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Abstract

The task of semantic image segmentation, i.e. the partitioning of an image into re-
gions whose content is identified, is a fundamental objective in computer vision and med-
ical image analysis. The need for segmentation algorithms can be encountered in diverse
real-world scenarios. In some cases, the labeling of a scene must be entirely automated,
for example to act as a scene understanding tool to help the decision-making of an au-
tonomous system such as a robot or a self-driving vehicle. In other situations, a segmen-
tation algorithm assists a human user in labeling an image, for instance to facilitate in a
clinical context the estimation of the volume of an organ or of the area of an anatomical
region. In the latter scenario, the fully-automated aspect is no longer crucial and can be
relaxed in favor of an improved flexibility via interactions with the user.

In this thesis, we demonstrate how the statistical learning framework of decision
forests can be exploited for these two application cases. Our first contribution is a scale-
adaptive training of random forests based on Haar-like features. With a simple modifi-
cation of the standard training, we show that the visual information around a pixel can
be effectively learned at both local and global scales while keeping the computational
time unchanged at training and prediction times. In a second contribution, we demon-
strate how such an automated forest-based segmentation model can be used to guide a
user through large visual data. More precisely, we consider the case of large digital slides
in histopathology and introduce an interactive framework where the segmentation task
is jointly performed with an exploration phase which invites the user to look at regions
of interest within the high-resolution image. Online real-time corrections can be made
after each region suggestion to adapt the prediction model to the specific properties of
the image at hand. Going towards hands-free interactions, our third contribution consid-
ers the novel case where a human user only provides binary “Yes/No” inputs to guide a
segmentation. This scenario is seen as an instance of the Twenty Questions game, where
the machine must ask informative questions to guess the correct segmentation expected
by the user. We apply this setting both for generic interactive segmentation and for the
refinement of an existing forest-based prediction.

Overall, we hope that our work demonstrates the effectiveness of decision forests for
automated segmentation in diverse application domains and offers with our scale-adaptive
scheme a generic contribution towards their improvement. Moreover, we wish to empha-
size the relevance of interactive settings and to introduce practical solutions where learned
models can assist manual annotations in cases where standard interactive techniques are
not directly applicable.
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Kurzfassung

Semantische Bildsegmentierung ist ein grundlegendes Ziel in den Bereichen Com-
puter Vision und medizinischer Bildanalyse. Sie besteht darin, ein Bild in Regionen
aufzuteilen und ihren individuellen Inhalt gleichzeitig zu interpretieren. Segmentierungsal-
gorithmen werden in diversen praktischen Situationen benötigt. In manchen Fällen muss
die Segmentierung eines Bildes voll automatisiert werden. Eine mögliche Anwendung
ist das automatische Verstehen der Umgebung eines autonomen Systems, auf dem seine
Entscheidungen basieren. In anderen Situationen eignet sich ein Algorithmus eher dazu,
einen Menschen dabei zu unterstützen, ein Bild zu markieren. Dieses Szenario wird
beispielsweise in einem klinischen Kontext beobachtet, in dem ein Arzt das Volumen
eines Organs einschätzen möchte, was aufwendige Markierungen eines 3D-Bildes er-
fordert. In diesem Fall kann der voll automatisierte Aspekt des Algorithmus gegen eine
höhere Flexibilität ausgetauscht werden, die durch Interaktionen mit dem Benutzer ermög-
licht wird.

In dieser Dissertation zeigen wir wie das Random Forest Framework für diese bei-
den Anwendungen genutzt werden kann. Unser erster Beitrag ist eine neue auf Haar-
Features basierende Trainingsmethode, die informative visuelle Spannbreiten automa-
tisch und ohne Erhöhung des Rechenaufwandes findet. Als zweiten Beitrag stellen wir
eine interaktive Methode vor, die die Vorhersage eines im Voraus erlernten Random
Forest Modells nutzt, um die Beobachtung sehr großer histologischer Schnitte zu er-
leichtern und Bildregionen anzuzeigen, die klinisch relevante Objekte enthalten. Nach
jedem Vorschlag kann die Relevanz dieser Auswahl interaktiv bestätigt oder widerrufen
werden, um die zukünftigen Entscheidungen durch inkrementelles Lernen anzupassen.
Im Bezug auf handfreie Interaktionen schlagen wir schließlich ein neues Szenario vor, in
dem der Benutzer nur durch eine binäre “Ja / Nein” Eingabe mit der Maschine kommu-
nizieren kann. Dabei wird Objektsegmentierung als ein “Wer bin ich?”-Spiel zwischen
Mensch und Computer aufgefasst, in dem der Computer informative Fragen stellen muss,
um die vom Benutzer erwartete Segmentierung zu erraten. Darüber hinaus zeigen wir
wie dieses Szenario sich für die Verfeinerung einer existierenden Random Forest Seg-
mentierungsvorhersage eignet.

Mit diesen Beiträgen hoffen wir, die Effektivität von Random Forests für automa-
tisierte Segmentierung in verschiedenen Anwendungsfällen zu veranschaulichen und mit
unserer neuen Trainingsmethode eine Verbesserung des klassichen Lernverfahrens zu
erzielen. Zudem wollen wir die Relevanz von Mensch-Computer-Interaktion unterstrei-
chen und praktische Lösungen einführen, in denen vorgelernte Modelle manuelle Markie-
rungen unterstützen können, wenn klassische interaktive Methoden nicht direkt anwend-
bar sind.
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and to Stéphane, for his exceptional friendship (of course!) but also for always inspiring
discussions and refreshing points of view about science. Finally, this thesis (and most of
the preceeding steps!) would not have been possible without the constant support of my
family, especially Laurine and my parents. Thanks to all of you.



Contents

Abstract i

Kurzfassung iii

Acknowledgments v

Contents vii

Introduction 1

1 Semantic Image Segmentation: A Supervised Learning Task 5
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Images and Labelings: Definitions . . . . . . . . . . . . . . . . . 5
1.1.2 Assessing the Quality of a Labeling . . . . . . . . . . . . . . . . 7

1.2 The Supervised Learning Framework . . . . . . . . . . . . . . . . . . . . 9
1.2.1 An Introductory Example . . . . . . . . . . . . . . . . . . . . . 10
1.2.2 Mathematical formulation . . . . . . . . . . . . . . . . . . . . . 10
1.2.3 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.4 First Examples of Prediction Models . . . . . . . . . . . . . . . . 12
1.2.5 Bias-Variance Tradeoff . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.6 Practical Evaluation of a Learning Method . . . . . . . . . . . . 16
1.2.7 Ensemble Learning . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Semantic Segmentation as Pixelwise Classification . . . . . . . . . . . . 18
1.3.1 Modeling the Visual Context around a Pixel . . . . . . . . . . . . 20
1.3.2 Classification Methods for Pixelwise Semantic Segmentation . . . 24

1.4 Structured Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Decision Forests 27
2.1 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Description of the Tree Structure . . . . . . . . . . . . . . . . . . 27
2.1.2 Overview of the Training Procedure . . . . . . . . . . . . . . . . 29
2.1.3 Impurity Measure . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.4 Splitting Function Optimization . . . . . . . . . . . . . . . . . . 32
2.1.5 Stopping Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 35

vii



viii CONTENTS

2.1.6 Leaf Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.1.7 Handling Class Imbalance . . . . . . . . . . . . . . . . . . . . . 36
2.1.8 Overfitting Behavior . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2 Random Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.1 Injecting Randomization in Training . . . . . . . . . . . . . . . . 38
2.2.2 Advantages and Limitations of Random Forests . . . . . . . . . . 41
2.2.3 Variants and Extensions . . . . . . . . . . . . . . . . . . . . . . 42

2.3 Random Forests for Semantic Image Segmentation . . . . . . . . . . . . 42
2.3.1 Choice of Feature Representation . . . . . . . . . . . . . . . . . 43
2.3.2 Structured Learning . . . . . . . . . . . . . . . . . . . . . . . . 44
2.3.3 A Matter of Context . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4 Scale-Adaptive Forest Training . . . . . . . . . . . . . . . . . . . . . . . 46
2.4.1 Visual Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.4.2 Scale-Adaptive Node Optimization . . . . . . . . . . . . . . . . 49
2.4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3 Bringing Humans In the Loop 57
3.1 Practical Limitations of Supervised Learning . . . . . . . . . . . . . . . 57

3.1.1 Time-Consuming Construction of a Training Set . . . . . . . . . 57
3.1.2 Offline Availability of a Training Set . . . . . . . . . . . . . . . . 59
3.1.3 Reliability of the Labeled Data . . . . . . . . . . . . . . . . . . . 60

3.2 Interactive Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Merging Segmentation and Exploration: Application to Digital Pathology 65
4.1 Clinical Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.1 Learning-Based Image Segmentation in Histopathology . . . . . 68
4.2.2 Assisted Navigation within Large Digital Slides . . . . . . . . . . 69
4.2.3 Online Domain Adaptation . . . . . . . . . . . . . . . . . . . . . 69
4.2.4 Active Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Interactive Slide Exploration . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.1 Region Scoring Function . . . . . . . . . . . . . . . . . . . . . . 71
4.3.2 Interactive Forest Adaptation . . . . . . . . . . . . . . . . . . . . 73
4.3.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Whole-Slide Quantification from Partial Exploration . . . . . . . . . . . 83
4.4.1 Stopping the Exploration Stage . . . . . . . . . . . . . . . . . . 83
4.4.2 Whole-Slide Quantification via Regression . . . . . . . . . . . . 83
4.4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5 Input Discretization for Lighter Interactions . . . . . . . . . . . . . . . . 84
4.5.1 One-Click User Inputs . . . . . . . . . . . . . . . . . . . . . . . 86
4.5.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



CONTENTS ix

5 Image Segmentation as a Twenty Questions Game 89
5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2 Object Segmentation in Twenty Questions . . . . . . . . . . . . . . . . . 91

5.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2.2 Sampling Likely Segmentations with MCMC . . . . . . . . . . . 91
5.2.3 Question Selection . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2.4 Creation of the Final Segmentation . . . . . . . . . . . . . . . . 95

5.3 Introducing Semantic Prior Knowledge . . . . . . . . . . . . . . . . . . 96
5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.5 Possible Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Conclusion 101

A Integral Images and Volumes 103

List of Publications 105

Bibliography 106



x CONTENTS



Introduction

By definition, the task of image segmentation consists in parsing a given image into se-
mantically meaningful regions by associating a label to each pixel. The segmentation
objective is a fundamental building-block of image analysis algorithms, as it typically
bridges the gap between low-level pixel information and high-level image content. The
use of a segmentation algorithm is, for instance, relevant every time the size or the shape
of a given object has to be quantitatively estimated. The general definition of segmenta-
tion encompasses in fact slightly different scenarios (Fig. 1) such as:

• Given an image, can we provide a binary segmentation separating background and
foreground? Binary segmentation can, for example, be used as a first step to extract
objects in a scene before further analysis or to conduct image editing tasks.

• More generally, one can desire to divide an image into regions that are considered
homogeneous in some sense. This scenario is often ill-posed and several persons
can have very different expectations about what constitutes a good parsing. The
image parsing problem is strongly related to edge detection where one tries to define
edges that are separating meaningful objects. It can be used as a pre-processing
tool to reduce the complexity of an image, moving from pixels to superpixels or to
objects representing higher-level information.

• The semantic image segmentation scenario is an instance of the image parsing ob-
jective where each region is assigned a semantic label indicating its content such
as Sky or Horse. These labels are usually chosen among a predefined list of
possibilities. With the introduction of semantic labels, the ill-defined aspect of im-
age parsing is mitigated and the goal of understanding the content of the image is
explicitly introduced.

Most segmentation tasks encountered in practice could be conducted by a human person
with enough time and training, although the result may show inter-segmenter variability
depending on how challenging and well-posed the task is. However, a considerable part
of research in computer vision and medical image analysis consists in finding algorithms
to facilitate segmentation procedures. We can distinguish two general situations where a
segmentation algorithm can be of interest:

1. Automating segmentation, where the segmentation of an image must be performed
without human intervention. A typical example would be the scenario of a self-
driving vehicle, which has to automatically interpret the surrounding environment

1
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Figure 1: Different types of image segmentation.

to make decisions. If the sensors built in the vehicle are cameras, a semantic image
segmentation of each frame would inform about the presence or absence of various
kind of objects. Since the segmentation is part of an entirely automated system, it
is impossible, from an application point of view, to allow a human intervention in
the process. Therefore, the segmentation task must be left to an algorithm under
presumably strong constraints in terms of accuracy and reliability.

2. Assisting segmentation, where the labeling process would take too long for the
human sitting behind a computer. Here, we can imagine a medical scenario where
a clinician would be interested in the volume of an organ in a 3D body scan. While
the user could label manually each 2D slice, an algorithmic solution could be of
great help to facilitate this otherwise tedious task. A fully-automated segmentation
algorithm as mentioned above remains a natural option. However, unlike in the first
scenario, we have here the additional opportunity to involve the clinician in the seg-
mentation process, for instance to correct some mistakes of an automated approach.
If the requested user intervention is lightweight enough, an interactive solution can
still be very beneficial in comparison to a manual segmentation. Moreover, the clin-
ician retains a visual control over the segmentation output, allowing to discard or
refine the result if it is not satisfying enough.
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This thesis proposes contributions for these two scenarios. The first two chapters fo-
cus on the automation of a semantic image segmentation objective with statistical learning
methods. In Chapter 1, we expose the general framework of semantic image segmentation
and describe its traditional formulation as a supervised learning method. In other words,
we explain how a fully automated semantic image segmentation strategy can be learned
from true examples labeled by a human. Chapter 2 focuses in details on a specific class
of supervised learning models popular for segmentation in computer vision and medi-
cal applications: the framework of decision forests. After a detailed presentation of this
formalism both as a generic supervised learning model and in the case of segmentation,
we introduce our first contribution, i.e. a scale-adaptive forest training technique which
improves segmentation accuracy without increase in computational cost. Chapter 3 oper-
ates as a transition chapter between automated and interactive segmentation approaches,
where we discuss the possible limitations of supervised learning techniques and give a
quick overview about classical approaches for interactive segmentation. In the last two
chapters, we introduce two contributions for interactive segmentation where standard set-
tings do not apply and where automated methods can be exploited without losing the
flexibility brought by the user intervention. In Chapter 4, we demonstrate how to han-
dle large digital slides where objects of interests are difficult to locate in the first place.
Based on a random forest model, the semantic segmentation is jointly tackled with an
exploration objective with relevance feedback capabilities. In Chapter 5, we consider the
case of limited input where a user can only answer by Yes or No to questions asked by the
computer. The segmentation is modeled as a Twenty Questions game between the human
and the machine, where the most appropriate questions are asked to guess the object of
interest to the user or to refine the prediction of a learned model.
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Chapter 1

Semantic Image Segmentation: A
Supervised Learning Task

We start this thesis with an overview of the objective of semantic image segmentation and
demonstrate how it can be modeled as a supervised learning task, i.e. how a segmentation
algorithm can be automatically inferred from a set of labeled images. We first provide
general considerations both on semantic image segmentation (Sec. 1.1) and supervised
learning (Sec. 1.2). The connection between the two frameworks is then made in Sec. 1.3.
This first chapter serves as an introduction to the central concepts used in this thesis and
will be followed by a detailed treatment of a specific class of learning models in Chapter 2
where our first methodological contribution will be introduced.

1.1 Problem Statement

1.1.1 Images and Labelings: Definitions
Performing the semantic segmentation of an image consists in both parsing this image
into regions and assigning to each region an interpretation of its content. Since there is
neither a single way to parse an image nor a single way to interpret the semantic content of
a region, the design of a semantic segmentation algorithm for a given application usually
requires the explicit definition of a set Y of candidate region labels which represents the
kind of objects one is interested to segment. For instance, in a road scene understanding
context where images are taken by a camera mounted on a car (Fig. 1.1a), a plausible
set of candidate labels could be Y = {Road, Building, Sky, Tree, Sidewalk,
Car, Column pole, Sign symbol, Fence, Pedestrian, Bicyclist}. One
can recognize in this set of labels the most common entities appearing in road scenes and
the objects that we are interested in identifying correctly, from an application of point of
view, in this type of images.

We define formally an image as a function I : ΩI → Rnchannels . ΩI is a multidimen-
sional grid of dimension d representing the finite set of locations where an image value
is observed. In more explicit terms, ΩI is the set of pixel locations over which I is de-
fined. Without loss of generality, we assume ΩI to be fully defined by d positive integers

5
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(a) Road scene understanding (CamVid dataset [Brostow et al., 2008a]).

FLAIR T1 T1C T2
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(b) Brain tumor segmentation in 3D MR volumes (BRATS dataset [Menze et al., 2015]).
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(c) Phase recognition in surgical workflow [Stauder et al., 2014].

Figure 1.1: Applications of semantic segmentation. A segmentation method for road
scene understanding is a building block for the development of a self-driving car, while
segmenting a brain tumor can allow a quantitative measurement of its volume for clinical
studies. Although the case will not be considered further in this thesis, we also men-
tion that a temporal signal can be seen as a one-dimensional image. The recognition of
the phase of a surgical workflow given instrument usage data is an example of semantic
classification in this context. Further examples of applications of semantic image seg-
mentation will be encountered in Chapter 2 and Chapter 4.
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(si(I))1≤i≤d ∈ (N∗)d which encode the size of the image, so that

ΩI = Ω (s1(I), . . . , sd(I)) =
d∏
i=1

{1, . . . , si(I)} , (1.1)

where
∏

denotes the Cartesian product. For example, in the case d = 3 of a volume, s1(I),
s2(I) and s3(I) are usually called height, width and depth of the image I respectively.
At each location p ∈ ΩI , the image value I(p) is a nchannels-dimensional vector which
corresponds to the nchannels signals observed at this location. For example, a color image
taken with a camera has typically 3 channels, which encode the respective amounts of
red, green and blue contributing to the color observed visually. Similarly, in the medical
domain, a magnetic resonance volume is sometimes composed of several modalities such
as T1, T2 and FLAIR (Fig. 1.1b). For the convenience of notation, an image can also
be seen as a function I : ΩI × Γ → R where Γ is the set of channels of the image, with
|Γ| = nchannels. Given a location p ∈ ΩI and a color channel c ∈ Γ, we then denote I(p, c)
the measured value at the location p in the color channel c. For a given application case
(such as the ones shown in Fig. 1.1), the images to segment must share some common
properties: their dimensionality d, the set Γ of color channels (or modalities) and the set
of target labels Y are fixed. However, we do not need to assume that the images are all of
the same size or acquired at the same resolution.

Given the set of candidate labels Y and an image I , a labeling of I is similarly defined
as a function L(I) : ΩI → Y defined over the same lattice as I and assigning to each
location of ΩI a semantic label representing the nature of the underlying object. We
assume that there exists, for each image I , a unique1 true labeling L̂(I). The goal of the
semantic segmentation task is to predict, for a given image I , a labeling L(I) as close as
possible to the true segmentation L̂(I).

1.1.2 Assessing the Quality of a Labeling
Evaluating the performance of a semantic image segmentation algorithm requires a quan-
titative measure of the quality of a predicted labelingL(I) given the expected true labeling
L̂(I). The definition of a good measure may depend on the application at hand.

Binary case For simplicity, we start with a binary segmentation case, where one par-
ticular object of interest known in advance has to be segmented (for instance an organ).
In this case, the set of labels is of the form Y = {Background,Foreground} where
Background denotes the label of all pixels that do not belong to the target object (la-
beled as Foreground). In these conditions and once a prediction has been made, all
pixels p can be partitioned into exactly 4 categories depending on the respective value of
L(I,p) and of L̂(I,p). We define accordingly the number of True Positives (TP), False
Positives (FP), False Negatives (FN) and True Negatives (TN) as:

TP =
∣∣∣¶p ∈ ΩI |L(I,p) = Foreground and L̂(I,p) = Foreground

©∣∣∣ , (1.2)

1To avoid ambiguities, this assumption may require to extend Y with one additional label Other as-
signed to each object not belonging to the labels of interest.
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FP =
∣∣∣¶p ∈ ΩI |L(I,p) = Foreground and L̂(I,p) = Background

©∣∣∣ , (1.3)

FN =
∣∣∣¶p ∈ ΩI |L(I,p) = Background and L̂(I,p) = Foreground

©∣∣∣ , (1.4)

TN =
∣∣∣¶p ∈ ΩI |L(I,p) = Background and L̂(I,p) = Background

©∣∣∣ . (1.5)

A first intuitive metric is the accuracy, which quantifies the proportion of pixels in the
image I that have been correctly predicted, i.e.

Accuracy =
TP + TN
|ΩI |

=
TP + TN

TP + FP + FN + TN
. (1.6)

However, if we are in an asymmetric situation where the Foreground label is con-
sidered more important, the accuracy is not an appropriate measure. This can be easily
explained by a possible overwhelming number of true negatives masking the real rele-
vance of the obtained segmentation. Intuitively, if the aim is for instance to segment the
liver in a body scan, we do not want the quality measure of the segmentation to be influ-
enced by the amount of pixels classified correctly in the rest of the body or, even worse,
the amount of pixels outside the body (which can be made arbitrarily large). Therefore,
overlap measures between the predicted foreground segmentation and the true foreground
segmentation are a common choice, such as the Dice score

Dice =
2TP

2TP + FP + FN
(1.7)

or the Jaccard index
Jaccard =

TP
TP + FP + FN

. (1.8)

These quantities are between 0 and 1, respectively corresponding to an empty overlap and
to a complete overlap. As recommended, they also do not depend on the number of true
negatives TN. In the case of non-empty and non-perfect overlap, these global measures do
not tell whether the prediction was biased towards Foreground (too many pixels were
predicted as belonging to the object of interest, i.e. too many false positives) or biased
towards Background, with a tendency to miss parts of the object of interest (i.e too
many false negatives). To quantify these two aspects respectively, the Precision and the
Recall are defined as

Precision =
TP

TP + FP
(1.9)

and
Recall =

TP
TP + FN

. (1.10)

It can be seen that the Dice score, sometimes also called F-Score, is the harmonic mean
of the Precision and the Recall, i.e.

1

Dice
=

1

2

Ç
1

Precision
+

1

Recall

å
. (1.11)

As such, the Dice score is always comprised between the Precision and the Recall, but
biased towards the lower value of the two. This is thus a more pessimistic estimate than
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the arithmetic mean. Although we will not encounter them in this thesis, we finally men-
tion that in the medical domain, boundary-based measures such as the Hausdorff distance
can also be used to quantify the distance between the two segmentation contours. These
metrics put a higher importance on the smoothness of the segmentation output.

Multi-Class Case In a multi-class scenario, where |Y| > 2, the Accuracy measure is
still applicable as the proportion of pixels that have been classified correctly. Thus, each
pixel has an equal contribution in the computation of the Accuracy. Sometimes, we would
rather give an equal importance to each label instead (see Sec. 2.1.7) and employ classwise
averages of the metrics defined in the binary case. More precisely, for each label c ∈ Y ,
we can define TPc, FPc and FNc in a one-vs-all fashion, i.e. by considering temporarily
all other labels as Background and the label c as Foreground. This allows us to
define in a classwise manner all measures defined for the binary case, which can then be
averaged over classes to provide a final quality measure.

1.2 The Supervised Learning Framework

We would like to create, for a given application, an algorithm able to predict an accurate
semantic labeling L(I) of an image I . A first solution would be to handcraft decision
rules based on human knowledge and to implement manually a series of decisions to la-
bel each pixel. Back to the example of road scene understanding, we could explicitly
define a range of color intensity which corresponds to the color of the sky commonly
observed. However, the manual definition of these rules would be very tedious and lim-
ited to a given application. Instead, we can create a dataset of labeled images, i.e. of
couples

Ä
I1, L̂(I1)

ä
, . . . ,

Ä
IN , L̂(IN)

ä
. From this set of labeled images for which the ‘cor-

rect answer’ is known, we implement an algorithm which learns the relationship between
the visual appearance of an image I and its correct semantic labeling L̂(I). In a sense,
we thereby automate the design of a handcrafted algorithm by exploiting the labeled set
of data, which allows to replace the complex task of designing an algorithm for a given
application by the easier task of creating labeled data. The transposition of a learning
algorithm from an application to another is then made easier: although there are possibil-
ities to encode domain knowledge, most of the learning task is expected to be similar for
a new application.

The field of supervised learning concerns the general objective of learning a predictive
model from observations for which the correct label is known. The learned model is
then expected to be deployed on new observations and to perform predictions as close
as possible from the truth. This formalism is at the core of the semantic image labeling
problem, among many other applications going well beyond image analysis. This section
aims at introducing the general notions of supervised learning which will be encountered
in the rest of this thesis in the context of semantic segmentation.
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1.2.1 An Introductory Example

Before exposing a mathematical formulation of supervised learning, we start with an ex-
ample to illustrate informally many of the problems and tradeoffs encountered when a
problem has to be solved with machine learning. Let us consider the scenario of spam
detection. How can we define an algorithm which, from the content of an e-mail, auto-
matically decides whether it is a spam? When defined as a supervised learning task, we
assume available a set of observations (e-mails) for which the label (spam or no spam)
has been communicated by a human user. We then use this acquired knowledge to gen-
erate a decision rule which minimizes the expected error rate on future unseen data. We
will expose this formally in Sec. 1.2.2. A standard application of supervised learning in-
volves two steps. First, we have to find a way to create a clear quantitative representation
of an e-mail. An e-mail is indeed fundamentally a string of characters, which is a very
unstructured entity for a mathematical treatment. A so-called feature extraction step is
thus needed, which transforms an e-mail into a (possibly high-dimensional) vector which
encodes quantitatively the information used for the prediction task (Sec. 1.2.3). Once
this conversion has been made, a learning method must be chosen which, from statistical
observations over the set of training vectors and their attached label, derives a prediction
rule (Sec. 1.2.4).

When choosing a learning model, the allowed complexity of the model must be care-
fully adjusted to the complexity of the task. The drawback of too simplistic models is
intuitively clear: it is for instance not enough to use the presence of one given word only,
such as ‘lottery’, to identify accurately a spam. While this spam detector would proba-
bly be successful in some cases, many non lottery-related spams would be missed, and
perhaps some true e-mails would be misclassified as well. However, a model that is too
complex is also prone to failures, in the sense that it would be made too dependent on
the available training data, finding arbitrary rules that work well on the given training
data. The difficulty of picking a model with the right complexity is a fundamental prob-
lem in supervised learning known as the bias-variance tradeoff (Sec. 1.2.5), which can
be mitigated by holding out data for model validation or by combining several models
(Sec. 1.2.7).

In the rest of this section, we propose a more formal presentation of the intuitions we
have just exposed in the case of the spam detector.

1.2.2 Mathematical formulation

The general mathematical formalism of supervised learning assumes that we are given:

• An observation space X denoting the set of all possible observations.

• A label space Y which is the set of possible predictions for an observation. Two
common cases are classification where Y is a finite set and regression where Y =
Rm. In this work, we will focus largely on classification which is closer to the
nature of the semantic segmentation task.
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• A joint random variable (X, Y ) taking values in X × Y which encodes the sam-
pling process. Any new observation is a realization of the random variable (X, Y )
sampled from its distribution P(X,Y ).

• A loss function l : Y × Y → R+ which computes the cost l(y, ŷ) of predicting
a label y if the true label is ŷ. Typically, the loss satisfies l(ŷ, ŷ) = 0 and l(y, ŷ)
becomes greater the ‘further’ y is from ŷ.

• A training set S = {(xi, yi) , 1 ≤ i ≤ N} of observations sampled independently
from the distribution P(X,Y ).

In a supervised learning scenario, our objective is to use the knowledge present in the
training set S to learn a decision rule f : X → Y which minimizes the error on future
observations, i.e minimizes the expected prediction error

EPE(f) = E [l(f(X), Y )] =
∫
X×Y

l(f(x), y)P(X,Y )(x, y)dxdy. (1.12)

The minimization is performed over a set of hypotheses H which encodes the shape of
possible functions f allowed in the chosen training model. Learning a function f which
outputs a label given an observation can be modeled in a probabilistic sense by learning
P such that

f(x) = argmax
y∈Y

P (Y = y|X = x) (1.13)

for any observation x ∈ X . This approach is said to be discriminative: the decision pro-
cess is made dependent on the observed realization of the random variable X without
consideration about how likely this event was. While discriminative models are sufficient
from a prediction point of view, a more general and complex approach is called gener-
ative and consists in learning directly the joint law P(X,Y ), which amounts to acquiring
both knowledge on the prediction task and on the underlying mechanism that generates
observations. Unlike the discriminative case, the generative case also learns the proba-
bility PX according to which observations are sampled. Knowing the joint distribution
allows to estimate the expectation in Eq. 1.12 and does not remove any discriminative
capabilities: if the joint distribution is known, the probability in the optimization problem
shown in Eq. 1.13 can be written2

P (Y = y|X = x) =
P (X = x, Y = y)∑
t∈Y P (X = x, Y = t)

. (1.14)

Unfortunately, learning the joint distribution is often a complex task, especially for high-
dimensional set of observations. In this thesis, the developed learning approaches based
on decision forests will be discriminative. However, Chapter 5 will also address, in an-
other context, the topic of density estimation over a space of segmentations.

