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Abstract

The interaction between a human and multiple cooperating robots bears highly significant rele-
vance in many pivotal application domains. The employment of cooperative manipulators covers
application areas ranging from a team of robots transporting a variable-sized payload to multiple
robots clearing an unstructured path in search-and-rescue scenarios or collaboratively assembling
facilities in hostile and complex places. The benefits of employing multiple manipulators for
cooperatively manipulating a common object include increased payload capacity, expanded func-
tionality, and increased dexterity with larger objects. Due to their complementary strengths robots
will soon replace humans when it comes to repetitive or exhausting work while a human outper-
forms a robot in unknown situations when cognitive abilities are essential. As a consequence the
interaction of a single human with a team of cooperative robots, which collaboratively manipulate
an object, poses significant challenges such as the distributed robot control for cooperative object
manipulation and the forward mapping from human input to object motion.

The present thesis explores the distributed control and human interaction aspects in the guidance
of a cooperative manipulation task. We focus on the following relevant open challenges: First,
a control design which optimally coordinates multiple robots in order to satisfy the input and
state constraints at hand for a successful execution of the cooperative manipulation task. Second,
the requirements and the performance of a human-robot interaction paradigm which enables
the guidance of a cooperative manipulation task by a human operator while still preserving
autonomous functionalities of the robot team in both theoretical facets and practical use. Third,
the influence of the human operator on the individual (robotic) agents from a system theoretic point
of view based on topological conditions which additionally and especially becomes appealing
when considering the interaction with large-scale networks.

The major contributions of this thesis focus on the previously mentioned challenges. Regarding
distributed robot control enabling cooperative manipulation we introduce (i) an optimal control
problem which combines the classical quadratic cost function with a relaxed formation constraint
in terms of an additional biquadratic penalty term and (ii) the coordination of individually gener-
ated dynamic movement primitives by a formation-preserving feedback for each primitive. To
guide a cooperative manipulation task we propose a formation-based approach to map the human
input to the motion of the object cooperatively manipulated by multiple manipulators where the
human can be interpreted as the leader in a leader-follower formation with the robotic manip-
ulators being the followers. In contrast to classical methods we further introduce fundamental
insights into the controllability of leader-follower networks by establishing novel topological
characterizations of the uncontrollable subspace based on particular clustering of the underlying
interaction graph. All presented methods and approaches provide generic contributions in the
field of human-robots-interaction which can in particular be employed for but are not generally
limited to the guidance of a cooperative manipulation task by a single human operator. In this
regard, this thesis complements not only the existing theoretical contributions on cooperative
robotic manipulation and human network interaction but additionally highlights the practical use
of the methodologies in extensive experimental studies with multiple anthropomorphic mobile
robots throughout this work.



Zusammenfassung

Der Interaktion zwischen einem Menschen und mehreren kooperierenden Robotern wird eine be-
achtliche, zukunftsträchtige Bedeutung in vielfältigen Bereichen zugeschrieben. Als Beispiel kann
der Transport verschiedenartiger Ladegüter oder die gemeinscchaftliche Montage von Anlagen
genannt werden. Auf Grund einer vergrößerten Nutzlast, einer gesteigerten Flexibilität und einer
erhöhten Geschicklichkeit bei großen Objekten während der gemeinsamen Objektmanipulation
bringt der Einsatz kooperativer Roboter deutliche Vorteile mit sich. Angesichts ihrer komplemen-
tären Stärken werden Roboter Menschen immer stärker bei anstrengender, sich wiederholender
Arbeit ersetzen, während Menschen Roboter auf Grund ihrer kognitiven Fähigkeiten in unbekann-
ten Situationen übertreffen. Konsequenterweise birgt die Interaktion eines Menschen mit einem
Roboterteam zur gemeinsamen Objektmanipulation große Herausforderungen, wie zum Beispiel
eine verteilte Roboterregelung für die kooperative Manipulation und ein Vorwärtsmapping des
Menschen auf die Objektbewegung.

Die vorliegende Arbeit erforscht die Aspekte der verteilten Regelung und der menschlichen
Interaktion bei der Lenkung einer robotergesteuerten kooperativen Manipulationsaufgabe. Wir
konzentrieren uns auf die folgenden bislang unerforschten Punkte: Erstens einen Reglerentwurf,
der die einzelnen Roboter optimal koordiniert, sodass jeder Roboter die vorhandenen Glei-
chungsnebenbedingungen erfüllt und die kooperative Objektmanipulation gemeinsam erfolgreich
bewältigt wird. Zweitens die Eigenschaften eines Mensch-Roboter-Interaktionsmechanismus, der
die Lenkung einer robotergesteuerten kooperativen Manipulationsaufgabe durch einen Menschen
ermöglicht und dabei dennoch die autonomen Funktionalitäten der Roboter bewahrt. Drittens der
Einfluss des Menschen auf die individuellen (Roboter-)Agenten, basierend auf einer topologischen
Betrachtung des Interaktionsgraphen, was insbesondere bei großen Netzwerken vielversprechend
ist.

Der Hauptbeitrag dieser Arbeit beantwortet die offenen Forschungsthemen von oben. Hin-
sichtlich der verteilten Roboterregelung führen wir (i) ein Optimalsteuerungsproblem ein, das
eine quadratische Kostenfunktion mit einer relaxierten Gleichungsnebenbedingung an die Ro-
boterformation kombiniert und (ii) eine Koordination von individuell berechneten dynamischen
Bewegungsprimitiven durch eine die Roboterformation erhaltende Zustandsrückführung ein. Um
eine robotergesteuerte kooperative Manipulation zu lenken, schlagen wir einen formationsbasier-
ten Ansatz vor, der die Eingabe des Menschen auf die Bewegung des Objekts. das durch mehrere
Roboter manipuliert wird, abbildet. Der Mensch kann als Anführer eines Anführer-Verfolger-
Ansatz in dieser Anordnung interpretiert werden. Im Gegensatz zu den klassischen Methoden
erweitern wir die wesentlichen Erkenntnisse in der Steuerbarkeit des Consensus Protokolls, indem
wir neuartige topologische Bedingungen basierend auf einem speziellen Clustering des Interakti-
onsgraphen herleiten. Diese führen dann zu nicht-steuerbaren Unterräumen im Protokoll. Alle
in dieser Arbeit vorgestellten Methoden liefern einen allgemeingültigen Beitrag im Fachgebiet
der Mensch-Roboter-Interaktion, der im Besonderen für die Lenkung einer robotergesteuerten
kooperativen Manipulationsaufgabe verwendet werden kann, aber im Allgemeinen nicht darauf
beschränkt ist. Diesbezüglich ergänzt diese Arbeit nicht nur die bestehende Literatur in den Fachge-
bieten der robotergesteuerten, kooperativen Manipulation und der Mensch-Netzwerk-Interaktion,
sondern verdeutlicht auch noch deren praktische Relevanz durch umfangreiche Experimente mit
mehreren mobilen, anthropomorphen Robotermanipulatoren.



Contents

1 Introduction 1
1.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Main Contribution and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Modeling of a Multi-Robot Cooperative Manipulation Task 7
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Robot Dynamics and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Robot Model and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Mobile Platform Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Object Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Cooperative Manipulation Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.1 Kinematic Constraints in Cooperative Manipulation Task . . . . . . . . . . 19
2.4.2 Constrained Dynamics of Cooperating Manipulators and Object . . . . . . 20
2.4.3 Internal Forces in Cooperative Manipulation Task . . . . . . . . . . . . . . . 22

2.5 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.1 Mobile Robot Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Formation-based Coordination of Cooperative Robotic Manipulation 33
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Optimal Feedback Control under Relaxed Constraints . . . . . . . . . . . . . . . . . 35

3.3.1 Multi-Robot Cooperation - A State Space Model . . . . . . . . . . . . . . . 35
3.3.2 Control Goals in Multi-Robot Manipulation Task . . . . . . . . . . . . . . . 39
3.3.3 Optimal Control Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.4 Numerical Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.5 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Coupling Dynamic Movement Primitives (DMPs) for Synchronized Movements . 50
3.4.1 DMP - a Tool for Generalized Trajectory Presentation . . . . . . . . . . . . 51
3.4.2 Feedback Control of DMPs for Cooperative Manipulation . . . . . . . . . . 52
3.4.3 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Displacement-based Control for Cooperative Manipulation . . . . . . . . . . . . . . 59
3.5.1 6 DoF Set-Point Generator for Multiple Manipulators . . . . . . . . . . . . 59
3.5.2 Numerical Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

vii



Contents

3.5.3 Internal Wrench Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Human Interaction with a Multi-Robot Manipulation Task 69
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3 Human Operator as Explicit Leader of Robotic Followers . . . . . . . . . . . . . . . 72
4.4 Human Influence on Particular Robotic Set-Points . . . . . . . . . . . . . . . . . . . 76

4.4.1 Internal Force During Transient Phase . . . . . . . . . . . . . . . . . . . . . . 77
4.4.2 Human Shared Control of a Cooperative Manipulation Task . . . . . . . . . 79
4.4.3 Weighted Set-Point Generators to Reduce Internal Forces . . . . . . . . . . 83

4.5 Controllability of the Human-guided Cooperative Manipulation Task . . . . . . . . 86
4.5.1 Controllability of the Impedance-based Multi-Robot Dynamics . . . . . . 87
4.5.2 Controllability of the Guided Cooperative Manipulation Task . . . . . . . . 87

4.6 Stability Analysis of the Human-guided Cooperative Manipulation Task . . . . . . 90
4.6.1 Equilibria of the Cooperative Manipulation Task and Their Stability . . . . 91
4.6.2 L2-stability of the Guided Cooperative Manipulation Task . . . . . . . . . 95

4.7 Task-dependent Vibrotactile Feedback to the Human Operator . . . . . . . . . . . . 101
4.7.1 Vibrotactile Cue During Transient Phase of the Set-Point Generator . . . . 102

4.8 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.8.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.8.2 Technical Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.8.3 Results and Discussion for the Set-point Generator . . . . . . . . . . . . . . 106
4.8.4 Results and Discussion for the Multi-robot Dynamics . . . . . . . . . . . . 107
4.8.5 Results and Discussion of Wearable Feedback . . . . . . . . . . . . . . . . . 108

4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5 System Analysis of Interaction Dynamics through Graph Partitioning 111
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.3 The Controlled Consensus Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3.1 Controllability Problem and Kalman Decomposition . . . . . . . . . . . . . 114
5.3.2 Necessary Conditions for Uncontrollability . . . . . . . . . . . . . . . . . . . 115
5.3.3 Leader-invariant Almost Equitable Partitions . . . . . . . . . . . . . . . . . . 116

5.4 Uncontrollability by Leader-Noninvariant Almost Equitable Partitions . . . . . . . 120
5.4.1 Geometric Multiplicity and AEPs . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.4.2 Non-Trivial AEP of the Quotient Graph . . . . . . . . . . . . . . . . . . . . . 123

5.5 Uncontrollable Subspace by Faria Vectors . . . . . . . . . . . . . . . . . . . . . . . . 126
5.5.1 General Faria Vectors in Laplacians . . . . . . . . . . . . . . . . . . . . . . . 126
5.5.2 Faria Vectors in Controlled Consensus Protocols . . . . . . . . . . . . . . . 128

5.6 Numerical Investigations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.6.1 Open-loop Leader Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.6.2 Graph Size over Uncontrollable Subspace . . . . . . . . . . . . . . . . . . . 133
5.6.3 Uncontrollable Subspaces and Graph Sparsity . . . . . . . . . . . . . . . . . 135
5.6.4 Uncontrollable Subspaces and LEPs . . . . . . . . . . . . . . . . . . . . . . . 136

viii



Contents

5.7 Experiencing Network Interaction in a Virtual Reality . . . . . . . . . . . . . . . . . 137
5.7.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6 Conclusions and Outlook 143
6.1 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A Linear Algebra 147

B Graph Theory 152

C Experimental Setups 154

Bibliography 159
Author’s Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

ix



Notations

x



Abbreviations

2D two-dimensional
3D three-dimensional
6D six-dimensional
AEP almost equitable partition
BFGS Broyden-Fletcher–Goldfarb-Shanno
CoM center of mass
DMP dynamic movement primitive
DoF degrees of freedom
EE end effector
FMS formation
IMP impedance
LED light emitting diode
LEP leader-invariant almost equitable partition
LQR linear quadratic regulator
LTI linear time-invariant
LWPR locally weighted projected regression
LWR light-weight robot
PBH Popov-Belevitch-Hautus
SVD singular value decomposition
UAV unmanned aerial vehicles
VR virtual reality

Conventions
Scalars, Vectors, and Matrices

x scalar
x vector
|x | absolute value of x
‖x‖ Euclidean norm of x

xi



Notations

X matrix
X ᵀ transpose of X
X−1 inverse of X
X † pseudoinverse of X
range(X ) range of the matrix X
ker(X ) null space of the matrix X
dim(X ) dimension of the matrix X
vec(X ) vectorization of the matrix X
mat(x) reshaping a vector x into a matrix
In n× n identity matrix
1 vector with ones of appropriate size
0 scalar/vector/matrix with zeros of appropriate size
f (·) scalar function
f (·) vector function
X matrix related to overall dynamics, set
|X | Cardinality of the set X
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1

Introduction

Conducting is the mighty and intricate art of supervising and directing a large instrumental
ensemble such as an orchestra or a chorus. In an orchestra the conductor acts as a guide to the
ensemble of musicians. He or she uses hand gestures to control e.g. the orchestra’s tempo or the
correct entry of various ensemble members. While obeying the conductor’s signals the individual
musicians of the orchestra still need to communicate nonverbally and arrange among themselves
in order to deliver an outstanding performance to the audience. Comparable circumstances arise
when robotic assistances enter our everyday’s work and personal life in the near future: an
exceptional and convincing performance of the robotic helpers is required so that robots can
become universally and widely accepted. Then the intended role of the human is primarily to
become the conductor or guide of a multitude of serving and facilitating robotic assistances. In
order to likewise offer a convenient interaction between the human guide and the robots both
cooperation and coordination between the individual robots is required.

Already today a large portion of the goods which are produced in factories is part of a fully
automated assembly line. Following the overall advancements in the field of robotics the situations
where the cooperation of multiple robots is required have gained in importance. The impact of
cooperative robots in payload transportation for manufacturing and industrial applications cannot
be overestimated. The benefits of employing multiple manipulators to manipulate a common
object cooperatively include increased payload capacity, expanded functionality, and increased
dexterity with larger objects. The employment of cooperative manipulators covers applications
ranging from an assembly of robots transporting differently sized payloads in the absence of
gantry cranes to a group of robots clearing an unstructured path in search-and-rescue scenarios.
Similarly extra-terrestrial colonization efforts can clearly benefit from cooperative manipulation
when mobile rovers equipped with manipulators can cooperatively assemble the facilities.

Out of all things necessary to successfully realize a cooperative manipulation task, robot control
is the most relevant element. The constraints of a manipulation task which is accomplished by
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an ensemble of multiple robots requires a tight coordination and cooperation of all participating
robots. A cooperative manipulation task is considered to be successfully conducted when the
multi-robot team jointly manipulates the object from an initial configuration to a final configuration
without damaging the object, i.e. there is no significant deviation of the forces acting on the
manipulated object from the desired forces. The first endeavors to synthesize a collective robot
behavior for cooperative manipulation focus on a decentralized control scheme where each robot
infers its desired motion/force control set-points from a global plan where no communication
among the team members takes place. Each robot self-reliantly reacts to adaptations in the global
plan but does not efficiently and cooperatively react in a distributed way to disturbances acting
on a single robot. Advances in real-time inter-robot communication and in distributed control
algorithms enable the development of distributed coordination controllers where the particular
capabilities of the individual robots are exploited while achieving the common global objectives
of cooperative manipulation. Recalling the image of an orchestra robot control in a cooperative
manipulation task corresponds to the individuals professionally playing the particular instrument
while the group collectively performs through nonverbal communication and arrangement.

It can be expected that due to their complementary strengths robots will replace humans to
an even bigger extent in the future in particular when it comes to repetitive or exhausting work.
Unlike in familiar situations, however, a human outperforms a robot in unknown situations where
the human cognitive abilities are essential. Within the context of human robot interaction, most
established controllers enable the human to only direct a single robot at a time and this solutions
does not scale. The development of a user interface for controlling multiple robots robots presents
a valuable prospect to bring a human in the control loop. One of the problems is that the number
of robots a single operator can supervise is naturally limited by human attention and the human
memory capacity. A cooperative manipulation task requires a single human operator to control a
group of autonomous robotic agents without guiding each robot individually but directing the
collective as a group. Recalling the image of the orchestra the human task is here to supervise and
guide the collective of robots. Both cooperative robot manipulation algorithms and controlling a
team of robots state significant challenges on their own, however an approach addressing both
simultaneously is an extraordinarily challenging assignment.

We envision a human operator being the conductor of an ensemble of multiple mobile robots
cooperatively manipulating an object. To achieve this vision, we acknowledge the importance
of an efficient control mechanism to simultaneously guide multiple agents while autonomy is
left with each robot. In order to motivate the relevance of the research topic the main challenges
which are faced by the control design for guiding multiple robots in a cooperative manipulation
task are summarized in the following.

1.1 Challenges

The control design for the guidance of a cooperative multi-robot manipulation task faces multiple
challenges in the fields of robot control, human-machine interaction, and networked control
systems. Some of the key issues studied in this thesis are summarized as follows:
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Control design

A multi-robot cooperative manipulation task can be considered as a system consisting of multiple
robots and an object to be manipulated. The particular members of the cooperating robot
team are physically coupled through the object which imposes strict constraints on the control
objectives. Using a team of robots for cooperatively manipulating an object drastically increases
the complexity since the motions of all manipulators need to be coordinated. The behavior of the
cooperative manipulator system is determined by the interaction of the manipulator dynamics
which are typically multi-degree-of-freedom with nonlinear dynamics and the dynamics of the
object to be manipulated. The interplay between manipulator control schemes and the interaction
forces among the manipulators needs to be addressed in a successful implementation of a joint
coordination strategy for cooperatively manipulating robots.

Human-machine interaction

In order to provide high-level instructions to the robots an interaction mechanism for the human
operator is required where he/she can explicitly guide a cooperative multi-robot manipulation task.
The human operator of such a complex system is provided with a large number of interaction
possibilities to achieve the system goal efficiently and safely. Recent development in robotics
makes it possible to automate many aspects of the manipulation task and masks the task from the
operator in situations where relevant autonomous core functionalities are required such as not
damaging the object regardless of the human command or collective obstacle avoidance in an
unstructured environment. Among many others two fundamental issues have been identified in
the interaction between a human and a group of robots: the choice of a suitable and natural way
to simultaneously command multiple robots and providing appropriate feedback to the human
operator.

Network synthesis

Traditionally, the cooperative manipulation of an object only lacks a handful of collaborating
robots. The influence of the human operator on the particular robot dynamics is known to depend
on both the number of acting robots and the interaction topology among the cooperating robots.
When a handful robots develop into a large number of robots the complexity and the implication of
the problem is significantly increased and the research problem transforms into a human-network
interaction problem. Here, the influence of the human operator on particular network agents can
be still explained using classical system theory. However, control theory provides no answer to
what the relevance of the particular interaction between any two agents for the controllability of
the system is. For such large-scale network system novel topological methods for characterizing
and describing the influence of the human input on the individual agents are required.

1.2 Main Contribution and Outline

This thesis aims for fundamental issues in the guidance of a multi-robot cooperative manipulation
task by a human operator. It studies the scientific questions of “how to design a distributed control
law which optimally coordinates multiple robots in order to accomplish the manipulation task
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cooperatively?”, “what are the requirements of a human-robot interaction principle which enables
the guidance of a cooperative manipulation task by a human operator while still preserving
autonomous functions of the robot team?”, “how does the number of (robotic) agents and the
interaction topology among the (robotic) agents affect the influence of the human operator on
particular robots and how can we characterize this effect by topological properties of the graph
which represents the interaction topology of the system?” All these questions will be targeted in
the domain of multi-robot cooperative manipulation and human-network interaction. Chapter 2
reviews related background on cooperative object manipulation by multiple robotic manipulators
and establishes a model of the manipulated object and the dynamics of a robotic multi-arm
system. The following chapters address the aforementioned problems of (i) control design for
multi-robot cooperation, (ii) human-machine interaction, and (iii) network synthesis. To enable
an effective cooperative manipulation task, Chapter 3 introduces novel methods for devising
distributed controllers which employ formation control in the optimal control design or couple
individually generated trajectories in order to achieve the desired global objective. Regarding
human-machine interaction, a novel and innovative team control approach for the human guidance
of a multi-robot cooperative manipulation task based on a leader-follower formation control is
presented in Chapter 4. Leader-follower formation dynamics are advantageous for interfacing
a cooperative manipulation task but they genuinely demonstrate their strengths when dealing
with large-scale networks. Chapter 5 introduces fundamental insights on the relation between the
interaction topology of a leader-follower formation and the particular coupling mechanisms. In
addition, novel topological conditions based on graph partitioning for characterizing the influence
of a single input on the particular following agents are presented. In the following, the major
contributions within each chapter are outlined.

Chapter 2: Modeling of a Multi-Robot Cooperative Manipulation Task

In this chapter a force control scheme based on the commonly employed impedance control
is introduced which is widely employed for cooperative multiple mobile manipulators. The
coordination problem of the emerging kinematic tree structure built by mobile platform and
two anthropomorphic manipulators is resolved by a decoupling technique in task space. A
consistent modeling of the interaction dynamics consisting of the individual impedance-controlled
manipulators and the manipulated object is presented at the object and the manipulator level. The
presented model relies on the Gauss’ principle of least constraint. Simultaneously we present
an extensive formulation of the state and input constraints which are apparent in a cooperative
manipulation task and whose violation leads to undesired and not motion-inducing forces called
internal forces. Internal force analysis is considered as an evaluation criterion and the impact of
the coordination schemes on the manipulation performance is demonstrated in an experimental
study with four 7 degree of freedom manipulators on two mobile platforms. Some results of this
chapter have been partly published previously in [1].

Chapter 3: Formation-based Coordination of Cooperative Robotic Manipulation

The main contributions of this chapter are distributed control approaches for cooperative manip-
ulation tasks facilitated by a movement synchronizing control law and a suboptimal LQR-like
control law for physically cooperating manipulators. The first approach regulates the multi-robot
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system in an optimal fashion to a final configuration while maintaining its formation. To achieve
the LQR-like control law, we formulate an optimal control problem which combines the classical
quadratic cost function with a relaxed formation (rigidity) constraint in terms of an additional
biquadratic penalty term. This relaxed rigidity constraint is justified by the use of impedance
control, by which minor deviations from the rigidity constraint result in tolerable object stress.
Because of the biquadratic term the LQR problem cannot be solved using standard methods,
we propose an iterative descent method inspired. The second approach is based on formation
control and coupled DMP-based trajectory planning. Here, DMPs generate individual manipulator
trajectories to a desired final configuration, which is in agreement with the initial configuration of
the multi-robot team. During the tracking phase, it may happen that individual DMPs violate the
formation rigidity or disturbances occur on a single manipulator. The issue is circumvented in our
approach by using a formation-preserving feedback for each DMP. Minor remaining deviations
from the formation are accommodated by local impedance control laws in each manipulator such
that they react compliantly to their environment. Both proposed control and trajectory generation
approaches are evaluated in experiments and their robustness against perturbations and reduced
internal forces on the object are demonstrated for cooperative manipulation and synchronized
motion tasks. The results of this chapter have been partly published previously in [2, 3, 4]

Chapter 4: Human Interaction with a Multi-Robot Manipulation Task

The contribution of this chapter is a novel approach for the human guidance of a multi robot
cooperative manipulation task. It is based on a leader-follower formation control approach. We
discuss system equilibria and their stability and show that the human-guided set-point generator
and the impedance-based multi-robot interaction dynamics are asymptotically stable for a human
position command being the input. Particularly critical for internal forces is also the transient
phase, where excessive forces can easily occur if the motion transients of the individual robots do
not match. Therefore, we present a controllability analysis of the human-robot team interaction
in a cooperative manipulation task. We investigate the controllable eigenmodes of the robot
formation and show that it is beneficial during the transient phase when every robot can access the
state information of the human leader. As a result the desired trajectories are in accordance with
the object geometry during the transient phase and the desired internal force acts on the object.
Based on these results we devise a control strategy for human-controlled formations of physically
cooperating robots. If the human could control multiple robots independently in a cooperative
manipulation task, the human can drive different robots independent from each other and is thus
able to actively alter the distances between the robots. Hence there can occur a violation of the
formation rigidity which results in undesired stress on the object. Furthermore, we present results
of a pilot study in which vibrotactile feedback based on the formation state is applied to the human
operator. The results of this chapter have been partly published previously in [5, 6].

Chapter 5: System Analysis of Interaction Dynamics through Graph Partitioning

The main contribution of this article is to provide novel topological conditions for uncontrollability
in leader-follower consensus dynamics. Typically leader-invariant AEPs are consulted to describe
the controllable subspace topologically. We approach the novel conditions as follows: First we
mathematically indicate under which circumstances the uncontrollable subspace of a particular
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interconnection graph is not completely characterized by leader-invariant AEPs. To identify the
uncontrollable subspaces we make use of the fact that a 0−entry in an eigenvector of the Laplacian
L or geometric multiplicity of the eigenvalues lead to an uncontrollable subspace. A particular
special case of eigenvectors characterized by AEPs is an augmented class of Faria vectors which
is related to the uncontrollable subspace of the controlled consensus problem. By doing so we can
characterize an uncontrollable subspace of the controlled consensus problem and its corresponding
eigenvalue. Based on these findings, we discuss under which conditions the selection of multiple
leaders in a network leads to an uncontrollable subspace. Due to the duality of controllability and
observability, the obtained results translate to the corresponding observability problem. The result
of this article is approached by an extensive numerical investigation to obtain empirical results
which uncontrollable subspaces can be characterized by the conditions presented in this article
and not by leader-invariant AEPs. The numerical investigations consider a number of graphs with
different graph size and a different number of edges. The numerical examples consolidate that
the proposed conditions based on Faria vectors can topologically characterize a different part of
the uncontrollable subspace than AEP condition under certain conditions and substantiate the
importance of the novel topological conditions. The presented conditions provide a more complete
picture which subspaces in a controlled consensus protocol are controllable and uncontrollable,
respectively. The results of this chapter have been partly published previously in [7, 8].
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2

Modeling of a Multi-Robot Cooperative Ma-
nipulation Task

2.1 Motivation

The cooperation and interaction of several mobile manipulators to achieve a common task is a
popular research topic. A specific problem in the area is the cooperative manipulation of objects
where several physically cooperating manipulators collaboratively transport an object from an
initial to a final configuration. Some tasks are difficult or even impossible to get when a single
robotic manipulator has to execute them. For example the manipulation of heavy or large objects
requires the collaboration of several manipulators. Other relevant applications of cooperative
manipulation are the assembly of multiple parts without employing individual fixtures or the
manipulation of flexible objects where the objects feature extra degrees of freedom. A successful
manipulation task is characterized by accurately manipulating the object without distortion along
a desired trajectory. A motion coordination of the cooperating manipulators is required in order to
reach the object’s goal position and orientation and such that the stress acting on the object does
not deviate too much from the desired stress. Using mobile manipulation here is exceptionally
interesting since it substantially increases the workspace of all cooperating manipulators and
extends the manipulation task to large-scale environments. Cooperative manipulation schemes
aim to achieve a global control goal by conducting a group of manipulators resulting only from
local control actions. Each manipulator interacts directly with the object and indirectly with the
remaining manipulators through the object by the aforementioned local control action. In order
to later devise coordination control strategies for the cooperating manipulators we now revise
historical developments in cooperative manipulation.

