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Abstract

Program obfuscation is increasingly popular among
malware creators. Objectively comparing different mal-
ware detection approaches with respect to their resilience
against obfuscation is challenging. To the best of our knowl-
edge, there is no common empirical framework for evalu-
ating the resilience of malware detection approaches w.r.t.
behavior obfuscation. We propose and implement such a
framework, called FEEBO that obfuscates the observable
behavior of malware binaries targeting Microsoft Windows
operating systems. To assess the framework’s utility, we use
it to obfuscate known malware binaries and then investi-
gate the impact on detection effectiveness of different popu-
lar behavior based malware detection approaches. We find
that the obfuscation transformations employed by FEEBO
can affect the accuracy of such detection approaches signif-
icantly. FEEBO is therefore an effective and fair way to test
the degree of resilience of behavior-based malware detec-
tion approaches against behavior obfuscation.

1 Introduction

Industry and academia continuously devise countermea-
sures against the thread of malware in form of advanced de-
tection approaches. However, malware developers are often
several steps ahead the state of the art. Most commercial
antivirus software in principle continues to be some form of
signature-based analysis on the persistent representation of
potential malware. Not surprisingly, almost all modern mal-
ware families employ some means to confuse and hamper
signature-based approaches. Such countermeasures range
from simple techniques (e.g. code encryption), to more so-
phisticated techniques (e.g. control-flow obfuscation) [3].

Given control-flow obfuscation (e.g. packers), com-
monly used in malware, one intuitively appropriate detec-
tion strategy is so-called behavioral detection. The idea is

to look at the malware’s observable behavior rather than its
static code. Observable behavior or simply behavior of a
malware instance, refers to the sequence of system calls
(syscalls) executed by that instance. Behavioral detection
approaches are barely affected by control-flow obfuscation
techniques, because they change the malware’s static struc-
ture but rarely its behavior. Although, behavioral detection
techniques compensate the effects of (build-time) control-
flow obfuscation to a large extent, they are often vulnera-
ble to more advanced (run-time) behavior obfuscation tech-
niques that change the observable behavior of malware. Ex-
amples for such behavior obfuscation techniques include
the injection of bogus syscalls or the deliberate randomized
re-ordering of call execution sequences.

While control-flow obfuscation of malware and respec-
tive countermeasures at the detection side have been well
researched [3], the effects of behavior obfuscation on the
effectiveness of detection approaches so far only received
very little attention in the literature. Behavior obfuscation
in itself has been discussed from a theoretical perspective by
Dalla Preda et al. [4], but we are not aware of any empirical
investigations of its effects on real-world malware.

To provide a foundation for such empirical evaluations,
we propose a behavior obfuscation framework which we
call FEEBO. Provided an arbitrary malware sample as in-
put, it applies a set of behavior obfuscation transformations
to its observable behavior. This makes it possible to add be-
havior obfuscation to malware samples in a structured and
targeted way, regardless of whether or not the malware sam-
ple given as input contains any form of obfuscation itself.
Furthermore, FEEBO enables a basis for controlled exper-
iments, where we can simulate different obfuscation trans-
formations with different degrees and precisely investigate
their impact on certain detection approaches.

Contributions: a) To our best knowledge, we are the
first to provide an open source empirical malware behavior
obfuscation framework that is able to behaviorally obfus-
cate standard malware binaries. b) With FEEBO we es-
tablish a basis for reproducible behavioral obfuscation re-
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silience experiments. c) Our evaluation reveals the sen-
sitivity of several popular behavior-based detection ap-
proaches [15] towards certain behavioral obfuscation trans-
formations implemented in FEEBO.

Organization: We introduce behavior obfuscation and
discuss several n-gram-based behavioral detection tech-
niques in §2. Then we describe the design and implementa-
tion of FEEBO in §3. We show the effectiveness of a pro-
totypical implementation of FEEBO in §4 and discuss its
limitations in §5. We discuss possible application areas of
our approach and give an outlook on future work in §6.

2 Related Work

Control-flow obfuscation applies transformations at the
source code or intermediate representation levels in order
to make a program harder to understand by a human or
an automated analysis engine. Collberg [3] describes such
transformations including: virtualization obfuscation, bo-
gus code insertion via opaque predicates, function splitting,
and control-flow flattening. These transformation will typ-
ically not have an effect on the observable behavior of a
program. Therefore, in this work we do not employ control-
flow obfuscation.