2The sum in Eq. 1.14 can be replaced by an integral if Y is continuous, in which case P is a probability
density function instead.
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1.2.3 Feature Extraction
A learning model is a strategy to generate a prediction rule from labeled examples. In
Sec. 1.2.2, we have not made any assumption about the nature of the space of obser-
vations X . In fact, most learning procedures assume that the observation space has a
mathematically convenient structure, for instance Euclidean. However, this assumption is
not straightforward in practice, as the collected observations in their raw form are usually
more abstract. As mentioned in Sec. 1.2.1, e-mails are observations for the task of spam
classification but they do not come readily as a vector of predefined fixed size. For this
reason, the practical deployment of a supervised learning algorithm implies first a trans-
formation of the abstract observation space X into a more convenient space in which the
learning and predictions will be performed. This stage is called feature extraction. In this
thesis, we propose to formalize this aspect by keeping the observation set X abstract and
considering a collection of feature maps (φλ)λ∈Λ, where each φλ : X → R quantifies a
certain kind of property of an observation. For instance, back to the example of the e-mail
classification task, we could define Λ as the set of words in the English language, and each
φλ(x) would represent the number of times the word λ appears in the e-mail x. Prediction
models are only able to access information about x via these feature maps. If Λ is finite,
this formulation consists in learning in an Euclidean space, seeing each observation x as
a vector (φλ(x))λ∈Λ.

1.2.4 First Examples of Prediction Models
After having equipped the observation space with suitable feature maps for the applica-
tion at hand, the goal of the learning step is to find an effective way to combine these
feature maps to perform accurate predictions. We review in this section some examples
of learning models.

Linear Models

We first assume that the number |Λ| of features is finite. Model-based learning algorithms
consist in defining explicitly a hypothesis spaceH independent of the training data. If the
label space is Y = R, an example of model-based algorithm is linear regression, where
one seeks a function f of the form

fw(x) =
∑
λ∈Λ

wλφλ(x), (1.15)

where w = (wλ)λ∈Λ is a vector of weights. Given a training set S which provides limited
information about the underlying distribution of observations and labels, the goal of the
training procedure is to find an appropriate vector w which eventually leads to an expected
prediction error as small as possible according to a predefined loss l. To do so, we can for
example see the samples contained in S as an approximation of the true distribution and
minimize the error on the training set (also called empirical risk), i.e.

ER(f,S) =
1

|S|

N∑
i=1

l(f(xi), yi). (1.16)
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In the case of a linear regression model with square loss defined as L(y, y′) = (y − y′)2,
this can even be solved in closed form.

In the case of classification (i.e. of a finite label space Y), a related model is called
logistic regression. For simplicity, we consider the case Y = {0, 1} of two labels only,
although multi-class extensions exist. The decision function is, this time, of the form
fw(x) = argmaxy∈Y P (Y = y|X = x; w) where

P (Y = 1|X = x; w) = σ

Ñ∑
λ∈Λ

wλφλ(x)

é
. (1.17)

σ : R→]0, 1[ is, here, the sigmoid function defined as

σ(x) =
1

1 + e−x
. (1.18)

P (Y = 0|X = x; w) is naturally defined as P (Y = 0|X = x; w) = 1 − P (Y = 1|X =
x; w). In other words, a logistic regression uses an underlying linear model passed into
a sigmoid function and sees this output as a probabilistic estimate of the label to be 1.
As in the linear regression case, the training set S is used to find the model parameters
w minimizing the error on S, expecting a good generalizability to new data. In this case,
the lack of closed form requires to resort to numerical optimization techniques such as
the Newton-Raphson algorithm. Model-based approaches are especially appropriate if
there is a known (here, linear) relationship between observation and labels. Thereby, the
interpretation of their decision rule may also be facilitated since the contribution of each
feature is directly encoded by the corresponding weight.

The k-nearest neighbors algorithm

The learning methods described above are said model-based, where a function is entirely
defined by a set of parameters and where the training set is used to find appropriate values
of these parameters. We present here a more flexible learning algorithm which is said
instance-based: the k-nearest neighbors algorithm. First, a distance between observations
must be defined. If the set of feature maps Λ is finite, the simplest example of distance is
the Euclidean one defined as

d(x, x′) =
 ∑

λ∈Λ

(φλ(x)− φλ(x′))2. (1.19)

Given any x ∈ X , we define the subset Skneighbors(x) of S as the set of the k training
examples that are the closest to x. The prediction of a k-nearest neighbors model is
then obtained by averaging the labels of these k neighbors. In classification, we obtain
P (Y = y|X = x) as the empirical class distribution within Skneighbors(x). In the case
of regression, one performs the output average by also weighting neighbors inversely
proportionally to their distance, giving more weight to close examples.

As an instance-based approach, the k-nearest neighbors algorithm has a different phi-
losophy than model-based techniques. Instead of using the training set to find model
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Training data k=1 k=10 k=50

Figure 1.2: Behavior of a k-nearest neighbor classifier when k varies. The black line
denotes the optimal decision boundary between red and blue samples. The intensity of
the background color denotes the confidence in the prediction. A small value (k = 1)
results in overfitting with highly confident predictions around outlier samples. Increasing
k results in smoother predictions until the model is no longer complex enough to fit the
underlying distribution accurately. k = 10 seems, here, to achieve a good tradeoff. These
synthetic examples were created with the scikit-learn library [Pedregosa et al., 2011].

parameters, it is in a sense used as a look-up table: given a new observation, we retrieve
the most similar training examples and examine their labels to form the prediction. It is
therefore very flexible and can accommodate arbitrarily complex distributions. However,
its accuracy relies heavily on the relevance of the chosen distance. Another drawback of
the k-nearest neighbors algorithm is the fact that the training set has to be available at
prediction time. Decision trees and random forests, the central learning algorithms used
in this thesis, are another example of instance-based learning techniques which overcome
these limitations (Chapter 2).

As a learning procedure itself, i.e. as soon as one assumes that the feature extraction
and definition of the associated distance are done, the prediction rule given by the k-
nearest neighbor algorithm still depends on the hyperparameter k. We illustrate in Fig. 1.2
the influence of the value of k on the prediction. With k = 1, one has an extremely
flexible model leading to fine-grained decisions and which offers, by definition, perfect
predictions on the training data itself. However, this fidelity to the training data is in
fact counter-productive: every training point, even the noisy ones, are contributing to
the decision, which in return deviates from the true distribution. Increasing k smoothes
predictions which become more robust, until they become ‘too smooth’ when k is too
high, no longer matching the complexity of the underlying distribution. The value of
k must be carefully adjusted to realize a tradeoff between these two phenomena called
respectively overfitting and underfitting: this is the bias-variance tradeoff.
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1.2.5 Bias-Variance Tradeoff

Considering the regression case Y = R using the square loss, we can bring a formal
insight on the intuitive behavior observed above with the k-nearest neighbor predictions.
Let us assume that the observation variable X and output variable Y are linked by Y =
f̂(X) + ε where ε is a random variable modeling the observed noise, which we will
assume centered on 0, of standard deviation σ and independent of the observation variable
X . A learning algorithm approximates f̂ with a function f created from a set of labeled
observations S independently drawn from the joint probability P(X,Y ). In this section, we
make explicit the dependency of f on S and write f(x,S) instead of f(x). If we write
the expected prediction error (Eq. 1.12), we obtain [Hastie et al., 2009]

EPE(f) = E(X,ε) ES
î
(Y − f(X,S))2

ó
= E(X,ε)

[
Y 2 + ES

î
f 2(X,S)

ó
− 2f̂(X) ES [f(X,S)]

]
− 2 ES E(X,ε) [εf(X,S)]︸ ︷︷ ︸

=E[ε] EX [f(X,S)]=0

= σ2 + EX

[
VarS [f(X,S)] + E2

S [f(X,S)] + f̂ 2(X)− 2f̂(X) ES [f(X,S)]
]
,

(1.20)

where we used the fact that E(X,ε) [Y 2] = σ2 +EX

[
f̂ 2(X)

]
by independence of f̂(X) and

ε, and the definition of the variance VarS [f(X,S)] = ES [f 2(X,S)]− E2
S [f(X,S)]. Fi-

nally, noting that the last three terms form the squared expectation E2
S

[
f(X,S)− f̂(X)

]
,

we obtain what is called the bias-variance decomposition:

EPE(f) = σ2 + EX

[
VarS [f(X,S)] + E2

S

[
f(X,S)− f̂(X)

]]
. (1.21)

If we now consider a fixed observation x ∈ X , we see that the expected prediction error
at x of a model learned on a randomly drawn training set S can be decomposed into three
terms:

• The irreducible error σ2, which comes from the fact that the noise is an independent
variable over which there is no control.

• The variance of the predictor VarS [f(x,S)] at the observation x. This term states
how sensitive the predictor f is to the set of training samples on which it is learned.
As shown in Sec. 1.2.4, a 1-nearest neighbor algorithm is a good example of high-
variance algorithm.

• The squared bias E2
S

[
f(x,S)− f̂(x)

]
=
(
ES [f(x,S)]− f̂(x)

)2
. This term quan-

tifies how well, when averaged over all possible training sets, the model can ap-
proximate the true function f̂ , i.e. tells whether the complexity of the learner is
sufficient to approximate the underlying distribution. For instance, a linear model
does not have the ability to approximate a non-linear function and will thus have
some bias.
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Increasing the complexity of a classifier typically reduces the bias: when repeated over
several training sets, the training procedure leads in average to a more accurate model.
However, a higher complexity usually also increases the sensitivity of the classifier to the
particular training data it has been trained on, and thus its variance, leading to overfitting.

1.2.6 Practical Evaluation of a Learning Method

The quantitative estimation of the future performance of a trained model is crucial as
soon as the model must be deployed in practice. As discussed above, the accuracy on the
training data does not, in general, provide any indication about the quality of the learned
model. In fact, having perfect predictions on the training set only shows that the model
has found during training a way to separate the training examples given the available
features, without any guarantee on the quality of the prediction on new data3. Given a
labeled set S available for a given application, the generalization abilities of a learning
algorithm are often empirically estimated by splitting S in two parts, where one part is
used for training and the other one is used to measure the accuracy of the trained model.
To obtain even more accurate estimates, a K-fold cross-validation can be performed. The
set S is then split intoK parts S1, . . . , SK of comparable sizes. The kth round of the cross-
validation procedure uses the set ∪i 6=kSi for training and tests the learned model on Sk.
After performing such a round for every k ∈ {1, . . . , K}, every sample of S has received
exactly one prediction so that the accuracy of the learning method can be evaluated on the
entire dataset S.

In the aforementioned cross-validation setting, hyperparameters must be defined be-
forehand. Choosing hyperparameters to optimize the cross-validation results is, strictly
speaking, another form of overfitting which can lead to overly optimistic estimates. To
include hyperparameter optimization in the learning stage, the dataset S can be split into
three parts respectively called training, validation and test set. Models are learned on the
training set and hyperparameters are chosen to optimize the performance on the valida-
tion set. Finally, the prediction on the still unseen test data is reported. To use the full
data, a nested cross-validation can be performed as follows. The set S is divided into K
parts and, as described above, the kth round leaves the set Sk out to compute the test accu-
racy. With the remaining K − 1 subsets, we perform another cross-validation and choose
the hyperparameters maximizing the resulting accuracy. Retraining a model with these
hyperparameters, the final accuracy can be reported on the left out set Sk. In practice,
nested cross-validations are rarely employed in the computer vision and medical image
analysis communities, probably because of their large computational cost. To allow a fair
and overfitting-free comparison between algorithms on a given public database, a separate
test set is often kept hidden and the performance evaluation on this set can only be run a

3Consider the one-dimensional feature space where the only feature map φ1 outputs for every obser-
vation a uniformly drawn random number in [0, 1] independent of the observation and of its label. The
features φ1(x1), . . . , φ1(xN ) of the N training instances x1, . . . , xN are almost surely all different, so that
a 1-nearest neighbor learner will predict perfectly the label of each training instance. However, the accuracy
of this learned model on new data is by definition not better than random since the available feature map
does not carry any information about the label of an instance.
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limited number of times (see for example Russakovsky et al. [2015]).

1.2.7 Ensemble Learning
As we discussed in Sec. 1.2.4 and Sec. 1.2.5, the complexity of the learning model must
be carefully chosen to realize a tradeoff between bias and variance. If it is scalable for
a given application, the hyperparameters encoding the complexity of the classifier (such
as k in a k-nearest neighbors model) can be optimized on a separate validation set as
explained in Sec. 1.2.6. In this section, we expose other strategies to adjust the complexity
of a model based on the concept of ensemble learning. Instead of performing predictions
with a single learned function f , the prediction model is built by aggregating several
predictors. Depending on the chosen aggregation strategy, an ensemble learner can either
have a lower variance or a lower bias than its individual building blocks.

Reducing Variance: Bagging

A model displays a high variance if it is sensitive to the particular set of training samples
that it is trained on. In other words, if S(1) and S(2) are two training sets both made of
N i.i.d realizations of the joint random variable (X, Y ), the predictions f(x,S(1)) and
f(x,S(2)) at an observation x ∈ X can be different, with the notations of Sec. 1.2.5.
The idea of bootstrap aggregating (abbreviated bagging) consists in averaging predictors
trained on different training sets of the same size [Breiman, 1996], leading to an ensemble
of lower variance than the individual learners. Formally, the aggregated predictor fA is
defined as

fA(x) = ES [f(x,S)] , (1.22)

i.e. the expected model prediction for an observation x ∈ X when the training set
S is seen itself as a random variable. As was done for the bias-variance decompo-
sition, the theoretical benefit of considering fA can be seen on the example case of
a regression with square loss. Considering the expected prediction error EPE(f) =
ES E(X,ε)

î
(Y − f(X,S))2

ó
, we observe [Breiman, 1996] that

EPE(f) = E(X,ε)

î
Y 2
ó
− 2 E(X,ε)[Y ES [f(X,S)]︸ ︷︷ ︸

=fA(x)

] + EX

î
ES
î
f 2(X,S)

óó
= EPE(fA) + EX

î
ES [f 2(X,S)]− E2

S [f(X,S)]
ó

= EPE(fA) + EX [VarS [f(X,S)]︸ ︷︷ ︸
≥0

]

≥ EPE(fA).

(1.23)

Therefore, the expected prediction error is always lower and the gained performance is
directly related to the variance of the prediction when the training set varies, i.e. the
instability of the learner. The construction of fA assumes the feasibility of computing an
expectation over all the possible training sets. However, only one fixed set of annotated
data S is usually available in practice. The bagged predictor built on a training set S is
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then defined by sampling new training sets with replacement within S, training a model
on each of these subsets and averaging their predictions at testing time. The concept of
bagging will be used in the random forest framework as a way to reduce the high variance
of decision tree learners (Sec. 2.2.1).

Reducing Bias: Boosting

The bagging approach we have just described combines learners which are ‘too complex’
for a given task to create a global predictor which is less sensitive to the data it is trained
on, thereby reducing overfitting. We mention here another ensemble learning technique
called boosting which, this time, combines classifiers that are not complex enough to
create an ensemble of better performance. Assuming an hypothesis space H made of
classifiers of low bias, a boosting process iteratively builds a strong classifier as a linear
combination of elements inH. The key idea of boosting is to weight the training samples
by attaching at each iteration more importance to samples that are, so far, wrongly pre-
dicted by the current ensemble. To illustrate formally this idea, we expose here briefly one
of the most notable boosting algorithms called AdaBoost [Freund and Schapire, 1997] in
the case of binary classification where Y = {−1, 1}. Each training sample (xi, yi) ∈ S
has a weight w(t)

i initialized to 1
|S| for the first iteration t = 1. At iteration t, we:

• Find the classifier ft ∈ Hminimizing the weighted error on the training set εt(f) =∑
i|f(xi)6=yi wi.

• Compute the weight αt = 1
2

ln
(

1−εt(ft)
εt(ft)

)
which will eventually state the importance

of the weak learner ft in the ensemble f .

• Update the weights of the training instances to give more importance to misclassi-
fied samples: w(t+1)

i = w
(t)
i exp (−αtyift(xi)), i.e. w(t+1)

i = w
(t)
i exp (αt) if xi was

misclassified by ft and w(t+1)
i = w

(t)
i exp (−αt) if the classification was correct.

The weights
(
w

(t+1)
i

)
1≤i≤N

are then normalized to sum to 1.

After a predefined number of iterations T , the final ensemble classifier is defined as
f =

∑
1≤t≤T αtft. To summarize, the AdaBoost algorithm allows to combine linearly

several classifiers which might be individually only slightly better than random into a
strong classifier. As an example, AdaBoost has been notably effective to detect faces
in images by combining several low-level decisions which simply compare intensities
within rectangular parts of an image [Viola and Jones, 2004]. In the case of decision tree
models for semantic segmentation, we will encounter again both this type of features (see
Sec. 1.3.1 and Sec. 2.4.1) and the idea of combining weak features into strong models,
with the difference that the combination will be hierarchical instead of linear.

1.3 Semantic Segmentation as Pixelwise Classification
After the general overview of the basic concepts of supervised learning presented in
Sec. 1.2, we now go back to the original problem of semantic image segmentation and
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discuss how to define this objective as a learning scenario. Assuming both the dimension-
ality d and the number of channels nchannels of the images fixed, a training set is composed
of images labeled by a human expert, i.e. couples

Ä
I1, L̂(I1)

ä
, . . . ,

Ä
IN , L̂(IN)

ä
where

each Ii is a d-dimensional image and L̂(Ii) its corresponding true labeling. In this con-
text, the direct application of the supervised learning framework invites to define the set
of observations X as the set of all possible input images (of all possible sizes), and the
label space Y would be similarly defined as the set of all labelings, i.e of images taking
their pixel values among the predefined set of semantic labels. However, the output space
made of image labelings has a more complex structure than in the classical cases of clas-
sification and regression and is therefore usually not compatible with standard supervised
learning techniques. Predicting an entire image labeling corresponds in fact to a struc-
tured learning scenario and prompts more sophisticated learning techniques (see Sec. 1.4
and Sec. 2.3.2). In this section, we expose the simplest approach for learning-based se-
mantic segmentation, which treats each pixel as an independent observation and uses the
formalism of supervised classification to predict their individual label.

In the pixelwise classification model, we define an observation x as a location within a
particular image, i.e. as a couple x = (p, I), where I is an image and p ∈ ΩI the location
in the image domain. Given an acquired image I , we denote XI = {(p, I) ,p ∈ ΩI} the
set of all observations belonging to an acquired image I , and X = ∪I∈Id,nchannels

XI the
set of observations given an image dimensionality d and a number of image modalities
(or color channels) nchannels. I ∈ Id,nchannels is the set of all d-dimensional images with
nchannels modalities. The label space Y is the set of possible semantic labels to which a
pixel can be associated. Splitting the image labeling into independent pixelwise decisions
strongly simplifies the learning task in comparison to the structured case: for a same
number of labeled images, the available amount of training data is larger (equal to the
number of labeled pixels instead of the number of labeled images) and the size of the label
space is reduced and independent of the image size (K instead of K |ΩI |). The simplified
setting of pixelwise classification is therefore more suitable for the application of standard
classification algorithms and allows to perform predictions independently of the size of
the images.

As illustrated in Sec. 1.2.1, the design of a standard supervised learning approach can
be usually decomposed into two steps:

• The feature extraction, which allows to transform the abstract space of observations
X into a mathematically tractable (e.g. Euclidean) feature space via the definition
of a collection of real-valued functions (φλ)λ∈Λ, which extract in a quantitative way
a certain type information about an observation x ∈ X .

• The definition of a learning strategy, which creates a function f : X → Y from a
set of labeled examples whose label prediction for an observation x ∈ X is only
based on the extracted feature responses (φλ(x))λ∈Λ.

In the two following subsections, we respectively expose the classical strategies encoun-
tered to tackle these two steps in the case of pixelwise classification, i.e. where an obser-
vation x is a pixel in an image.
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1.3.1 Modeling the Visual Context around a Pixel
The objective of the feature extraction stage is to create a quantitative representation of
an observation x ∈ X based on which (and only on which) the decisions about the label
of x will be performed. To do so, we must define a collection (φλ)λ∈Λ of functions called
feature maps, where each φλ : X → R extracts a certain kind of visual cue about x. In
a pixelwise classification setting, each observation x = (p, I) is defined as a location p
in a particular image I so that the role of the functions (φλ)λ∈Λ is to quantify the visual
information at the location p in the image I . The choice of features for quantifying an
observation has a critical impact on the learning and prediction tasks, both in terms of
accuracy and computational time. Prior knowledge about the application at hand can be
effectively incorporated directly in the features: for instance, if the task is known to be
invariant to a certain kind of image deformation, only considering features possessing
this invariance guarantees the invariance of the predictions. In general, including prior
knowledge into the features reduces the necessary amount of training data for the learning
task since it intuitively reduces the complexity of the task. Engineering features can thus
be particularly useful in situations where training data are difficult to obtain.

We expose now several simple or classical examples of feature choices, i.e. some
possible types of feature maps. These examples can in practice be concatenated to form
the final collection of features. We consider for simplicity the case of a 2D image where
elements of the image domain are of the form p = (u, v). These examples will also
give us the opportunity to become familiar with some concepts encountered in the field of
image segmentation and on which our first methodological contribution in this thesis will
be based (Sec. 2.4).

Local Features

To characterize an observation x = (p, I), the most immediate solution is perhaps to
focus on the image value observed at the location p and in its immediate vicinity. We can
for instance:

• Extract the image value for a given color channel i.e. φval
c (x) = I(p, c)

• Consider the differences with neighboring pixels such as the horizontal difference
φdiff hor
c (x) = ∂I

∂u
(p, c) = I(u+ 1, v, c)− I(u, v, c).

• More generally, compute features based on the gradient ~∇I(p, c) of I at the loca-
tion p and for the color channel c. We can for instance define feature maps ex-
tracting the norm of the gradient, i.e. φgrad norm

c (x) =
∥∥∥~∇I(p, c)

∥∥∥, or its orientation
φgrad or
c (x) = atan2(∂I

∂v
(p, c), ∂I

∂u
(p, c)). A high value of the norm of the gradient

can be for example a good indicator of the presence of an edge at the considered
location.

In practice, unless the application is strongly related to color information, local features
are alone not sufficient. The image values at the location of interest and at its neighboring
locations are not informative enough to perform an accurate decision: a human who would
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only see the pixel of interest or a 3× 3 patch centered on it could not make any decision
about its semantic content for most applications. In general, more visual context is thus
required, meaning that we have to enlarge the size of the patch centered on p.

Filter-Based Features

Considering a patch of size δ̄ × δ̄ centered on p (where, therefore, we consider an odd
value for δ̄ = 2δ + 1), filter-based features propose to compute a weighted sum of the
intensities within this patch. A simple example is the computation of the mean within a
color channel, defined for an observation x = (p, I) as

φmean
c,δ (x) =

∑
−δ≤u≤δ
−δ≤v≤δ

1

(2δ + 1)2
I (p− (u, v), c) . (1.24)

Spatially varying weights can also be used, such as Gaussian weights of covariance matrix
Σ:

φgaussian
c,δ,Σ (x) =

∑
−δ≤u≤δ
−δ≤v≤δ

GΣ(u, v)I (p− (u, v), c) (1.25)

where, writing (u, v) as a column vector h, we have GΣ(u, v) ∝ exp(−hTΣh) and∑
−δ≤u≤δ
−δ≤v≤δ

GΣ(u, v) = 1. (1.26)

The choice of Gaussian weights has a smoothing effect and can therefore give a version
of φval which is more robust to noise or allows more accurate computations of derivatives.
More generally, we can define a filter-based feature by providing a collection of weights
W = (wu,v)−δ≤u,v≤δ and compute

φfilter
c,δ,W(x) =

∑
−δ≤u≤δ
−δ≤v≤δ

wu,vI (p− (u, v), c) . (1.27)

An appropriate choice of weights can output a characteristic response if a certain kind
of structure is contained in the patch. This idea is for instance at the origin of a popular
method for enhancement of vessels in medical images [Frangi et al., 1998]. A large
number of different filter-based feature maps can also be extracted to form a filter bank,
counting on the fact that their combination is sufficiently informative. Gabor filters [Fogel
and Sagi, 1989] are an example of such a strategy. Filter-based features are also a basic
building block of some deep learning approaches such as convolutional neural networks.

In addition, filter-based features can be computed efficiently in the context of pixel-
wise segmentation. The value of a function φfilter

c,δ,W can be computed quickly at all loca-
tions of the image I by performing a convolution product along the cth color channel,
i.e. φfilter

c,δ,W(x) = [I(., c) ? W ] (p), for which fast computation techniques exist based for
example on the fast Fourier transform.
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Haar Features

Away from application-oriented features and going rather in the same direction as a large
filter bank, Haar features encode low-level information in a generic and computationally
efficient way. They were originally used in combination with the AdaBoost classifier
(Sec. 1.2.7), first in the context of face detection [Viola and Jones, 2004] and later ex-
tended to object recognition and segmentation [Shotton et al., 2006]. While their exact
implementation technically appears in numerous variants, the key concept of Haar fea-
tures is to represent a pixel p in an image by its content in two boxes located at offset
locations within a (possibly large) patch of size δ̄× δ̄. More precisely, for a d-dimensional
image, the feature maps

Ä
φHaar
λ

ä
λ∈Λ

are parametrized by a vector

λ = (~v1, ~v2, s1, s2, c1, c2, ω) , (1.28)

where ~v1, ~v2 ∈ {−δ, . . . , δ}d, s1, s2 ∈ {1, . . . , δ}d, c1, c2 ∈ {1, . . . , nchannels} and ω :
R2 → R performs an operation between two numbers (Fig. 1.3a). To compute the feature
response φλ(x) at an observation x = (p, I) for a given choice of λ, we:

1. Consider the two boxes B(p + ~vi, si), 1 ≤ i ≤ 2 respectively centered on p + ~vi and
of size si.

2. Compute in each box the average B̄i(x,λ) of the image intensities over the specified
color channel ci, i.e. for i ∈ {1, 2} B̄i(x,λ) = 〈I(p, ci)〉B(p+~vi,si).

3. Combine these two averages with the operation ω, so that the final feature value is
φHaar
λ (x) = ω

Ä
B̄1(x,λ), B̄2(x,λ)

ä
.

Possible operations ω can for example be the difference ω(a, b) = a−b, the sum ω(a, b) =
a + b or the absolute value of the difference ω(a, b) = |a− b|. This set of operations
corresponds, in fact, to one of the first uses of Haar features in the random forest frame-
work [Shotton et al., 2008], but can be adapted according to the available prior knowledge
of the application at hand. In Sec. 2.4, we will for example only allow binary versions of
the difference to enforce the invariance to changes of contrast in certain types of medical
applications (magnetic resonance and ultrasound imaging).

On one hand, each individual Haar feature encodes a weak type of information, which
is alone unlikely to be sufficient to perform accurate predictions. On the other hand, the
set Λ of possible parameters λ as defined in Eq. 1.28, and thus the amount of available
feature maps

Ä
φHaar
λ

ä
λ∈Λ

, is very large, so that lots of different low-level cues are present
in this feature representation. This is a key characteristic of Haar features: although indi-
vidually weak, they are sufficiently generic and in large number to be suitable for many
applications if used together with an appropriate learner able to combine them effectively.
Therefore, they are mostly used in boosting and tree ensembles. At first sight, the use of
Haar features faces a computational problem. For an observation x ∈ X , computing all
feature responses

Ä
φHaar
λ (x)

ä
λ∈Λ

is not feasible due to their large number. Therefore, we
could either decide to limit ourselves to a small subset of these features and ignore the
other ones, which limits the richness of the description, or we could recompute on-the-fly
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Figure 1.3: Contextual features. The visual appearance around a pixel p is quantitatively
described by its surroundings within a patch of size δ̄ × δ̄. (a) Each Haar feature consists
of the combination of the average of the intensities within two offset boxes. (b) In the case
of histograms of gradients, each feature corresponds to one of the bins of a histogram of
the gradient directions observed within a box.

each feature value φλ(x) whenever it is needed during training or prediction. However,
the latter choice seemingly requires repeated computations of the mean intensity over
boxes, whose cost grows linearly with the number of pixels in the box and could be com-
putationally too expensive. In fact, this situation can be alleviated by the use of integral
images. For an image I , at the cost of precomputing once an integral image Ĩ , the sum of
intensities over any rectangular box can be obtained in a few memory accesses only [Vi-
ola and Jones, 2004]. With an integral image, we thus have a straightforward access to
φHaar
λ (x) for every λ ∈ Λ and every observation x ∈ XI belonging to the image I . We

refer to Appendix A for a detailed description of integral images.