7



2 Modeling of a Multi-Robot Cooperative Manipulation Task

2.2 Related Work

The research interest on the physical cooperation of multi-arm robots has emerged in the early
1970s [9, 10]. Already back then the importance of employing a force/compliance control scheme
and using task-space control for the coordination of the manipulators in a tight physical coupling
has been recognized. A compliant behavior of the cooperating manipulators w.r.t. the manipulated
object was realized by utilizing the back-drivability of the actuators in [9]. In retrospect the results
concerning cooperative manipulation can be mainly seen as preliminary.

A strong theoretical background on the cooperation of a multi-robot system is established in
the 1980s [11]. In particular during that time the researcher defined a task vector which lies in
the object to be manipulated [12] and derived multi-body dynamics of a closed kinematic chain
which consisted of multiple cooperating robots and the object [13, 14]. The derivation of these
techniques has enabled the application of more advanced control approaches in order to facilitate
a multi-robot cooperative manipulation task.

Technological advances and theoretical results in hybrid motion/force control enabled two
principal questions to be investigated in the 1990s: how can we simultaneously control both
the trajectory of the object and the stress acting on the object by multiple robotic manipulators;
and how can we exploit novel robot control techniques to render the cooperating manipulators
compliant w.r.t. the object. In order to deal with the former challenge different techniques have
been proposed which employ force decomposition schemes as studied in [15, 16, 17, 18]. Force
optimization techniques have been exploited in studies of cooperative manipulation [19]. In
particular, a unique and geometrical consistent mathematical model of the internal forces/torques
acting on the manipulated is considered to be a major challenge. Without explicitly taking into
account the dynamics of the collaborating robotic manipulators a general solution to internal
forces is presented in [20]. The second research direction in the 1990s investigates how to render
manipulators compliant w.r.t to the environment. Proposed control methods used in cooperative
manipulation tasks range from motion and force control techniques [21], to adaptive control
approaches [22, 23], or even joint-space control [24, 25]. In a tight physical coupling, impedance-
based control schemes are considered favorable in manipulation tasks, since they specify the
desired dynamics in analogy to a mechanical mass-spring-damper system. Impedance control
[26] is widely applied for end effector control enforcing a relation between measured force and
resulting motion. In cooperative manipulation tasks impedance control enables to actively render
a desired robot behavior and to simultaneously determine an internal and external compliance by
employing a structural control design approach [27]. Furthermore, it may also be used to define
the desired dynamics of the manipulated object [28] which is subject to the forces acting on the
attached end effectors. Distributing impedance-based control schemes among several cooperating
manipulators is demonstrated to be preferable in [29] which also includes a stability analysis
Both principal research questions of the 1990s, namely impedance control and internal force
control, are brought together in [18] where an internal-force based impedance control scheme for
cooperating manipulators is proposed. However, in [18] the impedance control scheme is only
employed to regulate the internal force. A relevant and fundamental fact is neglected here that
internal force actually arises from the rendered impedance-based system dynamics and so the
impedance control parameters need to be considered in characterizing internal forces acting on
the object. Just recently, this gap between the two main research directions from the 1990s has
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been closed in [30] where a mathematical model for the internal force is derived studying the
interaction dynamics of impedance-controlled manipulators in task space in order to finally reveal
multi-body dynamics considering manipulator and object dynamics.

Research interests in cooperative manipulation around the 2000s mainly focus on expanding
and extending the worskpace of a cooperative manipulation task by mobile platforms. Two major
challenges in mobilizing cooperative manipulating robots are considered to be the variety of mobile
platforms available, e.g. holonomic in contrast to non-holonomic or omnidirectional in contrast
to conventual wheels and that the motion of the particular robots is always subject to a global
reference system. By utilizing mobile bases for each cooperating robots the relative pose between
any two manipulating robots is subject to motion, too. A collection of proposed mobile multi-robot
manipulating systems with mobile bases is depicted in Figure 2.1. A pioneering research result
is presented in [31] where a decentralized strategies for cooperative manipulation with mobile
manipulator systems which are installed on a holonomic mobile base is proposed. Control schemes
and motion planning algorithms for cooperative mobile manipulation tasks incorporating the non-
holonomic mobile platforms are presented from various centralized perspectives in [32, 33, 34].
In [35] impedance controllers for the transportation of a large object is proposed by particularly
locking and unlocking joints of the manipulators mounted on mobile platforms. Another simple
but promising distributed approach for cooperative mobile manipulation is presented in [36, 37,
38]: To accomplish a cooperative physical manipulation task some control methods only consider
rather simple mobile robots in order to enclosure the object collectively and then push the object
collaboratively. From a centralized entity, cooperative optimal motion planning schemes are
developed in [39] and the consequences of flexibility are outlined in [40]. In particular, [37]
provides a convenient solution for tackling the issues that arise from the relative movement of
the robots when using mobile platforms by aligning the individual robotic reference systems
through data exchange. It remains open how to perform distributed control of the motion of a dual
manipulator systems mounted on a single mobile platform in order to accomplish a successful
cooperative manipulation task.

Just recently, around the 2010s novel technologies in force-/torque sensors bring impedance
control back in the focus of cooperative manipulation research [41]. In particular, a compar-
ison of object-level grasp controllers for dynamics cooperative manipulation tasks shows the
supremacy of using distributed impedances for cooperative manipulation tasks from a practical
point-of-view [42]. In addition, recent advances and novel methods in theoretical distributed
network control find their path into the distributed control of multiple robotics systems. Their
modes of operation are versatile: uncertainty in the kinematics of an individual manipulator and
the closed kinematic chain built by two manipulators is addressed in [43] and [44, 45, 46]. Recent
publications [47, 41] indicate the relevance and the expected benefits of distributed control archi-
tectures for dual-arm mobile manipulation tasks. Decentralized motion control approaches [48]
and distributed estimation methods for unknown payloads [49, 50] are recently discussed in the
literature.

To sum up now, the literature review in cooperative robotic manipulation suggests to employ a
distributed impedance control in task-space in order to render each manipulator compliant w.r.t
each other for a successful execution of the cooperative manipulation task. The workspace of
each manipulators is to be extended with a mobile platform and the motion of the platform needs
to be locally coupled with the impedance control in order to retain the local control actions. For
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2 Modeling of a Multi-Robot Cooperative Manipulation Task

latter proposing distributed control methods a consistent system model with several fundamental
theoretical results of the impedance-controlled cooperating manipulators and the object to be hold
is derived in the upcoming sections.

2.3 Robot Dynamics and Control

First, we present the general dynamical model of a robot and revise a feedback linearization
control law in order to realize a compliant behavior of the robot. Both models are introduced in
order to present the assumptions which are considered throughout this work. In order to decouple
the motion of the mobile platform from the manipulators we propose a decoupling approach
for manipulator and mobile platform and conclude with an illustration of the resulting system
architecture.

2.3.1 Robot Model and Control

For a detailed analysis of the interaction between the manipulators among each other through the
object it is convenient to consider a robot behavior which is compliant. A model which highlights
the interaction effects of a cooperative manipulation task in joint space are presented in [60, 61,
62, 63]. For a better understanding of the interaction between the manipulators through the object
it is beneficial to refer to a operational space control scheme. However, the motion of the robot
is generally described in generalized coordinates. Using for example a Lagrange formulation in
order to describe the equation of motion of a robotic manipulator [64, 65, 66], the dynamic model
of a manipulator with n ∈ N+ joints can be written as

Bi(θ i)θ̈ i + Ci(θ i, θ̇ i)θ̇ i + Fiθ̇ i + g i(θ i) = τi − Jᵀi (θ i)h
e
i , (2.1)

where the generalized coordinates θ i ∈ Rn, θ̇ i ∈ Rn, and θ̈ i ∈ Rn are the joint position, joint
velocity, and joint acceleration, respectively. Furthermore, Bi(θ ) ∈ Rn×n is the inertia matrix
which is known to be always positive definite and symmetric. Ci(θ i, θ̇ i)θ̇ i ∈ Rn refers to the
centrifugal and Coriolis terms and Fiθ̇ i ∈ Rn to the viscous friction torques. The gravity vector is
given by g i(θ i) ∈ Rn. The actuation torques are denoted by τi ∈ Rn. If the manipulators are in
contact with the environment which is in our setup the object and the remaining manipulators
then Jᵀi (θ i)h

e
i ∈ Rn are the interacting torques resulting from the contact forces he

i ∈ R6 which
are exerted on the environment by the manipulator’s end-effector. The direct kinematics which
accounts for the dependence of the operational-space task variable ξi from the joint positions θ i

as

ξi = k(θ i),

where k(·) is a generally nonlinear vector function. The Jacobian Ji(θ i) ∈ R6×n defines a mapping
for the differential kinematics

v i = Ji(θ i)θ̇ i, (2.2)
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(a) (a) (b) (b)

(c) (c) (d) (d)

(e) (e) (f) (f)

(g) (g) (h) (h)

Figure 2.1: Examples of cooperative mobile multi-robot manipulation systems: (a) Heterogeneous
robotic systems in [32], (b) Planetary rover exploration in [51], (c) Manipulating
deformable objects in [52], (d) Caster-like motion in [53], (e) Decentralized control
in [54], (f) Distributed manipulation in [55], (g) Cooperative tele-manipulation in [56,
57], (h) Wheeled mobile robots in [58, 59].
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2 Modeling of a Multi-Robot Cooperative Manipulation Task

between the joint velocities θ̇ i and the end-effector velocity v i. In line with the literature the
twist v i in operational space is defined by the end-effector’s translational and angular velocity
as v i =

�

ṗᵀi ,ωᵀi
�ᵀ ∈ R6. Depending on the representation of the orientational part of v i the

literature distinguishes between the analytical Jacobian JA
i which references to the rotational

velocity and the geometrical Jacobian Ji which references to the angular velocity. In order to
allow minor deviations of the desired position trajectories from the constraints which are always
apparent in a physical cooperation task and which can result e.g. from model and geometric
uncertainties or external disturbances we propose to employ a impedance control scheme for each
of the N manipulators here. We choose

τi = Bi(θ i)y i + Ci(θ i, θ̇ i)θ̇ i + Fiθ̇ i + g i(θ i) + Jᵀi (θ i)h
e
i , (2.3)

where τi generally accounts for different possible nonlinear control options through feedback
linearization. The impedance control scheme can be attributed to a mechanical system with
mass matrix Mi, damping matrix Di, and stiffness matrix Ki. Hence, we impose the desired
compliant and moving behaviours with freely tuneable and designable parameters Mi, Di, and Ki

and conceptually determine y i to be

y i = JA
i
−1(θ i)M

−1
i

�

Mi v̇
d
i + Di(v i − v d

i ) + hKi (ξi,ξ
d
i )−Mi J̇

A
i (θ i, θ̇ i)θ̇ i − hi + hd

i

�

.

Here, ξi = [p
ᵀ
i ,qᵀi ] denotes the pose and hi = [ f

ᵀ
i , t ᵀi ]

ᵀ ∈ R6 is the applied wrench to the i-th
manipulator. The pose is split into the end-effector position p i ∈ R3 describing the translational
part and the unit quaternion q i =

�

ηi,ε
ᵀ
i

�ᵀ ∈ SO(3) describing the rotational part where ηi ∈ R is
the real part and εi ∈ R3 is the imaginary part. Throughout this thesis all quaternions q i are unit
quaternions, i.e. the following relationship always holds

q i
ᵀq i = ηi

2 + εi
ᵀεi = 1.

The wrench hi is split into forces and torques f i, t i ∈ R3. Furthermore, the desired manipulator
pose is represented by ξd

i = [p
d
i ,q d

i ] and the desired wrench by hd
i . The desired position pd

i ∈ R3

of the ith end-effector in task space is denoted as pd
i = [p

d
i,1, pd

i,2, pd
i,3], where pd

i,1, pd
i,2, pd

i,3 denote
the components along each translational direction in Cartesian space. The desired orientation
q d

i ∈ S3 is in a similar manner denoted as q d
i =

�

ηd
i ,εd

i

�

, where ηd
i is the scalar part and εd

i is
the vector part of the quaternion. The compliance is represented by Mi = diag(mi I3,µi I3), Di =
diag(di I3,δi I3), Ki = diag(ki I3,κi I3) ∈ R6×6 wich are the positive definite mass, damping, and
stiffness matrices, respectively. Note that parameters Mi, Di, and Ki can be freely chosen and
tuned and they impose the desired dynamics on the system in both motion phases and contact
phases. The translational behavior is determined by scalar values mi, di, ki ∈ R+ rendering an
isotropic translational behavior. The rotational behavior is specified by the scalar parameters
µi,δi,κi ∈ R+. A stiffness [67] in six degrees-of-freedom is given by

hKi (ξi,ξ
d
i ) =

�

f K
i

t κi

�

=

�

ki(p i − pd
i )

2κiU(q i)
ᵀ(q i − q d

i )

�

, (2.4)

where the difference of current and desired orientation is defined as the imaginary part of the
quaternion product q i · (q d

i )
−1 and can be expressed as U(q i)

ᵀ(q i − q d
i ). Here, the aid matrix
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U(q i) ∈ R4×3 is defined as

U(q i) =

� −εi
ᵀ

ηi I3 + S(εi)

�

. (2.5)

The operator S(·) is the skew-symmetric matrix operator defining the cross product, i.e. S(a)b =
a× b. When using unit quaternions the aid matrix U(q i) features the following relevant identities

U(q i)
ᵀU(q i) = I3, (2.6a)

U(q i)U(q i)
ᵀ = I4 − q iq i

ᵀ, and (2.6b)

U(q i)
ᵀq i = 0. (2.6c)

A proper conversion between the time derivative of the robot state ξ̇i and the twist v i is given by

v i =

�

I3 0
0 2U(q i)

ᵀ

�

ξ̇i, (2.7)

where the conversion can be compactly written with the help of the aid matrix U(q i) ∈ R4×3. In
order to keep linearity and decoupling along the degrees of freedom, a force/torque sensor is
required to measure the interaction force hi. Furthermore, the following assumptions regarding
the sensor measurements and the system parameters are made.

Assumption 2.1. The measurements of the force hi and the joint values θ i, θ̇ i, θ̈ i are error-free.
Furthermore, the terms Bi(θ i), Ci(θ i, θ̇ i), Fiθ̇ i, g i(θ i) of the robot dynamics system (2.1) and
the Jacobians Ji and JA

i in the differential kinematics (2.2) are exactly known.

The assumptions allow us to completely characterize the system dynamics by an active
compliance where the system behavior is specified by the matrices Mi, Di, Ki. Due to the use
of impedance control, small uncertainties and deviations will not result in high internal forces
exerted on the object. By inserting (2.3) in (2.1) we obtain a Cartesian impedance control [68] in
operational space for each manipulator given by

Mi(v̇ i − v̇ d
i ) + Di(v i − v d

i ) + hKi (ξi,ξ
d
i ) = hi − hd

i . (2.8)

In case of a free-space motion, i.e. hi = 0 and no desired force hd
i = 0, it is straightforward using

Lyapunov theory [69] to show that the desired position converges as

lim
t→∞ξi = ξ

d
i , lim

t→∞ v i = v d
i , lim

t→∞ v̇ i = v̇ d
i .

Note that the robotic manipulators can still be diverse, have different robot dynamics or hardware
restrictions. By designing an appropriate nonlinear feedback control law the dynamics of the
robot can be expressed as (2.8). Hence, the applied wrench to the environment, that will be in our
case the object, does only depend on the tuneable impedance parameters Mi, Di, and Ki and not
on the actual robot dynamics. In the following analysis we want to avoid undesired effects such
as different systematic convergence rates and oscillations which can arise from heterogenous or
non-isotropic impedance parameters.
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Assumption 2.2. The impedance parameters are isotropic in all dimension and for all manipu-
lators, i.e. m = mi = m j, d = di = d j, k = ki = k j,µ = µi = µ j,δ = δi = δ j,κ = κi = κ j∀i, j
which can for the translational case be compactly written as:

M = mI6N , D = dI6N , K = kI6N . (2.9)

For illustration we build up examples based on dynamical systems for the robots and the
set-point generator which is finally employed in the experimental section.

Example 2.1. Let us consider a robot controlled by impedance-controlled manipulator dynam-
ics (2.8). For the sake of exposition we illustrate the dynamics of (2.8) along one translational
dimension as the translational dynamics are decoupled. We choose the scalar damping to be
di = 120, the stiffness to be ki = 160, the mass to be mi = 10, and f d

i = 0 yielding

10p̈i + 120ṗi + 160pi = 160pd
i + fi. (2.10)

The initial position of the robot is pi(t0) = 0 and at t = 1s the desired position pd
i of each robot

is set to 1. Between t = 5s and t = 7s an external force fi = −20N acts on the manipulator.
The external force causes a deviation of the robot trajectory from the desired position pd

i since
the manipulator is rendered compliant w.r.t external forces. The trajectory of the manipulator
controlled by (2.8) is depicted in Fig. 2.2.

0 1 2 3 4 5 6 7 8 9 10
0

0.2
0.4
0.6
0.8

1

External force fi = −20N

time [s]

p[
m
]

pi

pd
i

Figure 2.2: Robot trajectories pi resulting from step response at t = 1s. Deviation of the trajectory
from the desired position results from an external force fi = −20N between t = 5s
and t = 7s .

2.3.2 Mobile Platform Control

Up to now the mobile platform is treated as additional degrees of freedom in the specific ma-
nipulator model (2.1). This is well-suited method when the dynamics of a torque-controlled
mobile base is present. Then, the system of manipulator and base is a redundant system which
can be treated as a unified dynamical system, see e.g. [70, 71]. However, a decomposition of the
manipulator motion and mobile base motion by compensating the base motion is preferred for
mobile base which provide precise configuration measurements but have only limited tracking and
actuation capabilities [72]. As is usually the case this is true for most available robotic platforms
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2.3 Robot Dynamics and Control

and especially also for all mobile bases which are used in the experimental sections throughout
this thesis. For the platform control design we adopt a strategy similar to [31] in which the
increased redundancy is resolved by minimizing a cost function in the manipulator’s null-space.
As highlighted in [70], a heavy basis is usually characterized by a rather slow and coarse dynamics
in contrast to the fast and accurate dynamics of a lightweight manipulators. The slow and coarse
dynamics of the mobile platform mainly result from a delayed or imprecise wheel actuation. In
our setup we have such a mobile platform onto which two light-weight robotic manipulators are
mounted. Therefore, the generalized coordinate θ i of the i-th manipulator is decomposed into

θ i =

�

θ i,m

θ i,b

�

,

where θ i,m denotes the coordinates of the robotic manipulator and θ i,b the joint vector of the
mobile base. An analogous decomposition is performed for the j-th manipulator attached to the
same mobile platform. The dynamics of the (light-weight) robots whose equation of motion is
described by the generalized coordinates θ i,m and θ j,m is modeled using (2.1). However, often
the dynamics of the mobile platform with θ i= j,b cannot be characterized by the second-order
dynamics (2.1) and need to be simplified as

θ̇ i= j,b = u i= j,b, (2.11)

where θ i= j,b is the joint vector of the mobile platform onto which the i-th and j-th manipulator
are mounted and u i= j,b is the corresponding velocity-based input to the platform. Furthermore,
θ i= j,b coincides with the Cartesian pose of the platform in the world frame which is given by

θ i= j,b =





x i

yi

ϕi



 .

Using these definitions the differential kinematics of the anthropomorphic structure where two
manipulators are attached to a single mobile base can be written as

�

v i

v j

�

=

�

Ji,m(θ i) 0 Ji,b(θ i)
0 J j,m(θ j) J j,b(θ j)

�

︸ ︷︷ ︸

J(θ i ,θ j)





θ̇ i,m

θ̇ j,m

θ̇ i= j,b



 ,

where Ji,m, J j,m and Ji= j,b denote the Jacobian of the i-th, the j-th manipulator, and the common
mobile platform, respectively. When decoupling the mobile platform from the manipulators,
most disturbances are efficiently compensated before propagating to the end-effector level. The
presented control effectively decouples the manipulator end-effector poses ξi and ξ j from the
base configuration θ i= j,b. In addition, we avoid the computationally expensive calculation of the
pseudo-inverse J(θ i,θ j)

†.

To achieve the desired decoupling we adopt an approach similar to [31] but formulate the
displacement of the end-effector frames with respect to the mobile base frame in task space
instead of in joint space. The desired relative platform position with respect to the end-effector
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2 Modeling of a Multi-Robot Cooperative Manipulation Task

poses ξi and ξ j is expressed in terms of an error between the actual geometric average ξ̄i j of both
poses and a desired translational and rotational offset [dx , dy , dϕ]. We are now ready to define the
error as





ex

ey

eϕ



=





1
2eᵀ1(ξi + ξ j)− dx
1
2eᵀ2(ξi + ξ j)− dy

atan2(eᵀ1(ξi − ξ j), e
ᵀ
2(ξi − ξ j))− dϕ



 ,

where e1 and e2 are the unit principal vectors used to extract the x- and y-components of the
respective vector expressed in the base frame and atan2 is the function to calculate the arctangent
of two parameters uniquely. The introduced variables are illustrated in Fig. 2.3.

ξ̄i j

[dx , dy]

dϕ

ξi

ξ j

θ i= j,b

Σw
Figure 2.3: Illustration of the desired displacement offset between two manipulators and the

mobile platform.

Subsequently the error term is employed with a proportional gain as the velocity control input
u i= j,b in (2.11) for the mobile platform as

θ̇ i= j,b = −diag(kx , ky , kϕ)





ex

ey

eϕ



 , (2.12)

where kx , ky , kϕ ∈ R+ are positive, scalar gains. In order to achieve the desired decoupling
of manipulator and platform, the induced platform motion (2.12) is compensated by adding
the reverse velocity signal to the desired end-effector trajectories v d

i and v d
j in the impedance

dynamics (2.8) in terms of

v d
i = v̂ d

i − Ji,b(θ i)θ̇ i= j,b and v d
j = v̂ d

j − J j,b(θ j)θ̇ i= j,b, (2.13)

where the matrix Ji,b(θ i), J j,b(θ j) ∈ R6×3 maps the 3 DoF motion of the platform onto the 6 DoF
motion of manipulators. Note here that based on v d

i in (2.13) each manipulator is also able to
compute ξd

i and v̇ d
i by proper integration/derivation of the desired velocity for a more efficient

decoupling of the manipulator motion from the base motion. v̂ d
i and v̂ d

j are the extrinsic reference
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velocity inputs for the manipulator i and j, respectively. Here, v̂ d
i is the velocity reference and the

pose and acceleration references are consequently denoted by ξ̂
d

i and ˙̂v d
i .

This procedure allows to steer the mobile platform hierarchically by performing desired end-
effector trajectories and dragging the platform to desired offset between end-effectors and mobile
platform in Equation (2.12). The resulting control architecture is depicted exemplarily for two
manipulators mounted on the same mobile platform in Fig. 2.4. Varying end-effector positions

i

j

i = j

Eq. (2.3)

Eq. (2.3) Eq. (2.1)

Eq. (2.1)

Eq. (2.12)

v̂ d
i

v̂ d
j

ξ j, v j, v̇ j

ξi, v i, v̇ i

hi

h j

ξi

ξ j

−Ji,b(θ i)θ̇ i= j,b

−J j,b(θ j)θ̇ i= j,b

v d
i

v d
j

τi

τ j

θ i,m

θ j,m

ξd
i , v̇ d

i , hd
i

ξd
j , v̇ d

j , hd
j

Figure 2.4: Schematic overview of the cooperative mobile manipulation control architecture.

will induce a platform motion in order to minimize the error function defined in (2.12). While
tracking the computed end-effector trajectory, the measured end-effector forces are employed for
evaluating the distributed impedance equations (2.8). Note that from here on we use v̂ d

i and v d
i

likewise.

2.3.3 Object Dynamics

After introducing the manipulator dynamics we are now ready to state the equation of motion of
the manipulated object. It can be derived by Lagrangian mechanics using object’s kinetic and
potential energy as

To =
1
2

vᵀo Mov o and Vo = mo[g
ᵀ, 0]ξo, (2.14)

where Mo = diag(mo I3, Jo) and mo ∈ R+ is the mass and Jo ∈ R3×3 is the inertia of the object.
The gravity vector is denoted by g . By evaluating the Lagrangian Lo = To − Vo of the object

d
d t
∂ Lo

∂ v o
+
∂ Lo

∂ ξo

= f o, (2.15)
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we finally result in

Mo v̇ o +

�

0 0
0 S(ωo)Jo

�

v o +

� −mog
0

�

= ho, (2.16)

where ho is the effective force acting on the object resulting from the interaction with in our case
the manipulators or generally the environment.

2.4 Cooperative Manipulation Task

In this work we consider a cooperative manipulation task where multiple manipulators rigidly
grasp an object and the desired positions of the cooperating robots are explicitly guided by a
position control mechanism. The objective is to guide a cooperatively manipulated object starting
from an initial configuration to a goal configuration by an external command. In a cooperative
manipulation autonomous functionalities of the physically cooperating robots are required. Such
functionalities make it possible that no excessive force is exerted on the object or that there
is a cooperative mechanism to avoid obstacles. Given the setting introduced in the previous
chapters the control problem of a cooperative manipulation task consists of fulfilling the following
objective [73].

Definition 2.1. The objective of a cooperative manipulation task is given by

lim
t→∞ξo(t)→ ξd

o(t),

where ξd
o(t) ∈ R6 is the desired trajectory of the object and

lim
t→∞hi(t)→ hd

i (t),

where hd
i ∈ R6N are the desired manipulator wrenches acting on the object.

Note that in our setup ξd
o(t) describes the trajectory of the object which consists of a path of

waypoint over time. For each point in time t the corresponding waypoint ξd
o is known and so the

motion is more strictly defined or in other words the motion of the object is described by less
degree-of-freedom. By having less degree-of-freedom we circumvent some challenges from pure
path planning problems where only the waypoints are given such as the following of a path with
unbounded curvatures and crossing points.

To achieve cooperation we employ a system model used for the physically-coupled cooperative
multi-robot team based on a formation-based approach. For the description of the overall system
dynamics, a virtual coordinate system is attached to each end-effector denoted by Σi and to the
manipulated object denoted by Σo. To mathematically describe the model more compactly and to
focus on the human influence later we assume that all coordinate systems Σi and Σo are aligned
and equally rotated w.r.t. the world frame Σw as

Ri
o = I3,
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2.4 Cooperative Manipulation Task

where Ri
o is a rotation matrix from end-effector frame Σi to object frame Σo. If yet the particular

coordinate systems of robots are not aligned, we assume that each robot knows its own rotation
in the world frame Σw such that all robots move in a coordinated way in the world frame Σw.
Just recently, the importance of defining the reference systems appropriately is highlighted and
extensively discussed in [74]. The general setup with physically cooperating manipulators is
depicted in Fig. 2.5.

Σw

ξ1

ξ2

ξ3

ξ4

ξo

r1

r2

r3

r4

M4, D4, K4

M3, D3, K3

M1, D1, K1

M2, D2, K2

Figure 2.5: Four impedance controlled manipulators are rigidly connected to the object. To control
the object trajectory and the desired internal forces acting on the object the particular
set-points of the mass-spring-damper systems need to be generated.

2.4.1 Kinematic Constraints in Cooperative Manipulation Task

We consider a cooperative manipulation task where the manipulated object is rigid and the robotic
end-effectors are rigidly connected to the object. Due to that we can express the position p i of the
ith robot as a function of the distance to the object center and the quaternion q i as

ξi =

�

p i

q i

�

=

�

po + r i

q o

�

, (2.17)

where the displacement r i = Ro(q o)
or i indicates the relative displacement between the object

frame and the end-effector frame and Ro(q o) ∈ R3×3 is a rotation matrix from world frame to
object frame. Rigidly connected end-effectors yield a constant displacement in the object frame
as or i = const.

Assumption 2.3. We assume the object frame Σo is in the center of all manipulator frames Σi.

