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Abstract

Abstract

The emergence and the progression of novel production concepts such as the PAT
initiative in 2004 is leading to a continually increasing degree of automation in the area
of life sciences, and in particular in the food industry. With respect to these concepts,
the demand for increased productivity through the validation and release of process
and production sections in real time while complying with GMP and HACCP concepts
in terms of process safety and product quality initially appears to be difficult to meet.
In order to meet both expectations, intelligent strategies for process monitoring and
control as essential components of a holistic automation concept are required. A major
challenge for their implementation are biological process systems such as
fermentations, which are essential for the production of a variety of foods. Their high
complexity and momentum in the form of non-linearity, time variance and often very
sluggish system response cannot be comprehensively modeled from a scientific
perspective and therefore lead to uncertainties which are very difficult to master with
the traditional methods of process control. Moreover, the uncertainty can even be
increased by the fact that in relation to process monitoring essential input variables
and process states such as the biomass concentration can be measured online only
indirectly and with a corresponding inaccuracy. From this motivation an online-enabled
system for process monitoring and control on the basis of fuzzy logic was developed
in the present work that makes the above-mentioned uncertainties manageable. In
order to investigate and demonstrate the system’s performance, the process of yeast
propagation (Saccharomyces cerevisiae sp.) under restricted growth conditions was
chosen. The linking of statistical process control, classical fuzzy control and innovative
methods of genetic set optimization demonstrates the potential of this strategy.
Moreover, a further improvement of the control performance could be achieved by the
inclusion of negative experiential knowledge. In summary, the results comply with
similar findings of other research groups and confirm that the inherent uncertainty of
biological processes becomes manageable through the integration of acquired
knowledge (experience) and numerical optimization into a fuzzy-logic-based digital

framework for process control.



Zusammenfassung

Zusammenfassung

Das Aufkommen und der Einzug innovativer Produktionskonzepte wie der PAT-
Initiative im Jahre 2004 fuhren zu einem nachhaltig zunehmenden
Automatisierungsgrad im Life Science Bereich und insbesondere auch in der
Lebensmittelindustrie. Um der aus diesen Konzepten entsprungenen zunachst
scheinbar ambivalenten Forderung nach Produktivitatssteigerung durch Validierung
und Freigabe von Prozess- und Produktionsabschnitten in Echtzeit einerseits, aber
auch der Einhaltung bestehender GMP- und HACCP-Konzepte hinsichtlich
Prozesssicherheit und Produktqualitat andererseits einhalten zu konnen, sind
intelligente Strategien der Prozesskontrolle und -regelung als wesentliche Bestandteile
eines holistischen Automatisierungskonzeptes zwingend erforderlich. Als grol3e
Herausforderung fur deren Umsetzung erweisen sich biologische Prozesssysteme wie
Fermentationen, welche fur die Herstellung einer Vielzahl an Lebensmitteln von
essentieller Bedeutung sind. lhre hohe Komplexitat und Eigendynamik in Form von
Nichtlinearitat, Zeitvarianz und oftmals einer sehr trdgen Systemantwort sind aus
wissenschaftlicher Sicht nicht vollstandig modellierbar und fuhren daher zu
Unsicherheiten, welche mit den klassischen Moglichkeiten der Prozessregelung nur
sehr schwer zu beherrschen sind. Dartber hinaus vergroR3ert sich die Unsicherheit
durch den Umstand, dass seitens der Prozessuberwachung wesentliche
EingangsgrofRen und Prozesszustande wie die Biomassekonzentration online nur
indirekt und mit entsprechender Ungenauigkeit gemessen werden kdnnen. Aus dieser
Motivation heraus wurde in der vorliegenden Arbeit auf Basis von fuzzy logic ein online-
fahiges System zur Prozessuberwachung und -regelung entwickelt, welches die o.g.
Unsicherheiten beherrschbar macht. Zur Untersuchung und Demonstration der
Systemperformance wurde der Prozess der Propagation von Saccharomyces
cerevisiae sp. unter limitierenden Wachstumsbedingungen gewahlt. Die Verknipfung
statistischer Prozesskontrolle, klassischer Fuzzyregelung und innovativer Methoden
der genetischen Setoptimierung belegt das Potential dieser Strategie. Dartber hinaus
konnte durch die Einbindung von negativem Erfahrungswissen eine weitere
Verbesserung der Regelgute erreicht werden. Zusammengefasst zeigen die
Ergebnisse, dass durch die Einbindung von Erfahrungswissen und numerischer
Optimierung in ein digitales Framework zur Prozessregelung auf Basis von fuzzy logic,

die inharente Unsicherheit biologischer Prozesse beherrschbar wird.



Introduction

1 Introduction

1.1 About precision — A sense of uncertainty, fuzziness, and expert

systems

1.1.1 The importance of uncertainty

The phenomenon of uncertainty is present in almost every real-world problem and, in
general, uncertainty is inseparable from measurement. Moreover, it comes from a
combination of measurement limitations with sensors and unavoidable errors in
measurement. With respect to cognitive problems, uncertainty emerges from the
vagueness and ambiguity inherent in natural languages and, therefore, uncertainty is
essential to human beings at all levels of their interaction with the real world
(Celikyilmaz and Turksen 2009). Therefore it is not surprising that uncertainty has
moved into the focus of engineers and scientists over the last decades. Following the
interpretation of (Ayyub and Gupta 2012) uncertainty can be viewed as a human-
related subjective notion depending on the quantity and quality of information which is
available to a human being about a system or its behavior that the human being wants
to describe, predict, or prescribe. The sources of uncertainty are manifold and its
causes can be of diverse nature. A very comprehensive and detailed discussion about
uncertainty is given by (Klir 1987; Klir and Folger 1988; Klir 1995; Klir and Wierman
1999; Klir 2005). In (Klir and Wierman 1998) they state that uncertainty is a result of
information deficiency, where information may be incomplete, fragmentary, not fully
reliable, vague, contradictory, or deficient in some different way. Further, uncertainty
is divided into two major classes, fuzziness and ambiguity, where ambiguity contains
non-specificity and strife. A conceptual illustration of this division is given in Figure 1.
The appearance of uncertainty is an event which is inherently present in biologically
based processes of food production (e.g. fermentations). The reasons for its
occurrence are manifold. Variations in raw materials due to naturally varying harvest
conditions or unpredictable changes in the physiological state and behavior of the used
microorganisms are just a few examples. With respect to this work, the bioprocess of
yeast propagation was investigated. The process is subjected to all classes of
uncertainty, which has an immediate effect on the observability and controllability of

the process. In particular, most sources of uncertainty are not directly measureable.
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For example, the cause of unexpected process performance reflected in the provided
sensor information can be ambiguous, as it might not be clear if it is due to the
physiological state of the yeast or if there are limitations in the metabolism because of
raw material variation and nutrient shortage in the substrate. The corresponding control
decisions of how to react to abnormal process behavior in common practice is therefore
rather made on a fuzzy basis than on concrete knowledge. Because of this and due to
the fact that the process of yeast propagation is of crucial importance for the final
product quality in brewing, the management of uncertainty with respect to monitoring
and control was the major motivation of this work. A more detailed description of the
process itself is given in section 1.4 of this thesis.

Numerous approaches and methods have been published over the last 50 years to
model and analyze uncertainty (Zadeh 1965; Dempster 1967; Dempster 1967; Sugeno
1974; Shafer 1976; Negoita, Zadeh et al. 1978), ranging from the theory of fuzzy sets
and fuzzy measures to evidence theory and possibility theory. In particular, fuzzy logic
provides an important tool for the development of a better understanding of how to

handle (process) uncertainty (Celikyilmaz and Turksen 2009).

UNCERTAINTY §

FUZZINESS

Vagueness, Cloudiness, Haziness,
Unclearness, Indistinctness, Sharplessness

Lack of definite or
sharp distinction

STRIFE NONSPECIFITY

Variety, Generality,
Equivocation, Imprecision

Dissonance, Incongruence,
Discrepancy, Conflict, Discord

Disagreement in choosing Two or more alternatives are
among several alternatives left unspecified

Figure 1: Partition of uncertainty (Klir and Wierman 1998)
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In this regard, recent approaches also try to combine fuzzy logic and methods of
statistical process control that allow the visualizing and detecting of changes and the
defecting or deterioration of essential quality attributes of the process through the use
of control charts (Cheng 2005; Gulbay and Kahraman 2006; Gtilbay and Kahraman
2007; Senturk and Erginel 2009; Huang, Chen et al. 2012; Sorooshian 2013; Wang, Li
et al. 2014; Zabihinpour, Ariffin et al. 2014; Gulbay and Kahraman 2016). However,
the majority of these approaches are built as a pure monitoring system and there is
only little investigation that actually takes into account how to integrate the information
that is delivered by statistical process control into a real feedback control system in
order to keep the process within predefined statistical borders. This topic is reviewed
and presented by (Lowry and Montgomery 1995; Montgomery and Woodall 1999;
Woodall, Spitzner et al. 2004; Woodall and Montgomery 2014) for multivariate
approaches and by (Cheng and Thaga 2006) on a univariate basis. Therefore, this
shortcoming, which is also mentioned by (Montgomery, Keats et al. 1994; Montgomery
and Woodall 1999; Stoumbos, Reynolds Jr et al. 2000; Woodall 2000), was addressed
in this work by combining statistical process information, evolutionary optimization, and

fuzzy-logic-based feedback control, as well (section 2.2.3).

1.1.2 Therole of fuzzy logic and fuzzy-based expert systems

A turning point in the evolution of the modern concept of uncertainty occurred with the
introduction of the fuzzy logic theory by Lotfi A. Zadeh in 1965 (Zadeh 1965). In this
paper he presents the theory of fuzzy sets, which are sets with imprecise boundaries.
The individual characteristic of fuzzy sets is that membership in a fuzzy set is not a
matter of acceptance or denial, but rather a matter of degree. However, despite its
undoubted advantages for control applications in expert systems, which is one of the
major topics of this work and which will be discussed later on, the theory of fuzzy logic
has been quite controversial. However, to date there are more than 53,000 fuzzy-logic-
related papers listed in the INSPEC database and over 15,000 in the Math Science
Net database, showing the immense impact since its conception (Zadeh 2008). Zadeh
himself describes the notable capabilities of fuzzy logic as follows (Zadeh 2008):

“..Fuzzy logic may be viewed as an attempt at formalization/mechanization of two
remarkable human capabilities. First, the capability to converse, reason and make

rational decisions in an environment of imprecision, uncertainty, incompleteness of
5
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information, conflicting information, partiality of truth and partiality of possibility — in
short, in an environment of imperfect information. And second, the capability to perform
a wide variety of physical and mental tasks without any measurements and any
computations.”

As fuzziness is present in many areas of daily life, the capabilities of fuzzy logic reveal
solutions to a wide range of real-world engineering problem domains like process
control (Ross 2009; Chandrasekaran, Muralidhar et al. 2010; Azadegan, Porobic et al.
2011; Nguyen, Gadhamshetty et al. 2015). The majority of real complex system control
problems are still subjected to human interactions. Hence, the application of control
theory with respect to complex control issues requires a formal understanding of how
a human operator understands the system under consideration and how he acts when
controlling it. From this perspective the principle of incompatibility between precision
and maintenance of understandability when representing a system is described as
follows (Zadeh 1973): “As the complexity of a system increases, our ability to make
precise and yet significant statements about its behavior diminishes until a threshold
is reached beyond which precision and significance (or relevance) become almost
mutually exclusive characteristics.”

Therefore, a dedicated approach for representing human-originated information in a
flexible way is needed. And with respect to the scope of this work, this is where fuzzy
logic comes into focus to close the aforementioned trade-off regarding complex control
issues and systems (Filev 1991). In this context, fuzzy-based expert systems have
emerged. Commonly, such systems have a nontrivial inferential capability and, in
particular, have the capability to infer from premises which are imprecise, incomplete,
or not totally reliable (Zadeh 1983). Probably one of the most important strengths is
that they allow numerical information stemming from some kind of measuring
instrument to be combined with expert knowledge, which is in other words the
experience of the plant operator of how to best control the system. Usually, this is
accomplished using a set of control rules that are delivered by the operator or that are
derived from observing his way of controlling the system. Fuzzy logic then offers a
quite straightforward method to turn human control decisions into a numerical
continuous control law. More precisely, for a given numerical input, an inference step

takes place that results in a fuzzy output set, which is then
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@ Fuzzification

p(uq) Al a2 : i
1 1 “., Fuzzy inference mechanism
/ @ (Aggregation, Implication, Accumulation)
] ﬁ IFf7, isA{ AND T, is 4} THEN ¥ is B!
u u 1 IF Uy is 4] AND T, is 42 Pisp!
u(uy) A% 1 A% [F..is .. AND ... is.. ::EENNy:s .i?l
A% x A}
1 XAy Al x A2 f(ul,uz)
s U, Uz

. ® Defuzzification U1
Y

Bi Bi
»
R pd N
—~ ycriSp = Zi=1by fyq uBtlv(yq)dyq
Vo e Z1 )y, nes (ve)dyq
y;rlsp Y q

Figure 2: Schematic representation of information processing in a Mamdani-type fuzzy
controller. @ Fuzzification of crisp input values u; and u, into the linguistic domain of the fuzzy
variables U, and U,. By the use of Gaussian-type membership functions the crisp input values
are mapped onto the distinct fuzzy sets A}, A3 for U, and A}, A% for U,. @) shows the inference
mechanism comprising the fuzzy relations and the “knowledge” of how to best control the
system in the form of a rule base. The inference mechanism comprises the methods of
aggregation, implication, and accumulation. The aggregation executes all the AND-conjunctions
of the premise part and combines the individual membership degrees of each rule to an overall
degree of fulfillment. The implication determines a fuzzy conclusion based on the aggregation
result (firing degree of arule). The accumulation denotes the OR-conjunction of all firing degrees
of all rules (overall conclusion of all rules). @ represents the defuzzification part, which is a

back transformation from the linguistic conclusions drawn by the inference mechanism (overall

crisp

implied fuzzy set) into a crisp output y,

. In this case the COG method is applied. Here, uy

denotes the membership degree of the output fuzzy variable Y. Further, R is the number of rules,

b is the center of area of the output membership function BZ assigned to the implied fuzzy set

B for the i" rule (j,k, ..., p,q);. fyqyﬁfl(yq)dyq is the area under ”f?f;(y‘l)'

retransformed into a precise control value using a distinct method of defuzzification.
Figure 2 represents the inner structure of a Mamdani-type fuzzy controller (Mamdani
and Assilian 1975) for use in an expert system.

In its classical structure the controller consists of four main parts, namely rule base,
fuzzification, inference mechanism, and defuzzification (Passino, Yurkovich et al.

1998). The rule base contains the knowledge, in the form of a set of if-then rules, of

7
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how best to control the system. The inference mechanism evaluates which control
rules are relevant at the current point in time and then decides in dependency of the
applied method of implication what the input to the plant should be by producing fuzzy
conclusions (implied fuzzy sets). Therefore, the fuzzy system converts the numeric
inputs u; € U; into fuzzy sets. If U; denotes all possible fuzzy sets defined on U; and
given u; € U;, then fuzzification transforms u; to a fuzzy set denoted as A/** defined
on U;. The transformation is computed by the fuzzification operator F, where

F:U; »U; and F(u;) = Aif“Z. The fuzzification interface transforms the numerical
inputs into the linguistic domain so that they can be interpreted and compared to the
rules in the rule base. And the defuzzification interface converts back the conclusions
reached by the inference mechanism into crisp inputs to the plant. In the context of this
work, classical fuzzy controllers consisting of a set of rules, fuzzification, min-max-
inference mechanism, and defuzzification were developed in the first instance for
controlling the process key variables temperature and aeration of the yeast
propagation (see section 2.2.2). In order to perform the transformation from crisp into
linguistic descriptions and vice versa the fundamental mathematical definitions and
formulations that were applied for the establishment of the fuzzy controllers are

presented in the following for further understanding:

Universes of discourse:

A fuzzy system is a static nonlinear mapping between its inputs and outputs (Passino,
Yurkovich et al. 1998). Let us assume that the fuzzy system has inputs u; € U; where i
=1,2,...,nandoutputs y; €Y, wherei=1, 2,...,m, as shown in Figure 2. The inputs
and outputs are crisp (real numbers), not fuzzy sets. U; and Y; are denoted as the

universes of discourse (domains) for the inputs u; and y;, respectively.

Linguistic variables and linguistic values:

Linguistic variables #i; and y; take on linguistic values that are used to describe
characteristics of the variables(Passino, Yurkovich et al. 1998). If there exist ¥
linguistic values defined over U;, and let A{ denote the ji linguistic value of the linguistic
variable #; defined over U;, then #i; takes on the elements from the set of linguistic

values denoted by
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A ={Al:j=12,..,N;} (1)
Analogue for the output, let Eiji denote the i linguistic value of the linguistic variable

y; defined in Y;, then the linguistic variable y; takes on elements from the set of

linguistic values denoted by
B,={BF:p=12,..,M;} (2)
Figure 3 illustrates the basic elements of the fuzzy logic theory schematically.

Membership degree

H Linguistic values
1 low normal high
Membership function:
Henign' (W)
Mow=0.65 | [/ —
e Linguistic variable ;
0 . / - e.g. “Temperature”
T U

u-
! ¥~ Crisp input (e.g. 18 °C)

Universe of discourse (U;)

Figure 3: Basic elements of fuzzy logic. The figure exemplarily shows a fuzzy partition over the
universe of discourse U;, which is represented by the horizontal axis. %; is a linguistic variable,
e.g. “Temperature”, which is defined over U;. The linguistic variable “Temperature” can be
divided into several subsets (fuzzy sets), which are assigned to specific linguistic values (e.g.
“low”, “normal”, high”). The triangular membership functions define the set of points for which
the linguistic values are fixed on U;. Furthermore, the membership functions assign a

membership degree pto each crisp input u; in the range from 0 to 1.

Fuzzy sets and membership functions:

A fuzzy set A{ is defined as

Al = {(ul My (ui))

uifui} (3)
Here, u ;(u;) is @ membership function associated with fuzzy set A{ that maps U; to

[0,1] (Passino, Yurkovich et al. 1998). The most common types that have proven their

worth in practical applications are piecewise linear membership functions (triangular,
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trapezoidal) and Gaussian bell-shaped membership functions. Their mathematical

characterization is as follows:

0: yu<Luyz=r
1: u =m
HAj(ui) =Lt [<u;<m @)
l m—l1
kﬂ: m<uy <r
Tr—m

for triangular-shaped membership functions defined by the parameters | (left), m
(midth) and r (right). Figure 4 exemplarily depicts a triangular-shaped membership

function for the linguistic variable “Temperature”.

u(T;) 4

normal

0 10 20 30 40 50 60
/ m r Temperature [°C]
Figure 4: Triangular-shaped fuzzy set. Corresponding to eq. (4) the fuzzy set for the linguistic
value “normal” could look as follows:
1: T, =m=25 L

Hnormat(Ti) = ! % 10 <T; <25
L‘I-O—Ti

125 <T; <40
15

In the case of a trapezoidal membership functions:

10
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(0: w<Luz=r
1: my < u; <m,
i—1
L) =42 < )
i ml—l
Lﬂ: m, <u; <1
r—m,

Hence, the parameters are given by | (left), mi1 (midthl), mz (midth 2) and r (right).
Figure 5 exemplarily depicts a trapezoidal-shaped membership function for the

linguistic variable “Temperature”.

u(T;)
normal
1
0 1 T T 1 1
0 10 20 30 40 50 60
! m, m, r Temperature [°C]

Figure 5: Trapezoidal-shaped membership function. Corresponding to eq. (5) the fuzzy set for
the linguistic value “normal” could look as follows:

0:T,<10; T; > 40

1 20<T; <30
Pnormar(T)) = % 10<T; <20

| =530 <T; < 40

The mathematical expression for a Gaussian function is

1 (u;—c\?
w,; (u;) = exp (— (<) ) (6)
Here, c is the center of the function and ¢ > 0 determines the spread or width of the
function. Figure 6 exemplarily illustrates a Gaussian-type membership function for the

linguistic variable “Temperature”.
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u(Ty)

normal

0 1 T T T 1 T
0 10 20 30 40 50 60
Temperature [°C]

Figure 6: Gaussian-type membership function. Corresponding to eq. (6) the fuzzy set for the

2
. T 1/(T;-25
linguistic value “normal” could look as follows: u,,;ma(Ti) = exp (_E( ‘4 ) )

The support of a fuzzy set A{ is the crisp set of all points u; in ‘U; such that ”Al'(ui) >0
and a fuzzy set whose support is a single point in U; with “Al.'(ui) = 1.0 is referred to as

fuzzy singleton. As this work makes heavy use of set-theoretic and logical operations
on fuzzy sets, the most essential concepts will be briefly explained in the following. Let

A} and A? be two fuzzy sets in U; with membership functions Mar (i) and pyz (uy),
respectively. A} is also defined a fuzzy subset of A? given by A} c A?, if Mgz (u) <
HAg(ui) for all u; € U;. The set theoretic operations of union, intersection, and

complement for fuzzy sets are defined via their membership functions. More

specifically, see the following (Lee 1990).

Fuzzy intersection:

The intersection of fuzzy sets A} and A?, for all u; € U;, is a fuzzy set denoted by A} n
A?, with a membership function defined by either of the following two

methods (Passino, Yurkovich et al. 1998):

12
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a) Minimum: Here, the minimum of the membership values are
Myt NP2 = min {uAg (i), g2 (ui)|ui € ”Ui} (7)
b) Algebraic product: Here, the product of the membership values are

a0 e = {ig (e (u)|u; € Uy (8)
For the intersection of fuzzy sets (Zadeh 1965) the min-operator and the Algebraic
product are suggested. However, there exist many other methods like the Einstein
product, the Hamacher product, or the Yager operator. As their description would
exceed the scope of this work, the reader is referred to (Lee 1990; Klir and Yuan 1995;
Zimmermann 2001) for a comprehensive and detailed analysis. In fuzzy logic theory
intersection operators like the min-operator that are used to represent the “and”
operation belong to the group of triangular norms or t-norms. A general representation

for the intersection of two fuzzy sets is given by HAg(ui) * lLy2 (u;), where * is the symbol

for a t-norm.

Fuzzy union:
The union of fuzzy sets A} and A?, for all u; € U;, is a fuzzy set denoted by A} U A%,

with a membership function defined by either of the following two methods (Passino,
Yurkovich et al. 1998):

a) Maximum: Here, the maximum of the membership values are
ar Uitz = mae (i (up), iz |y € Uy} 9)
b) Algebraic sum: Here, the algebraic sum of the membership values are
ar U bz = {har () + 1 () = s e (uow € U (10)
Corresponding to the class of t-norms, a general class of aggregation operators for the
union of fuzzy sets called triangular conforms or t-conorms was defined (Zadeh 1965;
Dubois and Prade 1989; Mizumoto 1989). The union is used to represent the “or”

operation. Thus, a general representation for the union of two fuzzy sets is given by

HAil(ul')@uA% (u;), where @ is the symbol for a t-conorm.

Fuzzy complement:

For all u; € U;, the complement (“not”) of a fuzzy set A} with a membership function

HAil(ui) has a membership function bgt (u;) given by
13
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mar(u) = 1=y (uy) (11)

Figure 7 illustrates schematically the different operators for the fuzzy intersection,

union, and complement.

Fuzzy Intersection Fuzzy Union
() (mm) () (max)
14 Wap () w2 (u) 1 - Har () Haz ()
AN ~

Fuzzy Complement
(not)

Har (i) Hgr (wy)

u(uy)

Figure 7: Fuzzy set operations using the minimum, maximum, and the not-operator.

Cartesian product:

If A{,A",...,Aﬁ1 are fuzzy sets in different universes of discourse U;,U,, ..., U,,

respectively, the Cartesian product of A{ x Ak x ..x AL is a fuzzy set with the

membership function

HA{XAIZCX...XA%(u]" uZJ "')un) = l'lA{ (ul) * HA’zc(uZ) ¥k MA%(un) (12)

Fuzzy relations:

Fuzzy relations are fuzzy subsets of U x Y, which is a mapping fromU - Y. LetU, Y <

R be universal sets, then

R ={((wy) mzwy)Iwy) € UXY} (13)
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is called a fuzzy relation on U x Y. Therefore, it is straightforward to set up fuzzy
relations by connecting fuzzy sets that are defined over different universes of discourse
by using if-then rules. The mapping of the inputs to the outputs for a fuzzy system is
characterized by a set of condition — action rules, or in modus ponens (If-Then) form,
which will be explained in the following section. A general form is given by

If premise Then consequent (14)
Commonly, the inputs of the fuzzy system are assigned to the premise, and the outputs
are associated with the consequent. Then, the standard form of a multi-input single-
output (MISO) of a linguistic rule is given by

If @,is A] and i, is A% and, ..., and @i, is A, Then j, is By (15)

Principles of approximate reasoning:

In fuzzy logic and approximate reasoning, there exist two important fuzzy implication
inference rules which had to be considered in this work as well. The first one is the
generalized modus ponens (GMP) by (Zadeh 1975). He defined a methodology known
as Compositional Rule of Inference (CRI), which is used to infer fuzzy consequents
utilizing GMP. Generally, GMP is defined as follows:

premise 1: uis A',

premise 2:if uis Athenyis B,

consequence: y is B'

This principle is of fundamental importance in the fuzzy inference mechanism. The first
function of the inference stage is to determine the degree of firing of each rule in the
rule base (matching). Suppose that at some time we get inputs u;, i=1, 2, ..., n, and
fuzzification produces A/"“*, A2, ..., A/**, which are the fuzzy sets representing the
inputs. There are then two basic steps to matching (Passino, Yurkovich et al. 1998):
1) Combine inputs with rule premises:

llgll' (w) = UAll' (uq) * Ug{uZ(uﬂ

Il,qg(uz) = IlAg(uz) * Mg/z‘uZ(uz)

ng(un) = P-A%(un) * Ugﬁuz(un)
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2) Determine which rules are fired:

i (U, Uz, o, Up) = Hgi(ul) * HA’;(UZ) e ¥ H,qgl(un) (16)

The second function of the inference stage is to determine the degree to which each

rule’s recommendation is to be weighted in arriving at the final decision and to

determine an implied fuzzy set corresponding to each rule (inference step). There exist

two possibilities to do the inference step:

a) Determine implied fuzzy sets:
Compute the implied fuzzy set B: for the it" rule (jk,...,l;p,q)i with membership
function

Hg(iI(Yq) = W (Uyg, Uz, o, Up) * llgg(J’q) (17)

The implied fuzzy set B} determines the certainty level that the output should be a

specific crisp output y, within the universe of discourse Y,,.

b) Determine the overall implied fuzzy set:
As an alternative, calculate the overall implied fuzzy set B, with membership
function

s, (Va) = ugz (V) Oupz (V) ® - Ougp(vg) (18)
which provides the conclusion reached considering all rules in the rule base at the
same time.

The fuzzy implication inference is based on the sup-star compositional rule of inference

for approximate reasoning suggested by Zadeh in (Zadeh 1973) in order to compute

Héq()’q) . In this terminology the “sup” corresponds to the @ operation, and the “star”

corresponds to . The compositional rule of inference (Zadeh 1965; Zadeh 1973; Kilir
and Yuan 1995) is the special case when maximum is used for @ and minimum is used
for x. The justification for using that special convention for the inference step is that we
can be no more certain about our conclusions than we are about our premises. This
corresponds to the Mamdani implication (Mamdani and Assilian 1975; Mamdani 1977,
Mamdani and Gaines 1981) or max-min-inference mechanism, which is well
established in practical fuzzy control applications (lancu and Popirlan 2010; Piltan,
Haghighi et al. 2011; Precup and Hellendoorn 2011; Chen, Yan et al. 2014). In other
words, the aggregation of the premises of all rules is done via the AND-operator
(minimum) and the accumulation of the suggestions of all rules to form the overall
implied fuzzy set is accomplished using the OR-operator (maximum).
16
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The second important form of approximate reasoning is the generalized modus tollens:

premise 1:y is B,
premise 2: if uis Athenyis B,

consequence: u is A'.
It is closely related to the backward goal-driven inference which is commonly used in
expert systems, especially when it comes to the incorporation of negative rules, which

is a core topic of this work and will be introduced later.

