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Abstract 

For several years now, terrestrial laser scanning (TLS) has been applied to metrology in geodesy 

and survey engineering. Since TLS is able to determine the spatial coordinates of a remote 

object using laser light and can obtain a huge high-resolution three-dimensional (3D) data set 

for an object of interest from just a single scan, it has become a standard surveying procedure 

in architecture, engineering, and construction, with a wide range of applications.  

However, the application of TLS has some limitations. On the one hand, information from TLS 

is always expressed as a vast point cloud of 3D coordinates with a relatively random distribution 

on the scanning object’s surface, and therefore it is not possible to extract the exact coordinates 

of a position of interest directly from the raw point cloud. On the other hand, the accuracy of 

TLS results is limited by a variety of factors, including uncompensated instrument biases, target 

surface structure and material properties, atmospheric effects, residual deviations of point cloud 

registration, among others. Thus, the first two objectives of this thesis focus on target 

identification and calibration in TLS. These two steps belong to the pre-processing of the point 

cloud. In the second half of this thesis, I will be concerned with post-processing of point clouds 

and the application of TLS. The topic most often discussed with regard to point clouds is 3D 

reconstruction (e.g., the digital city). The key technique in this area is rigid registration of point 

clouds (i.e., the assumption that two or more 3D point clouds are related by a rigid 

transformation). The goal of rigid registration is to align two or more point clouds that have 

been captured from different scanning perspectives. This thesis will go into the issue of rigid 

registration and provide a new algorithm to carry out this process. The final objective in this 

thesis is non-rigid registration. This is one of the state-of-the-art approaches in the post-

processing of point clouds and has real potential for enabling TLS to handle the problems of 

deformation monitoring. Specifically, in this chapter of the thesis, deformation related 

information is not based on a single point from different epochs. Moreover, based on non-rigid 

registration, a real 3D deformed model can become a reality, with the ability to provide clear 

benefits compared with the 2.5D deformed models used in recent projects. 

This dissertation is based on four scientific publications, which have been framed by an 

introduction and a concluding chapter. Publication 1 focuses on target identification in TLS. In 

this paper, we investigate the use of normal information from all kinds of scanners to calculate 

the center of a target. In order to verify the generality of the results, we exploit A4 paper targets 

in the tests, instead of the special material targets supplied with particular brands of scanners. 

Publication 2 describes TLS calibration. Based on a systematic error model and a stochastic 
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model, we derive different criteria for estimating the precision of each additional parameter, as 

well as correlations between parameters. After having generated such criteria, we search for 

different configurations to satisfy these requirements. Publications 3 and 4 concentrate on 

registration issues. Rigid and non-rigid cases are discussed separately in these papers. In the 

rigid case, we provide a variant least squares 3D surface-matching algorithm to deal with 

different kinds of observational errors in both source and target point clouds and further reveal 

the possibility of analyzing the error behavior of each point cloud. In the non-rigid case, we 

display the potential of the four-point congruent set algorithm to generate correspondence from 

deformed surfaces. An automatic method to execute non-rigid registration is proposed in 

publication 4, in which we further show the potential of the proposed method for 3D 

reconstruction and deformation monitoring. 
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Zusammenfassung 

Terrestrisches Laserscanning ist bereits seit einigen Jahren eine anerkannte Messmethode in 

der Geodäsie und im Bereich der Ingenieurvermessung. Da es sich dabei um eine Technik 

handelt, die mit Laserlicht die räumlichen Koordinaten interessierender Objekte aus der Distanz 

erfassen und mittels eines einzigen Scans große, hochaufgelöste 3D-Datensätze erzeugen kann, 

ist das terrestrische Laserscanning heute eine Standard-Vermessungsmethode in Architektur, 

Ingenieurwesen und Bausektor mit einem großen Spektrum an Anwendungen. 

Dennoch hat die Anwendung des terrestrischen Laserscannings einige Einschränkungen. Zum 

einen bestehen die Daten der Laserscanner immer aus riesigen 3D-Punktwolken, welche auf 

der gescannten Objektoberfläche relativ willkürlich verteilt sind, so dass die Koordinaten 

eindeutig definierter Positionen von Interesse nicht unmittelbar aus den Rohdaten entnommen 

werden können. Zum anderen ist die Genauigkeit terrestrischer Laserscanner aufgrund einer 

Vielzahl von Faktoren beschränkt, wozu unkompensierte Instrumentenabweichungen, 

Oberflächenstruktur und Materialeigenschaften des Zielobjekts, atmosphärische Effekte, 

Restklaffungsabweichungen bei der Punktwolkenregistrierung und andere gehören. Daher 

fokussieren die ersten beiden Zielstellungen dieser Arbeit auf der Bestimmung von Zielpunkten 

und auf der Kalibrierung beim terrestrischen Laserscanning (TLS). Diese zwei Schritte gehören 

zur Vorprozessierung von Punktwolken. Die zweite Hälfte dieser Arbeit wird sich mit der 

Nachprozessierung von Punktwolken und TLS Anwendungen beschäftigen. Das populärste 

Thema im Bereich der Punktwolken ist die 3D-Rekonstruktion, z.B. in digitalen Stadtmodellen. 

Die entscheidende Vorgehensweise ist dabei die Starrkörperregistrierung von Punktwolken (d.h. 

es wird angenommen, dass zwei oder mehr 3D Punktwolken durch eine 

Starrkörpertransformation in Beziehung gesetzt werden können). Das Ziel der 

Starrkörperregistrierung ist es, zwei oder mehr Punktwolken unterschiedlicher 

Scanperspektiven zusammenzuführen. Diese Arbeit wird die Aufgabenstellung der 

Starrkörperregistrierung aufnehmen und einen alternativen Algorithmus für die Ausführung 

dieses Vorgangs präsentieren. Das letzte Ziel dieser Arbeit ist die Registrierung nicht-starrer 

Körper. Diese ist eine der modernsten Technologien in der Nachprozessierung von 

Punktwolken, die für das terrestrische Laserscanning echtes Potenzial zur Behandlung von 

Deformationsüberwachungsaufgaben birgt. Die Ableitung eines Einzelpunkts aus einer 

Rohdaten-Punktwolke im TLS ist nämlich unsinnig, da die Deformation hier nicht mehr über 

einen Einzelpunkt an einer definierten Position repräsentiert wird, sondern über eine beliebig 

gelagerte Oberfläche. Darüber hinaus wird durch eine nicht-starre Registrierung ein echtes 3D-

Deformationsmodell möglich, welches klare Vorteile gegenüber den 2,5D-Modellen 

gegenwärtiger Projekte hat. 
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Diese Dissertation gliedert sich in sieben Kapitel. Am Anfang wird eine Einführung in die 

Arbeit gegeben. Die Motivation, in Beziehung stehende Arbeiten und Beiträge werden im 

ersten Kapitel kurz vorgestellt. Danach werden die wichtigsten Werkzeuge eingeführt, die in 

den späteren Abschnitten verwendet werden. In diesem Kapitel werden auch ausschlaggebende 

Formulierungen und Definitionen festgesetzt. Kapitel 3 fokussiert auf der Identifizierung von 

Zielpunkten. Dabei sollen gebräuchliche Informationen genutzt werden, die von allen Arten 

von Scannern erfasst und zur Berechnung von Zielmarkenzentren verwendet werden können. 

Um sicherzustellen, dass der Ansatz allgemeingültig ist, werden in den Untersuchungen A4-

Papier-Zielmarken verwendet anstatt spezieller, auf die jeweilige Scannermarke 

zugeschnittener Zielzeichen aus speziellen Materialien. Kapitel 4 beschreibt die Kalibrierung 

terrestrischer Laserscanner. Basierend auf einem Modell systematischer Fehlereinflüsse und 

einem stochastischen Modell werden verschiedene Kriterien zur Beurteilung der geschätzten 

Präzision und Korrelationen nach einer Kalibrierung abgeleitet. Nachdem diese Kriterien 

festgelegt worden sind, werden verschiedene lokale optimale Konfigurationen untersucht, die 

diese Anforderungen erfüllen. Ein Hauptzweck dieses Kapitels ist es, dass die Ergebnisse einer 

Kalibrierung durch einen festen Satz an Parametern beschrieben werden können. Kapitel 5 und 

6 konzentrieren sich auf Registrierungsaufgaben in Starrkörper- und Nicht-Starrkörper-Fällen. 

Für den Starrkörperfall wird eine neue Variante eines 3D-Oberflächen-Matchingalgoritmus auf 

Basis der Kleinsten Quadrate gezeigt, welche verschiedene Arten von Beobachtungsfehlern 

sowohl in den Quell- wie in den Zielpunktwolken behandelt; außerdem wird dessen Fähigkeit 

aufgezeigt, das Fehlerverhalten jeder Punktwolke nach der Registrierung zu analysieren. Im 

nicht-starren Fall wird das Potenzial einer Variante des 4-Point Congruent Set – Algorithmus 

(4PCS) gezeigt, Beziehungen einer Original-Oberfläche zu ihrer deformierten Oberfläche zu 

erzeugen. Eine automatische Methode zur Durchführung einer nicht-starren Registrierung wird 

in diesem Kapitel vorgeschlagen. Schließlich folgen am Ende der Arbeit eine 

Zusammenfassung und ein Ausblick.
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Chapter   1 

Introduction 

The exploitation of three-dimensional (3D) information is one of the key techniques in the 

recent digital age. For example, when attempting to provide an accurate representation of the 

surface of an object, it is necessary to efficiently obtain a huge amount of 3D data. Terrestrial 

laser scanning (TLS) is an exact technique that determines the spatial coordinates of a remote 

object using laser light, and its high resolution allows TLS to acquire a huge 3D data set from 

just a single scan of the target object. Furthermore, in the fast-paced laser scanner market, the 

capabilities of instruments are continually improving, including with regard to accuracy, 

resolution, and speed. All of these aspects have made TLS an increasingly popular technique 

in the fields of geodetic engineering and geo-information.   

However, the limitations of TLS have also recently become obvious. First and foremost, the 

data from TLS cannot be directly exploited for projects. Both pre- and post-processing are 

necessary steps for each program when it needs to handle a raw point cloud. Second, since 

information from TLS is always expressed as a huge point cloud of 3D coordinates with a 

relatively random distribution on an object’s surface, the density of point clouds decreases with 

distance, leading to an uneven point distribution, so that it is difficult to extract a specific 

position from a point cloud. Moreover, because of the working principle on which laser 

scanners are based, it is not feasible to reach the same accuracy as with a total station in terms 

of a specific position. However, information on a specific position is always key for a 

measurement project (e.g., to generate control points and subsequently establish a network). 

Last, but not least, the quality of point clouds from laser scanners is limited by a variety of 

factors, including uncompensated instrument biases, target surface structure and material 

properties, atmospheric effects, and others.  

Although the aforementioned limitations remain in TLS applications, the potential of TLS in 

geodetic engineering and geo-information is also obvious. In this digital age, 3D digital models 

are becoming more and more frequently used. One of the most popular applications of TLS is 

in 3D reconstruction. The huge amount of data from a single scan gives TLS the capability to 

provide greater detail about an object’s surface by using 3D coordinate information than any 

traditional measurement instrument, such as a total station. Point cloud registration is one of 
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the most important techniques in 3D reconstruction. This allows one to match point clouds of 

a scanned object from different perspectives in order to obtain a complete 3D model of the 

object. Usually, a scanned object is stationary (or nearly so) and so its surfaces are fixed. It is 

therefore necessary to move a laser scanner to different places around the object when capturing 

scanning data in order to avoid some parts being blocked by others, which would occur when 

scanning from a single perspective. In rigid registration, the point clouds need only be subject 

to a rigid-body transformation and be aligned with each other based on the correspondences in 

their areas of overlap. However, scanned objects are not always stationary and may have 

different orientations or different degrees of deformation at different epochs, with the result that 

it may not be possible to align two corresponding point clouds by a rigid-body transformation. 

In order to deal with these issues, non-rigid registration of point clouds has become an important 

area of research in TLS. 

Overriding research questions. Taking into account the aforementioned limitations on TLS 

and its applications, this thesis looks into recent developments aimed at further advancing the 

TLS technique. The exploration of TLS here will be focused on the fields of geodetic 

engineering and geo-information, as was done in the early days of computer vision. In this 

context, it asks the following questions: 

1. Is there a general technique to extract target centers from raw point clouds to represent 

specific positions?  

2. Can we predict a feasible configuration to complete the calibration of a laser scanner to 

provide the expected results?  

3. Can we register point clouds that are captured by different sensors and then further 

separately carry out a precision assessment for each sensor after an adjustment?  

4. Can we align two point clouds that are obtained from different epochs when the scanned 

object within the overlapping scan areas has different deformation in different epochs?  

This thesis will address these four questions in turn, in preparation for employing TLS 

technology for deformation monitoring. 

1.1   Motivation 

As already mentioned, this thesis focuses on TLS in the areas of geodetic engineering and geo-

information. Therefore, we attempt to answer the above questions from the point of view of 

measurement and derive further motivation for our research. 

Question 1: Is there a general technique to extract target centers from raw point clouds to 

represent specific positions? 
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Recent commercially available laser scanners for TLS always have specific dedicated software 

for extracting an artificial target center from a raw point cloud. The algorithm for target center 

extraction is a black-box, thus users will typically use the accompanying targets supplied by the 

scanner manufacture such that to obtain sufficient accuracy. But, users do not choose 

accompanying targets all the time but have a limited number available because as a rule those 

targets are always expensive.  Moreover, those accompanying targets are not easy to install at 

some special places e.g. a roof. So, this a bottleneck in the TLS applications i.e. the accuracy 

of target center extraction mainly relates to the special targets and accompanying algorithm. 

Although recently more and more research has come to focus on the use of natural landmarks 

instead of artificial targets to avoid limitations imposed, for example, by a lack of information 

regarding scanner programming, this has led to a decrease in accuracy.  

Considering the above limitations, we attempt here to investigate a general extraction approach 

for artificial targets in which no specific detailed information on the core aspects of the 

instrument’s processing system is needed, nor are there any restrictions placed on the material 

composition of the target object. If the above expectations can be satisfied, then the approach 

presented here will have the two important properties of universality and repeatability, which 

means that we can apply the same algorithm with different brands of scanner. 

The throughout results of this question is presented with permission from X. Ge and T. 

Wunderlich 2015. Target Identification in Terrestrial Laser Scanning. Survey Review, vol. 

47, pp. 129-140. 

Question 2: Can we predict a feasible configuration to complete the calibration of a laser 

scanner to provide the expected results?  

Improve the qualities of the raw point clouds is a key method to significantly improve the 

accuracy of the TLS technique. Calibration is a powerful approach to doing this and is therefore 

currently attracting great interest. Scanners can be calibrated by component calibration or by 

system calibration. In this thesis, we are particularly interested in system calibration. In recent 

years, there has been much research on TLS system calibration and many valuable results have 

been obtained. However, so far, no specific rules have been given for predicting and assessing 

whether the accuracy of the additional parameters (APs), i.e. the adding parameters to model 

the biases of scanner measurements, obtained with a particular calibration point field and 

measurement set up is sufficient. In other words, there is no general rule to judge whether the 

calibration results can make the effect of instrumental biases negligible compared with other 

effects. Moreover, as far as we know, there are no specific research results providing guidance 

for users about how to establish their own point field and to execute their own calibration in 

order to obtain their expected results with minimal effort. 
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Taking into account the above requirements, this thesis attempts to fill this gap by proposing a 

criterion for relating predictable quality indicators to application requirements and by deriving 

related configuration requirements for the point field and scanner setup. After generating such 

a criterion and configurations, users can rely on the presented rules and guides to establish their 

own point field and then execute a system calibration. As mentioned above, the greatest benefit 

of such a point field is that the results of the calibration can then be predicted. 

The throughout results of this question is presented with permission from X. Ge, A. Wieser 

and T. Wunderlich. Configuration Requirements for Terrestrial Laser Scanner 

Calibration within a Point Field. Submit to the journal of IEEE Transactions on 

Geoscience and Remote Sensing. 2016. Under review. 

Question 3: Can we register two kinds of point cloud that are captured by two different sensors 

and then further assess the behavior of each kind of residual after adjustment? 

Point cloud registration is one of the most important techniques in 3D reconstruction. In the 

early days, this topic was mostly explored in the field of computer vision. However, with rapid 

advances in its performance capabilities, TLS is currently attracting great interest also in 

geodetic engineering and geo-information. For computer vision, the primary concern with 

regard to registration is the need to align two point clouds accurately and quickly, whereas in 

geodetic engineering and geo-information, it is also desired to assess the registered point clouds 

after adjustment. In recent research, stochastic models have usually been employed to reflect 

the properties of observations, but there has been little discussion about how to assess precision 

if the registered point clouds are captured by different sensors. This means that the source and 

target point clouds may be captured by different sensors with different properties (e.g., different 

resolutions, different scales, and different degrees of precision). 

Taking into account the limitations and the requirements of TLS in the field of measurement, 

we attempt in this thesis to address the above problems. The algorithm presented here allows 

the exploration of different properties of different kinds of observations; moreover, it is possible 

to envisage multi-source data fusion in point cloud registration. 

The throughout results of this question is presented with permission from X. Ge, and T. 

Wunderlich 2016. Surface-based matching of 3D point clouds with variable coordinates 

in source and target system. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 

111, pp. 1-12. 

Question 4: Can we align two point clouds that are obtained from different epochs when the 

scanned object has different orientations in each epoch? 

Registration techniques can be classified as either rigid registration or non-rigid registration. 

As already mentioned, in rigid registration, the scanned objects are not deformed, so the goal is 

to find a six degrees of freedom (DoF) rigid-body transformation between two scans. However, 
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in measurement projects, the hypothesis of rigid registration (i.e., that the scanned object is 

stationary) does not always hold; i.e., the scanned object may undergo deformation and may 

have different orientations at different epochs. Generally, in the context of measurement, we 

classify these issues as deformation monitoring. In computer vision, the technique for dealing 

with registration problems arising from deformed point clouds is called non-rigid registration. 

Even in the relatively advanced field of computer vision, this procedure is still in its infancy, 

but, nevertheless, in this thesis, we shall attempt to introduce a non-rigid registration technique 

into deformation monitoring. In geodetic framework and/or measurement field, the rigid 

registration is primarily used to transform non-overlapping parts of point clouds into a public 

coordinate system using the overlapping parts. While, the non-rigid registration is used to assess 

changes within the overlapping parts and has no use whatsoever for non-overlapping parts. 

Given the absence of such techniques in the field of measurement, we shall try to present a 

reasonable algorithm for handling non-rigid registration cases. Specifically, we want to 

introduce more geo-reference information (e.g., control points in a control network) into the 

approach in order to improve the precision of registration. Furthermore, we shall use a real 3D 

model to reflect deformation information from a terrestrial laser scanner. 

The throughout results of this question is presented with permission from X. Ge, 2016. Non-

rigid registration of 3D point clouds under isometric deformation. ISPRS Journal of 

Photogrammetry and Remote Sensing, vol.121, pp.192-202. 

1.2   Contributions 

In this thesis, we will discuss the use of TLS for measurement. Specifically, we attempt to 

introduce TLS techniques into deformation monitoring and address some specific issues. 

Subsequently, we will answer the question of what the proposed approach can be used for. 

Technically, after solving the first question raised in Section 1.1, we will obtain a general 

approach for extracting target centers from raw point clouds. No specific or core information 

on particular scanners is required and there are no specific requirements on target material, so 

users of this technique should be able to obtain target centers from raw point clouds with 

different brands of scanners without the need for dedicated software. Moreover, based on the 

general approach presented here, users can objectively compare different brands of scanners. 

The point-field calibration approach presented here gives users the possibility of obtaining 

expected results with a given configuration. First of all, users can find reasonable rules to adjust 

the precision of a given estimated parameter in order to make bias negligible. Second, they can 

establish a particular point-field to execute calibration within a given subset of APs and then to 

obtain the expected precision of estimated APs.  
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To solve the third question posed in Section 1.1, we propose a Gauss–Helmert least squares 3D 

matching approach. The proposed approach not only allows users to align two overlapping 

point clouds effectively, but also provides the capability to assess the registered point clouds. 

With the proposed approach, the properties of different kinds of captured data can be fully 

considered in the calculation, thus providing further possibilities for users to handle multi-

source data fusion. 

Finally, we extend the TLS technique to deformation monitoring. We propose a novel 

combination approach to the solution of deformation issues by using a non-rigid registration 

technique within point clouds. Users can employ the proposed approach to effectively align two 

deformed point clouds. Moreover, geo-reference points can be introduced into the adjustment. 

Users can also obtain real 3D information, i.e., 3D translations and three rotation angles (e.g., 

Euler angles), instead of just 2.5D information on deformation. 

In summary, this thesis proposes four different approaches in an attempt to address a number 

of questions arising in the application of deformation monitoring by TLS. Users can employ 

the method proposed here to solve a number of issues ranging from data quality to data 

registration. 

1.3   Related work 

In this section, we discuss the development of the proposed technique for TLS and briefly 

introduce the concepts and experimental realization of the proposed approaches. In order to 

allow readers to trace different references to the corresponding topics, we will divide this 

section into four subsections based on the four questions posed in Section 1.1. To begin each 

subsection, links to important literature will be given and then the key ideas of the proposed 

approach will be introduced, following which we will briefly describe our experiments on each 

topic. 

1.3.1   Target identification 

Research on target identification is divided into two categories, namely, specific target 

detection and extraction of a target center. After detecting an artificial target, an appropriate 

extraction program is employed to calculate the center of the target. Specific target detection 

deals with recognizing a particular example of an object (e.g., an HDS target) from a raw point 

cloud. The goal of extracting a target center is to calculate the coordinates of an artificial target, 

and, in most situations, this calculation is based on the results from the detection technique. In 

this thesis, we shall not consider the former technique but will concentrate on the extraction of 

a target center. 
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There are many valuable results in the early literature regarding the topic of target center 

extraction. Lichti et al. (2002) proposed three radiometric approaches based on intensity to 

define the target center respectively as the position with the maximum radiance, the radiometric 

center of the four strongest returns, and the radiometric center of all returns. All these 

approaches are based on the assumption that the maximum intensity is recorded from the target 

center. This assumption is also made in target design (Reshetyuk, 2009). However, it is violated 

at non-normal incidences because the recorded intensity falls off with increasing beam 

incidence angle. This will cause the function of automatic target recognition in the scanning 

software to fail, with a consequent loss of the target center. In later work, the third method 

(Lichti et al., 2002) was shown to perform better than the other two; however, it cannot render 

reliably accurate results. Valanis and Tsakiri (2004) evaluated the above-mentioned approaches 

for a Leica HDS 2500 scanner. They employed the c-means method to extract the target center, 

and the results that they described were better than those obtained by previous methods. The 

precision of a derivative target center can be estimated using the error propagation law in the 

least square adjustments. Lichti and Gordon (2004) presented an alternative estimate of the 

precision of the target center by introducing the angular position. One thing that should be 

pointed out here is that the precision of the target center position depends not only on the 

algorithm used for the extraction but also on the point-cloud quality. However, in order to 

independently investigate the performance of the proposed extraction algorithm, we shall 

assume here that the quality of the point clouds is sufficient. Interested readers can find further 

information regarding this topic in Thiel and Wehr (2004), Lichti et al. (2005), Gordon (2005), 

Boehler and Marbs (2005), and Schulz (2008). 

Taking into account the requirement of the proposed approach raised in the first question in 

Section 1.1 and combining this with results from the early literature, we only employ common 

information, i.e., coordinates and intensities, to calculate the target center. In terms of geometric 

shape, spheres and quadrant planes are the principal artificial targets currently used in TLS; see 

Figure 1.1a and 1.1b, respectively. From the point of view of ease and economy of use in a real 

scanning project, the plane form is better than the spherical one. Moreover, in order to make 

the proposed algorithm more general, we used A4 paper targets (Figure 1.1c) in our experiments, 

rather than the target supplied with the scanner and shown in Figure 1.1b. This also has a benefit 

in terms of cost, given that the latter targets are relatively expensive and a large number may 

be needed in a real scanning project. 

The main idea of the proposed method is to accurately find two cross lines in a target point 

cloud and then calculate the intersection to represent the target center. In a real scanning project, 

the scanner beams are not always perpendicular to targets, with the result that there is an 

incident angle from the scanner to a given target (see Figure 1.2a). Therefore, we simulated 

different incidence angles in our experiments by using special equipment (see Figure 1.2b) to 

ensure that our approach is effective in different cases.   
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  (a)       (b)             (c) 

Figure 1.1 Different artificial targets for TLS: (a) a sphere target; (b) a quadrant plane target; (c) an A4 paper quadrant plane 

target. 

            

   (a)                                                                          (b) 

Figure 1.2 (a) Incident angles in a scanning project. (b) Equipment for simulating different incidence angles in our experiments. 

 

1.3.2    Calibration 

In TLS, calibration of a scanner can be defined as estimation of the parameters of a deterministic 

model of scanner biases in order to mitigate these biases and their effect on the scanning results. 

So far, calibration has been concerned with the determination of instrumental errors, i.e., 

discrepancies between the real instrument and an ideal instrument due to mechanical 

imperfections (Schulz, 2008). As already mentioned, scanners can be calibrated by component 
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calibration or by system calibration. Figure 1.3 shows the calibration procedures. In component 

calibration we need to separately detect the errors in the distance and angle measurement system 

respectively. Moreover, instrumental error, which is caused by the behindhand manufacture, 

should also be detected independent in this case. Furthermore, some external factors e.g. 

environment should be investigated as non-instrumental error in component calibration. In 

system calibration, mathematical models are introduced to model the errors in scanner 

measurements. Parameters, which can be divided into physically interpretable and empirically 

interpretable elements (Lichti, 2007), are used to model and mitigate the deviations of TLS 

measurements are all determined together within one calibration process.  

 

Figure 1.3 Calibration of terrestrial laser scanners. 

 

In component calibration, precise knowledge of the individual system components and their 

respective error contributions is required (Schulz, 2008). However, this knowledge is often very 

limited owing to the proprietary design of the scanners. In addition, component calibration 

requires access to special facilities, such as a calibration track line, an electronic unit for 

frequency measurement, and stable and accurate control points, which may not be readily 

available to most users. More information regarding scanner calibration by means of component 

calibration can be found in Schulz (2008). In order to further learn about component calibration 

and check the accuracy of our Leica HDS 7000 laser scanner, some experiments were 

performed in our geo-laboratory. Figure 1.4a shows the calibration of the scanner distance 

measurement. The scanner was fixed on the calibration track line and a target was set up on a 

special base that could be moved along the track line to specific positions (see Figure 1.4b). 

Figure 1.4c shows a schematic diagram of this experiment. 
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        (a)                                                               (b) 

 

(c) 

Figure 1.4 Component calibration for distance measurement. (a) Equipment for calibration of distance measurements. (b) 

Equipment for setting the target at a specific position. (c) Schematic diagram of the experiment. 

 

The angular measurement system of our laser scanner was also calibrated based on component 

calibration in our geo-laboratory. Five targets were distributed around the scanner in a near-

circular arrangement (see Figure 1.5a). In order to avoid the influence of vertical angles, all the 

targets were installed on pillars or tripods and approximately at the same horizon. A laser 

tracker target was fixed on the scanner and was used to check that the scanner was sufficiently 

leveled and to obtain reference values (see Figure 1.5b and 1.5c). 
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           (a)                                                                                    (b) 

 
                                    (c)                                                                                      

Figure 1.5 Component calibration for the angular measurements. (a) Schematic diagram of angular measurement calibration. 

(b) Schematic diagram illustrating how reference values were obtained using a laser tracker. (c) Equipment using a laser tracker.  

 

In this thesis, we will focus on system calibration in chapter 4. In system calibration, the 

parameters used to model and mitigate the deviations of TLS measurements are all determined 

together within one calibration process. In contrast to component calibration, knowledge of the 

scanner’s error model is not very important in system calibration. The error model can be 

established using some physical knowledge before calibration, and further corrections can be 

empirically derived during the calibration by a least squares adjustment. Therefore, system 

calibration can be exhaustively formulated so as to determine all the systematic errors of a 

scanner simultaneously with all the other system-related parameters. System calibration can be 

performed through self-calibration, and, because of its advantages (Lichti, 2007), this method 

has become a popular approach for TLS calibration in recent years. The problem of sensor 
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modeling (i.e., selection of an error model) is perhaps the most important one in TLS system 

calibration (Lichti and Licht, 2006). To date, most researchers have chosen the total station 

error model as the basis for TLS system calibration, because it operates similarly to a 

reflectorless total station. Thus, the most significant additional parameters (APs) are: 

 zero (𝑎0) and scale error (𝑎1) of the laser rangefinder; 

 collimation (𝑏1) and horizontal (𝑏2) axis errors; 

 vertical circle index error (𝑐0). 

Lichti (2007) has presented a group of synthesized error models in which the above errors are 

classified as physical APs because they have a definite physical interpretation. There are many 

other TLS error models; see, for example, Gordon and Lichti (2007), Holst and Kuhlmann 

(2014), and Hartzell et al. (2015). In this thesis, we base our investigation on the AP model 

introduced by Lichti (2007). However, we should point out that our approach can easily be 

applied using any other TLS error model. 

Lichti and others have published a series of papers on laser scanner self-calibration, discussing 

correlation sources and parameter decorrelation for both panoramic and hybrid scanners. 