This assumption is not strong as the location of the object frame can be freely chosen by the
system designer. Yet this assumption gives us the following equality condition for the relative
displacements:

∑

i

or i =
∑

i

r i = 0. (2.18)
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2 Modeling of a Multi-Robot Cooperative Manipulation Task

Following the argumentation of [30] the constraints of a cooperation manipulation task (2.17)
are differentiated w.r.t. time as

v i =

�

ṗ i

ωi

�

=

�

ṗo + S(r i)ᵀωo

ωo

�

= Gi(r i)
ᵀv o and (2.19)

v̇ i =

�

p̈ i

ω̇i

�

=

�

p̈o + S(r i)ᵀω̇o + S(ωo)2r i

ω̇o

�

= Gi(r i)
ᵀ v̇ o +

�

S(ωo)2r i

0

�

, (2.20)

where the matrix Gi(r i) ∈ R6×6 is a submatrix of the grasp matrix G ∈ R6x6N which is defined by

G = [G1, G2, . . . , GN] where Gi =

�

I3 0
S(r i) I3

�

. (2.21)

We are now ready to compactly rewrite the constrained acceleration condition (2.20) for all
manipulators i as

A

�

v̇ o

v̇

�

= b, (2.22)

where v̇ =
�

v̇ᵀ1, . . . , v̇ᵀN
�ᵀ ∈ R6N are the concatenated accelerations of the manipulator poses. The

constraint matrix A∈ R6N×6(N+1) and the centripetal terms b ∈ R6N are then given by

A=
� −Gᵀ I6N

�

and b =











S(ωo)2r 1

0
...

S(ωo)2r N

0











, (2.23)

which we employ to express the constrained dynamics of object and manipulators in the upcoming
section.

2.4.2 Constrained Dynamics of Cooperating Manipulators and Object

In this section we derive the joint system model of object and impedance controlled manipulators
which are driven by distributed set-points. Based on (2.22) a general and consistent model for the
multi-robot interaction dynamics for impedance-controlled manipulators is recently presented
in [30] which is based on the Gauss’ principle of least constraint. In order to cope with the
constrained motion of the robotic manipulators the non-interaction wrenches of the object hΣo ∈ R6

and the manipulators hΣ =
�

hΣ1 , . . . , hΣN
� ∈ R6N are projected by a linear transformation onto

the interaction wrenches of the object ho ∈ R6 and of the manipulators h ∈ R6N in which the
cooperative manipulation constraints are satisfied:

�

ho

h

�

= Aᵀ
�

AM̄−1Aᵀ
�−1

�

b− AM̄−1

�

hΣo
hΣ

��

, (2.24)

where M̄ = diag (Mo, M1, . . . , MN ) is a block-diagonal matrix of all mass matrices. Here, hΣo and
hΣi are the inputs of the manipulators dynamics (2.8) and the object dynamics (2.16), respectively
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2.4 Cooperative Manipulation Task

and are given by

hΣo = −
�

0 0
0 S(ωo)Jo

�

v o −
� −mog

0

�

and (2.25)

hΣi = Mi v̇
d
i − Di(v i − v d

i )− hKi (ξi,ξ
d
i )− hd

i . (2.26)

Furthermore, ho is the interaction wrench acting on the object. Let now be M =
diag (M1, . . . , MN ). By employing Q = (M−1 + GᵀM−1

o G)−1 and (2.23) the interaction
wrench (2.24) of ho is given by

ho = −GQGᵀM−1
o hΣo + GQM−1hΣ − GQb.

We are now ready to model the overall system dynamics consisting of multiple manipulators and
the object by replacing ho and hΣo in the object dynamics (2.16) as:

Mo v̇ o = (I6 − GQGᵀM−1
o )h

Σ
o + GQM−1hΣ − GQb. (2.27)

After application of Woodbury and Searle matrix identities which is omitted here for space reasons
the constrained object dynamics (2.27) can be expressed as

(Mo +
∑

Gi MiG
ᵀ
i )v̇ o = hΣo +

∑

i

Gih
Σ
i − GM b. (2.28)

Finally, we substitute (2.23), (2.25), and (2.26) in (2.28). Here, we set
∑

i Gih
d
i = [−mog ᵀ, 0]ᵀ

to account for the gravity force of the object as described similarly in [75] in order to result in the
overall system dynamics given by

M v̇ o +Dv o +Cov o +Koξo =
∑

i

Kiξ
d
i +

∑

i

Di v
d
i +

∑

i

Mi v̇
d
i + h̃o, (2.29)

where h̃o is an external disturbance and the apparent inertia M ,Mi, damping D,Di, coriolis-
centripetal matrix Co, and the stiffnessKo,Ki result in

M =

�

(mo +
∑

mi)I3 0
0 Jo +

∑

µi I3 +miS(r i)S(r i)ᵀ

�

,

D =
� ∑

i di I3 0
0

∑

δi + diS(r i)S(r i)ᵀ

�

,

Co =

�

0
∑

miS(ωo)S(r i)ᵀ

0 S(ωo)Jo +
∑

miS(r i)S(ωo)S(r i)ᵀ

�

,

Ko =

� ∑

i ki I3 0
0

∑

i κiU(qo)ᵀ

�

,

Ki =

�

ki I3 0
kiS(r i) κiU(qo)ᵀ

�

,

Di =

�

di I3 0
diS(r i) δi I3

�

, andMi =

�

mi I3 0
miS(r i) µi I3

�

.
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Here, the off-diagonal entries
∑

miS(r i)ᵀ,
∑

miS(r i) inM ,
∑

i diS(r i),
∑

diS(r i)ᵀ in D, and
kiS(r i)ᵀ inKo vanish due to Assumtions 2.2 and 2.3. Note that for the equation of motion (2.29)
we obtain a centralized equation of motion for the object pose ξo which is driven by decentralized
set-point inputsKiξ

d
i , Di v

d
i , andMi v̇

d
i from each attached cooperating manipulator.

2.4.3 Internal Forces in Cooperative Manipulation Task

Internal forces arise due to the interaction between the cooperating robotic manipulators and lie
by definition in the null space of the grasp matrix G [17]. Given the measured end-effector forces
hi the internal force hint

i ∈ R6 which induce no motion of the object are generally computed via





hint
1
...

hint
N



=
�

I6N − G†G
�





h1
...

hN



 , (2.30)

wherein G† is a particular (“no-squeeze“) pseudo-inverse of the grasp matrix G. This setting is
especially appropriate for position-controlled manipulators which accurately drive to a particular
position and do not react compliantly. However, in our presented approach the impedance-
controlled manipulators (2.8) are compliant w.r.t the environment through the measurement of
the force hi. Since the measured forces are already used in our system dynamics we are able to
employ the particular robot dynamics in the definition and the computation of the internal forces.

Such a definition of internal forces in an impedance-based control scheme is presented in [30]
where the robotic end-effectors are a rigid formation which exchange wrenches through the object
to maintain the rigid formation. Internal forces can be here interpreted as formation-maintaining
forces which arise from a deviation between the actual formation and a desired rigid formation
which is described as the distances from the reference agent i to all the other agents j. Hence, the
object frame Σo is shifted into one particular agent i so that one of the cooperating manipulators,
denoted by p i, is the reference for all the other manipulators, denoted by p j. Employing (2.17)
for two manipulators i and j the desired displacement d i j between any pair i and j is given by

p i − p j = d i j = r i − r j, (2.31)

for which the rotation of the object Ro(q o) is required in the world frame. The rotational constraint
of the manipulators between two frames i and j is present in a cooperative manipulation and can
be expressed using quaternion formalism as follows

q i = q j. (2.32)

For the sake of exposition let now be i = 1 and j = 2, . . . , N . Derivating (2.31) and (2.32) twice
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w.r.t time yields a modified constraint matrix

Ā=
� −Gᵀ(d1) I6(N−1)

�

and b̄ =











S(ωo)2d12

0
...

S(ωo)2d1N

0











,

where d1 = [d12, . . . ,d1N ]. An explicit solution for the internal force hint based on the modified
constraint matrix Ā is presented generally in [76] and for the multi-robot interaction in [30] as

hint = M
1
2 (ĀM− 1

2 )†(b̄− ĀM−1hΣ), (2.33)

where M = diag(M1, M2, . . . , MN ) is the overall mass matrix of all manipulators and the entries
of hΣ are given in (2.26). Note here that the desired set-points ξd

i need to be generated for each
physically cooperating robot. It is obvious that decentralized inputs ξd

i can cause an violation of
the constraint (2.31) and (2.32) and can thus result in an internal force.

At this stage we are mostly interested how the set-points ξd , the set-velocities v d , and the
set-accelerations v̇ d need to be generated such that there is no internal force hint = 0. In order
to solely investigate the effect of specific set-points on the appearance of internal forces hint we
neglect the effect of the desired forces, i.e. hd

i = 0. Consequenctly, we use hΣ as defined in (2.26)
for the internal forces hint (2.33) which are generated by distributed set-points (2.4) given by

hint = M
1
2 (ĀM− 1

2 )†
�

b̄− ĀM−1
�

M v̇ d − D(v − v d)− hK (ξ,ξd)
��

,

where v d , v̇ d ∈ R6N are the concatenated desired velocities and accelerations. As now v = Gᵀv o

and as both M and D commute with all matrices due to Assumption 2.2 and as a straightforward
computation yields ĀGᵀ = 0 the internal wrench hint can be simplified to

hint = M
1
2 (ĀM− 1

2 )†
�

b̄− Āv̇ d −M−1DĀv d +M−1ĀhK (ξ,ξd)
�

.

By now employing v d = Gᵀv d
o similar to Eq. (2.19) and v̇ d = Gᵀ v̇ d

o + b similar to (2.20) for a
desired velocity v d

o and a desired acceleration v̇ d
o , respectively. These are the desired velocity and

acceleration inputs v d and v̇ d which do not induce any undesired internal force. By using the
facts Āb = b̄ and ĀGᵀ = 0 the internal wrench is given by

hint = M
1
2 (ĀM− 1

2 )†M−1Ā













k(p1 − pd
1)

−2κU(q1)
ᵀq d

1
...

k(pN − pd
N )

−2κU(qN )
ᵀq d

N













.

︸ ︷︷ ︸

hK (ξ,ξd )

(2.34)
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Evaluating any two equations i and j of ĀM−1hΣ the internal wrench (2.34) yields

f int
i = −k(p i − pd

i )− S(d i j)2κU(q i)
ᵀq d

i + k(p j − pd
j ) and

τint
i = 2κU(q i)

ᵀq d
i − 2κU(q j)

ᵀq d
j .

When we consider the rotational constraint (2.32) it is obvious that the internal torque τint
i = 0

only if q d
i = q d

j . For the internal force we result in f int
i = 0 if the current orientation q i matches

the desired one as q i = q d
i and if pd

i − pd
j = d i j. For the latter result we employed (2.31) for the

current set-points p i, p j . In conclusion the desired property of the trajectory generator is to always
satisfy the constraints (2.31) and (2.32) concerning the robotic positions p i, p j and orientations
q i,q j also for the desired set-point pairs pd

i , pd
j and q d

i ,q d
j as follows:

pd
i − pd

j = d i j and (2.35)

q d
i = q d

j . (2.36)

In the upcoming chapter we present an approach which generates desired-set points pd
i distribut-

edly while satisfying the constraint (2.35) and (2.36). Note that a distributed method requires an
exchange of the desired positions among the robots by communication.

A special case is present for the modified constraint matrix Ā when we only consider transla-
tional motions and the constraint matrix is then given by

¯̄A=
�

1 I3(N−1)

�

,

where ¯̄A∈ R3N×3N and 1 ∈ R3N×3 is a matrix with ones. Under the isotropic impedance parame-
ters (2.9) we get a more specific result for the internal forces (2.33) which is given by

f int = (
p

m)2 ¯̄A† ¯̄A
1
m

k
�

p − pd
�

= k ¯̄A† ¯̄Ae, (2.37)

where we define e = p − pd and the matrix ¯̄A† ¯̄A∈ R3N×3N is given by

¯̄A† ¯̄A=









N−1
N I3 − 1

N I3 . . . − 1
N I3

− 1
N I3

N−1
N I3 . . . − 1

N I3
... . . .

− 1
N I3 − 1

N I3 . . . N−1
N I3









.

By employing the average of the particular error state ê = 1
N

�∑

e i
ᵀ,
∑

e i
ᵀ, . . . ,

∑

e i
ᵀ
�ᵀ

we can
simplify (2.37) as

f int = k(e − ê). (2.38)

The interpretation of (2.38) is that an internal force, f int 6= 0, acts on the object if the particular
robot inputs e are not equal to the averaged system input ê : e 6= ê . An internal force f int 6= 0 acts
on the object, which is mostly undesired in a cooperative manipulation task. In this article we set
the desired force to zero in order to simplify the argumentation. However, the principle approach
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2.5 Experimental Validation

also holds for non-zero internal force. Hence, to avoid an internal force, f int = 0, all inputs e
need to be equal: e i = e j =

1
N

∑

e i. We now want to illustrate the occurrence of internal forces
based on the previous example.

Example 2.2. We continue here with the previously defined Example 2.1. An object is manip-
ulated by three manipulators of which each features the dynamics defined (2.10). The mass of
object is mo = 1 and the initial position is po(t0) = 0. The particular impedance-controlled
manipulator dynamics (2.10) yield an overall dynamics given by

31p̈o + 360ṗo + 480po =
3
∑

i=1

160pd
i + f̃o. (2.39)

At t = 1s the set-points are driven from pd = [0,0, 0]ᵀ to pd = [0.9,1, 1.1]ᵀ. The motion
of the object follows the desired position 0 to p̂d = 1, yet there is an internal force (2.38) as
acting on the object as depicted in Fig 2.6. The occasion for the internal force is a deviation of
the particular desired positions pd

1 , pd
3 from pd

2 from wich we can also infer that the particular
set-points pd

1 , pd
3 , pd

2 diverge from the average p̂d in the transient phase.

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

x[
m

]

po pd
1

pd
3 pd

2

0 1 2 3 4 5 6 7 8 9 10

−10

0

10

t[s]

F[
N

]

f int
1 f int

2 f int
3

Figure 2.6: Object trajectory po resulting from distributed robot set-points pd
1 , pd

3 , pd
2 . Deviation

of the set-points results in an internal force f int
i 6= 0.

After discussing the occurrence of internal force in a cooperative manipulation task, we now
want to discuss the effect of the human input on particular set-points pd

i .

2.5 Experimental Validation

In order to evaluate the presented control scheme and to perform a demonstration on two het-
erogeneous, dual-arm mobile robots, we conducted a full-scale experiment in our laboratory.
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2.5.1 Mobile Robot Platforms

The first of two robots used for the experimental evaluation consists of two 7 DoF robotic
manipulators [77] with incremental encoders capturing the joint angles. Due to the use of
incremental encoders this manipulator type is susceptible to kinematic uncertainties. The second
robot is equipped with two commercially available KUKA LWR 4+ manipulators [78]. Both
dual-arm manipulators are front-mounted on top of a rigid torso as depicted in Fig. 2.7. The
workspace of the robotic manipulators is extended by a four-wheeled omni-directional mobile
platform. The movement of object and robots were captured with an infrared 3D-motion tracking
system (PTI VisualEyez II VZ4000). Further details on the robots and on the motion tracking
system can be found in Appendix C.

We are now ready to provide some important findings and insights regarding the scalability
of the approach. Note that from a theoretical point of view, the approach scales quite good
as every additional robot comes along with corresponding system dynamics (2.1). Hence, the
particular manipulator dynamics are incorporated in the overall multi-robot dynamics (2.29)
and the particular set-points for the additional robot are computed analogously to the remaining
robotic set-points. However, from a practical point of view, the scaling of the approach has room
for improvement. As soon as a single robotic manipulator fails due to e.g. hardware issues or
limitations, this failure frequently initiates a chain reaction resulting in additional robots to fail
or stop the manipulation task. When robotic prototypes are used as in our setup, each additional
robot employed in the experiment increases the chance of a failed experimental run. This issue
can be overcome by employing a proper lifecycle or activity management throughout all involved
cooperating robots.

2.5.2 Experimental Results

The manipulated object consists of a reinforced aluminum frame with handholds for the robots.
The rigid frame has a length of l0 = 1.20m, a width of w0 = 0.80m and a total weight of m0 = 3.2
kg. The grasp geometry r i is known to each manipulator during the task execution. For the
manipulation task, the impedance control loops of the end-effectors i = 1 . . . 4 in (2.8) are tuned
according to the following values:

Mi =

�

6 I3 kg 03

03 0.5 I3 kg m2

�

,

Di =

�

200 I3 Ns/m 03

03 10 I3 Nm s/rad

�

,

Ki =

�

200 I3 N/m 03

03 100 I3 N/m

�

.

Dynamic forces are neglected due to low velocities and accelerations during the transportation
phase. As a consequence, the left-hand side of the object dynamics (2.16) reduces to −mog o.
The gravitational forces of the object mass are assumed to be equally distributed among the
manipulators and are statically compensated. The chosen object trajectory is a pure translation in
the x-y-plane, starting at the origin and describing the number “8” as illustrated by the red graph
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Figure 2.7: Anthropomorphic mobile robots transporting an object cooperatively.

in Fig. 2.8.
The maximum displacement of 1.0m for the given trajectory is sufficient to illustrate the

benefits of the control architecture and the effects relevant to uncertain kinematic parameters. The
grasp points of the four involved end-effectors are identified as

p1(t0) =





0.39m
−0.24m

0m



 , p2(t0) =





0.39m
0.24m

0m



 p3(t0) =





−0.39m
−0.28m

0m



 , p4(t0) =





−0.39m
0.28m

0m



 .

The estimated orientation of the end-effectors is

q1(t0) = q2(t0) = q3(t0) = q4(t0) =









1
0
0
0









.

given as unit quaternions with the upper entry denoting the scalar component. The end-effector
force signals are recorded and the internal force component is extracted according to Eq. (2.30).
The force signals are filtered by a moving average filter with a window size of Tma = 300ms. For
the purpose of a clear presentation only the force signals of the opposed end-effectors i = {1, 4}
are plotted in Fig. 2.9.
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Figure 2.8: Desired object trajectory for the mobile manipulation task.

While performing the manipulation task we decouple the motion of manipulators and mobile
platform as described in Sec. 2.3.2. The applied stress acting on the object remains satisfactory
small. However we still observe the impact of the non-ideal platform steering which is caused by
the motion decoupling. At time instants t = 15s and t = 36s we observe peaks in the force signals
depicted in Fig 2.9 which arise from the necessary but uncompensated wheel-turning action at the
reversal points of the trajectory. The remaining fluctuations of the force measurements apparent
in both end-effector signals are caused by the interaction of the four impedance-controlled end-
effectors. The distinct offset of f int

4 is caused by an initial tension when closing the gripper
fingers.

In a second run, the estimated grasp orientation of the fourth gripper is intentionally biased by
a rotation of 5 degrees about the z-axis. This value is considered as a worst-case estimation of
the kinematic uncertainty when grasping the object autonomously with a local visual servoing
routine. The resulting grasp orientation is therefore

qbiased
4 =









0.999
0
0

0.0436









.

This choice will generate a divergent trajectory for the fourth end-effector with respect to the
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Figure 2.9: Internal force for unbiased grasp parameters.

desired object trajectory as depicted by the black dashed line in the left subplot of Fig. 2.8. During
the upper loop of the 8, the trajectory of the biased end-effector diverges approximately 0.02m in
x-direction due to the initial rotational offset. The end-effector force signals for i = {1,4} and the
biased end-effector parameter is plotted in Fig. 2.10.

The force signal f int
4 of the biased end-effector exhibits the undesired amplitude as expected due

to the biased initial grasp. Again we notice some force peaks at the reversal points of the trajectory
due to the non-ideal platform motion. The remaining force signals f int

i for i = {1,2, 3} share
the applied stress with converse signs. The violation of the compatible trajectory in y-direction
remains small for the chosen trajectory. For non-periodic manipulation trajectories the observed
decrease of the internal stress does not apply. Instead the error induced by uncertain kinematics
will accumulate, induce further stress on the object and limit thus the actually usable workspace
of the cooperative manipulation system as a function of the admissible force magnitude. The
design of a non-differential feedback control schemes to overcome this inconvenience is subject
of the upcoming chapter.
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Figure 2.10: Internal force for biased grasp parameters.

2.6 Summary

In this chapter we studied the dynamical system model of a cooperative manipulation task
performed by multiple robotic manipulators. Therefore, in Section 2.3 the dynamical systems
of the individual components which are manipulator model, mobile platform, and the object
dynamics are introduced. To successfully conduct a cooperative manipulation task we are in
line with the literature and render the actions of the robotic system which is composed of two
anthropomorphic manipulators and a mobile base compliant by a feedback linearization of the
nonlinear robot dynamics and we decouple the manipulator motion and the mobile base motion.
Based on the definition of a cooperative manipulation task introduced in Chapter 2.4 the presence
of strict input and state constraints is discussed when the object is rigidly grasped by multiple
manipulators. These constraints are necessary to derive a unified and general nonlinear dynamical
model of an object manipulated by multiple compliant manipulators. The result of this analytical
derivation is an equation of motion for the centralized object state which is in our case driven by
multiple decentralized system inputs which are injected by the individual manipulators. If the
decentralized robotic inputs violate the previously mentioned kinematic constraints an internal
stress is exerted on the object. In Chapter 2.5 the proposed control design is proven a valid and
systematic model for enabling cooperative manipulation in a prototypical scenario in which four
full-sized, anthropomorphic robots are effectively coordinated in order to transport a payload
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from an initial to a final configuration. More sophisticated approaches which coordinate the
manipulators are introduced in the upcoming chapter.
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3

Formation-based Coordination of Coopera-
tive Robotic Manipulation

3.1 Motivation

Physical cooperation of robotic manipulators turns out to be a recurring challenge in a wide
variety of tasks such as joint object manipulation and synchronized handover tasks. Cooperative
object manipulation tasks are on hand when the scope of a single manipulator is exceeded. This
happens for example when heavy and bulky objects need to be transported. As it is highlighted
in the previous chapter a manipulation task which is cooperatively accomplished by a team of
multiple robots can be characterized by a centralized system model which is excited by different
and distributed robotic inputs. If the robot inputs satisfy the kinematic constraints of a cooperative
manipulation task, then the internal forces acting on the objects are significantly reduced. In
order to achieve a successful object manipulation, a flexible, robust, and distributed control and
task execution mechanism is required here which coordinates the robot inputs effectively and
efficiently. Note that a control architecture is called distributed if there is no central coordinating
entity, i.e. each manipulator has its own local controller which may communicate with other
local controllers to achieve the overall control goal. Communication among cooperating robots is
crucial in order to eventually embed cooperating multi-robot teams in our everyday life where a
wide range of disturbances can occur and the robots have to mutually react to those disturbances.
The control scheme for coordinating the robotic inputs requires two main features: First, a goal
regulation which drives the robotic system inputs to a final configuration, preferably in an optimal
fashion or by imitating complex motor actions, and second, an inter-robot coordination such that
the overall system consisting of multiple distributed impedance-controlled manipulators does not
damage the transported object.
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3 Formation-based Coordination of Cooperative Robotic Manipulation

3.2 Related Work

Different control approaches have been proposed for cooperative manipulation [79]. A popular
approach consists of distributing the impedances to multiple cooperating manipulators in closed
contact which extends the capabilities of the robot team in transportation and contact tasks, see for
example [80, 1, 35]. Those approaches decouple the path planning from the control, i.e. individual
trajectories are planned for each robotic manipulator taking into account the object geometry
and grasp points [54, 81]. A straightforward solution to the path planning problem requires a
feedforward planning of individual trajectories for each manipulator by considering grasp points
and the object geometry. If feedback is missing in the path planning and in the task execution, a
feedforward approach is always very sensitive to the initial configuration, the model accuracy,
and in particular to external disturbances from the environment [82].

By using a centralized planner the motion of all cooperating robot members can be planned
simultaneously addressing state and input constraints. However, due to the apparent state con-
straints among other things a centralized planner only scales very poorly with increasing number
of team members, generalized coordinates, and constraints [82]. Behavior-based motion-planning
approaches for a coordination of a team of robots focus on the entanglement of the multiple team
member by fragmenting the high-level goal into straightforward task assignments with simple
controllers. The convenience of decentralizing the tasks requires less communication among the
robots and still the emergent team performance is against expectation satisfying [83, 84]. Yet a
methodical procedure to system engineering and incorporating a desired team performance and
behavior is widely known to be a very tough challenge here.

Also related to the robot coordination problem are methods in formation control of mobile
robots, where usually no manipulation and no physical cooperation is considered. [85, 86,
87, 88]. Depicted in Figure 3.1 is the gallery of various formation-based robots which are
coordinated by a formation control paradigm. Surveys [89, 90, 91] of several approaches for
the coordination of a robotic formation are discussed in the literature. Favorable methods for
coordinating and abstracting the particular robots range from leader-follower approaches [92], to
virtual structures [93], and virtual leaders [94]. In addition, formation control models can facilitate
prescribed formation maneuvers based on parameters [95] and are capable of incorporating team
feedback [96]. Due to these flexibilities and the ability to scale with increasing system complexity
we adopt formation control for cooperative manipulation in the following chapters. Regarding
the coupling between the particular robots the formation control problem can be differentiated
between a distance-based, displacement-based, and position-based approach [89]. In position-
based control the particular robotic agents sense their position in a global reference system and
actively steer their own state to the desired one in order to establish a desired formation. In a
displacement-based approach the robots need to know the orientation of the world coordinate
system, but not their positions in the world coordinate system. The displacement-based formation
is defined by desired displacements between the agents and the resulting formations are invariant to
translations. The displacement-based approach requires less advanced communication capabilities
and less complex interaction topologies between the cooperating agents when compared to the
distance-based approach. The distance-based formation is defined by desired distances between
the agents and then the resulting formation is invariant to both translations and rotations. In
comparison to a distance-based approach, where the coupling is bearing-like along all dimensions
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in R3, in a displacement-based approach more advanced sensing capabilities are required but the
requirements on the interaction topology are less. All formation-based approaches are suitable
for outdoor applications by using appropriate sensing technologies such as GPS or a compass.
Since position-based formation control has proven to be difficult for precise formation control,
we neglect it and focus on displacement-based and distance-based approaches in the upcoming
chapter. In [85] a formation control problem is presented for agents with integrator dynamics
using a positive definite function, which they employ for the leader-follower approach in mobile
robots. Using the rigidity constraint in the control design phase for the interaction with larger
networks a leader-follower network is studied in [86]. Controlling and maintaining triangular
formations for mobile autonomous agents is studied in [87, 88].

In terms of distance-based formation control a formation rigidity constraint which is embedded
and relaxed in an LQR-like optimal control problem is introduced in Chapter 5.3. However,
the approach only considers the maintenance of the rigidity constraint and is not suitable for
establishing formations and synchronized movements. Often, it is crucial to develop desired
complex motor actions which are performed by the individual robots. Primitive-based control
is used to generate trajectories out of several primitives which encode simple and stereotypical
motions [97, 98]. A powerful tool for representing discrete and periodic trajectories are Dynamic
Movement Primitives (DMPs) developed in [99] and [100]. DMPs are mainly used for imitation
and learning tasks of a single manipulator and are therefore useful for representing and generating
human-like movements. Coupling dynamic motor primitives is investigated for cooperative
manipulation in Chapter 3.4. Besides for bimanual tasks with force feedback in [101] this has
not been considered in-depth in the literature. At least, we present in Chapter 3.5 a displacement-
based formation control approach which facilitates both goal regulation and desired internal force
control.

3.3 Optimal Feedback Control under Relaxed Constraints

This section introduces a reduced state-space model for interconnected cooperative multi-robot
teams, which is employed as model for the iterative optimal control design. Those reductions
and assumptions are necessary to apply an iterative control design. A feedback control law is
then derived for this system that drives the robot team from an initial configurations to a final
configuration.