Histograms of Gradients

Our last example of popular features are the histograms of gradients (HoG) introduced in
the context of human detection [Dalal and Triggs, 2005]. HoGs encode the distribution of
gradient orientations around the location of interest, which intuitively describes the shape
of the object a pixel belongs to or the shape of the surrounding structures. We limit our
description to the 2-dimensional case and consider the parametrization

λ = (~v, s, c, k) , (1.29)

where ~v ∈ {−δ, . . . , δ}2, s ∈ {1, . . . , δ}2, c ∈ {1, . . . , nchannels} and k ∈ {1, . . . , B}
where B is a predefined number of bins. Within the box B(p + ~v, s), we create the
histogram of gradient orientations, weighting each gradient by its magnitude, and out-
put the value of the kth histogram bin (Fig. 1.3b). For a location u ∈ ΩI , we denote
N∇(u, c) ∈ R+ and O∇(u, c) ∈ [0, 2π[ the magnitude and orientation of the gradient
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~∇I(u, c) respectively. The response at x = (p, I) given a feature λ can be mathemati-
cally written as

φHoG
λ (x) =

∑
u∈B(p+~v,s) N∇(u, c)1

[
2(k−1)π

B
, 2kπ
B

[
{O∇(u, c)}∑

u∈B(p+~v,s) N∇(u, c)
, (1.30)

where 1
[
2(k−1)π

B
, 2kπ
B

[
{O∇(u, c)} = 1 if the orientation O∇(u, c) belongs to the kth his-

togram bin defined as [2(k−1)π
B

, 2kπ
B

[, and 0 otherwise. We can notice that HoGs are invari-
ant to changes of illuminations, i.e. stay unchanged when a constant intensity is added
to the considered color channel. From Eq. 1.30, we can see that φHoG

λ (x) is the ratio of
two sums over a rectangular box. Assuming that B is fixed, we can consider, for every
k ∈ {1, . . . , B}, the image I∇,k of the same dimensions as I defined as

I∇,k(u, c) = N∇(u, c)1
[
2(k−1)π

B
, 2kπ
B

[
{O∇(u, c)} , (1.31)

and the gradient magnitude image N∇ (which is independent of B and k). With these
definitions, we have

φHoG
λ (x) =

∑
u∈B(p+~v,s) I∇,k(u, c)∑
u∈B(p+~v,s) N∇(u, c)

. (1.32)

Hence, the response φHoG
λ (x) corresponding to any parameter λ and observation x ∈ XI

is a ratio of sums computed over two boxes. Therefore, as was the case for Haar features,
φHoG
λ (x) can be quickly computed for any value of λ and x via the precomputation of
B + 1 integral images (from the images I∇,1, . . . , I∇,B and N∇). Although HoG features
are usually computed for a fixed set of boxes regularly distributed over the location of
interest p, we will propose in this thesis to merge them together with Haar features in a
joint generic representation of color and gradient information (Sec. 2.4.1).

1.3.2 Classification Methods for Pixelwise Semantic Segmentation

Once the choice of a feature representation has been made, the modeling of semantic
image segmentation as a pixelwise classification task allows the use of any standard su-
pervised classification technique. However, in practice, the semantic segmentation sce-
nario can involve huge amounts of training data. A single labeled 2D image of standard
size (e.g 300× 300 pixels) already contains around 105 training samples, with even more
extreme situations for 3D medical data. Therefore, scalability at training and prediction
time can quickly become crucial due to the high number of instances to be processed
independently. Boosting-based and tree-based approaches (often used with Haar-like fea-
tures) have had a lot of popularity for both 2D and 3D cases, due to the efficiency of this
combination and, in the case of decision trees, to the natural treatment of multi-class prob-
lems. We propose a detailed review on forest-based semantic segmentation approaches in
Sec. 2.3.

In the situations where a lot of labeled data is available, convolutional neural net-
works (CNNs) have recently gained a huge interest in computer vision in general, and
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have demonstrated state-of-the-art performance for many applications including seman-
tic image segmentation [Long et al., 2015, Zheng et al., 2015]. Starting from a most
elementary image representation, CNNs jointly optimize the feature representation and
the decision rule via a series of stacked convolutional layers, which can be handled in
a tractable manner with GPU computing. The use of CNNs has also been proposed for
the semantic segmentation of 3D volumes in the medical field [Ronneberger et al., 2015,
Roth et al., 2015, Havaei et al., 2016].

In this thesis, we will focus on the random forest model and will review in the next
chapter the existing forest-based approaches for semantic image segmentation in details,
both in the computer vision and medical communities.

1.4 Structured Learning
By modeling the semantic segmentation objective as a pixelwise classification problem in
Sec. 1.3, we reduced the size of the output space and the complexity of the learning task
but ignored the fact that both inputs and outputs are fundamentally images, i.e. objects
containing a certain amount of structure. The field of structured learning [Nowozin and
Lampert, 2011] focuses on the development of methods treating both inputs and outputs
directly as images and modeling dependencies between pixels. For example, an image can
be seen as a graph where neighboring pixels are connected and dependencies between
neighboring pixels are modeled, so that unrealistic label configurations can be avoided
in the predicted labeling. Conditional random fields [Lafferty et al., 2001], abbreviated
CRFs, are a class of graphical models which has been widely used for semantic image
segmentation. Using the pixelwise output of a classifier as unary probability, additional
binary terms are introduced to model the contextual relationship between a pixel and its
neighbors, so that likely transitions between neighboring pixels based on the observed vi-
sual content can be inferred [Rabinovich et al., 2007, Shotton et al., 2009]. To overcome
the fact that standard CRF-based approaches are often restricted to short-range configura-
tions, multiscale or hierarchical CRFs have been designed [He et al., 2004, Gonfaus et al.,
2010]. Away from fixed topologies, the auto-context approach [Tu and Bai, 2010] gener-
ates a series of classifiers, where the output probability of the (k − 1)th classifier is used
as additional features for training the kth one, thus gaining contextual knowledge progres-
sively, in an automatic and flexible way. For an auto-context framework to be effective,
it is essential that classifiers do not overfit, as feeding a perfect posterior probability (on
the training set) to the next classifier leads to an early convergence where all next classi-
fiers simply reproduce this input. Structured approaches based on the concept of decision
forests have also been developed and will be reviewed in more details in Sec. 2.3.2.

1.5 Conclusion
In this chapter, we have presented an overview of the main concepts and challenges of
the field of supervised learning, which aims at automatically creating a predictive model
from a set of labeled observations. We also exposed how the semantic image segmentation
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objective can be modeled within the supervised learning framework, either by performing
independent pixelwise predictions or by directly exploiting the structure of images. After
this introductory chapter, we propose to treat more specifically the case of decision forests
in Chapter 2. By describing in details this class of models and the related approaches, we
will illustrate further most of the notions mentioned in this first chapter.



Chapter 2

Decision Forests

In this chapter, we expose in details the model of decision forests, which is one of the most
popular supervised learning techniques for classification and regression. We start by de-
scribing it as a general machine learning technique and discuss its possible variants, before
focusing more specifically on the semantic image segmentation task, both in computer vi-
sion and medical applications. After having reviewed the diverse challenges occurring
in this context and the already existing approaches, we introduce the first methodological
contribution of this thesis: an easy-to-implement alternative to the standard forest training
technique which, at no computational cost nor tuning of additional parameters, improves
the segmentation accuracy on a series of datasets.

2.1 Decision Trees
The decision forest framework builds on the concept of decision tree which we expose in
this section. Considering a supervised learning setup (Sec. 1.2), we assume given a label
space Y and an observation space X which is only numerically accessible via a collection
of feature maps (φλ)λ∈Λ. A decision tree follows a discriminative strategy, i.e. models
for each y ∈ Y the probability1 P (Y = y|X = x) that an observed sample x has the label
y.

2.1.1 Description of the Tree Structure
A decision tree is a rooted hierarchical structure made of nodes such that each node has
exactly 0 or 2 child nodes. Nodes having 2 child nodes are said internal and contain a
splitting rule ψ : X → {0, 1}which routes an observation x ∈ X towards the left (ψ(x) =
0) or right (ψ(x) = 1) child node. By recursive application of these splitting rules starting
from the root node, an observation is directed towards a terminal node or leaf L, which
does not have any child nodes and contains a prediction model P (Y |X ∈ L) instead
of a splitting function. As a consequence, the leaves partition the input space X and
provide a piecewise approximation of the probability P (Y |X = x). A simple example

1Or a density function in the regression case.

27
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ψ1

ψ2

φ2(x)

φ1(x)

ψ1(x) = 0

ψ1(x) = 1 ψ1(x) = 1

ψ1(x) = 0 ψ1(x) = 1

ψ2(x) = 1ψ2(x) = 0

ψ2(x) = 0 ψ2(x) = 1

Figure 2.1: Example of a decision tree. We consider here a feature space where Λ =
{1, 2}, i.e. where observations x ∈ X are modeled with exactly two feature maps φ1 and
φ2, and a classification scenario with 3 labels Red, Blue and Green. A decision tree is a
collection of nodes which are hierarchically ordered, starting from a root node at the top.
Each internal node contains a splitting function, which are in our example axis-aligned.
At the root node, a split with respect to the dimension φ2 is performed. Another internal
node divides the corresponding upper subspace with respect to the value of φ1. At each
leaf, a probability distribution over labels is stored which models the predicted label for
observations belonging to this part of the feature space.

of decision tree in a two-dimensional space is shown in Fig. 2.1. Since our supervised
learning formulation assumes that the knowledge about an observation x ∈ X is only
accessible through some feature maps, the splitting functions stored in internal nodes
must be based on the feature responses (φλ(x))λ∈Λ. The most usual splitting functions
are said axis-aligned and defined by one feature λ ∈ Λ and a threshold θ ∈ R such that an
observation x is sent left if φλ(x) < θ and is sent right otherwise. Formally, axis-aligned
functions can be written as

ψ(x) = H(φλ(x)− θ), (2.1)

where H is the Heaviside function which outputs 1 if its input is nonnegative and 0 oth-
erwise. Although axis-aligned splitting functions remain the most used in the literature,
more complex ones can be encountered. For example, oblique functions generalize axis-
aligned ones by combining several features:

ψ(x) = H(w0 +
d∑

k=1

wkφλk(x)). (2.2)

The popularity of axis-aligned splits resides in their simplicity which, at prediction time,
requires the computation of only one feature at each internal node. As we will discuss
further in Sec. 2.1.4, axis-aligned functions are also easier to optimize at training time.
Unless otherwise mentioned, splitting functions are assumed axis-aligned in this thesis.

From their structure alone, some advantages of decision tree models are already ap-
parent:

• To predict the label of an observation, only the features located on its path through
the tree must be computed. This means in particular that the set of features can
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be very large or even infinite without affecting the computational time, as all the
features that are not used will simply be ignored. Due to this aspect, Haar features
(Sec. 1.3.1) can be used in decision trees for semantic segmentation.

• Since features are only looked individually at each node in the axis-aligned case,
they do not need to be comparable with each other. While many learning algorithms
perform analytic combinations of features (such as a linear combination in logistic
regression (Eq. 1.17) or the definition of a distance (Eq. 1.19) for a k-nearest neigh-
bor model) which may require some pre-processing or normalization beforehand,
this does not apply to decision trees which can for instance handle a combination
of real-numbered features and categorical ones.

• Decision trees are easily interpretable. The series of decisions leading to the final
label prediction can be easily read on the path of the observation through the tree,
where each decision involves only one feature at a time.

In a supervised learning scenario, a decision tree (i.e. its node arrangement, the splitting
functions stored in the internal nodes and the predictive models stored in the leaf nodes) is
automatically inferred from a set of labeled observations S = {(xi, yi) , 1 ≤ i ≤ N}. We
now describe the standard training procedure which generates a decision tree from such a
training set.

2.1.2 Overview of the Training Procedure

In the literature, several variants can be considered as a standard training of a decision
tree [Breiman et al., 1984, Quinlan, 1986, 1993, Criminisi, 2011]. In fact, the main idea
behind these different strategies is similar and they differ only through some technical
details. We give here a global overview and discuss more in details in the next subsections
the different possible variants for some building blocks of the training, as well as the
choices we retained in our own implementation which was used for the contributions of
this thesis.

Given a training set S = {(xi, yi) , 1 ≤ i ≤ N} where each (xi, yi) ∈ X × Y is a pair
made of an observation and a label, the goal of the training procedure is to learn a decision
tree able to approximate the probability P (Y |X = x) related to the mechanism generat-
ing these observed samples. The training of a decision tree is conducted recursively and
leads to the progressive creation of nodes, starting with a single node which will be the
root of the learned tree. Using as input the training set S , we first decide on the splitting
function which will be stored in this root node. This splitting function is obtained via an
optimization procedure looking for a split of high quality, where the quality of a candi-
date splitting function ψ is intuitively defined as its ability to group together the training
instances of S which possess similar labels. More precisely, we look for a split ψ splitting
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φ2(x)

φ1(x)

φ2(x)

φ1(x)

φ2(x)

φ1(x)

θ1

ψ1(x) = H(φ2(x)− θ1)

θ1

θ2

ψ2(x) = H(φ1(x)− θ2)

ψ1

Figure 2.2: Training a decision tree. We consider the setting of Fig. 2.1 and show here
a possible scenario leading to the decision tree shown in Fig. 2.1. Given a set of labeled
observations, a tree is trained recursively by finding at each stage the most informative
splits, i.e. the splits which intuitively separate the labels best. At each node, stopping
criteria are tested to decide whether one keeps splitting or creates a leaf instead. In the
latter case, the leaf prediction model is inferred from the labels of the training samples
contained in the corresponding part of the feature space.

the data S into two subsets as pure2 as possible. More precisely, we consider the two sets

Sψ,left = {(x, y) ∈ S|ψ(x) = 0} (2.3)

and
Sψ,right = {(x, y) ∈ S|ψ(x) = 1} (2.4)

which correspond to the way ψ distributes samples to the left and right child nodes at
prediction time. Once an impurity measure G has been defined (Sec. 2.1.3), the quality

2An impurity score G(S) of an arbitrary set of labeled samples S is intuitively equal to 0 if all instances
in S share the same label and maximal if the labels in S are uniformly distributed over their set of pos-
sible values Y . We give explicit examples of impurity measures for both classification and regression in
Sec. 2.1.3.
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of the split ψ is then defined as a purity gain

Gain(ψ,S) = G(S)− |Sψ,left|
|S|

G(Sψ,left)−
|Sψ,right|
|S|

G(Sψ,right), (2.5)

where |S| denotes the number of elements in the set of samples S. This definition being
given, the splitting function ψ̂ that is eventually retained and stored at the root node is
the one which maximizes the purity gain among a predefined set Ψ of candidate splitting
functions, i.e.

ψ̂ = argmax
ψ∈Ψ

Gain(ψ,S). (2.6)

The actual feasibility of this optimization depends on the type of splitting functions that
has been chosen and will be discussed in Sec. 2.1.4. Once the splitting function at the root
has been selected, two child nodes are created and the corresponding subsets Sψ̂,left and
Sψ̂,right of the training set are respectively sent to the left and right child nodes. The training
procedure is then recursively repeated at these two child nodes, where the left child node
(respectively the right child node) uses as input the set Sψ̂,left (respectively Sψ̂,right) instead
of S. Before (or in some cases after) each node optimization, some stopping criteria
(Sec. 2.1.5) are tested and, if one of them is satisfied, no child nodes are created and the
current node is transformed into a leaf node. The predictive function stored at the leaf is
then empirically estimated from the set of training samples that has been sent to this node
(Sec. 2.1.6). We illustrate the training procedure on Fig. 2.2.

Following this overview of the training of a decision tree, a few important design
choices remain to be defined:

1. How to define an impurity measure G?

2. How is the optimization procedure defined by Eq. 2.6 conducted?

3. What kind of criteria should be used to stop the recursive growth of the tree?

4. How are the leaf predictive models computed from their respective set of arriving
training instances?

The answer to the questions 1 and 4 directly depends on the nature of the task and prompts
a different strategy for a classification problem (Y = {c1, . . . , cK}) and a regression prob-
lem (Y = Rm). In the segmentation case, we will be mostly interested in classification.
The question 2 is perhaps the most difficult to answer in general, as the allowed type of
splitting functions directly impacts the type and computational cost of the resulting op-
timization. The four next subsections respectively expose common strategies to address
each one of these problems.

2.1.3 Impurity Measure
The impurity measure G(S) of a set of labeled samples S is expected to be 0 if all sam-
ples in S have the same label and to be maximum in case of label uniformity over S. We
summarize here common choices for G. Starting with the classification case, where the
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set Y = {c1, . . . , cK} consists of K discrete labels without particular ordering, two mea-
sures are particularly common: the Gini index [Breiman et al., 1984] and the Shannon
entropy [Quinlan, 1986, 1993]. If we define, for c ∈ Y , the set Sc = {(x, y) ∈ S|y = c}
of samples in S being labeled as c and the corresponding proportion pc = |Sc|

|S| of observa-
tions of label c, the Gini index is defined as

G(S) =
∑
c∈Y

pc(1− pc), (2.7)

and the Shannon entropy as
G(S) = −

∑
c∈Y

pc ln pc. (2.8)

Although they are not equivalent, there is no clear consensus on whether one of these two
measures is better than the other [Raileanu and Stoffel, 2004]. We will use the Gini index
(hence the notationG). In the case of a regression task where Y = Rm, an indicator of the
label dispersion is the covariance matrix Σ ∈ Rm×m, which can be empirically estimated
as

Σ =
1

|S| − 1

∑
(x,y)∈S

(y − ȳ) (y − ȳ)T , (2.9)

where ȳ is the empirical mean vector of the labels over S. Using the covariance matrix, a
popular impurity measure [Breiman et al., 1984] is its trace

G(S) = tr(Σ), (2.10)

which amounts to summing the m individual variances over each output dimension, or
the differential entropy (under a Gaussian assumption) given by

G(S) =
m

2
(1 + ln (2π)) +

1

2
ln |Σ| , (2.11)

where |Σ| is the determinant of Σ. In practice, in an optimization context, the first term
of Eq. 2.11 is constant and can be ignored. For all these impurity measures, the corre-
sponding purity gain (Eq. 2.5) is non-negative. Note that the entropy estimates presented
here are commonly used but, in fact, statistically biased. It has been recently shown that
replacing them by better estimates increases the final accuracy of a decision tree for both
discrete and differential entropies [Nowozin, 2012].

2.1.4 Splitting Function Optimization
Once an impurity measure has been chosen, the objective function Gain to be optimized in
Eq. 2.6 is well defined. However, the choice of the optimization algorithm and of the set
of functions Ψ over which the optimization is run is not straightforward. In most cases,
an exhaustive optimization is too costly computationally and, in fact, rarely desired to
guarantee good generalization abilities of the trained model (see Sec. 2.1.8 and Sec. 2.2.1).
In this thesis, we will mainly use axis-aligned splitting functions and therefore describe in
detail the corresponding standard optimization approach. We then review existing works
related to the use and optimization of more sophisticated splitting functions.
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Axis-Aligned Case: Greedy Optimization

As described in Sec. 2.1.1, an axis-aligned splitting function is defined by a feature λ ∈ Λ
and a threshold θ ∈ R and consists in thresholding one dimension of the feature space. In
the axis-aligned case, the usual optimization procedure is conducted in a greedy fashion
as follows. We first define a set of ntries candidate features Λcandidates = {λ1, . . . ,λntries}.
If the set of feature maps Λ is small enough, we can simply take Λcandidates = Λ, but most
of the time Λcandidates is in fact a randomly drawn subset of Λ, both out of computational
necessity if Λ is too large but also to counter overfitting (Sec. 2.2.1). For each candidate
feature λ ∈ Λcandidates, a predefined number nthresholds of thresholds are greedily tried. This
set of thresholds Θλ = {θ1

λ, . . . , θ
nthresholds
λ } is taken between the extremal observed values

over the input set of samples S sent to the node, i.e.

θmin
λ = min

(x,y)∈S
φλ(x) (2.12)

and
θmax
λ = max

(x,y)∈S
φλ(x). (2.13)

We will more precisely pick these candidate thresholds on a regular grid, i.e

θiλ = θmin
λ +

i
Ä
θmax
λ − θmin

λ

ä
nthresholds + 1

. (2.14)

Other possibilities include taking these thresholds as randomly sampled uniformly be-
tween θmin

λ and θmax
λ [Geurts et al., 2006] or following quantiles of the feature response.

The strategy above assumes that the feature map φλ take continuous real-values. If it is
known that φλ takes a finite set of values, the threshold optimization is usually straight-
forward, although it can also be randomized out of computational necessity. We will
especially encounter the case where φλ is binary (outputing only 0 or 1) in Sec. 2.4.1, in
which case a single threshold (for instance θλ = 0.5) needs to be tried.

Under these considerations, we pick among these finite combinations the couple fea-
ture / threshold maximizing the gain (Eq. 2.6), i.e. we retain the axis-aligned splitting
function ψ̂ based on the feature λ̂ and the threshold θ̂, where

λ̂ = argmax
λ∈Λcandidates

max
θ∈Θλ

Gain(λ, θ,S) (2.15)

and
θ̂ = argmax

θ∈Θλ̂

Gain(λ̂, θ,S). (2.16)

Figure 2.3 illustrates this optimization. The gain Gain(λ, θ,S) above is naturally defined
as the gain Gain(ψ,S) where ψ is the axis-aligned splitting function based on the feature
λ and the threshold θ. This optimization is conducted over a finite set and is thus easy to
implement. In the case of classification, we can use a computational simplification which
tries efficiently all thresholds for a given feature by storing class histograms [Criminisi
and Shotton, 2013].
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φ2(x)

φ1(x)

(a) Optimization along λ = 1

φ2(x)

φ1(x)

(b) Optimization along λ = 2

Figure 2.3: Greedy optimization in the case of axis-aligned splits. Keeping the setting
of Fig. 2.1 and Fig. 2.2, we illustrate the various thresholds tried during the training of the
root node, in the case nthresholds = 4 and Λcandidates = Λ. We retain the most informative
split (in (b), in bold) and repeat recursively (see Fig. 2.2)

More Complex Splitting Functions

Although axis-aligned splits are the most frequent choice, more general splitting func-
tions can be used such as hyperplanes [Heath et al., 1993, Menze et al., 2011, Schneider
et al., 2015], ellipsoids [Criminisi, 2011, Heinrich and Blendowski, 2016], support vec-
tor machines [Bennett and Blue, 1998], boosting classifiers [Tu, 2005] or multi-layered
perceptrons [Rota Bulò and Kontschieder, 2014]. These approaches demonstrate in gen-
eral higher accuracy or more compact trees. However, they are rarely used in practice
in comparison to their axis-aligned counterparts, mainly because of the computational
difficulties arising during the corresponding node optimization. Handling jointly several
features and parameters results indeed in a considerable increase in complexity at train-
ing time, so that a greedy optimization is no longer sufficient. This difficulty is often a
bottleneck in practical applications. As a partial solution to this problem, a differentiable
version of the information gain was introduced [Montillo et al., 2013] and obtained by
replacing the usual binary splitting function by a sigmoid. Doing so, if a subset of fea-
tures is fixed, the gradient with respect to the function parameters (e.g. the hyperplane
coefficients in the oblique case) can be computed and a gradient ascent procedure can be
performed to find a satisfactory splitting function based on this subset of features.

The simplicity of the greedy node optimization can also be seen as one of the strengths
of the decision tree framework, as it is precisely what allows this model to handle large
amounts of training data and to perform fast predictions at test time. Introducing a com-
plex decision function at each node loses these two benefits and goes rather towards a
hierarchical combination of strong classifiers. Moreover, although it could be argued that
axis-aligned splits may be too limited to fit effectively the underlying distribution in some
cases, we will see in Sec. 2.2 that an ensemble of axis-aligned decision trees, i.e. a deci-
sion forest, offers a greater flexibility.
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2.1.5 Stopping Criteria
The training procedure is a recursive process where child nodes are progressively created,
and which is eventually stopped resulting in the creation of a leaf. The following stopping
criteria can be used:

• A node is automatically turned into a leaf if it reaches a certain predefined depth
D. The depth of a node in a tree is the number of edges necessary to reach the root
node, which has thus itself a depth 0. Fixing a predefined tree depth can be seen as
a computational safeguard as it puts a clear upper bound on the number of nodes
which will be created regardless on the amount of training data. It may however not
be entirely suitable for applications which require very unbalanced trees.

• A leaf must receive a minimum number of samples nsamples/leaf. If, during node split
optimization, no split can be found which sends at least nsamples/leaf to both left and
right child nodes, no splitting is performed and the node in question is turned into
a leaf. Note that if less than 2nsamples/leaf samples are sent to a node, it is not even
necessary to run the optimization.

• The impurity G(S) of the received set of samples S is below a certain threshold.
In our implementation, we only stop the process if a node reaches complete purity
(G(S) = 0), in which case there is no reason to split further.

2.1.6 Leaf Models
At the creation of a leaf L, a local predictive model is computed from the set of incoming
training samples SL. The goal is to obtain, for each possible label y ∈ Y , the probability
P (Y = y|X ∈ L) that an observation x reaching this leaf has the label y. The nature
of the prediction model depends on the learning task. In the classification case where
Y = {c1, . . . , cK}, the leaf probabilistic model is computed from the empirical label
distribution, i.e. we have for each c ∈ Y

P (Y = c|X ∈ L) =

∣∣∣SLc ∣∣∣
|SL|

, (2.17)

where SLc is the subset of samples of label c in SL. In the regression case, the continuous
aspect of the output space prompts the definition of a density function instead of a discrete
probability. This is in general an ill-posed problem. Therefore, assumptions must be made
about the model used to estimate this density. A normal distribution can for example be
fitted to the arriving data SL, i.e.

f(Y = y|X ∈ L) = N (ȳ,Σ) (2.18)

following the notations introduced in Sec. 2.1.3. In our context of semantic segmentation,
we will only consider classification tasks for which the well-posed empirical histogram
estimation given by Eq. 2.17 is the most natural choice.
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2.1.7 Handling Class Imbalance
In a classification context, the available training data often presents an imbalance in terms
of the represented labels. This problem of class imbalance is particularly present in the
context of semantic image segmentation: taking the example of labeled road scenes, it is
expected to see many more Sky or Road pixels than Bicycle or Sign symbol. If
the tree training algorithm described above is applied on such a case without modification,
this class imbalance may result in over-predicting frequent classes and under-predicting
rare classes. To understand this phenomenon intuitively, consider a simple fictive tree
consisting only of one root node Lroot (which is, in fact, a root leaf!). Following Eq. 2.17,
the class histogram stored at this leaf exactly represents the class distribution in the train-
ing set and therefore leads to a systematic prediction of the most frequent class. Is this
what we desire for the prediction model stored at this leaf?

The answer to this question is not straightforward and is related to the performance
measure that one seeks to optimize. If the labeled data is fairly representative of future
data to come, it is, from an accuracy point of view (i.e. the proportion of observations
correctly classified), beneficial to predict the most frequent class. For example, if 70% of
observations have Sky as true label, an agnostic classifier (as is a tree made of only one
leaf) predicting systematically Sky without even looking at the image content reaches
an accuracy of 70%. However, the proportion of pixels correctly classified is not always
an ideal measure for segmentation task since rare instances are often as important, if not
more, than frequent ones. For instance, we would prefer a road scene understanding
algorithm incorporated in a self-driving car to exchange a few misclassified Sky pixels
against the correct identification of a pedestrian or a bicycle. This is the reason which
motivates the introduction of alternative measures of the quality of a semantic labeling,
such as the average classwise Recall or Jaccard index (Sec. 1.1.2), which treat all classes
as equally important instead of all instances (pixels, in our case).

Therefore, we could expect our one-leaf-tree to ‘abstain’ without further information,
i.e. to output an equal probability for all classes. This is achieved by reweighting ob-
servations to simulate the duplication of the training data so that all classes are equally
sampled. We denote |Sctrain| the number of observations of label c in the training data Strain

sent to the tree and we define the balancing weight of the class c as

νc =
|Strain|
K |Sctrain|

(2.19)

where K is the number of possible labels. We assume here that at least one training
sample of each label is available (otherwise, any arbitrary finite value can be used for the
weight of such an absent class without consequences). Applying the weight νc to each
individual training instance of label c provides a new (real-valued) counting operator |.|bal
taking into account the class imbalance and simulating the duplication of training data to
achieve equal label proportions. For any subset S ⊆ Strain, we have

|Sc|bal = νc |Sc| (2.20)

and
|S|bal =

∑
c∈Y
|Sc|bal =

∑
c∈Y

νc |Sc| . (2.21)
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To compensate class imbalance in the tree model, one now substitutes the operator |.|bal
to the classical counting operator |.| in the training procedure, i.e. in:

• The class proportion pc involved in the computation of the Gini index or the entropy
(Eq. 2.7 and Eq. 2.8) and, similarly, in the computation of the leaf models (Eq. 2.17).

• The ratios weighting G(Sψ,left) and G(Sψ,right) in the purity gain (Eq. 2.5).

• If applicable, when counting instances to see if a stopping criterion based on a
minimum number of samples per leaf is reached.