Specifically, Lichti (2007) described the self-calibration of the FARO 880 scanner. The 

experiments were conducted during a period of over one year. Based on those experiments, 

Lichti analyzed the temporal behavior of the calibration parameters, the estimated precision of 

unknown parameters, and the relationships among unknown parameters. Lichti (2009) 

compared the performances in terms of precision and correlation of a panoramic scanner and a 

hybrid scanner and pointed out that the inclusion of at least two orthogonal scans (i.e. 𝜅𝑖+1 =

 𝜅𝑖 + 𝑛 ∗ 90°, 𝑛 = 1,2,3…) can decorrelate the 𝑏1 − 𝜅 angle (the tertiary rotation angle of the 

scanner exterior orientation) in a panoramic scanner but not in a hybrid scanner. In the same 

paper, Lichti also showed the influence of vertical angles far from the horizon on both precision 

and correlation. Lichti (2010) discussed correlation sources and their mitigation in TLS self-

calibration and showed that the inclusion of additional tilt angle observations is very important 

for reducing some correlations in both panoramic and hybrid scanners. Lichti et al. (2011), 

investigated the correlations in 𝑏1 − 𝜅  angle in a hybrid scanner and presented two useful 

methods to reduce such correlations: (i) independent observation of the 𝜅  angle and (ii) 

employing a modified function to remove the constant part of the model. Reshetyuk (2010) 

presented an approach in which all parameters of the model were additionally treated as 

observations with suitably chosen prior weights. This allows the inclusion of prior knowledge, 

reduction of correlations, and increased precision of the estimated parameters—provided that 

suitable prior values are available (e.g., from a previous calibration). Using certain AP models 

and stochastic information about the parameters of exterior orientation (EOs), Reshetyuk (2010) 
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succeeded in decorrelating APs and nuisance parameters even further. Here, we should point 

out that both the aforementioned self-calibration literature and the discussion in this thesis are 

concerned with point-based calibration. For plane-based calibration, interested readers can refer 

to Muhammad and Lacroix (2010), Glennie and Lichti (2010, 2011), Chen and Chien (2012), 

Gong et al. (2013), and Chan et al. (2015). 

Based on earlier methods and results, we carried out system calibration in our geo-laboratory 

(see Figure 1.5a) and also in the Dieter-Thoma-Laboratory (see Figure 1.5b) at TUM in order 

to have different scales for the calibration. 

 

 

            (a) 

 

(b) 

Figure 1.6 System calibration field for terrestrial laser scanners. (a) Geo-laboratory; (b) Dieter-Thoma-Laboratory. 
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As shown in Figure 1.6a and 1.6b, the targets that were used in the calibration appear to be 

randomly distributed around the calibration fields. Moreover, the procedure for carrying out 

each scan also seems to be arbitrary. Therefore, in this thesis, we attempt to determine a 

configuration that will guide users to install a limited number of targets at specific positions in 

a calibration field, as well as providing guidance to users about how to execute scans during 

calibration. Users can then obtain the expected precision of the estimated APs. 

1.3.3   Rigid registration  

 

Figure 1.7 Classification of approaches to registration. 

 

As already mentioned, the registration strategy can be divided into target-based registration and 

non-target registration. In target-based registration, at least three targets should appear in the 

area of overlap between two clouds of point sets. Based on those public targets alone, two point 

clouds can be aligned using calculated transformation parameters, i.e., 6 DoF (Reshetyuk, 2009). 

Although the advantages of target-based registration are clear (e.g., ease of computation), the 

negative aspects of such a strategy are also obvious. First of all, it is not always possible to 

distribute enough targets at ideal positions on an object’s surface; second, it is not economic 

and is inconvenient to install so many targets and keep them stable. However, robustness is 

poor when there is a limited number of targets. Therefore, in this thesis, we will be most 

interested in non-target registration. 

Figure 1.7 shows a classification of approaches to registration, from which we can see that non-

target rigid registration techniques can be further classified as either coarse or fine registration, 

depending on whether initial information is required. In coarse registration, the main goal is to 

compute an initial estimate of the rigid motion between two corresponding clouds of 3D points. 
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Chua (1997) presented a method of searching for correspondences using a point descriptor, i.e., 

a point signature method. Johnson (1997) presented a method of spin images. The main problem 

of the latter method is that the spin image depends strongly on the resolution of the method, 

and therefore Carmichael et al. (1999) proposed the use of a face-based spin image to solve this 

problem. Chung and Lee (1998) and Kim et al. (2003) proposed a registration algorithm based 

on principal component analysis. Tarel et al. (1998) proposed a method to estimate the motion 

between surfaces represented as a polynomial model. Feldmar and Ayache (1994) described 

the use of the principal curvature as an invariant characteristic of a point to search for 

correspondences. As scanning resolutions become higher and higher, and input raw point 

clouds potentially consist of millions of points, recent studies of coarse registration have placed 

more emphasis on registration of large-scale point clouds. To deal with such issues, feature 

points or lines, or even planes, are usually employed to execute coarse registration. In general, 

point features are most commonly used for point cloud registration. Böhm and Becker (2007) 

explored the application of the scale-invariant feature transform (SIFT) method to the automatic 

marker-free registration of TLS data. Rusu et al. (2008) presented a point-feature histogram 

(PFH) method for estimating a set of robust 16D features describing the geometry of each point 

feature locally in order to determine an approximate alignment. They later proposed the use of 

fast point-feature histograms (FPFH) (Rusu et al. 2009). Aiger et al. (2008) introduced a four-

point congruent set (4PCS) algorithm to execute coarse registration. Theiler et al. (2014) 

exploited 4PCS on key points extracted using a difference-of-Gaussians or Harris key point 

strategy. Mohammad et al. (2014, 2015) extended 4PCS to more general cases in which the 

four selected points no longer need to be coplanar. 

In fine registration, the goal is to obtain the most accurate solution possible. After making a 

higher-quality initial estimate to provide an initial value, fine registration is achieved by using 

a sufficient overlap of the point clouds in different datasets and minimizing the sum of squares 

of the distance between the temporarily corresponding points in each iteration. The most 

popular approach to solving this problem is the iterative closest point (ICP) method (Besl and 

McKay, 1992; Zhang, 1994; Chen and Medioni, 1991, 1992). Although ICP is a powerful 

algorithm for non-target rigid registration even in the presence of Gaussian noise, it has obvious 

drawbacks; for example, its time efficiency is low and it can easily fall into a local minimum 

(Fusiello et al., 2002; Gruen and Acka, 2005; Salvi et al., 2007). Taking account of those 

shortcomings, some modifications of ICP have been presented. Trucco et al. (1999) used the 

least median of squares approach to increase the robustness of ICP. Greenspan and Godin (2001) 

exploited the nearest-neighbor problem to facilitate the search for closest points. Rusinkiewicz 

and Levoy proposed to solve the least squares problem by using a generic nonlinear method 

(e.g., Levenberg–Marquardt) in ICP. Jost and Hugli (2002) presented a multi-resolution scheme 

ICP algorithm. Sharp et al. (2002) presented an ICP method using invariant features. Zinsser et 

al. (2003) introduced a robust method based on outlier thresholds known as the picky ICP 
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algorithm. Low (2004) introduced a fast algorithm to solve fine registration, namely, linear least 

squares optimization for point-to-plane ICP. Another powerful approach used to complete 3D 

surface matching originates from the least-squares matching (LSM) technique (Gruen, 1984, 

1985a; Ackermann, 1984; Pertl, 1984). Surface patch matching in photogrammetry was first 

resolved by Gruen (1985a) using this technique. Gruen (1985b) introduced multiple patch 

matching with 2D images using the LSM technique. Gruen and Acka (2005) presented a least 

squares 3D (LS3D) surface matching approach. Akca (2010) enhanced the LS3D approach in 

terms of computational cost. Grant et al. (2012) presented a point-to-plane (P2P) approach that 

is formulated using the general least squares adjustment model and in which the stochastic 

properties of both scanned points are utilized during the calculation. 

Keeping the third question from Section 1.1 and the purpose of registration in mind, we 

developed a Gauss–Helmert least squares 3D matching approach to handle different kinds of 

data. The full information about observations is feasibly employed to improve the accuracy of 

the alignment and provides the capability of analyzing the behaviors of each kind of residual. 

We carried out both indoor and outdoor experiments to verify the proposed approach. Both 

scanning projects are concerned with close-range scanning. Two different brands of scanners 

(a Leica HDS7000 and a Rigel scanner) were used. Figure 1.8a shows the program for scanning 

a statue from two perspectives. From the figure, we can see that there exists an area of overlap 

between two scans (the red and blue areas represent the left and right views, respectively), 

which is necessary for non-target registration. Figure 1.8b shows the actual scanning scene.  

 

                             

                                   (a)                                                                            (b) 

Figure 1.8 Indoor experiment for rigid registration. (a) Scanning from two perspectives. (b) Actual scanning scene. 
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1.3.4   Non-rigid registration  

As Figure 1.7 shows, depending on the properties of deformations, non-rigid registration can 

be further classified as handling either isometric or non-isometric deformation. So far, most 

research on non-rigid registration has focused on (approximately) isometric deformation. In the 

case of (approximately) isometric deformation, intrinsic geometric properties (e.g., geodesic 

distance and surface angle) are always employed as invariant characteristics in the search for 

point correspondences. The geodesic distance is one of the most frequently used intrinsic 

geometric properties when searching for correspondences. Berretti et al. (2006) derived a 

method based on iso-geodesic stripes in which a compact representation was constructed to 

represent these stripes and quantitatively determine their spatial relationships. Mpiperis et al. 

(2007) employed a geodesic polar representation in which each point on a face was 

characterized by the geodesic distance from the pole and by the polar angle. Jain and Zhang 

(2006) used a low-dimensional embedding that preserved all pairwise-geodesic distances. 

Bronstein et al. (2006) applied generalized multidimensional scaling to embed one mesh in 

another for partial matching. Huang et al. (2008) generated robust correspondences using a 

pruning mechanism based on geodesic consistency. In all of this work, one of the key 

assumptions was that the deformation was (approximately) isometric and that therefore the 

geodesic distance was invariant. However, one of the shortcomings of using the geodesic 

distance is instability, since it is more sensitive to topological relationships. Furthermore, this 

latter influence will be particularly evident in the TLS technique. As the data of point clouds 

are discrete, we usually need to generate a triangulation mesh on the scanned object using 

discrete coordinates. Thus, the quality of the triangulation mesh will directly influence the 

topological relationship; moreover, this quality depends not only on the triangulation algorithm 

but also on the quality of the point clouds. Pauly et al. (2005) and Bronstein et al. (2008) 

proposed to use landmarks to alleviate stability problems. Ovsjanikov et al. (2010) described 

the use of a heat kernel to find geometric feature points and generate correspondences from a 

single isometric matching. Tevs et al. (2009) described a method for overcoming the influence 

of topological noise. Bronstein et al. (2010) proposed the use of the diffusion and Gromov–

Hausdorff distances to handle this problem. Smeets et al. (2012) exploited the geodesic distance 

matrix as an isometry-invariant shape representation in a method that did not need explicit point 

correspondences for the comparison of 3D shapes, thereby avoiding contamination by 

topological noise. After correspondences have been generated, different strategies can be 

adopted to align the target point cloud with the source point cloud and achieve an optimized 

result. Chang and Zwicker (2008) segmented the whole point cloud into different rigid sub-

parts and then executed a rigid-body transformation between two rigid clusters from target point 

cloud to source point cloud. Huang et al. (2008) adopted a forward search method (Fleishman 
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et al. 2005) to iteratively combine neighboring clusters until a quality threshold was reached, 

after which they carried out a rigid-body transformation and achieved an energy optimization. 

Zhang et al. (2008) formulated potential correspondences in a tree and performed a global 

optimal tree search. Based on this method, natural correspondences can be obtained. Yemez 

(2012) used an expectation maximization approach to estimate shape correspondences. Tam et 

al. (2013) presented a comprehensive survey of both rigid and non-rigid registration, describing 

developments in both approaches and pointing out the differences and connections between 

them. The use of TLS in cases with deformation is currently attracting a great deal of interest. 

So far, most research on this topic has focused on detecting the deformation using TLS (e.g., 

Pesci et al., 2013) and comparing the results with a given template, for example with digital 

elevation models (DEMs) (Bitelli et al., 2004) or with a cylinder parameterization model (Van 

Gosliga et al., 2006). Monserrat and Crosetto (2007) presented a rigid surface registration 

method to detect deformation and further to give transformation information, including the 

three translation distances and three rotation angles. However, in their cases, the deformation 

was always a rigid-body transformation. Although there are limitations to their approach, it 

does reveal the potential for using a registration approach to represent deformation.  

Taking account of earlier approaches and our requirements, we investigated isometric 

deformation cases using non-rigid registration. We extended the concept of the four-point 

congruent set (4PCS) algorithm from rigid to non-rigid cases by using geodesic distances 

instead of Euclidean distances in order to obtain an invariance property. After generating 

correspondences between two corresponding point clouds, a consistency sampling approach 

was adopted to identify and transform rigid subsets. TOSCA high-resolution datasets were used 

in the experiments to verify the proposed approach. Figure 1.9 shows some sample datasets 

from TOSCA (Bronstein et al., 2008) that have true correspondence information. 
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Figure 1.9 Three samples of TOSCA high-resolution datasets for non-rigid registration. 

 

Real scanning experiments were also performed to verify the proposed method in the geo- 

laboratory. Figure 1.10a shows the equipment for a curved surface experiment and Figure 1.10b 

shows the surface point clouds that were captured from different epochs. On the curved surface, 

we marked 143 reference points (see Figure 1.11) to detect the deformation of the surface at 

different epochs. These reference points were measured by a Leica MS50 total station (with 

accuracies of 1 mm and 0.5″ for distance and angular measurements, respectively) at different 

epochs, and the values thus determined were employed as the “true” values to verify the 

proposed method using TLS with a Leica HDS 7000 scanner. It should be pointed out here that 

when using the laser scanner to measure the curved surface, it was not possible to extract the 

coordinates of a specific reference point and then compare its positions at the first and second 

epochs, as was done with the total station. It was first necessary to obtain different rigid clusters, 

find the corresponding clusters for each reference point, and then represent the deformation of 

the reference points by the deformation of the corresponding clusters. As already mentioned, 

we represent deformation using real 3D information, i.e., 3D translations and 3 rotation angles, 
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and therefore, in order to compare the results with those obtained using the total station, we 

presented the deformation in a uniform manner as follows. (𝑥, 𝑦, 𝑧)𝑖,𝑗
𝑇  represents the ith 

reference point in the total station system at the jth epoch and (𝑥, 𝑦, 𝑧)𝑖,𝑗+1
𝑇   is the same point at 

the (j+1)th epoch. The deformation for this point in the total station system can then be 

expressed as the Euclidean distance: 

𝑑𝑖,(𝑗,𝑗+1)
𝑇 = ‖(𝑥, 𝑦, 𝑧)𝑖,𝑗

𝑇 − (𝑥, 𝑦, 𝑧)𝑖,𝑗+1
𝑇 ‖.                                                                                 (1.1) 

For the same specific reference point in the scanner system, the deformation is obtained as 

𝑅𝑖,(𝑗,𝑗+1) and 𝑇𝑖,(𝑗,𝑗+1). This transformation parameter is then used to obtain a virtual point by 

transforming the reference point in the total station system at the jth epoch: 

(𝑥, 𝑦, 𝑧)𝑖,𝑗+1
𝑉 = 𝑅𝑖,(𝑗,𝑗+1) ∙ (𝑥, 𝑦, 𝑧)𝑖,𝑗

𝑇 + 𝑇𝑖,(𝑗,𝑗+1)                                                                     (1.2) 

where (𝑥, 𝑦, 𝑧)𝑖,𝑗+1
𝑉  is a virtual point. The deformation of the ith reference point between the jth 

and (j+1)th epochs in the laser scanner system can then be expressed using the total station 

form: 

𝑑𝑖,(𝑗,𝑗+1)
𝑉 = ‖(𝑥, 𝑦, 𝑧)𝑖,𝑗

𝑇 − (𝑥, 𝑦, 𝑧)𝑖,𝑗+1
𝑉 ‖.                                                                                (1.3) 

All data sets were transformed into a same coordinate system before the deformation 

calculations. We assumed that there is no error in the measurements such that the TPS measured 

reference points in the jth epoch should fall into the TLS scanned curved surface at the same 

epoch. Obviously, such hypothesis is not work so we can calculate the perpendicular projection 

distances from each point to the scanned curved surface at the same epoch. Therefore, those 

distances can be seem as the measurements errors of the scanner so as to reflect the actual 

measurement accuracy of the using scanner. Figure 1.12 shows above distances of each 

reference point at the epoch 1 (before deformation) and the epoch 2 (after deformation).  From 

figure 1.12 we can see that the using scanner has approximately 3 mm systematic error and the 

actual measurement accuracy is about ±1 mm. Figure 1.13 shows the deformations from the 

laser scanner in terms of coordinate components: (∆𝑥, ∆𝑦, ∆𝑧)𝑖,𝑗+1 =  (𝑥, 𝑦, 𝑧)𝑖,𝑗+1
𝑉 −

(𝑥, 𝑦, 𝑧)𝑖,𝑗+1
𝑇 . Finally, the point error for each reference point can be obtained as (see Figure 

1.14) 

𝑒𝑖,(𝑗,𝑗+1) = √∆𝑥2 + ∆𝑦2 + ∆𝑧2.                                                                                            (1.4) 
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(a) (b) 

Figure 1.10 (a) Scanned curved surface. (b) Point clouds from two epochs. 

 

 

Figure 1.11 Reference points (red points) on the curved surface. 

 

 

Figure 1.12 The perpendicular projection distances from each reference point to the corresponding scanned curved surface so 

as to reflect the actual measurement accuracy of the using scanner. The red and blue points reflect the results before and after 

deformation respectively.  
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Figure 1.13 Deformation from the laser scanner in terms of the coordinate components. To compare each reference points that 

were measured by the TPS in the deformed epoch with corresponding virtual points that were calculated with the transformation 

parameters from the results of deformation by the TLS in each coordinate components.  

 

 

Figure 1.14 Point error: comparison of laser scanner results with total station results. The point errors reflect the Euclidean 

distances between the TPS measured positions and their corresponding calculated positions by the TLS in the deformed epoch.
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Chapter 2 

Background 

In this chapter, we briefly introduce the main tools that we build upon in the coming chapters.  

2.1 Weighted total least square  

The least squares method, developed by C.F. Gauss, has been applied to estimate model parameters for 

the Gauss-Markov model, i.e. 

  
y

A x y e                                                                                                                                                       (2.1) 

where A represents the n × 𝑚 coefficient matrix, y is  n × 1 observation vector affected by the 

random error vector 𝐞𝐲 ,  and x is the (unknown) m × 1  parameter vector. In Eq. (2.1) a 

hypothesis should hold i.e. the coefficient matrix A is error free. However, the principal 

hypothesis of a certain coefficient matrix A in the Gauss-Markov model is not necessarily 

fulfilled for all applications. From a geodetic perspective, a Gauss-Markov models with an 

uncertain coefficient matrix A is known as a standard errors-in-variables model (Fuller, 1987). 

Then the relationship in Eq. (2.1) can be redefined as 

     
A y

A Ε x y e                                                                                                                                      (2.2) 

where the coefficient matrix A is affected by the random error matrix 𝐄𝐀. Least squares within 

the errors-in-variables model is usually called the total least squares technique (Van Huffel and 

Vandewalle, 1991; Schaffrin and Wieser, 2008) because of its symmetrical adjustment. From 

the geodetic tradition view, we called “weight” to express the quality of observations and is 

based on element-wise definition of variances and co-variances. The stochastic properties of 

the errors in Eq. (2.2) be characterized by   

2

0

0
: ~ ,

vec( ) 0


       
        

       

y y y

A A A

e e Q 0

e E 0 Q
                                                                                      (2.3) 

where “vec” denotes the operator that stacks one column of a matrix underneath the previous 

one. 𝜎0
2  denote an (unknown) variance component. 𝐐𝐀  and 𝐐𝐲  are the symmetric and non-
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negative-defined cofactor matrices of 𝐞𝐀 and 𝐞𝐲 respectively and  𝐏𝐀 and 𝐏𝐲 are corresponding 

weight matrices. The weighted total least squares problem is expressed as the constrained 

optimization problem 

 

min

.

T T

subject to

 

   

y y y A A A

A y

e P e e P e

A Ε x y e
                                                                                                           (2.4) 

The constrained optimization problem (2.4) is typically solved using Lagrange multipliers. The 

target function as follows: 

   , , , 2 minT T T         y A y y y A A A A ye e x e P e e P e λ A x Ε x y e                                           (2.5) 

with 𝛌 as the Lagrange multiplier vector. The normal approach to solve Eq. (2.5) is to set the 

partial derivatives of the target function w.r.t , , ,
y A

e e x to 0 i.e. 
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then 

     
1

1 1
(i 1) 1 ( ) 1 ( ) 1 (i) 1 1 (i) 1 (i) 1

0 0 0
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T TT i i T


 

        
    
 
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x A P x P x P A υ P A P x P x P y                (2.6) 

with  

  
1

(i) 1 (i) 1 (i) 1 (i)

0
ˆ ˆ ˆ( )

T


    y xλ P x P x P y A x                                                                                            

(i) (i) 1 (i)ˆ
T 

x
υ λ P λ               

 A 0 XP P P  

𝐏0 and 𝐏𝑋 represent the column vector’s weight matrix and the row vector’s weight matrix of 

the design matrix, respectively. More detailed and complete derivations can be found in 

Schaffrin and Wieser (2008), Shen et al. (2010), Mahboub (2012), Snow (2012) and Fang 

(2013). 
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2.2 Gauss-Helmert model 

The iteratively linearized Gauss-Helmert model method proposed by Pope (1972) was used to 

adjust the errors-in-variables model by least squares (Neitzel, 2010). The nonlinear Gauss-

Helmert model has also been applied to the total least squares field (Neitzel, 2010; Schaffrin 

and Snow, 2010). In this case, all the observations are considered, namely, the coefficient 

matrix A is also affected by the random errors. The nonlinear model 𝐟(𝐞, 𝐱) = 𝟎 is linearized 

through the truncated Taylor series  

   
0 0 0 0

0 0 0 0

, ,

( , ) ( , )
T T

 
     

 x e x e

f f
f e x f e x x x e e 0

x e
                                                         (2.7) 

with  

0 0 0 0

0 0

, ,

: , :
T T

 
 

 x e x e

f f
A B

x e
                                                                                                                        (2.8) 

where x is also the (unknown) m × 1 parameter vector and the observations affected by the 

random error vector e. In the nonlinear Gauss-Helmert model, appropriate initial values are 

needed to execute an iteration. Based on Eq. (2.7), iterate by setting for i+1th iteration: 

1

0 0

1

0

ˆ ˆ: :

ˆ:

i i i i

i i

d



  



x x x x

e e
                                                                                                                                        (2.9) 

and then estimating 𝑑𝐱̂𝑖, 𝐞̂𝑖 from the following Lagrange multipliers formulation  

 

 0 0 0( , , ) : 2 ( , ) minT T i i i i i id d        x e λ e Pe λ A x B e f x e B e                                                    (2.10) 
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then the solution for the unknowns is obtained from the equation system 
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where P in Eq. (10) represents the weight matrix and 𝒘𝑖 is the vector of misclosures. More 

detailed and complete derivations can be found in Lenzmann and Lenzmann (2004, 2007), 

Schaffrin and Snow (2010), Snow (2012) and Fang (2013). 

2.3 Intensity of laser beam 

The intensity of the reflected laser beam is one of the important inherent properties for all 

terrestrial laser scanners and can be gained with 3D coordinates simultaneously. Thus, the 

intensity information is always employed into TLS projects to act (Pseudo) 4 dimension 

information. The information of intensity of laser beam is important since the amplitude of the 

received signal is correlated with the quality of the detected range. The intensity (I) is influenced 

by three parameters: 

 the range 𝑑(𝐼 ~ 
1

𝑑2), 

 the reflectivity of the object, and  

 the angle of incidence. 

Wunderlich et al., (2013) executed tests to investigate the factors (including the distance, the 

color and the angle of incidence) that will influence the intensity of laser beam in Chair of 

Geodesy’s laboratory at Technische Universität München. The testing specimen is a 60 × 80 

cm flake board which has been coated with a dim white and therefore is diffusively dispersive 

surface. It is furthermore subdivided in individual testing areas for special testing parameters 

(Figure 2.1).  The different sizes of boards are displayed in Figure 2.1.  The top three boards 

with the same color (dim white) are used to test the influence of the angle of incidence (from 

left to right: 45°, 30°, 15° ). In the main board, three individual areas were printed with different 

colors (black RGB 16/16/15, gray RGB 162/162/160 and white RGB 220/224/223). The tests 

were carried out with different distances (i.e. 20 m and 100 m) by using different scanners (i.e. 

Focus3D, Leica HDS7000 and Leica Scan Station P20). The results can be found in Figure 2.2. 

From Figure 2.2 we can see that although the intensity values will be changed dependent on 

different distances and different brands of scanners, the different properties (the color and the 

angle of incidence) can also be separated in each specific situation with the intensity values. 

This good characteristic gives us a great potential to utilize the information of intensity of laser 

beam. 

 



Background 

27 

 

 
Figure 2.1 Specimen “Board” to test the intensity of laser beam (Wunderlich et al. 2013). 

 

 

 
 

Figure 2.2 Point clouds on the “board” specimen with different intensities. Different scanners: 1st row: Focus3D, 2nd row: Leica 

HDS7000, 3rd row: Scan Station P20. Different measurement distances: 1st col: 20 m, 2nd col: 100 m. (Wunderlich et al. 2013). 
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2.4 An additional parameters model for laser scanner 

systematic error calibration 

One of the main advantages of system calibration is that precise knowledge of the individual 

system components and their respective error contributions is no longer required, but instead of 

a deterministic model of the deviations of distance and angle measurements. In this thesis, we 

execute our research based on the Lichti’s (2007) presented APs models which contain both the 

physical interpretation errors and empirical errors. The full error models as follows: 

 
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0 1 2 3 4
sin( ) sin(3 ) cos(3 )c c c c c                                                                                      (2.12) 

where ρ is the measured distance, 𝜃 is the measured horizontal angle and 𝛼 is the measured 

vertical angle. The ai, bi and ci are the parameters of the model i.e., the APs, whereas the Ui are 

the first (finest) and second modulation wavelength of the distance measurement unit. a0 is the 

zero error (or called additive constant). Because the virtual electro-optical origin or zero of an 

electronic distance measurement instrument is usually not located on the vertical axis of the 

instrument, a small correction has to be added to all distance measurements to refer the distance 

to the instrument’s vertical axis. a1 is the scale error of the laser rangefinder. The scale error for 

an instrument may depend both on internal and external effects.  The former one include the 

oscillator and diode errors and the external effects have the velocity of light, humidity, 

temperature, pressure and so on. b1 is the collimation axis error, the non-orthogonality between 

the instrument’s collimation and horizontal axes. b2 is the horizontal axis error, the non- 

orthogonality between the scanner’s horizontal and vertical axes. c0 is the vertical circle index 

error, which models the constant offset between the scanner-space horizontal plane and the 

elevation-angle measurement origin. The subset of APs model i.e. (a0, a1, b1, b2 and c0) can be 

regarded as physical APs, since they have definite physical interpretation and are typically the 

most significant ones (Lichti and Licht, 2006). It is possible to analyze the observation residuals 

after a system calibration based on above mentioned APs subset in order to verify there is no 

systematic trends present in the residuals. Those systematic trends can be called empirical errors 

(Lichti 2007) and be simulated by a mathematic model. There are two methods to execute a 

calibration with such APs models. The first is directly to use the full error model to calculate 
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and subsequently do the t-test for each AP to check the significant property. Then we re-select 

the AP elements who have 95% significance in the t-test to generate a subset to do a system 

calibration again. The second method is only to use the physical interpretation subset and 

subsequently analyze the residuals whether they contain systematic trends and then to further 

exploit some empirical elements. Table 2.1-2.3 show more details about the Lichti’s (2007) 

APs models. 

 

 

Table 2.1 APs component in range. 

Parameters Explanation Physical Empirical 

a0 The zero error in the range finder. x  

a1 The scale error in the range finder. x  

a2 The sinusoidal error in range has a 360o period and is 

hypothesized to be due to a vertical offset between the laser 

and horizontal axis. 

x  

a3 & a4 The first-order periodic error terms inherent to AM-CW 

rangefinder system. 

x  

a5 & a6 The second-order periodic error terms inherent to AM-CW 

rangefinder system. 

x  

a7 & a8 The sinusoidal error in range as a function of horizontal 

direction with period 90o, for which the physical cause is not 

known. 

 x 
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Table 2.2 APs component in horizontal direction. 

Parameters Explanation Physical Empirical 

b1 The collimation axis error. x  

b2 The horizontal axis error. x  

b3 & b4 The non-orthogonality of the plane containing the horizontal 

angle encoder and the vertical axis causes a sinusoidal error 

with period 180o. 

x  

b5  The scale factor in the horizontal direction. x  

b6 & b7 Residual errors in horizontal direction as a function of 

elevation angle that are not corrected by the collimation axis 

and horizontal axis models. 

 x 

 

Table 2.3 APs component in vertical direction. 

Parameters Explanation Physical Empirical 

c0 The vertical circle index error. x  

c1 Scale in vertical direction. x  

c2  A sinusoidal error in vertical angle with a period of 360o, 

which suggests circle eccentricity error. 

x  

c3 & c4 A sinusoidal error as a function of horizontal direction with 

period of 120o. 

  x 
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2.5 Correspondences 

To generate stable correspondences between the source and target point clouds is a crucial step 

in all registration strategies (both in rigid and non-rigid cases). Incorrect correspondences easily 

trap the registration in local minima. As we discussed above, there are three popular methods 

to search corresponding points namely point-to-point, point-to-plane and point-to-projection. 

Figure 2.3 respective shows these three approaches. 

 

 

Figure 2.3 Three common techniques to generate correspondences. (a) point-to-point (b) point-to-plane (c) point-to-projection 

 

Figure 2.3 (a) shows the principle of point-to-point strategy which is most common method to 

search corresponding points from target (T) to source (S) point clouds. An error metric 𝑑𝑠 is 

the distance between two corresponding points. The idea in the point-to-point strategy is simple 

namely select a point p from T and to find a nearest point q from S, i.e. assure 𝑑𝑠 = min, and 

then to store a correspondence (p, q). Figure 2.3 (b) displays the point-to-plane approach. It 

searches the intersection on the destination surface from the normal vector of the source point. 

As shown in Figure 2.3 (b), the intersection point 𝑞′ is the projection of p onto the tangent plane 

at q which is the intersection from the normal of p. Figure 2.3 (c) gives the idea of point-to-

projection. This approach determines a point q which is the conjugate of a source point p, by 

forward-projecting p from the point of view of the destination o. Many strategies have been 

presented to improve the robustness of the generated correspondences, e.g. 