3.3.1 Multi-Robot Cooperation - A State Space Model

Consider a cooperative team of interacting robots i = 1, . . . , N , each one evolving according to
the inverse dynamic feedback-linearized impedance control as defined in Eq. (2.8). For the i-th
manipulator, the position p i of the end-effector frame Σi is expressed in a world coordinate system
Σw. For this approach we only consider translational movements for the various end-effectors, i.e.
either an unactuated joints along the orientations is mounted on each end-effector or the rotational
stiffness, damping, and mass are tuned in order to render a gravity compensation effect for all
rotational motions. Note that although the rotational motion of the particular robots is not actively
controlled the object can still be rotated. Since an impedance control enforces a compliance
of the manipulator with respect to its environment, it is widely used in manipulation tasks by
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(a) (a) (b) (b)

(c) (c) (d) (d)

(e) (e) (f) (f)

(g) (g) (h) (h)

Figure 3.1: Examples of multi-robot formation setups: (a) Time-varying topology fur UAVs [102],
(b) Underwater collective movement principles [103] (c) Decentralized capture by
mobile robots [104], (d) Cooperative localization of mobile robots [105], (e) Agree-
ment on common reference frame [106], (f) Locally interacting mobile robots [107],
(g) Cooperative throwing and catching [108], (h) Autonomous self-assembly for task
execution [109].
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establishing the desired position pd
i and velocity ṗd

i . Accordingly, the system dynamics for one
manipulator evolve according to

Mi p̈ i + Di

�

ṗ i − ṗd
i

�

+ Ki

�

p i − pd
i

�

= f i − f d
i , (3.1)

where the positive definite matrices Mi, Di, and Ki ∈ R3×3 are the inertia, damping, and stiffness
constituting the motion control scheme w.r.t. the control inputs: the desired force f d

i and the
desired velocity ṗd

i , where the desired position pd
i is inferred via integration. Further, f i ∈ Rn

denotes the resulting force. For a single robotic manipulator, this force f i arises from its contact
with the environment. However, since cooperating manipulators are in contact through the object,
an internal force among the physically cooperating manipulators can occur.

Partition of f i

In general, the end-effector force f i is composed of the rigid-body dynamics f motion
i which result

from the motion of the object and thereby depends on ho defined in Eq. (2.16), the external force
f ext

i which results from interaction with the environment (e.g. objects or interacting humans), and
the internal force f int

i which results from the interaction among the cooperating robots, i.e.

f i = f motion
i + f ext

i + f int
i . (3.2)

The resulting force f i − f d
i exciting the system in (3.1) can be decoupled from the object motion

f motion
i (ho) by setting f d

i = f motion
i . Hence, the rigid body dynamics f motion

i and so ho defined in
Eq. (2.16) is suppressed in the impedance (3.1). This is reasonable, since a compliance resultant
from the dynamics of the object leads to a permanent undesired position deviation of the multi-
robot team, e.g. the object mass pulls down the manipulators. The external force f ext

i can originate
from an undesired obstacle or from a human input in direct physical contact with the object or
with a single manipulator. For the sake of clarity we make the following assumptions.

Assumption 3.1. As we will be mainly concerned with the tracking performance in this section,
we assume that at the initial time t0 all current and desired positions are equal, p i(t0) = pd

i (t0).
Initial configurations pd

i (t0) are chosen reasonable to have no internal stress at the beginning.
This is necessary since an internal stress at initial time can to an induced movement of the robotic
manipulators, which is undesired for maintaining formation. An appropriate choice of the grasp
points p i(t0), pd

i (t0) is the easiest way to circumvent this.

Assumption 3.2. There is no external force, f ext = 0, and the exact object dynamic model (2.16)
is known and can be used as feedforward term given by f d

i = f motion
i (ho).

Assumption 3.3. For simplicity, we assume that the influence of damping Di and inertia Mi are
negligible for the internal forces in (2.33). The multi-robot team moves at moderate velocities as
we assume here, that the distributed impedances are in a quasi-equilibrium state and act thereby
primarily via its stiffness Ki. The influence of damping Di and inertia Mi is negligible with this
assumption, which strongly simplifies the cooperative robot model.

With these assumptions the internal force can be completely characterized by Eq. (2.38) arising
from the difference between desired manipulator position and the arithmetic mean of all set-points.
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When we establish the internal force model, we obtain the ith internal force partition by evaluating
the result (2.38) row-wise as

f int
i = Ki(p i − pd

i −
1
N

N
∑

j=1

(p j − pd
j )), (3.3)

where terms involving Mi and Di vanish due to the previously made assumptions. Note here that
the opposite sign in (3.3) in comparison with (2.38) appears due to Newton’s third law which
states there will always be a wrench with opposite sign be acting on the manipulator.

Cooperative Impedance Control

Connecting the results (3.1), (3.2), and (3.3) with Assumptions 3.1- 3.3, we obtain

Mi p̈ i + Di

�

ṗ i − ṗd
i

�

+ Ki



p i −
te
∫

t0

ṗd
i dτ



= Ki



p i −
te
∫

t0

ṗd
i dτ− 1

N

N
∑

j=1



p j −
te
∫

t0

ṗd
j dτ







 .

Remark 3.1. In most impedance control models a new state is introduced for
�

p i −
te
∫

t0

ṗd
i dτ

�

in

order to reduce the degree of the system. For cooperative manipulation, we cannot apply this
argument because the minimal state space representation involves both absolute and relative
positions. Therefore, the system degree of one manipulator remains 3.

Let x i =

�

(
t
∫

t0

ṗd
i dτ)ᵀ, pᵀi , ṗᵀi

�ᵀ

be the system state and u i = ṗd
i be the control input. Then a

state space model for a single manipulator in cooperation results in

ẋ i = Aii x i + Biiu i +
∑

j∈{1,...,N}\{i}
Ai j x j, (3.4)

with

Aii =





0 0 0
0 0 1

1
N M−1

i Ki − 1
N M−1

i Ki −M−1
i Di



 ,

Ai j =





0 0 0
0 0 0

1
N M−1

i Ki − 1
N M−1

i Ki 0



 ,

Bii =





1
0

M−1
i Di



 ,
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where Aii is the system matrix of a single manipulator i, Bii is its input matrix, and Ai j represents
the physical coupling from manipulator j to manipulator i. After deriving the system dynamics
for a multi-robot cooperative system, we obtain a standard LTI sytem.

ẋ = Ax + Bu, (3.5)

with the aggregated state vector x =
�

x ᵀ1, . . . , x ᵀN
�ᵀ

and the aggregated input vector u =
�

uᵀ1, . . . , uᵀN
�ᵀ

. The total system is written as A=
�

Ai j

�

and B = diag(B11, . . . , BNN ).

3.3.2 Control Goals in Multi-Robot Manipulation Task

In this section we describe the control goal considered in this thesis. We want to design a
linear state feedback controller u = −Kx which optimally drives a formation of interconnected
manipulators described by the system dynamics (3.5) from an initial condition x 0 to a desired
end point x goal while maintaining the initial formation. In the following we describe the cost
functional of our LQR-like optimal control problem and how the desired rigidity is relaxed.

In order to achieve goal regulation to the goal x goal, we employ the standard transformation of
our state x into

x̃ = x − x goal. (3.6)

Then, we can formulate the LQR cost functional which gives a controller driving to the end point
in an optimal fashion as

J = x̃ ᵀ(T )S x̃ (T ) +

∫ T

0

x̃ ᵀ(t)Qx̃ (t) + uᵀ(t)Ru(t)dt, (3.7)

where S, Q (positive semi-definite), and R (positive definite) are weighting matrices expressing
the desired performance. The weighting matrices need to be positive (semi-)definite in order to
guarantee a minimum with the corresponding minimum cost finitely bounded from below.

Next, we define the formation and how we can integrate the desired distances between the
robot positions into the cost functional. The formation is described by a static set of edges E
with cardinality ||E || between the manipulators such that the virtual structure of the formation is
rigid during the movement phase. By virtual structure, we mean that the robots should maintain
and keep their formation regardless of any direct mechanical coupling. The desired distance
between any two robot position in the formation is described by an edge function f (x ) =
�

. . . ,‖p i − p j‖, . . .
� ∈ R‖E‖ which is required to satisfy f (x ) = d. Identical to (3.4) and (3.5),

the state variable x is concenated by x i and also contains the manipulator positions p i. Here,
d =

�

. . . ,‖d i j‖, . . .
�

is the desired rigid distance vector between all manipulators, and constant
if rigidity is achieved. The desired rigid distance vector is given by the Euclidean norm of the
cooperative manipulation constraint defined in (2.31). Differentiating f w.r.t time leads to

�

p i − p j

�ᵀ �
ṗ i − ṗ j

�

= 0 ∀(i, j) ∈ E . (3.8)

The geometrical interpretation of (3.8) is that the difference in position between two linked
manipulators is orthogonal to the difference in velocity. This equation represents our second
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control goal of maintaining formation rigidity. Due to Assumption 3.1 it is sufficient to maintain
the formation instead of establishing it. In order to include the rigidity condition (3.8) into our
LQR cost functional (3.7), we transform it into a quadratic term of the states. Thus (3.8) is written
as x ᵀi, jQ i j x i, j with x i, j = [x

ᵀ
i , x ᵀj ]

ᵀ by defining the blocks

[qii] =
�

q j j

�

=





0 0 0
0 0 1

2 In

0 1
2 In 0



∀(i, j) ∈ E ,

�

qi j

�

=
�

q ji

�

=





0 0 0
0 0 −1

2 In

0 −1
2 In 0



∀(i, j) ∈ E .

The resultant matrix Q i j =
� qii qi j

q ji q j j

�

is symmetric but indefinite and thus it cannot be employed
in a standard LQR problem directly. Since the equality constraint described in Eq. (3.8) can be
violated in both directions, the indefiniteness of x ᵀi, jQ i j x i, j is obvious, and its apparent global
minimum is −∞. The biquadratic term (x ᵀi, jQ i j x i, j)2 on the other hand has a minimum of 0,
and is thus suitable to be included in an optimization to ensure relaxed rigidity. In other words,
minimizing (x ᵀi, jQ i j x i, j)2 for all (i, j) ∈ E relaxes the equality constraint (3.8) into a minimization
problem. Relaxation means that the resulting controller does not guarantee exact satisfaction
of Eq. (3.8) for all times, but for appropriate weighting matrices, the controller design leads to
values that are at least close to zero. Proper partitioning allows writing (x ᵀi, jQ i j x i, j)2 as

(x ᵀQkx )2 ∀ k ∈ {1, ..., ||E ||} . (3.9)

While the control design objective of goal regulation requires the transformation to the coordi-
nates x̃ from (3.6), it is important to note that the relaxed rigidity condition (3.9) still needs to be
satisfied in the original coordinate system x . In order to combine both coordinate systems in the
same cost functional we introduce an augmented state vector

x̂ =
�

x̃ ᵀ, 1
�ᵀ

.

With this state vector, we reformulate the relaxed rigidity condition (3.9) into

(x ᵀQkx )2 ∀ k ∈ {1, ..., ||E ||}

=

��

x̃
1

�ᵀ�
Qk Qkx goal

x goalᵀQk x goalᵀQkx goal

��

x̃
1

��2

=
�

x̂ ᵀQ̂k x̂
�2 ∀ k ∈ {1, ..., ||E ||} . (3.10)

We can now combine all of the terms into one cost functional and restate our control goal. The
goal of our optimal control problem is to find a controller u = −K̂ x̂ with structure K̂ = [K , 0] in
order to minimize the following cost functional

J = x̂ (T )ᵀŜ x̂ (T )+

∫ T

0

||E ||
∑

k=1

�

x̂ ᵀ(t)q̂kQ̂k x̂ (t)
�2
+ uᵀ(t)Ru(t) + x̂ ᵀQ̂x̂dt, (3.11)
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where Ŝ and Q̂ have the structure Ŝ = diag(S, 0) and Q̂ = diag(Q, 0) in order not to penal-
ize the additional 1-state, Q̂k is given in (3.10) and q̂k is a positive scalar weighting factor.
The term x̂ (T )ᵀŜ x̂ (T ) represents the penalty term resulting from the distance between x and
x goal for the final time T . Control input constraints are indirectly realized by uᵀ(t)Ru(t).
This cost functional represents our combined control goals of maintained formation by the
term

∑||E ||
k=1

�

x̂ ᵀ(t)Q̂k x̂ (t)
�2

, and goal regulation by the term x̂ ᵀQ̂x̂ . The zero column in K̂ is
necessary to discard the augmented 1-state.

3.3.3 Optimal Control Design

In this section, we present two algorithms to achieve our control goal described by the cost
functional (3.11). Furthermore, an idea is presented to alleviate the local character of the resulting
control law.

Gradient descent method using adjoint states

In this subsection we describe a solution algorithm to determine a suboptimal feedback to minimize
the biquadratic cost functional (3.11), inspired by the results in [110]. While there is a linear
relationship in the standard LQR problem between the primal states x̂ and the adjoint states λ̂
given by λ̂(t) = P x̂ (t), allowing for the solution to use a Riccati equation for the matrix P, this
is not the case here. Because of the biquadratic term in the cost functional we are forced to use an
alternative method based on simulated trajectories which is explained in the following.

Given the biquadratic cost functional (3.11) we want to iteratively determine the optimal
state-feedback law. The corresponding Lagrangian function of the problem is

L =x̂ (T )ᵀŜ x̂ (T ) +

∫ T

0

||E ||
∑

k=1

�

x̂ ᵀ(t)q̂kQ̂k x̂ (t)
�2
+ x̂ ᵀQ̂x̂

+ λ̂
ᵀ
(t)( ˙̂x (t)− (Â− B̂K̂)x̂ (t)) + x̂ ᵀ(t)K̂ᵀRK̂ x̂ (t)dt + µ̂(x̂ (0)− x̂ 0), (3.12)

where Â= diag(A, 0) and B̂ = [Bᵀ, 0ᵀ]ᵀ. Partial integration of (3.12) gives

L =x̂ (T )ᵀŜ x̂ (T ) +

∫ T

0

||E ||
∑

k=1

�

x̂ ᵀ(t)q̂kQ̂k x̂ (t)
�2
+ x̂ ᵀ(t)K̂ᵀRK̂ x̂ (t) + x̂ ᵀQ̂x̂ − x̂ ᵀ(t)˙̂λ(t)

− x̂ ᵀ(t)(Â− B̂K̂)ᵀλ̂(t)dt +
�

λ̂(t)ᵀ x̂ (t)
�ᵀ

0
+ µ̂ᵀ(x̂ (0)− x̂ 0).

We can derive equations for the adjoint state through the optimality condition ∂ L
∂ x̂ = 0. This

gives

˙̂λ(t) =(Â− B̂K̂)ᵀλ̂(t)− 2K̂ᵀRK̂ x̂ (t)− 2Q̂x̂ (t)− 4
||E ||
∑

k=1

(x̂ ᵀ(t)q̂kQ̂k x̂ (t))q̂kQ̂k x̂ (t),

λ̂(T ) = −2Ŝ x̂ (T ), µ̂= −λ̂(0).

The last equation gives justification that λ̂(0) is free.
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Proposition 3.1. The gradient of the cost functional with respect to the feedback matrix K̂ is

∇K̂ J =

∫ T

0

2RK̂ x̂ (t)x̂ ᵀ(t) + Bᵀλ̂(t)x̂ ᵀ(t)dt. (3.14)

Proof. The gradient is determined from the Lagrange function. We get

∇K̂ J •H =

∫ T

0

2x̂ ᵀ(t)HᵀRK̂ x̂ (t) + x̂ ᵀ(t)HᵀBᵀλ̂(t)dt

=

∫ T

0

2RK̂ x̂ (t)x̂ ᵀ(t) + Bᵀλ̂(t)x̂ ᵀ(t)dt •H,

where H is a variation in K̂ , and where • denotes the Frobenius inner product.

The feedback matrix is then iteratively determined using the following algorithm.

Algorithm 1.

1. Simulate the states x̂ (t) for the finite horizon T .

2. Simulate the adjoint states λ̂(t) for the same horizon according to (3.13).

3. Compute the gradient according to (3.14).

4. Update the feedback matrix

K̂ (k+1) = K̂ (k) − γk∇K̂ J (k),

where γk is a scalar step length.

5. If
�

�

�

J (k)−J (k−1)

J (k−1)

�

�

�< ε, stop. Otherwise, increase k and go back to step 1.

The choice of the step size γk is important for the speed of convergence. A popular method is
to choose a step size satisfying the Wolfe conditions [111] given by

J(K̂ + γkmat(s k))− J(K̂)≤ γkc1(vec(∇K̂ J))ᵀs k,

(vec(∇K̂+γk s k
J))ᵀs k ≥ c2(vec(∇K̂ J))ᵀs k, (3.15)

where c1 ∈ (0, 1) and c2 ∈ (c1, 1). For Algorithm 1, the search direction s k is given by
the vectorization of the negative gradient, i.e. s k = −vec(∇K̂ J). An alternative step size for
Algorithm 1 is the Barzilai-Borwein step size [112] which uses information of the previous step
and is given as

γk =
(∆vec(K̂))ᵀ(∆vec(K̂))
(∆vec(K̂))ᵀ(∆vec(∇K̂ J))ᵀ

, (3.16)

where ∆vec(K̂) = vec(K (k))− vec(K̂ (k−1)) and ∆vec(∇K̂ J) = vec((∇K̂ J)(k))− vec((∇K̂ J)(k−1)).
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3.3 Optimal Feedback Control under Relaxed Constraints

Minimization via BFGS method

The downside of Algorithm 1 presented in the previous section is that gradient methods generally
converge slowly. However, the availability of the gradient according to (3.14) allows us to use
more advanced optimization methods, like the Quasi-Newton Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method [113]. That means that instead of the negative gradient we use the following
search direction

s k = −Dkvec(∇K̂(k)J),

where Dk approximates the inverse of the Hessian matrix.
We obtain the following algorithm.

Algorithm 2.

1. Choose c1, c2 ∈ R, K̂0 ∈ Rm×n. Pick a positive definite matrix D0 ∈ Rmn×mn, e.g. D0 = Imn.

2. Compute the search direction s k as

s k = −Dkvec(∇K̂ J),

where the gradient ∇K̂ J is given by to (3.14).

3. Compute the step size γk according to the Wolfe conditions (3.15).

4. Update the feedback matrix

K̂ (k+1) = K̂ (k) + γkmat(s k).

5. Set pk = vec(K̂ (k+1))− vec(K̂ (k)) and q k = (vec(∇K̂(k+1)J))− (vec(∇K̂(k)J)). Update Dk as

Dk+1 = Dk +
(pk − Dkq k)p

ᵀ
k + pk(pk − Dkq k)

ᵀ

pᵀkq k

− (pk − Dkq k)
ᵀq k

(pᵀkq k)2
pkpᵀk.

6. If
�

�

�

J (k)−J (k−1)

J (k−1)

�

�

�< ε, stop. Otherwise, increase k and go back to step 1.

Remark 3.2. Even though the two algorithms should lead to the same control law with the same
cost this is not always the case. We attribute this to the nonconvexity of the cost functional causing
the algorithms to converge to different local minima caused by the differences in search directions
and step sizes. Also note that because the optimization problem has a finite horizon, the resulting
control law is not guaranteed to be stabilizing for t →∞.

Averaging over the initial configuration x0

One possible problem concerning the resulting feedback matrices of Algorithms 1 and 2 is that
they are optimized w.r.t. to one specific initial configuration x0. In practice however, the initial
configuration might not be known in advance or might be slightly disturbed from the assumed one.
In order to circumvent this problem, we propose to average over several initial configurations for
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3 Formation-based Coordination of Cooperative Robotic Manipulation

the simulated trajectories to obtain a control law that performs well for an area. The algorithms
principally remain unchanged except for the gradient which is now given by

∇K̂ J =
1

nsamples

� nsamples
∑

i=1

∫ T

0

2RK̂ x̂ i(t)x̂
ᵀ
i (t) + Bᵀλ̂i(t)x̂

ᵀ
i (t)dt

�

,

where x̂ i(t) and λ̂i(t) are the trajectories resulting from the ith initial configuration, and nsamples

is the number of selected initial configurations, see [110] for more details.

Remark 3.3. While this extension enlarges the area of possible initial configurations, this does
not lead to a globally optimal control law. In fact, our numerical investigations show that initial
configurations that are not considered directly in the design may lead to undesirable performance.
This is also later shown in the example in Section 3.3.4.

3.3.4 Numerical Investigation

This section validate the control design algorithm.

Comparison between the presented algorithms

In this subsection we want to compare the computational performance between Algorithm 1
using the Barzilai-Borwein step size (3.16) and Algorithm 2. As a system, we consider three
physically interconnected robots with system dynamics described by (3.5), all with identical
parameters Mi = I3, Di = 2

p
3I3 and Ki = 3I3. Since each system has nine states, we have a

total system dimension of 27. As a comparison scenario we move an initial triangle on the edges
of the rectangle marked by the four crosses in Figure 3.2 in steps of length 0.5, resulting in 40
different starting points. The weighting matrices are chosen as q̄k = 5, R= I9, Q̂ = diag(I27, 0),
S = diag(I27, 0) with a horizon of 40. The optimization algorithms stop when the change in
cost between iterations is less than 10−3. The results of the comparison are summarized in
Table 3.1. We see that the number of iterations is comparable for both algorithms. The fact
that the number of iterations is lower for the gradient method is counter-intuitive and might be
due to the fact that different local minima are found by the two algorithms. We observed in our
investigations that even though both algorithms may achieve almost comparable costs, the actual
resulting control matrices might be completely different. While the gradient descent algorithm
has advantages in the computation time, the BFGS algorithm always achieves lower cost. The
longer computation time of the BFGS algorithm for the same number of iterations is due to the
step size computation according to the Wolfe conditions (3.15) which takes considerably longer
than the computation of the Barzilai-Borwein step size. However, the average achieved cost and
the median number of iterations is not significantly affected by the choice of the step size, Wolfe
condition or Barzila-Borwein step size.

Note that for some categories we chose the median instead of the average because the BFGS
algorithm produces some outliers that are not representative for its overall performance. In
conclusion, if computational time is not an issue, the BFGS algorithm should be preferred because
of the lower achieved cost.
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3.3 Optimal Feedback Control under Relaxed Constraints

Tabular 3.1: Comparison between Algorithms 1 and 2.
Algorithm 1 Algorithm 2

Median number of iterations 184 191
Average achieved cost 82.09 75.92
Median computation time [s] 59.1 142.4
Average cost decrease by BFGS - 9.2%
Median cost decrease by BFGS - 8.1%

Illustrating numerical example

In this subsection we want to illustrate the result of Algorithm 2 with averaging over the initial
configuration x0. The system parameters are identical to the previous subsection. As weighting
matrices we choose R = 5I9, S = diag(10I27, 0), q̂k = 100 and Q̂ = diag(0.1I27, 0) because we
want to emphasize maintaining of the formation. The optimization horizon is 40 seconds. The
optimization algorithm stops when the change in cost between iterations is less than 10−3. For
the design, we pick 4 different initial configurations. The coordinates of the center points of the
respective triangles are given in Table 3.2 and are marked as gray crosses in Figure 3.2. In the
simulations the goal is to move the triangle formation of the three interconnected robots from
four different initial configurations to a desired end point. These four initial configurations and
the end point are also given in the table. Three of the initial configurations belong to the area
surrounded by the four points used in the design, with two of them used directly in the design,
while the fourth point is outside the area.

Figure 3.2 shows the resulting movements from all four initial configurations. We can see that
the control design works well for all three points inside the area because the desired end point is
reached and all the intermediate steps also show the initial formation. This shows that the relaxed
rigidity condition is satisfied by the control design and the control law achieves all of its goals.
For the point outside the area the desired end point is still reached but it can clearly be seen that
the formation is violated in the intermediate steps because the formation stretches in all directions.
This illustrates that the optimized control law has a local character and is not guaranteed to work
well away from the initial configurations used during the optimization.

Remark 3.4. A phenomenon we observed during our numerical investigations is that while the
classical LQR problem is invariant to scaling in the cost functional, meaning that the control law
for Q and R is identical as the control law for cQ and cR with c > 0 ∈ R, this is not the case here.
Finding the exact reason will be part of future work.

Comparison with open loop input

In this subsection we compare the performance of the resulting feedback matrix from Algorithm 2
with an open loop input obtained with the Matlab function fminunc. The test scenario is the
movement of a formation of three robots with identical system parameters as in Section 3.3.4.
The open loop case corresponds to the generation of desired trajectories which are tracked by the
impedance control law. The shape is a triangle with an initial center point (0, 0). The desired
end formation is a triangle with center point (

p
3

6 , 2.5) which is rotated by −π2 . We choose the
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Figure 3.2: Three mobile robots drive from four different initial configurations (red dashed, yellow
dashed dotted, green solid, blue dashed) to a common goal while trying to maintain
the formation. Bold colored triangles illustrate the initial robot configuration, the
bold black triangle is the final configuration. The blue triangle clearly loses formation
because the shape of the triangle stretches during the movement, while the other three
triangles maintain their shape.

weighting matrices Qk = 40I27, R = 5I9, S = diag(10I27, 0) and Q̂ = diag(10−2I27, 0), with the
horizon 20.

The presented Algorithm 2 leads to a feedback control law which achieves the cost 11.13 after
958 iterations and 1543 seconds of computation time. The open loop trajectory is able to achieve
a lower cost of 7.92 which is clear by the additional degree of freedom in the input signal but the
computation time is much higher (117021 seconds ≈ 1.35 days). Besides computation time the
feedback clearly has advantages when disturbances or uncertainties are considered.

3.3.5 Experimental Validation

To evaluate the control performance and to demonstrate the applicability of the proposed control
scheme, a full-scale experiment is conducted. Our presented results show the benefits of the
proposed controller approach by variations of the initial conditions and its reduction of internal
forces.
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3.3 Optimal Feedback Control under Relaxed Constraints

Tabular 3.2: Starting and end points for visualizing example.
Phase Center Point
Design x1(t0) = [2,−2,0]
Design x2(t0) = [2, 4,0]
Design x3(t0) = [−2,4, 0]
Design x4(t0) = [−2,−2, 0]
Simulation x1(t0) = [2, 0,0]
Simulation x2(t0) = [2, 4,0]
Simulation x3(t0) = [−2,4, 0]
Simulation x4(t0) = [−4,−1, 0]
Design & Simulation x goal = (

p
3

6 , 2.5)

Experimental Setup

The experimental setup consists of two commercially available KUKA LWR 4+ (light-weight
robot), which are mounted on a mobile platform. Since both manipulators are assembled on top
of the same mobile platform, we circumvent the challenge of distributed robotic base frames,
kinematic uncertainties, and communication uncertainties such as time delay and packet loss.
Further details on the robots can be found in Appendix C. A workspace extension of both robotic
manipulators is accomplished as described in Sec. 2.3.2 similar to the approach presented in [1].
A Cartesian impedance (3.1) is implemented and then both measured forces and Mi, Di, and
Ki are rotated into the world frame Σw. Both end-effector’s Cartesian positions are captured
by a QualiSys motion capture system at a frequency of 350 Hz from which we also obtain
the transformation Ro

w. Further details on the Qualisys motion capture system can be found in
Appendix C.

Experimental Design

Due to the decoupling of linear motions, we only consider translational motions for each
manipulator. An unactuated revolute joint along yaw is mounted on each end-effector, such
that the whole system can rotate while the manipulators move translational. Rotational
motion of a manipulator hold the object orthogonal to its boundary for collision avoid-
ance between manipulator and object. The impedance parameters are set to M1,2 = 10I3,
D1,2 = 80I3, and K1,2 = 120I3 for both manipulators. Five possible initial values are chosen
around x 0 = [1.769, 2.08,1, 1.769,2.08, 1,0, 0,0, 1.769,1.52, 1,1.769, 1.52,1, 0,0, 0]ᵀ,
with the relative manipulator distance 0.56m . The goal configuration
for both manipulators is set in accordance with Assumption 3.1 to x e =
[−1.08,−0.95, 1,−1.08,−0.95, 1,0, 0,0,−0.52,−0.95, 1,−0.52,−0.95, 1,0, 0,0]ᵀ, and
the manipulators at the final configuration are depicted in Fig. 3.3. The optimization parameters
are chosen as q̂k = 1000, Q = 0.01I18, R= 20I9, and S = 1I18.