Behavior obfuscation requires changing the observable
behavior of the program being obfuscated. This paper is re-
lated to work of Péchoux and Ta [8] on malware behavior
obfuscation. They divide the behavior, i.e. executed opera-
tions of a program (e.g. malware) into (i) internal computa-
tions and (ii) syscalls. Internal computations operate only
on the process memory of the corresponding program and
only affect and are affected by the information stored inside
this process’ memory. System calls represent interactions
with the operating system (OS) kernel, i.e. there is a trans-
fer of control from the corresponding program to the kernel
and back. Therefore, syscalls affect and are affected by the
information stored anywhere in OS memory.

Péchoux and Ta [8] show that it is possible to obfus-
cate the behavior of known malware samples such that the
original malware functionality is preserved by: (i) insert-
ing syscalls before and/or after syscalls in the observable
behavior, (ii) reordering syscalls in the observable behav-
ior and (iii) substitution of syscalls by other syscalls which
maintain the original functionality of the malware. Differ-
ent from our work, their goal is to obtain a sequence of
syscalls (trace) that is similar to a goodware trace in order to
perform mimicry attacks [14]. We, on the other hand, focus
on automatically generating behaviorally obfuscated mal-
ware via randomized syscall insertion, reordering and sub-
stitution, to assess the resilience of behavioral detection ap-
proaches which analyze the syscalls executed by malware.
We plan to extend FEEBO with mimicry transformations in
future work.

3 Approach for Behavior Obfuscation

Statically transforming (obfuscating) x86 binary pro-
grams without debugging symbols is a non-trivial task
which involves binary rewriting [10]. This task becomes
significantly more challenging when the binaries to trans-
form are malware binaries, which employ packing and anti-
disassembly techniques [5]. However, for the purpose of
evaluating the resilience of behavior-based malware detec-
tion approaches we do not necessarily need a self-contained
obfuscated malware binary. We only need to record the
observable behavior of a behaviorally obfuscated malware
sample. Therefore, this paper takes an alternative approach
to static binary rewriting, by obfuscating using runtime bi-
nary instrumentation [11].

In a nutshell runtime binary instrumentation does not
need to perform x86 disassembly and enables the intercep-
tion of any syscall executed by the input binary program.
One can choose to execute, delay, drop or even swap the in-
tercepted syscall with a different syscall, plus perform other
additional instructions including executing more syscalls.
Therefore, it is a suitable technique for obfuscating the ob-
servable behavior of malware binaries.

The remainder of this section describes the behavior
obfuscation transformations implemented by FEEBO: (i)
syscall insertion, (ii) syscall reordering, and (iii) substitu-
tion of syscalls with functionally equivalent ones. The intu-
ition behind these transformation is that they should hamper
behavior-based detection approaches which rely on patterns
in sequences of syscalls.

3.1 System Call Insertion

This obfuscation transformation changes the observable
behavior of the input program given as input to FEEBO, by
inserting a random number of syscalls in various locations
of the original executed sequence of syscalls. With a given
probability pi, syscall insertion adds for each syscall exe-
cuted by the input program, a number of additional syscalls
randomly chosen from the previously executed syscalls.
The number of inserted syscalls per intercepted syscall is
randomly chosen between two input parameters of FEEBO
called: mini and maxi .

To prevent these inserted calls from changing the origi-
nal functionality of the input program, we modify the val-
ues of their parameters in case the syscalls belong to a set
of syscalls (denoted S in the rest of this paper) that have
side-effects. Therefore, the set S contains syscalls which in-
volve: creating, moving, writing to or deleting: files, pipes
or thread message queues, communicating over a socket,
loading a library, allocating, writing to or freeing process
memory, creating windows and device contexts. The values
of the changed parameters are chosen such that they will not

2015 10th International Conference on Malicious and Unwanted Software: “Know Your Enemy” (MALWARE) 41



collide with existing data, e.g., files. Moreover, we do not
reuse previously observed file handles since that may cause
crashes or changes in functionality. Instead, we create new
handles for different randomly generated file-names. More-
over, syscalls that access a unique system resource are ex-
cluded. For instance, inserting a syscall that sets clipboard
data, would imply inserting a second call to restore the clip-
board data since the clipboard is unique on each system.

