scoring of re�ned complexes should increase
the speci�city for native or native-like docking geometries.

A variety of di�erent docking re�nement approaches have been developed to date.
In the ATTRACT docking approach, low-frequency normal modes of partner pro-
teins can be employed during systematic search and re�nement stage to account for
global changes [296, 297]. Rose�aDock’s re�nement stage uses successive rigid-body
moves, backbone perturbations, rotamer selection and full side chain repacking in a
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Monte Carlo minimization scheme [65, 66]. �e FiberDock method models back-
bone �exibility through a combination of normal mode deformations and includes
side chain �exibility by selecting appropriate states from a rotamer library. Side chain
repacking and backbone remodeling are employed iteratively with additional Monte
Carlo minimization in rigid-body space in each cycle [293]. �e EigenHex algorithm
also uses a combination of simple elastic network normal modes but individually
selects them for each pose [466]. SwarmDock employs up to 40 normal modes de-
rived from an all-atom elastic network model to represent backbone conformational
change with a focus on the interface region [310]; the authors propose to combine
this with side chain rebuilding using SCWRL [239]. In ICM-DISCO, the re�nement
focuses on the interface side chains which are treated as fully �exible [127]. �e
HADDOCK program uses a semi-�exible re�nement stage in torsion angle space of
both interface backbone and side chains followed by a full Cartesian dynamics re�ne-
ment in explicit solvent comparable to a molecular dynamics simulation [97]. Most
of these algorithms perform well with regards to optimizing interface residue con-
formations and resolving steric clashes in order to improve the scoring. However,
they are less successful for improving the sampling of the overall protein complex
geometry and moving the protein partners signi�cantly from the starting geometry.

Here, we present a new approach, iATTRACT (interface-ATTRACT) that improves
sampling in the re�nement stage by combining full atomistic �exibility of interface
residues with global translational and orientational motions of the protein partners.
Hence, conformational space is simultaneously explored in global and local degrees
of freedom in a potential energy minimization. To control conformational changes
at the interface, we employ a structure-based potential with the unbound protein
structure as reference, whereas a classical molecular mechanics force �eld is used
to model the intermolecular physical interactions. We demonstrate the e�ciency of
the approach by re�ning rigid-body docking candidates of a large number of protein
complexes.

5.2. Methods

�e iATTRACT method is an all-atom re�nement procedure that includes full Carte-
sian �exibility of the interface residues and combines this with rigid-body optimiza-
tion in an all-at-once approach. It consists of an interface selection step, the gener-
ation of an intramolecular structure-based protein force �eld for interface residues,
followed by energy minimization in overall translation, rotation and local atom move-
ment at the interface.
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5.2.1. Interface selection

�e interface was selected for each initial docking start geometry; i.e., the residues
which were in contact in the input structure were treated as �exible during the re�ne-
ment. Both side chain and backbone atoms were taken into account. �e interface
residues were selected automatically by accounting for contacts between the protein
partners of the input structure within a cuto� range of dcut = 3.0 Å. If necessary,
the cuto� was increased to ensure that each protein partner had at least 8 �exible
interface residues. On the other hand, if the total number of �exible atoms N�ex was
larger than 333, the cuto� was decreased successively by steps of 0.5 Å and the num-
ber of selected interface residues was decreased accordingly. �is adjustable scheme
accounts for the di�erent sizes of the protein partners and the respective interface,
and the varying quality of the candidate structures. �e maximum total number of
�exible atoms was 333, which is only a small fraction of the atoms in a typical protein
complex.

5.2.2. Intra-protein force field

A structure-based force �eld for each unbound protein structure was generated and
applied to the �exible interface atoms throughout the re�nement process. �is structure-
based force �eld contains harmonic potentials for controlling bond lengths and bond
angles as well as a double-quadratic potential to represent steric repulsion between
non-bonded atoms. �e force �eld representation allows motions that result in changes
of dihedral torsion angles and does not include any a�ractive non-bonded interac-
tions within the protein.
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�e parameters r0
ii+1 for bond length and r0

ii+2 for bond angles were extracted di-
rectly from the unbound protein structure. �e parameters kr , kθ , krep were set to
1000 kcal/mol/Å2, 100 kcal/mol/Å2 and 1 kcal/mol/Å4 respectively. �is allows
for distance �uctuations in the order of 10−2 Å for nearest neighbors and 10−1 Å for
second nearest neighbors at room temperature. rmin was set to 3.5 Å which corre-
sponds roughly to twice the van der Waals radius of a carbon atom and thus approx-
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imately represents the steric exclusion between heavy atoms. �e form of the so�
repulsive potential allows for partial atom-atom overlap (of atoms within one pro-
tein partner but not between atoms of separate partners, see below). Hydrogen atoms
were not subjected to steric repulsion. Di�erent parameters for kr and kθ were tested
and the model showed only slight dependence on the values of the force constants
(data not shown). For each atom, the bonds to its nearest covalently bound neighbors,
the angles to its second nearest covalently bound neighbors and the steric repulsion
to all neighboring atoms within a cuto� of 5 Å were considered. If the number of
neighboring atoms was less than 30, the cuto� was increased and neighbors were
determined within the increased cuto� range to account for steric repulsion. During
re�nement, atoms perform only small-scale rearrangements and their movement is
restricted by the presence of the neighboring atoms. If side chains are less densely
packed, they are more likely to rearrange on a larger scale, this is implicitly taken into
account by the variable neighbor list. Calculating non-bonded interactions within a
cuto� range balances computational load with a physically accurate representation.

5.2.3. Combining full interface flexibility and global translational
and orientational motion

We use Cartesian degrees of freedoms for the �exible interface atoms and calculate
the displacements in a reference frame a�ached to the protein’s center of geometry;
i.e., relative to the template structure of the protein. �e force on a single atom is
the sum of the respective forces resulting from both the inter-protein force �eld and
the intra-protein restraints and the displacements are directly derived from these
forces. �is �exibility mechanism, which we will also refer to as imodes (interface
modes), was implemented as a separate option in ATTRACT. An e�cient variable
metric minimizer [296, 297] then allows simultaneous large-scale translational and
rotational optimization (of the smaller ligand protein partner) combined with small-
scale, local, relative movements of interface atoms. A single energy minimization
step consists of the following parts. First, the pairwise non-bonded interactions and
their derivatives between all the atoms from the protein partners are calculated in
the global reference frame. �ese forces are rotated in the local protein-associated
coordinate frame. �en the penalty potentials of the intra-protein force �eld and their
derivatives for the �exible interface residues are computed in the protein reference
frame and these forces are added to the atom forces derived from the protein-protein
interaction. Local deformations of the atoms were derived directly from the atomistic
forces. �e total force and the torque are applied to the ligand protein’s center of
geometry position and orientation. For each structure, 2500 minimization steps were
performed.
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5.2.4. Evaluation of docking solutions

�e quality of the re�nement solutions was assessed by interface root mean square
deviation (IRMSD) and fraction of native contacts (fnat, see Chapter 3). Stars were
awarded in a fashion similar to the CAPRI criteria [303] to grade the quality of the
predictions. �e criteria are summarized in Table 5.1. We refer to structures of CAPRI
one star quality or be�er as (one star) quality structures. To investigate the contri-
bution of the interface �exibility on the sampling, we removed the interface mode
deformations by superimposing the unbound protein structures on the generated
iATTRACT models. �en, we compared IRMSD and fnat with and without inter-
face residue movements. To compare the similarity of the iATTRACT models to
the bound complex structure at the interface, we superimposed the individual pro-
tein structures of the iATTRACT models onto the bound structures and calculated a
heavy atom IRMSDheavy with backbone and side chain atoms including all residues
which were within a cuto� of 3.0 Å from the protein partner in the bound crystal
structure. �e same was done for the unbound protein structures superimposed on
the bound complex structure. �ese values were compared to check whether the
proteins sampled conformations closer to the bound form. As a score we used the
intermolecular energies of the complexes derived from the OPLS parameters. To see
how the generated structures score with respect to their IRMSD, we clustered the
structures by pair-wise backbone ligand-RMSD with a cuto� of 7.0 Å and a mini-
mum cluster size of 4 and calculated the percentage of models of a certain CAPRI
quality in the top N clusters. Within each cluster, the cluster members were sorted
by their intermolecular energy. �e clusters were then ranked by the average of the
intermolecular energies of the top 4 members. A cluster is designated as of one star
CAPRI quality if any of the top 4 members is of one star CAPRI quality. Finally, to
�x possible deformations in the side chain structure due to the simplistic nature of
the intra-protein force �eld, each re�ned solution was subjected to an energy mini-
mization (5500 steps) with the Amber 12 program [61] using the parm10 force �eld
[188] with an implicit Generalized Born solvation model. Signi�cance of observed
improvements was tested by calculating the p-value using the Wilcoxon signed-rank
test.

5.2.5. Dataset and structure preparation

Re�nement was performed on 166 protein complexes from benchmark 4.0 [200].
Docking cases were classi�ed according to RMSD between bound and unbound forms
as “rigid-body”, “medium” and “hard” cases. Note that even the “rigid-body” cases can
involve side chain rearrangements upon complex formation and for the “medium”
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Table 5.1. CAPRI quality measure used to evaluate the re�ned docking models.

�ality IRMSD[Å] fnat

High accuracy (? ? ?) 5 1.0 = 0.5
Medium accuracy (??) 5 2.0 = 0.3
Acceptable (?) ≤ 4.0 = 0.1 and < 0.3

and “hard” cases typically both backbone as well as side chains di�er signi�cantly
in unbound and bound partner structures. A few cases where the protein partners
undergo large global conformational changes were excluded from the dataset (PDB
accession codes: 2NZ8, 1F6M, 1DE4, 1FAK, 1H1V, 1IRA, 1Y64). Additionally, the
homodimer/homotetramer 1N2C was excluded since RMSD evaluation on solutions
was considered to be too complex. �e �nal dataset contained 119 rigid-body, 28
medium and 19 hard docking cases.

�e protein structures were downloaded from the PDB. If necessary residues were
renumbered in the unbound structures to match the bound forms, parts in the un-
bound form that are not present in the bound form were removed (and vice versa),
and point mutations were introduced to resolve minor di�erences in the protein
sequences. �e structures were then converted into the OPLS atom type descrip-
tion with the ATTRACT tool aa-reduce. Missing hydrogens were built with
PDB2PQR [111, 110] and protonation states were determined by PropKa [266]. For
histidine protonation states the bound structure was used as a reference to ensure
that unbound and bound structures contained the same atoms. Disul�de bridges
were also determined according to the bound structure based on a cuto� criterion.
�is was necessary for easy evaluation of the re�nement results against the bound
crystal structure.

5.2.6. Rigid docking for start complex generation and inter-protein
force field

�e re�nement input structures were generated by �rst performing an atomistic ab-
initio rigid-body docking with ATTRACT employing the OPLS force �eld. �e inter-
molecular energy function consisted of pair-wise van der Waals energy terms and
full electrostatics within a 50 Å distance cuto� (see Chapter 4). �e parameters for
these non-bonded interactions are OPLS non-bonded parameters [212] derived from
a modi�ed version of the parallhdg5.3.pro parameter �le [271]. �e dielectric con-
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stant ε was set to 10. �e evaluation of the interaction potentials was accelerated
using a pre-calculated grid [100]. �e receptor protein was kept �xed. �e energy
minimization utilizes standard ATTRACT routines as described previously [296, 297].
For each starting structure, 1000 minimization steps were performed. �e best 200
structures (ranked by interface root mean square deviation) were subjected to a remi-
nimization in rigid-body space with exact energy calculation using OPLS parameters
within a 50 Å distance cuto�. 2500 minimization steps were used. Convergence was
assured by reminimizing all structures again, which yielded no further change (data
not shown). A�er ranking again by interface root mean square deviation (IRMSD),
the top 200 structures for each case were selected as input for the re�nement proce-
dure. �is resulted in a test set of 33,200 structures. Of these, less than 10% (3,092)
were CAPRI one star quality structures.

5.3. Results

�e new re�nement method iATTRACT, (interface-ATTRACT), aims to enhance sam-
pling of protein complex geometries by combining interface residue movements with
rigid-body optimizations of the protein partners. A �ow chart of the methodology is
shown in Figure 5.1. Initially, �exible interface residues were selected on both protein
partners from the contacts present in the input structure. A structure-based force
�eld was constructed to control the induced deformations of the �exible interface
region. �is force �eld is optimally adapted to each individual protein partner and
prevents deviations from the experimental structure which o�en occur in molecular
mechanics force �elds upon optimization. Subsequently, for each starting docking
geometry, a simultaneous energy minimization in rotational and orientational de-
grees of freedom of the ligand and the Cartesian degrees of freedom associated with
the �exible residues was performed using the ATTRACT minimization routine [296,
297]. �e electrostatic and van der Waals interactions between the protein partners
were calculated with parameters from a molecular mechanics force �eld [212, 271].

5.3.1. Overall performance

�e iATTRACT �exible docking re�nement approach was systematically evaluated
on a large benchmark set of known protein-protein complexes [200]. We wanted
to compare the sampling capacity of iATTRACT to that of ATTRACT rigid-body
docking. Since it was not the aim of this study to investigate the scoring of rigid-
body candidates, we chose the input structures by IRMSD rank which yielded an
enriched decoy pool. �is allows us to study the e�ects of interface �exibility in the
re�nement process of structures within a range of initial deviations of approximately
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iATTRACT
Select flexible interface residues
based on interface contacts
in rigid body docking model

Generate structure-based force
field to control interface flexibility

Energy minimization with
global rotation, translation
and local atom moves

Rigid body
docking model

Input
Refined

docking model

Output

Figure 5.1. �e iATTRACT re�nement method. iATTRACT aims to enhance sampling of protein
complex geometries by combining interface residue movements with rigid-body optimizations of the
protein partners.

15 Å IRMSD. �is corresponds to the common scenario (in practice) that a binding
region on two protein partners is approximately known; e.g., based on additional
experimental data.

We �rst analyzed the combined e�ect of sampling and scoring improvements dur-
ing iATTRACT re�nement in a blind prediction manner. We ranked the structures
before and a�er re�nement by their intermolecular energies based on the OPLS pa-
rameters. Overall, re�nement improved the success rate for one star quality struc-
tures in the top 5 yielding 10% more benchmark cases with at least one acceptable
structure within the top 5 ranked structures (Figure A.4). A solution with lower
IRMSD in the top 5 comparing re�ned and unre�ned docked structures was found
for 65% of the benchmark cases (Table A.2). �is represents a signi�cant improve-
ment (p < 0.001). However, no overall improvement was found for the top ranked
structure (Table A.2). To smoothen the �uctuations of individual energy terms in the
atomistic force �eld scoring function, we clustered the solutions and ranked the clus-
ters by the average energy of the top 4 ranking members. �e results are displayed in
Figure 5.2. A�er re�nement, we obtained a top ranking near-native cluster in 40% of
the 154 successful docking cases and the top 5 clusters contain a near-native cluster
for 81% of the successful docking cases. Also for two and three star clusters, there is
an improvement compared to the cluster ranking before re�nement.
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Table 5.2. Docking results for �exible re�nement. �e results for the initial structures (rigid-body
docking) are shown in brackets. For each docking case we report the IRMSD and fnat values for the
best sampled structure ranked by IRMSD.

All Structures Best structure All Structures Best structure

PDB ? ? ? ?? ? CAPRI IRMSD fnat PDB ? ? ? ?? ? CAPRI IRMSD fnat

1A2K 0 (0) 0 (0) 22 (11) * (*) 2.1 (2.7) 0.74 (0.38) 1NCA 3 (1) 0 (0) 16 (9) *** (***) 0.5 (0.4) 0.85 (0.75)
1ACB 0 (0) 0 (0) 17 (8) * (*) 2.5 (3.0) 0.46 (0.19) 1NSN 0 (0) 6 (2) 47 (28) ** (**) 1.3 (1.5) 0.75 (0.38)

1AHW 1 (0) 23 (19) 37 (39) *** (**) 1.0 (1.4) 0.75 (0.55) 1NW9 0 (0) 0 (0) 16 (13) * (*) 2.7 (3.0) 0.61 (0.39)
1AK4 0 (0) 0 (0) 10 (8) * (*) 3.0 (3.3) 0.63 (0.39) 1OC0 0 (0) 0 (2) 60 (38) * (**) 2.1 (1.6) 0.64 (0.45)
1AKJ 0 (0) 0 (0) 18 (15) * (*) 2.3 (2.4) 0.58 (0.32) 1OFU 0 (0) 0 (0) 7 (5) * (*) 2.5 (3.3) 0.56 (0.24)
1ATN 0 (0) 0 (0) 3 (0) * (-) 3.6 (4.1) 0.45 (0.27) 1OPH 0 (0) 0 (0) 16 (5) * (*) 2.5 (3.4) 0.84 (0.45)
1AVX 0 (0) 4 (1) 23 (7) ** (**) 1.6 (1.8) 0.76 (0.51) 1OYV 0 (0) 0 (0) 39 (14) * (*) 2.1 (2.5) 0.52 (0.31)
1AY7 0 (0) 0 (0) 4 (1) * (*) 2.3 (3.2) 0.64 (0.36) 1PPE 5 (0) 4 (1) 73 (43) *** (**) 0.6 (2.0) 0.94 (0.52)
1AZS 0 (0) 8 (0) 40 (36) ** (*) 1.4 (2.6) 0.88 (0.48) 1PVH 1 (0) 0 (1) 18 (23) *** (**) 1.0 (1.6) 0.97 (0.57)
1B6C 0 (0) 0 (0) 11 (4) * (*) 2.3 (3.5) 0.56 (0.25) 1PXV 0 (0) 0 (0) 8 (0) * (-) 3.6 (4.4) 0.42 (0.14)
1BGX 0 (0) 0 (0) 0 (0) - (-) 4.9 (5.6) 0.13 (0.11) 1QA9 0 (0) 19 (15) 50 (34) ** (**) 1.5 (1.6) 0.79 (0.68)
1BJ1 2 (0) 2 (0) 14 (10) *** (*) 0.8 (2.2) 0.95 (0.34) 1QFW 0 (7) 15 (0) 38 (33) ** (***) 1.1 (0.8) 0.92 (0.69)

1BKD 0 (0) 0 (0) 0 (0) - (-) 4.5 (5.4) 0.19 (0.12) 1R0R 0 (0) 1 (1) 31 (18) ** (**) 1.8 (1.7) 0.67 (0.31)
1BUH 4 (0) 15 (16) 34 (20) *** (**) 0.8 (1.6) 0.79 (0.49) 1R6Q 0 (0) 0 (0) 32 (21) * (*) 2.1 (2.1) 0.66 (0.42)
1BVK 0 (0) 0 (0) 27 (24) * (*) 2.3 (2.4) 0.59 (0.38) 1R8S 0 (0) 0 (0) 0 (0) - (-) 5.0 (5.9) 0.18 (0.10)
1BVN 0 (0) 0 (0) 26 (6) * (*) 2.4 (3.0) 0.47 (0.22) 1RLB 0 (0) 0 (0) 21 (19) * (*) 2.2 (2.7) 0.62 (0.42)
1CGI 0 (0) 3 (0) 18 (8) ** (*) 2.0 (3.3) 0.59 (0.25) 1RV6 0 (0) 2 (2) 15 (13) ** (**) 1.8 (1.6) 0.69 (0.48)
1CLV 0 (0) 0 (0) 32 (9) * (*) 2.9 (3.0) 0.35 (0.20) 1S1Q 0 (0) 6 (5) 40 (19) ** (**) 1.3 (1.4) 0.76 (0.57)
1D6R 0 (0) 2 (0) 41 (26) ** (*) 1.3 (2.2) 0.64 (0.33) 1SBB 0 (0) 6 (0) 6 (8) ** (*) 1.1 (2.2) 0.82 (0.45)
1DFJ 0 (0) 0 (0) 20 (0) * (-) 2.2 (4.2) 0.47 (0.19) 1SYX 0 (0) 0 (0) 70 (46) * (*) 2.3 (2.2) 0.88 (0.51)
1DQJ 0 (0) 3 (0) 23 (15) ** (*) 1.4 (2.3) 0.64 (0.45) 1T6B 0 (0) 0 (0) 8 (5) * (*) 3.0 (2.6) 0.38 (0.28)
1E4K 0 (0) 0 (0) 0 (0) - (-) 4.1 (4.4) 0.43 (0.25) 1TMQ 0 (0) 0 (0) 0 (0) - (-) 6.0 (6.3) 0.14 (0.12)
1E6E 0 (0) 22 (14) 61 (39) ** (**) 1.1 (1.5) 0.89 (0.65) 1UDI 0 (0) 1 (0) 27 (10) ** (*) 1.5 (3.2) 0.68 (0.19)
1E6J 0 (0) 3 (0) 26 (21) ** (*) 1.3 (2.1) 0.87 (0.45) 1US7 0 (0) 2 (0) 40 (31) ** (*) 1.6 (2.5) 0.82 (0.64)
1E96 0 (0) 6 (5) 33 (23) ** (**) 1.3 (1.4) 0.87 (0.58) 1VFB 0 (0) 4 (2) 16 (13) ** (**) 1.5 (1.4) 0.81 (0.55)

1EAW 0 (0) 4 (0) 41 (11) ** (*) 1.5 (2.1) 0.69 (0.46) 1WDW 0 (0) 9 (0) 15 (7) ** (*) 1.7 (2.5) 0.62 (0.34)
1EER 0 (0) 0 (0) 8 (1) * (*) 3.0 (3.8) 0.44 (0.20) 1WEJ 6 (4) 3 (3) 22 (18) *** (***) 0.8 (1.0) 0.91 (0.65)
1EFN 0 (0) 4 (0) 60 (42) ** (*) 1.8 (2.1) 0.81 (0.49) 1WQ1 0 (0) 0 (0) 16 (5) * (*) 2.5 (2.8) 0.36 (0.27)
1EWY 0 (0) 5 (6) 25 (16) ** (**) 1.7 (1.5) 0.75 (0.59) 1XD3 0 (0) 0 (0) 73 (69) * (*) 2.1 (2.5) 0.68 (0.49)
1EZU 0 (0) 0 (0) 0 (0) - (-) 4.8 (5.6) 0.17 (0.09) 1XQS 0 (0) 0 (0) 55 (25) * (*) 2.0 (2.9) 0.72 (0.37)
1F34 0 (0) 0 (0) 0 (0) - (-) 8.4 (9.4) 0.05 (0.05) 1XU1 0 (0) 1 (0) 19 (13) ** (*) 1.8 (2.8) 0.64 (0.39)
1F51 0 (0) 0 (0) 3 (1) * (*) 2.2 (2.3) 0.65 (0.49) 1YVB 0 (3) 20 (24) 46 (31) ** (***) 1.1 (0.9) 0.86 (0.59)
1FC2 0 (0) 0 (0) 11 (4) * (*) 2.7 (3.0) 0.65 (0.29) 1Z0K 2 (0) 3 (7) 40 (42) *** (**) 1.0 (1.1) 0.88 (0.60)
1FCC 0 (0) 0 (0) 18 (15) * (*) 2.0 (2.5) 0.69 (0.53) 1Z5Y 0 (0) 0 (0) 40 (19) * (*) 2.1 (2.7) 0.59 (0.34)
1FFW 0 (0) 0 (0) 88 (82) * (*) 2.0 (2.2) 0.79 (0.45) 1ZHH 0 (0) 0 (0) 1 (1) * (*) 3.8 (3.9) 0.49 (0.29)
1FLE 0 (0) 0 (0) 40 (16) * (*) 2.6 (3.2) 0.60 (0.23) 1ZHI 0 (0) 1 (7) 21 (17) ** (**) 2.0 (2.0) 0.68 (0.60)
1FQ1 0 (0) 0 (0) 1 (1) * (*) 3.5 (3.6) 0.46 (0.26) 1ZLI 0 (0) 0 (0) 4 (0) * (-) 3.8 (4.3) 0.46 (0.32)
1FQJ 0 (0) 1 (0) 30 (20) ** (*) 1.4 (2.3) 0.63 (0.44) 1ZM4 0 (0) 0 (0) 39 (21) * (*) 2.5 (2.7) 0.60 (0.60)
1FSK 0 (2) 4 (2) 17 (7) ** (***) 1.3 (0.8) 0.90 (0.77) 2A5T 0 (0) 0 (0) 13 (16) * (*) 2.9 (3.3) 0.39 (0.25)
1GCQ 0 (2) 9 (2) 33 (23) ** (***) 1.0 (0.9) 0.96 (0.67) 2A9K 0 (0) 1 (1) 14 (7) ** (**) 1.9 (1.7) 0.70 (0.30)
1GHQ 0 (3) 0 (0) 35 (28) * (***) 2.7 (0.9) 0.82 (0.71) 2ABZ 0 (0) 4 (0) 20 (12) ** (*) 1.4 (2.2) 0.64 (0.30)
1GL1 0 (0) 0 (0) 58 (25) * (*) 2.4 (2.5) 0.62 (0.38) 2AJF 0 (0) 2 (0) 21 (16) ** (*) 1.9 (2.3) 0.58 (0.36)
1GLA 0 (0) 1 (0) 12 (9) ** (*) 1.9 (1.8) 0.56 (0.30) 2AYO 0 (0) 3 (0) 34 (20) ** (*) 1.9 (2.6) 0.46 (0.30)
1GP2 0 (0) 0 (0) 24 (13) * (*) 2.1 (2.5) 0.37 (0.27) 2B42 0 (0) 0 (0) 0 (0) - (-) 4.1 (4.1) 0.26 (0.17)

1GPW 0 (0) 6 (0) 46 (24) ** (*) 1.1 (2.0) 0.78 (0.35) 2B4J 0 (0) 0 (0) 19 (10) * (*) 2.9 (2.5) 0.68 (0.37)
1GRN 0 (0) 1 (6) 48 (31) ** (**) 1.8 (1.6) 0.68 (0.47) 2BTF 0 (0) 2 (0) 33 (17) ** (*) 1.1 (2.7) 0.69 (0.36)
1GXD 0 (0) 2 (0) 38 (31) ** (*) 1.7 (2.5) 0.67 (0.39) 2C0L 0 (0) 0 (0) 10 (11) * (*) 3.0 (3.0) 0.57 (0.28)
1H9D 0 (0) 0 (0) 8 (2) * (*) 3.0 (3.5) 0.32 (0.23) 2CFH 0 (0) 2 (0) 20 (9) ** (*) 1.8 (2.0) 0.59 (0.34)
1HCF 0 (0) 1 (0) 43 (31) ** (*) 1.4 (2.8) 0.75 (0.42) 2FD6 0 (0) 1 (0) 13 (10) ** (*) 1.8 (2.1) 0.76 (0.52)
1HE1 0 (0) 0 (0) 37 (19) * (*) 2.1 (2.8) 0.66 (0.34) 2FJU 0 (0) 1 (1) 33 (30) ** (**) 1.9 (1.8) 0.81 (0.49)
1HE8 0 (0) 2 (2) 12 (8) ** (**) 1.6 (1.1) 0.84 (0.70) 2G77 0 (0) 2 (0) 27 (11) ** (*) 1.9 (2.6) 0.53 (0.28)
1HIA 0 (0) 0 (0) 16 (3) * (*) 3.1 (3.8) 0.42 (0.22) 2H7V 0 (0) 0 (0) 7 (6) * (*) 2.8 (2.8) 0.61 (0.33)
1I2M 0 (0) 0 (0) 32 (9) * (*) 2.7 (2.9) 0.46 (0.26) 2HLE 0 (0) 5 (0) 25 (19) ** (*) 1.7 (2.3) 0.55 (0.32)
1I4D 0 (0) 0 (0) 16 (12) * (*) 2.1 (2.8) 0.49 (0.30) 2HMI 0 (0) 0 (0) 1 (0) * (-) 3.1 (4.2) 0.45 (0.25)
1I9R 0 (0) 4 (2) 16 (17) ** (**) 1.6 (1.6) 0.87 (0.85) 2HQS 0 (0) 0 (0) 14 (10) * (*) 2.3 (2.5) 0.52 (0.37)
1IB1 0 (0) 0 (0) 3 (0) * (-) 3.6 (5.1) 0.31 (0.26) 2HRK 0 (0) 2 (0) 37 (20) ** (*) 1.7 (2.3) 0.87 (0.44)
1IBR 0 (0) 0 (0) 0 (0) - (-) 5.3 (6.7) 0.10 (0.08) 2I25 0 (0) 0 (0) 15 (3) * (*) 2.1 (3.7) 0.53 (0.23)
1IJK 0 (0) 7 (0) 41 (45) ** (*) 1.4 (2.2) 0.83 (0.47) 2I9B 0 (0) 0 (0) 0 (0) - (-) 4.3 (4.7) 0.33 (0.22)
1IQD 9 (0) 10 (4) 31 (24) *** (**) 1.0 (1.5) 0.74 (0.48) 2IDO 0 (0) 0 (0) 8 (0) * (-) 3.3 (4.0) 0.46 (0.28)
1J2J 0 (0) 4 (3) 47 (35) ** (**) 1.4 (1.4) 0.85 (0.47) 2J0T 0 (0) 0 (0) 0 (0) - (-) 7.2 (7.1) 0.20 (0.08)
1JIW 0 (0) 0 (0) 15 (11) * (*) 2.6 (2.8) 0.77 (0.49) 2J7P 0 (0) 0 (0) 5 (1) * (*) 3.2 (3.6) 0.35 (0.16)
1JK9 0 (0) 0 (0) 10 (6) * (*) 2.9 (3.1) 0.88 (0.47) 2JEL 3 (0) 1 (1) 18 (12) *** (**) 0.7 (1.2) 0.85 (0.48)
1JMO 0 (0) 0 (0) 2 (0) * (-) 3.9 (4.5) 0.31 (0.12) 2MTA 1 (0) 3 (3) 38 (14) *** (**) 0.9 (1.0) 0.87 (0.50)
1JPS 3 (0) 34 (33) 70 (48) *** (**) 0.6 (1.6) 0.84 (0.53) 2O3B 0 (0) 0 (0) 8 (2) * (*) 3.6 (3.9) 0.52 (0.31)
1JTG 0 (0) 2 (2) 9 (6) ** (**) 1.0 (1.1) 0.68 (0.40) 2O8V 0 (0) 0 (3) 12 (7) * (**) 2.8 (1.7) 0.82 (0.59)
1JWH 0 (0) 2 (0) 35 (15) ** (*) 1.6 (2.5) 0.69 (0.42) 2OOB 0 (0) 1 (1) 31 (35) ** (**) 1.7 (2.0) 0.73 (0.47)
1JZD 0 (0) 0 (0) 1 (4) * (*) 3.3 (3.9) 0.37 (0.23) 2OOR 0 (0) 0 (0) 2 (1) * (*) 3.5 (3.8) 0.32 (0.22)
1K4C 13 (0) 2 (1) 40 (40) *** (**) 0.6 (1.9) 0.90 (0.46) 2OT3 0 (0) 0 (0) 0 (0) - (-) 4.3 (4.7) 0.23 (0.16)
1K5D 0 (0) 0 (0) 13 (7) * (*) 2.8 (3.4) 0.29 (0.14) 2OUL 9 (4) 0 (0) 27 (10) *** (***) 0.7 (0.7) 0.86 (0.72)
1K74 0 (0) 17 (8) 50 (33) ** (**) 1.7 (1.8) 0.72 (0.55) 2OZA 0 (0) 0 (0) 10 (8) * (*) 2.5 (3.2) 0.51 (0.31)
1KAC 0 (0) 6 (0) 41 (31) ** (*) 1.5 (2.0) 0.67 (0.45) 2PCC 0 (0) 1 (9) 58 (37) ** (**) 1.4 (1.5) 0.83 (0.54)
1KKL 0 (0) 0 (0) 6 (4) * (*) 3.2 (3.8) 0.53 (0.35) 2SIC 0 (0) 0 (0) 2 (2) * (*) 3.5 (3.7) 0.26 (0.17)
1KLU 0 (0) 1 (2) 6 (7) ** (**) 1.9 (1.8) 0.65 (0.43) 2SNI 0 (0) 6 (2) 32 (13) ** (**) 1.6 (1.7) 0.67 (0.37)
1KTZ 0 (9) 29 (26) 112 (98) ** (***) 1.1 (0.6) 0.91 (0.68) 2UUY 3 (0) 3 (0) 72 (43) *** (*) 0.8 (2.4) 0.88 (0.38)
1KXP 0 (0) 5 (0) 4 (6) ** (*) 1.3 (2.8) 0.68 (0.32) 2VDB 1 (0) 1 (1) 14 (11) *** (**) 0.9 (1.4) 0.85 (0.62)
1KXQ 0 (0) 14 (1) 34 (23) ** (**) 1.0 (1.7) 0.83 (0.56) 2VIS 0 (0) 6 (2) 28 (26) ** (**) 1.5 (1.6) 0.74 (0.48)
1LFD 0 (0) 0 (0) 47 (38) * (*) 2.4 (2.9) 0.63 (0.50) 2Z0E 0 (0) 0 (0) 2 (0) * (-) 3.1 (4.3) 0.33 (0.15)
1M10 0 (0) 0 (0) 14 (5) * (*) 2.9 (3.7) 0.35 (0.21) 3BP8 0 (0) 4 (5) 31 (15) ** (**) 1.5 (1.3) 0.79 (0.58)
1MAH 3 (0) 13 (4) 25 (25) *** (**) 0.9 (1.9) 0.71 (0.36) 3CPH 0 (0) 0 (0) 22 (15) * (*) 2.9 (2.6) 0.49 (0.28)
1ML0 0 (0) 14 (0) 48 (25) ** (*) 1.2 (2.4) 0.75 (0.43) 3D5S 0 (0) 23 (3) 95 (73) ** (**) 1.1 (1.9) 0.88 (0.54)
1MLC 0 (0) 0 (0) 6 (4) * (*) 2.2 (2.9) 0.77 (0.32) 3SGQ 1 (0) 4 (1) 34 (27) *** (**) 0.7 (1.3) 0.91 (0.59)
1MQ8 0 (0) 0 (0) 9 (9) * (*) 3.0 (3.6) 0.62 (0.42) 4CPA 0 (0) 6 (5) 45 (24) ** (**) 1.2 (1.6) 0.86 (0.49)
1N8O 0 (0) 0 (0) 8 (4) * (*) 2.3 (2.4) 0.66 (0.25) 7CEI 0 (0) 29 (5) 99 (78) ** (**) 1.1 (1.6) 0.85 (0.57)
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Figure 5.2. Percentage of successful re�nement cases yielding acceptable (or be�er) CAPRI quality
for the top scoring clusters. Clusters of docking solutions were generated based on pairwise RMSD (see
Methods for details). �e clusters were ranked by the average of the intermolecular energies derived
from the OPLS based energy function of the top 4 scoring members. A cluster is designated as of one
star CAPRI quality or be�er if any of the top 4 members is of one star CAPRI quality or be�er. �e
evaluation of the scoring was done both for rigid-body and iATTRACT re�nement results.
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5. iATTRACT: Simultaneous Global and Local Optimization for Protein-Protein Docking Re�nement

We then aimed to elucidate the individual contributions of sampling and scoring
in iATTRACT. First, we examined improvements in sampling; i.e., whether the re-
�nement procedure yields protein docking geometries that are in closer agreement
with the corresponding native complexes compared to the initial rigidly docked com-
plexes. �is analysis was performed on all structures independent of their energetic
ranks. Second, improvement in scoring was investigated by comparing these ranks
before and a�er iATTRACT re�nement.

5.3.2. Sampling performance

Figure 5.3 shows that signi�cant improvements in sampling were achieved, compar-
ing initial and �nal IRMSD and fnat values before and a�er re�nement. Most im-
portant, the improvements in the predicted native contacts are extremely favorable
(up to 70%) and match our goal to improve sampling of structures with a high level
of correct residue interactions. iATTRACT not only optimizes interface side chain
conformations but also allows for large-scale re�nement, as illustrated by the dock-
ing trajectories shown in Figure 5.4 where poses improved by up to 5 Å in IRMSD.
�e average change in IRMSD for all structures was ∆IRMSD = i−0.293 Å and the
average change in fnat was ∆fnat = 0.071. A limitation of the analysis to one star
structures or be�er yields ∆fnat = 0.189 and ∆IRMSD = −0.151 Å. �e average
increase of roughly 20% in fnat for quality structures is extremely encouraging. In
nearly all cases, this resulted in an improvement (or no change) in the CAPRI quality
of the best model (Table 5.2). At the same time, even for “non-quality” structures,
improvements in fnat of on average 0.058 were observed. �ese observations under-
line the overall improvement in terms of predicting native contacts by the iATTRACT
protocol. In fact, a considerable number of these structures were re�ned to one-star
quality or be�er: iATTRACT re�nement leads to a large increase (more than 50%)
in the pool of CAPRI-quality re�ned structures. Most of these structures were al-
ready close to one-star quality, but as many as 10 % of these “new” quality structures
were generated from structures with an initial IRMSD > 6 Å (see also Figure 5.3). In
general, structures with an IRMSD from 4 Å to 5.5 Å are likely to become one-star
structures a�er iATTRACT re�nement (Figure A.1). �ese results again emphasize
the large-scale sampling capacity of the iATTRACT protocol. Improvements were
observed across the whole benchmark, performing similarly for proteins classi�ed
as antibody, enzyme, and other, and rigid-body, medium, and hard docking cases,
respectively (Table A.1).
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Figure 5.3. Structural change during �exible interface re�nement for all complex structures. �e
IRMSD and fnat of the initial structures are compared with the �nal structures. Improvements are
denoted by green markers, deterioration by red markers.

5.3.3. Sampling the bound conformation

Flexible re�nement can also potentially bring individual protein partners closer to the
bound form. In addition, this induced �t may also lead to an increase in the fraction of
native contacts. For the average change in fraction of native contacts, there is indeed
a positive contribution due to interface changes which accounts for roughly 16% of
the overall increase in fnat for quality structures. For some cases, re�nement resulted
in a conformation closer to the bound form (Figures A.2, A.3). �is was especially true
for long �exible side chains that form many contacts with the partner protein and
become buried at the interface. When considering re�ned docking solutions with an
IRMSD of the protein backbone below 2 Å, we found for 23% of the re�ned docking
solutions a closer agreement of the interface side chain and backbone conformation
of individual partners with respect to the bound protein conformation compared
to the unbound protein structures (Figure A.2). One should keep in mind that the
improvement of the conformation of individual protein partners depends on how
close the predicted complex resembles the native binding geometry and how strongly
the interface restricts the possible side chain structure of interface residues.

