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Abstract 

The emergence and the progression of novel production concepts such as the PAT 

initiative in 2004 is leading to a continually increasing degree of automation in the area 

of life sciences, and in particular in the food industry. With respect to these concepts, 

the demand for increased productivity through the validation and release of process 

and production sections in real time while complying with GMP and HACCP concepts 

in terms of process safety and product quality initially appears to be difficult to meet. 

In order to meet both expectations, intelligent strategies for process monitoring and 

control as essential components of a holistic automation concept are required. A major 

challenge for their implementation are biological process systems such as 

fermentations, which are essential for the production of a variety of foods. Their high 

complexity and momentum in the form of non-linearity, time variance and often very 

sluggish system response cannot be comprehensively modeled from a scientific 

perspective and therefore lead to uncertainties which are very difficult to master with 

the traditional methods of process control. Moreover, the uncertainty can even be 

increased by the fact that in relation to process monitoring essential input variables 

and process states such as the biomass concentration can be measured online only 

indirectly and with a corresponding inaccuracy. From this motivation an online-enabled 

system for process monitoring and control on the basis of fuzzy logic was developed 

in the present work that makes the above-mentioned uncertainties manageable. In 

order to investigate and demonstrate the system’s performance, the process of yeast 

propagation (Saccharomyces cerevisiae sp.) under restricted growth conditions was 

chosen. The linking of statistical process control, classical fuzzy control and innovative 

methods of genetic set optimization demonstrates the potential of this strategy. 

Moreover, a further improvement of the control performance could be achieved by the 

inclusion of negative experiential knowledge. In summary, the results comply with 

similar findings of other research groups and confirm that the inherent uncertainty of 

biological processes becomes manageable through the integration of acquired 

knowledge (experience) and numerical optimization into a fuzzy-logic-based digital 

framework for process control. 
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Zusammenfassung 

Das Aufkommen und der Einzug innovativer Produktionskonzepte wie der PAT-

Initiative im Jahre 2004 führen zu einem nachhaltig zunehmenden 

Automatisierungsgrad im Life Science Bereich und insbesondere auch in der 

Lebensmittelindustrie. Um der aus diesen Konzepten entsprungenen zunächst 

scheinbar ambivalenten Forderung nach Produktivitätssteigerung durch Validierung 

und Freigabe von Prozess- und Produktionsabschnitten in Echtzeit einerseits, aber 

auch der Einhaltung bestehender GMP- und HACCP-Konzepte hinsichtlich 

Prozesssicherheit und Produktqualität andererseits einhalten zu können, sind 

intelligente Strategien der Prozesskontrolle und -regelung als wesentliche Bestandteile 

eines holistischen Automatisierungskonzeptes zwingend erforderlich. Als große 

Herausforderung für deren Umsetzung erweisen sich biologische Prozesssysteme wie 

Fermentationen, welche für die Herstellung einer Vielzahl an Lebensmitteln von 

essentieller Bedeutung sind. Ihre hohe Komplexität und Eigendynamik in Form von 

Nichtlinearität, Zeitvarianz und oftmals einer sehr trägen Systemantwort sind aus 

wissenschaftlicher Sicht nicht vollständig modellierbar und führen daher zu 

Unsicherheiten, welche mit den klassischen Möglichkeiten der Prozessregelung nur 

sehr schwer zu beherrschen sind. Darüber hinaus vergrößert sich die Unsicherheit 

durch den Umstand, dass seitens der Prozessüberwachung wesentliche 

Eingangsgrößen und Prozesszustände wie die Biomassekonzentration online nur 

indirekt und mit entsprechender Ungenauigkeit gemessen werden können. Aus dieser 

Motivation heraus wurde in der vorliegenden Arbeit auf Basis von fuzzy logic ein online-

fähiges System zur Prozessüberwachung und -regelung entwickelt, welches die o.g. 

Unsicherheiten beherrschbar macht. Zur Untersuchung und Demonstration der 

Systemperformance wurde der Prozess der Propagation von Saccharomyces 

cerevisiae sp. unter limitierenden Wachstumsbedingungen gewählt. Die Verknüpfung 

statistischer Prozesskontrolle, klassischer Fuzzyregelung und innovativer Methoden 

der genetischen Setoptimierung belegt das Potential dieser Strategie. Darüber hinaus 

konnte durch die Einbindung von negativem Erfahrungswissen eine weitere 

Verbesserung der Regelgüte erreicht werden. Zusammengefasst zeigen die 

Ergebnisse, dass durch die Einbindung von Erfahrungswissen und numerischer 

Optimierung in ein digitales Framework zur Prozessregelung auf Basis von fuzzy logic, 

die inhärente Unsicherheit biologischer Prozesse beherrschbar wird. 
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1 Introduction 

1.1 About precision – A sense of uncertainty, fuzziness, and expert 

systems 

1.1.1 The importance of uncertainty 

The phenomenon of uncertainty is present in almost every real-world problem and, in 

general, uncertainty is inseparable from measurement. Moreover, it comes from a 

combination of measurement limitations with sensors and unavoidable errors in 

measurement. With respect to cognitive problems, uncertainty emerges from the 

vagueness and ambiguity inherent in natural languages and, therefore, uncertainty is 

essential to human beings at all levels of their interaction with the real world 

(Celikyilmaz and Turksen 2009). Therefore it is not surprising that uncertainty has 

moved into the focus of engineers and scientists over the last decades. Following the 

interpretation of (Ayyub and Gupta 2012) uncertainty can be viewed as a human-

related subjective notion depending on the quantity and quality of information which is 

available to a human being about a system or its behavior that the human being wants 

to describe, predict, or prescribe. The sources of uncertainty are manifold and its 

causes can be of diverse nature. A very comprehensive and detailed discussion about 

uncertainty is given by (Klir 1987; Klir and Folger 1988; Klir 1995; Klir and Wierman 

1999; Klir 2005).  In (Klir and Wierman 1998) they state that uncertainty is a result of 

information deficiency, where information may be incomplete, fragmentary, not fully 

reliable, vague, contradictory, or deficient in some different way. Further, uncertainty 

is divided into two major classes, fuzziness and ambiguity, where ambiguity contains 

non-specificity and strife. A conceptual illustration of this division is given in Figure 1. 

The appearance of uncertainty is an event which is inherently present in biologically 

based processes of food production (e.g. fermentations). The reasons for its 

occurrence are manifold. Variations in raw materials due to naturally varying harvest 

conditions or unpredictable changes in the physiological state and behavior of the used 

microorganisms are just a few examples. With respect to this work, the bioprocess of 

yeast propagation was investigated. The process is subjected to all classes of 

uncertainty, which has an immediate effect on the observability and controllability of 

the process. In particular, most sources of uncertainty are not directly measureable. 
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For example, the cause of unexpected process performance reflected in the provided 

sensor information can be ambiguous, as it might not be clear if it is due to the 

physiological state of the yeast or if there are limitations in the metabolism because of 

raw material variation and nutrient shortage in the substrate. The corresponding control 

decisions of how to react to abnormal process behavior in common practice is therefore 

rather made on a fuzzy basis than on concrete knowledge. Because of this and due to 

the fact that the process of yeast propagation is of crucial importance for the final 

product quality in brewing, the management of uncertainty with respect to monitoring 

and control was the major motivation of this work. A more detailed description of the 

process itself is given in section 1.4 of this thesis. 

Numerous approaches and methods have been published over the last 50 years to 

model and analyze uncertainty (Zadeh 1965; Dempster 1967; Dempster 1967; Sugeno 

1974; Shafer 1976; Negoita, Zadeh et al. 1978), ranging from the theory of fuzzy sets 

and fuzzy measures to evidence theory and possibility theory. In particular, fuzzy logic 

provides an important tool for the development of a better understanding of how to 

handle (process) uncertainty (Celikyilmaz and Turksen 2009). 

 

Figure 1: Partition of uncertainty (Klir and Wierman 1998) 
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In this regard, recent approaches also try to combine fuzzy logic and methods of 

statistical process control that allow the visualizing and detecting of changes and the 

defecting or deterioration of essential quality attributes of the process through the use 

of control charts (Cheng 2005; Gülbay and Kahraman 2006; Gülbay and Kahraman 

2007; Senturk and Erginel 2009; Huang, Chen et al. 2012; Sorooshian 2013; Wang, Li 

et al. 2014; Zabihinpour, Ariffin et al. 2014; Gülbay and Kahraman 2016). However, 

the majority of these approaches are built as a pure monitoring system and there is 

only little investigation that actually takes into account how to integrate the information 

that is delivered by statistical process control into a real feedback control system in 

order to keep the process within predefined statistical borders. This topic is reviewed 

and presented by (Lowry and Montgomery 1995; Montgomery and Woodall 1999; 

Woodall, Spitzner et al. 2004; Woodall and Montgomery 2014) for multivariate 

approaches and by (Cheng and Thaga 2006) on a univariate basis. Therefore, this 

shortcoming, which is also mentioned by (Montgomery, Keats et al. 1994; Montgomery 

and Woodall 1999; Stoumbos, Reynolds Jr et al. 2000; Woodall 2000), was addressed 

in this work by combining statistical process information, evolutionary optimization, and 

fuzzy-logic-based feedback control, as well (section 2.2.3). 

 

1.1.2 The role of fuzzy logic and fuzzy-based expert systems 

A turning point in the evolution of the modern concept of uncertainty occurred with the 

introduction of the fuzzy logic theory by Lotfi A. Zadeh in 1965 (Zadeh 1965). In this 

paper he presents the theory of fuzzy sets, which are sets with imprecise boundaries. 

The individual characteristic of fuzzy sets is that membership in a fuzzy set is not a 

matter of acceptance or denial, but rather a matter of degree. However, despite its 

undoubted advantages for control applications in expert systems, which is one of the 

major topics of this work and which will be discussed later on, the theory of fuzzy logic 

has been quite controversial. However, to date there are more than 53,000 fuzzy-logic-

related papers listed in the INSPEC database and over 15,000 in the Math Science 

Net database, showing the immense impact since its conception (Zadeh 2008). Zadeh 

himself describes the notable capabilities of fuzzy logic as follows (Zadeh 2008): 

“..Fuzzy logic may be viewed as an attempt at formalization/mechanization of two 

remarkable human capabilities. First, the capability to converse, reason and make 

rational decisions in an environment of imprecision, uncertainty, incompleteness of 



Introduction 

6 

 

information, conflicting information, partiality of truth and partiality of possibility – in 

short, in an environment of imperfect information. And second, the capability to perform 

a wide variety of physical and mental tasks without any measurements and any 

computations.”  

As fuzziness is present in many areas of daily life, the capabilities of fuzzy logic reveal 

solutions to a wide range of real-world engineering problem domains like process 

control (Ross 2009; Chandrasekaran, Muralidhar et al. 2010; Azadegan, Porobic et al. 