For example, if we configure FEEBO with the following
input parameters: pi = 0.25, mini = 2 and maxi = 5, then
every syscall executed by the input program is intercepted
with a probability of 25%. For every syscall that is inter-
cepted FEEBO inserts x syscalls after the execution of the
intercepted syscall, where x is a number between mini = 2
and maxi = 5 chosen uniformly at random.

3.2 System Call Reordering

System call reordering can naı̈vely be implemented by
delaying a sequence of syscalls in a buffer which is ran-
domly permuted before execution. This approach would
likely break the functionality of transformed programs or
cause a crash. Intuitively, this would frequently occur when
delaying syscalls that read data (e.g. from files), because
such data is likely used immediately after it was read.

In FEEBO reordering is implemented such that every
syscall in the set S (described in §3.1) executed by the in-
put program, is delayed with a probability pr and placed in
a queue (of size n) for later execution. The reason only
calls in S were delayed is that calls outside S generally
read information, which programs need to continue their
proper execution. Moreover, we use a queue for the delayed
syscalls, because we want to preserve the original ordering
of syscalls that have side effects like first creating and then
writing to a file. Once the queue is full, our tool will execute
them in their original order. Each of the delayed syscalls can
additionally trigger the insertion of additional syscalls with
similar parameters as described in §3.1, i.e. the probabil-
ity of inserting syscalls when executing a delayed syscall is
denoted pri and the minimum and maximum number of in-
serted syscalls, are denoted by minri, respectively max ri.

For example, if we configure FEEBO with the following
input parameters: pr = 0.5, n = 5, pri = 0.75, minri = 1
and max ri = 2, every syscall from S made by the input
program is delayed with a probability of 50%. Once n = 5
calls have been delayed, they will be executed. Each of the
delayed syscalls has a 75% probability to insert between
minri = 1 and max ri = 2 other syscalls.

We successfully tested this obfuscation transformation
on a few Windows utilities such as Paint and Notepad.
However, after testing the transformation on a larger set
of programs including real-world malware, we noticed it
caused a large number of crashes (see §4).

{"readfile":[
{"syntax1": [ "ReadFile" ] },
{"syntax2": [ "ReadFileEx" ] },
{"syntax3": [ "LockFile", "ReadFile", "UnlockFile" ] },
{"syntax4": [ "LockFile", "ReadFileEx", "UnlockFile" ] },
{"syntax5": [ "GetFileInformationByHandle", "ReadFileEx" ] },
{"syntax6": [ "GetFileAttributes", "ReadFileEx" ] },
{"syntax7": [ "GetFileSize", "ReadFileEx" ] },
{"syntax8": [ "GetFileType", "ReadFileEx" ] },
{"syntax9": [ "CancelIo", "ReadFileEx" ] },
{"syntax10": [ "CancelIo", "ReadFile" ] },
{"syntax11": [ "EncryptFile", "DecryptFile", "ReadFileEx" ] },
{"syntax12": [ "CancelIo", "CreateSymbolicLink", "OpenFile", "ReadFileEx

", "DeleteFile" ] },
{"syntax13": [ "CancelIo", "CreateSymbolicLink", "OpenFile", "ReadFile",

"DeleteFile" ] }
],
"writefile":[

{"syntax1": [ "WriteFile" ] },
{"syntax2": [ "WriteFileEx" ] },
{"syntax3": [ "LockFile", "WriteFile", "UnlockFile" ] },
{"syntax4": [ "LockFile", "WriteFileEx", "UnlockFile" ] },
{"syntax5": [ "GetFileInformationByHandle", "WriteFileEx" ] },
{"syntax6": [ "GetFileAttributes", "WriteFileEx" ] },
{"syntax7": [ "GetFileSize", "WriteFileEx" ] },
{"syntax8": [ "GetFileType", "WriteFileEx" ] },
{"syntax9": [ "CancelIo", "WriteFileEx" ] },
{"syntax10": [ "CancelIo", "WriteFile" ] },
{"syntax11": [ "EncryptFile", "DecryptFile", "ReadFileEx" ] },
{"syntax12": [ "CancelIo", "CreateSymbolicLink", "OpenFile", "