 
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 If one of 𝑑𝑠 cannot satisfy the Eq. (2.14) then such correspondence will be removed from the 

correspondence subset. Moreover, after obtaining all the satisfied correspondences, we can 

employ a Gauss core to weight those correspondences in terms of 𝑑𝑠 i.e. 

 
2

2
exp( )

2

s

i

d
W






                                                                                                                                             (2.15) 

where 𝛼 is a significance factor.   

In non-rigid cases, the aforementioned methods cannot be directly used to generate 

correspondences since the deformations may change the relationships between point to point 

e.g. the Euclidean distance, see Figure 2.4. Generally, another kind of invariant characteristics 

should be added to generate stable correspondences at deformed areas. This topic will be 

discussed in detail in chapter 6. 

 

 
Figure 2.4 An example to find correspondences in a non-rigid case  (TOSCA high-resolution dataset,  Bronstein et al., 2008). 

2.6 Iterative closest point (ICP) algorithm 

The ICP algorithm is one of the common techniques for fine registration of 3D surfaces (or 

models). ICP starts with two point cloud datasets and an initial guess for their relative rigid-

body transformation, and iteratively refines the transform by repeatedly generating pairs of 

corresponding points on the point clouds and minimizing an error metric. Although there are 

variances of ICP techniques have been proposed to improve the properties of the original ones, 

either all of these improved ICPs or original ICP mainly consist of two steps: 

 matching and selection, 

 computation of the transformation parameters. 

Here we label these two steps M and C, respectively. The key idea in M-step is to refresh the 

corresponding points based on the latest transformed target point cloud. While the key idea in 
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C-step is to calculate the rigid-body transformation parameters by using the latest 

correspondences. There are three original strategies to execute the searching of 

correspondences: 

 point-to-point (Besl and McKay, 1992), 

 point-to-plane (Chen and Medioni, 1991, 1992), and 

 point-to-projection (Blais and Levine, 1995). 

The important schemes in all above three strategies are how to represent (or define) the closest 

point and how to find such point. The nearest neighbor searching (Arya et al., 1998) is one of 

the most important techniques in the M-step. Moreover, in the M-step information of the normal 

vector of each point is always employed to accelerate the searching process and to improve the 

accuracy of the correspondences. KD-tree (Arya et al., 1995) is also a powerful tool that is 

usually exploited in the M-step to speed-up the searching process. The general methods to 

calculate the normal vectors of point cloud are the local surface fitting, principal components 

analysis and triangulation. In the C-step, the ICP program estimates the updated transformation 

parameters by calculating a 6 DoF within 

 , , ( , , )s t x y zt t t    X R X T
                                                                                                           (2.16) 

where 𝑿𝑠  and 𝑿𝑡  represent point clouds from source and target respectively. 𝑹(𝜔,𝜑, 𝜅) is a 

rotation matrix and ( , , )x y zt t tT  is a 3D translation. Based on the M and C steps the ICP 

algorithm wants to address an optimization problem 
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A threshold, 𝜀, always be given to control the iteration. When the following equation holds i.e. 
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the iteration will be terminated. 

As we mentioned above, although ICP is a powerful alignment algorithm and usually can 

generate good results, it still has some shortcomings. In the past two decades, many different 

strategies (see the references in the last chapter) were presented both in the M and C steps in 

order to improve the ICP’s properties.  In the M-step the strategies mostly focus on improving 

the quality of the correspondences and decreasing the influence from the outliers. In the C-step 

the contributions mainly focus on how to solve the nonlinear minimal problem e.g. using 

Levenberg-Marquardt method. Many more details about the calculation of ICP the readers can 

be found from the above-mentioned references. 
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2.7 Least squares 3D matching (LS3D) algorithm 

The LS3D method (Akca, 2010) is a generalization of the least square image matching which 

is also used to fine registration of two surfaces (source and target). These surfaces are 

digital/sampled point by point, at different times or from different perspectives. 𝑠(𝑥, 𝑦, 𝑧) and 

𝑡(𝑥, 𝑦, 𝑧) are overlapping areas of the object in the source and target surfaces respectively. 

𝑠(𝑥, 𝑦, 𝑧) and 𝑡(𝑥, 𝑦, 𝑧) are both implicit representations of a surface fitted to a subset of the 

points within the point clouds. Similar as the ICP strategy, LS3D is also set to iteratively refresh 

the translation vector and rotation matrix in order to align 𝑡(𝑥, 𝑦, 𝑧) to 𝑠(𝑥, 𝑦, 𝑧), then the 

function model in LS3D is 

   , , , , .s x y z t x y z                                                                                                                      (2.19) 

where 𝑡′(𝑥, 𝑦, 𝑧) represents transformed target surface. According to the property of TLS, it is 

hard to find true correspondences between 𝑡(𝑥, 𝑦, 𝑧)  and 𝑠(𝑥, 𝑦, 𝑧) , so taking into account 

random errors 𝑒(𝑥, 𝑦, 𝑧) in Eq. (2.19) then we can derive the observation equations as: 

     , , , , , , .s x y z e x y z t x y z                                                                                                 (2.20) 

The matching is achieved by least squares minimization of a goal function 
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where d represents the Euclidean distance. Compared with the ICP, the LS3D needs quite good 

initial values to begin the iteration. If the target surface 𝑡′(𝑥, 𝑦, 𝑧)  transformed from its 

approximation, 𝑡0(𝑥, 𝑦, 𝑧), then we can linearize Eq. (2.20) by truncated Taylor expansion: 
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where  , , , , ,i x y zo t t t    is the i-th transformation parameter vector. We can write the matrix 

expression for Eq. (2.23) as 
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where ija are the coefficient terms. Keeping the 3D rigid-body transformation equation Eq. 
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(2.24) in mind, we can derive ija  as 
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with rotation matrix as 
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        (2.26) 

Then connecting Eq. (2.22) and Eq. (2.24) we can derive  

      

     

0

11 12 130 0 0

21 22 23

31 32 32

, , , , , ,

, , , , , ,
.

x

y

z

e x y z s x y z t x y z

dt a a a d
t x y z t x y z t x y z
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





    

      
          

                          

                 (2.27) 

Eq. (2.27) can be written by matrix notation 

. v l Ax                                                                                                                                             (2.28) 

For Eq. (2.28) we can use least squares method to solve the Gauss-Markov model. The 

corresponding stochastic model can be introduced into the adjustment to gain a weight least 

squares solution. More information about calculation of LS3D can refer to Gruen and Akca 

(2005), Akca (2010). 

2.8 Four-point congruent set (4PCS) algorithm 

4PCS algorithm presented by Aiger et al. (2008) is a global rigid registration algorithm for 3D 

point sets. 4PCS algorithm belongs to coarse registration thus the goal is to align two point 

clouds and in preparation for fine registration. The key idea of 4PCS is to find a set of four-
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point bases in the source cloud that are congruent to a four-point base selected from the target 

cloud.  

 

 
Figure 2.5 Principle of 4PCS. 

 

Pick a set of 4 coplanar points but not collinear from the target point cloud, T, and we denote 

this set as X’ = {a’, b’, c’, d’} see Figure 2.5. Such that a’d’ intersects b’c’ at the intermediate 

point e’ (also see Figure 2.5). Then two ratios can be defined as follow: 
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' ' ' '
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                                                                                                                   (2.29) 

These ratios are preserved under affine transformations and therefore act as invariants to 

constrain the search for congruent 4-point bases in the source point cloud, S. Based on such 

characteristic, the program of 4PCS need to find all potential bases from S. For each potential 

base, verify the corresponding aligning transformation, and retain the best transform according 

to some similarity score. After iteration, the beat congruent 4-point construct can be found in S 

i.e. X = {a, b, c, d} (see Figure 2.5). Take into account the stability of 4PCS, many constraints 

are added into the standard 4PCS e.g. to define 
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                                                                                                                   (2.30) 

and then to check 
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ad bc

ad cb
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                                                                                                                                 (2.31) 
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where 𝜇 is a given threshold (Theiler et al., 2014). The generalized 4PCS broke the constraint 

in the construct of 4-point base. Mohamad et al. (2014) gave the third invariant condition in the 

generalized 4PCS i.e.  

3 1 2d  e e                                                                                                             (2.32) 

where 𝑑3 represents the intersection distance (see Figure 2.6), which measures the degree of 

separation between the two pairs. From Eq. (2.32) and Figure 2.6 we can see that when 𝑑3 = 0, 

it implies that the two pairs intersect on the plane, a standard 4PCS base. 

 

 

Figure 2.6 Principle of 4PCS to generalized 4PCS. 
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Chapter   3 

Target Identification in Terrestrial Laser 

Scanning 

X. Ge, T. Wunderlich 

Survey Review, 47(March), 129-140, 2015 
(The text given here is a revised version) 

 

 

3.1   Abstract 

Target identification is an important process in terrestrial laser scanner (TLS) measurements; 

however, due to strong competition between manufacturers, the design of laser scanners is kept 

secret and is usually strengthened by accompanying proprietary software. Moreover, the target 

identification algorithms (i.e., definitions of the target center) are not specified. This makes it 

difficult for users to objectively compare scanners from different manufacturers and to judge 

the reliability of the captured scan data by a brand scanner and accompanying software. This 

paper presents a unified general method to complete the process of target identification. In this 

paper, the only targets considered are planar quadrant targets. The proposed method consists of 

four major steps: 1) determination of the target plane, 2) classification of the reflection intensity 

values and extraction of the border between white and black, 3) detection and elimination of 

erroneous points from step two, and 4) fitting of the intersection lines and calculation of the 

center of the two lines. Because TLS is a reflectorless surveying model that can receive 

hundreds of signals, its measurements require more stringent objective conditions than 

traditional measurement by total stations (TS). Therefore, robust estimation methods are used 

to reduce the influence of random errors; moreover, the model of error-in-value (EIV) is also 

introduced to deal with captured data. Finally, the target’s center can be obtained from an 
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iteration process. For the experiments, a Leica HDS 7000 terrestrial laser scanner, with its 

accompanying software, Cyclone, and a Leica Laser Tracker AT901were employed. The 

performance of the proposed method is compared with Cyclone and some early methods from 

published studies at different resolutions and distances. The paper concludes that the proposed 

method can obtain reliable results at the same level of accuracy level as those obtained using 

accompanying software; thus, it provides an objective means to compare the quality of different 

scanners. The advantage is that our method only makes use of information provided by all 

scanners and does not require additional proprietary information that cannot be accessed. 

Key word: Terrestrial laser scanner; Target identification; Surveying engineering; Reflected 

intensity 

3.2   Introduction 

Terrestrial laser scanning (TLS) is a technique that remotely obtains the spatial coordinates of 

an object using laser light and has become a standard surveying procedure in the architecture, 

engineering, and construction sectors with a wide range of applications (Gordon and Lichti, 

2007; Tristan, 2011; Ebeling et al., 2011). However, the application of TLS has some 

limitations. On the one hand, information from TLS is always expressed by a vast point cloud 

of 3D coordinates with a relatively random distribution on the object’s surface, preventing a 

one-to-one correspondence from spots to points. Thus, captured scan data cannot be directly 

exploited in engineering projects to extract coordinates of a specific object point. On the other 

hand, TLS measurements require more stringent objective conditions. Researchers have 

classified the errors in TLS into mainly two categories: internal and external (Lichti and Gordon, 

2004; Gordon, 2005; Staiger, 2005) with the latter, i.e., temperature, atmospheric scintillation, 

dust, distance, reflectance, and spot size, largely affecting the accuracy of the point cloud, which 

is supported by Granthamn et al., 1997; Lichti and Harvey, 2002; Thiel and Wehr, 2004. 

Therefore, to enable accurate registration and georeferencing of point clouds, special targets 

are usually employed to provide virtual center coordinates through automatic extraction 

algorithms. Any uncertainty in these center coordinates will directly affect the accuracy of the 

entire project. According to the above, the accuracy of the TLS surveys is to a great extent 

limited by the target identification quality. 

Due to patent protection and strong competition, we cannot access the core of the instrumental 

system information and the proprietary software algorithms. Without an objective public 

approach, it is difficult for users to select an appropriate terrestrial laser scanner for their 

engineering projects in the fast-paced laser scanner market, which has a great variety of 

measurement systems and a near annual updating of well-known and improved models showing 

more and more promising specifications. Moreover, different reference standards also provide 
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further difficulties in the investigation of instrument calibration. Although not very well 

documented, the topic of target identification has been addressed previously in published 

literature (Lichti et al., 2000; Gordon et al., 2001; Valanis and Tsakiri, 2004; Kersten et al., 

2004). Lichti et al., (2000) proposed three radiometric approaches based on intensity to define 

the target center as the position with the maximum radiance, the radiometric center of the four 

strongest returns, and the radiometric center of all returns. In later references, the third method 

has been proved to perform better than the other two; however, it cannot render reliably accurate 

results. In Valanis et al., (2004) the C-Means method was used to extract the target center, and 

the results described are better than those obtained by previous methods. In all the published 

literature, the results by scanner accompanying software are considered as the true or best center 

values, and can then be used to verify the proposed methods. Although the results by 

accompanying software currently seem to be the best choice and assumed to be the virtual “true” 

value of the target, the different resolutions may also force the accompanying software to 

produce errors. To the authors’ knowledge, there are no documents discussing accompanying 

software performance over different resolutions or comparisons with self-proposed methods. 

The purpose of the paper is to propose a new method for laser scanner target identification and 

to compare its performance over different resolutions and distances with that of the 

accompanying software. Although there are also other geometric shapes of targets (e.g. spheres, 

cylinders), we restrict ourselves here to quadrants plane targets. Furthermore, the plane targets 

are easy to use and more economical than the sphere and cylinder targets especially when you 

need a lot of targets in your project (e.g. self-calibration see Reshetyuk 2006, 2010; Lichti 2007). 

The rest of the paper is organized as follows. In Section 3, we will introduce the iterative 

formulae of weighted total least squares to solve target fitting. The design of the weight matrix 

for all observations will be described in detail. Furthermore, the reflection and refraction errors 

that may be caused by material properties of the object, surface color, moisture of the surface, 

and so on, and the planarity condition of the resulting plane will be considered, and a robust 

estimation will be discussed. Section 4 will describe a concept for appropriate reflected intensity 

values for the captured scan data and will present an iterative calculation method to obtain a 

reliable target center. Section 5 will discuss the influence of incidence angle in the target 

identification. The real experiments are carried out in Section 6 to demonstrate the performance 

and efficiency of the developed method. Finally, remarks will conclude the paper in Section 7. 

3.3   Target Plane Fitting 

The plane model is defined by: 

b ca  z x y                                                                                                    (3.1) 

in a leveled scanner local coordinates system. Rewritten as an observation equation: 
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(3.2) 

where 1n z  is a vector of observed z  coordinates, 𝐯𝑧 = 𝑛 × 1 is a residual vector of the 

observations, 3n A  is the design matrix, and 3 1 β  is a vector of unknown parameters. 

Clearly, x, y in the design matrix are the same coordinate components as in the observation 

vector z, so it is improper to neglect their errors in the calculation. Rewriting the observation 

equation: 

                                                              

                                                                    (3.3) 

 

where 𝐄𝐴 = 𝑛 × 2 represents the residual matrix of the design matrix A . Then, the restriction 

turns to the weighted total least squares: 

 min T T

z z z A A Av P v e P e                                                                                          (3.4) 

where 𝐏𝑍 = 𝑛 × 𝑛  means the weight matrix of the observation vector, 𝐏𝐴 = 3𝑛 × 3𝑛 

represents the weight matrix of the design matrix, and 𝐏𝐴 = 𝐏0⨂𝐏𝑋 where ⨂ expresses the 

Kronecker product. 𝐏0and 𝐏𝑋 represent the column vector’s weight matrix and the row vector’s 

weight matrix of the design matrix, respectively, moreover 𝐏0 = 𝑸0
−1, 𝐏𝑋 = 𝑸𝑋

−1 and 𝐐𝐴 =

 𝐐0⨂𝐐𝑋 (Langville et al. 2003). 𝐞𝐴 = 𝑣𝑒𝑐(𝐄𝐴) and vec(.) are to reconstruct a matrix as a vector. 

In the captured scan data, we assume each returned point to be independent of the others and 

the coordinate errors to have zero mean, but the coordinate components of a point to be 

correlated. Then, writing the observation vector’s cofactor matrix as: 
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Q                                                                                     (3.5) 

where
 1

2

z
 
is the variance of the z-coordinate component of the first point and 𝐏𝑍 = 𝑸𝑧

−1. The 

column vector’s and row vector’s cofactors of the design matrix are, respectively: 
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
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 
 
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Q                                                                                                                         (3.7) 

where and represent the mean value of the variances of the x- and y-axis coordinate 

components, respectively, and 
2

xy
 
is the mean value of the co-variance. 𝜅 is an epsilon like 

𝜅 = 10−12 that means the 3rd column of the design matrix is error free. In Eq. (3.7) 

and 𝜎𝑥𝑖
, 𝜎𝑦𝑖

 express the variances of the x-axis and y-axis coordinate 

components of the ith point, respectively. Because the points are independent, the off-diagonal 

elements in Eq. (3.5) and Eq. (3.7) are all assumed zeros. In Eq. (3.4) 0
T

z z z
v P v  and 0

T

A A A
e P e ; 

thus, we can simply obtain the inequality as: 

     min min minT T T T

z z z A A A z z z A A A  v P v e P e v P v e P e                                                         (3.8) 

Assuming the equality holds, the problem in Eq. (3.4) translates to solve two independent 

optimization problems. The first element at the right hand-side of Eq. (3.8) is the classical least 

squares problem and the cofactor matrix for the observation vector as Eq. (3.5), and the second 

element at the right hand-side of Eq. (3.8) is the data for the least squares problem and the 

weight matrix for the design matrix as 𝐏𝐴 . Therefore, in the above process, coordinate 

component z seems to be independent from coordinate components x and y, which means the 

values of covariance between x-z and y-z have no influence in the calculation of our model. 

From the laser scanning measurement principle, we can obtain each coordinate component’s 

variance-covariance. 

{
𝑥 = 𝑟 ∙ 𝑐𝑜𝑠𝜃 ∙ 𝑐𝑜𝑠𝜑
𝑦 = 𝑟 ∙ 𝑐𝑜𝑠𝜃 ∙ 𝑠𝑖𝑛𝜑

𝑧 = 𝑟 ∙ 𝑠𝑖𝑛𝜃

                                                                                                             (3.9) 
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J C                                             (3.10b) 

where r,  , and φ are the range and vertical and horizontal angles of the TLS beam, 

respectively, and 𝜎𝑟
2 ,  𝜎𝜃

2  and 𝜎𝜑
2  are the respective variances, which can be obtained, for 

example, from the manufacturer’s specification. 𝜎𝑏𝑒𝑎𝑚
2 , the accuracy of laser divergence, is the 

uncertainty due to the beam width (Lichti and Gordon, 2004). The impact is not obvious over 

short distances but will show up over longer distances. 

We introduced the iterative weighted total least squares by Schaffrin and Wieser (2008) to the 

calculation as follows: 

1. Calculate 
(0)
β̂ using Least squares method, and (0)ˆ 0υ  
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2. Calculate new υ̂  and new β̂  using the following equations: 
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where the superscript (i)denotes the iteration count. 

3. Repeat Step 2 until (i 1) (i)

0
ˆ ˆ   β β , where 0  is the given threshold. 

4. Obtain the vectors of the unknown parameters after the iteration as follows: 

(i 1)ˆ ˆ
WTLS

β β                                                                                                                                                    (3.15) 

In the aforementioned algorithm, λ  is a Lagrange factor, υ̂  is an intermediate variable, and 𝛿0  

is the threshold; here we give . In the whole process, a threshold ε serves to control 

the planarity of the resulting plane; in other words, the point will be removed if the distance to 

the resulting plane exceeds the given threshold. The value of the threshold mainly depends on 

scanning resolution, distance, and material properties of the object. In the following 


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experiments, we accept the threshold from 1 mm to 2 mm corresponding to different resolutions. 

The aforementioned iterative algorithm is repeated, and the threshold is applied to judge the 

robustness of the captured plane until the entire calculation progresses to convergence. Here, 

we should note that the so-called total least square estimate within an EIV model can be 

identified as a special case of the model of least square within the nonlinear Gauss-Helmert 

model. Thus, the cases in our tests can also be solved by the least square method within the 

Gauss-Helmert model. In our paper, we assumed that z- value is not correlated with x- and y- 

values such that we can choose weighted total least squares method to address the linear 

problems with fewer iterations than least squares method within Gauss-Helmert model. 

3.4   Threshold of Intensity and Center Identification 

Reflected intensity is one common information parameter we can obtain from the captured scan 

data with a range of -2047 to +2048. To make the calculation easier and to avoid non-

convergence, the intensity range is mapped linearly to the interval of 0 to 1 as follows: 

𝐼 ̅ =
(𝐼−𝐼𝑚𝑖𝑛)

𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛
                                                                                                                   (3.16) 

where I is the original intensity value and I is the processed value. 𝐼𝑚𝑖𝑛 and 𝐼𝑚𝑎𝑥 represent the 

minimum and maximum values of original intensity respectively. Figure 3.1 shows the point 

cloud of a target with its property of reflected intensity from an x-z perspective. It is clear that 

the target is regularly divided into three categories by the reflected intensity, the 1st category 

corresponds to the white area of the target with values of intensity approximately over 0.9; the 

2nd category corresponds to the black area of the target with that value approximately below 

0.3; the rest of the points with an intensity range between 0.3 and 0.9 are classified as the 3rd 

category, which we called “Middle Value (MV)” in this paper (see Figure 3.2), and those points 

mainly appear at the junction of black and white areas and also at some parts near the edges. In 

the example, 0.3 and 0.9 are given as thresholds that show the lower and upper limit, 

respectively, to select the appropriate point cloud in the later section. The lower and upper limit 

depend on the resolution and distance in each scanning measurement, but show only slight 

changes in different situations. Figure 3.3 shows the tests related to the distribution of reflected 

intensity of target with different resolution within a range of 20 meters, using the Leica HDS 

7000 laser scanner. Evidently, all intensity histograms have two peaks, except the last two 

figures in the first row with middle resolution and over 15 meters. The upper limit rests stably 

at about 0.9, and the lower limit is approximately in the range of 0.3 to 0.4. In Fig. 3.3 and Fig. 

3.8 we used different scales only for visual purposes i.e. esayly finding two-peaks-structure. 

Selecting the points with an MV of intensity in the point cloud to calculate the target center, 

see the points with red circles in Figure 3.4. 
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Figure 3.1 Target’s point cloud with reflected intensity. 

 

Figure 3.2 “MV” of intensity. 
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Figure 3.3 Property of intensity with different resolutions and distances 

 

Figure 3.4 Selected points with “MV” of intensity. 
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According to the discussion above, the points with an MV of intensity do not only appear at the 

border between black and white, they are also at some parts of the target’s edges, see Figure 

3.4. Because the target radius is known, we can easily reduce the impact of the edge noise in 

the center calculation. Exploiting the mean value of the whole target point cloud as an 

approximate target center, called the mean value center (MVC), the distance of each point to 

MVC can be calculated, giving a distance threshold smaller than the target’s radius to produce 

a safe range, finally deleting the outside points. It does not prove necessary to complete this 

process with high accuracy because the loss of some non-edge points does not affect center 

identification in our approach. Then, the remaining points are projected to the resulting plane 

so as to transform 3D coordinates to 2D plane coordinates. Figure 3.5 displays an example of 

the projection result. Obviously, after accurate fitting of two intersecting lines, the center of the 

target can be obtained. However, setting intensity thresholds cannot always remove all 

improper points, in other words, there are some noise points with MV of intensity not belonging 

to the two lines, for example, when scanning in a lower distance with higher resolution. Figure 

3.6 shows this with scans within 2 m at a super-high resolution. Taking into account the above-

mentioned problem, the M-estimate method is applied in the calculation. Firstly, the MVC is 

used as the initial value of the target’s center, and then the entire area is divided into four 

quadrants, also see Figure 3.6. Secondly, apply the data in the 1st and 3rd quadrants to fit the 1st 

line and the data in the remaining quadrants to fit the 2nd line, respectively. Thirdly, calculate 

the intersection to replace the center in Step 1 and repeat Steps 1 to 3 until the entire process 

converges. The weighted total least squares technique is applied again to calculate these two 

lines, and the restriction is the same as in Eq. (3.4). The observation equation reads: 

    1 1y A

d

e

 
    

 
y v x E                                                                                             (3.17) 

where 𝐄𝐴 = 𝑛 × 1 is the residual matrix of the design matrix A, and 𝐯𝑦 = 𝑛 × 1 represents the 

residual vector of the observations (i.e. values in y-axis). d and e are two unknown parameters. 

The weight matrices of the design matrix and the observation vector are given as in Eqs. (3.5) 

to (3.7), using variance of coordinate components. In order to solve the problem of some points 

with MV of intensity not belonging to the two lines, we apply the weight kernel function (Zhou, 

1989) to reweight each point after each iteration. 
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where 𝑒𝑖  is the residual of linear fitting and 𝜎̂0  is the posterior standard deviation of each 

iteration. Based on Schaffrin and Wieser (2008), the posterior standard deviation can be 

calculated by: 

0
ˆ

2

T T

y y y A A A

n







v P v e P e
                                                                                                                           (3.19) 

where 𝐏𝑦 and 𝐏𝐴  are weight matrices of the observation vector and the design matrix, 

respectively, in the process of linear fitting. 𝐞𝐴 has the same definition as before. The residual 

is the vertical distance from the point to the resulting line when applying the total least squares 

technique in linear fitting. 

 

 

Figure 3.5 Point cloud in 2D system. 
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Figure 3.6 Point cloud in 2D system with some noise and its quadrants divided. 

3.5 Influence of Incidence Angle 

The precision of the target center identification depends on the identification algorithm, but also 

largely on the quality of the point cloud. As we know, the quality of the point cloud is derived 

based on the individual point precision per scan and the individual point signal to noise ratio 

(SNR) is affected by the incidence angle. There are several previous TLS studies (Kremen et 

al., 2006; Kaasalainen et al, 2005) which focus on the influence of the incidence angle in TLS. 

Soudarissanane et al. (2009 and 2011) reported that the incidence angle had a cosine effect on 

the precision of laser points and modeled the incidence angle contribution to the total error 

budget of a TLS. The most important conclusion from previous studies is that the received 

signal level of the measurements decreases with increasing incidence angles and the received 

signal level influences the precision of the distance measurement. Figure 3.7 shows the Leica 

HDS7000 scanner’s theoretical signal deterioration in distance measurements when the 

incidence angle increases from 0 to 90  (Soudarissanane et al., 2009).  Two main points can 

be found from Figure 3.7, (1) when the incidence angle is larger than 60  the error becomes 

obvious; (2) the error increases proportional to the distance measured. 
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Figure 3.7 The theoretical signal deterioration influence of incidence angles. 

 

In our proposed approach, the target center identification is derived based on the reflected 

intensity of the individual point. The increasing incidence angle does not only influence the 

precision of the distance measurement but also the reflected intensity. Figure 3.8 gives the 

distribution of the target’s reflected intensity when the incidence angle increases from 10  to 

70 . The first row shows the results scanned by high resolution and the second row those by 

super high resolution. Compared with Figure 3.3, it is obvious that the overall range of the 

reflected intensity is reduced and continues to decrease with increasing incidence angle. 

However, the most important conclusion from Figure 3.8 is that there still exists an MV of 

intensity when the incidence angle increases and the range of reflected intensity continues to 

decrease. Thus, when the target is not pointed directly normal to the scanner, we can choose 

suitable thresholds based on the approximate incidence angles to obtain an acceptable MV of 

intensity. It is clear that the situations in Fig. 3.3 and Fig. 3.8 directly relate to the reflection of 

the laser rays by the colors of targets. Thus an MV of intensity can always be detected when 

we are using a black and white planar quadrant target. The thresholds for choosing an MV of 

intensity can be found by identifying two peaks in the target’s intensity histogram within the 

curve fitting method. Here we should note that longer distances measured by lower resolution 

may fail in any algorithm because of the extremely limited sampling. The last histogram in the 

first row in Figure 3.8 also shows this problem and has to be compared with the histogram in 

the bottom row of the same column where the MV of intensity can be clearly assessed because 

of increased resolution. 
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Figure 3.8 The distribution of target’s reflected intensity for different incidence angles. 

 

3.6 Application Examples 

Experimental field and instruments 

In this section, plane fitting and target center identification experiments are shown. The tests 

were performed in the geodetic laboratory at the Technical University of Munich (TUM), and 

the results were obtained using the TUM’s Leica HDS7000 TLS and its standard black and 

white targets, together with its accompanying software, Cyclone. The range accuracy of 

HDS7000 from the specification is 1 mm in linearity error and 125 in angular accuracy, 

both in horizontal and vertical directions. Three levels of resolution are tested: middle, high, 

and super-high levels that contain 5,000, 10,000, and 20,000 points in a scan, respectively. 

In the tests for plane fitting, the TUM’s Leica Laser Tracker AT901is employed to obtain 

reference planes and to assess the results by different methods. The coordinate component 

accuracy of the Laser Tracker is 0.01 mm, which is much higher than in the HDS7000. Four 

control points have been applied to set up the network. Because the accuracy of the Laser 

Tracker is much higher than the HDS7000, the errors in the data of the Laser Tracker can be 

neglected, and the propagation errors from coordinate transformation can be seen as observation 

errors from the HDS7000. In the tests of target center identification, 15 targets are distributed 

within a range of 21 meters on the calibration track line. The purpose of the experiments is to 

test the applicability of the proposed algorithm in the target identification and to compare the 

performance of the presented method with the accompanying software. More specifically, the 

results produced by the accompanying software with super-high resolution are accepted as the 

“true” value 𝒙̅ in the experiments. For the other results, we compute four residuals for each 

point: three coordinate components’ residuals and one point residual, calculated as: 
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𝑉𝑃𝑖
= √𝑣𝑥𝑖

2 + 𝑣𝑦𝑖
2 + 𝑣𝑧𝑖

2                                                                                                                (3.20) 

then, directly compute the corresponding RMSE using the following formula: 

𝑅𝑀𝑆𝐸 = √∑ (𝒙̂𝑖−𝒙̅𝑖)
𝑇(𝒙̂𝑖−𝒙̅𝑖)

𝑖=𝑚
𝑖=1

𝑚
                                                                                                           (3.21) 

where in Eq. (3.20) is the ith point residual and , , and are corresponding coordinate 

component residuals. In Eq. (3.21), 𝒙̂𝑖and 𝒙̅𝑖  respective denotes the ith estimated and “true” 

target center coordinates and m is the number of points. 