Defuzzification principles:

The task of the defuzzification is to convert the collection of recommendations of all
rules back into a crisp output. For a rule base consisting of R rules there are R implied

fuzzy sets, one from each rule, each recommending a particular output. In order to
compute one crisp output yg”sp from all of these recommendations besides center
average defuzzification, the center of gravity method is the most widely used one
(Braae and Rutherford 1979):
zR. ! by “gliI(Yq)dYq

crisp __
— T3yR
1 Zitaly, HgliI(Yq)dYq

(19)

Here, R denotes the number of rules, b is the center of area of the membership

function of B; associated with the implied fuzzy set B/ for the i rule (j k,...,l;p,q)i, and
Iy, vt (¥q)dyq is the area under pg (v,)-

The disadvantage is the expensive-to-calculate integration in the determination of the
centroid. If one is satisfied with an approximation, the integral can be replaced by a
sum over pre-computed centroids b; of the individual terms, weighted by the
membership degrees y;:

] IR b
i (20)

Hence, in the case of the center area method the calculation is:
Zlebiqsup)Iq{ugliI(yQ)}

i Supyq{ugli] (3’61)}

crisp __

yq -

(21)
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Here, “sup” is the “supremum” and can be interpreted as the maximum value. In
conclusion, for each fuzzy system an explicit mathematical formulation can be set up.
In the case of center-average defuzzification, triangular membership functions and
product operation to represent the conjunction in the premise of each rule an explicit
description of the fuzzy system is

T

R kL
Zi:lPlJle---un

(22)

Here, hU*--LP2i is the output membership function center for the i rule and the
indices in (j, k, ..., 1) specify which linguistic value is used on each input universe of
discourse and specifies the linguistic-numeric value of the input membership function
used on each input universe of discourse. In the case of Gaussian membership

functions eq. 19 turns into

N
R 1%~
Zi=1bil'[}‘=1exp<—§< i]>
%

yeTi? = ~ (23)
X 7—1 exp(“%(uj;ic]) >
9j
and it needs
R(2n+1) (24)

parameters to describe this fuzzy system. A diagrammatic illustration of the

calculations that are performed in a classical fuzzy controller is shown in Figure 8.

Rule 1:
IF e, = small AND e, = Zero THEN y = low
[G1= e N 1, MIN(u, 1) = 0.6
“11 small ~ideal _big _pos by low middle high
-1 ol - AW AW
" T g ) Pl - . “1.v Iow middle high
e =4 p 7N
0 z
IF e, = ideal AND e, = Zero THEN y = middle 1
(G2= by 0 oy MIN(u ) = 02— y N
”1’ | small ideal _big “12 neg  zero _pos. “; low middle high | y
3 ’ 1= 0.6 . ! e Yor[ Ve
My = 0.2 o f N 5\\ Pl crisp _ Zur‘l:l G *y;
. ! e O 1 e y Yo TTIEG

€2i

Figure 8: Schematic representation of the calculations occurring in a classical fuzzy controller

with two rules (modified Figure 1in (Birle, Hussein et al. 2013)). The controller has two inputs e,

and e, and one output y,

crisp
q

center of gravity calculation is performed as defuzzification.
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With reference to this work, a basic fuzzy inference system was established in order
to control the temperature and the aeration of the brewer’s yeast propagation process.
The developed fuzzy controllers are diagrammatically shown in Figure 9 and were
designed using the aforementioned definitions and concepts of fuzzy logic theory. A

comprehensive description of the classic fuzzy system is presented in section 2.2.2 of

this work.
Fuzzy system
~ = Inference engine ‘
Fuzzification ‘._ Defuzzification

Rule base

Fuzzy temperature controller

U
1_0 low matched high

slower matched faster min neg zero
0.0 | >< X _

T

-30 -10 0 €ycc -10 5 0 5 e\rcc -0 0.4 0.8 AT
Fuzzy aeration controller i e S
i i
1: low matched high 1:; slower matched faster il(}u least less zero more most i
- E i I
O wTS - |
0.0 t 0.0 . ' . — 10.0 ¥ i
e é -1.0 -0.5 0 0.5 1.0
15 075 0 075 15 ©& -2 -1 0 1 2 Es E aeration_statei
[ I— —— - 1
|
H . . i H n . . .
1.0 low mid high il.O least less zero more most 1.0 lowest low mid high highest
D0+ -
0.0 VAVAS : 10.0 , : : — | 0.0 : . . '
0 10 35 60 190 Y€1 30 05 o0 05 1.0 0 025 05 075 1.0
L _______aeration_state SP_Pulse

Figure 9: Diagrammatic representation of the classical fuzzy inference system which was
desighed in the scope of this work. In its basic configuration the system consists of two
controllers, which are a temperature and an aeration controller. The aeration controller is a two-
step controller. In the first step a state variable “aeration_state” is created (marked by the blue
dashed rectangle) and used as the output. In the second step this state variable is used as an

input variable and the final output is the setpoint for the aeration interval denoted as “SP_Pulse”.

The main advantages of using fuzzy controllers are that they offer quite fast and
problem-related tools to solve control engineering problems in a transparent,
straightforward, and practical-oriented way. Furthermore, as a universal approximator
a fuzzy system is able to pattern the behavior of any nonlinear system and additionally
it allows the immediate incorporation of expert knowledge into control rules by means

of linguistic expressions. However, there are several drawbacks of classical, static
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fuzzy systems. One drawback is that the more complex a system gets, the more rules
are required in order to provide a full description of the system. More clearly, there is
an exponential increase in the number of rules with the number of fuzzy controller
inputs or membership functions required to describe the process of interest. The
consequence is that the advantage of transparency of the rule base diminishes and
the system’s efficiency deceases when there are rules which are not actively used.
Another drawback is the lack of a learning capability with respect to fast controller
implementation. In common practice manual adaption of fuzzy controller parameters
by trial and error is still the dominating method in order to reach the required
performance criteria of the controller. However, this is quite cumbersome and often
results in inefficient and sub-optimal control parameter configurations. Therefore, in
this work two different approaches were investigated in order to optimize the control
performance of classical fuzzy control within the framework of uncertainty-biased
processes. One approach is the incorporation of negative experience into fuzzy
inference systems. By using the principle of modus tollens rules can be formulated in
order to express warnings or prohibitions for the consequents of distinct rules. This
allows the transparency of the rule base to be maintained in such a way that fewer
rules are required to achieve a certain control performance than would be the case if
only positive rules were used. The other approach is the usage of evolutionary tuning
techniques like genetic algorithms in order to add data-based learning and to achieve

a fast optimization of the control performance.

1.2 The importance of negative experience

In general, fuzzy control allows the incorporating of qualitative experiential knowledge
in the form of rules directly into the controller. This creates a controller whose mode of
operation can be interpreted and which can therefore be optimized interactively without
having a process model at hand. Usually, the type of approximate reasoning and the
interpretation of rules follow modus ponens, which is Latin for mode that affirms by
affirming. Given this rule it is possible to incorporate positive experience that stems
from different experts into a fuzzy controller. More precisely, in common fuzzy
controller rules in the form of R;:If p;(e) Then c;(u) are used and interpreted as a

positive rule. Here, R; is the i!" rule with premise p; and conclusion c;. The truth value
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of p;(e) A c;(u) provides for each output value u to which degree it is recommended by
the rule R; at the current input e. By superimposition of the suggestions of all rules
using the OR-operation, the overall implied output membership function results (Kiendl
1997):

ule u) = VL (pi(e) A cy(w) (25)

It defines for each output value to which degree it is recommended by all rules at the
given input. However, the above-mentioned conventional fuzzy controller structure has
the deficiency that it is not possible to declare certain "forbidden manipulated variable
ranges" or to ensure that the resulting real value of the manipulated variable is not
under certain preconditions in these areas. Such a guarantee may be desirable in
practice. For example, if the output of the fuzzy controller acts on an actuator, which
consists of several units, it can be of interest that there is no frequent switching
between the different units in order to protect the actuator and to achieve a more
economical operation. In this case, it is therefore advisable to declare as “unfavorable”
or even “forbidden” all manipulated variable values which lie in the vicinity of the
switching threshold. Likewise, for example in the field of process engineering, one
would like to guarantee that a valve is actually completely closed under certain
preconditions. Therefore, all manipulated variable values would be prohibited at which
the valve is only partly closed. Furthermore, for example in the case of position control,
aside of having only positive recommendations it can be very useful to define linguistic
rules of prohibition in order to avoid overshooting at the target position (e.g. “If target
position is close Then high speed is prohibited”). Further, a dead band can be created
in order to smooth control in the case of small control deviations (e.g. “If deviation e is
small Then control output values in the range of 0 < |y| < y,n IS prohibited”). Due to
that structural shortcoming, conventional fuzzy controllers are not suitable for certain
control applications. However, this structural deficit can be solved by the additional
incorporation of negative experience. In literature there exist two different approaches
of how to incorporate negative rules into fuzzy controllers and how to handle the flow
of information. The first approach is suggested by (Kiendl 1997). He introduces the
concept of a two-stringed fuzzy controller structure (Kiendl 1993). A schematic outline
of this approach is shown in Figure 10. For each string a positive u*(u) and a negative
membership function pu~(w) is generated. Here u* (u) represents the implied fuzzy sets

coming from all positive rules and p~ (u) denotes the implied fuzzy sets resulting from
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all negative rules. Subsequently, both are combined to a membership function p(u)
using a method denoted as hyperinference such as p(u) = p*(u) A =~ (u), where A
IS a selectable fuzzy operator (AND-operator). In the case of a weak veto the
hyperinference could be as follows (Kiendl 1997):

p(w) = {ﬂ+(u),if pru) =u" (u)} (26)

0 otherwise
A hyperdefuzzification then calculates a crisp output value uy.

Operators 5
& N Activation :> E |,l+ (u)
. :g »> :> g [ c
N . Positive :> 3 ) 2
Z rules 2 2 .S
o :8 n(u) N up
EFEl2
; 3
c Operators [:; 5 - S g
= : Activation B ﬁ_(u K (u)' * S
8 3 -
—p ,,E > :> = | ! >
N Negative 3
z ' rules :> § q

Figure 10: Illustration of a two-stringed fuzzy controller structure for handling positive and
negative rules proposed by (Kiendl 1997). The lower string processes the negative rules and
creates a membership function i~ (w). It states for each potential value of u, to which degree the
negative rules advise against it. The hyperinference offsets positive and negative membership
functions (u*(u), u~(u)) against each other and creates a common membership function u(u).
Here, u~(u) = qfi"(u),0 < q < 1. Successive hyperdefuzzification computes a crisp output uy.
The factor q is used for global attenuation of the warnings or prohibitions. The input is denoted
ein this case.

A second approach for incorporating negative rules into fuzzy inference systems and
that was applied within the scope of this work is proposed by (Branson and Lilly 1999;
Branson and Lilly 2001). Considering the principle of modus tollens, a new and
practice-oriented method for the incorporation of negative rules within the framework
of defuzzification denoted as dot attenuation is presented. Similar to Kiendl, an overall
negative implied vector u~ is built as part of the inference, where the i element is the
negative membership in the it fuzzy set on the universe of discourse. Each element is
computed as a t-conorm of the premises of all negative rules containing the i" fuzzy
set on the output universe of discourse in its consequent. For any positive rules whose

consequents hold the it" fuzzy set on the output universe of discourse, the i" element
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of u~ is used as an attenuation factor within the applied method of defuzzification.
Consequently, the same is performed to form a positive implied vector u* that is
analogous to p~. Hence, dot product center of gravity defuzzification is given by
(Branson and Lilly 2001)

_ X b [P (1-a] n)
IR, Juimp (i (1-alu-)

and the simplified dot product center average defuzzification is calculated by

y(x) (27)

YR bu(d)(1-al u)
Zle “(i)(l_d?“_)

y(x) = (28)

Here, T stands for transpose, p~ denotes the overall negative implied vector, p™? (i) is
the implied fuzzy set from rule i, @; is a unit vector in the direction of the consequent of
rule i, R denotes the number of rules and b, is the center of the membership function
recommended by the consequent of rule i Figure 11 exemplarily depicts the handling
of negative experience on the fuzzy set level.

Rulebase:
R1: IF /nput 1is slow AND /nput 2is low  THEN Temperatureis high
R2: IF /nput 1is slow AND /nput 2is ok THEN Temperatureis high
R3: IF /nput 1is ok AND /nput 2is ok THEN Temperature is medium
R4: IF /nput 1is slow AND /nput 2is high THEN Temperatureis low
R5: IF /nput 3is fast AND /nput 1is ok THEN Temperature is “not high”
p* Ty
‘not
"not,!ow” medium” “not high”

low medium  high

1 1

0.3
0 f Y ¥ 0 #
12 14 16 Temperature [°C] 12 Temperature [°C]
positive implied vector: negative implied vector:
p*r= [pklwl Hmediums phigh] = [025 0.7 0-5] p = [unot lows Hnot mediums Hnot high] = [0 0 03]

12 0.25(1 — 0) + 14 % 0.7(1 — 0) + 16 +0.5(1 — 0.3)
0.25(1—0) +0.7(1 — 0) +/0.5(1 — 0.3)

Temperature = = 14.15°C

Figure 11: Incorporation of a negative rule and numerical treatment according to (Branson and
Lilly 2001). The exemplary rule base comprises four positive and one negative rule (R5). For each
positive output fuzzy set, there exists a corresponding negative fuzzy set. In this case, rules that
fire the output fuzzy set “high” are gradually attenuated by rule 5, which fires the corresponding
implied negative set “not high”. The numerical calculation of a crisp output is performed by dot

product center average defuzzification (eq. 27).

Regardless of which method is used, both approaches come to the consensus that a
clear advantage of the inclusion of negative rules is the possibility to alter the control

surface in a very specific and targeted way, such that changes are only made where it
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IS necessary to improve the control performance. For this reason, the requirement to
include negative experience in the form of negative rules into fuzzy systems is obvious
to the controllability of uncertainty-biased processes. It provides an opportunity to
further improve the performance and efficiency of the control behavior while
maintaining the system’s interpretability at the same time. Due to that, the concept of
incorporating negative experience into the classic design of the described fuzzy-based
yeast propagation system was intensively investigated.

As mentioned before, the design of a fuzzy model or a fuzzy controller, regardless of
whether negative rules are taken into account or not, relies on human knowledge or is
derived from data. In general both approaches are required, particularly when it comes
to the control of more complex systems. Indeed if it is possible to provide a qualitatively
correct description of a system behavior or a control policy by an expert, the numerical
translation offered by fuzzy logic may be quite approximate. In this context, it is
interesting to have methods that improve the set of fuzzy rules by tuning membership
functions for instance. This requirement has led researchers to combine data-driven
learning or optimization techniques with fuzzy logic, which will be introduced in the

following section.

1.3 Getting tuned — Genetic optimization versus trial and error

An important characteristic of fuzzy systems is that with respect to their design the
number of degrees of freedom can grow rapidly depending on the number of rules,
fuzzy variables, and types of fuzzy sets that are used. Hence, the tuning and
adjustment of parameters that affect the performance of a fuzzy system’s behavior can
be quite cumbersome. Especially the practical optimization of each of these
parameters usually requires a deep understanding of the underlying process. If there
is uncertainty about the process behavior, the tuning of the parameters might be biased
by uncertainty, as well. Due to that, parameter optimization via trial and error is not
productive. As stated earlier, a fuzzy control action results from the synthesis of the
overall recommendation of all active rules. This is part of matching every input value
in the antecedent with the corresponding membership functions. For this reason,
tuning any membership function can get quite complicated, as it usually affects more

than one rule, and every rule may affect each fuzzy control action. However, in the
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case of available training data, the data should contain that kind of information
somehow. In consequence, a fuzzy control system should be optimized interactively
and automatically using a data-driven approach, rather than tuning it separately and
manually. In literature, there are several optimization methods but there are no
universal methods. The standard optimization methods like gradient-based
approaches might not be effective in the context of fuzzy systems given their non-linear
character and the modularity of the systems (Nguyen and Sugeno 2012). This is one
of the driving forces of this work to explore other optimization methods of more global
optimization capabilities such as genetic algorithms. Due to the great variety of
optimization strategies one could heretically ask which the best universal optimizer is.
This was discussed in (Weicker 2007), who comes to the conclusion that there is no
such thing as a universal optimizer. For each algorithm there exists a niche in the entire
problem space for which it is particularly appropriate. Based upon these findings
different optimization strategies have been analyzed (Rao and Rao 2009) and with
respect to fuzzy-logic-based systems one of the most successful methodologies are
genetic fuzzy systems (Cordon 2001; Cordon, Gomide et al. 2004; Herrera 2008). The
use of genetic optimization with fuzzy logic allows the contradictory aims and tradeoff
of high accuracy while still maintaining the system’s interpretability to be overcome
(Cordon 2011).

The development of genetic algorithms (GAs) goes back to (Holland 1975) and they
belong to the most frequently applied evolutionary algorithms. GAs belong to the
gradient-free, parallel optimization algorithms using a performance criterion for
evaluation, as well as a population of potential solutions in order to detect a global
optimum. In general, they are capable of handling complex and irregular solution
spaces, and they can handle high-dimensional, nonlinear optimization problems. Their
superiority to other optimization algorithms in terms of computational efficiency led to
various engineering applications for solving complex optimization problems (Yusup,
Zain et al. 2012). In its standard form the GA consists of the genetic operations
selection, mutation and crossover. Solutions that are considered good are selected
and manipulated to achieve new and possibly better solutions. Therefore, the
manipulation is achieved by applying the genetic operators on the chromosomes in
which the parameters of possible solutions are encoded. Considering the principle of

elitism, in each population a part of the current generation is replaced by their offspring.
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The combined effect of selection, crossover, and mutation can be expressed in the

reproductive schema growth equation (Holland 1975; Goldberg 1989):

(S, t+1) 2 {(S,t) - eval(S,6)/F(®) [1 = pe - 22 = 0(S) - p] (29)

A scheme is representative of a set of chromosomes. Apart from the usual symbols 0
and 1 a schema contains additional wildcard symbols represented by the character #.
Placeholders in a schema are representative of any other freely selectable symbol. In
this way, a schema defines a set of chromosomes, which all correspond to its pattern.
A chromosome which fits to a scheme is referred to as an instance of this schema. For
example, the chromosomes 1001 and 1100 are both instances of scheme 1#0#.
Conversely, the schemes ##11 and O##1 belong to the chromosome 0011 among
others.

In equation (29), {(S,t) is the number of strings in a population at the time t, matched
by schema S; §(S) denotes the defining length of the schema S (distance between the
first and the last fixed string positions); o(S)denotes the order of the schema S (number
of 0 and 1 positions present in the schema); eval(S, t) represents the average fithness
of all strings in the population matched by the schema S; and F(t) is the total fitness of
the whole population at time t. Parameters P. and P, are the probabilities of crossover
and mutation, respectively. Hence, the equation computes the expected number of
strings matching a schema S in the next generation as a function of the actual number
of strings matching the schema, the relative fithess of the schema, and its defining
length and order. The theorem states that the incidence of schemata with above-
average fitness, defining length and lower order increases in the next generation.
Unfortunately, the scheme theorem does not provide information about whether and in
what number of steps a genetic algorithm finds an optimal or at least suboptimal
solution of the optimization problem. The definition of the fithess function depends
essentially on the information that will be used to assess the control behavior. The
determination of the effectiveness criterion is relatively simple, if reference data of the
control response are available, obtained for example by observation of an expert. In
the control technology many problems can be treated very well by means of a setpoint
control. The observed output y of the current process is assumed to reach a desired
target value r in the shortest possible time. After the target value was reached the first
time, there should only be a slight overshoot of the output. The third requirement for
the setpoint control is to keep the oscillations as low as possible around the setpoint.
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In this context, the fitness function judges a controller by observing its response to a
changed target value. Occurring as a result of the new target value, error e and its
derivative é are both minimized. For this reason, the fitness function evaluates for
example the square deviations of the error and the error change to zero (Hoffmann
1997)

Fe(t),e(t)) = (S, Cee()? + Cée(t)zdt)_l (30)

The two coefficients, C, and C,, allow a different weighting of the two contributions to
the fitness. A mathematical model of the process can be required if the optimization is
carried out in a simulation rather than on the process itself. Such a simulation
may be necessary for reasons of safety or with processes that are very slow in real
time. An illustration of the flow chart of a GA used for tuning a fuzzy logic control system
is presented in Figure 12.
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Figure 12: Diagrammatical representation of a fuzzy controller design methodology using
genetic tuning. In the first instance a representative model of the process that is supposed to be
controlled is required. After defining the basic structure of the fuzzy controller, as well as the
boundary conditions (e.g. universes of discourse of input and output variables), the process is
simulated using the process model. Then, a genetic algorithm is used (flow chart on the right-
hand side of the figure) that tunes the parameters and/or rules of the fuzzy controller in order to

achieve a certain control performance specified by an appropriate cost function.
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With respect to this work the focus is put on real-coded or continuous GAs (Davis, De
Jong et al. 2012; Michalewicz 2013), as binary-coded GAs are considered less efficient
(Goldberg 1989). The disadvantage of binary-coded GAs is that the binary strings can
become very long and the search explodes. Besides requiring less storage, continuous
GAs are faster than binary GAs from the perspective of computational efficiency which
is lost by the conversion between the binary and real valued representation (Herrera,
Lozano et al. 1998; Haupt and Haupt 2004). A diagrammatic illustration of the structure
of a GA is shown in Figure 13 and a possible coding scheme for genetic fuzzy set

tuning is schematically shown in Figure 14.

Mutation
[015 [ 035 [ 0.48 [ 0.76 [ 0.42 [ 055 [ 092 [ 125 |

[015 [ 035 [ 0.48 [ 0.76 [ 0.42 [FEZY 092 [ 125 |

Population

[0 o2 o8 [ s [om ] as [ 12 Tras)

>

[[015 [ 035 [0.a8 [ 076 [ 0.42 [ 055 [ 092 [ 125

022 [038 | 052 [ 065 | 06 | 0.85 [ 095 | 11 ;{
005 | 0.22 | 0.45 | 0.58 05 065 | 0.72 ‘ 0.98
\ s Ty

Crossover —

.
[015 [ 035 [ 048 [ 0.76 [ 0.42 [ 0.55 [ 0.92 [ 1.25 | . L Nl Jl
[022 [ 038 [0s2 [ 065 | 06 | 085095 11 | S?ECTIOH \ 4— N /
— T \
(015 035 | 052 | 065 | 06 | 0.85 | 0.95 | 11 | & \:“* \ A
[022 038 048 [ 076 [ 042 [ 055 [ 092 [ 125 | [o JoaJosTosJen[os [ 1z [aes l%
[0 [035 [ 048 [ o7 [oaz [055 092 [ 125 ]
\ [2 [0 [052 [0 [ 06 [oms [ow ] 1] |

[005 [ 022 [ 045 | 058 | 05 | 06s | 72 [ 098

S p

[(015 [ 035 [ 048 [ 0.76 | 0.42 [ 055 [ 092 [ 135 |

[022 038 [ 052 | 0es [ 06 [08s [09s [ 11 | }{

005 [0.22 [045 [ 058 [ 05 | 065 0.72 [ 0.98 |

Figure 13: Basic structure of a GA. A population of chromosomes, represented by vectors of
parameters, evolves from one generation to the next. Each vector corresponds to a possible
solution of the optimization problem. The encoding scheme assigns each genetic vector to a
potential solution to the optimization problem. From a biological point of view this
transformation produces the phenotype from the associated genotype. Theimportance of agene
is determined by its location within the chromosome. The fitness function assesses the quality
of solutions, as measured by the optimization problem. The selection decides which parents
contribute by propagation to the descendants of the next generation. It is a stochastic process,
where well-adjusted individuals are more likely to contribute offspring. Genetic operators such
as crossover and mutation produce from the existing genetic material new genotypes and
therefore new candidates for solutions. When crossing over the vectors of two parents are cut
at a randomly selected position and the resulting partial vectors are interchanged crosswise.

From time to time, the mutation alters single, randomly selected genes. Mutation mainly has the
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task of preserving the diversity in the population in order to avoid premature convergence of the
algorithm.

Fuzzy yariable A

Figure 14: Diagrammatic illustration of the genetic coding scheme of fuzzy membership function
parameters on achromosome. Here, the fuzzy variables are coded viatheir fuzzy set parameters
as genes on the chromosomes.

The presented principle was also applied in the context of this work, in order to add the
capability of data-driven learning and tune the parameter configuration of the fuzzy
system used for the control of the brewer’s yeast propagation process.
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1.4 A brief look at supervision and control of yeast propagation
(Saccharomyces cerevisiae sp.)

In the previous sections the phenomena of uncertainty as well as the concept of fuzzy
logic as an appropriate tool for encountering uncertainty with respect to issues of
process control were introduced. In this section, a brief outline of the brewer’s yeast
propagation process as a typical and representative process biased by various sources
of uncertainty is given. Furthermore, the transfer of the aforementioned aspects of
uncertainty management with respect to the supervision and control of bioprocess
yeast propagation is one of the main objectives of this work. Considering the final
product quality, yeast propagation itself is a crucial step in beer production and is of
great economic and technological importance in brewing practice. Particularly the
vitality and quality of the produced yeast has relevant influence on the subsequent
production steps of fermentation and the resulting beer quality (Heyse 1989; Narzil3
and Back 1995; Lehmann 1997; Lehmann 1997; Maemura, Morimura et al. 1998;
Kunze, Manger et al. 2011). Due to that, one of the most important necessities for the
step of primary fermentation is that the yeast inoculum must be available at pitching
time in the required amount and with the right quality. In order to guarantee this
prerequisite the development and provision of monitoring and control tools is a main
part of this work. Up to now current management tools at the supervisory control level
in breweries do not allow for the compensation for disturbances in the production plan
(which can be up to 2-3 days) with respect to yeast propagation performance.
Generally, in common practice the process control is based upon experience and
empiric, purely time-driven recipes for the setpoints of manipulated variables. In
consequence, human interventions and corrective control actions in the case of
disturbance will occur with delay and no adequate inoculum will be delivered for the
subsequent fermentation.

In general, yeast propagation is performed as a batch process, whereby the yeast
passes through the different growth phases of a static culture (lag phase, exponential
phase, transition or deceleration phase, stationary phase, degeneration). The duration
of the individual phases and the transition time from one phase to another is dependent
on manifold factors. For example, the lag phase, which is the time from inoculation until
the maximum growth rate occurs, depends on the physiological state of the inoculum
and the specific growth medium (Eitinger, Schlegel et al. 2007). The physiological state
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in turn depends on its conditions of storage and its upstream treatment (Annemdiller
2008). Furthermore, the whole growth behavior is highly influenced by the fed
substrate beer wort. Its composition and ingredient concentrations are dependent on
natural variations of the raw materials used. In consequence, the effects of substrate
limitations on the metabolic behavior due to unavoidable variations in available
carbohydrates, nitrogen, zinc, or vitamins are subjected to uncertainty. Moreover,
metabolic regulation effects occurring under brewing-related conditions have to be
taken into account in the case of Saccharomyces cerevisiae cultivation. In this regard,
the two most important regulation mechanisms that affect the catabolic rates of the
different metabolic pathways are the Pasteur effect (Eitinger, Schlegel et al. 2007) and
the Crabtree effect (Crabtree 1929). Pasteur found that glucose uptake rate and
glycolysis rate is higher under the absence of oxygen. If oxygen is provided to an
anaerobic culture, glucose uptake decelerates (Hartmeier 1972). The Crabtree effect,
which is also known as overflow metabolism, catabolite repression, aerobic
fermentation, or oxido-reductive metabolism, leads to the formation of ethanol upon
exceeding a critical glucose concentration in the substrate, although aerobic condition
is present (Gschwend-Petrik 1983; Sonnleitner and Kaeppeli 1986; Pham, Larsson et
al. 1998). In summary, the process of yeast propagation is affected by various factors
of uncertainty that in consequence influence the observability and controllability of the
process. Hence, in order to obtain vital and active yeast from the physiological point of

view an adaptive online monitoring and process control system is required.