WriteFileEx", "DeleteFile" ] },
{"syntax13": [ "CancelIo", "CreateSymbolicLink", "OpenFile", "WriteFile"

, "DeleteFile" ] }
]}

Figure 1: FEEBO Equivalence Classes

3.3 System Call Substitution

This obfuscation transformation is implemented by in-
tercepting a sequence of syscalls and substituting their ex-
ecution with that of a sequence of different syscalls, such
that the resulting functionality of the program is function-
ally equivalent to the original one. This substitution occurs
with a given probability ps. The sets of functionality equiv-
alent syscalls are grouped together in an equivalence class.
Whenever FEEBO intercepts a sequence of syscalls from
an equivalence class, it substitutes this sequence with an-
other sequence (chosen randomly) from the same equiva-
lence class.

An equivalence class is specified as a configuration file
in JSON format, therefore, it can be extended without
source code modifications to FEEBO. In this work we
have developed equivalence classes for reading and writ-
ing files shown in Figure 1 as readfile, respectively
writefile. Each of these equivalence classes contains
13 equivalent sequences of syscalls indexed by the key-
word syntax and followed by a list of Microsoft Win-
dows syscall names. We have created these equivalence
classes manually by looking-up the description of each of
the syscalls and mapping their parameters such that any two
entries from an equivalence class are functionally equiva-
lent. An example sequence from the writefile equiva-
lence class is syntax3 which first locks a file, then writes
to it and finally unlocks it. The readfile equivalence
class contains similar rules. These syntax rules are func-
tionally equivalent under the assumption that the obfuscated
malware samples are not multi-threaded, which we believe
is the case for the dataset used in our experiments [7].
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4 Evaluation

The evaluation of FEEBO is divided into two parts.
Firstly, §4.1 presents the feasibility of the implemented ob-
fuscation transformations, i.e. we check whether the behav-
iorally obfuscated malware instances crash for specific in-
put parameter configurations of FEEBO. Secondly, in §4.2
we only use the obfuscation transformations which were
found to be stable (i.e. produce a low number of crashes)
during the feasibility evaluation. We measure the impact
that various input parameter configurations of FEEBO have
on the accuracy of a classifier used by behavior-based mal-
ware detection approaches.

4.1 Feasibility Evaluation

To check which of the obfuscation transformations im-
plemented in FEEBO reliably produce running malware
samples, we first randomly selected a subset of 100 mal-
ware samples from the Malicia dataset [7], spread across 16
malware families.

We used FEEBO to generate 300 obfuscated versions
(variants) of each of the 100 malware instances from our
chosen subset, totaling 30,000 log files from executions of
behaviorally obfuscated malware instances. To obtain this
data we executed each of the 100 malware samples sepa-
rately within an installation of the Cuckoo malware anal-
ysis sandbox1, where we replaced the behavior monitor
with FEEBO to obtain a variety of obfuscated behavior logs
of those malware samples. To capture a critical mass of
syscalls sufficiently large to allow training a classifier with
good accuracy, we need to monitor a malware sample for
at least 3 minutes. With one input parameter configura-
tion capturing the obfuscated logs of 100 malware samples
would then take 300 minutes which, with help of parallel
execution of multiple VMs on 5 cores, we could cut down
to about one hour per input configuration.

The first 10,000 logs were obtained by iterating over
100 different input parameter configurations for FEEBO,
where we only applied syscall insertion. The following
20 values were used for the insertion probability pi ∈
{0.05, 0.10, 0.15, · · · , 1.00}. For each of these probability
values we iterated over the following values for the maxi-
mum number of inserted syscalls maxi ∈ {1, 2, 4, 8, 16}.
The minimum number of inserted syscalls was fixed to 1,
i.e. mini = 1.