Experiment 1: Plane Fitting 

Table 3.1 shows the results of parameter estimation of a target plane fitting by different 

instruments and methods. The results calculated by least squares (LS) and the proposed methods 

with TLS data are both compared with those calculated by the Laser Tracker data. In this case, 

the proposed method produces better results than the LS by 84%, 67%, and 84% corresponding 

to the unknown parameters a, b, and c, respectively. We keep the plane in target size, 

specifically, the ranges of the x- and y- axes are respectively between the minimum to maximum 

with a step of 5 mm. Three fitting planes can be established with calculated parameters, 

respectively, 

1 1 1b cz a x y       Laser Tracker: Plane 𝒁𝟏                                                                                (3.22a) 

2 2 2b cz a x y      Scanner-LS: Plane 𝒁𝟐                                                                                     (3.22b) 

3 3 3b cz a x y      Scanner-proposed: Plane 𝒁3                                                                            (3.22c) 

Because the ranges in the x- and y-axes are approximately the same, we can directly compare 

the z-component to express the mutual positional relationship among the three planes, 

3 2f    
1 1

Z Z Z Z                                                                                                       (3.23) 

where, |𝒁1 − 𝒁3| and |𝒁1 − 𝒁2| represent the vertical distances from 𝒁3 to 𝒁1 and from 𝒁3 to 

𝒁2 respectively. So, if 0f   means plane 𝒁𝟑 is closer to plane 𝒁𝟏 than plane 𝒁𝟐. Figure 3.9 

shows the f values of the 1st target. From those Tables and the Figure, we can see that (1) the 

proposed method performs better than the classical method in plane fitting, in other words the 

proposed method is more robust and can obtain more reliable estimated parameters; (2) the 

fitting planes calculated by the presented method are mostly closer to the reference planes than 

that delivered by the LS, especially the middle part of the planes which is always closer to the 

reference planes by the proposed method, which will directly influence the accuracy of the 

following target center identification; (3) because the distance is limited to 3 m and scans with 

super-high resolution do not show the numerical difference of the results between the proposed 

ipV
ixv

iyv
izv
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method and LS clearly in this case with a resolution of 0.1 mm, that difference will become 

obvious if the distance increases or the resolution decreases; but (4) there contain some parts 

with positive values, e.g., the red part in Figure 3.9, in the edge of target which are caused by 

the ductility of the plane and the intersection of planes, but have little influence in the center 

identification. Figure 3.10 displays one of the resulting planes by the proposed method. 

 

Table 3.1 Estimated the plane parameters using LS and proposed methods. 

* e.g.: improvement in a = ||𝑎𝑡𝑟𝑎𝑐𝑘𝑒𝑟 − 𝑎𝐿𝑆| − |𝑎𝑡𝑟𝑎𝑐𝑘𝑒𝑟 − 𝑎𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑|| |𝑎𝑡𝑟𝑎𝑐𝑘𝑒𝑟 − 𝑎𝐿𝑆|⁄  

 

 

Figure 3.9 The difference in the plane fitting by the LS and proposed method 
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Scanner-LS -0.6830 -0.0032 -4.8626 

Scanner-proposed           -0.6787 -0.0038 -4.8538 
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Figure 3.10 The resulting plane by proposed method 

 

Experiment 2: Center Identification 

We offer the Cyclone results and our method results in detail in the Table 3.4 and 3.5 

respectively, in order to allow readers to check the experiments. We also supply the tested 

targets raw point clouds on demand for interested readers to repeat the identification 

experiments. With the super-high and high resolutions, all targets can be identified in our 

experiments, however, when the scanner uses the middle resolution, the targets in positions No. 

13, 14, and 15 cannot be accurately found or even found at all. Table 3.2 presents the bias of 

each coordinate component and the corresponding position bias in detail, between the “true” 

values and the results by Cyclone with lower resolutions. According to Table 3.2, we can see 

that (1) the results by Cyclone with high resolution show just a little difference from the “true” 

values, and the biases are 1mm more or less. The RMSEs of each coordinate component are 

less than 1mm and those of the position are slightly larger than 1 mm, (2) the errors in the results 

by Cyclone with a middle resolution show an upward trend as the distance increases. The points 

from No.1 to No.5 contain errors at the same level with that obtained by the high model, while 

after point No.5 the errors noticeably increase. The average positional error for points from 

No.6 to No.9 is 3.28 mm and from No.10 to 12 is 5.35 mm. The RMSE of the position is 3.50 

mm, which means the accuracy of the position decreases by about 178% compared with the 

high resolution value, which amounts to 1.26 mm. 
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Like the results by Cyclone, the targets from No.13 to 15 cannot be accurately found because 

of the limited number of points in the proposed method. Table 3.3 gives a comparison between 

the results of our proposed method with different resolutions and the “true” values. Based on 

Table 3.3, we can make the following observations. (1) With super-high resolution, the 

proposed method can obtain almost the same results as the “true” values. The RMSE of each 

coordinate component is 0.5 mm more or less, and the RMSE of the position is lower than 1 

mm. In engineering measurement or even in precision engineering measurement, the results 

calculated by our proposed method can be accepted with the same accuracy level as “true” 

values. (2) With high resolution, the proposed method can also obtain reliable results, the 

RMSE of each coordinate component is also lower than 1mm, and the same index for the 

position is slightly larger than 1 mm. Moreover, these results perform almost at the same level 

as those obtained by Cyclone with the same resolution. (3) With a middle resolution, the 

proposed method can obtain reliable results in the first five points; from the No.6 point, the 

positional error becomes larger than 2 mm. The RMSE of position is 2.76 mm, which means 

the accuracy increases by 21.14%, compared with that index obtained by Cyclone with the same 

resolution. 
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Table 3.2 Biases of coordinate components and position respective with high and middle resolutions by Cyclone. 

 

* Distance: from the scanner to the measured target. 

 

 

 

 

 

 

 

 

 High Resolution Model Middle  Resolution  Model  

Target 

Number 

Coordinate Component Point Coordinate Component Point Distance (m)* 

 Bias (mm) = true value – estiamted value 

 ∆𝒙 ∆𝒚 ∆𝒛 ∆𝑷 ∆𝒙 ∆𝒚 ∆𝒛 ∆𝑷 𝑫 

1 0 0 0 0.0 -1 0 0 1.0 1.8531 

2 0 1 0 1.0 0 0 0 0.0 3.3967 

3 0 0 0 0.0 0 0 -1 1.0 4.8625 

4 0 0 0 0.0 0 0 -1 1.0 6.2961 

5 0 0 0 0.0 0 0 0 0.0 7.8011 

6 0 1 1 1.4 0 1 -3 3.2 9.3189 

7 0 1 0 1.0 -2 -1 1 2.4 10.6149 

8 1 0 0 1.0 -2 -1 -2 3.0 11.9215 

9 0 0 -1 1.0 2 0 -4 4.5 13.2987 

10 0 0 -1 1.0 4 2 -3 5.4 14.6879 

11 1 0 0 1.0 1 -1 -7 7.1 16.3394 

12 1 1 -1 1.7 3 1 -3 4.4 17.7700 

13 -1 -1 2 2.4     19.0568 

14 -1 -1 0 1.4     20.4610 

15 1 0 -2 2.2     21.9748 

RMSE 0.63 0.63 0.89 1.26 1.80 0.87 2.74 3.50  
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Table 3.3 Biases of coordinate components and position respective with super high, high and middle resolutions by proposed 

method. 

Super High Resolution Model 

Target Number Coordinate Component Point Distance (m) 

Bias (mm) = true value – estiamted value 

 ∆𝒙 ∆𝒚 ∆𝒛 ∆𝑷 𝑫 

1 0 0 0 0.0 1.8531 

2 0 0 0 0.0 3.3967 

3 0 0 0 0.0 4.8625 

4 0 0 -1 1.0 6.2961 

5 0 0 0 0.0 7.8011 

6 0 1 0 1.0 9.3189 

7 0 1 0 1.0 10.6149 

8 0 0 0 0.0 11.9215 

9 0 0 0 0.0 13.2987 

10 0 0 0 0.0 14.6879 

11 1 0 0 1.0 16.3394 

12 0 0 -1 1.0 17.7700 

13 0 1 1 1.4 19.0568 

14 0 1 -1 1.4 20.4610 

15 -1 0 0 1.0 21.9748 

RMSE 0.37 0.51 0.52 0.81  

High Resolution Model 

Target Number Coordinate Component Point Distance (m) 

Bias (mm) = true value – estiamted value 

 ∆𝒙 ∆𝒚 ∆𝒛 ∆𝑷 𝑫 

1 0 0 0 0.0 1.8531 

2 0 0 0 0.0 3.3967 

3 0 0 -1 1.0 4.8625 

4 0 0 0 0.0 6.2961 

5 0 0 0 0.0 7.8011 
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6 0 0 -1 1.0 9.3189 

7 0 1 0 1.0 10.6149 

8 0 0 1 1.0 11.9215 

9 0 0 0 0.0 13.2987 

10 -1 1 -1 1.7 14.6879 

11 1 1 1 1.7 16.3394 

12 0 1 1 1.4 17.7700 

13 0 0 1 1.0 19.0568 

14 0 1 -1 1.4 20.4610 

15 -1 1 1 1.7 21.9748 

RMSE 0.45 0.63 0.77 1.09  

Middle Resolution Model 

Target Number Coordinate Component Point Distance (m) 

Bias (mm) = true value – estiamted value 

 ∆𝒙 ∆𝒚 ∆𝒛 ∆𝑷 𝑫 

1 0 0 0 0.0 1.8531 

2 0 1 0 1.0 3.3967 

3 0 0 0 0.0 4.8625 

4 0 0 0 0.0 6.2961 

5 -1 0 0 1.0 7.8011 

6 -1 0 -2 2.2 9.3189 

7 1 1 2 2.4 10.6149 

8 -1 0 2 2.2 11.9215 

9 0 0 -2 2.0 13.2987 

10 0 1 3 3.2 14.6879 

11 -4 -1 -2 4.6 16.3394 

12 -5 -2 3 6.2 17.7700 

RMSE 1.94 0.82 1.78 2.76  

 

Figure 3.11 displays four target centers of target No.8 captured by four methods in the z-x 

perspective. The grey dots represent the sample of target point clouds and were removed the 

center areas only for the visual purpose. The black and grey squares express the center obtained 
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by Cyclone and our proposed method, respectively. Obviously, these two squares are very close, 

almost overlapping. The black triangle represents the center obtained by the radiometric center 

of all returns (Lichti et al., 2000), and the grey triangle represents the center captured by MVC. 

Clearly, these two centers deviate from the “true” value of center. 

 

 

Figure 3.11 Four estimated target centers by different methods 

 

3.7 Conclusions 

In this work, we proposed an alternative method for target identification in TLS measurement. 

In the proposed method, the weighted total least squares method is employed to obtain an 

optimum fitting plane. The planarity condition of the plane is introduced in the plane fitting 

algorithm to control the accuracy of the resulting plane. After the first step, the characteristics 

of reflected intensity between different colors is applied to select appropriate points and then 

project them to the 2D coordinate system. Finally, through a robust iterative calculation, the 

target center can be successfully obtained. 
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The analysis of the experimental results demonstrates the applicability of the proposed method 

in target identification. From the case study results, we draw the following conclusions: 

1. In my tests the accuracy of results by arbitrary accompanying software (in our case, 

Cyclone) is reduced due to lower resolution or increased distance. Considering the 

accuracy requirement and time-consumption in each engineering project, choosing the 

optimum resolution model is very important. 

2. The method proposed here can obtain approximately the same accuracy level as that 

returned by the accompanying software within the range of the tests but just uses 

common information to complete the target identification process. This gives users 

increased scope to improve target identification. 

3. Furthermore, this method is objectively equal for same manufacturer’s instruments; thus, 

users can objectively compare different instruments’ behavior with respect to target 

identification. It should be repeated that the quality of target identification directly 

influences registration quality and has high importance. 
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Table 3.4 Target Centers obtained by Cyclone with different resolutions. 

Cyclone (m) 

No. Super High (True) High Middle 

 𝒙 𝒚 𝒛 Point No. 𝒙 𝒚 𝒛 Point No. 𝒙 𝒚 𝒛 Point No. 

1 -0.806 1.670 0.028 52046 -0.806 1.670 0.028 13325 -0.805 1.670 0.028 3303 

2 -1.476 3.060 0.028 16097 -1.476 3.059 0.028 3944 -1.476 3.060 0.028 963 

3 -2.114 4.378 0.028 7847 -2.114 4.378 0.028 2063 -2.114 4.378 0.029 466 

4 -2.737 5.669 0.028 4468 -2.737 5.669 0.028 1200 -2.737 5.669 0.029 323 

5 -3.392 7.024 0.029 3134 -3.392 7.024 0.029 771 -3.392 7.024 0.029 187 

6 -4.052 8.391 0.029 2150 -4.052 8.390 0.030 571 -4.052 8.390 0.032 138 

7 -4.615 9.559 0.030 1707 -4.615 9.558 0.030 448 -4.613 9.560 0.029 111 

8 -5.182 10.736 0.030 1323 -5.183 10.736 0.030 336 -5.180 10.737 0.032 91 

9 -5.782 11.976 0.029 1058 -5.782 11.976 0.030 286 -5.784 11.974 0.033 73 

10 -6.386 13.227 0.029 896 -6.386 13.227 0.030 256 -6.390 13.225 0.032 60 

11 -7.104 14.714 0.031 729 -7.105 14.714 0.031 184 -7.105 14.715 0.038 49 

12 -7.728 16.003 0.031 588 -7.729 16.002 0.032 162 -7.731 16.002 0.028 34 

13 -8.283 17.154 0.033 548 -8.282 17.155 0.031 140     

14 -8.897 18.426 0.030 432 -8.896 18.427 0.030 116     

15 -9.555 19.790 0.032 372 -9.556 19.790 0.034 103     
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Table 3.5 Target Centers obtained by proposed method with different resolutions. 

 

 

 

 

 

 

 

 

 

  

Proposed Method (m) 

No. Super High High Middle 

 𝐱 𝐲 𝐳 Point No. 𝐱 𝐲 𝐳 Point No. 𝐱 𝐲 𝐳 Point No. 

1   -0.806 1.670 0.028 52046 -0.806 1.670 0.028 13325 -0.806 1.670 0.028 3303 

2   -1.476 3.060 0.028 16097 -1.476 3.060 0.028 3944 -1.476 3.059 0.028 963 

3   -2.114 4.378 0.028 7847 -2.114 4.378 0.029 2063 -2.114 4.378 0.028 466 

4   -2.737 5.669 0.029 4468 -2.737 5.669 0.028 1200 -2.737 5.669 0.028 323 

5   -3.392 7.024 0.029 3134 -3.392 7.024 0.029 771 -3.391 7.024 0.029 187 

6   -4.052 8.390 0.029 2150 -4.052 8.391 0.030 571 -4.051 8.391 0.031 138 

7   -4.615 9.558 0.030 1707 -4.615 9.558 0.030 448 -4.616 9.558 0.028 111 

8   -5.182 10.736 0.030 1323 -5.182 10.735 0.029 336 -5.181 10.737 0.028 91 

9   -5.782 11.976 0.029 1058 -5.782 11.976 0.029 286 -5.782 11.976 0.031 73 

10   -6.386 13.227 0.029 896 -6.385 13.226 0.030 256 -6.386 13.226 0.026 60 

11   -7.105 14.714 0.031 729 -7.105 14.713 0.030 184 -7.100 14.715 0.033 49 

12   -7.728 16.003 0.032 588 -7.728 16.002 0.030 162 -7.723 16.005 0.028 34 

13   -8.283 17.153 0.032 548 -8.284 17.154 0.032 140     

14   -8.897 18.425 0.031 432 -8.897 18.425 0.031 116     

15   -9.554 19.790 0.032 372 -9.554 19.789 0.031 103     
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Chapter 4 

Configuration Requirements for Terrestrial 

Laser Scanner Calibration within a Point Field 

 

Xuming Ge, A. Wieser, T. Wunderlich 

IEEE Transactions on Geoscience and Remote Sensing. 2016. Under review. 

(The text given here is a revised version) 

 

4.1   Abstract 

The goal of laser scanner calibration is to estimate the parameters of a deterministic model of 

scanner biases in order to mitigate these biases and their effect on the scanning results. In this 

paper, we focus on the prediction and planning of the quality of point-field based scanner 

calibration. First, we propose specific criteria for assessing whether the estimated calibration 

parameters (“additional parameters”, APs) are accurate enough. We relate a statistical bound 

of the unknown deviation of the estimates to the standard deviations of the scanner’s raw 

measurements. Second, we carry out an observability analysis individually for each AP, 

highlighting the required number and spatial distribution of scanned object points. We also 

identify parameters which can hardly be observed by this type of calibration and may have to 

be determined separately, e.g. by component calibration. Finally, we apply the criteria and 

configuration requirements as basic building blocks to the design of a point-field and scanner 

setup plan for determination of a frequently used subset of APs for (i) calibration in an indoor 

field with separately measured target coordinates, and (ii) for scanner self-calibration. 
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Keywords: Terrestrial laser scanner; Calibration; Point-field; Accuracy; Correlation; 

Prediction 

4.2   Introduction 

The accuracy of terrestrial laser scanning (TLS) results is limited by a variety of factors 

including uncompensated instrumental biases, target surface structure and material properties, 

atmospheric effects, residual deviations of point cloud registration, and others (Kaasalainen et 

al., 2010; Polo et al., 2012; Fang et al., 2015; Ge and Wunderlich, 2015, 2016). In order to 

exploit the accuracy potential of the instruments, scanners need to be calibrated such that the 

effect of instrumental biases is negligible compared to the other effects.  

Scanners can be calibrated by component calibration or by system calibration. In component 

calibration, precise knowledge of the individual system components and their respective error 

contributions is required (Schulz, 2008). Assuming that the error of the entire system can be 

synthesized from the errors of the individual sub-systems, the latter are calibrated separately 

using different equipment and approaches. In system calibration, the parameters used to model 

and mitigate the deviations of TLS measurements are all determined together within one 

calibration process. If the necessary calibration parameters are actually observable by system 

calibration, it may even be possible to carry out a self-calibration determining the calibration 

parameters on the job, i.e. along with the wanted coordinates of the points in the point-cloud 

and with possibly required further (nuisance) parameters. This may be more economic than 

separate scanner calibration and is also attractive in terms of accuracy because the calibration 

is up-to date when used and the scanning results are therefore not affected by possibly outdated 

parameters from a prior calibration (Lichti, 2007).  

TLS system calibration is based on a deterministic model of the deviations of distance and 

angle measurements. The result of the calibration are estimated values of the parameters of this 

model. Lichti (2007) has presented such a model. Its parameters have been called additional 

parameters (APs). Since then Lichti and others have published a series of papers on laser 

scanner self-calibration, discussing correlation sources and parameter de-correlation for both 

panoramic and hybrid scanners, (e.g., Lichti, 2007, 2009, 2010; Lichti and Licht, 2006; Lichti 

et al., 2011). Reshetyuk (2010) presented an approach in which all parameters in the model 
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were additionally treated as observations with suitably chosen prior weights. This allows 

including prior knowledge, reducing correlations, and increasing the precision of the estimated 

parameters – provided suitable prior values are available e.g. from a previous calibration. Using 

certain AP models and stochastic information about the parameters of external orientation (EOs) 

Reshetyuk (2010) succeeded in de-correlating APs and nuisance parameters even further. 

Another TLS system calibration methods can refer to Garcia-San-Miguel and Lerma (2013) 

and Chan et al. (2015). 

The main goal of calibration is to estimate APs which significantly reduce the deviation 

between the scanner measurements and the corresponding true values when applied to the 

measurements output by the scanner. Lichti (2010) analyzed the influence of target distribution, 

size of target point field, and number of targets on the correlation and precision of the estimated 

parameters. Reshetyuk (2010) discussed possibly high correlation between APs and EOs, 

obtained with an essentially random distribution of the targets. However, so far no specific 

rules were given to predict and assess whether the accuracy of the APs as obtained with a 

particular calibration point field and setup of measurements is sufficient. Such rules would be 

of high value for (i) planning and establishing a calibration point field, (ii) assessing calibration 

results obtained from self-calibration or from an ad-hoc point field, and (iii)assessing which 

APs can be determined from scans of a (given) point field and which need to be determined 

from separate calibration. 

The primary goal of this paper is to fill this gap by proposing a criterion for relating predictable 

quality indicators to application requirements and by deriving related configuration 

requirements of the point field and scanner setup. In a first step we derive criteria to judge 

whether the estimated APs are sufficiently accurate. The criteria are independent of the specific 

(estimated) values of the APs but related to the impact on the point cloud coordinates. 

In a second step we analyze the relation between the spatial distribution of the object points 

(OPs) used for calibration and the related observability of the APs on an AP-per-AP basis. This 

is intended to enhance the understanding of how individual OPs or sets of OPs contribute to 

the estimated parameters and thus to facilitate derivation of both a suitable OP distribution and 

a suitable measurement plan for calibration involving an entire set of APs. We finally 

demonstrate the application of the criteria and of the geometric building blocks to the 

calibration of a scanner in an indoor calibration point field. 
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The OPs are points which can be identified either in more than one point cloud or in at least 

one point cloud and in the real scene. Within this paper we assume that they are represented by 

markers, e.g. a checkerboard pattern printed on a flat surface, such that their coordinates in the 

scanner coordinate system can be calculated from the points of the point cloud and their 

respective signal strength indicators, and that they can also be measured independently using 

e.g. a total station. 

4.3   Mathematical model 

We base our investigation on the AP model introduced by Lichti (2007). However, our 

approach can easily be applied to any other TLS error model, like those presented e.g. by 

Gordon and Lichti (2007), by Holst and Kuhlmann (2014), by Hartzell et al. (2015), or by 

Domingo-Perez et al., (2016). The deviations of the measured distances (ρ) , and of the 

measured horziontal (𝜃) and vertical angles (𝛼) are expressed as functions of these values and 

some auxiliary quantities as follows: 

δρ = 𝑎0 + 𝑎1ρ + 𝑎2 sin(𝛼) + 𝑎3 sin (
4𝜋

𝑈1
ρ) + 𝑎4 cos (

4𝜋

𝑈1
ρ) + 𝑎5 sin (

4𝜋

𝑈2
ρ) +

𝑎6 cos (
4𝜋

𝑈2
ρ) + 𝑎7 sin(4𝜃) + 𝑎8 cos(4𝜃)                                                                             (4.1) 

δ𝜃 = 𝑏1 sec(𝛼) + 𝑏2 tan(𝛼) + 𝑏3 sin(2𝜃) + 𝑏4 cos(2𝜃) +𝑏5𝜃 + 𝑏6 cos(3𝜃) + 𝑏7 sin(4𝜃)

                                                                                                                                                (4.2) 

δ𝛼 =  𝑐0 + 𝑐1𝛼 + 𝑐2 sin(𝛼) + 𝑐3 sin(3𝛼) + 𝑐4 cos(3𝛼)                                                      (4.3) 

The ai, bi and ci are the parameters of the model i.e., the APs, whereas the Ui are the first (finest) 

and second modulation wavelength of the distance measurement unit. As can be seen from (1) 

the terms with coefficients a3 to a6 only apply to phase-based scanners and will have to be 

omitted with scanners measuring the time-of-flight directly. The discussion in Lichti (2007) 

shows that some of the above APs are empirical, i.e. they were found to mitigate systematic 

effects detected within the measurement residuals of some scanners but not yet causally 

explained. So, only a subset of the above APs (and perhaps some additional ones) may be 

needed for a specific scanner, in particular, since the data output by the scanner has typically 
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been ‘corrected’ already within the instrument using the (undisclosed) functions and 

parameters determined by the manufacturer. 

The calibration, i.e. the estimation of the AP values, is based on the relation between the 

coordinates of the object points expressed in a chosen external coordinate frame (target- or t-

frame) and in the coordinate frame of the scanner which we consider to be different for each 

scan and scanner setup (i-frame for the i-th scan or setup). The transformation between these 

frames is described using six external orientation parameters (EOs) per scan namely the 3D 

translations ∆𝒙𝑖
𝑡(x, y, z)  and the three rotation angles resulting in the rotation matrix 

𝑹𝑖
𝑡(𝜔, 𝜑, 𝜅). The coordinates  of the j-th OP expressed in the i-th scanner frame are a 

function of the polar elements 𝒓𝑗
𝑖 = [ρ𝑗

𝑖 , θ𝑗
𝑖, α𝑗

𝑖] already introduced above. However, the true 

values of these elements differ from the ones output by the scanner (or recalculated from ) 

by the biases δρ𝑗
𝑖 , δ𝜃𝑗

𝑖 and δ𝛼𝑗
𝑖 and by zero-expectation random deviations 𝑒

ρ𝑗
𝑖 , 𝑒θ𝑗

𝑖 , 𝑒α𝑗
𝑖 . So, the 

condition 

𝐱̃𝑗
𝑡 − ∆𝐱̃𝑖

𝑡 − 𝐑̃𝑖
𝑡𝐱̃𝑗

𝑖 = 𝟎                                                                                                             (4.4) 

is fulfilled by the underlying true quantities (indicated by the tilde symbol) with: 

𝐱̃𝑗
𝑖 = ρ̃𝑗

𝑖 ∙ [

cos 𝜃̃𝑗
𝑖 cos 𝛼̃𝑗

𝑖

sin 𝜃̃𝑗
𝑖 cos 𝛼̃𝑗

𝑖

sin 𝛼̃𝑗
𝑖

]                                                                                                       (4.5) 

and 

ρ̃𝑗
𝑖 = ρ𝑗

𝑖 + δρ𝑗
𝑖 + 𝑒̃

ρ𝑗
𝑖 , 𝜃̃𝑗

𝑖 = 𝜃𝑗
𝑖 + δ𝜃𝑗

𝑖 + 𝑒̃
𝜃𝑗

𝑖, 𝛼̃𝑗
𝑖 = 𝛼𝑗

𝑖 + δ𝛼𝑗
𝑖 + 𝑒̃

𝛼𝑗
𝑖                                      (4.6) 

Assuming that the biases are fully described by the deterministic model eqs. (4.1-4.3), we may 

use eqs. (4.4-4.6) together with (4.1-4.3) for estimating the unknown APs, EOs, and OPs. This 

can be achieved with a variety of different adjustment models. We have chosen to carry out all 

calculations within a Gauss-Helmert model starting from the non-linear condition equations 

(4.4). However, the criteria, results and conclusions derived in the remainder of this paper are 

independent of this choice and hold also if a Gauss-Markov model is used, as by Lichti (2007). 

Both approaches allow including further observations as needed e.g., OP coordinates measured 

i

jx

i

jx
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with an independent measurement system, all or certain EOs observed directly, or APs taken 

from a previous calibration. The starting point for the following analysis is the variance 

covariance matrix (VCM) of all APs and all other parameters jointly estimated. 

4.4   Definition of criteria 

The estimated APs need to be sufficiently accurate and sufficiently uncorrelated. The former 

assures that applying the estimated APs will actually improve the accuracy of the TLS 

measurements. The latter facilitates interpretation and comparison of the values (e.g. with 

respect to their stability over time) and is a prerequisite for successful application of the APs 

to scans beyond the ones from which they were estimated. We need criteria to check precision 

and correlation both for planning the calibration and for assessing the success of a calibration 

actually carried out. In this section we propose such criteria making sure that they are applicable 

to a variety of scanners and applications. Subsequently we use these criteria to derive proposed 

geometric configurations for point field based scanner calibration. 

4.4.1   Precision 

The estimated AP values differ from the underlying true values such that their application 

leaves a bias in the ‘corrected’ range and angle measurements and consequently in the 

coordinates of the point clouds. We will consider these biases negligible (and thus the accuracy 

of the estimated APs sufficient) if they are substantially lower than the standard deviations of 

the corresponding range and angle measurements. Assuming that the estimation of the APs is 

carried out robustly such that the results are most likely not affected by outliers and that there 

are no un-modeled systematic deviations the unknown bias1 of the estimated APs can be 

assessed using their predicted precision. We demonstrate the derivation of the corresponding 

criteria for a few selected parameters and then list the results for all APs. 

The deviation ∆δρ (𝑎̂0) of δρ caused by the bias 𝜀𝑎̂0
of 𝑎̂0 (hat indicates estimated quantities) 

i.e., its deviation from the corresponding true value, can be derived from eq. (4.1) as 

                                                 

 

1 We denote the entire difference between estimated and unknown true value as bias henceforth, not referring to 

biased or unbiased estimation in the statistical sense. 
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∆δρ (|𝑎̂0|) =
𝜕δρ

𝜕𝑎0
∙ 𝜀𝑎̂0

= 𝜀𝑎̂0
                                                                                                   (4.7) 

which is strict in this case, because the range deviation δρ is a linear function of 𝑎0.  

We consider this bias to be negligible if 

|∆δρ (𝑎̂0)| ≤ 𝜇𝜌𝜎𝜌,                                                                                                              (4.8) 

with a suitably chosen range negligibility factor 0 < 𝜇𝜌 < 1 and with 𝜎𝜌  representing the 

standard deviation of the range observations. We will assume henceforth that 𝜎𝜌 is constant, 

but extending the results to situations where it varies with distance would be easily possible. 