1.5 The scope and motivation of the thesis

In summary, the motivation for this work lies in the provision of a practical framework
for the online monitoring and control of uncertainty-biased systems with a special focus
on brewing yeast propagation as a predestinated test case to demonstrate the
developed tools. However, there is still no integrative approach combining data-driven
and expert knowledge in order to dynamically achieve the main objective of producing
the right amount of yeast of the right quality at the right time by means of fuzzy logic.
All in all, the following tasks and topics were addressed in order to meet the

requirements:
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= Critical review of the state of the art with respect to intelligent control and soft
computing applications in the food and beverage sector.

= Development, design, and implementation of a fuzzy-based monitoring and
control framework for a pilot yeast propagation plant.

*= Analysis and implementation of evolutionary optimization of the fuzzy system
combined with statistical process control.

» Incorporation of negative experience in the form of negative rules in order to

enhance the system performance.

2 Summary of results

2.1 Paper summary

Part 1 — A Review

Fuzzy logic control and soft sensing applications in food and beverage

processes

Extensive parts of the production processes in the food and beverage industry are
characteristically dominated by biologically based processes, particularly
fermentations. The supervision and control of such complex, nonlinear, and time-
variant systems require novel sophisticated systems that are capable of managing the
underlying uncertainty-biased process behavior. As an essential prerequisite in order
to develop a holistic system approach, the review provides a comprehensive and
critical outline of the scientific state of the art of soft computing approaches and
applications in the relevant processes. The findings show that intelligent combinations
of hard and soft sensing devices can provide powerful tools and sources of information
generation with respect to process monitoring and control. Furthermore, the
description of the system’s behavior can be achieved and realized faster by means of
fuzzy logic than using methods of complex mathematics. Despite of the advantages of
fuzzy logic based controllers their major drawbacks (e.g. missing inclusion of negative
experience) are addressed and their potential solutions are reviewed. In this context

the merging of fuzzy logic, optimization methods like evolutionary computation, but

32



Summary of results

also the inclusion of chemometric evaluation to hybrid systems offers new scientifically
suitable methods. The intelligent combination of these technologies into an integrated
system reveals a promising direction to the creation of reliable, efficient, and accurate

process monitoring and control.

Part 2 — A fuzzy-based framework

Online yeast propagation process monitoring and control using an intelligent

automatic control system

Following the findings from the review, a basic framework of online monitoring and
control for brewing yeast propagation was built. For this, a pilot bioreactor for yeast
propagation was constructed. Information about the process state is provided by an
array of sensors (optical density, temperature, pressure, density, dissolved oxygen,
and pH value) that was implemented into the propagation plant. However, as the cell
concentration cannot be detected directly, a software sensor was developed. The soft
sensor consists of a neural network that uses online sensor data of OD, pH value, and
density in order to compute the yeast cell concentration. The virtual operating system,
or fuzzy based expert system, then uses the sensor information as input data for two
fuzzy logic controllers. The first controller is a temperature controller. It uses the
deviation of the predicted cell count from that of a reference trajectory and its temporal
derivative as inputs and adjusts the process temperature based upon a collection of if-
then control rules. In this context, the reference yeast cell count trajectory is derived
from a metabolic growth model. The second fuzzy controller triggers the aeration
intervals of the system. Similarly to the temperature controller, it uses the deviation of
measured extract concentration from that of the reference trajectory, the predicted cell
count, and the dissolved oxygen concentration in order to construct a fuzzy rule base
and to control the aeration. With respect to the main objectives of yeast propagation,
a dynamic control of the process is possible, and it could be shown that the system is
able to provide the desired yeast cell concentration of 100-120*108 cells/ml at a
minimum residual extract limit of 6.0 g/100g at the required point of time and of the

required quality.
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Part 3 — Optimizing the system and setting up statistical

corridors for the control errors

Management of uncertainty by statistical process control and a genetically tuned

fuzzy system

Fuzzy logic is generally a powerful tool when dealing with uncertain process conditions.
It allows process and expert knowledge to be made use of by incorporating it into
linguistic expressions and applying it to control routines. However, one drawback of
classical fuzzy control systems is their cognitive fixedness of the used linguistic
expressions, that is, that words have different meanings to different people.
Furthermore, it can be very inefficient and time-consuming to adjust the parameters by
trial and error. To overcome the first challenge, a data-driven approach using statistical
process control was applied in order to define statistical corridors for the linguistic input
variables of control error and its temporal derivative. As mentioned, manual adjustment
of the control behavior of a fuzzy controller can be very tedious. Evolutionary
computation, more specifically a genetic algorithm, was then applied in order to tune
the fuzzy sets of the input and output domains of the fuzzy temperature controller. The
resulting controller parameterization was then compared with the non-adjusted
controller by experimental validation. The presented experimental results show that
the genetically tuned fuzzy controller is able to keep the process within its allowed
limits. The average absolute average error to the reference growth trajectory is 5.2*10°
cells/ml. The controller proves its robustness to keep the process on the desired growth

profile.
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Part 4 — The incorporation of negative experience

Incorporation of negative rules and evolution of a fuzzy controller for yeast

fermentation process

Fuzzy control aims to transfer qualitative empirical knowledge in the form of rules
directly into the functionality of the controller. Following this, controllers are created
whose mode of operation is kept interpretable and can therefore be optimized
interactively without necessarily having an appropriate process model at hand. The
range of applications where fuzzy controllers compared to conventional controllers
actually provide benefits depends crucially on the type of the available experience and
knowledge. In this regard, conventional fuzzy controllers have a structural defect
because they only make use of empirical rules which are solely capable of providing
proposals of positive action. Therefore, common fuzzy controllers are
unsuitable for certain applications, such as when prohibitions are observed. This
shortcoming can be solved by the incorporation of negative rules into the inference
structure of the fuzzy controller. The suggested method implements the negative
experience on the fuzzy set level. As part of the inference mechanism, the negative
and positive implied sets are offset against each other in the defuzzification part. The
incorporation of negative rules leads to a much more stable and accurate control of the
process as the root mean squared error of reference trajectory and system response
could be reduced by an average of 62.8 % compared to the controller using only

positive rules.
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2.2 Paper copies
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and strategies are required. However, biosystems contain living organisms and therefore underlie
particular process dynamics such as nonlinear and time-varying behavior. Furthermore, initial process
conditions cannot be kept constant and therefore precise process reproducibility hardly can be ach-
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1. Introduction

Due to their inherent complexity and abundance of uncertainty
factors biotechnological systems, especially fermentation
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model or sense as it is highly influenced by cultural and personal
perceptions. Additionally, there is a big difference in the process
objective itself, comparing manufacturing of foods to other
biotechnological production steps. In proceedings like the peni-
cillin production the focus is on the exploitation of a single
component of the final product and the main concern is a yield as
high and efficient as possible. The residual composition of the
product is mostly of lower interest. In contrary to this, instead of
subcomponents, the food as a whole is in the focus of the
{fermentation) process. Regarding fermentations, the most
important process sequences are directly or indirectly related to
living organisms by what the realized biochemical turnovers are
based on complex biological and biochemical processes whose
comprehensive description would need a high number of state
variables. However, due to the fact of intra- and extracellular
metabolic side products, flavor substances and various cell states
there exist hundreds of state variables. For setting up an appro-
priate process model at reasonable cost from the abundance of
available state variables those have to be selected that significantly
describe the process behavior. On the basis of the previously
mentioned biological and biochemical processes the dynamic
performance of those systems can be characterized as nonlinear
and time-variant. Whilst continuous or fed-batch processes are
commonly run at a fixed operating point, this is not possible for
a batch operation (Chmiel, 2006). Hereby the process undergoes
a wide range of nonlinear behavior (Trelea, Trystram, & Courtois,
1997). An example would be the oxygen concentration of wort
which decreases from saturatien te zero during the fermentation
and maturation of beer and forces the yeast to shift from the
aerobic to the anaerobic metabolism. Therefore, the process model
cannot be linearized or limited to a fixed operating point, but
rather to a combined biochemical trend to follow. Thus, the clas-
sical methods of control engineering and system theory that
assume linearity and time-invariance can be applied only in a very
limited way or under permanent personal control and continuous
manual interventions.

The implementation of new strategic directions in the field of
process control like the PAT (Process Analytical Technologies}
initiative opens new gates for better process understanding
{Administration, 2004; Diinnebier & Tups, 2007; Junker & Wang,
2006). By launching the PAT initiative in 2004, the FDA (Food
and Drug Administration) developed a system for the design,
analysis and control of production processes via defined and timed
measurements of critical quality and performance parameters of
raw and process parameters as well as of the contemplated
methods with the objective of ensured product quality and
therefore presents an innovative tool for an optimal design of
process control. In contradiction to the practical established
product release and validation by costly laboratory analysis that is
inevitably connected to time-delayed reactions on process
changes, a shift to a process-oriented validation and release of
process sequences in real-time in respect to the aspect of “Quality
by Design” (QbD} is intended. This indicates the demand for
a quality assessment which has to take place simultanecusly to the
manufacturing process and requires a comprehensive under-
standing of the process. However, the prompt on-line detection of
crucial key parameters such as biomass or substrate concentra-
tions is still difficult to achieve and often lacks the required
accuracy. For this reason, in the field of biotechnological process
control, numerous approaches have been undertaken to develop
corresponding indirect measuring methods that are capable to
cope with the complex behavior bioprocesses. An overview of
these software sensors is given in (de Assis & Filho, 2000; Becker &
Krause, 2010; Shioya, Shimizu, & Yoshida, 1999). The strategy of
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soft-sensing hereby offers various attractive properties (Fortuna,
Graziani, Rizzo, & Xibilia, 2007):

- they can represent a low-cost alternative to expensive hard-
ware devices, allowing the realization of more comprehensive
monitoring networks

- they can work in parallel with hardware sensors, supplying
useful information for fault detection tasks and thus allowing
the realization of more reliable processes

- they can easily be implemented on existing hardware and
retuned if system parameters change

- they allow real-time estimation of data, overcoming the time
delays of slow hardware sensors (e.g. gas chromatographs)
and therefore improve the performance of the contrel
strategies

In order to obtain the needed process information as
a premise for process control the basic demand is to combine
innovative sensor arrays (soft and hard sensing) with intelligent
control operations based on cemprehensive process and product
knowledge. Therefore, the second part of this paper gives a short
introduction to the theory of fuzzy logic as a powerful tool to
implement a priori knowledge into process control actions and
to handle uncertainty or vagueness by linguistic system formu-
lation. The third section treats various food and beverage
applications of fuzzy based reasoning, sensing and control
approaches. The last part presents the opportunities offered
through hybrid systems outlined by a comprehensive study of
applications.

2. Theory of fuzzy logic and fuzzy-based expert systems

The control of food and beverage manufacturing processes in
common practice is predominantly carried out discontinuously
and receipt based. This way of process control is accompanied by
permanent manual interactions and demands perpetual sample
taking, lab analysis and process surveillance by the operator
what is directly connected to higher economical efforts, incom-
plete process information and uncertainties. On that account
sophisticated methods of soft computing could offer an alter-
native way to overcome the discrepancy of cost efficient process
control and perpetuating claimed quality objectives. Knowledge-
based expert systems are programs able to deal with uncertain
and vague process information and mimic human expert-like
reasoning and decision-making within a certain domain of
expertise (Patterson, 1990, p. 496). The historical development of
fuzzy reasoning and expert systems in food industry is given by
Linko (1998). Since the implementation of fuzzy logic by Zadeh
(1965}, this technique has established as a fixed part for the
control of biotechnological and food processes {Besli, Tiirker, &

Gul, 1995; Davidson & Smith, 1995; Filev, 1991; Filev,
Kishimoto, & Sengupta, 1985; Herrera, 2007; Nyttle &
Chidambaram, 1993; Venkateswarlu & Naidu, 2000). The

theory of fuzzy logic is an extension to the classical crisp set
theory and allows the transition from the classical, bivalent
notion of truth to a gradual, multivalued concept of truth.
Characteristic for fuzzy systems is that they enable to present
a complex system behavior by simple linguistic formulations. In
contradiction to a quantitative, mathematical description of the
systems transfer behavior, the system behavior is expressed by
linguistic variables and algorithms that can be written as follows
(Jantzen, 2007):
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Rule1:  {IF ;3 is A1y AND x5 i5 A1y AND X1.0 i Arn THEN 7 s By } OR
Rule 2: {IF X315 Ag 1 AND X, 5 is Ay 5 AND X, 5 i5 Ay, THEN v, is 1"32} OR

Rule m : {IF X1 18 A1 AND Xp: 5 15 Ay 5 AND X 18 Apmn THEN y, 18 Em}

Here X, are the crisp input values, Am)n designate the fuzzified
input sets, respectively linguistic input variables and By, the
fuzzified output sets of the viewed system.

By means of those “IF-THEN"-rules, consisting of a premise and
conclusion part, the discrete, physical values (input variables
received e.g., from the sensor device) get fuzzified and connected to
linguistic variables. The entity of all rules reflects the expert
knowledge implemented in the control system. Fig. 1 shows sche-
matically the max-min-inference method with fuzzification and
defuzzification by calculating the centroid of the resulting
membership function.

The fuzzification is accomplished by transferring the crisp input
values into fuzzy variables. For this, the discrete input values get
mapped on a membership function and the degree of membership
to the corresponding fuzzy set, respectively linguistic variable is
calculated. Hence, the membership functions which are usually
expressed as triangular, linear line or phi membership functions
indicate the degree to which extent a particular element is
a member of the fuzzy set. Let X being the universe of discourse and
A is a fuzzy subset of X, then a fuzzy set A can be defined as a set of
ordered pairs (Jantzen, 2007):

A = {(X, uA(x)) ‘xeX} (1)

Here, 1; denoting a membership function and x a crisp value.
Using the max-min-inference method, first the membership degree
of the premise parts of the rules is determined via minimum-
operator. Afterward, following the center of area (COA) method,
all conclusion parts are interpreted as areas and the resulting fuzzy
set |y is determined via maximum operation. Calculation of the
centroid is accomplished by the following equation and delivers
a crisp value ygir (Jantzen, 2007):
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The above mentioned fuzzy inference system shows exemplary
a fuzzy controller configuration accerding to Mamdani (King &
Mamdani, 1977; Mamdani, 1976; Mamdani, 1977). However, for the
integration of fuzzy-based expert systems there exist further
controller models like the Takagi-Sugeno model as well as a great
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Fig. 1. Fuzzy inference scheme according to Mamdani.
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variety of inference engines and defuzzification methods whose
practicability has to be verified specifically for the corresponding
application or system. A detailed description of fuzzy logic controller
design and its applications is presented by Cao, Rees, and Feng (19974,
1997h), Chen, Chen, and Chen (1993), Lee (1990 ), von Altrock (1995 ).

3. Fuzzy reasoning, sensing and control

Control strategies using fuzzy logic for control operations and
decision making have encountered great interest to improve food
and beverage manufacturing operations during the last years.
Statistically research shows that especially in the field of quality
assessment and analysis fuzzy reasoning for decision support of
experts plays an important role (Miguel, 2002; Perrot et al., 2006).

3.1. Quality evaluation

Focusing on the field of quality assessment supported by expert
systems (ES) and fuzzy reasoning techniques there can be distin-
guished between two main directions. The first one treats the
chemical analysis of foods concentrating preliminary on providing
artificial intelligence for analytical instrumentation and lab anal-
ysis. Thus, it opens interesting possibilities to ease on-line moni-
toring of key chemical parameters in the laboratory. Applications of
expert systems in food analysis are quite numerous and can be
found in chemical analysis like automated ammonia monitoring
systems in fish farming, metal detection or to define olive oil origin
and have been reviewed by Miguel (2002} taking into consideration
a comparison of centralized and structural distributed approaches
of ES systems. The second main direction covers the topic of quality
evaluation not frem a lab based analytical peoint of view but
a generic, process-oriented, linguistic evaluation of product quality
through human expertise.

In this context particularly the fuzzy symbolic approach has
gained the interest of the food industry and is discussed in the next
section.

3.11. Fuzzy symbolic approach

The representation and inference of linguistic rules coming from
expert knowledge has developed to a wide topic of research and
food applications during the last 10 years and has developed to
a new concept under the name fuzzy symbolic approach based on
the concept of a fuzzy symbolic sensor (Mauris, Benoit, & Foulloy,
1994). The principle of this approach is to apply fuzzy inference
techniques to set up a commen linguistic platform that links a set of

State of the
product

words (symbols used by an expert to asses a process or product
quality) and numerical set. The strength of the relation between the
symbols and the numeric scale is expressed by a membership
function. In other words numerical and symbolic data is handled at
the same level to make it understandable both by the operators and
by a control system.

Following this approach, a detailed description of how human
knowledge can be implemented into the control strategy of food
batch processes if there is no sensing device and reliable process
model available is given by Curt, Trystram, and Hossenlopp {2001),
Curt, Hossenlopp, Perrot, and Trystram (2002}, Curt, Hossenlopp,
and Trystram (2007), Curt, Trystram, Nogueira-Terrones, and Hos-
senlopp (2004). The knowledge of an expert is modeled using the
theory of fuzzy logic and applied to control the chopping operation
for manufacturing the meat emulsion and the ripening operation to
obtain the dry sausage. For control two strategies are applied. The
first one is a batch-to-batch principle where the quality assessment
of the product is delayed until the end of the run and was applied to
the chopping cperation. The other case is that the product is
evaluated several times during the production process and the
control is carried out using a batch-to-batch approach combined
with feedback control. This strategy was used for the dry sausage
ripening process. Fig. 2 shows a schematically structure of the
symbolic approach and its implementation in sausage ripening
control. The necessary measurements to characterize the product
quality are sensory evaluations performed at-line by scheduled and
experienced operators. To give a linguistic characterization of the
chopping process, five sensory indicators, fat particle size, size
homogeneity, cohesiveness, firmness and adhesiveness were taken
from an expert as fuzzy input variables to calculate a global state
variable of the product named chopping degree {CD} using COA as
defuzzification. The objective is to obtain a meat batter with a CD
from 4.5 to 5. In dependency of the resulting CD the output values
rotation speed and mixing duration are changed. The rule base
comprises 19 rules, each of them associated to a parameter of the
two outputs. Similar to the chopping operation, the ripening
progress was divided into six stages and evaluated through human
sensory measurements. To characterize the ripening progress the
expert used four sensory indicators {surface humidity, color,
surface flora development, sticky defect) as input variables and
evaluates if the product changes accurately according to the
different ripening stages. If not, corrective actions are necessary and
the operator modifies the set values of the process parameters. The
rule base comprises 42 “IF-THEN" rules and proposes the necessary
control actions by adjusting the output parameters hygrometry set
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Fig. 2. Integration of a fuzzy symbolic approach for sausage drying (Allais, Edoura-Gaena, et al., 2007; Allais, Perrot, et al, 2007).
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value, ventilation time, duration and temperature set value. The
presented approach delivers a quite easy solution to integrate
quality assessment into a control system if there is no process
model or hard sensing device available. However, the stability of
the control system if sampling intervals change, are delayed or even
are omitted is not stated.

The idea of using fuzzy logic to represent the semantics of
human assessment is a quite recent field of research and mean-
while there exist quite a lot of similar approaches compared to the
aforementioned. (Davidson, Brown, & Landman, 1999} present
a multiple input-single output fuzzy control system for a contin-
uous, cross-flow peanut roasting process based on a process model
and a combination of process sensers and human assessment for
a feedforward and feedback control mechanism. In this context
inputs to the fuzzy control system comprise crisp values for air
temperature and roasted product color which is measured by an at-
line colorimeter. Additionally, linguistic assessment of operator is
performed evaluating peanut size and mass flow ratio as the
quotient of peanut mass loading and air mass flow. A total of 60
rules and a simple max-min fuzzy inference system were applied to
compute a single output of the controller being a numerical value
for residence time to adjust the motor speed of the conveyor. The
control model is a combination of fuzzy rules to estimate the
heating time and a data-based mathematical zero-order kinetic
model to describe the browning kinetics. Actually, the browning
model is the major weakness at the same time. It is very data-
specific and thus likely to fail if initial conditions of raw material
change or setup modifications are dene. However, to capture
process disturbances a feedback correction of browning estimation
via fuzzy error calculation is applied.

Further recent applications picking up on the symbolic approach
are presented by loannou, Perrot, Curt, Mauris, and Trystram
(2004), loannou, Perrot, Mauris, and Trystram (2004} and Perrot
et al. (2004). Both works do not implement any hardware sensor
as system inputs and rely exclusively on human assessment. The
first one presents the development of a control system based on
a fuzzy supported diagnosis and decision model to evaluate and
control product browning in a continuous browning oven. The
latter one (Perrot et al., 2004) introduces a decision support system
to control the process of cheese ripening and informing the oper-
ator on-line about the global state change of the cheese toward the
standard ripening trajectory at each sampling point.

The aforementioned applications show that using a symbolic
approach offers an uncomplicated method to implement human
reasoning semantics at each stage of the process where the oper-
ator is involved in measurement, diagnosis or control of a process.
The data is processes on a symbolic level which can be simply
accessed and used by the operator. In this respect (Allais, Edoura-
Gaena, Gros, & Trystram, 2007) present four approaches to asso-
ciate human expertise at a process level from laboratory results
focusing on at-line sensory measurements combined with lab scale
measurements, the use of lab expertise or experimental results for
extracting qualitative rules, a reverse engineering approach to
define the operator conditions for a new product and the
comparisen of cperators expertise with bibliographic data to
extract a kernel of knowledge.

Besides the advantage of presenting an simple way of accessing
human expertise for food control actions the symbolic approach
presents a method of standardizing quality assessment by unifying
different operators evaluations to one consistent evaluation tool. A
methodological guideline to handle expert-operator knowledge for
sensory quality assessment of food products is illustrated by Allais,
Perrot, Curt, and Trystram (2007).

However, the presented systems are to a high extend still
dependent on expert decisions and therefore do not fit to the
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automation aspect of process control. In respect to an automated
process control system the systems input should not merely rely on
operator's assessment. Fast developing techniques in computer
vision and improved sensor technology open various options for
reliable quality assessment in food preduction. For instance, {Iliev,
Lindquist, Robertsson, & Wide, 2006} present a fuzzy based
quality assessment system for food- and water quality evaluation
with an electronic tongue. Here, fuzzy clustering is used instead of
an operator’s estimation to obtain quality parameters. Compre-
hensive studies of computer vision techniques and applications
(Brosnan & Sun, 2004; Du & Sun, 2004, 2005, 2006; Gunasekaran,
1996) show high potential for reliable quality evaluation as pre-
sented by loannou, Perrot, Hossenlopp, Mauris, and Trystram
(2002} using a camera and image processing techniques for rep-
resenting human evaluation of sausage crusting based on fuzzy set
theory. Another critical point is the underlying modeling of the
assessment process being very specific concerning the production
setup and the operators, respectively experts’ estimation. Thus, it
cannot reflect a generic solution that can be transferred to
a different operating plant without greater modifications. Besides
this a further bottleneck is the difficulty to capture system
dynamics just by implementing expert knowledge. Accurate
process modeling is a key issue for appropriate control actions. This
is stated in recent publications pointing out the great scientific
importance of food process and bioprocess modeling (Gernaey,
Lantz, Tufvesson, Woodley, & Sin, 2010; Perrot, Trelea, Baudrit,
Trystram, & Bourgine, 2011; Trystram, 2010). Following this,
dynamic medels combining knowledge integration via means of
computational intelligence, data and mechanistic based
approaches together with multivariate process information from
on-line measurements of multi-sensing concepts should be able to
cope with the complexity and uncertainty of food production and
establish a platform for accurate contrel actions.

Besides fuzzy logic, the field of chemometrics offers certainly
various alternative approaches and opportunities for quality eval-
uation in food industry. However, existing chemometric tools,
which are already extensively discussed in (Abdi & Williams, 2010;
Lopes, 2005; Wold, Esbensen, & Geladi, 1987} cannot provide an
integrated process control strategy or direct control actions. Their
main scope addresses the purpose as an evaluation or analysis tool
(data mining, pattern recegnition, clustering and multi-linear
regression). Thus, they can be used to generate process informa-
tion for process monitoring reasons (e.g. soft-sensing) that can be
used for control actions, but in a separate control system. On the
contrary, fuzzy logic allows using a-priori process knowledge for
immediate integration into process control. The multidimensional,
non-linear mapping rules of fuzzy logic based systems allow
approximating every technically causal system. Chemometric tools
like Partial Least Squares, Principal Component Regression or
Support Vector Machines belong to the group of data-based,
mathematical approaches that do not contain a-priori process
knowledge. The process knowledge is stored indirectly in inde-
pendent parameters that do not necessarily represent the under-
lying biophysical and biochemical principles. Moreover, those
methods are limited by the linearity of the included measured
variables, as well as the boundaries of the data sets used for cali-
bration. Crossing those borders leads to misinterpretations, as the
underlying model is not valid any longer. Nevertheless, these
approaches are of increasing interest and provide powerful tools for
applications throughout the PAT environment { Lopes, Costa, Alves,
& Menezes, 2004; Pomerantsev & Rodionova, 2012). Therefore, they
provide highly sophisticated instruments for optimizing a system’s
control part and in consequence, play an important role in quality
evaluation of food as stated by Escuder-Gilabert, and Peris (2010),
Sadecka (2007).



Summary of results

S. Birle et al. / Food Control 29 (2013) 254—269 258

3.2. Sensing and control

Combining heuristic expert knowledge, mathematical or
mechanistic modeling techniques as well as the information
retrieved from direct or indirect measurements, prediction of
process parameters or trajecteries can be carried out and used for
process control strategies. In this section different feedback control
applications are discussed using direct fuzzy control determining
immediately the outputs from the knowledge base and on-line
measurements or indirect fuzzy control of process variables as
a kind of soft-sensing via phase recognition mainly based on
multivariate sensing approach of state variables.

Applications of direct fuzzy control appreaches can particularly
be found in the field of fermentation. Here, a very interesting area of
applied fuzzy control strategies is the production of baker's yeast
which is commonly operated as fed-batch. During the fed-batch
cultivation the necessary nutrients are supplied to the fermenter
while the cell culture and products remain in the bioreactor until
the end of the process. In contrary to batch operations the fed-
batch method allows to adjust the specific substrate uptake,
respectively the specific growth rate to a physiological optimal
value. Therefore, it is of crucial importance to set up an accurate
feeding control in order to avoid over- or underfeeding since both
result in lower growth rates and thus a worse productivity of the
plant. An industrial branch where this circumstance is of great
importance is the production of baker's yeast. Here, a direct fuzzy
control mechanism is presented by Kasperski and Miskiewicz
(2002), Miskiewicz and Kasperski (2000} using a Mamdani type
fuzzy controller to adjust nutrient dosage in a fed-batch baker’s
yeast process. The controller has five input variables (variation in
the amount of glucose dosed, variations in glucose uptake rate,
difference of glucose added and difference of glucose uptake rate
between the last two dosing cycles, maximum respiratory quotient,
quantity of each portion added and dissolved oxygen concentra-
tion). The knowledge base consists of 64 linguistic rules and a MAX-
MIN inference engine was applied. Center-of-area method was
applied to calculate the numeric value of the consecutive glucose
portion which is the single output of the system. Sensors were used
to measure COy and Oy content in the off-gas and the dissolved
oxygen concentration in the culture. The system is merely based on
linguistic expert knowledge and lacks a mathematical or mecha-
nistic process model reflecting the relationship of respirator
quotient, dissolved oxygen concentration and residual glucose
concentration in the broth. The proposed system is able to prevent
the occurrence of the Crabtree effect and thus giving a yield of 55%
and a maximum specific growth rate of 0.16 h .. However, results
for specific growth rate cannot be satisfying compared to similar
approaches (Besli et al, 1995; Mahjoub, Mosrati, Lamette, Fonteix,
& Marc, 1994). (Wang, Cooney, & Wang, 1979) report a constant
specific growth rate of 0.25 h ' and an overall cell yield of 0.51 gjg.
This might be due to the lack of a process model or direct
measurement of substrate concentration. In an approach given by
Besli et al. {1995}, the fuzzy controller uses a mathematical process
model according to (Sonnleitner & Kappeli, 1986) and the respira-
tory quotient to adjust the glucose feeding rate in a fed-batch
fermenter. The results show that the controller is able to cbtain
the maximum yeast production only limited by the oxygen transfer
capacity of the fermenter. As proposed by Mahjoub et al. (1994}
direct measurement of substrate concentrations as well allow
a more precise control of feeding rates resulting in higher specific
growth rates.