Measurement of the system states for the feedback control law u = −K̂ x̂ is performed such

that for
t
∫

t0

ṗ i,ddτ, ṗd
i

is integrated in the controller and initial value ṗd
i (t0) is defined by the

motion capture system. The manipulator end-effector position p i is captured and ṗ i is its time
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Figure 3.3: Two robotic manipulators hold a bar and reach a given goal configuration, whose
centroid projection on the ground is marked by a striped object. Note that the two
manipulators are independently controlled; the mounting on a single mobile platform
prevents effects from kinematic and calibration uncertainties in the experiments.
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Figure 3.4: Multi robot trajectories for standard LQR, biquadratic LQR-like problem in simulation
and full-scale experiment without bar.

derivative.
With these parameters, we conduct an experiment in our laboratory and compare the results to

a controller derived by the standard LQR implementation lqr of MATLAB/Simulink with the
weighting matrizes Q = 1, R = 1000 in accordance with cost function (3.7). The experimental
result discussed later are obtained from a typical run, i.e. not from the aggregation of repeated
experiments. In our experience the difference between two runs converging from equal x 0 to x e

is only marginal.

Results: Manipulators without Rigid Link

In the first experiment, the robotic manipulators are driven to the final configuration without any
rigid object in between the manipulators. In this scenario, we want to investigate if the multi-robot
team maintains the formation in the experiment. Fig. 3.4 on the right shows the manipulator path
from top view. The multi-robot team controller under rigidity relaxation according to (3.11) in a
full-scale experiment is depicted in blue solid, the multi-robot team controller under LQR-like
rigidity relaxation in simulation is depicted in green dashed, and the standard LQR controlled
system according to (3.7) in red dashed-dotted. A good match between simulation and experiment
is achieved in this setup. Both controllers regulate the multi-robot setup to the desired final
configuration x goal. However, half way to the goal there is a deviation between the rigidity-relaxed
LQR-like and standard LQR. Our rigidity-relaxed controller approaches the goal configuration not
in a direct way, but it maintains its formation. Since our controller takes the formation explicitly
into account, it achieves far better results for multi-robot cooperation compared to a problem
setup without rigidity constraints.

Results: Manipulators with Rigid Link

In addition to the previous results a rigid link in terms of a bar is fixed to the manipulators in
order to evaluate the occurring internal forces. Internal forces are calculating by means of (2.30).
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Figure 3.5: Multi robot trajectories for standard LQR, biquadratic LQR-like problem in simulation

and full-scale experiment with bar and internal force f int
i .

In Fig. 3.5 the LQR controlled system under rigidity relaxation according to (3.11) is depicted in
solid blue line, the system controlled by standard LQR according to (3.7) is depicted in a dashed
red line. A difference in both paths occurs, however it is not as strong as in the previous section
due to the rigidity of the bar. However, the standard LQR controlled system is unable to attain
the goal configuration. We assume that this is due to the rigid link which causes high effort in a
rotation of the object.

Additionally, the internal force f int
i along the rigid link, the only virtual linkage in a bimanual

robot team, is analyzed, see Fig. 3.5. Internal forces on the object are heavily reduced with a
suboptimal controller under rigidity constraints. In the full-scale experiment, a light chattering of
the robotic manipulator occurred due to a non-perfect following of the platform. We assume that
this causes the formation violation between the two manipulator end-effector positions for the
real-world scenario compared to the simulation results on the right side of Fig. 3.4.

3.4 Coupling Dynamic Movement Primitives (DMPs) for
Synchronized Movements

In this section an approach is presented to couple generalized motor actions in order to accomplish
a cooperative manipulation task. As movement primitive-based control of robotic manipulators is
used to generalize individual stereotypical motions it is challenging to interconnect the movement
primitives in order to ultimately satisfy the formation constraints at hand. So compared to the
previous sections we investigate here how to additionally establish and preserve the formation
between manipulators resulting from geometric constraints in physical object manipulation or
the synchronization of movements. In order to accommodate for minor deviations of the desired
position trajectories from the formation constraints we propose to employ impedance control
as described in Chapter 2 here. Note here that again only the translational movements of the
impedance control laws are actively controlled since the later proposed coupling between the
DMPs is based on a distance-based formation control approach. Distance-based formation control
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is invariant to rotations and so we can impose a rotation on the object without actively controlling
the rotations of the manipulators. For the rotational motion of the end-effector we either mount
unactuated joints along the orientations on each end-effector or the rotational stiffness, damping,
and mass are tuned such that we attain a gravity compensation-like motion for all rotational
end-effector motions.

3.4.1 DMP - a Tool for Generalized Trajectory Presentation

DMPs provide a generalized trajectory generation framework for generating both discrete and
periodic movements of a robotic manipulator. DMPs are able to steer desired set-points pd

i from
an initial position pd

i (t0) to a goal position pgoal
i . DMPs can represent complex movements and

are capable of incorporating state feedback in real-time [114]. The following attractor dynamic
ensures that the solution of the attractive dynamical system, the trajectory pd

i (t), converges
towards the goal pgoal

i [115]

τż i = αi(βi(p
goal
i − pd

i )− z i) + f i(si), (3.17)

τṗd
i = z i, (3.18)

where the nonlinearity f i(s) is defined as

f i(si) =

∑W
k=1 wkΨk(si)
∑W

k=1Ψk(si)
si, Ψk(si) = exp

�−hk (si − bk)
2
�

, (3.19)

where wk, bk, hk are the weights, the centers and the radii, respectively, of the radial basis function
distributed along the trajectory. Those parameters are determined during the learning process
using Locally Weighted Projection Regression (LWPR) [116]. The number of basis functions W
is also determined by LWPR. The parameters αi,βi > 0 are adjusted prior to the learning process.
To speed the movement up or slow it down the timing parameter τ > 0 is set before the execution
of the movement. A phase variable si is introduced in (3.19) instead of the time t to obtain an
implicit dependency of f i(si) on time [115]. By definition the dynamics of the phase variable si

evolves according to a canonical system given by

τṡi = −γsi, γ > 0. (3.20)

The advantage of using the phase variable si instead of explicit time is that we are able to
modify the evolution of time by appropriately adapting (3.20) during execution [115]. Thus by
decelerating the canonical system, the execution of the steering function f i(si) is slowed down
and the speed of the robot motion can be reduced when necessary, e.g. in case of disturbances.
Obviously, we have si → 0 as t →∞ and therefore the nonlinear function f i(si) defined in (3.19)
converges to zero as time increases. Thus, the equilibrium point of the point attractor system
(3.17) and (3.18) is asymptotically stable and it is given by

�

z∗ pd
i
∗�
=
�

0 pgoal
i

�

.
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As a result trajectories of the desired set-point pd
i (t) generated by DMPs ensure the discrete

movement from the initial point pd
i (t0) to the goal pgoal

i . Furthermore, we can also employ DMPs
to generate trajectories for periodic movements. In contrast to discrete movements the steering
function f i will not approach zero because it is a weighted sum of periodic functions Γk(φi)
multiplied by the amplitude r of the oscillation as

f i(φi) =

∑W
k=1 wkΓk(φi)
∑W

k=1 Γk(φi)
r, Γk(φi) = exp (−hk (cos(φi − bk)− 1)) .

The function f i(φi) is used to modify the dynamics of the basic second-order system (3.17) and
(3.18) similar to [117]. Rewriting (3.17) and (3.18) where the frequency of the oscillation is given
by Ω= 1/τ yields

ż i = Ω(αi(βi(p
goal
i − pd

i )− z i) + f i(φi)),

ṗd
i = Ωz i.

For periodical movements, the phase variable φi increases constantly as opposed to si and is given
by

φ̇i = Ω.

To ensure that the DMP-generated trajectories match the geometry of the object a formation
control feedback is introduced for each DMP to mirror the physical linkage.

3.4.2 Feedback Control of DMPs for Cooperative Manipulation

The goal is to introduce a novel approach which generates cooperative and coordinated movements
of N manipulators in a n-dimensional workspace by a DMP-based formation control approach.
For the proposed control law, rotational motions of each manipulator are not actively controlled
and are thus neglected so that the DMPs are represented by decoupled dynamics for each Cartesian
degree of freedom (DoF). Note that we can still rotate the object without actively controlling the
manipulator orientations.

For generating the set-points for each robotic manipulator we use a single point attractive
system (3.17), (3.18) and one canonical system (3.20). Here, pd

i denotes the set-point of the
manipulator i which is the input to the impedance-controlled manipulator dynamics (3.1). The
set-points of all manipulators are concatenated into pd = [pd

1
ᵀ
, . . . , pd

N
ᵀ]ᵀ. The desired trajectory

pd , ṗd which are generated by N DMPs and tracked by the impedance-based control law (3.1)
requires to satisfy the constraint (2.35) among the cooperating manipulators. Note that (2.35)
defines the desired displacement between any two manipulators. Applying the Euclidean norm
for (2.35) yields a desired distance between any two manipulators given by

‖pd
i − pd

i ‖= di j, (3.21)

where di j = ‖d i j‖ ∈ R is the desired distance. The goal configuration pgoal is an accordingly
concatenated vector. Since each DMP only knows its own state, we establish a communication
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link between neighboring DMPs and employ a cooperative term to modify the individual states.
A DMP is denoted as a neighbor of another DMP if rigidity of the formation requires a desired
distance to be maintained. Here, each DMP relies on the relative position to its neighbors and is
attractive to the desired formation even under external disturbances. The graph representing the
communication structure among the systems of DMPs which is formulated by the neighboring set
is chosen such that rigidity of the formation is guaranteed, preferably using a minimum number
of neighbors. For more details on formation rigidity the reader is referred to [118].

In order to employ DMPs in a cooperative manipulation task the ability of DMPs to react to the
movements of other manipulators is important. To facilitate this a feedback term for cooperation
is introduced for DMPs. Our approach is inspired by [99] where DMPs are enhanced to react to
external perturbations. According to [114] the point attractive system (3.17) and (3.18) can be
augmented to incorporate real-time feedback as follows

τż = αi(βi(p
goal
i − pd

i )− z i) + f i(si),

τṗd
i = z +αerr(p i − pd

i ),

where p i denotes the actual measured position of the ith manipulator and pd
i is the desired

position. The slowing of the phase variable si until the error is reduced is a key feature of this
approach. Note that the phase variable si directly controls the steering function f i(si), which also
decelerates proceeding until the error is compensated. According to [117] the canonical system is
augmented to

τṡi = −
γsi

1+ γerr(‖p i − pd
i ‖2)

.

In the following we propose to replace the error term by a feedback term which establishes the
desired distances among the robots by a formation control law. Here, a deviation of the relative
distance between the set-points of any two neighbors ‖pd

i − pd
j ‖ from the desired distance di j is

interpreted as an error term and is compensated before further proceeding to the goal. The point
attractive system and the canonical system of manipulator i is reformulated as

τż i = αi(βi(p
goal
i − pd

i )− z i) + f i(si), (3.22)

τṗd
i = z i +κic i(p

d), (3.23)

τṡi = −
γisi

1+ηi‖c i(pd)‖2
, (3.24)

where ηi and κi are both positive weighting parameters for the cooperation term c i(pd) which is
defined as follows. A common approach to ensure (3.21) is a formation control approach using
an Artificial Potential Field (APF) which achieves a desired distance di j between two agents i

and j [33]. Often a quadratic potential field Vi j

�

‖pd
i − pd

j ‖
�

is considered which has its global
minimum at the desired distance di j as follows

Vi j

�

‖pd
i − pd

j ‖
�

=
1
2

�

‖pd
i − pd

j ‖ − di j

�2
.
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For the cooperation term we use the gradient of the potential field for formation control as

c i(p
d) = = −

∑

j∈Ni

δi j

∂ Vi j

�

‖pd
i − pd

j ‖
�

∂ pd
i

(3.25)

= −
∑

j∈Ni

δi j

pd
i − pd

j

‖pd
i − pd

j ‖
(‖pd

i − pd
j ‖ − di j),

where δi j is a positive parameter that is used to adjust the speed of convergence to the desired
formation. Under this control law all agents converge to the desired formation [86].

Thus, the cooperation term is zero if the desired distances to all neighbors are maintained
and (3.22), (3.23), (3.24) are equivalent to the original DMPs from (3.17) , (3.18) and (3.20),
respectively. In case c i(pd) increases the canonical system is decelerated and the steering function
is delayed. Through c i(pd) 6= 0, an additional acceleration on the point attractive system is acting,
which tends to restore the desired distance.

By choosing the parameters ηi and κi such that ηi,κi � 1,∀i, we ensure an improved main-
tenance of the formation which comes at a cost of a stretched convergence time to reach the
goal pgoal

i . If the inter-robot distances diverge from the desired ones, a larger ηi decelerates
the canonical systems and consequently the execution of the steering functions. Increasing κi

enables a prompt reaction of the point attractive systems to disturbances of the desired inter-robot
distances. Given this enhancement, DMPs are applicable for a cooperative manipulation task or
the generation of synchronized periodic movement. A task plan provides the goal configurations
pgoal and the inter-robot distances di j determined by the object geometry. The individual desired
trajectories are generated by DMPs and then tracked by the impedance. A cooperative feedback
term is introduced to enforce the desired distance by a formation control law.

Equilibria and Domain of Attraction

As the point attracting system (3.22) and (3.23) and the canonical system (3.24) are modified we
investigate the equilibria of the attractor landscape of the augmented system. Analogously to
the argumentation in [99], the stability properties of the canonical system are preserved, i.e. the
equilibrium s∗i = 0 of (3.24) is asymptotically stable and derived from

τṡ∗i = −
γis
∗
i

1+ηi‖c i(pd∗)‖2

!
= 0→ s∗i = 0 ∀i,

where we implicitly assume that ‖ci(pd)‖ 6=∞. Recalling the definition of the nonlinear function
f i(si) in (3.19), it is obvious that f i(si) → 0 for si → 0. Hence, the equilibrium point of
systems (3.22) and (3.23) is derived using

τż∗i = αi(βi(p
goal
i − pd∗

i )− z∗i )
!
= 0, (3.26)

τṗd∗
i = z∗i +κic i(p

d∗)
!
= 0. (3.27)
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From (3.27) we conclude that z∗i = −κic i(pd∗). Using this for z∗i in (3.26) we obtain the following
equilibria

pd∗
i = pgoal

i +
κi

βi
c i(p

d∗) ∀i. (3.28)

For illustration we the equilibria for N = 2 agents are computed. The computation of the
equilibria for N > 2 agents from (3.28) is performed in a similar fashion. For the sake
of simplicity of the subsequent analysis we assume βi = κi = 1 and δi j = 1,∀i, j. Us-

ing d12 = d21 = ‖pgoal
1 − pgoal

2 ‖, (3.28) results in pd∗
1 = pgoal

1 − (pd∗
1 − pd∗

2 )
�

1− ‖p
goal
1 −pgoal

2 ‖
‖pd∗

1 −pd∗
2 ‖

�

and

pd∗
2 = pgoal

2 − (pd∗
2 − pd∗

1 )
�

1− ‖p
goal
1 −pgoal

2 ‖
‖pd∗

2 −pd∗
1 ‖

�

. As a result we obtain the desired equilibrium

pd∗
1 = pgoal

1 , pd∗
2 = pgoal

2 ,

and an undesired equilibrium

pd∗
1 = pgoal

2 +
1
3

�

pgoal
1 − pgoal

2

�

, pd∗
2 = pgoal

2 +
2
3

�

pgoal
1 − pgoal

2

�

.

In the desired equilibrium the agents have attained their goal positions pgoal
1 and pgoal

2 which
are formation consistent. In the undesired equilibrium the agents do not reach their goal positions
and do not maintain the formation. The undesired equilibrium is approached if the two vector
fields of goal attraction pd∗

i − pgoal
i and cooperation term κi

βi
c i(pd∗) cancel each other out, which is

illustrated in the top row of Fig. 3.6. A cancellation is possible if the vectors are linearly dependent
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Figure 3.6: Top: Two manipulator set-points pd
1 , pd

2 approach the goal configurations pgoal
1 , pgoal

2
along the domain of attraction in opposite sequence to the goals. In the middle column,
manipulator pd

2 reaches its goal position pgoal
2 first, but pd

1 endeavors to reach goal
pgoal

1 which is 2d12 away. Due to the virtual coupling force of the cooperation term, pd
1

gets pushed away until both manipulators reach the undesired equilibrium in balance.
Bottom: One undesired equilibrium for three manipulators .

and point in opposite directions. This explanation also provides an intuitive understanding of
the domain of attraction of the undesired equilibrium. The domain of attraction describes the
subspace, from which the agents start and can end up in an undesired equilibrium. In example
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3 Formation-based Coordination of Cooperative Robotic Manipulation

above with two agents the domain of attraction of the undesired equilibrium is given by a a line
through the goal configurations with both agents being in switched configuration (compared to the
goal positions). Note that for a larger number of agents the domain of attraction of the undesired
equilibrium is complicated than a line. For practical application the undesired equilibrium is
largely irrelevant as small perturbations allow the agents to escape this domain. For N = 3
one undesired equilibrium is illustrated in the bottom row of Fig. 3.6. In case of more agents
the approach is similar, however the undesired equilibria and their domain of attraction is more
complicated to compute; its formal analysis is still part of ongoing research.

3.4.3 Experimental Validation

Experimental Setup

The experimental setup consists of two commercially available KUKA LWR 4+ (light-weight
robot), see Fig. 3.3. Both manipulators are assembled on top of the same mobile platform in
order to avoid issues such as communication and kinematic uncertainties. Further details on the
robots can be found in Appendix C. A Cartesian impedance control scheme (2.8) is employed
to ensure compliance of the end-effectors. Both Cartesian positions are captured by a QualiSys
motion capture system at a frequency of 350 Hz. Further details on the Qualisys motion capture
system can be found in Appendix C. A workspace extension by a mobile platform of both robotic
manipulators is accomplished according to the approach presented in Sec. 2.3.2 similar to [1]. The
manipulator motion and the mobile platform motion are kinematically decoupled in task-space by
employing an aritificial potential function. The experimental result discussed later are obtained
from a typical run, i.e. not from a perfect or aggregated run. Except for occasional hardware
failures the difference between two runs is only marginal in our experience. The parameters
for DMPs are chosen equally for each manipulator in all dimensions as exhibited in Table 4.1
distinguished in discrete and periodic movements.

Eq. Discrete Movement Periodic movement

Attractor system (3.22) αi = 5, βi = 0.01, ∀i
Canonical system (3.24) γi = 0.01, ∀i

Time scaling (3.23) τ= 201
s Ω= 1s

Cooperation weight with
cooperation

(3.23),(3.24) ηi = κi = 10 ηi = κi = 1

Cooperation weight without
cooperation

(3.23),(3.24) ηi = κi = 0, ∀i

Impedance parameters (3.1) M = 10I3, D = 120I3, K = 160I3

Tabular 3.3: Control parameters used in experiments.

Discrete Movement in Cooperative Manipulation

The objective of this first task is to demonstrate that cooperating DMPs maintain the formation in
case of disturbances and compensate the deviations caused by other robotic manipulators. For
this experiment, the robot performs a planar cooperative manipulation task with two end-effectors.
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Figure 3.7: Multi-robot trajectories of the end-effectors in 2D space tracking a trajectory. Without
cooperation a disturbance acting on one manipulator has no effect on the other. In
cooperation both manipulators are virtually coupled.
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3 Formation-based Coordination of Cooperative Robotic Manipulation

The desired trajectory pdemo is generated from demonstrations by LWPR [116]. The task is
to carry a beam from an initial to a final configuration, i.e. a discrete movement. In order to
demonstrate the efficacy of our proposed approach, we remove the beam between the manipulators
and identify the effect of cooperation without physical coupling. To visualize this effect more
explicitly we employ the measured position p in (3.25) instead of the desired ones pd . During
the movement a disturbance is imposed on one robotic manipulator by pushing against it. Due to
the impedance control law the manipulator deviates from the desired trajectory pd

2 . The results of
this experiment are shown in Fig. 3.7. It is obvious that a disturbance acting on manipulator has
no effect on the other one if cooperation feedback is turned off, i.e. ηi = 0,κi = 0,∀i. When the
cooperation feedback is turned on, i.e. η 6= 0,κ 6= 0,∀i, the disturbance affects both manipulators
instantaneously and simultaneously. As desired, the formation is restored by the cooperative DMP
approach.

Motion Synchronization

The second experiment investigates the idea of cooperating DMPs for periodic movements. For
this experiment both manipulators oscillate in phase with the same frequency and amplitude in
one direction. During this experiment we turn the formation feedback on (ηi 6= 0,κi 6= 0,∀i) and
off (ηi = 0,κi = 0,∀i) and observe the synchronization of two manipulators after being out of
phase. We simulate a disturbance on one of the manipulators by fixing it manually for a short
time. With this experiments, we demonstrate that disturbances acting on one of the manipulator
also affect the trajectories of the other manipulator.

The results of this experiment with and without cooperation are shown in Fig. 3.8. After
one cycle (≈ 8s) the cooperation is turned off and the two manipulators are drifting apart. At
t ≈ 18s manipulator 1 is fixed at its current position manually, simulating a disturbance. After it
is released at t ≈ 22s it keeps oscillating but the two manipulators are not in phase. So at t ≈ 26s
the cooperation is turned on again and a both manipulators are synchronizing.
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Figure 3.8: Synchronization of two manipulators performing a periodic movement.
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Figure 3.9: Internal forces are significantly reduced during a manipulation with cooperation.

Reducing internal forces

In a further experiment we show the reduction of internal forces acting on the object. In this
experiment both manipulators follow a discrete movement. A beam is fixed but rotationally free
at the manipulators. For the discrete movement individual trajectories are generated using DMPs
which violate the formation constraint. Internal forces are calculating by means of (2.30).

Using DMPs without cooperation results in significant internal forces acting on the object
because both manipulators follow trajectories that deviate from the desired formation. Due to
impedance control the deviation causes a force on the object defined by (2.8). Using cooperative
DMPs the trajectories are adjusted such that they match the desired formation. As desired, this
results in reduction of forces acting on the object as shown in Fig. 3.9.

The approaches previously presented in Sections 3.3 and 3.4 employed a distance-based
formation control law in order to coordinate the particular set-points. From now one we now
focus on a displacement-based approach for cooperative manipulation.

3.5 Displacement-based Control for Cooperative
Manipulation

From now on we employ a displacement-based approach to coordinate the particular end-effectors.
A displacement-based coordination is not invariant to rotations, i.e. in order to control the rotation
of the object we have to actively control both the translational and the rotational movement of
each manipulator.

3.5.1 6 DoF Set-Point Generator for Multiple Manipulators

Here, the motion and accordingly the desired positions pd
i for each of the N manipulators need to

be in compliance with the geometry of the object as discussed before. Then the desired trajectories
are called geometrically consistent with the object geometry. Translational and rotational inputs
which are geometrically consistent are previously defined in (2.35) and (2.36).
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Figure 3.10: General control approach which facilitates a cooperative robotic manipulation task
by means of a displacement-based coordination. The desired goal configuration ξgoal

i

clearly determines the desired poses ξd
i of impedance-controlled manipulators and

influences the actual position ξ. Since the impedance-controlled manipulators are
rigidly connected to the object, all of their positions move simultaneously: ξ̇i = ξ̇ j.
The position ξo of the cooperatively manipulated object is then specified by the
interaction dynamics of multiple impedance-controlled manipulators.

The desired position pd
i and the desired orientation q d

i for the ith end-effector is the output of
the formation control approach and by definition evolves according to

ṗd
i = u i,

q̇ d
i =

1
2

U(q d
i )ωi, (3.29)

where u i ∈ R3 is the translational system input. Here, 1
2 U(q d

i )ωi is the quaternion propagation as
e.g. defined in [119] where the angular input is given by ωi. Note here that for the translational
motions of a manipulator, the dynamics ṗd

i,k = ui,k for each translational degree of freedom
k ∈ {1,2, 3} is decoupled. In order to drive each manipulator to a desired final configuration
ξ

goal
i =

�

pgoal
i ,qgoal

i

�

an feedback control law which considers the translational and rotational error
between ξd

i and ξgoal
i is required. Hence, we define the control law as

ugoal
i = − �pd

i − pgoal
i

�

,

ω
goal
i = −U(q d

i )
ᵀqgoal

i .

Similarly, in order to account for the rigid formation which is to be maintained in a cooperative
manipulation task we use (2.35) as a translational error term for the set-point of the ith manipulator
w.r.t the jth manipulator as

ep
i j = pd

i − pd
j − d i j. (3.30)

This formation is presented by a desired displacement d i j = [di j,1, di j,2, di j,3] among the co-

60



3.5 Displacement-based Control for Cooperative Manipulation

operating manipulators i and j, which needs to be established and maintained throughout the
complete task execution. Furthermore, the desired displacements d i j have to be chosen to be
realizable [120], i.e. there exist a pd∗ = [pd

1
∗, . . . , pd

N
∗] ∈ R3N such that pd∗

i − pd∗
j = d i j, ∀(i, j).

Note that the displacements are realizable when choosing them according to (2.35). Likewise the
translational error term (3.30) a suitable orientation error for the unit quaternion representing the
ith manipulator is given by

eo
i j = η

d
j ε

d
i −ηd

i ε
d
j − εd

i × εd
j = −U(q d

i )
ᵀq d

j . (3.31)

To minimize the translational error ep
i j and the rotational error eo

i j which is present between
set-point i and any neighbor j we choose the input u i of the translational movements to be
u i =

∑

j∈Ni

ep
i j and the input ωi of the rotational movements to be ωi =

∑

j∈Ni

eo
i j. Hence, we can now

formulate the feedback control law as follows

u fms
i = −

∑

j∈Ni

ep
i j + S(d io)e

o
i j, (3.32)

ωfms
i = −

∑

j∈Ni

eo
i j, (3.33)

where S(d io)eo
i j is the radial motion which is present for two set-points on a rigid body during a

rotational motion. Note here that the displacement vector d io determines the center of rotation.
The desired displacement d i j between i and j is transformed in the frame Σo as defined in (2.31).
Ni describes the neighbors of agent i. In the following the set of neighborhood sets {N1, . . . , NN}
is also called interaction topology.

Note that from a formation-control perspective, this approach is characterized as a displacement-
based control approach [89] where the particular robots have to communicate the relative positions
and quaternions to their neighbors. Under the control law (3.32) and (3.33) the desired robot
positions and rotations converge to the desired formation only if the underlying interaction
topology resulting from the Nis is connected or if there exists a spanning tree [89] which we
address in the following assumption.

Assumption 3.4. The interaction graph describing the interaction topology is undirected and
connected.

Remark 3.5. Graph theory is mostly used for large swarms with many agents. We will still employ
this formalism here for the few agents as representation and standard results from graph theory
can be carried over. Beneficially, by using the graph Laplacian matrix L, the latter proposed
integration of the human into the formation can be expressed in a more convenient manner. The
interested reader is referred to [90] and [121].

Remark 3.6. We propose to employ a formation control term to generate the desired manipulator
trajectories ξd

i . In general the multi-agent formation control can be differentiated between a
distance-based, a displacement-based, and a position-based approach [89]. The displacement-
based approach requires less advanced communication capabilities and less complex interaction
topologies between the cooperating agents when compared to the distance-based approach. In
a displacement-based approach the robots need to know the orientation of the world coordinate
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3 Formation-based Coordination of Cooperative Robotic Manipulation

system, but not their positions in the world coordinate system. For the sake of exposition we
assume all desired positions ξd

i are expressed in a world coordinate system Σw which requires
that each end-effector is aware of its rotation to that common reference frame. In comparison to
a distance-based approach, where the coupling is bearing-like along all dimensions in R3, in a
displacement-based approach more advanced sensing capabilities are required but the requirements
on the interaction topology are less. All formation-based approaches are suitable for outdoor
applications by using appropriate sensing technologies such as GPS or a compass.