Since the actual bias is stochastic we cannot assure that eq. (4.8) is fulfilled. However, we can 

relax the criterion by associating it with a probability. We assume the bias as negligible if the 

inequality is fulfilled with a high, chosen probability of at least 1 − 𝜓𝜌 i.e., if 

𝒫{|∆δρ (𝑎̂0)| ≤ 𝜇𝜌𝜎𝜌} ≥ 1 − 𝜓𝜌.                                                                                          (4.9) 

On the other hand, assuming that the deviation of 𝑎̂0 is normally distributed as 𝜀𝑎̂0
 ~ 𝑁(0, 𝜎𝑎̂0

2 ) 

and taking into account eq. (4.7) we have 

𝒫 {−𝑧1−𝜓𝜌 2⁄ ∙ 𝜎𝑎̂0
≤ ∆δρ (𝑎̂0) ≤ 𝑧1−𝜓𝜌 2⁄ ∙ 𝜎𝑎̂0

} = 1 − 𝜓𝜌,                                                     (4.10) 

where 𝑍𝛾 is the γ-quantile of the standard normal distribution. Thus, eq. (4.9) holds if 

𝜎𝑎̂0
≤ (𝜎𝑎̂0

)
max

: =
𝜇𝜌𝜎𝜌

𝑧1−𝜓𝜌 2⁄
.                                                                                                            (4.11) 

So, we assume that the bias is negligible if the standard deviation of the estimated AP, as 

calculated from the VCM of the estimated parameters, does not exceed the threshold defined 

by eq. (4.11) with reasonably chosen negligibility factor and type 1 error probability 𝜓𝜌. In 

order to check whether 𝑎0 will be or has been estimated with sufficient accuracy we then just 

need to check whether the criterion given in eq. (4.11) is fulfilled. 
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Using similar reasoning we can find equivalent criteria for all APs referring to range. Since the 

term on the right hand side of eq. (4.11) shows up in the corresponding calculations for each 

of these APs we introduce the symbol 𝐼𝜌 as follows: 

𝐼𝜌: =
𝜇𝜌𝜎𝜌

𝑧1−𝜓𝜌 2⁄
.                                                                                                                         (4.12) 

However, eq. (4.7) shows that the bias of 𝑎̂0 has the same impact on all measured distances, 

and thus the resulting criterion is independent of the actually measured point. This is different 

for most of the other APs. Typically the impact of the bias of an AP depends on the distance 

and angles of the respective point. For determining the values of the criteria corresponding to 

eq. (4.11), we therefore take into account the respective worst effect depending on the distance 

and angle ranges of the scanner. 

We demonstrate this exemplarily for 𝑎3 which models a contribution to the cyclic distance 

deviation (see e.g., Rüeger, 1990). Following the same procedure as with eqs. (4.7–4.11) we 

find that the deviation of 𝑎̂3 is negligible if:  

𝜎𝑎̂3
≤ 𝐼ρ ∙ (|sin (

4ρ

𝑈1
𝜋)|)

−1

.                                                                                                  (4.13) 

So, the maximum admissible standard deviation of the estimated AP does not only depend on 

the quantities chosen above (constituents of 𝐼𝜌as of eq. 4.12) but also on the respective range. 

In order to fulfill the criterion for all possible points within the point clouds obtained using this 

scanner, eq. (4.13) needs to hold also in the most stringent case i.e., the one where the right 

hand side is a minimum. This is achieved if 

𝜎𝑎̂3
≤ (𝜎𝑎̂3

)
𝑚𝑎𝑥

: = 𝐼ρ ∙ (|sin (
4ρ∗

𝑈1
𝜋)|)

−1

                                                                            (4.14) 

with 

ρ∗: = argmax
ρ

|sin (
4ρ

𝑈1
𝜋)|.                                                                                                  (4.15)  

Of course, the minimum of the right hand side of eq. (4.14) is 𝐼𝜌 and is obtained for all distances 

for which the magnitude of the sin-term is 1, i.e., for all 

ρ = (2𝑘 + 1)
𝑈1

8
                                                                                                                    (4.16) 
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with 𝑘 ∈ 𝐍. Usually, many such distances are within the specified distance range of the scanner 

and we can arbitrarily choose any of them as ρ∗  for evaluating eq. (4.14). This yields the 

criterion 

𝜎𝑎̂3
≤ 𝐼ρ.                                                                                                                               (4.17) 

If we only want to use the estimated APs for a specific application with very limited range of 

distances it may be possible to slightly relax the criterion. In this case we may resort to eq. (4.14) 

with (4.15) in order to find the appropriate numeric value of the criterion. 

Depending on the type of scanner, the observed angles and distances are within specific 

intervals (see Table 4.1). Table 4.2 lists the criteria for all range APs as resulting from an 

analysis as above. It also gives the simplified values of the criteria for panoramic and hybrid 

scanners assuming that the criteria should be fulfilled within the entire working range of the 

respective scanner. 

 

Table 4.1 Range of observations available with scanners of different type. 

 Scanner type 

 Panoramic Hybrid 

Distance 𝜌𝑚𝑖𝑛 ≤ 𝜌 ≤ 𝜌𝑚𝑎𝑥 

Horizontal angle 0° ≤ 𝜃 ≤ 180° 0° ≤ 𝜃 ≤ 360° 

Vertical angle −𝛼0 ≤ 𝛼 ≤ 180° + 𝛼0 −90° < 𝛼𝑚𝑖𝑛 ≤ 𝛼 ≤ 𝛼𝑚𝑎𝑥 < 90° 
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Table 4.2 Criteria (maximum admissible standard deviations) for the range APs with Iρas of eq. (16); ρ∗, θ∗, α∗are distance, 

horizontal and vertical angle for which the respective criterion is a minimum. All APs and criteria are given in meters, except 

a1and its criterion which are dimensionless (m/m). 

AP General case Panoramic scanner Hybrid scanner 

𝑎0 𝐼ρ 𝐼ρ 𝐼ρ 

𝑎1 𝐼ρ ∙ (ρ∗)−1 𝐼ρ/𝜌𝑚𝑎𝑥 𝐼ρ/𝜌𝑚𝑎𝑥 

𝑎2 𝐼ρ ∙ |(sin 𝛼∗)−1| 𝐼ρ 𝐼ρ/|sin𝛼∗|, 

𝛼∗ = 𝑚𝑎𝑥(|𝛼𝑚𝑖𝑛|, |𝛼𝑚𝑎𝑥|) 

𝑎3 
𝐼ρ ∙ (|sin

4ρ∗

𝑈1
𝜋|)

−1

 
𝐼ρ 𝐼ρ 

𝑎4 
𝐼ρ ∙ (|cos

4ρ∗

𝑈1
𝜋|)

−1

 
𝐼ρ 𝐼ρ 

𝑎5 
𝐼ρ ∙ (|sin

4ρ∗

𝑈2
𝜋|)

−1

 
𝐼ρ 𝐼ρ 

𝑎6 
𝐼ρ ∙ (|cos

4ρ∗

𝑈2
𝜋|)

−1

 
𝐼ρ 𝐼ρ 

𝑎7 𝐼ρ  ∙ (|sin 4𝜃∗|)−1 𝐼ρ 𝐼ρ 

𝑎8 𝐼ρ  ∙ (|cos 4𝜃∗|)−1 𝐼ρ 𝐼ρ 

 

We obtain similar relations for the horizontal and vertical angles using the quantities 

𝐼𝜃: =
𝜇𝜃𝜎𝜃

𝑧1−𝜓𝜃 2⁄
                                                                                                                          (4.18) 

and 

𝐼𝛼: =
𝜇𝛼𝜎𝛼

𝑧1−𝜓𝛼 2⁄
                                                                                                                         (4.19) 

which account for the different units and standard deviations of the angle observations as 
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opposed to the distances, and allow using different negligibility factors and type 1 error 

probabilities, if needed. The results are summarized in Tables 4.3 and 4.4. 

A special difficulty arises with 𝑏1 and 𝑏2. When following the above derivation of the criteria, 

we could never assess the accuracy of 𝑏1 and 𝑏2 as sufficient for application within the entire 

working range of the scanner. However, this is a wrong conclusion. It is due to the expression 

of the criteria with respect to polar coordinates and using linear variance propagation: the 

minimum value of the criterion is 0 if the scanner allows measuring points at 𝛼 = 90° i.e. in its 

vertical axis. We will therefore use a slightly different approach for these two APs. 

It can be shown that the impact of a bias 𝜀𝑏̂1
 of 𝑏̂1 on the 3D position of the scanned points is 

bounded by 𝜌 times 𝜀𝑏̂1
 and even less if 𝛼 is very close to 90°. Considering that their pact of 

random deviations of the measured angles on the 3D position is also proportional to 𝜌, we can 

give an acceptable cut-off for the vertical angle to assess 𝑏1 based on the maximum measured 

range which is always limited in a typical indoor field. In our case, the maximum measured 

range is about 10 m and we choose 𝛼 =  80° (and 100° for a panoramic scanner) as the cut-

off. Therefore, the 3D position of the scanned points is bound by 1.7𝜀𝑏̂1
 which is small enough 

to assess a 3D position. Then we can yield the criterion 

𝜎𝑏̂1
≤ (𝜎𝑏̂1

)
𝑚𝑎𝑥

= 0.17 ∙ 𝐼𝜃                                                                                                 (4.20) 

The same applies to 𝑏2.This has been taken into account in Table 4.3. 
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Table 4.3 Criteria (maximum admissible standard deviations) for the horizontal angle APs with Iθas of eq. (18); ρ∗, θ∗, α∗ are 

distance, horizontal and vertical angle for which the respective criterion is a minimum. All AP and criteria are given in degrees, 

except b5and its criterion which are dimensionless (deg/deg). 

AP General case Panoramic scanner Hybrid scanner 

𝑏1 𝐼𝜃 ∙ |cos 𝛼∗| 0.17 ∙ 𝐼𝜃 

𝛼∗ = 80° or 100° 

0.17 ∙ 𝐼𝜃 

𝛼∗ = 80° 

𝑏2 𝐼𝜃 ∙ (|tan 𝛼∗|)−1 0.18 ∙ 𝐼𝜃 

𝛼∗ = 80° or 100° 

0.18 ∙ 𝐼𝜃 

𝛼∗ = 80° 

𝑏3 𝐼𝜃 ∙ (|sin 2𝜃∗|)−1 𝐼𝜃 𝐼𝜃 

𝑏4 𝐼𝜃 ∙ (|cos 2𝜃∗|)−1 𝐼𝜃 𝐼𝜃 

𝑏5 𝐼𝜃 ∙  (𝜃∗)−1 𝐼𝜃
180

° 
𝐼𝜃

360
° 

𝑏6 𝐼𝜃 ∙ (|cos 3𝛼∗|)−1 𝐼𝜃 𝐼𝜃 

𝑏7 𝐼𝜃 ∙ (|sin 4𝛼∗|)−1 𝐼𝜃 𝐼𝜃 

 

Table 4.4 Criteria (maximum admissible standard deviations) for the vertical angle APs with Iαas of eq. (19); ρ∗, θ∗, α∗ are 

distance, horizontal and vertical angle for which the respective criterion is a minimum. All AP and criteria are given in degrees, 

except c1and its criterion which are dimensionless (deg/deg). 

AP General case Panoramic scanner Hybrid scanner 

𝑐0 𝐼𝛼 𝐼𝛼 𝐼𝛼 

𝑐1 𝐼𝛼 ∙ (𝛼∗)−1 𝐼𝛼/𝛼∗, 

𝛼∗ = 180° + 𝛼0 

𝐼𝛼/𝛼∗, 

𝛼∗ = 𝑚𝑎𝑥(|𝛼𝑚𝑖𝑛|, |𝛼𝑚𝑎𝑥|) 

𝑐2 𝐼𝛼 ∙ (sin 𝛼∗)−1 𝐼𝛼 𝐼𝛼/ sin 𝛼∗, 

𝛼∗ = 𝑚𝑎𝑥(|𝛼𝑚𝑖𝑛|, |𝛼𝑚𝑎𝑥|) 

𝑐3 𝐼𝛼 ∙ (sin 3𝛼∗)−1 𝐼𝛼 𝐼𝛼 

𝑐4 𝐼𝛼 ∙ (cos 3𝛼∗)−1 𝐼𝛼 𝐼𝛼 
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4.4.2   Correlation 

Estimating the APs from laser scanner observations in a point field typically involves also 

estimating the external orientation EO of the individual scanner setups and possibly object 

point coordinates OP along with the APs. Use of the estimated AP values with other scans is 

only justified if the correlation between APs and the other parameters is negligible. 

Furthermore, also the correlation among the estimated APs should be low in order to allow 

assessing them separately, e.g. for studying the temporal stability of the calibration, and to 

justify application to points which were not used for the estimation. Detailed investigations are 

required to relate an appropriate threshold of maximum admissible correlation to known 

parameters of the scanner and of the scanner applications in a similar manner as above. This is 

beyond the scope of the present paper, so we chose a fixed threshold herein. Based on earlier 

studies of correlation among the parameters obtained within laser scanner self-calibration 

(Lichti and Franke, 2005; Lichti, 2007, 2009, 2010; Lichti et al. 2011; Reshetyuk 2009, 2010), 

we propose to use 0.3 as a threshold for correlations to be considered sufficiently low. 

4.5   Configuration requirements 

Using the criteria developed above we can investigate how the object points used for calibration 

need to be spatially distributed in relation to the scanner setup and orientation. We do this first 

assuming that only one AP or a small subset of APs is to be estimated and all other parameters 

including EOs and OPs are known. While this is not a realistic scenario for the real calibration, 

it yields valuable insight into the configuration requirements providing building blocks for the 

subsequent discussion of a realistic calibration setup. Furthermore this analysis will also show 

which parameters may not be observable with sufficient accuracy within a system calibration 

in a practically realizable point field and should rather be determined using a separate 

(component) calibration therefore. 

We base the analysis on the assumption that the point field is established indoors, in a room 

with dimension 8 x 8 x 4 m3 as such a room is available for us. However, we will also consider 

the potential benefits of less restricted spaces where appropriate. Furthermore, we assume that 

the scanner is operated approximately in an upright orientation and that only negligibly few 

targets can be located directly above or below the scanner. So we will not take into account 
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targets at vertical angles below -70° (and above 250° for panoramic scanners) or between 80° 

and 100° even if the scanner is of the panoramic type. 

We have chosen 𝜇 = 0.7 for all negligibility factors because this means that the bias of the 

individual estimated AP will increase the mean-square error (MSE) of the corresponding range 

or angle observation by not more than 20%. We consider it justified to neglect biases of this 

order of magnitude2. Finally, we use a type 1 error probability 𝜓=5% for all three observation 

types, so we have 

[𝐼𝜌 𝐼𝜃 𝐼𝛼] ∶= 0.4 ∙ [𝜎𝜌 𝜎𝜃 𝜎𝛼].                                                                                  (4.21) 

4.5.1   Minimum configuration for individual APs 

As before we will first demonstrate the analysis for 𝑎0 and a few more APs in detail and then 

give the results for all APs.  

From a geometric point of view a single OP at an arbitrary, known location within the working 

range of the scanner would be sufficient to estimate𝑎0. However, if the criterion given in Table 

4.2 is to be met then 𝜎𝑎̂0
 must be less than 0.4𝜎𝜌  and thus at least 7 independent TLS 

measurements to known OPs must be available (
1

√𝑁
< 0.4 for 𝑁 ≥ 7).  

The 7 measurements can be obtained by either identifying 7 different targets at arbitrary 

locations within one scan or by using less than 7 targets but at least some of them identified in 

more than one scan (obtained with equal or with different scanner positions and orientations). 

Also when estimating only 𝑎1 theoretically a single OP at an arbitrary, known location within 

the working range of the scanner would be sufficient. However, the precision of the scale 

estimate gets better with increased distance. So the OP should be as far as possible from the 

scanner. Furthermore, we need more than one OP in order to fulfill the requirement given in 

Table 4.2. If the maximum distance during calibration is 10 m (limited by the dimension of the 

hall) but the maximum range during later application of the scanner can be up to 𝜌max = 180 m 

(e.g.for a Leica HDS7000 scanner) we find numerically, that more than 2500 independent OP 

measurements would be required for sufficiently accurate estimation of 𝑎1. This shows clearly 

                                                 

 

2 For more stringent cases, see discussion in Sec. 4.4.2. 
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that it is not feasible to calibrate the scanner range scale factor in a typical indoor calibration 

point field if the estimated AP values are to be used for scans with much longer distances (e.g. 

outdoors) later on. If the maximum range during calibration is equal to the maximum range 

during later use of the APs, then at least 7 OP measurements at this maximum range would be 

needed for sufficiently accurate determination of 𝑎̂1. Typically, however, the scale factor will 

have to be determined separately and introduced as a known or directly observed quantity 

during the calibration of the other APs within the point field. In this sense, scale factor 

determination can be carried out using a dedicated scale calibration procedure as established 

for conventional electronic distance measurement equipment or a dedicated (outdoor) point 

field with long distances. Highly accurate meteorological corrections will also be needed in the 

latter case. 

Some of the APs come in pairs of sine and cosine terms with the same argument, e.g. 𝑎3 and 

𝑎4 or 𝑏3 and 𝑏4. This is a convenient form of representing sinusoidal terms with amplitude and 

phase to be determined. So, the APs coming in such pairs need to be taken into account 

simultaneously when assessing their observability. Theoretically, to estimate e.g. 𝑎3 and 𝑎4 

with known EOs it is sufficient to have two OPs at different known locations provided that at 

least the sine values of the two arguments or the cosine values are different and no more than 

one sine value and one cosine value is 0. So, the distances from the scanner to these two OPs 

must not differ by an integer multiple of U1/2. The predicted standard deviations of 𝑎3 and 𝑎4 

are independent of the horizontal and vertical angles of the targets in this case. The distances 

slightly influence the quality of the estimates of 𝑎3 and 𝑎4, but this influence is small if they 

do not differ by approximately an integer multiple of U1/2. Again, in order to achieve sufficient 

precision fulfilling the criteria given in Table 4.2 we need more than 2 OPs. In fact, at least 14 

independent TLS range measurements to OPs with known coordinates must be available to 

ensure that the errors in the estimated values of 𝑎3 and 𝑎4 are negligible.  

When establishing and using a calibration point field, it may be very difficult to distribute a 

large number of targets exactly at predefined distances from the scanner or at least avoid certain 

distances. By using slightly more targets, sufficiently accurate estimation of the parameters can 

also be achieved using targets which are quasi-randomly distributed, i.e. not located at carefully 

planned distances from the scanner. We carried out a Monte Carlo simulation (using M = 1000 

runs), assuming that the targets are located at distances uniformly distributed within [𝑟min,𝑟max] 

with 𝑟min  and 𝑟max  determined by the dimensions of the hall or environment where the 

calibration is carried out, and 𝜌min ≤ 𝑟min ≤ 𝑟max ≤ 𝜌max. We found out that the resulting 
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standard deviations of 𝑎3 and 𝑎4 were lower than the threshold of Table 4.2 in 95% of the cases 

using 22 targets (instead of 14) with distances randomly distributed up to 𝑟max = 5 m, 20 

targets with distances of up to 𝑟max = 10 m (see Figure 4.1). 

We have correspondingly analyzed also the individual configuration requirements of all other 

APs, or pairs of APs where appropriate, from the purely geometric perspective and additionally 

taking the criteria of Tables 4.2–4.4 into account. The results are given in Tables 4.5-4.7. 

Where a particular spatial distribution of the OPs is required which cannot easily be assured in 

a real calibration setup, the results of the MC simulation, also reported in Tables 4.5-4.7, 

indicate how many OP measurements to points uniformly distributed in range and angles within 

the volume of the hall are needed to fulfill the requirements with a probability of 95%. 

 

Figure 4.1 Success rates (percentage of simulation runs where the results fulfilled the criteria of Table 2) for a3 and a4with 

random distribution of OPs for two different maximum ranges (MC simulations with M=1000 runs per number of OPs). 
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Table 4.5 Minimum configuration requirements for the range APs according to the scenarios discussed in the text (EO known, OP coordinates known, same OP observed in more than one scan counts 
separately for each scan). 

AP Theoretical requirement Requirement for sufficiently accurate estimation 95% success rate with quasi-random OP 

distribution with rmax=10 m 

𝑎0 1 OP at arbitrary position 

 

7 OPs at arbitrary positions (distances) 7 OPs 

𝑎1 1 OP at arbitrary position 7 OPs at the maximum range of the scanner 

 

>300 OPs
3
 

𝑎2 1 OP at arbitrary position above or below the 

scanner’s horizon 

7 OPs at maximum angular separation from the scanner’s 

horizon 

 

21 OPs 

𝑎3&𝑎4 2 OPs at arbitrary positions but without distances for 

which s1=s2 and c1=c2
4
 simultaneously, or for which 

s1=s2=0 or c1= c2=0. 

14 OPs at distinct distances within 𝜌 =
2𝐾+1

8
∙ 𝑈1m,  

𝐾 = 0,1… .6 
5
 

 

20 OPs 

𝑎5&𝑎6 2OPs at arbitrary positions but without distances for 

whichs1=s2and c1=c2 simultaneously, or for 

whichs1=s2=0 or c1= c2=0 

14 OPs at distinct distances within 𝜌 =
2𝐾+1

8
∙ 𝑈2m,  

𝐾 = 0,1… .6 

22 OPs 

𝑎7&𝑎8 2 OPs at arbitrary positions but without horizontal 

angles for which s1=s2 and c1=c2 simultaneously, or 

for which s1=s2=0 or c1= c2=0 

14 OPs at distinct horizontal angles differing by 180° 74⁄  19 OPs 

 

                                                 

 

3 My simulations terminated with 300 OPs which were still not enough. 

4 Sine (s) and cosine (c) term of first and second point, e.g. s1=sin (
2𝜋

𝑈
𝜌1) for 𝑎3 

5 For pair of 𝑎3 and 𝑎4 the maximum measured range in calibration filed should arrive 1.625 ∙ 𝑈1m. 
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Table 4.6 The minimum configuration requirements for the horizontal angle APs according to the scenarios discussed in the text (EO known, OP coordinates known, same OP observed in more than 
one scan counts separately for each scan). 

 

 

 

 

 

 

 

 

                                                 

 

6 The sine and cosine terms with 𝑏6 and 𝑏7 have different arguments i.e. 3𝜃 and 4𝜃. The required number of OPs therefore differs from the one (14) for the other pairs. 

AP Theoretical requirement Requirement for sufficiently accurate estimation 95% success rate with quasi-random OP 

distribution with rmax=10 m 

𝑏1 1 OP at arbitrary position except 𝛼 = 90° 7 OPs at 𝛼 = 80° (and 100° for a panoramic scanner) >300 OPs
3 

𝑏2 1 OP at arbitrary position except 𝛼 = 90° 7 OPs at 𝛼 = 80° (and 100° for a panoramic scanner) >300 OPs
3
 

𝑏3&𝑏4 2OPs at arbitrary positions but without horizontal 

angles for which s1=s2 and c1=c2 simultaneously or for 

which s1=s2=0 or c1= c2=0 

14 OPs at distinct horizontal angles differing by180° 74⁄  20 OPs 

𝑏5 1 OP at arbitrary position except θ = 0° 7 OPs at maximum horizontal angle >300 OPs
3
 

𝑏6&𝑏7 2OPs at arbitrary positions but without vertical angles 

for which s1=s2 and c1=c2 simultaneously or for which 

s1=s2=0 or c1= c2=0 

20 OPs of which 31 OPs atθ = 64.2857° or 115.7142° and 14 OPs 

at θ = 38.5714° or 141.4285° 
6
 

18 OPs 



Configuration Requirements for Terrestrial Laser Scanner Calibration within a Point Field 

81 

 

Table 4.7 The minimum configuration requirements for the vertical angle APs according to the scenarios discussed in the text (EO known, OP coordinates known, same OP observed in more than one 
scan counts separately for each scan). 

 

 

AP Theoretical requirement Requirement for sufficiently accurate estimation 95% success rate with quasi-random OP 

distribution with rmax=10 m 

𝑐0 1 OP at arbitrary position 7 OPs at arbitrary positions 7 OPs 

𝑐1 1 OP at arbitrary position except 𝛼 = 0° 7 OPs at 𝛼 = 80° (or 250° for a panoramic scanner) >300 OPs
3
 

𝑐2 1 OP at arbitrary position except 𝛼 = 0° 7 OPs at 𝛼 = 80° (and 100° for a panoramic scanner)  22 OPs 

𝑐3&𝑐4 2OPs at arbitrary positions but without vertical angles for 

which s1=s2 and c1=c2 simultaneously or for whichs1=s2=0 

or c1= c2=0 

14 OPs at distinct horizontal angles differing by 180° 74⁄  20 OPs 
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4.5.2   Minimum configuration for a set of APs 

Starting from the previous analysis we will now derive point field configurations for estimating 

a set of APs rather than just an individual one. We will do this for {𝑎0, 𝑏1, 𝑏2, 𝑐0} which is a 

frequently used subset of the above APs (e.g., Lichti, 2009, 2010; Lichti et al., 2011; Reshetyuk, 

2009, 2010). After an initial discussion still assuming known EOs and OPs these assumptions 

will finally be dropped thus arriving at a realistic calibration scenario and finally at the self-

calibration scenario. 

From the AP-per-AP analysis above we know that we need 

 7 independent distance measurements to OPs at arbitrary locations for 𝑎0, 

 7 independent vertical angle measurements to OPs at arbitrary locations for 𝑐0, 

 7 independent horizontal angle measurements to OPs at large vertical angle 

separation from the scanner’s horizon but not in the zenith or nadir for 𝑏1, and 

 7 independent horizontal angle measurements to OPs at large vertical angle 

separation from the scanner’s horizon but not in the zenith or nadir for 𝑏2. 

This suggests that 14 OPs (7 for a0, c0 and b1, and another 7 for b2) scanned from a single 

scanner location and orientation would be sufficient if they are located such that all vertical 

angles are far from the horizon, e.g. all at about α = 80°7. However, there are a mathematical 

and a practical problem requiring some modifications of this starting point. From a 

mathematical point of view the coefficients of b1 and b2 would be (approximately) constant in 

the parameter estimation model if all vertical angles are (approximately) equal. Consequently, 

the adjustment model would be rank deficient or poorly conditioned, and b1 and b2 could not 

be separated. From a practical point of view only a limited number of targets can be placed 

within a certain space, depending on the size of targets. So, for instance assuming that the 

targets have a diameter of Wt and the ceiling is at a height ∆ℎ𝑠𝑐 above the scanner, only 

 

𝑁𝑡 = ⌊
2𝜋∙∆ℎ𝑠𝑐∙tan(90°−𝛼)

𝑊𝑡
⌋                                                                                                         (4.22) 

targets can be placed along a circle at the ceiling corresponding to a vertical angle 𝛼, where 
 

.êë úû  

denotes rounding towards the nearest integer lower or equal to the argument. Both problems 

                                                 

 

7  If the scanner is a panoramic scanner, for each vertical angle 𝛼  mentioned explicitly in this chapter, the 

corresponding angle 180° − 𝛼 is also meant even if omitted for simplicity. 
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are solved by placing the OPs at different vertical angles. This comes at the cost of precision 

and thus we will see that we typically require more than 14 OPs or more than one scan. 

Taking into account the practical relevance we subsequently discuss three calibration cases: 

(1) The calibration is carried out within a dedicated and permanently established field of OPs 

with known coordinates, and scanning from pillars with known coordinates such that only 

the APs and the scanner orientation angles (i.e., 3 of the 6 EOs per scanner setup) are 

unknown. Optionally, the scanner tilt can be introduced by inclination measurements if the 

scanner provides them. 

(2) The calibration is carried out within a point field as above but the scanner is set up on a 

tripod for each scan and thus all 6 EOs per scan are unknown. 

(3) The calibration is carried out as a self-calibration with all OPs unknown, in addition to the 

unknown APs and the 6 EOs per scan. In this case, the OPs will likely not even be 

represented by artificial markers placed within the scene but by feature points which can 

be identified in several scans. 

4.4.5.1   Case (1) 

Taking into account the results summarized in Table 4.3 and the above discussion that we 

cannot place all targets at the same high vertical angle, we expect that the precision and 

correlation goals can be met if we place slightly more than 14 targets such that some of them 

are significantly above and some significantly below the horizon. Assuming that points at 

vertical angles lower than -70° cannot be measured by the scanner we place the OPs preferably 

at the intersection of the ceiling and floor with conic shells defined by vertical angles of 80° 

and -70°. The targets measured by the scanner far away from the horizon will contribute more 

to low standard deviations of b1 and b2 (and thus to keeping the number of OPs low) than the 

points close to the horizon. However, locating the points at different vertical angles is required 

to achieve low correlation between APs and EOs and thus to separate them. From early 

publications some prior knowledge can be exploited to decrease correlations between APs and 

EOs, and APs and APs, e.g. distributing the targets symmetrically in terms of vertical angle can 

help to decrease the correlation between b1 and b2. Apart from significantly improving the 

precision of the estimated parameters, adding additional scans also helps to de-correlate the 

unknown parameters. Discussions of de-correlation strategies can be found in Lichti (2007, 

2009, 2010), Lichti et al. (2011) and Reshetyuk (2010). 

By numeric simulations we found that the minimum number of OPs allowing to fulfill the 

precision and correlation criteria at the same time for case (1) is 18. These OPs have to be 

scanned twice from the same scanner location and with the same scanner orientation, where the 

scanner should be set up with its secondary rotation axis vertical within ±1°. The configuration 

is depicted in Figure 4.2. Three of the points are located at a vertical angle of 80°, 8 at -70°, 2 
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at -62°, and 5 at the horizon. The maximum correlation coefficient is 0.30 (between b2 and 𝜑) 

(see Tables 4.10-4.11). The coordinates of the OPs are known and assumed to be measured 

independently using an instrument with standard deviations of 0.5 mm for distances and 1’’ for 

angles. If the coordinates of the OPs are measured by an instrument with even higher accuracy 

(e.g. laser tracker) the standard deviations of the given OP coordinates are negligible and the 

necessary number of OPs can be slightly reduced.  

We also carried out an analysis μ = 0.3, i.e. more stringent requirements corresponding to only 

5% increase of MSE due to biases of the estimated APs. However, we found that it is hardly 

feasible to find a point field full filling the requirements and being practically feasible: in this 

case the analysis showed that 202 OPs and 6 scans are required to meet the criteria. 

 

Figure 4.2 Spatial distribution of 18 known OPs (red squares) allowing to estimate the 4APs subset with 2 scans as outlined in 

the text; scanner assumed 1.8 m (blue plane) above floor, ceiling assumed 4 m above floor; green and red lines represent the 

laser rays above and below the horizon respectively (colors used for visual purposes only). 