An insight of implementing fuzzy logic into the fermentation
process of a brewery is given by O'Connor et al. (2002). The applied
fuzzy system includes three parts. The first one uses fuzzy logic as
a control system that consists of two input variables: temperature
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and present gravity. A rule-base of six rules in the “IF-THEN" format
delivers the decisions for temperature control and to lead the
process so that a distinct present gravity endpoint is achieved. An
additional developed failure detection system tries to cover the
safety aspect of process control by medeling and taking into
censideraticn several opportunities of leakage flows. The latter part
is a predictive decision model for process optimization. In this
context the approach is undertaken to predict output values for
alcohol content, bitters concentration, colors, present gravity, pH
value and yeast cell count by focusing on the influence of temper-
ature as the sole input parameter. However, reliability of the pre-
dicted parameters is merely promising for wort present gravity and
pH values. Therefore, the fuzzy predictor needs improvement in
accuracy. Regrettably, the accuracy or prediction error is not stated.
The controlling parts of the system are able to compete with
conventional controllers.

A practical approach for a brewers’ yeast propagation control
system based on a fuzzy expert system is presented by Birle et al.
(2010). The fuzzy system receives on-line all relevant process
data from a sensor array measuring turbidity (yeast cell count),
extract concentrations, dissolved oxygen concentration, tempera-
ture and pressure. Via predefined model functions for extract
decline and cell propagation which use the propagation time as an
adjustable variable the plant operator sets the desired point of yeast
harvest. Based on the entered propagation time the fuzzy expert
system computes and controls the process temperature and aera-
tion settings to achieve an aspired biomass concentration of
80-100*108 cellsjml within the desired time space. The presented
method shows good results for propagation intervals from 24 up to
72 h. However, the above mentioned control strategies do not take
into consideration the physiological condition of the culture that
has great influence on the substrate consumption rate or product
formation rate. Due to that, the control behavior should be adapted
to the different physiclegical stages of the microorganism which
can be identified through the determination of distinct key state
variables. Hence, latest published research by Krause, Birle,
Hussein, and Becker {2011} point out the relevance of on-line
detection of crucial process variables via ultrasonic measurement,
principles of soft sensing and fuzzy logic control including mech-
anistic growth modeling.

3.2.1. Fuzzy based soft-sensing of process parameters and phase
recognition

As a tool of soft sensing, fuzzy inference is stated to be
a meaningful device for monitoring the physiological phase of
biological cultures (Horiuchi, Kamasawa, Miyakawa, & Kishimoto,
1993; Horiuchi, Kamasawa, Miyakawa, Kishimoto, & Momose,
1993; Konstantinov & Yoshida, 1989). The process is divided into
culture states like lag phase, growth phase, production phase and
declining phase. Splitting up the fermentation process into its
distinct phases allows to diskew its complexity into relatively
simple sub models for the different phases and thus permits a more
precise control. An approach for on-line physiological state detec-
tion using fuzzy inference based on error vectors is given by
Hiroshi, Keigo, Suteaki, and Ken-ichi (1995). They present
a combined system of fuzzy procedures and molar flux calculations
founding on a metabolism reaction model for yeast fed-batch
cultures that is able to successfully characterize the physiological
phases of cell growth and ethanol formation. However, an inte-
gration of the state estimator into an appropriate control system is
missing.

In this context another very detailed description of applying
fuzzy logic to fermentation and maturation shows the work of Hege
(1997). Based on the leading process parameters extract concen-
tration, pH value, diacetyl and ethanol concentration a fuzzy-
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decision module divides the process into 4 phases. A second fuzzy
controller calculates the deviations of the leading parameters from
their idealistic progression and then takes influence on the process
by adjusting the fermentation temperature.

Whitnell et al. {1993) present a fuzzy logic based expert system
used as a software sensor to estimate the endurance of fermenta-
tion time based on the parameters pitching rate, pitched volume
and viability. For this, a three stage fuzzy system for parameter
estimation was developed at the first instance giving an initial
prediction of fermentation time at the point of yeast pitching. Then,
an estimate of the vicinal diketone level (VDK) during the
fermentation process is proposed and finally, a revised estimation
of fermentation time based on VDK decline in the end state of
fermentaticn is suggested. The accuracy of the initially predicted
fermentation times was in between 24 h of the actual fermentation
times for 9 of 13 fermentations of the validation data set. However,
the VDK estimation needs further investigation in respect to reli-
ability and accuracy (only 4 of 7 usable validation sets were pre-
dicted within 24 h of the actual time} as the number of validations
is too less. Furthermore, the prediction is only based on evaluation
of history data sets and expert assessment. An evaluation tool for
the current process behavior and information is missing. In this
respect, assuming sufficient training data, the application or
combination with a neural network could deliver more reliable
results. Another point is that the system still needs feeding with
off-line measured data. Thus, a fully automated system is not given.

Another approach to ally process control and soft sensing is
presented by Kashihara, Mawatari, Inoue, Prior, and Cooney (1993}
who use a knowledge-based system as a software sensor in
combination with temperature control. Thereby, the application of
an expert system based on “IF-THEN" rules to control the beer
fermentation process by temperature manipulation based on the
pH-value of the suspensicn is presented. The employed knowledge
base comprises 6 major sets of rules in the matter of “IF-THEN". In
this context a knowledge-based software sensor for process
parameter estimation and filtering out erroneous parameters due
to sensor noise was developed. Control parameters (pH, amino acid,
sugar concentration) are estimated by the knowledge based system
by evaluating the reliability of the input data. This is done by
comparing the process data which consist of on-line (pH, dissolved
oxygen, temperature, time, exhaust gas data) and off-line analysis
data (amino acid, optical density, sugar) to standard prefiles data
that was cbtained from experiments at different fixed tempera-
tures. If the allowed constraints (based on an operator's expertise}
are exhibited, an error signal and a possible proposal for action are
communicated to the operator. The second element of the system
provides recognition of the fermentation process phases and their
separation into 3 stages {lag, growth, staticnary phase). Parameters
oxygen uptake rate, CO; evolution rate and fermentation time are
taken for phase recognition and compared to standard profiles that
were obtained for distinct temperatures. From the deviation the
expert system then changes the actual temperature in order to
guide the process into the right direction. Although the rules were
kept very simple the process could be controlled and kept within
tolerable constraints. This fact indicates that the pH value is
a meaningful parameter for a prosperous and economic contrel of
fermentation processes. However, the parameter estimation is
done by comparison with a standard profile and thus is not trans-
ferable to other systems without greater modifications. The
proposed system also is in need of off-line data analysis.

The several approaches described before show that fuzzy logic is
a powerful tool to control multivariate and non-linear process
behavior such as fermentation processes using its advantage of
approximate reasoning. By applying fuzzy sets one is able to give
a description of complex biclogical circumstances that can easily be
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handled and represented by modern data processing systems. The
rules containing the expert knowledge of the process can be set up
without any complex mathematic modeling and are easy to
understand. Summarizing, fuzzy systems can be interpreted as
a special case of local modeling techniques, where the input
domain is partitioned into a number of fuzzy regions represented
by multivariate membership functions (Azar, 2010). For each
region, a rule is set up that defines the system’s output in that
region. The class of functions that can be properly replicated by the
resulting model is identified by nonlinear mapping through using
the multivariate membership functions. However, not to neglect
are some disadvantages referring particularly to fuzzy logic’s
application by means of soft sensing and parameter or state esti-
mations. The simplicity of fuzzy logic systems is paid by their
inaccuracy in case of parameter prediction, for instance. The
imprecision is not immediately due to the fuzziness itself the
system is working with, but more to a fine tuning of the rules. In
most cases there exist just a few rules with the consequence that
a single rule may have big impact on the process although the rule
is rather inconvenient. Actually, the major drawback of the
described approaches above is that control systems based on fuzzy
logic are not capable of learning and therefore do not adapt to
changing process states or subtle variations of raw materials that
might affect the process behavior as well For this reason,
a continuous and independent optimization of the process by
means of expert knowledge is not possible. Those systems are more
suitable for maintaining distinct process boundaries and quality
corridors. Furthermore, only fragmental or no expert knowledge of
the process is available. Then, a manual tuning process of the fuzzy
parameters by modifying membership function andfor the rule
base of the fuzzy system has to be performed. To overcome the
drawbacks of mere fuzzy-based control systems, hybrid systems
including neural network or kalman filtering techniques for have
been develeped and will be discussed in the following sequences.

4. Hybrid fuzzy systems
4.1. Introduction to neural network techniques

Artificial Neural networks (ANNs} are an approach to virtually
mimic the actions of neurons in the human brain (Kramer, 2009).
Basically, they consist of artificial functional neurons that are con-
nected to each other. Neurons or units that are ordered on top of
each other are usually comprised to layers. The strength of the
connection between two neurons is expressed by a weight {Beale &
Jackson, 1990; Lippmann, 1987). The bigger the absolute value of
the weight, the bigger is the impact of the unit to the other unit.
Hence, the knowledge of a neural network is stored in its weighting
parameters. A widely chosen structuring is the so called multilayer
perceptron which is shown exemplary in Fig. 3. In artificial neural
networks a consistent approximation to a threshold function is
applied to accomplish non-linearity. The most common function
used in this context of constructing an artificial neural networks
activation level is a sigmoid function. Mathematically, the threshold
value or bias represents the peint with the highest gradient of
a monotonically increasing activation function. In the biological
sense it denotes the threshold that has to be reached to make the
neuron able to “fire”. To adjust the threshold value, a node can be
equipped with an additional weighted input, called bias weight ij
(Dreyfus, 2005; Simon, 1994}, The obtained value due to non-
linearity is then handed to all subsequent connections at which
a multiplication with the corresponding weights is done as well.
This procedure continues throughout all layers until the output
values yp are obtained.
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Fig. 3. Structure of a multilayer-perceptron.

Besides the topology, the training and learning algorithms are
another crucial aspect in implementing a neural netwerk. Using
means of feedback control mechanisms allows adjustments in the
structure and parameterization of the network via self-
modification. Depending on the applied training and learning
algorithms connections are cleared, added or strengthened. A
widely used training method is the backpropagation algorithm
commonly applied to multilayer feed-forward-networks censisting
of an input layer, an output layer and at least one hidden layer
(Lippe, 2006). The main idea of this method is to run the neural
network backwards in order to compute the gradient by setting up
the partial derivative of an error function with respect to all
weights. The single elements of the gradient quote in which
direction and to which extend the error function is changed if
a corresponding weight is modified.

4.2. Soft sensing via artificial neural networks

In this section the practicability of ANNSs for soft sensing appli-
cations with special focus on beer fermentation and maturation is
described. Besides the economical factor fermentation time, the
most important parameters of primary beer fermentation are the
concentrations of ethanol and sugar. The successful control of this
process via temperature and pressure adaptation is highly depen-
dent on the knowledge these trajectories. In addition to that
infermaticn about thresheld concentrations of aroma components
like diacetyl, esters or phenols is of crucial importance for final
product quality. The lack of appropriate hardware sensors that
allow an accurate on-line determination of those key process
parameters has led to the development of soft sensing approaches.
An example using a backpropagation neural network for estimation
of ethanol concentrations is given by Syu and Tsao (1994). A three
layer (3-3-7) neural net using initial free amino nitrogen concen-
tration, initial oxygen concentration and initial viable cell count to
predict produced ethanol concentrations at timely intervals of 24 h
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over seven days of brewing fermentation is presented. A back-
propagation learning routine using delta learning rule was applied
as algorithm demonstrating good simulation results. However, an
on-line capability is not possible as input values are determined off-
line.

An approach of combining fuzzy logic and an extended kalman
filter is presented by Simutis, Havlik, and Liibbert (1992). A system
is presented to reduce the uncertainty of the applied fermentation
model and hence to improve on-line state estimation and time
prediction in case of productional scale beer fermentation. The
whole process is piecewise modeled corresponding to process
phases. Founding on that, break dewn of a comprehensive process
model into several single state models and parameter estimation is
carried cut with a fuzzy-extended kalman filter (FEKF). The model
assignment to a given situation is accomplished by means of fuzzy
reasoning. For modeling of the fermentation process an adapted
version of the model of Engasser et al. {(1981), including tempera-
ture effects and eliminating the biomass concentration was used.
On-line measuring comprises temperature, gas flow rate at the
fermenter output and volume of the liquid phase. Based on this the
total CO, evolved is permanently computed. Total sugar concen-
tration was analyzed off-line every 24 h. Process operationalization
consits of 5 process phases described by six further models. The
fuzzy expert system consists of 5 input variables that are process
time, sugar concentration process temperature sum of evolved CO;
and CO; evolution rate. The only output variable is the detected
output phase, chosen from the 5 predefined classifications. Results
of the realized experiments show that the FEKF is able to achieve
sufficient predictions with an average prediction error of sugar
concentration of 2.72 g/l after two off-line sampling peints. The
presented system is adopted by Beil et al. (1992) for state estima-
tion of sugar and ethanol concentrations to predict fermentation
trajectory for a certain temperature profile. In this context
a comparison to a fuzzy-neural network trained with a back-
propagation algorithm is made. According to the premier approach
for each identified process phase a separate ANN is set up instead of
an extended kalman filter. Both systems are strictly correlated and
reflect the off-line analytics quite well, whereas the fuzzy-ANN has
a slight advantage (average prediction error of sugar concentration
2.1 g/l) in respect to the predicting performance compared to the
FEKF (average prediction error of sugar concentration 2.8 g/1). For
both appreaches it could be shown that the separation of the
process into several process phases led to significant improve-
ments. Moreover, the implementation of fuzzy logic allows
a smooth transition from one process phase to another.

Two dynamic models were developed by Corrieu (2000} and
compared to estimate density and ethanol concentration as well as
end time during primary beer fermentation for two types of beer.
One model is based on a neural network approach and the other
one takes into consideration empirical developed temperature
dependent fermentation kinetics. First, the development of a soft-
ware sensor for wort density and ethanol concentration based on
an artificial neural network is described. In this respect the other
aim was to give a prediction of the fermentation process. The
dynamic prediction medel in form of an ANN has two inputs, the
relative progress factor and the temperature at the current time,
two hidden neurons and one output which being the predicted
relative fermentation process one step (one step corresponding 2 h)
ahead. The progress factor is a dimensionless variable and related
to time dependent differential equations of wort density, released
CO5, ethanol concentration and residual sugar concentration. The
temperature follows a fixed temperature profile. Network training
comprised 22 fermentation experiments using a quasi-Newton
algorithm for optimization of the network coefficients by mini-
mizing the sum-squared prediction errors. CO; release rate was



Summary of results

262 S. Birle et al. / Food Control 29 (2013) 254—269

obtained from a differential pressure measurement and correlated
linear with density variation and ethanol concentration. For density
estimation the average error is 0.27 °P and 0.12 mL{100 mL for
ethanol which is a quite acceptable and sufficient error under
practical conditions. After half of the CO; is released fermentation
end time is predicted with a mean error of 475 h. However,
a weakness of the kinetic model is the fact of a not negligible offset
of the differential pressure sensor due to noise and the requirement
of a highly accurate detection device for wort density and volume
for the calculation of COy to be released. Despite this, final wort
density must be known in advance, as well as total CO; to be
released. In addition to that and as indicated from the auther, the
underlying models need more investigations in order to improve
the reliability of time prediction. Nevertheless, the system points
into the right direction: to replace costly measuring devices by
means of soft sensing. The presented satisfying results for density
prediction emphasize this progress.

The work of Enders {1999) presents a software sensor for diacetyl
estimation using a dynamic neural network with the aim to replace
time-consuming and costly off-line analysis. The basic idea of the
software sensor for diacetyl is to determine the concentration of
diacetyl during beer fermentation from easily measurable physical
factors like temperature, pressure, extract concentration, turbidity
and pH value so that a laborious off-line detection of diacetyl is not
necessary. The software sensor consists of a dynamic neural network
based on an adapted resilient backpropagation training algorithm.
The neural network receives the input values as on-line measured
values from the process and delivers as output an estimated value of
the current diacetyl concentration. Bygone input values are taken into
consideration as well. For training the applied algorithm compares
the estimated value with the actually measured value and uses the
deviation to compute in several cycles the stepwise adaption of the
neural networks’ weights. Although there is some discrepancy and
wider limits of variance in predicting the trend of the commanding
variables and diacetyl concentrations the presented approach actu-
ally is able to decrease off-line sampling to a great extent and thus,
reveals the high potential of software sensors and what can be ach-
ieved in respect to their field of application in the brewing industry.
Riverol and Cooney (2007 ydescribe estimation of the ester formation
during beer fermentation using neural networks. The influences of
fermentation temperature and dissolved oxygen content in the
production of ethyl acetate and iscamyl acetate are studied. Therefore
a comparative study between analytical determined kinetic param-
eters and their estimation via an ANN is done showing a prediction
accuracy of around 1.0%. A mathematic method is established to
control the production of esters in quantitative respect. Functions
containing rate constants of ester formation for the stationary and
logarithmic phase were set up. The experiments were carried out
with variation of temperature and dissolved oxygen within fixed
ranges. Influence to esters and ethyl acetate and their formation rate
respectively was analyzed and studied. The developed equations
were used for comparing the performance of the neural network in
the prediction of the ester formation and thus its fitness for soft
sensing. The results obtained confirm the results of previous studies
(Nakatani, Fukui & Nishigaki, 1991).

Ancther approach of an ANN-based software sensor is pre-
sented by Mileva (2008) describing an artificial neural network-
based approach for prediction of antioxidant characterizations
during the brewery fermentation. Three variables are predicted:
Total antioxidative capacity, amount of glutathione and total
phenols. Input variables are the biomass content, limiting substrate
concentration and alpha-amine nitrogen. For experimental surgery
three yeast strains have been investigated. The applied neural
network structure includes one hidden layer consisting of five
neurons and output layer containing three output neurons. The

44

transfer functions selected for each layer are tan-sigmoid transfer
functions in the hidden layer and linear transfer functions in the
output layer respectively. For training process a Lev-
enberg—Marquardt algorithm is used. The simulation and valida-
tion tests show a high accuracy of the designed software sensors.

Having a leok on large scale preduction of baker's yeast
Karakuzu, Tuerker and Oeztuerk (2006) present two soft sensors
based on a three layered feedforward neural net to estimate
biomass concentration and specific growth rate. The inputs of the
ANN are fermentation time, respiratory quotient as the ratio of COy
production rate to O, uptake rate and molasses feeding rate. The
soft sensors are embedded in a Mamdani type fuzzy controller that
determines substrate and air feeding rates in order to maintain set
points for specific growth rate and dissolved oxygen concentration.
Controller inputs are the errors of specific growth rate and dis-
solved oxygen concentration as well as elapsed time, ethanol
concentration and changing amount of dissolved oxygen concen-
tration. Estimation results of the soft sensors are quite satisfying for
fixed initial process conditions. However, it is shown that the soft
sensors are very sensitive to unintenticnal variations of initial
conditions like inoculums size. Actually, this is also one of the major
drawbacks of the aforementioned approaches. Sensitivity analyses
and robustness studies in respect to error-prone, incomplete or
missing input data is generally neglected. Despite their advantages
of learning abilities, optimization abilities and connectionist
structure, ANNs some disadvantages like slow convergence speed,
the need of sufficient training data and the syndrome of a “black
box™ behavior (Jack, 1996).

To overcome the weaknesses of ordinary static neural networks
Becker et al. present a dynamic approach of a neural network for
on-line fermentation optimization and prediction of trajectories of
gravity, pH value and diacetyl (Becker & Delgado, 2002). In
contradiction to static neural networks, modified dynamic neural
networks, like self-recurrent neural networks, are capable to
consider the process history of a current running process and
therefore are able to handle time dependencies of state variables
and the dynamic attitude of the fermentation process in a more
accurate way. Based on the works of Peters (1999) and Enders
(1999) the presented system uses separate neural networks for
each state variable to predict and each output variable is conjoined
and fed back to the input layer of each neural network. The inno-
vation is the implementaticn of “finite- impulse response” neurons
(FIR) that substitute the weights of a standard feed-forward
network at the connection between two neurons. The neurons
comprise three time-delay elements that shift the current activa-
tion y;(t) of the neuron i in three future time steps to the subsequent
storage position. The application of those time-delay neurons is
that the activity of each neurcn can be delayed fer a certain number
of time steps and thus, can be taken into consideration for the
output calculation of the neural network By minimizing a cost
functional j the trajectory of the control variable temperature T is
optimized:

N-1
J = o)+ 3 2+ D), u(D), ] —x(t + 1)} (3
t—0

Here the applied system equation fx(f),u(t),t] = x(t+ 1) is
added a multiplier term A(t} resulting from the scalar Hamilton
sequence (Bryson, 1975, 1999; Srinivasan, Palanki, & Bonvin, 2003).
The control vector u(t) depends on temperature T and time £ The
vector x(t} defines the state variables gravity, pH value and diacetyl.

The obtained results for prediction are quite convincing for
gravity. Compared to a reference course the fermentation time
could be reduced by about 20% which leads to a better and more
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efficient utilization capacity as well as a reduction of variable
resource costs. However, the major drawbacks are the lack of reli-
able and precise software sensor for diacetyl estimation. Moreover,
the applied training data for the neural network was very specific
and came from one brewery. For this reason the system is not
conveyable to another brewery without additional modifications
and training steps.

Fellner et al. (2003} present another hybrid and innovational
approach to combine and integrate a-priori knowledge in a feed-
forward neural network using functional nodes. The described
methods are for the use in a software sensor applied to diacetyl
formation during yeast fermentation. For this a set of differential
equations describing the progress of diacetyl formation is
embedded into arbitrarily located functional nodes of the neural
network. For training a gradient descent method is applied, where
the error gradient is calculated by a backpropagation algorithm.
The hybrid approach increased the efficiency of training and
improved the generalization and robustness. The amount of
training data sets could be reduced by 50%, giving the same accu-
racy compared to a conventicnal approach. For evaluation a set of
practical relevant constraints and criteria was defined and the ob-
tained results from the hybrid approach were compared to a pure
ANN without any functional nodes showing a better efficiency and
accuracy of prediction for the hybrid model.

It is obvious that artificial neural networks play an essential role
in various life science applications. Due to this importance some
very relevant aspects concerning the engineering part of neural
networks should be discussed. The engineering part and particu-
larly the choice of pre-processing the data and feature extraction
are one of the most important parts in establishing an artificial
neural network and assessing the final system’s performance
(Bishop, 1995). In this context, the complexity of pre-processing can
vary from simple linear transformations of input or output data to
complex operations reducing the dimensionality of input data in
order to condense available information into representative
features. Beyond that, the incorporation of prior knowledge into the
networks structure or its pre-{post-processing sections can be used
for modifications of the training process. As the training procedure
may contain an iterative algorithm, the pre-processed data set
should be used to train the ANN. For applications using on-line
learning each new data point hast to be pre-processed prior to its
delivery to the network. One of the most common tools of pre-
processing is a simple rescaling of the input variables (Bishop,
1995; Bishop, 2007). This is very advantageous if different vari-
ables differ by several orders of magnitude according to their units
of measurement. Applying linear transformations allows to having
similar values for all inputs. Thus, each variable is treated inde-
pendently and for each variable its mean and variance with respect
to the training set is calculated. Normalization ensures that all input
and target (in case of regression issues it might be suitable to apply
linear rescaling to target values) variables are then of order unity
and the weights can be assigned an appropriate random initiali-
zation before training. If there exist interdependencies among
input variables there can be applied a more complex rescaling,
known as whitening, allowing for correlations amongst the vari-
ables (Fukunaga, 1990). Those transfermatien techniques count for
continuous variables. In case of discrete data an appropriate
approach is to distinguish between ordinal variables having natural
ordering and categorical variables. A detailed description of trans-
forming discrete variables into continuous variables is given by
Bishop (1995).

Multilayer networks are known for their capabilities as
universal approximators. Here, the contrariness of overfitting the
network on the one hand and choosing the right number of
neurons and layers to achieve a sufficient accurate approximation
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of a distinct problem on the other hand, has to be considered. There
exist various possibilities to improve the generalization {(inter- and
extrapolation} of a neural network. One method is regularization,
where the performance index is modified by applying a term that
penalizes the networks complexity. One of the most common
penalty terms is the sum of squares of the network weights. The
basic idea is to having small values for the weights by using the
performance index. The difficulty is to select a proper regulariza-
tion parameter for obtaining a smooth network response but not
having the network overfitted. One of the most successful methods
for choosing the accurate regularization parameter is Bayesian
regularization described by Dan Foresee and Hagan { 1997 ), MacKay
(1992). A detailed and comprehensive study of generalization and
overfitting is given by Hagan and Demuth (1999}, Hagan, Demuth,
and Beale (1996}, Hagan, Demuth, and Jesds (2002}, Haykin (1994).

Another very serious point in processing the data is to handle
missing data, e.g. due to sensor failure. A possible solution could be
to fill the missing data via a regression function over other variables
using available data. However, this might be error-prone as this
approach underestimates the covariance in the data due to the
noise-free regression function. Managing missing data can be
treated by expectation-maximization (EM) algorithm as stated by
Ghahramani and Jordan {1994). Ahmad and Tresp (1993} suggest
managing missing data by integration over the corresponding
variables, weighted by the appropriate distribution. Missing data
points then are filled with values randomly (e.g. by a simple Monte
Carlo approximation) drawn from the distribution as stated by
Lowe and Webb (1990). However, this approach needs the distri-
bution to be modeled.

The way of identifying unknown parameters or feature selection
is based on two components. The first one is to determine a crite-
rion to assess which subset of features is best (selection criteria).
The second is to find a procedure to search through potential
subsets of features (search procedure). Numerous search procedure
methods are proposed in the literature. One of the most known
methods are the stepwise (Kittler, 1978) or Sequential Forward
Selection (SFS)/Sequential Backward Selection (SBS), branch-and
bound (Narendra & Fukunaga, 1977) and genetic algorithms (Il-
Seck, Jin-Seon, & Byung-Ro, 2004). The stepwise search is one of
the simplest algorithms, adding or removing single feature to or
from a given subset. However, this approach is considered to be
sub-optimal as it suffers from the “nesting-effect” (features that
were once selected/deleted cannot be removed/reselected after-
ward). The branch-and-bound approach uses monotonic evaluation
function for discarding subsets not meeting a specific bound.
However, this method gets inefficient for feature selection prob-
lems treating a large number of features, particularly because it
may need to search the entire possible region to find the optimal
solution. Genetic algorithms propose a combinatorial search tech-
nique based on both random and probabilistic measures. A fitness
function is applied for evaluating subsets of features. Combinations
via cross-over and mutation operators produce the next generation
of subsets. In summary the GA employs a population of competing
solutions, evolved over time, to converge to an optimal solution.
The solution space is searched in parallel. This targets to avoiding
local optima. Latest published studies propose the use of Swarm
optimization like Ant Colony Optimization for feature subset
selection (Al-Ani, 2005). A general review of feature selection
techniques in bioinformatics is given by Saeys, Inza, and Larranaga
(2007}

4.3, Hybrid systems

To close the gap between fuzzy logic and neural networks
hybrid systems denoted as fuzzy-neural or neural-fuzzy networks
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have emerged in the field of biclogical process engineering,
covering the advantages of both computational philosophies
{Gupta & Rao, 1994}. Once, the parts of a fuzzy system have been
arranged in a parametric form, the inference engine turns into
a parametric model that can be automatically tuned by the learning
procedure of an ANN. The merging of fuzzy logic and neural
networks leads to an integrated system combining the advantages
of both technologies (Fullér, 2000).

However, only little applications can be found for process
control in industrial food production. A fuzzy neural network (FNN}
system is presented for temperature control of a sake mashing
process by Honda, Hanai, Katayama, Tohyama, and Kobayashi
(1998). The structure of the FNN is shown in Fig. 4. The inference
system is simplified using singletons in the consequence part. The
tuning of membership functions in the premise part and the
identification of fuzzy rules is performed by adjusting connection
weights via backpropagation learning algorithm. Subsequent to
learning, the determined connection weights can be described
linguistically.