To conclude, we can verify some properties of this new counting operator. First, we can
note that the number of training samples sent to the tree is kept unchanged:

|Strain|bal =
∑
c∈Y

νc |Sctrain| =
∑
c∈Y

|Strain|
K |Sctrain|

|Sctrain| =
∑
c∈Y

|Strain|
K

= |Strain| . (2.22)

This means, in particular, that a stopping criterion based on a minimum number of sam-
ples per leaf still corresponds to the same proportion of the training data sent to the tree.
Finally, using this property, we can also compute the weighted predictive model of our
fictive tree made of one leaf:

P (Y = c) =
|Sctrain|bal

|Strain|bal
=
νc |Sctrain|
|Strain|

=
1

K
, (2.23)

which is the expected abstaining prediction of this classifier that now handles classes in
an egalitarian way.

2.1.8 Overfitting Behavior
If allowed to be grown deep enough and equipped with a sufficiently effective node op-
timization algorithm, one can find for any separable set of samples a tree for which each
leaf contains exactly one of these samples. In such a case, similarly to our discussion on
the 1-nearest neighbor classifier (Sec. 1.2.4), the final levels of the tree are most likely to
be fitting the specific training data instead of the underlying distribution, hence leading to
an overfitting situation (Fig. 2.4). Using the vocabulary of Sec. 1.2.5, decision trees are
typically a model with low bias since they are flexible and can fit complex distributions,
but with high variance as the learned tree structure can be different if a new training data is
resampled from the same distribution. To reduce the complexity of the model and thereby
the overfitting behavior, one could force early stopping with appropriate stopping criteria,
for instance by limiting the tree depth. Additionally, pruning methods were developed,
i.e. the operation of replacing lower parts of the tree by leaves to achieve a compromise
between accuracy and complexity of the model [Breiman et al., 1984, Mingers, 1989,
Quinlan, 1993, Mansour, 1997]. Unlike early stopping methods, the full tree has to be
grown first, which is computationally costlier but does not require to know about the re-
quired model complexity before training. However, pruning methods usually require a
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(a) (b)

Figure 2.4: Decision trees and overfitting. (a) If allowed to grow infinitely, decision trees
can fit exactly all the (separable) instances of the training set, which leads to unnatural
and undesired decision boundaries. (b) A solution to this problem is to prune the tree,
i.e. to keep only a subtree of the grown tree which generalizes better on a validation set.
However, in addition to the need of these additional labeled data, the result may still lack
of smoothness. Random forests offer an alternative without these shortcomings.

separate validation set to find the best pruning level, which forces to reduce the size of the
training data and can thus be a limitation, especially if training data are difficult to obtain.

A more modern approach to counter overfitting without the need for a validation set
is to follow the bootstrap aggregating (bagging) strategy presented in Sec. 1.2.7, i.e. to
combine several randomized trees performing slightly different decisions. This is the
framework of random forests.

2.2 Random Forests
A random forest reduces the natural overfitting behavior of a decision tree by creating
several decision trees, all sightly different from another, and merging their predictions.
If ntrees trees are created, the final forest estimate is usually obtained by averaging each
individual tree decision, i.e. for every y ∈ Y ,

P (Y = y|X = x) =
1

ntrees

ntrees∑
t=1

Pt(Y = y|X = x) (2.24)

where Pt(Y = y|X = x) is the prediction of the tth tree. The creation of different yet
related trees is achieved by randomizing the training of each tree. We illustrate in Fig. 2.5
the behavior of random forests on the toy example introduced in Fig. 1.2.

2.2.1 Injecting Randomization in Training
Several random forest ensembles have been introduced historically by using different ran-
domization techniques. They can be classified into two main categories: either sending
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Training data Depth 1 Depth 5 Unlimited depth

(a) One tree of varying depth

Training data 1 tree 10 trees 100 trees

(b) Varying number of trees of depth 5

Figure 2.5: Illustration of decision forests on a toy example. (a) We consider one tree
of varying depth. The overfitting behavior with unlimited depth can be observed, and
we can also notice a general lack of smoothness in the decision rule. (b) We consider
an ensemble of several randomized trees of depth 5 with a combination of bagging and
randomized node optimization. The ensemble prediction is smoother when the number of
trees increases.
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different training data to each tree in a bagging fashion, or weakening the optimization of
node splitting functions (Eq. 2.6) during training so that two trees receiving the same data
would eventually have different structures.

Bagging

As described in Sec. 1.2.7, bagging predictors allows to create an ensemble of classifiers
of lower variance than the individual classifiers composing the ensemble. In the context
of random forests, this procedure is conducted by sending to each tree a set of labeled in-
stances which has been resampled from the initial training data. In the original approach,
each tree receives a training set of the same size as the initial one by sampling training in-
stances with replacement [Breiman, 1996]. In the context of large-scale data like semantic
segmentation where millions of training samples are available, a subsampling approach
is more appropriate due to computational constraints, i.e. each tree receives a randomly
drawn subset smaller than the training data. By doing so, the computational cost of the
training procedure is reduced while leaving each training sample still accessible in theory.

Another advantage of bagging is the possible use of out-of-bag estimates. Since each
tree is trained only on a subset of the training data, the rest of the training data which has
not been seen by a tree can act as a validation set for this particular tree. Eventually, we
can define for each point of the training set an out-of-bag prediction, which is obtained
by averaging the predictions of the trees that have not been trained on this sample. The
generalization ability of the forest can thus be assessed as if a validation set was avail-
able, but without the necessity of leaving out a part of the training data. However, the
independence between training samples is crucial for these estimates not to be too opti-
mistic. In the context of pixels within an image, this assumption is rather invalid and,
perhaps for this reason, out-of-bag estimates are not frequently encountered in the case
of semantic segmentation, although they have been employed in other computer vision
applications [Leistner et al., 2009, Saffari et al., 2009].

Randomized Split Optimization

Another way to build decorrelated trees consists in randomizing the split node optimiza-
tion (Eq. 2.6) during training. Several strategies have been proposed: the random sub-
space method [Ho, 1998] allows each tree to access only a subset of the feature maps
(φλ)λ∈Λ. Another approach proposes to search for the n best splitting functions instead of
the best one (with n arbitrarily chosen), and picks at random within these n functions the
one that will be retained [Dietterich, 2000]. However, the most popular choice consists in
performing the split node optimization by randomly sampling uniformly a subset of fea-
tures at each node, as we have already mentioned in Sec. 2.1.4. This technique was first
introduced out of practical reason due to a too complex set of splitting functions [Amit and
Geman, 1997] and later employed as a way to reduce overfitting [Breiman, 2001]. Inter-
estingly, similarly to bagging, such a randomization is necessary for practical reasons in
a large set of features such as representations based on Haar features (Sec. 1.3.1). Finally,
extremely randomized trees [Geurts et al., 2006] randomize in addition the threshold se-
lection in the case of axis-aligned splits.
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2.2.2 Advantages and Limitations of Random Forests
We conclude our description of random forests with a summary of their strengths and
weaknesses as a learning technique. The advantages of random forests include:

• Their computational efficiency. Following a divide-and-conquer strategy, random
forests scale well to large amounts of training data and can be easily parallelized
over trees or even implemented on a GPU [Sharp, 2008] for both training and pre-
diction.

• Their compatibility with large feature representations and relative robustness to ir-
relevant features, since a non informative feature would not be retained at a node
during training. Moreover, only the features stored in the nodes must be computed
at prediction time which is an additional computational advantage.

• The fact that, in the classification case, multi-class problems are naturally handled
via the definition of the impurity measure and the histogram-based models stored
in the leaves.

• The compatibility of axis-aligned decision trees with heterogeneous features, as
already discussed in Sec. 2.1.1.

• The availability of out-of-bag predictions which provide an estimate of the gener-
alization abilities of the model without requiring an independent validation set.

In particular, the multi-class aspect and the computational efficiency for both training and
prediction make random forests a very appropriate method for semantic image segmen-
tation, as will be discussed in details in Sec. 2.3. Regarding the limitations of the model,
we can mention that:

• Although progresses have been recently made [Biau and Scornet, 2016], the effec-
tiveness of random forests is not very well understood from a theoretical point of
view.

• The predictions of a random forest are not as interpretable as for a single decision
tree due to the ensemble nature of the model.

• They do not possess the full ability of learning efficiently feature representations
together with the decision rule, as is for instance possible with convolutional neural
networks. The fact that random forests are compatible with large feature represen-
tations mitigates this effect but they still require an explicitly defined feature space
over which the greedy node optimization is able to find informative features in a
reasonable amount of time during training.

Building on the standard framework, research works introduced variants of the training
and prediction steps as well as other types of tree ensembles to overcome the aforemen-
tioned limitations. We propose an overview of such approaches in the next section.
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2.2.3 Variants and Extensions
Several works propose to remove the independence between trees and to exploit the com-
plementary nature of the trees more effectively than by simply averaging their predictions.
Alternating Decision Forests [Schulter et al., 2013] design the forest training as a global
loss minimization problem and grow trees jointly stage by stage by applying a boosting-
inspired reweighting of training instances every time the trees gain a depth level. This
allows a joint learning of all trees without losing the possibility of parallel computing.
Instead of introducing the global loss minimization in the training in this fashion, a pre-
trained forest can also be refined by re-learning (and pruning) the leaf nodes in a global
manner according to the loss function [Ren et al., 2015]. A faster classification without re-
training can also be achieved by identifying observations that are easy to predict and only
predicting them with a few trees, while a larger number of trees focus on the challenging
cases [Schwing et al., 2011]. Instead of growing a tree in the standard greedy recursive
fashion, a recent approach globally optimizes the splitting functions and the leaf nodes for
a tree of fixed depth [Norouzi et al., 2015]. Deep neural decision forests [Kontschieder
et al., 2015] propose a similar global tree optimization where feature representation, split-
ting nodes and leaf models are jointly optimized.

In all these approaches, the final predictor remains a decision forest. We mention in
this last paragraph other kinds of tree ensembles. Instead of bagging trees to reduce the
variance of the ensemble, one can grow smaller trees and combine them with gradient
boosting to reduce, this time, the bias of the ensemble [Hastie et al., 2009]. Random
ferns [Ozuysal et al., 2007] can be seen as a special case of random forests, where the same
splitting function is used at all nodes located at a same depth of the tree, which offers great
computational simplifications. Finally, Decision Jungles [Shotton et al., 2013b] extend the
tree structure to more general directed acyclic graphs, where a (non-root) internal node
has two child nodes like in a tree but is allowed to have more than one parent node. The
structure of the graph is then jointly optimized with the splitting functions during training,
which furnishes more compact models without computational loss at prediction time.

2.3 Random Forests for Semantic Image Segmentation
For the task of semantic image segmentation, a decision must be made for each pixel or
voxel in an image. Since a single 2D image typically contains at least 105 pixels and a
3D volume contains several millions of voxels, both the learning and prediction tasks are
computationally demanding and involve very large sets of observations. For this reason,
and together with their natural ability to handle multi-class problems, tree structures and
especially random forests appeared as a natural and popular choice for semantic image
segmentation. In this section, away from the more general models introduced so far, we
review specifically the existing forest approaches that are tailored to the image labeling
task and the associated challenges. We first discuss usual choices of feature represen-
tations for forest-based segmentation (Sec. 2.3.1) before reviewing works incorporating
structured and prediction abilities in the random forest framework (Sec. 2.3.2). Finally,
we expose in more details the tradeoff between the local and global modeling of the visual
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context around a pixel and illustrate its implications (Sec. 2.3.3). After having described
the various strategies introduced in the literature to tackle this problem, we propose our
own contribution towards this objective in Sec. 2.4.

2.3.1 Choice of Feature Representation

The design of a supervised learning method often starts by considering how training and
testing instances will be quantitatively modeled, i.e. with the definition of feature maps
in our formulation. We have presented in Sec. 1.3.1 a few examples of possible feature
representations if observations consist of pixels within an image, as is the case in the
segmentation scenario. The most traditional approach extracts only a relatively small
number of features and is still used in recent forest-based works. For instance, in computer
vision, Kontschieder et al. [2014] use HOG-like features as well as local first and second
order derivatives, and Ravı̀ et al. [2016] introduced new features based on the discrete
cosine transform for generic 2D semantic segmentation tasks. For the labeling of hand
parts, Zhu et al. [2015] employ color and gradient-based features per pixel. Application-
specific features can also be designed, such as features based from the properties of the
ultrasound physics for tissue characterization in ultrasound imaging [Conjeti et al., 2016].
In general, small spaces of possibly application-oriented features present some advantages
like an easier interpretation of the prediction and behavior of the model or the use of
dimensionality reduction techniques [Conjeti et al., 2016]. However, a computational
tradeoff is required when the number of features increases, especially at training time:
either one computes and stores all feature responses in memory before training, which is
then limited by the amount of memory available, or one recomputes them individually at
each node which results in slower training. This may not scale well with the large amount
of training samples available for segmentation tasks. In some cases, the feature design
allows mathematical shortcuts. For instance, Schneider et al. [2015] use steerable filters
in a random forest for the segmentation of vessels in 3D images. By precomputing the
response of a set of basis filters only, the feature response can then be computed at any
arbitrary orientation, emulating a theoretically infinite set of features which the random
forest framework can effectively handle.

Going in the same direction, since their first use within the random forest framework
under the form of semantic textons [Shotton et al., 2008], some variants of the Haar fea-
tures presented in Sec. 1.3.1 have been used in a large number of forest-based approaches
for semantic segmentation. This choice is both due to their computational advantages and
the fact that they are generic enough to be applied to diverse segmentation tasks. They
can be combined with other pixelwise handcrafted features by storing these visual cues
as artificial color channels [Schroff et al., 2008, Rota Bulò and Kontschieder, 2014, Ravı̀
et al., 2016], offering thereby a contextual layer on top of these pixelwise descriptors.

Beyond 2D computer vision applications such as human pose estimation from depth
images [Shotton et al., 2013a], Haar-like features enjoy especially a huge popularity in the
medical field where they provide a tractable and accurate way to perform segmentation
of 3D volumes. In fact, they are present in the majority of works involving forest-based
segmentation in 3D images. A non exhaustive list of successful applications of these
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features include organ sementation in CT volumes [Yi et al., 2009, Montillo et al., 2011,
Glocker et al., 2012, Lindner et al., 2013, Heinrich and Blendowski, 2016], segmentation
of echogenicities [Pauly et al., 2012] and of the midbrain [Chatelain et al., 2013] in 3D
ultrasound data, delimitation of heart anatomy in 3D [Lempitsky et al., 2009b] and even
4D [Margeta et al., 2011] data, segmentation of multiple sclerosis lesions [Geremia et al.,
2011] and tumors [Zikic et al., 2012] in MR brain images. Beyond segmentation, they
were also used for instance for the localization of organs [Criminisi et al., 2009, Pauly
et al., 2011, Ebner et al., 2014, Gauriau et al., 2015]).

2.3.2 Structured Learning

Seeing the segmentation objective as a pixelwise classification task is a simple strategy
which is compatible with traditional supervised learning techniques. However, as dis-
cussed in Sec. 1.4, the fact that both inputs and outputs are in fact images could also be
used to increase the robustness of the predictions. We review here contributions which
introduce structure in the forest framework.

For multi-organ segmentation within 3D CT scans, Glocker et al. [2012] regularize
the training of the classification by adding a regression objective aiming at predicting
the distance of a voxel to each organ of interest in addition to its discrete label. The
regression task is incorporated in the training via a joint information gain for classification
and regression. By tackling these several tasks simultaneously, the retained features are
expected to generalize better which brings this strategy close to a multi-task learning
scenario [Caruana, 1997]. In a similar idea, the 3D displacement of an active contour was
recently jointly learned together with the voxel label [Gao et al., 2016].

Several approaches are inspired from the idea of auto-context [Tu and Bai, 2010]
already mentioned in Sec. 1.4. In the context of forests, we can mention the work of Zikic
et al. [2012] who first trained a simple (thus non-overfitting) Gaussian Mixture Models
classifier on MR data for brain tumor segmentation, before feeding its output to a forest
equipped with Haar-like features. In this case, this two-step process can also be seen as
learning a relevant feature which is then added as additional modality. Closer from the
original auto-context algorithm, cascaded random forests have been recently proposed
where the output of each forest is regularized by a conditional random field before being
sent to the next forest training [Richmond et al., 2015]. Other approaches include, during
node optimization, a direct access to the predictions of the version of the tree grown so
far: for multi-organ segmentation, Montillo et al. [2011] allow interaction between nodes
during training while Kontschieder et al. [2013] presented geodesic forests to perform
visually-driven regularizations between different regions of an image.

The fact that training and testing instances are collected within a set of images has
also led to a few approaches putting a stronger emphasis on the notion of image in train-
ing and testing sets. For the semantic labeling of brain anatomy, atlas forests train one
small forest on each training volume [Zikic et al., 2014], acting as a deterministic bag-
ging and offering some advantages in terms of design, such as the easy addition of new
training volumes. For this application where a large amount of structure is available and
where training volumes are only slightly different from another, this approach proved to
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be at least as accurate as a standard forest and much faster than registration-based label
propagation. Another work going in a similar direction performs first a clustering of train-
ing volumes with Laplacian eigenmaps before training specialized trees on local areas of
this representation [Lombaert et al., 2014], i.e on some subsets of volumes sharing visual
similarities. At prediction time, a test volume is first placed on the Laplacian eigenmap
and trees that have been trained on similar volumes are given a higher weight in the pre-
diction. Thereby, heterogeneous datasets such as medical volumes coming from different
hospitals can be used more effectively for training.

Finally, research efforts have tried to output labels that are globally consistent within
an image, e.g. to avoid predictions of non-realistic label configurations. The forest output
can for instance be used as a unary probability in a conditional random field model [Kluck-
ner et al., 2009a,b], possibly by learning additional contextual information in addition to
the pixel label [Payet and Todorovic, 2013]. The parameters of a CRF have also been
jointly learned with decision trees [Nowozin et al., 2011]. Yang et al. [2012] introduced
so-called local label descriptors which infer, from the forest classification output, a pix-
elwise labeling satisfying constraints on an expected label histograms at each location.
Structured prediction abilities have also been included directly in the forest framework by
learning and predicting at patch level, i.e. estimating jointly the label of a pixel and of
its neighbors [Kontschieder et al., 2014]. A similar idea was introduced for the semantic
labeling of hand parts where shape masks are stored in leaf nodes [Zhu et al., 2015]. In
the medical field, Neighborhood Approximation Forests [Konukoglu et al., 2013] simi-
larly perform a generic clustering of medical images from the visual content according to
some meta-input and were applied to a patchwise semantic segmentation task.

2.3.3 A Matter of Context

The visual information which is useful to predict the label of a pixel can be located at dif-
ferent scales around it. For instance, if a human is given a medical body scan and asked
to segment a particular organ, the intuitive approach would probably be to first use global
information to localize the organ of interest within the body and, once the organ has been
found, to use the local image intensity information to delineate precisely its contour. This
aspect motivates structured learning techniques, as one would like to output a segmenta-
tion that is realistic and consistent, both at local level and when considering the global
arrangement of a body scan or a scene. However, we could also argue that, if equipped
with a sufficiently rich feature representation which includes information about the whole
surrounding image, a pixelwise segmentation approach should be able to integrate infor-
mation located at various scales.

In practice, a standard forest having access to information at all visual ranges does
not show the promised results. We illustrate this in Fig. 2.6 by considering a standard
training with Haar features (Sec. 1.3.1) where we let the maximum scale δ vary. For
small values of δ, i.e. when too little visual context is present, local decisions are quite
accurate with clearly defined edges, but the unavailability of global information leads to
unrealistic predictions with a clear lack of smoothness. There is nothing surprising at this
stage, as even a human would often misclassify a pixel if the given contextual information
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around it is too narrow. As we increase the size δ of the neighborhood, we can see that
the global information starts being taken into account leading to better arrangements, but
at the cost of missing local structures. It is, here, slightly less expected. Increasing δ
provides a larger set of features without destroying any information so that the very local
features used at short scale are still perfectly accessible to the learner. However, the greedy
optimization used at each node is no longer able to find relevant features: by sampling
uniformly a few hundreds of Haar-like features, it becomes too unlikely to find the ones
that complement the information that has been learned earlier in the tree. Therefore, in
a standard forest setting, the chosen value for δ is imposed by this tradeoff and changing
the training algorithm is required to effectively combine local and global information.

A first strategy consists in training different forests at each scale level δ and combin-
ing their posterior probabilities [Pauly et al., 2012, Lay et al., 2013, Ebner et al., 2014,
Gauriau et al., 2015] e.g by multiplying them. Other approaches keep a small scale for the
features, ensuring that the local properties of the pixel of interest are captured, and intro-
duce additional features (e.g as artificial color channels) that are designed to incorporate
long-range information. To do so, the perhaps most intuitive solution is to use the pixel
coordinate as features [Lempitsky et al., 2009b], but a clearly defined coordinate system
and aligned images are then required, as translation invariance is lost in the process. A
more sophisticated approach for strongly structured applications such as brain imaging
is to register a label prior to the test data and use this label prior as color channel [Zikic
et al., 2014], or to use as features spectral coordinates instead of standard Euclidean co-
ordinates [Lombaert et al., 2015]. If the object of interest is not necessarily expected at a
particular location, these strategies cannot be employed. For the segmentation of multiple
sclerosis lesions in 3D brain images, Geremia et al. [2011] introduced instead an addi-
tional feature comparing the pixel of interest with its symmetric counterpart with respect
to the mid-sagittal plane. This exploits the fact that, unlike healthy parts of the brain,
lesions develop in an asymmetric way.

Without introducing new features, the node optimization itself could be guided. In a
large feature space, weak and strong features could be learned beforehand and used for
sampling candidate features in the training of the forest [Montillo et al., 2011, Ye et al.,
2013], possibly also depending on the depth of the node in question [Yaqub et al., 2014].
The limitation of a preliminary feature learning is the fact that it is global and not made
dependent on the current stage of the training, although the relevance of a feature depends
on the set of samples sent to a node. By learning once for all which features are weak and
strong, their redundancy with what has already been learned earlier in the tree is not taken
into account. Finally, Geremia et al. [2013] explicitly create a hierarchy of supervoxels
and refine the representation when necessary during the forest training.

2.4 Scale-Adaptive Forest Training

In spite of their advantages, the aforementioned approaches aiming at combining local and
global contextual information present a computational overhead at training or testing time.
Moreover, some of them raise other practical issues such as having to choose explicitly
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Building Tree Sky Prediction

Our scale-
adaptive
training

(Sec. 2.4)

Max.
offset
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Figure 2.6: How far should the visual information around a pixel be extracted? We
illustrate qualitatively on the example image shown in Fig. 1.1a the influence of the maxi-
mum scale δ at which the visual context around a pixel is extracted. For small values of δ,
the posterior probabilities contain fine details (the column pole is successfully excluded
from the sky) but lack global information to correctly predict visually complex classes
such as buildings. As δ increases, the posteriors become smoother and more aware of
the global arrangement of the scene but lack the finer details. We introduce in Sec. 2.4
an alternative training scheme which achieves a compromise between local and global
contextual information without adding any computational cost.

the different scales to combine. In this section, we introduce an alternative Haar feature
sampling scheme during training which:

• Does not present any computational overhead at both training and testing time in
comparison to the standard training.

• Is very easy to implement.

• Does not require the tuning of any additional hyperparameter.

• Demonstrates clear segmentation improvements on 4 diverse datasets.
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Our method is evaluated on both 2D computer vision images and 3D medical volumes.
In Sec. 2.4.1, we expose in details our choice of feature representation in these two cases.
We then introduce in Sec. 2.4.2 our scale-adaptive node optimization strategy and report
a series of experimental results in Sec. 2.4.3 demonstrating its advantage in comparison
to the standard strategy.

2.4.1 Visual Features
Our forest-based segmentation method can be applied to both 2D and 3D images. The
only aspect for which 2D and 3D cases must be treated separately is the design of the
feature representation which encodes the visual information available for classifying each
pixel or voxel. Following the practice of most works using forests for segmentation, we
use in the two cases a Haar feature representation. In this section, we describe our features
in details and follow the notations used in Sec. 1.3.1.

For 2D images, we extend the classical Haar features by including both color and
gradient information. Merging Eq. 1.28 and Eq. 1.29, we parametrize our 2D feature
maps

Ä
φ2D
λ

ä
λ∈Λ

by a vector

λ = (~v1, ~v2, s1, s2︸ ︷︷ ︸
scale-related

, c1, c2, k1, k2, τ, ω︸ ︷︷ ︸
categorical

), (2.25)

with ~v1, ~v2 ∈ {−δ, . . . , δ}2, s1, s2 ∈ {1, . . . , δ}2, c1, c2 ∈ {1, . . . , nchannels}, k1, k2 ∈
{1, . . . , B}, τ ∈ {Color,Gradient}, and ω : R2 → R. The novelty in comparison to
the features described in Sec. 1.3.1 is the introduction of a parameter τ which encodes the
type of information that is extracted:

• If τ = Color, the feature response φ2D
λ (x) is the color-based Haar feature defined

in Sec. 1.3.1, i.e. φ2D
λ (x) = φHaar

λ′ (x) with λ′ = (~v1, ~v2, s1, s2, c1, c2, ω). We remind
that this feature extracts the mean intensity witin each box over their respective
color channel and combines them via the operation ω.

• If τ = Gradient, we extract a HoG feature in each box and combine them with
ω, i.e. φ2D

λ (x) = ω
(
φHoG
λ′1

(x), φHoG
λ′2

(x)
)

where λ′i = (~vi, si, ci, ki) for i ∈ {1, 2}.

The chosen possible operations ω are the sum, the difference and the absolute value of
the difference [Shotton et al., 2008]. We illustrate the 2D feature extraction process on
Fig. 2.7. The distinction in Eq. 2.25 between scale-related and categorical parameters will
play a role in our sampling scheme exposed in Sec. 2.4.2.

In the 3D case, we do not consider gradient-based features due to memory constraints.
Indeed, since a direction in 3D is characterized by two angles, an equivalent 3D-histogram
would contain B2 bins instead of B bins. Since, moreover, we would have to store an
integral volume for each of these B2 bins, the required memory is too large for such an
approach to be tractable. Our 3D features are thus classical Haar features in 3D, defined
by

λ = (~v1, ~v2, s1, s2︸ ︷︷ ︸
scale-related

, c1, c2, ω︸ ︷︷ ︸
categorical

), (2.26)
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Figure 2.7: Extended Haar features in 2D. Our visual features are defined by a parame-
ter vector λ = (~v1, ~v2, s1, s2, c1, c2, k1, k2, τ, ω). At a location p, two quantities Γ1,Γ2 are
extracted, each Γi stating the visual content in the box B(p+ ~vi, si) centered on p+ ~vi and
of size si = (si,x, si,y) within the color channel ci. The type of information encoded by
Γi is defined by a parameter τ ∈ {Color,Gradient} which respectively corresponds
to the mean intensity and to the value of the kth

i bin of the histogram of oriented gradients
(Sec. 1.3.1). Finally, the final feature value φ2D

λ (x) of the observation x = (p, I) is ob-
tained by combining the two quantities Γ1 and Γ2 via a function ω. The image on the left
is taken from the CamVid dataset [Brostow et al., 2008a].

with ~v1, ~v2 ∈ {−δ, . . . , δ}3, s1, s2 ∈ {1, . . . , δ}3, c1, c2 ∈ {1, . . . , nchannels} and ω : R2 →
R. The feature response is simply the combination of the mean intensities in each box, i.e.
φ3D
λ (x) = φHaar

λ (x). In our experiments, two 3D medical datasets from MR and ultrasound
imaging respectively will be used to validate our approach. For these imaging modalities,
the individual image value observed at each voxel is not necessarily consistent between
images with changes in terms of illumination and contrast. Therefore, similarly to existing
approaches [Pauly et al., 2011, Chatelain et al., 2013, Heinrich and Blendowski, 2016],
we only allow ω to be the binarized difference between two boxes, i.e. ω(a, b) = 0 if
a ≤ b and 1 otherwise. With this operation, the visual context around a voxel is reduced
to simple comparisons of the average intensity between two boxes.

2.4.2 Scale-Adaptive Node Optimization
In the standard forest training framework, ntries candidate features λ1, . . . ,λntries are drawn
uniformly and independently at each node to form the set of candidate features Λcandidates

over which the node optimization is performed. Since each λi = (λi1, . . . , λ
i
D) is a vector

of dimension denoted D here, this is practically achieved by sampling each coordinate
λid, 1 ≤ d ≤ D of λi uniformly over its predefined set of possible values Λd. In particular,
the range of scale-related parameters defined in Eq. 2.25 and Eq. 2.26 is proportional
to a predefined value δ encoding the maximum scale at which the visual context can be
extracted. As discussed in Sec. 2.3.3, deciding on an appropriate value of δ is usually
problematic as it has a strong impact on the forest prediction. In this section, we expose
an alternative sampling scheme which alleviates this difficulty at no additional cost.