 

4.4.5.2   Case (2) 

If the EOs of the scanner, i.e. its position and orientation, are not known beforehand they have 

to be estimated as further parameters along with the APs. It is to be expected that the 

configuration depicted in Figures 4.2 will not be sufficient in this case. The precision of the 

estimated APs will decrease if more parameters are to be estimated using the same observations, 
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and there may be strong correlations between certain APs and EOs. In addition to the 

aforementioned strategies for de-correlating parameters, we found that there is the correlation 

between scanner coordinates and APs, can also be mitigated by adding targets close to the 

horizon but as far as possible from the scanner.  

By numeric simulations we found that the minimum number of OPs allowing to fulfill the 

precision and correlation criteria at the same time in this case is 23, which are scanned twice 

from the same scanner location and with the same orientation, using the scanner in the upright 

position as in case 1. In order to satisfy the precision requirement, we have to move 2 targets 

(as compared to case 1) from -62° to -68°, install 4 additional ones at -68° and 1 more at the 

horizon. The configuration is characterized in Table 4.8. The maximum correlation coefficient 

of 0.30, appears between b1 and x, and between 𝑏2 and 𝜔. More information can be found in 

Tables 4.10-4.11. 

When establishing and using a calibration point field, it may be very difficult to distribute 

targets exactly at predefined positions from the scanner e.g. because of limited centering 

capabilities, difficulties to measure or establish a certain instrument height and inclination of 

the scanner. To account for these uncertainties we again carried out a MC simulation with M = 

5000 to find the success rate when we allowed the position of the installed targets to differ 

slightly from the above theoretical configuration. We modelled the deviations as normally 

distributed with standard deviations 𝜎𝑥, 𝜎𝑦 and 𝜎𝑧. When 𝜎𝑥 and 𝜎𝑦 are both less than 1 mm 

and 𝜎𝑧 is less than 2 mm we obtain a success rate of 95% using the same configuration as above. 

Taking into account that particularly the correlations among the parameters are sensitive with 

respect to the positions of the targets, we relaxed the correlation criterion slightly by allowing 

correlations up to 0.315 instead of 0.30, and then repeated the MC simulation. In this case, we 

obtained a success rate of 95% already if 𝜎𝑥 and 𝜎𝑦 are both less than 4 mm; 𝜎𝑧 can even be 

larger. The calculations showed that vertical deviations (𝜎𝑧) have less impact than horizontal 

ones, see Figure 4.3. 
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Figure 4.3 Success rates (percentage of simulation runs where the results fulfilled the criteria of Table 2) for target distribution 

according to table 4.8 but with a certain standard deviation of OP coordinates (MC simulations with M=5000 runs; 𝜎𝑧= 3 mm). 

 

Table 4.8 Summary of the proposed configuration for case 2. 

unknown 

parameters 
𝑎0 𝑏1 𝑏2 𝑐0 ω𝑖 φ𝑖 κ𝑖   x𝑖 y𝑖 z𝑖  (𝑖 = 1, 2) 

OP coordinates measured independently with standard deviations 0.5mm / 1′′ 

number of scans 2 

scanner setup 1 location = (0,0,0) inclination: 𝜔 = 1 o, 𝜑 = −1 o 

tertiary rotation angle: κ = 0 o 

scanner setup 2 equal to setup 1 

Number of OPs 23 

 

4.4.5.3   Case (3) 

Finally, we have extended the analysis to a self-calibration scenario where the OP coordinates 

are treated as unknown parameters which can only be estimated from the laser scans, not 

supported by independent measurements. One scan will be used to define the geodetic datum 

and therefore at least 2 scans are required for self-calibration. Taking into account the 

extraordinary growth in the number of unknown parameters we expect that far more OPs and 

very likely additional scans are required to assure meeting the criteria set out in sec. 3.  

By numeric simulations we found that the minimum number of OPs allowing to fulfill the 

precision and correlation criteria at the same time is 22, which are scanned 4 times from the 

same scanner location, with rotation of the scanner about its vertical axis between the scans. In 
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comparison with case 2 we reduce 1 target at the vertical angle of 80° and move the targets 

from -68° close to the horizon which reduces the correlation. In order to keep the precision of 

the estimated APs and de-correlate the parameters additional scans are carried out. The first and 

second scans are made without changing the scanner EOs, and the third and fourth scans are 

taken with the scanner rotated by approximately 180° at the same location as before. Like in 

the previous cases the scanner does not need to be perfectly levelled during the scans. With this 

configuration the maximum correlation coefficient of 0.3 appears between APs and EOs, in 

particular between 𝑏1  and 𝑏2 , and 𝑏2  and κ  (see Tables 4.10-4.11). The configuration is 

depicted in Figure 4.4 and the full information regarding this configuration is displayed in Table 

4.9. 

Lichti (2007, 2009) point out that additional inclination observations can mitigate the 

correlations between scanner orientation (EO angles) and APs. We have carried out extensive 

numerical simulations assuming a wide range of different standard deviations of the inclination 

measurements to find out, how strongly they contribute to reducing the calibration effort. 

However, since we define the datum of the point field – arbitrarily – by the first scan, there is 

no datum related rank deficiency and the additional inclination observations do not have as 

significant effects with our configuration assumptions than in Lichti’s experiments. Figure 4.5 

shows the correlations between APs and inclination after calculation with independent tilt angle 

observations of various precision. The case “( ∞ )” corresponds to absence of tilt angle 

observations. The figure shows that the correlations decrease only with precision of the 

inclination observations much better than 0.01°. Scanners currently available do not typically 

provide inclination measurements of such precision, and, it is hardly feasible to measure the 

inclination using external sensors. However, these measurements are not needed if a 

configuration like in Figure 4.4 can be found.  
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Figure 4.4 Spatial distribution of 22 unknown OPs (green squares) allowing to estimate the 4APs subset with 4 scans from the 

same positions; scanner assumed 1.8 m (blue plane) above floor, ceiling assumed 4 m above floor; green and red lines represent 

the laser rays above and below the horizon respectively (colors used for visual purposes only). 

 

Table 4.9 Summary of the proposed configuration for case 3. 

unknown parameters 𝑎0 𝑏1 𝑏2 𝑐0 ω𝑖 φ𝑖 κ𝑖    x𝑖 y𝑖 z𝑖  (𝑖 = 1, 2, 3, 4) 

OP coordinates unknown 

number of scans 4 

scanner setup 1 location = (0,0,0) inclination: 𝜔 = 1 o, 𝜑 = −1 o 

the tertiary rotation angle: κ = 0 o 

scanner setup 2 equal to setup 1 

scanner setup 3 location = (0,0,0) 
inclination: 𝜔 = −1 o, 𝜑 = 1 o 

tertiary rotation angle: κ = 180 o 

scanner setup 4 equal to setup 3 

Number of OPs 22 
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Table 4.10 The expected precision of the estimated APs in three cases. 

Parameters case 1 case 2 case 3 

a0 0.2 mm 0.2 mm 0.1 mm 

b1 1.4′′ 1.5′′ 1.4′′ 

b2 1.7′′ 1.6′′ 1.7′′ 

c0 4.3′′ 4.2′′ 3.4′′ 

 

Table 4.11 The highest correlations in three cases. 

Case Correlation coefficients 

1 𝑏2 −  φ: 0.30  𝑏1 − 𝑏2: 0.25   𝑏2 −  κ: 0.24      

2 𝑏1 −  x: 0.30   𝑏2 −  ω: 0.30   𝑏2 −  κ: 0.26  𝑐0 −  φ: 0.21 

3 𝑏2 −  κ: 0.30   𝑏1 − 𝑏2: 0.30  𝑎0 −  z: 0.28     𝑏1 −  ω: 0.21     

 

 

Figure 4.5 Correlations between APs and inclination when using independently observed scanner inclinations. 

4.6   Conclusions  

The goal of TLS calibration is to obtain parameters (APs) of a deterministic model for 

improving the quality of the laser scanner measurements by reducing the biases of these 

measurements. While zero-expectation noise may be further reduced by point-cloud processing 

e.g. by fitting parametric surfaces to parts of the point clouds or by spatial filtering, 

uncompensated biases or biases introduced by inappropriate values of APs are not mitigated by 

such measures. It is necessary, therefore, to achieve highly accurate and sufficiently 

uncorrelated APs during scanner calibration. 
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We have derived criteria to predict and assess the quality of the estimated APs by comparing 

their standard deviations to thresholds derived from the standard deviations of the distance and 

angle measurements of the scanner and from the (intended) working range of the scanner. 

Additionally we have proposed a threshold for correlation among the APs and between the APs 

and any other parameters. 

An AP-per-AP analysis has revealed that a fairly high number of TLS measurements and thus 

object points to be identified within the point clouds is required to estimate the individual 

parameters sufficiently accurately (7 measurements per AP with ideal point location and more 

under practical constraints using a specific choice of negligibility factors and probabilities as 

discussed in section 3). The results have then been used to derive suitable point-field 

configurations and scanner setups for calibration with a popular subset of 4 APs. 

The scenarios covered scanner calibration within an established point field and scanner self-

calibration. The proposed configurations are suitable but not necessarily optimum in the sense 

of calibration effort or accuracy. Future work will thus focus on calibration setup optimization 

and further practical aspects taking into account larger AP subsets than the one treated herein. 
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Chapter 5 

Surface-based matching of 3D point cloud with 

variable coordinates in source and target system 

 

Xuming Ge, T. Wunderlich 

ISPRS Journal of Photogrammetry and Remote Sensing 111 (2016) 1–12 

(The text given here is a revised version) 

 

5.1   Abstract 

The automatic co-registration of point clouds, representing three-dimensional (3D) surfaces, is 

an important technique in 3D reconstruction and is widely applied in many different disciplines. 

An alternative approach is proposed here that estimates the transformation parameters of one 

or more 3D search surfaces with respect to a 3D template surface. The approach uses the 

nonlinear Gauss–Helmert model, minimizing the quadratically constrained least squares 

problem. This approach has the ability, in terms of separately consider different properties from 

each surface, to match arbitrarily oriented 3D surfaces captured from a number of different 

sensors, and at different resolutions. In addition to the 3D surface-matching paths, the 

mathematical model allows the precision of the point clouds to be assessed after adjustment. 

The error behavior of surfaces can also be investigated based on the proposed approach. Some 

practical examples are presented and the results are compared with the iterative closest point 

and the linear least-squares approaches to demonstrate the performance and benefits of the 

proposed technique. 

Keywords: 3D surface matching; surface registration; point cloud; laser scanning 
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5.2. Introduction 

Surface registration is an intermediate, but crucial, step in the three-dimensional (3D) 

reconstruction of real objects. The terrestrial laser scanning technique is now widely applied in 

surveying engineering, photogrammetry, and other disciplines as its performance capabilities 

are advancing rapidly (Ebeling et al., 2011; Gordon and Lichti, 2007). Hundreds of different 

laser scanners with a great variety of measurement systems are now available; in the current 

fast-paced laser scanning market, these are updated almost every year. Even products of the 

same brand may have totally different specifications between different series, e.g. different 

sensors, different resolutions, different scales and different degrees of precision. An alternative 

approach to surface registration is therefore required with the ability to handle these different 

types of sensors, at different resolutions and at different degrees of precision. It is also necessary 

to analyze the error behavior of surfaces and to assess the registered observations after 

adjustment. 

A cloud of point samples from the surface of an object is typically obtained from two or more 

points of view in different reference frames. Registration consists of the alignment of the search 

point set with the template point set by estimating the transformations between the datasets. 

The registration strategy may differ depending on whether the targets are used to provide the 

reference points in two clouds of point sets. In terms of whether initial information is required, 

registration techniques can be classified as either coarse or fine registration. In coarse 

registration, the main goal is to compute an initial estimate of the rigid motion between two 

corresponding clouds of 3D points; in fine registration, the goal is to obtain the most accurate 

solution possible. In fine registration, a higher-quality initial estimate is always required before 

the calculation. The scope of this paper will be limited to non-target fine registration. 

Non-target fine registration is achieved by using a sufficient overlap of the point clouds in 

different datasets and minimizing the sum of the squares of the distance between the temporarily 

corresponding points in each iteration. A well-known approach to solving the problem is the 

iterative closest point (ICP) method (Besl and McKay, 1992; Zhang, 1994; Chen and Medioni, 

1991, 1992). The implementation of the ICP method is based on the point-to-point or point-to-

plane searching techniques and an estimation of the rigid transformation that aligns the pairs of 

nearest points in the two datasets. Although the ICP method is a powerful algorithm for non-

target registration, it has obvious shortcomings e.g. low time efficiency and easily fall into a 

local minimum (Fusiello et al., 2002; Gruen and Akca, 2005; Salvi et al., 2007). Several 

variations and improvements have been introduced to the original version of the ICP concept 

to improve the algorithm in terms of the transformation accuracy, the convergence properties 

and the computational cost (Masuda and Yokoya, 1995; Trucco et al., 1999; Greenspan and 

Godin, 2001; Sharp et al., 2002; Zinsser et al., 2003; Low, 2004; Grant et al., 2012). 



Surface-based matching of 3D point cloud with variable coordinates in source and target system 

93 

 

Another powerful approach used to complete 3D surface matching originates from the least-

squares matching (LSM) technique (Gruen, 1984, 1985a; Ackermann, 1984; Pertl, 1984).  

Surface patch matching in photogrammetry was first resolved by Gruen (1985a) using this 

technique. Multiple patch matching with two-dimensional (2D) images using the LSM 

technique has also been demonstrated by Gruen (1985b). Gruen and Akca (2005) reported a 

least-squares 3D (LS3D) surface matching approach. This approach was designed for arbitrary 

3D surface data and is an extension of 2D least-squares image matching. Akca (2010) enhanced 

the LS3D approach in terms of the computational cost. However, as Grant et al. (2012) pointed 

out, the stochastic properties of the normal to the local surface are neglected in the LS3D 

approach. Gruen and Akca (2005) and Akca (2010) used the LS3D approach based on the 

generalized Gauss–Markoff model to estimate the transformation parameters with the 

assumptions that the measurement errors have a simple stochastic character without bias and 

that only the components of the target surface are affected by these errors. The stochastic 

quantities of the source surface were neglected; the effect of these is minor if the target and 

source surfaces are generated by the same sensor or method with the same measurement error 

pattern. However, the principal hypothesis of a particular model matrix in the Gauss–Markoff 

model is not necessarily satisfied in all applications. 

We present here a new approach, an extension of the LS3D approach, to match two arbitrary 

3D surfaces. Our proposed approach estimates the rigid-body transformation parameters 

between two corresponding point clouds using the nonlinear Gauss–Helmert (GH) model. We 

therefore called the proposed approach the GH-LS3D approach. In this GH-LS3D approach, 

the nonlinear GH model is introduced to address the so-called weighted total least-squares 

problem. The iteratively linearized GH model proposed by Pope (1972) was used to adjust 

error-in-variables (EIV) model problems in arbitrary 3D surface matching problems. By solving 

the least-squares problem within the GH model, we obtained the solution to the underlying 

nonlinear problem with a reasonable approximation and some of the potential pitfalls in the 

iterative adjustment of nonlinear problems were avoided (Pope, 1972). This provided an 

opportunity to analyze the error behavior of both surfaces and to assess the co-registered 

surfaces after adjustment. 

Section 3 briefly defines the problems of registration and presents the mathematical formulation 

of the GH-LS3D approach, as well as describing the computational implementation of the 

proposed approach. Section 4 presents some experimental results based on the non-target fine 

registration of the point clouds of a terrestrial laser scanner to demonstrate the capabilities of 

the proposed approach. Some conclusions and further extensions are given in Section 5. 
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5.3   GH-LS3D surface matching 

5.3.1   Statement of the problem and definition 

This work concentrated on the pairwise alignment of two meshes, although multi-view 

registration (Pulli et al., 1997; Pulli, 1999) should also benefit from the approach described here. 

Let target and source refer to two partially overlapping scans (surfaces) in two different local 

coordinate frames. The task of registration is to estimate the transformation parameters that, 

when applied to the target points, best align the source and the target. Alignment is measured 

by an error function – for example, the minimization of the sum of the squares of the Euclidean 

distance. To measure the Euclidean distance, we need to select the correspondence between the 

source and the target. The ICP algorithm and its variants provide different schemes for 

choosing the corresponding points between the source and the target; they then use the 

correspondences to calculate the transformation parameters based on a rigid-body 

transformation. Thus the registration algorithms mainly consist of two steps: (1) matching and 

selection; and (2) computation of the transformation parameters. In the rest of this paper, we 

label these two steps M and C, respectively. 

To start the registration algorithm, the program runs the M-step to update the target by 

approximations of the transformation parameters and selects the new version of the 

correspondences from the source. Then, in the C-step, the program estimates the updated 

transformation parameters using the correspondences from the last M-step. If the estimated 

transformation parameters do not change significantly in the C-step, or if the results reach a 

termination condition, the iteration will be terminated; otherwise the iteration returns to the M-

step and uses the last updated transformation parameters instead of the previous values. The 

schemes to find ideal correspondences in the M-step can be applied in parallel in the ICP series 

and the LS3D approach. In the T-step in the ICP method, the goal function that minimizes the 

Euclidean distance by least squares is obtained indirectly by estimating and applying rigid 

transformations. In contrast, the LS3D approach formulates the goal function directly in a 

generalized Gauss–Markoff model (Gruen and Akca, 2005). The GH-LS3D approach is an 

extension of the LS3D approach; the main improvement in the proposed approach is in terms 

of the T-step. 

5.3.2   Mathematical model  

The source and target refer to two partially overlapping scans that are digitized point by point 

in the two different local coordinate frames of the same object. Let 𝑓(𝑥, 𝑦, 𝑧) and 𝑔(𝑥, 𝑦, 𝑧) 

denote overlapping regions of the object in the source surface and the target surface, 

respectively. The problem of 3D surface matching based on the LSM statement is estimating 
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the transformation parameters to align the target surface 𝑔(𝑥, 𝑦, 𝑧) with the source surface 

𝑓(𝑥, 𝑦, 𝑧) . If a matching is established between 𝑓(𝑥, 𝑦, 𝑧)  and 𝑔(𝑥, 𝑦, 𝑧)  then following 

equation holds: 

 

𝑓(𝑥, 𝑦, 𝑧) = 𝑔(𝑥, 𝑦, 𝑧)                                                                              (5.1) 

According to Equation (5.1), the source surface elements have corresponding elements in the 

target surface and vice versa. If we then assume that 𝑒(𝑥, 𝑦, 𝑧) is a true error vector between 

the two surfaces, then we can derive: 

 

𝑓(𝑥, 𝑦, 𝑧)  + 𝑒(𝑥, 𝑦, 𝑧) = 𝑔(𝑥, 𝑦, 𝑧)                                                                                      (5.2) 

Equation (5.2) is the observation equation for LS3D. In GH-LS3D, the error vector 𝑒(𝑥, 𝑦, 𝑧) 

is divided into 𝑒𝑓(𝑥, 𝑦, 𝑧) and 𝑒𝑔(𝑥, 𝑦, 𝑧), which represent the error stemming from the source 

surface and target surface, respectively. Thus the observation equation for GH-LS3D is: 

 

𝑓(𝑥, 𝑦, 𝑧)  + 𝑒𝑓(𝑥, 𝑦, 𝑧)  = 𝑔{(𝑥, 𝑦, 𝑧) + 𝑒𝑔(𝑥, 𝑦, 𝑧) }                                        (5.3) 

Equation (5.3) is the condition equation with the measurement errors in all observations. Then 

the matching problem is to solve the following least squares problem:  

 

∑(‖𝑒𝑓 ‖
2
+ ‖𝑔{𝑒𝑔 } ‖

2
) = 𝑚𝑖𝑛                                                                (5.4) 

It is known that, in the Gauss–Markoff model, only the components of the observation vector 

are affected by the measurement errors and these are calculated by the least-squares technique 

with a certain design matrix in a normal equation. A standard EIV model is a Gauss–Markoff 

model with an uncertain design matrix in a normal equation from a geodesy perspective (Fuller, 

1987; Fang, 2013). Least-squares within an EIV model is called the total least-squares 

technique because of its symmetrical adjustment (Fang, 2013). The total least-squares technique 

within an EIV model can be identified as a special least-squares problem within the nonlinear 

GH model (Neitzel, 2010). Treating a model as an EIV model rather than a GH model only 

makes sense if the model is linear – that is, if the design matrix is independent of the estimated 

parameters in a normal equation and thus is not obtained by linearization. Solving the EIV 

model using the total least-squares technique rather than treating it as a special GH model only 
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has a clear advantage if the measurement errors in two kinds of observations are independent 

and identically distributed. In Equation (5.3), the transformation parameters of the target 

surface 𝑔(𝑥, 𝑦, 𝑧) are obviously variables to be estimated. 𝑔(𝑥, 𝑦, 𝑧) is nonlinear and is related 

to the estimated parameters; in other words, the function should be linearized and the design 

matrix should be updated by the estimated parameters. Thus Equation (5.3) will be treated as a 

special least-squares problem within the nonlinear GH model. It is linearized by Taylor series 

expansion: 

𝑔(𝑥, 𝑦, 𝑧) = 𝑔0(𝑥, 𝑦, 𝑧) +
𝜕𝑔0(𝑥,𝑦,𝑧)

𝜕𝑥
𝑑𝑥 +

𝜕𝑔0(𝑥,𝑦,𝑧)

𝜕𝑦
𝑑𝑦 +

𝜕𝑔0(𝑥,𝑦,𝑧)

𝜕𝑧
𝑑𝑧      (5.5) 

with the notation 

𝑔𝑥 =
𝜕𝑔0(𝑥,𝑦,𝑧)

𝜕𝑥
 , 𝑔𝑦 =

𝜕𝑔0(𝑥,𝑦,𝑧)

𝜕𝑦
 , 𝑔𝑧 =

𝜕𝑔0(𝑥,𝑦,𝑧)

𝜕𝑧
                     (5.6) 

where the terms 𝑔𝑥 , 𝑔𝑦  and 𝑔𝑧  are the values of the first derivatives of the function 

𝑔(𝑥, 𝑦, 𝑧) (i.e. the correspond to the three components of the local surface normal, respectively) 

and 𝑔0(𝑥, 𝑦, 𝑧) is a roughly aligned search surface. The variables (𝑥, 𝑦, 𝑧) in 𝑔(𝑥, 𝑦, 𝑧) are 

functions of the transformation parameters (𝑡𝑥 𝑡𝑦 𝑡𝑧   𝜔  𝜑  𝑘), which represent the translation 

vector and the Euler rotation angles. If necessary, a scale parameter can be introduced to change 

the six-parameter 3D similarity transformation to a seven-parameter 3D similarity 

transformation. The geometric relationship is established with a six-parameter 3D similarity 

transformation, differentiation of which gives: 

[
𝑑𝑥
𝑑𝑦
𝑑𝑧

] = [

𝑑𝑡𝑥
𝑑𝑡𝑦
𝑑𝑡𝑧

] + [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] [
𝑑𝜔 
𝑑𝜑
𝑑𝑘

]                                          (5.7) 

where 𝑎𝑖𝑗 are the coefficient terms, the expansions of which are given in Akca (2007). We 

denote the corrections to the parameters by 𝑑𝑝 = [𝑑𝑡𝑥 𝑑𝑡𝑦 𝑑𝑡𝑧 𝑑𝜔 𝑑𝜑 𝑑𝑘]. We then have: 

𝜕𝑔

𝜕𝑝
|
𝑔0,𝑝0

= [𝑔𝑥 𝑔𝑦 𝑔𝑧] [

𝑑𝑡𝑥
𝑑𝑡𝑦
𝑑𝑡𝑧

] + [𝑔𝑥 𝑔𝑦 𝑔𝑧] [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] [
𝑑𝜔 
𝑑𝜑
𝑑𝑘

]    (5.8) 

where 𝑔{𝑒𝑔(𝑥, 𝑦, 𝑧) } is the error vector from the target surface 𝑔(𝑥, 𝑦, 𝑧) and can also be 

linearized by the Taylor series: 

𝑔{𝑒𝑔(𝑥, 𝑦, 𝑧) } = 𝑔{𝑒𝑔
0(𝑥,𝑦, 𝑧)} +

𝜕𝑔{𝑒𝑔
0(𝑥,𝑦,𝑧)}

𝜕𝑝
                                           (5.9) 
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𝑔{𝑒𝑔(𝑥, 𝑦, 𝑧) } is the error element, so 
𝜕𝑔{𝑒𝑔

0(𝑥,𝑦,𝑧)}

𝜕𝑝
   is a smaller second-order quantity in the 

calculation and is omitted in the adjustment. 

Equation (5.3) can be rewritten as: 

Φ(𝒆, 𝝃) = 𝑔{(𝑥, 𝑦, 𝑧) + 𝑒𝑔(𝑥, 𝑦, 𝑧) }  − 𝑓(𝑥, 𝑦, 𝑧) − 𝑒𝑓(𝑥, 𝑦, 𝑧) = 0    (5.10) 

where 𝝃  represents the unknown parameter vector. Based on the nonlinear GH model 

(Lenzmann and Lenzmann, 2004) and introducing appropriate approximate values of 𝒆0 and 

𝝃0, we obtain the linearized condition equations: 

Φ(𝒆, 𝝃) ≈ 𝑩(𝒆 − 𝒆0) + 𝑨(𝝃 − 𝝃0) + Φ0(𝒆, 𝝃)                                                   (5.11) 

where 𝒆 = [𝒆𝒈, 𝒆𝒇], involving the matrices of partial derivatives: 

𝑨 ≔ 
𝜕Φ

𝜕𝜉
|
𝒆𝟎,𝝃𝟎

= [[𝑔𝑥 𝑔𝑦 𝑔𝑧] [𝑔𝑥 𝑔𝑦 𝑔𝑧] [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

]]     (5.12) 

𝑩 ≔ 
𝜕Φ

𝜕𝑒
|
𝒆𝟎,𝝃𝟎

= [
𝜕Φ

𝜕𝑒𝑔

𝜕Φ

𝜕𝑒𝑓
]|

𝒆𝟎,𝝃𝟎
= [𝑩𝟏 𝑩𝟐]                   (5.13) 

and 𝑩𝟏 = [
𝑹 ⋯ 𝟎
⋮ ⋱ ⋮
𝟎 ⋯ 𝑹

], 𝑩𝟐 = [
−𝑰 ⋯ 𝟎
⋮ ⋱ ⋮
𝟎 ⋯ −𝑰

] where I=𝟑 × 𝟑 represents an identity matrix and 

R represents the orthogonal rotation matrix within the Euler angles i.e. 𝑹(𝛚,𝛗, 𝛋) = 𝑹𝛚 ∙ 𝑹𝛗 ∙

𝑹𝛋.  

It is then possible to obtain the estimates for the unknowns from the solution of the linear 

equations system: 

[
𝑩𝟏𝑸𝒈𝑩𝟏

T + 𝑩𝟐𝑸𝒇𝑩𝟐
T 𝑨

𝑨T 0
] [

𝝀̂
𝑑𝝃̂

] + [
𝒘
0
] = 0                  (5.14) 

where 𝝀̂ is a vector of auxiliary “Lagrange multipliers” and the “hats” indicate estimates. 𝑸𝒈 

and 𝑸𝒇 represent the cofactor matrices of the target surface and the source surface, respectively. 

We will elaborate how to make up those cofactor matrices in the next chapter. In Equation 

(5.14), 𝒘 = −𝑩𝒆0 + Φ0(𝒆0, 𝝃0)  is the misclosure term, which is calculated from the 

approximations of the unknowns and residuals and updates them with their corrections. 

 The residual vector follows from: 
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[
𝒆𝒈

𝒆𝒇
] = [

𝑸𝒈𝑩𝟏
T

𝑸𝒇𝑩𝟐
T] 𝝀̂                                                               (5.15) 

The iteration stops if the corrections to the parameters 𝑑𝝃̂ fall below a certain limit. To stop the 

T-step iteration in GH-LS3D, we respectively select the criteria as 1.0e–4 (m) and 1.0e–5 (rad) 

for the translations and rotation angles in the later experiments. Here we should point out that 

the termination criteria of the translation parameters are especially dependent on the nature of 

the data, e.g., airborne laser scanning data or terrestrial laser scanning data, thus the values of 

criteria can be self-tuning in the GH-LS3D approach. 

5.3.3   Stochastic model 

The stochastic model is a crucial part of every weighted least-squares adjustment. The source 

surface and the target surface are both obtained from sensors and have their own stochastic 

model. Contributions to the precision of an individual laser point come from various factors, 

e.g. the instrument’s precision, geometric factors and environmental factors (Bae, 2006; 

Romsek, 2008). In our later experiments, we only considered the influence from the 

instrument’s precision and the incidence angle of an individual laser point. 

The instrument’s precision can be obtained from its specification. In our experiments, the data 

were obtained from laser scanners and prior information is given in the form of the spherical 

coordinates. Thus the stochastic model should propagate to the Cartesian coordinate system 

through Jacobian matrices. The covariance matrix of a point can be calculated by error 

propagation (Mikhail and Ackermann, 1976, p.278ff). 

Soudarissanane et al. (2011) showed that the incidence angle, which can take values from 0 to 

90°, had a cosine effect on the range precision of the laser points (Ge and Wunderlich, 2015). 

The incidence angle α of a point can be calculated as: 

cos(α) =
𝒗×𝒏⃗⃗ 

‖𝒗‖∙‖𝒏⃗⃗ ‖
                                                                                                           (5.16) 

where 𝒗 is laser beam vector and 𝒏⃗⃗  represents a local surface normal vector at a corresponding 

point. Therefore we considered the effect of the incidence angle in the range precision as: 

𝜎𝑟
′ =

𝜎𝑟

cos(α)
                                                                                        (5.17) 

where 𝜎𝑟  represents the standard range measurement precision of the instrument and 𝜎𝑟
′ 

represents the corrected precision with the function α. 