Note here that the dynamical system (3.33) which determines the desired rotation q̇ d
i only

depends on the rotational error eo
i j. The dynamics of the translational set-point ṗd

i depend on the
translational error ep

i j itself but additionally they are influenced by the rotaional part eo
i j due to

the radial motion of the physically connected robots. Furthermore, we point out at this stage that
the control laws (3.32) and (3.33) do not guarantee a so called collision avoidance [89] of the
desired set-points among the manipulators. This is acceptable as a collision of two set-points
results in no actual collision of the manipulators due to the rigid grasp. However, it violates the
constraint (2.35) and therefore results in a corresponding internal force.

Now we are ready to discuss the benefits of employing the formation-based approaches (3.32)
and (3.33) for generating the set-points ξd instead of using the kinematic relation between
the ith end-effector and the object as for example defined in (2.19). Using (3.32) and (3.33)
particular robotic set-points are able to react to other set-points. Hence, we are able to implicitly
integrate autonomous and cognitive abilities in the particular robots in future work such as online
reference adaptation or obstacle collision avoidance. Obstacle avoidance can for example be
easily integrated for real-time applications in (3.32) by employing the gradient of a artificial
potential field as proposed in [122] for each robot set-point as

Uobs
i =

(

1
2(

1
‖p i−pobs‖ −

1
dobs

i
)2 if ‖p i − pobs‖ ≤ dobs

i

0 if ‖p i − pobs‖> dobs
i ,

where ‖p i − pobs‖ is the distance between the object position pobs ∈ R3 and the position p i of
robot i. Furthermore, dobs

i ∈ R is the limit distance of the potential field influence. A control input
which distributedly avoids obstacles is defined as

uobs
i = −

∂ Uobs
i

∂ p i
. (3.34)

Addressing particular autonomous functionalities for each cooperating manipulator while still
accomplishing the cooperative manipulation task is an interesting research question in this context.
Using u i = ugoal

i + u fms
i + uobs

i for the total translational input and ωi =ω
goal
i +ωfms

i for the total
rotational input, the total set-point generator is given by

ṗd
i = −

�

pd
i − pgoal

i

�−
∑

j∈Ni

ep
i j + S(d io)e

o
i j −

∂ Uobs
i

∂ p i
,

q̇ d
i = −

1
2

U(q d
i )U(q

d
i )
ᵀqgoal

i −
∑

j∈Ni

1
2

U(q d
i )e

o
i j,
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where the goal configuration ξgoal is provided by an external task plan.

3.5.2 Numerical Investigation

In this subsection we want to illustrate the result of using the displacement based set-point
generator for coordinating multiple manipulators. The goal of this numerical investigation is to
demonstrate that a displacement-based set-point generator maintains the inter-robot distances in
case of an additional obstacle avoidance task. For this investigation the N = 4 robots perform a
planar cooperative manipulation task which includes an object rotation and an obstacle avoidance.
There is a static object in the way of the robots around which the robots are required to drive
simultaneously and efficiently. As a system we consider the initial end-effector poses ξi(t0) of
the robotic manipulators to be

ξ1(t0) = [0.26, 1.2,0, 1,0,0, 0] , ξ2(t0) = [0.26, 0.8,0, 1,0, 0,0] ,

ξ3(t0) = [0.92, 0.8,0,1, 0,0, 0] , ξ4(t0) = [0.92, 1.2,0, 1,0, 0,0] .

A global task plan provides particular goal configurations for each end-effector as

ξ
goal
1 =

�

2.45,−1.24,0,
1p
2

, 0,0,− 1p
2

�

, ξ
goal
2 =

�

2.85,−1.24,0,
1p
2

,0, 0,− 1p
2

�

,

ξ
goal
3 =

�

2.85,−0.58,0,
1p
2

, 0,0,− 1p
2

�

, ξ
goal
4 =

�

2.45,−0.58,0,
1p
2

,0, 0,− 1p
2

�

.

The position of the object is given by pobs = [1.25,−0.25,0] and the user-defined limit distance is
given by dobs

i = 0.7. The trajectory of the four manipulators in formation is depicted in Fig. 3.11.
Due to the enhancement uobs

i which is defined in (3.34), the particular set-points are able to
perform a cooperative manipulation task and simultaneously avoid collision with the object. We
can see that the control approach works well for all manipulators because the desired end points
are reached, the obstacle is avoided and the manipulators maintain and restore their formation. In
addition, due to state-feedback the cooperative avoidance is performed in real-time.

3.5.3 Internal Wrench Control

In a cooperative manipulation task the control of the internal forces is an elementary feature.
In [30] an explicit description for resulting internal forces hint is given by a projection of the
set-points pd

i and q d
i onto the constraints which are defined in (2.23). In general, the desired

internal wrench can be applied by using the following control signal in (2.33) as

hΣ
∗
= hΣ + Āᵀ(ĀM−1Āᵀ)−1(−ĀM−1hint,d + b̄− ĀM−1hΣ),

where hint,d ∈ R6 denotes the desired internal force. Note here that substituting hΣ
∗

for hΣ

in (2.33) straightforwardly shows that hint = hint,d and that the interaction dynamics (2.29) is not
influenced by hint,d . This has been proven in [30].

However by considering only translational movements and isotropic impedance parameters
where K = kIN , D = dIN , M = mIN we can simplify the internal forces f int following the
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Figure 3.11: Four robotic set-points resembling a desired formation are driven from an initial
configuration ξ(t0) to a desired final configuration ξgoal. During the transit phase
the set-points collectively avoid the collision with an obstacle.

argumentation from (2.38) as follows: f int
i = k(e i− ē), where e i = p i− pd

i and ē is the arithmetic

mean of all e i: ē =
N
∑

i=1

e i
N . Often the task only requires to control a desired internal force acting on

an object. In the following we introduce an approach to set a desired internal force f int,d with the
set-point generator by altering the desired displacements d i j among the physically cooperating
robots. The idea here is to employ a desired displacements d i j such that an desired internal force
f int,d

i is present. Due to the definition of the internal force which is not motion-inducing force we
have

N
∑

i=1

f int,d
i = 0. (3.35)

The general setup of multiple robots with varying inter-robot displacements is depicted in Fig. 3.12.

64



3.5 Displacement-based Control for Cooperative Manipulation

Figure 3.12: Multiple mobile robotic manipulators manipulating an object based on a formation-
based set-point generator. The robot formation satisfies the geometrical dilation
of the object and so no internal force acts on the object. (black formation). The
displacement can be changed such that a desired internal force acts on the object
based on the set-points (red formation).

The relationship between the desired robot set-point pd
i and the desired object position pd

o
is defined by the desired displacements d io between the object frame denoted by Σo and the
particular robot Σi:

pd
i = pd

o + d io,

where the displacements d io are determined by freely choosing the frame Σo. Based Assump-

tion 2.3 and the equality condition (2.18), we choose the displacements d io as
N
∑

i=1
d io = 0 All

the remaining desired displacements di j where i, j ∈ {1, . . . , N} must be adapted such that the
overall interaction topology is realizable, i.e. there exists a pd∗ such that pd∗

i − pd∗
j = d i j, ∀(i, j).

Furthermore, if we now choose the displacement d io as d io = r i where r i is defined in (2.17) the
object geometry is satisfied by the desired set-points. Hence, for e i = ē and d io = r i there is no
internal force:

f int
i = k(e i −

N
∑

i=1

e i

N
) = k(p i − pd

i −
N
∑

i=1

(
p i − pd

i

N
)) = k(po − pd

o + r i − d io − N
po − pd

o

N
) = 0,

where we implicitly use the equality condition (2.18) for
N
∑

i=1
(r i − d io) = 0 which is valid for

any r i and d io. We can now impose a desired internal force f int,d
i on the ith robot by setting

displacement d ih as follows

d io = r i −
f int,d

i

k
. (3.36)
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By substituting (3.36) into (2.38) we yield the internal force as

f int
i = k(e − ē) = k(r i − d io) = f int,d

i ,

which shows that we can explicitly control the internal forces acting on the object by setting the
inter-robot distances between the set-points. We now want to illustrate the control of internal
forces based on the previous examples.

Example 3.1. Let us consider three impedance-controlled robots with k = 1500, d = 500, m=
100. The desired displacements which satisfy the object geometry are given by d1o = 1, d2o =
0, d3o = −1. At t = 5s the goal is to impose a desired internal force f int

1 = 150N , f int
2 = 0N , f int

3 =
−150N which satisfies the condition for internal forces (3.35). We set the desired internal force by
setting the displacement vectors to d1o = 1.1, d2o = 0, d3o = −1.1. The trajectories and set-points
are depicted in Fig. 3.13.
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Figure 3.13: Robot trajectories pi resulting from step response of pgoal
i at t = 1s. At t = 4s the

desired displacements are altered to obtain a desired internal force of f int,d
1 = 150

and f int,d
3 = −150.
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3.6 Summary
This chapter introduces distributed formation control as a powerful tool for coordinating multiple
manipulators which simultaneously conduct a cooperative robotic manipulation task. The methods’
key aspect is to generate the particular robot set-points based on information exchange with the
other cooperating robots such that the robot formation shape is in accordance with the geometry
of the object to be manipulated. Due to this no excessive force is exerted on the object. In
Section 3.3 an optimal feedback control design method coordinates the particular set-points based
on a cost functional which also takes into account the robot formation based on a relaxation of the
problem. For representing then both discrete and periodic motions in a cooperative manipulation
task we employ movement primitives for the motion of particular robotic set-points and apply
state feedback in real-time such that the ensemble of robot manipulators and object is coordinated
effectively in Section 3.4. The approaches presented in Section 3.3- 3.4 consider the distance
between a pair of robots in order to satisfy the kinematic constraints in a cooperative manipulation
task and to establish the robot formation. Doing so is sufficient for successfully facilitating a
cooperative manipulation task. However, the constraint is originally based on displacements and
this fact is finally addressed in Section 3.5. In order to select one approach for the human guidance
task in the next chapter we compare the different approaches in Tabular 3.4. All presented methods
enable a simultaneous coordination of the robotic manipulators in order to effectively manipulate
the object in 6D. Only in Section 3.3 the system dynamics are considered for trajectory generation
from an optimal control point of view. However, due to the nonlinear nature of the cooperative
manipulation task this approach has a tremendous computation time and is thus neglected for
a reactive team guidance by a human operator. Furthermore, it is more difficult for a human to
guide a distance-based formation since this approach is similar to controlling a vehicle with trailer
or an “articulated vehicle” in 6D. As the selected method for the human guidance should also
incorporate autonomous functions such as collision avoidance with obstacles we choose the 6D
displacement-based set-point generator over the cooperative dynamic movement primitives.

Tabular 3.4: Comparison of the multi-robot coordination methods presented in Chapter 3

Optimal Feedback
Control

Cooperative Dynamic
Movement Primitives

6D Set-Point
Generator

Section 3.3 3.4 3.5

Object motion 6D 6D 6D
Cost function yes no no
Obstacle avoid-
ance

no yes (not presented) yes

Computation
time

long real-time real-time

Formation type distance distance displacement
End-effector
motion

3D 3D 6D
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4

Human Interaction with a Multi-Robot Ma-
nipulation Task

4.1 Motivation
While the physical cooperation of several manipulators, by which a common task is achieved, is
a popular research topic in recent years [54, 1, 3], the interaction between a team of physically
cooperating robots and humans has been far less explored. For manipulation tasks the cooperation
of two or more partners is often crucial to enhance functionality and flexibility. This setting is
particularly attractive as the multi-robot team typically outperforms the human at repetitive and
exhausting tasks but not at cognitive reasoning in everyday tasks in unstructured environments.
On the contrary, humans are very skilled in reasoning and decision making even in previously
unknown situations. Therefore some attention has been dedicated to problem settings where a
human acts as an operator of an automated complex system [123]. The interaction between a
human and a group of robots poses two fundamental issues: i) the choice of a suitable and natural
way to command multiple robots [124], and ii) providing the appropriate feedback to the human
operator [102]. Largely unexplored is the question is how the human command should be mapped
into the action space of the robots in a cooperative manipulation task which is mainly the topic of
this chapter.

In this chapter we investigate the prototypical task where a single human operator controls
a multi-robot cooperative manipulation task. We present a control scheme for a human to
guide several robotic manipulators which cooperatively manipulate a common object to a final
configuration. In a cooperative manipulation task it is essential that there is no significant deviation
of the forces exerted on the manipulated object from the desired forces. Model uncertainties
are always present and can be considered by rendering each manipulators compliant with an
impedance control scheme in order to avoid high internal stress acting on the object. For each
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4 Human Interaction with a Multi-Robot Manipulation Task

cooperating robot particular robot set-points need to be generated which respect the kinematic
coordination of the robots’ motion and the human command. We formulate the coordination
problem as a formation control framework in which set-points are distributedly generated for
the robotic manipulators. Our work employs a human operator as the leader in a multi-robot
manipulation task based on the widely-used leader-follower formation paradigm. The human
operator is considered as part of the formation and controls the set-points of the particular robots
with the movement of his/her hand, see Fig. 4.1. From a formation control point of view and
based on the considerations in Chapter 3 we have to determine whether the human as leader
interacts with a displacement-based formation or with a distance-based formation. Controlling
a distance-based formation by a leader is very similar to controlling the motion of a trailer-car
system by the motion of car. Two cases can be distinguished in the motion of the trailer-car
system: the one, where the vehicle leads and pulls the trailer, is open loop stable as derived
in [125]. In contrast, the other, where the trailer leads and is pushed, is open loop unstable and a
controlling mechanism is required by the human driver. This is similar to balancing an inverted
pendulum. The difference between the trailer-car system and the distance-based formation is
that the car controls the trailer in two translational and one rotational DoF while the human
controls the robotic formation in three translational and three rotational DoFs. This makes the
distance-based formation guidance even more complex than controlling a trailer-car system and
is inappropriate for an intuitive human-robot interaction paradigm due to the implicit inverted
pendulum-like feedback control which needs to be performed by the human for a successful
task execution. Hence, by exclusion we choose a displacement-based formation for the human
guidance of a cooperative robotic manipulation task.

ξ2

ξ1
ξ3

uh
Σw

Figure 4.1: Three robotic manipulators perform a cooperative positioning task under a formation-
preserving control law (blue lines). A human operator is the explicit leader of this
formation and can control the robots distributedly.
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4.2 Related work

The design of an interaction mechanisms to efficiently guide multiple robots is a very recent topic
and only a limited amount of work is found in the literature. A gallery of various examples where
a human operator interacts with a swarm of multiple robots is depicted in Fig. 4.2. Control of the
overall behavior of multiple robots is explored in the context of multi-robot teleoperation [126,
127] where a group of slave robots is controlled by the human through a master robot. The
main focus has been here on stability by exploiting passivity and the actual object manipulation
is only incorporated by using a grasping shape function [56] without considering the apparent
interaction dynamics which result from the constraints in a cooperative manipulation task [30].
Input constraints occur in a human-formation guidance setup when a group of non-holonomic
mobile robots is to be guided [128]. For input constraints which are induced by the human
input it is appealing to employ a visuo-haptic interaction mechanism for human-robot formation
control which directly signalizes the constraints to the human operator [129, 130]. However,
in a cooperative manipulation task the constraints are in addition also state constraints on the
robotic states and the forward mapping has to ensure that these constraints are satisfied regardless
of the human input. The choice of an appropriate input mechanisms plays an important role
in guiding the multi-robot position. Examples are task-dependent graphical user interfaces for
mobile handhelds [131] or gesture-based interfaces [132]. A specific research direction concerns
the interaction of a single human with a swarm of multiple robots [133, 134, 135, 136]. A
haptic interaction method for swarm interaction can improve the user experience by providing
him an optimal location for interaction with a group of robots [137]. A characterization of the
human influence on particular robots of a larger swarm is evaluated w.r.t. different network
topologies based on a user study [138] by relating the individual influence to the controllability
of a dynamical system. Yet no physical interaction is studied in those works and it remains
unanswered what the relevance of the controllable and uncontrollable subspace in a cooperative
manipulation task with physical coupling among the agents is. To sum up, all the aforementioned
methods present interaction methods for a single user to control a group of robot but lack an
explicit consideration of a physical coupling of the robots through the object. Hence, it remains
open whether and how we can transfer the stability and controllability properties to a team of
physically cooperating manipulators of which the motion is constrained due to the manipulated
object.

All methods listed above have in common to employ position control. Position control is
a mechanism by which the human operator controls the position of the robots directly. On
the contrary, rate control maps human input on the velocity of the robots. For teleoperation
applications in robotics [139] it is shown that position control usually outperforms rate control.
Higher-order control approaches such as acceleration control including force control is usually
considered more difficult by the human operator than controlling the position [140]. Hence,
a position-based command can only interface the widely-used coordination of the cooperative
robotic manipulators with a proper adaptation mechanism since this coordination method relies
on the differential kinematics between object and cooperating manipulator velocity and depends
on the grasp matrix [141, 142]. A position control scheme for multi-robot manipulation is
present when employing an formation-based approach based on potential fields [143]. Without
considering specific grasp points and without considering a human input formation control for
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cooperative manipulation has been explored for mobile robots under the term caging [144, 37].
Additionally, by generating desired positions here instead of desired velocities as in the grasp
matrix approach the drawbacks of differential approaches are avoided such as the accumulation
of unbounded errors [145] which is previously discussed in the experimental evaluation in
Section 2.5. To compensate for model uncertainties and external disturbances a centralized
approach to control the internal force [20] for physically cooperating manipulators is widely
used. To avoid central entity of internal force here a distribution of impedance-based control
schemes [42, 146] among the manipulator is employed and it prevails the centralized approach
by less inter-robot communication and reduced timing issues to exchange the measured forces
among all cooperating manipulators.

4.3 Human Operator as Explicit Leader of Robotic Followers

The objective of this work is to let the human operator be the active member of the formation
without being physically in touch with the manipulated object. To achieve this the desired
displacements d ih between the human and particular robots i have to be defined such that the
virtual formation remains realizable. Therefore, the Cartesian pose uh =

�

x ᵀh,qᵀh
�ᵀ ∈ R7 of the

human is required in the world frame Σw. In our task x h is the position and qh is the orientation
of the human hand which can e.g. be distributedly sensed by the robot by a RGB-D camera.

For a compact formulation of the human-guided set-point system model we follow a standard
argumentation used in formation analysis as e.g. done in [90] and transform the distributed
set-points pd

i into a particular point. A compact formulation of the 6 DoF set-point generator
without goal regulation and without obstacle avoidance is given by

ṗd
i = −

∑

j∈Ni

ep
i j + S(d ih)e

o
i j, (4.1)

q̇ d
i = −

∑

j∈Ni

1
2

U(q d
i )e

o
i j, (4.2)

where S(d ih)eo
i j is the radial motion which is present for two set-points on a rigid body during a

rotational motion. Note here that the displacement vector d ih determines the center of rotation.
The desired displacement d ih between the i and the human h is transformed in the frame Σo as
similarly defined in (2.31). Ni describes the neighbors of agent i. In the following the set of
neighborhood sets {N1, . . . , NN , Nh} is also called interaction topology. We choose the human
frame Σh to be the center of rotation and transform the state of the ith robot into the center as

x i =

�

x p
i

x q
i

�

=

�

pd
i − d ih

q d
i

�

, (4.3)

where d ih is a displacement vector which satisfies d i j = d ih − d jh. For the sake of exposition
we choose the constant displacement of the human input used in the transformation (4.3) to be
dhh = 0 which acknowledges the human hand as center of rotation.
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(a) (a) (b) (b)

(c) (c) (d) (d)

(e) (e)

(f) (f)

(g) (g) (h) (h)

Figure 4.2: Examples of human-swarm interaction systems: (a) UAVs using multi-touch inter-
face [131], (b) mobile robots using flow commands [134], (c) Quadrocopters using
spatial gestures [147], (d) support of robot helper in fire fighting tasks [148, 149], (e)
escorting robots [150], (f) human guidance with wearable haptics [130], (g) coopera-
tive decision-making [151], (h) distributed framework design [152]
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M1, D1, K1

MN , DN , KN

∑

Mi +Mo,
∑

Di ,
∑

Ki

uh

x1

xN

f1

fN

ξ̇o

ẋ1 = . . .= ẋN

Constrained motion:

Local impedance

Local impedance

Figure 4.3: General control approach for the cooperative manipulation task guided by the human
input uh. The human input uh clearly determines the transformed desired poses x of
the impedance-controlled manipulators. Since the impedance-controlled manipulators
are rigidly connected to the object, all of their positions move simultaneously: ẋ i = ẋ j .
The pose ξo of the cooperatively manipulated object is then specified by the interaction
dynamics of multiple impedance-controlled manipulators.

Hence, differentiating (4.3) w.r.t time yields the dynamics of set-point generator given by

ẋ i =

�

ṗd
i − ḋ ih

q̇ d
i

�

=





− ∑
j∈Ni

ep
i j + S(d ih)eo

i j − S(ωi)d ih

− ∑
j∈Ni

1
2 U(q d

i )e
o
i j



=





− ∑
j∈Ni

ep
i j

− ∑
j∈Ni

1
2 U(q d

i )e
o
i j



 , (4.4)

where the rotational error − ∑
j∈Ni

S(d ih)eo
i j and the time-derivative of the displacement vector

−S(ωi)d ih cancel out as ωi =
∑

j∈Ni

eo
i j and S(ωi)d ih = −S(d ih)ωi. Hence, we observe that the

transformation decouples the translational motion from the rotational one as ωi =
∑

j∈Ni

eo
i j. Since

ep
i j = (p

d
i −d ih)−(pd

j −d jh) and eo
i j = U(q d

i )
ᵀ(q d

i −q d
j ) the dynamics (4.4) constitute a consensus

protocol for the translational and rotational set-points. By also transforming the translational and
rotational constraints (2.35) and (2.36) for the desired robot positions pd and quaternions q d with
respect to any two i and j the constraint-satisfying desired positions are given by

x i = x j, (4.5)

which defines the transformed version of the constraints (2.35) and (2.36). The general control
approach of multiple impedance-controlled manipulators guided by a human operator is depicted
in Fig. 4.3.

Partially following the argumentation in [153], we can compactly rewrite (4.4) using (2.6c)
and (3.31). By doing so the human-extended dynamical system which involves the input of the
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human is given by

˙̂x = −
�

L ⊗ I3 0
0 1

2Ū (x q,qh)(L ⊗ I4)

�

x̂ , (4.6)

where L is the human-extended Laplacian matrix which can be decomposed as

L = −
�

Afms bfms

bᵀfms γ

�

, (4.7)

and x̂ =
�

x pᵀ, x ᵀh, x qᵀ,qᵀh
�ᵀ ∈ R7(N+1) is the concatenated pose and x p =

�

x p
1
ᵀ, . . . , x p

N
ᵀ
�ᵀ ∈ R3N

and x q =
�

x q
1
ᵀ, . . . , x q

N
ᵀ
�ᵀ ∈ R4N is the concatenated position and quaternion vector. The

human input uh is appended to the concatenated robot states. The matrix L ∈ RN+1×N+1 is
the graph Laplacian. Furthermore, the matrix Ū (x q,qh) ∈ R4N×4N is defined as Ū (x q,qh) =
diag(I4 − x q

1x q
1
ᵀ, . . . , I4 − x q

N x q
N
ᵀ, I4 − qhqh

ᵀ).

Here, Afms is the principal submatrix of L and reflects the influence of the cooperating robots
on each other. Accordingly, bfms ∈ RN represents the influence of the human leader on the team
of robots. Similar to [138], Afms ∈ RN×N and bfms ∈ RN are the system and input matrices of the
controlled consensus problem resulting from the graph Laplacian. It is generally known that 0
is an eigenvalue of L belonging to the eigenvector 1 [121]. Due to the decomposition (4.7) a
relationship between Afms and bfms is then given by

Afms1= −bfms. (4.8)

Here, −L is known to be symmetric and negative semi-definite. Due to Cauchy’s interlacing
theorem, Afms is then negative definite, i.e. all eigenvalues are negative as discussed in [90].
Both Afms and bfms result from the neighborhood topology of the formation control law. More
precisely, bfms contains entries with 1 and 0, where a 1-entry at the kth position indicates that the
kth robot is a neighbor of the human. So bfms is the direct representation of Nh as a vector as the
k-entry of bfms is 1 if k ∈ Nh. Hence, the desired state x k of the kth robot is directly influenced
by uh. This work has the following assumption for the interconnections represented by bfms.

Assumption 4.1. The vector bfms 6= 0 i.e. at least one of the N robotic manipulators has access
to the human’s constant input pose uh.

Yet as there is no direct physical contact between the human and the robot team, the human
only imposes movements on the robot-formation by his/her arm movement. From a control
theoretic perspective the human has only a directed influence on the states of the robot team.
The opposite direction is not true as the team of cooperating robots has no direct influence
on the human operator. Due to that the dynamics of the human motion (4.6) represented by
ẋ h = (b

ᵀ
fms ⊗ I3)x p + (γ⊗ I3)x h and q̇h =

1
2U (qh)(b

ᵀ
fms ⊗ I4)q d + 1

2U (qh)(γ⊗ I4)qh must be
neglected in the system dynamics. The human-to-robots interaction is characterized by leader-
follower consensus dynamics. The dynamical system representing the human influence on the
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desired set-points is then given by

ẋ p = (Afms ⊗ I3)x
p + (bfms ⊗ I3)x h, (4.9a)

ẋ q =
1
2
U (x q)((Afms ⊗ I4)x

q + (bfms ⊗ I4)qh), (4.9b)

whereU (x q) is defined similar to Ū (x q,qh) and can be simplified using (2.6b) as

U (x q) = diag(I4 − x q
1x q

1
ᵀ, . . . , I4 − x q

N x q
N
ᵀ).

Remark 4.1. In this work we focus on a direct and explicit interaction method where a human
operator controls the robots non-physically by his/her arm movement. The proposed input uh

drives the cooperative manipulation task. For us providing uh by a human arm movement is an
example for a direct interaction method. We also imagine situations here where the input uh

is specified remotely by an appropriate input device as e.g. presented in [131]. The remaining
results of this thesis still hold for such cases.

For illustration we present an example now.

Example 4.1. Assume now three equal robots of which the dynamics including the impedance
parameters are defined in Example 2.1 and 2.2. For this example the general setup and the
interaction topologies Nis which are required for the particular set-point generator (4.9) are
depicted in Figure 4.1. Here we have N1 = {2,3, h}, N2 = {1,3}, N3 = {1,2, h}, and Nh = {1,3}.
The set-points x1, x2, x3 are generated by (4.9) based on the human input xh which results in the
linearized dynamics given by

ẋ = Afmsx + bfmsu

=





−3 1 1
1 −2 1
1 1 −3









x1

x2

x3



+





1
0
1



 xh. (4.10)

After stating the leader-follower dynamics for a human-robots team in formation, we are now
ready to discuss the influence of the human input uh on particular manipulator set-points x i and
its consequence for the occurrence of internal forces.

4.4 Human Influence on Particular Robotic Set-Points
The cooperative robots manipulate an object under a formation-preserving control law while a
desired trajectory for the aggregated team of robots is provided to the robots by the human operator.
Since we are at first interested in the evolution of the desired trajectories through the human
input uh, we focus on the analysis of the formation-based set-point generator (4.9) in this section.
When a human operator issues commands to a team of cooperative robots through the set-point
generator (4.9), it is essential that all robots move in a coordinated way simultaneously, i.e. in
formation, such that no undesired internal stress is applied to the object based on the human
command uh. Hence, if the multi-robot cooperative team consists of more than two manipulators,
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the question arises whether the human state uh excites all robots simultaneously or if particular
robots are excited independently from each other.