2011; Nguyen, Gadhamshetty et al. 2015). The majority of real complex system control 

problems are still subjected to human interactions. Hence, the application of control 

theory with respect to complex control issues requires a formal understanding of how 

a human operator understands the system under consideration and how he acts when 

controlling it. From this perspective the principle of incompatibility between precision 

and maintenance of understandability when representing a system is described as 

follows (Zadeh 1973): “As the complexity of a system increases, our ability to make 

precise and yet significant statements about its behavior diminishes until a threshold 

is reached beyond which precision and significance (or relevance) become almost 

mutually exclusive characteristics.”  

Therefore, a dedicated approach for representing human-originated information in a 

flexible way is needed.  And with respect to the scope of this work, this is where fuzzy 

logic comes into focus to close the aforementioned trade-off regarding complex control 

issues and systems (Filev 1991). In this context, fuzzy-based expert systems have 

emerged. Commonly, such systems have a nontrivial inferential capability and, in 

particular, have the capability to infer from premises which are imprecise, incomplete, 

or not totally reliable (Zadeh 1983). Probably one of the most important strengths is 

that they allow numerical information stemming from some kind of measuring 

instrument to be combined with expert knowledge, which is in other words the 

experience of the plant operator of how to best control the system. Usually, this is 

accomplished using a set of control rules that are delivered by the operator or that are 

derived from observing his way of controlling the system. Fuzzy logic then offers a 

quite straightforward method to turn human control decisions into a numerical 

continuous control law. More precisely, for a given numerical input, an inference step 

takes place that results in a fuzzy output set, which is then  
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Figure 2: Schematic representation of information processing in a Mamdani-type fuzzy 

controller. ① Fuzzification of crisp input values 𝒖𝟏 and 𝒖𝟐 into the linguistic domain of the fuzzy 

variables 𝑼̃𝟏 and 𝑼̃𝟐. By the use of Gaussian-type membership functions the crisp input values 

are mapped onto the distinct fuzzy sets 𝑨𝟏
𝟏, 𝑨𝟏

𝟐 for 𝑼̃𝟏 and 𝑨𝟐
𝟏, 𝑨𝟐

𝟐 for 𝑼̃𝟐. ② shows the inference 

mechanism comprising the fuzzy relations and the “knowledge” of how to best control the 

system in the form of a rule base. The inference mechanism comprises the methods of 

aggregation, implication, and accumulation. The aggregation executes all the AND-conjunctions 

of the premise part and combines the individual membership degrees of each rule to an overall 

degree of fulfillment. The implication determines a fuzzy conclusion based on the aggregation 

result (firing degree of a rule). The accumulation denotes the OR-conjunction of all firing degrees 

of all rules (overall conclusion of all rules). ③ represents the defuzzification part, which is a 

back transformation from the linguistic conclusions drawn by the inference mechanism (overall 

implied fuzzy set) into a crisp output 𝒚𝒒
𝒄𝒓𝒊𝒔𝒑

. In this case the COG method is applied. Here, 𝝁𝒀̃ 

denotes the membership degree of the output fuzzy variable 𝒀̃. Further, 𝑹 is the number of rules, 

𝒃𝒊
𝒒
 is the center of area of the output membership function 𝑩𝒒

𝒑
 assigned to the implied fuzzy set 

𝑩̂𝒒
𝒊  for the 𝒊𝒕𝒉 rule (𝒋, 𝒌, … , 𝒍; 𝒑, 𝒒)𝒊. ∫ 𝝁𝑩̂𝒒𝒊 (𝒚𝒒)𝒅𝒚𝒒𝒚𝒒

 is the area under 𝝁𝑩̂𝒒𝒊 (𝒚𝒒). 

retransformed into a precise control value using a distinct method of defuzzification. 

Figure 2 represents the inner structure of a Mamdani-type fuzzy controller (Mamdani 

and Assilian 1975) for use in an expert system.  

In its classical structure the controller consists of four main parts, namely rule base, 

fuzzification, inference mechanism, and defuzzification (Passino, Yurkovich et al. 

1998). The rule base contains the knowledge, in the form of a set of if-then rules, of 
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how best to control the system. The inference mechanism evaluates which control 

rules are relevant at the current point in time and then decides in dependency of the 

applied method of implication what the input to the plant should be by producing fuzzy 

conclusions (implied fuzzy sets). Therefore, the fuzzy system converts the numeric 

inputs 𝑢𝑖∈ 𝒰𝑖 into fuzzy sets. If 𝒰𝑖
∗ denotes all possible fuzzy sets defined on 𝒰𝑖 and 

given 𝑢𝑖 ∈ 𝒰𝑖, then fuzzification transforms 𝑢𝑖 to a fuzzy set denoted as 𝐴̂𝑖
𝑓𝑢𝑧

 defined 

on 𝒰𝑖. The transformation is computed by the fuzzification operator ℱ, where 

ℱ: 𝒰𝑖 → 𝒰𝑖
∗ and ℱ(𝑢𝑖) = 𝐴̂𝑖

𝑓𝑢𝑧
.  The fuzzification interface transforms the numerical 

inputs into the linguistic domain so that they can be interpreted and compared to the 

rules in the rule base. And the defuzzification interface converts back the conclusions 

reached by the inference mechanism into crisp inputs to the plant. In the context of this 

work, classical fuzzy controllers consisting of a set of rules, fuzzification, min-max-

inference mechanism, and defuzzification were developed in the first instance for 

controlling the process key variables temperature and aeration of the yeast 

propagation (see section 2.2.2). In order to perform the transformation from crisp into 

linguistic descriptions and vice versa the fundamental mathematical definitions and 

formulations that were applied for the establishment of the fuzzy controllers are 

presented in the following for further understanding: 

 

Universes of discourse: 

A fuzzy system is a static nonlinear mapping between its inputs and outputs (Passino, 

Yurkovich et al. 1998). Let us assume that the fuzzy system has inputs 𝑢𝑖∈ 𝒰𝑖 where i 

= 1, 2, . . ., n and outputs 𝑦𝑖 ∈ 𝒴𝑖 where i = 1, 2, . . .,m, as shown in Figure 2. The inputs 

and outputs are crisp (real numbers), not fuzzy sets. 𝒰𝑖 and 𝒴𝑖 are denoted as the 

universes of discourse (domains) for the inputs 𝑢𝑖  and 𝑦𝑖, respectively.  

 

Linguistic variables and linguistic values: 

Linguistic variables 𝑢̃𝑖 and 𝑦̃𝑖 take on linguistic values that are used to describe 

characteristics of the variables(Passino, Yurkovich et al. 1998). If there exist N 

linguistic values defined over 𝒰𝑖, and let 𝐴̃𝑖
𝑗
 denote the jth linguistic value of the linguistic 

variable 𝑢̃𝑖 defined over 𝒰𝑖, then 𝑢̃𝑖 takes on the elements from the set of linguistic 

values denoted by  
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𝐴̃𝑖 = {𝐴̃𝑖
𝑗
: 𝑗 = 1,2, … , 𝑁𝑖} (1) 

Analogue for the output, let 𝐵̃𝑖
𝑗
i denote the jth linguistic value of the linguistic variable 

𝑦̃𝑖 defined in 𝒴𝑖, then the linguistic variable 𝑦̃𝑖 takes on elements from the set of 

linguistic values denoted by 

𝐵̃𝑖 = {𝐵̃𝑖
𝑝: 𝑝 = 1,2, … ,𝑀𝑖} (2) 

Figure 3 illustrates the basic elements of the fuzzy logic theory schematically. 

 

Figure 3: Basic elements of fuzzy logic. The figure exemplarily shows a fuzzy partition over the 

universe of discourse 𝓤𝒊, which is represented by the horizontal axis. 𝒖̃𝒊 is a linguistic variable, 

e.g. “Temperature”, which is defined over 𝓤𝒊. The linguistic variable “Temperature” can be 

divided into several subsets (fuzzy sets), which are assigned to specific linguistic values (e.g. 

“low”, “normal”, high”). The triangular membership functions define the set of points for which 

the linguistic values are fixed on 𝓤𝒊. Furthermore, the membership functions assign a 

membership degree µ to each crisp input 𝒖𝒊 in the range from 0 to 1.  

 

Fuzzy sets and membership functions: 

A fuzzy set 𝐴𝑖
𝑗
 is defined as 

𝐴𝑖
𝑗
= {(𝑢𝑖 , µ𝐴𝑖

𝑗(𝑢𝑖)) |𝑢𝑖𝜖𝒰𝑖} (3) 

Here, µ
𝐴𝑖
𝑗(𝑢𝑖) is a membership function associated with fuzzy set 𝐴𝑖

𝑗
 that maps 𝒰𝑖 to 

[0,1] (Passino, Yurkovich et al. 1998). The most common types that have proven their 

worth in practical applications are piecewise linear membership functions (triangular, 
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trapezoidal) and Gaussian bell-shaped membership functions. Their mathematical 

characterization is as follows: 

µ
𝐴𝑖
𝑗(𝑢𝑖) =

{
 
 

 
 
0:                𝑢𝑖 ≤ 𝑙; 𝑢𝑖 ≥ 𝑟
1:                𝑢𝑖 = 𝑚
𝑢𝑖−𝑙

𝑚−𝑙
:           𝑙 < 𝑢𝑖 < 𝑚

𝑟−𝑢𝑖

𝑟−𝑚
:          𝑚 < 𝑢𝑖 < 𝑟

  (4) 

 for triangular-shaped membership functions defined by the parameters l (left), m 

(midth) and r (right). Figure 4 exemplarily depicts a triangular-shaped membership 

function for the linguistic variable “Temperature”. 

 

 

Figure 4: Triangular-shaped fuzzy set. Corresponding to eq. (4) the fuzzy set for the linguistic 

value “normal” could look as follows: 

 𝝁𝒏𝒐𝒓𝒎𝒂𝒍(𝑻𝒊) =

{
 
 

 
 
𝟎: 𝑻𝒊 ≤ 𝟏𝟎; 𝑻𝒊 ≥ 𝟒𝟎
𝟏:          𝑻𝒊 = 𝒎 = 𝟐𝟓
𝑻𝒊−𝟏𝟎

𝟏𝟓
: 𝟏𝟎 < 𝑻𝒊 < 𝟐𝟓

𝟒𝟎−𝑻𝒊

𝟏𝟓
: 𝟐𝟓 < 𝑻𝒊 < 𝟒𝟎}

 
 

 
 

 

  

In the case of a trapezoidal membership functions: 
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µ
𝐴𝑖
𝑗(𝑢𝑖) =

{
 
 

 
 
0:                𝑢𝑖 ≤ 𝑙; 𝑢𝑖 ≥ 𝑟
1:                𝑚1 ≤ 𝑢𝑖 ≤ 𝑚2
𝑢𝑖−𝑙

𝑚1−𝑙
:           𝑙 < 𝑢𝑖 < 𝑚1

𝑟−𝑢𝑖

𝑟−𝑚2
:         𝑚2 < 𝑢𝑖 < 𝑟

 (5) 

Hence, the parameters are given by l (left), m1 (midth1), m2 (midth 2) and r (right). 