After the iteration has converged, we obtain: 
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𝜎̂0𝑔
= √

𝒆𝑔
𝑇𝑸𝑔

−1𝒆𝑔

𝑟𝑔
  and  𝜎̂0𝑓

= √
𝒆𝑓
𝑇𝑸𝑓

−1𝒆𝑓

𝑟𝑓
                                                     (5.18) 

where 𝜎̂0𝑔
 and 𝜎̂0𝑓

 are the estimated standard variance factors of the source surface and the 

target surface, respectively, and 𝑟𝑔  and 𝑟𝑓  are the corresponding number of redundancies 

(Niemeier 2008, p. 324). Then we can further assess the precision of the two registered point 

clouds: 

𝜎̂𝑔
2 = 𝜎̂0𝑔

𝑸̂𝑔 and  𝜎̂𝑓
2 = 𝜎̂0𝑓

𝑸̂𝑓                                           (5.19) 

with 

[
𝑸̂𝑔

𝑸̂𝑓

] = [
𝑸𝑔

𝑸𝑓
] − [

𝑸𝑔

𝑸𝑓
] ∙ 𝑩T ∙ 𝑸𝑘𝑘 ∙ 𝑩 ∙ [

𝑸𝑔

𝑸𝑓
]                                     (5.20) 

𝑸𝑘𝑘 = 𝑵𝒃𝒃
−1 − 𝑵𝒃𝒃

−1 ∙ 𝑨 ∙ 𝑸𝜉̂𝜉̂ ∙ 𝑨T ∙ 𝑵𝒃𝒃
−1                             (5.21) 

𝑵𝒃𝒃 = 𝑩[
𝑸𝑔

𝑸𝑓
]𝑩T                    (5.22) 

𝑸𝜉̂𝜉̂ = 𝑨T ∙ 𝑵𝒃𝒃
−1 ∙ 𝑨          (5.23) 

where 𝑸̂𝑔 and 𝑸̂𝑓 represent posterior cofactors of the source surface and the target surface. 

Note that the assessments of the registered point clouds are only carried out with the 

correspondences between two surfaces after transformation adjustment. 

5.3.4   Correspondence search and false detection 

The source surface and target surface are both represented by data points. As in any other 

registration technique, the corresponding relationship between the source surface and the target 

surface will be established in the M-step and updated using the last estimated transformation 

parameters. The methods most often used to find correspondences are the K-nearest 

neighborhood (Altman, 1992) technique and its variants, e.g. the approximate nearest 

neighborhood (Arya et al., 1998) technique. To accelerate the searching speed and improve the 

matching accuracy, more feature information of the objects (e.g. the normalized, intensity, veins, 

color, curvature and other attributes; Godin et al., 1994, 2001; Godin and Boulanger, 1995; 

Chua and Jarvis, 1996; Soucy and Ferrie, 1997; Johnson and Kang, 1997; Yang and Allen, 1998) 

and the sensor acquisition geometry (Park and Subbarao, 2003) are applied in the process of 

searching correspondence. Based on the different searching schemes, researchers have provided 

many different variants of the ICP method to complete the point clouds registration. The effect 

of the searching correspondence strategy is parallel for all the registration techniques in the M-
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steps because the choosing strategy is expected to favor both the ICP variants and the LS3D 

variants equally. Thus in this work we did not particularly focus on the consequents from the 

different searching correspondence strategies and we used the same searching method in both 

the reference registration methods and the GH-LS3D approach in the later comparative 

experiments. 

The original ICP method always encounters local optimization problems or non-convergence 

problems. One of the main reasons for this is the appearance of false correspondences in the M-

step. To address these problems, variants of the ICP method have introduced different strategies 

to detect outliers. Trucco et al. (1999) implemented a robust ICP (RICP) method that made use 

of the least median of squares approach. The correspondences with a residual >2.5σ were 

removed and the transformation between both views was computed using only the remaining 

points; σ was estimated using a robust standard deviation (Rousseeuw and Leroy, 1987, p. 21ff). 

Zinsser et al. (2003) proposed an RICP method based on outlier thresholding known as the 

Picky ICP (PICP) algorithm. In the PICP algorithm, only the pairs of correspondences with the 

smallest distances are used in the motion computation at every iteration. As mentioned earlier, 

the effects in the searching strategies are parallel in all the registration techniques, so we applied 

the same robust strategy in both the reference registration methods and the GH-LS3D approach 

in the comparative experiments. 

5.3.5   Computation 

The aspect of the GH-LS3D approach that consumes the most computational effort is the search 

for the correspondences of the source surface and the target surface. The T-step in the GH-

LS3D approach is a nonlinear iterative process. In this case, the iteration can be started with 

initial approximations and can be terminated by a criterion. In fine registration, the initial 

approximations can be obtained from the results of coarse registration. It is known that the ICP 

method requires fairly good approximations and that with the LS3D approach this requirement 

is even stronger (Gruen and Akca, 2005). With the GH-LS3D approach, there is the same 

requirement for good initial approximations. The values of the first derivatives of the surface 

in Equation (5.8) can be calculated as the normal vector of a point on the surface. In the iteration, 

the normal vectors on the target surface in Equation (5.8) can be replaced by the corresponding 

normal vectors on the source surface. This alternative has two major advantages. First, the 

normal vectors on the source surface are only calculated once in the first iteration and the same 

values are then used in the following iterations, whereas the normal vector on the target surface 

should be rotated in each iteration using the last estimated rotation parameters (Gruen and Akca, 

2005). Second, the normal vectors on the source surface can be regarded as the ultimate 

directions of the corresponding normal vectors on the target surface; therefore using the normal 

vector on the source surface to replace that on the target surface can immediately accelerate the 

convergence rate and improve the registration accuracy. 
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In the current laser scanner market, terrestrial laser scanners always have high scanning 

resolutions, which makes it possible to capture more than one million points in one time-

scanning point cloud dataset. To accelerate the computation and to avoid memory problems in 

computer programs resulting from limited random access memory (RAM), we down-sampled 

the huge raw point cloud using a voxel grid filter. The whole scan volume was divided into a 

regular 3D voxel grid, and only one point per voxel, computed as the centroid of the points 

inside a grid cell, was retained. 

5.3.6   Implementation 

We implemented the GH-LS3D model in C++, making use of the open source Point Cloud 

Library (PCL; Rusu and Cousins, 2011). The reference registration methods, ICP and the linear 

least-squares (LLS) (Low, 2004), and the proposed GH-LS3D approach were integrated into 

the PCL environment. The initial values to begin the fine registration and optimized strategies 

used in the M-step were equal for all the approaches. The point clouds used to test the GH-

LS3D approach were all obtained from real scanner sensors (Leica HDS7000 and RIEGL 

VZ400). The range accuracy of the HDS7000 sensor according to the specification was 1 mm 

in linearity error and the range noise was also 1mm when the measurement range was <25 m. 

The range accuracy of the VZ400 sensor was 5 mm and the precision was 3 mm. More detailed 

information about the two instruments can be obtained from the manufacturers.  

We used two criteria to judge whether convergence had been achieved: (1) if the change in the 

root mean square error (RMSE) value between successive iterations fell below a threshold of 

10−4 m; and (2) if the changes in the transformation parameters – namely, the translation vector 

and the rotation matrix – between successive iterations fell below 10−4 m and 10−5 rad, 

respectively. The final RMSE will be calculated by using the same strategy after registration 

i.e. calculating the distances of the correspondences from the source and transformed target 

point clouds and then to obtain RMSE of those distances. If convergence had not been achieved 

after 20 iterations, the registration was terminated. Once the iteration had successfully 

converged, we used the final estimated transformation parameters to transform the target 

surface to the source surface and then compared the overlapping regions between the two point 

clouds using the 3D Compare module of the Geomagic Studio 2014 software. 

5.4   Experimental results and analysis 

5.4.1   Indoor application 

The first example of an indoor application is the registration of the Karl-Max von Bauernfeind 

statue in the Geodetic Laboratory of the Technische Universität München. The data were 
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obtained using the Leica HDS7000 scanner from two different perspectives. For each scan, the 

scanner was positioned at a distance of 3–4 m from the statue to allow strong overlap (about 

90% overlapping regions; see Figure 5.1). The source surface and the target surface contained 

69,889 and 69,741 data points, respectively. The initial approximations in our experiments were 

calculated from a coarse registration which has been carried out manually by selection of three 

corresponding point pairs in Geomagic 2014. The ICP model tended to converge after 20 

iterations with an RMSE of 2.1041 mm and used 7.1610 s of CPU time. The LLS model 

performed better than the ICP method in this application in terms of the convergence rate, the 

registration accuracy and the computational cost. The LLS approach arrived at convergence 

after seven iterations and used only 2.1550 s of CPU time. The RMSE after matching with the 

LLS approach was 1.1017 mm. The GH-LS3D approach outperformed the LLS approach in 

terms of accuracy and speed. With respect to speed, the GH-LS3D approach gave a slightly 

better convergence rate (six iterations) and CPU time (2.0520 s). The RMSE increased by 38.8% 

and 68.0% after GH-LS3D matching compared with the RMSE obtained with the LLS and ICP 

methods, respectively (Table 5.1). Figure 5.2 shows that the RMSE decreased even faster using 

the GH-LS3D approach. Our registration algorithm worked very well in this experiment, as can 

be seen from the error images and the residuals histograms in Figures 5.1, 5.3 and 5.4. There 

was no systematic or dependency pattern in our algorithm. The results obtained with 3D 

Compare using the ICP, LLS and GH-LS3D matching point clouds are shown in Figures 5.5, 

5.6 and 5.7, respectively. The color bar is in meter units. The GH-LS3D approach clearly gave 

a better 3D Compare result than the other two methods. The differences in the overlapping 

regions between the source surface and the registered target surface were mostly <0.5 mm in 

the GH-LS3D approach, <1.5 mm in the LLS approach and even poorer in the ICP method. 

Figure 5.8 shows the posterior precision of the source surface (left) and the registered target 

surface (right) after adjustment. The color bar represents the posterior standard deviation (𝜎̂) in 

units of millimeters. From Figure 5.8 we can see that, because the scans are indoor and the 

scanning distances are short (3–4 m), the precision was mostly <1 mm after adjustment, which 

was comparable with the precision of the original data. The registered target surface had a 

slightly lower posterior precision than the source surface and this can be interpreted in terms of 

the incidence angle and the error propagation in the adjustment. 

Table 5.1 Results for the three methods with an indoor example. 

Point cloud 

(Number of points) 

algorithms No. of iterations RMSE at the final iteration (mm) Time (s) 

    Source surface: 

69,889 

Target surface: 

69,741 

ICP 20 2.1041 7.1610 

LLS 7 1.1017 2.1550 

GH–LS3D 6 0.6742 2.0520 



Surface-based matching of 3D point cloud with variable coordinates in source and target system 

103 

 

 

Figure 5.1 View of the final composite surface after matching using the GH-LS3D approach. The source surface is shown in 

red and the transformed target surface is shown in green. 

 

Figure 5.2 Comparison of the rate of convergence for the three different algorithms. 

 

Figure 5.3 Residuals histogram of the target surface in units of millimeters. 
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Figure 5.4 Residuals histogram of the source surface in units of millimeters. 

 

 

Figure 5.5 Colored residuals between the source surface and the target surface after matching with the ICP method. 

 

Figure 5.6 Colored residuals between the source surface and the target surface after matching with the LLS approach. 
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Figure 5.7 Colored residuals between the source surface and the target surface after matching with the GH-LS3D approach. 

 

 

Figure 5.8 Colored posterior precision of the source surface (left) and the target surface (right) after matching with the GH-

LS3D. 

 

5.4.2   Outdoor application 

The second example is the registration of a corner of the Alte Pinakothek. The volume of the 

scanned building was about 14×12×18 m. The data were captured from different perspectives 

using the HDS7000 and VZ400 sensors and contained about 80% overlapping regions (Figure 

5.9). For each scan, the scanner was positioned at a distance of 15–20 m from the building to 

ensure that the points on the top of the building contained acceptable incidence angles. The 

point clouds captured from the HDS7000 and VZ400 sensor had 5,445,303 and 6,170,071 data 

points, respectively. Because these data were scanned outside, there were some outliers in the 
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raw datasets. Thus we removed the same outliers from the raw point clouds before registration 

for all three methods in the PCL environment. The scans were carried out at high resolution so 

the raw point clouds were very large. We used a voxel grid size of ρ = 10 mm to down-sample 

the point cloud (Table 5.2). The GH-LS3D approach clearly outperformed the ICP and LLS 

approaches in terms of the convergence rate and accuracy, in addition to the computational time 

(Table 5.2). The convergence rate and the computational time of the LLS approach were both 

about half those required for the ICP method (ten iterations in 306 s in the LLS approach and 

20 iterations in 586 s in the ICP method). The GH-LS3D approach was even better than the 

LLS approach in terms of speed – about seven iterations in 255 s, an increase of about 30 and 

16.7%, respectively (Table 5.2). The resulting registrations were too inaccurate using the ICP 

method, with an RMSE of 27.6971 mm. The LLS approach achieved a considerably higher 

geometrical registration accuracy, with an RMSE about four times lower (7.1690 mm) than that 

of the ICP method. The GH-LS3D approach gave a slightly better RMSE at convergence of 

6.9603 mm (Table 5.2). Figure 10 shows that, in this experiment, the GH-LS3D approach had 

a faster convergence rate than other two methods and that the ICP method seemed to meet a 

local optimization problem after ten iterations. 

Figure 5.11, 5.12 and 5.13 show the results with an error color bar [–1 cm, 1 cm] after using 

3D Compare with the GH-LS3D, LLS, and ICP matching point clouds, respectively. From 

Figure 5.11 and 5.12 we can see that on the smooth surfaces of the building the registered errors 

were both less than ±1 cm using the GH-LS3D and LLS approaches. Additionally, compared 

with Figure 5.11 and 5.12 we can find that the LLS approach gave a slightly lower accuracy 

registration than the GH-LS3D approach. The ICP method gave a registration that was too 

inaccurate to be used i.e. more than ±1 cm on most regions of the smooth surface of the building 

(Figure 5.13). Specifically, when the range of the error color bar was increased to [–15 cm, 15 

cm] we can find that the registered errors on the smooth surface of the building were up to ±8 

cm (see Figure 5.15, which uses the same error color bar as Figure 5.14). In addition, the lower 

walls had a better registered accuracy than the upper walls. This was because the points 

contained good incidence angles on the lower walls.  

On the edges and corners of the building, the registered accuracies were lower (more than ±1cm) 

than on the smooth surfaces. This is because the points on the edges and corners did not have 

such a high quality as those on the plane (Hebert and Krotkov, 1992; Mills and Barber, 2003). 

When the range of the error color bar was increased to [–15 cm, 15 cm], we can find that the 

registered errors were less than ±4.5 cm on the corners and less than ±11.5 cm on most of the 

edges using the GH-LS3D approach (Figure 5.14) but which were even better than the LLS 

approach obtained. Figure 5.15 reflects the fact that the ICP matching results in this experiment 

were only at the centimeter level and the registered errors on the most regions of the corners 

and edges were up to ±15 cm. 
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Figure 5.16 and 5.17 respective displays the residuals histograms of the VZ400 captured 

(source) surface and Figure 5.17 shows the HDS7000 captured (target) surface. The 

distributions of the residuals on the two surfaces are comparable with the precision of the 

instruments and the inflection caused by the incidence angles. Figures 5.18 and 5.19 show the 

histograms for the cosines of the incidence angles of the VZ400-captured surface and the 

HDS7000-captured surface, respectively. It can be seen that the points had higher-quality 

incidence angles in the HDS7000 dataset. Figure 5.20 shows the histogram of the posterior 

standard deviations of two surfaces. Figure 5.20 shows that the HDS7000 captured point cloud 

had a higher posterior precision, although there were some errors from error propagation (e.g. 

a down-sampling technique within a voxel grid. As a result of the outside scanning application 

and relatively long scanning distances, the posterior precision was clearly lower than that of the 

indoor application. The posterior standard deviations of the HDS7000 sensor were more 

concentrated in the range 2–6 mm and those of the VZ400 sensor were in the range 4–8 mm 

(Figures 5.20 and 5.21). 

 

  

Figure 5.9 View of the final composite surface after matching using the GH-LS3D approach. The source surface is shown as 

silver and the transformed target surface is shown as green. 
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Table 5.2 Outdoor example results of the three algorithms. 

Point cloud 

(Numbers of 

points) 

Voxel grid 

(ρ = 10 mm) 

(Numbers of points) 

Algorithm No. of 

iterations 

RMSE at the final 

iteration (mm) 

Time 

(s) 

  HDS7000: 

5,445,303 

VZ400: 

6,170,071 

   HDS7000: 

2,918,669 

VZ400: 

3,101,338 

ICP 20 27.6971 586.2220 

LLS 10 7.1690 306.2010 

GH–LS3D 7 6.9603 255.3640 

 

 

Figure 5.10 Comparison of the rate of convergence for the three different algorithms. 
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Figure 5.11 Colored residuals between the VZ400-captured surface and the HDS7000-captured surface after matching with the 

GH-LS3D approach (error color bar range ±1 cm). 

 

 

Figure 5.12 Colored residuals between the VZ400-captured surface and the HDS7000-captured surface after matching with the 

LLS approach (error color bar range ±1 cm). 
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Figure 5.13 Colored residuals between the VZ400-captured surface and the HDS7000-captured surface after matching with the 

ICP method (error color bar range ±1 cm). 

 

 

Figure 5.14 Colored residuals between the VZ400-captured surface and the HDS7000-captured surface after matching with the 

GH-LS3D approach (error color bar range ±15 cm). 
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Figure 5.15 Colored residuals between the VZ400-captured surface and the HDS7000-captured surface after matching with the 

ICP method (error color bar range ±15 cm). 

 

 

Figure 5.16 Residuals histogram of the VZ400-captured surface in units of meters. 
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Figure 5.17 Residuals histogram of the HDS7000-captured surface in units of meters. 

 

Figure 5.18 Cosine of the incidence angles of the VZ400-captured surface. 

 

Figure 5.19 Cosines of the incidence angles of the HDS7000-captured surface. 
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Figure 5.20 The distribution of posterior precision of the two surfaces after adjustment. 

 

 

Figure 5.21 Colored posterior precision of the source surface (left) and target surface (right) after matching with the GH-LS3D 

approach. 

 

5.5   Conclusions and future work 

We have paid particular attention to the so-called non-target fine registration and have proposed 

an alternative approach, the GH-LS3D approach, to match two arbitrary 3D surfaces. The GH-

LS3D approach is capable of handling datasets in registration with different degrees of 

precision, from different sensors and from different perspectives. Different stochastic models 

can be introduced into the calculation of the GH-LS3D approach and, furthermore, the error 

behavior of each surface can be independently analyzed using statistical analysis tools after 

adjustment. The technique can be applied to a great variety of data co-registration problems. It 
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provides high flexibility for any kind of 3D surface matching, not only in remote sensing and 

photogrammetry, but also in monitoring and deformation analysis in engineering and industrial 

measurements. Moreover, based on the power of the GH-LS3D approach numerous 

applications of the multi-source data fusion can be envisaged in the current measurement data 

processing. 

We have demonstrated the capability of the GH-LS3D approach using indoor and outdoor 

datasets. In both cases, our results were very positive. The GH-LS3D approach performed better 

than the ICP and LLS approaches in terms of the convergence rate, registered accuracy and 

computational time. There are a number of ways to refine and extend the GH-LS3D approach 

in both the M-step and the C-step and these will be investigated in further studies. 
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Chapter   6 

Non-rigid registration of 3D point clouds under 

isometric deformation 

 

Xuming Ge 

Journal of ISPRS Journal of Photogrammetry and Remote Sensing 121 (2016) 192–202 

(The text given here is a revised version) 

 

6.1   Abstract 

An algorithm for pairwise non-rigid registration of 3D point clouds is presented. Specifically, 

we particularly interest in isometric deformation. Additionally, take into account the inevitable 

measurement errors in captured point clouds we extend the provided approach to handle more 

general cases i.e. approximately isometric deformation. The critical step is registration of point 

clouds at different epochs captured from an isometric deformation surface within overlapping 

regions. Based on invariant characteristics under isometric deformation, a variant of the four-

point congruent sets algorithm is carried out to generate correspondences between two 

deformed point clouds and subsequently a RANSAC framework is used to complete cluster 

extraction in preparation for global optimal alignment. Finally, some examples are presented 

and the results are compared with existed approaches to demonstrate two main contributions of 

the proposed technique i.e. the success rate for generating true correspondences is up to 90% 

and the RMSE after the final registration is 2–3 mm. 

 

Keywords: point clouds; non-rigid registration; surface reconstruction; isometric deformation; 

4PCS 



Technische Universität München 

116 

 

6.2   Introduction 

In addition to its applications to computer vision and computational geometry, three-

dimensional (3D) point cloud registration is used in survey engineering, remote sensing and 

photogrammetry. To date, most registration algorithms have focused on rigid registration, i.e. 

under the assumption that two (or more) 3D point clouds are related by a rigid transformation. 

However, with the use of 3D data having become an efficient approach to the representation of 

different models in a variety of fields, the issue of registration is no longer limited to rigid-body 

transformations. For example, deformable shape matching has attracted much interest.  One 

application of this is to find the deformation of one object in different epochs. Hence, there is a 

need to develop non-rigid registration techniques to handle the growing number of 3D 

registration problems. This paper focus on isometric deformation cases, however, considering 

the scanning results is limited by a variety of factors (Fang et al., 2015; Ge and Wunderlich, 

2015), we extend the proposed method to handle more general cases i.e. approximately 

isometric deformation. 

The dominant algorithms for rigid registration are the iterative closest point (ICP) method (Besl 

and McKay, 1992; Zhang, 1994; Chen and Medioni, 1991, 1992) and its variants e.g. the robust 

ICP and the Levenberg-Marquardt ICP (Masuda and Yokoya, 1995; Low, 2004; Grant et al., 

2012).  Another powerful approach that has been used to achieve rigid registration is the least-

squares matching technique (Gruen, 1984) and its extensions (Akca, 2010; Gruen and Akca, 

2005; Ge and Wunderlich 2016).   

Although there have been considerable advances in rigid registration, the development of non-

rigid registration has been relatively tardy. Compared with rigid registration, non-rigid 

registration faces additional difficulties resulting from the need to account for deformations of 

the scanned objects at different epochs. There are two key challenges in the non-rigid case: (1) 

how to establish meaningful and natural correspondences; (2) how to choose an appropriate 

representation for the deformation and then carry out an optimization. One of the main purposes 

of this paper is to address these challenges. 

We present a novel framework to perform automatic non-rigid registration under 

(approximately) isometric deformation. An intrinsic geometric approach is adopted in which 

geodesic distance is exploited as the key factor to establish stable correspondences between two 

scans. A variant of the four-point congruent set algorithm (4PCS, Aiger et al., 2008) is presented 

and is applied to the calculations involved in establishing correspondences. With stable 

correspondences established, we identify the components of the deformation and perform an 

optimization within a random sample consensus (RANSAC) framework. In order to assess the 

results of implementing the proposed method, experiments are performed using the TOSCA 

high-resolution dataset (Bronstein, A.M. et al., 2008). 
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In summary, our specific contributions include the following: 

 Based on geodesic distance, a variant of 4PCS is presented to generate stable 

correspondences in non-rigid cases. 

 A RANSAC framework is designed to extract the rigid body and in preparation for 

optimization. 

 The proposed technique can automatically deal with arbitrary (approximately) 

isometric deformation registration. 

6.3   Related work 

The topic of isometric deformation in non-rigid cases is currently attracting great interest both 

in computer vision and computational geometry. In isometric deformation cases, the geodesic 

distance is one of the most frequently used intrinsic geometric properties in the search for point 

correspondences. Berretti et al. (2006) developed a method based on iso-geodesic stripes in 

which a compact representation was constructed to represent these stripes and quantitatively 

determine their spatial relationships. Similarly, Mpiperis et al. (2007) used a geodesic polar 

representation in which each point on the face was characterized by the geodesic distance from 

the pole (nose tip) and the polar angle. According to the consistency, Huang et al. (2008) 

generated robust correspondences by calculating the geodesic distances from point to point on 

the surface. However, one of the shortcomings of using the geodesic distance on point clouds 

is clearly i.e. instability from topological noise. Landmarks were used to alleviate such 

problems in Pauly’s (Pauly et al., 2005) and Bronstein’s (Bronstein et al., 2008) experiments. 

Tevs et al. (2009) designed a RANSAC framework to find a robust subset of geodesics and then 

to verify isometric consistency. Interested readers can find further information regarding this 

topic in Ovsjanikov et al. (2010), Bronstein et al. (2010) and Smeets et al. (2012).  

Following the generation of correspondences, different strategies can be adopted to transform 

two-point clouds and achieve an optimized result. Chang and Zwicker (2008) transformed the 

clouds using different rigid sub-parts of clusters. Huang et al. (2008) adopted a forward search 

method (Fleishman et al. 2005) to iteratively combine neighboring clusters until a quality 

threshold was reached, after which they carried out an energy optimization. Zhang et al. (2008) 

formulated potential correspondences in a tree and performed a global optimal tree search. A 

tangent-space technique was used in Tevs et al. (2009) to perform optimization and the authors 

introduced an intrinsic shape to reduce the sampling cost in three years later (Tevs et al., 2012). 

At the same year, Sahillioglu and Yemez (2012) used an expectation maximization approach 

formulated the establishment of shape correspondences as a combinatorial optimization 

problem. More details of recent developments in non-rigid registration can be found in a 

comprehensive survey paper by Tam et al. (2013). 
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Recently using point clouds to handle deformation projects is becoming more and more 

frequently in the field of geodetic engineering. Gordon and Lichti (2007) developed a modeling 

strategy to measure vertical deflections of deforming beams by using terrestrial laser scanner 

observations. The researchers attempted to extract exact positions from a vast of cloud points 

and then to carry out their calculation. However, information from scanners is always expressed 

by a huge point cloud of 3D coordinates with a relatively random distribution on the object’s 

surface, preventing a one-to-one correspondence from spots to points. Monserrat and Crosetto 

(2008) used a rigid registration method to detect the deformation of objects and a similar 

strategy was also developed by Wujanz et al. (2013). But, only limited information (i.e. 

orientation and translation of overall structure) can be gained from rigid registration. More 

information of point clouds application for deformation monitoring of structures in the field of 

geodetic engineering can be found in Mukupa et al. (2016).  

6.4   Methodology 

6.4.1   Overview 

As scanning resolutions are becoming higher and higher, and input raw point clouds potentially 

consist of millions of points, it is required to down-sample huge raw point clouds before 

registration (Klein et al., 2010; Diez et al., 2012). The proposed method consists of three key 

steps. First, we start the algorithm by extracting feature points. The feature point subset should 

represent as much as possible of the 3D information about the object, especially the deformed 

part. Based on the generated feature point subset, we can further find four stable 

correspondences on both clouds in preparation for the later calculation. Second, we compute 

geodesic distances from the feature points to the four key points on each surface. After obtaining 

all the required geodesic distances, we use a variant of the 4PCS method to establish 

correspondences between the two clouds. In order to ensure the reliability of the 

correspondences, incorrect correspondences need to be removed by some robust strategies, 

which we develop subsequently. Next, we put all the obtained correspondences into a RANSAC 

framework to find independent rigid clusters between two point clouds and then to implement 

a rigid registration for each corresponding clusters. After this procedure, the method executes 

a further strategy to detect whether there remains potential rigid corresponding regions that are 

not in any clusters. The framework of the proposed method is illustrated in Fig. 6.1. 
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Figure 6.1 Overview diagram of the proposed framework for non-rigid registration. 

6.4.2   Feature Extraction 

 Theoretically, any feature extraction technique can be employed in this step, for example 

intrinsic shape signature (ISS) (Zhong, 2009), heat kernel signature (HKS) (Sun et al., 2009), 

spectral feature (Hu and Hua, 2009) or fast point feature histograms (FPFH) (Rusu et al., 2009). 

Here we use a multilevel ISS method to obtain the feature points subsets on the source cloud 

(𝑃𝑠) and the target cloud (𝑃𝑡). The different search levels are based on the density 𝜌 of the point 

cloud. The goal of this step is to generate feature points necessary to represent as much as 

possible of the 3D information about the scanned object. We can then obtain the corresponding 

subsets 𝑃𝑠̂ and 𝑃𝑡̂ for the source and target clouds, respectively. Figure 6.2 shows the feature 

extraction results on two Cat datasets, where we have used two levels (1𝜌 and 0.5𝜌) to perform 

the ISS algorithm. 

 

 

Figure 6.2 Feature points extraction results on two Cat datasets with different poses. 

 

After generating the two subsets 𝑃𝑠̂ and 𝑃𝑡̂, we need to calculate the four key corresponding 

points from the two point clouds. In this paper, we adopt the HKS algorithm to obtain these 

points (see Fig. 6.3). The goal of this process is to prepare for the later search for 

correspondences, so we will discuss these four key corresponding points in the next section. 
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Figure 6.3 The four key corresponding points on the two Cat datasets with different poses. 

 

6.4.3   Correspondence computation 

The geodesic distance between two points in a curved space is the distance along the shortest 

path that can be found between these points and is invariant under an isometric deformation 

(Tenenbaum et al., 2000). Our algorithm makes heavy use of geodesic distances on the scanned 

surface to generate stable correspondences between 𝑃𝑠 and 𝑃𝑡. As the data of point clouds are 

discrete, we usually need to generate a triangulation mesh on the scanned object using discrete 

coordinates. After obtaining this mesh, we employ the improved Dijkstra algorithm  (Deng et 

al., 2012) to calculate the geodesic distances from the feature points to the four key points on 

each surface. We thus obtain four geodesic distance subsets  {ℒ𝑠
1, ℒ𝑠

2, ℒ𝑠
3, ℒ𝑠

4 } on 𝑃𝑠 and four 

subsets {ℒ𝑡
1, ℒ𝑡

2, ℒ𝑡
3, ℒ𝑡

4 } on 𝑃𝑡. The superscripts here indicate the key points and the subscripts 

indicate the point clouds; for example, ℒ𝑠
1  represents the subset comprising the geodesic 

distances from all the feature points to the first key point on the source cloud.  