A hybrid control strategy for industrial scale temperature
control of a 300 m® cylindroconical fermenter based on quality
parameter estimation of diacetyl is described by Gvazdaitis (1994).
Therefore, an extended version of the neural network described by
Simutis, Havlik, and Liibbert {1993} is used. The control part is
realized with a fuzzy-based expert system and by implementing
a cost function, cooling costs could be reduced by 20% maintaining
the quality claims at the same time. Kurz (2000) uses a cognitive
approach for observation and centrol of beer fermentations. A
multisensor system (pH, gravity, turbidity, temperature) for better
observability of beer fermentation and maturation is presented.
Particularly the on-line determination of diacetyl by using an
artificial neural network was aspired. In this context, a fuzzy logic
system for fermentation state detection based on on-line infor-
matien was used. The prediction of diacetyl was accomplished by
a cognitive estimator for diacetyl based on a multilayer feedforward
neural network. To adapt the ANN, a supervised training of the
network was done with the sum of squared errors as error measure.
There are 5 input neurons for the ANN consisting of temperature,
time, gravity, turbidity and pH value, 9 hidden neurons and 1
output neuron. Classification of the states into 4 phases is

small mediumW big

(Al\) B (O

performed by a fuzzy based detection system. The information
therefore used is gravity, estimated diacetyl, turbidity, pH value and
process-time. A set of 10 rules is used to characterize the different
phases in a reliable manner. The presented method provides
a practicable and promising approach stating a potential to reduce
fermentation time by 25%. However, the applied ANN needs more
training data so that it is sufficient for diacetyl determination in
other breweries and other yeast types. To ease the training process,
a central training center is suggested for data pre-processing and
training of the neural net. The systems strength is its robustness.
The displayed rule base delivers a declined, but still reliable
detection of the several fermentation states although measurement
failures occur.

As avery recent approach (Ghoush, Samhouri, Al-Holy, & Herald,
2008) applies an adaptive neuro-fuzzy inference system {(ANFIS) to
formulation and modeling of emulsion stability and viscosity of
a gum-protein emulsifier in a model mayonnaise system. In this
case, ANFIS was used to model and determine the properties of the
resulting mayonnaise with temperature and rations. The system
takes two techniques for parameter updating as shown in Fig. 5. For
the membership function parameters in the premise part a gradient
descent backpropagation neural network is applied, while for the
consequence part least squares method is used for identification. In
the forward pass of this hybrid learning method functional signals
are passed until the fourth layer and consequent parameters are
detected by least squares prediction. In the backward pass, error
rates are processed in the other direction updating the premise
parameters via gradient descent. The system is able to produce
a sufficient average prediction error of output properties of 4%.

Following this way, it is possible to combine the low level
learning capabilities and computational strength of neural network
techniques with sophisticated humanlike IF-THEN thinking and
reasoning of fuzzy systems. ANFIS structures offer quite attractive
features for transparent implementation in food applications like
uncomplicated implementation, fast and accurate learning capa-
bilities, good generalization abilities, easy traceability due to
linguistic fuzzy rules and simple incorporation of linguistic and
numeric knowledge for problem solving {Jang & Chuen-Tsai, 1995;
Jang, Sun, & Mizutani, 1997). However, it should be noted that with
growing system complexity and amount of variables the degrees of

emall i big
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Fig. 4. Structure of a fuzzy neural network. Circles and squares reflect units of the neural net and we, W, wg 1 and —1 are the connection weights. Membership functions in the
premise part are tuned and fuzzy fules are identified by adapting the connection weights we, wy and w; by backpropagation algotithm. After the learning procedure, determined
weights w; can be described linguistically, e.g. IF x, is big AND x; is small, THEN output is 0.5 (Honda & Kobayashi, 200C).
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Back-propagation NN (Tuning premise)

Fig. 5. General ANFIS architecture. Nodes in layer 1 are adaptive nodes with node functions (membership functions) and parameters are referred to premise or consequent
parameters. In layer 2 all nodes are fixed nodes multiplying incoming signals and sending product output (firing strength of fuzzy rule). Fixed nodes in layer 3 calculate the ratio of
the one firing strength to the sum of all rules’ firing strength (normalized firing strength). Adaptive nodes of layer 4 contain node functions (ie. linear combination of input
variables) and parameters are referred to consequent parameters. The fixed single node of layer 5 computes overall output as the sum of all incoming signals (Ghoush et al, 2008).

freedom for parameter calculatien increase tremendously, leading
to high computational effort especially when least-squares esti-
mation is applied. Using gradient descent has the limitation that all
membership functions and inference functions have to be differ-
entiable, hence, making this technique more employable to Takagi-
Sugeno fuzzy systems compared to Mamdani type ones {Azar,
2010}. Another point is that they tend to get stuck in finding local
optima instead of global optima (Beyer & Schwefel, 2002; Schwefel,
1993). Thus, evolutionary optimization strategies like genetic
algorithms or particle swarm optimization that perform random
search in the parameter space are applied to various control oper-
ations (Andrés-Toro, 1997; Andrés-Toro, Girdn-Sierra, Fernandez-
Blanco, Lbépez-Orozco, & Besada-Portas, 2004; Benjamin,
Emmanuel, David, & Benjamin, 2008; Mohebbi et al., 2008;
Perrot, Mé&, Trystram, Trichard, & Decloux, 1998; Xiao, Zhou, &
Zhang, 2004). The merging of knowledge based fuzzy systems,
neural networks and evolutionary optimization strategies have
moved into the recent focus in process optimization and control as
it combines their individual strengths. This trend has been
reviewed by Shapiro (2002} and is reflected in current applications
(Oliveira & Schirru, 2009; Zhen, 2011). However, applications in the
food and beverage sector are very scarce and offer a wide range of
scientific research.

Taking a lock on the engineering part the choice of appropriate
sampling times is a serious issue in every control application,
however, little attention is given to this topic in most of the
proposed approaches. Derived from the Shannon's theorem the
Nyquist frequency is twice the bandwidth of the signal and states
that the minimum sampling frequency must be at least twice that of
the highest frequency component present in the original signal in
order to avoid aliasing (Leis, 2011). However, a too high sampling
rate wastes computational capacity and is likely to produce addi-
tional noise in the signal.

This issue gets very important in terms of time serious predic-
tions with neural networks (Frank, Davey, & Hunt, 2001) to find the
appropriate sample rate and to identify a correctly sized input
window. In case of on-line sensing, a variable is measured or
sampled on-line to create a series of discrete data points that are
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equally spaced in time. The rate at which the samples are taken
determines the maximum resolution of the underlying model
However, this does not state that the model with the highest data
density has the best predicting performance. Due to this, the right
choice of sampling rate is of great importance for the control
strategy. Current studies of controller design use a variable-period
sampling approach for networked control systems with randem
time delays (Liu, Liu, Zhang, & Li, 2007; Rahmani & Markazi, 2012;
Sadeghzadeh, Afshar, & Menhaj, 2008; Xinlan, 2009). The main
problem of networked control systems are the network-induced
delays randomly occurring at data exchange between sensors,
actuators and controllers across the network. This has great influ-
ence on the system’s stability as a whole. The stability of the net-
worked control systems with variable sampling period was already
studied by Jiangiang, Qian, Dongbin, Wen, and John (2007). The
induced time delay can be predicted on-line using a back-
propagation feedforward neural network. The predicted time delay
is then chosen as the sampling period leading to an improved
performance.

Another problem rises, if measurements of distinct key variables
cannot be performed on-line due to e.g. the lack of accurate on-line
sensors and additional off-line measurements have to be per-
formed. Taking into consideration fermentation processes, i.e., only
a part of fermentation variables is measured on-line. Most variables
are merely available through off-line laboratory analysis resulting
in delayed and infrequent measurements reducing the system's
observability. To overcome these challenges various adaptive
control strategies have been developed allowing estimation of
important not directly measurable variables like substrate or
biomass concentrations. In this context remarkable work was done
by Bastin and Dochain (1990) in the field of bioprocess control. This
work presents a detailed and comprehensive study on the on-line
estimation of state variables and parameters. Special focus is put
on extended state observer techniques of Luenberger and Kalman
type, as well as adaptive control of bioreactors. The on-line esti-
mation of unknown variables and their implementation into the
control law reveals significant advantages of compensating model
and process uncertainties. The predicted state variable information
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allows complementing hard sensor data or delayed measurement
information and provides frequent feedback signals to the
controller leading to an enhanced control performance. For this
reason bioprocess state estimation is an essential tool in advanced
process control. A comprehensive review of different estimation
methods is presented by Venkateswarlu (2005). In relation to food
process control, a summary of relevant applications using (non-)
linear adaptive and predictive control design strategies is given by
Perez-Correa and Zaror (1993). An interesting approach for on-line
prediction in fermentation using adaptive neural models is pre-
sented by van Breusegem, Thibault, and Chéruy (1991). The
proposed approach applies a modified sliding window learning
procedure that allows handling delayed andfor infrequent
measurements. A different method of adaptive estimation and
control is presented by. This approach applies an extended multi-
rate adaptive estimation algorithm to predict nutrient levels in
a fed-batch fermentation using frequent on-line measurements of
COs evolution rate and infrequent, delayed off-line measurements
of biomass and substrate concentration. However, infrequent off-
line sampling still burdens the observability of a system. In case
of non-uniformly sampled multirate systems studies propose to
recover the continuous-time system from its non-uniformly
sampled discrete-time model {Ding, Qiu, & Chen, 2009). Systems
with two or more operating frequencies are called multirate
systems, where the control updating period is not equal to the
output sampling period and the whole pattern is repeated every
period T. Such systems exist numerously throughout the field of
PAT {Gudi, Shah, & Gray, 1994; Gudi, Shah, & Gray, 1995). In this
context different approaches can be found, e.g. for parameter
estimation using an auxiliary model based on recursive least-
squares algorithm (Liu, Xie, & Ding, 2009} or an extended
stochastic gradient algorithm (Xie, Liu, Yang, & Ding, 2010}.

5. Conclusion and outlook

The presented methods of process control and soft sensing
reveal great opportunities to overcome the dilemma of economic
interests on the one hand and accurate process control to ensure
product quality on the other hand. The overall aim should be to
ensure a constant quality within predefined corridors simulta-
neously keeping an eye on cost efficiency of the process with
respect to the necessary technical equipment. Hence, the under-
lying demand is to provide comprehensive process intelligence via
innovative sensor concepts to improve process continuity, process
safety and process efficiency. In consequence a major task is to
combine innovative sensor principles with modern methods of
data analysis and modeling using process- and product knowledge
(Krause et al, 2011). Thus, software sensors provide very useful
tools in monitoring and controlling food and beverage processes,
particularly fermentations.

The first part of this review presents approaches which have
been achieved by now in respect to means of fuzzy reasoning and
the implementation of expert knowledge with deeper focus on the
fuzzy symbolic approach and quality evaluation. The main advan-
tages of fuzzy controllers are that they present quite fast, problem-
related and meaningful tools for a smart centrol of complex system
showing a non-linear behavior. In this connection, the description
of the system’s behavior can be achieved by means of linguistic
expressions and integration of expert knowledge what is way
simpler than using methods of complex mathematics. Likewise
positive is the traceability of the obtained results. Furthermore,
fuzzy controllers are designed for the whole working range and
therefore a distinct point of operation does not need to be the
center on which the developed algorithm has to be exactly
designed for. By choosing appropriate definitions of fuzzy sets and
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fuzzy rule bases the controller behavior can be forced with the
necessary sensitivity for the whole operating range. Therefore,
fuzzy controllers are suitable even to formulate firmly nonlinear
control rules and distinguish themselves by their robustness.

As mentioned in the beginning the major drawback of fuzzy
logic is the lack of learning ability. Hence, an automated adaption to
a steadily changing environment is not possible. Errors implanted
in the initial phase can hardly be repaired at a later point of time.
Applying the convenient method of defuzzification can be of crucial
importance. A trade-off between computation performance and
quality of the result has to be dealt with. Therefore, the great
potential of fuzzy logic lies mainly in the field of securing definite
stakes of quality with a smooth process control. The suitability of
fuzzy logic in the sense of software sensors is rather limited. For
optimization requirements further systems like evolutionary
algorithms have been developed. Those strategies of optimization
are acknowledged to be very efficient and fast finding the optimal
solution for a distinct problem. The property of their robustness lies
therein established that no assumptions of the actual problem have
to be made and that there exist several possibilities of suitable
solutions. Thus, different ways are tested simultaneously to reach
the optimum providing several potential solutions. As they are able
to cope with ill-behaved problem domains, exhibiting attributes
such as multimodality, discontinuity, time-variance, randomness
and noise they seem to be particularly suitable for parameter
optimization of fermentation processes. Regrettably, there exist
only sparse applications and experience in the field of food and
beverage production. This might be mainly due to the fact that EAs
are very computationally intensive and frequently require massive
parallel implementations in order to deliver usable results within
an acceptable timeframe. Hence, their on-line application to real-
time control is mostly infeasible up to now. However, this
circumstance opens space for further scientific research.

A majer part of this paper deals with applications for soft
sensing by artificial neural networks and hybrid systems addi-
tionally offering means of process control. On account to their
ability to treat noisy, incomplete and contradictory data, neural
networks are still highly popular for distinct prediction operations.
However, their practical application is weakened by several
disadvantages. For instance they need long periods of training and
the choice of suitable sets of training data can be very tedious.
Learning success as well as generalization ability (overfitting)
cannot be guaranteed. The most weighing obstacle for industrial
implementation is their negative attribute of a “black box” behavior
which does not allow comprehension of why a particular decision is
made. In order to manage this disadvantage most of the presented
approaches use many small neural nets instead of displaying the
whole process with one big net. Another step to overcome these
weaknesses is accomplished by the use of hybrid systems such as
neural fuzzy systems. Those systems have the advantage that the
inputs and outputs can be linguistic expressions, while optimiza-
tion and inference is accomplished by the flexibility of a neural
structure. The intelligent combination of these two technologies
into an integrated system seems to be a promising direction to
optimized process control reducing development time, as well as
costs and impreving accuracy of the underlying fuzzy model.

However, the up to now presented soft sensing approaches need
more investigation with particular respect to robustness and
sensitivity analysis to error-prone input data in order to compete
with the steadily changing process conditions and satisfy the high
quality demands in the case of large scale production. Especially in
the event of predicting and determination of the crucial quality
parameter for fermentation and maturation of beer, the diacetyl
concentration, is yet not possible in a reliable and practice-relevant
extent. Furthermore, most of the described approaches for process
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control mechanisms try to guide the process along empirical found
concentration or temperature profiles. Particularly parameter
estimations are made on the basis of fixed temperature profiles.
This is not close to practical application where the main process
influencing variables have to be adjusted from batch to batch due to
permanently changing raw materials. These circumstances have
great impact on the kinetic parameters of the ongoing process
reactions and therefore make the underlying process models fail
with respect to precise prediction. Another point is the lack of
implementing mechanistic models or chemometric evaluation
methods for quality parameters like yeast vitality, sedimentation
behavior, fluid dynamics in cylindroconical tanks or yeast floccu-
lation properties and for this reason the lack of software sensors
detecting those essential quality parameters, respectively. This
opens a great potential of research particularly in the field of
brewers’ yeast propagation where still only little applications can
be found in this direction. In conclusion, the merging of intelligent
computation techniques together with innovative sensor concept
and generic process medeling provides promising oppertunities for
a more reliable, efficient and accurate sensing and prediction of
crucial process parameters as well as robust control strategies.
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Additional complexity is added, as initial process conditions can-
not be kept constant due to quality variations in raw materials
or pretreatment of the biological culture. In most cases, accurate

1 Introduction

In the food and beverage industry fermentation processes play

an essential rele for the uniqueness of the final product. How-
evet, these kinds of processes contain living organisms that have
their individual intrinsic behavior. Thus, they can be charac-
terized as multivariate; nonlinear, and time-variant which is a
challenging task with respect to process monitoring and control.
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hussein@tum.de), Center of Life and Food Sciences Weihenstephan,
AG BioPAT, Technische Universitit Mimchen, Weihenstephaner
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Abbreviations: PID, proportional-integral-derivative; PLC, pro-
grammable logic controller; RMSE, root mean squared error; YCC, yeast
cell concentration
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process models are not available with respect to the underlying
biochemical reactions and dynamic change of model parame-
ters [1]. There is also a lack of reliable sensors for measuring
critical process parameters in real-time and the data provided by
those sensors is biased by noise and uncertainty.

In the field of bioprocess engineering monitoring, model-
ing and control has made significant progress during the last
two decades and tackles the above mentioned challenges [2-5].
Recently, several critical reviews focused on the importance of
sophisticated monitoring and control strategies have appeared
[6-8]. In this context, particular attention is paid to the im-
portance of the recently launched process analytical technology
initiative [9-14]. One of the most important key messages of
this initiative is real-time measurement and determination of
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essential process variables and critical quality parameters. Con-
sequently, the aim is to achieve product release or approval of
process sections in real-time by evaluating the product quality
simultaneously to production. In the context of cell cultivation
processes, the state variable biomass concentration is certainly
one of the most important values. However, up to now it cannot
be measured directly in an on-line process. Therefore, indirect
measurements based upon soft sensing techniques such as arti-
ficial neural networks are applied [15-21].

With respect to process control, the application of expert
systems plays an increasing role, particularly in the food and
beverage sector |6, 22-24]. The ability to simultaneously pro-
vide a mathematically precise but manageable system definition
is rather limited. In this regard, many expert systems make use
of the concept of fuzzy logic, introduced by Zadeh [25]. It uses
the principle of linguistic description by means of IF-THEN
algorithms in order to mimic human reasoning and process as-
sessment. Due to the capability to handle complex nonlinear
processes and uncertainty in data, the concept of fuzzy logic
meanwhile has become a powerful tool in intelligent control of
biological based systems [26-29]. However, despite the great va-
riety of sophisticated monitoring and control approaches, most
systems have never been transferred and tested under real-world
conditions. Also, the problems arising with on-line sensing of key
variables and preprocessing of the obtained data before feeding
to the actual control system are rarely addressed.

In this work an on-line monitoring and control system for
yeast propagation under brewing conditions is presented. The
term “brewing conditions” will be explained below. The fuzzy-
based expert system influences the process behavior within pre-
defined boundaries such that the process is pushed to a desired
final state. Therefore, the system triggers operating temperature
and aeration intervals in order to keep the process on track. The
reference input trajectories of substrate and biomass concentra-
tion are calculated using a metabolic growth model. Temperature
dependency of the specific growth rate and substrate uptake is
included using an adapted square root model proposed by Kurz
et al. [30,31]. The necessary process information to calculate
the current states is provided by a comprehensive sensor array
comprising on-line measurement of OD, operating temperature,
pressure, density, dissolved oxygen, and pH value. Due to sig-
nal noise and systematic signal disturbances, methods of data
pretreatment and signal processing using frequency domain fil-
tering are discussed in this context. The next section will give a
brief characterization of the yeast propagation process subjected
to brewing conditions.

The yeast propagation process is a crucial step in the produc-
tion sequence of beer and plays a central role in the entire yeast
management process of the brewery. Here, the required quan-
tity and quality of yeast biomass is produced for the subsequent
step of primary beer fermentation. Therefore, it has immediate
influence on the sensory and physical quality of the final prod-
uct. Furthermore, the propagation of yeast is right in between the
two main production sequences of wort production and primary
fermentation, making it a temporal bottleneck of production.

Usually, the propagation process is done batch wise, caus-
ing the yeast to pass the different growth phases of a static cul-
ture (lag, exponential, limitation/inhibition, stationary, decline).
In coordination with the production schedule the propagation
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plant is filled in bypass mode with beer wort, which is used as
substrate. In contrast to other technologies like baker’s yeast pro-
duction, the growth medium cannot be composed in a definite
way. The composition of beer wort and the amount of limiting
nutrients strongly depends on the quality of used raw materials
and the way they are processed. Typically, common lager beer
wortis characterized by high concentrations of sugar (> 100 g/L).
This leads to regulation effects such as the Crabtree effect and
causes distortions in the respiratory chain. That phenomena is
expressed by oxido-reductive growth of Saccharomyces sp. [32].
As a consequence, a limited respiratory capacity can be observed
and ethanol is produced [32,33]. Besides this, there exist several
other constraints of biomass growth such as lack of nitrogen
(<40 mmol/L NH;-equivalent) [34] and trace elements, e.g.
Zinc (< 0.2 mg/L} [35,36]. Beyond this, the provision of oxy-
gen is a critical point and ethanol production during the growth
process causes additional inhibition effects, as well [32,37-39].

Furthermore, at the end of the process the biomass is not sep-
arated from the liquid phase. Instead, the whole yeast suspension
is used to pitch the successive fermentation. This circumstance
prohibits the addition of adjuncts, e.g. to adjust the pH value.

On account of the special conditions mentioned, monitoring
and control strategies that are suggested in literature, cannot
be applied without comprehensive adjustments, e.g. the feed
control of baker’s yeast production [26,40-43].

2 Materials and methods

2.1 Plant setup and experimental

2.1.1  Technical plant configuration

The plant setup where the experimental runs were performed
is schematically shown in Fig. 1. It consists of a pressure tank
with a total volume of 120 L. The working volume is 70 L and
the residual part is left for foam generation. Homogenization
is performed using a circulation pipe and an impeller pump.
During the circulation the suspension is aerated with sterile air.
The aeration is performed in intervals using a ventilation jet
by Esau & Hueber. The volume flow was fixed to 40 NI/h by a
rotameter. To adjust the temperature, the volume flow of gly-
col running through the cooling jackets is regulated by opening
or closing of a valve. In order to avoid a high mortality rate of
yeast cells, no direct heating with steam is performed. Temper-
ature increase is merely achieved by the metabolic activity of
the yeast and application of energy by aeration and the pump.
The most important sensors in the tank are temperature (Pt 100,
accuracy < +0.1°C), pressure (Negele, NSK-358/0750/01, accu-
racy £0.5%), dissolved oxygen (Mettler-Toledo, InPro- 6800,
accuracy +/-0.5%]), and the pH value (Mettler-Toledo, InPro”

3250, accuracy < +0.1 pH units). In the circulation line tem-
perature (Pt 100, accuracy < £0.1°C), OD (Optek-danulat, AF
16, accuracy < £0.005%), and the density (Centec, Rhotec ™,
accuracy + 0.0001 gfem?) are detected. Density is measured
by vibrating U-tube in a bypass. The density and temperature
are used as inputs to a linear regression model developed by
the authors in order to predict the apparent extract concen-
tration in g/100 g, which has in comparison to the pure den-
sity value, a higher significance to the user in terms of process

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 1. The setup consists of a cylindro-conical tank with a working volume of 70 L. For homogenization and aeration the fermentation
broth is pumped through a circulation pipe. The on-line measured values comprise temperature, pressure, dissolved oxygen, pH value,
optical density, density, volume flow, liquid and foam levels. Implemented actuators are valves for aeration, cooling, heating, and a circulation
pump. All signals are analogue (4-20 mA) and the basic control and processing of signals is performed on a PLC system. Curved lines
show connections to actuators and straight lines connect sensors. Nominal values for aeration and temperature control are provided by
the fuzzy-based expert system.

assessment. All sensor signals are analogue (4-20 mA) and fed
to a programmable logic controller (PLC). On the PLC, a pulse-
pause-modulation for adjusting the aeration intervals and a PID
controller for temperature control was programed. The pulse-
pause-modulation opens and closes the membrane valve cor-
responding to the outputted aeration times of the fuzzy expert
system. The PID controller adjusts the temperature in the tank
by regulating the volume flow of glycol through a pneumatic
valve. The desired temperature value for the PID controller is
provided by the fuzzy system.

2.1.2  Experimental procedure and analytics

For all experiments, beer wort produced from standard malt
extract (Weyermann , “Bavarian Pilsner”) was used. Therefore,
the malt extract was mixed with water and boiled for 15 min.

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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During boiling hop pellets were added (25 IBU) in order to stay
close to the industrial production process. After boiling coagu-
lated proteins were removed and the wort was cooled down. The
obtained wort resulted in an extract content of ca. 12 g/100 g.
In order to have approximately equal yeast quality for start-
ing the propagation process, a preculture was raised. For this,
Saccharomyces cerevisiae sp. of strain W34/70 was added to 4 L
of the above mentioned wort. An initial concentration of about
5 x 10° cells/mL was obtained. The culture was shaken at 90 rpm
at 25°C and propagated for 24 h. At the end a yeast cell concen-
tration in a range of 100120 x 10° cells/mL had to be reached.
Thereby, the decline in sugar concentration, which is also de-
noted as extract concentration, should not exceed a difference
of 4 g/100 g. Otherwise, this is an indication that the culture
starts shifting to the anaerobic metabolism [44]. Additionally, at
the end of the process, the extract concentration should not go
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Figure 2. Interaction of the single components of the system. The metabolic plant model provides reference trajectories, respectively, set
points for yeast cell count (YCCieference), €xtract concentration (ESeference), and their derivatives. Those values are compared with on-line
predicted yeast cell count (YCC,ua1) and on-line sensor data. The resulting errors are used as inputs for the corresponding fuzzy temperature
controller and fuzzy aeration controller. Here, eycc is the difference between actual YCC and nominal YCC. éycc is the derivative over time.
The same applies to the extract calculations (eg,, éc.). Based on that information the fuzzy system provides new setpoints for temperature

(Teer, new) and aeration (Pulsece; new, Pausese; new).

below 6 g/100 g, as the culture slowly begins to flocculate, which
leads to inhomogeneity of the suspension. The preculture then
was used as inoculum for the main propagation process. Prior
to pitching, the propagation tank was filled with 70 L of beer
wort. The wort was kept circulating for 30 min and the turbidity
(OD) was determined in order to correct the measured value
after pitching. For pitching, yeast from the preculture is added
and the process is started with an initial yeast cell concentration
of 5 x 10° cells/mL. In the beginning of the process the desired
duration in hours is entered by the operator. The fuzzy expert
system then triggers process temperature and aeration intervals
based on sensor information, expert knowledge, and a process
model which is described in the next section. Figure 2 shows the
interaction of the different system components. All experimental
runs were performed at atmospheric pressure. The desired final
process states and process corridors are stated as follows:

® Min. yeast cell concentration to be attained: > 100 x 10°
cells/mL

Drop in sugar concentration (extract): AE < 4g/100 g
Final extract concentration: Egy,, < 6 /100 g

Range of temperature: 8-20°C

Flexible run times: 24-96 h

The ranges are based upon empiric knowledge and fit to
common industrial standards [44,45].

Off-line lab analytics were performed as reference measure-
ment for yeast cell count, extract concentration, ethanol concen-
tration, and density. The yeast cell concentration (YCC) was de-
termined by plate count using a Thoma counting chamber [46]:

10°cells 4
YCC| ——— | = Counted cells x —
mL 256

xdilution rate x 10° (1)

The error of this method is stated to be < 1%. However, the
method is highly dependent on the human factor.

Extract concentrations, ethanol concentration, and density
were measured by Anton Paar, Alcolyzer Beer Analyzing System.
The measurement errors are as follows:

® Extract: = 0.01% w/w
® Ethanol: + 0.01% v/v
® Density: + 0.00001 g/cm”®

All off-line measurements were performed threefold.