Figure 5 exemplarily depicts a trapezoidal-shaped membership function for the 

linguistic variable “Temperature”. 

 

Figure 5: Trapezoidal-shaped membership function. Corresponding to eq. (5) the fuzzy set for 

the linguistic value “normal” could look as follows: 

 𝝁𝒏𝒐𝒓𝒎𝒂𝒍(𝑻𝒊) =

{
 
 

 
 
𝟎: 𝑻𝒊 ≤ 𝟏𝟎; 𝑻𝒊 ≥ 𝟒𝟎
𝟏:          𝟐𝟎 ≤ 𝑻𝒊 ≤ 𝟑𝟎
𝑻𝒊−𝟏𝟎

𝟏𝟎
: 𝟏𝟎 < 𝑻𝒊 < 𝟐𝟎

𝟒𝟎−𝑻𝒊

𝟏𝟎
: 𝟑𝟎 < 𝑻𝒊 < 𝟒𝟎 }

 
 

 
 

 

The mathematical expression for a Gaussian function is 

µ
𝐴𝑖
𝑗(𝑢𝑖) = 𝑒𝑥𝑝 (−

1

2
(
𝑢𝑖−𝑐

𝜎
)
2

) (6) 

Here, c is the center of the function and 𝜎 > 0 determines the spread or width of the 

function. Figure 6 exemplarily illustrates a Gaussian-type membership function for the 

linguistic variable “Temperature”. 
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Figure 6: Gaussian-type membership function. Corresponding to eq. (6) the fuzzy set for the 

linguistic value “normal” could look as follows: 𝝁𝒏𝒐𝒓𝒎𝒂𝒍(𝑻𝒊) = 𝒆𝒙𝒑 (−
𝟏

𝟐
(
𝑻𝒊−𝟐𝟓

𝟒
)
𝟐

). 

The support of a fuzzy set 𝐴𝑖
𝑗
 is the crisp set of all points 𝑢𝑖 in 𝒰𝑖 such that µ

𝐴𝑖
𝑗(𝑢𝑖) > 0 

and a fuzzy set whose support is a single point in 𝒰𝑖 with µ
𝐴𝑖
𝑗(𝑢𝑖) = 1.0 is referred to as 

fuzzy singleton. As this work makes heavy use of set-theoretic and logical operations 

on fuzzy sets, the most essential concepts will be briefly explained in the following. Let 

𝐴𝑖
1 and 𝐴𝑖

2 be two fuzzy sets in 𝒰𝑖 with membership functions µ𝐴𝑖
1(𝑢𝑖) and µ𝐴𝑖

2(𝑢𝑖), 

respectively. 𝐴𝑖
1 is also defined a fuzzy subset of 𝐴𝑖

2 given by 𝐴𝑖
1 ⊂ 𝐴𝑖

2, if µ𝐴𝑖
1(𝑢𝑖) ≤

µ𝐴𝑖
2(𝑢𝑖) for all 𝑢𝑖 ∈ 𝒰𝑖. The set theoretic operations of union, intersection, and 

complement for fuzzy sets are defined via their membership functions. More 

specifically, see the following (Lee 1990). 

 

Fuzzy intersection: 

The intersection of fuzzy sets 𝐴𝑖
1 and 𝐴𝑖

2, for all 𝑢𝑖 ∈ 𝒰𝑖, is a fuzzy set denoted by 𝐴𝑖
1 ∩

𝐴𝑖
2, with a membership function defined by either of the following two 

methods (Passino, Yurkovich et al. 1998): 
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a) Minimum: Here, the minimum of the membership values are 

µ𝐴𝑖
1 ∩ µ𝐴𝑖

2 = 𝑚𝑖𝑛 {µ𝐴𝑖
1(𝑢𝑖), µ𝐴𝑖

2(𝑢𝑖)|𝑢𝑖 ∈ 𝒰𝑖} (7) 

b) Algebraic product: Here, the product of the membership values are 

 µ𝐴𝑖
1 ∩ µ𝐴𝑖

2 = {µ𝐴𝑖
1(𝑢𝑖)µ𝐴𝑖

2(𝑢𝑖)|𝑢𝑖 ∈ 𝒰𝑖} (8) 

For the intersection of fuzzy sets (Zadeh 1965) the min-operator and the Algebraic 

product are suggested. However, there exist many other methods like the Einstein 

product, the Hamacher product, or the Yager operator. As their description would 

exceed the scope of this work, the reader is referred to (Lee 1990; Klir and Yuan 1995; 

Zimmermann 2001) for a comprehensive and detailed analysis. In fuzzy logic theory 

intersection operators like the min-operator that are used to represent the “and” 

operation belong to the group of triangular norms or t-norms. A general representation 

for the intersection of two fuzzy sets is given by µ𝐴𝑖
1(𝑢𝑖) ∗ µ𝐴𝑖

2(𝑢𝑖), where ∗ is the symbol 

for a t-norm. 

 

Fuzzy union: 

The union of fuzzy sets 𝐴𝑖
1 and 𝐴𝑖

2, for all 𝑢𝑖 ∈ 𝒰𝑖, is a fuzzy set denoted by 𝐴𝑖
1 ∪ 𝐴𝑖

2, 

with a membership function defined by either of the following two methods (Passino, 

Yurkovich et al. 1998): 

a) Maximum: Here, the maximum of the membership values are 

µ𝐴𝑖
1 ∪ µ𝐴𝑖

2 = 𝑚𝑎𝑥 {µ𝐴𝑖
1(𝑢𝑖), µ𝐴𝑖

2(𝑢𝑖)|𝑢𝑖 ∈ 𝒰𝑖} (9) 

b) Algebraic sum: Here, the algebraic sum of the membership values are 

 µ𝐴𝑖
1 ∪ µ𝐴𝑖

2 = {µ𝐴𝑖
1(𝑢𝑖) + µ𝐴𝑖

2(𝑢𝑖) − µ𝐴𝑖
1(𝑢𝑖)µ𝐴𝑖

2(𝑢𝑖)|𝑢𝑖 ∈ 𝒰𝑖} (10) 

Corresponding to the class of t-norms, a general class of aggregation operators for the 

union of fuzzy sets called triangular conforms or t-conorms was defined (Zadeh 1965; 

Dubois and Prade 1989; Mizumoto 1989). The union is used to represent the “or” 

operation. Thus, a general representation for the union of two fuzzy sets is given by 

µ𝐴𝑖
1(𝑢𝑖)⨁µ𝐴𝑖

2(𝑢𝑖), where ⨁ is the symbol for a t-conorm. 

 

Fuzzy complement: 

For all 𝑢𝑖 ∈ 𝒰𝑖, the complement (“not”) of a fuzzy set 𝐴𝑖
1 with a membership function 

µ𝐴𝑖
1(𝑢𝑖) has a membership function µ𝐴̅𝑖

1(𝑢𝑖) given by  
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µ𝐴̅𝑖
1(𝑢𝑖) = 1 − µ𝐴𝑖

1(𝑢𝑖) (11) 

 

Figure 7 illustrates schematically the different operators for the fuzzy intersection, 

union, and complement. 

 

Figure 7: Fuzzy set operations using the minimum, maximum, and the not-operator. 

Cartesian product: 

If 𝐴1
𝑗
, 𝐴2

𝑘, … , 𝐴𝑛
𝑙  are fuzzy sets in different universes of discourse 𝒰1, 𝒰2, … ,𝒰𝑛, 

respectively, the Cartesian product of 𝐴1
𝑗
× 𝐴2

𝑘 × …× 𝐴𝑛
𝑙  is a fuzzy set with the 

membership function 

µ
𝐴1
𝑗
×𝐴2

𝑘×…×𝐴𝑛
𝑙 (𝑢1, 𝑢2, … , 𝑢𝑛) = µ𝐴1

𝑗 (𝑢1) ∗ µ𝐴2𝑘
(𝑢2) ∗ … ∗ µ𝐴𝑛𝑙 (𝑢𝑛) (12) 

 

Fuzzy relations: 

Fuzzy relations are fuzzy subsets of 𝒰 ×𝒴, which is a mapping from 𝒰 → 𝒴. Let 𝒰,𝒴 ⊆

ℝ be universal sets, then  

𝑅̃ = {((𝑢, 𝑦), µ𝑅̃(𝑢, 𝑦))|(𝑢, 𝑦) ∈ 𝒰 × 𝒴} (13) 
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is called a fuzzy relation on 𝒰 ×𝒴. Therefore, it is straightforward to set up fuzzy 

relations by connecting fuzzy sets that are defined over different universes of discourse 

by using if-then rules. The mapping of the inputs to the outputs for a fuzzy system is 

characterized by a set of condition → action rules, or in modus ponens (If-Then) form, 

which will be explained in the following section. A general form is given by  

𝑰𝒇 𝑝𝑟𝑒𝑚𝑖𝑠𝑒 𝑻𝒉𝒆𝒏 𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑡 (14) 

Commonly, the inputs of the fuzzy system are assigned to the premise, and the outputs 

are associated with the consequent. Then, the standard form of a multi-input single-

output (MISO) of a linguistic rule is given by 

𝑰𝒇 𝑢̃1𝑖𝑠 𝐴̃1
𝑗
 𝒂𝒏𝒅 𝑢̃2 𝑖𝑠 𝐴̃2

𝑘 𝒂𝒏𝒅,… , 𝒂𝒏𝒅 𝑢̃𝑛 𝑖𝑠 𝐴̃𝑛
𝑙  𝑻𝒉𝒆𝒏 𝑦̃𝑞 𝑖𝑠 𝐵̃𝑞

𝑝
 (15) 

 

Principles of approximate reasoning: 

In fuzzy logic and approximate reasoning, there exist two important fuzzy implication 

inference rules which had to be considered in this work as well. The first one is the 

generalized modus ponens (GMP) by (Zadeh 1975). He defined a methodology known 

as Compositional Rule of Inference (CRI), which is used to infer fuzzy consequents 

utilizing GMP. Generally, GMP is defined as follows: 

 

premise 1: u is A', 

premise 2: if u is A then y is B, 

consequence: y is B' 

 
This principle is of fundamental importance in the fuzzy inference mechanism. The first 

function of the inference stage is to determine the degree of firing of each rule in the 

rule base (matching). Suppose that at some time we get inputs 𝑢𝑖, i = 1, 2, . . ., n, and 

fuzzification produces 𝐴̂1
𝑓𝑢𝑧
, 𝐴̂2

𝑓𝑢𝑧
, … , 𝐴̂𝑛

𝑓𝑢𝑧
, which are the fuzzy sets representing the 

inputs. There are then two basic steps to matching (Passino, Yurkovich et al. 1998): 

1) Combine inputs with rule premises: 

µ
𝐴̂1
𝑗 (𝑢1) = µ

𝐴1
𝑗 (𝑢1) ∗ µ𝐴̂1

𝑓𝑢𝑧(𝑢1) 

µ𝐴̂2𝑘
(𝑢2) = µ𝐴2𝑘

(𝑢2) ∗ µ𝐴̂2
𝑓𝑢𝑧(𝑢2) 

. 