The next 10,000 logs were obtained by iterating over 100
different input configurations for FEEBO, where we applied
syscall reordering. The following 5 values were used for the
reordering probability pi ∈ {0.20, 0.40, 0.60, 0.80, 1.00}.
For each of these probability values we iterated over the fol-
lowing values for the size of the queue n ∈ {1, 2, 4, 8}. For

1http://www.cuckoosandbox.org/.

each different value of the queue size (n), we iterated over
the following values for the maximum number of inserted
syscalls for each delayed call maxri ∈ {1, 2, 4, 8, 16}.
The minimum number of inserted syscalls was fixed to 1,
i.e. minri = 1.

The final 10,000 logs were obtained by iterating over
100 different input parameter configurations for FEEBO,
where we only applied semantic substitution of equivalent
syscalls. There 100 input configurations were obtained by
iterating over the following values for the system call sub-
stitution probability ps ∈ {0.01, 0.02, 0.03, · · · , 1.00}.

We automatically inspected these 30,000 log files to see
which ones resulted in crashes of the instrumented malware
binary. Our results showed that only 3% of the logs cor-
responding to syscall insertion involved a crash, which we
believe is negligible since these crashes occurred for ran-
dom malware samples. For syscall reordering around 54%
of logs involved crashes. We noticed that a large propor-
tion of crashes occur for larger values of the queue size n,
which means that the more syscalls are delayed the higher
the probability of a crash. For semantic substitution of
equivalent syscalls around 14% of the logs involved crashes,
which we find to be a tolerable number given the purpose of
behavioral obfuscation of malware binaries. Due to these
results, we decided to only use syscall insertion and seman-
tic substitution in our effectiveness evaluation from §4.2.

4.2 Effectiveness Evaluation

From the results of §4.1 we concluded that syscall in-
sertion and substitution would produce a tolerable num-
ber of crashes (<15%) on the remaining malware instances
from the Malicia dataset [7]. Therefore, we implemented
a FEEBO-simulator for those two obfuscation transforma-
tions, but which operated directly on recorded execution
logs of the unobfuscated malware samples from the Malicia
dataset. The rationale behind implementing the FEEBO-
simulator is that generating 200 variants for each of the
11,688 malware samples from the malicia dataset would
have taken 200 × 11, 688/100 = 23376 hours (about 2 1

2
years) on our evaluation setup described in §4.1, while with
the FEEBO-simulator it takes under a week of computation.
Note that by construction, the two approaches (simulation
and instrumentation) produce outputs with the same prob-
ability distribution for identical input configurations, under
the hypothesis that the variants wouldn’t crash.

Using the FEEBO-simulator we were able to generate
200 variants for each of the 11,688 samples of the Malicia
dataset, totaling 2,337,600 logs. Half of these logs corre-
spond to the 100 input configurations for syscall insertion,
while the other half correspond to the 100 input configura-
tions for semantic substitution described in §4.1. In addi-
tion, we collected the logs of 730 known goodware samples
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(including programs shipped together with Microsoft Win-
dows 7), using our Cuckoo sandbox, which we did not ob-
fuscate, to use as comparison baseline for later training the
detection classifiers.

Measuring the Actual Degree of Obfuscation Since the
input configuration of both FEEBO and FEEBO-simulator
are specified as probabilities and ranges of numbers of
syscalls to insert, we cannot use these values to measure the
actual degree of obfuscation between the original malware
instance and the variant obtained from FEEBO. Therefore,
as a measure of the actual degree of obfuscation, we calcu-
lated the Levenshtein distance between the original and the
obfuscated logs, as it represents the number of atomic inser-
tion, deletion, and substitution operations needed to trans-
form one event log into the other. For computing the Lev-
enshtein distance we abstracted our logs to only the name
of the syscalls (excluding their parameters), which are ele-
ments of the Latin alphabet.

Classifier Used for Malware Detection There is a large
body of work regarding behavior-based malware detection
approaches [2, 12, 13, 9]. In this work we use the insights
given by Canali et al. [2], which indicate that simple n-
gram approaches perform poorly with respect to variations
in syscall logs. Therefore we chose to use support vector
machines (SVMs) for our evaluation, which is a more ad-
vanced classifier, often employed by state of the art mal-
ware detection approaches [12, 13, 9]. SVMs can only pro-
cess numerical feature vectors. In order to extract numerical
features from our syscall logs, we made use of the spectrum
kernel [6] which enables us to classify our test logs in lin-
ear time. The spectrum kernel is originally meant to detect
homology, i.e. the existence of common ancestry, between
two protein sequences. We can match this setting to ours
by considering the samples from the Malicia dataset as the
ancestors of the behaviorally obfuscated malware versions.
The objective of our experiment is to investigate whether
the SVM can still associate the obfuscated versions of the
malware instances with their ancestors by classifying them
correctly. If our experiments show that FEEBO affects the
accuracy of this classifier, then we are confident that it is a
suitable tool for the evaluation of other behavior-based de-
tection approaches.