In many cases, only small conformational changes at the interface were detected.
However, these changes were decisive to remove sterical barriers for larger-scale
rigid-body movements of the ligand protein. Hence, increased local �exibility can
lower barriers for triggering simultaneous global large-scale motions which can re-
sult in improved surface complementarity and a larger fraction of native contacts.

79



5. iATTRACT: Simultaneous Global and Local Optimization for Protein-Protein Docking Re�nement

(a) 1WDW (b) 2OUL

(c) 1AHW (d) 2MTA

Figure 5.4. Re�nement trajectories with large-scale displacements. �e initial structure of the ligand
protein is drawn in yellow, the �nal placement in red. �e reference from the crystal structure is shown
in gray. �e images were generated using PyMOL [404].
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5.4. Discussion

5.3.4. Scoring performance

Besides improvements in sampling, it is also desirable to obtain an improved scoring
upon re�nement. �erefore, the �nal iATTRACT models were ranked by their �nal
docking energy. As illustrated in Figure A.5, a funnel-like behavior of binding en-
ergy vs. IRMSD was observed for several (but not all) complexes. To investigate the
pure e�ect of scoring improvement without sampling improvements, the exact same
models were also ranked by their energy before re�nement. For both rankings, the
best IRMSD within the top-ranked 5 structures was assessed. Upon re�nement, this
value decreased on average by 0.5 Å, a signi�cant improvement (p = 0.001). How-
ever, no such improvement was found for the top-ranked structure. Hence, further
optimization in scoring is needed to reliably distinguish structures of low IRMSD
from decoys and enhance the sampling by more advanced schemes such as Monte
Carlo minimization.

5.3.5. �ality of the iATTRACT models

�e structures generated by iATTRACT were validated using the WHAT IF server
[474, 186, 187] to assess possible errors resulting from the simple structure-based
intra-protein force �eld. We found good quality of the models with respect to bond
lengths, angles and even backbone and side chain dihedral angles (data not shown).
Apparently, repulsive potentials are su�cient to ensure correct dihedral angles as
noted in previous work [520]. However, we found planarity deviations for the �exi-
ble aromatic residues. �e �nal complexes were, therefore, relaxed in a short all-atom
minimization with Amber12 [61]. �e quality of the Amber-reminimized �nal mod-
els was satisfactory with respect to all criteria, while mostly only introducing minor
changes to IRMSD in the range of 0.2 Å (data not shown).

5.4. Discussion

Applied to a large benchmark set of protein-protein complexes, the iATTRACT re-
�nement method resulted in signi�cant improvements of the quality of many dock-
ing solutions in terms of IRMSD and fnat with respect to the native complexes. A
major e�ect on improving the fraction of native contacts up to 70% was observed.
�e improved packing is also re�ected by the increased CAPRI quality of the solu-
tions and the improvements with respect to the fnat of the best structure for each
protein complex. In addition, a modest but signi�cant improvement in scoring of the
near-native re�ned solutions was observed. Still, further optimization of the force
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5. iATTRACT: Simultaneous Global and Local Optimization for Protein-Protein Docking Re�nement

�eld-based scoring is necessary to detect near-native docking solutions among alter-
native solutions.

When looking at the docking trajectories, we observed a coupling between the
small-scale interface movements and the large-scale global displacements. �e addi-
tion of local-scale degrees of freedom smoothed the energy landscape and allowed
many rigidly docked complexes to escape from local minima and move further to-
wards a near-native conformation (note that the start structures were fully converged
in rigid-body space using the same force �eld). �is e�ect might be enhanced by the
so�ness of the structure-based force �eld and its harmonic potentials, which do not
restrict torsion angles and do not include a�ractive non-bonded interactions and
therefore allow enhanced sampling of residue conformations at the interface. Im-
provements on IRMSD mainly resulted from global movements of the whole partner
proteins. Still, the movements of the interface atoms contribute to forming correct
residue contacts between the protein partners.

Even though we obtained some promising results for re�ning non-quality struc-
tures to CAPRI-quality, re�nement results still depend on the quality of the input
structures. For complex structures beyond an initial IRMSD of 5.5 Å, the probability
of improvement is low (see Figure 5.3 and Figure A.1). Also, large-scale backbone
conformational changes cannot be modeled successfully. In earlier work, global nor-
mal modes were used to model backbone deformations [297]. We plan to combine
the full interface mobility option with simultaneous large-scale backbone movements
in future studies. Other possibilities for modeling large-scale conformational change
are ensemble and multi-body docking, which are all available in ATTRACT. �e com-
bination of di�erent �exibility mechanisms will help to tackle di�cult docking cases
mimicking interface �exibility, conformational selection and induced-�t processes.

It is interesting to compare the present results with the performance of other pub-
lished methods. In semi-�exible re�nement and subsequent re�nement including ex-
plicit water with HADDOCK [95], a total average change of fnat ∆fnat = 0.11 was
achieved for the same set of complexes for one star quality structures [95]. HAD-
DOCK runs typically use 50 to 100 CPU hours to generate 200 �nal models for a
protein complex [98]. �e results of the present computationally less demanding iAT-
TRACT method with ∆fnat = 0.189 for one star solutions compare very favorably,
corresponding to an 80% higher increase in fnat. In another molecular dynamics-
based re�nement procedure, Król et al. reported increases in fnat between 0.06 and
0.11 for near-native poses compared to rigid-body results [240]. �e iATTRACT re-
�nement procedure requires only a few minutes of computer time on a single core
for a typical medium sized complex, which is much less than other current all-atom
molecular dynamics re�nement procedures. Since re�nement of a set of complexes
can be performed independently, it is possible to re�ne hundreds of structures in par-
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allel within an hour on a cluster computer. iATTRACT calculation per structure is
slower than FiberDock [293], which is a highly computationally optimized program
for improving the scoring of rigid-body structures, but which does not additionally
sample overall protein complex conformations.

5.5. Conclusion and Outlook

Proteins o�en show considerable conformational �exibility upon complex forma-
tion. In particular, interface residues undergo signi�cantly more changes than other
surface residues [171]. Hence, protein-protein docking of unbound partner proteins
typically yields only complexes that deviate signi�cantly from the native complex
geometry and o�en include only a small fraction of native contacts. A new re�ne-
ment approach, iATTRACT, has been presented that combines full atomistic interface
�exibility with rigid-body motions in a simultaneous energy minimization. When
testing this approach on cases from benchmark 4.0 [200], we obtained signi�cant
improvements for a large variety of protein complexes and large initial deviations
from bound geometries. �e procedure performed especially well in cases of small
or medium changes in the interface conformation upon complex formation. In many
cases, large-scale improvements of IRMSD and in the number of native contacts were
observed. Currently, CAPRI criteria classify structures of IRMSD > 4 Å as incorrect.
However, iATTRACT re�nement may allow in many cases the re�nement of 4 Å
to 5.5 Å IRMSD candidates to CAPRI quality predictions. �ese structures could be
classi�ed as CAPRI “half star” quality, since they can potentially be re�ned to qual-
ity predictions with iATTRACT. Scoring is typically optimized towards detecting
docking candidates of high CAPRI quality. Instead, it might be bene�cial to recal-
ibrate towards ranking a large number of “half star” rigid-body candidates; e.g., in
the top 500 for subsequent iATTRACT re�nement. Recent studies indicate that 3D
models for many protein-protein interactions can be generated based on sequence
similarity to a known complex [512, 245]. Depending on the degree of similarity
to a known template complex, such structural models may only reach acceptable
quality and the iATTRACT approach could be used for further re�nement of such
template based model complexes. iATTRACT re�nement can be selected as an op-
tion in the ATTRACT Easy protein-protein docking web-interface [99] and is also
part of the pepATTRACT [391] (Chapter 6) and loopATTRACT (Chapter 7) proto-
cols. Recently, iATTRACT was also extended towards re�ning protein-nucleic acids
complexes and multi-body assemblies (Schindler, unpublished data). In the future, we
want to systematically evaluate iATTRACT’s performance on these type of interac-
tions. Furthermore, we plan to add support for ions and cofactors during iATTRACT
re�nement (ATTRACT 2.0, see Chapter 4).
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6. Fully Blind Peptide-Protein Docking
with pepATTRACT

Peptide-protein interactions are ubiquitous in the cell and form an impor-
tant part of the interactome. Computational docking methods can comple-
ment experimental characterization of these complexes, but current pro-
tocols are not applicable on the proteome scale. �is chapter presents the
fully blind �exible peptide-protein docking protocol pepATTRACT. pepAT-
TRACT combines a rapid coarse-grained global peptide docking search of
the entire protein surface with a two-stage atomistic �exible re�nement.
Global unbound-unbound docking yielded near-native models for 70% of
the docking cases when testing the protocol on the largest benchmark of
peptide-protein complexes available to date. �is performance is similar
to that of state-of-the-art local docking protocols that rely on information
about the binding site. Upon restricting the search to the peptide binding
region, the resulting pepATTRACT-local approach outperformed existing
methods. �e majority of the work presented in this chapter is published in
[391].

6.1. Introduction

Peptide-mediated interactions play a dominant role in cellular processes and account
for about 40% of all protein-protein interactions [343]. Peptide-protein complexes are
involved in many signaling and regulatory pathways as well as the DNA replication
machinery. A range of pathological disorders is related to peptide-protein interac-
tions [319], making them interesting leads for protein drug design. However, for
rational design of peptidic drugs, a thorough understanding and atomistic structural
knowledge of peptide-protein complexes is necessary [461, 375]. A number of struc-
tures have been resolved experimentally and have provided important insight into
the nature of peptide-mediated interactions [275, 343, 106, 426]. However, a large
number of complexes is still lacking to date. Computational peptide-protein docking
methods can complement experiments by providing models for the bound complex
structure.
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6. Fully Blind Peptide-Protein Docking with pepATTRACT

For proteome-wide applications, a peptide-protein docking method has to be fully
blind, meaning that it should be based solely on the unbound (apo) structure of the
protein and the peptide sequence. In other words, such an approach should predict
both the peptide binding site (global search of the protein surface) and the bound
peptide conformation to high precision simultaneously. A number of peptide-protein
docking and binding site predictions tools have been developed to date [118, 344, 35,
90, 447, 253, 468, 384, 181, 453, 450, 370, 52, 14, 325, 425, 361, 362, 448, 13, 114, 283].
Global docking and binding site prediction methods [118, 344, 35, 90, 447, 253, 468,
384] o�en identify the correct binding site but do not yield high-quality models for
the peptide conformation [278]. �e ligand docking approach Autodock was adapted
to fully blind peptide docking but is limited to short fragments [181, 453, 278]. In con-
trast to global prediction methods, local docking approaches sample peptide confor-
mations at a known binding site only (and therefore are not fully blind). Local dock-
ing approaches can o�en yield high-quality models when tested on peptide-protein
docking benchmarks [278]. Local methods include ligand docking based approaches
[450] and several target-speci�c approaches (e.g. for MHC and PDZ domains) [370,
52, 14, 325, 425]. Several protocols are based on protein-protein docking which is
also re�ected by the recent addition of peptide-protein targets to the community-
wide docking challenge CAPRI [257, 259, 260]. �e Rose�a FlexPepDock ab-initio
approach combines local docking at the binding site with peptide folding using a
backbone structure library [361, 362]. Trellet et al. developed a peptide docking
protocol in the data-driven docking program HADDOCK that combines the prin-
ciples of conformational selection and induced �t through an ensemble of peptide
conformations and �exible re�nement stages [448]. �ey discovered that using only
three distinct peptide conformations yields very good predictive performance [448],
supporting earlier observations on the frequency of peptide conformations found in
peptide-protein complexes [275]. �e DynaDock method uses a so�-core molecu-
lar dynamics based re�nement [13], whereas PepCrawler employs a fast RRT-based
algorithm for local sampling of peptide conformations [114]. Recently, a molecu-
lar dynamics based approach was developed in our group that employs Hamiltonian
replica exchange simulations with a variation of so� core potentials along the repli-
cas. �is method showed promising results with respect to local peptide-protein
docking [283].

Here, we present pepATTRACT, a �exible peptide-protein docking approach in
ATTRACT [506, 297, 393]. pepATTRACT is fast: it performs a coarse-grained ab-
initio docking search within minutes, followed by atomistic re�nement of only the
most favorable solutions. More important, pepATTRACT is fully blind: it requires
neither knowledge of the binding site nor the peptide conformation. pepATTRACT
yields high-quality models of the complex, comparable to the state-of-the-art lo-
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cal docking protocols Rose�a FlexPepDock ab-initio [362] and HADDOCK peptide
docking [448]. We also combined pepATTRACT with ambiguous interaction re-
straints [322, 112] that de�ne the peptide binding site, as used before with HAD-
DOCK. �e resulting pepATTRACT-local protocol outperformed both HADDOCK
and Rose�a FlexPepDock ab-initio by a signi�cant margin on a large variety of peptide-
protein interactions.

6.2. Methods

�e fully blind peptide-protein docking protocol pepATTRACT consists of the fol-
lowing steps (Figure 6.1). First, peptide model structures are generated from sequence
[437]. �en global rigid-body docking with ATTRACT using a coarse-grained force
�eld is performed [506, 297]. �e rigid-body docking solutions are ranked by AT-
TRACT score and the best 1000 ranked models are selected for a subsequent atom-
istic re�nement stage with iATTRACT [393]. �e structures were then �nally re�ned
in a molecular dynamics simulation with AMBER 14 [60].

6.2.1. Peptide structures

For each peptide, we generated three conformations from its sequence using the
Python library PeptideBuilder [437]. We chose backbone dihedral angles to represent
α-helical (φ = −57°,ψ = −47°), extended (φ = −139°,ψ = −135°) and poly-proline
conformation (φ = −78°,ψ = 149°). �is conformational selection approach is based
on [448].

6.2.2. ATTRACT rigid-body docking

�e protein and peptide structures were converted to the ATTRACT atom type rep-
resentation [506] with the ATTRACT tool reduce (see Chapter 4). Starting points
were generated by choosing random positions and orientations for the docking part-
ners. For bound-bound docking, we used 100,000 starting points and tripled this
number for unbound-unbound docking to account for the three possible peptide con-
formations. �e starting structures were subjected to rigid-body optimizations in a
potential energy minimization of 1000 minimization steps with the ATTRACT metric
minimizer [296, 297]. Energy calculation was accelerated using a precalculated grid
[99, 100] and an additional harmonic potential was applied on the protein’s center of
mass to draw the peptide towards it (“gravity”). A subsequent potential energy min-
imization of 1000 minimization steps was applied without this gravity potential. All
peptide conformations were docked separately (ensemble docking). �e complete
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docking run takes in the order of 10 minutes to 1 h depending on the size of pep-
tide and protein partner. Finally, the docking candidates were ranked by ATTRACT
energy evaluated within a squared cuto� of 50 Å2.

6.2.3. iATTRACT refinement

�e protein and the peptide structures were converted into the OPLS atom type de-
scription with the ATTRACT tool aareduce (see Chapter 4). Missing hydrogens
were built with PDB2PQR [111, 110] and protonation states were determined by
PropKa[266]. For histidine protonation states, the bound structure was used as a
reference to ensure that unbound and bound structures contained the same atoms.
Disul�de bridges were also determined according to the bound structure based on
a cuto� criterion. �is was necessary for easy evaluation of the re�nement results
against the bound crystal structure. �e peptides’ termini were charged, the proteins’
le� uncharged. �e atomistic re�nement uses a physical force �eld based on the
OPLS parameters to calculate non-bonded and electrostatic interactions (see Chap-
ter 4). Contacts from the input structure are treated as �exible during a simultaneous
potential energy minimization in rigid-body degrees of freedom and interface �ex-
ibility [393] (see Chapter 5). �e best 1000 ranked models from rigid-body docking
with ATTRACT were selected for iATTRACT re�nement. �e re�nement parame-
ters were chosen as speci�ed in [393] with the cuto� radius for selecting the �exible
interface residues set to 5 Å. In most cases, this meant that the entire peptide (back-
bone and side chains) was �exible during iATTRACT re�nement. Since the global
scoring performance of the OPLS-based force �eld was found to be worse than that of
the ATTRACT force �eld, structures were not rescored a�er iATTRACT re�nement
(see Figure B.1).

6.2.4. AMBER refinement

�e structures were converted to the AMBER atom type description using the pdb4amber
tool. A Generalized-Born implicit solvent model (igb=8) was used with the newest
version of the AMBER force �eld �14SB [60]. �e structures were �rst minimized
with the sander program (500 steps) with a short cuto� to relax possible atom overlap
and deformations resulting from the structure-based force �eld used in iATTRACT
re�nement. �en two short molecular dynamics simulations were run with the
pmemd.cuda program for 1000 and 2500 steps at temperatures T = 400 K and T =
350 K respectively. During the molecular dynamics simulations, intra-molecular dis-
tances for the protein and intermolecular distances between protein and peptide
backbone atoms were restrained to prevent large deformations and peptide dissocia-
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tion. �e intra-molecular distances were restrained with a harmonic potential to the
distance found in the structure with force constant 2 kcal/mol/Å2 and for deviations
of larger than 3.5 Å with a linear response function and force constant 2 kcal/mol/Å.
�e intermolecular distances were allowed to change by 10 Å with respect to the dis-
tance found in the initial structure. Deviations from 10 Å to 13.5 Å were penalized by
a harmonic potential with force constant 0.25 kcal/mol/Å2 and further deviations
by a linear potential with force constant 0.25 kcal/mol/Å. �en the structures were
minimized for 5000 steps with a large cuto� using the pmemd.cuda program with-
out restraints. Finally, the energy was evaluated for the complex and the individual
docking partners by the sander program. �e binding interaction energy score was
then calculated by subtracting the energy of the free partners from the energy of the
complex. �e �nal models were ranked by their binding interaction energy score.
Tests on one docking case showed that implicit solvent simulations give comparable
sampling to explicit solvent and in vacuo simulations, while yielding a be�er scoring
performance at lower computational cost. �e �nal structures were clustered based
on the fraction of common residue contacts using a cuto� of 0.6 [368] and the clusters
were ranked by the average energy of their top-ranked 4 members.

6.2.5. pepATTRACT-local

To perform local docking, we repeated the pepATTRACT protocol with additional
restraints (pepATTRACT-local) recreating the conditions used in previous docking
procedures [448]. We used ATTRACT with ambiguous distance restraints based on
active and passive residues, following their original speci�cation in the HADDOCK
method [322, 112]. �e active residues on the protein were derived from the residue
contacts in the bound complex structure within a cuto� of 5 Å. All peptide residues
were treated as passive residues. �e minimum e�ective distance was set to 3 Å dur-
ing the coarse-grained docking simulations and to 2 Å for the atomistic re�nement.
For rigid-body docking, an initial rotational sampling stage was added to the proto-
col in which only the restraints were applied and the protein and the peptide could
orient towards each other with the translational degrees of freedom �xed [112, 448].
�e rotational sampling phase applied a maximum of 1000 minimization steps.

6.2.6. Test set and assessment criteria

Docking was performed on 80 peptide-protein complexes from peptiDB docking
benchmark [275] for which the unbound protein structures were available including
several additions of unbound structures by Trellet et al. [448]. �e protein structures
were downloaded from the PDB. If necessary residues were renumbered in the un-
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bound structures to match the bound forms, parts in the unbound form that are not
present in the bound form were removed (and vice versa), and point mutations were
introduced to resolve minor di�erences in the protein sequences.

To classify the benchmark, we aligned the unbound protein structure and the pep-
tide models to the bound complex and calculated the backbone interface root-mean-
square deviation IRMSDub for all residues within a distance cuto� of 10 Å of the
partner molecule. Cases were classi�ed according to the minimal IRMSDub account-
ing both for protein �exibility and peptide modeling quality; i.e., similarity of the
peptide to one of the idealized conformations. �is classi�cation scheme is simi-
lar to the one used for the protein-protein docking benchmark [200]. We chose the
following criteria to characterize the docking cases:

• easy: IRMSDub 5 1.5 Å

• medium: 1.5 Å< IRMSDub 5 3 Å

• hard: IRMSDub > 3 Å.

According to this classi�cation the benchmark contains 31 easy, 36 medium and 13
hard cases.

�e docking solutions were evaluated by interface root mean square deviation
(IRMSD) [303]. Since peptide-protein interfaces are typically smaller than protein-
protein interfaces, we chose the following criteria [448] to characterize the docking
solutions:

• not acceptable: IRMSD > 2 Å

• near-native: IRMSD 5 2 Å

• sub-angstrom: IRMSD 5 1 Å

�e IRMSD is calculated on the backbone atoms of both protein and peptide residues
that are within 10 Å of the partner molecules (as de�ned based on the crystal struc-
ture of the complex). We further refer to as “acceptable models” any near-native or
be�er (sub-angstrom) predictions. For evaluating the sampling and the scoring per-
formance we calculated the percentage of successful docking cases. A docking case
was deemed successful if at least one acceptable solution was found in the top N
solutions.
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6.2.7. Rose�a FlexPepDock refinement

Rose�a FlexPepDock re�nement was run on each of the 1000 �nal pepATTRACT
models for a subset of 14 cases from our test set. �e se�ings were chosen as de-
scribed in [361] and the �nal models were evaluated by the Rose�a reweighted score
[362]. For each pepATTRACT model, 200 re�ned models were generated and the
lowest energy model was selected for evaluation.

6.3. Results

In this work, we developed a fully blind peptide-protein docking protocol (pepAT-
TRACT) and embedded it in the ATTRACT docking engine (Figure 6.1). �is protocol
was tested on 80 peptide-protein complexes from the peptiDB benchmark [275, 448]
for which the unbound protein structures are available. Initially, peptide models were
generated from the peptide sequence [437] yielding three distinct idealized confor-
mations: an extended, an α-helical and a polyproline-II conformation. �is ensem-
ble of peptide structures was successfully used in the HADDOCK peptide-protein
docking protocol [448] and is supported by experimental observations on peptide
conformations found in peptide-protein complexes [275]. �e ensemble of peptide
structures was then �rst rigidly docked to the protein partner using a coarse-grained
representation of the partner molecules [506]. �e rigid-body docking models were
ranked by their ATTRACT scores and the best 1000 models were selected for atom-
istic re�nement using the recently developed �exible interface re�nement method
iATTRACT [393]. Subsequently, these 1000 models were re�ned in a molecular dy-
namics simulation with Amber 14 [60] using a Generalized Born implicit solvent
model (see Methods for details). �e �nal models were clustered by the fraction of
common residue contacts [368] and ranked by the average energy of the top-ranked
4 members [448].

6.3.1. Bound-bound rigid-body docking

�e coarse-grained ATTRACT force �eld [506] has been used successfully to predict
protein-protein complex structures in the past. Although good performance was
found when using ATTRACT for peptide binding site prediction [384], it has not yet
been applied systematically to peptide-protein complexes. To test the performance of
the ATTRACT force �eld with regards to sampling and scoring peptide-protein com-
plexes, we �rst performed bound-bound rigid-body docking for all cases yielding a
theoretical limit for the performance of unbound-unbound docking. In terms of sam-
pling, we obtained an overall success rate of 97% with only 2 failed cases (Figure B.2).
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Figure 6.1. Work�ow of the pepATTRACT peptide-protein docking protocol.
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In both failed cases the peptide is “threaded” through a cavity in the protein and the
binding site is not well accessible. 92% of the successful cases yielded models of sub-
angstrom accuracy. Ranking the rigid-body docking solutions by their ATTRACT
score gave a success rate of 86% in the top 1000 models and 41% for the top-ranked
model. �ese results gave us con�dence to use the coarse-grained ATTRACT force
�eld for rigid-body sampling and scoring in the initial stage of the peptide-protein
docking protocol (Figure B.2).

6.3.2. Unbound-unbound flexible docking

We then turned to the real challenge of blind unbound-unbound docking using a �ex-
ible docking approach with a coarse-grained rigid-body docking, an atomistic �exible
interface re�nement and a �nal molecular dynamics re�nement stage (see Methods
for details). Note, that this protocol requires neither knowledge of the binding site
nor of the peptide conformation and thus represents a “worst case” scenario. Figure
6.2 shows the results for the docking success rates a�er the di�erent docking stages.
Overall, our protocol generated a near-native model for 70% of the 80 peptide-protein
complexes (i.e., 56 complexes) when evaluating the top 1000 �nal docking models (see
Experimental Procedures for details). 29% of these 56 successful cases yielded even
sub-angstrom predictions. A�er clustering and ranking the clusters by the average
energy of their top-ranked 4 members, the top 10 clusters contained at least one
near-native cluster for 68% of the successful docking cases (48% of all cases) and the
top-ranked cluster was found to be near-native in 29% of the successful cases (Fig-
ure 6.3 and Table B.1). Figure 6.4 illustrates docking models from these near-native
top-ranking clusters. For the cases with sub-angstrom accuracy of the protein main
chain also close agreement of predicted side chain structure with the native bound
complex was observed (Figure B.1).

6.3.3. The e�ect of refinement

We wanted to analyze the e�ect of the di�erent re�nement stages considering sam-
pling and scoring separately. When it comes to sampling, we took for each com-
plex the full set of re�ned structures and computed the interface-RMSD (IRMSD)
before and a�er re�nement, without regard to any ranking. iATTRACT re�nement
increased the total success rate of the protocol by 10%. It succeeded both in re�ning
structures to sub-angstrom precision as well as generating additional near-native so-
lutions (Figure 6.2) and also helped to resolve minor clashes in transitioning from a
coarse-grained to a full atomistic force �eld. �is sampling improvement during iAT-
TRACT re�nement is also re�ected by an average change in IRMSD of the structures
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Figure 6.2. Percentage of acceptable docking cases a�er rigid-body docking and re�nements for ab-
initio unbound-unbound peptide-protein docking. A docking case was considered as a near-native/sub-
angstrom hit if any of the �nal 1000 models was of near-native/sub-angstrom quality. �e numbers on
the bars report the absolute number of docking cases of near-native and sub-angstrom quality for each
stage and di�culty. For a detailed list of the docking success for all cases see Table B.1. Reference data
for bound-bound and unbound-bound rigid-body docking can be found in Figure B.2.
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Figure 6.3. Scoring performance a�er clustering for the acceptable cases as a function of the number
of clusters considered. A cluster is considered near-native (sub-angstrom) if any of its top-ranked 4
members is of near-native (sub-angstrom) quality. �e clusters were ranked by the average energy of
their top-ranked 4 members. For a comparison of the relative scoring performance of the scores before
and a�er re�nement see Figure B.1.
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(a) 1NVR—0.7 Å—easy—3rd of 1st cluster (b) 2O9V—0.6 Å—easy—4th of 1st cluster

(c) 1Z9O—1.1 Å—medium—2nd of 1st cluster (d) 1OU8—1.3 Å—medium—3rd of 1st cluster

(e) 2A3I—1.5 Å—hard—4th of 1st cluster (f) 1NX1—1.8 Å—easy—2nd of 5th cluster

Figure 6.4. Examples of models generated by pepATTRACT unbound-unbound docking. For each
complex, the PDB ID, the IRMSD, the docking di�culty and the rank of the structure a�er clustering
are listed. �e receptor is shown in gray shade, the peptide in red cartoon representation. �e peptide
structure from the crystallized complex is shown in black. Side chain conformations for the �rst two
cases are shown in Figure B.3.
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by −0.10 Å. Note that iATTRACT re�nement also allowed changes in the peptide
main chain dihedral angles (Figure B.5). Compared to the results a�er iATTRACT re-
�nement, AMBER re�nement generated one additional successful docking case and
improved the IRMSD of the structures on average by 0.44 Å. �is clearly demon-
strates that the additional �exibility and sampling of the MD re�nement played a
positive role, although structures that were already close to the bound form showed
only li�le further improvement.

To capture only the e�ects of scoring, we ranked the �nal AMBER-re�ned docking
models by di�erent scores and then calculated for each ranking the best IRMSD of
the top-ranked 10 structures for each complex. When comparing the ranking from
before (ATTRACT score) and a�er re�nement (AMBER score), we found an average
improvement of 0.32 Å for the AMBER-based ranking. �is was connected to a 50%
increase in the top 10 success rate with the AMBER-based ranking compared to the
ATTRACT-based ranking (Figure B.1). Hence, the re�nement yielded a signi�cant
improvement in terms of scoring.

6.3.4. Sampling the bound peptide conformation

On average, the backbone of the idealized peptide conformations deviated at least
by 2.3 Å from the crystallized form. We thus wanted to determine whether peptide
structures moved closer to the bound form during docking. Figure 6.5 displays the
IRMSD versus the change in peptide backbone-RMSD for the �nal near-native dock-
ing models. Interestingly, for sub-angstrom models, there was a clear tendency for
the peptide structure to move closer to the bound form. A similar result was found
for the RMSD calculated on all heavy atoms including side chains (Figure B.4). How-
ever, for models of only near-native quality, on average no improvement was found.
�is can be partly explained by the large amount of �exibility inherent to peptides
and the fact that the interface does not restrict the conformation of all residues [362,
393]. Still, these results might indicate that more extensive peptide conformational
sampling could be bene�cial for some cases.

6.3.5. Binding site prediction

Several groups have proposed that contact analysis of docking models can be used
to predict the interface of the proteins (interface post-prediction) [128, 381, 201, 258,
95, 384]. We thus also wanted to evaluate how well the binding site was predicted
regardless of the peptide conformation. We analyzed the interface contacts of the
top-ranked 10 �nal docking models and found that at least one true protein inter-
face residue was identi�ed in 99% of the docking cases. Furthermore, for 85% of the
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Figure 6.5. Change in peptide backbone-RMSD from the bound form for the �nal docking model
relative to the initial idealized conformation as a function of the IRMSD of the �nal docking model.
Only near-native models were evaluated. Green markers denote structures in which the peptide con-
formation moved closer to the bound form. Models of sub-angstrom quality are highlighted by a gray
background. See also Figure B.4.
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cases at least 50% of the correct interface residues could be recovered by these top-
ranked 10 models. We compared our data to the recently published peptide binding
site prediction tool PEP-SiteFinder. PEP-SiteFinder is based on the PTOOLS imple-
mentation of ATTRACT [506, 129, 383] and performs rigid-body docking with pep-
tide structures generated by the PEP-FOLD method [295]. It was benchmarked on
41 unbound-unbound complexes from the peptiDB set. PEP-SiteFinder identi�ed at
least 50% of the correct interface residues in the top 10 poses in 71% of these cases
[384], whereas our protocols was able to achieve this for 85% of these 41 complexes.
In sum, the pepATTRACT protocol showed very good performance in interface post-
prediction.

6.3.6. Comparison with other methods

It is interesting to compare our results to previously published methods. Here, we
present a fully blind docking approach which includes a global search of the entire
protein surface. Prior global methods were either limited to short peptide fragments
[181] or did not yield high-quality models of the peptide conformation [278]. How-
ever, we can compare the performance of pepATTRACT to published local docking
methods. In local docking, the position of the peptide is restrained towards its native
binding site. �e Rose�a FlexPepDock ab-initio protocol was tested on 14 unbound-
unbound docking cases from our data set and achieved a docking success of 43% for
the top-ranked 5 clusters (6/14) [362]. Evaluating the same set of complexes by the
same criteria, we found a docking success rate of 50% (7/14) using pepATTRACT.
�e HADDOCK peptide docking protocol reported an overall success rate of 69% for
unbound-unbound docking on 62 complexes [448]. When analyzing the data for this
subset, we found an overall success rate of 73% among all �nal pepATTRACT models.
We should however note that we did not achieve the same scoring performance: the
top-ranked cluster was near-native in only 33% of the successful cases in contrast to
50% reported for the HADDOCK protocol [448]. Still, rather surprisingly, in terms
of sampling pepATTRACT yielded results similar to or slightly be�er than the most
successful local docking methods.

6.3.7. Local docking

While our blind docking results are in the range of success rates reported for the best
local docking protocols FlexPepDock ab-initio and HADDOCK, we also wanted to
make a direct comparison by only performing local docking. �e pepATTRACT-local
protocol included a set of ambiguous distance restraints [112] towards the binding
site to restrict the sampling exactly matching the conditions used in the HADDOCK
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protocol [448]. We applied the restraints both during the rigid-body sampling stage
and the �exible interface re�nement. For technical reasons, the ambiguous distance
restraints were not used in the AMBER re�nement and in the �nal scoring, which
might have slightly deteriorated the results. Using pepATTRACT-local, we were able
to generate a near-native solution in the top 5 clusters for 13 of the 14 cases tested
in the published Rose�a FlexPepDock ab-initio protocol. �e FlexPepDock ab-initio
protocol itself could only achieve this result for 6 cases [362]. When limiting our
data set to the 62 complexes used in [448], we obtained an overall success rate of
79% (49/62) with pepATTRACT-local and 37% of these successful cases yielded sub-
angstrom models. �is compares very favorably with the results from the HAD-
DOCK peptide-protein docking protocol which achieved a 69% overall success rate
(43/62) and only 23% sub-angstrom models among the successful cases [448]. Cluster-
based scoring identi�ed a near-native cluster at the top in 57% of the successful cases,
which is comparable to the 50% achieved by the HADDOCK protocol [448]. �e im-
proved success rates and especially the improvements in scoring for pepATTRACT-
local demonstrate the bene�t of including additional information about the native
binding site.

6.3.8. Combination of pepATTRACT with Rose�a FlexPepDock
high-resolution refinement

In order to further increase the quality of the predictions, we tested the e�ect of high-
resolution re�nement by Rose�a FlexPepDock [361] on a subset of 14 docking cases.
We ran FlexPepDock re�nement as described in [361] on each of the 1000 AMBER-
re�ned models generating 200000 FlexPepDock-re�ned models. We then selected the
lowest-energy model as a representative and compared these 1000 models to the 1000
AMBER-re�ned models. �e results are shown in Table 6.1 and Table B.2. In 10 of the
14 cases, the best IRMSD within the top 10 models was decreased a�er FlexPepDock
re�nement. Also in terms of overall sampling, the results were pointing towards an
overall bene�t with improvements in 6 cases, equal results (±0.1 Å) in 5 cases and
deterioration in IRMSD in 3 cases. However, for the top-ranked model no improve-
ment was found. We found similar results for fnat (Table B.2), in addition here the
top-ranked model also displayed a higher fraction of native contacts. In summary, it
appears that FlexPepDock re�nement can further improve the pepATTRACT models
both in terms of sampling and scoring. �ese results should be validated on a larger
set of cases in the future.
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Table 6.1. Results for Rose�a FlexPepDock high-resolution re�nement of pepATTRACT models. Re-
�nement was performed on 1000 models for 14 cases from the docking benchmark. We ranked the
pepATTRACT and FlexPepDock re�ned models by their AMBER and Rose�a score respectively and
compared the best IRMSD within the top 1, top 10 and all sampled models. No clustering procedure
was applied.

pepATTRACT FlexPepDock re�ned
PDB top 1 IRMSD top 10 IRMSD best IRMSD top 1 IRMSD top 10 IRMSD best IRMSD

1AWR 1.39 1.17 0.73 0.60 0.60 0.57
1N7F 8.14 2.42 2.26 5.40 2.13 1.29
1NVR 1.03 0.68 0.68 4.97 1.29 0.62
1RXZ 3.08 2.86 1.58 4.26 3.25 1.35
1SSH 8.06 1.71 1.53 9.16 1.20 1.02
1T7R 2.66 2.66 1.64 2.76 1.46 0.99
1W9E 4.20 1.80 0.70 1.11 1.11 0.75
2A3I 12.30 1.65 1.51 14.26 2.14 1.81
2C3I 3.06 1.51 0.86 8.53 1.08 0.76
2FGR 8.73 7.89 4.60 13.54 11.42 4.80
2FMF 5.56 4.14 0.72 2.96 0.71 0.71
2O9V 0.73 0.73 0.61 0.58 0.42 0.42
2P54 10.26 6.93 1.64 14.69 4.93 1.68
2VJ0 8.13 4.06 1.16 2.80 2.59 1.50

6.4. Discussion

In this work, we developed a fully blind peptide-protein docking protocol, pepAT-
TRACT that allows for global searches of the entire protein surface given the pro-
tein structure and the peptide sequence. It identi�es the binding site and simulta-
neously predicts the bound peptide conformation for a large variety of complexes.
�is is in contrast to the previously developed binding site prediction method PEP-
SiteFinder which also includes a global docking search using the PTOOLS/ATTRACT
program [384]. PEP-SiteFinder only predicts the binding site but does not return
structures of the peptide-protein complex. We also created the local docking proto-
col pepATTRACT-local which employs ambiguous interaction restraints [322, 112]
to restrict the sampling towards a known binding site. pepATTRACT-local’s perfor-
mance clearly surpassed that of Rose�a FlexPepDock ab-initio [362] and HADDOCK
[448] for a large number of peptide-protein complexes. We envision two applica-
tion scenarios for pepATTRACT-local. Information about the native binding site can
be obtained from experiments [81, 3] and easily included during the docking pro-
cess to generate high-quality complex structures. If experimental data are unavail-
able, bioinformatic prediction tools could be used to identify possible binding sites
[118, 344, 35, 253, 447, 468, 384]. As a special case of a bioinformatic prediction, the
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contacts from the best pepATTRACT models can be extracted as an interface post-
prediction (see section on binding site prediction). �ese predicted interface residues
can then be used to restrict the sampling in a subsequent run with pepATTRACT-
local and thus improve the results in terms of sampling and scoring (see section on
local docking).

In the �rst stage of the pepATTRACT protocol, the coarse-grained ATTRACT force
�eld was used which has been previously parameterized for protein-protein com-
plexes [129]. �e high success rates obtained already in the rigid-body sampling
stage indicate that the force �eld is also applicable to model peptide binding. Van-
hee et al. found that many of the conformations adopted by peptides in complexes
are also found in monomeric proteins [462]. Recently, London et al. suggested that
a large number of protein-protein interactions is dominated by the contributions of
short binding motifs, so called ’hot segments’ [277]. �ese recurrent interface de-
sign principles and thus the similarity between protein-protein and peptide-protein
complexes could explain the success in applying the ATTRACT force �eld to the
peptide-protein docking problem.

�e success of the pepATTRACT protocol is based on an e�cient combination
of di�erent �exibility mechanisms in the ATTRACT engine. �e protocol employs
a coarse-grained force �eld, ensemble docking, �exible interface re�nement and a
�nal molecular dynamics re�nement to model protein and peptide �exibility. �is
versatile combination allows a high level of detail and accuracy in the �nal stages
but at the same time is computationally e�cient enough to screen 300,000 initial
positions in a ma�er of minutes in the initial search stage. �e large sampling in the
rigid-body phase provides placements at the native binding site even of non-optimal
peptide structures which were then relaxed to near-native models in the subsequent
�exible re�nement stages. Identifying many good initial global placements of the
peptide and re�ning these is possibly more e�cient than trying to sample all degrees
of freedoms of the peptides right from the start due to the fact that it is easy to get
stuck in local minima of the rugged docking energy landscape. Using a smoother
coarse-grained energy function is certainly also helpful in this context. �e coarse-
grained representation of the peptide also partly compensates for inaccuracies in the
initial peptide conformation.