. 

. 
µ𝐴̂𝑛𝑙 (𝑢𝑛) = µ𝐴𝑛𝑙 (𝑢𝑛) ∗ µ𝐴̂𝑛

𝑓𝑢𝑧(𝑢𝑛) 
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2) Determine which rules are fired: 

µ𝑖(𝑢1, 𝑢2, … , 𝑢𝑛) = µ𝐴̂1
𝑗 (𝑢1) ∗ µ𝐴̂2𝑘

(𝑢2)… ∗ µ𝐴̂𝑛𝑙 (𝑢𝑛) (16) 

The second function of the inference stage is to determine the degree to which each 

rule’s recommendation is to be weighted in arriving at the final decision and to 

determine an implied fuzzy set corresponding to each rule (inference step). There exist 

two possibilities to do the inference step: 

a) Determine implied fuzzy sets: 

Compute the implied fuzzy set 𝐵̂𝑞
𝑖  for the ith rule (j,k,…,l;p,q)i with membership 

function 

µ𝐵̂𝑞𝑖 (𝑦𝑞) = µ𝑖(𝑢1, 𝑢2, … , 𝑢𝑛) ∗ µ𝐵𝑞
𝑝(𝑦𝑞) (17) 

The implied fuzzy set 𝐵̂𝑞
𝑖  determines the certainty level that the output should be a 

specific crisp output 𝑦𝑞 within the universe of discourse 𝒴𝑞 .  

b) Determine the overall implied fuzzy set: 

As an alternative, calculate the overall implied fuzzy set 𝐵̂𝑞 with membership 

function 

µ𝐵̂𝑞(𝑦𝑞) = µ𝐵̂𝑞1(𝑦𝑞)⨁µ𝐵̂𝑞2(𝑦𝑞)⨁…⨁µ𝐵̂𝑞𝑅(𝑦𝑞) (18) 

which provides the conclusion reached considering all rules in the rule base at the 

same time. 

The fuzzy implication inference is based on the sup-star compositional rule of inference 

for approximate reasoning suggested by Zadeh in (Zadeh 1973) in order to compute 

µ𝐵̂𝑞(𝑦𝑞) . In this terminology the “sup” corresponds to the ⨁ operation, and the “star” 

corresponds to ∗. The compositional rule of inference (Zadeh 1965; Zadeh 1973; Klir 

and Yuan 1995) is the special case when maximum is used for ⨁ and minimum is used 

for ∗. The justification for using that special convention for the inference step is that we 

can be no more certain about our conclusions than we are about our premises. This 

corresponds to the Mamdani implication (Mamdani and Assilian 1975; Mamdani 1977; 

Mamdani and Gaines 1981) or max-min-inference mechanism, which is well 

established in practical fuzzy control applications (Iancu and Popirlan 2010; Piltan, 

Haghighi et al. 2011; Precup and Hellendoorn 2011; Chen, Yan et al. 2014). In other 

words, the aggregation of the premises of all rules is done via the AND-operator 

(minimum) and the accumulation of the suggestions of all rules to form the overall 

implied fuzzy set is accomplished using the OR-operator (maximum). 
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The second important form of approximate reasoning is the generalized modus tollens: 

 

premise 1: y is B', 

premise 2: if u is A then y is B, 

consequence: u is A'. 

  

It is closely related to the backward goal-driven inference which is commonly used in 

expert systems, especially when it comes to the incorporation of negative rules, which 

is a core topic of this work and will be introduced later. 

 

Defuzzification principles: 

The task of the defuzzification is to convert the collection of recommendations of all 

rules back into a crisp output. For a rule base consisting of R rules there are R implied 

fuzzy sets, one from each rule, each recommending a particular output. In order to 

compute one crisp output 𝑦𝑞
𝑐𝑟𝑖𝑠𝑝

 from all of these recommendations besides center 

average defuzzification, the center of gravity method is the most widely used one 

(Braae and Rutherford 1979):  

𝑦𝑞
𝑐𝑟𝑖𝑠𝑝 =

∑ 𝑏𝑖
𝑞
∫ µ

𝐵̂𝑞
𝑖 (𝑦𝑞)𝑑𝑦𝑞𝑦𝑞

𝑅
𝑖=1

∑ ∫ µ
𝐵̂𝑞
𝑖 (𝑦𝑞)𝑑𝑦𝑞𝑦𝑞

𝑅
𝑖=1

 (19) 

Here, R denotes the number of rules, 𝑏𝑖
𝑞
 is the center of area of the membership 

function of 𝐵𝑞
𝑝
 associated with the implied fuzzy set 𝐵̂𝑞

𝑖  for the ith rule (j,k,…,l;p,q)i, and 

∫ µ𝐵̂𝑞𝑖 (𝑦𝑞)𝑑𝑦𝑞𝑦𝑞
 is the area under µ𝐵̂𝑞𝑖 (𝑦𝑞).  

The disadvantage is the expensive-to-calculate integration in the determination of the 

centroid. If one is satisfied with an approximation, the integral can be replaced by a 

sum over pre-computed centroids 𝑏𝑖 of the individual terms, weighted by the 

membership degrees 𝜇𝑖: 

𝑦𝑞
𝑐𝑟𝑖𝑠𝑝 =

∑ 𝑏𝑖𝜇𝑖
𝑅
𝑖=1

∑ 𝜇𝑖
𝑅
𝑖=1

 (20) 

Hence, in the case of the center area method the calculation is: 

𝑦𝑞
𝑐𝑟𝑖𝑠𝑝 =

∑ 𝑏𝑖
𝑞
𝑠𝑢𝑝𝑦𝑞{µ𝐵̂𝑞

𝑖 (𝑦𝑞)}
𝑅
𝑖=1

∑ 𝑠𝑢𝑝𝑦𝑞{µ𝐵̂𝑞
𝑖 (𝑦𝑞)}

𝑅
𝑖=1

 (21) 
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Here, “sup” is the “supremum” and can be interpreted as the maximum value. In 

conclusion, for each fuzzy system an explicit mathematical formulation can be set up. 

In the case of center-average defuzzification, triangular membership functions and 

product operation to represent the conjunction in the premise of each rule an explicit 

description of the fuzzy system is 

𝑦 =
∑ 𝑏(𝑗,𝑘,…,𝑙;𝑝,𝑞)𝑖µ1

𝑗
µ2
𝑘…µ𝑛

𝑙𝑅
𝑖=1

∑ µ1
𝑗
µ2
𝑘…µ𝑛

𝑙𝑅
𝑖=1

 (22) 

Here, 𝑏(𝑗,𝑘,…,𝑙;𝑝,𝑞)𝑖 is the output membership function center for the ith rule and the 

indices in (𝑗, 𝑘, … , 𝑙) specify which linguistic value is used on each input universe of 

discourse and specifies the linguistic-numeric value of the input membership function 

used on each input universe of discourse. In the case of Gaussian membership 

functions eq. 19 turns into 

𝑦𝑐𝑟𝑖𝑠𝑝 =

∑ 𝑏𝑖∏ 𝑒𝑥𝑝(−
1

2
(
𝑢𝑗−𝑐𝑗

𝑖

𝜎𝑗
𝑖 )

2

)𝑛
𝑗=1

𝑅
𝑖=1

∑ ∏ 𝑒𝑥𝑝(−
1

2
(
𝑢𝑗−𝑐𝑗

𝑖

𝜎𝑗
𝑖 )

2

)𝑛
𝑗=1

𝑅
𝑖=1

 (23) 

and it needs  

𝑅(2𝑛 + 1) (24) 

parameters to describe this fuzzy system. A diagrammatic illustration of the 

calculations that are performed in a classical fuzzy controller is shown in Figure 8. 

 

Figure 8: Schematic representation of the calculations occurring in a classical fuzzy controller 

with two rules (modified Figure 1 in (Birle, Hussein et al. 2013)). The controller has two inputs 𝒆𝟏 

and 𝒆𝟐 and one output 𝒚𝒒
𝒄𝒓𝒊𝒔𝒑

. The inference mechanism uses the max-min method. A simplified 

center of gravity calculation is performed as defuzzification.  
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With reference to this work, a basic fuzzy inference system was established in order 

to control the temperature and the aeration of the brewer’s yeast propagation process. 

The developed fuzzy controllers are diagrammatically shown in Figure 9 and were 

designed using the aforementioned definitions and concepts of fuzzy logic theory. A 

comprehensive description of the classic fuzzy system is presented in section 2.2.2 of 

this work. 

 

Figure 9: Diagrammatic representation of the classical fuzzy inference system which was 

designed in the scope of this work. In its basic configuration the system consists of two 

controllers, which are a temperature and an aeration controller. The aeration controller is a two-

step controller. In the first step a state variable “aeration_state” is created (marked by the blue 

dashed rectangle) and used as the output. In the second step this state variable is used as an 

input variable and the final output is the setpoint for the aeration interval denoted as “SP_Pulse”. 

The main advantages of using fuzzy controllers are that they offer quite fast and 

problem-related tools to solve control engineering problems in a transparent, 

straightforward, and practical-oriented way. Furthermore, as a universal approximator 

a fuzzy system is able to pattern the behavior of any nonlinear system and additionally 

it allows the immediate incorporation of expert knowledge into control rules by means 

of linguistic expressions. However, there are several drawbacks of classical, static 
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fuzzy systems. One drawback is that the more complex a system gets, the more rules 

are required in order to provide a full description of the system. More clearly, there is 

an exponential increase in the number of rules with the number of fuzzy controller 

inputs or membership functions required to describe the process of interest. The 

consequence is that the advantage of transparency of the rule base diminishes and 

the system’s efficiency deceases when there are rules which are not actively used. 

Another drawback is the lack of a learning capability with respect to fast controller 

implementation. In common practice manual adaption of fuzzy controller parameters 

by trial and error is still the dominating method in order to reach the required 

performance criteria of the controller. However, this is quite cumbersome and often 

results in inefficient and sub-optimal control parameter configurations. Therefore, in 

this work two different approaches were investigated in order to optimize the control 

performance of classical fuzzy control within the framework of uncertainty-biased 

processes. One approach is the incorporation of negative experience into fuzzy 

inference systems. By using the principle of modus tollens rules can be formulated in 

order to express warnings or prohibitions for the consequents of distinct rules. This 

allows the transparency of the rule base to be maintained in such a way that fewer 

rules are required to achieve a certain control performance than would be the case if 

only positive rules were used. The other approach is the usage of evolutionary tuning 

techniques like genetic algorithms in order to add data-based learning and to achieve 

a fast optimization of the control performance. 