2.2 Plant model

An adapted metabolic model following the approach of [30,31]
is introduced. The model is used as a reference biomass trajec-
tory and serves the expert system to evaluate if the process is
still on track and meets the required performance. The model
includes respiratory metabolism on sugar and ethanol and fer-
mentative metabolism on sugars, as well. Furthermore, it takes
into account limitation effects occurring due to lack of specific
nutrients, such as sugar, nitrogen, ethanol, and oxygen. Addi-
tionally, a mathematical square root model is included modeling
the temperature dependency of the specific substrate uptake rate
by introducing a factor fi,, and the maximum specific oxy-
gen uptake rate qoo,mx. The considered substances and rates are
summarized in table (A) of Fig. 3. Dependent on the surround-
ing medium, the model characterizes the states of metabolism
following the approaches of [47-49]. The metabolic pathways
are expressed in eight reactions [30]:

2.2.1 Oxidative degradation of glucose
CHp,05 + 6H,0 7> 6C0O, + 12NADH, + 2ATP  (2)
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A B
Substance Formula Rate Parameter Value Unit Reference
Glucose CeHa20s T Yorson 3527 ‘mol/mol 32]
Biomass CHy 7600.57No 15 s Vst .72 mol/mol [471
Nitrogen source NHg [ Yye 1.12 mol/mol [47]
Dissolved oxygen 0, o HX 1.79 mol/mol [32]
Carbon dioxide CO, A OXx 0.57 mol/mol [32)
Water H:O Ty NX 0.15 mol/mol [32]
Ethanol C;H;0H To c 0.095 mol/mol [47, 49]
Glycerol C3H0;5 Tay c, 0.266 mol/mol 147
NADH/H* NADH, Napiz [ 1.5 mol ATP/mol NADH/H* [31]
ATP ATP [~ K 2.2 mol ATP/C-mol biomass  [31]
K 5.1 mol ATP/C-mol biomass  [31]
g 0.1825 mol/mol
n 0.09 mol/mol
w 0.335 mol/mol
C W, 0.469 mol/mol
Oxidative growth on glucose M 1.698 mol/mol
e 0.633 mol/mol
5 N Kiem
Ty = Qymax * Min (mm) ey fremp = ke X
Yo = marp o+ X D
Te=Tgy=77=7a=0 Parameter Value Unit Reference
Oxido-reductive growth on glucose: o e 0.486 mol/malh 32]
5 N Kieh Qoz,6.max 0.25 mol/mal/h [30)
Ts = Qsmax * Min (H'N - ,,") Koo+ B Jeemp Lev X Mare 0.013 mol/mol/h 47
o=y s X Ky 28 mmolA 182)
0 Kiotno Ko 0.00121 mmol/ (58]
o = qozmax * Koo 1 E ¥ K, 22 mmol/l 32)
oy =Tz=Tg=0 K, 2 mmol/ [59]
Fermentative growth on glucose: Kian 600 mmol 160]
s " X Kiatno 217.39 mmolA 161)
Y2 = Qomaz * min (m . “") et from * bt X K. 055 mmoln 132)
re=mup s X tag 8 h
tugatn 0 h
To = Gozmax * 0, fuens
v 0+ K, Kietnot+E
ri=ry=rs=0 E
Oxidative growth on ethanol: Parameters l,,,‘L Q02 max
o £ N K  Kis b 0.02782 0.0209
Y0 = Gozemax * MiN (mr FrR. N+ ,{") Koo + B Kigt 5 LrenX T 270.7616 276.3958
ro=marp X c 11.98 0.2823
T 308.1539 305.8223

Fi=ry=ry=rs=0

Figure 3. (A) Considered substances and rates. (B) Applied stoichiometric parameters of the plant model. (C) Kinetic equations and known
rates for the distinct metabolic rates: divided into oxidative, oxidoreductive, fermentative growth and in rare cases oxidative growth on
ethanol [30]. (D) Applied kinetic parameters of the plant model. (E) Square root parameters for modeling temperature dependency.

2.2.2  Respiratory chain
NADH, + 10, 5 SATP + H,0 3

2.2.3  Biomass formation of glucose

9CeHpOs + ZNH, + KATP 3 CHyxOox N + ¢COs
+nNADH, + wH,0  (4)

2.2.4  Ethanol formation of glucose
CoH 204 = 2C,H;0H + 2CO; + 2ATP (5)

2.2.5 Glycerol formation of glucose
CeH 206 + 2NADH, + 2ATP 5 2C;H04 (6)

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

2.2.6 Maintenance i
ATP = ADP (7)

2.2.7 Oxidative degradation of ethanol
C,H;0H + 3H,0 - 2CO, + 6NADH, (8)

2.2.8 Biomass formation of ethanol

eC,H;OH + zNH; + K ATP + Weﬁzog CHirxOoxNxx
+¢.COx + n.NADH,  (9)

The metabolic turnover rate of a specific substance can be ex-
pressed as the sum of the turnover occurring in the correspond-
ing single reactions. Therefore, the relation of the turnover of
all substances and the reaction rates can be written as a linear
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equations system. Here, the vector r denotes the vector of the
turnover of the single substances, A is the matrix of stoichiome-
try and v represents the vector of the reaction rates [30]:

T -1 0 —g-1-10 0 0
Ty 9 0 1 0 0 0 0 1
T o 0 —z 0 0 0 0 -z
Ty 0 -050 00 00 O
e T A= 6 0 c 2 0 0 2 ¢
Ty -6 1 w 0 0 0 =3 —w,
T, O 0 0 2 0 0 -1 —e
Ty o 0 0 0 2 0 0 O
INADH2 12 -1 n 0 -20 6 n
Tate L2 & -K 2 -2-10 —-K,
n
Ta
T3
Ty
V= ' (10)
Ts
Tz
Ts
r=Axv (11)

Consequently, in this system 10 equations and 16 rates have to be
calculated. It is assumed, that NADH/H+ and ATP are neither
accumulated nor excreted in the cell (ruapm = 0, rarp = 0). The
table in Fig. 3B shows the final applied stoichiometric coeffi-
cients. The parameters g, w, n, w,, n., and e are calculated from
the balance of the single elements. In order to completely solve
the equation system, kinetic equations have to be calculated for
the different metabolic states of oxidative growth (OG), oxido-
reductive growth (ORG), fermentative growth (FG), and oxida-
tive growth on ethanol (OGE) [30]. A summary of the applied
kinetics and rates for the different metabolic states is presented
in the table of Fig. 3C. The final applied kinetic parameters are
listed in Fig. 3D.

Rates for OG (r. =y, =1, =15 =0),0RG (ry, =17, =15 =0),
FG(ro =1 =r; =13 =0)and OGE (r; = r; = ry = r; = 0) are
assumed to be known. To shift between the different metabolic
states, switching points are calculated by comparing the generic
kinetic equation for substrate uptake r, with critical rates depen-
dent on substrate and oxygen concentration. A detailed descrip-
tion of the switching process is given in [30,31].

The parameters L, (initial lag-phase) and L, (diauxic lag
phase) are calculated using sigmoid functions [30]:

(12)

(13)

Liew =

T+ e (e

The temperature dependency of substrate uptake is expressed
introducinga factor f .., , which is calculated using a square root
model originally developed by [50,51]. The model was adopted
and further developed by [30]:

Fremp = (0% (T = Tia) % {1 explex (T— T} (14)
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The temperature dependency of oxygen uptake expressed by
o max 15 calculated analogous with different parameter values
forb, T, , ¢, and T,,, . The used parameters are shown in
Fig. 3E.

The model was tested using experimental data, It was ob-
served that the values for the temperature dependent parameter
o2, mex had to be adapted in order to fit the experimental results.
A comprehensive listing of all applied model parameters is given
in [30]. For this work, some parameters had to be adjusted for
a better fitted model. The consumption rate for nitrogen z was
found to be —0.105 mol/mol instead of—0.15 mol/mol. Diauxic
lag-time parameter fi,, ., was set to 0 h. There is no diauxic
shift to ethanol consumption expected. The initial lag-time #,,
was fixed to 8 h. Figure 4 shows off-line measured yeast cell con-
centration by plate count and the simulated trajectory using the
metabolic modeling approach. It shows that the model is capable
to catch the process dynamics and follow the process trajectory.
The root mean squared error (RMSE) to the off-line sampling is
RMSE = 10.1 mmol/l.

2.3 Signal processing of relevant data and parameter
adjustment of basic PID controller

2.3.1 Signal filtering

In general, fermentation processes are exposed to a wide range
of external and internal disturbances, which reflect on the mon-
itoring system. Within the investigations of this study, heavy
influence on the measured turbidity and dissolved oxygen due
to the pulsed aeration was observed. The duration of pulsing
(aeration on) and pausing (aeration off) cycles is controlled by
the fuzzy system and will be described later on. In order to make
the signals usable for a control action, they had to be filtered.
Therefore, a signal analysis in the frequency domain was done
in order to determine the impact on the signal by switching the
ventilation on and off. In order to smooth the dissolved oxygen
signal a low pass filter was applied (stop band 0.06 Hz, end of
pass band 0.009 Hz, sampling frequency 10 Hz). Because the
turbidity signal is also influenced by the aeration cycles, a cor-
responding low pass filter (stop band 0.06 Hz, end of pass band
0.01 Hz, sampling frequency 10 Hz) was applied.

2.3.2  PID controller tuning

In order to adequately follow the provided nominal temperature
by the fuzzy system, the PID controller of the PLC system had to
be adjusted and tuned. As most of the physical system param-
eters such as heat capacity of cooling liquid or flow conditions
were unknown or uncertain, a pure mathematical modeling of
thermal dynamics was not possible. Thus, the thermal transfer
function was determined experimentally by analyzing the pro-
cess reaction curve which was obtained by applying a unit step to
the cooling system of the plant. To simulate the disturbances to
the system, the pump was set to 30% and a continuous air flow
of 40 NI/h was applied. In its simplified physical representation,
the system can be considered as a thermal system with at least
two different energy storages. The behavior of such a system
corresponds to a proportional element with second order delay

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 4. Experimental validation of model. The dashed line shows a simulation of the model. The circles are the reference measurements
by plate count. The error bars represent the SD of a triple determination. In total seven experiments were performed for validation.

(PT, element) [52]. The general transfer function of such a sys-
tem is

K»

O = T o< (1w

(15)
The time constants T; and T can be calculated by drawing
the inflectional tangent and determining delay time T, and
transition time T, . A detailed description is given in [52].
The resulting transfer function is

—13.48

GO = G5By < (1 1 9284

(16)

A PID controller was designed and tested using Matlab ™. The
general equation is

1
G(s)=Kp (1 + T + TJS) (17)
The resulting PID parameters are K, = 0.44, T; = 0.16 ms and
Tq = 0.5 ms. The closed loop response to a unit step results in
an overshoot of 7.1%. This is acceptable, since the output settles
down within a tolerance band of £ 0.1°C.

2.4 Neural network model for the prediction of yeast
cell concentration (YCC)

2.4.1  Neural network model

The yeast cell concentration cannot be sensed directly. Therefore,
a software sensor was built using on-line sensor data of OD,
pH value, and density in order to predict the YCC. The feed-
forward neural network consists of an input layer with three
inputs (OD, pH value, density), a hidden layer with three nodes
and an output layer providing the estimated cell concentration.
The net was trained using backpropagtion Levenberg-Marquardt
algorithm [53-55].

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

58

As a performance index the mean square error is taken. It is
used by the algorithm to adjust the network parameters [56]:

Foo=E[(t - a,)] (18)

Here, p, is an input to the network, ty is the corresponding target
output, and x denotes a vector containing the network’s weights
w and biases b. The Hessian matrix can be approximated as

H=]"] (19)
The gradient is computed as
g=1J"e (20)

In this regard, ] denotes the Jacobian matrix, which contains
the first derivatives of the network errors e , with respect to the
weights and biases. In one iteration step, this approximation to
the Hessian matrix is used in a Newton-like update:

Ko = xe— [177 + pd] 7 e (2n

Here, x;. is a vector of current weights and biases, I is the unity
matrix, and p¢ a scalar. A detailed description of the algorithm
is given in [56].

For training, testing, and validation a dataset comprising 64
off-line samples and corresponding on-line data from four com-
plete batches was used (70% training, 15% testing, and 15%
validation). Additionally, the net was simulated and validated
using the on-line sensor signals (26 815 data points) of a sep-
arate batch. The architecture and validation of the network is
shown in Fig. 5 (A, B). As it can be seen, the neural net is able
to trace the trend of the process. However, of note is the de-
crease in the turbidity signal during the first 8 to 10 h, although
the reference measurement of yeast cell concentration stays al-
most constant. Consequently, this kind of parabolic decrease is
the main reason for the resulting root mean squared error of
prediction (RMSEP) of 4 » 10° cells/mL. It is assumed that a
falling out of colloidal protein particles (cold trub) is occurring,
However, this phenomenon has to be investigated in more detail
in future work to reveal potential for nonlinear mathematical
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compensation in order to further improve the RMSEP. Beside
this, due to the formation of gas bubbles that particularly affect
the signal of the bending vibrator, some outliers and oscillations
are observed.

2.5 The fuzzy system

The main objective of the fuzzy expert system is to guide the
process along a desired trajectory in order to produce sufficient
biomass at the right time. Therefore, the system triggers the tem-
perature and aeration intervals as the main influence parameters.
The temperature controller consists of two inputs. The first in-
putdenoted as ey is the difference between a reference biomass
trajectory provided by the mathematical growth model (plant
model) and the actually estimated biomass concentration. The
second input is the first derivative over time of this difference de-
noted as éycc. The output is a temperature increment A T that is
added to the initial temperature at the start of the process. The re-
sulting temperature value is then forwarded as nominal value to
the PID controller of the PLC. The sampling time for exchanging
information with the PLC was fixed to 10 s. A schematic illus-
tration of the inputs and the output fuzzy variables, respectively,
fuzzy sets and the applied rule base of the temperature controller
is given in Fig. 6A. For the linguistic partition of the inputs and
outputs only piecewise linear membership functions are used.
The fuzzy input variable eycc has the fuzzy sets low, matched, and
high. The sets of éycc are named as slower, matched, and faster.
The output variable consists of five fuzzy sets win, neg, zero, pos,
and max. The applied inference engine uses the well-established
max-min-method. For defuzzification, centroid defuzzification
is used. A detailed description of theoretical mechanisms of fuzzy
logic controllers is given in [57].

59

sented in (B).

The fuzzy aeration controller has the task to adjust the open-
ing and closing times of a membrane valve that allows the yeast
suspension to be provided with sufficient oxygen. Similar to
the temperature approach the aeration controller is based on a
reference trajectory. This is the decline of extract given by the
plant model. The basic idea is that a consumption of more than
4 g/100 g from the beginning to the end of the process indi-
cates that the culture has shifted too much to the anaerobic
metabolism due to the lack of oxygen. Thus, if the actual extract
concentration deviates from the desired path, the length of the
aeration intervals (pulse and pause times) is adjusted. First of all,
a fuzzy state variable aeration_state is calculated within a range
of —1 and 1 to express the magnitude and direction of changing
the duration of the aeration on a normalized scale. The fuzzy sys-
tem’s structure for that is similar to the temperature controller.
Next, the state variable is taken as input in combination with
the estimated cell concentration YCC to output a fuzzy number
within the range of 0 to 1 for the aeration intervals SP_Pulse and
SP_Pause. The defuzzified, numerical value is taken to get the
new aeration setpoint in minutes and to scale it within predefined
limits @ and b:

Pulse_setpoint = (ay — b)) X SP_pulse + b, (22)
Pause_setpoint = (a, — b,) x SP_pause + b, (23)
Those limits a; = 10 min, & = 20 min, b; = 4 min, and

b, = 10 min are based on the experience of an expert. The rea-
son for this expert knowledge approach is that there is only very
sparse and uncertain information about kinetics of mass trans-
fer, fluid dynamics in the reactor and bubble size distribution
that would allow setting up a mechanistic model to calculate an
adapted provision of oxygen. Figure 6B shows schematically the
aeration controller for adjusting the pulse times. The adjustment
of pause times (not shown) is analogue to the aforementioned.
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Figure 6. (A) Schematic outline of inputs, output, and rule base of the applied fuzzy temperature controller. (B) Schematic illustration of

the aeration controller to adjust pulse times.
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IF ey is matched AND éyc. is faster
IF eycc is high AND & is slower
IF eyccis high AND éy.. is matched

IF eyccis high AND é.. is faster

THEN AT is neg
THEN AT is zero
THEN AT is neg

THEN AT is min
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Figure 7. (A) An experimental run over two days. From the 22nd hour onwards, the cell count concentration (YCC,cya) starts to deviate from
the desired trajectory (YCC eference) - In order to finish the process within 48 h, the temperature is gradually changed until both trajectories are
matching within the allowed tolerance. The experiment was repeated four times resulting in similar trajectories. The off-line measurements
are shown as circles. All off-line measurements were performed threefold. The error bars represent the SD of the off-line measurements.
{B) One day experimental run. The upper temperature limit of 20°C was exceeded in order to counteract the deviations from the reference
trajectory. One experiment was performed. The off-line measurements are shown as circles and were performed threefold. The error bars
represent the SD of the off-line measurements. (C) Industrial scale run over 4 days. The controller parameters of the PLC system were not
adjusted. This is reflected by the noisy temperature signal. Off-line measurements are shown as circles. All off-line measurements were
performed threefold. The error bars represent the SD of the off-line measurements. The industrial experiment was performed three times.

However, instead of the cell concentration it uses the dissolved
oxygen content as input.

3 Results and discussion

In this section results of the applied system are shown for small
scale (70 L) and a test at industrial scale with a working volume
of 8.500 L. In Fig. 7A and 7B experimental scale trials over a
period of two and one day are presented. It can be observed
that the temperature is increased and decreased depending on
the divergence of the actual cell concentration to the reference
trajectory. In consequence, the on-line predicted yeast cell count
and the reference trajectory of the mathematical growth model
are converging and the desired target of 100~120 x 10° cells/mL
is reached. The decline of extract concentration does not ex-
ceed a AE of 4 g/100 g and it does not undergo the limit of
6 g/100 g at the end of the process. The RMSE of nominal and
actual YCC trajectory is 3.9 x 10° cells/mL. The deviation at
the end of the process is negligible (0.3 x 10° cells/fmL). This
shows that the expert system is able to keep the process within
the desired constraints. The batch presented in Fig. 7B is rela-
tively short in comparison to industrial standards. There, batch
cycles varying from 48-96 h are state of the art. However, the
capability and productivity of the system had to be tested. The
challenge with respect to process control and a short batch run
time is the aforementioned intrinsic time-variant behavior of

10
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the system until a clear growth reaction is observable due to an
applied temperature change. Therefore, the propagation process
was started on a higher temperature level. It can be seen that
the desired final states of cell and extract concentration could
be achieved, as well. However, the control had to compensate
for the deviations of the actual cell count trajectory from its
reference path occurring from the 12th h onwards. Thus, the
suggested upper temperature range of 20°C was exceeded, vio-
lating the previously mentioned temperature corridor. For this
reason, further investigations are carried out in order to analyze
the consequences of this temperature exceedance on the sensory
properties. The RMSE of on-line predicted YCC and its reference
trajectory is 4.0 x 10° cells/mL. The final deviation at the end of
the process is 7.0 x 10° cells/mL. Figure 7 C shows the system
tested under industrial conditions. The extract concentration
started on a very high level. This has influence on the growth be-
havior of the yeast and leads to limitations that can be observed
toward the end of the process when the reference trajectory starts
to flatten. Thus, more substrate than 4 g/100 g is consumed. The
RMSE of actual and reference cell count is 6.7 x 10° cells/mL.
The deviation at the end of the batch is 8.7 x 10° cells/mL.
However, the desired residual extract value was achieved. It has
to be mentioned that for the industrial testing a tuning of the
underlying PLC controllers was not done. That can be seen in
the noisy signal of the sensed temperature value. A generality of
all presented batches is an over or undershooting of the refer-
ence trajectory. This is on the one hand due to a time delay of
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information because of signal filtering (36 min) and on the other
hand due to a time-variant delay of yeast growth with respect to
a temperature change. The latter one was estimated to be within
2-3 h. A compensation of this combined effect using a one-step-
ahead prediction could achieve better control performance and
is currently being investigated.

4 Concluding remarks

In this work a fuzzy-based expert system is presented for con-
trolling the brewer's yeast propagation process. The proposed
system uses a metabolic growth model in order to guide the
process along reference trajectories of cell growth and substrate
consumption. Beyond this, methods of data-pretreatment, sig-
nal processing, and soft sensing using a neural network were
presented, as well as linear controller adjustment was addressed.
The presented results show that the system is able to target the
desired final state corridors for extract and yeast cell concentra-
tion within the desired duration. However, the system has space
for future optimization. Although the final states are met, there
is a deviation of 7.0 x 10° cells/mL (Fig. 7B) and 8.7 x 10°
cells/mL (Fig. 7 C) at the end of the process. This indicates that
the control performance can be improved. Therefore, methods
of one-step-ahead prediction and tuning of fuzzy parameters are
in the focus of future research. With respect to the predictive
capability of yeast cell concentration, the effect and mechanisms
causing a decrease of OD at the very beginning of the process
has to be investigated. Compensating this effect would improve
the accuracy and predicting performance of yeast growth. Fur-
thermore, failure scenarios including sensor failures and process
variations by changing the planned termination point in the
middle of the process should be tested in order to guarantee pro-
cess and product safety as well as to prove the system’s robustness
and limits. Additionally, scale-up studies should be investigated.
The adaptation and recalibration of the model to industrial con-
ditions is the focus of future work and would be a step forward
to monitoring and control of large-scale production.

Practical application

In the food and beverage industry, the individual flavor,
design, and final quality for a wide range of products is
essentially determined by fermentation processes. In com-
mon practice, the observation and control of these pro-
cesses is characterized by manual interventions and em-
pirically determined process parameters. However, due to
the intrinsic dynamic behavior of the used organisms, in-
telligent monitoring and control systems are required in
order to avoid delayed reaction to process deteriorations.
Particularly, fuzzy logic based expert systems are capable
of mimicking human reasoning and therefore show a high
potential to manage complex production processes by han-
dling fragmental and uncertain process information.
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In food industry, bioprocesses like fermentation often are a crucial part of the manufacturing process and decisive for the final
product quality. In general, they are characterized by highly nonlinear dynamics and uncertainties that make it difficult to control
these processes by the use of traditional control techniques. In this context, fuzzy logic controllers offer quite a straightforward
way to control processes that are affected by nonlinear behavior and uncertain process knowledge. However, in order to maintain
process safetyand product quality it is necessary to specify the controller performance and to tune the controller parameters. In this
work, an approach is presented to establish an intelligent control system for oxidoreductive yeast propagation as a representative
process biased by the aforementioned uncertainties. The presented approach is based on statistical process control and fuzzy logic
feedback control. As the cognitive uncertainty among different experts about the limits that define the control performance as still
acceptable may differ a lot, a data-driven design method is performed. Based upon a historic data pool statistical process corridors
are derived for the controller inputs control errorand change in control error. This approach follows the hypothesis that ifthe control
performance criteria stay within predefined statistical boundaries, the final process state meets the required quality definition. In
order to keep the process on its optimal growth trajectory (model based reference trajectory) a fuzzy logic controller is used that
alternates the process temperature. Additionally, in order to stay within the process corridors, a genetic algorithm was applied to
tune the input and output fuzzy sets of a preliminarily parameterized fuzzy controller. The presented experimental results show that
the genetic tuned fuzzy controller is able to keep the process within its allowed limits. The average absolute error to the reference
growth trajectory is 5.2 x 10° cells/mL. The controller proves its robustness to keep the process on the desired growth profile.

1. Introduction resolution limits of applied sensors. And at the cognitive level,
uncertainty stems from the vagueness and ambiguity which is
inherent in human language and the semantics of assessment
[2]. Because of the fact that in most cases the sources of uncer-
tainty cannot be easily solved from a physical point of view,
several approaches are proposed in literature that allow han-
dling uncertainties by the use of statistics. A general overview
of (multivariate) statistical process control and quality control
is given in [3-8] and with special focus on food by [9-
11]. With respect to online process observation and quality
monitoring the use of online control charts is emphasized

Generally, uncertainty can be considered as a result of some
information deficiency of any problem-solving situation [1].
When dealing with bioprocesses under real conditions it
is rarely impossible to completely avoid uncertainty. The
reasons for uncertainty are quite diverse. On the one hand,
there are large variations in raw material quality, especially
in the food and beverage sector. On the other hand there is
the intrinsic nonlinear behavior of the used microorganisms,
which is in most cases still not fully understood. Therefore,
existing process models are affected by incomplete or frag-

mentary knowledge about the underlying mechanisms. With
respect to process monitoring and control, uncertainty is
almost inseparable from any real-time measurement, result-
ing from a combination of inevitable measurement errorsand

[12,13]. The use of online control charts is a very powerful tool
in decision-making. It serves as human-machine interface
and thus allows the operator to evaluate the process in real
time. By means of simple statistics, they allow calculating and
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graphically visualizing if the current process is running inside
or outside its allowed limits. In order to represent the process,
key performance indicators and critical quality attributes
have to be defined on a univariate or multivariate basis. There
are several charting techniques existing that ease the process
of statistical quality control and on a single variable basis they
are comprehensively reviewed by [14]. However, the majority
of SPC approaches presented in literature consider SPC as
a pure monitoring system. Although there has been done
quite interesting work making use of fuzzy logic approaches
in order to handle uncertainty that is related with the
construction [15-20] or the evaluation of control charts with
respect to quality attribute changes [21], there is only little
investigation that actually takes into account how to integrate
the information that is delivered by the SPC system into a
feedback control system in order to keep the process within
its statistical boarders. This shortcoming is mentioned as well
by Woodall, Montgomery, and Stoumbos [22-25].

With respect to automatic process control, fuzzy logic has
also become a powerful tool in intelligent control of biological
systems due to the capability to handle complex nonlinear
processes and uncertainty in data [26-29]. The concept of
fuzzy logic was first introduced by Zadeh [30]. It uses the
principle of linguistic description by means of IF-THEN
algorithms in order to mimic human reasoning and process
assessment. Therefore, it is a good platform for controller
design that is subjected to uncertain process behavior.

However, the classic fuzzy controller has several draw-
backs. In particular, a major drawback is the lack of a learning
capability. Classical fuzzy systems are static and their practical
implementation and optimization is done by trial and error
and based on the experience of an expert knowing the process
and how it should be controlled. However, with respect to fast
controller implementation and finding the optimal parameter
configuration of the fuzzy sets in order to reach the required
controller performance, the method of trial and error is quite
cumbersome and often results in inefficient and subopti-
mal configurations of the control parameters. The optimal
configuration can be “hidden” in the data. Therefore, in this
work a genetic algorithm was used in order to provide addi-
tional intelligence and the ability of learning to the fuzzy
controller. The genetic algorithm optimizes the control per-
formance on a data-driven approach. The overall control
strategy, which is represented by the rulebase, uses the cog-
nitive knowledge of an expert.

In this approach, the process control architecture is real-
ized by an automated feedback control system based on fuzzy
logic. The fuzzy system is linked to SPC in order to control
and monitor the process of yeast propagation. The developed
fuzzy controller adjusts the process temperature in order to
keep the process within statistical corridors of the controller
input variables, which are the control error and the temporal
control error derivative. Within the framework of SPC, the
statistical corridors, respectively, upper and lower control
limits of the input variables, are derived from historical data
of batches that met the required quality specifications. She-
whart contﬁ)l charts (X-charts) are used to calculate the ideal
trajectory X, the upper control (UCL) limit, and the lower
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control limit (LCL) of the input variables. With respect to
the control quality this means that if the control error stays
within the statistical borders, the process and the control
meet the required and predefined quality and performance
criteria with a probability of 99.73%. The adjustment of the
fuzzy controller parameters is done by a genetic algorithm.
The heuristic search mechanism of the genetic algorithm is
able to find the ideal parameter configuration of the fuzzy
sets. The advantage therefore lies in the combination of fuzzy
and genetic algorithms. The fuzzy system holds the principle
expert knowledge of how to best control the process and the
geneticalgorithmis used to optimize the expertknowledge by
providing learning capability and efficient solution finding in
a big search space.

2. Materials and Methods

2.1 Control Charts and Data Pool. The standard Shewhart X-
chart consists of a centerline to monitor the process mean
and the upper and lower control limit which are calculated
from historic process data. The control limits are usually setat
+3 times the standard deviation from the centerline, which is
simply the arithmetic average. This expresses statistically that
99.73% of all batches that run within these limits are meeting
the specified quality requirements and can be viewed to be in
control.