While the overall success rate for pepATTRACT is highly encouraging, docking
success still strongly depends on the quality of the peptide modeling and the range of
conformational changes on the protein (Figure 6.2). For the 31 easy benchmark cases,
we only had one case where we could not sample any near-native solution. Nearly
half of these successful easy cases yielded sub-angstrom predictions. For docking
cases of medium di�culty, we still obtained a good success rate of 69% for gener-
ating near-native solutions, however, for the hard docking cases this rate dropped
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to 15% (2/13). For cases in which the best peptide model deviated by more than
5 Å backbone-RMSD from the bound form, we were unable to sample any correct
solution—also when using the local docking protocol. �e current peptide docking
protocol uses only three idealized peptide conformations and thus a very limited
subset of the peptide conformational phase space. It does not take the sequence of
the peptides into account; e.g., disul�de bridges and preferred backbone dihedral
angles for certain residue combinations. More extensive peptide modeling could in-
clude statistical approaches [435], peptide backbone libraries [166] or even ab-initio
folding in molecular dynamics simulations [184, 337]. Using more diverse peptide
conformations may help to improve the sampling but also bears the risk of increas-
ing the number of false positive solutions. It is also worth noting that there were
only four cases in which the deviation of the bound peptide was greater than 5 Å
backbone-RMSD from the idealized conformations. �is demonstrates that the ide-
alized peptide conformations capture the main features of the bound form well. Fur-
thermore, the correct binding site could be identi�ed even with non-optimal peptide
conformations (see Figure B.5 and section on binding site prediction).

In contrast, when examining the IRMSD between bound and unbound protein for
the 24 failed docking cases, 14 cases display an IRMSD of > 1 Å. To investigate the
in�uence of the protein conformational change on docking success, we performed
ab-initio rigid-body docking using the unbound structure of the protein partner and
the bound form of the peptide. We found a success rate for the top-ranked 1000
models of 63% (Figure B.2) which is equal to the success rate found for unbound-
unbound docking a�er the rigid-body stage (Figure 6.2) and signi�cantly lower than
for bound-bound docking (86%). Using the unbound protein structure prevents sam-
pling of near-native conformations completely for 12 docking cases compared to 2 for
bound-bound rigid-body docking (Figure B.2). In addition, the scoring performance
deteriorated with only 74% of the successful cases ranked in the top 1000 compared
to 89% in bound-bound docking (Figure B.2). Hence, the conformational change on
the protein side seems to be more limiting to docking success than the accuracy of
the peptide modeling. For considering receptor �exibility, the current protocol could
be easily extended to include multiple conformations for the receptor in an ensem-
ble docking approach or to approximately describe global backbone �exibility using
pre-calculated normal modes [297]. Still, for the hard docking cases that include also
partial refolding of the protein receptor, such a semi-rigid docking approach might
not be su�cient.
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6.5. Conclusion and Outlook

Peptide-protein interactions constitute a large fraction of all protein-protein interac-
tions but due to their abundance and the inherent �exibility, many complexes have
eluded experimental characterization. �e high level of �exibility and the small size
of the interface have proven to be obstacles for peptide-protein docking and to date
many methods only perform local docking, relying on information about the peptide
binding site. Previous global methods were either limited to short fragments or did
not yield precise predictions for the peptide conformation [278]. To our knowledge,
the pepATTRACT approach is one of the �rst fully blind �exible peptide-protein
docking protocols for peptides of length scales typically found in peptide-protein
complexes [275]. Applied to a large benchmark set of peptide-protein complexes,
the pepATTRACT protocol yielded near-native models for 70% of the docking cases
in a fully blind prediction manner. Its performance as a fully blind prediction method
is comparable to some of the most successful local docking methods, Rose�a FlexPep-
Dock ab-initio [362] and HADDOCK peptide docking [448]. pepATTRACT also gives
very good results in interface post-prediction when compared with a state-of-the-art
peptide binding site prediction tool [384]. �e method could be useful for large-scale
studies and the design of peptide-based inhibitors for modulating protein-protein
interactions. In addition, interaction of globular proteins with disordered peptide
or protein segments could also be modeled with this approach. Several peptides in
the peptiDB benchmark are actually derived from disordered protein regions e.g.
the cytoplasmic region of the group 1 metabotropic glutamate receptors for docking
case 1DDV or the cytoplasmic tails of tumor necrosis factor receptor in docking case
1CZY. In the future, we plan to add support for modi�ed amino acids, ions and cofac-
tors to further enlarge the applicability of the protocol (ATTRACT 2.0, see Chapter
4).

104



7. Tackling large conformational
changes: interface loop modeling
with loopATTRACT

Accurately modeling binding-induced conformational rearrangements is a
major obstacle to successful protein-protein docking. Interface loops are es-
pecially prone to such remodeling and sampling the correct conformation
is di�cult for loops longer than 12 residues. Here, we present a fast inter-
face loop modeling protocol (loopATTRACT) that combines coarse-grained
rigid-body docking and atomistic �exible interface re�nement with a scor-
ing function used successfully in protein structure prediction. We tested this
approach on a set of challenging protein-protein docking cases. loopAT-
TRACT improved the starting structure signi�cantly in 7 out of 10 cases
and performed as well as a more computationally demanding state-of-the-
art loop modeling method. We also demonstrate the applicability of our
interface loop modeling protocol in a hierarchical integrative modeling ap-
proach.

7.1. Introduction

�e majority of cellular processes are carried out by interacting proteins. Protein-
protein complexes are for example involved in DNA replication, protein synthesis,
degradation and signal transduction. Disrupting these �ne-tuned interaction net-
works o�en results in severe diseases and aberrant interactions have been identi�ed
in pathological disorders like Alzheimer’s and cancer. Over the years, experimental
methods like X-ray crystallography and NMR have revealed the structure of many
protein-protein complexes allowing to understand their biological function in atom-
istic detail. �ese e�orts have also fueled recent progress in drug design targeting
protein-protein interfaces [483, 277]. However, for a large number of interactions,
structural data are still unavailable and experimental structure determination for all
protein-protein interaction types might not be feasible for decades [148]. Computa-
tional docking methods aim to extend the current structural coverage of the interac-
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tome by predicting the structure of the complex based on the unbound structures or
homology models of its constituents.

Protein-protein association is governed by the structural and physiochemical prop-
erties of the binding partners. Proteins are �exible molecules subject to thermal
motions and the molecular recognition process o�en requires a certain degree of
conformational adaptation. Binding-induced conformational changes can be small
involving for example only side chain rearrangements of a limited number of in-
terface residues. However, in many cases, conformational adaptation requires sig-
ni�cant backbone movements. In particular, �exible interface loops o�en reorient
upon binding. Furthermore, in the case of homology models, loop conformations
are o�en less reliable, especially in the case of low sequence identity at the inter-
face. Protein-protein docking methods perform satisfactorily in cases with li�le or no
binding-induced structural changes in the protein-protein interface. However, since
many algorithms employ a rigid-body approximation or consider only small-scale
�exibility, it is di�cult to accurately model large backbone motions like interface
loop rearrangements. Consequently, many docking approaches fail to sample near-
native solutions in such cases. �e challenge resulting from interface loop �exibility
in docking has also been documented during several rounds of the blind prediction
challenge CAPRI [257, 259, 260, 262].

Several strategies have been employed to include interface loop �exibility in protein-
protein docking. Multiple loop conformations can be generated prior to docking
based on the unbound structures of the partners. Loop �exibility can then be in-
cluded via an ensemble docking approach either docking each loop conformation
separately or through a mean-�eld approach [30, 29]. Loop rearrangement can be
sampled on-the-�y by docking �exible loops (e.g., in MD simulations) [51] or by re-
building/perturbing the loops while exploring di�erent overall geometries [477, 419].
However, such a direct sampling approach is usually limited to relatively short loops.
Alternatively, loops can be modeled a�er an initial rigid-body/semi-�exible docking
using the top-ranked complex geometries [478]. Such an a-posteriori strategy is par-
ticularly a�ractive in an integrative modeling se�ing; i.e., when using experimental
information like cryo-EM densities to generate the initial complex model and to iden-
tify potentially �exible regions [96].

Irrespective of the speci�c time of loop rebuilding, for all approaches, it is neces-
sary to identify the �exible loops and generate possible loop conformations. A range
of loop modeling approaches have been developed in the protein structure prediction
�eld [59, 290, 427, 254] and some have been made easily available via web-servers
[229, 134]. Several approaches are based on robotics-inspired sampling algorithms.
Canutescu and Dunbrack proposed a numerical cyclic coordinate descent algorithm
to move a segment of the loop while keeping the anchors �xed [59]. Rose�a re-
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builds loops based on an analytical robotics-inspired sampling approach (kinematic
closure) which is applied iteratively in a Monte Carlo simulation in combination with
loop backbone minimization and side chain repacking [290, 427]. FALC assembles
loops from short fragments employing an analytical loop closure algorithm [254].
Das applied a step-wise enumerative approach adapted from modeling of RNA struc-
ture [92], while Olson et al. combined replica exchange coarse-grained la�ice Monte
Carlo with atomistic replica exchange molecular dynamics simulations to explore
possible loop conformations [329]. Most of these protocols have been tested on loop
lengths of up to twelve residues [329, 427] and o�en yield sub-angstrom precision
loop models. However, these protocols have not yet been systematically applied to
interface loop modeling. Interface loops can be less solvent-exposed due to contact
formation with the protein partner and tend to be longer (> 10 residues) than typical
remodeling targets in protein structure prediction.

Here, we developed a fast interface loop modeling protocol, loopATTRACT, that
combines methods from peptide-protein docking [391] and protein structure predic-
tion [499, 498]. We tested the approach on complexes from protein-protein docking
benchmark 5 [473] using the rigid-body superposition of bound and unbound protein
partners and compared loopATTRACT’s performance to that of the state-of-the-art
loop modeling protocol in Rose�a [290, 427]. We found that despite its simplicity,
loopATTRACT’s performance was similar to that of the Rose�a loop modeling ap-
proach. We further tested interface loop modeling on docking models obtained from
an integrative modeling approach driven by cryo-EM data [96].

7.2. Methods

�e loopATTRACT protocol consists of the following steps:

1. Generating an ensemble of loop conformations.

2. ATTRACT rigid-body docking of loops to anchor points.

3. Rescoring of top-ranked 10000 models with DFIRE scoring function.

4. iATTRACT �exible interface re�nement of top-ranked 1000 models.

5. Rescoring and �nal ranking by DFIRE scoring function.

loopATTRACT’s input are the partner structures of the protein-protein complex and
the start and end residue numbers specifying the loop for remodeling.
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7.2.1. Loop conformations

�e designated interface loop atoms were extracted from the input structure and
the end-to-end distance and the length were determined from the coordinates. �e
BriX loop database [463, 19] was queried for loops of the same length and with a
similar end-to-end distance (± 1 Å). In case of too few (< 50) or too many matches
(> 750), the end-to-end distance cuto� was adapted automatically and a new query
was started. �e protein structures with suitable loops were downloaded from the
PDB. �e backbone atoms of the available loop templates were extracted from the
PDB �les, the residues were mutated to the sequence of the target loop and the side
chains were rebuilt with SCWRL [239]. All loop structures were ��ed with an in-
house tool onto the �rst loop conformation. �is ensemble of loop structures was
then used in an ensemble docking approach. For benchmarking purposes, it was
assured that the loop from the bound complex was not part of the ensemble.

7.2.2. ATTRACT rigid-body docking

�e protein-protein complex and the loop conformations were converted in the AT-
TRACT coarse-grained protein representation [506, 129] with the ATTRACT tool
reduce (see Chapter 4). �e loops were docked to the protein-protein complex
using an ensemble docking approach. For each loop conformation, 1000 docking
trajectories were generated starting from random positions and orientations of the
loops. During docking, distance restraints were applied between the anchors on the
protein and the loop. In a �rst minimization, the positions were �xed and the loops
could orient towards the protein-protein complex. In this stage, only the distance re-
straints were applied as a force �eld (“ghost” mode). �en positions and orientation
of each loop were optimized in a potential energy minimization of 1000 minimization
steps using the ATTRACT metric minimizer. Energy calculations were accelerated
by a pre-calculated grid [100]. During docking, interactions between the protein in
which the loop resided and the loop were switched o�; the ATTRACT energy was
only evaluated between the loop and the protein to which the loop did not belong.
Steric overlap between the loop and its native protein was prevented by an atom-
density grid [96]. �e generated models were ranked by their ATTRACT energy
evaluated within a squared cuto� of 50 Å and the best 10000 models were selected
for rescoring with DFIRE [499, 498]. �e DFIRE scoring function [499, 498] was eval-
uated on the whole complex structure with default parameters using the DFIRE2.1
binary. �e rescored structures were ranked by their DFIRE energy and the best 1000
models were selected for further re�nement.
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7.2.3. iATTRACT refinement

�e protein-protein complex and the loop conformations were converted in the OPLS
protein representation [212, 271] with the ATTRACT tool aareduce (see Chapter
4). Missing atoms were built with PDB2PQR [111, 110] and protonation states were
determined by PROPKA [266]. During re�nement, interactions were evaluated be-
tween all residues in the system. Distance restraints towards the anchors were ap-
plied as well. Nonbonded interactions between the backbone atoms of the anchor
points and the loop were set to zero to allow correct placement of the loop. iAT-
TRACT re�nement was run with parameters as described in [393]. �e re�ned mod-
els were scored and ranked with the DFIRE scoring function using default se�ings
[499, 498].

7.2.4. Test set

We selected a subset of 10 complexes (Table 7.1) from protein-protein docking bench-
mark 5 [473]. �ese complexes displayed signi�cant conformational changes upon
binding involving large loop rearrangements and many were classi�ed as hard dock-
ing cases [473]. We superposed the unbound proteins on the bound complex struc-
ture (global rigid-body superposition) and selected loops that displayed large con-
formational changes and o�en steric clashes in the unbound form for remodeling.
Loop regions were de�ned between the nearest secondary structure elements in the
unbound form. �e loops in the test set contained between 10 and 20 residues. �e
superposed structures were used as starting structures for the interface loop model-
ing protocol. �is provides an idealized test se�ing where the rigid-body placement
has been determined at the highest possible precision.

7.2.5. Assessment criteria

We evaluated the �nal models by interface root-mean-square deviation (IRMSD) and
fraction of native contact (fnat) [303] (see Chapter 3). �e �nal loopATTRACT mod-
els were compared to the bound-unbound superposition (starting structure). A loop
modeling case was termed successful if at least one among the top-ranked N mod-
els had a signi�cantly lower IRMSD (decreased by more than 0.1 Å) or signi�cantly
higher fnat (increased by more than 0.02).

7.3. Results

Here, we developed a protocol for remodeling of large interface loops (loopATTRACT)
based on an initial rigid-body model of the protein-protein complex. loopATTRACT
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combines approaches from peptide-protein docking with a scoring function that has
been previously used in protein structure prediction. First, a large ensemble of loop
conformations extracted from a database of known protein fragments [463, 19] was
docked rigidly against the complex using the anchor points of the loops as restraints
[99]. During the initial large-scale docking, the ATTRACT coarse-grained protein
representation was used [506]. �e top 10,000 models were rescored with the DFIRE
scoring function that has been previously developed for protein structure prediction
[499, 498]. �e top-ranked 1000 DFIRE models were then further optimized with
the �exible interface re�nement method iATTRACT [393]. Finally, the models were
rescored and ranked by DFIRE.

7.3.1. Ab-initio interface loop modeling

�e protocol was tested on 10 complexes from protein-protein docking benchmark
5 [473] using the unbound-bound rigid-body superpositions as starting structures
(see Methods for details). �ese complexes display signi�cant loop rearrangements
upon binding and have been previously classi�ed as di�cult cases for protein-protein
docking (medium/hard) [473]. �e overall results are shown in Table 7.1 and exam-
ples of successful interface loop modeling are illustrated in Figure 7.1. In 7 out of
10 cases, we were able to generate a structure of signi�cantly lower interface-RMSD
(IRMSD) than the initial structure and rank it among the top 10 models (average ∆
IRMSD = −0.9 Å). Also when looking at the top-ranked model only, we found an
improvement with respect to the initial model in 60 % of the cases. Furthermore,
interface loop modeling increased the fraction of native contacts (fnat) of the best
model in the top 10 on average by 0.11 compared to the bound-unbound superposi-
tion (initial structure). We also looked at the percentage of the 1000 �nal models and
the top-ranked 10 models that improved by at least 0.1 Å in IRMSD or by at least 0.02
in fnat. Interestingly, in the seven successful cases, the protocol indeed improved the
majority of the generated structures either in terms of IRMSD (on average 82 % of the
structures improved) or fnat (on average 53 %) (Table C.1). Note that improvements
in IRMSD did not always result in increasing fnat (Table 7.1).

7.3.2. E�ect of di�erent protocol stages

We then analyzed the e�ect of the di�erent stages on the overall loop modeling suc-
cess by looking at the IRMSD and fnat distribution among subsets of 1000 models.
We compared the top 1000 rigid-body models ranked by ATTRACT score, the top
1000 rigid-body models according to DFIRE score and the re�ned 1000 iATTRACT
models. �e results are shown in Figure 7.2. Re-ranking by DFIRE indeed had indeed
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(a) 1ATN, 2, 2.5 Å, 0.62. (b) 1BKD, 2, 2.0 Å, 0.56.

(c) 1LFD, 1, 1.4 Å, 0.72. (d) 3FN1, 10, 2.2 Å, 0.39.

Figure 7.1. Interface loop modeling results. For each case, the PDB ID, the rank, IRMSD and fnat
of the model are listed. �e loop from the docking model is shown in red, the loop from the crystal
structure of the bound complex in black and the initial loop position (unbound protein structure) in
yellow.
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Table 7.1. Results for interface loop modeling with loopATTRACT on 10 complexes from docking
benchmark 5 [473]. For each complex, the PDB ID, the docking di�culty according to the classi�cation
in the benchmark [473], IRMSD and fnat of the initial rigid-body superposition, best IRMSD and fnat
among the top-ranked and top-ranked 10 models and best sampled IRMSD and fnat are listed.

PDB Di�culty initial top 1 top 10 all
IRMSD fnat IRMSD fnat IRMSD fnat IRMSD fnat

1ATN hard 4.54 0.35 2.97 0.49 2.02 0.62 1.75 0.62
1BKD hard 3.15 0.53 2.47 0.54 2.03 0.56 1.78 0.60
1FQ1 hard 3.75 0.40 3.44 0.47 2.28 0.66 1.89 0.66
1LFD medium 2.06 0.57 1.36 0.72 1.34 0.72 1.21 0.82
1PXV hard 2.75 0.58 2.93 0.60 1.75 0.75 1.39 0.75
1R8S hard 4.59 0.32 3.65 0.43 3.26 0.51 3.12 0.55
2NZ8 medium 2.22 0.44 3.16 0.40 2.40 0.46 1.90 0.55
2OT3 hard 2.55 0.49 2.82 0.33 2.50 0.40 2.46 0.50
3CPH medium 2.13 0.53 3.65 0.47 2.64 0.51 2.04 0.55
3FN1 hard 3.74 0.36 2.70 0.43 2.24 0.49 1.97 0.57

a positive e�ect decreasing the median IRMSD and increasing median fnat compared
to the ranking based on ATTRACT score. For iATTRACT re�nement, we did not �nd
an improvement in terms of IRMSD and only a slight improvement in fnat. While
the maximum fnat increased from 0.75 before re�nement to 0.82 a�er re�nement, for
some models fnat decreased resulting in an overall small increase of the median fnat
(0.01). �is is also re�ected when analyzing the average change in fnat (∆fnat) with
respect to the initial structure. ∆fnat increased by 0.005 a�er ATTRACT ranking,
0.015 a�er DFIRE ranking and 0.023 a�er iATTRACT re�nement when evaluating
on the 8 successful cases (excluding 2OT3 and 3CPH). Hence, scoring by DFIRE was
overall bene�cial in enriching the pool of near-native loop conformations, while iAT-
TRACT re�nement mostly optimized the packing of the loop interface and increased
fnat.

7.3.3. Comparison to Rose�a loop modeling

We wanted to compare loopATTRACT’s performance to a state-of-the-art loop mod-
eling protocol. We therefore ran Rose�a next-generation KIC loop modeling on the
10 benchmark cases using the rigid-body superpositions as starting structures and
evaluated the results by the same assessment criteria. Parameters for Rose�a loop
modeling were taken from [427] and 2500 structures were generated for each case.
�e results are shown in Table 7.2 and Table C.2. For Rose�a, we found a success rate
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Figure 7.2. Comparison of IRMSD and fnat distribution for di�erent stages of the loopATTRACT
protocol. For each benchmark case, we evaluated the top 1000 rigid-body models ranked by their AT-
TRACT score, the top 1000 rigid-body models ranked by DFIRE score and the 1000 re�ned iATTRACT
models. In total, the IRMSD and fnat distributions were evaluated with 10000 models. �e whiskers
mark the minimum and maximum of all the data.

of 80 % among the top-ranked 10 models. In 5 cases, the loop rebuilding even gener-
ated a CAPRI two-star quality structure among the top-ranked 10 models. �e best
IRMSD among the top 10 models generated by loopATTRACT was lower or equal
(±0.1 Å) to the best IRMSD among the top 10 models from Rose�a in 4 cases, in
the remaining cases the IRMSD of the Rose�a models was lower. In terms of the best
fnat among the top-ranked 10 models, loopATTRACT gave a be�er performance with
higher (5 cases) or equal fnat (±0.02, 2 cases) in 7 of the 10 cases. Similarly to loopAT-
TRACT, improvements in IRMSD were not always accompanied by improvements in
fnat (especially for 1BKD, see also Table C.2). When looking at all generated models,
Rose�a achieved a signi�cantly lower IRMSD in 4 and equal performance in 5 cases.
For fnat, the overall sampling performance was very similar (3 cases where fnat was
higher for loopATTRACT, equal performance in 5 cases and 2 cases where Rose�a
achieved higher fnat). Both protocols failed to model the cases 2OT3 and 3CPH ac-
curately. On average, a Rose�a run took 2682 CPU hours (which corresponds to 1072
CPU hours for generating 1000 structures). In contrast, the loopATTRACT protocol
used only 20-70 CPU hours per case.

7.3.4. Refinement of ATTRACT-EM models

Recently, we showed that when using low-resolution cryo-EM maps for complex as-
sembly (ATTRACT-EM), high precision rigid-body placements of the partners can
always be obtained [96]. Furthermore, steric clashes in these models can be used
to identify �exible regions undergoing conformational change upon binding [96].
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Table 7.2. Results for interface loop modeling with Rose�a on 10 complexes from docking benchmark
5 [473]. For each complex, the PDB ID, the docking di�culty according to the classi�cation in the
benchmark [473], IRMSD and fnat of the initial rigid-body superposition, best IRMSD and fnat among
the top-ranked and top-ranked 10 models and best sampled IRMSD and fnat are listed.

PDB Di�culty initial top 1 top 10 all
IRMSD fnat IRMSD fnat IRMSD fnat IRMSD fnat

1ATN hard 4.54 0.35 2.32 0.47 2.17 0.47 1.50 0.79
1BKD hard 3.15 0.53 3.05 0.46 1.77 0.56 1.60 0.60
1FQ1 hard 3.75 0.40 3.37 0.40 2.17 0.47 1.91 0.64
1LFD medium 2.06 0.57 1.66 0.60 1.08 0.68 1.00 0.75
1PXV hard 2.75 0.58 2.52 0.53 1.92 0.57 1.70 0.61
1R8S hard 4.59 0.32 3.34 0.38 3.22 0.38 3.15 0.47
2NZ8 medium 2.22 0.44 1.88 0.43 1.87 0.55 1.80 0.59
2OT3 hard 2.55 0.49 2.57 0.48 2.55 0.50 2.54 0.51
3CPH medium 2.13 0.53 2.47 0.45 2.39 0.51 2.00 0.55
3FN1 hard 3.74 0.36 2.06 0.46 1.78 0.53 1.67 0.58

Hence, ATTRACT-EM models can be further optimized by re�nement procedures
focusing on the identi�ed �exible regions. Here, we tested loopATTRACT in such
a hierarchical integrative modeling approach. We ran interface loop modeling on a
subset of �ve cases using the top-ranked ATTRACT-EM model obtained with a 20 Å
resolution cryo-EM density map [96]. �e results are listed in Table C.3. Similarly
to the re�nement on the bound-unbound superpositions, the protocol was able to
generate improved interface loop structures with respect to the initial structure and
rank those models among the top 10 in four out of the �ve test cases (as in the previ-
ous benchmark, no improvement was found for 2OT3). �is demonstrates that slight
errors in rigid-body placement of the initial complex geometry can be tolerated by
the interface loop modeling protocol. In terms of overall sampling, we found slightly
worse results than for interface loop modeling on the bound-unbound superposition
(Table 7.1).

7.4. Discussion

loopATTRACT is a fast protocol for generating interface loop structures on a given
protein-protein complex geometry. �e approach was tested on a benchmark set of
10 protein-protein complexes with long interface loops and yielded signi�cant im-
provements among the top-ranked 10 models in 7 out of 10 cases. loopATTRACT also
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gave promising results for loop rebuilding on complex geometries obtained from an
integrative modeling approach based on low resolution cryo-EM maps (ATTRACT-
EM). �e success of the protocol underlines the bene�t of integrating approaches
from protein structure prediction and protein-protein docking.

�e major bo�leneck of the protocol is choosing the appropriate interface loops for
remodeling; i.e., identifying loops that undergo conformational change upon com-
plex formation. We previously showed that deep clashing atoms in ATTRACT-EM
models correlate with the probability for signi�cant motions [96] and thus can be
used to select regions for �exible re�nement. Loop �exibility could also be predicted
by examining X-ray or NMR structural ensembles of the individual protein part-
ners, from B-factors in crystal structures, from conformational changes in related
complexes [478] and by analyzing the possible movements of the loops in molecu-
lar dynamics simulations. Loops that are part of protein-protein interfaces may be
subject to evolutionary constraints and sequence alignments could possibly identify
them. In addition to identifying the correct interface loop, the quality of the results
may also depend on the exact choice of the loop anchors. Further tests will be nec-
essary to quantify the in�uence of deviations in the anchors on the accuracy of the
predicted interface loop conformation. �e e�ect of remodeling multiple interface
loops should also be explored in future work.

Despite good overall performance, loopATTRACT can be improved in several ways.
First, in the setup tested here, the ensemble of loop conformations for docking was
generated irrespective of the sequence. �e loop models in the ensemble deviated
on average by at least 2.27 Å Cα-RMSD from the bound loop conformation. In test
case 2OT3, the minimal RMSD was even 3.29 Å causing most likely the failure of
the protocol. �e BriX loop library was already published in 2011 and constructing a
new library might help to �nd more accurate loop conformations. A be�er selection
of loop conformations could also improve the results by decreasing the search space
and eliminating false positives. Still, the success of the protocol demonstrates that
loop conformations are largely de�ned by the constraints imposed by the anchors.
Hence, the phase space of loop conformations can be covered well by a few hundred
models even for long loops.

Second, the scoring of near-native models in loopATTRACT still displayed con-
siderable shortcomings. While we were able to rank improved models among the
top 10, these top-ranked models were in most cases not the best sampled structures;
i.e., models of lower IRMSD and higher fnat could be found at ranks higher than
10. One possible improvement might be to consider solvation e�ects in the scoring
function. Parts of the interface loops are o�en exposed to the solvent and solvation
should also have an impact on the preferred loop conformation. Molecular dynamics
re�nement in explicit solvent could help to improve the results, however since the
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complexes are usually large, these approaches are still too computationally demand-
ing for re�nement of hundreds of structures. Furthermore, scoring in explicit solvent
is very di�cult due to large energy �uctuations in the system. Previously, Guerois
and coworkers introduced an approach to score docking models by evolutionary in-
formation using the sequences from homologous complexes [11]. Since loops are
o�en more variable in sequence than other parts of the protein, this might also be a
promising approach for scoring of interface loop conformations. Furthermore, initial
loop conformations could also be assessed with respect to their energy using the ho-
mologous sequences. Another possibility to improve the scoring (and the sampling)
of the loopATTRACT protocol would be to incorporate experimental data. Contact
and interface information from biochemical experiments (see Chapter 2) can be used
during loop docking as distance or ambiguous interaction restraints [99, 96]. In addi-
tion, contact information for loops could also be derived from co-evolution analysis
[330]. Models can also be scored against a cryo-EM map [94, 96] or a SAXS pro�le
[392] to select near-native loop conformations. In general, any available ATTRACT
feature can be easily included in the loopATTRACT protocol.

7.5. Conclusion and Outlook

Proteins o�en undergo large conformational changes upon binding. In many cases,
interface loops rearrange by large backbone movements compared to the unbound
structure or to the template used in homology modeling. Here, we presented an
interface loop modeling protocol, loopATTRACT that can be used in a hierarchi-
cal docking approach for a-posteriori loop rebuilding. loopATTRACT collects an
ensemble of loop conformations from a fragment database and uses this structural
ensemble in a modeling protocol adapted from peptide-protein docking. Finally, the
models are ranked using the DFIRE scoring function, which has been previously de-
veloped for protein structure prediction. �e loopATTRACT protocol was tested on
di�cult cases from the protein-protein docking benchmark and achieved signi�cant
improvements in 7 out of 10 cases. loopATTRACT’s performance was comparable to
that of a state-of-the-art loop modeling protocol in Rose�a, while being far less com-
putationally expensive. We also tested the approach for re�ning models derived from
the ATTRACT-EM protocol and found that loopATTRACT yielded promising results
in such a hierarchical integrative modeling framework. As illustrated by the most re-
cent rounds of the blind prediction challenge CAPRI, modeling protein-protein com-
plexes with a high degree of �exibility will become the rule rather than the excep-
tion. �e loopATTRACT protocol in combination with other docking methodology
in ATTRACT provides a valuable piece towards dealing with these challenging tar-
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gets. In the future, interface loop modeling should be systematically tested as a part
of multi-stage docking and integrative modeling protocols. �e recently published
benchmark for combined assessment of homology modeling and docking approaches
[49] should provide an ideal testing ground.
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8. SAXS Data Alone Can Generate
High-�ality Models of
Protein-Protein Complexes

Small angle X-ray sca�ering (SAXS)-drivenmodeling combines low-resolution
data with computational modeling to predict the structure of biomolecu-
lar assemblies. A new protocol, ATTRACT-SAXS, has been developed and
tested on a large protein-protein docking benchmark with simulated SAXS
data. For 88% of the cases, high-quality solutions were generated using
SAXS data alone without a physiochemical force �eld ((interface-RMSD 5
2 Å or ligand-RMSD5 5 Å) andmore than 30% native contacts). ATTRACT-
SAXS gave signi�cant improvements compared to previous approaches that
�lter by SAXS a-posteriori. When combining SAXS and interface properties
for scoring, the protocol placed high-quality models in 79% of the success-
ful cases among the top-ranked 100 clusters. ATTRACT-SAXS also gave
excellent results when tested on experimental data if the native complex
structure was compatible with the SAXS pro�le. Our results show that in
principle, SAXS on its own can contain enough information for generating
high-quality models of protein-protein complexes. �e work presented in
this chapter was published previously in similar form in [392].

8.1. Introduction

Many proteins form complexes to carry out their biological function. �ese assem-
blies are involved in important cellular processes like signaling, transport and catal-
ysis. Knowledge of the 3D atomic structure is vital for understanding their function
and regulation. Integrative modeling approaches combine information from di�er-
ent sources such as X-ray crystallography, electron microscopy, cross-linking mass
spectrometry, nuclear magnetic resonance spectroscopy (NMR) or small-angle X-
ray sca�ering (SAXS) with computational modeling of the structure of biomolecular
complexes. Integrative modeling methods have become viable alternatives for ob-
taining structural models and have already been applied successfully to a large vari-
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ety of biological problems [353, 414, 481, 307, 355, 157]. Currently, e�orts supported
by the Worldwide Protein Data Bank [39] are underway to be�er store and share in-
tegrative models underlining their importance for the structural biology community
[385].

Small-angle X-ray sca�ering (SAXS) is an e�ective way for obtaining low-resolution
(10 Å to 30 Å) structural data for biomolecules in solution [340]. It has become in-
creasingly popular in recent years [160]. In contrast to other techniques in struc-
tural biology, the molecules can be studied at near-physiological conditions and data
can be collected in a few seconds on a well-equipped synchrotron line [305]. High-
throughput SAXS can therefore help to examine protein-protein complexes and ad-
dress current bo�lenecks in studying interactions on the genome scale [198, 372].

Several integrative methods with SAXS data have been developed to date [341,
354, 398, 403, 219, 209, 491]. Most methods use a physiochemical or geometry-
based force-�eld to generate a large number of possible models of the complex struc-
ture and applied SAXS data to �lter a posteriori. �e pyDockSAXS approach [354]
used FTDOCK to generate rigid-body docking decoys. �e FTDOCK models were
then ranked by combining the pyDock energy-based scoring function and the �t to
the SAXS data with CRYSOL. Likewise, Schneidman-Duhovny et al. presented the
IDOCK method which samples docking models by the PatchDock method and then
�lters them by their capacity to describe the experimental data χ using the FoXS
program [397, 399]. �e �ltered models are re�ned, clustered and �nally ranked by a
composite score considering both physiochemical properties and the �t to the SAXS
data [403]. In addition, Karaca et al. explored the capacity of SAXS data as a scoring
function and tested its performance in combination with the HADDOCK score [219].
Recently, support for SAXS data was also added to the ClusPro web-server [491].
Similarly to pyDockSAXS, this approach was based on generating models with an
FFT-docking program and �ltering them by their compatibility with the SAXS data.
�e top 1000 �ltered models were �nally rescored based on the PIPER-energy func-
tion alone (without the SAXS data) and clustered [491]. In summary, most of the
previously published methods use SAXS data for a posteriori �ltering and scoring.

�e ATTRACT-SAXS approach described in the present study directly uses the
SAXS data during an extensive sampling stage, repeatedly comparing generated mod-
els to the experimental pro�le. When testing the protocol on a large protein-protein
docking benchmark, ATTRACT-SAXS yielded high-quality predictions for many com-
plexes and showed improved performance compared to existing methods [403, 491].
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8.2. Methods

�e ATTRACT-SAXS protocol consists of the following stages. First, docking mod-
els are sampled exhaustively aiming to enumerate all solutions compatible with the
experimental SAXS data. �en, the generated models are �ltered according to a com-
posite score considering both interface properties and �t to the SAXS data. �e top-
ranked 5000 models are �nally clustered by pairwise ligand-RMSD and ranked by
the average energy of their top-ranked 4 members.

8.2.1. Sampling stage

A �ow chart of the individual sampling steps in the protocol is shown in Figure 8.1.
We used a Monte Carlo based sampling scheme constrained by a so-called “atom den-
sity mask” which restricts the proteins to a certain region of space and prevents large
overlaps between them (see Figure D.1 for an example). Note that the ATTRACT-
SAXS protocol does not use a force �eld to guide the assembly of the complex, sam-
pling is only driven by compatibility to the experimental SAXS data and so� steric
repulsion. Initially, 6000 random starting positions of the protein partners were gen-
erated. �ese positions were optimized during 50 sampling iterations. In each itera-
tion, the following steps were executed:

1. Monte Carlo (MC) optimization of the rigid-body placements of the proteins
in the atom density mask.

2. Scoring of docking models by SAXS data.

3. Storing docking models with low ESAXS in taboo pool and removing similar
models from the sampling pool (“taboo clustering”).

4. Swapping rigid-body placements between top-ranked 300 models (“swap-combine”)
and scoring by SAXS data.

5. Selection of top 6000 ranked docking models as input for next docking stage.

6. Adding previously stored docking models to the sampling pool (every 5 itera-
tions).

On average, ≈ 15,000 docking models were stored per complex in this stage (Figure
D.5). �e entire sampling stage is typically completed in a few hours on a modern
GPU.
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Monte Carlo sampling For both proteins, up to 500 MC steps in rigid-body trans-
lational and orientational degrees of freedoms were performed. �e step width was
decreased during successive iterations. In the �rst iteration, an additional harmonic
potential (“gravity”) was imposed to pull the proteins towards the origin and into the
atom density mask.

Atomdensitymask �e atom density mask was generated from a low-resolution
bead model calculated from the experimental SAXS data with the ATSAS 2.6.1 so�-
ware suite [338]. �e radial distribution function was obtained from datgnom [339],
then 20 runs were performed with DAMMIF [140] in fast mode with default set-
tings. �e output from DAMMIF was averaged with DAMAVER [471] in automatic
mode. �e averaged bead model (damaver.pdb) was centered at the origin and �nally
converted with the ATTRACT tool pdb2mask.py into an atom density mask im-
posing an extra margin of two voxels per occupied voxel. A coarse and a �ne mask
were extracted using voxel dimensions of 10 Å and 5 Å respectively. �e 10 Å mask
is used during the �rst three iterations of the protocol, in later iterations the 5 Å
mask is used. Note that these masks only impose very rough limits on the overall
geometry of the complex. An example of atom density masks for a protein-protein
complex is shown in Figure D.1.

Taboo clustering �e generated docking models (“sampling pool”) were com-
pared to a set of previously stored docking models (“taboo pool”) by clustering the
models against this set by pairwise Cα ligand-RMSD with a cuto� of 6 Å. A hierarchi-
cal clustering approach was used. Similar models were removed from the sampling
pool. If the ESAXS score of a similar new model was lower than the score of the
stored model, the old model was replaced. Non-similar models with ESAXS lower
than 3 were added to the taboo pool as long as the total number of stored models did
not exceed 10,000. Once more than 10,000 docking models had been collected, models
of higher ESAXS were replaced by new models unless all the models had ESAXS < 2.
In this case, the taboo pool was expanded.