 

1.2 The importance of negative experience 

In general, fuzzy control allows the incorporating of qualitative experiential knowledge 

in the form of rules directly into the controller. This creates a controller whose mode of 

operation can be interpreted and which can therefore be optimized interactively without 

having a process model at hand. Usually, the type of approximate reasoning and the 

interpretation of rules follow modus ponens, which is Latin for mode that affirms by 

affirming. Given this rule it is possible to incorporate positive experience that stems 

from different experts into a fuzzy controller. More precisely, in common fuzzy 

controller rules in the form of 𝑅𝑖: 𝐼𝑓 𝑝𝑖(𝑒) 𝑇ℎ𝑒𝑛 𝑐𝑖(𝑢) are used and interpreted as a 

positive rule. Here, 𝑅𝑖 is the ith rule with premise 𝑝𝑖 and conclusion 𝑐𝑖. The truth value 
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of 𝑝𝑖(𝑒) ∧ 𝑐𝑖(𝑢) provides for each output value 𝑢 to which degree it is recommended by 

the rule 𝑅𝑖 at the current input 𝑒. By superimposition of the suggestions of all rules 

using the OR-operation, the overall implied output membership function results (Kiendl 

1997):  

µ(𝑒, 𝑢) = ⋁ (𝑝𝑖(𝑒) ∧ 𝑐𝑖(𝑢))
𝑅
𝑖=1   (25) 

It defines for each output value to which degree it is recommended by all rules at the 

given input. However, the above-mentioned conventional fuzzy controller structure has 

the deficiency that it is not possible to declare certain "forbidden manipulated variable 

ranges" or to ensure that the resulting real value of the manipulated variable is not 

under certain preconditions in these areas. Such a guarantee may be desirable in 

practice. For example, if the output of the fuzzy controller acts on an actuator, which 

consists of several units, it can be of interest that there is no frequent switching 

between the different units in order to protect the actuator and to achieve a more 

economical operation. In this case, it is therefore advisable to declare as “unfavorable” 

or even “forbidden” all manipulated variable values which lie in the vicinity of the 

switching threshold. Likewise, for example in the field of process engineering, one 

would like to guarantee that a valve is actually completely closed under certain 

preconditions. Therefore, all manipulated variable values would be prohibited at which 

the valve is only partly closed. Furthermore, for example in the case of position control, 

aside of having only positive recommendations it can be very useful to define linguistic 

rules of prohibition in order to avoid overshooting at the target position (e.g. “If target 

position is close Then high speed is prohibited”). Further, a dead band can be created 

in order to smooth control in the case of small control deviations (e.g. “If deviation e is 

small Then control output values in the range of 0 < |𝑦| < 𝑦𝑚𝑖𝑛 is prohibited”). Due to 

that structural shortcoming, conventional fuzzy controllers are not suitable for certain 

control applications. However, this structural deficit can be solved by the additional 

incorporation of negative experience. In literature there exist two different approaches 

of how to incorporate negative rules into fuzzy controllers and how to handle the flow 

of information. The first approach is suggested by (Kiendl 1997). He introduces the 

concept of a two-stringed fuzzy controller structure (Kiendl 1993). A schematic outline 

of this approach is shown in Figure 10. For each string a positive µ+(𝑢) and a negative 

membership function µ−(𝑢) is generated. Here µ+(𝑢) represents the implied fuzzy sets 

coming from all positive rules and µ−(𝑢) denotes the implied fuzzy sets resulting from 
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all negative rules. Subsequently, both are combined to a membership function µ(𝑢) 

using a method denoted as hyperinference such as µ(𝑢) = µ+(𝑢) ∧ ¬µ−(𝑢), where ∧ 

is a selectable fuzzy operator (AND-operator). In the case of a weak veto the 

hyperinference could be as follows (Kiendl 1997): 

𝜇(𝑢) = {
𝜇+(𝑢), 𝑖𝑓 𝜇+(𝑢) ≥ 𝜇−(𝑢)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}  (26) 

A hyperdefuzzification then calculates a crisp output value 𝑢𝐷.  

 

Figure 10: Illustration of a two-stringed fuzzy controller structure for handling positive and 

negative rules proposed by (Kiendl 1997). The lower string processes the negative rules and 

creates a membership function 𝝁̃−(𝒖). It states for each potential value of 𝒖, to which degree the 

negative rules advise against it. The hyperinference offsets positive and negative membership 

functions (µ+(𝒖), µ−(𝒖)) against each other and creates a common membership function µ(𝒖). 

Here, µ−(𝒖) = 𝒒𝝁̃−(𝒖), 𝟎 ≤ 𝒒 ≤ 𝟏. Successive hyperdefuzzification computes a crisp output 𝒖𝑫. 

The factor 𝒒 is used for global attenuation of the warnings or prohibitions. The input is denoted 

e in this case. 

A second approach for incorporating negative rules into fuzzy inference systems and 

that was applied within the scope of this work is proposed by (Branson and Lilly 1999; 

Branson and Lilly 2001). Considering the principle of modus tollens, a new and 

practice-oriented method for the incorporation of negative rules within the framework 

of defuzzification denoted as dot attenuation is presented. Similar to Kiendl, an overall 

negative implied vector µ− is built as part of the inference, where the ith element is the 

negative membership in the ith fuzzy set on the universe of discourse. Each element is 

computed as a t-conorm of the premises of all negative rules containing the ith fuzzy 

set on the output universe of discourse in its consequent. For any positive rules whose 

consequents hold the ith fuzzy set on the output universe of discourse, the ith element 
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of µ− is used as an attenuation factor within the applied method of defuzzification. 

Consequently, the same is performed to form a positive implied vector µ+ that is 

analogous to µ−. Hence, dot product center of gravity defuzzification is given by 

(Branson and Lilly 2001) 

𝑦(𝑥) =
∑ 𝑏𝑖 ∫µ

𝑖𝑚𝑝(𝑖)(1−𝑎̂𝑖
𝑇µ−)𝑅

𝑖=1

∑ ∫µ𝑖𝑚𝑝(𝑖)(1−𝑎̂𝑖
𝑇µ−)𝑅

𝑖=1

 (27) 

and the simplified dot product center average defuzzification is calculated by 

𝑦(𝑥) =
∑ 𝑏𝑖𝜇(𝑖)(1−𝑎̂𝑖

𝑇𝜇−)𝑅
𝑖=1

∑ 𝜇(𝑖)(1−𝑎̂𝑖
𝑇𝜇−)𝑅

𝑖=1

 (28) 

Here, T stands for transpose, µ− denotes the overall negative implied vector, µ𝑖𝑚𝑝(𝑖) is 

the implied fuzzy set from rule i, 𝑎̂𝑖 is a unit vector in the direction of the consequent of 

rule i, R denotes the number of rules and 𝑏𝑖 is the center of the membership function 

recommended by the consequent of rule i. Figure 11 exemplarily depicts the handling 

of negative experience on the fuzzy set level. 

 

Figure 11: Incorporation of a negative rule and numerical treatment according to (Branson and 

Lilly 2001). The exemplary rule base comprises four positive and one negative rule (R5). For each 

positive output fuzzy set, there exists a corresponding negative fuzzy set. In this case, rules that 

fire the output fuzzy set “high” are gradually attenuated by rule 5, which fires the corresponding 

implied negative set “not high”. The numerical calculation of a crisp output is performed by dot 

product center average defuzzification (eq. 27). 

Regardless of which method is used, both approaches come to the consensus that a 

clear advantage of the inclusion of negative rules is the possibility to alter the control 

surface in a very specific and targeted way, such that changes are only made where it 
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is necessary to improve the control performance. For this reason, the requirement to 

include negative experience in the form of negative rules into fuzzy systems is obvious 

to the controllability of uncertainty-biased processes. It provides an opportunity to 

further improve the performance and efficiency of the control behavior while 

maintaining the system’s interpretability at the same time. Due to that, the concept of 

incorporating negative experience into the classic design of the described fuzzy-based 

yeast propagation system was intensively investigated. 

As mentioned before, the design of a fuzzy model or a fuzzy controller, regardless of 

whether negative rules are taken into account or not, relies on human knowledge or is 

derived from data. In general both approaches are required, particularly when it comes 

to the control of more complex systems. Indeed if it is possible to provide a qualitatively 

correct description of a system behavior or a control policy by an expert, the numerical 

translation offered by fuzzy logic may be quite approximate. In this context, it is 

interesting to have methods that improve the set of fuzzy rules by tuning membership 

functions for instance. This requirement has led researchers to combine data-driven 

learning or optimization techniques with fuzzy logic, which will be introduced in the 

following section. 

 

1.3 Getting tuned – Genetic optimization versus trial and error 

An important characteristic of fuzzy systems is that with respect to their design the 

number of degrees of freedom can grow rapidly depending on the number of rules, 

fuzzy variables, and types of fuzzy sets that are used. Hence, the tuning and 

adjustment of parameters that affect the performance of a fuzzy system’s behavior can 

be quite cumbersome. Especially the practical optimization of each of these 

parameters usually requires a deep understanding of the underlying process. If there 

is uncertainty about the process behavior, the tuning of the parameters might be biased 

by uncertainty, as well. Due to that, parameter optimization via trial and error is not 

productive. As stated earlier, a fuzzy control action results from the synthesis of the 

overall recommendation of all active rules. This is part of matching every input value 

in the antecedent with the corresponding membership functions. For this reason, 

tuning any membership function can get quite complicated, as it usually affects more 

than one rule, and every rule may affect each fuzzy control action. However, in the 
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case of available training data, the data should contain that kind of information 

somehow. In consequence, a fuzzy control system should be optimized interactively 

and automatically using a data-driven approach, rather than tuning it separately and 

manually. In literature, there are several optimization methods but there are no 

universal methods. The standard optimization methods like gradient-based 

approaches might not be effective in the context of fuzzy systems given their non-linear 

character and the modularity of the systems (Nguyen and Sugeno 2012). This is one 

of the driving forces of this work to explore other optimization methods of more global 

optimization capabilities such as genetic algorithms. Due to the great variety of 

optimization strategies one could heretically ask which the best universal optimizer is. 