Instead of sampling the λi independently, we proceed sequentially by letting each
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Figure 2.8: Comparison between the standard sampling and our scale-adaptive one.
We show here an example of five consecutive samples obtained with both techniques in
the case of the simpler parametrization used on our medical datasets (Eq. 2.26) with only
one option for ω. In the uniform case (a), every new sample is obtained by resampling the
whole set of parameters. The allowed value for the offsets and box sizes is constrained by
a parameter δ. In our scale-adaptive method (b), a current sample is slightly deformed to
create a candidate for the next sample, which is only accepted if it does not decrease the
information gain on the set of training samples sent to the current node. Instead of δ, a
parameter σstates how large the deformation between two consecutive samples is allowed
to be.

candidate feature depend on the previous one (Fig. 2.8). At each node, given an arriving
set of training samples S, the feature sampling is conducted as follows:

• Sample a first feature λ1 by setting the scale-related parameters to values corre-
sponding to the finest scale, i.e. 0 for offset coordinates and 1 for box dimensions.
The categorical parameters are set randomly.

• At each iteration (for 1 ≤ i ≤ ntries − 1) :
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– Given the current feature λi, suggest a slight modification λ̃
i

of λi by picking
at random one of the dimensions λid (with d ∈ {1, . . . , D} uniformly drawn)
and redraw it as follows:

* If d is a scale-related dimension, we redraw λid uniformly within a neigh-
borhood [λid − σ, λid + σ] ∩ Λd.

* If d is a categorical dimension, we redraw λid uniformly over its set of
possible values Λd.

The other components of λi are left unchanged.

– Accept this modification if it does not decrease the purity gain. Formally,
define λi+1 = λ̃

i
if Gain(λ̃

i
,S) ≥ Gain(λi,S), else λi+1 = λi. Gain(λ,S)

denotes the maximum purity gain observed when trying several axis-aligned
splits based on the feature λ, i.e. Gain(λ,S) = maxθ∈Θλ

Gain(λ, θ,S) with
the notations of Eq. 2.15.

The procedure above generates ntries features λ1, . . . ,λntries , exactly like the standard uni-
form sampling technique, and requires the same amount of purity gain evaluations so that
the practical computational time is identical by construction. Intuitively, the chosen ini-
tialization of the scale-related parameters corresponds to the finest possible scale which
only provides information contained at the voxel of interest. Through the creation of can-
didate moves λ̃

i
, changes towards larger scales are then progressively suggested, but only

accepted if they convey more information than the current one, in a hill climbing fashion.
Hence, the maximum scale δ can be set as high as necessary in practice, i.e. as large as
the image dimensions. The issue of finding a good value for δ has now been replaced by
finding a good size of neighborhood σ. As we will see in the experimental evaluation,
tuning σ is much less critical and virtually any value of σ outperforms the best choice of
δ (Fig. 2.10).

Our approach can also be seen as the design of a Markov chain at each node, where
each feature corresponds to a state of the Markov chain and where moves are sequentially
suggested from a proposal distribution and accepted if they do not decrease the purity
gain. This shares some similarities with the Metropolis-Hastings algorithm [Metropolis
et al., 1953] which we will encounter in Chapter 5. The difference lies in the fact that
the acceptance criterion is here deterministic, and that the application of the Metropolis-
Hastings algorithm usually requires more iterations than the desired number of samples
ntries to reduce the correlation between consecutive samples.

2.4.3 Experiments
We evaluate our approach on four datasets. We first consider two 2D datasets in computer
vision: the Camvid dataset [Brostow et al., 2008a], which consists of 711 road scenes
with 32 possible pixel labels, and the Stanford Background Dataset [Gould et al., 2009]
which is a collection of 715 natural images parsed into 8 semantic classes. As in previous
works [Brostow et al., 2008b, Kontschieder et al., 2013, 2014], we simplify the CamVid
dataset by only using 600 frames (367 for training and 233 for testing) and 11 classes and
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(a) CamVid Dataset (b) Stanford Background Dataset

(c) IBSR2-18 Dataset (d) Midbrain Dataset

Figure 2.9: Overview of the datasets. We show here one example image from each of
the 4 datasets used for our experimental evaluation, together with their respective ground
truth.

we downsample each image by a factor 2. The two other datasets used for our evalua-
tion are made of 3D medical volumes: the IBSR2-18 Brain Dataset, which is a publicly
available3 set of 18 brain MR scans with up to 32 labeled regions, and a dataset which
aims at segmenting the midbrain in 3D transcranial ultrasound [Ahmadi et al., 2011]. The
volumes are rescaled to obtain a constant isotropic spacing over each dataset, of 1 mm
and 0.9 mm respectively.

Evaluation of the Scale-Adaptive Training

To evaluate our proposed method for a scale-adaptive training, we used an identical for-
est setting for all 4 datasets. Each forest is composed of ntrees = 50 trees of maximal
depth 20 and with at least 10 samples per leaf. At each node, ntries = 500 features
were sampled during training, and nthresholds = 10 thresholds tried on a regular grid for
each feature (Sec. 2.1.4). Each tree received 106 training samples uniformly drawn at
random over all training pixels in a bagging fashion, and we applied for each tree the
class balancing correction exposed in Sec. 2.1.7. For the CamVid dataset, we used the
training and testing sets usually chosen in the literature. For the three other datasets, a
2-fold cross-validation was performed. On the two 2D datasets (CamVid and Stanford
Background Dataset), the features were computed in the CIELab color space, and the
histograms of gradients were created using B = 9 orientation bins. These settings were
applied for both the standard and the scale-adaptive forest training and for values of δ and
σ in {10, 25, 50, 100, 200}. We report the quality of the predictions in Fig. 2.10, using for

3http://www.nitrc.org/projects/ibsr



2.4. SCALE-ADAPTIVE FOREST TRAINING 53

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1
CamVid Dataset

A
vg

(J
ac

ca
rd

)

δ or σ (pixels)

 

 

Scale−adaptive
Standard

(a)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1
Stanford Background Dataset

A
vg

(J
ac

ca
rd

)

δ or σ (pixels)

 

 

Scale−adaptive
Standard

(b)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1
IBSR2−18 Dataset

A
vg

(A
cc

ur
ac

y)

δ or σ (pixels)

 

 

Scale−adaptive
Standard

(c)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1
Midbrain Segmentation Dataset

A
vg

(D
ic

e)

δ or σ (pixels)

 

 

Scale−adaptive
Standard

(d)

Figure 2.10: Evaluation of our scale-adaptive training. We compare the standard forest
training based on uniform sampling with the scale-adaptive training method presented in
Sec. 2.4.2. For each of these two methods, we let vary the parameter they depend on, i.e.
respectively δ (size of the patch) and σ (size of the neighborhood during local search).
The results demonstrate that the scale-adaptive method outperforms the standard training
on a variety of datasets.

each dataset the most commonly used metric: the average Jaccard index over classes for
the computer vision datasets, the average accuracy over volumes for the IBSR2-18 Brain
Dataset and the average Dice score over volumes for the Midbrain Dataset. The results
demonstrate a consistent improvement of the scale-adaptive approach in comparison to
the standard one, almost regardless of the chosen values for σ and δ. Qualitative results
on each dataset can be found in Fig. 2.11.

We also investigated on the CamVid dataset the randomization abilities of the scale-
adaptive training. We performed this evaluation by removing the bagging aspect of the
training and sending instead the same set of samples to each tree, more precisely by
collecting samples on a regular grid of step size 8. Thereby, the variability between trees
is only introduced via the feature sampling. Considering this setting, the evolution of the
average classwise Jaccard index with the number of trees is shown in Fig. 2.12a. The
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Figure 2.11: Qualitative results. Evolution of the predictions for standard and scale-
adaptive samplings when the scale parameter increases (respectively δ and σ). The images
used here are the example images shown in Fig. 2.9.
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Method Accuracy Avg(Recall) Avg(Jaccard)
Standard Forests

Brostow et al. [2008b] 69.1 53.0 –
Kontschieder et al. [2013] – – 33.3
Kontschieder et al. [2014] 69.9 42.2 30.6

Rota Bulò and Kontschieder [2014] 68.5 50.3 32.4
Best Results (including structured approaches)

Yang et al. [2012] 73.7 36.3 29.6
Kontschieder et al. [2013] – – 38.3
Kontschieder et al. [2014] 83.8 53.2 43.5

Rota Bulò and Kontschieder [2014] 82.1 56.1 43.3
Ravı̀ et al. [2016] 76.4 72.5 –

Ours
KS, Color only 70.4 42.6 31.7

KS, Color + HoG 79.7 47.8 38.6
Standard 80.4 54.5 41.6

Scale-adaptive 83.8 58.6 46.2

(b)

Figure 2.12: Complementary results on the CamVid dataset. (a) We study whether
the randomization abilities are conserved with the scale-adaptive sampling. To do so,
we no longer perform bagging and we leave the tree randomization mechanism to the
feature sampling only. We can observe that the evolution of the evaluation measures with
the number of trees is similar for standard and scale-adaptive sampling, which tends to
demonstrate similar randomization abilities. (b) We position our work with respect to
other existing forest-based approaches. Although our final classifier remains an axis-
aligned forest without regularization, it outperforms most of the structured methods.

benefit of adding trees follows a similar pattern for both the standard and scale-adaptive
trainings, so that no clear loss of randomization abilities can be observed with the latter.

Finally, we also mention that following the publication of this approach [Peter et al.,
2015], an external research group reimplemented independently the scale-adaptive train-
ing as a baseline and was able to confirm on another medical dataset the observed im-
provement over the standard uniform training scheme [Štern et al., 2016].

Comparison with Existing Methods

The CamVid dataset has been used in computer vision to evaluate several other contribu-
tions on random forests, which gives us the opportunity to position our approach with re-
spect to these other models. A summary of the results of forest-based methods reported in
the literature is shown in Table 2.12b. We distinguished the results using a standard forest
setting (often used as baseline in the corresponding papers), and the more sophisticated
contributions involving either structured output [Yang et al., 2012, Kontschieder et al.,
2013, 2014], stronger splitting functions in nodes [Rota Bulò and Kontschieder, 2014], or
considering random forests as a part of a more complex pipeline [Ravı̀ et al., 2016]. We
can see that, in spite of being by nature a classical random forest with axis-aligned splits
and without regularization of the output, our scale-adaptive forest outperforms almost all
other approaches, including the structured ones. The method of Ravı̀ et al. [2016] demon-
strates a better average classwise Recall but uses forests within a larger pipeline, which
makes the contribution of the forest itself difficult to assess. To estimate the impact of
the feature representation on our results, we considered an additional forest with similar
settings to the ones used by the best-performing baseline [Kontschieder et al., 2013], i.e.
ntrees = 10, nsamples/leaf = 5 and ntries = 500. We trained a forest in these settings but with
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our features, both using only color-based Haar features (KS, Color only) and with
both color and histogram of gradients (KS, Color + HoG). The results demonstrate
the clear benefit of introducing histograms of gradients within Haar-like features and that
our feature representation provides a benefit of around 5 points in the Jaccard index. This
should be thus considered when performing comparisons. However, we also mention that
our scale-adaptive scheme only impacts the node optimization stage during training and is
therefore compatible with structured models [Yang et al., 2012, Kontschieder et al., 2013,
2014].

Finally, taking for example σ = 50, we also obtain a higher mean Dice score (62.4
vs 33.0) than the state-of-the-art forest-based method on the midbrain dataset [Chatelain
et al., 2013]. Our accuracy on the IBSR2-18 Brain Dataset (91.0) also compares favorably
with the state-of-the-art [Zikic et al., 2014] who reported a mean score of 83.5. As can
be seen in Fig. 2.10c, our standard forest is however slightly below the result reported by
Zikic et al. [2014], which demonstrates that the scale-adaptive training scheme is directly
responsible for the observed improvement. Interestingly, when training a standard forest
at the largest scale δ = 200, we obtain an accuracy of 72.2 which approximately corre-
sponds to the performance of a registered label prior as reported by Zikic et al. [2014],
respectively 65.8 with an affine registration and 76.8 for a non-linear registration. This
confirms the idea that forests trained at large scales capture the general organization of
labels. Finally, we can note that the two aforementioned approaches used a leave-one-out
cross-validation instead of our 2-fold setting, which presumably gives them an advantage
in terms of amounts of available training data.

2.5 Conclusion
In this chapter, we have exposed in details the learning framework of decision forests
and demonstrated its applicability to semantic image segmentation problems. We espe-
cially introduced an alternative to the standard training which, when used in combination
with Haar features, improves the quality of the predictions without difference in terms
of computational cost. This concludes the first part of this thesis which concerns fully
automatic techniques for segmentation. In the next chapters, we demonstrate how learn-
ing techniques can assist the user for the manual segmentation of images in an interactive
fashion.



Chapter 3

Bringing Humans In the Loop

So far, this thesis has focused on the problem of automatic semantic segmentation of im-
ages where, at prediction time, the image must be accurately parsed into regions whose
semantic content is simultaneously identified without a single human intervention. We
now discuss the limitations of defining an image segmentation problem as a learning-
based semantic segmentation task. We will show that fully automatic segmentation is not
always necessary or even desirable in practice. Instead, algorithms can be designed in an
interactive fashion to assist a human user in their manual analysis of images. After re-
viewing briefly the standard setting of interactive segmentation, we discuss two situations
where its applicability is not straightforward which motivates the last two contributions
of this thesis, respectively exposed in Chapter 4 and Chapter 5.

3.1 Practical Limitations of Supervised Learning
In practice, several difficulties can be encountered when a problem is modeled as a super-
vised learning task. In this section, we discuss some of these challenges and review meth-
ods which have been proposed to address them, with a particular focus on forest-based
techniques. We group these limitations into three main thematics, respectively discussing
the time-consuming aspect of annotating data, the possibility to store an entire labeled
dataset at training time and the reliability of the labeled training data.

3.1.1 Time-Consuming Construction of a Training Set
A fundamental assumption of the supervised learning formulation is the availability of
labeled training data corresponding to the task at hand. In the case of semantic segmen-
tation, labelings must be provided by a human user on some (usually numerous) example
images. However, the preliminary acquisition and manual delineation of training data is
a time-consuming step, so that building an entire representative training set is not always
feasible. The following strategies may be considered to reduce the annotation time.

Facilitating the labeling step itself Instead of requesting explicitly contours for the
annotations, an interactive segmentation tool can be used to automatically generate a la-
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beling based on weaker kinds of user inputs such as scribbles or bounding-boxes, to-
gether with the possibility of refining the output until the human user is satisfied by the
segmentation. In Sec. 3.2, we will mention examples of such algorithms for interactive
segmentation. Note that, if the context allows it, these algorithms may as well be directly
applied on the test image removing the need for a prediction method. Another alterna-
tive is to design algorithms which directly learn from weak annotations, for instance by
using a multiple instance learning formulation for which forest-based methods have been
introduced [Leistner et al., 2010, Vezhnevets and Buhmann, 2010].

Labeling a few well-chosen images Within an available set of images which is to be
labeled to serve as a training set, it is reasonable to assume that some visual redundan-
cies can be found. Given a fixed time constraint on the number of images that we can
afford to label, it is intuitively more informative to label cases which are complementary
instead of similar ones. Active learning methods aim at reducing the annotation time by
iteratively querying the label of the examples that are considered to be the most useful
for a classifier trained on the already available training data [Settles, 2010]. Some active
learning techniques have been specifically introduced to tackle segmentation tasks. For
the segmentation of organs within CT volumes, Iglesias et al. [2011] suggest the next
volume to label as the one that maximizes the disagreement between a small-range voxel-
wise forest and a generative model encoding the long-range arrangement between organs.
To annotate a 3D volume, another active learning method selects planes with the highest
aggregated uncertainty, reducing the 3D segmentation task to a series of well-chosen 2D
segmentations [Top et al., 2011]. In computer vision, the compromise between effort and
informativeness can be predicted for several types of labelings (i.e. weak or strong anno-
tations), so that both the next image to label and the type of annotations are suggested to
the human user [Vijayanarasimhan and Grauman, 2011]. Finally, another method predicts
whether a human should segment an image or if an automatically generated one would
suffice, so that efforts are spent on worthwile examples only [Gurari et al., 2015] .

Adding unlabeled data Semi-supervised learning algorithms are trained on a mixture
of labeled and unlabeled data, where the unlabeled data are usually present in greater
amounts. Although they do not carry label information, unlabeled data can still be useful,
for instance to identify clusters of samples to let the decision boundary of a classifier split
the training data through areas of low sample density. Semi-supervised versions of deci-
sion forests have been proposed which either iteratively train a series of forests on labeled
versions of the dataset while monitoring the generalization error [Leistner et al., 2009] or
which incorporate unlabeled data in the node split optimization during training [Criminisi
and Shotton, 2013, Liu et al., 2015]. Although the objective is no longer the exploita-
tion of unlabeled data to reduce the labeling effort, we also mention that semi-supervised
learning methods can also be used in a transductive scenario, i.e. when the test data are
already known at the training stage and incorporated as unlabeled data. A recent exam-
ple of the transductive setting with semi-supervised forests segments brain tumors within
post-operative scans by using the pre-operative scan as training set [Meier et al., 2014].
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Adding data previously labeled for a different but related task In its strict applica-
tion, the supervised learning formalism imposes to create a new training set as soon as we
plan to address a new application. However, some applications are related to one another,
so that treating them completely independently may seem to be a loss of information. For
instance, if a labeled dataset for brain tumor segmentation was built, these data should be
at least partially exploitable to tackle the task of liver tumor segmentation, although the
type of images will be different. Transfer learning techniques have been investigated to
propagate information from a source task to a new target task, including a modification
of decision forests which performs an internal node optimization achieving a compro-
mise between the two tasks [Goussies et al., 2014]. An important special case of transfer
learning is the domain adaptation scenario, where the objective remains the same but the
distribution of data has changed. For instance, the acquisition setup of a machine has
been modified, or the data comes from another hospital. With supervised domain adapta-
tion algorithms, the labeled data from a new domain can be effectively enriched with the
previous data from an old domain. In this direction, we proposed a supervised domain
adaptation method for decision forests [Conjeti et al., 2016] which performs tissue char-
acterization on in vivo intravascular ultrasound images, mainly built on in vitro training
examples which are easier to collect. In this approach, a forest preliminary trained on
the in vitro images is adjusted at both internal node and leaf levels based on the few in
vivo samples available . In a similar direction, scandent trees were introduced to enrich a
few multimodal examples with a large amount of data with missing modalities [Hor and
Moradi, 2016]. To save labeling time, additional source examples can also be generated in
a synthetic way as was done for the task of human pose estimation [Shotton et al., 2011].

3.1.2 Offline Availability of a Training Set

In their standard formulation, supervised learning algorithms assume an access to a set
of training examples on which the decision rule is learned. However, this access to the
entire set of available annotations is not always guaranteed. In the case of very large data
or in the medical domain where the protection of patient data is strongly regulated, data
may be imposed to be stored at several different physical locations. In some situations,
one might also have already trained a model before collecting data from a new source and
wish to update the model without access to the original data. As a possible answer to
these problems, online learning solutions have been explored to learn supervised models
from a stream of incoming labeled data instead of a fixed training set. In the case of
decision forests, one of the most popular strategies for online training is to grow trees
progressively, starting from a root node, by turning a leaf node into an internal node
as soon as a split of sufficient quality can be found, both in terms of information gain
and statistical representativity [Saffari et al., 2009]. Another recent work models trees
as samples from Mondrian distributions [Lakshminarayanan et al., 2014] and improves
over existing online approaches at the cost of losing the compatibility of forests with
high-dimensional feature spaces. Another method based on Bayesian online learning
was proposed to learn online a forest of shallow trees of fixed structure [Rota Bulò and
Kontschieder, 2016].
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3.1.3 Reliability of the Labeled Data

Another fundamental assumption of supervised learning is the fact that the labeled dataset
used for training accurately describes the prediction objective. However, for some appli-
cations, the reliability of the training data itself may be questioned. The two following
situations can for instance be considered.

Inaccurate Labels To perform a manual semantic annotation of a training image, the
person in charge of the labeling must be able to interpret the content of the image to pro-
vide the correct answer. However, a lot of subjectivity can be introduced in these ground
truth annotations, for instance due to ambiguous labels, difficult imaging conditions or the
necessity of a high expertise in the field to perform correct decisions. The latter situation
is for example common in histopathology, where the accurate identification of diseased
areas based on their visual appearance can be a very difficult task (see Sec. 4.1). The
lack of reliable annotations complicates both the training and evaluation of learning al-
gorithms. To mitigate this effect, several experts can be asked to annotate the same data
and their labels could be merged, modeling the quality of each expert as a latent vari-
able [Warfield et al., 2004]. To take into account inter-experts disagreements directly at
the learning stage during the training of a random forest, we proposed an approach which
assigns a quality to each expert at each node and performs the node optimization accord-
ing to the best performing expert [Chatelain et al., 2013]. Thereby, the expertise of each
annotator is made dependent on the considered area of the feature space, encoding the
fact that experts can have complementary skills regarding the annotation of the objects of
interest. The problem of merging several labels can also be encountered when labels are
provided by a large crowd of non-experts [Maier-Hein et al., 2014].

Unexpected Change of Target Distribution In Sec. 3.1.1, we mentioned domain adap-
tation methods which leverage labeled data from a different but related task to enrich
an existing training set. Similarly, an unexpected change of domain can be a source of
mistakes during the application of a supervised learning method, as testing instances no
longer match the learned distribution. We will see an example in histopathology (Chap-
ter 4) where the experimental preparation of the tissue results in changes of dye concen-
tration which are difficult to control. If the new target domain remains close enough from
the original training data, online domain adaptation techniques can be used to update the
learned model directly at prediction time based on the newly observed test data. For exam-
ple, a generic unsupervised method based on Gaussian process regression was introduced
to adapt the decision boundary of any black-box classifier to a target image [Jain and
Learned-Miller, 2011]. A more recent approach automatically adapts a trained classifier
by focusing on learning new class proportions based on the newly collected labels [Royer
and Lampert, 2015]. Other approaches combine a classifier trained on the source data
with an online classifier continuously updated from the target data [Zhao and Hoi, 2010,
Tommasi et al., 2012]. Originally designed with kernel-based classifiers, transferring this
technique to forest models would be challenging as an accurate online learning technique
for random forests is then required (see Sec. 3.1.2). In fact, the online forest approach
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designed by Saffari et al. [2009] already includes, in the context of object tracking, the
idea of online domain adaptation by discarding trees when they no longer match the dis-
tribution of the arriving samples.

3.2 Interactive Segmentation

The full automation of semantic image segmentation is appealing as it provides, for some
applications such as robotics or self-driving vehicles, a building block encoding the un-
derstanding of the scene on which the automation of other processes can build. In other
situations without real-time constraints (such as the segmentation within medical scans
to quantify anatomical volumes), an automated segmentation can also allow to save the
time that would be required for a human to delineate manually the images. However, the
design of learning-based segmentation solutions reaching human-level performance is far
from being an easy task: the possible limitations described in the previous section must be
anticipated and taken into account, including the availability of large amounts of data. For
applications where these constraints cannot be easily satisfied, e.g the case often encoun-
tered in medical applications where annotated data are difficult to obtain, fully-automated
segmentation algorithms may not be the most practical option. In fact, clinicians might
rather be inclined to use a segmentation algorithm to gain time while keeping the possi-
bility to check its output visually and to correct it if necessary. If the clinician is kept in
the loop, possibilities of interacting with the user can be considered.

In their most basic form, interactive segmentation methods are flexible techniques
which do not rely on any learned model and only request from the human user a few
lightweight inputs directly on the image to segment. These inputs can take the form of a
bounding box around an object of interest [Lempitsky et al., 2009a, Grady et al., 2011] or
of some seeds providing the true labels of pixels within the background and objects to seg-
ment [Boykov and Jolly, 2001, Grady, 2006, Price et al., 2010]. The provided information
is then propagated to the rest of the image to generate the final segmentation output. The
propagation scheme is algorithm-specific, and usually involves a graph representation of
the image where neighboring pixels are connected by an edge whose weight is propor-
tional to the difference of intensity between the two pixels. As an example of interactive
segmentation algorithm, a method based on random walks [Grady, 2006] assigns to each
non-seed pixel the label of the seed which is reached first by a random walk starting from
this pixel, where the random walk transition probabilities are proportional to the weights
of the image graph. Other algorithms are based on the geodesic distance transform which
considers the shortest (weighted) path to each seed [Criminisi et al., 2008, Price et al.,
2010]. Importantly, an approximation of the geodesic distance transform is available, with
a computational time which is linear in the number of pixels [Toivanen, 1996]. Geodesic
distance transforms will be used in Chapter 5 and are illustrated in Fig. 3.1.

The advantages of interactive segmentation algorithms are their flexibility and the fact
that they allow a visual check of the segmentation output and possibilities of adjusting it
via the addition of user inputs in wrongly segmented areas. However, the definition of
the weights between pixels plays a critical role and must be manually defined. Usually,
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(a) (b) (c) (d)

Figure 3.1: Example of interactive segmentation using geodesic distance transforms.
(a) Input image with negative (red) and positive (green) seeds placed by the user respec-
tively outside and inside the region of interest. (b) Geodesic distance to negative seeds. (c)
Geodesic distance to positive seeds. (d) Resulting segmentation assigning to each pixel
the label of the closest seed in the sense of the distances shown in (b) and (c).

weights are related to the color difference so that segmented areas are homogeneous, but
this may not always be the most relevant choice (for instance in case of textured objects).
Basing the segmentation on more complex features can thus be of interest, e.g from the
output of a learning model such as random forests [Santner et al., 2009, 2010].

3.3 Our Contributions
As briefly reviewed in the previous section, interactive segmentation can be a relevant
alternative to fully automatic segmentation, especially when the design of the latter faces
practical constraints encountered in many clinical settings (Sec. 3.1). In the next chap-
ters, we introduce two contributions building on the random forest framework and corre-
sponding to two novel scenarios where standard interactive segmentation as described in
Sec. 3.2 does not apply. More precisely:

• In Chapter 4, we consider the objective of quantification within large slides in dig-
ital pathology. In this context, a clinician is interested in finding and segmenting
a small number of objects in a large image. The application of an interactive seg-
mentation method thus faces the difficulty of finding the objects of interest within
the large data so that foreground seeds could be placed. We propose to leverage
a classification forest used for semantic image segmentation to retrieve regions of
the slide likely to contain the objects of interest. The user is then allowed to report
feedback on the relevance of the suggested regions, either via a direct segmentation
or via lighter forms of inputs. Thereby, the forest model can be adjusted in real time
to incorporate the specific properties of the current image, which may differ from
the original training set due to the instability of tissue staining procedures in this
particular application.

• In Chapter 5, we consider a scenario where a human user is only able to provide bi-
nary answers in the form of Yes or No and is thus no longer able to place seeds within
an image. This theoretical framework opens alternative ways of interacting with the
computer such as through a voice recognition system or a pedal. In this context, the
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interactive segmentation of an object in an image can be formalized as a Twenty
Questions game between the user and the machine, where the latter must find the
most appropriate questions to ask so that the object of interest can be guessed as
quickly as possible. We distinguish the case where no prior knowledge about the
object is available, where we then rely on traditional homogeneity assumptions, and
the case where a random forest classifier has been previously trained to segment the
object of interest so that the choice of questions can be guided more effectively.
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Chapter 4

Merging Segmentation and
Exploration: Application to Digital
Pathology

In this chapter, we consider the case of very large images where the applicability of in-
teractive segmentation would be preceded by a tedious search for the objects of interest.
We introduce an interactive framework using a forest-based semantic segmentation ap-
proach to explore large digital slides according to the learned segmentation objective. In
our application case, the clinical objective is the assessment of the surface covered by
hematopoietic cells within mouse liver slides. Our main contributions are:

• The design of a region scoring function to convert pixelwise predictions into a score
for each region of an image. Thereby, regions that are the most likely to contain
objects of interest to the user can be retrieved to facilitate the exploration of the
large data.

• An online domain adaptation scheme based on interactions with the user which
adapts on-the-fly the classifier to the visual characteristics of the test data. Three
real-time strategies are compared, including a novel approach based on online gra-
dient descent which is compatible with lighter kinds of annotations.

• A regression-based strategy so that a whole-slide estimate of the surface covered by
hematopietic cells can be predicted as a by-product of an only partial exploration
of the slide.

• An experimental study regarding the use of discretized user inputs for online adap-
tation, where we demonstrate how one-click inputs can be effectively used instead
of accurate annotations.