Swap-combine For increased sampling, placements of the proteins in the top-
ranked 300 docking models from the sampling pool were exchanged between di�er-
ent models. �e resulting 90,000 models were scored by ESAXS and the top-ranked
6000 models were selected as input for the next docking iteration.
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8.2.2. SAXS score

For each docking model, the sca�ering intensity I(q) was calculated using the den-
sity histogram approximation of the Debye formula [102, 151]

I(q) =
N∑

i,j=1

fi(q)fj(q)
sin(qdij)

qdij

≈
nbins∑
i=1

F̂ (q, ri)
sin(qri)

qri

with q = 4π sin θ
λ momentum transfer and F̂ (q, ri) =

∑
djk=ri

fj(q)fk(q) summed
form factors of all atom pairs at distance ri. �e individual form factor fi for each
atom is given by

fi(q) = fvac
i (q)︸ ︷︷ ︸

Protein in vacuo

− C1(q)f sol
i (q)︸ ︷︷ ︸

Displaced solvent

+ c2sif
w
i (q)︸ ︷︷ ︸

Hydration layer

with si fraction of SASA of atom i [431, 141, 85]. Form factors were taken from the
IMP SAXS module [378, 397, 399, 398]. �e parameters C1 and c2 were set to 1.0 and
0.0 for all calculations [398]. We further assumed a uniform scaling

fi(q) = E(q)× fi(0)

with the approximation functionE(q) = e−bq
2 [137, 399]. �is then yielded the �nal

formula for the intensity I(q)

I(q) = E(q)2
nbins∑
i=1

F (ri)
sin(qri)

qri
.

�e squared distances were binned with a bin size of 0.5 Å2 [399] up to a maximum
squared distance of 10.000 Å2 and 40.000 Å2 for smaller and larger proteins respec-
tively.

For the experimental pro�le, we simulated a weighting function w(q) using the
formula for experimental error estimates in FoXS [397]

w(q) = 0.03× I(q)× 5(q + 0.001)×
(
| p10 − 1|+ 1

)
where p is a random number drawn from a Poisson distribution with a mean value
of 10. �e calculated intensity curves were scaled to the experimental curves and the
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discrepancy was evaluated

ESAXS =

√√√√ 1
Np

Np∑
i=1

[
Iexp(qi)− c× Icalc(qi)

w(qi)

]2

with the scaling factor c

c =

∑ IexpIcalc
w2∑ I2calc
w2

chosen to minimize ESAXS. Note that this score is very similar to the widely used χ
test. However, we decided to use a common weighting function instead of the exper-
imental errors σexp(q) used in χ to calculate SAXS scores under similar conditions
for di�erent complexes. We evaluated ESAXS with the new ATTRACT tool saxs-
score that calculates the pairwise distance histogram on the GPU and I(q) and
ESAXS on the CPU. To speed up the calculations, the intra-protein distances are pre-
calculated and only the inter-protein distances have to be evaluated for each docking
model. For a medium sized complex and 50 q data points, the score was evaluated
in ≈ 0.8 ms per structure. For comparison, the program FoXS required ≈ 96 ms per
structure on the same complex. �is fast tool allowed us to design a protocol with
multiple iterations of sampling and rescoring against the experimental data. Note
that the ESAXS score could be easily extended to ��ing against multiple data sets
(e.g., for subcomplexes).

8.2.3. Filtering

All docking models in the taboo pool were �ltered by a composite score:

Etotal = Einterface + wSAXSESAXS.

�e interface energyEinterface was calculated with an empirical step potential trained
on 164 protein-protein docking cases from benchmark 4.0 [200] evaluated within
cuto�s of 4 Å and 6 Å. �e set of protein-protein complexes was divided in a training
and a test set of 140 and 24 complexes respectively. �e step potential represents the
proteins in a grouped-all-atom model and was derived by Monte Carlo Annealing
with 5-fold cross-validation using a ziczac annealing scheme. As a target function,
we optimized the summed linearly weighted ranks of near-native solutions which
were additionally scaled by CAPRI quality [389]. �e weighting factor wSAXS of the
composite score was optimized by systematic exploration of values in a range of 0.1
to 1000.0. We observed similar rankings for a range of parameters and �nally set
wSAXS to 300.0. For cases in the experimental benchmark set with symmetry, we
used an additional symmetry term in Etotal [94].
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8.2.4. Clustering and Final Ranking

�e top-ranked 5,000 models were clustered by pairwise ligand-RMSD with a cuto�
of 6.5 Å and a minimum cluster size of 1. �e models were ��ed onto the receptor
protein structure and the RMSD between the ligand backbone atoms was evaluated.
�e scores of the top-ranked 4 cluster members were averaged and the clusters were
ranked by the average score.

8.2.5. Test sets

�e protocol was tested on two benchmark sets. �e �rst benchmark consisted of
226 protein-protein complexes from protein-protein docking benchmark [473] us-
ing simulated SAXS data. In the second benchmark, we ran ATTRACT-SAXS with
experimental data (11 cases).

Docking benchmark with simulated SAXS data We used the new version of
the protein-protein docking benchmark [473] with 226 protein complexes (cases with
internal symmetry and alternative binding sites were merged). �e structures were
downloaded from the PDB. Unbound protein structures were aligned to the bound
structures with FATCAT [501]. Residues in the unbound form were renumbered,
mutated and/or removed to match the bound form for easy evaluation of RMSD cri-
teria. Missing side chain heavy atoms were built with PDB2PQR [110] when at least
the backbone atoms were present, we did not add any missing residues. �e pro-
teins were converted to the ATTRACT atom type format with the ATTRACT tools
aareduce and reduce (see Chapter 4). �e complexes were checked for inter-
nal symmetry of the protein partners and alternative symmetry solutions were also
considered for RMSD evaluation. We classi�ed the di�culty of the docking cases as
“rigid-body”, “medium” and “hard” based on the IRMSD between the interface su-
perposition of the bound and unbound structures [473]. In addition, we classi�ed
the docking cases by calculating the CAPRI star quality of the whole rigid-body and
the interface superposition of unbound and bound protein structures. Cases that did
not achieve CAPRI two-star quality or be�er in both superpositions were classi�ed
as “impossible” (16 out of 226 cases: 1ATN, 1BGX, 1DE4, 1E4K, 1F6M, 1FAK, 1GP2,
1H1V, 1JMO, 1NW9, 1Y64, 2HMI, 2I9B, 2O3B, 2VIS, 3G6D) and these cases were not
considered for analysis (except for comparison to other methods).

Test cases with experimental SAXS data We tested our method on 11 cases us-
ing experimental SAXS data. �e cases are listed in Table 8.1. �e SAXS pro�les
[71, 318, 350, 525, 324, 415] were downloaded from the SASBDB (www.sasbdb.org)

125



8. SAXS Data Alone Can Generate High-�ality Models of Protein-Protein Complexes

[455] and the BIOISIS (www.bioisis.net) [198] databases. In most cases, correspond-
ing crystal structures were annotated, in the others we used BLAST [210] to identify
matching structures in the Protein Data Bank. �e protein complex structures [358,
71, 208, 289, 74, 230, 350, 525, 324, 415, 434] were downloaded from the PDB. Missing
side chains were built with PDB2PQR [110] and the structures were converted to the
ATTRACT atom type description with the ATTRACT tools aareduce and re-
duce. For the tetrameric complexes, we performed two-body docking of the two
dimers. For bovine serum albumin and ovotransferrin, we cut the protein in two
parts and docked these domains, for the TG2-antibody we used the light and heavy
chain as docking partners.

8.2.6. Simulating SAXS data and processing of experimental SAXS
data

SAXS pro�les were simulated using the bound protein-protein complex structure
with the program FoXS [397] for a q range from 0.01 Å−1 to 0.5 Å−1 . �e parame-
ters for excluded volume and hydration layer sca�ering were set to 1.0 and 0.0. �e
number of points in the pro�le was set to 50. All other parameters were kept at their
default values. Gaussian noise with a standard deviation of 2% of the intensity was
added to the curves to simulate experimental conditions [41]. For the experimental
SAXS curves, we simulated the weighting function w(q) and excluded data points
where the experimental error was two times larger than the assigned weight w(q)
(we assumed that the size of the error re�ects the amount of noise present in the
data).

8.2.7. Assessment criteria

For benchmarking the protocol, the �nal docking models were evaluated using IRMSD,
LRMSD and fnat criteria established in the blind protein-protein docking challenge
CAPRI [303, 257, 260, 259] (see Chapter 3). �e docking models were classi�ed by
the following quality criteria as:

• high/three star if (IRMSD 5 1 or LRMSD 5 1) and fnat = 0.5

• medium/two star if (IRMSD 5 2 or LRMSD 5 5) and fnat = 0.3

• acceptable/one star if (IRMSD 5 4 or LRMSD 5 10) and fnat = 0.1.

A docking case was considered a one star/two star/three star success if at least one
model of one star/ two star/ three star quality or be�er was found among the top N
solutions/clusters.
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8.3. Results

A new integrative modeling approach for predicting the 3D-structure of protein-
protein complexes starting from unbound partner structures and small-angle X-ray
sca�ering (SAXS) data, ATTRACT-SAXS, has been developed using the ATTRACT
docking engine [506, 296, 101, 94, 393, 99]. A schematic overview of the protocol
is given in Figure 8.1. It consists of an exhaustive multi-start sampling stage during
which a large number of docking models compatible with the experimental data are
generated (see Methods for details). �e sampling is driven by maximizing the �t to
the experimental sca�ering intensities and avoiding excessive sterical clashes, how-
ever, no speci�c force �eld is included. In addition, a new goodness-of-�t criterion,
ESAXS, similar to the well-known χ statistic, but with a di�erent weighting of the
individual data points has been employed (see Methods). A�er the sampling stage,
the solutions are �ltered by a composite scoring function considering both ESAXS
and interface properties. �e interface properties are evaluated by a new empirical
atomistic step potential which has been trained on known protein-protein complexes
[389]. Finally, the top-ranked 5,000 models were clustered and ranked by the average
energy of their top-ranked 4 cluster members. We tested the ATTRACT-SAXS ap-
proach on 226 protein-protein complexes from the recently published docking bench-
mark 5.0 [473] using simulated SAXS pro�les (see Methods) and on 11 cases using
experimental data.

8.3.1. Characteristics of SAXS data as scoring function and
implications for protocol design

In order to evaluate the speci�city of the scoring function ESAXS, we �rst used the
simulated SAXS pro�les for the docking benchmark to evaluate the nearest-native
solution; i.e., the rigid-body superposition of the unbound protein structures on the
bound complex. �e obtained scores are shown in Figure 8.2 (a) and demonstrate only
slight sensitivity to protein conformational change (most conformational changes
are well below the resolution of SAXS). For complexes with IRMSD < 2 Å, 81% had
an ESAXS score under 1.5, 96% under 2, and all of them under 3. �erefore, in the-
ory, one can capture the nearest-native solution by sampling the entire pool of all
possible solutions below a certain ESAXS threshold (e.g., ESAXS < 3). However, in
practice, this is only feasible if the following two conditions are met: a) �e ESAXS
score must have good discriminative power between nearest-native and non-native
solutions, else the pool of solutions would be too large; b) Since sampling is �nite, we
can only approach the nearest-native structure. �erefore, the discriminative power
of the scoring function must have a funnel-like behavior, extending to near-native
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Figure 8.1. Overview of the ATTRACT-SAXS docking protocol.
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Figure 8.2. Accuracy and speci�city of SAXS data as a scoring function in docking. (a) SAXS scores
vs. IRMSD for the rigid-body superposition of the unbound protein structures on the bound complex
for all 226 cases in the benchmark. (b) Probability for a docking model of a given IRMSD to haveESAXS
below a certain threshold. Results for di�erent thresholds are shown.

structures in general. We assessed the discriminative power of ESAXS by ranking
a large number of decoys (near-native and non-native) obtained by standard rigid-
body docking with ATTRACT [506, 99] for each complex. We calculated the prob-
ability for a docking model of given IRMSD to have an ESAXS score below a certain
threshold (Figure 8.2 (b)). We found that near-native models had a high probability
of having a low ESAXS score. With a strict threshold (ESAXS < 1.5), this probability
shows a sharp decline as a function of IRMSD. Even so, the probability does not fade
to zero for large IRMSD values: in many cases, non-native solutions with a similar or
even lower score existed (an example can be found in Figure D.2). Still, only a small
fraction of non-native solutions yielded a good �t. �erefore, at strict thresholds,
SAXS data has excellent discriminative power. However, for looser thresholds, the
discriminative power quickly fades, the probability peak greatly broadens and only
slight enrichment of near-native compared to non-native models was observed for a
cuto� of for exampleESAXS < 4. �erefore, the appropriateESAXS threshold strongly
depends on the sampling precision. At the one hand, the threshold should be as small
as possible to maximize discriminative power, while at the same time, the probability
peak must be broad enough to capture at least some generated near-native structures.
We based the selection criteria for the sampling pool on these �ndings (see Methods
for details).
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8.3.2. Docking benchmark results

In order to interpret experimental results or to guide experimental studies, the accu-
racy of a docking prediction must be su�ciently high. We choose the CAPRI two-star
criterion to assess the performance of ATTRACT-SAXS. We believe that structures
calculated from experimental data should be held to higher standards than structures
derived from ab-initio docking and therefore consider the CAPRI one-star criterion,
which was used to assess the performance of previous SAXS-driven integrative mod-
eling approaches, too lax. A two-star model has to identify at least 30% of the native
intermolecular contacts, whereas a one-star model only needs to identify 10%. Cor-
rect intermolecular contacts in the model are vital to predict the e�ect of mutations.
We limited the analysis to the 210 cases in protein-protein docking benchmark 5 [473]
where a two-star model by rigid modeling is in principle possible (see Methods).

Figure 8.3 shows the docking success rate achieved among the top-ranked �nal
clusters and among all sampled models (see also Table D.1). Overall, the protocol
generated a two-star model for 88% of the 210 protein-protein complexes (i.e., 185
complexes). �is sampling success rate is signi�cantly higher than that obtained with
standard ATTRACT docking [99], even with a 6-fold increased number of starting
positions (77%, data not shown). A�er rescoring, clustering and ranking the clusters
by the average energy of their top-ranked 4 members, the top-ranked 100 clusters
contained at least one two-star cluster for 79% of the successful docking cases (148
complexes, Figure 8.3). Figure 8.4 illustrates docking models from top-ranked two-
star clusters. For 96% of the successful cases with internal symmetry (27/28), the
alternative solution was also identi�ed at least to one-star precision, underlining the
success of the exhaustive sampling stage (data not shown). We analyzed the depen-
dence of the sampling success rate on the number of iterations during the sampling
stage and found that a�er 40 iterations, the sampling had converged (Figure 8.5). We
further compared the contributions of the di�erent scoring terms inEtotal (see Meth-
ods) by ranking the docking models by either the composite scoreEtotal orESAXS and
Einterface separately (Figure D.4). ESAXS alone already gave a good ranking, however,
combination with Einterface further improved the ranking of two-star models within
the top 100 solutions compared to the individual terms. �is con�rms that the dif-
ferent terms yield complementary information for identifying near-native solutions.

We also evaluated the success rate by complex type and docking di�culty (Fig-
ure D.3). �e protocol performed be�er for enzyme-inhibitor and antibody-antigen
complexes than for the other complexes (top 10 two-star success rates of 49, 50 and
35%), although in terms of overall sampling, the results were similar. Furthermore,
the di�erences were not as large as for other methods that employed a force �eld for
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Figure 8.3. Docking results for ATTRACT-SAXS on 210 complexes from protein-protein docking
benchmark 5.0 using simulated SAXS data. A cluster is considered a CAPRI one-star/two star hit if any
of its top-ranked 4 members is at least of one star/two star quality. “All models” denotes the success
rate considering all structures collected during the sampling stage.
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Å−1

]

I
(q

)

exp
ESAXS = 1.77

(c) 3F1P, hard, 4, 1.9 Å, 3.2 Å, 0.67

Figure 8.4. Examples of two-star docking models generated by ATTRACT-SAXS. �e docking model
is drawn in green and red, the crystal structure is shown as a reference in gray. �e calculated intensity
curve of the docking model is scaled to the simulated SAXS curve of the bound complex. For each case,
the PDB ID of the bound complex, the docking di�culty and the cluster rank, IRMSD, LRMSD and fnat
of the model are listed.
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Figure 8.5. Sampling success rate for ATTRACT-SAXS vs. number of sampling iterations. �e data
were evaluated on 210 complexes from protein-protein docking benchmark 5.0 using simulated SAXS
data. A docking case was considered successful if at least one CAPRI two-star model was generated.

sampling (e.g., [398]); force �elds might be biased towards a certain complex type. In-
stead, this di�erence more likely re�ects that the �rst two categories contain a larger
fraction of rigid-body cases. When analyzing by docking di�culty, we found that the
overall two-star success rate dropped from 91% for the rigid-body to 68% for the hard
cases. Interestingly, for complexes of medium di�culty, we achieved an overall suc-
cess rate very close to that of the rigid-body cases. Hence, in terms of sampling, the
results demonstrate a robustness of the protocol to moderate conformational change.
However, in terms of scoring the �nal models, we clearly saw a dependence on dock-
ing di�culty and further e�orts to improve the ranking of near-native solutions are
necessary.

Out of the 210 cases, 24 failed to sample a two-star solution at all. For half of these
cases, we detected a scoring problem due to conformational changes: the superposi-
tion of the unbound protein structures on the bound complex hadESAXS > 2. For the
rest, in 6 cases, either solutions very close to two-star precision or solutions of two-
star quality in terms of RMSD criteria but not fnat were sampled. For these cases,
additional sampling or re�nement could be bene�cial. In the remaining 6 cases, the
interface on one of the partners was identi�ed correctly by the top-ranked solutions,
but the orientation of the second partner was wrong. In three of these cases, the
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ligand protein is rather small compared to the receptor protein and of a spherical
shape which made scoring with SAXS data challenging [354, 398] . �erefore, since
failures are rare and mostly scoring-related, these results suggest that the sampling
of our protocol is close to optimal (cf. Figure 8.5).

8.3.3. Comparison with other SAXS-driven methods

We wanted to compare ATTRACT-SAXS to previously published methods. �e IDOCK
approach [403] was tested on 176 complexes from protein-protein docking bench-
mark 4.0 [200] using simulated SAXS data. Success criteria based on IRMSD and
LRMSD only were used to classify docking solutions as acceptable, medium and high
[403]. For comparison, we adopted the same criteria and limited our evaluation to 174
complexes (docking case 1N8O from benchmark 4 is not available in benchmark 5;
we merged docking cases 1OYV and 9OYV). For generating solutions of medium and
high quality, Schneidman-Duhovny et al. obtained success rates of 13, 27 and 53% for
the top-ranked 1, 10 and 100 clusters respectively. ATTRACT-SAXS yielded higher
two-star success rates (16, 42 and 68%), especially for the top 10 and top 100 clusters.
Also in terms of top 100 one-star success rate, ATTRACT-SAXS clearly surpassed
IDOCK’s performance (90% vs. 77%). Especially for docking cases of medium and
hard di�culty, we found improved success rates (top 10 one-star success rate: 45%
vs. 26%). Interestingly, in the initial PatchDock sampling, IDOCK achieved an over-
all two-star success rate of 82%, close to that of ATTRACT-SAXS (86%). However,
a�er applying the SAXS �lter, the success rate dropped to 73%. Since a high sam-
pling precision is crucial when using SAXS data [398], structures, which were of high
CAPRI quality but suboptimal for SAXS due to possibly small rotations/translations,
were �ltered out. �is underlines the importance of using SAXS data (i.e., the scor-
ing function) already in the sampling stage as also recommended by a recent study
[454]. We further compared ATTRACT-SAXS to the recently published CLUSPRO-
SAXS server [491] which was tested on 49 protein-protein complexes [70] with sim-
ulated data. When evaluating again by RMSD criteria only, CLUSPRO-SAXS placed
a medium/high-quality solution among the top-ranked 10 clusters in 15 out of the 49
cases (31%) [491]. For the same subset of complexes, we obtained a top 10 two-star
success rate of 41%.

8.3.4. Comparison with contact-driven modeling

It is also interesting to compare ATTRACT-SAXS to integrative modeling approaches
in ATTRACT driven by other types of experimental data. In a recent study, we sys-
tematically compared three paradigms using perfect interface information, perfect

134



8.3. Results

contact information and low-resolution cryo-EM maps [96]. �e integrative model-
ing protocols were evaluated on 157 protein-protein complexes from benchmark 4.0
[200]. For contact and interface data, we extracted all atom-atom contacts within a
cuto� of 5 Å from the bound complex; the data set contained on average 476 contacts
per complex. �e results for true interface and true contact docking thus represent
an upper limit to what can be achieved using real data from e.g. NMR or cross-linking
mass spectrometry experiments. We derived a maximal two-star success rate for true
contact docking of 94% (148/157). �e ATTRACT-SAXS overall two-star success rate
was 91% (143/157). In terms of sampling, ATTRACT-SAXS, rather surprisingly, was
close to the contact-driven protocol even when using perfect contact information.

8.3.5. Test cases with experimental data

We then tested the ATTRACT-SAXS protocol on 11 cases for which experimental
SAXS pro�les and crystal structures of the proteins were available (Table 8.1, see
Methods for details). For each case, we simulated the weighting function and dis-
carded parts of the data which were too noisy (see Methods). We also ran the protocol
with simulated SAXS pro�les and without SAXS data using the standard ATTRACT
rigid-body docking protocol [99] for comparison. �e results are summarized in Ta-
ble 8.2.

In 6 of the 11 cases, the score calculated by comparing the crystal structure to
the experimental SAXS pro�le was large (ESAXS > 2.5). �ese cases are essentially
impossible and no CAPRI two-star solutions were generated. Still, they should not
all be considered as failures: in two of these cases, the protocol correctly predicted
the poor correspondence of the structures to the experimental data, since no models
at all were produced in the sampling stage. For the 5 cases with good agreement
between crystal structure and SAXS, ATTRACT-SAXS successfully generated two-
star quality models and placed them in 4 out of 5 cases among the top-ranked 20
clusters. As a control, we ran the protocol with SAXS pro�les simulated in the same
way as for the docking benchmark. As expected from the good �t of the native
structures (ESAXS 5 1.5), the protocol now succeeded in generating two-star quality
predictions for all but one of the cases and ranked them even among the top 20
clusters.

In contrast to the docking benchmark, for this test set, only the bound forms of
the proteins were available. Docking protocols using a force �eld during sampling
typically perform extremely well in these situations, but struggle when structural
noise caused by conformational change is introduced. �is is a well-known problem
in the docking �eld. Since ATTRACT-SAXS does not employ a force �eld during
sampling (only a repulsive atom density voxel term), our results are not biased to-
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Table 8.1. Test cases with experimental SAXS data. For each case, the name of the protein, the sym-
metry of the complex, the PDB ID, the ID of the SAXS database entry, the largest q value in the original
and the weighted/�ltered dataset used during docking are listed. We also calculated the percentage of
missing residues in the crystal structure.

PDB Name Database ID Type qmax [Å−1] qmax [Å−1] Missing [%]

4V07 pUL26N serine protease SASDA58 Dimer 0.443 0.131 9.2
3K3K PYR1 1PYR1P Dimer 0.321 0.321 8.3
1ZAH Aldolase SASDA68 Tetramer 0.496 0.494 0.3
4ZD3 Anti-TG2 antibody SASDA28 Monomer 0.397 0.346 8.2
1RYX Ovotransferrin SASDAA2 Monomer 0.601 0.599 2.7
2R15 Myomesin-1 My12-My13 SASDAK5 Dimer 0.446 0.216 0.7
3V03 Bovine serum albumin SASDA32 Monomer 0.601 0.600 4.4
3F7L Superoxide dismutase APSODP Dimer 0.614 0.614 0.0

4W6Z Alcohol dehydrogenase SASDA52 Tetramer 0.601 0.599 0.3
4BLC Catalase SASDA92 Tetramer 0.601 0.597 5.3
1FA2 Beta-amylase SASDA62 Tetramer 0.601 0.598 0.2

wards bound-bound docking. To illustrate this bias, we carried out standard ab-initio
rigid-body docking [99] without experimental data, using the ATTRACT force �eld
[506, 129]. For the four tetramers, the rigid-body docking of dimers failed because
the dimers are intertwined strongly and correct rigid placement involves overcoming
clashes during the docking trajectory. But for 6 of the 7 remaining cases, ab-initio
docking generated two-star quality solutions and placed them among the top-ranked
20 models in 83% of the successful cases (we did not cluster the solutions). Unfortu-
nately, a benchmark with experimental SAXS data and crystal structures for bound
and unbound proteins is unavailable to date. Creating such a benchmark would be
very important for properly testing SAXS-driven integrative modeling approaches
in the future.

8.4. Discussion

Here, we developed a new SAXS-driven integrative modeling approach in ATTRACT,
ATTRACT-SAXS. When tested on a large benchmark of protein-protein complexes
[473] using simulated SAXS pro�les, overall, ATTRACT-SAXS generated CAPRI two-
star quality models for 88% of the docking cases. For 79% of the successful cases, the
protocol placed near-native solutions among the top-ranked 100 clusters and for 49%
even among the top-ranked 10 clusters. Using only the CAPRI one-star quality crite-
rion, a success rate of 75% was achieved for the top-ranked 20 clusters. Hence, when
considering the top-ranked 4 members of each cluster, only 80 models need to be
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Table 8.2. Docking results for 11 experimental cases. For each case, the PDB ID, ESAXS for the native
structure in comparison with the experimental and the simulated SAXS pro�le and the docking results
are listed. For each docking experiment, we evaluated the rank of the �rst two-star solution and the
IRMSD, LRMSD and fnat of the best sampled model. † denotes cases in which no prediction was made;
i.e., no model compatible with the SAXS data was sampled.

Experimental SAXS data Simulated SAXS data Standard docking
PDB ESAXS Rank Best sampled ESAXS Rank Best sampled Rank Best sampled

4V07 1.2 13 0.9/2.2/0.64 1.3 16 1.5/4.1/0.70 17 0.9/2.1/0.66
3K3K 1.8 10 1.7/4.8/0.91 1.2 1 1.5/3.4/0.72 8 0.7/2.2/0.96
1ZAH 2.1 1 1.5/4.2/0.66 1.3 1 1.2/1.7/0.62 - 4.2/9.2/0.04
4ZD3 2.4 1 1.1/3.0/0.90 1.5 1 1.7/4.4/0.61 1 0.4/1.2/0.92
1RYX 2.5 395 1.1/3.2/0.69 1.0 13 1.5/4.3/0.58 31598 1.3/4.5/0.58

2R15 2.7 - 6.3/38.5/0.09 1.4 - 2.6/11.6/0.47 - 2.5/15.3/0.44
3V03 3.4 - 2.1/3.5/0.20 1.2 1 1.4/2.6/0.73 1 0.4/1.0/0.78
3F7L 3.8 - 9.6/31.6/0.0 1.0 1 1.2/2.9/0.76 9 0.3/1.0/0.98

4W6Z 4.8 † -/-/- 0.9 1 0.4/1.1/0.95 - 12.8/30.2/0.0
4BLC 6.0 - 10.8/26.7/0.02 1.0 1 0.7/1.5/0.67 - 23.3/49.7/0.0
1FA2 7.8 † -/-/-/ 1.5 1 0.6/2.4/0.71 - 5.9/12.8/0.08

inspected to detect a one-star quality solution with high probability which can then
be validated by additional experimental data. �e detected one-star model can be
used to quickly �lter the remaining models to identify the two-star quality cluster.

When testing ATTRACT-SAXS on a set of 11 complexes with experimental SAXS
data, the protocol gave excellent results, if the crystal structures corresponded well
to the experimental data. However, in 6 cases, the calculated sca�ering curve of
the crystal structure di�ered signi�cantly from the SAXS pro�le, much more than
would be expected by simple conformational change. Consequently, this caused the
protocol to fail, although it correctly identi�ed the discrepancy in some cases. We
discuss mixing/ensemble errors, systematic errors and errors resulting from the for-
ward model as sources of this discrepancy.

In many cases, protein molecules do not adopt a single conformation but are rather
represented by a structural ensemble. Protein �exibility; e.g., di�erent loop confor-
mations in di�erent sca�ering particles, contributes to the mixing error (although
this �exibility can be largely modeled by Gaussian noise [41]). Also, the dynamic
equilibrium between bound proteins and free monomers cause SAXS curves being a
mixture of the sca�ering of the individual monomers, the bound complex, and pos-
sibly intermediates. Knowing the structures of the monomers, the binding constant
and the concentration of the sample, it should be possible to improve the scoring by
��ing a weighted average of the intensity pro�les of the monomers and the dock-
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ing model. Furthermore, it might be interesting to compare an ensemble of docking
models to the SAXS data instead of just a single model [41, 338, 374, 243]; e.g., in
the case of fuzzy binding. Unfortunately, ensemble methods with SAXS may carry a
serious risk of over��ing [38].

For integrative modeling, previously resolved structures of the individual proteins
or homology models are used. In many cases, not all residues are resolved in the crys-
tal structure, however, all residues contribute to the experimental sca�ering pro�le.
Missing atoms are a source of systematic errors: for structures with more than 10%
of missing residues, the calculated sca�ering pro�les hardly �t to the experimental
SAXS curve (the same is true for simulated pro�les [354, 398]).

Last, we discuss errors resulting from the forward model; i.e., the calculation of
the intensities from the atomic coordinates. �e assumptions on which the forward
model is built may not always be ful�lled and the resulting discrepancies may im-
pair the scoring. �e Debye formula assumes the absence of interactions between
the individual molecules and hence the absence of aggregation. Not considering the
sca�ering of the hydration layer; i.e., ordered water molecules on the protein sur-
face, in cavities or at the interface, could also be a large source of error (e.g. for
SASBDB entry SASDA82). Several methods for SAXS pro�le computation consider
the solvent layer implicitly by ��ing for example the solvent density or the width
of the hydration shell to improve the overall �t to the experimental data [397, 431,
27, 438], however, such an approach that �ts parameters for every docking model is
not suitable for comparison and ranking of docking models, for which we need to
calculate the scores under identical conditions [398]. �e hydration shell can also be
considered explicitly [336, 164, 469, 351, 274, 363, 68], but these methods are com-
putationally expensive and therefore not yet suitable for the large-scale sampling
approach used in ATTRACT-SAXS.

�e success of ATTRACT-SAXS is based mainly on sampling improvements com-
pared to standard docking. By eliminating the force �eld and allowing a certain
degree of overlap between the protein partners, the protocol becomes less sensitive
to conformational change at the interface. In addition, we introduce ESAXS, an alter-
native statistic that does not rely on experimental errors and allows a �xed-threshold
cuto�. Scoring by SAXS data requires a comparison between the experimentally ob-
tained intensities and those computed from a model. For SAXS data, commonly the
χ test is used to evaluate the similarity

χ =

√√√√ 1
Np

Np∑
i=1

[
Iexp(qi)− c× Icalc(qi)

σexp(qi)

]2

with σexp the experimental errors for the Np data points. In order for the test to be

138



8.5. Conclusion and Outlook

statistically valid, it is necessary that the experimental errors are estimated correctly.
If the errors are well-determined, an accurate model should have χ ≈ 1 [139]. Note
that χ gets smaller for large errors, however, at the same time, all discriminative
power with respect to model selection is lost. �e experimental errors are always
unknown and have to be estimated from the data using Poisson statistics. �is prob-
lematic dependence on the error estimate has been noted in the SAXS community
and recently, an alternative measure based only on the experimental intensities has
been proposed [139]. Here, to calculate SAXS scores under identical conditions, we
modi�ed the χ test and used a common weighting function instead of the experi-
mental errors (see Methods). We only used the experimental errors as a measure for
noise and discarded parts of the data where the experimental error was signi�cantly
larger than our weighting function. Establishing a common baseline for scoring was
already recognized as an important issue in previous work [398, 491] and led to the
elimination of two widely used ��ing parameters in the χ test. Here, we went one
step further and established a common weighting for di�erent experimental data sets.
Furthermore, instead of simply ranking generated models by their discrepancy from
the SAXS pro�le, we established a �xed cuto� for determining which models are
compatible with the SAXS pro�le. �e advantage is that cases, in which the protein
structures correspond poorly to the experimental data, can be identi�ed by collecting
no or only few structures during the sampling stage (as for 4 of the test cases with
experimental pro�les). �e downside is that the correct model might not be sam-
pled, if its ESAXS score is slightly higher than the cuto�. However, the results on the
docking benchmark and on the experimental dataset showed that ATTRACT-SAXS’s
bene�ts clearly outweigh the disadvantages.

�e success of our protocol demonstrates that in principle SAXS data alone con-
tain su�cient information to generate a rigid placement of the partners close to the
native complex structure. However, in terms of scoring, SAXS is not speci�c enough
and further information, either in the form of force �elds and/or additional exper-
imental data, has to be used. As noted before [403], combining global information
from SAXS with local interface information; e.g., from cross-linking or NMR, is a very
promising approach. Such local information could also improve interface modeling
during �exible re�nement of docked structures [96].

8.5. Conclusion and Outlook

Small angle X-ray sca�ering (SAXS) experiments yield low-resolution structural in-
formation for biomolecules in solution and holds the promise of fairly high-throughput
characterization of protein-protein interactions. Due to their relative simplicity, SAXS
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experiments have become more and more popular in recent years. Furthermore,
SAXS data sets are becoming more and more available to the scienti�c community
via specialized databases [455, 198], although at the moment the number of deposited
data sets is still quite small. Integrative modeling approaches combine data from low-
resolution experiments with computational optimization to predict the structure of
biomolecular assemblies. In this work, we designed ATTRACT-SAXS, a new SAXS-
driven integrative modeling protocol in the ATTRACT docking engine. ATTRACT-
SAXS already makes use of the SAXS data during its extensive sampling stage and
aims to enumerate all models compatible with the experimental data. We tested
the method on a large set of protein-protein complexes with simulated pro�les and
on a test set with experimental SAXS data. ATTRACT-SAXS outperforms previous
methods [403, 491], with an especially signi�cant improvement for medium and hard
docking cases. Comparison with other integrative modeling paradigms in ATTRACT
[96] indicated a sampling performance similar to that of perfect atom-atom contact
information. Example scripts for ATTRACT-SAXS will be available in the ATTRACT
2.0 release (see Chapter 4). In the future, the method could be expanded towards
modeling other biomolecular complexes; e.g., protein-nucleic acids interactions, and
towards including cofactors. A�er further optimization, ATTRACT-SAXS compu-
tations could also be o�ered to the structural biology community via a dedicated
web-server. We plan to use ATTRACT-SAXS for structural modeling of chromatin
remodeling enzymes based on SAXS data (as an extension to the work presented in
Chapter 11).
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Rounds 28-36

�eATTRACT coarse-grained docking approach in combination with vari-
ous types of atomistic, �exible re�nement has been applied to predict protein-
protein and peptide-protein complexes in CAPRI rounds 28–36. For a large
fraction of CAPRI targets (12 out of 18), at least one model of acceptable
or be�er quality was generated corresponding to a success rate of 67%. In
particular for several peptide-protein complexes, excellent predictions were
achieved. A combination of template-based modeling and extensive molec-
ular dynamics-based re�nement o�en yielded medium and high-quality
solutions. In one particularly challenging case, the structure of an ubiqui-
tylation enzyme binding to the nucleosome was correctly predicted as a set
of acceptable quality solutions. Based on the experience with the CAPRI
targets, a new approach for �exible interface re�nement (Chapter 5) and
an ab-initio peptide-protein docking protocol have been developed (Chapter
6). Failures and possible improvements of the docking method with respect
to scoring and protein �exibility will also be discussed. �e work presented
in this chapter will be published in similar form in [390].

9.1. Introduction

Protein-protein and peptide-protein interactions are abundant in the cell and are in-
volved in virtually all important biological processes. However, so far only a small
fraction of complex structures has been characterized experimentally. Especially,
structure determination of transient interactions between proteins is experimentally
challenging and probably in many cases impossible to obtain. Since atomic struc-
tural knowledge is vital for understanding the biological roles of these interactions,
protein-protein docking methods that predict the 3D structure of complexes and ef-
�cient re�nement approaches have become more and more important in structural
biology. �e Critical Assessment of PRediction of Interactions (CAPRI) experiment
[257, 259, 260] has provided a framework for blind testing and comparative assess-
ment of protein-protein docking and re�nement methods. Apart from evaluating the
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current state of the �eld, CAPRI’s diverse, challenging targets have stimulated the
development of new and more sophisticated protocols and pushed the limits of what
is achievable in protein-protein docking. Our protein–protein docking approach AT-
TRACT [506, 393, 99] can predict protein-protein and protein-nucleic acid interac-
tions and has already been used successfully in various rounds of CAPRI [503, 299,
261, 101]. ATTRACT’s main characteristics are its coarse-grained (CG) force �eld,
the ability to incorporate conformational �exibility already during the initial large-
scale search and the possibility to dock any number of (protein) partners. �e CG
model was derived from statistical analysis of protein-protein and protein-nucleic
acid interfaces and is intermediate between a residue/base-level and full atomistic
description. It represents each amino acid by up to four pseudoatoms (two for the
backbone and one or two for the side chains) [129]. A systematic docking search
consists of several potential energy minimizations starting from hundreds of thou-
sands of initial con�gurations. To speed up the docking calculations, the potential
energy can be precalculated on a grid [100]. Global �exibility (e.g., domain–domain
motion) can be included explicitly during docking by energy minimization along the
directions of precalculated so� normal modes [297]. Side chain and loop conforma-
tional changes can be accommodated by a multi-copy [29] or an ensemble docking
approach. �e �exible interface re�nement method iATTRACT [393] can be used to
further optimize the rigid-body docking solutions. We have participated in CAPRI
rounds 28–36 and in the following report on our predictions for targets 59–107 and
related new methodological developments. �is also includes our e�orts to design
a fully blind peptide-protein protocol and molecular dynamics-based re�nement ap-
proaches.

9.2. Methods

9.2.1. ATTRACT rigid-body docking

�e protein and peptide structures were converted to the ATTRACT atom type repre-
sentation [506] with the ATTRACT toolreduce (see Chapter 4 for details). Starting
points were generated by choosing random positions and orientations for the associ-
ation partners with an appropriate center-of-mass distance to prevent steric overlap
in the initial con�guration. �e starting structures were subjected to rigid-body op-
timizations in a potential energy minimization of 1000 minimization steps with the
ATTRACT metric minimizer [296, 297]. Energy calculation was accelerated using a
precalculated grid [100]. In cases where distance restraints were employed, the op-
timization of the six rigid-body degrees of freedom was preceded by a minimization
in which the center of mass positions were �xed and the docking partners could ori-
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ent towards each other. During this stage, only the restraint potentials were applied
(“ghost” mode). If multiple conformations were available for the association part-
ners, these conformations were docked separately (ensemble docking). Finally, the
docking models were ranked by their ATTRACT energy evaluated within a squared
cuto� of 50 Å2 and highly similar models were removed with the deredundant
tool.