This was discussed in (Weicker 2007), who comes to the conclusion that there is no 

such thing as a universal optimizer. For each algorithm there exists a niche in the entire 

problem space for which it is particularly appropriate. Based upon these findings 

different optimization strategies have been analyzed (Rao and Rao 2009) and with 

respect to fuzzy-logic-based systems one of the most successful methodologies are 

genetic fuzzy systems (Cordón 2001; Cordón, Gomide et al. 2004; Herrera 2008). The 

use of genetic optimization with fuzzy logic allows the contradictory aims and tradeoff 

of high accuracy while still maintaining the system’s interpretability  to be overcome 

(Cordón 2011).  

The development of genetic algorithms (GAs) goes back to (Holland 1975) and they 

belong to the most frequently applied evolutionary algorithms. GAs belong to the 

gradient-free, parallel optimization algorithms using a performance criterion for 

evaluation, as well as a population of potential solutions in order to detect a global 

optimum. In general, they are capable of handling complex and irregular solution 

spaces, and they can handle high-dimensional, nonlinear optimization problems. Their 

superiority to other optimization algorithms in terms of computational efficiency led to 

various engineering applications for solving complex optimization problems (Yusup, 

Zain et al. 2012). In its standard form the GA consists of the genetic operations 

selection, mutation and crossover. Solutions that are considered good are selected 

and manipulated to achieve new and possibly better solutions. Therefore, the 

manipulation is achieved by applying the genetic operators on the chromosomes in 

which the parameters of possible solutions are encoded. Considering the principle of 

elitism, in each population a part of the current generation is replaced by their offspring. 
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The combined effect of selection, crossover, and mutation can be expressed in the 

reproductive schema growth equation (Holland 1975; Goldberg 1989): 

𝜁(𝑆, 𝑡 + 1) ≥ 𝜁(𝑆, 𝑡) ∙ 𝑒𝑣𝑎𝑙(𝑆, 𝑡) 𝐹(𝑡)̅̅ ̅̅ ̅̅ [1 − 𝑝𝑐 ∙
𝛿(𝑆)

𝑚−1
− 𝑜(𝑆) ∙ 𝑝𝑚]⁄  (29) 

A scheme is representative of a set of chromosomes. Apart from the usual symbols 0 

and 1 a schema contains additional wildcard symbols represented by the character #. 

Placeholders in a schema are representative of any other freely selectable symbol. In 

this way, a schema defines a set of chromosomes, which all correspond to its pattern. 

A chromosome which fits to a scheme is referred to as an instance of this schema. For 

example, the chromosomes 1001 and 1100 are both instances of scheme 1#0#. 

Conversely, the schemes ##11 and 0##1 belong to the chromosome 0011 among 

others.  

In equation (29), 𝜁(𝑆, 𝑡) is the number of strings in a population at the time t, matched 

by schema S; 𝛿(𝑆) denotes the defining length of the schema S (distance between the 

first and the last fixed string positions); 𝑜(𝑆)denotes the order of the schema S (number 

of 0 and 1 positions present in the schema); 𝑒𝑣𝑎𝑙(𝑆, 𝑡) represents the average fitness 

of all strings in the population matched by the schema S; and F(t) is the total fitness of 

the whole population at time t. Parameters Pc and Pm are the probabilities of crossover 

and mutation, respectively. Hence, the equation computes the expected number of 

strings matching a schema S in the next generation as a function of the actual number 

of strings matching the schema, the relative fitness of the schema, and its defining 

length and order. The theorem states that the incidence of schemata with above-

average fitness, defining length and lower order increases in the next generation. 

Unfortunately, the scheme theorem does not provide information about whether and in 

what number of steps a genetic algorithm finds an optimal or at least suboptimal 

solution of the optimization problem. The definition of the fitness function depends 

essentially on the information that will be used to assess the control behavior. The 

determination of the effectiveness criterion is relatively simple, if reference data of the 

control response are available, obtained for example by observation of an expert. In 

the control technology many problems can be treated very well by means of a setpoint 

control. The observed output 𝑦 of the current process is assumed to reach a desired 

target value 𝑟 in the shortest possible time. After the target value was reached the first 

time, there should only be a slight overshoot of the output. The third requirement for 

the setpoint control is to keep the oscillations as low as possible around the setpoint. 
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In this context, the fitness function judges a controller by observing its response to a 

changed target value. Occurring as a result of the new target value, error 𝑒 and its 

derivative 𝑒̇ are both minimized. For this reason, the fitness function evaluates for 

example the square deviations of the error and the error change to zero (Hoffmann 

1997) 

𝐹(𝑒(𝑡), 𝑒̇(𝑡)) = (∫ 𝐶𝑒𝑒(𝑡)
2 + 𝐶𝑒̇𝑒(𝑡)̇

2𝑑𝑡
𝑇

𝑡=0
)
−1

 (30) 

The two coefficients, 𝐶𝑒 and 𝐶𝑒̇, allow a different weighting of the two contributions to 

the fitness. A mathematical model of the process can be required if the optimization is 

carried out in a simulation rather than on the process itself. Such a simulation 

may be necessary for reasons of safety or with processes that are very slow in real 

time. An illustration of the flow chart of a GA used for tuning a fuzzy logic control system 

is presented in Figure 12.  

 

Figure 12: Diagrammatical representation of a fuzzy controller design methodology using 

genetic tuning. In the first instance a representative model of the process that is supposed to be 

controlled is required. After defining the basic structure of the fuzzy controller, as well as the 

boundary conditions (e.g. universes of discourse of input and output variables), the process is 

simulated using the process model. Then, a genetic algorithm is used (flow chart on the right-

hand side of the figure) that tunes the parameters and/or rules of the fuzzy controller in order to 

achieve a certain control performance specified by an appropriate cost function. 
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With respect to this work the focus is put on real-coded or continuous GAs (Davis, De 

Jong et al. 2012; Michalewicz 2013), as binary-coded GAs are considered less efficient 

(Goldberg 1989). The disadvantage of binary-coded GAs is that the binary strings can 

become very long and the search explodes. Besides requiring less storage, continuous 

GAs are faster than binary GAs from the perspective of computational efficiency which 

is lost by the conversion between the binary and real valued representation (Herrera, 

Lozano et al. 1998; Haupt and Haupt 2004). A diagrammatic illustration of the structure 

of a GA is shown in Figure 13 and a possible coding scheme for genetic fuzzy set 

tuning is schematically shown in Figure 14.  

 

Figure 13: Basic structure of a GA. A population of chromosomes, represented by vectors of 

parameters, evolves from one generation to the next. Each vector corresponds to a possible 

solution of the optimization problem. The encoding scheme assigns each genetic vector to a 

potential solution to the optimization problem. From a biological point of view this 

transformation produces the phenotype from the associated genotype. The importance of a gene 

is determined by its location within the chromosome. The fitness function assesses the quality 

of solutions, as measured by the optimization problem. The selection decides which parents 

contribute by propagation to the descendants of the next generation. It is a stochastic process, 

where well-adjusted individuals are more likely to contribute offspring. Genetic operators such 

as crossover and mutation produce from the existing genetic material new genotypes and 

therefore new candidates for solutions. When crossing over the vectors of two parents are cut 

at a randomly selected position and the resulting partial vectors are interchanged crosswise. 

From time to time, the mutation alters single, randomly selected genes. Mutation mainly has the 
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task of preserving the diversity in the population in order to avoid premature convergence of the 

algorithm. 

 

 

Figure 14: Diagrammatic illustration of the genetic coding scheme of fuzzy membership function 

parameters on a chromosome. Here, the fuzzy variables are coded via their fuzzy set parameters 

as genes on the chromosomes.   

The presented principle was also applied in the context of this work, in order to add the 

capability of data-driven learning and tune the parameter configuration of the fuzzy 

system used for the control of the brewer’s yeast propagation process. 
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1.4 A brief look at supervision and control of yeast propagation 

(Saccharomyces cerevisiae sp.) 

In the previous sections the phenomena of uncertainty as well as the concept of fuzzy 

logic as an appropriate tool for encountering uncertainty with respect to issues of 

process control were introduced. In this section, a brief outline of the brewer’s yeast 

propagation process as a typical and representative process biased by various sources 

of uncertainty is given. Furthermore, the transfer of the aforementioned aspects of 

uncertainty management with respect to the supervision and control of bioprocess 

yeast propagation is one of the main objectives of this work. Considering the final 

product quality, yeast propagation itself is a crucial step in beer production and is of 

great economic and technological importance in brewing practice. Particularly the 

vitality and quality of the produced yeast has relevant influence on the subsequent 

production steps of fermentation and the resulting beer quality (Heyse 1989; Narziß 

and Back 1995; Lehmann 1997; Lehmann 1997; Maemura, Morimura et al. 1998; 

Kunze, Manger et al. 2011). Due to that, one of the most important necessities for the 

step of primary fermentation is that the yeast inoculum must be available at pitching 

time in the required amount and with the right quality. In order to guarantee this 

prerequisite the development and provision of monitoring and control tools is a main 

part of this work. Up to now current management tools at the supervisory control level 

in breweries do not allow for the compensation for disturbances in the production plan 

(which can be up to 2–3 days) with respect to yeast propagation performance. 

Generally, in common practice the process control is based upon experience and 

empiric, purely time-driven recipes for the setpoints of manipulated variables. In 

consequence, human interventions and corrective control actions in the case of 

disturbance will occur with delay and no adequate inoculum will be delivered for the 

subsequent fermentation.  

In general, yeast propagation is performed as a batch process, whereby the yeast 

passes through the different growth phases of a static culture (lag phase, exponential 

phase, transition or deceleration phase, stationary phase, degeneration). The duration 

of the individual phases and the transition time from one phase to another is dependent 

on manifold factors. For example, the lag phase, which is the time from inoculation until 

the maximum growth rate occurs, depends on the physiological state of the inoculum 

and the specific growth medium (Eitinger, Schlegel et al. 2007). The physiological state 
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in turn depends on its conditions of storage and its upstream treatment (Annemüller 

2008). Furthermore, the whole growth behavior is highly influenced by the fed 

substrate beer wort. Its composition and ingredient concentrations are dependent on 

natural variations of the raw materials used. In consequence, the effects of substrate 

limitations on the metabolic behavior due to unavoidable variations in available 

carbohydrates, nitrogen, zinc, or vitamins are subjected to uncertainty. Moreover, 

metabolic regulation effects occurring under brewing-related conditions have to be 

taken into account in the case of Saccharomyces cerevisiae cultivation. In this regard, 

the two most important regulation mechanisms that affect the catabolic rates of the 

different metabolic pathways are the Pasteur effect (Eitinger, Schlegel et al. 2007) and 

the Crabtree effect (Crabtree 1929). Pasteur found that glucose uptake rate and 

glycolysis rate is higher under the absence of oxygen. If oxygen is provided to an 

anaerobic culture, glucose uptake decelerates (Hartmeier 1972). The Crabtree effect, 

which is also known as overflow metabolism, catabolite repression, aerobic 

fermentation, or oxido-reductive metabolism, leads to the formation of ethanol upon 

exceeding a critical glucose concentration in the substrate, although aerobic condition 

is present (Gschwend-Petrik 1983; Sonnleitner and Kaeppeli 1986; Pham, Larsson et 

al. 1998). In summary, the process of yeast propagation is affected by various factors 

of uncertainty that in consequence influence the observability and controllability of the 

process. Hence, in order to obtain vital and active yeast from the physiological point of 

view an adaptive online monitoring and process control system is required. 