4PCS (Aiger et al., 2008) is a global rigid registration algorithm for 3D point sets. The goal of 

4PCS is to find the transformation that provides the best alignment as measured by the greatest 

amount of overlap between the source point cloud and the target point cloud. The algorithm is 

based on finding a set of four-point bases in the source cloud that are congruent to a four-point 

base selected from the target cloud. Letting 𝑋 = {𝒂, 𝒃, 𝒄, 𝒅} be four coplanar points selected 

from the target cloud, if those four points are not all collinear, then the line 𝒂𝒃 intersects the 

line 𝒄𝒅 at an intermediate point 𝒆. Two ratios can then be defined when we have a four-point 

base constructed from two intersecting pairs: 

𝑟1 = ‖𝒂 − 𝒆‖ ‖𝒂 − 𝒃‖⁄  

𝑟2 = ‖𝒄 − 𝒆‖ ‖𝒄 − 𝒅‖⁄                                  (6.1) 
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These ratios are invariant under affine transformations (Huttenlocher, 1991) and therefore act 

as invariants constraining the search for congruent four-point bases in the source cloud. More 

details about the properties of 4PCS and its application to rigid registration can be found in 

Aiger et al. (2008), Theiler et al. (2014), Mellado et al. (2014) and Mohamad et al. (2014, 2015). 

We will develop a variant of 4PCS (i.e. 4PCS based on geodetic distances, GD-4PSC) to find 

correspondences in non-rigid registration. In the non-rigid case, we first need to find a four-

point construct on both point clouds by feature extraction (see Fig. 6.2). In order to apply our 

algorithm, one condition must be satisfied, namely that the pair of four key points be 

corresponding points (i.e. the first key point on 𝑃𝑠 must be the point corresponding to the first 

key point on 𝑃𝑡). To ensure that the condition is satisfied, we will verify the geodesic distances 

between each pair of points. Once four such key points on both 𝑃𝑠 and 𝑃𝑡 have been obtained, 

we can connect each feature point to the four key points by a geodesic path on its own surface, 

thereby obtaining the corresponding subsets  {ℒ𝑠
1, ℒ𝑠

2, ℒ𝑠
3, ℒ𝑠

4 } and {ℒ𝑡
1, ℒ𝑡

2, ℒ𝑡
3, ℒ𝑡

4 }. Now, we 

can treat each feature point as an intermediate point in the corresponding construct formed from 

the four key points connected by geodesic paths. In order to distinguish this from the rigid case, 

we shall henceforth designate these intermediate points as geodesic intermediates. Two four-

key-point constructs, 𝑋𝑡 = {𝒂1, 𝒃1, 𝒄1, 𝒅1} and 𝑋𝑠 = {𝒂2, 𝒃2, 𝒄2, 𝒅2}, are established on 𝑃𝑡 and 

𝑃𝑠, respectively (see Fig. 6.3). Given a point 𝒆1 as a geodesic intermediate on 𝑃𝑡 (see Fig. 6.4), 

four geodesic distances and two ratios can be defined as follows: 

𝑑𝑎1
𝑡 = ‖𝒂1 − 𝒆1‖𝑔 

𝑑𝑏1

𝑡 = ‖𝒃1 − 𝒆1‖𝑔 

𝑑𝑐1
𝑡 = ‖𝒄1 − 𝒆1‖𝑔 

𝑑𝑑1

𝑡 = ‖𝒅1 − 𝒆1‖𝑔 

𝑟1
𝑡 = 𝑑𝑎1

𝑡 𝑑𝑏1

𝑡⁄  

𝑟2
𝑡 = 𝑑𝑐1

𝑡 𝑑𝑑1

𝑡⁄                                                                                                                          (6.2) 

where ‖. ‖𝑔 represents the geodesic distance. These geodesic distances and ratios are preserved 

under isometric deformation and therefore act as invariants to constrain the search for a point 

𝒆2 in 𝑃𝑠 (see Fig. 6.4). If the selected point  𝒆2 satisfies  

‖𝑑𝑖1
𝑡 − 𝑑𝑖2

𝑠 ‖ ≤ 𝜀𝑑,   𝑖 = 𝑎, 𝑏, 𝑐, 𝑑 
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‖𝑟𝑗
𝑡 − 𝑟𝑗

𝑠‖ ≤ 𝜀𝑟 ,   𝑗 = 1, 2                                                                                                      (6.3) 

where 𝜀𝑑 and 𝜀𝑟 are given thresholds, then we will put it into the correspondence candidate 

subset of 𝒆1. Now, for each candidate, we can compute four root mean square errors (RMSE) 

for geodesic distances and two RMSE for ratios and then perform a separate normalization on 

each kind of RMSE. After that, we can combine the two kinds of RMSE to finally obtain a total 

RMSE, 𝒯𝑅𝑀𝑆𝐸 . For each candidate, a weight can be defined using its corresponding 𝒯𝑅𝑀𝑆𝐸 , i.e. 

𝒲𝑖 = exp (−
(𝛼𝒯𝑅𝑀𝑆𝐸)2

2𝜎2 )                                                                                                        (6.4) 

where 𝛼 is a significance factor. Finally, we select the candidate with highest weight as the 

corresponding point of 𝒆1 . Based on the proposed algorithm, we can establish stable 

corresponding relationships between 𝑃𝑡  and 𝑃𝑠 . Figure 6.5 shows the results of a 

correspondence computation for different poses. 

 

 

 

Figure 6.4 Finding correspondences using a variant of 4PCS in a non-rigid case. 
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Figure 6.5 Correspondence computation using the proposed algorithm. 

 

Topological noise is one of the main factors making geodesic distances unreliable (Tevs et al. 

2009) and thereby causing the correspondence process to fail. Two key factors that influence 

topological relations are the qualities of the point clouds and of the triangulation mesh. We shall 

not go into detail about these two issues here, and when executing our algorithm, we shall 

assume that the point clouds and the triangulation mesh are both of acceptable quality. However, 

white noise is inevitably present in all scanning programs and may also influence the stability 

of geodesic distances. If geodesic distances are not globally stable, we can split the point cloud 

into different subsets and subsequently carry out separate non-rigid registrations. The two color 

maps in Fig. 6.6 show the differences between geodesic distances from the same point to all 

other cloud points with different poses. It can be seen from the color coding that we can segment 

each point cloud into different regions based on geodesic distance. The dashed red boxes in Fig. 

6.6 give an example of the corresponding segmentations. After generating the corresponding 

segmentations, we can implement the proposed algorithm independently on each segmentation.  
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Figure 6.6 Geodesic distance color maps and corresponding segmentations. 

Constraints are usually used to detect and remove outliers in both rigid and non-rigid 

registration. When (geodesic) distance is used as an invariant characteristic to generate 

correspondences, the symmetry problem arises (Aiger et al., 2008). In our proposed algorithm, 

we exploit the following strategy to improve the success rate of correspondence computation. 

Let us assume that a point 𝒒𝑡 is selected from an area of symmetry in 𝑃𝑡 and that we search for 

a corresponding point in 𝑃𝑠. We generate n candidates {𝒒𝑠
1, 𝒒𝑠

2 , 𝒒𝑠
3, … , 𝒒𝑠

𝑛} from 𝑃𝑠 and list them 

in descending order according to 𝒯𝑅𝑀𝑆𝐸 . We use a fuzzy C-means algorithm to segment these 

candidates and then obtain clusters and their centers. If 𝒒𝑡 is in an area of symmetry in 𝑃𝑡, then 

the corresponding candidates will also appear in an area of symmetry in 𝑃𝑠; hence, there will be 

at least two symmetric clusters in the candidate subset. After generating the symmetric clusters 

and their centers, we search for the nearest point  𝒈𝑡 to 𝒒𝑡 in 𝑃𝑡; this point will already have a 

corresponding point 𝒈𝑠 in 𝑃𝑠. We can now compare the distance 𝒈𝑡𝒒𝑡 with the distances from 

𝒈𝑠 to each center. The corresponding point for 𝒒𝑡 exists in the cluster with the smallest gap.  

6.4.4   Transformation and optimization 

6.4.4.1   RANSAC extraction and transformation 

After obtaining correspondences from 𝑃𝑡 and 𝑃𝑠, we need to handle the second key challenge 

i.e. to calculate the transformation parameters to align 𝑃𝑡 to 𝑃𝑠. In non-rigid cases, a single set 

of transformation parameters is not sufficient to handle registration by finding and segmenting 

rigid subsets from the global area to independently complete the individual registrations. In the 

proposed algorithm, we have designed a RANSAC (Fischler and Bolles, 1981) framework to 

complete this process. RANSAC is a robust algorithm for fitting models in the presence of 

many outliers (Strutz, 2016) and is an appropriate approach to deal with our situation. A 

correspondence dataset {(𝒞𝑡, 𝒞𝑠)| (𝒄𝑡
1, 𝒄𝑠

1), (𝒄𝑡
2, 𝒄𝑠

2), (𝒄𝑡
3, 𝒄𝑠

3), … , (𝒄𝑡
𝑘, 𝒄𝑠

𝑘)}  is generated using 

this method. Here 𝒞𝑡 and 𝒞𝑠 represent the selected point subsets from 𝑃𝑡 and 𝑃𝑠, respectively, 

and (𝒄𝑡
𝑖 , 𝒄𝑠

𝑖 )  is the ith correspondence, where 𝒄𝑡
𝑖  is from 𝒞𝑡  and 𝒄𝑠

𝑖  is from 𝒞𝑠 . We now 

introduce this correspondence dataset into RANSAC. In each iteration, we obtain a subset 

(𝒞𝑡
𝑖 , 𝒞𝑠

𝑖)  from (𝒞𝑡, 𝒞𝑠) . Each subset (𝒞𝑡
𝑖 , 𝒞𝑠

𝑖)  contains m ( 𝑚 ≥ 3 ) correspondences, 
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namely{(𝒞𝑡
𝑖 , 𝒞𝑠

𝑖)| (𝒄𝑡
𝑘1 , 𝒄𝑠

𝑘1), (𝒄𝑡
𝑘2 , 𝒄𝑡

𝑘2), … , (𝒄𝑡
𝑘𝑚 , 𝒄𝑡

𝑘𝑚)},  and these m correspondences satisfy 

the given conditions for a rigid-body transformation. At the same time, a set of rigid-body 

transformation parameters Τ𝑖 can be obtained. Next, we use Τ𝑖 to transform 𝑃𝑡 to a new position 

to obtain 𝑃𝑡
𝑖  and then we reverse-search correspondences from 𝑃𝑠  to 𝑃𝑡

𝑖 . We store a new 

correspondence if the correspondence distance is less than a given threshold. When all the 

points in 𝑃𝑠  have a reliable corresponding point, we terminate the iteration; otherwise, we 

remove (𝒞𝑡
𝑖, 𝒞𝑠

𝑖) from (𝒞𝑡, 𝒞𝑠) and perform the next step of the iteration. 

If there are still some correspondences that do not belong to any correspondence subsets after 

RANSAC, then we execute a local optimization strategy. Let us assume that the correspondence 

(𝒄𝑡
𝑗
, 𝒄𝑠

𝑗
) does not belong to any subset. Then we use the K-nearest neighborhood algorithm to 

search for the three nearest non-collinear points to 𝒄𝑡
𝑗
 (i.e. {(𝒩𝑡

𝑗
)| 𝒄𝑡

𝑗
, 𝒏𝑡

𝑗1 , 𝒏𝑡
𝑗2  }) in 𝑃𝑡 and carry 

out the same operation in 𝑃𝑠 to find {(𝒩𝑠
𝑗
)| 𝒄𝑠

𝑗
, 𝒏𝑠

𝑗1 , 𝒏𝑠
𝑗2 …𝒏𝑠

𝑗𝑘  , 𝑘 > 2}. Here we need to make 

the hypothesis that there exists a very small area (e.g. 𝒩𝑡
𝑗
) in which there is no deformation. 

We can now find three points in 𝒩𝑠
𝑗

 that result from an (approximately) rigid-body 

transformation from 𝒩𝑡
𝑗
.  

6.4.4.2   Global fine registration and surface fitting 

The results of the algorithm give the initial positions for each cluster, and now we need to find 

the best alignment for each of them and finally generate the best global alignment. For this 

purpose, ICP or a variant can be employed on each cluster, after which a fine registration 

algorithm can be performed again on all points within each point cloud to arrive at a global 

optimization. More details of the fine registration procedure can be found in Besl and McKay 

(1992), Zhang (1994), Chen and Medioni (1991, 1992), Low (2004), Akca (2010) and Ge and 

Wunderlich (2016). 

6.5   Experimental results and analysis 

6.5.1   Implementation 

We implemented the proposed non-rigid registration algorithm in C++, making use of the open-

source Point Cloud Library (PCL) (Rusu and Cousins, 2011). Before the non-rigid registration, 

we first needed to remove outliers and carry out down-sampling. These two steps can be 

completed either in the PCL environment itself or independently in third-party software, such 

as Geomagic Studio 2014. We performed fine registration within an improved ICP, i.e. using 

linear least squares (Low, 2004). Once the iteration had successfully converged, we used the 

RM-LS fitting strategy to generate a deformed surface from the deformed discrete point cloud. 
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In the experiments, we used the TOSCA high-resolution dataset, which is constructed with 

ground truth correspondences, and we were therefore able to achieve a satisfactory 

correspondence rate using the proposed variant 4PCS strategy; moreover, we were able to 

calculate the RMSE after global optimization. In a real registration procedure, it is not necessary 

to achieve 100% correspondences for 𝑃𝑠 in the process described in Section 6.3.4.1, since the 

subsequent optimization can compensate for the missing parts. In our experiments, we 

terminated the search process when the correspondence rate reached 80%. After having 

obtained the deformed surface, we compared the regions of overlap between the source and the 

deformed surfaces using the 3D comparison module of Geomagic Studio 2014 software and 

determined the mean values of the 3D bias. 

6.5.2   Experiments 

Figures 6.7–6.11 show non-registration cases with different datasets from TOSCA. The silver 

and red models in these figures represent the source and target point cloud surfaces, respectively. 

The green models show the point cloud surfaces resulting from the transformation from the 

deformed target point cloud surfaces to the corresponding source point cloud surfaces. The 3D 

color maps in Figs. 6.7–6.11 allow a comparison to be made between the transformed surfaces 

and the source surfaces. Table 6.1 gives more detailed information on the numerical results. 

From the first two images in each of Figs. 6.7–6.11, we can see that the proposed algorithm can 

perform well in non-rigid cases. Moreover, as can be seen from Table 6.2, the proposed GD-

4PCS method gives a success rate for establishing true correspondences of at least 85%. The 

RMSE in the numerical examples shows a rigid fine registration level of about 2–3 mm.  For 

the Horse dataset, the geodesic distances are affected by topological noise. The neck exhibits 

significant stretching that causes the geodesic distances from the back to the head to be 

unreliable. In this case, we divided the whole area into different corresponding segments and 

then carried out the proposed algorithm on each segment individually. The success rate for 

correspondences was improved from 85% to 96% and the RMSE was reduced from 3.65 mm 

to 2.95 mm.  The color maps in Figs. 6.7–6.11 confirm that the proposed algorithm can be of 

use in surface reconstruction. The two color maps (from 1 to 2) in the Horse case (Fig. 6.9) 

reflect the improvement obtained by applying the segmentation. Moreover, the histograms in 

each color map show that the residuals in all the cases are normally distributed, which means 

there are no systematic errors in our proposed algorithm and provides further evidence of its 

reliability. 
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Table 6.1 Numerical results: test datasets, number of points, number of feature points, success rate of correspondences with the 
variant 4PCS method, RMSE after fine registration and 3D comparison biases using fitting surfaces. 

a The success rate here refers only to a point recorded in the target cloud finding its true corresponding point in the source cloud. 

However, this does not mean that the remaining correspondences are incorrect results.  

 

 

Figure 6.7 Non-rigid registration for Cat dataset with pose1 and pose2 (color bar in mm). 

Dataset Points Feature 

points 

Success ratea of 

correspondences 

RMSE (mm) 3D bias 

(mm) 

cat pose1 – pose2 27 894 678 90% 1.33 1.94 

pose1 – pose3 27 894 658 94% 0.99 0.70 

Horse whole 19 248 898 85% 3.65 5.03 

segments 19 248 898 96% 2.95(max) 2.06 

Michael pose1 – pose2 52 565 1241 95% 2.66 1.54 

pose1 – pose3 52 565 1199 94% 2.88 1.60 
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Figure 6.8 Non-rigid registration for Cat dataset with pose1 and pose3 (color bar in mm). 
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Figure 6.9 Non-rigid registration for Horse dataset with different poses (color bar in mm). 
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Figure 6.10 Non-rigid registration for Michael dataset with pose1 and pose2 (color bar in cm). 
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Figure 6.11 Non-rigid registration for Michael dataset with pose1 and pose3 (color bar in cm). 

 

6.5.3   Discussion 

Detecting and establishing stable correspondences is a crucial step in all approaches to 

registration problems and is one of the main challenges in non-rigid registration methods. In 
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this section, we compare the method proposed here with that of Ovsjanikov (2010) when 

finding correspondences in the case of isometric deformation. Ovsjanikov’s method is one of 

the most popular for this task and has exhibited good performances in the author’s experiments. 

It is similar to the proposed method in that it establishes correspondences based on the geodesic 

distances from scanning points to key points. Very importantly, like the proposed method, it 

allows the presence of measurement noise. Ovsjanikov’s method was run using its author’s 

original open codes (Ovsjanikov et al., 2010).  

From Table 6.1, it can be seen that the proposed method performs well in the search for 

correspondences. Figure 6.12 compares the performances of Ovsjanikov’s method and the 

proposed method in finding true correspondences in the case of isometric deformation. The 

proposed method obtains at least 90% true correspondences, which is approximately 10% 

higher than can be obtained using Ovsjanikov’s method. As already mentioned, we are 

interested in introducing non-rigid registration to handle deformations in the measurement field, 

for which measurement noise is unavoidable. Therefore, we introduced σ =  ± 2 mm random 

errors in the geodesic distances. Figure 6.13 shows that the results from both methods were then 

affected by random errors. The advantage of the proposed method over Ovsjanikov’s was less 

significant than in the case of the results presented in Fig. 6.12, with the success rates decreasing 

to approximately 20% and 18% for the proposed method and Ovsjanikov’s method, 

respectively. One reason for this is that GD-4PCS needs to calculate geodesic distances from 

all points to four key points, whereas Ovsjanikov’s method uses only one key point, so the 

proposed method is more sensitive to errors in geodesic distances. However, the benefit of 

having four key points rather than just one is still clear from the higher success rate in finding 

correspondences.  

 

 

Figure 6.12. The comparisons of success rate of finding true correspondences in the isometric cases. 

 

Figure 6.13. The comparisons of success rate of finding true correspondences in the approximately isometric cases. 
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6.6   Conclusions 

In this paper, we have considered isometric deformations and have proposed a computational 

combination to execute non-rigid registration. The geodesic distance acts as an isometric 

invariant characteristic and can therefore be employed to search for correspondences using the 

proposed algorithm. The search process is based on the GD-4PCS method, with some 

constraints being exploited to improve the correspondences. The derived stable correspondence 

subsets thus obtained are used in a RANSAC framework to obtain initial values for each cluster. 

Finally, a fine registration based on these initial values is performed, with subsequent global 

optimization.  

The main advantage of the method is that it establishes stable correspondences. Using the 

geodesic distance within the GD-4PCS method, we can reliably locate a point from a surface 

to its deformation. The RANSAC framework provides the possibility of obtaining initial values 

for each cluster without prior search of rigid clusters.  

One of the limitations of our method is that if the assumption of consistency of geodesic 

distance between the surfaces is invalid, this will result in erroneous registration because 

incorrect correspondences will be established. Moreover, it should be noted that the proposed 

method does not show any advantage in terms of time consumption. In our experiments, the 

programs always need 3–5 minutes to complete a single registration. In future work, we propose 

to further reduce the effects of topological and other kinds of noise on the reliability of geodesic 

distances. Another issue is the need to address the symmetry problem in the GD-4PCS method 

in order to increase the success rate when searching for correspondences.  
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Chapter   7 

Overview, Conclusions, and Outlook 

TLS is a promising technique and has great potential for development as a surveying technique. 

Laser scanners are now under rapid development in terms of both hardware and data post-

processing software, which provides more possibilities for applying TLS in geodetic 

engineering and geo-information. The aim of the work described in this thesis was to promote 

deformation monitoring methods using TLS. In order to achieve this aim, we have solved four 

significant problems in preparation for employing TLS for deformation monitoring. At the 

beginning of this thesis, we posed four key questions. We then proposed approaches to solving 

those questions. Now, at the end of the thesis, we will repeat those questions and give a brief 

overview of the solutions proposed for each of them. Conclusions can then be drawn with regard 

to the work presented here. Finally, we will point out the limitations of our proposed approaches 

and the outlook for future work.  

7.1 Overview 

7.1.1 Question 1: Is there a general technique to extract target 

centers from raw point clouds to represent specific positions? 

A general method for extracting the center of a target was proposed to address this problem. 

We employed the weight total squares technique to extract an ideal target plane such that 

stochastic models of all observations could be feasibly considered. Then, based on the obtained 

target plane, the program extracted a “cross-lines” construct (expressed by discrete 3D points) 

by detecting gaps in the intensity values. Subsequently, we exploited the weight total squares 

technique again to regress the real cross lines and then to extract an intermediate point to 

represent the target center. A robust strategy, M-estimation, was employed in the fitting 

processes to avoid the influence of outliers. The results calculated by the proposed method were 

compared with those obtained by the dedicated software supplied with the scanner. Figure 7.1 

shows the program pipeline. 
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Figure 7.1 Pipeline of target identification. 

 

7.1.2 Question 2: Can we predict a feasible configuration to 

complete the calibration of a laser scanner to provide the expected 

results?  

First of all, we proposed specific criteria for assessing whether the estimated calibration parameters are 

sufficiently accurate. We related a statistical bound on the unknown deviation of the estimate to the 

standard deviations of the scanner’s raw measurements. Moreover, in terms of a feasible separation of 

the estimated unknown parameters, both APs–APs and APs–EOs, we considered many descriptions in 

the early literature regarding the correlations and then selected a reasonable cut-off value as a threshold. 

A least squares method within a Gauss–Helmert model was exploited to execute adjustment. We carried 

out an observability analysis individually for each AP, highlighting the required number and spatial 

distribution of scanned object points. Finally, based on the above conclusions, we applied the calibration 

to a frequently used subset of APs. Taking into account the practical relevance of this approach, we 

subsequently discussed three calibration cases. Figure 7.2 shows schematically how this approach 

proceeds.      

 

 

Figure 7.2 Pipeline of point-field calibration for a laser scanner. 
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7.1.3 Question 3: Can we register two kinds of point cloud that are 

captured by two different sensors and then further assess the 

behavior of each kind of residual after adjustment? 

We presented an extension of the least squares 3D (LS3D) matching method, using the 

nonlinear Gauss–Helmert method (GH-LS3D) to estimate transformation parameters between 

two point clouds and to align such point clouds. This approach is based on the errors-in-

variances model and is capable of simultaneously considering different stochastic models in 

one registration. Before alignment, outliers should be removed from the raw point clouds and 

the whole point clouds then optionally down-sampled.  The correspondences in this program 

can be generated by different strategies (e.g., point-to-plane), following which a robust criteria 

can be used to remove poor correspondences. After an acceptable correspondence subset has 

been obtained, a rigid-body transformation is executed within a Gauss–Helmert model. A set 

of candidates can be obtained after adjustment and then transformed from the target point cloud 

to the source point cloud by using the estimated parameters. Subsequently, a specific criterion 

is applied to judge the transformed results. The iteration is terminated if the transformed 

accuracy is sufficient. Figure 7.3 shows the iteration of the proposed approach. 

 

 

Figure 7.3 Pipeline of the GH-LS3D approach. 
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7.1.4 Question 4: Can we align two point clouds that are obtained 

from different epochs when the scanned object has different 

orientations in each epoch? 

To address this question, we proposed a novel combination approach. First of all, geodesic 

distances were introduced instead of Euclidean distances in the 4PCS algorithm. Based on this 

substitution, we extended the 4PCS algorithm from rigid to non-rigid cases. Properties invariant 

between two point clouds can be found, even when deformations happened. In order to execute 

the extended 4PCS algorithm, we first extracted four key feature points from a raw point cloud. 

Down-sampling is also an optional strategy to accelerate the calculation. Robust strategies can 

also be introduced into the calculation to improve the quality of correspondences. After an 

acceptable correspondence subset has been generated, a RANSAC program is executed to align 

the rigid clusters. After each iteration, some points in the source point cloud can find their 

correspondences in the transformed target point cloud. If a given percentage of points in the 

source point cloud correspond to points in the transformed target point cloud, the iteration is 

terminated. The proposed framework is shown schematically in Figure 7.4. 

 

 

Figure 7.4 Pipeline of the proposed framework for non-rigid registration. 
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7.2 Conclusions 

In this thesis, four novel approaches were proposed to separately solve different issues arising 

in deformation monitoring by TLS. For each approach, we carried out different experiments to 

verify its feasibility. Our conclusions from these studies are as follows: 

 The proposed general extraction algorithm can be employed to accurately obtain a planar 

quadrant target center without the need for any information that is restricted for proprietary 

reasons. A4 paper targets can replace the targets supplied with the scanner when the 

proposed approach is used to extract a target center. 

 The criteria derived for the precision can be exploited to assess whether the calibration 

parameters are accurate enough. If they are, then the estimated APs can be used to 

significantly reduce the deviation between the scanner measurements and the 

corresponding true values. 

 The proposed configurations provide users with guidance on effective implementation of 

calibration in different cases to obtain the expected results (when the subset of APs is {𝑎0, 

𝑏1, 𝑏2, 𝑐0}).  

 A starting point for determining a practically useful configuration of OPs within the point 

field can be determined for any subset of APs given the AP-per-AP analysis.  

 The extended GH-LS3D matching approach allows users to perfectly align two point 

clouds that are captured from different scanners (e.g. Leica HDS 7000 and RIEGL VZ400).  

 GH model is introduced into GH-LS3D to solve nonlinear LS problems such that the 

stochastic models of both source and target point clouds can be simultaneously considered 

in the adjustment. 

 GH-LS3D method is a powerful fine rigid registration method in terms of registration 

accuracy and computational effective. 

 The extended 4PCS algorithm allows the effective generation of correspondences in non-

rigid cases. 

 Based on the proposed non-rigid registration approach, we can use 3D information (i.e., 

3D translations and 3 rotation angles) to represent deformation happened on an object itself 

in terms of rigid body motion. 

As already mentioned, this thesis has made a number of preparations to the application of TLS 

in deformation monitoring. These can be used specifically to solve a variety of problems arising 

in deformation monitoring by TLS. 
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7.3 Outlook  

This thesis has succeeded in its aim of making relevant contributions to the development of 

deformation monitoring by TLS, but of course there is still room for improvement. The 

following are some limitations of the current work, together with suggestions for future research. 

7.3.1 The general target center extraction approach 

The key limitation of the approach described here is that we do not consider the influence of 

external factors on the value of the intensity, which is the core information in the proposed 

approach. In fact, the intensity data from each scan will be affected by a number of uncertain 

factors, such as illumination, humidity, and incidence angle (Fang et al., 20105). Moreover, the 

proposed approach is sensitive to observational error. Although some robust strategies have 

been introduced to detect and eliminate outliers, the residual errors may cause a deterioration 

in the accuracy of both target-plane and cross-line fitting. 

In the future, at least two improvements need to be made to the algorithm to compensate for 

these shortcomings. The first is an intensity correction mechanism and the second is the 

inclusion of robust judgment. 

7.3.3 The GH-LS3D matching approach 

We currently use the GH-LS3D method to solve rigid registration issues. Although this 

powerful approach can handle different kinds of observations in both target and source point 

clouds, so far we have only shown the posterior accuracy of each observation after adjustment, 

but have not really used this information to improve registration. Moreover, processing speed 

is a bottleneck for the GH-LS3D method, and the initial values can significantly influence the 

GH-LS3D method. 

We will focus on analysis of the behavior of residuals in future work in order to maximize the 

advantages of the GH-LS3D. Multi-sensor fusion is also a potential area for future research 

using GH-LS3D. Further improvements could be made to GH-LS3D to increase its efficiency.  

7.3.2 Configuration requirements for terrestrial laser scanner 

calibration 

We give only locally optimal configurations to carry out a given subset of AP calibrations in 

different cases. Although such a given subset of APs contains the most significant system errors, 

for some scanners there may still be further unknown errors in the system. Furthermore, we do 

not give a configuration to perform calibration for hybrid scanners. Last, but not least, we use 
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a Monte Carlo closed-loop simulation to verify that the correlation is sensitive to the position 

of object points (OPs), but do not give a rigorous algebraic derivation to prove this conclusion. 

Future work should take into account larger AP subsets than that treated here. Hybrid scanners 

should also be considered in the proposed point-field calibration. Moreover, in order to make 

the results rigorous, we need to give a rigorous algebraic derivation. 

7.3.4 Non-rigid registration under isometric deformation 

From the discussion in this thesis, it is clear that the key limitation of the proposed framework 

is the uncertainty in geodesic distances. This uncertain characteristic will be magnified in 

measurements using TLS because the scanned object surface is represented by a number of 

discrete points and those scanning points contain two sensitive characteristics. The first is that 

the position of a laser spot is relatively random. The second is that in measurements, all 

observations contain random errors. These two features will further magnify the uncertainties 

in geodesic distances. Furthermore, determination of the corresponding four-key-point 

constructions from two point clouds is time-consuming and may fail in some special cases. 

Therefore, the most important way in which the proposed approach can be improved is by 

overcoming the uncertainty in geodesic distances to ensure the accuracy of the generated 

correspondences. Future work will concentrate more on this aspect. Moreover, we are also 

interested in finding an effective method for establishing the corresponding four-key-point 

constructions from two point clouds, for example by introducing geo-reference points to replace 

the search process. 

7.4 Contribution 

The field of deformation analysis in geodetic has developed nearly a century and already arrived 

at an advanced level, however, with the continuous upgrading of technology and instrument we 

need to constantly improve our understanding in the deformation analysis. In this thesis, we 

attempts to find solutions for rigorous area deformation analysis from point clouds. Although 

there are many shortcomings in our solutions, this thesis shows a new direction to promote the 

research in the deformation analysis and also displays a broad application space in geodetic. 
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