9.2.2. iATTRACT flexible interface refinement

�e protein and the peptide structures were converted into the OPLS atom type de-
scription with the ATTRACT tool aareduce. Missing hydrogens were built with
PDB2PQR [111, 110] and protonation states were determined by PropKa[266]. Pep-
tide termini were charged (unless the peptides were part of a larger protein), protein
termini le� uncharged. �e atomistic re�nement uses a physical force �eld based on
the OPLS parameters to calculate non-bonded and electrostatic interactions between
the protein partners. Contacts from the input structure are treated as �exible during
a simultaneous potential energy minimization in rigid-body degrees of freedom and
interface �exibility [393]. A structure-based force �eld is determined on-the-�y to
evaluate intra-protein interactions for the �exible interface residues. Depending on
the size of the target, a few hundreds to thousand models from rigid-body docking
with ATTRACT were selected for iATTRACT re�nement. �e re�nement param-
eters were chosen as speci�ed in [393] and [391]. Structures were in general not
rescored a�er iATTRACT re�nement.

9.2.3. Molecular dynamics refinement

�e structures were converted to the AMBER atom type description using the pdb4amber
tool. A Generalized-Born implicit solvent model (igb=8) was used with the newest
version of the AMBER force �eld �14SB [60]. Minimization and molecular dynamics
re�nement in implicit solvent with AMBER 14 [60] were carried out as described in
Chapter 6.
For re�nement in explicit solvent with GROMACS version 4.6 (www.gromacs.org)
[37, 356, 2], structures were converted into the gro format with the tool pdb2gmx.
Simulations were run with explicit solvent using the TIP3P water model and the
AMBER99SB-ILDN force �eld at a temperature of 300 K. �e positions of the back-
bone atoms were restrained with force constant 1000 kJ/mol/Å2 in x, y and z di-
rection.
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Table 9.1. Results for ATTRACT predictions in CAPRI rounds 28-36.

Target Type Best model fnat IRMSD [Å] Classi�cation

59 protein-protein 5 0.18 3.8 acceptable (2?)
60 peptide-protein 5/6 1.0/0.94 0.44 high (2? ? ?,4??)
61 peptide-protein 1 0.76 0.5 medium (5??)
62 peptide-protein 1 0.92 0.39 high (2? ? ?, 3??)
63 peptide-protein 1 0.81 0.49 high (2? ? ?, 3?)
64 peptide-protein 2 0.87 0.42 high (3? ? ?, 2??)
65 peptide-protein 2 0.27 3.7 incorrect
66 peptide-protein 1/1 0.5/0.75 1.3/2.1 acceptable (1?)
67 peptide-protein 5 0.88 0.8 medium (2??, 8?)
68–94 protein-protein - - - no submission
95 protein-protein 3 0.5 3.3 acceptable (5?)
96 protein-protein 3 0.15 2.96 acceptable (1?)
97 protein-protein 8 0.05 12.2 incorrect
98–101 protein-protein - - - no submission
102 protein-protein - - - not yet available
103 protein-protein 10 0.27 12.2 incorrect
104 interfacial water 4 0.68 0.92 high (1? ? ?,9??), water (5++)
105 interfacial water 3 0.66 1.2 medium (10??), water (7+++)
106 protein-protein - - - not yet available
107 protein-protein 7 0.05 17.42 incorrect
108-109 peptide-protein - - - canceled

9.3. Results and Discussion

In CAPRI rounds 28–36, we submi�ed predictions for targets 59-67, 95-97 and 102-
107 (we did not participate in the CASP-CAPRI experiment in round 30 and in CAPRI
round 32; round 36 was canceled before the submission deadline). Since the templates
for the targets in round 32 (targets 98–101) were all of very low sequence identity,
we did not a�empt to model these targets and to predict possible complex structures.
Note that indeed none of the predictors achieved any successful prediction for round
32.

Table 9.1 shows a summary of the results. �e targets vary strongly in terms of
interaction type and docking di�culty. In particular, many targets of the most recent
CAPRI rounds involved a high degree of �exibility and consequently, results for all
predictor groups were rather poor. In the following, we discuss our predictions and
the challenges we faced for some of the targets.
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9.3.1. Round 28 (Targets 59–64)

Round 28 consisted of one protein-protein complex (target 59) and �ve peptide-
protein complexes (targets 60–64). Target 59 corresponded to the Edc3 LSm domain,
an activator of the mRNA decapping complex, with a motif from Rps28B. NMR en-
sembles of structures for the LSm domain were available both in the apo form and
bound to another motif and we used all NMR models removing the highly �exible
regions prior to docking [449, 142]. For Rps28B, we used an ensemble of homology
models created with MODELLER [482] based on available structures [488, 15]. We
performed ATTRACT ab-initio rigid-body docking and subsequent molecular dy-
namics re�nement with AMBER [60]. For this target, we obtained two acceptable
structures. �e best submi�ed model deviated from the native structure at the inter-
face by 3.8 Å and retrieved 18% of the native contacts. To date, a more detailed anal-
ysis for this target is not possible, since the experimental structure has not yet been
published. Target 60–64 were structures of importin-α binding to di�erent peptides
derived from nuclear localization signals (NLSs). NLSs contain one or two clusters
of basic residues and are recognized by the import receptor importin-α [63]. Several
structures of importin-alpha in complex with di�erent peptides were available at the
time of round 28 which showed two binding sites: a major and a minor site. �e
peptides in Round 28 were derived from nuclear localization signals and had been
optimized towards binding to the minor site [63]. In the crystal structure, the major
site was also occupied and so evaluation of these targets was carried out for both the
major and the minor site. We generated models for the peptide based on the available
crystal structures and used this in an ATTRACT rigid-body docking with ambigu-
ous distance restraints towards the major and the minor sites. �e best models were
then re�ned by an energy minimization with AMBER [60]. For all but one target,
we achieved high-quality predictions (Figure 9.1). However, we failed to predict the
α−helical turn in the peptide when binding to the minor site. Here, possibly more
extensive peptide structure modeling [435] prior to complex prediction could have
improved the results.

9.3.2. Round 29 (Targets 65–67)

In Round 29, three distinct peptide-protein complexes were proposed as targets. Tar-
get 65 and 66 were complexes of proteins with a SSB C-terminal peptide. For both
targets, we analyzed available structures of other proteins in complex with a SSB
C-terminal peptide (PDB 3UF7, 3Q8D, 3C94) [380, 280] and identi�ed a conserved
binding mode with an hydrophobic anchor at the C-terminus and a solvent exposed
part of the peptide, although in general the peptide appeared relatively �exible. We
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(a) Major site. (b) Minor site.

Figure 9.1. Peptide-protein docking model for target 60 (docked peptide indicated as red sticks,
importin-α receptor shown as grey surface) superimposed on the native structure (PDB 3ZIN, bound
peptide in black). Peptide binding to importin-α was modeled using a combination of homology mod-
eling and molecular dynamics re�nement. For this target, and related targets 62-64, several three-star
quality models were submi�ed.

extracted the peptide conformations from the available complexes, recombined parts
of the peptides from di�erent crystal structures to generate additional conformations
and used this peptide ensemble in a fully blind coarse-grained search of the entire
protein surface combined with two stages of �exible re�nement [391]. Before re�ne-
ment, the rigid-body models were �ltered to detect models with a buried phenylala-
nine at the C-terminus.

Target 65 was a complex with RNase Hi [345]. For this target we did not gener-
ate any near-native prediction, since we did not su�ciently model the protein’s loop
�exibility at the peptide binding site (we only used a single crystal structure for the
protein during docking [204]). We therefore failed to detect the correct pocket. Tar-
get 66 corresponded to a PriA helicase in complex with a SSB C-terminal peptide [45].
We generated one model of acceptable quality (top 1) and one model (top 2) which
had a very similar orientation of the peptide but an incorrect peptide conformation
(α-helical turn) (Figure 9.2). In our top-ranked model, the whole peptide was in con-
tact with the protein surface, whereas in the crystal structure the N-terminal part of
the peptide is solvent-exposed. �e tendency to maximize the interface between a
�exible peptide and a binding region can be a�ributed to the use of an implicit sol-
vent model during �nal re�nement (see Methods). In future cases, we will consider
explicit solvation during re�nement of peptide-protein complexes which may help
to improve the accuracy of the predictions.
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(a) top 1 (b) top 2

Figure 9.2. Predicted structural models (top1 and top2) for target 66 (docked peptide in red, receptor
as grey surface) superimposed on the native structure (PDB 4NL8, bound peptide in black).

Target 67 corresponded to a WW domain in complex with an extended peptide
containing proline (P) residues. Several structures of PPXY motifs bound to a WW
domain were available in the PDB [47] and we used these to build initial models of
the peptide-protein complexes. Since only a limited number of complexes were gen-
erated it was possible in this case to use restrained molecular dynamics simulations
in explicit solvent with GROMACS for re�nement (1 ns simulations at room tempera-
ture and normal pressure, see Methods). Finally, the models were energy-minimized
with sander of the AMBER package. All our 10 submi�ed models were at least of
acceptable quality and the best model had an IRMSD of 0.8 Å and retrieved 88 % of
the native contacts (medium quality).

9.3.3. Round 31 (Targets 95–97)

Round 31 comprised three very challenging protein-protein complexes as targets. For
target 95, binding of an ubiquitylation enzyme PRC1 (Bmi1/Ring1b ubiquitin ligase)
to the nucleosome had to be predicted [300]. PRC1 ubiquitylates the histone H2A tail
at residue LYS 119 [320, 479]. Furthermore, several residues on PRC1 (ASP 56, LYS
92, LYS 93, LYS 97 and ARG 98 on Ring1b and LYS 62 and ARG 64 on Bmi1) had been
identi�ed as important for binding by mutational experiments [36]. �ere was also
experimental evidence for PRC1 binding to DNA (although only for isolated DNA,
not for the nucleosome) [36] and data pointing to an important role for the acidic
patch in PRC1 function [264]. We used the unbound protein structures for PRC1
[36] and the nucleosome [464] and performed a large scale rigid-body docking search
with a 10 Å upper harmonic distance restraint between the Cα atoms of residue LYS
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(a) Top view. (b) Side view.

Figure 9.3. Best model (top 3) for target 95 superimposed on the native structure (PDB 4R8P, black).
PRC1 binds to the nucleosome at the histone acidic patch.

118 on the H2A tail (LYS 119 was not resolved in the structure) and residue CYS 85 in
the active site of the ubiquitin ligase. Subsequently, we re�ned the best clusters with
iATTRACT and short molecular dynamics simulations with AMBER. We found two
types of solutions among the top-ranked models: one with PRCC1 contacting the
acidic patch and one with PRCC1 binding to nucleosomal DNA similar to an earlier
model [36]. We hence submi�ed 5 models for each type of solution and achieved 5
acceptable model with the best model being very close to medium quality (LRMSD
5.03 Å, fnat 0.5, Figure 9.3).

Targets 96 and 97 were complexes of designed α-repeat proteins binding to GFP
(PDB 4XL5 and 4XVP) [75]. We used our standard ab-initio docking protocol in
combination with additional scoring with the Rose�a force �eld which has been used
in the past for protein design [477, 225]. We achieved acceptable quality for target
96. However, we failed to accurately predict the smaller target 97 sampling solutions
where the orientation of the ligand in our models was rotated by 180° with respect
to the native structure. �is failure can be a�ributed to de�ciencies of the scoring of
the docking models selected for further re�nement.

9.3.4. Round 34 (Targets 104–105)

In Round 34, the challenge was to model the placement of interfacial waters. �e
targets were pyocin DNase domains in complex with immunity proteins which were
structurally similar to previously solved structures in colicin. We built an initial
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model of the complex by homology modeling using a colicin complex [486] and re-
�ned this with backbone restrained molecular dynamics simulations in explicit sol-
vent. We achieved a high-quality model for target 104 and medium quality models
for target 105. For the prediction of the interfacial water placements we followed
our molecular dynamics based protocol described previously [101, 261]. Brie�y, in
this protocol water molecules are placed using the AMBER leap module allowing
for partial overlap of waters with solute atoms at the interface (resulting in a slight
over-hydration of the interface). �e hydration structure is then allowed to relax
during short MD simulation including positional restraints on the protein backbone.
Finally, all waters outside the interface are removed followed by energy minimiza-
tion to optimize the position and orientation of each water molecule at the interface
(see details in reference [261]). �e prediction of interfacial waters was more accu-
rate for target 105 (medium quality model), probably because there were less water
molecules to predict for this target. Interestingly, in the overall CAPRI evaluation
it was found that high accuracy water predictions were not necessarily generated
only for high-quality models of the protein-protein complex (Lensink, unpublished
data). �is is in contrast to previous results for interfacial water predictions in CAPRI
[261] and indicates that probably only certain key groups at the interface have to be
in near-native position to allow correct placement of waters.

9.3.5. Round 33/35 (Targets 102–103 and 106–107)

In these two rounds, the targets were a complex of haemopexin with the haemopexin
utilization protein (huxA). �e complex was solved in the apo state and with haem
bound. It was previously speculated that the C-terminal domain of huxA interacts
with haemopexin [138]. However, at the time of submission for Round 33, structural
data was only available for the N-terminal secretion domain [18]. Hence, the target
was proposed again as a target in Round 35 o�ering an unbound structure of full-
length huxA. Still, we were not able to generate any near-native predictions, since
binding of huxA to haemopexin involves a conformational change in a loop on HuxA
which is partly disordered in the unbound form. Unfortunately, this loop yields steric
clashes with haemopexin when superimposing the unbound huxA structure on the
complex. A strategy involving detailed �exibility analysis prior to docking, removal
of �exible loops and a-posteriori loop rebuilding (using e.g. the protocol proposed in
Chapter 7) would have certainly yielded improved results for this target.
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9.4. Conclusion and Outlook

In CAPRI Rounds 28-36, we submi�ed predictions for 18 targets (16 distinct tar-
gets) and achieved at least acceptable predictions in 12 cases. �is result can be
considered as highly successful given the di�culty of many of the targets. �e
coarse-grained ATTRACT docking approach in combination with di�erent re�ne-
ment schemes proved to be versatile in dealing with a variety of di�erent targets
that ranged from peptide-protein interactions to docking of a large protein to the
nucleosome. �e CAPRI challenge has also triggered the development of several ex-
tensions of the original ATTRACT approach in the area of peptide-protein docking
(pepATTRACT) [391] and of re�nement (iATTRACT) [393] within the last rounds.
For several CAPRI targets, we found that homology modeling in combination with
restrained molecular dynamics re�nement yielded medium and high-quality predic-
tions. In some cases, signi�cant conformational change or inaccuracies in the homol-
ogy modeling have contributed to the failure of the docking search. More detailed
�exibility analysis prior to docking is needed to select appropriate conformational
ensembles and to identify �exible loops. It might be bene�cial to eliminate such
highly �exible loops prior to docking if the chances to correctly model the bound
forms are small and to tackle the generation of a bound loop structure a�er docking
(see also Chapter 7). Such approaches may also be useful for improving protein-
protein complexes predicted based on sequence similarity to a known template com-
plex. Furthermore, improvements in scoring towards distinguishing structures of
medium or higher quality from just acceptable solutions are highly desirable and at
the focus of our future research.
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10. Peptide Recognition in the ER
Associated Degration Pathway

Chaperones and co-factors like the DnaJ family recognize misfolded pro-
teins in the endoplasmic reticulum by binding to aggregation-prone se-
quence stretches. �ese sequence motifs are typically buried when the pro-
tein is folded but remain accessible in the misfolded state. Hence, inter-
actions with these peptidic motifs can only occur in unfolded or misfolded
conformations and therefore binding to these sequences can serve to detect
incorrect protein folding. While many chaperones recognize a wide range
of hydrophobic sequences, several DnaJ family members display highly
sequence-speci�c substrate binding. However, the molecular details of this
speci�city are not known, since atomic structural data of these interactions
is lacking to date. �is chapter describes an application of the pepATTRACT
protocol (Chapter 6) to study peptide recognition by the DnaJ family mem-
ber and chaperone cofactor ERdj5. We identi�ed a possible peptide binding
site on the Trx2b domain and proposed a set of frequently contacted residues
for further mutational studies.

10.1. Introduction

In order to carry out their biological function, most proteins adopt a de�ned three-
dimensional structure. �is folding process is o�en controlled by molecular chaper-
ones [176] that can recognize misfolded proteins and either refold them or mark them
for degradation. Hence, chaperones exert protein quality control and prevent poten-
tially harmful aggregation processes of misfolded proteins. �e endoplasmic reticu-
lum (ER) processes about one third of the proteins encoded in the human genome.
Folded proteins are then transported along the secretory pathway and either are in-
corporated in the cell surface or secreted. Since detection mechanisms are limited
once the proteins are secreted, asserting correct folding in the ER is vital [54] and
failures in chaperone-assisted folding processes are associated with numerous hu-
man diseases [169, 183].

Several ER-associated major chaperone families have been identi�ed in di�erent
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organisms and many of them are able to bind to a large variety of proteins that are
unrelated in sequence and structure. �is �exibility arises from the fact that chap-
erones, like the mammalian ER Hsp70 family member BiP [135], o�en recognize
short stretches composed of hydrophobic residues that are buried if the protein folds
correctly. All Hsp70 family members act as central chaperones and can further asso-
ciate with multiple (co-)chaperones and folding enzymes [176] like the DnaJ cofac-
tors. Some DnaJ cofactors can also recognize misfolded proteins and transfer them
to their Hsp70 interaction partners. In addition to binding to the generic hydropho-
bic recognition pa�erns, in higher eukaryotes, di�erent DNaJ cofactors exist that
convey speci�city to their Hsp70 chaperone [215, 89]. Recently, Behnke et al. in-
vestigated the sequence-speci�c binding preferences of di�erent members of the ER
Hsp70 chaperone system in vivo. Interestingly, they found that the DnaJ family mem-
ber ERdj5 interacted speci�cally with aggregation-prone sequences in two secretory
pathway proteins: immunoglobulin γ1 heavy chain (mHC) and NS-1 κ light chain
(Behnke et al. (2016), Mol. Cell, under review). A�er binding to its substrates, ERdj5
reduces disul�de bonds and can thereby assist folding or facilitate subsequent degra-
dation of the protein [327]. However, detailed structural insights into the interaction
between the peptidic recognition sequences and ERdj5 and the molecular origin of
substrate speci�city are unavailable to date.

Computational peptide-protein docking methods can complement experimental
structure characterization by predicting the structure of the peptide-protein complex
from the structure of the individual protein and the peptide sequence. �e full-length
ERdj5 protein has been previously characterized by X-ray crystallography [174]. �e
protein is organized into an N-terminal cluster and a C-terminal cluster. It contains
a J-domain and in total 6 structurally similar tandem thioredoxin domains (Trx1,
Trxb1, Trx2, Trxb2, Trx3, Trx4) of which two (Trxb1 and Trxb2) lack the catalytic,
redox-active CXXC motif. �e N-terminal cluster is composed of the J-domain and
Trx1, Trxb1, Trx2 and Trxb2.

Here, we applied the peptide-protein docking protocol pepATTRACT (Chapter 6)
to model the interactions between ERdj5 and various peptides. We investigated pos-
sible peptide binding sites on ERdj5 and identi�ed ERdj5 residues that form important
contacts with the peptides.

10.2. Methods

We used the pepATTRACT protocol with default parameters as described in [391]
to model interactions between ERdj5 and di�erent peptides. We used the following
peptide sequences
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• mHC2.2: GYTFTSYWMHWV

• mHC4: KFFSYATLTVDF

• mHC6.1: CASYDYDWFAYW

• NS1-7.3: SGGASVVCFLNNF.

During docking, the peptides’ termini were le� uncharged, since they are usually
a part of larger proteins. We extracted the structure of the Trxb2 domain from the
crystal structure of the full-length ERdj5 protein (residues 351-456 of PDB 3APO)
[174]. Missing residues were added to the structure with MODELLER [482] and mu-
tated residues were changed back to cysteine using PyMOL [404]. Hydrogen bond
analysis was carried out with VMD [197] with a distance cuto� of 3.5 Å and an angle
cuto� of 30°.

10.3. Results and Discussion

�e goal of this work was to obtain structural insights into peptide binding to the
chaperone-cofactor and disul�de reductase ERdj5. We employed the pepATTRACT
peptide-protein docking approach [391] to predict possible binding modes of pep-
tides to ERdj5 [174] (see Methods). Previous truncation experiments showed that
peptide recognition occurs at the N-terminal cluster. Furthermore, the mHC2.2 pep-
tide displayed the highest binding a�nity towards the Trxb2 domain (Mideksa and
Feige, unpublished data). �erefore, in this study, we focused on the interactions of
peptides with the Trxb2 domain.

�e docking results for mHC2.2 are shown in Figure 10.1 as an example. When
considering only solutions that are sterically compatible with the full-length protein,
there is a clear preference for peptide binding in the vicinity of the loop in which the
redox-active motif is located in other Trx domains (see also Figure E.1). Figure 10.2
displays representative models for binding in di�erent pockets close to the redox-
active motif. Interestingly, in many models, a hydrophobic residue acts as an anchor
inserting itself into a small pocket on the protein surface (Figure 10.2 (a), (c), (e)
and (g)). For mHC2.2, we saw that residue serine 6 o�en formed a large number of
polar interactions with the protein. �is corresponds well to a series of mutational
experiments that indicated a strong contribution of this residue to the overall binding
a�nity in addition to the important contributions of hydrophobic residues (Behnke et
al., 2016, Mol. Cell, under review). Most docking models exhibit extensive hydrogen
bond formation, especially between the peptide main chain and protein side chain
atoms (examples are shown in Figure 10.2 (b), (d), (f) and (h)).
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(a) Front view. (b) Back view.

Figure 10.1. Docking results for mHC2.2 peptide binding to ERdj5 Trxb2 domain. �e position of
all 1000 �nal models is shown by marking the position of SER6 by a red sphere. �e docking models
are superimposed on the full-length structure of ERdj5 [174] (gray). �e Trxb2 domain is highlighted
in dark gray. �e positions equivalent to the redox-active motif in other Trx domains are shown in
yellow.

We also found that polar peptide groups such as serine, threonine and asparagine
side chains and the OH group on tyrosine residues o�en engaged in hydrogen bonds.
�ese polar interactions most likely convey binding speci�city. Previous experiment
already con�rmed the strong in�uence on binding when mutating serine 6 in mHC2.2
to proline (Behnke et al., 2016, Mol. Cell, under review) and we found that this side
chain forms the largest number of hydrogen bonds with the protein among all pep-
tide side chains in mHC2.2 (data not shown). Our analysis for the other peptides
suggests contributions for threonine 7 and threonine 9 in mHC4 (although the over-
all contributions to hydrogen bonds was much lower than for serine 6 in mHC2.2),
very strong contributions for aspartate 7 in mHC6 and strong contributions for serine
5 in NS1-7. Note that this result might be generally biased towards residues located
in the middle of the sequence. In the future, the contribution of these residues to the
overall binding a�nity could be probed by mutational experiments.

In order to �nd protein interface residues as candidates for mutational studies,
we analyzed the available models and selected residues that either formed hydrogen
bonds with the peptide or interacted with hydrophobic side chains. We identi�ed the
following residues

• involved in hydrogen bonds (via side chains): 438K, 417Q, 412D, E359, 428T,
437K, 480N, 429S, 404S, 356N, 366R or 361R (potential binding pocket on the
other side of the Trxb2 domain, Figure 10.1 (b))
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(a) mHC2.2 (b) mHC2.2

(c) mHC4 (d) mHC4

(e) mHC6 (f) mHC6

(g) NS1-7 (h) NS1-7

Figure 10.2. Docking models illustrating recurring peptide binding motifs and important interac-
tions. �e Trxb2 domain is shown in dark gray, the peptide in dark red. Polar contacts between the
peptide and the protein are drawn in yellow. 155
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• involved in hydrophobic interactions: 373F, 416F, 370F, 420L, 367W (the last
residue again corresponds to an alternative binding site).

�ese residues could be a starting point for further mutational studies and could help
to validate the peptide binding site.

10.4. Conclusion and Outlook

Here, we described an application of the pepATTRACT peptide-protein docking pro-
tocol to studying peptide recognition and substrate speci�city in the cofactor ERdj5.
We found recurring binding motifs for all peptides involving a hydrophobic anchor
and extensive hydrogen bond formation between peptide and protein. Based on con-
tact analysis, we identi�ed a set of protein residues that could be important for pep-
tide binding. In the future, the proposed interface residues can be tested in mutational
experiments to validate or falsify the binding mode. Once residues in the binding
site have been con�rmed experimentally, the model of the complex can be re�ned by
docking with the pepATTRACT-local protocol [391] (see Chapter 6).
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11. Integrative Modeling of ISWI
Nucleosome Remodeling Enzyme

�e eukaryotic genome is organized in the form of chromatin, a complex
of DNA with compacting and regulatory proteins. �e basic packing unit
is the nucleosome where DNA is wrapped tightly around histone proteins.
�is packaging inevitably leads to the occlusion of DNA sequences that can
no longer be accessed by regulatory proteins and the transcription machin-
ery. To allow dynamic and regulated use of the genome, ATP-consuming
nucleosome remodeling enzymes exchange histones, reposition, assemble,
and disassemble nucleosomes. Structural information for nucleosome re-
modelers are scarce and hence, atomistic insights into the nucleosome slid-
ing mechanism and the auto-inhibition of the enzymes are lacking to date.
�is chapter presents an application of di�erent docking protocols in AT-
TRACT with the aim of modeling the full-length structure of the ISWI nu-
cleosome remodeling enzyme using cross-linking/mass spectrometry (XL-
MS) and small-angle X-ray sca�ering (SAXS) data. We obtained a model
of the inactive conformation of the ISWI ATPase domain that is compati-
ble with all available experimental data. We further identi�ed a possible
binding site for N-terminal auto-inhibitory motifs on ATPase lobe 2. Fi-
nally, the conformation of the C-terminal DNA-binding HSS domain with
respect to the ATPase domain was predicted based on XL-MS data and val-
idated by SAXS. �e generated models yielded detailed insight into the reg-
ulation and auto-inhibition of ATP-dependent nucleosome remodeling en-
zymes. �is chapter also describes a new integrative modeling approach
in ATTRACT that combines XL-MS data and docking (ATTRACT-XL). �e
developed integrative modeling approach is broadly applicable to many
transient multi-component assemblies.

11.1. Introduction

�e eukaryotic genome is tightly packaged in the nucleus with the help of histone
proteins. A 147 base pair DNA stretch is wrapped around the histone core octamer

157



11. Integrative Modeling of ISWI Nucleosome Remodeling Enzyme

forming the so-called nucleosome. However, this tight wrapping occludes access
to DNA sequences by the DNA transcription machinery and proteins that regulate
gene expression. �is limitation is overcome by ATP-dependent nucleosome remod-
eling complexes that reposition, eject or modify nucleosomes. Nucleosome remodel-
ing complexes contain a catalytic subunit that possesses ATPase activity and further
regulatory subunits. �e ISWI-family remodeler complexes contain the ISWI protein
that can translocate DNA and slides nucleosomes [484, 524, 382]. ISWI-family remod-
elers can produce equally spaced nucleosome arrays [249] and have an important
role in chromatin assembly a�er DNA replication and maintenance of higher-order
chromatin structure [87]. Due to their crucial biological function, strict control of re-
modeling activity is vital and the ISWI protein is tightly regulated by auto-inhibitory
motifs and a variety of nucleosomal epitopes [78, 77, 175, 80, 91].

�e ISWI protein contains two major domains–an ATPase domain that is similar
to other SF2 helicases and a DNA binding C-terminal HAND-SANT-SLIDE domain–
and several regulatory regions [78] (Figure 11.1). ISWI’s activity is regulated by two
nucleosomal epitopes: the protein is activated by binding to a basic patch on the his-
tone H4 tail and by extranucleosomal linker DNA [77, 175, 80, 91]. ISWI is negatively
regulated by the N-terminal auto-inhibitory region AutoN region (RHRK motif) that
suppresses ATP hydrolysis [78]. AutoN inhibition of ISWI’s ATPase activity is li�ed
by binding to the histone H4 tail that contains a similar basic patch [77, 78]. Re-
cently, it was discovered that a highly conserved, negatively charged region close to
the AutoN motif (“acidic patch”) also strongly inhibits ISWI ATPase activity (Figure
11.1). Mutations in either motif resulted in increased ATPase activity (Ludwigsen,
unpublished data). However, combined mutations in both motifs did not increase
the activity to a large extent beyond the e�ect of mutations in either region. Hence,
these experiments suggest that these two motifs might form a functional inhibition
module (Ludwigsen and Müller-Planitz, unpublished data). However, atomistic in-
sights into the auto-inhibition mechanism of ISWI are lacking to date. Full-length
nucleosome remodelers have been refractory to high-resolution structure determi-
nation by X-ray crystallography. Currently, only the structure of the isolated HSS
domain [497, 168] and a few structures of the ATPase domain in other SF2 heli-
cases have been resolved [410, 120, 436]. In particular, no structural information is
available for the ISWI N-terminal region (NTR, residues 1–110), in which the Au-
toN and acidic patch motifs reside. Several experiments have indicated that ISWI
undergoes conformational changes depending on external conditions; e.g., presence
of nucleotides, and that several conformations may exist in vivo [263, 357]. Cross-
linking/mass spectrometry (XL-MS) is a low-resolution technique for characterizing
structures of proteins and protein complexes in solution (see also Section 2.4.5). In
a XL-MS experiment, the protein is cross-linked with a chemical agent converting
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ATPase lobe 1ATPase lobe 2 HAND-SANT-SLIDE (HSS)AutoN+acidic patch

Inhibits ATP hydrolysis

Antagonized by histone H4 tail
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Hydrolyzes ATPHydrolyzes ATP Activated by
histone H4 tail

Slides nucleosomes
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speci�city
Directionality

spacing
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Figure 11.1. Schematic representation of the domains and regulatory regions of the ISWI nucleosome
remodeling enzyme. Alignment of 380 ISWI sequences focused on the AutoN+acidic patch region was
performed with ClustalOmega [417] and visualized with Weblogo [88, 396].

non-covalent interactions into covalent bonds. �e cross-linked protein is then di-
gested and the resulting peptide mix is examined by mass spectrometry to identify
precisely which residues were involved in contacts. Mass spectrometers, biochemi-
cal protocols and so�ware have advanced considerably since the �rst experiments at
the beginning of the century [475] and numerous XL-MS experiments in conjunction
with computational modeling have yielded important insights into the structures of
di�erent proteins and protein assemblies [72, 352]. �is has established XL-MS as a
valuable tool for the structural biology community.

Here, we set out to elucidate the structure of the full-length ISWI protein by com-
bining data from XL-MS and SAXS with computational docking. To achieve this goal,
we developed a robust integrative modeling approach, ATTRACT-XL that makes use
of XL-MS data in the ATTRACT docking engine [99]. �e approach was validated
on XL-MS data of a known protein and then applied to study the structure of ISWI.
�e resulting models provide important insights into regulatory mechanisms and
functional states of an ATP-dependent nucleosome remodeling enzyme.
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11.2. Methods

11.2.1. Experimental data

Measurement of ISWI ATPase and remodeling activity were carried out by Johanna
Ludwigsen, Nadine Harrer and Felix Müller-Planitz (BioMedical Center, Ludwigs-
Maximilians-University Munich) as described in [282, 315]. Cross-linking/ mass spec-
trometry (XL-MS) data were collected for Drosophila melanogaster ISWI by Na-
dine Harrer and Felix Müller-Planitz. �ree types of XL-MS experiments were per-
formed. Cross-linking was performed in the apo state and in the presence of the
nucleosome. Di�erent sites on the ISWI ATPase domain were probed by site-speci�c
photo-crosslinking with a genetically modi�ed amino acid [136]. Lysine-lysine cross-
linking was performed on the full-length protein with the cross-lining agent bis(sulfosuccinimidyl)glutarate
(BS2G). Cross-linking/mass spectrometry data were �ltered both automatically and
manually by inspection of the spectra to eliminate false positives. �e size of the
crosslinking agent and the size of the side chains it a�aches to yield an upper limit
for the distance between the Cα atoms of cross-linked residues. Considering a mar-
gin for possible conformational change and inaccuracies due to homology modeling,
we obtained the following upper distance limits: 15 Å for photo-XL and 25 Å for
BS2G.

SAXS data were measured on full-length ISWI and ISWI ATPase (residues 26–644)
and collected at beam line 12ID at Argonne National lab and at a beamline in France
by Linda Bruetzel and Jan Lipfert (Physics Department, Ludwigs-Maximilians-University
Munich). Measurements were essentially as described in [273, 424]. �e data at dif-
ferent concentrations are well superposable a�er rescaling by intensity, indicating
good data quality and the absence of aggregation. In line with this observation, the
data at di�erent concentrations give (within experimental error) the same radius of
gyration obtained from Guinier analysis (Rg = 42 ± 0.5Å). Note that our docking
models only contain atomic coordinates for≈ 75% of the residues of full-length ISWI
and ≈ 83% of the residues of ISWI ATPase, which makes comparison to SAXS data
challenging [398]. �at is why we only used SAXS data for validating and selecting
a representative model instead of using the SAXS data for sampling as described in
Chapter 8.

11.2.2. Structure preparation

Sequence alignments for homology modeling were obtained from ClustalOmega web
service [417, 269, 301]. We built a homology model of bovine serum albumin (PDB
3V03) [289] from the structure of human serum albumin (PDB 4G03) with the MOD-
ELLER program [482] through its UCSF Chimera [500] interface and divided it into
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three parts (residues 3–206, 207–397 and 398–583). For each part, we repacked the
side chains with SCWRL4 [239] to avoid bias towards the native structure. �ese
three parts were then used as input during docking. For ISWI, only a structure of the
C-terminal HAND-SANT-SLIDE domain has been crystallized so far (PDB 1OFC)
[168]. We therefore modeled the ATPase domains (lobe 1 and lobe 2) by homology
from the structure of Chd1 (PDB 3MWY) [177] using the MODELLER program [482,
500]. �e ISWI ATPase domain shares more than 40 % sequence identity with the
Chd1 ATPase domain. PDB structures of Snf2 family members were detected with
blastp [58]. �e hinge region between the two ATPase lobes was predicted by the
HingeProt server [122] and the ATPase domain was cut into two parts at this pre-
dicted hinge (lobe 1: residues 116–351; lobe 2: residues 352–637). Flexible regions
which di�ered signi�cantly between di�erent experimental structures of Snf2 AT-
Pases were removed.

11.2.3. Ab-initio docking

Ab-initio protein-protein and peptide-protein docking was performed as described
in [99] and [391]. �e termini of the peptides were not charged, since they were
derived from a protein region (ISWI NTR or histone H4 tail).

11.2.4. Representation of XL-MS data in ATTRACT

�e cross-linked residue pairs were either restrained by harmonic distance restraints
or bump restraints. Upper harmonic distance restraints between the Cα atoms are
given by

V harmonic
rest (rij) = 1

2k (rij − dmax)2 for rij > dmax

with the maximum distance dmax = 15 Å for photo-crosslinks and dmax = 25 Å for
BS2G cross-links. �e force constant k was set to 10. Bump restraints are formulated
as

V harmonic
rest (rij) =



1
2k
[
(rij − r1)2 − r2

0

]2
for r < r1 + r0

1
2kr

4
0 for r 5 r1 and r = r2

1
2k
[
(rij − r1)2 − r2

0

]2
for r < r2 and r > r2 − r0

0 else.

�e force constant was set to−0.1 and r0 was set to 3 Å. We used r1 = 25 Å for BS2G
cross-links [132]. r2 was chosen such that r1 − r2 = 7 Å. Due to their shorter range
and higher accuracy, photo-crosslinks were only represented by harmonic potentials.
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11.2.5. Integrative modeling protocol driven by XL-MS data
(ATTRACT-XL)

�e ATTRACT-XL protocol consists of the following steps (Figure 11.2):

1. Input data preparation and data representation. �e protein structures and the
restraints derived from the experimental data are converted into the ATTRACT
format.

2. Repeated coarse-grained ATTRACT rigid-body docking [99] with subsets of
cross-links represented as harmonic distance restraints.

3. Coarse-grained ATTRACT rigid-body docking with all cross-links represented
as bump restraints.

4. iATTRACT re�nement [393] with bump restraints.

5. Analysis and model validation.

�e protein structures were converted into the ATTRACT representation with the
ATTRACT toolsaareduce andreduce. Missing atoms were built with PDB2PQR
[111, 110] and protonation states determined with PROPKA [266]. Initially, for each
subset of cross-links, 10,000 starting positions were generated with random orien-
tation of the protein domains. �e centers-of-mass of the domains were distributed
randomly on a sphere of radius 100 Å to avoid steric overlap between the domains.
As a �rst step, each of the starting con�gurations was minimized in 50 step in its
orientational degrees of freedom only using only the harmonic restraints derived
from the cross-linking data (“ghost” mode). �en the structures were optimized in
a potential energy minimization using the ATTRACT coarse-grained force �eld and
the harmonic restraints simultaneously [99]. �is process was repeated for all pos-
sible combinations of the cross-links. All the resulting models were subsequently
minimized using all the available data as bump restraints (photo-crosslinks were still
represented as harmonic restraints). �e structures were then ranked by their AT-
TRACT score evaluated within a squared cuto� of 50 Å2 and the bump restraint
energy derived from the cross-linking data and the top-ranked 200 models were sub-
jected to �exible re�nement with the iATTRACT protocol with se�ings as described
in [393] again using all the cross-linking data as bump restraints (and the photo-
crosslinking data as harmonic restraints). In addition to the restraints derived from
the XL-MS data, we also applied an upper harmonic distance restraint between the
residues forming the linker between ATPase lobe 1 and lobe 2 with a maximum dis-
tance dmax = 10 Å.
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Figure 11.2. Flowchart of the XL-MS driven integrative modeling protocol in ATTRACT.
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11.2.6. Analysis and model validation

�e �nal models were assessed with respect to whether they were consistent with the
experimental data used during the docking and additional data. We mapped recorded
mono-link sites onto the structures and also looked at the absence of inter-domain
cross-links at certain sites. For ISWI, we further compared the models against the
SAXS pro�le. �e model was ��ed to the experimental sca�ering curve using FoXS
with default parameters [397, 399]. We calculated the precision of the �nal model
similar to the procedure used in IMP [378] as the minimal average pair-wise Cα
RMSD between the top-ranked models that ful�lled the experimental data. �e pre-
cision among an ensemble of models that are consistent with the input data provides
an estimate for the lower bound of the model error [402]. We also performed co-
evolution analysis using the GREMLIN web-server with default se�ings [214, 331]
and compared the predicted contacts to our docking models. For protocol validation
with BSA, we assessed the docking models by interface root-mean-square deviation
(IRMSD), ligand-RMSD (LRMSD) and fraction of native contacts (fnat) according to
the criteria established in the blind docking challenge CAPRI [303, 257, 259, 260] (see
Chapter 3, Table 3.2).