Classifier Accuracy Baseline Given a number k ≥ 1,
the spectrum kernel computes the frequency of occurrence
of all subsequences of length k in the original sequence.
Therefore, we want to select proper parameter configura-
tions for the SVM classifiers, i.e. ensure they have good ac-
curacy and detection rate. To do this, we consider different
values of k = {3, 6, 9}. To also ensure that the classifiers do

Table 1: Average accuracy of classifiers for different subse-
quence lengths (k) after 10-FCV on the Malicia dataset

k = 3 k = 6 k = 9

SVM-alpha accuracy 80.36% 40.49% 41.37%
SVM-raw accuracy 90.03% 53.98% 38.29%

not over-fit, we perform 10-fold cross-validation (10-FCV)
using all 11,688 malware samples from the Malicia dataset.

We use two types of input data for our SVM classifier.
For the first type of input data we convert the syscall logs
into alphabetical character sequences, similar to protein se-
quences, by mapping every syscall from an execution log to
one letter of the alphabet. The second type of input data we
consider the entire raw log of syscalls including parameter
values. We call the results obtained from the SVM with the
first and the second types of input data: SVM-alpha, respec-
tively SVM-raw, throughout the rest of this paper.

The detection rates scored by the SVM with the spectrum
kernel on the non-behaviorally obfuscated Malicia dataset
can be seen on the first row of Table 1 for the alphabetical
sequences as input data and on the second row of Table 1
for the raw logs as input data. The accuracy of both clas-
sifiers degrades as the length of the subsequences (k) in-
creases. However, we notice that the accuracy of SVM-raw
for k = 3 is a bit above 90%, which is 10% higher than
the accuracy of SVM-alpha for k = 3. Also for k = 6 the
accuracy of SVM-raw is higher than that of SVM-alpha.
However, for k = 9 they are almost the same. In the ex-
periments presented later in this section we want to see if
and how these accuracy values are affected by the behavior
obfuscation transformations employed by FEEBO.

Classifier Training Time Training the SVM-raw classi-
fier is very time-consuming, because of the character-wise
way the spectrum kernel analyzes the raw logs [6]. We no-
ticed that the time needed for training the SVM-raw clas-
sifier on the entire Malicia dataset is around 3.5 hours for
each fold of the 10-FCV on our experiment setup, whereas
training the SVM-alpha classifier was more than one order
of magnitude faster. We explain this by the difference in
size between the SVM-alpha and the SVM-raw input data
sets that also is of about one order of magnitude.

To reduce the time needed for training, we sampled 5
times 1000 log samples recorded using the Malicia dataset.
Trained each of these sets separately using the same classi-
fiers yielded a training time of about 17 minutes per 1000
log sample. Furthermore, we compared the accuracy of the
10-FCV of the same SVM classifier on the entire set of logs
from the Malicia dataset and on the five sets of 1000 mal-
ware log samples. We noticed that the accuracy only differs
by at most 2% for all the 5 sets of 1000 malware log sam-
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Figure 2: Training with original malware (x-axis: degree of obfuscation, y-axis: classifier accuracy)

ples. Therefore, in the experiments described in the follow-
ing paragraph, we used one of these 1000 log samples to
obtain an evaluation set with a balanced malware and good-
ware distribution.

Training only with Original Malware In this experi-
ment we used logs recorded for a period of 3 minutes for
all samples from the Malicia dataset and our 730 goodware
samples. To obtain balanced malware and the goodware sets
to avoid classification bias, we then sampled 1000 logs from
the 11,688 logs generated from the Malicia dataset. These
1000 logs yielded files containing between 64.2 KBs to 5.3
MBs of recorded syscalls. The 730 logs generated by the
goodware samples ranged from 94.3 KBs to 3.6 MBs.