The content of this chapter has been published as a journal article [Peter et al., 2016] and
was also presented in part at a conference [Peter et al., 2014].
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4.1 Clinical Motivation

Histopathology is a crucial tool in modern clinical practice. It consists in the microscopic
observation of biological tissues surgically extracted from a patient, in order to collect
information regarding the presence or extent of a particular disease in the sample. In par-
ticular, it is part of the standard experimental protocol for the definitive diagnosis, grading
and staging of most cancer types and plays an essential role in the design of appropriate
patient-specific treatments. Histopathological examinations usually aim at searching for a
certain kind of anatomical structure, like biomarkers, cancer cells or necrotic areas, whose
presence or proportion within the tissue has to be quantitatively estimated. Although this
procedure is traditionally conducted under a standard optical microscope, digital acqui-
sitions of entire slices can be performed at comparable resolutions and are increasingly
used by pathologists in their clinical workflow as well as for educational and research
purposes [Farahani et al., 2015]. Moving from optical to digital examinations has been
shown to maintain similar diagnosis performances [Jukić et al., 2011, Bauer et al., 2013]
and offers numerous additional advantages such as the applicability of image analysis
algorithms, easier recordings and safer storage of patient data, and the possibility of dis-
playing the scanned tissue to several examiners simultaneously [Al-Janabi et al., 2012].
However, because of their high resolution, the size of digitally acquired images is very
large and commonly reaches the order of a billion of pixels [Cooper et al., 2012]. This
increases the time required for manual quantification procedures: beyond the tediousness
of annotating objects in images, a pathologist also spends a lot of time navigating through
the large slide looking for evidence of the disease of interest. Moreover, the objects to
localize may only be scarcely distributed, for instance at early stages of diseases or af-
ter a treatment has been applied. In such situations, the exploration phase even becomes
the bottleneck of the process, since most of the time of the pathologist is spent scrolling
through uninformative areas (Fig. 4.1a).

Some characteristics of the field of histopathology bring specific challenges for an
automated analysis of the acquired images. Pathologists are typically trained several years
before reaching satisfactory diagnosis abilities [Jaarsma et al., 2014], and the variability
between experts remains nevertheless significant for several applications [Meyer et al.,
2005, Gonul et al., 2006, Gilles et al., 2007, Eefting et al., 2009]. During a challenge on
mitosis detection for breast cancer grading [Veta et al., 2015], the reported Dice overlap
between two independent pathologists was reported to be 56.6, and would be presumably
even less for untrained humans. Another common challenge in histopathological image
analysis is the visual variability between two acquisitions. In particular, the consistency
of the staining procedure is difficult to control experimentally leading to variations in
terms of dye concentration (Fig. 4.1b). Therefore, an algorithm that has been trained or
designed on labeled data may not generalize well to newly acquired samples. To mitigate
this source of inaccuracies, color normalization can be performed as a preprocessing step
and remains an active field of research [Rabinovich et al., 2003, Macenko et al., 2009,
Khan et al., 2014, Onder et al., 2014, Bautista and Yagi, 2015, Vahadane et al., 2016],
together with generic techniques for online domain adaptation (Sec. 3.1.3). Finally, a
tissue extracted surgically and observed under a microscope is less structured than other
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(a) (b)

Figure 4.1: (a) Typical histopathological slide. Three regions (blue, yellow and red
squares) containing a cluster of hematopoietic cells are highlighted. Our method aims at
retrieving such regions of interest within a large slide which mostly contains irrelevant
background areas. Note the absence of large-scale context to guide the visual search,
which would require an exhaustive screening of the slide in the case of a manual exam-
ination. (b) Examples of visual artifacts. A portion of a slide is displayed here. The
staining itself is inhomogeneous and presents a vertical shading. Moreover, a dark ar-
tifact is present (circled in orange). Such a visual variability between and within slides
complicates the application of supervised learning techniques and prompts an adaptation
at prediction time.

kinds of medical data such as body scans, while being of a much larger size. Objects of
interest are expected to appear anywhere within the tissue, so that location or connectivity
priors are rarely available.

In this chapter, we introduce an interactive method to assist a pathologist in exploring
and quantifying large histological slides (Fig. 4.2) which we evaluate in the context of ex-
tramedullary hematopoiesis quantification within mouse liver slides. Our approach builds
on a pixelwise segmentation model provided by a pre-trained random forest classifier as
introduced in Sec. 2.4. We use its probabilistic output to perform an interactive slide ex-
ploration by suggesting, in a sequential manner, a series of candidate regions of interest
(Sec. 4.3). This interactive navigation framework includes a component which allows the
pathologist to provide, after each suggestion, some feedback about the actual relevance of
the proposed region. From these user inputs, the underlying forest-based model is mod-
ified on-the-fly via a real-time online adaptation framework. This enables a progressive
adjustment to the characteristics of the data at hand and compensates for possible mis-
matches with the original training set without specific assumptions about their nature, in
contrast to the aforementioned explicit stain normalizations. We also show how a whole-
slide quantification can be inferred after a partial exploration of the slide (Sec 4.4) and
how one-click inputs can be used for faster interaction (Sec. 4.5).
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Figure 4.2: Overview of our scenario. Initially, a classification forest F1 is trained of-
fline at pixel level to segment the structures of interest (in our application case, clusters of
hematopietic cells). Given a large new slide to analyze, our method sequentially displays
to the pathologist regions that are likely to contain these objects, thereby alleviating a
tedious manual navigation through the slide. After the suggestion of a region Rk (k ≥ 1),
chosen as to maximize a forest-based scoring function φ(.|Fk), the user provides a rele-
vance feedback about its actual content. From this input, the current forest Fk is updated
in real time leading to a new forest Fk+1. By doing so, the visual characteristics of the
test slide are progressively incorporated into the decision model so that upcoming region
suggestions can be reconsidered. The exploration is stopped after seeing a certain num-
ber nstop of negative regions suggestions in a row. The updated forest and the user labels
collected during the exploration can then be combined in a regression framework to pre-
dict the total surface covered by hematopietic cells in the tissue, including the areas not
observed by the pathologist.

4.2 Related Work

4.2.1 Learning-Based Image Segmentation in Histopathology

A large number of methods have been introduced for the automated analysis of histologi-
cal slides and are progressively put into practice, as demonstrated by the development of
general-purpose toolboxes such as Ilastik [Sommer et al., 2011], CellProfiler [Carpenter
et al., 2006] and CellCognition [Held et al., 2010]. We refer to surveys [Gurcan et al.,
2009, Veta et al., 2014] for a broader overview of the field and focus here more specifi-
cally on the case of segmentation of histological images. In this context, learning-based
techniques have been successfully applied for different tasks, including cell segmentation
within follicular lymphoma images [Kong et al., 2011] and within lung and brain tumor
samples [Su et al., 2015], segmentation of cancer tissue within colon images [Xu et al.,
2014], and whole-slide segmentation of necrotic areas [Homeyer et al., 2013]. The pre-
diction of the Gleason grading, which is one of the most important quantitative measures
for prostate cancer staging, has also gathered a particular interest in the field. Several
statistical learning methods such as support vector machines [Nguyen et al., 2014], Ad-
aBoost [Gorelick et al., 2013] and randomized forests [Khurd et al., 2010] were used
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towards an automatic prediction of this score. To overcome the difficulty of efficiently
processing large whole-slide images, multi-resolution approaches were designed to find
and segment regions of interest in a hierarchical manner [Sertel et al., 2009, Roullier et al.,
2011, Huang et al., 2011, Doyle et al., 2012]. These approaches simulate the behavior of
a pathologist, starting from the lowest resolution and progressively refining the analysis
towards presumably interesting areas. In this work, our segmentation model is a pixelwise
forest classifier trained with Haar-like features (Sec. 2.4), whose efficiency allows us to
operate directly at the highest resolution instead.

4.2.2 Assisted Navigation within Large Digital Slides

While the aforementioned methods focus on the segmentation task, a few other approaches
aim at identifying regions of interest within histological data. A method for classifying
regions as relevant or irrelevant using support vector machines was introduced [Bahlmann
et al., 2012], and extended to a scenario where the ground truth is generated by analyzing
the actual behavior of a pathologist with viewport tracking data [Mercan et al., 2014].
These classification techniques are closer to our goal but differ methodologically in two
aspects. First, the methods above model the region retrieval task as a classification prob-
lem, ignoring the differences between positive regions. In particular, one may desire to
display in priority regions containing larger structures of interest. Building our region
scoring scheme on an underlying segmentation model naturally provides such a ranking
of regions and gives the opportunity to extrapolate the quantification estimate to unob-
served areas. Secondly, our method is more flexible, as it includes the ability to update
the region selection rule from user annotations collected after each suggestion, in an on-
line domain adaptation fashion.

4.2.3 Online Domain Adaptation

Experimental constraints during the preparation of a tissue may induce inconsistencies in
terms of visual aspect between acquisitions. In particular, a newly acquired sample may
differ from the data used to train the initial classifier. The problem of domain adaptation
consists in the correction of such a shift between the distributions of the training and test-
ing data. Most domain adaptation strategies retrain a new classifier once samples from
the target domain have been observed. In our case, new samples are collected every time
a suggested region is labeled by the user, after which the current classifier is accordingly
adapted. To keep this interaction loop tractable in practice, the updates must be performed
in real time, which excludes a retraining of the classifier between two suggestions. Be-
cause of this constraint, our scenario is more precisely an online domain adaptation task
(Sec. 3.1.3). In our case, the large size of histological data, and hence the large number
of pixelwise predictions which must be updated at each iteration imposes strict computa-
tional constraints. In particular, modifications of the structure of the trees [Saffari et al.,
2009] are compromised. By acting on the leaf probabilities only, we achieve real-time
updates between two interactions (Sec. 4.3.2).
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4.2.4 Active Learning

Finally, querying user labels in order to improve a classifier can be seen as a form of
active learning (Sec. 3.1.1), for which a few approaches were introduced in the context
of histopathology [Homeyer et al., 2011]. In general, active learning algorithms query
the label of the most uncertain samples given the knowledge of the current classifier, in
order to minimize the labeling effort from the user. The spirit of our approach is different:
from a clinical perspective, a pathologist is only interested in seeing positive examples
in a short amount of time. This asymmetry between positive and negative observations
leads us to focus on finding and displaying positive regions as quickly as possible, so that
they can be visually inspected and validated by the user. The annotations obtained during
the process are used to assess the accuracy of the initial model and correct it if necessary.
Moreover, by doing so, any erroneous region suggestion naturally provides a challenging
negative example to include in the online adaptation process.

4.3 Interactive Slide Exploration

Our slide examination method is based on an initial forest-based model whose goal is to
segment the objects of interest within the tissue. This initial forest, denoted F1, is trained
offline on some labeled examples and encodes the available prior knowledge before ob-
serving the test data. After training, the original training data are no longer considered
available. This assumption is driven by practical aspects: while sharing and transferring
a classifier from a machine to another is straightforward, this is usually less feasible with
patient data which are of larger size and subject to ethical considerations. The training
mechanism generating F1 from labeled images is conducted with Haar features in the
scale-adaptive way presented in Sec. 2.4.

Considering a new test slide, we partition it into a predefined setR of non-overlapping
regions of fixed size ∆ × ∆. The first step of our algorithm consists in retrieving the
region R1 ∈ R of highest interest to the user. Since F1 provides a pixelwise estimate,
this choice of region is made according to a region scoring function φ(R|F1), which
predicts the expected interest of a region R given the knowledge carried by the forest
model F1. The first region displayed to the pathologist is R1 = argmaxR∈R φ(R|F1).
Once R1 has been shown, the pathologist reports the actual relevance of its content. To do
so, two possibilities of user labelings are considered in this work: either a full delineation
of the object of interest in R1, which is accurate but time-consuming, or a one-click input
obtained by discretization, which is faster to provide but more ambiguous (Sec. 4.5).
Using the input of the pathologist on R1, the forest F1 is accordingly modified, leading to
a new forest F2. This procedure is repeated several times by showing, at each iteration,
the region Rk = argmaxR∈R\{R1,...,Rk−1} φ(R|Fk). In Sec. 4.3.1, we describe in more
details our choice of scoring function φ. Section 4.3.2 is dedicated to the techniques for
online domain adaptation, where three real-time alternatives are described including a
novel approach based on online gradient descent.
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4.3.1 Region Scoring Function
After training on a set of labeled images, we obtain a random forest classifier F1 which
outputs, for any observation x = (p, I) corresponding to a location p ∈ ΩI in an image I
(following the notations introduced in Sec. 1.3), a probabilistic estimate P (Y = 1|X =
x,F1) ∈ [0, 1] that x is a positive instance, i.e. is part of one of the sought structures.
Since the goal of our approach is to display regions of interest to a pathologist, we use
these pixelwise forest predictions to build a region scoring function φ. We propose to
define the score of a region R as

φ(R|F) =
∑
x∈R

P (Y = 1|X = x,F) (4.1)

given a pixelwise classification forest F . This scoring function can be interpreted as the
mathematical expectation of a random variable counting the number of positive pixels
in the region R . In particular, regions containing larger objects obtain a higher score.
Since the quantification task consists in the estimation of the total surface covered by
the structures of interest within the slide, this amounts to showing first regions which
have a greater contribution to this quantity. Due to its simplicity, our scoring function
possesses important properties in the context of forest updates (computational efficiency
and convexity) which will be detailed in Sec. 4.3.2. These advantages result from the fact
that φ(R|F) can be rewritten as a scalar product between the vector of leaf models of the
forest F and a sparse vector characterizing the region R. The derivation of this equivalent
formulation is exposed in the next paragraph.

Expressing φ(R|F) as a scalar product Let us first introduce some notations. The set
of leaf nodes belonging to the tth tree is denoted Lt. L = ∪1≤t≤ntreesLt is the set of all leaf
nodes contained in the forest F , and we denote tree(L) ∈ {1, . . . , ntrees} the index of the
tree to which a leaf L ∈ L belongs. We arbitrarily order the finite set L and consider the
leaf probabilities jointly as a (finite-dimensional) vector π = (πL)L∈L. We denote Σ =
(σt)1≤t≤ntrees

the list of routing functions σt : X → Lt, which assign to each sample x ∈ X
the leaf σt(x) that it reaches when passed through the tth tree (Fig. 4.3a). Intuitively, Σ
encodes the structure of the forest determined by the arrangement of the nodes and the
splitting functions, i.e. the way the forest partitions the space of observations X , while
the vector π defines the label predictions stored in the terminal nodes. Σ and π fully
determine the forest decision rule, defined as

P (Y = 1|X = x,F) =
1

ntrees

ntrees∑
t=1

πσt(x). (4.2)

Combining Eq. 4.2 and Eq. 4.1, one obtains

φ(R|F) =
1

ntrees

∑
x∈R

ntrees∑
t=1

πσt(x) (4.3)

=
1

ntrees

∑
x∈R

ntrees∑
t=1

∑
L∈Lt

πL1{σt(x)=L}. (4.4)
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Figure 4.3: Notations. (a) Forest notations in a simplified case (3 trees of depth 2). The
leaves are arbitrarily ordered and the leaf models are jointly considered as a vector π.
For each observation x ∈ X , σt(x) denotes the leaf reached by x when passed through
the tth tree. The list of functions Σ = (σt)1≤t≤ntrees

encompasses information about the
arrangement of the trees and the node splitting functions. (b) Characteristic vector of a
region R. Applying a forest on all the pixels within a region R leads to ntrees different
partitions of R, defined by the leaves reached by the sent observations. By counting
and concatenating the leaf occurrences, one obtains a characteristic vector ρ(R|Σ) of the
region R which only depends on the structure Σ of the forest (Eq. 4.11). Consequently,
the score of any region R can be written as φ(R|F) = 〈ρ(R|Σ),π〉.

We defined in Sec. 4.3.1 the quantity tree(L) ∈ {1, . . . , ntrees} as the index of the tree
to which a leaf L ∈ L belongs. Following this definition, we have for all trees t ∈
{1, . . . , ntrees} and leaves L ∈ Lt the equality t = tree(L). Thus

ntrees∑
t=1

∑
L∈Lt

πL1{σt(x)=L} =
ntrees∑
t=1

∑
L∈Lt

πL1{σtree(L)(x)=L} (4.5)

=
∑
L∈L

πL1{σtree(L)(x)=L} (4.6)

since the double sum
∑ntrees
t=1

∑
L∈Lt amounts to summing over all leaves in the forest.

Finally, by incorporating Eq. 4.6 in Eq. 4.4, we obtain

φ(R|F) =
1

ntrees

∑
x∈R

∑
L∈L

πL1{σtree(L)(x)=L} (4.7)

=
∑
L∈L

πL
ntrees

∑
x∈R

1{σtree(L)(x)=L} (4.8)

=
∑
L∈L

πLρL(R|Σ) (4.9)

= 〈ρ(R|Σ),π〉 (4.10)
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where ρ(R|Σ) = (ρL(R|Σ))L∈L is a vector of dimension nleaves characterizing the region
R and defined as

ρL(R|Σ) =
1

ntrees
#
¶
x ∈ R | σtree(L)(x) = L

©
︸ ︷︷ ︸
number of pixels in R falling in the leaf L

. (4.11)

Hence, the scoring function of a region R appears as a scalar product between the vector
of leaf models π and a vector ρ(R|Σ), which only depends on how the samples from the
region R are sent to the leaves (Fig. 4.3b). Moreover, since every observation x contained
in a region R falls in exactly ntrees leaves, each vector ρ(R|Σ) is sparse (or of small size)
with at most ntrees |R| non-zero elements.

4.3.2 Interactive Forest Adaptation
In Sec. 4.3.1, we described how to score regions of a large histological slide so that they
can be ranked and displayed in decreasing order of interest to a pathologist. This ranking
is based on the output of a pixelwise classification forest learned on labeled data. If
the data at hand differs from the training images, for instance because of variations in
terms of dye concentration or because of the presence of artifacts, this initial forest model
can be prone to errors (Fig. 4.4). However, the fact that regions of interest are shown
sequentially to the human expert offers the opportunity to let the user report the actual
validity of the suggestions and, thereby, to recalibrate the forest model to take into account
the characteristics of the slide to analyze. This scenario corresponds to an online domain
adaptation problem, for which we consider three different strategies. The first two require
accurate delineations of the objects of interest by the user, whereas the third approach
only requires a weaker form of labeling stating the actual surface covered by such objects
within a suggested region. By discretizing this quantity, faster user interactions can be
performed (see Sec. 4.5).

The adaptation procedure generates, starting from a forest F1, a series of forests
F2,F3, . . . where each forest Fk+1 is created after k regions have been observed by the
pathologist and the k corresponding inputs collected. At each iteration k, the region Rk

is chosen as the one maximizing the scoring function φ(.|Fk) over the set of remaining
regions. The three alternative strategies described below are based on an assumption of
fixed structure for all the forests Fk, so that only the leaf probabilities are modified. This
assumption offers the following computational advantage. For all k ≥ 1, the structure Σk

of the forest Fk is now equal to the structure Σ1 of the initial forest F1. In particular,
the vectors ρ(R|Σk), R ∈ R are kept unchanged during the whole exploration process,
so that they can be precomputed once for all at the first iteration and compactly stored
in memory due to their sparsity. For simplicity, we omit their dependency in Σ1 and
denote these vectors ρ(R), R ∈ R. The score φ(R|Fk) =

¨
ρ(R|Σk),πk

∂
of a region

R described in Eq. 4.10 can be rewritten φ(R|Fk) =
¨
ρ(R),πk

∂
. Hence, to obtain the

updated scoring functions φ(R|Fk) for a new forest Fk, one only needs to recompute the
sparse scalar products

¨
ρ(R),πk

∂
with the new leaf models πk. The efficiency of this op-

eration yields real-time updates between two region suggestions as the histological slide
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Figure 4.4: Benefit of the interactive adaptation illustrated by the negative re-
gion suggestions. In challenging cases (here the slide containing the portion shown in
Fig. 4.1b), a direct application of the pre-trained forest model leads to difficulties in the
exploration. The first 10 regions that are suggested are in fact negative (first row). These
confusions are due to the variation of staining and the presence of an artifact shown in
Fig. 4.1b, which confirms the necessity of adapting the initial classifier. When interactive
updates are performed, each negative suggestion is signaled by the user and the underlying
model is accordingly calibrated. The benefit of this adaptation scheme can be illustrated
by looking at the first 10 negative suggestions (second row, using the ALM update). First,
we can see that positive suggestions occur earlier in the exploration: the 3rd, 7th, 9th, 10th

and 11th suggestions were positive and allowed the pathologist to localize already 24.2%
of the hematopoietic patterns present in the slide. This demonstrates that adapting the
classifier clearly improves the quality of the exploration. Moreover, we can see that the
adaptive approach ‘learns from its mistakes’ through the greater diversity of its negative
suggestions: regions with different shades of stain are proposed and multiple suggestions
within the dark artifact are avoided. Among their 10 first negatives, only 3 suggestions
are shared by the two approaches (emphasized with colors), which further illustrates their
difference.

has to be passed only once through a forest (the initial F1) as a preliminary step before
starting the exploration.

We expose now our three alternative real-time update strategies. They are all equiva-
lent from a computational point of view, with a worst-case complexity ofO(ntrees |R|), and
depend on one hyperparameter λ > 0 weighting the importance of the prior knowledge
in comparison to the newly observed samples.

Update of Leaf Statistics (ULS) If the input provided by the pathologist is a full object
delineation in the displayed region Rk, the labeled pixels of the region Rk can be
seen as new training samples. Therefore, the leaf statistics can be updated [Crim-
inisi, 2011]. We denote N1,+

L (resp. N1,−
L ) the number of positive (resp. negative)

samples which arrived in the leaf L during the training of the initial forest F1, lead-
ing to the leaf models π1

L =
N1,+
L

N1,−
L +N1,+

L

. We also denote Nk+1,+
L and Nk+1,−

L the
total number of positive and negative samples collected in the regions R1, . . . , Rk.
Given these quantities, the ULS strategy updates the probability of each leaf L after
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labeling the region Rk as

πk+1
L =

Nk+1,+
L + λN1,+

L

Nk+1,+
L +Nk+1,−

L + λ
Ä
N1,+
L +N1,−

L

ä . (4.12)

Average of the Leaf Models (ALM) In the same conditions as the update of leaf statis-
tics described above, we propose an alternative leaf update consisting in computing
a separate probability πnew

L based on the pixels observed in R1, . . . , Rk only (i.e.
originating from the test slide) and averaging it with the initial probability π1

L. By
doing so, the choice of λ is made independent of the initial number of training
samples in the leaf. This update can be written as

πk+1 =
1

1 + λ

Ä
πnew + λπ1

ä
(4.13)

where, for each leaf L, πnew
L =

Nk+1,+
L

Nk+1,+
L +Nk+1,−

L

if some new samples have been

observed in the leaf L (i.e. if Nk+1,+
L +Nk+1,−

L > 0). Else we define πnew
L = π1

L.

Online Gradient Descent (OGD) The two previous updates require a pixelwise label-
ing provided by the user on each region Rk. Instead, this last update method uses
a (weaker) information Q(Rk) which only states the amount of positive pixels lo-
cated in Rk. This quantity is, in fact, what is estimated by the score φ(Rk|Fk) =¨
ρ(Rk),π

k
∂

used to assess the relevance of the region Rk (Sec. 4.3.1). We pro-
pose to measure the discrepancy between the true valueQ(Rk) revealed by the user
and the prediction from the set of leaf models π with the squared loss lk(π) =
(〈ρ(Rk),π〉 − Q(Rk))

2. Hence, at iteration k, the incurred loss is lk(πk). The con-
vexity of the loss function lk, which directly results from the linear rewriting of our
scoring function (Eq. 4.10), allows us to see the update problem as an online convex
optimization scenario [Shalev-Shwartz, 2012]. We solve this problem via an online
gradient descent strategy [Zinkevich, 2003], which leads to the update rule

πk+1 = Π[0,1]|L|

[
πk − η~∇lk(πk)

]
(4.14)

= Π[0,1]|L|

î
πk − 2η

Ä¨
ρ(Rk),π

k
∂
−Q(Rk)

ä
ρ(Rk)

ó
, (4.15)

where η is a learning rate. Π[0,1]|L| : R|L| → [0, 1]|L| is the projection operator on

[0, 1]|L| which projects each individual component πl of a vector π ∈ R|L| onto
the set [0, 1], ensuring that the leaf probabilities stay in [0, 1] after each update. By
transferring generic considerations on online gradient descent to our forest-based
scenario (see below), we choose a learning rate η of the form

η =
1

2λ∆4

Ã
ntrees |L|
|R|

, (4.16)

where λ is a positive hyperparameter, |L| (resp. ntrees) is the number of leaves (resp.
trees) in the forest, |R| is the number of regions in the slide and ∆ × ∆ is the
predefined region size.



76 CHAPTER 4. MERGING SEGMENTATION AND EXPLORATION

The difference between ALM and ULS can be seen by considering their respective
asymptotic behavior when the number of new samples increases. In Eq. 4.12, we have
πk ∼ πnew, whereas, in Eq. 4.13, πk always includes a fixed contribution from π1 re-
gardless of the number of new samples which have been collected. These two variants
correspond to the simplest way of updating an existing tree [Criminisi, 2011], where we
introduce a parameter weighting old and new training data. More sophisticated but com-
putationally costly strategies would involve further splitting or the replacement of old
trees by new ones [Saffari et al., 2009]. In our case, since the original training data used
to train F1 are no longer available at testing time, we keep the structure of the old trees
which represent the only available prior knowledge about the quantification task. This
emphasizes the scope of our adaptation procedure, which should be seen as adjusting a
known supervised segmentation task (e.g. within a same clinical study) to the variations
of visual appearances that may occur experimentally. However, a different task cannot be
accommodated a priori and would first require the training of a new segmentation model.
Finally, due to the nature of the required input, OGD can be used for a lighter kind of user
interaction (see Sec. 4.5), which is not supported by existing online learning algorithms
for random forests.

Choice of Learning Rate (Eq. 4.16) Finally, we conclude with the theoretical consider-
ations leading to the form of the learning rate exposed in Eq. 4.16. We follow a classical
reasoning inspired from the online learning literature [Nemirovski et al., 2009, Shalev-
Shwartz, 2012] and show how it relates to our scenario by expressing bounds in terms of
the parameters of our method. As described above, at each iteration k ≥ 1, the current set
of leaf models πk suffers the loss lk(πk) =

Ä¨
ρ(Rk),π

k
∂
−Q(Rk)

ä2
, after which a new

vector of leaf models πk+1 is chosen according to the online gradient descent update rule
(Eq. 4.14). After T region suggestions (T ≥ 1), the cumulated regret of having used the
series of models π1, . . . ,πT is defined as

RegretT =
T∑
k=1

Ä
lk(π

k)− lk(π∗)
ä
, (4.17)

where

π∗ = argmin
π∈[0,1]|L|

T∑
k=1

lk(π) (4.18)

corresponds to the set of leaf models which would have incurred the smallest loss over the
T iterations. The reasoning consists in computing an upper bound of RegretT depending
on the learning rate η. To do so, we use the fact that the functions lk are convex, so that,
for all k, we have lk(πk) ≤ lk(π

∗) +
〈
πk − π∗, ~∇lk(πk)

〉
and thus

RegretT ≤
T∑
k=1

〈
πk − π∗, ~∇lk(πk)

〉
. (4.19)
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To find an upper bound of Ak =
〈
πk − π∗, ~∇lk(πk)

〉
, we use the update rule of Eq. 4.14

as follows. For all k, denoting Π = Π[0,1]|L| and Dk =
∥∥∥πk − π∗∥∥∥, we have

D2
k+1 =

∥∥∥πk+1 − π∗
∥∥∥2

(4.20)

=
∥∥∥Π [

πk − η~∇lk(πk)
]
− π∗

∥∥∥2
(4.21)

=
∥∥∥Π [

πk − η~∇lk(πk)
]
− Π [π∗]

∥∥∥2
(4.22)

≤
∥∥∥πk − η~∇lk(πk)− π∗∥∥∥2

(4.23)

= D2
k − 2ηAk + η2

∥∥∥~∇lk(πk)∥∥∥2
, (4.24)

which leads to the inequality

Ak ≤
1

2η

Å
D2
k −D2

k+1 + η2
∥∥∥~∇lk(πk)∥∥∥2

ã
. (4.25)

The inequality between Eq. 4.22 and Eq. 4.23 results from the fact that, in the Hilbert
space R|L|, performing a projection on the closed convex set [0, 1]|L| does not increase the
distance between two points. Using Eq. 4.25 in Eq. 4.19, we obtain

RegretT ≤
1

2η

T∑
k=1

Å
D2
k −D2

k+1 + η2
∥∥∥~∇lk(πk)∥∥∥2

ã
(4.26)

=
1

2η

[
D2

1 −D2
T+1 + η2

T∑
k=1

∥∥∥~∇lk(πk)∥∥∥2
]

(4.27)

≤ 1

2η
D2

1 +
η

2

T∑
k=1

∥∥∥~∇lk(πk)∥∥∥2
. (4.28)

To obtain a final bound on the regret, we need to find an upper bound of D2
1 and of the

norm of the gradient
∥∥∥~∇lk(πk)∥∥∥2

. First, since both π1 and π∗ belong to [0, 1]|L|, we have

D2
1 =

∥∥∥π1 − π∗
∥∥∥2
≤ |L| . (4.29)

Secondly, for all k and π, we have

~∇lk(π) = 2 (〈ρ(Rk),π〉 − Q(Rk))ρ(Rk). (4.30)

The quantity 〈ρ(Rk),π〉 estimates the surface covered by positive pixels in the regionRk,
while Q(Rk) is the actual value of this surface revealed by the user. Since, by definition,
both

¨
ρ(Rk),π

k
∂

and Q(Rk) are comprised between 0 and the size ∆2 of the region, we
have

∣∣∣¨ρ(Rk),π
k
∂
−Q(Rk)

∣∣∣ ≤ ∆2. By definition of ρ (see Eq. 4.11), we also know that

each individual component ρL does not exceed ∆2

ntrees
(since at most the number of pixels

in the region ∆2 can fall in a leaf L), and, moreover, that these components sum to ∆2.
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Thus

‖ρ(Rk)‖2 =
∑
L∈L

ρ2
L(Rk) (4.31)

≤ ∆2

ntrees

∑
L∈L

ρL(Rk) (4.32)

=
∆4

ntrees
, (4.33)

hence the following upper bound on the gradient:∥∥∥~∇lk(πk)∥∥∥2
≤ 4

∆8

ntrees
. (4.34)

Finally, including Eq. 4.29 and Eq. 4.34 in Eq. 4.28 gives the bound

RegretT ≤
|L|
2η

+
2ηT∆8

ntrees
. (4.35)

We choose the value of η providing the best regret bound, i.e. minimizing the right side
of Eq. 4.35. This is obtained for

η =
1

2∆4

√
ntrees |L|

T
. (4.36)

While the relevant number of iterations T for the practical applicability of our scenario is
unknown, it should intuitively be proportional to the size of the test slide, and thus to the
number of regions |R|. This leads us to define T = λ2 |R| as proportional to this quantity,
resulting in Eq. 4.16, and learn the hyperparameter λ on a validation set.