11.3. Results and Discussion

For predicting the full-length structure of the ISWI protein, we designed an inte-
grative modeling approach (Figure 11.2) combining cross-linking/mass spectrome-
try (XL-MS) data and docking in the ATTRACT program (ATTRACT-XL) [506, 99].
�e goal was to create a method that could deal with conformational heterogeneity
and false positives while retaining good convergence properties that are necessary
for sampling multi-body problems. ATTRACT-XL represents contacts derived from
the cross-linking experiments either as upper harmonic distance restraints or bump
restraints during ATTRACT rigid-body docking [99] and iATTRACT �exible re�ne-
ment [393] (see Methods). Harmonic restraints are employed in the initial stages
of the protocol to promote convergence of docking solutions by applying a force to
the atoms that do not ful�ll the restraints. In contrast, the bump potentials favor
formation of contacts. However, atoms that are above the distance threshold do not
experience any forces and hence, violation of XL-MS restraints is permi�ed yield-
ing increased tolerance for false positives and conformational heterogeneity in the
later stages of the integrative modeling protocol. Initially, several million structures
were sampled. �e generated models were then analyzed and validated based on
additional experimental data (see Methods for details).
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11.3.1. ATTRACT-XL protocol validation

To test and validate the ATTRACT-XL approach, we obtained BS2G XL-MS data for
bovine serum albumin (BSA) and used docking to reconstruct the structure of the
full-length protein. We divided the protein into three equally sized parts and used 14
cross-links between these “domains” to model the full-length structure (see Methods).
First, we validated the cross-links on the crystal structure of BSA (PDB 3V03) [289]
and found a false positive rate of 21% (3 cross-linked residue pairs had a Cα − Cα
distance larger than 25 Å in the crystal structure, Table F.1).

For the modeling procedure, we used the XL-MS data and two connectivity re-
straints for the linkers between the “domains” allowing a maximum separation of
10 Å between C and N atom of residues i and i+ 1. �e re�ned 200 models all cor-
rectly reproduced the overall topology and ful�lled all 11 true positive cross-links.
�e protocol also identi�ed two of the false positive cross-links, since these cross-
links were not ful�lled in any of the �nal solutions. We assessed our docking model
against the crystal structure of BSA and found a CAPRI two-star model at rank 1
(IRMSD = 1.6 Å and fnat = 0.69, Figure F.1). �e precision calculated over all 200
models of 5.8 Å con�rmed the convergence of our integrative modeling approach
and gave us con�dence to use ATTRACT-XL for investigating the structure of nu-
cleosome remodeling enzymes.

11.3.2. apo ISWI ATPase domain

We wanted to model the structure of the ISWI ATPase domain and full-length ISWI
to be�er understand ISWI’s biological function and regulation mechanisms. �e AT-
Pase domain contains two RecA-like lobes connected by a �exible linker. When an-
alyzing crystallized structures of other SF2 superfamily members [436, 177, 120],
we found that the internal structure of each of the lobes is well conserved but the
relative orientation of the lobes can di�er drastically (Figure F.3). �ese di�erent
orientations could be related to di�erent functional states of the ATPase. Previous
experiments also showed that ISWI ATPase undergoes a conformational transition
upon DNA binding [78]. We identi�ed a set of high-con�dence cross-links between
the two ATPase lobes including previously published data by Forné et al. [136] (Table
11.1). When mapping the measured cross-links to known structures of SF2 ATPases
[436, 177, 120], several lobe-lobe cross-links were violated (Figure F.3). �erefore,
additional modeling was necessary to resolve the conformational state of the ISWI
ATPase domain that is compatible with the available cross-linking data. We �rst per-
formed a negative control and investigated the conformations predicted by the AT-
TRACT so�ware without experimental information [99]. �erefore we performed a
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Table 11.1. Cross-linking data between ISWI ATPase lobe 1 and lobe 2.

Residue 1 Residue 2 Upper limit for CA-CA distance [Å]

350 548 25.0
168 578 15.0
169 578 15.0
172 578 15.0
120 578 15.0
338 483 15.0

docking run in which we used only the distance between residues 351 and residues
352 as a restraint (sequence connectivity). To account for the �exibility of the linker,
we restrained the N-C bond between the connecting residues to a distance of< 10 Å.
�e orientation of the lobes in the top scoring docking model is similar to that of
the SWI2/SNF2 chromatin-remodeling domain in Rad54 (PDB 1Z3I) [436] (Figure
F.2). �e two conserved motifs implicated in catalysis (DEAH residues 256–259 and
QAMDRAHR residues 536–543) are found in close proximity. �e top-ranked model
predicted by ATTRACT ab-initio docking could be similar to an active conformation
of the ATPase domain. Our empirical force �eld favors this conformation and thus
does not in general bias towards inactive conformations. We analyzed the model
with respect to the distances of the residues for which cross-links had been identi-
�ed (Table 11.1). Apart from the cross-link between residues 350 and 548, which just
re�ects the connectivity between the lobes, none of the cross-links could be ful�lled
by this active ATPase state (Figure F.2).

We performed two-body docking of lobe 1 and lobe 2 using six high-con�dence
inter-lobe cross-links as harmonic distance restraints (Table 11.1) using the standard
ATTRACT protein-protein docking approach [99]. �e �nal 200 models were very
similar to each other (precision 2.3 Å) and were compatible with the high-quality
photo-crosslinks. �e top-ranked model is shown as a representative of the ensem-
ble in Figure 11.3. Note that photo-crosslinks from di�erent sites are the results of
independent experiments (e.g., BPA photo-crosslink sites at residue 483 and residue
578). Furthermore, the absence of chemical crosslinks to lobe 2 at sites 171, 174, 186,
197 and photo-crosslinks to lobe 2 at sites 190 and 199 (in the Chd1 crystal struc-
ture, these positions are close to lobe 2) and the compatibility of the model with the
mono-link data (absence of cross-linking) validate the model (Figure 11.3). We also
compared our docking model and homology models based on previously resolved
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Figure 11.3. Model of ISWI ATPase domain with a novel orientation of lobe 1 (yellow) and lobe 2
(red, the C-terminal bridge domain is drawn in green). Cross-links are shown in gray, sites of photo-
crosslinks are marked by black spheres. Sites where mono-links (in addition to cross-links) were de-
tected are shown in light blue. �e catalytic motifs are highlighted in magenta and the N-terminus of
lobe 1 (residue 116) by an orange circle.

crystal structures of SF2 ATPases [436, 177, 120, 493] to SAXS pro�les obtained for
the ISWI ATPase domain (residues 26–644; Bruetzel and Lipfert, unpublished data).
We used FoXS [399] and CRYSOL [431] to calculate the χ score allowing �ts for
excluded volume and hydration shell parameters (default se�ings). �e results are
listed in Table F.2. Indeed, our docking model �ts very well to the experimental SAXS
data (χ < 1.5 for both FoXS and CRYSOL, Figure 11.4). Our model displayed be�er
correspondence to the SAXS data than most other homology models (except for the
model based on the crystal structure of Chd1).

�e generated docking models for the ATPase domain, however, were completely
di�erent from all existing experimental structures of SF2 ATPases [436, 177, 120]
(Figure F.3) and also di�ered from an earlier interpretation of the photo-crosslinking
data (Figure F.4 (a)) [136]. Most strikingly, the catalytic DEAH and QAMDRAHR
motifs on lobe 1 and lobe 2 were not oriented towards each other (highlighted in ma-
genta in Figure 11.3). Since the conserved motifs were not in proximity, the predicted
model should represent an inactive conformation. Transition to an active conforma-
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Figure 11.4. Fit of ISWI ATPase docking model to SAXS pro�le of ISWI ATPase (residues 26–644)
using FoXS [399] with default se�ings. �e experimental data are shown in black, the calculated scat-
tering pro�le in red.

tions would require a large rotation of the lobes. We would like to emphasize that
this is purely a result of the experimental data since the docking without restraints
favored conformations with these motifs oriented towards each other. Interestingly,
the predicted docking model placed the N-terminal part of the ATPase domain close
to the lobe-lobe interface (marked orange in Figure 11.3). �e cross-linking dataset
contained several cross-links between residues on lobe 2 and the NTR (Harrer, un-
published data). �e location of residue 116 in this docking model would permit
modeling of the NTR (especially the AutoN+acidic patch motifs) close to the lobe-
lobe interface as a bridge between the lobes locking the ATPase in an inactive con-
formation. Release of the NTR from a binding site at lobe 2 could then trigger a
conformational rearrangement of the lobes.

Recently, Xia et al. published a crystal structure of the ATPase domain of Swi2/Snf2
chromatin remodeler in a resting state [493]. Swi2/Snf2 is also a member of the SF2
superfamily and its ATPase domain has approximately 38 % sequence identity with
ISWI’s ATPase domain. Interestingly, a previously unseen orientation of lobe 1 with
respect to lobe 2 was found (Figure F.5). �is conformation is distinct from our pro-
posed docking model, however, similarly to our model, the catalytic motifs are not
oriented towards each other and a transition to the active state would require a large
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conformational change. �e structure of Swi2/Snf2 displayed large �exibility of the
loop in which residue 578 resides in ISWI, the loop was disordered in the crystal
structure (this region is not very conserved). When taking large �exibility for this
region into account, all cross-links to residue 578 could be ful�lled by the Swi2/Snf2
resting state conformation (Cα-Cα distances ≈ 20 Å). However, the cross-link be-
tween residue 483 and residue 338 is incompatible with this conformation (Figure
F.5). Note that Swi2/Snf2 does not contain an AutoN or an acidic patch motif and is
probably regulated in a di�erent fashion in accordance with its di�erent biological
function [493].

In order to test experimentally whether ISWI ATPase indeed adopts an inactive
conformation similar to our proposed docking model, we analyzed the interface and
contacts and compared these to the results of co-evolution analysis of the ISWI AT-
Pase domain. Co-evolution pa�erns were evaluated with the GREMLIN web-server
using default parameters [25, 214, 330, 331] for ISWI residues 1–637 (for the full
length proteins, the number of available sequence in the multiple sequence align-
ment was not su�cient). We identi�ed one high-probability contact (K337-D485)
that could not be mapped to the active state and corresponded well to our proposed
inactive conformation. �is residue pair could form a salt bridge in our model (al-
ternatively the salt bridge could be formed between residues 337 and 484 as shown
in Figure F.6). It is also located close to the photo-crosslink between residue 483 and
residues 338. In the future, we will investigate ATPase activity in charge mutants in-
volving this potential salt bridge (K337D, D484K/D485K). Increased ATP hydrolysis
of the mutant protein in comparison to the wild-type would validate our model of
the inactive state.

11.3.3. AutoN+acidic patch and H4 tail binding to ATPase lobe 2

Our docking results for the ISWI ATPase domain suggested that ISWI auto-inhibition
could be mediated by binding of the NTR to lobe 2. In order to identify possi-
ble binding sites of the NTR, in particular the AutoN and acidic patch motifs, we
used the pepATTRACT peptide-protein docking protocol [391] to model the interac-
tion of the peptides DHRHRKTEQ (residues 89-97, contains RHRK AutoN motif) and
EQEEDEELL (residues 96-104, contains EEDEE acidic patch motif) with lobe 2. We
further used the PEPFOLD2, PEPFOLD3 and I-TASSER web servers [413, 435, 247,
513, 373] to predict the structure of the entire module (DHRHRKTEQEEDEELL). We
found high agreement between the di�erent methods indicating an α-helical struc-
ture that gave us increased con�dence in the prediction. We then docked the re-
sulting structural ensemble for the AutoN+acidic patch region (13 conformations) to
lobe 2 [99]. �e docking was performed without restraints (ab-initio docking).
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Interestingly, each of the three docking runs yielded a large cluster of solutions
in the vicinity of the catalytic motif on lobe 2 and residue 578 (Figure F.7). In the
following, we will therefore focus on the results for docking the entire module to
lobe 2. One of the top-ranked docking models is shown as an example in Figure
11.5. �e AutoN and the acidic patch motif bind to a pocket in between the catalytic
motif and residue 578. �e selected docking model displays extensive interactions
of NTR residues that had been previously identi�ed as important for auto-inhibition
(residues R91, R93, E98, D100, E102 from [78] and Ludwigsen, unpublished data) with
residues of lobe 2. We analyzed the contacts between AutoN+acidic patch motif and
lobe 2 in all docking models. �e residues that are most frequently in contact and
especially those that form contacts with important residues, are listed in Table F.3.
In the future, the proposed binding site could be validated by mutating some of these
possibly important lobe 2 residues. Charged residues would be especially promising
candidates for such mutational studies.

Since the presence of the histone H4 tail can li� AutoN-related inhibition of ISWI
ATPase activity [78], we predicted that the H4 tail also binds close to the AutoN+acidic
patch binding site on lobe 2. Competitive binding to this pocket could then explain
ISWI’s auto-inhibition and H4 tail dependence. �is hypothesis was probed in XL-
MS experiments of ISWI and Snf2h (human homologue of ISWI) both in the pres-
ence of a H4 tail-derived peptide and the nucleosome. Indeed, we identi�ed several
cross-links between the histone H4 tail and residues on lobe 2 (Table F.4). We used
three high-con�dence crosslinks from this data set to model H4 tail (residues 1-20,
TGRGKGGKGLGKGGAKRHRK) interaction with the pepATTRACT protocol using
the XL-MS data as harmonic restraints [391]. A representative model is shown in
Figure F.8. �e docking model ful�lled the three high-con�dence cross-links within
a distance of 20 Å and was also compatible with several lower-con�dence cross-links
(Table F.4). However, a set of lower-con�dence crosslinks to residues 578 and 568 was
irreconcilable with those models. �is indicates that the H4 tail displays high �exi-
bility and probably binds only with a short motif involving the basic patch (residues
17–20) to lobe 2 while the rest of the tail can adopt di�erent conformations. It is
important to keep in mind that cross-linking can only capture information about
(temporary) physical proximity of residues, however, does not give information on
whether these residues are engaged in more permanent, biologically relevant con-
tacts. In any case, the H4 tail-lobe 2 docking models and those that could be generated
based on contacts to residues 578 and 568 are compatible with binding of the H4 basic
patch to a location close to the proposed AutoN+acidic patch binding site.
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Figure 11.5. Possible AutoN+acidic patch binding mode on ISWI ATPase lobe 2 (red) identi�ed by
pepATTRACT [391]. Single point mutations R91A and R93A (yellow) decrease ISWI auto-inhibition
[78]. �e triple mutant E98Q D100N E102Q (green) also displayed higher ATPase activity (Ludwigsen,
unpublished data). Insets show detailed interactions of these important AutoN+acidic patch residues
with lobe 2.
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Table 11.2. Cross-links for full length ISWI used in three-body docking of ATPase lobe 1, lobe 2 and
HSS.

Residue 1 Residue 2 Upper limit for CA-CA distance

865 391 25.0
900 391 25.0
865 388 25.0
865 595 25.0
810 595 25.0
945 124 25.0
945 564 25.0
810 388 25.0
350 548 25.0

11.3.4. apo ISWI full-length structure

XL-MS experiments yielded several contacts between the ATPase lobes and the HSS
domain. We used this information to predict the structure of the full-length ISWI
protein with our integrative modeling approach (multi-body docking of lobe 1, lobe
2 and HSS; Figure 11.2). In addition to the photo-crosslinks (Table 11.1), we collected
9 chemical cross-links (Table 11.2). �e cross-link between residue 124 and residue
945 was also found in Snf2h XL-MS experiments (Harrer, unpublished data).

During the docking run, 50 models were generated that were fully compatible with
all the cross-linking restraints. �ese top-ranked 50 models contained only one par-
ticular arrangement of the domains showing a high degree of convergence (precision
among top 50 models 4.2 Å). We scored all the top-ranked models by comparison to
ISWI full-length SAXS data (Bruetzel and Lipfert, unpublished data) using FoXS [397,
399]. We then selected the docking model with the lowest χ score as a representative
(rank 25, χ = 1.08, Figure F.9). �e representative docking model is shown in Figure
11.6. �e model is compatible with the cross-linking, mono-link and SAXS data. In
our model, lobe 2 contacts HSS mainly via its slide domain, the interface overlaps
partially with a known DNA binding site on HSS. Figure 11.7) shows the top 6 dock-
ing model ��ed manually into an envelope derived from the SAXS measurements.
Recently, three additional photo-crosslinks were obtained between lobe 2 and the
HSS domain (578-951, 578-952 and 578-942). �ese crosslinks are compatible with
our current model, especially when considering increased �exibility at position 578
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11.3. Results and Discussion

Figure 11.6. Results for 3-body docking (lobe 1 yellow, lobe 2 red, HSS green) with cross-linking
restraints. Cross-links are shown in gray, sites of mono-links in light blue. A structure of HSS bound
to DNA (PDB 2Y9Z) was superimposed on the docking model.

(see above).
Even though we generated a model that is compatible with the available XL-MS

and SAXS data, we cannot exclude the possibility that the ATPase domain could also
be bound; e.g., on the other side of the HSS domain (the dimension of HSS in one
direction is comparable to the range of the cross-linking agent). It might be possible
that only one or two crosslinks had a major e�ect on the generated conformations.
To test this, we will collect a large set of lower-con�dence cross-links in the future
and repeat the docking with datasets of di�erent sizes.

11.3.5. HSS binding on nucleosome

Recently, Leonard and Narlikar detected binding of the human homologue Snf2h’s
HSS domain to the nucleosome core in the presence of the ATP analogue ADP-BeFx
[263]. Previously, it was only known that HSS could bind to linker DNA. We used
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Figure 11.7. Results for 3-body docking with cross-linking restraints. �e docking model was ��ed
manually into a SAXS envelope. �e �gure was created with UCSF Chimera [500].

ATTRACT ab-initio docking [99] to investigate possible binding modes. �e ISWI
HSS domain was docked to the Drosophila nucleosome (PDB 2PYO) [79] without
experimental restraints. 500,000 initial starting positions were screened. Interest-
ingly, among the top 50 ranked models, we found a cluster of solutions in which HSS
bridges the nucleosome contacting nucleosomal DNA with its HAND and SLIDE do-
main and spanning histone H2A and its acidic patch (Figure 11.8). Such a position
would have interesting implications for the switching of HSS between translocation
and DNA length sensing phases as proposed by Leonard and Narlikar [263]. It could
also explain the higher a�nity of full-length ISWI to nucleosomes compared to ISWI
ATPase domain without HSS [315], suggesting that HSS acts as a molecular ruler
for detecting nucleosomes. �e model would also provide an explanation for the
observation that the histone variant H2A.Z (with an extended acidic patch) stimu-
lates ISWI activity [155]. �e model is compatible with previous FRET data [263]
assuming a Foerster radius of 60 Å (the resolution of FRET experiment was too low
to make more precise predictions on distances). An alternative model in which HSS
binds only to the DNA is shown in Figure F.10. In this model, the binding of DNA
to the SLIDE domain is similar to the crystallized structure of HSS with DNA bound
(PDB 2Y9Z).

Based on the docking results, we predicted crosslinking between the acidic patch
on histones H2A/H2B and HSS in cross-linking experiments of ISWI in the pres-
ence of the nucleosome and the ATP-analogue ADP-BeFx. Indeed, cross-linking of
Snf2h to the nucleosome yielded several contacts between H2A and H2B (including
residue H2B 105 and H2B 117 close to the acidic patch) and HAND and SLIDE domain
(Harrer, unpublished data). However, these data could probably not be ful�lled by
a one-state model (the distance between cross-linked residues on HAND and SLIDE
domain is signi�cantly larger than the range of the cross-linking agent). �is further
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(a) Top view. (b) Side view.

Figure 11.8. Ab-initio docking of HSS to Drosophila nucleosome core. �e top ranked model is
shown (HSS green). �e HSS domain binds to DNA spanning across the histone core contacting nucle-
osomal DNA with its HAND and SLIDE domains. For reference, the H4 tail is shown in red.

underlines the dynamic nature of the system and might also point to �exibility in the
HSS domain. Further analysis and experiments are necessary to distinguish between
multiple states and unravel the conformational dynamics of this �exible enzyme.

11.4. Conclusion and Outlook

ATP-dependent nucleosome remodelers ensure dynamic accessibility to the genome,
however, atomic structural insights into their regulation and biological function are
limited to date. Here, we used di�erent docking approaches to elucidate the structure
of the full-length Drosophila melanogaster ISWI protein. We proposed a novel inac-
tive state of the ISWI ATPase domain that is compatible with available XL-MS and
SAXS data. �is inactive conformation yields a structural rationale for ISWI’s auto-
inhibition by its N-terminal region (NTR). We further derived potential mutations
for validating this ATPase structural model experimentally. Using our previously
developed peptide-protein docking approach [391] (Chapter 6), we identi�ed a bind-
ing site for the regulatory AutoN+acidic patch motif in the NTR and the histone H4
tail on lobe 2. We proposed possible mutations to validate this auto-inhibition mode
experimentally. Finally, we modeled the structure of the full-length ISWI protein.
In our model, the HSS domain docks against the ATPase domain contacting lobe 2
with its SLIDE domain. HSS binding to DNA would require release from the AT-
Pase domain. Our model suggests that ISWI may need to undergo conformational
changes to reach an active remodeling state. �is study yields insights into the intri-
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cate regulation mechanisms of nucleosome remodeling enzymes. In the future, we
plan to model ISWI’s conformation in the presence of di�erent nucleotides and its
nucleosomal substrate and to extend our investigations to other remodeler families.
Furthermore, the ISWI protein is usually a part of larger nucleosome remodeler com-
plexes. �e structure of those complexes and ISWI’s interactions with other proteins
could also be the subject of future research. Our presented integrative modeling
approach ATTRACT-XL can be applied to a wide range of dynamic and transient
multi-component assemblies that are di�cult to study by traditional structural biol-
ogy methods.
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Systems biology has started to move beyond genomics and proteomics and towards
tackling the interactome. A large number of protein-protein interactions have been
identi�ed and interaction maps for di�erent organisms have been explored using
techniques like yeast-two hybrid assays or mass spectrometry. However, in many
cases, these experiments only yield qualitative information on the nature of the in-
teraction. In order to understand how the interaction is established, structural knowl-
edge at the atomic level is necessary. Atomic structures allow to identify the inter-
face between the protein partners and the residues that establish important contacts.
�ese insights can then be used to understand the e�ect of mutations that occur in
diseases. Identi�cation of the interface also allows to create small molecules and
peptides that can inhibit the interaction, an important strategy in current drug de-
sign e�orts [16, 317]. Studying the interfaces of protein-protein complexes can fur-
ther give insights into the physical forces that guide the recognition process. �is
knowledge can then be used to go beyond the interaction space that Nature o�ers
us: towards re-engineering known protein-protein interactions and even designing
new types of protein-protein complexes for nanotechnology. A few successful exam-
ples of such approaches have already been published to date [156, 53, 190, 26, 231].
Similar to nanomachines built from DNA [272], protein-protein interactions could
be �ne-tuned for desired applications and molecular machines for speci�c purposes
could be assembled bene�ting from the large variability in shape and the possibility
of greater geometric control [53].

Structural genomics initiatives have revealed the folds of many proteins covering
most known families. Hence, the unbound structures of individual proteins are o�en
available or can be modeled by homology. But characterizing the structure of protein-
protein complexes by techniques such as X-ray crystallography or NMR still remains
a huge challenge, especially for weak binders and large multimeric assemblies. Fur-
thermore, the sheer size of the interactome makes experimental structure determina-
tion for all complexes infeasible in the near future. Computational protein-protein
docking methods can complement experiments by predicting the structure of the
complex from the structures of the individual components. �e protein-protein dock-
ing �eld has experienced tremendous progress during the last decades and genome-
wide docking experiments have �nally come in reach.
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�e performance of di�erent methods in the docking �eld has been assessed and
documented by the blind prediction experiment CAPRI (Critical Assessment of PRe-
diction of Interactions, capri.ebi.ac.uk). �e CAPRI challenge was established in 2001
and ATTRACT, the docking program developed in our group, has participated in
CAPRI since 2003. �e targets presented in CAPRI (Chapter 9) have triggered the
development of new features in ATTRACT (Chapter 6 and Chapter 8). �e chal-
lenges we faced in CAPRI also inspired new applications like the work presented in
Chapter 11.

�e progress in the docking �eld is also re�ected by the nature of the targets in
CAPRI. In the early rounds, most targets were unbound-bound complexes; i.e., a free
form was only available for one of the partners. Since 2010, all the targets were
unbound-unbound complexes. In many cases, the structures of the individual part-
ners had to be modeled by homology and in some targets, the modeling was very
di�cult with only distant homologues available as templates. In the future, the �elds
of computational prediction of protein structures and protein-protein interactions
will become more intertwined. �is will hopefully also encourage progress for com-
plexes that involve folding upon binding; e.g., intrinsically disordered proteins.

�e last CAPRI rounds in 2015 again emphasized the importance of protein �ex-
ibility upon complexation. In several rounds, the goal was to model highly �exible
peptide-protein complexes. In addition, especially in the most recent rounds, the
protein-protein complexes displayed a high degree of backbone �exibility (see also
Chapter 9). �e aim of this thesis was to improve the ATTRACT docking methodol-
ogy by explicitly considering interface �exibility. For this purpose, a new re�nement
method, iATTRACT, was developed that combines fully �exible interface residues
with global rigid body optimization of the docking geometry (Chapter 5). �is ap-
proach signi�cantly improved initial rigid-body docking models for a large variety
of protein-protein complexes. �e approach was then incorporated into an ab-initio
peptide-protein docking protocol (pepATTRACT) described in Chapter 6. pepAT-
TRACT was one of the �rst fully blind methods for predicting peptide-protein com-
plex structures with a performance close to two state-of-the-art local docking ap-
proaches. �e previously developed iATTRACT method contributed to the success
of the pepATTRACT protocol and hence allowed to extend the ATTRACT docking
approach towards the important and challenging class of peptide-mediated interac-
tions. pepATTRACT was successfully applied to ab-initio peptide-protein docking
in CAPRI (Chapter 9), predicting peptide binding in the ER associated degradation
pathway (Chapter 10) and modeling of auto-inhibition in the ISWI nucleosome re-
modeling enzyme (Chapter 11).

�e peptide-protein docking protocol also formed the basis for the development of
an interface loop modeling procedure (loopATTRACT, Chapter 7). We envision that
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this protocol will be used to model large conformational changes of interface loops
in a hierarchical integrative modeling protocol using the ATTRACT-EM [94, 96] or
the ATTRACT-SAXS protocol [392] (Chapter 8) as the �rst modeling stage. �ese
two protocols only use so� repulsive potentials between the protein partners that
allow a certain degree of steric overlap. Previous analysis on ATTRACT-EM models
demonstrated that steric clashes in the models are o�en linked to protein regions
that undergo conformational change upon binding [96]. Hence, loop regions that
have been identi�ed as potentially �exible during the �rst stage of the integrative
modeling protocol can be remodeled by loopATTRACT. Such a clash analysis has
not yet been performed for the ATTRACT-SAXS protocol where discrimination be-
tween near-native and non-native models is generally harder than in ATTRACT-EM,
however, it is likely that the same principle also applies to ATTRACT-SAXS gener-
ated models.

Apart from �exibility, a big trend in the �eld is using data in docking. Including
external data during docking can both improve the sampling by limiting the search
space and improve the scoring of near-native models compensating for inaccuracies
in the approximate energy function. Data-driven docking was �rst started by the
Bonvin group (HADDOCK) and the Sali lab (IMP) more than ten years ago. �ese
methods were the �rst to systematically incorporate experimental low-resolution
data into the modeling procedure. Since then many groups have adapted their so�-
ware and integrative modeling/data-driven docking has become the standard in the
�eld whenever suitable data are available. Adding support for additional types of
experimental data to ATTRACT was the second strategy used in this thesis to im-
prove the accuracy of our docking approach. Chapter 8 describes a new integra-
tive modeling approach using small-angle X-ray sca�ering (SAXS) data. In contrast
to previous methods that used SAXS data as an a-posteriori �lter, the ATTRACT-
SAXS approach directly generates docking models compatible with the experimental
data. �e method showed especially good performance for medium and hard dock-
ing cases; i.e., complexes that undergo conformational change upon binding, and
outperformed two earlier SAXS-driven integrative modeling approaches. Another
successful integrative modeling protocol in ATTRACT is described in Chapter 11.
�rough the combination of cross-linking/mass spectrometry, SAXS data and dock-
ing, the full-length structure of the ISWI nucleosome remodeling enzyme was pre-
dicted. We derived testable hypotheses from the docking models that have already
been partly con�rmed by experiments.

In the last couple of years, the concept of data-driven docking was further ex-
tended towards bioinformatics approaches making use of sequence information. de
Vries et al. successfully used interface predictions from a consensus predictor as an
input to the HADDOCK program instead of/complementary to experimental data
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[95]. Recently, Baker and coworkers showed that information about contacts in
protein-protein complexes can be extracted from residue co-variation pa�erns when
analyzing large sequence datasets. �ey further demonstrated that co-evolution data
can be successfully used in protein-protein complex assembly using the Rose�a pro-
gram [330]. However, for extracting reliable co-evolution data, a large number of
sequences are needed (≈ 5L with L being the length of the target sequence) [214,
330]. Guerois and coworkers presented an approach which uses sequences from or-
thologous complexes to score generated docking models. Using multiple sequence
alignments from only 10 to 100 di�erent organisms, the method showed a clear im-
provement with respect to standard scoring functions [11]. �e Guerois group was
the best predictor in the 2016 CAPRI evaluation generating the largest number of
medium and high quality predictions (Lensink, personal communication). It is very
likely that using evolutionary information will become as much a standard in dock-
ing as using experimental data is today and that this orthogonal information will
improve the accuracy of current approaches. A detailed discussion and systematic
comparative evaluation on di�erent ways of including evolutionary information in
docking is, however, outside of the scope of this thesis and will be the subject of
future research.

Despite the degree of success achieved in this thesis, a large obstacle to �exible
docking remains to accurately predict whether and to what extent conformational
changes occur upon complexation. On the level of single protein structures, a variety
of simulation approaches have been developed to study �exibility. Karaca and Bon-
vin found that the cumulative sum of eigenvalues obtained from an elastic network
calculation had some predictive power with respect to the extent of the conforma-
tional change [218]. Molecular dynamics (MD) simulations can also be used to gain
insight into protein dynamics at the picosecond to microsecond timescale. However,
depending on the size of the protein, these calculations may still be too computa-
tionally expensive. In addition, many conformational rearrangements like domain
motions are currently beyond the time-scales accessible in MD simulations. Recent
investigations of Gray and coworkers (Gray, personal communication) point towards
a strong contribution of induced �t e�ects in the encounter complex. In other words,
the conformational rearrangements and the associated protein �exibility might only
become favorable when the proteins are in close proximity and cannot be su�ciently
predicted from simulating single protein structures. Hence, MD simulations should
in principle be performed on di�erent encounter complexes on the multi-nanosecond
time-scale. Such an approach is too computationally demanding, since trajectories
for hundreds or thousands of possible docking models (encounter complexes) need
to be evaluated. Recently, Oliwa and Shen proposed to apply normal mode calcu-
lations to encounter complexes and found slight improvements in approximating
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the bound-unbound transition compared to conventional normal mode calculations
[328]. While some of these examples are quite promising, reliable general-purpose
prediction approaches for binding-induced �exibility are still lacking to date. Tack-
ling the hard docking cases will certainly require improvements in this direction.

Another hurdle towards accurate (�exible) docking is the scoring of near-native
solutions. Currently, discrimination between non-native and near-native docking
models is still insu�cient; i.e., in many cases non-native models that have a similar or
even lower score than near-native structures can be generated. In many scoring func-
tions, there is usually only a small energy gap between near-native and non-native
docking models (if any at all). However, in vivo, there is o�en strong discrimination
(which is also crucial to survival) and small changes via single point mutations can
lead to a reduction in binding a�nity by several orders of magnitude. �ese e�ects
cannot be reproduced by current scoring functions. Insu�cient scoring is a partic-
ularly big problem in �exible docking where an accurate energy function is crucial
in order to sample the bound conformation. Incorrect scoring can in contrast drive
the structure further away from the native state both in protein structure and over-
all complex geometry. Inaccuracies in scoring also impede further applications of
docking going beyond mere structure prediction towards studying binding a�nity
and speci�city and the e�ect of mutations and ultimately protein-protein interaction
design.

�e inaccuracies in scoring functions result from approximating and neglecting
important physical interactions. In most commonly used scoring functions, solvent-
solvent and solvent-protein interactions are not taken into account or approximated
in a very crude fashion. Furthermore, the internal energy of the individual proteins
in their respective conformational states is usually not considered. Also entropic
e�ects are usually neglected. On a more basic level, the approximations and the
simple functional forms used to represent the quantum-mechanical interactions be-
tween the electron densities might be reaching their limits. For example changes
in protonation states and explicit polarizability might yield important contributions
that could help to properly distinguish the native complex from other loosely bound
geometries. Improvements to physics-based force �elds especially with respect to in-
cluding explicit polarizability are currently also an important topic for the molecular
dynamics community and progress in this �eld will certainly help advance scoring in
protein-protein docking. Note that a more detailed energy representation should be
matched and adapted to an increased level of detail in sampling and �exibility. How-
ever, this might still be outside of the scope of current computing capabilities. Finally,
it is possible that the shortcomings in current scoring functions indicate a partial
lack of understanding in the physical principles that govern the many-body problem
of protein-protein association. Using empirical data and creating knowledge-based
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potentials provides a possibility to circumvent this lack of understanding. Indeed,
many groups have adopted this strategy and the resulting knowledge-based scoring
functions o�en outperform physical scoring functions. �is observation supports
the notion that current physics-based energy functions might still be missing some
important contributions.

Last but not least, I would like to emphasize that a docking model is usually a
starting point in a real-life application providing testable hypotheses that can guide
further experimental studies. In other words, validation of docking results is cru-
cial and ideally computational modeling and experimental studies should go hand
in hand. Unfortunately, common standards for model validation and error estimates
are still lacking to date. Model accuracy; i.e., expected deviations of docking mod-
els from the native structure, is typically inferred from benchmark tests on known
structures. But for many applications, appropriate benchmarks are not yet avail-
able (see Chapter 8 and 11). Creating suitable benchmarks and reliable estimates for
model quality (similar to Rfree in X-ray crystallography) will be important steps to-
wards establishing docking models as a standard resource in structural biology in
the future [385].
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Figure A.1. Probability to yield CAPRI quality re�ned structures by i-ATTRACT re�nement vs. ini-
tial IRMSD. �e probability was calculated based on the whole set of benchmark results.
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Table A.1. Average IRMSD and fnat change in interface re�nement for di�erent classes of protein
complexes.

Protein type ∆IRMSD/Å ∆fnat

all −0.293(5) 0.071(1)
antibody −0.328(11) 0.069(1)
enzyme −0.296(10) 0.070(1)
other −0.280(6) 0.071(1)
easy −0.282(6) 0.076(1)
medium −0.327(12) 0.072(1)
hard −0.293(14) 0.042(1)
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Figure A.2. Improvement of the interface conformation of protein partners a�er re�nement with
iATTRACT. �e heavy-atom IRMSD of all residues within 3 Å contact distance of the interface was cal-
culated for protein partners of each iATTRACT model and the corresponding unbound protein partners
a�er best superposition onto the bound structures. �e di�erence between IRMSDheavy of the re�ned
models and the unbound structure is plo�ed on the y-axis vs. backbone IRMSD of the iATTRACT
model. A negative di�erence indicates improved interface conformation compared to the unbound
protein (opposite for positive values). iATTRACT models where protein structures have moved closer
to the bound form at the interface are labeled by green marks.
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(a) 2UUY (b) 1BJ1

Figure A.3. Examples of signi�cant interface residue reorientations in iATTRACT which make the
structure more similar to the bound form. �e receptor protein of the iATTRACT model is shown in
green (cartoon), the ligand protein (a�er iATTRACT re�nement) in red. Selected interface residues are
shown as sticks. �e crystal structure of the bound ligand protein is shown in gray. �e unbound form
of the protein was superimposed with respect to the bound structure and drawn in yellow. For 2UUY,
a lysine residue whose unbound conformation causes clashes has reoriented correctly. For 1BJ1, an
interface histidine and a glutamine residue adopt conformations close to the bound form.
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Figure A.4. Scoring of re�ned docking solutions for an enriched decoy set. �e ranking of quality
solutions by the OPLS energy function is compared before and a�er iATTRACT re�nement.
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Table A.2. Scoring before and a�er iATTRACT re�nement. For each protein complex the best IRMSD
of the top 5 ranked structures and the IRMSD of the top ranked structure before and a�er iATTRACT
re�nement is shown. �e structures were ranked by their intermolecular energies based on the OPLS
energy function.