4.4.1 Internal Force During Transient Phase

We now have a closer look at if and in which way the distributed set-point generator (4.9) can
induce an internal force. To investigate the occurrence of an internal force we revise the cases
when there is no internal force induced which is given by the condition (4.5). There is no internal
force induced if the set-points lie inside the subspace (4.5). Note that the constraint (4.5) is given
for the desired robot states x i. If the constraint (4.5) holds for all robot pairs then all desired
states x i are equal. If all x i ∈ R7 are equal then the concatenated state for positions x p can be
compactly written using the set-builder notation as

{x p ∈ R3N |x p =
�

x p
1
ᵀ, . . . , x p

N
ᵀ
�ᵀ ∧∀(i, j) : x i = x j }=

{x p ∈ R3N |x p = 1⊗χ p },

and for rotations x q as

{x q ∈ R4N |x q = 1⊗χq },

where 1 ∈ RN denotes that the movement of the robots must be equal along a particular dimension.
Furthermore, χ p ∈ R3 and χq ∈ R4 are the free parameters which allow a separate scaling of the
robots in the particular dimensions. Hence, the subspace of the desired set-points x and their
time-derivatives ẋ in which no internal forces are induced is given by

x p = 1⊗χ p, ẋ p = 1⊗ χ̇ p,

x q = 1⊗χq, ẋ q = 1⊗ χ̇q, (4.11)

where the vector χ̇ = [χ̇ pᵀ, χ̇qᵀ]ᵀ is the time-derivative of χ = [χ pᵀ,χqᵀ]ᵀ. We can now
substitute (4.11) into (4.9) and reorder the system as follows

Θ
�

1⊗ I7 −Afms1⊗ I7

�

�

χ̇

χ

�

= Θ
�

bfms ⊗ I7

�

uh, (4.12)

where the matrix Θ ∈ R6N×7N is defined as Θ = diag(I3, . . . , I3, U(x q
1)
ᵀ, . . . , U(x q

N )
ᵀ). Here we

result in a system of linear equations with unknowns χ̇ and χ . The question remains open here
whether we can find a solution that satisfies the system (4.12) w.r.t. the parameters χ̇ and χ .
Note here that the solution depends on the matrices Afms and bfms and not e.g. on rotational
or translational motions. The solution is also independent from the matrix Θ as Θ is the same
on both sides of (4.12). A straightforward approach to obtain the solution for χ̇ and χ is to
pre-multiply (4.12) with a pseudo-inverse of Θ

�

1⊗ I7 −Afms1⊗ I7

�

. However, the solution
can be displayed more clearly and frankly if it is calculated as follows. In this work we rely
on inspection of the columns 1⊗ I7 and −Afms1⊗ I7 in comparison with [bfms ⊗ I7]uh. We can
rewrite the relationship −Afms1⊗ I7 = bfms ⊗ I7 given in (4.8). Due to that we know that (4.12)
always has at least one solution since −Afms1 ⊗ I7 constitutes the same subspace as bfms ⊗ I7.
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We can identify two different cases for the solution of (4.12) by inspection: (a) for bfms 6= 1 the
subspace formed by the first columns 1⊗ I7 is independent from the subspace bfms ⊗ I7. Hence,
by inspection we identify the solution of (4.12) to be χ̇ = 0 and χ = uh. The interpretation of
this result is as follows: for bfms 6= 1 the operator does not induce an internal force for the static
case χ∗ = uh and χ̇∗ = 0. Here, the desired set-points are in steady-state. However, as soon as
the system states converge, i.e. χ̇∗ 6= 0, an internal force is induced. The states of a dynamical
system converging to a steady state is called transient phase. Here, we result in a break-up of the
formation during the transient phase of the dynamical system (4.9). Hence, in the transient phase
the desired positions are not geometrically consistent with the object geometry any more; (b) for
bfms = 1 each column of

�

1⊗ I7 bfms ⊗ I7

�

can be represented by bfms⊗ I7. Hence, there exist
infinitely many solutions for χ̇ and χ such that the human operator does not induce an internal
force. We are now ready to state the final result relating the internal force and Nh.

Proposition 4.1. There is no internal force (2.33) induced through the set-point generator (4.9)
by uh only if h ∈ Ni, ∀i ∈ {1, . . . N} in (4.1) and (4.2).

Proof. If h ∈ Ni, ∀i ∈ {1, . . . N} in (4.1) and (4.2), then the human input uh is made accessible
to all robots. If the human state can be accessed by all robots, we have bfms = 1. As discussed
before in case of bfms = 1, the constraint of a cooperative manipulation (4.5) is satisfied in both
steady-state and transient phase. If there is no divergence of the desired trajectories, i.e. (4.5)
is satisfied, then there is no internal force acting on the object (2.33) which is caused by the
input uh.

Hence, all robotic followers in the formation should know the state of the human leader. The
number of robots which can be independently influenced by the human obviously affects the
subspace which is independently influenced by the human operator. The subspace which is
independently influenced by the human operator is closely related to the controllability of a
system. As previously commented for (4.12) the controllability question is the same for both
translational and rotational movements. Due to that we restrict ourselves to the analysis of the
matrix pair Afms and bfms in the following.

Remark 4.2. At first sight the consequence of Proposition 4.1 is unexpected from a formation-
based perspective as it is only important that the human state is known by all robots. No
information exchange between the robots is relevant in order to satisfy the constraints in the
cooperative manipulation task. However, from a cooperative manipulation perspective this result
is not surprising as we explain in the following. In a cooperative manipulation task a virtual point
ξo is usually attached to the object’s center of mass. Then, the grasp matrix G defined in (2.21)
incorporates explicitly the kinematic parameters given by the displacements r = [r ᵀ1, . . . , r ᵀN , ]ᵀ.

G is then used order to generate desired velocities for the robotic manipulators ξ̇
d

based on the
desired velocity of the virtual frame ξ̇

d

o given by

ξ̇
d
= Gᵀξ̇

d

o . (4.13)

In Gᵀ the virtual point ξd
o is also connected to all ξd

i to generate the desired velocities. If we now
interpret the virtual point assigned to ξd

o as the leader then the requested interaction topology for
both grasp matrix approach (4.13) and formation-based set-point generator (4.9) are similar. Note

78
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here that the approach using the grasp matrix G actually defines a special case of our proposed
set-point generator where the leader directly commands all followers and the system matrices are
given by Afms = −IN and bfms = 1.

4.4.2 Human Shared Control of a Cooperative Manipulation Task

The influence of the human input on particular set-points plays a major role here and from a
system theoretical perspective the influence of a input on system states is defined as a controlla-
bility characterization. Controllability in a leader-follower formation depends on the interaction
topology and the interaction topology is defined by the neighbors Nis of the robots and human
operator used in the gradient-descent control laws (4.1) and (4.2) in the formation. Although
our leader-follower system (4.9) is defined for six dimensions in space, we investigate here only
the controllability of one dimension which we justify as follows: the term ⊗In including the
Kronecker product extends the set-point generator to the multi-dimensional case. it is straightfor-
ward to show that the conclusions of the controllability analysis remain the same for single and
multi-dimensional translation motion as the term ⊗In creates a block diagonal matrix with the
corresponding elements Afms, bfms.

As discussed earlier for the rotational case in (4.12) the accessible subspace of the set-point
generator (4.9) only depends on the matrix pair (Afms, bfms) and not on the matrix Θ. As the matrix
Θ ist used for mapping the input onto the subspace of quaternions and as the rank of Θ is always
3N we can neglect this matrix in the following analysis. As discussed in the previous section the
influence of the human on the robotic set-points depends on the matrices Afms and bfms and not e.g.
on rotational or translational motions. Hence, for analysing the shared control of a cooperative
manipulation task we can simplify our system dynamics of (4.9) to

ẋ = Afmsx + bfmsu, (4.14)

where x characterizes one particular independently controllable states of x p or x q along one
direction in space and u is the human input in that direction. Without loosing any insight into our
problem this argumentation simplifies our analysis significantly.

In the controllability discussion we employ methods such as Kalman decomposition and
eigenvalue analysis to interpret our results. The controllability matrix Qfms of the matrix pair
(Afms, bfms) is defined as:

Qfms =
�

bfms Afmsbfms . . . AN−1
fms bfms

�

. (4.15)

Here we focus on the analysis of the rank of Qfms which characterizes the number of independently
controllable states of x p or x q along one direction in space. If Qfms is rank deficient the cooperating
multi-robot system (4.14) can be decomposed into its controllable and uncontrollable part by the
Kalman decomposition [154]. The similarity transformation of the Kalman decomposition is
given by T =

�

Q‖fms | Q⊥fms

�

, where Q‖fms = span(Qfms) ∈ RN×rankQfms indicates the range of the
controllable subspace and Q⊥fms = ker(Qᵀfms) the range of the uncontrollable subspace. Due to this
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eigencomposition the similarity transformation results in

T ᵀAfmsT =

�

Ac
fms 0
0 Aĉ

fms

�

, T ᵀbfms =

�

bc
fms
0

�

,

and

�

x c

x ĉ

�

= T ᵀx , (4.16)

where c and ĉ correspond to the controllable and uncontrollable parts of the robotic system and
result in two decoupled subsystems. Due to the similarity transformation T the eigenvalues
denoted as spectrum {λAfms

i } of Afms and of T ᵀAfmsT are the same. The spectrum of Afms is

{λAfms
i } = {λ

Ac
fms

i } ∪ {λ
Aĉ

fms
i } where λ

Ac
fms

i is the spectra of Ac
fms ∈ RrankQfms×rankQfms and λ

Aĉ
fms

i is the
spectra of Aĉ

fms ∈ RN−rankQfms×N−rankQfms .
The derivation of the constraint (4.5) for x in (4.14) yields x ≡ 1. The constraint can also

be transformed into the space of controllable and uncontrollable states using the similarity
transformation (4.16) as

T ᵀ1=

�

Q‖fms

ᵀ

Q⊥fms
ᵀ

�

1=

�

v k

0

�

, (4.17)

where the constraint-satisfying vector for the controllable subspace is given by v k = Q‖fms

ᵀ
1 ∈

Rrank(Qfms). Note that for the uncontrollable subspace Q⊥fms
ᵀ
1 is always 0. We can show that by

applying the relation (4.8) between Afms and bfms which results in 1 = −A−1
fmsbfms. Since Afms is

negative definite it is invertible. The inverse A−1
fms can be expressed using the Cayley-Hamilton

theorem as

A−1
fms =

(−1)N−1

det(Afms)
(AN−1

fms + cN−1AN−2
fms + . . .+ c1IN ),

where ck are the coefficients of the characteristic polynomial. As A−1
fms is a linear combination of the

matrices IN , . . . AN−1
fms , the term −A−1

fmsb forms the same subspace as the controllability matrix Qfms

and its span Q‖fms derived in (4.15). By definition Q⊥fms is orthogonal Q‖fms and so −Q⊥fmsA
−1
fmsb = 0

always holds.
The meaning of the controllable subspace in case of a multi-robot formation remains

unanswered until now, i.e. what is the resulting state after applying the transformation
T =

�

Q‖fms | Q⊥fms

�

. In general, one has to analytically apply this similarity transformation
to derive the controllable states x c based on the robot state x . It is known that the controllable
states x c depend on the interaction topology [86]. Due to the direct throughput of the human input
u on its neighbors Nh through bfms it is obvious that the human has at most influence on the robots
in Nh. Hence, the state of robot i ∈ Nh is directly influenced by the human through the distributed
set-point generator (4.9). The neighbors of Nh again are thus only indirectly influenced by the
propagation of the human input u based on the neighborhood relationships and the consensus
protocol. Hence, we conclude that we change the human influence on the multi-robot team based
on the underlying neighborhood topology. In the following we interpret the decomposition (4.16)
from a shared control perspective where the uncontrollable subsystem is the autonomous robotic
task and the controllable subsystem is the human task.
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Autonomous Robotic Task

From a shared control perspective the uncontrollable subsystem

ẋ ĉ = Aĉ
fmsx

ĉ, (4.18)

can be interpreted as the autonomous sub-task of the overall robotic system. Uncontrollability
means that the human has no influence on states x ĉ, i.e. the movement of the human hand has no
effect on the transformed robot states. Since the human has no influence on the uncontrollable
subsystem, the eigenmodes {λAĉ

fms
i } ⊂ {λAfms

i } are masked from the human. The uncontrollable
subsystem ẋ ĉ = Aĉ

fmsx
ĉ is known [90] to be asymptotically stable, i.e. lim

t→∞ x ĉ = 0. As the system

is asymptotically stable and as the initial condition can be freely chosen as x ĉ(t0) = 0 we always
have

x ĉ = 0. (4.19)

We can now conclude that the uncontrollable states x ĉ can be generally set to zero as defined in
(4.19) and come up with the following proposition relating the internal force to the uncontrollable
subsystem.

Proposition 4.2. There is no internal force (2.33) induced by the uncontrollable system (4.18).

Proof. As we can freely choose the initial condition for the set-point generator (4.9) to be
x ĉ(t0) = 0 and the uncontrollable subsystem (4.18) is asymptotically stable, the uncontrollable
states are always 0 which is described in (4.19). Here, x ĉ = 0 means that the uncontrollable
states x ĉ lie in the same subspace as the constraint-satisfying vector derived in (4.17). Hence,
the constraint for cooperative manipulation (4.5) is always satisfied. As the constraint (4.5) is
satisfied for the uncontrollable system, we have x = 1. Due to that no internal force (2.33) acts
on the object caused by the uncontrollable subsystem.

This result is desired as the human has no influence on the uncontrollable subsystem. However,
it remains unanswered here wether the human input u on the controllable subsystem can cause an
internal force .

Human Sub-task on the Manipulation Task

From a shared control perspective, the controllable subsystem

ẋ c = Ac
fmsx

c + bc
fmsu, (4.20)

can be interpreted as the sub-task of the human operator to the system. Before discussing
the influence of the human on the particular robot states we first introduce a relation between
rank(Qfms) and the human input vector bfms. In particular we consider the case bfms = 1 which is
the consequence of Prop. (4.1).

Proposition 4.3. The single-leader controlled consensus protocol (4.14) has only one controllable
eigenmode, i.e. rank(Qfms) = 1 , if and only if bfms = 1.

81



4 Human Interaction with a Multi-Robot Manipulation Task

Proof. The proof of sufficiency assumes that bfms = 1. Since Afms is the principal submatrix of the
Laplacian −L (4.7), the row sum of Afms is −1. Hence, Afmsbfms = −1. Iteratively, one can show
that Ak

fmsbfms = (−1)k1. Consequently, the controllability matrix Qfms =
�

1,−1,1, . . . , (−1)N−11
�

has rank (Qfms) = 1. As the controllability matrix describes the controllable subspace, we know
that the leader can only control the average of all followers. For the proof of necessity, to
have a single controllable eigenmode, rank(Qfms) = 1 and so all columns of the controllability
matrix Qfms must be linearly dependent. Hence, there must exist an input vector bfms such that
bfms = χAfmsbfms, where χ ∈ R. By construction we always have −Afms1 = bfms. Since Afms

is always regular [90], χ = −1 and bfms = 1. For A2
fmsbfms, . . . , AN−1

fms bfms this can be shown
iteratively.

For bfms = 1 the human leader is connected to all robots and so we have Nh = {1, . . . , N}. For
bfms = 1 we only have a single controllable mode which is the only interaction topology which
satisfies the constraint (4.5). Hence, we propose that the human leader should only control a
single eigenmode, i.e. rank(Qfms) = 1. This result can also be interpreted by the controllable
states x c(t) which can be influenced by the human operator. For rank(Qfms) > 1 the operator
induces a violation of the constraint (4.5) in the transient phase of the desired trajectories x c(t)
by his movement u.

This result is makes sense when we consider the eigenmodes which are influenced by the
human. The human operator has only influence on the controllable eigenmodes λAc

i which
correspond to the rates of convergence. The controllable state is concatenated and is labeled as
x c =

�

x c
1, . . . , x c

rank (Qfms)

�ᵀ
. The ith locally controllable state trajectory x c

i (t) of the robots evolves
according to the solution of the ordinary differential equation given by

x c
i = eλ

Ac
fms

i t x c
i (t0) +

t1
∫

t0

eλ
Ac

fms
i (t−τ)bc

fms,iu(τ)dτ,

where bc
fms,i is the ith component of bc

fms. The resulting motion of the controllable subspace x c

always depends on the controllable eigenvalues of (4.14). For the controllable eigenvalues we
come up with the following propositon.

Proposition 4.4. All eigenvalues of the system matrix Ac
fms of the controllable subsystem (4.20) of

the controlled consensus network (4.14) are distinct, i.e. λ
Ac

fms

i 6= λAc
fms

i+1 .

Proof. Let us assume that the spectrum of Afms has an eigenvalue with geometric multiplicity
greater than one, i.e. λAfms

i = λAfms
i+1 . Then we can always find a linear combination of the eigen-

vectors that produces a 0 entry at the position of the leader [90, Prop 10.3]. A 0 entry in the
eigenvector at the position of the leader leads to an uncontrollable subspace [90]. Hence, all
except one of the eigenvalues with geometric multiplicity greater than one can be in λ

Ac
fms

i .

The eigenvalues λ
Ac

fms
i of the controllable subsystem are always distinct from each other, i.e.

∀i, λ
Ac

fms
i 6= λAc

fms
i+1 . If there exist n different controllable eigenmodes for the human, then the

human can locally control n different controllable states x c
i . Since λ

Ac
fms

i 6= λAc
fms

i+1 , the human input
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u(t) drives the trajectories of the controllable states x c(t) differently:

x c
i (t) 6= x c

j (t), ∀i, j and t ∈ [t0, t1]. (4.21)

The local trajectories of the controllable states x c
i are different in the transient phase due to (4.21)

for rank (Qfms) > 1. If now the controllable state corresponds to a single robot or a cluster of
robots, then the human operator can locally control those states independently. As the rate of
convergence of the controllable system is different, the subsystems which are controllable by
the human converge with different speeds and result in a violation of the constraint (4.5). We
illustrate this in the following example.

Example 4.2. We continue here with the previously defined system dynamics from Exam-
ple 2.1, 2.2 and 4.1. The controllability matrix Qfms (4.15) of the set-point generator (4.10) from
Example 4.1 reads as

Qfms =





1 −2 6
0 2 −8
1 −2 6



 .

By inspection of the rows we can directly see that the first and third row of Qfms are equal and so
rank(Qfms) = 2. We have rank(Qfms) > 1 as Nh 6= {1,2, 3} which results in an internal force as
derived in Proposition 4.1. In contrast to Example 4.1 we do now change the interaction topology
to be Nh = {1, 2,3} and N2 = {1, 3, h} in order to follow the consequence of Proposition 4.1 and
result in the system dynamics for the set-point generator given by

ẋ = Afmsx + bfmsu

=





−3 1 1
1 −3 1
1 1 −3









x1

x2

x3



+





1
1
1



u. (4.22)

Note here that the difference entries between the examples (4.10) and (4.22) are highlighted bold.
Using (4.22) as set-point generator there is no deviation of the set-points x1, x2, x3 during the
transient phase and no internal force f int

i that acts on the object as depicted in Fig. 4.4.

4.4.3 Weighted Set-Point Generators to Reduce Internal Forces

In this section we present an approach how to significantly decrease internal stress acting on
the object by introducing weights for formation-based set-point generator. The idea behind
the weights is to increase remarkably the convergence rate of the desired-set points which are
responsible for the internal force. Due to that the set-points converge faster and the internal
force is considerably reduced. A major advantage of the weights is that no internal force occurs
independent from which interaction topology is employed, i.e. there is no more demand which
requires a human-to-all-robots topology for this.

By definition the particular set-point dynamics of the formation-based generator with weights
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Figure 4.4: Object trajectory po resulting from distributedly generated robot set-points x1, x2, x3.
No deviation of the set-points in the transient between t = 1s and t = 6.5s and so
there is no internal force f int

i = 0.

evolve now according to

ẋ = Γu,

which denotes the weighted version of (3.29). Furthermore, Γ = diag(γ1, . . . ,γN ) is a block-
diagonal matrix with the entries being γi > 0 ∈ R, Here, γi are scalar weights in order to allocate
different speeds to different set-points. Following the previous argumentation we can rewrite our
set-point generator dynamics as follows:

ẋ = ΓAfms x + Γ bfmsu. (4.23)

Before introducing a formal result which relates the weights γi to the internal force hint we
re-label our set-point generator (4.23). A re-labeling of the robots can be done without loss of
generality and is performed here for the sake of exposition. Note here that all properties of the
graph Laplacian remain since a re-labeling is just an isormophism of a graph and can thus be
done without loss of generality. First we collect the states of all agents i belonging to the set Nh

into the state x̃ 2 ∈ R1ᵀbfms where 1ᵀbfms denotes the number of all direct neighbors. Analogously
we put the states of all the remaining robots which are not in neighborhood Nh of the human into
the state x̃ 1 ∈ RN−1ᵀbfms . Furthermore, in our setup the weights are only different with respect to
the previously defined two groups, i.e. the state x̃ 1 evolves with speed γ1 and x̃ 2 evolves with γ2.
Hence, we have Γ = diag(γ1IN−1ᵀbfms

,γ2I1ᵀbfms
). By using that collocation for notation and by an

appropriate decomposition of Afms as

Afms =

�

A f 1 B f 1

Bᵀf 1 A f 2

�

,
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we can rewrite (4.23) as follows:
�

˙̃x 1
˙̃x 2

�

=

�

γ1A f 1 γ1B f 1

γ2Bᵀf 1 γ2A f 2

��

x̃ 1

x̃ 2

�

+

�

0
γ21

�

u, (4.24)

where the states x̃ 1 are not directly influenced by the human input u. Based on this labeling we
are now ready to formally state a relation between the weights γi and the internal force hint which
holds for any interaction topology.

Theorem 4.1. The internal force hint→ 0 only if the weights γ1 defined in the weighted set-point
generator (4.24) are γ1→∞ for any interaction topology.

Proof. We need to show now that for γ1 →∞ we have hint → 0. From (4.24), we know that
there are two interconnected differential equations of which one dynamical system is without
direct influence of the human given by

˙̃x 1 = γ1A f 1 x̃ 1 + γ1B f 1 x̃ 2, (4.25)

and one dynamical system is with direct influence

˙̃x 2 = γ2A f 2 x̃ 2 + γ2Bᵀf 1 x̃ 1 + γ21u. (4.26)

Note here that this is not a decomposition into controllable and uncontrollable subspace as u still
has indirect influence on x̃ 2 through x̃ 1. The equilibrium of (4.25) where ˙̃x 1 = 0 is given by

x̃ 1(∞) = −A−1
f 1B f 1 x̃ 2.

An error between the state x̃ 1 and its equilibrium x̃ 1(∞) is defined by e1 = x̃ 1 − x̃ 1(∞) with
which the error dynamics result in ė1 = γ1A f 1e1. For the absolute norm of the error e1 we can say
that it converges with less or equal to the larger eigenvalue λ

A f 1
max of A f 1 as

e1(t) = e(γ1A f 1 t)e1(to)≤ e(γ1λ
Af 1
max t)e1(to).

As λ
A f 1
max < 0 and e1(to) is bounded we have

lim
γ1→∞

e1(t) = 0, (4.27)

due to which we can always express x̃ 1 by its equilibrium involving x̃ 2 as x̃ 1 = −A−1
f 1B f 1 x̃ 2. We

later show that e1 results in a violation of the constraint (4.5) which causes an internal hint 6= 0.
We continue now by substituting the equilibrium x̃ 1 = −A−1

f 1B f 1 x̃ 2 into (4.26) as

˙̃x 2 = γ2(A f 2 − Bᵀf 1A−1
f 1B f 1)x̃ 2 + γ21u. (4.28)

To investigate the accessible subspace in which x̃ 2 can move we have a closer look at the
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controllability matrix (4.15) and the controllable subspace of (4.28) defined by

Qfms =
�

γ21 γ2
2(A f 2 − Bᵀf 1A−1

f 1B f 1)1
�

=
�

γ21 γ2
2(A f 21+ Bᵀf 11)

�

=
�

γ21 −γ2
21
�

,

where we apply the relationships 1 = −A−1
f 1B f 11 and A f 21+ Bᵀf 11+ 1 = 0. The relationships

result from the decomposition (4.7) of Afms in L and the fact that L1 = 0. Note here that the
controllable subspace is 1, i.e. all entries of x̃ 2 are equal. By having equal entries in x̃ 2 we know
that x̃ 2 ∈ x̃∗21 where x̃∗2 ∈ R is a scaling factor. Due to that we know that all entries of x̃ 2 are
equal. Hence, the constraint (4.5) is satisfied and no internal force hint occurs here. We are now
ready to show that e1 6= 0 causes an internal force by substituting x̃ 2 ∈ x̃∗21 and x̃ 1 = −A−1

f 1B f 1 x̃ 2

into

e1 = x̃ 1 + A−1
f 1B f 1 x̃ 2 = x̃ 1 + A−1

f 1B f 1 x̃ ∗21= x̃ 1 − x̃ ∗21,

where we can see that if x̃ 1 − x̃∗21 6= 0 we have a difference between x̃ 2 and x̃ 1. Hence, by
definition we have a difference between the states of the direct followers and the indirect followers.
Due to that difference both x̃ 1 and x̃ 2 cannot be equal. Hence, for e1 6= 0 the constraint (4.5) is
violated which causes an internal force hint acting on the object. However due to (4.27) we know
that there is no internal force hint→ 0 induced by e1 = 0 as γ1→∞.

Note that from a practical point of view it is impossible and preposterous to choose γ1→∞.
However, it is often sufficient to choose γ1 very large in comparison with γ2. In this section we
introduced weights for the set-point generator in order to significantly reduce the internal wrench
acting on the object based on a controllability analysis. Controllability plays a major role in the
system analysis of a human-guided multi-robot manipulation task. In the next step we discuss
controllability of the multi-robot interaction dynamics and the controllability of the overall system
consisting of set-point generator and interaction dynamcis.

4.5 Controllability of the Human-guided Cooperative
Manipulation Task

The influence of the human input on particular set-points given by a controllability analysis gives
us fundamental insight in the guidance of the set-points. We now extend this result by examining
the human influence on both the particular robot set-points and the object motion by investigating
the controllability of the impedance-based interaction dynamics (2.29) and the controllability of
the overall system in serial connection. Note here that we follow the argumentation in Section 4.4
and discuss the controllability of (2.29) only for a single direction of space. Calculating the
controllability of (2.29) with Lie algebra for the translational and rotational motions yields the
same result as the simplified version addressing only one direction in space. However, in this
analysis we focus on the controllability problem in one direction in space which can be presented
more clearly as discussed in Section 4.4 in a similar fashion.
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4.5.1 Controllability of the Impedance-based Multi-Robot Dynamics

A simplified version of multi-robot interaction dynamical system (2.29) in one direction under
ζ=

�

po, ṗo

�ᵀ ∈ R2 reads as

ζ̇=





0 1

Π
N
∑

i=1
ki Π

N
∑

i=1
di



ζ+

�

0
Π

�

kᵀx

= Aimpζ+ bimpkᵀx , (4.29)

where Π= −(mo +
N
∑

i=1
mi)−1 and k = [k1, . . . , kN]

ᵀ. Once again we employ (4.15) to derive the

controllability matrix of the interaction dynamics given by

Qimp =
�

bimp Aimpbimp

�

=

�

0 Π1

Π1 Π2
∑N

i=1 di,

�

,

where we can directly observe by inspection that rank(Qimp) = 2 if mo <∞, mi <∞. So the
interaction dynamics of cooperating distributed impedances under a rigid grasp are completely
controllable for a single direction in space.