4.3.3 Experimental Evaluation
Dataset

Extramedullary hematopoiesis, i.e. the presence of hematopoietic cells outside the bone
marrow, is a marker of an extensive stimulation of the immune system [Tao et al., 2008].
There is accumulating evidence that the amount of infiltrating immune cells such as cyto-
toxic CD8-positive T-lymphocytes into the tumor can be considered as a tumor biomarker
for measuring clinical outcome [Balermpas et al., 2016]. We evaluated our approach in
this clinical context on a dataset addressing the aspect of lymphocytic infiltration into
mouse liver tissues, for which the amount of these cells within histological samples must
be estimated. Slides from 16 mice were digitally acquired at the resolution 0.5 µm per
pixel and downsized by 2 to speed up the training and testing steps. 70 large representative
subimages were extracted from these slides and fully segmented, covering approximately
20% of the total tissue (Fig. 4.5). Resorting to a set of subimages follows the clinical
practice and was necessary to obtain accurate labels for a sufficient number of different
slides. This is particularly important in our study which focuses on issues arising from the
visual variability between acquisitions. Yet, it comes at the cost of possibly introducing
a few natural biases such as underrepresentation of border areas or of straightforwardly
negative objects (e.g. large white parts).
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Figure 4.5: Dataset dimensions. Our dataset consists of 16 digital slides, an example of
which is provided in Fig. 4.1a. Instead of working directly on the slides, we extracted and
labeled entirely a total of 70 subregions such as the one shown in Fig. 4.1b. (a) Dimen-
sions of the slides, where each colored point corresponds to one slide. (b) Dimensions of
the extracted subregions. The color code of (a) is respected so that the slide from which
each subimage is extracted can be identified by its color. In total, the extracted subimages
cover around 20% of the acquired tissues.

Experimental Settings

We randomly split our dataset D into 4 sets Di of 4 slides each and we performed a 4-
fold nested cross-validation. The goal of this procedure is to optimize the update-related
hyperparameter λ independently of the test data to avoid overfitting. Let Λ be a set of
candidate values for λ and lcv(λ,F1, I) a loss measuring the error of our method on the
slide I when using the hyperparameter λ and an initial forest F1. The nested cross-
validation consists of 4 runs, each run corresponding to a setDiout (with iout ∈ {1, 2, 3, 4})
left out for testing. For each run, a second cross-validation (called inner cross-validation)
is performed over the 3 remaining sets (Di)i 6=iout

, where 2 sets are used to train the forest
and the remaining one is used as a validation set. At the end of the inner cross-validation,
i.e. when 3 forests have been trained and each of the 3 sets has been used as a validation
set, we define the optimal hyperparameter λiout of this run as the one minimizing the total
loss over the 3 bags, i.e.

λiout = argmin
λ∈Λ

∑
i 6=iout

∑
I∈Di

lcv(λ,FD\(Di∪Diout)
, I). (4.37)

FD\(Di∪Diout)
denotes the forest obtained by training on the two remaining sets after ex-

cluding Di and Diout . Using the hyperparameter value λiout , we then report independently

the prediction of each of the 3 forests
Å
FD\(Di∪Diout)

ã
i 6=iout

on the left-out set Diout . This

procedure allows us to learn automatically the hyperparameter independently of the test-
ing set, and outputs 3 different predictions for each test slide which gives an idea of their
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dependency on the original training data. This results in a total of 48 predictions. Note
that, to conduct the entire nested cross-validation, only 6 forests

Ä
FDi∪Dj

ä
1≤i<j≤4

have
to be trained. The user interaction was automatically simulated from the ground truth
delineations. Regions were chosen of size ∆×∆ with ∆ = 60 µm. Every time a region
is displayed, the user can easily extend the field of view around it if necessary. We sim-
ulated this behavior automatically by showing the neighboring positive region(s) in the
case where an object of interest is not fully included in the displayed region.

The forests were initially trained on labeled pixels which were densely collected every
8 µm in the two directions. Parallelized on 10 threads, this training step took between 3
and 6 hours depending on the cross-validation run (with a corresponding number of train-
ing samples comprised between 5 × 105 and 106). Given an incoming slide, testing was
performed on all pixels, which is tractable since it has to be done only once at the begin-
ning of the process (see Sec. 4.3.2). This preliminary step took around 1 minute, after
which the interaction loop could take place in real-time conditions. More precisely, the
update of forest leaf models and recomputation of box scores between two iterations took
between 10 and 100 ms without any parallelization. The visual features were computed
on the Lab color space. The following forest parameters were used: nsamples/leaf = 10,
ntrees = 30, ntries = 500, nthresholds = 10, and the bagging rate was 0.5.

Due to the efficiency of Haar-like features, our segmentation algorithm is able to work
directly at the highest level of magnification, processing approximately 2.0 × 107 pixels
per minute. This order of magnitude is, for instance, the same as in a recent boosting-
based hierarchical segmentation approach [Doyle et al., 2012] which analyzes around
1.4 × 107 pixels in less than 3 minutes (with parallelization on 2 threads instead of 10).
However, this latter work used more complex features for their application, hence justify-
ing a hierarchical strategy.

Results

We studied the ability of our approach to retrieve regions of interest as quickly as possible
within large slides. The following alternatives were compared:

• the simplest forest-based exploration approach without update from the pathologist
(No Update (Forest)), i.e. only relying on the pre-trained forest F1,

• the three update strategies (ULS, ALM and OGD) exposed in Sec. 4.3.2,

• a baseline showing, at each iteration, a region randomly (uniformly) drawn among
the remaining regions (Random exploration),

• an oracle whose scoring function is extracted from the ground truth, hence serving
as a gold standard showing the highest achievable performance (Oracle).

In addition, to position the forest-based performance among other classification methods,
we trained an AdaBoost classifier (Sec. 1.2.7) and used it as segmentation model instead
of the forest (No Update (AdaBoost)). The chosen weak classifiers were decision
stumps based on Haar-like features such as the splitting functions stored in tree nodes.
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100 boosting iterations were conducted, and 500 stumps tried at each iteration. These
design choices led to a training time similar to the forest one.

To assess quantitatively the performance of each method, we consider the curve show-
ing the proportion of positive pixels that have been displayed after having shown a certain
percentage of the slide to the pathologist (Fig. 4.6a). A good exploration method is ex-
pected to lead to a curve converging quickly towards 1. We summarize quantitatively
the performance on a slide I by computing the area A(λ,F0, I) under this curve. The
nested cross-validation procedure described in Sec. 4.3.3 was accordingly performed us-
ing the loss function lcv(λ,F1, I) = 1−A(λ,F1, I) and optimizing λ over a logarithmic
grid. The statistical distribution of the area under curves obtained at prediction time for
each method are shown in Fig. 4.6b. We performed statistical pairwise comparisons be-
tween methods by conducting paired Wilcoxon’s signed-rank tests over these values. To
maintain the independence between samples, we repeated each test 100 times retaining at
random one of the 3 runs for each slide and considered the median p-value over these 100
runs. Denoting Method 1 ≺ Method 2 the fact that Method 2 is significantly better than
Method 1 and Method 1 ≈ Method 2 the absence of demonstrated statistical difference
between the two methods, the series of tests provided the following ranking:

Random ≺ No Update (AdaBoost) ≺ No Update (Forest) ≺ OGD ≺ ULS ≈ ALM ≺ Oracle.

All p-values showing statistical difference were lower than 10−3, and the p-value obtained
when comparing ULS and ALM was 0.5. This ranking confirms what was intuitively
expected. The three methods proposing a model update from the user inputs improve
over a non-interactive exploration, and the two methods using accurate pixelwise labelings
outperform the online gradient descent technique which is based on a weaker but lighter
type of information. We also see, from the performance of a random exploration, that
using a pre-trained forest drastically helps finding relevant objects more quickly. Note
that, in theory, one might have expected a straight ‘y = x’ line for the random exploration.
In fact, when a suggested region belongs to a larger object, the user extends the field of
view to see the object in its totality. Hence, a positive suggestion may be immediately
followed by other positive ones due to the user intervention. This bias explains why, in
spite of a random exploration, one obtains a slightly ‘better than random’ curve.

Finally, the impact on each method of the update-related parameter λwas assessed ex-
perimentally (Fig. 4.6c). As expected, when λ→∞, the three methods converge towards
the method without update. The choice λ = 0 leads to a nearly maximal performance for
the two update strategies based on pixelwise labelings (ULS and ALM). Since, moreover,
these two methods are equivalent for λ = 0, they behave very similarly after optimization
on a validation set, as observed on Fig. 4.6a and Fig. 4.6b. Note that choosing λ = 0
does not mean that the initial forest F1 is ignored. The prior knowledge from this initial
model is taken into account via the tree structures and their leaf models, which remain
unchanged as long as no sample from the test data reaches the leaf in question.
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Figure 4.6: Experimental validation of the slide exploration stage. (a) For each
method, we plot the mean retrieval curve which shows the proportion of positive pix-
els seen by the pathologist after having seen a certain proportion of the slide. We use the
area under these curves to measure quantitatively the slide exploration abilities. (b) Statis-
tical distribution of the area under the curve for each method. Each box plot is computed
over the 48 measurements obtained during the nested cross-validation. (c) Influence of the
hyperparameter λ on the performance. For each of the three update strategies, we studied
the behavior of the mean area under the curve when λ varies, i.e. without optimization on
a validation set.
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4.4 Whole-Slide Quantification from Partial Exploration

So far, we have introduced and evaluated a method to assist a pathologist in the explo-
ration of a large digital slide by retrieving and displaying regions that presumably contain
objects of interest. We now propose a stopping criterion for the exploration process and
introduce an approach which, once the exploration stage is completed, extrapolates the
content observed in the displayed regions to assess the surface covered by the objects of
interest in the entire slide (including the unseen areas).

4.4.1 Stopping the Exploration Stage

In practice, the exploration process is meant to be interrupted before seeing the whole
slide. Since the amount of hematopoietic cell clusters is variable from a slide to another,
some slides intrinsically require more time from the pathologist than others. Therefore,
fixing in advance the number of iterations for the exploration would be inappropriate.
Instead, we propose a stopping criterion based on the density of positive suggestions,
and interrupt the exploration as soon as nstop negative regions were suggested in a row,
i.e. when most positive regions were presumably seen. Once the stopping criterion is
reached, a whole-slide prediction can be made (Sec. 4.4.2).

The chosen value for nstop depends on the amount of time that the pathologist is ready
to spend for the analysis. Strictly reasoning in terms of accuracy, it is always preferable
to let the pathologist see a maximum number of regions. Defining a recommended value
for nstop is hence subjective and results from a tradeoff between accuracy and human ef-
fort. Our experiments regarding the whole-slide quantification were conducted for several
values of nstop, encoding different amounts of effort that the pathologist is ready to invest.

4.4.2 Whole-Slide Quantification via Regression

Once the stopping criterion has been reached, we propose to predict an estimate q̂ of the
surface covered by hematopoietic cells within the whole slide with linear regression. De-
noting K the total number of regions that have been seen during the exploration stage, a
partial knowledge on q̂ is available via the quantity qlabeled =

∑K
k=1Q(Rk) obtained as the

user annotated the regions R1, . . . , RK during the exploration. In addition, the updated
forest model FK+1 obtained at the end of the exploration phase provides a prediction
φ(R|FK+1) of the quantity of positive pixels in each region R ∈ R of the slide. In par-
ticular, this gives a total prediction Φtotal =

∑
R∈R φ(R|FK+1) and a prediction on the

labeled regions Φlabeled =
∑K
k=1 φ(Rk|FK+1). We formalize our regression problem by

considering that the relative change between the total quantity q̂ and the partial quan-
tity qlabeled is proportional to the relative change between total prediction and the partial
prediction, i.e.

q̂ − qlabeled

qlabeled ∝ Φtotal − Φlabeled

Φlabeled . (4.38)
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This corresponds to a prediction rule of the form

q̂ = qlabeled + a
Φtotal − Φlabeled

Φlabeled qlabeled. (4.39)

The regression parameter a ∈ R is learned on a validation set.

4.4.3 Evaluation
To assess, at prediction time, the accuracy of a list of npred estimates (q̂i)1≤i≤npred

given the
corresponding true quantities (qi)1≤i≤npred

, we use the root-mean-square deviation

RMSD =

Ã
1

npred

npred∑
i=1

(qi − q̂i)2. (4.40)

In our case, npred = 48. This corresponds to the 3 predictions obtained for each of the 16
slides during the cross-validation.

The experimental evaluation of the whole-slide quantification abilities was conducted
as follows. We kept the cross-validation setup described in Sec. 4.3.3 and learned the
hyperparameter a on a validation set, as was done for the update parameter λ, using here
a squared loss lcv(a,F1, I) = (qI−q̂I)2 between true and predicted whole-slide estimates.
This procedure was performed independently for several values of the stopping criterion
nstop. We report the resulting curves in Fig. 4.7a and an example of the correspondence
between estimates and true quantities in Fig. 4.7d. The ranking of methods obtained
while studying the exploration abilities is preserved, due to the fact that the quality of
the exploration phase is directly linked to the amount of regions which are eventually
labeled. Asymptotically, if all regions containing positive samples are labeled, choosing
a = 0 provides a perfect prediction.

During our experiments, we observed that the sum of segmentation probabilities over
the whole slide, i.e. predicting q̂ = Φtotal (with the notation of Eq. 4.39), does not form
a reliable whole-slide quantification and overestimates the quantity of positive pixels due
to two effects. First, the random nature of trees leads in general to small nonzero prob-
abilities on negative pixels. When summed over all pixels, these small errors aggregate.
Moreover, since we mainly retrieve positive examples during the slide exploration, the
distribution of incoming samples for the update is strongly biased towards positive in-
stances. These difficulties motivate the use of a regression. In Fig. 4.7b, we show that our
regression approach (Eq. 4.39) outperforms a regression based on the user inputs alone of
the form q̂ = (1 + a)qlabeled. This demonstrates that, in spite of its global overestimation,
the forest estimate can be effectively exploited by a regression procedure.

4.5 Input Discretization for Lighter Interactions
In the experiments presented in Sec. 4.3.3 and Sec. 4.4.3, the forest adaptation techniques
assumed that the pathologist provides a full pixelwise labeling of the objects of interest
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Figure 4.7: Experimental validation of the whole-slide quantification stage. (a) We
report the root-mean-square deviation for several values of the stopping criterion nstop

which represents the amount of interaction provided by the pathologist. (b) Difference
∆RMSD between the root-mean-square deviation obtained when using a regression of
the form q̂ = (1 + a)qlabeled based on the user inputs alone, and the one obtained with
the regression of Eq. 4.39 whose results are reported in Fig. 4.7a. Positive values of
∆RMSD correspond to a gain of accuracy when including the forest scores Φtotal and
Φlabeled in the regression task. As soon as nstop is large enough to obtain stable results, the
information carried by an updated forest improves the performance. (c) Distribution of
the signed quantification error over slides for nstop = 10, with and without including the
forest scores in the regression. (d) Correlation between estimated and true hematopoietic
surface within whole slides. We show an overview on the whole dataset of the whole-slide
estimates after exploration. Each slide tested during the cross-validation appears 3 times
corresponding to different initial forests (Sec. 4.3.3). Perfect predictions would lie on the
red line. This example was obtained using the ULS adaptation for nstop = 6, leading to
RMSD = 1.9× 10−2 mm2. The median proportion of the slide which was seen during
the exploration was 5.2% in this case. The predictions obtained without using the final
forest scores (see Fig. 4.7b and Fig. 4.7c) are also reported.
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in the displayed regions. In this section, we demonstrate how our online gradient descent
scheme can instead be used with one-click inputs without decreasing its performance,
thereby allowing faster user interaction.

4.5.1 One-Click User Inputs
Unlike the two other techniques based on individual labels for each pixel in a region, the
OGD forest update employs as user input for a region Rk the amount of positive pixels
Q(Rk) contained in Rk. This is a different kind of input, which can be inferred from
a delineation or communicated directly instead. Here, we propose to discretize the input
values into bins and ask the user to select the bin to which the proportion of positive pixels
belongs. This interaction is performed with only one click, or possibly without a mouse
(e.g. via voice recognition).

Formally, the user annotations are discretized as follows. Instead of providing the
exact quantity Q(Rk), the user simply indicates an interval within which the propor-
tion Q̃(Rk) = Q(Rk)

|Rk|
lies. The list of available ranges is predefined as {0}, ]0; 1

m
],

. . ., ]m−2
m

; m−1
m

], ]m−1
m

; 1[, {1}, where m is a positive integer which encodes the fine-
ness of the quantization. Accordingly, by taking the middle-value of each bin, the ap-
proximate proportions Q̃(Rk) provided by the user take their values in the finite set
Dm =

¶
0, 1

2m
, 3

2m
, . . . , 2m−1

2m
, 1
©

. This gives in total m + 2 input possibilities for the dis-
crete input Q̃(Rk), including the 2 trivial ones corresponding to an empty (Q̃(Rk) = 0)
or a full (Q̃(Rk) = 1) region . By doing so, only one click per region is required from the
pathologist, resulting in lighter interactions.

Given a discrete region label Q̃(Rk) ∈ Dm provided by the user, we have to com-
pute the actual quantity Q(Rk) eventually used in the adaptation process (Eq. 4.15) and
recorded for an eventual whole-slide quantification (Eq. 4.39). The simplest idea con-
sists in directly taking Q(Rk) = |Rk| Q̃(Rk), but has the drawback of losing information
due to the discretization. To attenuate this aspect, we propose to perform updates only
if the forest estimate φ(Rk|Fk) (whose objective is to predict the quantity Q(Rk)) devi-
ates too strongly from the user label. More precisely, we define Q(Rk) = |Rk| Q̃(Rk) if∣∣∣φ(Rk|Fk)
|Rk|

− Q̃(Rk)
∣∣∣ ≥ 1

2m
, and Q(Rk) = φ(Rk|Fk) otherwise. In other words, we fully

trust the forest estimate as long as it leads to the same bin as the one indicated by the
user. This distinction is only made if the label is ambiguous, i.e. different than 0 and 1.
Otherwise, it corresponds in fact to an exact labeling and is treated as such.

4.5.2 Evaluation
The experiments involving online gradient descent presented in Sec. 4.3.3 and Sec. 4.4.3
were repeated using these discretized inputs instead of the exact ones, for every level of
quantization m ∈ {1, . . . , 5}. In terms of retrieval performance, discretizing the inputs
does not show any clear difference in comparison to the use of exact user inputs, and
this from m = 1 on (Fig. 4.8a). For m = 1, the paired Wilcoxon’s signed-rank test
leads to a p-value of 0.65. Additionally, if we assume the differences to be normally
distributed, the confidence interval for the mean difference is [−4.8× 10−3, 2.3× 10−3].
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Figure 4.8: Evaluation of the effects of input discretization. (a) Impact of input quan-
tization on the exploration phase. We consider the difference ∆A of area under the curve
observed when using discretized user inputs instead of exact ones in the OGD adaptation.
The parameter m encodes the fineness of the quantization. No statistical difference is
observed from m = 1 on. To put the variations in perspective, we also report the differ-
ence obtained between the approach without updates and the OGD approach with exact
inputs. (b) Whole-slide quantification from discrete inputs. From m ≥ 3, the discretized
approach reaches similar quantification performances as an OGD update with exact in-
puts.

Hence, by making available to the user 3 buttons (corresponding to the choice m = 1)
stating respectively whether a region is empty, full of hematopoietic cells or partially
covered, the exploration phase is of equivalent quality as the one provided by the online
gradient descent method with accurate user labelings.

Since the task of whole-slide quantification from the exploration phase (Sec. 4.4) relies
strongly on the user inputs Q̃(Rk) (see Eq. 4.39), obtaining satisfactory results for this
task with discretized inputs requires a more accurate quantization. This minimum level
was experimentally found to be m = 3 (Fig. 4.8b), which remains nevertheless tractable
in practice.

4.6 Conclusion
We introduced an interactive framework able to help a pathologist to navigate efficiently
through large digital slides. Our approach is based on a pixelwise random forest classi-
fier pre-trained to segment objects of interest within the tissue and whose predictions are
used to score, rank and display regions according to their expected interest. By allowing
the user to provide labels on each suggested region, the leaf nodes of the forest model
are adjusted in real time during the exploration procedure so that visual characteristics of
the data at hand can be gradually incorporated into the region selection process. For this
purpose, in addition to two standard leaf update techniques, we introduced a novel adap-
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tation scheme based on online gradient descent which supports one-click inputs from the
pathologist instead of more tedious accurate object delineations. Experimental validation
was conducted on the task of extramedullary hematopoiesis quantification within mouse
liver slides. Beyond its slide exploration abilities, we demonstrated how our method can
successfully exploit both the forest segmentation output and the labels collected during
the exploration stage to provide accurate estimates of the surface covered by hematopietic
cells in the whole slide.



Chapter 5

Image Segmentation as a Twenty
Questions Game

We concluded the previous chapter with a discussion about the fact that a user might pre-
fer or be forced to use weaker kinds of inputs requiring only one click instead of more
accurate labelings. In this chapter, we investigate further this idea by considering the
novel scenario of an interactive binary segmentation task where the user interaction with
the machine is restricted to binary inputs (Yes and No) instead of the usual scribbles or
bounding boxes. Potential applications of this scenario include the hands-free segmenta-
tion of medical images during surgery, where (i) the process of zooming and navigating
through slices can be overwhelming and time-consuming, (ii) the hands of the clinicians
are already busy with the operation itself, and (iii) physical interactions with objects must
be avoided to keep a sterile environment around the patient. The aforementioned scenario
under binary inputs can, in fact, be seen as a Twenty Questions game between the human
user and the computer. Before the game starts, the user (also called oracle) thinks about an
object within the given image which we will call the answer, and the computer (also called
the questioner) is allowed to ask a series of binary questions to guess what the answer is
(Fig. 5.1). Beyond the novelty of the scenario, our contributions can be summarized as
follows:

• In Sec. 5.2, we introduce a strategy for the computer to provide a guess as accu-
rate as possible in a limited number of questions. At each iteration, our approach
builds on Markov Chain Monte Carlo (MCMC) sampling to approximate a proba-
bility distribution over the set of possible segmentations, before asking the question
halving this set according to a divide-and-conquer approach.

• In Sec. 5.3, we show how a semantic prior on the nature of the object obtained from
the output of a random forest classifier can be added in the MCMC framework.

• We evaluate both strategies on the Stanford Background Dataset and compare them
with several baselines, demonstrating the effectiveness of the MCMC sampling and
the advantage of introducing a prior probability on the object.

The content of this chapter consists of a revisited version of our published conference pa-
per [Rupprecht et al., 2015] and includes an unpublished extension of this work (Sec. 5.3).

89
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Figure 5.1: Image segmentation in Twenty Questions. Given an image, an object to
segment (here, the sea) is secretly chosen by the human user. At every step, the computer
asks whether a certain pixel is located inside the desired region. Each answer from the
user provides either a positive (green) or a negative (red) seed. After a predefined number
of questions, the computer returns its guess about the answer based on the collected seeds.

5.1 Related Work

Before exposing our contributions, we briefly review in this section the connections of our
work with existing methods. The Twenty Questions setting has already been mentioned
in the computer vision community through the work of Branson et al. [2010] and its
extension by Wah et al. [2011] for interactive fine-grained image classification. These
works consider the case where neither the human user nor the machine knows the label
of the image of interest, but (i) the machine knows which questions are important to ask
to find out the answer and (ii) the human is able to answer these questions which are
based on the visual aspect of the scene. Hence, combining the expertise of the computer
with the visual abilities of the human allows to find collaboratively the hidden image
label. Beyond the differences in terms of task (image classification vs segmentation), this
setting is fundamentally different from ours, where the object to be segmented is perfectly
known and defined by the human user and has to be guessed by the computer.

Interactive segmentation techniques usually rely on seeds or bounding boxes that are
manually placed by a human user in or around the object of interest (Sec. 3.2). Closer to
our work, a few approaches [Batra et al., 2010, Fathi et al., 2011, Straehle et al., 2012,
Mahapatra et al., 2013] keep the human user in the loop and suggest the most informative
areas to label next, in an active learning fashion. An important aspect of our scenario is
the intrinsic ambiguity of the image parsing task, as one cannot anticipate the semantic
level of the segmentation picked by the oracle. In this direction, Tu and Zhu [2002]
introduced a data-driven MCMC framework based on active contours able to generate
several parsings of a same image. Recent alternatives identify a set of candidate relevant
objects in a scene [Carreira and Sminchisescu, 2012, Endres and Hoiem, 2014, Gu et al.,
2009, Krähenbühl and Koltun, 2014] by learning plausible object appearances or shapes.
In our case, no offline training is performed so that the method can be adjusted to any kind
of image or ground truth. Finally, if combined with e.g. a voice recognition system or a
pedal, our method can provide a hands-free segmentation technique, for which a solution
using an eye tracker for seed placement was proposed [Sadeghi et al., 2009].
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5.2 Object Segmentation in Twenty Questions
In this section, we start by a formal presentation of the Twenty Questions segmentation
scenario and an overview of our approach in Sec. 5.2.1 before offering a more detailed
treatment of each part of our methodology in Sec. 5.2.2, Sec. 5.2.3 and Sec. 5.2.4.

5.2.1 Problem Statement
Following the general definitions on semantic segmentation introduced in Sec. 1.1.1,
we consider here a binary label space Y = {Background,Foreground} where
Foreground corresponds to the label of interest to the user. Given an image I de-
fined over a two-dimensional domain ΩI , the user decides on a labeling L̂ : ΩI → Y
that has to be found by the computer. To do so, the computer is going to ask a series
of binary questions of the form Q(p): “Is the displayed location p inside the object you
want to segment?” where p is a location chosen within the image domain ΩI . Choosing
the best question to ask amounts to finding the most informative location p. In return, the
answer to each question directly provides the true label L̂(p) ∈ Y at this location. After
k questions have been posed, the collected answers provide two reliable sets Σk

− and Σk
+

of background and foreground seeds respectively, with
∣∣∣Σk
−

∣∣∣+ ∣∣∣Σk
+

∣∣∣ = k. We also denote
Σk = Σk

− ∪ Σk
+ the set of reliable seeds collected. This knowledge is encoded through a

Bayesian posterior probability P (L = L̂|Σk) over the set of segmentations S = YΩI stat-
ing how likely it is that the segmentation L has been initially picked by the user given the
known seeds revealed by the answers already collected. We will denote this probability
P (L|Σk) in the rest of this chapter to make clear that this probability is seen as a function
of L and as a probability distribution over S. If the posterior P (L|Σk) could be computed
for every possible segmentation L in S, an optimal divide-and-conquer strategy would
halve at each turn the set of possible segmentations into two subsets of probability 0.5
each. However, the number of candidate labelings is extremely large, with theoretically
2|ΩI |−k possibilities, which excludes any exhaustive computation of P (L|Σk) over the en-
tire set S. To overcome this, we propose to approximate at each iteration k the posterior
P (L|Σk) by a series of samples Lk1, . . . , L

k
N ∈ S drawn from the distribution P (.|Σk)

according to a Markov Chain Monte Carlo (MCMC) scheme (Sec. 5.2.2). After these N
samples have been drawn, we select the most informative question based on these samples
only (Sec. 5.2.3). These two sampling and question selection steps are then iterated until
a predefined amount of allowed questions is exceeded, and a last sampling stage is then
performed to generate the final segmentation output (Sec. 5.2.4).