 

1.5 The scope and motivation of the thesis 

In summary, the motivation for this work lies in the provision of a practical framework 

for the online monitoring and control of uncertainty-biased systems with a special focus 

on brewing yeast propagation as a predestinated test case to demonstrate the 

developed tools. However, there is still no integrative approach combining data-driven 

and expert knowledge in order to dynamically achieve the main objective of producing 

the right amount of yeast of the right quality at the right time by means of fuzzy logic. 

All in all, the following tasks and topics were addressed in order to meet the 

requirements:  
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 Critical review of the state of the art with respect to intelligent control and soft 

computing applications in the food and beverage sector. 

 Development, design, and implementation of a fuzzy-based monitoring and 

control framework for a pilot yeast propagation plant. 

 Analysis and implementation of evolutionary optimization of the fuzzy system 

combined with statistical process control. 

 Incorporation of negative experience in the form of negative rules in order to 

enhance the system performance. 

 

2 Summary of results 

2.1 Paper summary 

 

Part 1 – A Review 

Fuzzy logic control and soft sensing applications in food and beverage 

processes  

 

Extensive parts of the production processes in the food and beverage industry are 

characteristically dominated by biologically based processes, particularly 

fermentations. The supervision and control of such complex, nonlinear, and time-

variant systems require novel sophisticated systems that are capable of managing the 

underlying uncertainty-biased process behavior. As an essential prerequisite in order 

to develop a holistic system approach, the review provides a comprehensive and 

critical outline of the scientific state of the art of soft computing approaches and 

applications in the relevant processes. The findings show that intelligent combinations 

of hard and soft sensing devices can provide powerful tools and sources of information 

generation with respect to process monitoring and control. Furthermore, the 

description of the system’s behavior can be achieved and realized faster by means of 

fuzzy logic than using methods of complex mathematics. Despite of the advantages of 

fuzzy logic based controllers their major drawbacks (e.g. missing inclusion of negative 

experience) are addressed and their potential solutions are reviewed. In this context 

the merging of fuzzy logic, optimization methods like evolutionary computation, but 
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also the inclusion of chemometric evaluation to hybrid systems offers new scientifically 

suitable methods. The intelligent combination of these technologies into an integrated 

system reveals a promising direction to the creation of reliable, efficient, and accurate 

process monitoring and control. 

 

 

Part 2 – A fuzzy-based framework 

Online yeast propagation process monitoring and control using an intelligent 

automatic control system  

 

Following the findings from the review, a basic framework of online monitoring and 

control for brewing yeast propagation was built. For this, a pilot bioreactor for yeast 

propagation was constructed. Information about the process state is provided by an 

array of sensors (optical density, temperature, pressure, density, dissolved oxygen, 

and pH value) that was implemented into the propagation plant. However, as the cell 

concentration cannot be detected directly, a software sensor was developed. The soft 

sensor consists of a neural network that uses online sensor data of OD, pH value, and 

density in order to compute the yeast cell concentration. The virtual operating system, 

or fuzzy based expert system, then uses the sensor information as input data for two 

fuzzy logic controllers. The first controller is a temperature controller. It uses the 

deviation of the predicted cell count from that of a reference trajectory and its temporal 

derivative as inputs and adjusts the process temperature based upon a collection of if-

then control rules. In this context, the reference yeast cell count trajectory is derived 

from a metabolic growth model. The second fuzzy controller triggers the aeration 

intervals of the system. Similarly to the temperature controller, it uses the deviation of 

measured extract concentration from that of the reference trajectory, the predicted cell 

count, and the dissolved oxygen concentration in order to construct a fuzzy rule base 

and to control the aeration. With respect to the main objectives of yeast propagation, 

a dynamic control of the process is possible, and it could be shown that the system is 

able to provide the desired yeast cell concentration of 100–120*106 cells/ml at a 

minimum residual extract limit of 6.0 g/100g at the required point of time and of the 

required quality.  
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Part 3 – Optimizing the system and setting up statistical 

corridors for the control errors 

Management of uncertainty by statistical process control and a genetically tuned 

fuzzy system  

 

Fuzzy logic is generally a powerful tool when dealing with uncertain process conditions. 

It allows process and expert knowledge to be made use of by incorporating it into 

linguistic expressions and applying it to control routines. However, one drawback of 

classical fuzzy control systems is their cognitive fixedness of the used linguistic 

expressions, that is, that words have different meanings to different people. 

Furthermore, it can be very inefficient and time-consuming to adjust the parameters by 

trial and error. To overcome the first challenge, a data-driven approach using statistical 

process control was applied in order to define statistical corridors for the linguistic input 

variables of control error and its temporal derivative. As mentioned, manual adjustment 

of the control behavior of a fuzzy controller can be very tedious. Evolutionary 

computation, more specifically a genetic algorithm, was then applied in order to tune 

the fuzzy sets of the input and output domains of the fuzzy temperature controller. The 

resulting controller parameterization was then compared with the non-adjusted 

controller by experimental validation. The presented experimental results show that 

the genetically tuned fuzzy controller is able to keep the process within its allowed 

limits. The average absolute average error to the reference growth trajectory is 5.2*106 

cells/ml. The controller proves its robustness to keep the process on the desired growth 

profile. 
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Part 4 – The incorporation of negative experience 

Incorporation of negative rules and evolution of a fuzzy controller for yeast 

fermentation process 

 

Fuzzy control aims to transfer qualitative empirical knowledge in the form of rules 

directly into the functionality of the controller. Following this, controllers are created 

whose mode of operation is kept interpretable and can therefore be optimized 

interactively without necessarily having an appropriate process model at hand. The 

range of applications where fuzzy controllers compared to conventional controllers 

actually provide benefits depends crucially on the type of the available experience and 

knowledge. In this regard, conventional fuzzy controllers have a structural defect 

because they only make use of empirical rules which are solely capable of providing 

proposals of positive action. Therefore, common fuzzy controllers are 

unsuitable for certain applications, such as when prohibitions are observed. This 

shortcoming can be solved by the incorporation of negative rules into the inference 

structure of the fuzzy controller. The suggested method implements the negative 

experience on the fuzzy set level. As part of the inference mechanism, the negative 

and positive implied sets are offset against each other in the defuzzification part. The 

incorporation of negative rules leads to a much more stable and accurate control of the 

process as the root mean squared error of reference trajectory and system response 

could be reduced by an average of 62.8 % compared to the controller using only 

positive rules. 
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2.2 Paper copies 

All paper copies are used with permission of the corresponding journals. 

2.2.1 Fuzzy logic control and soft sensing applications in food and 

beverage processes  
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2.2.2 On-line yeast propagation process monitoring and control using an 

intelligent automatic control system 
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2.2.3 Management of uncertainty by statistical process control and a 

genetic tuned fuzzy system 
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2.2.4 Incorporation of negative rules and evolution of a fuzzy controller 

for yeast fermentation process 

  



Summary of results 

78 

 



Summary of results 

79 

 



Summary of results 

80 

 



Summary of results 

81 

 



Summary of results 

82 

 



Summary of results 

83 

 



Summary of results 

84 

 



Summary of results 

85 

 



Summary of results 

86 

 

 

 

 

 

 



Discussion and outlook 

87 

 

3 Discussion and outlook  

The online supervision and control of biologically based processes is generally a 

challenging task. Besides varying quality of raw materials and nonlinear and dynamic 

metabolic behavior there are multidisciplinary sources of uncertainty that have to be 

taken into consideration for the successful development of an online monitoring and 

control system. In this regard one also has to be aware of a certain deduction of 

measurement accuracy when dealing with online applications. In addition to 

measurement noise, limitations in the temporal, spatial, physical, or chemical 

resolution of available sensors commonly lead to a lack of information that cannot be 

avoided completely. Furthermore, in many cases crucial quality attributes or process 

parameters or variables cannot even be measured in a direct way. Therefore, indirect 

methods or soft sensors built upon some kind of (multivariate) regression model are 

used in order to provide an estimate of the required variable of interest. However, it is 

clear that the detour via indirect, model-based measurement inevitably includes 

supplementary information uncertainty. Hence, in terms of the scope of this work an 

approach based on fuzzy logic was investigated and developed which is capable of 

handling these kinds of uncertainty within an online framework for monitoring and 

process control. In this regard, several solutions and optimization methods like genetic 

algorithms or the incorporation of negative rules were explored in order to enhance the 

system’s flexibility and to meet the required performance. In that context a 

comprehensive screening of the state of the art in terms of fuzzy logic control and soft 

sensing applications in the food and beverage sector was performed in order to 

evaluate current trends and challenges in that direction. In this perspective, the 

founding principle is to provide comprehensive process intelligence by using innovative 

sensor concepts to improve process continuity, process safety, and process efficiency. 

In order to achieve that objective, innovative sensor principles are combined with 

modern methods of data analysis and modeling using process and product knowledge 

(Krause, Birle et al. 2011). Hence, software sensors constitute useful tools for the 

indirect supervision of necessary process variables. Recent approaches in food-

related processing use the concept of fuzzy reasoning and its potential to implement 

expert knowledge along with numerical information. In that context the fuzzy symbolic 

approach makes heavy use of expert knowledge with respect to quality evaluation of 

food (Mauris, Benoit et al. 1994; Ioannou, Mauris et al. 2003; Ioannou, Perrot et al. 
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2004). However, this approach relies exclusively on human assessment and is still in 

need of human control action. Therefore, the online capability is limited and the 

system’s stability in the case of variable sampling instances is difficult to judge. 

However, fuzzy controllers generally possess a series of advantages. First, they are 

now quite fast, problem-related, and meaningful tools for a smart control of complex, 

non-linear system behavior as the description of the system’s behavior can be 

achieved by means of linguistic expressions and the integration of expert knowledge. 

Under consideration of rapid controller design and from a practical engineering 

perspective that approach is very focused on problem-solving and simpler than using 

methods of complex mathematics. Equally positive is the traceability and 

interpretability of the obtained results and controller outputs. In addition to that, fuzzy 

controllers can be used as a universal approximator of any nonlinear system. 