Best IRMSD in top 5 IRMSD of top 1 Best IRMSD in top 5 IRMSD of top 1

PDB Before A�er Before A�er PDB Before A�er Before A�er

1A2K 5.1 2.73 8.42 3.02 1NCA 0.41 3.26 0.41 6.5
1ACB 6.12 4.25 6.12 4.25 1NSN 2.54 3.14 2.54 3.14

1AHW 1.39 3.46 2.54 6.38 1NW9 5.52 5.38 7.12 7.44
1AK4 4.66 4.93 6.65 4.93 1OC0 5.85 3.34 5.85 6.46
1AKJ 2.43 2.88 3.31 3.22 1OFU 10.18 9.54 11.31 10.21
1ATN 6.05 5.64 6.89 10.67 1OPH 3.35 6.07 7.4 6.28
1AVX 1.85 1.6 2.37 1.94 1OYV 2.55 2.08 2.55 2.27
1AY7 8.42 7.73 8.42 9.87 1PPE 2.09 3.46 2.1 5.34
1AZS 6.55 2.08 6.55 6.77 1PVH 4.96 6.52 7.02 6.52
1B6C 4.91 4.85 5.06 6.81 1PXV 7.47 3.59 8.1 3.59
1BGX 6.97 6.61 7.47 6.99 1QA9 3.86 2.45 3.86 2.45
1BJ1 3.58 0.76 9.31 12.05 1QFW 0.83 1.45 0.83 4.4

1BKD 11.03 7.43 11.03 10.88 1R0R 4.53 2.25 5.58 6.25
1BUH 1.97 5.13 5.8 6.29 1R6Q 4.58 3.89 4.58 4.24
1BVK 6.33 6.06 6.89 6.06 1R8S 8.05 5.96 8.05 7.95
1BVN 3.98 3.99 6.62 10.74 1RLB 5.99 5.72 8.49 7.46
1CGI 5.84 5.27 5.84 5.88 1RV6 6.85 5.42 8.13 6.64
1CLV 5.47 3.54 5.95 4.31 1S1Q 1.4 5.37 1.4 5.8
1D6R 3.22 3.6 4.45 3.6 1SBB 7.24 6.53 7.24 6.55
1DFJ 7.73 6.94 7.73 7.34 1SYX 3.08 2.95 3.08 2.99
1DQJ 7.87 2.45 7.87 8.01 1T6B 9.77 5.79 10.57 9.62
1E4K 7.74 7.46 7.74 11.19 1TMQ 9.29 6.84 9.29 6.84
1E6E 1.88 1.46 7.32 2.17 1UDI 3.9 1.49 5.6 6.84
1E6J 4.96 5.04 4.96 5.42 1US7 5.81 4.13 6.6 6.85
1E96 5.12 6.21 6.32 6.53 1VFB 5.91 4.99 5.91 6.3

1EAW 2.15 2.81 4.56 2.81 1WDW 2.55 1.72 2.62 1.72
1EER 4.09 3.05 4.09 3.05 1WEJ 2.8 5.41 2.8 6.2
1EFN 4.47 2.8 4.47 7.92 1WQ1 6.65 4.32 7.8 4.32
1EWY 5.44 5.54 12.64 5.54 1XD3 4.76 4.13 8.68 6.21
1EZU 10.18 7.79 10.71 9.93 1XQS 2.87 2.03 2.87 2.61
1F34 12.92 12.52 12.92 14.21 1XU1 3.51 4.48 5.03 6.37
1F51 8.62 4.61 10.44 4.61 1YVB 5.55 2.52 7.55 6.9
1FC2 6.62 5.12 6.84 7.32 1Z0K 2.96 4.8 6.42 5.45
1FCC 7.18 6.49 9.07 8.88 1Z5Y 3.95 3.61 3.95 3.61
1FFW 3.68 2.15 5.74 2.15 1ZHH 8.68 7.5 10.08 9.74
1FLE 3.55 3.76 8.06 6.64 1ZHI 5.78 5.18 6.46 6.74
1FQ1 7.21 6.82 16.5 11.78 1ZLI 4.68 4.2 4.68 4.2
1FQJ 2.78 3.39 2.78 3.41 1ZM4 2.72 3.18 2.72 5.35
1FSK 0.84 2.05 1.09 7.74 2A5T 6.28 7.15 7.86 7.15
1GCQ 4.99 4.41 6.39 5.6 2A9K 4.84 4.97 5.82 4.97
1GHQ 5.42 3.8 5.81 6.35 2ABZ 6.61 2.54 6.61 7.24
1GL1 4.23 4.77 4.23 4.9 2AJF 6.87 5.01 6.87 7.61
1GLA 6.35 2.88 14.87 9.35 2AYO 4.74 5.5 4.74 6.01
1GP2 4.48 4.55 6.48 6.84 2B42 9.27 7.18 9.27 8.01

1GPW 3.18 1.82 4.38 1.83 2B4J 6.71 6.02 7.25 7.05
1GRN 2.65 2.01 2.65 5.57 2BTF 2.74 2.82 2.74 2.82
1GXD 2.76 5.15 2.76 6.98 2C0L 6.04 6.06 6.04 7.16
1H9D 4.88 5.99 7.79 5.99 2CFH 2 1.75 2 1.75
1HCF 4.97 4.96 6.41 4.99 2FD6 6.02 4.08 7.58 4.45
1HE1 2.81 2.89 2.81 2.89 2FJU 4.72 2.13 7.48 2.13
1HE8 6.11 4.97 11.12 5.15 2G77 2.58 5.23 7.97 5.23
1HIA 6.24 4.36 6.24 7.34 2H7V 6.77 6.9 7.96 6.9
1I2M 4.32 3.2 4.32 3.2 2HLE 2.5 2.63 3.42 4.34
1I4D 6.25 2.84 7.03 4.93 2HMI 10.67 3.11 13.74 12.32
1I9R 1.6 3.25 1.6 3.25 2HQS 2.5 2.41 7.3 6.07
1IB1 7.85 5.95 9.48 8.41 2HRK 3.99 1.74 7.35 3.93
1IBR 10.37 9.89 12.01 11.9 2I25 6.25 6.16 6.3 6.16
1IJK 5.6 5.2 9.84 10.22 2I9B 5.33 6.38 6.81 7.24
1IQD 5.76 2.14 6.67 6.15 2IDO 6.07 7.62 8.16 9.49
1J2J 4.02 4.16 5.67 7.96 2J0T 11.13 11.2 11.86 11.2
1JIW 5.21 4.58 5.21 6.13 2J7P 5.88 5.8 10.57 9.07
1JK9 3.08 6.3 7.75 6.87 2JEL 2.91 3.46 2.91 4.26
1JMO 6.02 4.29 16.59 4.29 2MTA 4.9 3.49 4.9 5.68
1JPS 1.56 2.02 1.56 5.57 2O3B 9.05 4.38 12.62 5.55
1JTG 1.1 5.31 1.1 5.86 2O8V 3.19 6.32 6.07 10.31
1JWH 6.01 5.89 6.84 7.5 2OOB 4.44 3.85 5.44 5.57
1JZD 5.41 7.94 10.22 7.94 2OOR 8.24 4.39 8.24 7.54
1K4C 2.15 3.71 2.15 4.7 2OT3 8.7 7.01 8.79 8.79
1K5D 6.9 4.66 7.96 11.49 2OUL 0.69 0.87 0.69 8.81
1K74 1.97 2.34 1.97 2.34 2OZA 8.76 2.85 9.71 5.7
1KAC 2.23 2.41 2.23 5.31 2PCC 4.05 3.18 4.05 3.18
1KKL 6.96 5.26 6.96 7.75 2SIC 6.19 3.88 7.35 5.82
1KLU 7.05 3.51 12.46 3.51 2SNI 5.19 1.61 5.19 5.29
1KTZ 0.89 5.62 4.17 6.11 2UUY 4.6 3.56 4.6 4.39
1KXP 8.35 1.32 8.35 1.32 2VDB 6.46 7.4 10.12 9.21
1KXQ 2.26 1.03 5.2 5.06 2VIS 3.32 3.02 6.41 3.02
1LFD 2.93 2.85 5.08 6.88 2Z0E 9.69 9.08 9.71 9.58
1M10 4.97 3.04 5.33 4.81 3BP8 3.87 3.22 6.95 7.19
1MAH 3.46 1.05 3.46 3.66 3CPH 5.46 5.28 7.67 5.28
1ML0 2.74 1.66 3.04 2.31 3D5S 3.54 1.81 3.54 2.94
1MLC 5.35 5.5 6.55 6.88 3SGQ 5.7 4.6 5.75 4.6
1MQ8 3.63 4.95 5.87 6.56 4CPA 1.65 2.13 1.65 5.51
1N8O 6.79 7.08 6.79 7.1 7CEI 2.22 1.86 2.22 1.86
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Figure A.5. Energy score vs IRMSD for some i-ATTRACT re�nement examples. �e score was cal-
culated from the intermolecular energy based on the OPLS parameters.
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Figure B.1. Scoring performance of AMBER score for unbound-unbound docking. �e �nal AMBER-
re�ned docking models were ranked by their ATTRACT score (scoring before re�nement), the OPLS-
based scores (scoring a�er iATTRACT re�nement) and the AMBER scores (scoring a�er �nal MD re-
�nement). A docking case was considered successful if one of the top N solutions was of near-native
or be�er quality.
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Figure B.2. Percentage of acceptable docking cases for bound-bound and unbound-bound rigid body
protein-peptide docking as a function of the number of models considered. A docking case was con-
sidered as a near-native/sub-angstrom hit if any of the topN models was of near-native/sub-angstrom
quality.
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(a) 1NVR–0.7 Å—easy—3rd of 1st cluster (b) 2O9V—0.6 Å—easy—4th of 1st cluster

Figure B.3. Example of sub-angstrom models created by the protein-peptide docking protocol for
unbound-unbound docking. �e backbone and the side chain positions are predicted to high accuracy.
�e peptide from the crystal structure is shown in black.
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Figure B.4. Change in peptide RMSD from the bound form for the �nal docking model relative to
the initial idealized conformation as a function of the IRMSD of the �nal docking model. �e RMSD
was calculated on all heavy atoms. Only near-native models were evaluated. Green markers denote
structures in which the peptide conformation moved closer to the bound form. Models of sub-angstrom
quality are highlighted by a gray background.
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(a) 1X2R – a�er iATTRACT re�nement (b) 1X2R – a�er AMBER re�nement

(c) 2J6F – a�er iATTRACT re�nement (d) 2J6F – a�er AMBER re�nement
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(e) Peptide main chain �exibility during iATTRACT re�nement

Figure B.5. E�ect of the re�nement stages during docking. (A)–(D) Example of docking cases in
which near-native models were generated using an incorrect initial peptide model. �e peptide from
the crystal structure is shown in black. (E) Change in peptide main chain dihedral angle φ andψ during
iATTRACT simulations. �e data were evaluated for all re�ned structures from 80 peptide-protein
complexes.
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Table B.1. Performance of unbound-unbound protein-peptide docking. Best IRMSD denotes the best
IRMSD sampled among all 1,000 �nal models. Top 10 IRMSD denotes the best IRMSD among the top
10 ranked clusters. �e last column lists the rank of the �rst near-native cluster. A cluster is considered
near-native if any of its top 4 ranking members has an IRMSD < 2 Å. �e label Single denotes that the
near-native models were not assigned to a cluster (a minimum cluster size of 4).

PDB
Best

IRMSD
Top 10
IRMSD

Rank of
near-native

cluster

1AWR 0.72 1.06 1
1CE1 1.77 2.51 Single
1CKA 1.91 1.99 5
1CZY 0.57 0.93 7
1D4T 2.16 2.82 -
1DDV 2.02 2.55 -
1DKX 1.65 1.65 2
1EG4 2.75 3.35 -
1ELW 1.11 1.11 2
1ER8 0.82 0.82 1
1GYB 2.61 3.33 -
1HC9 4.16 4.62 -
1IHJ 1.55 1.55 2
1JBU 2.88 3.59 -
1JD5 3.83 3.83 -
1JWG 0.88 0.88 2
1KL3 2.7 2.88 -
1KLU 1.95 2.96 Single
1LVM 1.88 2.43 Single
1MFG 1.37 1.65 1
1N7F 2.26 2.26 -
1NQ7 1.58 5.73 Single
1NTV 1.74 3.33 20
1NVR 0.68 0.68 1
1NX1 1.43 1.76 5
1OAI 1.88 2.08 Single
1OU8 1.17 1.18 1
1PZ5 3.73 4.59 -
1QKZ 2.3 4 -
1RXZ 1.58 1.74 10
1SE0 1.37 1.76 8
1SFI 2.78 3.01 -
1SSH 1.16 2.2 18
1T4F 2.18 4.31 -
1T7R 1.64 3.34 Single
1TP5 0.98 0.98 1
1TW6 1.64 2.13 Single
1U00 2.78 3.16 -
1UJ0 1.51 2.38 31

1VZQ 1.14 1.27 7
1W9E 0.7 1.62 1
1X2R 1.12 1.51 1
1YMT 2.68 8.1 -
1YUC 5.09 10.39 -
1YWO 1.04 1.04 2
1Z9O 0.95 1.08 1
2A3I 1.51 1.51 1
2AK5 0.86 2.58 22
2B1Z 4.1 7.97 -
2B9H 1.58 1.58 1
2C3I 0.86 1.05 4

2CCH 1.6 1.6 3
2D0N 1.89 2.36 Single
2DS8 1.65 3.56 32
2FGR 4.6 7.13 -
2FMF 0.72 1.64 4
2FNT 1.15 1.18 2
2FOJ 0.83 0.96 1
2FVJ 0.69 0.69 7

2H9M 0.8 0.87 1
2HO2 1.18 1.3 2
2HPL 0.55 0.56 1
2IPU 3.27 4.81 -
2J6F 1.61 1.78 2

2JAM 2.7 3.88 -
2O02 1.94 2.21 Single
2O4J 1.37 1.37 1
2O9V 0.6 0.6 1
2P0W 2.52 2.96 -
2P1T 8.56 9.97 -
2P54 1.64 5.68 Single
2PUY 1.74 1.74 5
2QOS 2.37 2.84 -
2R7G 1.89 4.31 Single
2VJ0 1.16 2.21 15
2ZJD 1.61 1.65 7
3BU3 1.73 4.16 Single
3CVP 1.95 1.99 5
3D1E 1.02 1.02 4
3D9T 4.08 5.36 -
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Table B.2. Results for Rose�a FlexPepDock high-resolution re�nement of pepATTRACT models. Re-
�nement was performed on 1000 models for 14 cases from the docking benchmark. We ranked the
pepATTRACT and FlexPepDock re�ned models by their AMBER and Rose�a score respectively and
compared the best fnat within the top 1, top 10 and all sampled models. No clustering procedure was
applied. A contact was de�ned if any two heavy atoms were found within 4 Å distance.

pepATTRACT FlexPepDock re�ned
PDB top 1 fnat top 10 fnat best fnat top 1 fnat top 10 fnat best fnat

1AWR 0.4 0.68 0.76 0.92 0.92 0.92
1N7F 0.04 0.15 0.58 0.04 0.23 0.58
1NVR 0.77 0.92 0.92 0.0 0.54 0.92
1RXZ 0.38 0.38 0.47 0.03 0.22 0.69
1SSH 0.0 0.60 0.65 0.20 0.70 0.80
1T7R 0.27 0.27 0.32 0.14 0.41 0.77
1W9E 0.11 0.63 0.63 0.47 0.68 0.68
2A3I 0.0 0.53 0.58 0.0 0.47 0.68
2C3I 0.19 0.19 0.67 0.0 0.59 0.78
2FGR 0.0 0.0 0.15 0.0 0.0 0.26
2FMF 0.07 0.13 0.53 0.33 0.80 0.80
2O9V 0.82 0.82 0.82 0.88 1.0 1.0
2P54 0.0 0.0 0.43 0.0 0.05 0.43
2VJ0 0.0 0.05 0.48 0.57 0.57 0.62
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C. loopATTRACT Supplemental Data

Table C.1. Percentage of structures that improved more than 0.1 Å in IRMSD or by more than 0.02
in fnat during loopATTRACT loop rebuilding. �e percentages were evaluated among the top-ranked
10 models and all generated 1000 models.

PDB improved IRMSD [%] improved fnat [%]
top 10 all top 10 all

1ATN 100.0 98.7 90.0 47.1
1BKD 90.0 76.2 10.0 1.6
1FQ1 100.0 97.5 90.0 75.3
1LFD 70.0 48.9 60.0 35.9
1PXV 40.0 53.1 30.0 45.3
1R8S 100.0 100.0 100.0 95.1
2NZ8 0.0 1.5 0.0 6.6
2OT3 0.0 0.0 0.0 0.0
3CPH 0.0 0.0 0.0 0.0
3FN1 100.0 97.8 100.0 68.6
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Table C.2. Percentage of structures that improved more than 0.1 Å in IRMSD or by more than 0.02
in fnat during Rose�a loopmodeling. �e percentages were evaluated among the top-ranked 10 models
and all generated 2500 models.

PDB improved IRMSD [%] improved fnat [%]
top 10 all top 10 all

1ATN 100.0 95.2 100.0 96.9
1BKD 90.0 84.3 10.0 4.64
1FQ1 90.0 65.2 40.0 71.6
1LFD 100.0 95.6 20.0 16.7
1PXV 30.0 33.6 0.0 0.08
1R8S 100.0 99.5 60.0 75.5
2NZ8 80.0 77.6 50.0 49.0
2OT3 0.0 0.0 0.0 0.0
3CPH 0.0 0.3 0.0 0.0
3FN1 100.0 99.6 100.0 67.0

Table C.3. Results for loopATTRACT interface loop modeling on top-ranked ATTRACT-EM model
obtained with a 20 Å resolution cryo-EM density map [96].

PDB Di�culty initial top 1 top 10 all
IRMSD fnat IRMSD fnat IRMSD fnat IRMSD fnat

1ATN hard 4.38 0.32 2.91 0.38 2.74 0.46 2.42 0.51
1BKD hard 3.36 0.52 2.46 0.53 2.10 0.57 1.88 0.58
1FQ1 hard 3.75 0.40 3.37 0.40 2.17 0.47 1.91 0.64
1PXV hard 2.90 0.63 2.99 0.64 2.42 0.71 2.22 0.73
2OT3 hard 3.61 0.34 3.66 0.27 3.58 0.32 3.53 0.39
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D. ATTRACT-SAXS Supplemental Data

Figure D.1. Example of atom density masks with voxel sizes of 10 and 5 Å for a complex between
trypsin and an inhibitor (PDB: 1OPH)[105]. �e complex structure was ��ed manually in the atom
density mask. �e �gure was generated with Chimera [500].
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Figure D.2. Example of SAXS scores for docking decoys generated with ATTRACT standard rigid
body docking for cyclophilin A bound to the N-terminal domain of HIV-1 capsid (PDB 1AK4) [145].
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Figure D.3. Docking success rate for ATTRACT-SAXS on 210 complexes from protein-protein dock-
ing benchmark 5.0 using simulated SAXS data evaluated by complex type and docking di�culty. A
cluster is considered a CAPRI one-star/two star hit if any of its top-ranked 4 members is at least of one
star/two star quality. �e “all models” success rate is the success rate considering all models generated
during the sampling stage.
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Figure D.3. Continued from previous page.
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Figure D.4. Ranking of two-star models for di�erent terms in the scoring function. �e composite
scoring function Etotal is given by Etotal = Einterface + 300.0× ESAXS.
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Figure D.5. Average number of structures in taboo pool vs. number of iterations.
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Table D.1. ATTRACT-SAXS docking results for 226 protein-protein complexes from docking bench-
mark 5. �e best IRMSD, LRMSD, fnat and CAPRI quality for the top 1, top 10 and top 100 ranked
clusters and all sampled models are listed. A cluster is considered a CAPRI one-star/two star hit if any
of its top-ranked 4 members is at least of one star/two star quality. For docking case 1BGX, no models
were collected during the sampling stage.

Top 1 Top 10 Top 100 All models

PDB IRMSD LRMSD fnat CAPRI IRMSD LRMSD fnat CAPRI IRMSD LRMSD fnat CAPRI IRMSD LRMSD fnat CAPRI

1A2K 15.3 28.0 0.00 - 6.1 19.0 0.39 - 3.1 11.3 0.63 * 3.1 11.3 0.63 *
1ACB 5.0 9.6 0.05 - 2.8 6.1 0.44 * 2.8 4.1 0.32 ** 2.8 4.1 0.32 **

1AHW 4.3 12.2 0.41 - 2.0 4.5 0.73 ** 2.0 4.5 0.73 ** 2.0 4.5 0.73 **
1AK4 4.1 17.5 0.42 - 1.7 6.6 0.60 ** 1.8 6.7 0.49 ** 1.7 6.6 0.60 **
1AKJ 1.4 4.3 0.59 ** 2.0 3.5 0.43 ** 1.4 3.3 0.63 ** 1.4 3.3 0.63 **
1ATN 9.6 32.7 0.13 - 5.0 28.4 0.22 - 5.0 28.4 0.22 - 4.2 31.5 0.21 -
1AVX 17.3 52.5 0.00 - 4.0 13.7 0.52 * 1.6 6.2 0.59 ** 1.2 2.7 0.41 **
1AY7 15.1 32.8 0.00 - 10.0 16.8 0.00 - 1.6 3.2 0.62 ** 1.1 3.6 0.57 **
1AZS 18.2 85.9 0.00 - 10.7 36.3 0.00 - 7.0 18.1 0.05 - 1.9 3.8 0.27 *
1B6C 2.1 3.5 0.77 ** 2.1 3.5 0.77 ** 2.1 3.5 0.77 ** 2.1 3.5 0.77 **
1BGX NaN NaN NaN - NaN NaN NaN - NaN NaN NaN - NaN NaN NaN -
1BJ1 9.0 24.7 0.14 - 1.9 12.4 0.48 ** 1.9 7.8 0.48 ** 1.9 7.8 0.48 **

1BKD 23.9 55.7 0.00 - 5.3 9.8 0.35 * 4.4 6.4 0.24 * 3.0 3.5 0.55 **
1BUH 13.1 22.0 0.17 - 1.5 3.3 0.79 ** 1.5 3.3 0.79 ** 1.5 3.3 0.79 **
1BVK 13.8 25.1 0.00 - 13.2 25.1 0.00 - 2.3 6.1 0.38 * 1.9 5.6 0.45 **
1BVN 1.4 3.1 0.74 ** 1.4 3.1 0.74 ** 1.4 3.1 0.74 ** 1.3 2.0 0.45 **
1CGI 7.0 13.7 0.02 - 2.4 3.4 0.53 ** 2.4 3.4 0.53 ** 2.3 3.7 0.53 **
1CLV 6.5 13.3 0.04 - 1.9 3.7 0.31 ** 1.9 3.7 0.31 ** 1.5 2.8 0.59 **
1D6R 16.0 54.3 0.00 - 3.7 9.1 0.16 * 1.5 4.6 0.64 ** 1.5 4.6 0.64 **
1DE4 10.4 23.1 0.12 - 10.4 23.1 0.12 - 3.0 10.4 0.77 * 3.8 6.4 0.30 *
1DFJ 10.6 21.2 0.00 - 1.5 2.4 0.74 ** 1.5 2.4 0.74 ** 1.5 2.4 0.74 **
1DQJ 3.7 6.7 0.33 * 2.5 5.6 0.54 * 1.8 3.4 0.79 ** 1.8 3.4 0.79 **
1E4K 14.0 32.4 0.00 - 13.7 29.8 0.00 - 11.6 35.0 0.00 - 2.2 8.0 0.37 *
1E6E 11.7 19.5 0.04 - 1.8 2.5 0.67 ** 1.8 2.5 0.67 ** 1.8 2.5 0.67 **
1E6J 9.1 17.2 0.14 - 2.3 5.5 0.53 * 2.1 5.8 0.37 * 1.8 5.7 0.55 **
1E96 8.1 31.5 0.03 - 5.3 13.1 0.28 - 3.9 8.6 0.40 * 1.8 4.4 0.45 **

1EAW 5.7 11.7 0.23 - 1.5 3.8 0.74 ** 1.5 3.8 0.74 ** 1.4 3.0 0.57 **
1EER 17.3 44.7 0.02 - 8.1 16.5 0.06 - 3.2 6.2 0.53 * 2.8 4.9 0.43 **
1EFN 9.6 16.1 0.20 - 2.9 5.5 0.54 * 1.6 5.6 0.71 ** 1.3 3.9 0.49 **
1EWY 2.2 4.0 0.42 ** 2.2 4.0 0.42 ** 2.2 4.0 0.42 ** 1.4 1.8 0.51 **
1EXB 21.0 31.8 0.00 - 5.6 6.8 0.61 * 5.8 8.0 0.54 * 5.2 5.0 0.73 **
1EZU 17.8 31.0 0.07 - 9.7 19.7 0.12 - 3.6 8.3 0.34 * 3.5 11.7 0.39 *
1F34 16.4 46.4 0.00 - 2.1 4.5 0.62 ** 1.7 4.0 0.60 ** 1.7 4.0 0.60 **
1F51 10.3 29.5 0.00 - 10.3 29.5 0.00 - 1.6 3.2 0.71 ** 1.6 3.2 0.71 **
1F6M 18.9 55.7 0.00 - 13.2 33.1 0.16 - 7.0 8.3 0.09 - 5.7 3.1 0.14 *
1FAK 22.7 39.9 0.00 - 13.3 28.4 0.09 - 7.7 23.0 0.07 - 6.7 16.9 0.24 *
1FC2 2.2 4.3 0.63 ** 2.2 4.3 0.63 ** 2.2 4.3 0.63 ** 1.9 3.1 0.58 **
1FCC 11.3 20.7 0.05 - 7.5 16.6 0.23 - 1.7 3.1 0.72 ** 1.7 3.1 0.72 **
1FFW 12.2 44.1 0.00 - 10.0 35.5 0.00 - 8.9 28.2 0.06 - 3.8 12.4 0.17 *
1FLE 10.3 32.2 0.03 - 10.3 32.2 0.03 - 4.0 11.5 0.35 * 1.9 4.9 0.58 **
1FQ1 17.6 47.2 0.00 - 4.9 7.7 0.39 * 2.9 4.8 0.55 ** 2.8 4.3 0.43 **
1FQJ 14.9 28.4 0.07 - 1.3 3.0 0.55 ** 1.3 3.0 0.55 ** 1.2 2.1 0.73 **
1FSK 13.7 27.4 0.08 - 1.5 3.0 0.79 ** 1.5 3.0 0.79 ** 1.1 3.1 0.64 **
1GCQ 10.5 44.5 0.00 - 10.2 44.7 0.00 - 4.0 8.3 0.28 * 1.4 2.8 0.56 **
1GHQ 23.6 64.3 0.00 - 12.6 58.4 0.00 - 2.5 8.9 0.56 * 1.4 3.3 0.80 **
1GL1 2.0 3.7 0.55 ** 2.0 3.7 0.55 ** 2.0 3.7 0.55 ** 1.5 2.7 0.47 **
1GLA 2.6 5.1 0.51 * 1.4 3.7 0.51 ** 1.4 3.7 0.51 ** 1.3 2.9 0.44 **
1GP2 12.3 48.5 0.00 - 2.5 2.9 0.18 * 2.5 2.9 0.18 * 2.5 4.8 0.17 *

1GPW 18.5 59.7 0.00 - 2.0 5.5 0.51 * 1.3 2.4 0.73 ** 1.5 2.2 0.61 **
1GRN 2.7 7.1 0.47 * 2.7 7.1 0.47 * 1.9 4.1 0.59 ** 2.0 3.7 0.56 **
1GXD 6.0 20.7 0.14 - 3.7 15.9 0.32 * 3.2 19.8 0.38 * 3.8 8.1 0.24 *
1H1V 20.4 66.7 0.00 - 13.8 29.6 0.00 - 11.1 30.8 0.02 - 8.6 20.4 0.00 -
1H9D 9.7 15.8 0.00 - 3.4 6.2 0.32 * 2.0 4.4 0.59 ** 1.7 3.4 0.58 **
1HCF 2.0 6.9 0.53 * 2.0 6.9 0.53 * 2.0 3.6 0.66 ** 1.7 3.0 0.34 **
1HE1 1.5 2.3 0.81 ** 1.5 2.3 0.81 ** 1.5 2.3 0.81 ** 1.5 2.3 0.81 **
1HE8 14.8 25.0 0.00 - 6.1 11.9 0.37 - 4.0 7.3 0.43 * 1.7 2.5 0.50 **
1HIA 3.1 8.0 0.51 * 2.5 6.2 0.49 * 1.8 4.7 0.60 ** 1.7 2.9 0.52 **
1I2M 3.6 8.5 0.24 * 2.2 4.0 0.55 ** 2.2 4.0 0.55 ** 2.0 2.9 0.64 **
1I4D 10.4 41.2 0.00 - 5.0 11.6 0.13 - 1.5 2.1 0.58 ** 1.5 2.1 0.58 **
1I9R 13.8 34.4 0.00 - 6.8 26.1 0.00 - 1.8 3.8 0.83 ** 1.8 3.8 0.83 **
1IB1 18.8 61.6 0.00 - 18.0 61.9 0.00 - 17.2 60.7 0.00 - 2.4 3.2 0.59 **
1IBR 17.2 31.8 0.02 - 9.1 21.1 0.06 - 2.8 4.5 0.54 ** 3.1 4.5 0.44 **
1IJK 17.3 33.8 0.00 - 2.0 5.9 0.52 ** 2.0 5.9 0.52 ** 1.1 2.8 0.52 **
1IQD 9.1 19.2 0.08 - 1.8 6.1 0.65 ** 1.8 3.9 0.56 ** 1.3 3.9 0.65 **
1IRA 27.3 52.9 0.00 - 23.7 55.5 0.00 - 22.5 54.1 0.00 - 16.1 27.2 0.00 -
1J2J 3.8 9.6 0.33 * 2.7 6.8 0.27 * 1.8 4.1 0.52 ** 1.3 2.9 0.61 **
1JIW 10.7 15.4 0.00 - 10.4 20.5 0.14 - 8.4 24.3 0.02 - 3.3 5.2 0.60 *
1JK9 11.4 26.7 0.12 - 3.3 4.6 0.59 ** 3.3 4.6 0.59 ** 3.4 4.6 0.60 **
1JMO 3.7 10.0 0.19 * 3.7 10.0 0.19 * 4.8 10.0 0.15 * 5.0 8.7 0.17 *
1JPS 2.0 4.7 0.42 ** 1.4 4.1 0.62 ** 1.3 3.4 0.69 ** 1.0 2.6 0.68 ***
1JTD 12.4 40.7 0.03 - 11.9 42.9 0.00 - 1.2 3.1 0.69 ** 0.6 1.3 0.77 ***
1JTG 12.8 34.3 0.00 - 1.9 4.4 0.61 ** 1.9 4.4 0.61 ** 1.9 4.4 0.52 **
1JWH 6.8 34.4 0.13 - 5.3 20.2 0.62 - 4.0 17.2 0.51 - 4.0 16.5 0.24 *
1JZD 8.9 17.1 0.08 - 2.9 6.8 0.25 * 3.4 3.9 0.46 ** 3.0 3.5 0.48 **
1K4C 3.6 15.9 0.29 * 1.8 4.3 0.74 ** 1.8 4.3 0.74 ** 1.9 4.7 0.31 **
1K5D 3.3 9.4 0.25 * 2.6 3.8 0.37 ** 2.6 3.8 0.37 ** 2.0 8.4 0.60 **
1K74 1.1 1.9 0.76 ** 1.1 1.9 0.76 ** 1.1 1.9 0.76 ** 1.1 1.9 0.76 **
1KAC 5.7 11.6 0.20 - 2.8 5.0 0.34 ** 1.6 4.1 0.64 ** 1.6 4.1 0.64 **
1KKL 3.9 10.7 0.12 * 3.6 11.5 0.29 * 3.4 5.7 0.10 * 1.2 3.0 0.31 **
1KLU 15.0 29.9 0.00 - 2.5 12.5 0.33 * 2.0 5.3 0.37 ** 2.0 6.3 0.37 **
1KTZ 1.1 5.4 0.86 ** 1.1 5.4 0.86 ** 1.0 6.0 0.83 *** 1.0 6.0 0.62 ***
1KXP 1.5 3.4 0.63 ** 1.5 3.4 0.63 ** 1.5 3.4 0.63 ** 1.7 2.7 0.58 **
1KXQ 1.5 3.1 0.93 ** 1.5 3.1 0.93 ** 1.5 3.1 0.93 ** 1.7 3.1 0.75 **
1LFD 9.4 18.1 0.23 - 4.4 10.6 0.30 - 3.1 6.0 0.42 * 2.5 4.6 0.40 **
1M10 14.8 23.7 0.10 - 10.3 21.1 0.07 - 6.7 14.9 0.07 - 3.3 4.9 0.36 **
1M27 17.6 54.6 0.00 - 3.1 9.8 0.42 * 2.5 4.1 0.29 * 2.6 5.9 0.67 *
1MAH 1.4 2.8 0.61 ** 1.4 2.8 0.61 ** 1.4 2.8 0.61 ** 1.4 2.8 0.61 **
1ML0 12.3 21.6 0.05 - 3.5 6.9 0.27 * 1.4 2.6 0.47 ** 1.6 2.8 0.48 **
1MLC 8.8 18.7 0.00 - 8.3 20.4 0.00 - 1.1 3.8 0.84 ** 1.1 3.8 0.84 **
1MQ8 11.4 57.0 0.00 - 8.6 16.4 0.14 - 3.9 8.2 0.12 * 3.1 6.2 0.44 *
1N2C 43.2 100.0 0.00 - 4.3 11.3 0.37 - 3.1 8.9 0.53 * 2.6 6.8 0.62 *
1NCA 16.9 31.0 0.01 - 1.8 7.2 0.62 ** 1.8 7.2 0.62 ** 0.9 3.2 0.92 ***
1NSN 14.5 24.0 0.02 - 1.8 3.6 0.75 ** 1.8 3.6 0.75 ** 1.2 3.9 0.54 **
1NW9 15.8 24.4 0.02 - 9.9 21.7 0.05 - 8.4 4.7 0.28 * 8.3 9.3 0.12 *
1OC0 5.1 8.9 0.07 - 2.1 4.9 0.37 ** 2.1 4.9 0.37 ** 2.0 4.3 0.22 **
1OFU 2.2 5.2 0.50 * 1.6 4.0 0.58 ** 1.0 4.4 0.57 *** 1.0 4.4 0.51 ***
1OPH 11.6 26.6 0.23 - 3.8 5.3 0.32 * 2.3 5.1 0.74 * 2.3 5.1 0.74 *
1OYV 1.9 4.3 0.62 ** 1.9 4.3 0.62 ** 1.9 4.3 0.62 ** 1.2 2.4 0.54 **
1PPE 2.3 6.7 0.54 * 1.5 3.9 0.61 ** 1.1 2.7 0.77 ** 0.7 1.4 0.73 ***
1PVH 8.8 17.3 0.00 - 7.0 13.3 0.03 - 3.8 7.8 0.27 * 1.5 6.6 0.90 **
1PXV 18.1 37.4 0.00 - 6.6 18.8 0.33 - 3.2 4.1 0.64 ** 3.1 4.6 0.65 **
1QA9 7.8 17.1 0.11 - 5.1 12.5 0.21 - 1.5 3.9 0.66 ** 1.5 3.9 0.66 **
1QFW 20.9 48.9 0.00 - 12.3 42.2 0.08 - 1.9 4.5 0.79 ** 1.9 4.5 0.79 **
1R0R 15.8 43.1 0.00 - 3.5 10.3 0.48 * 1.4 3.2 0.88 ** 1.4 3.1 0.84 **
1R6Q 11.8 20.5 0.00 - 2.8 8.2 0.35 * 2.6 4.0 0.37 ** 2.8 3.9 0.33 **
1R8S 6.0 10.7 0.23 - 3.7 5.8 0.45 * 3.6 6.8 0.39 * 3.6 6.8 0.39 *
1RKE 16.7 47.2 0.00 - 10.7 46.7 0.00 - 3.5 4.3 0.59 ** 3.6 4.3 0.59 **
1RLB 8.5 25.0 0.18 - 4.9 16.2 0.47 - 2.9 7.5 0.47 * 1.3 5.9 0.54 **
1RV6 10.6 20.9 0.21 - 4.3 8.3 0.28 * 1.4 3.0 0.66 ** 1.4 3.0 0.64 **
1S1Q 12.4 31.5 0.00 - 6.7 20.6 0.07 - 3.0 6.4 0.44 * 1.3 3.9 0.77 **
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1SBB 2.2 5.2 0.67 * 1.7 10.0 0.79 ** 1.8 11.1 0.64 ** 2.0 7.9 0.82 **
1SYX 18.1 49.0 0.00 - 13.5 47.5 0.00 - 3.0 5.4 0.35 * 2.3 3.1 0.53 **
1T6B 14.8 24.0 0.00 - 8.0 17.6 0.11 - 6.2 11.5 0.00 - 5.0 17.6 0.05 -
1TMQ 1.9 5.9 0.48 ** 1.8 2.9 0.52 ** 1.8 2.9 0.52 ** 1.7 3.4 0.47 **
1UDI 14.9 23.1 0.07 - 1.6 4.0 0.55 ** 1.6 4.0 0.55 ** 1.1 1.7 0.79 **
1US7 14.6 35.7 0.06 - 2.0 3.2 0.86 ** 2.0 3.2 0.86 ** 1.1 2.2 0.72 **
1VFB 16.2 30.3 0.00 - 4.8 12.3 0.28 - 3.7 17.6 0.40 * 1.7 5.0 0.72 **