The process for which the system was developed is the
brewer’s yeast propagation process, which isa typicaland rep-
resentative process biased by various sources of uncertainty.
In general, yeast propagation is performed as a batch process,
whereby the yeast undergoes the different growth phases of
a static culture (lag phase, exponential phase, transition or
deceleration phase, stationary phase, and degeneration). The
individual phase duration and the transition time from one
phase to another depend on various factors. For example, the
lag phase depends on the physiological state of the inoculum
and the specific growth medium [31]. The physiological state
in turn depends on storage conditions and the upstream
treatment of the yeast used as inoculum [32]. Furthermore,
the growth behavior is influenced by the substrate, which
is beer wort. Its composition again is dependent on natural
variations of the used raw materials. In consequence, the
effects of substrate limitations on the metabolic behavior due
to unavoidable variations in available carbohydrates, nitro-
gen, zinc, or vitamins are subjected to uncertainty. Addition-
ally, metabolic regulation effects occurring under brewing
related conditions have to be taken into account. In this
regard, the most important regulation mechanism affecting
the different metabolic pathways is the Crabtree effect [33].
The Crabtree effect, which is also known as overflow meta-
bolism, catabolite repression, aerobic fermentation, or oxi-
doreductive metabolism, leads to the formation of ethanol at
exceedance of a critical glucose concentration in the substrate
[34-36]. In summary, the process of oxidoreductive yeast
propagation is affected by numerous sources of uncertainty
that in consequence influence the observability and control-
lability of the process. Hence, in order to observe and control
this kind of process an intelligent online monitoring and
process control system is required.
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In this work the data of 11 batches was used that met the
following performance and quality requirements:

(i) Cell count concentration at end of batch: >100 x
10° cells/mL.

(ii) Portion of dead cells at end of batch: <1%.

For the experimental work, beer wort produced from
standard malt extract (Weyermann®, “Bavarian Pilsner”)
was used as substrate for the propagation of Saccharomyces
cerevisiae sp. (strain W34/70). A detailed description of
the technical plant configuration, experimental procedure,
and analytics is given in [37]. For the performance anal-
ysis, calculation of control charts, and the later controller
design, a temperature dependent growth model by [38] was
implemented. The model is based on known stoichiometric
turnover and Michaelis-Menten kinetics of yeast [35, 36, 39].
In addition, it considers growth limitations like the Crabtree
effect that occur by feeding substrate sugar concentrations
above 100 g/L [33]. The effect of temperature on yeast growth,
respectively, the substrate uptake, is modeled by implement-
ing an additional temperature factor f,.,,, thatis expressed by
a square root term that was originally developed to describe
the temperature effect on the growth of specific bacteria
[40, 41]. The specific substrate uptake gg can be represented
by the following equations:

qs

= *min< i )* Ki’e‘h
= Asmax S*K ' N+K,) K ntE

1
*Lt*ftemp’ M

f temp

= (b % (T - Tyya) * {1 —exp[c # (T - Tna) 1)

Applied half saturation constants for limitations or inhibition
were K = 2.8mmol/L [36], K,, = 2 mmol/L [42], and K;
= 500 mmol/L [43]. Furthermore, gg,,, = 0.486 mol/mol/h
[36] denotes the maximum specific substrate uptake rate, S
is the substrate concentration in mmol/L, N is the nitrogen
concentration in mmol/L expressed as NH, equivalents, and
E is the ethanol concentration in mmol/L. The lag time L,
is determined by a sigmoid function L, = 1/(1 + ¢ * ),
where £, was set to 5.6 h. T is the temperature in K and the
mathematical regression coefficients were determined to be
b =0.03296 and ¢ = 11.98 in this work. T, = 270.7616 K and
Tonax = 308.1539 K are temperatures where no further growth
is observed.

Figure 1 displays the comparison of yeast cell counts
(YCC) in mmol/L between the model outputs and the cor-
responding experimental runs (that were judged as “good”
batches from a qualitative point of view) for different temper-
ature profiles. The YCC of the batches was measured online
using a turbidity sensor (optek-Danulat, AF 16). The model
has a root mean squared error (RMSE) of 74 mmol/L and
therefore shows good accuracy in predicting the cell concen-
tration. The error eycc between model and real trajectory, as
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Figure 1: Comparison of cell count (YCC) of historical batches
and model output. The circles (0) show the YCC model output in
mmol/L, the solid line (—) is the experimental trajectory of YCC
in mmol/L, and the dashed line (- - -) denotes the temperature in
K. The duration, respectively, batch length, varied between 24 and
46 hours. Initial conditions of yeast cell concentration varied in
between 4.1 mmol/L and 14.9 mmol/L. The final state of the yeast cell
concentration showed a range from 146.3 mmol/L to 191.9 mmol/L.
The temperature varied from 283K to 291K.

well as its temporal derivative éycc, is then calculated in order
to establish the control charts:

eyce = YCCreq = YCCpoqa»
(2)

; deyce
€yec = e
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Due to the varying individual batch length, the batches were
uncoupled from time. To achieve this, batch evening was
performed by resampling the batches and mapping them to
the shortest number of J = 9120 sampling instances. Then,
after mean centering and normalization with the standard
deviation, for Ny batches with i = 1 : J sampling instances,
the control charts are calculated as follows:

- 1 M
XEYCC’i B FR IZ:IEYCCLI(’
- 1 M
XéchJ' = Vk I;EYCCLI(’
UCLEYCCJ' = X'—’chi +34 Oeyceii
= 1 M - 2
:Aeycc¢+3 Nk_lz( kl_Xeyocvi)’
LCL'—'YCC»" = Xevcc¢ 3% Oy
3
s 1 N - 2
- Xeycci =35 N - 1’;1 (in a XEYCC'i) 2
UCLéYcoi - Xe‘{cc g S& Uéch’
N
o 1 2
= Xe\zccl+3 \JNI; _1’;( ‘“ﬁXéych) >
LCLéYCC)i = Yéyccﬂ 3 Uéycc\i

s 1 N - 2
- Xé‘zcc’i =3 % N - 1"2:1 (X“-i - Xéyccvi) :

2.2. The Fuzzy Controller. The applied fuzzy temperature
controller is a Mamdani type controller [44, 45] that consists
of the standard components of fuzzification, inference engine
with rulebase, and defuzzification. The fuzzification of the
input variables ey (difference in biomass concentration
between the reference process model and the real measure-
ment) and the temporal derivative &y is done via piecewise
linear functions, respectively, trapezoidal fuzzy sets. In this
context, the fuzzy variable eyq¢ is assigned to the linguistic
expressions low, matched, and high. Similarly, the fuzzy vari-
able éycc is linked to the verbal terms siower, matched, and
faster. The fuzzy output variable comprises three fuzzy sets,
namely, neg, zero, and pos. Here, the output is a temperature
increment AT that is added to the initial temperature at the
startof the process. The inference engine has the task to match
the input variables to the output variable of the controller
by taking into account the logical statements defined in
the rulebase. In this case a standard max-min method was
applied [46]. The rulebase contains the rules in “IF-THEN”
form that determine the basic control strategy in order to
follow an optimal growth trajectory delivered by the process

68

Discrete Dynamics in Nature and Society

model. The rulebase of the fuzzy temperature controller is
shown as follows:

IF ey is low AND éyc is slower THEN AT is pos.
IF eyoc is low AND ey is matched THEN AT is pos.
IF eycc is low AND éycc is faster THEN AT is zero.
IF eyqc is matched AND éyc is slower THEN AT is
pos.

IF eyce is matched AND éyce is matched THEN AT
is zero.

IF eyqc is matched AND éyqc is faster THEN AT is
neg.

IF ey is high AND éyq is sower THEN AT is zero.
IF eyc is high AND ey is matched THEN AT is neg.
IF eycc is high AND éycc is faster THEN AT is neg.

At first, the fuzzy set parameterization for each variable was
done uniformly across the individual universe of discourse.
Therefore, the set parameters were assigned as follows:

(i) eyce:

(a) low:=[-100 -30 -5 0],
(b) matched = [-5 -0.01 0.01 5],
() high=1[0 5 30 100];

(ii) éyec:

(a) slower = [-100 -10 -5 0],
(b) matched = [-5 -0.01 0.01 5],
(c) faster = [0 5 10 100];

(iil) AT:

(a) neg:=[-12 -08 -0.6 -0.2],
(b) zero= [-0.6 0.1 0.1 0.6],
(c) pos=[0.2 0.6 0.8 1.2].

Here, the numbers denote the characteristic points of the
piecewise linear membership functions used to define the
individual fuzzy sets. For example, the support (the set of
points on the variable domain, where the membership func-
tion value is greater than zero) and slopes of the trapezoidal
fuzzy set matched are characterized by the four points -5,
~0.01,0.01, and 5. In general the membership function p,,; (1;)

of a trapezoidal set is given by [46]

0: w<how>2r
1: my < u; <my
By (w) = u"fl: I<u; <m )
my —1
my —U;

+1: m,<u;<r.
r—my, 2 < W
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FIGURE 2: Schematic representation of the nontuned fuzzy controller structure and the flow of information. The first step shows the fuzzy
partition and the fuzzification of the input variables ey and éy.. into their specific fuzzy sets. The second step diagrammatically shows the
inference mechanism and the activation of the corresponding rules in the rulebase. The third step illustrates the set partition of the fuzzy
output variable AT and the accumulation and COG defuzzification of the overall implied fuzzy set into a crisp output.

Here, A{( t;) is a membership function associated with fuzzy
set A} = {(u;, yA{(ui)) | u; € %;}, which maps %; to [0,1].
%; is the universe of discourse, | denotes the leftmost point of
the trapezium, #, is the left center point, i, is the right center
point, and r represents the rightmost point. Figure 2 gives a
schematic representation of the fuzzy temperature controller.

The defuzzification uses the center of gravity method
(CoG) [46] in order to do the back transformation from the
linguistic to the numerical domain and to calculate a crisp
output value. The crisp output value of AT is then used as
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an incremental change of process temperature T at the cur-
rent point in time £,
T(t+1)=T(t)+£. (5)
cph
Here, cph is equal to 360 and it denotes the cycles per hour.
This results from the chosen sampling time of 10 s.

2.3. Genetic Tuning of Fuzzy Sets. 'There is a wide range of
bioengineering and food related applications, where fuzzy
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logic controllers and expert systems have been successfully
used [26-28, 47-53]. However, they show a deficiency in
knowledge acquisition and their parameterization relies to a
great extent on empirical and heuristic knowledge. Moreover,
in-field tuning and performance adjustment is mostly done
by trial and error, which can be very inefficient and time-
consuming depending on the complexity of the process to
be controlled. The combination of evolutionary optimization
methods and fuzzy logic allows incorporating information
that is present in the process data in order to automatically
adjust the controller parameters and to add a certain degree of
intelligence. In this case, genetic algorithms play a significant
role, as search techniques for handling complex spaces, and
were successtully applied in many fields such as artificial
intelligence, (bio)engineering, and robotics [54-57]. In this
work, a genetic algorithm (GA) was used in order to tune
the input and output membership functions in order to
make the control error stay within its statistical borders.
‘The genetic algorithm consists of initialization, rank-based
selection, crossover, and mutation. In the beginning the
settings of the GA are initialized. A population size of j = 40
individuals was chosen. The selection rate was set to 0.5 and
the mutation rate was fixed to 0.02. The maximum number
of iterations was set to 120. Instead of binary coding, real
coding of fuzzy set parameters on the chromosomes was
applied. A similar method as suggested by [58, 59] was chosen
to encode the fuzzy parameters. Trapezoidal fuzzy sets were
used because this allows the GA to change the set form also
into triangular sets as a special form of a trapezium if the two
center points are allowed to take equal values. With respect
to the coding scheme some restrictions have to be made
in order to maintain the order of the linguistic labels. Each
trapezoidal shaped membership function or label of a fuzzy
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variable is parameterized by a 4-tuple of real values. There-
fore, an individual of the population or chromosome P; is
encoded as follows:

Py = (ALI’Al.Z’AlJ’AlA"'WA;Lq’ By 1By B By
(6)

sl

s G G Gl 523G 0) 3
In this assignment, A denotes the first fuzzy variable eyqc,
B represents ey, and C is the output variable AT. Each
variable has 3 labels and each label consists of 4 characteristic
points (alleles). Thus p (1,...,3) and ¢ (1,...,4).
In the beginning, the GA is initialized. For this, the first
individual was fixed and the set parameters of the original
fuzzy controller were encoded on the chromosome. 'The
residual population was initialized randomly within each
variables domain. However, some constraints with respect
to the semantics of ordering relation and completeness have
to be considered [58]. In this context, the ordering of the
labels was fixed and for each fuzzy set the sequence of the
characteristic points was fixed in order to maintain the order
of the linguistic labels. For example, in the case of A, low <
matched < high for label orderingand A ,; < A,, < A, ;5 <
A 4 for the sequence of set points. This boundary condition is
valid for the mutation operation, as well. Figure 3 shows how
the fuzzy set parameters are coded on the chromosomes.
Including a priori knowledge, the set parameters A, ;,
Ay Ass Asy By, B Bys, Byy, oy, and Gy were hard
coded with their initial values in order to cover the whole
universe of discourse. Thus, they are not altered by crossover
and mutation. The residual parameters of the trapezoidal
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FIGURE 4: After initialization each individual of the population passes its parameter vector to the fuzzy controller. The controller is then
simulated using the process model described in Section 2.1. Following the principle of elitism, the best solutions of each iteration are kept in

order to create the next population.

fuzzy sets were allowed to take values in the possible intervals
of adjustment as follows:

T4 € [T Tas)s
T € [T Dl
Ly € [ T3s]
D5 € [y Taals
D3 € [ T3a]s
Dy € [Ra I3a]s
Ty € [T s
Ly € [LpTa] -

Here, T represents A, B, and C, respectively. The whole
population is simulated using the growth model and the cost,
respectively, fitness of each individual, is calculated using the
RMSE:

™

_— \/ b1 (?r: -2 )

Here, ¥, denotes the predicted YCC by the model at the
sampling point ¢ and y is the YCC of the reference trajectory
at the same point of time. Rank-based selection [60] is used
in order to choose the best solutions. The best 20 individuals
are chosen to form the mating pool and the pairing is
done randomly within the pool. The crossover operation is
done by calculating the mean of the corresponding alleles
of each mating pair, which corresponds to whole arithmetic
crossover [61]. In this crossover method two offspring H; =
(h",...,hf,...,hﬁ) and k = 1,2 are computed from two
parental chromosomes C; = (cl1 --Ac;) and C, = (clz---c,f)

71

selected to apply the crossover operator, where b} = A +
(1 - M} and h? = A¢? + (1 - V)¢l A is a constant (uniform
arithmetical crossover) and was chosen to be equal to 0.5.
According to this the population is filled up again with 20
new offspring. Finally, 2% of the new population is mutated
by randomly alternating one allele on a chosen chromosome.
The mutation alternation is done in compliance with the
restrictions of ordering. Figure 4 shows schematically the flow
of information during the genetic tuning process.

The control strategy was implemented using a PLC
system (Beckhoff, CX9000) with standard I/O terminals for
analogue inputs and outputs (4-20 mA). On the PLC a PID
temperature controller was programmed. The fuzzy system,
the genetic algorithm, and the SPC monitoring system run
on a separate PC in a framework similar to a SCADA
(Supervisory Control and Data Acquisition) system. The
fuzzy system reads from the PLC, recalculates a new set point
for temperature, and writes it to the PID controller on the
PLC. The communication between the PLC system and the
external PC, respectively, the SCADA system, is done via
Ethernet (TCP/IP). The software used for the SCADA system
is in-house developed C++ based software named Virtual
Expert®.

3. Results and Discussion

After the genetic tuning process the best individual of
the simulations (RMSE = 4.03 x 10° mmol/L) was chosen
for experimental validation. The obtained genetically tuned
fuzzy sets are shown in Figure 5. The resulting set parameters
are as follows:

(@) eyce:

(a) low:=[-100 —-30 -17.28 10.79],
(b) matched = [0.17 19.16 25.28 27.31],
(c) high = [12.90 18.95 30 100];
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FIGURE 5: New set configuration of the fuzzy controller after the
genetic tuning process. Slopes, shapes, and positions of the sets were
changed. In particular, the sets denoted as matched were generally
enlarged.

(i) éyee:

(a) slower == [-100 —10 -4.31 -1.24],
(b) matched == [-1.29 -0.61 3.24 6.72],
(c) faster = [2.23 9.30 10 100];

(i) AT:

(a) neg = [-1.2 -0.95 -0.69 0.55],
(b) zero = [-0.95 —0.01 0.15 0.50],
(c) pos:= [—0.16 0.34 0.83 1‘2],

It can be observed that the slopes, shapes, and positions of
the different sets have been changed. In particular, the part
of the fuzzy sets linked to the linguistic value matched with a
membership value equal to one has been enlarged compared
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to the original sets (almost triangular). This makes the
controller behavior more robust against process disturbances
and therefore leads to less fluctuation in temperature.

Prior to genetic tuning, the yeast propagation process
was run with a nonadapted, uniformly parameterized fuzzy
controller described in Section 2.2. As expected, the con-
trol performance of the fuzzy controller did not meet the
requirements and exceeded the allowed control corridors.
As a result, big changes in process temperature exceeding
10 K within 15 hours were recorded. As a consequence, the
required performance specifications could not be met. After
2 days of propagation, less than 70 x 10° cells/mL and around
5% of dead cells were detected by microscopic plate count
[62]. The experiment was then repeated 4 times using the
tuned fuzzy controller. The corresponding control charts
are shown in Figure 6. As shown, the original controller
exceeds the control limits, which is indicated by the arrows.
In contrast, the adjusted fuzzy controller is able to keep the
process within the statistical borders and therefore meets
the performance requirements. Furthermore, by comparison
of the controller outputs, in contrast to the nontuned fuzzy
controller it alters the process temperature only when it is
necessary. The original controller parameterization leads to a
permanent change in temperature resulting in an oscillatory,
unstable behavior. By applying the genetic tuning process
this behavior could be avoided leading to a smoother change
of the temperature. Using the tuned fuzzy controller, on
average, a cell concentration of about 185 x 10° cells/mL and
less than 1% of dead cells were achieved after two days of
cultivation. The RMSE of reference trajectory and online
measured YCC is 5.2 x 10° cells/mL. This shows that there
is a good matching and that the fuzzy controller is able to
lead the process along the desired growth profile. The control
charts are projected online; thus the user is permanently
informed if the process was in control or if there was any
deterioration occurring. However, it has to be noted that
the immediate and specific identification of the cause for
undesired process behavior would need some additional
process knowledge and experience. Here, the quality of
the process is merely linked to the control performance.
So, if there was, for example, contamination with another
microorganism or an undersupply with oxygen, the process
would go out of the corridors and one could directly observe
this in the control charts, but one would not be able to
tell the reason for that without having the corresponding
experience and process knowledge. Therefore, a multivariate
approach in combination with recent fuzzy control chart
evaluation methods [21] is currently under investigation in
order to link further quality attributes with the corresponding
key performance indicators of the process. This would be
a further step in combining online (multivariate) statistical
process monitoring and direct, intelligent feedback process
control techniques.

4, Conclusion

In this work an approach is presented to couple statistical
process monitoring with an intelligent feedback control based
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FIGURre 6: Online control charts for control error ey (a) and its derivative é (b). The solid bold lines (-) are the statistical values of the
upper control limit, mean, and lower control limit. The dotted (---) curve is the trajectory that belongs to the nontuned fuzzy controller.
The arrows mark where it leaves the statistical corridor. The residual lines (— - —) stay clearly within the control limits and show the error
trajectories resulting from the genetic tuned fuzzy controller. Graph (c) shows the output of the nontuned fuzzy controller (- - - ) in comparison

to the output of the genetic tuned controller (- - -).

on fuzzy logic for handling uncertainty biased processes
related to food production and fermentative processes in
life sciences. The system is demonstrated by the process
of brewer’s yeast propagation. For that purpose, the fuzzy
controller parameters are adjusted using a genetic tuning
algorithm in order to meet the required quality and per-
formance criteria. Subsequent to the simulations, an exper-
imental verification was performed using a 120 L medium-
scale propagation system. The obtained results show that
the performance of the control system is directly linked
to process quality. By staying within the statistical con-
trol limits, the required biomass concentration of 100 x
10° cells/mL was exceeded reaching up to 185 x 10° cells/mL,
whereby the RMSE to the reference growth trajectory is
5.2 x 10° cells/mL. However, the remaining future challenge
is to specifically identify the cause of a process anomaly
without having the corresponding experience or knowledge
about the process. Therefore, current investigations strive for
a combined approach of multivariate modeling and fuzzy
control chart evaluation to link specific quality attributes and
the control performance of the process, which would be a step
forward in combining online (multivariate) statistical process
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monitoring and direct, intelligent feedback process control
techniques.
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Abstract The control of bioprocesses can be very chal-
lenging due to the fact that these kinds of processes are highly
affected by various sources of uncertainty like the intrinsic
behavior of the used microorganisms. Due to the reason that
these kinds of process uncertainties are not directly mea-
sureable in most cases, the overall control is either done
manually because of the experience of the operator or intel-
ligent expert systems are applied, e.g., on the basis of fuzzy
logic theory. In the latter case, however, the control concept is
mainly represented by using merely positive rules, e.g., “If A
then do B”. As this is not straightforward with respect to the
semantics of the human decision-making process that also
includes negative experience in form of constraints or pro-
hibitions, the incorporation of negative rules for process
control based on fuzzy logic is emphasized. In this work, an
approach of fuzzy logic control of the yeast propagation
process based on a combination of positive and negative rules
is presented. The process is guided along a reference trajec-
tory for yeast cell concentration by alternating the process
temperature. The incorporation of negative rules leads to a
much more stable and accurate control of the process as the
root mean squared error of reference trajectory and system
response could be reduced by an average of 62.8 % compared
to the controller using only positive rules.
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Abbreviations

YCC Yeast cell concentration
FLC Fuzzy logic controller
RMSE Root mean squared error
AFCE  Absolute final control error
P/N Positive/negative
Introduction

The behavior of bioprocesses like fermentations is biased
by different sources of uncertainty. The causes for these
process uncertainties are multidisciplinary, as well. So,
e.g., initial process conditions can hardly be kept constant
due to natural changes in the used raw materials, which
have immediate effect on the metabolic behavior of the
involved microorganisms. Additionally, there is also a lack
of appropriate sensors that allow to reliably detect changes
in the metabolic behavior in real-time and to take correc-
tive action on the process. Therefore, the control of the
process in practice is still performed by experienced human
operators. However, during the last 10 years, various
expert systems based on fuzzy logic have been proposed
for the intelligent control of biological based processes due
to the capability to mimic human reasoning and to handle
uncertainty based complex nonlinear processes [1-0].
However, most of the proposed systems are solely based on
positive knowledge or experience, that is formulated in a
“If A then do B” manner. However, this is not straight-
forward, as countless situations exist not only with respect
to control theory, but also in daily life where it is much
more suitable to express a decision by negative experience.
Using warnings and/or prohibitions in the form of negative
rules like “If A then do not do B” leads to a much more
transparent processing of practical knowledge and allows
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expanding the application field of fuzzy logic control. In
this context the incorporation of negative rules that have
been identified and extracted from process operation by an
expert can be very useful to change the system properties
of a fuzzy control system and to form a more efficient
process behavior. Following this hypothesis, the general
approach should be to construct a fuzzy system that uses a
combination of positive and negative rules in such a way
that the negative rule-part leads the process away from
situations that should be avoided and that, after passing the
critical situation, the positive part of the fuzzy system takes
over again and controls the process in the usual manner. In
this regard, a very comprehensive approach is described by
[71 who uses a double-stranded fuzzy controller architec-
ture for separate processing of positive and negative rules.
The positive and negative membership functions that have
been created by the positive and negative rules then are set
off against each other using a hyperinference module.
Thereafter, the combined membership function is treated
by a downstream hyperdefuzzification that outputs a crisp
value. Another quite practical and an easy to implement
approach is presented by [8, 9]. They present a novel
method denoted as dot attenuation in which the processing
of negative and positive rules, respectively their member-
ship functions take place as part of the defuzzification
process. Compared to Kiendl’s approach, it has one
restriction which is that the consequents of the negative
rules have to be of the same type and shape as the ones of
the positive rule consequents. In Kiendl’s method the
consequents can be of different type. However, this is not a
serious disadvantage, as in most practical applications a
mixture of the types is not required. There has been several
control applications published in literature using negative
rules and showing the superiority of the control perfor-
mance in comparison to mere positive fuzzy rules. In [10],
negative rules are used for the development of an obstacle
avoidance controller for an autonomous vehicle. It is
shown that the fuzzy system has fewer rules than would be
required for a controller using purely positive fuzzy rules
and, therefore, has better interpretability. A similar
approach was also used by [11]. A combined positive and
negative fuzzy rule system for machine learning and image
classification was introduced and applied [12]. It could be
shown that the proposed method achieved better results in
learning performance and classification accuracy compared
to a backpropagation based neural network and the fuzzy ¢
means algorithm. Similar findings for image classification
problems are presented by [13, 14]. However, there are no
applications described in literature using the concept of
positive/negative (P/N) fuzzy systems, for the control of
uncertainty biased systems like bioprocesses.

In the present work, we apply a P/N-fuzzy system to the
brewer’s yeast propagation process. The objective is to

@ Springer

79

improve the performance of the control system, which is
based on a classical fuzzy controller whose rulebase con-
tains only positive rules. By incorporating negative rules to
the classical Mamdani based fuzzy controller, its perfor-
mance with respect to overshooting and process stability
could be enhanced. The negative rules are formed using the
predictions of yeast cell concentration (YCC) 3 h ahead of
time which are provided by simple moving least squares
estimator. This paper is arranged as follows. “Materials
and methods” section presents the materials and methods
used to build the system. Besides the process model which
was used for later simulations of the process, this includes
the description of the YCC one step-ahead predictor. Fur-
thermore, the fuzzy controller is explained. “Results and
discussion” section contains the results and discussion of
simulations of the yeast propagation process using the P/N-
fuzzy system. “Conclusion” section gives a conclusion and
an outlook to ongoing work in that direction.

Materials and methods
Process model

For the later simulation studies, an adapted version of the
black-box growth modeling approach of [15] was imple-
mented. The model is based on known stoichiometric
turnover rates and Michaelis—Menten kinetics of yeast [16—
18]. In addition to that, it considers growth limitations like
the Crabtree effect [19] that occurs under brewing specific
circumstances of production. The Crabtree effect is a
limiting growth phenomenon that takes place when feeding
substrate sugar concentrations are above 100 g/l. Due to
the fact that standard beer wort, which is used as substrate
for yeast cultivation is generally above that threshold, the
Crabtree effect cannot be avoided under brewing condi-
tions and, therefore, shifts the metabolism partly to the
anaerobic pathway limiting the growth rate. Besides this,
the effect of temperature on yeast growth, respectively the
substrate uptake is modeled by implementing an additional
temperature factor femp. This parameter is expressed using
a square root term that was originally developed to describe
the temperature effect on the growth of specific bacteria
[20, 21]. The specific substrate uptake gs and the specific
oxygen uptake rate can be represented by the following
equations [15]:
. N

g5 = 43, max X Mmin (—S TN IE Kn)
K; eth

Kiety + E
fremp = {b % (T = Toin) X [L —exp(e x (T = Tuax))|}* (2)

X Le X fiomp (1)
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Table 1 Parameters applied for use of the model

Parameter Value Unit References
5,max 0.486 mol/mol/h [171

Ks 2.8 mmol/l [17]

Ko 0.00121 mmol/l [22]
Kon 22 mmol/l [16, 171
K, 2 mmol/l [24]
Kiew 500 mmol/l [25]
Kietho 217.39 mmol/l [16]

tag 5.6 h *

tlag th 0 h *

Dy 0.0325632 *

Tonin fip 270.7616 K [15]
[ 11.98 [15]

T Sy 308.153% K [15]
Bge, e 0.0283757 *

Tt o e 276.3958 K [15]
Conmas 0.0163645 *

Tinax, 4o, mee 205.8081 K *

Parameters marked by * were determined by a parameter estimation
procedure

e H(ﬁ (3)
g0, < 40, max X Kg% % ”
fren ™ m (5)
Getty < Geth, max X Min (m ’Jﬁ) % Lot ©

Here, S denotes the substrate concentration {glucose is
assumed to be the preferred substrate), O is the oxygen
concentration, N is the nitrogen concentration and E
reflects the concentration in ethanol. All concentrations are
in mmol/l. Furthermore, 7 represents the temperature in
Kelvin, ¢ is the time and Z, or L;es are sigmoid lag-time
functions for growth on glucose and ethanol, respectively.
Analogue to gs, the specific oxygen uptake rate go, is
determined by a temperature dependent maximum uptake
factor go, max [22, 23], which is calculated similar to fremy.
All applied model parameters and half saturation constants
are stated in Table 1. A partitioning of the substrate uptake
flux is given in Fig. 1. The overall specific growth rate p is
then calculated from the sum of the specific growth rates
for oxidative and fermentative growth on glucose (ig ox,
usp or ethanol (pem) and the yield coefficients Yy,
sox = 3327 mol BM/mol glucose, Yy = 0,72 mol
BM/mol glucose and Yyeq = 1,12 mol BM/mol ethanol
[17] by the following equations [15]:

80

Maintenance .
0)ddatl As,0x,main
Qs main - L
(=
%@qu,main

Aotive -

D)ddaf"’ qS,ox,gr

&
w,ﬁgr

Maintenance

ds

qS,gr

Growth

qeth.main

qeth

q eth,gr
Growth

Fig. 1 Flux division of substrate uptake corresponding to [15]. The
flux is separated into divisions for cell growth and maintenance with
respect to the growth on glucose or ethanol, respectively

Table 2 Key data of the batches used for the validation of the model

Batch ID  Duration [h] Tt =0) [°C] YCC (z = 0} [mmol/l]
Batch A 47 13.7 102
Batch B 32 12.6 75
Batch C 24 14.5 14.1
Hs ox = 45 0x, 80 X YX/SOX (7)
B = s Yxyst (8)
Heth = Geth,gr X YX/elh (9)
H= Hg ox + s s + Hen (10)

The intermediate steps of division and calculation of
specific substrate uptake rates like g5 ox g, gspgr and gem, g
are not shown here and the reader is referred to [15] for a
detailed and comprehensive description of the model.