Therefore, the control algorithm can be designed for the whole working range. By 

choosing appropriate definitions of fuzzy sets and fuzzy rule bases a fine-tuning of the 

controller behavior and adjustment of the desired control performance can be achieved 

with the necessary sensitivity for the whole operating range. Due to that, controllers 

based upon the principle of fuzzy inference are suitable for formulating nonlinear and 

robust control rules. However, there exist several practicable and scientific 

shortcomings of classical fuzzy inference control systems. One major drawback is the 

lack of learning ability. An automated adaption to a steadily changing environment is 

not possible and it is difficult to repair errors implanted in the initial design phase at a 

later point in time. In other words, if for example the quality or composition of used raw 

materials changes due to yearly variations of harvest conditions, or if the intrinsic 

metabolic behavior of microorganisms is altered by any kind of mutation, then a static 

fuzzy control system will not be able to compensate for that kind of diversification. 

Furthermore, the parameterization of the fuzzy system, applying the appropriate fuzzy 

operators, and the methods of implication and defuzzification are of crucial importance 

for the system’s performance. Due to the high degree of freedoms that can be adjusted, 

the still dominant in-field method of trial and error is not constructive from a scientific 

point of view. Besides, without further optimization methods, a trade-off between 

computation performance and quality of the result has to be dealt with. Consequently, 

the suitability of fuzzy logic in the sense of software sensors is rather limited. Hence, 

hybrid systems of fuzzy logic and computational optimization methods like evolutionary 
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computing have emerged. This allows the advantages of both systems to be made use 

of. Heuristic optimization methods are acknowledged to be very efficient and fast in 

finding the optimal solution for a distinct problem. Different approaches are tested 

simultaneously to reach the optimum, providing several potential solutions. As they are 

able to cope with ill-behaved problem domains, exhibiting attributes such as 

multimodality, discontinuity, time-variance, randomness, and noise, they seem to be 

particularly suitable for parameter optimization of fuzzy logic based control systems 

and enhancing their learning capability. However, applications and experience with 

these optimization tools in the field of food and beverage production barely exist. This 

might be mainly due to the fact that, depending on the problem space, evolutionary 

optimization like genetic algorithms can be computationally intensive and frequently 

require massive parallel implementations in order to deliver usable results within an 

acceptable timeframe. Hence, their online application to real-time control has been 

rather limited up to now. However, this circumstance opens up space for further 

scientific research. In general, the combination or tuning of fuzzy inference systems 

has the advantage that the inputs and outputs can be linguistic expressions 

maintaining the interpretability of the system, while optimization and inference is 

accomplished by the flexibility of the heuristic optimizer. Therefore, the intelligent 

combination of these two technologies into an integrated system seems to be a 

promising direction to optimized process control reducing development time and 

improving the accuracy of the underlying fuzzy system. Looking at the landscape of 

soft sensing approaches present in the field of food and beverage processing there is 

a need for more investigation particularly with respect to robustness and sensitivity 

analysis to error-prone input data in order to compete with the steadily changing 

process conditions and satisfy the high quality demands in the case of large-scale 

production. Especially in the case of the predicting and determination of crucial quality 

parameters of fermentation processes there is a need for statistically based methods 

that allow the handling of information uncertainty stemming from sensor data for the 

purpose of online process supervision. In this context approaches based on 

(multivariate) statistical process control offer an intelligent method for treating process-

related uncertainties by the use of statistically based process and quality corridors. 

Moreover, control charts can then be used as an adequate tool for online visualization 

and monitoring of the process evolution. In consequence, with respect to the 
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observability and controllability of biologically based processes, uncertainty should be 

treated on two levels. For the part of process monitoring and supervision the 

uncertainty of process variability (process variance) can be charted by means of 

statistical process control. The subsequent processing of this information and its 

incorporation into a feedback control system in order to stay within statistical ranges of 

certitude is then performed via fuzzy logic control.  

In this work the brewer’s yeast propagation process was used in order to evaluate the 

developed methods. Therefore a basic monitoring and control system was designed 

and evaluated in the first instance. The proposed system consists of a classical fuzzy 

logic control system and a metabolic growth model (Kurz, Mieleitner et al. 2002) in 

order to guide the process along reference trajectories of cell growth and substrate 

consumption. In addition, methods of data pretreatment, signal processing, and soft 

sensing of yeast cell concentration using a neural network were applied. In order to 

adjust the underlying PID controllers in the basic PLC system classical methods of 

linear controller design were applied. In order to evaluate the performance of the 

system and the quality of the produced yeast suspension target values of the final 

process states were defined consisting of target yeast cell concentration, final 

substrate concentration, percentage of dead cells, and the intracellular pH value. 

These target values had to be achieved for varying process run times. The presented 

results show that the system is able to target the desired final state corridors for extract 

and yeast cell concentration within the desired duration. However, the system also 

shows potential for further optimization. Although the final states are met, a deviation 

of 7.0 × 106 cells/mL and 8.7 × 106 cells/mL at the end of the process was observed. 

This indicates that the control performance can be improved. Therefore, the next step 

was to apply further optimization methods of evolutionary tuning of fuzzy parameters. 

In order to handle the aforementioned uncertainty with respect to the part of process 

monitoring, the concept of statistical process control was introduced using statistically 

predefined process corridors as a measure of uncertainty. Hence, statistical process 

monitoring was coupled with an intelligent feedback control based on fuzzy logic for 

handling uncertainty-biased processes related to food production and fermentative 

processes in life sciences.  The system was also demonstrated by the process of yeast 

propagation. In that section of this work, the fuzzy controller parameters were tuned 

using a genetic algorithm in order to meet the required quality and performance criteria. 



Discussion and outlook 

91 

 

Prior to the experimental verification using the 120 L medium-scale propagation 

system the tuning was performed by simulation. For this, a growth model according to 

(Kurz 2002) was used to serve as the system response. The results show that the 

performance of the control system is directly linked to the quality of the process. It 

could be shown that if the statistical control limits were not exceeded, the target yeast 

cell concentration of 100 × 106 cells/ml was outperformed reaching up to 185 × 106 

cells/ml and having less than 1% dead cells. The RMSE to the reference growth 

trajectory was 5.2 × 106 cells/ml. However, the remaining future challenge is to 

specifically identify changes in the trend of the control chart and to identify the cause 

of a process anomaly without having the corresponding experience or knowledge 

about the process. Therefore, a combined approach of multivariate modeling and fuzzy 

control chart evaluation, e.g. (Sorooshian 2013), should be explored in order to link 

specific quality attributes and the control performance of the process. Considering the 

semantics of human decision making it is not straightforward to only use positive 

experience when corrective action is required. The way how we make decisions also 

includes negative experience, which can lead to more efficient assessment or actions. 

However, this is not the case in most of the existing fuzzy inference systems, especially 

when applied to control tasks. Generally, the standard modus ponens, or only positive 

rule formulation, is applied. For this reason, the incorporation of negative experience 

into a fuzzy controller was studied and evaluated. Following the concept of modus 

tollens, an approach was used for improving the control performance of the process of 

brewer’s yeast propagation by implementing a fuzzy controller based on negative and 

positive rules. The control performance of a fuzzy controller using only positive rules is 

compared to the same controller with two additional negative rules. The comparison is 

made upon the evaluation of RMSE of the control error and the absolute maximum 

overshoot occurring during the process. The negative control rules were established 

by designing a moving least squares predictor. It outputs future values of the yeast cell 

concentration which are used to gradually reduce the corresponding output of positive 

fuzzy rules referring to the current point of time in the process. The results show that 

the incorporation of negative rules can be used to achieve a more stable control 

performance than what is obtained when only positive rules are used. Furthermore, 

the method has the potential to specifically reduce overshooting and to achieve smaller 

control errors. This is emphasized by an average improvement of 11.7% in 
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overshooting, a 62.8% reduction of RMSE, and a 90.8% decrease in the absolute final 

control error, which was achieved by the proposed P/N-fuzzy controller. It is shown 

that fuzzy inference systems applied to complex biologically based systems can be 

improved by the incorporation of negative experience into the decision-making 

process. Warnings and prohibitions can be transformed into specific control actions to 

modify the controller behavior where it is required. The results are in accordance with 

the findings of (Kiendl 1997) and (Branson and Lilly 2001; Lilly 2007). They state that 

the inclusion of negative experience can significantly improve the quality of the control 

performance.  

However, there is further potential for performance optimization as the input and output 

fuzzy sets of the controller were parameterized in a uniform way. This could be 

achieved by fine-tuning the parameter configuration of the fuzzy sets. A data-driven 

approach for automatically updating and fine-tuning the premise and consequent fuzzy 

set parameters (e.g. through the use of evolutionary computing) should therefore be 

investigated. Beyond this, there is another topic that should be examined in future 

work, which is the treatment of the cognitive uncertainty that emerges from the 

ambiguity or vagueness inherent in natural language. Based on the thesis that words 

mean different things to different people the classical fuzzy logic systems, also denoted 

as type-1 fuzzy logic systems, were extended to the concept of type-2 fuzzy logic 

systems by (Karnik and Mendel 1998; Karnik and Mendel 1998; Karnik, Mendel et al. 

1999; Liang and Mendel 2000; Karnik and Mendel 2001; Karnik and Mendel 2001; 

Mendel 2001) for practical use within an efficient computational framework. In a 

classical fuzzy system uncertainties about the meaning of linguistic expressions are 

defined via precise membership functions one believes to capture the uncertainty of 

the words. However, by defining those membership functions the uncertainty about the 

meaning of the words completely disappears due to the preciseness of the 

membership function. In a type-2 fuzzy system this kind of uncertainty is modeled by 

expanding the boundaries of type-1 membership functions to the left and to the right. 

Consequently, a type-2 membership function is defined by an upper membership 

function (UMF) and a lower membership function (LMF) enclosing the so-called 

footprint of uncertainty (FOU). The FOU itself can be modeled by any kind of 

membership function. This extends the classical two-dimensional representation to a 
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three-dimensional form allowing the uncertainty linked to computing with words to be 

handled. Figure 15 shows the concept of a type-2 Gaussian-shaped fuzzy set. 

 

 

Figure 15: Illustration of the concept of a Gaussian type-2 fuzzy set 𝑨̃. The grey region is the 

footprint of uncertainty (FOU) defined by the upper membership function (UMF) and the lower 

membership function (LMF). The third dimension is illustrated by the vertical slice through the 

FOU and is defined by a Gaussian membership function 𝝁𝑨̃(𝒙
′), as well. In consequence a three-

dimensional fuzzy set is created, which is illustrated in the right-hand side of the figure. 

By incorporating uncertainty directly into the design of the fuzzy sets, new doors in the 

design of fuzzy logic based control systems are opened. In particular their stability and 

robustness (Biglarbegian, Melek et al. 2011; Mendel, Hagras et al. 2014) make the 

concept very attractive for a broad field of control applications, classification, and 

pattern recognition (Dereli, Baykasoglu et al. 2011; Melin and Castillo 2013; Castillo 

and Melin 2014). 
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