1WDW 15.4 43.3 0.06 - 6.8 21.0 0.16 - 1.9 5.2 0.48 ** 1.3 2.6 0.55 **
1WEJ 11.6 20.5 0.00 - 1.9 6.6 0.58 ** 1.7 4.7 0.51 ** 1.0 3.2 0.77 ***
1WQ1 13.0 23.0 0.10 - 1.5 2.4 0.47 ** 1.5 2.4 0.47 ** 1.6 2.9 0.44 **
1XD3 6.8 15.1 0.15 - 2.1 4.1 0.57 ** 1.8 7.1 0.47 ** 1.9 3.7 0.53 **
1XQS 21.5 48.6 0.00 - 3.4 11.4 0.40 * 2.3 3.4 0.45 ** 2.5 3.9 0.43 **
1XU1 2.1 6.2 0.51 * 2.0 5.1 0.57 ** 1.8 5.3 0.58 ** 1.8 4.1 0.30 **
1Y64 21.1 33.3 0.00 - 14.7 35.1 0.00 - 11.3 33.3 0.00 - 6.0 5.2 0.17 *
1YVB 1.7 4.1 0.64 ** 1.7 4.1 0.64 ** 1.6 7.0 0.72 ** 1.2 3.3 0.54 **
1Z0K 8.5 16.1 0.13 - 1.4 2.7 0.79 ** 1.4 2.7 0.79 ** 0.8 1.2 0.87 ***
1Z5Y 15.7 44.8 0.00 - 1.8 3.6 0.79 ** 1.8 3.6 0.79 ** 1.8 3.6 0.79 **
1ZHH 10.2 23.7 0.02 - 10.2 23.7 0.02 - 3.2 7.6 0.14 * 2.5 5.8 0.26 *
1ZHI 17.5 30.1 0.00 - 7.3 32.5 0.00 - 2.3 7.1 0.41 * 2.2 4.7 0.41 **
1ZLI 14.6 24.7 0.17 - 2.9 5.2 0.41 * 2.8 4.9 0.47 ** 2.8 4.9 0.47 **
1ZM4 3.5 8.4 0.46 * 3.5 8.4 0.46 * 2.8 4.1 0.68 ** 2.8 4.1 0.68 **
2A1A 1.6 2.8 0.89 ** 1.6 2.8 0.89 ** 1.6 2.3 0.86 ** 1.5 1.8 0.73 **
2A5T 1.4 1.8 0.69 ** 1.4 1.8 0.69 ** 1.4 1.8 0.69 ** 1.5 1.7 0.69 **
2A9K 4.1 11.6 0.23 - 4.1 11.6 0.23 - 4.1 11.6 0.23 - 3.1 8.9 0.18 *
2ABZ 1.4 3.2 0.78 ** 1.4 3.2 0.78 ** 1.4 4.1 0.80 ** 1.4 3.9 0.63 **
2AJF 1.8 5.0 0.40 ** 1.6 5.7 0.71 ** 1.6 5.7 0.71 ** 1.6 5.7 0.71 **
2AYO 1.6 1.6 0.60 ** 1.6 1.6 0.60 ** 1.6 1.6 0.60 ** 1.6 1.6 0.60 **
2B42 3.4 11.3 0.35 * 3.4 11.3 0.35 * 2.1 5.6 0.63 * 2.1 4.3 0.91 **
2B4J 12.5 33.5 0.00 - 9.6 35.9 0.00 - 2.1 4.9 0.81 ** 1.9 6.9 0.40 **
2BTF 2.3 4.2 0.40 ** 1.2 1.8 0.57 ** 1.2 1.8 0.57 ** 1.2 1.7 0.47 **
2C0L 11.6 27.1 0.00 - 9.3 16.8 0.00 - 3.0 6.1 0.51 * 2.6 3.3 0.44 **
2CFH 2.9 4.9 0.50 ** 2.9 4.9 0.50 ** 2.9 4.9 0.50 ** 2.9 4.9 0.50 **
2FD6 17.4 30.6 0.00 - 2.8 12.1 0.55 * 1.8 8.9 0.74 ** 1.8 8.9 0.74 **
2FJU 6.4 13.6 0.03 - 1.6 3.3 0.84 ** 1.6 3.3 0.84 ** 1.6 4.0 0.65 **
2G77 12.5 22.1 0.06 - 6.5 10.8 0.12 - 1.9 4.0 0.69 ** 2.1 4.6 0.71 **
2GAF 22.0 63.2 0.00 - 16.5 35.9 0.00 - 2.0 4.6 0.52 ** 1.6 2.6 0.56 **
2GTP 0.9 1.7 0.76 *** 0.9 1.7 0.76 * 0.9 1.7 0.76 * 0.9 1.7 0.76 ***
2H7V 2.3 11.7 0.61 * 2.3 11.7 0.61 * 1.9 3.5 0.52 ** 2.0 4.6 0.63 **
2HLE 16.0 55.5 0.00 - 1.8 4.8 0.63 ** 1.8 4.8 0.63 ** 1.9 4.4 0.56 **
2HMI 24.9 69.2 0.00 - 12.0 26.9 0.00 - 10.0 42.9 0.00 - 6.2 42.1 0.00 -
2HQS 6.3 17.0 0.12 - 2.1 3.5 0.53 ** 1.9 3.6 0.40 ** 1.9 3.7 0.56 **
2HRK 13.3 36.7 0.00 - 4.0 10.8 0.53 - 2.7 4.8 0.72 ** 2.0 3.2 0.88 **
2I25 1.5 2.9 0.52 ** 1.5 2.9 0.52 ** 1.5 2.9 0.52 ** 1.5 2.7 0.63 **
2I9B 10.9 42.2 0.05 - 10.9 42.2 0.05 - 5.1 8.7 0.23 * 4.3 6.9 0.22 *
2IDO 3.6 8.7 0.23 * 3.6 8.7 0.23 * 2.7 4.2 0.35 ** 2.7 4.2 0.35 **
2J0T 2.8 5.7 0.38 * 2.8 5.7 0.38 * 1.7 3.6 0.60 ** 1.7 4.6 0.55 **
2J7P 19.8 47.5 0.00 - 5.3 11.8 0.19 - 3.3 5.1 0.60 * 3.5 5.1 0.39 *
2JEL 10.6 19.6 0.00 - 1.2 4.9 0.71 ** 1.4 3.2 0.70 ** 1.8 4.6 0.46 **

2MTA 1.4 4.2 0.73 ** 1.4 4.2 0.73 ** 1.6 3.4 0.47 ** 1.4 2.8 0.49 **
2NZ8 13.8 26.9 0.09 - 5.2 7.4 0.20 * 2.9 4.4 0.37 ** 2.6 4.1 0.35 **
2O3B 13.4 23.9 0.00 - 10.8 26.5 0.04 - 4.7 9.5 0.09 - 4.7 9.5 0.09 -
2O8V 16.6 64.6 0.00 - 1.9 6.6 0.55 ** 1.7 4.2 0.70 ** 1.8 8.4 0.90 **
2OOB 7.6 16.2 0.11 - 3.6 7.3 0.22 * 1.7 2.6 0.67 ** 1.7 2.6 0.67 **
2OOR 12.6 21.4 0.16 - 12.6 21.4 0.16 - 2.6 6.8 0.59 * 2.1 5.5 0.46 *
2OT3 12.2 25.0 0.12 - 10.8 20.9 0.16 - 3.3 5.2 0.39 * 2.7 3.0 0.43 **
2OUL 1.3 2.7 0.71 ** 1.3 2.7 0.71 ** 1.3 2.7 0.71 ** 1.2 3.6 0.65 **
2OZA 11.5 22.4 0.11 - 6.7 12.3 0.12 - 3.6 7.2 0.30 * 2.7 4.9 0.53 **
2PCC 20.2 62.4 0.00 - 1.9 3.5 0.76 ** 1.9 3.5 0.76 ** 1.9 3.5 0.76 **
2SIC 8.2 21.1 0.14 - 1.7 7.1 0.59 ** 1.5 3.7 0.66 ** 1.9 5.3 0.55 **
2SNI 14.4 44.9 0.00 - 1.0 2.8 0.79 *** 1.0 2.8 0.79 *** 1.0 2.8 0.79 ***
2UUY 7.9 20.6 0.00 - 4.1 16.1 0.21 - 0.8 3.6 0.79 *** 0.8 3.6 0.79 ***
2VDB 14.9 38.0 0.00 - 12.8 31.8 0.00 - 6.0 13.0 0.13 - 2.0 3.4 0.60 **
2VIS 25.3 47.1 0.00 - 2.6 13.7 0.33 * 3.8 11.1 0.16 * 1.4 20.7 0.55 **
2VXT 8.4 19.8 0.03 - 1.9 4.2 0.63 ** 1.9 4.2 0.63 ** 1.9 4.2 0.63 **
2W9E 12.1 28.2 0.00 - 8.5 18.8 0.09 - 2.1 4.5 0.75 ** 1.9 7.0 0.41 **
2X9A 4.6 13.3 0.33 - 2.1 2.8 0.71 ** 2.1 2.8 0.71 ** 2.1 2.8 0.60 **
2YVJ 2.6 4.6 0.41 ** 2.6 4.6 0.41 ** 2.6 4.6 0.41 ** 1.4 4.9 0.51 **
2Z0E 13.8 46.4 0.01 - 13.3 47.0 0.03 - 3.8 7.6 0.20 * 2.8 4.9 0.47 **
3A4S 2.0 4.3 0.84 ** 2.0 4.3 0.84 ** 1.6 3.5 0.75 ** 1.3 2.2 0.81 **
3AAA 14.0 25.6 0.02 - 2.4 5.3 0.64 * 2.2 3.5 0.42 ** 2.2 3.5 0.42 **
3AAD 22.0 63.1 0.00 - 14.5 29.5 0.07 - 10.0 33.9 0.03 - 8.1 14.3 0.08 -
3BIW 18.7 55.7 0.00 - 2.0 4.5 0.69 ** 2.0 4.5 0.69 ** 1.6 5.6 0.78 **
3BP8 2.2 5.7 0.51 * 2.2 5.7 0.51 * 2.0 3.9 0.51 ** 1.7 3.8 0.42 **
3BX7 2.8 7.1 0.54 * 2.5 4.8 0.36 ** 2.5 4.8 0.36 ** 3.1 4.7 0.40 **
3CPH 11.0 22.9 0.06 - 5.4 11.4 0.16 - 4.0 9.8 0.29 * 2.5 3.8 0.43 **
3D5S 17.8 48.8 0.00 - 12.7 39.7 0.00 - 1.8 3.5 0.78 ** 1.8 3.5 0.78 **

3DAW 2.1 3.9 0.45 ** 2.1 3.9 0.45 ** 2.1 3.9 0.45 ** 2.5 3.5 0.47 **
3EO1 2.1 8.3 0.59 * 2.0 9.4 0.36 ** 2.0 14.2 0.56 ** 2.0 9.4 0.36 **
3EOA 13.5 26.8 0.09 - 5.4 22.2 0.30 - 2.5 10.8 0.51 * 2.4 4.6 0.72 **
3F1P 2.7 7.2 0.37 * 1.9 3.2 0.67 ** 1.9 3.2 0.67 ** 1.9 3.2 0.67 **
3FN1 14.1 20.7 0.07 - 11.6 28.5 0.00 - 4.3 5.9 0.47 * 4.2 7.1 0.36 *
3G6D 8.4 19.6 0.02 - 5.1 9.5 0.08 - 1.9 5.2 0.62 ** 1.9 12.9 0.62 **
3H11 16.2 23.0 0.00 - 7.5 11.1 0.26 - 6.2 8.0 0.31 * 5.6 5.1 0.47 *
3H2V 12.4 25.9 0.00 - 10.6 22.5 0.00 - 4.8 10.3 0.34 - 2.1 6.6 0.63 *
3HI6 4.1 11.1 0.34 - 2.9 10.6 0.29 * 2.5 4.6 0.45 ** 3.0 4.6 0.34 **

3HMX 3.1 13.5 0.31 * 2.6 7.4 0.38 * 1.8 10.2 0.46 ** 1.6 6.9 0.62 **
3K75 2.6 5.1 0.44 * 2.8 6.2 0.51 * 1.9 4.1 0.54 ** 1.3 5.3 0.71 **
3L5W 2.9 11.8 0.76 * 1.4 4.9 0.90 ** 1.6 4.4 0.72 ** 1.3 4.7 0.76 **
3L89 2.9 5.0 0.53 * 2.9 5.0 0.53 * 2.9 5.0 0.53 * 2.8 5.4 0.41 *
3LVK 5.5 8.9 0.26 * 2.8 6.9 0.43 * 2.7 5.3 0.43 * 2.1 3.7 0.48 **

3MXW 13.4 23.0 0.00 - 2.9 5.1 0.43 * 1.5 4.3 0.62 ** 1.5 4.3 0.62 **
3P57 11.8 42.1 0.00 - 3.1 17.8 0.61 * 1.9 9.9 0.74 ** 1.2 3.7 0.72 **
3PC8 1.7 4.1 0.65 ** 1.7 4.1 0.65 ** 1.9 2.9 0.45 ** 1.9 2.9 0.45 **
3R9A 18.9 34.4 0.00 - 2.7 11.8 0.58 * 2.7 11.8 0.58 * 3.2 7.6 0.32 *
3RVW 13.2 30.1 0.06 - 8.4 25.0 0.00 - 2.3 5.5 0.67 * 1.7 6.5 0.82 **
3S9D 14.1 22.7 0.00 - 3.3 13.7 0.26 * 3.1 5.5 0.32 * 2.8 3.8 0.40 **
3SGQ 7.5 15.0 0.05 - 2.0 4.0 0.45 ** 2.1 4.3 0.54 ** 1.6 4.5 0.39 **
3SZK 11.2 27.3 0.28 - 5.6 24.6 0.56 - 2.9 8.0 0.44 * 2.6 4.9 0.68 **
3V6Z 14.0 24.3 0.00 - 9.3 21.9 0.00 - 3.8 8.7 0.43 * 2.5 4.5 0.48 **
3VLB 17.4 28.8 0.09 - 0.9 2.5 0.79 *** 0.9 2.5 0.79 *** 0.9 2.5 0.79 ***
4CPA 1.8 4.1 0.46 ** 1.8 4.1 0.46 ** 1.8 4.1 0.46 ** 1.1 2.1 0.37 **
4DN4 2.5 2.9 0.47 ** 2.5 2.9 0.47 ** 2.5 2.9 0.47 ** 2.1 4.4 0.30 **
4FQI 19.8 100.0 0.00 - 1.9 4.2 0.52 ** 1.9 4.2 0.52 ** 1.9 4.2 0.38 **
4FZA 14.4 27.9 0.00 - 13.4 28.5 0.00 - 3.0 5.2 0.29 * 3.0 5.2 0.29 *
4G6J 11.6 20.7 0.03 - 9.2 16.1 0.15 - 1.5 4.6 0.65 ** 2.2 4.1 0.77 **

4G6M 0.9 2.4 0.83 *** 0.9 2.4 0.83 ** 0.9 2.4 0.83 ** 1.2 2.3 0.90 **
4GAM 5.0 10.0 0.23 - 3.8 7.3 0.35 * 2.9 5.4 0.54 * 2.7 4.8 0.46 **
4GXU 13.3 24.9 0.20 - 8.2 19.4 0.18 - 3.5 10.5 0.29 * 1.5 7.1 0.50 **
4H03 17.4 34.0 0.00 - 1.9 7.5 0.40 ** 1.9 7.5 0.40 ** 1.5 3.9 0.52 **
4HX3 12.2 20.6 0.00 - 3.9 10.3 0.18 * 1.4 1.7 0.57 ** 1.4 1.7 0.57 **
4IZ7 24.1 64.3 0.00 - 2.4 3.7 0.70 ** 2.4 3.7 0.70 ** 2.4 3.7 0.70 **
4JCV 3.1 5.7 0.66 * 1.3 2.9 0.71 ** 1.3 2.9 0.71 ** 1.8 4.0 0.67 **
4LW4 12.6 22.4 0.02 - 1.9 3.2 0.28 * 1.9 3.2 0.28 * 1.9 3.2 0.28 **
4M76 24.9 80.7 0.00 - 5.6 29.6 0.03 - 4.0 17.8 0.45 - 1.7 6.0 0.78 **
7CEI 1.5 4.5 0.73 ** 1.5 4.5 0.73 ** 1.0 1.7 0.81 *** 1.0 1.9 0.79 ***

9QFW 24.5 49.1 0.00 - 2.2 7.9 0.47 * 1.7 7.3 0.71 ** 1.7 7.3 0.71 **
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(a) mHC2 (b) mHC4

(c) mHC6 (d) NS1-7

Figure E.1. Contact frequency of solvent exposed residues on Trxb2 domain extracted from all 1000
�nal docking models. All four peptides exhibit similar binding pa�erns.
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Table F.1. Cross-linking/mass spectrometry data for bovine serum albumin. �e crosslinked residue
pairs, the upper limit for the Cα-Cα distance used during modeling dmax and the actual distances as
derived from the crystal structure (PDB 3V03) are listed. False positive crosslinks are marked in bold
face.

Res1 Res2 dmax [Å] PDB 3V03 [Å]

350 474 25.0 18.1
204 465 25.0 13.5
116 431 25.0 21.2
396 544 25.0 14.5
187 221 25.0 20.3
221 439 25.0 20.2
204 350 25.0 17.0
204 471 25.0 17.1
180 431 25.0 19.7
180 439 25.0 22.6
173 431 25.0 22.6
224 439 25.0 27.0
127 431 25.0 35.9
173 439 25.0 32.8
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(a) Front view. (b) Back view.

Figure F.1. Integrative modeling results for bovine serum albumin. �e top-ranked model is shown in
cartoon representation green, yellow, red). Cross-links are drawn in gray. �e crystal structure (PDB
3V03) is superimposed on the docking model (gray). �e docking model is very close to the native
structure (IRMSD = 1.6 Å and fnat = 0.69) and ful�lls all the true positive cross-linking restraints
within an upper limit of 25 Å. Furthermore, two of the false positive cross-links are not ful�lled in any
of the 200 �nal models.

Table F.2. Comparison of di�erent ISWI ATPase domain models to SAXS data of ISWI ATPase
(residues 26-644; Bruetzel and Lipfert, unpublished data). Homology models were built on crystal struc-
tures of SF2 ATPases with MODELLER [482].

Name (PDB ID) χ [FoXS] χ2 [CRYSOL] Ful�lls XL-MS data?

Sso (1Z6A) 2.69 6.26 no
Rad54 (1Z3I) 2.22 3.98 no

Chd1 (3MWY) 0.61 0.69 no
Swi2 (5ZHR) 3.02 7.65 partially

New dockingmodel 1.11 0.36 yes
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Figure F.2. Ab-initio docking results for ISWI ATPase lobe 1 (yellow) and lobe 2 (red). �e distance
between the connecting residues 351 and 352 was restrained. �e catalytic DEAH and QAMDRAHR
motifs are shown in magenta. �e top-ranked model is superimposed on the crystal structure of the
chromatin remodeling domain from Rad54 (PDB 1Z3I, gray).

Chd1 (PDB 3MWY) Rad54 (PDB 1Z3I) Ssso SNF2 (PDB 1Z6A)

Figure F.3. Cross-linking data mapped to three available crystal structures of Snf2 ATPases. Cross-
links are shown in gray, sites of photo-crosslinks are marked by black spheres. Sites where mono-links
(in addition to cross-links) were detected are shown in light blue. �e position of the catalytic motifs
is highlighted in magenta.
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Table F.3. Residues on lobe 2 which are contacted frequently by the AutoN+acidic patch in the dock-
ing models (interface post-prediction). Charged residues are highlighted in bold face.

Residue number Residue name

508 ARG
591 ASN
590 SER
396 ASN
399 MET
455 GLN
457 THR
533 MET
592 GLN
403 LYS
458 ARG
395 GLN
456 MET
511 GLY
536 GLN
512 LEU
578 MET
480 GLN
532 GLN
392 MET
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(a) Previous model (b) New docking model

Figure F.4. Comparison of old and new interpretation of ISWI ATPase cross-linking data (lobe 1
yellow, lobe 2 red, NegC green). Distances for residues with experimentally determined cross-links
between the lobes are shown in gray, sites where mono-links were found in light blue. (a) Previous
model [136]. �e cross-links traverse the interior of the protein. (b) New model. �e N-terminal part
of lobe 1 (residue 116) is located at the interface between lobe 1 and lobe 2.

Table F.4. Cross-links between the histone H4 tail and the ISWI ATPase domain. High-con�dence
crosslinks used during docking are highlighted in bold face. �e residue numbers are given according
to the ISWI sequence.

H4 tail ATPase dmax [Å]

1 482 20.0
1 495 20.0
10 468 20.0
1 578 20.0
1 568 20.0
10 568 20.0
10 482 20.0
10 501 20.0
1 470 20.0
16 391 30.0
5 595 30.0
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Figure F.5. Homology model of ISWI based on the crystal structure of Swi2/Snf2 chromatin remod-
eler (PDB 5HZR) [493]. Assuming high �exibility of the loop that contains methionine 578, all photo-
crosslinks from this position could be ful�lled (distances ≈ 20 Å). Cross-links are shown in gray, sites
of photo-crosslinks are marked by black spheres. As a reference, the crystal structure of Rad54 (PDB
1Z3I) is superimposed on lobe 2 and shown in gray.
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K337

D484

Figure F.6. Validation of our proposed ISWI ATPase model by mutating residues involved in a salt
bridge at the interface. �e residues involved in this ionic bond also showed strong correlations in
co-evolution analysis [331]. To validate our proposed conformation, we will measure ISWI ATPase
activity of charge mutants K337D and D484K/D485K.
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(a) AutoN docking (b) Acidic patch docking

(c) AutoN+acidic patch docking

Figure F.7. ISWI ATPase lobe 2 colored by contact frequency as extracted from the 1,000 �nal docking
models. Frequently contacted residues are colored in red. Two residues were de�ned to be in contact
if any of their heavy atoms were found within 5 Å distance. For reference, the catalytic motif on lobe
2 is shown in magenta and residue 578 is colored in black.
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Figure F.8. Docking model of the histone H4 tail (residues 1-20) binding to ISWI ATPase lobe 2. Lobe
2 is drawn in red, the H4 tail in blue. �e interaction was modeled with the pepATTRACT docking
protocol [391]. Crosslinks from Table F.4 are shown in gray.
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Figure F.9. Fit of full-length ISWI docking model to SAXS pro�le of full-length ISWI using FoXS
[399] with default se�ings. �e experimental data are shown in black, the calculated sca�ering pro�le
in red.
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Figure F.10. HSS binding to DNA on nucleosome, alternative docking model. �is model has rank
16 and shows a DNA-binding mode similar to [497].
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[63] Chiung-Wen Chang, Rafael Miguez Couñago, Simon J Williams, Mikael Bodén, and
Bostjan Kobe. “Distinctive conformation of minor site-speci�c nuclear localization
signals Bound to importin-α”. Tra�c 14.11 (2013), pp. 1144–1154. doi: 10.1111/tra.
12098.

[64] Henry N Chapman, Anton Barty, Michael J Bogan, Sébastien Boutet, Ma�hias Frank,
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[257] Marc F. Lensink, Raúl Méndez, and Shoshana J. Wodak. “Docking and scoring protein
complexes: CAPRI 3rd Edition”. Proteins: Structure, Function, and Bioinformatics 69.4
(2007), pp. 704–718. doi: 10.1002/prot.21804.

241

http://dx.doi.org/10.1073/pnas.1203013109
http://dx.doi.org/10.1073/pnas.1120559109
http://dx.doi.org/10.1074/mcp.R110.000067
http://dx.doi.org/10.1016/j.jmb.2009.02.031
http://dx.doi.org/10.1016/j.jmb.2009.02.031
http://dx.doi.org/10.1002/prot.24422
http://dx.doi.org/10.1002/prot.22849
http://dx.doi.org/10.1002/prot.22849
http://dx.doi.org/10.1016/j.tibs.2015.10.008
http://dx.doi.org/10.1074/mcp.R000001-MCP201
http://dx.doi.org/10.1002/prot.21804


Bibliography

[258] Marc F Lensink and Shoshana J Wodak. “Blind predictions of protein interfaces
by docking calculations in CAPRI”. Proteins: Structure, Function, and Bioinformatics
78.15 (2010), pp. 3085–3095. doi: 10.1002/prot.22850.

[259] Marc F. Lensink and Shoshana J. Wodak. “Docking and scoring protein interactions:
CAPRI 2009”. Proteins: Structure, Function, and Bioinformatics 78.15 (2010), pp. 3073–
3084. doi: 10.1002/prot.22818.

[260] Marc F. Lensink and Shoshana J. Wodak. “Docking, scoring, and a�nity prediction
in CAPRI”. Proteins: Structure, Function, and Bioinformatics 81.12 (2013), pp. 2082–
2095. doi: 10.1002/prot.24428.

[261] Marc F Lensink, Iain H Moal, Paul A Bates, Panagiotis L Kastritis, Adrien SJ Melquiond,
Ezgi Karaca, Christophe Schmitz, Marc Dijk, Alexandre MJJ Bonvin, Miriam Eisen-
stein, et al. “Blind prediction of interfacial water positions in CAPRI”. Proteins: Struc-
ture, Function, and Bioinformatics 82.4 (2014), pp. 620–632. doi: 10.1002/prot.24439.

[262] Marc F Lensink, Sameer Velankar, Andriy Kryshtafovych, Shen-You Huang, Dina
Schneidman-Duhovny, Andrej Sali, Joan Segura, Narcis Fernandez-Fuentes, Shruthi
Viswanath, Ron Elber, et al. “Prediction of homo-and hetero-protein complexes by
protein docking and template-based modeling: a CASP-CAPRI experiment”. Proteins:
Structure, Function, and Bioinformatics (2016), In press. doi: 10.1002/prot.25007.

[263] John D Leonard and Geeta J Narlikar. “A nucleotide-driven switch regulates �anking
DNA length sensing by a dimeric chromatin remodeler”. Molecular Cell 57.5 (2015),
pp. 850–859. doi: 10.1016/j.molcel.2015.01.008.

[264] Justin W Leung, Poonam Agarwal, Marella D Canny, Fade Gong, Aaron D Robison,
Ilya J Finkelstein, Daniel Durocher, and Kyle M Miller. “Nucleosome acidic patch
promotes RNF168-and RING1B/BMI1-dependent H2AX and H2A ubiquitination and
DNA damage signaling”. PLOS Genetics 10.3 (2014), e1004178. doi: 10.1371/journal.
pgen.1004178.
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[368] João P. G. L. M. Rodrigues, Mikaël Trellet, Christophe Schmitz, Panagiotis Kastri-
tis, Ezgi Karaca, Adrien S. J. Melquiond, and Alexandre M. J. J. Bonvin. “Clustering
biomolecular complexes by residue contacts similarity”. Proteins: Structure, Function,
and Bioinformatics 80.7 (2012), pp. 1810–1817. doi: 10.1002/prot.24078.

251

http://dx.doi.org/10.1021/bi5006442
http://dx.doi.org/10.1093/bioinformatics/btw141
http://dx.doi.org/10.1016/j.jsb.2010.10.014
http://dx.doi.org/10.1002/prot.22716
http://dx.doi.org/10.1371/journal.pone.0018934
http://dx.doi.org/10.1371/journal.pone.0018934
http://dx.doi.org/10.1063/1.4774148
http://dx.doi.org/10.1093/bioinformatics/btn334
http://dx.doi.org/10.1093/bioinformatics/btn334
http://dx.doi.org/10.1093/bioinformatics/btq444
http://dx.doi.org/10.1093/bioinformatics/btq444
http://dx.doi.org/10.7554/eLife.08719
http://dx.doi.org/10.1038/nsmb.2054
http://dx.doi.org/10.1002/prot.24078


Bibliography
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Juárez. “A beta-complex statistical four body contact potential combined with a hy-
drogen bond statistical potential recognizes the correct native structure from protein
decoy sets”. Proteins: Structure, Function, and Bioinformatics 81.8 (2013), pp. 1420–
1433. doi: 10.1002/prot.24293.

[389] Alexander Sasse, Sjoerd J de Vries, Christina EM Schindler, Isaure Chauvot de Beauchêne,
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Zacharias. “Protein-protein and peptide-protein docking and re�nement using AT-
TRACT in CAPRI”. Proteins: Structure, Function, and Bioinformatics (2016), In press.
doi: 10.1002/prot.25196.

253

http://dx.doi.org/10.1093/nar/gkr199
http://dx.doi.org/10.1016/j.jmb.2008.08.002
http://dx.doi.org/10.1038/nsmb973
http://dx.doi.org/10.1186/1472-6807-9-27
http://dx.doi.org/10.1093/nar/gku404
http://dx.doi.org/10.1016/j.str.2015.05.013
http://dx.doi.org/10.1016/j.str.2013.02.005
http://dx.doi.org/10.1002/prot.22076
http://dx.doi.org/10.1002/prot.24293
http://dx.doi.org/10.1371/journal.pone.0170625
http://dx.doi.org/10.1002/prot.25196


Bibliography

[391] Christina EM Schindler, Sjoerd J de Vries, and Martin Zacharias. “Fully blind peptide-
protein docking with pepATTRACT”. Structure 23.8 (2015), pp. 1507–1515. doi: 10.
1016/j.str.2015.05.021.

[392] Christina EM Schindler, Sjoerd J de Vries, Alexander Sasse, and Martin Zacharias.
“SAXS data alone can generate high-quality models of protein-protein complexes”.
Structure 24.8 (2016), pp. 1387–1397. doi: 10.1016/j.str.2016.06.007.

[393] Christina EM Schindler, Sjoerd J de Vries, and Martin Zacharias. “iATTRACT: Si-
multaneous global and local interface optimization for protein–protein docking re-
�nement”. Proteins: Structure, Function, and Bioinformatics 83.2 (2015), pp. 248–258.
doi: 10.1002/prot.24728.

[394] Christina EM Schindler and Martin Zacharias. “Application of the ATTRACT coarse-
grained docking and atomistic re�nement for predicting peptide-protein interac-
tions”. Ed. by Ora Schueler-Furman and Nir London. Methods in Molecular Biology.
Springer Press, 2016. Chap. 7, In review.

[395] Emmanuelle Schmi�, Michel Panvert, Christine Lazennec-Schurdevin, Pierre-Damien
Coureux, Javier Perez, Andrew �ompson, and Yves Mechulam. “Structure of the
ternary initiation complex aIF2–GDPNP–methionylated initiator tRNA”.Nature Struc-
tural & Molecular biology 19.4 (2012), pp. 450–454. doi: 10.1038/nsmb.2259.

[396] �omas D Schneider and R Michael Stephens. “Sequence logos: a new way to display
consensus sequences”. Nucleic Acids Research 18.20 (1990), pp. 6097–6100. doi: 10.
1093/nar/18.20.6097.

[397] Dina Schneidman-Duhovny, Michal Hammel, and Andrej Sali. “FoXS: a web server
for rapid computation and ��ing of SAXS pro�les”. Nucleic Acids Research 38.suppl
2 (2010), W540–W544. doi: 10.1093/nar/gkq461.

[398] Dina Schneidman-Duhovny, Michal Hammel, and Andrej Sali. “Macromolecular dock-
ing restrained by a small angle X-ray sca�ering pro�le”. Journal of Structural Biology
173.3 (2011), pp. 461–471. doi: 10.1016/j.jsb.2010.09.023.

[399] Dina Schneidman-Duhovny, Michal Hammel, John A Tainer, and Andrej Sali. “Ac-
curate SAXS pro�le computation and its assessment by contrast variation experi-
ments”. Biophysical Journal 105.4 (2013), pp. 962–974. doi: 10.1016/j.bpj.2013.07.020.

[400] Dina Schneidman-Duhovny, Yuval Inbar, Ruth Nussinov, and Haim J Wolfson. “Geometry-
based �exible and symmetric protein docking”. Proteins: Structure, Function, and Bioin-
formatics 60.2 (2005), pp. 224–231. doi: 10.1002/prot.20562.

[401] Dina Schneidman-Duhovny, Yuval Inbar, Ruth Nussinov, and Haim J. Wolfson. “Patch-
Dock and SymmDock: servers for rigid and symmetric docking”. Nucleic Acids Re-
search 33.suppl 2 (2005), W363–W367. doi: 10.1093/nar/gki481.

[402] Dina Schneidman-Duhovny, Riccardo Pellarin, and Andrej Sali. “Uncertainty in inte-
grative structural modeling”. Current Opinion in Structural Biology 28 (2014), pp. 96–
104. doi: 10.1016/j.sbi.2014.08.001.

254

http://dx.doi.org/10.1016/j.str.2015.05.021
http://dx.doi.org/10.1016/j.str.2015.05.021
http://dx.doi.org/10.1016/j.str.2016.06.007
http://dx.doi.org/10.1002/prot.24728
http://dx.doi.org/10.1038/nsmb.2259
http://dx.doi.org/10.1093/nar/18.20.6097
http://dx.doi.org/10.1093/nar/18.20.6097
http://dx.doi.org/10.1093/nar/gkq461
http://dx.doi.org/10.1016/j.jsb.2010.09.023
http://dx.doi.org/10.1016/j.bpj.2013.07.020
http://dx.doi.org/10.1002/prot.20562
http://dx.doi.org/10.1093/nar/gki481
http://dx.doi.org/10.1016/j.sbi.2014.08.001


Bibliography

[403] Dina Schneidman-Duhovny, Andrea Rossi, Agustin Avila-Sakar, Seung Joong Kim,
Javier Velázquez-Muriel, Pavel Strop, Hong Liang, Kristin A Krukenberg, Maofu
Liao, Ho Min Kim, et al. “A method for integrative structure determination of protein-
protein complexes”.Bioinformatics 28.24 (2012), pp. 3282–3289. doi: 10.1093/bioinformatics/
bts628.

[404] Schrödinger, LLC. �e PyMOL Molecular Graphics System, Version 1.7r0. 2014.
[405] Charles D Schwieters, John J Kuszewski, Nico Tjandra, and G Marius Clore. “�e

Xplor-NIH NMR molecular structure determination package”. Journal of Magnetic
Resonance 160.1 (2003), pp. 65–73. doi: 10.1016/S1090-7807(02)00014-9.

[406] Piotr Setny, Ranjit Bahadur, and Martin Zacharias. “Protein-DNA docking with a
coarse-grained force �eld”. BMC Bioinformatics 13.228 (2012). doi: 10 .1186/1471-
2105-13-228.

[407] Piotr Setny and Martin Zacharias. “A coarse-grained force �eld for protein-RNA
docking”. Nucleic Acids Research 39.21 (2011), pp. 9118–9129. doi: 10 . 1093 / nar /
gkr636.

[408] Nikolaos G Sgourakis, Kannan Natarajan, Jinfa Ying, Beat Vogeli, Lisa F Boyd, David
H Margulies, and Ad Bax. “�e structure of mouse cytomegalovirus m04 protein ob-
tained from sparse NMR data reveals a conserved fold of the m02-m06 viral immune
modulator family”. Structure 22.9 (2014), pp. 1263–1273. doi: 10.1016/j.str.2014.05.
018.

[409] Nikolaos G Sgourakis, Wai-Ming Yau, and Wei Qiang. “Modeling an in-register, par-
allel ”iowa” Aβ �bril structure using solid-state NMR data from labeled samples with
Rose�a”. Structure 23.1 (2015), pp. 216–227. doi: 10.1016/j.str.2014.10.022.

[410] Amit Sharma, Katherine R Jenkins, Annie Héroux, and Gregory D Bowman. “Crys-
tal structure of the chromodomain helicase DNA-binding protein 1 (Chd1) DNA-
binding domain in complex with DNA”. Journal of Biological Chemistry 286.49 (2011),
pp. 42099–42104. doi: 10.1074/jbc.C111.294462.

[411] Maxim Shatsky, Ruth Nussinov, and Haim J Wolfson. “MultiProt–a multiple pro-
tein structural alignment algorithm”. Algorithms in Bioinformatics. Vol. 2452. Lecture
Notes in Computer Science. Springer, 2002, pp. 235–250. doi: 10.1007/3-540-45784-
4{\ }18.

[412] Min-yi Shen and Andrej Sali. “Statistical potential for assessment and prediction of
protein structures”. Protein Science 15.11 (2006), pp. 2507–2524. doi: 10 . 1110 / ps .
062416606.

[413] Yimin Shen, Julien Maupetit, Philippe Derreumaux, and Pierre Tu�e ry. “Improved
PEP-FOLD approach for peptide and miniprotein structure prediction”. Journal of
Chemical�eory and Computation 10.10 (2014), pp. 4745–4758. doi: 10.1021/ct500592m.

255

http://dx.doi.org/10.1093/bioinformatics/bts628
http://dx.doi.org/10.1093/bioinformatics/bts628
http://dx.doi.org/10.1016/S1090-7807(02)00014-9
http://dx.doi.org/10.1186/1471-2105-13-228
http://dx.doi.org/10.1186/1471-2105-13-228
http://dx.doi.org/10.1093/nar/gkr636
http://dx.doi.org/10.1093/nar/gkr636
http://dx.doi.org/10.1016/j.str.2014.05.018
http://dx.doi.org/10.1016/j.str.2014.05.018
http://dx.doi.org/10.1016/j.str.2014.10.022
http://dx.doi.org/10.1074/jbc.C111.294462
http://dx.doi.org/10.1007/3-540-45784-4{\_}18
http://dx.doi.org/10.1007/3-540-45784-4{\_}18
http://dx.doi.org/10.1110/ps.062416606
http://dx.doi.org/10.1110/ps.062416606
http://dx.doi.org/10.1021/ct500592m


Bibliography

[414] Yi Shi, Javier Fernandez-Martinez, Elina Tjioe, Riccardo Pellarin, Seung Joong Kim,
Rosemary Williams, Dina Schneidman-Duhovny, Andrej Sali, Michael P Rout, and
Brian T Chait. “Structural characterization by cross-linking reveals the detailed ar-
chitecture of a coatomer-related heptameric module from the nuclear pore complex”.
Molecular & Cellular Proteomics 13.11 (2014), pp. 2927–2943. doi: 10.1074/mcp.M114.
041673.

[415] David S Shin, Michael DiDonato, David P Barondeau, Greg L Hura, Chiharu Hitomi, J
Andrew Berglund, Elizabeth D Getzo�, S Craig Cary, and John A Tainer. “Superoxide
dismutase from the eukaryotic thermophile Alvinella pompejana: structures, stabil-
ity, mechanism, and insights into amyotrophic lateral sclerosis”. Journal of Molecular
Biology 385.5 (2009), pp. 1534–1555. doi: 10.1016/j.jmb.2008.11.031.

[416] Brian K Shoichet and Irwin D Kuntz. “Matching chemistry and shape in molecular
docking”. Protein Engineering 6.7 (1993), pp. 723–732. doi: 10.1093/protein/6.7.723.

[417] Fabian Sievers, Andreas Wilm, David Dineen, Toby J Gibson, Kevin Karplus, Weizhong
Li, Rodrigo Lopez, Hamish McWilliam, Michael Remmert, Johannes Söding, et al.
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protein movement analysis and the generation of templates for molecular replace-
ment”. Nucleic Acids Research 32.suppl 2 (2004), W610–W614. doi: 10 . 1093 / nar /
gkh368.

[431] D Svergun, C Barberato, and MHJ Koch. “CRYSOL–a program to evaluate X-ray
solution sca�ering of biological macromolecules from atomic coordinates”. Journal
of Applied Crystallography 28.6 (1995), pp. 768–773. doi: 10.1107/S0021889895007047.

[432] Andras Szilagyi and Yang Zhang. “Template-based structure modeling of protein–
protein interactions”. Current Opinion in Structural Biology 24 (2014), pp. 10–23. doi:
10.1016/j.sbi.2013.11.005.

[433] Mohamed Tagari, Richard Newman, Monica Chagoyen, Jose-Maria Carazo, and Kim
Henrick. “New electron microscopy database and deposition system”. Trends in Bio-
chemical Sciences 27.11 (2002), p. 589. doi: 10.1016/S0968-0004(02)02176-X.

[434] Piyali Guha �akurta, Debi Choudhury, Rakhi Dasgupta, and JK Da�agupta. “Ter-
tiary structural changes associated with iron binding and release in hen serum trans-
ferrin: a crystallographic and spectroscopic study”. Biochemical and Biophysical Re-
search Communications 316.4 (2004), pp. 1124–1131. doi: 10.1016/j.bbrc.2004.02.165.
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für die Unterstützung im Bezug auf Karriereplanung, die Gespräche, vor allem
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