We trained the SVM-alpha and the SVM-raw classifiers
with the 1000 logs of malware and the 730 logs of good-
ware. Afterward, we obfuscated the 1000 logs with the
100 input parameter configurations of FEEBO-simulator for
syscall insertion and the 100 input configurations for se-
mantic substitution which were presented in §4.1. These log
files along with 200 different input configurations were then
given to the FEEBO-simulator. This resulted in 200,000 ob-
fuscated log files, grouped in 200 folders containing 1000
instances each, labeled with the input parameter configura-
tion of FEEBO used to generate the respective logs.

We then used the SVM-alpha and SVM-raw classifiers
on each of these 200 folders. For each folders we recorded
the average degree of obfuscation (Levenshtein distance)
and the average classifier accuracy. The results of this ex-
periment for SVM-alpha on the 100 folders obfuscated with
different input parameter configurations of FEEBO involv-
ing only syscall insertion can be seen in Figure 2a. From
this figure we can clearly see that the accuracy of the SVM-
alpha classifier for all values of k = {3, 6, 9} decrease in-
versely proportional to the degree of obfuscation by behav-

ioral obfuscation via syscall insertion. For k = 3 the ac-
curacy for an obfuscation degree of 5000 dropped to 72%,
while for k = {6, 9} the accuracy dropped under 25%.

The results for SVM-alpha on the 100 folders obfuscated
with different input parameter configurations of FEEBO in-
volving only semantic substitution can be seen in Figure 2b.
This figure also shows a decreasing trend of the accuracy
starting from obfuscation degree 0 up to the obfuscation de-
grees around 1500, 1000 and 800 for values of k: 3, 6, re-
spectively 9. Also, we can see an increasing trend that does
not go higher than the initial accuracy. The reason for the
increasing trend is related to the spectrum kernel [6], used
by the SVM classifier. For lower degrees of obfuscation
there are only a few semantic substitutions to create confu-
sion and lower accuracy. However, after a certain degree of
obfuscation the classifier maps the frequent occurrences of
the small set of possible syntax rules within an equivalence
class (see Figure 1) to each other and thus can easily factor
out the obfuscation effects.

The results for SVM-raw on the 100 folders obfuscated
with different input parameter configurations of FEEBO in-
volving only syscall insertion can be seen in Figure 2c. It
is apparent that the accuracies of all the classifiers are af-
fected by syscall insertion. However, only for k = 3 we
see a significant decrease in accuracy around obfuscation
degree 2000. Afterward, the accuracy level stabilizes.

The results for SVM-raw on the 100 folders obfuscated
with different input parameter configurations of FEEBO in-
volving only semantic substitution can be seen in Figure 2d.
At first glance it seems like the accuracies remain constant
independent of the applied obfuscation degree. However,
we can see a similar phenomenon to that observed in Fig-
ure 2b, i.e. the detection accuracy decreases slightly and
then comes back up to its original value. In sum we can
conclude that SVM-raw classifiers seem to be much more
resilient to semantic substitution than SVM-alpha ones.
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Figure 3: Training with both original and obfuscated malware (x-axis: degree of obfuscation, y-axis: classifier accuracy)

Training with both Original and Behaviorally Obfus-
cated Malware In this experiment we used the same logs
as in our previous experiment. However, instead of training
only on logs of non-behaviorally obfuscated malware sam-
ples, we mixed the 730 goodware samples, the 1000 non-
obfuscated malware samples and 1000 behaviorally obfus-
cated samples corresponding to one input parameter con-
figuration of FEEBO-simulator. Hence, for each of the
200 different input configurations of the FEEBO-simulator,
we performed 10-FCV using the SVM-alpha and SVM-raw
classifiers. The accuracy of the classifiers decreases, be-
cause adding the 1000 obfuscated malware samples creates
an imbalance between the goodware and the malware sets.

Through this experiment we reason about classifier sta-
bility which captures the situation in which a classifier is
trained with logs from behaviorally obfuscated malware
samples. We measure the stability of a classifier as the stan-
dard deviation of accuracy points in a certain interval of ob-
fuscation degrees.