The model was then validated using real process data of
three different batches. The batches differ in batch length,
initial temperature and YCC (Table 2).

For the validation, as an input, the temperature trajec-
tories were fed into the model and the model output of the
YCC was compared with the YCC of the experimental
batches. The comparison of model output and experimental
data is shown in Fig. 2 together with the corresponding
temperature trajectories for each batch. The root mean
squared error (RMSE) between experimental YCC and
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Fig. 2 Comparison of cell concentration from experimental results
(solid line) and the yeast cell concentration provided by the model
(circlesy in 106 cells/ml. The temperature trajectories (dashed line)

model output is 3.8 x 10° cells/ml. This shows that the
model is capable to represent the growth dynamics due to
temperature changes and therefore it is suitable to be used
in further simulations and to serve as a model for plant
response. The conversion from mmol/l to 10° cells/ml and
vice versa is done via the following equation [15]:

YDM [g/cell] x YCC [Mio. cells/ml]
BM [g/mol|
<106 [ml mmol]
[Lmol]

Biomass [mmol /1] =

(11)

Here, YDM = yeast dry mass = 4 x 107'! g/cell, BM
(molar weight of the mean biomass composi-
tion) = 25.01 g/mol [17].

The predictor

The predictor used in this work is based on a sliding
window fifo buffer (first in—first out). The nput is the
actnal YCC which is measured online using a turbidity
sensor {(optek-Danulat GmbH, AF 16). The turbidity signal
is mapped to the YCC value using a simple second order
polynomial regression. The sampling time is 3.6 s and the
buffer size was chosen 1000 values, which corresponds to
1h. As soon as the buffer has been filled, linear
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that were fed as inputs to the model are plotted on the right axis in °C.
The key data of the batches (A—C) is given in Table 2

interpolation is done by minimizing the sum of squares of
the buffer data (least-squares fit) and the coefficients of the
best fit 2nd order polynomial are calculated. The resulting
polynomial expression is then used for extrapolation and
calculating the YCC 3 h in advance. Figure 3 shows
exemplarily, the predictions of YCC using real batch data.

The fuzzy controller
The basic fuzzy controller

In its basic version, the fuzzy controller that was applied in
order to regulate the process temperature is a Mamdani
type controller [26, 27]. It consists of the standard com-
ponents, which are first the fuzzification, where crisp inputs
are transformed into fuzzy sets and, respectively, linguistic
labels by using membership functions. The linguistic labels
or fuzzy sets are then used in the rulebase and the inference
mechanism. The rulebase contains the knowledge, in the
form of a set of “if-then”-rules, of how best to control the
system. The inference mechanism emulates an expert’s
decision-making, and evaluates which control rules are
relevant at the current time, and then decides what the input
to the plant should be. The defuzzification interface con-
verts the conclusions drawn by the inference mechanism
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Fig. 3 Future predictions of 150
YCC 3 h in advance. The solid

line represents the online

detected YCC. The circles are

the predictor outputs at the

corresponding time (only every =100-
500st point plotted) £
3
o
©
e
8
g s50-
0

into crisp outputs. For a comprehensive description of fuzzy
logic control, the reader is referred to [28]. In this work,
only piecewise linear membership functions were used to
create the fuzzy sets. For inferencing, the max—min method
was used and center-of-gravity (COG) defuzzification is
used to compute a numerical value from the resulting output
fuzzy set. The mput fuzzy variables are evee and its temi-
poral derivative éyee. More cleatly, evee is the difference
between the nominal YCC value (setpoint) and the actual
YCC value. The actual YCC value is detected online using a
turbidity sensor (Optek-danulat, AF 16). The YCC setpoint
value is provided for each point in time, using a time-de-
pendent 3rd order polynomial function (not shown here). In
other words, eycc is the control error. Depending on eycc
and éycc, the fuzzy controller tries to keep the process as
close as possible to the YCC reference trajectory by
changing the temperature. The fuzzy variable eyee is
assigned to the linguistic expressions low, matched and
high. Similarly, the fuzzy variable éyee is linked to the
verbal terms slower, matched and faster. The fuzzy output
variable dTemp consists of three fuzzy sets, namely neg,
zero, and pos. The fuzzy output is a temperature increment
AT that is added to the initial temperature at the start of the
process. The basic rulebase comprises nine simple rules:

1) If eyee is low and éyee is slower Then dTemp is
neg.

2)  If eyee is low and évee is matched Then dTemyp is
neg.

3) If eyee is low and éyc is faster Then dTemp is
Zer0.

4)  If eye is matched and éyqe is slower Then dTemp
is neg.

5) If eycc is matched and éyce is matched Then
dTemp is zero.

82

10 20 30 40 50 60

Time [h]

6) If ey is matched and éycc is faster Then dTemp is

pos.

7) I eyee is high and éyee is slower Then dTemp is
Zero.

8) If ey is high and éyee is matched Then dTemp is
pos.

9) If eyce is high and éy o is faster Then dTemp is pos.

The fuzzy set parameterization for each variable was
assigned as follows:

® ¢ycc

e+ low =]—o0 —5 0]
¢ matched = [—-5 0 5]
o high =[05 oo

* éyoc

¢ slower =]—o0 —5 0]
o matched = [-5 0 5]
o faster = [0 5 oo[

¢ dTemp

* neg =[—1.2 —0.6 0]
o zero = [—0.6 0 0.6]
* pos =[00.61.2]

Here, the numbers denote the characteristic points of the
piecewise linear membership functions used to define the
individual fuzzy sets. E.g., the support (the set of points on
the variable domain, where the membership function value
is greater than zero) and slope of triangular fuzzy set
matched is characterized by the three points —5, 0 and 5.
Besides triangular shaped sets, left open and right open sets
(“bisected trapezoidal sets”) were used. Note, as —oo and
oo are no finite, real numbers, the practical implementation
of the corresponding sets is bound to the restriction, that for
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Fig. 4 Graphical representation
of the P/N-fuzzy controller. The
inputs show the fuzzy input
variables evcc, éyoc and

eycc Fuwre and the partitioning
into their distinct fuzzy sets.
The output of the controller
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any crisp input value greater or smaller than the central
point, the membership has full saturation. In other words,
the membership value is equal to 1. If, e.g., eyce = 3, then
the membership degree of the right open fuzzy set high is
thigh = 1. Conversely, the same counts for left open fuzzy
sets.

Incorporation of negative rules

For the incorporation of the negative rules, the method of
dot product attenuation described by [8, 9] is used. In this
method, the part of defuzzification is modified and COG
method becomes:

y(x) _ ZIR*I bf f“lmp(l)(]' - éi ﬂ_)

Sy [ ()1~ af )
where T denotes transpose, g is the negative implied
vector, ;Li’“P(i) is the implied fuzzy set from rule i, 4;
denotes a unit vector in the direction of the consequent of
rule £, R stands for the number of rules and b; represents the
center of the membership function determined by the
consequent of rule .

The rulebase is extended by two negative rules con-
taining an additional fuzzy input variable denoted as
eycceFumres Whose parameterization, respectively parti-
tioning into fuzzy sets corresponds to evec:

(12)
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10y If eyec is low and ey e pueure 18 high Then dTemp is
not neg.

11y If eyec is high and evece pogare is low Then dTemp is
not pos.

For all other fuzzy relations with the variable eyce Fatre
on the Cartesian product space (e.g., with the set matched),
the output is mapped to zero, in order not to alter the
behavior of the basic controller in regions that are not of
interest.

Figure 4 gives a graphical representation of the fuzzy
controller input and output variables. For illustration pur-
poses, the fuzzy sets which are fired by the negative rules
are plotted on the negative ordinate.

Results and discussion

In this section, the results from experimental runs without
negative fuzzy rules, and the simulations using the comi-
bined rulebase of positive and negative rules are compared
and presented. As the task of the fuzzy controller is to
follow the reference trajectory as close as possible, the
deviations expressed by the RMSE are used. All simula-
tions were started with the same initial conditions as the
corresponding experiment. Three different batches (A-C)
were chosen for the simulations. The results are presented
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Fig. 5 Comparative results for the fuzzy controller having only
positive rules and with inclusion of two negative rules. Three different
batches (a—¢) were chosen for the simulation study. On the lefi hand
side are the resulting batch trajectories. The solid line is the resulting
temperature trajectory for the P/N-fuzzy controller. (Inverted closed
triangle) denotes the curve of yeast cell concentration without using
negative rules. The dashed line shows the resulting cell concentration
by using also negative rules. The reference trajectory is expressed as a
dotted line. It can be seen that by incorporating negative rules, the

in Fig. 5. The graphs on the left side show the trajectories
for the cell growth. On the right hand side, the corre-
sponding deviations, respectively the control errors (evee)
to the reference trajectory are presented. The first batch
(A) was started with an initial concentration of about
11.3 x 10° cells/ml (18.1 mmol/); the temperature at the
beginning was 14 °C and the batch ran for 42 h. The
resulting RMSE of the control error using only positive
rules was 9.1 x 10° cells/ml. By adding also negative
rules, the RMSE could be reduced by 78 % to 2.0 x 10°
cells/ml and the absolute maximum overshoot was reduced
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fuzzy controller is able to keep the process much closer to the desired
trajectory. On the #ight hand side, the corresponding error trajectories
and the controller output signal are shown. Here, the line marked by
(inverted closed triangle) is the error trajectory using only positive
rules, the sefid line denotes the error by the P/N-fuzzy controller and
the dashed line marks the controller output. The region of maximum
overshooting occurring is marked by a corridor (see arrows) with
dashed lines

from 19.0 to 9.2 %. The second batch (B) had an initial
YCC of 6.4 x 10° cells/ml (10.2 mmol/1), was pitched at
14 °C and the duration was 34 h. The RMSE using only
positive rules was determined as 5.1 x 10° cells/ml and
could be reduced by the incorporation of negative rules to
0.9 x 10° cells/ml. Absolute maximum overshooting could
be improved from 32.7 to 4.7 %. Batch C was started with
a YCOC of 11.1 x 10° cells/ml (17.8 mmol/1),
T(t = 0) = 14.5 °C and it was run for 24 h. Using negative
rules, the RMSE of the control error could be reduced from
3.9 x 10° cells/ml to 2.8 x 10° cells/ml, which is an
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Table 3 Fuzzy controller performance values without and with negative rules

Batch A Batch B Batch C Avg. improvement
%

Only pos. P/N fuzzy Only pos. P/N fuzzy Only pos. P/N fuzzy (%)
rules system rules system rules system

Max. overshoot (%) 19.0 9.2 327 47 11.2 13.8 117

RMSE 9.1 2.0 51 0.9 39 2.8 628

(10° cells/ml)
AFCE 20.5 0.2 17 03 10.0 09 908

(10° cells/ml)

improvement of around 28 %. However, with respect to
maximum absolute overshooting occurring between the
10th and 20th hour (maximum at 16th hour), this was
slightly higher with 13.8 % compared to 11.2 % using only
positive rules. It is assumed that this could be avoided by
further tuning of the fuzzy set parameters. Therefore, future
investigations are carried out in order to automatically tune
the set parameters using evolutionary optimization tech-
niques like particle swarm optimization or genetic algo-
rithms. This would allow to further improve the control
performance and beyond this, it would allow to carry out
quick controller prototyping that leads to a reduction of
practical controller implementation and evaluation time.
However, as a general and probably the most important
finding, it can be noted that the fuzzy controller using
solely positive rules is not really able to stabilize the pro-
cess. In contrast to the P/N-fuzzy controller, it could not
make the cell concentration to target the reference trajec-
tory at the end of the process, which could be observed for
all batches. However, this was achieved by incorporating
two additional negative rules that reduce gradually, the
output of the corresponding positive rules. In other words,
if in future the control performance, respectively the con-
trol error deteriorates, then the decision that is made by the
positive rules at the current peoint of time will be attenuated
gradually. A comparative summary of maximum over-
shoot, RMSE and absolute final control error (AFCE) at the
end of the batch is given in Table 3.

Conclusion

In this work, an approach is presented for improving the
control performance of the process of brewer’s yeast
propagation using a fuzzy controller based on negative and
positive rules. The control performance of experimental
batches that were controlled using only positive rules is
compared to the same controller with two additional neg-
ative rules. The comparison is drawn upon evaluation of
RMSE of the control error and the absolute maximum
overshoot occurring during the process. The negative
control rules were built on a moving least squares predictor
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that outputs futare values of YCC and which are taken to
gradually prohibit or reduce the output of positive fuzzy
rules, referring to the current point of time in the process. It
could be shown that the incorporation of negative rules can
be used to achieve a more stable control performance than
by only using positive rules. Furthermore, it shows to
potential to specifically reduce overshooting and to achieve
smaller control errors. In this regard, an average
improvement of 11.7 % in overshooting, 62.8 % reduction
of RMSE and 90.8 % decrease of AFCE could be achieved
by the proposed P/N-fuzzy controller. Therefore, fuzzy
inference systems, especially when applied to complex
systems that are difficult to control, can benefit from the
incorporation of negative experience into the decision-
making process. Hence, warnings, respectively prohibitions
can be turned into concrete actions and interventions, to
modify the controller behavior where it is necessary. This
confirms the findings of [7] and [9, 10] that the inclusion of
negative experience can significantly improve the quality
of the control performance. However, as the input and
output fuzzy sets of the controller were parameterized in a
very uniform manner, there exists further potential for
performance optimization by fine tuning of the parameter
configuration of the fuzzy sets. In that respect, current
investigations strive for including a data-driven automatic
approach for fine tuning of the premise and consequent
fuzzy set parameters by the use of evolutionary computing.
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3 Discussion and outlook

The online supervision and control of biologically based processes is generally a
challenging task. Besides varying quality of raw materials and nonlinear and dynamic
metabolic behavior there are multidisciplinary sources of uncertainty that have to be
taken into consideration for the successful development of an online monitoring and
control system. In this regard one also has to be aware of a certain deduction of
measurement accuracy when dealing with online applications. In addition to
measurement noise, limitations in the temporal, spatial, physical, or chemical
resolution of available sensors commonly lead to a lack of information that cannot be
avoided completely. Furthermore, in many cases crucial quality attributes or process
parameters or variables cannot even be measured in a direct way. Therefore, indirect
methods or soft sensors built upon some kind of (multivariate) regression model are
used in order to provide an estimate of the required variable of interest. However, it is
clear that the detour via indirect, model-based measurement inevitably includes
supplementary information uncertainty. Hence, in terms of the scope of this work an
approach based on fuzzy logic was investigated and developed which is capable of
handling these kinds of uncertainty within an online framework for monitoring and
process control. In this regard, several solutions and optimization methods like genetic
algorithms or the incorporation of negative rules were explored in order to enhance the
system’s flexibility and to meet the required performance. In that context a
comprehensive screening of the state of the art in terms of fuzzy logic control and soft
sensing applications in the food and beverage sector was performed in order to
evaluate current trends and challenges in that direction. In this perspective, the
founding principle is to provide comprehensive process intelligence by using innovative
sensor concepts to improve process continuity, process safety, and process efficiency.
In order to achieve that objective, innovative sensor principles are combined with
modern methods of data analysis and modeling using process and product knowledge
(Krause, Birle et al. 2011). Hence, software sensors constitute useful tools for the
indirect supervision of necessary process variables. Recent approaches in food-
related processing use the concept of fuzzy reasoning and its potential to implement
expert knowledge along with numerical information. In that context the fuzzy symbolic
approach makes heavy use of expert knowledge with respect to quality evaluation of
food (Mauris, Benoit et al. 1994; loannou, Mauris et al. 2003; loannou, Perrot et al.
87
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2004). However, this approach relies exclusively on human assessment and is still in
need of human control action. Therefore, the online capability is limited and the
system’s stability in the case of variable sampling instances is difficult to judge.
However, fuzzy controllers generally possess a series of advantages. First, they are
now quite fast, problem-related, and meaningful tools for a smart control of complex,
non-linear system behavior as the description of the system’s behavior can be
achieved by means of linguistic expressions and the integration of expert knowledge.
Under consideration of rapid controller design and from a practical engineering
perspective that approach is very focused on problem-solving and simpler than using
methods of complex mathematics. Equally positive is the traceability and
interpretability of the obtained results and controller outputs. In addition to that, fuzzy
controllers can be used as a universal approximator of any nonlinear system.
Therefore, the control algorithm can be designed for the whole working range. By
choosing appropriate definitions of fuzzy sets and fuzzy rule bases a fine-tuning of the
controller behavior and adjustment of the desired control performance can be achieved
with the necessary sensitivity for the whole operating range. Due to that, controllers
based upon the principle of fuzzy inference are suitable for formulating nonlinear and
robust control rules. However, there exist several practicable and scientific
shortcomings of classical fuzzy inference control systems. One major drawback is the
lack of learning ability. An automated adaption to a steadily changing environment is
not possible and it is difficult to repair errors implanted in the initial design phase at a
later point in time. In other words, if for example the quality or composition of used raw
materials changes due to yearly variations of harvest conditions, or if the intrinsic
metabolic behavior of microorganisms is altered by any kind of mutation, then a static
fuzzy control system will not be able to compensate for that kind of diversification.
Furthermore, the parameterization of the fuzzy system, applying the appropriate fuzzy
operators, and the methods of implication and defuzzification are of crucial importance
for the system’s performance. Due to the high degree of freedoms that can be adjusted,
the still dominant in-field method of trial and error is not constructive from a scientific
point of view. Besides, without further optimization methods, a trade-off between
computation performance and quality of the result has to be dealt with. Consequently,
the suitability of fuzzy logic in the sense of software sensors is rather limited. Hence,

hybrid systems of fuzzy logic and computational optimization methods like evolutionary
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computing have emerged. This allows the advantages of both systems to be made use
of. Heuristic optimization methods are acknowledged to be very efficient and fast in
finding the optimal solution for a distinct problem. Different approaches are tested
simultaneously to reach the optimum, providing several potential solutions. As they are
able to cope with ill-behaved problem domains, exhibiting attributes such as
multimodality, discontinuity, time-variance, randomness, and noise, they seem to be
particularly suitable for parameter optimization of fuzzy logic based control systems
and enhancing their learning capability. However, applications and experience with
these optimization tools in the field of food and beverage production barely exist. This
might be mainly due to the fact that, depending on the problem space, evolutionary
optimization like genetic algorithms can be computationally intensive and frequently
require massive parallel implementations in order to deliver usable results within an
acceptable timeframe. Hence, their online application to real-time control has been
rather limited up to now. However, this circumstance opens up space for further
scientific research. In general, the combination or tuning of fuzzy inference systems
has the advantage that the inputs and outputs can be linguistic expressions
maintaining the interpretability of the system, while optimization and inference is
accomplished by the flexibility of the heuristic optimizer. Therefore, the intelligent
combination of these two technologies into an integrated system seems to be a
promising direction to optimized process control reducing development time and
improving the accuracy of the underlying fuzzy system. Looking at the landscape of
soft sensing approaches present in the field of food and beverage processing there is
a need for more investigation particularly with respect to robustness and sensitivity
analysis to error-prone input data in order to compete with the steadily changing
process conditions and satisfy the high quality demands in the case of large-scale
production. Especially in the case of the predicting and determination of crucial quality
parameters of fermentation processes there is a need for statistically based methods
that allow the handling of information uncertainty stemming from sensor data for the
purpose of online process supervision. In this context approaches based on
(multivariate) statistical process control offer an intelligent method for treating process-
related uncertainties by the use of statistically based process and quality corridors.
Moreover, control charts can then be used as an adequate tool for online visualization

and monitoring of the process evolution. In consequence, with respect to the
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observability and controllability of biologically based processes, uncertainty should be
treated on two levels. For the part of process monitoring and supervision the
uncertainty of process variability (process variance) can be charted by means of
statistical process control. The subsequent processing of this information and its
incorporation into a feedback control system in order to stay within statistical ranges of
certitude is then performed via fuzzy logic control.

In this work the brewer’s yeast propagation process was used in order to evaluate the
developed methods. Therefore a basic monitoring and control system was designed
and evaluated in the first instance. The proposed system consists of a classical fuzzy
logic control system and a metabolic growth model (Kurz, Mieleitner et al. 2002) in
order to guide the process along reference trajectories of cell growth and substrate
consumption. In addition, methods of data pretreatment, signal processing, and soft
sensing of yeast cell concentration using a neural network were applied. In order to
adjust the underlying PID controllers in the basic PLC system classical methods of
linear controller design were applied. In order to evaluate the performance of the
system and the quality of the produced yeast suspension target values of the final
process states were defined consisting of target yeast cell concentration, final
substrate concentration, percentage of dead cells, and the intracellular pH value.
These target values had to be achieved for varying process run times. The presented
results show that the system is able to target the desired final state corridors for extract
and yeast cell concentration within the desired duration. However, the system also
shows potential for further optimization. Although the final states are met, a deviation
of 7.0 x 108 cells/mL and 8.7 x 108 cells/mL at the end of the process was observed.
This indicates that the control performance can be improved. Therefore, the next step
was to apply further optimization methods of evolutionary tuning of fuzzy parameters.
In order to handle the aforementioned uncertainty with respect to the part of process
monitoring, the concept of statistical process control was introduced using statistically
predefined process corridors as a measure of uncertainty. Hence, statistical process
monitoring was coupled with an intelligent feedback control based on fuzzy logic for
handling uncertainty-biased processes related to food production and fermentative
processes in life sciences. The system was also demonstrated by the process of yeast
propagation. In that section of this work, the fuzzy controller parameters were tuned

using a genetic algorithm in order to meet the required quality and performance criteria.
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Prior to the experimental verification using the 120 L medium-scale propagation
system the tuning was performed by simulation. For this, a growth model according to
(Kurz 2002) was used to serve as the system response. The results show that the
performance of the control system is directly linked to the quality of the process. It
could be shown that if the statistical control limits were not exceeded, the target yeast
cell concentration of 100 x 10° cells/ml was outperformed reaching up to 185 x 10°
cells/ml and having less than 1% dead cells. The RMSE to the reference growth
trajectory was 5.2 x 108 cells/ml. However, the remaining future challenge is to
specifically identify changes in the trend of the control chart and to identify the cause
of a process anomaly without having the corresponding experience or knowledge
about the process. Therefore, a combined approach of multivariate modeling and fuzzy
control chart evaluation, e.g. (Sorooshian 2013), should be explored in order to link
specific quality attributes and the control performance of the process. Considering the
semantics of human decision making it is not straightforward to only use positive
experience when corrective action is required. The way how we make decisions also
includes negative experience, which can lead to more efficient assessment or actions.
However, this is not the case in most of the existing fuzzy inference systems, especially
when applied to control tasks. Generally, the standard modus ponens, or only positive
rule formulation, is applied. For this reason, the incorporation of negative experience
into a fuzzy controller was studied and evaluated. Following the concept of modus
tollens, an approach was used for improving the control performance of the process of
brewer’s yeast propagation by implementing a fuzzy controller based on negative and
positive rules. The control performance of a fuzzy controller using only positive rules is
compared to the same controller with two additional negative rules. The comparison is
made upon the evaluation of RMSE of the control error and the absolute maximum
overshoot occurring during the process. The negative control rules were established
by designing a moving least squares predictor. It outputs future values of the yeast cell
concentration which are used to gradually reduce the corresponding output of positive
fuzzy rules referring to the current point of time in the process. The results show that
the incorporation of negative rules can be used to achieve a more stable control
performance than what is obtained when only positive rules are used. Furthermore,
the method has the potential to specifically reduce overshooting and to achieve smaller

control errors. This is emphasized by an average improvement of 11.7% in
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overshooting, a 62.8% reduction of RMSE, and a 90.8% decrease in the absolute final
control error, which was achieved by the proposed P/N-fuzzy controller. It is shown
that fuzzy inference systems applied to complex biologically based systems can be
improved by the incorporation of negative experience into the decision-making
process. Warnings and prohibitions can be transformed into specific control actions to
modify the controller behavior where it is required. The results are in accordance with
the findings of (Kiendl 1997) and (Branson and Lilly 2001; Lilly 2007). They state that
the inclusion of negative experience can significantly improve the quality of the control
performance.

However, there is further potential for performance optimization as the input and output
fuzzy sets of the controller were parameterized in a uniform way. This could be
achieved by fine-tuning the parameter configuration of the fuzzy sets. A data-driven
approach for automatically updating and fine-tuning the premise and consequent fuzzy
set parameters (e.g. through the use of evolutionary computing) should therefore be
investigated. Beyond this, there is another topic that should be examined in future
work, which is the treatment of the cognitive uncertainty that emerges from the
ambiguity or vagueness inherent in natural language. Based on the thesis that words
mean different things to different people the classical fuzzy logic systems, also denoted
as type-1 fuzzy logic systems, were extended to the concept of type-2 fuzzy logic
systems by (Karnik and Mendel 1998; Karnik and Mendel 1998; Karnik, Mendel et al.
1999; Liang and Mendel 2000; Karnik and Mendel 2001; Karnik and Mendel 2001,
Mendel 2001) for practical use within an efficient computational framework. In a
classical fuzzy system uncertainties about the meaning of linguistic expressions are
defined via precise membership functions one believes to capture the uncertainty of
the words. However, by defining those membership functions the uncertainty about the
meaning of the words completely disappears due to the preciseness of the
membership function. In a type-2 fuzzy system this kind of uncertainty is modeled by
expanding the boundaries of type-1 membership functions to the left and to the right.
Consequently, a type-2 membership function is defined by an upper membership
function (UMF) and a lower membership function (LMF) enclosing the so-called
footprint of uncertainty (FOU). The FOU itself can be modeled by any kind of

membership function. This extends the classical two-dimensional representation to a
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three-dimensional form allowing the uncertainty linked to computing with words to be
handled. Figure 15 shows the concept of a type-2 Gaussian-shaped fuzzy set.

FOU(A)

Figure 15: lllustration of the concept of a Gaussian type-2 fuzzy set 4. The grey region is the
footprint of uncertainty (FOU) defined by the upper membership function (UMF) and the lower
membership function (LMF). The third dimension is illustrated by the vertical slice through the
FOU and is defined by a Gaussian membership function pz(x"), as well. In consequence a three-

dimensional fuzzy set is created, which is illustrated in the right-hand side of the figure.

By incorporating uncertainty directly into the design of the fuzzy sets, new doors in the
design of fuzzy logic based control systems are opened. In particular their stability and
robustness (Biglarbegian, Melek et al. 2011; Mendel, Hagras et al. 2014) make the
concept very attractive for a broad field of control applications, classification, and
pattern recognition (Dereli, Baykasoglu et al. 2011; Melin and Castillo 2013; Castillo
and Melin 2014).
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