5.2.2 Sampling Likely Segmentations with MCMC
In this section, we introduce our procedure for sampling representative segmentations
from the posterior probability distribution P (.|Σk) conditioned on the current knowledge
provided by the user. Following the Metropolis-Hastings algorithm [Metropolis et al.,
1953] and an original idea from Tu and Zhu [2002] introduced in the context of image
parsing into multiple regions, our sampling procedure is defined as a Markov chain over
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the set of segmentations whose transition probabilities are defined as follows. Given
a current segmentation L, a new segmentation L′ candidate to be the new state of the
Markov chain is suggested according to a proposal distribution Q(.|Σk, L) defined over
S. This move is accepted with probability min(1, α) with

α =
P (L′|Σk, I)Q(L|Σk, L′)

P (L|Σk, I)Q(L′|Σk, L)
(5.1)

where P (.|Σk, I) denotes the posterior probability distribution according to which we
want to draw samples, i.e. the probability for a segmentation to have been picked by
the user given the currently known seeds Σk and, of course, the image I . We make the
dependency in I explicit in P (L′|Σk, I) to emphasize that this probability depends on
the image content over the whole domain1. Starting from an initial segmentation Lk0, a
succession of segmentations is generated and the Lki , 1 ≤ i ≤ N are selected as samples
at a fixed rate during this exploration process. A longer burn-in step where no samples are
retained is performed before starting the sampling procedure to mitigate the dependency
on the initial state Lk0. Our design of posterior and proposal distributions build on a
parametrization of candidate segmentations which we are now going to introduce.

State-Space Parametrization

To facilitate the design of efficient proposal distributions in Eq. 5.1, we need a way to
perform moves in the set of segmentations S. In their data-driven MCMC framework
for image parsing, Tu and Zhu [2002] proposed to deform active contours. In our case,
since the MCMC paradigm takes place between two questions in the context of a hu-
man/machine interaction, it is essential to keep the time between two questions as small
as possible. For this reason, we introduce an alternative view of our segmentation space
based on geodesic distance transforms (GDT) that recently demonstrated great efficiency
for the suggestion of object proposals [Krähenbühl and Koltun, 2014].

Instead of reasoning in terms of segmentations L and L′ in Eq. 5.1, we consider a
state space X = {1, . . . , nchannels} × P(ΩI)

2 so that a state x = (c,Σ+,Σ−) is defined
as an image color channel c and two sets of positive and negative seeds Σ+ and Σ−. Σ+

and Σ− contain both the already known and hence reliable seeds included in Σk
+ and Σk

−
(fixed seeds), and a fixed number nmobile of other seeds created for the MCMC process
exclusively (mobile seeds). We add artificial color channels to the image I by stacking
blurred versions of the image, so that nchannels denotes the number of total color channels
in this enriched version of the image. The correspondence between the state space X and
the set of segmentations S is done via a labeling function lGDT

I : X → S that associates
to a state x = (c,Σ+,Σ−) ∈ X the segmentation lGDT

I (x) ∈ S obtained by computing
the geodesic distance transform (GDT) on the cth image channel with the sets of positive
and negative seeds Σ+ and Σ− respectively. The geodesic distance transform of an image
is obtained by computing the shortest distance of every pixel to the set of seed pixels.

1In fact, most of the mathematical objects introduced here implicity depend on the input image I through
the dimensions of its domain and the number of color channels. We consider these quantities fixed and omit
these dependencies to simplify the notations.
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Figure 5.2: Sampling-based approximation of the segmentation probability. Given
an image and a set of fixed seeds (full disks) provided by previous answers from the user,
we sample a set of likely segmentations parametrized by a color channel and a set of
mobile seeds (hollow disks). By aggregating these samples, a probability of the label of
each pixel given the fixed seeds can be obtained and used to select the next question to be
asked.

Usually, the distance between two neighboring pixels (i.e. the edge weights on the image
graph) is defined as a mixture of the Euclidean distance and the gradient between these
two points. To reduce the dependence on the seed placement within the object of interest,
we almost only use the absolute intensity difference to which we simply add a small value
ε to break ties (for instance if two seeds of different labels are placed in a uniform area).
To generate the final GDT-based segmentation, each pixel receives the label of its closest
seed. Note that any other seed-based interactive segmentation algorithm could be included
instead at this stage of the framework. Our main motivation behind the choice of geodesic
distance transforms is the fact that they can be approximated in linear time [Toivanen,
1996] and are hence very fast to compute.

The Markov chain used for our segmentation sampling is going to act at the level
of the state space, i.e. on the color channel and seeds used as input for the GDT-based
segmentation algorithm. Thus we propose to rewrite Eq. 5.1 as

α =
P (x′|Σk, I)Q(x|Σk, x′)
P (x|Σk, I)Q(x′|Σk, x)

. (5.2)

It is important to note that we do not have a one-to-one correspondence between Eq. 5.1
and Eq. 5.2. In Eq. 5.1, the probability P (L|Σk, I) of a segmentation only depends on the
answers collected so far, on the image I and on how L partitions the image domain ΩI .
Here, we have a priori a different probability for each state x, and each state is related
to one color channel only. A same partition of the domain ΩI can thus have different
probabilities depending on the considered color channel. Figure 5.2 illustrates examples
of candidate segmentations sampled with our MCMC approach, as well as the aggregated
probability for each pixel based on which the next question is selected.
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Posterior Probability

The probability P (x|Σk, I) represents the probability of a state x to lead, after applica-
tion of the GDT-based segmentation, to the segmentation picked by the user given the
set Σk of k seeds already revealed by the answers to the k first questions. An important
characteristic of the Metropolis-Hastings acceptance probability (Eq. 5.2) is the fact that
the target probability distribution P (.|Σk, I) only appears as the ratio between the prob-
ability P (x′|Σk, I) of the candidate state and the probability P (x|Σk, I) of the current
state. Hence, multiplying P by a constant leaves the sampling process unchanged. The
distribution P (.|Σk, I) can thus be defined without taking into consideration a theoreti-
cally required normalization factor constraining the distribution to sum to 1. To define
this probability for a state x = (c,Σ+,Σ−), we compute the segmentation lGDT

I (x) and
consider the discrepancy between the color content of the background and foreground
areas defined by this labeling within the color channel c. More precisely, we create and
normalize the corresponding background and foreground histograms h+ = (h+

1 , . . . , h
+
B)

and h− = (h−1 , . . . , h
−
B) and compute their χ2 distance, i.e.

P (x|Σk, I) ∝ ε+ χ(h+,h−), (5.3)

where

χ(h+,h−) =
B∑
b=1

(h+
b − h−b )2

(h+
b + h−b )

. (5.4)

We introduce a small quantity ε > 0 to avoid the existence of zero probabilities. If we do
not take this precaution, a uniform image would for example result in a χ2 distance (in
Eq. 5.3) equal to 0 for all states, hence leaving the probability distribution undefined.

Proposal Distribution

Sampled segmentations are generated via a set of parameters x = (c,Σ+,Σ−) ∈ X sent
as input to the GDT segmentation algorithm. The main advantage of this representation
is that the state space X gives a more natural way to move from a state to another and
facilitates the design of a proposal distribution Q(.|Σk, x). As discussed when presenting
the state space parametrization, Σ+ and Σ− contain fixed seeds furnished by the collected
answers and mobile seeds used for the sampling procedure only. From a given state x, a
state x′ is suggested by drawing uniformly and performing one of the 2 following moves:

1. Changing image channel: The image channel c is redrawn uniformly.

2. Moving a mobile seed: The position of a mobile seed is uniformly redrawn over the
image domain.

Q(x′|Σk, x) thus denotes the probability that this procedure creates a state x′ starting from
a state x. Note that we introduced a similar Markov chain mechanism in Sec. 2.4.2 for im-
proving node split optimization during the training of a random forest. Since the proposal
distribution Q is, here, symmetric by construction, i.e. Q(x′|Σk, x) = Q(x|Σk, x′) for
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all (x, x′) ∈ X2, the acceptance probability α used in the Metropolis-Hastings algorithm
(Eq. 5.2) can in fact be simplified as

α =
P (x′|Σk, I)

P (x|Σk, I)
. (5.5)

The case of a non-symmetric proposal distribution will be encountered in Sec. 5.3.

5.2.3 Question Selection
After k questions have been asked and answered (k ≥ 0), the method described in
Sec. 5.2.2 draws N segmentations Lki , 1 ≤ i ≤ N that approximate the probability dis-
tribution P (.|Σk), where P (L|Σk) = P (L = L̂|Σk) denotes the probability that the
segmentation L is the answer L̂ awaited by the oracle given the k answer seeds Σk. From
these samples, we have to decide on the optimal question to ask to the user. Following a
divide-and-conquer approach, we ask for the question halving the set of segmentations,
i.e we query the label at the location pk defined as

pk = argmin
p∈ΩI

∣∣∣∣P ÄL(p) = Foreground|Σk
ä
− 1

2

∣∣∣∣ . (5.6)

Ties are broken at random. Note that, due to the binary aspect of the segmentation,
Foreground was arbitrarily chosen in Eq. 5.6 and could be equivalently replaced by
Background. To estimate the probability P

Ä
L(p) = Foreground|Σk

ä
in Eq. 5.6,

we can use the approximation of an expectation by sampling, i.e. the following identity
valid for any label y ∈ Y:

P
Ä
L(p) = y|Σk

ä
=
∑
L∈S

[L(p) = y]P (L|Σk) ≈ 1

N

N∑
i=1

î
Lki (p) = y

ó
. (5.7)

For readability, we denoted [L(p) = y] the result of the indicator function 1{y} evaluated
at L(p), which thus outputs 1 if L(p) = y and 0 otherwise. The approximation in Eq. 5.7
results from the fact that the samples Lki , 1 ≤ i ≤ N are drawn according to the distribu-
tion P (.|Σk).

5.2.4 Creation of the Final Segmentation
At the end of the interactive process, i.e. when the predefined number of questions K is
exceeded, we create the final segmentation by taking, for each pixel, the likeliest label
given the answers collected, i.e. we output the labeling Lfinal defined for all p ∈ ΩI as

Lfinal(p) = argmax
y∈Y

P
Ä
L̂(p) = y|ΣK

ä
. (5.8)

This optimization is in practice conducted by first running a last sampling procedure using
the set of all answer seeds Σk. The probabilities P

Ä
L̂(p) = y|ΣK

ä
are then approximated

as exposed in Eq. 5.7. A qualitative overview of the entire questioning/answering process
is shown in Fig. 5.3.



96 CHAPTER 5. IMAGE SEGMENTATION AS A TWENTY QUESTIONS GAME

Figure 5.3: Qualitative evolution of the segmentation belief on an example image.
Given an input image and the label Sky as chosen object from the user (top left), we
display snapshots of the questioning/answering process and the final guess (bottom right).
The pixelwise probabilities conditioned by the current fixed seeds are overlaid. At each
iteration, the most uncertain location is chosen as the next question. As the number of
answered questions increases, the uncertainty about the object of interest is reduced.

5.3 Introducing Semantic Prior Knowledge
In the method described in Sec. 5.2, there is no prior assumption on the nature of the
object chosen by the user: we only expect the object and the background areas to have
different color histograms (Eq. 5.3). In this section, we now assume that we have an
external source of information (such as a trained classifier) which provides a pixelwise
probability P ext(Y = y|p, I) for every label y ∈ Y and location p ∈ ΩI . We propose to
use this additional probability to guide the choice of questions and, at the same time, we
keep the flexibility of an interactive segmentation approach so that the Twenty Questions
scenario can now be seen as an interactive correction of the segmentation given by P ext.

Defining formally a seed as a pair σ = (σp, σy) ∈ ΩI ×Y , we use our external source
of information to define an image-dependent seed prior πext(σ|I) = P ext(Y = σy|σp, I)
stating the compatibility of the seed σ with the prior knowledge P ext. By extension, every
state x = (c,Σ+,Σ−) ∈ X can be assigned a state prior

πext(x|I) =
∏

σ∈Σ+∪Σ−

πext(σ|I). (5.9)

The state prior defined by Eq. 5.9 favors states whose configuration of seeds matches the
available external source of information. To include the prior in the sampling, we could
use the same framework as in Sec. 5.2.2 and simply multiply the target distribution by the
prior, so that Eq. 5.5 would be rewritten as

α =
P (x′|Σk, I)πext(x′|I)

P (x|Σk, I)πext(x|I)
. (5.10)
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In other words, we sample according to the adjusted target probability P (.|Σk, I)πext(.|I)
instead of P (.|Σk, I). Although technically correct, the fact that the proposed Markov
chain moves (Sec. 5.2.2) are independent of the prior may result in a lot of rejected moves,
and therefore would require a higher number of iterations. In fact, we can achieve an
equivalent sampling more efficiently by introducing the state prior directly in the proposal
distributionQ: when performing the move Moving a mobile seed (see Sec. 5.2.2), we now
sample the new location of the seed proportionally to its seed prior so that the suggested
moves are directly compatible with the prior. Since this new proposal distribution is no
longer symmetric, the acceptance ratio of Eq. 5.10 becomes, following Eq. 5.2 with our
new target distribution:

α =
P (x′|Σk, I)πext(x′|I)

P (x|Σk, I)πext(x|I)

Q(x|Σk, x′)
Q(x′|Σk, x)

=
P (x′|Σk, I)

P (x|Σk, I)
, (5.11)

where we used the fact that, for the newly introduced prior-driven proposal distribution
Q, we have

Q(x|Σk, x′)
Q(x′|Σk, x)

=
πext(x|I)

πext(x′|I)
. (5.12)

The acceptance ratio in Eq. 5.11 appears to be identical to the original one obtained in
Eq. 5.5. In other words, starting from the interactive segmentation method introduced in
Sec. 5.2.2, a pixelwise prior knowledge can be naturally incorporated by only modifying
the proposal distribution Q, where seeds are sampled according to this prior when we
suggest to change their location.

5.4 Experiments

We conducted the evaluation on the Stanford Background Dataset [Gould et al., 2009] for
semantic image segmentation which we already encountered in Sec. 2.4.3. We downsized
the images by a factor 2. For each image, we alternatively assumed that the object of
interest was one of the 8 semantic labels provided as the ground truth and simulated the
user responses accordingly. We measure the segmentation quality with the Dice score
(Sec. 1.1.2). Each image was enriched by adding blurred versions as additional color
channels: more precisely, we created 6 blurred versions of the image, corresponding re-
spectively to Gaussian filtering of standard deviation 1, 2, . . . , 6 pixels. We ran 8 indepen-
dent Markov chains in parallel. Each Markov chain had a burn-in period of 200 iterations
and a sample was retained every 100 iterations to reduce the correlation between consec-
utive samples. The Markov chain moves between samples were run on a version of the
image which was further downsized by a factor 3. The approximate geodesic transform
was computed using 3 forward and backward passes. B = 64 bins were used in the his-
tograms to compute the target probability (Eq. 5.4). 3 mobile seeds for each label were
used, for a total of nmobile = 6 mobile seeds. With these settings, we were able to sample
a total of N = 40 segmentations in less than one second between two questions, which
remains practical for an interactive scenario. We compared the four following strategies:
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• Random: In this baseline, questions are asked randomly at locations which are
uniformly drawn over the image domain. The final segmentation is generated by
computing the geodesic distance transform from the obtained answers.

• Uncertainty: This baseline starts like the Random one. However, as soon as
one positive and one negative seeds have been found, the next question is asked
at the most uncertain location based on the geodesic distance transform. After k
collected answers, we thus ask

pk = argmin
p∈ΩI

∣∣∣d(p,Σk
+)− d(p,Σk

−)
∣∣∣ , (5.13)

where d(p,Σ) is the geodesic distance to the closest seed in Σ.

• MCMC without prior: Our method described in Sec. 5.2.

• MCMC with prior: Our approach with the use of a label prior, as exposed in
Sec. 5.3. We used as prior the posterior probability obtained as output of our scale-
adaptive forest evaluated in Sec. 2.4.3 with the scale parameter σ = 50.

We report in Fig. 5.4a the evolution of the Dice score of the segmentation guess when
the number of question increases. Quantitative results (mean and median) for each se-
mantic label and over all segmentation runs are shown in Fig. 5.4c, where we also re-
ported the performance of the (automatic) segmentation built on the forest probability
used as semantic prior (Prior alone). We observe that our strategy outperforms the
two baselines Random and Uncertainty and that introducing a prior improves the
performance. In the latter case, the resulting Dice scores are also higher than using the
prior alone thus confirming the benefit of the user interactions. A qualitative example of
results with and without prior is shown in Fig. 5.5.

5.5 Possible Extensions
In this final chapter, we introduced the novel scenario of hands-free interactive segmen-
tation with binary inputs and proposed a sampling-based approach following the tradi-
tional halving strategy used in the Twenty Questions game and outperforming intuitive
baselines. The likelihood of a segmentation was either based on standard homogeneity
assumptions or on a learned random forest model able to encode more complex appear-
ances and, thereby, able to improve the quality of the segmentation if the nature of the
object of interest is known in advance. We hope that this novel scenario, beyond its
theoretical appeal, can also bring interest for alternative possibilities of human-machine
interaction in practical situations. Several extensions from this work can be investigated.

Due to the nature of the questions asked by the computer, our approach has, by design,
difficulties to find objects in a cluttered scene. If an oracle might possibly have chosen
the answer within a large number of non-overlapping objects2, finding a foreground seed

2We can simply consider the synthetic example of an image with a black background and N identical
white disks spread all over the image, where N is much greater than 20.
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Sky Tree Road Grass Water Building Mountain Foreground Total
Random 65.7 51.4 80.2 56.3 74.6 66.0 39.9 44.8 60.6

Uncertainty 69.8 53.2 82.9 59.7 77.0 66.1 44.8 48.5 63.3
MCMC without prior 77.3 60.9 85.9 65.1 80.9 74.0 54.2 54.4 69.6

Prior alone 82.9 54.3 80.6 55.3 41.0 63.3 4.0 53.1 63.6
MCMC with prior 89.2 70.3 90.0 73.6 85.4 78.7 60.6 63.4 77.5

(c) Mean Dice score

Method Sky Tree Road Grass Water Building Mountain Foreground Total
Random 82.0 58.6 87.4 72.6 84.7 75.1 35.7 47.9 71.8

Uncertainty 89.9 62.3 92.0 78.9 90.5 76.4 55.2 55.3 75.9
MCMC without prior 92.7 70.7 92.7 83.4 92.8 82.4 70.4 62.3 81.8

Prior alone 90.8 63.7 90.1 69.2 23.8 75.0 0.0 56.9 74.4
MCMC with prior 94.6 77.1 94.0 87.9 93.2 84.7 73.3 68.8 85.4

(d) Median Dice score

Figure 5.4: Experimental results. (a) Evolution of the mean Dice score depending on
the number of questions that have been answered. (b) Distribution over images of the
Dice scores obtained after 20 questions. (c) and (d) Mean and median Dice score after 20
questions for each semantic label and in total. The Dice scores of segmentations generated
from the prior alone are also reported.

within the 20 questions becomes crucial and mostly a matter of luck. In this case, a more
efficient solution would be to show a highlighted area to the user and ask “Is the target
segmentation fully inside the shown area?”, i.e. conducting a spatial search instead of
the appearance-based one. If the answer is Yes, all the not highlighted pixels could be
added to the background seeds and the search space would be greatly reduced. However,
in general, a No provides less information since it would only state that at least one (un-
known) pixel of the object is outside the shown area. Hence, with our current state space,
this kind of questions suffers from the opposite problem: they are efficient to find small
objects, for which obtaining a Yes is likely, but poor at finding large ones. Beyond binary
segmentation between background and foreground, the prior knowledge about the object
of interest could be queried by asking “Is the object of semantic label c?”, and an interac-
tive multi-class semantic segmentation could also be considered by asking a question of
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(a) Input image (b) Forest prior (c) Without prior (d) With prior

Figure 5.5: Example of results with and without semantic prior knowledge. (a) Input
image, where the object of interest corresponds to the semantic label Road. (b) Pixelwise
probability distribution predicted by a random forest for the label Road. (c) Prediction af-
ter 20 questions for the MCMC method without semantic prior knowledge (Sec. 5.2). (d)
Prediction after 20 questions for the MCMC method where the semantic prior knowledge
about the label Road was introduced via the forest prediction (Sec. 5.3).

the form “Is the location p part of an object of semantic label c?”. With our seed-based
state space, all these types of questions have the drawback that a negative answer seems
difficult to leverage to constrain efficiently the future sampling iterations. The symmetric
aspect of the answers is mainly what motivated our location-based question type, but we
believe that our strategy could benefit from a combination of several types of questions
and could possibly be extended to other scenarios if the parametrization of the space of
segmentations is accordingly adapted.

The interactive segmentation of 3D scans no longer allows the use of geodesic distance
transforms in the sampling step due to the large size of the volumes. We suggested in
this context an alternative parametrization of the space of segmentations using both a
voxelwise prior probability and a prior on the shape of the object [Dubost et al., 2016].
Preliminary results were demonstrated for the segmentation of the prostate. This approach
also includes an adaptable term taking into account the fact that the prior probability
may not be reliable, and we believe that further works in this direction, together with
appropriate visualization techniques to display informative 2D views of the scan, would
be relevant for the application of our scenario to a clinical setting.



Conclusion

In this thesis, we proposed several contributions for image segmentation. In the first two
chapters, we exposed the concept of supervised learning and its application to the seman-
tic labeling of images, i.e the joint task of parsing an image into regions and identifying
their individual content. Among the existing learning techniques, we demonstrated how
the framework of decision forests can effectively segment natural scenes and medical im-
ages. In this context, we introduced a novel technique which allows a forest equipped
with Haar features to be trained in a scale-adaptive fashion. This easy-to-implement vari-
ant of the standard forest training does not add any computational cost at both training
and prediction stages and does not require any additional hyperparameter, and yet con-
sistently demonstrated improvements on computer vision and medical datasets. Given its
simplicity and the popularity of the combination of Haar features with decision forests
in the medical field, we hope that this alternative will be tried on other applications and
that it will result in a possibly small but in any case costless step towards more accurate
segmentation predictions.

Although a fully automated system showing consistent human-level performance is
naturally desirable in most applications, reaching this level of accuracy and reliability is
a very challenging task in practice. In fact, we believe that many scenarios do not neces-
sarily require a fully automatic system and may instead benefit from hybrid approaches
combining learned models with human interactions. Keeping a human user in the loop
offers, for example, clear advantages in terms of flexibility and guarantees at the same
time a reassuring visual check of the outcome. We considered two situations where stan-
dard interactive segmentation techniques do not apply and where a learned forest model is
used as a support for the interactions. In the field of digital pathology, the large size of the
acquired slides renders the localization of the objects of interest difficult for a clinician so
that a large amount of time is spent in the search for the objects themselves in addition
to their delineation. We introduced a method building on an learned segmentation model
which iteratively selects and displays regions of the slide likely to contain the objects of
interest. Beyond the facilitated exploration of the slide, we introduced an adaptive com-
ponent allowing the pathologist to report the actual revelance of the suggested regions
to update the underlying forest model. Several levels of interaction were discussed, in-
cluding one-click inputs which were experimentally shown to guarantee an exploration
stage of the same quality as with accurate delineations. Further in the direction of min-
imal user interactions, we finally introduced a scenario where interactive segmentation
is seen as a Twenty Questions game. In this scenario, the user only communicates with
the machine via binary ‘Yes/No’ answers, with potential applications to hands-free seg-
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mentation. We showed that, in addition to its use as a generic interactive segmentation
tool, our approach can also be successfully used to correct the output of a learning-based
segmentation method.

With the work presented here, we hope to have proposed a generic contribution to
the fully-automated segmentation scenario with our adaptive sampling of Haar features
in the training of random forest, but also to have emphasized the practical interest behind
keeping a user in the loop in the application of automatic methods. Future directions
of work that we believe to be promising include the natural limitations of supervised
learning which prompt the development of active learning methods to label data more
efficiently, of transfer learning techniques to handle slight variations in terms of domain
or task, or of strategies to combine labels from several annotators (e.g. in crowdsourcing
situations). Beyond these challenges which were already discussed in Sec. 3.1, a key
aspect that we have not mentioned yet is the quality of the learned probabilities. Usually,
or at least in the case of segmentation, learning techniques are often evaluated based on
the final pixelwise label decision only. However, accurate estimates of the uncertainty
of the label of each pixel can be of great interest, for instance in quantification settings
like the one encountered in histopathology (Chapter 4). Improving the calibration of
probabilities [Niculescu-Mizil and Caruana, 2005] and the field of metalearning [Lemke
et al., 2015] are possible directions towards better estimates of the reliability of a learned
model. Finally, image segmentation is often only an intermediate step to estimate another
quantity which is relevant for the considered application, such as the size of an object.
This final objective (and, therefore, the measure used to evaluate the accuracy of the
entire pipeline) could be introduced earlier in the learning process. First insights on this
aspect were provided in our discussion on class balancing (Sec. 2.1.7). For example,
attempts at a direct optimization of the Jaccard index in a segmentation context were
proposed [Nowozin, 2014, Ahmed et al., 2015]. If a visual check is no longer necessary,
segmentation-free methods could even be considered to predict directly the final output
using regression [Wang et al., 2014, Zhen et al., 2015].



Appendix A

Integral Images and Volumes

We expose here in details how the quick computation of Haar-like features can be imple-
mented [Viola and Jones, 2004]. We here consider the case of a 2D image defined over the
regular lattice ΩI = {1, . . . , wI}×{1, . . . , hI}. Consider the notations defined in Fig. A.1,
where u1, u2, v1, v2 are integers so that 1 ≤ u1 < u2 ≤ wI and 1 ≤ v1 < v2 ≤ hI and
where the objective is to compute the average of intensities defined by these coordinates,
i.e. the quantity

1

(u2 − u1 + 1) (v2 − v1 + 1)

∑
u1≤u≤u2
v1≤v≤v2

I(u, v). (A.1)

The critical part of this computation is the sum over the gray rectangle. To make this
computation easily tractable for any choice of u1, u2, v1 and v2, we first build the integral
image Ĩ of I as the image of dimensions (wI + 1)× (hI + 1) defined as:

∀u ∈ {1, . . . , wI + 1} Ĩ(u, 1) = 0

∀v ∈ {1, . . . , hI + 1} Ĩ(1, v) = 0

∀(u, v) ∈ {2, . . . , wI + 1} × {2, . . . , hI + 1} Ĩ(u, v) =
∑

1≤u′<u
1≤v′<v

I(u′, v′).

In practice, Ĩ can be built in one pass over the image I by initializing to 0 the two known
edges and using the following identity:

Ĩ(u, v) = I(u− 1, v − 1) + Ĩ(u− 1, v) + Ĩ(u, v − 1)− Ĩ(u− 1, v − 1). (A.2)

Once the integral image Ĩ is precomputed, the sum appearing in Eq. A.1 can be computed
in exactly 4 accesses to the integral image via the identity∑
u1≤u≤u2
v1≤v≤v2

I(u, v) = Ĩ(u2 + 1, v2 + 1)− Ĩ(u2 + 1, v1)− Ĩ(u1, v2 + 1) + Ĩ(u1, v1). (A.3)

In the 3D case, i.e. where the region of interest becomes a cube defined by 6 co-
ordinates u1, u2, v1, v2, z1 and z2, the process is similar. Two equations are not en-
tirely straightforward to rewrite: the computation of the integral volume in one pass over
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u1 u2

v1

v2

I

Figure A.1: By computing the integral image Ĩ of an image I , the computation of the sum
(and mean) of intensities within any rectangular region of I can be efficiently conducted.

the volume (Eq. A.2) and the computation of the sum by accessing the integral volume
(Eq. A.3). The first is obtained similarly by initializing to 0 the three known edges of the
volume (i.e. the planes defined by u = 1, v = 1 and z = 1 respectively) and using the
following recursive relationship:

Ĩ(u, v, z) = Ĩ(u− 1, v − 1, z − 1)

− Ĩ(u, v − 1, z − 1)− Ĩ(u− 1, v, z − 1)− Ĩ(u− 1, v − 1, z)

+ Ĩ(u− 1, v, z) + Ĩ(u, v − 1, z) + Ĩ(u, v, z − 1)

+ I(u− 1, v − 1, z − 1).

(A.4)

Once the integral volume is precomputed, the 3D equivalent of Eq. A.3 is∑
u1≤u≤u2
v1≤v≤v2
z1≤z≤z2

I(u, v, z) = Ĩ(u2 + 1, v2 + 1, z2 + 1)

− Ĩ(u1, v2 + 1, z2 + 1)− Ĩ(u2 + 1, v1, z2 + 1)− Ĩ(u2 + 1, v2 + 1, z1)

+ Ĩ(u2 + 1, v1, z1) + Ĩ(u1, v2 + 1, z1) + Ĩ(u1, v1, z2 + 1)

− Ĩ(u1, v1, z1).

(A.5)

More details on these results, including generalizations to higher dimensions, can be
found in Tapia [2011].
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