In the ideal case the applied obfuscations not having any
effect on the externally visible behavior, the detection rate
should remain 100%. With this setting we could investigate
the effects of the applied obfuscation transformations with
respect to detection accuracy. Figure 3a shows the results
of this experiment for SVM-alpha on the 100 folders obfus-
cated with different configurations of syscall insertion. For
k = 3 this classifier is slightly affected by syscall inser-
tion. However, for k = {6, 9} the standard deviation of the
SVM-alpha classifier increases directly proportional to the
obfuscation degree.

Figure 3b shows the results of this experiment for SVM-
alpha on the 100 folders obfuscated with different configu-
rations of semantic substitution. For this obfuscation trans-
formation we see that the standard deviation of the accu-
racy grows significantly around obfuscation degree 1200 for
k = 3, it grows less for k = 6 and even less for k = 9.

Figure 3c shows the results of this experiment for SVM-
raw on the 100 folders obfuscated with different configu-
rations of syscall insertion. Figure 3d shows the results
of this experiment for SVM-raw on the 100 folders obfus-
cated with different configurations of semantic substitution.
These last two figures show that the standard deviation of
the SVM-raw classifier is barely affected by both syscall in-
sertion and semantic substitution. Thus, we conclude that
SVM-raw classifiers are more stable w.r.t. obfuscation than
SVM-alpha ones, but with lower overall detection accuracy.

5 Discussion and Threats to Validity

In §4.2 we learned that the proposed obfuscation trans-
formations can have a significant effect on the detection ac-
curacy of the SVM-alpha and SVM-raw approaches. In Fig-
ures 2 we can see a clear correlation between the increase
of obfuscation degree and the detection accuracy of the two
classifiers for certain values of k and certain obfuscation
transformations. In Figure 3 we can see, that the spread
in classification accuracy, i.e. the standard deviation of the
accuracy, increases with the obfuscation degree. Further-
more, we noticed that syscall insertion has a higher impact
on detection accuracy than semantic substitution which we
explain by the fact that the respective transformations are
more diverse and thus harder to factor out by learning.

The functionality of any obfuscated program should in-
clude the functionality of the original (non-obfuscated) pro-
gram. For many software transformation engines such as
optimizing compilers, this is a strict requirement. How-
ever, even very widely used compilers such as GCC or
Clang have been found to contain optimizations that break
the functionality of the original source code [16]. The
transformations described in §6 suffer from the same issue,
i.e. they may change the functionality of malware such that
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it becomes ineffective. We however argue that the primary
goal of malware obfuscation is hampering detection by anti-
malware software at almost any cost. Therefore, the small
risk of the obfuscation engine producing ineffective sam-
ples is acceptable in most cases. We thus, in particular from
a pragmatic perspective, consider our results valuable given
that checking for behavioral equality in general is undecid-
able (cf. Rice’s theorem) and in our experiments few of the
obfuscated malware samples crashed during execution.

In sum, we can draw the following conclusions from
our experiments: a) FEEBO is able to effectively obfuscate
the behavior of real-world malware with significant impact
on the effectiveness of behavioral detection approaches; b)
FEEBO can be used to test the resilience of various mal-
ware detection approaches with various input configurations
against different forms of behavior obfuscation.

6 Conclusions and Future Work

We have introduced FEEBO, a framework to conduct
empirical experiments on the effects of behavior obfusca-
tion on behavior-based malware detection approaches. To
this extent we developed a prototype that can apply certain
obfuscation transformations to the observable behavior of
malware samples. To evaluate the effectiveness of the im-
plemented obfuscation transformations and of our approach
in general, we investigated the effects of a wide range of
behavior obfuscation transformations on the detection ca-
pabilities of an SVM classifier with different input types.
We showed that FEEBO is an effective tool for analyzing
the resilience of the SVM classifier with various input pa-
rameters, against different types of behavior obfuscation.

In future work we plan to improve the implementation
of system call reordering and also extend the semantic
substitution transformation with more equivalence classes
and syntax rules. We release FEEBO [1] to parties from
academia and industry. For ethical reasons we only provide
a version not capable of generating self-contained obfus-
cated binaries to avoid misuse by malware developers.
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