4.5.2 Controllability of the Guided Cooperative Manipulation Task

In this section we evaluate the controllability of the simplified versions of the set-point genera-
tor (4.14) and the interaction dynamics (4.29). The overall state z is then labeled as z =

�

x ᵀ,ζᵀ
�ᵀ

.
To evaluate the controllability of the serial concatenation we first have to evolve the complete
system dynamics. For a single direction in space the series concatenation of the human-guided
set-point generator (4.14) and the multi-robot interaction dynamics (4.29) results as

Atot =

�

Afms 0
bimpkᵀ Aimp

�

, btot =

�

bfms

0

�

. (4.30)

Evaluating the controllability condition (4.15) of the concatenated system (4.30) then results in

Qtot =

�

Q∗1 . . . Q∗i . . . Q∗N+2
Q∗∗1 . . . Q∗∗i . . . Q∗∗N+2

�

, (4.31)

where the submatrices Q∗i ,Q
∗∗
i of Qtot are given as

Q∗i = Ai−1
fmsbfms if i = 1, . . . , N + 2,

and

Q∗∗i =







0 if i = 1
i−2
∑

j=0
Aj

impbimpkᵀAi−2− j
fms bfms if i = 2, .., N+2.
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The controllability of serial concatenation of dynamical systems is a rarely studied problem. In
general, it is known [155] that the number of controllable states of the complete system is less or
equal to the sum of controllable states of the particular systems:

rank(Qtot)≤ rank(Qfms) + rank(Qimp).

To avoid internal force acting on the object we introduced in Proposition 4.1 that the human
input u is known by all robots and so the input vector reads as bfms = 1. Using Ak

fmsbfms = (−1)k1

and kᵀ1=
N
∑

i=1
ki, the overall controllability matrix (4.31) can then be simplified as

Q =





1 −1 . . . (−1)N+21

0 bimpkᵀ1 . . .
N−1
∑

j=0
−1N−1− jAj

impbimpkᵀ1





=





1 −1 1 ..

0
N
∑

i=1
ki bimp

N
∑

i=1
ki(Aimpbimp − bimp) ..



 . (4.32)

As previously derived for bfms = 1 we have rank(Qfms) = 1 and rank(Qimp) = 2 is always valid.
Hence, the rank of the concatenated system results as rank(Q) ≤ 3. In our proposed scheme,
bfms = 1, we can observe that rank(Qtot) = 3 by only inspecting the first three columns of (4.32).
From a theoretical perspective the human operator can independently influence the set-points
of the multi-robot team x , the object velocity ṗo, and the object position po in one particular
direction in space.

However, for bfms 6= 1 a rank-deficiency of the controllability matrix Q can occur due to a
special interplay of the impedance-based dynamics Aimp/bimp and the set-point generator dynamics
Afms/bfms. The reason for this rank-deficiency is that the null-space of Q∗ =

�

Q∗1 . . .Q∗i . . .Q∗N+2

�

and the null-space of Q∗∗ =
�

Q∗∗1 . . .Q∗∗i . . .Q∗∗N+2

�

can intersect and so the intersecting space lies
also in the null-space of Q. Then there can exist a vector

(r ∗ s) 6= 0 ∈ ker(Q∗ᵀ)∩ ker(Q∗∗ᵀ),

which satisfies both Q∗(r ∗ s) = 0 and Q∗∗(r ∗ s) = 0. Consequently r ∗ s lies in the null-space of
Qtot, too.

To show such a rank-deficiency of Q we have a closer look at the first rows of Q as Q∗ =
�

IN . . . Ai−1
fms . . . AN+2

fms

�

bfms. When analyzing the null-space of Q∗ the Cayley-Hamilton theorem is
helpful. The Cayley-Hamilton theorem states that Afms satisfies its own characteristic equation
ρAfms

(Afms):

ρAfms
(Afms) = rᵀ









IN

Afms
...

AN
fms









= 0, (4.33)

where r ∈ RN is the coefficient vector of the characteristic polynomial ρAfms
(t) of order N
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4.5 Controllability of the Human-guided Cooperative Manipulation Task

belonging to the system matrix Afms. The roots Afms of the polynomial ρAfms
is invariant to a

multiplication of ρAfms
with any other polynomial σ(t) of degree 2. Note here that the factor

2 accounts for the monomials AN+1
fms and AN+2

fms which are not present in (4.33) but in Q∗. The
coefficient vector of σ(t) is denoted by s. The multiplication of both polynomials ρ(t)σ(t) is the
convolution of the coefficient vectors s ∗ r where the operator ∗ denotes convolution. To account
for the factors I , Afms, A2

fms, . . . , AN+2
fms of Q∗i we result in the multiplied characteristic polynomial as:

(r ∗ s)ᵀ













IN

Afms
...

AN
fms

AN+2
fms













= 0.

Hence, there always exists a vector r ∗ s which is in the null-space of the first N rows of Qtot given
by

r ∗ s ∈ ker(
�

bfms Afmsbfms . . . AN+2
fms bfms

�ᵀ
),

which shows that the null-space of
�

Q∗1, . . . ,Q∗N+2

�

has at least two free parameters which are
constituted by the entries of vector s.

For the controllability submatrix Q∗∗ the Cayley-Hamilton theorem is not applicable since the
particular entries Q∗∗i are sums of the matrix products with Afms and Aimp where the powers of Afms

and Afms are increasing and decreasing, respectively. We have to numerically determine the null-
space ker(Q∗∗ᵀ) and check if ker(Q∗∗ᵀ) intersects with ker(Q∗ᵀ). A general method to determine
intersecting null-spaces using a singular value decomposition is described in Appendix A based
on the results in [156]. Note here that Q∗∗ depends on Aimp and Aimp depends on the impedance
parameters m, d, k. So particular impedance parameters m, d, k can cause that intersection and
the rank-deficiency of Qtot. If now under a specific interplay of Afms, Aimp, bimp, the vector (r ∗ s)
also lies in the null space of the last rows

�

Q∗∗1 , . . . ,Q∗∗N+2

�

of Qtot then

(r ∗ s)ᵀ













0
bimpkᵀbfms

...
N+2
∑

j=0
Aj

impbimpkᵀ(Afms)N− j bfms













= 0.

Hence, (r ∗ s) lies in the null-space of Qtot and so there is a rank-deficiency of the overall
controllability matrix Qtot. Under this special condition rank(Qtot) < rank(Qfms) + rank(Qimp)
and the human operator cannot control the set-points x and the object position po independently.

Example 4.3. We revise the set-point generator dynamics (4.10) from Example 4.1 here. The char-
acteristic polynomial (4.33) of the linearized formation-based trajectory generation method (4.10)
is ρAfms

(t) = t3 + 8t2 + 18t + 8 and r = [1, 8,18, 8]ᵀ. The impedance parameter of the overall

impedance dynamics concerning mass
3
∑

i=1
mi +mo = 31 and stiffness

3
∑

i=1
ki = 480 are taken from
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4 Human Interaction with a Multi-Robot Manipulation Task

(2.39) in Example 2.2. The damping d is selected to be the free parameter to illustrate a potential
rank-deficiency of Qtot. Hence, the system matrices of impedance-based multi-robot cooperation
(4.29) are given by

ζ̇=

�

0 1
−480

31 − d
31

�

ζ+

�

0
− 1

31

�

kᵀx ,

where ζ= [po, ṗo]
ᵀ. With z = [x1, x2, x3, po, ṗo]

ᵀ, the concatenated system (4.30) is given by

ż =













−3 1 1 0 0
1 −2 1 0 0
1 1 −3 0 0
0 0 0 0 1

−160
31 −160

31 −160
31 −480

31 − d
31













z +













1
0
1
0
0













uh.

By evaluating the complete controllability matrix (4.31) for the system we observe that the rank
of Qtot is different as

rank(Qtot) =

¨

3 if d = 3762
31 ∨ d = 9108

31

4 if d 6= 3762
31 ∨ d 6= 9108

31 .

Based on numerical investigations, we assume that for N followers there are N − 1 damping
coefficients leading to that phenomena of rank-deficiency of Qtot. As observed for three following
robots there are two specific values of d which can lead to a rank-deficiency of Qtot.

Since this rank-deficiency of Qtot is just artificially induced by the interplay of the impedance-
based (2.29) and the formation-based (4.9) dynamical system it has no effect on the internal
force (2.33) which is only cased by the formation-based set-point generator. After discussing
controllability properties of the guided cooperative manipulation task we are now ready to discuss
the equilibria of the system dynamics, the stability of the equilibria, and the input-output behavior
of the proposed interaction mechanism resulting from a human input in the next section.

4.6 Stability Analysis of the Human-guided Cooperative
Manipulation Task

From a system theoretical perspective, the overall system is a serial concatenation of two dy-
namical systems: the formation control approach (4.9) which defines the input, namely the
set-points ξd weighted by the total stiffness matrix K , for the cooperative manipulation task
dynamics (2.29). As the formation-based set-point generator only produces set-points ξd we set
v d

i = v̇ d
i = 0 in (2.29). The signal flow plan of the overall structure is depicted as follows:
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Formation-based
trajectories

by (4.9)

Impedance-
based interaction

dynamics by
(2.29)

External force h̃o

uh K ξd ξo, ξ̇o

Note here that for the stability analysis we employ again the nonlinear dynamics (4.9) and (2.29)
instead of their simplified linear versions (4.14) and (4.29). The reason is because the nonlinearity
of the dynamical system leads to multiple equilibria and because it thus plays an important
role when showing stability of the equilibria. First, we discuss the equilibria of the object
which is approached based on a constant human input uh and the distributed set-point generator.
Subsequently, we provide an input-output model which relates the object velocity ξ̇o of the
impedance-based interaction dynamics to the human input uh.

4.6.1 Equilibria of the Cooperative Manipulation Task and Their Stability

In this section we investigate the Lyapunov stability of the overall system from a constant
human input uh to the output of the multi-robot cooperative manipulation task ξo. The equilibria
of (4.9) and (2.29) are discussed separately since the equilibria of the human-guided set-point
generator (4.9) and their stability are independent of (2.29). By doing so we can directly observe
if the equilibria are in line with the constraints in a cooperative manipulation task. The equilibria
of the impedance-based multi-robot dynamics (2.29) and their stability are then discussed both
generally for any set-points and then in particular for the set-points equilibria generated by the
human input in (4.9). As a result the separate discussion of the equilibria not only produces a
more intelligible result but also provides us with more insights into the problem.

Equilibria and Stability of the Human-guided Set-point Generator

Given a specific human input uh we are at first interested what the resultant desired set-points ξd

are. In other words we are ready to derive the equilibiria of the set-point generator (4.9) and their
stability properties. The stability of the set-point generator (4.9) for a constant human input uh is
analyzed in this section. Please note here at this stage that due to the use of quaternions q d

i = qh

and q d
i = −qh stands for the same physical rotation. Hence, there exist two possible equilibria

for the set-point generator which is formally stated in Proposition 4.5. In Proposition 4.6 we
subsequently show that q d

i = qh is the only stable equilibrium.

Proposition 4.5. Under Assumptions 3.4 and 4.1 the human-guided set-point generator (4.9) has
the following two equilibria, for all robotic manipulator i:

ξd
i =

�

pd
i

q d
i

�

=

�

x h + d ih

qh

�

, (4.34)
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and

ξd
i =

�

pd
i

q d
i

�

=

�

x h + d ih

−qh

�

. (4.35)

Proof. The equilibria of (4.9) clearly satisfy ẋ p = 0 and ẋ q = 0. We start with the rotational
set-point generator for the desired robot orientations (4.9b) here as

0=
1
2
U (x q)

�

(Afms ⊗ I4)x
q + (bfms ⊗ I4)qh

�

, (4.36)

where we substitute (4.8) for bfms and employ (Afms1⊗ I4) = (Afms ⊗ I4)(1⊗ 1) to rewrite (4.36)
as

0=
1
2
U (x q)(Afms ⊗ I4)

�

x q − (1⊗ qh)
�

. (4.37)

It is obvious that the trivial solution x q = (1⊗ qh) satisfies (4.37). Note here that (Afms ⊗ I4) is
full-rank and the Afms matrix has only integer entries. Hence, a solution of (4.37) can also lie in
the null-space of the matrix U (x q) which is given by (2.6c). Due to that and the fact that the
null-space must be an integer combination of x q

i and qh the solution of (4.37) is q d
i = x q

i = ±qh.
Consequently, we obtain the equilibria of the translational set-point generator (4.9a) by setting
ẋ p = 0 as 0= (Afms ⊗ I3)x p + (bfms ⊗ I3)x h and the equilibria of (4.9a) are

x p = (−A−1
fmsbfms ⊗ I3)x h = 1⊗ x h,

where we use (4.3) to see that

pd
i = x h + d ih,

which concludes our proof.

We now define a set of robot set-points which only excludes the equilibrium (4.35) given by

Ωfms = {ξd
i =

�

pd
i

q d
i

�

|pd
i ∈ R3,q d

i ∈ SO(3)∩ q d
i 6= −qh}.

At this point we are ready to state the stability of the set-point generator.

Proposition 4.6. Let Assumptions 3.4 and 4.1 hold and let the initial states ξd
i (to) ∈ Ωfms. Then

the equilibrium (4.34) of the human-guided set-point generator (4.9) is asymptotically stable.

Proof. To show stability of set-point generator (4.9) we employ the following Lyapunov function
candidate

Vfms =
1
2

x̂ ᵀ(L ⊗ I7)x̂ , (4.38)
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where the human-extended Laplacian matrix L is defined in (4.7). Note here that Vfms is positive
definite and radially unbounded with respect to x i − x j and x i − uh for all i ∈ N and j ∈ Ni.
Using the fact that u̇h = 0 the time-derivative of V is given by

V̇ fms = x̂ ᵀ(L ⊗ I7)˙̂x

=
�

x pᵀ, x ᵀh
�

(L ⊗ I3)

�

ẋ p

0

�

+
�

x qᵀ,qᵀh
�

(L ⊗ I4)

�

ẋ q

0

�

= −ẋ pᵀ ẋ p − ẋ qᵀ ẋ q ≤ 0,

where we employ (4.7) for the human-extended Laplacian L. Referring to Proposition 4.5 the set-
point generator has two possible equilibria given by (4.34) and (4.35). Using (4.38) it is shown
that the equilibrium (4.34) represents the minimum energy and any perturbation from (4.34)
drives the system to (4.34). The proof is concluded by stating that ξd

i (t) is bounded and the
equilibrium (4.34) is the only point in Ωfms where V̇fms = 0. Hence, due to LaSalle’s invariance
principle Ωfms is the region of attraction in which the equilibrium (4.34) is asymptotically stable.
Hence, (4.35) is unstable.

Equilibria and Stability of the Impedance-based Multi-Robot Dynamics

Given distributed manipulator set-points ξd we are now interested in the resultant object pose
ξo which are the equilibria of the interaction dynamics (2.29) and their stability properties. The
stability of the impedance-based interaction dynamics (2.29) is analyzed by first deriving the
equilibria generally in Proposition 4.7. In the following we discuss the particular implication of
the proposed set-point generator (4.8) on the equilibria discussed in Proposition 4.7. We conclude
this section by showing asymptotic stability of the interaction dynamics (2.29) under the proposed
set-point generator (4.9) . Yet, before stating the equilibria of (2.29) we have to make clear that
the potential solutions of a quaternion orientation error

U(q i)
ᵀq s = τ, (4.39)

where q i and τ are known and q s is the unknown quaternion are given by

¯̄q s = q̄ s +αq i, (4.40)

where q̄ i is one particular solution of the underdetermined system of linear equations (4.39). Note
here that in general there are infinitely many solutions. Yet we have to ensure that the solution ¯̄q i

is also a unit quaternion by the scalar weight α which is then given by

α= −qᵀi q̄ s ±
q

qᵀi q̄ sq
ᵀ
i q̄ s + (1− q̄ᵀs q̄ s).

Hence, there exist always two solutions of (4.40) which are unit quaternions.

Proposition 4.7. Let Assumptions 2.2 and 2.3 hold. Then the impedance-based multi-robot
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dynamics (2.29) have the following equilibria




v o

po

q o



=





0
1
N

∑

i pd
i +

1
Nk f̃ o

q̄ o



 , (4.41)

where q̄ o is the solution of

U(
∑

i

q d
i )
ᵀqo =

1
κ
τ̃o +

k
κ

∑

i

S(r i)p
d
i .

There are two rotational equilibria for (4.41) due to (4.40). .

Proof. The potential equilibria of (2.29) obviously satisfy v o = 0 and v̇ o = 0 which yields

Koξo =
∑

i

Kiξ
d
i + h̃o,

and in turn implies the particular equilibria of the positions and orientations as
∑

i

ki po =
∑

i

ki p
d
i + f̃ o,

0=
∑

i

kiS(r i)
ᵀpd

i +
∑

i

κiU(q o)
ᵀq d

i + τ̃o. (4.42)

Solving (4.42) for po,q o and emplyoing Assumptions 2.2 and 2.3 yields (4.41). Due to (4.40)
there are two rotational equilibria.

Proposition 4.8. Let Assumptions 2.2 and 2.3 hold and assume that there is no force distur-
bance f̃ o = 0. Then the equilibria of the interaction dynamics (2.29) driven by the distributed
set-point generator (4.9) are





v o

po

q o



=





0
x h +

1
N

∑

i d ih

qh



 , (4.43)

and




v o

po

q o



=





0
x h +

1
N

∑

i d ih

−qh



 . (4.44)

Proof. The proof is the straightforward application of Propositions 4.5 and 4.8. We set f̃ o = 0 and
replace the particular set-points pd

i in (4.41) by (4.34). Note here that
∑

i kiS(r i)ᵀ(x h + d ih) = 0
due to Assumption 2.2 and d ih = r i − r h.
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We now define a set of object poses which only excludes the equilibrium (4.44) given by

Ωimp = {




v o

po

q o



 |v o ∈ R6, po ∈ R3,q o ∈ SO(3)∩ q o 6= −qh}.

Proposition 4.9. Let Assumptions 2.2 and 2.3 hold. Further, let f̃ o = 0 and the initial state
�

vᵀo, pᵀo,qᵀo
�ᵀ ∈ Ωimp. Then the equilibrium (4.43) is asymptotically stable. .

Proof. To show stability of the interaction dynamics (2.29) we employ the following Lyapunov
function candidate

Vimp =
1
2

vᵀoM v o + (ξo − ξd
o)
ᵀ

�

1
2 kI3 0

0 2κI4

�

(ξo − ξd
o),

which is positive definite and radially unbounded with regards to v o and (ξo − ξd
o) and due to the

usage of the set-point generator (4.9) the desired object pose ξd
o is given by

ξd
o =

�

x h +
1
N

∑

i d ih

qh

�

.

Using (2.7), (2.29), (2.4) the time-derivative of Vimp is given by

V̇imp =
1
2

vᵀoṀ v o + vᵀoM v̇ o + ξ̇
ᵀ
o

�

kI3 0
0 4κI4

�

(ξo − ξd
o)

=
1
2

vᵀo(Ṁ − 2Co)v o − vᵀoDv o + vᵀo

��

kI3 0
0 2κU(q o)

ᵀ

�

ξo − hκo(ξo,ξd
o)

�

= −vᵀoDv o ≤ 0,

where a straightforward calculation shows that 1
2 vᵀo(Ṁ − 2Co)v o = 0 which is a consequence of

the Hamilton principle of conservation of energy. Note here that V̇imp is negative semi-definite.
We observe that the function candidate Vimp decreases as long as v o 6= 0. To find the equilibrium
of (2.29), we have V̇imp = 0 and v o = 0 which rigorously shows that V̇imp = 0 only for (4.43)
and (4.44). Since

�

vᵀo(t), pᵀo(t),q
ᵀ
o(t)

�ᵀ
is bounded and the equilibrium (4.43) is the only point

in Ωimp where V̇imp = 0, (4.43) is asymptotically stable due to LaSalle’s invariance principle. By
investigating the minimum energy of Vimp it is shown that Ωimp is the region of attraction for (4.43).
Hence, any perturbation drives the system to (4.43).

We are now ready to define a input/output relationship from a changing human input uh to the
cooperatively manipulated object velocity v o.

4.6.2 L2-stability of the Guided Cooperative Manipulation Task

A related approach which relates the interaction topology to stability in a leader-follower setup
has been investigated under the term of leader-to-formation stability based on the notation of
input-to-state stability [157]. The stability margins in [157] are tighter as they consider a specific
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special interaction topologies where all cycles in the underlying graph are of order 3. In this
section we now investigate the L2-stability of the overall system from a human input uh to the
output of the multi-robot cooperative manipulation task ξo. For the sake of exposition we define
the output y fms of the set-point generator (4.9) to be the transformed set-points which are given by

y fms = x . (4.45)

Note that the output is y fms not exactly the input u imp of the impedance-based interaction dy-
namics (2.29). A static relation between the output y fms and the input u imp of the interaction
dynamics (2.29) is given by

u imp =
N
∑

i=1

Kiξ
d
i =K ξd = K̄ (x + dh) = K̄ (y fms + dh), (4.46)

whereK = [K1,K2, . . .KN] and dh =
�

dᵀ1h, . . . ,dᵀNh,0ᵀ, . . . ,0ᵀ
�ᵀ

. Furthermore, the matrix K̄ is
a re-ordered variant ofK which accounts for the fact that ξd and x = [ x pᵀ, x qᵀ]ᵀ have different
orders by means of positions and quaternions. Since we have already discussed the system
equilibria by means of the object pose in the previous chapter we are now mostly concerned
with the input-output stability from the distributed set-points to the object velocity. Knowing an
approximated input-output relation between a human input and the object velocity is particularly
interesting since the object velocity is directly associated with the manipulator velocity as dis-
cussed in (2.19) and the manipulator velocity is often absolutely constrained. Without exactly
examining the nonlinear system dynamics we can then in advance decide whether a human input
violates the manipulator velocity constraints. Since the focus of the cooperative manipulation
task is on the velocity of the object from now on, we define the object velocity to be the system
output. Hence, the output of the multi-robot cooperative manipulation task (2.29) is chosen to be
the object velocity v o given by

y imp = v o.

For a dynamical system L2-stability indicates that a “well-behaved” input into the system
generates a “well-behaved” output and the system will then be considered a stable system [69].
Let ‖u‖L2

be the L2-norm of a piecewise continuous, square-integrable functions

‖u‖L2
=

√

√

√

√

√

∞
∫

0

uᵀ(t)u(t)d t <∞,

and the space is denoted by L m
2 . The definition of L2-stability is the notion of bounded-input

bounded-output stability. Furthermore, we define an extended space L m
2e as

L m
2e = {u | uτ ∈ L m

2 ,∀τ ∈ [0,∞)},
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where uτ is a truncation of u defined by

uτ =

¨

u(t) 0≤ t ≤ τ
0 t > τ.

The extended space L m
2e enables us to consider unbounded “ever-growing” signals such as for

example unit quaternions of which the norm is by definition always equal to one. Hence, a
quaternion does not belong the space L 4

2 but it belongs to the extended space L 4
2e.

Definition 4.1 ([69]). A continuous function α: [0, a)→ [0,∞) is said to belong to classK if
is is strictly increasing and α(0) = 0.

Definition 4.2 ([69]). A system is said to be (small-signal) L2-stable if there a classK function
α, defined on [0,∞), and a nonnegative constant β (and a positive constant r) such that between
the input uτ ∈ L2 and the output yτ ∈ L2 the following inequality holds:

‖yτ‖L2
≤ α(‖uτ‖L2

) + β , ∀u,τ ∈ [0,∞)(with sup
0≤t≤τ

‖u‖ ≤ r).

It is said to be finite-gain L2-stable if there exist nonnegative constants γ and β such that

‖yτ‖L2
≤ γ‖uτ‖L2

+ β .

To characterize input/output stability, we first derive the relation for the human-guided set-
point generator (4.9) from human input to distributed set-points. Then the input/output for the
distributed set-point to the object velocity of the impedance-based multi-robot dynamics (2.29)
is discussed. Finally, we connect both results to show the input/output stability of the overall
system.

L2-stability of the Human-guided Set-Point Generator

In order to argue about the system stability we first make an assumption about the human input uh.

Assumption 4.2. The human input uh is uh ∈ L2e. This assumption is reasonable and justifiable
for us since the (hand) position of the human operator is employed to guide the cooperative
manipulation task here. Hence, the maximum operating range of providing a position uh by the
human operator is limited [158]. The position uh on the human hand and the movement of the
human body is bounded due to kinematics constraints occurrent in human physiology.

To show L2- stability of the human-guided set-point generator (4.9) with the output being
x (4.45) we break the problem into finding first an L2-gain for the linear translational set-point
generator (4.9a) with regards to the output x p and then anL2 for the nonlinear rotational set-point
generator (4.9b) with regards to the output x q. Subsequently we link both results. Hence, we are
at first required to calculate the L2-gain for linear time-invariant systems which is defined in the
following theorem taken from [69, Theorem 5.4]:
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Theorem 4.2 ([69]). Consider the linear time-invariant system

ẋ = Ax + Bu,

y = C x + Du,

where A is Hurwitz. Let G(s) = C(sI − A)−1B + D. Then, the L2-gain of the system is
supω∈R‖G( jw)‖2.

Note here that for linear time-invariant system we are able to come up with an exact L2-gain
as described in [69, Theorem 5.4]. Generally, one can only provide an upper bound on the gain.
By applying this theorem to the translational set-point generator (4.9) with the output x p defined
in (4.45) we can show L2-stability in the following theorem.

Theorem 4.3. The translation set-point generator dynamics (4.9a) with input x h and output x p

defined in (4.45) is L2-stable with gain γp:

‖x p‖L2e
≤ γp‖x h‖L2e

.

Proof. We apply Theorem 4.2 in the following. The human input uh is assumed to be uh ∈ L2e.
We have A= Afms ⊗ I3, B = b f ms ⊗ I3, C = I3N , D = 0. The matrix A is Hurwitz since Afms is a
principal submatrix of the graph Laplacian −L and all eigenvalues of −L are nonpositive. The
interlacing theorem about the spectra of principal matrices states that all eigenvalues of Afms are
negativ. Hence, the L2-gain is given by γp = supω∈R‖G( jw)‖2.

The rotational set-point generator (4.9b) is nonlinear by definition. However, for showing
L2-stability we can use the fact that both input qh and output x q are unit quaternions.

Theorem 4.4. The rotational set-point generator dynamics (4.9b) with input qh and output x q

defined in (4.45) is L2-stable with gain γq:

‖x q‖L2e
≤ γq‖qh‖L2e

. (4.47)

Proof. The human input qh is assumed to be qh ∈ L2e. By employing the unit quaternion property
qᵀhqh = 1 the L2-norm of the input qh is given as

‖qh ‖L2e
=

√

√

√

√

√

∞
∫

0

qᵀh(t)qh(t)d t =

√

√

√

√

√

∞
∫

0

1d t. (4.48)

The output vector x q is a concatenated vector of N unit quaternions x q
1, . . . , x q

N and so the
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L2-norm is given by

‖x q ‖L2e
=

√

√

√

√

√

∞
∫

0

x qᵀ(t)x q(t)d t =

√

√

√

√

√

∞
∫

0

Ndt =
p

N

√

√

√

√

√

∞
∫

0

1d t. (4.49)

By comparing (4.48) and (4.49) we can directly read theL2-gain as (4.47) where γq =
p

N . Note
that the relation between (4.48) and (4.49) is actually an equality but we employ ≤ here in order
to be consistent with the formalism of input-output stability.

We now combine both formal statements in Theorem 4.3 and 4.4 as

‖x‖L2e
= ‖

�

x p

x q

�

‖L2e
≤ ‖x p‖L2e

+ ‖x q‖L2e
≤ γp‖x h‖L2e

+ γq‖qh‖L2e
. (4.50)

L2-Stability of the Impedance-based Multi-Robot Dynamics

The stability of the impedance-based interaction dynamics (2.29) is analyzed by first showing that
the system is output strictly passiv. A system is said to be output strictly passive [69, Definition
6.3] if there exists a positive semi-definite function V such that

uᵀy ≥ V̇ + yᵀρ(y),

and yᵀρ(y)> 0, ∀y 6= 0. From output strictly passivity we can later infer L2-stability. We are
now ready to state.

Theorem 4.5. The dynamical system of impedance-based multi-robot dynamics (2.29) is output
strictly passive for h̃o = v d

i = v̇ d
i = 0 with respect to the input u imp = K ξd and the output

y imp = v o

Proof. We set v d
i = v̇ d

i = 0 in (2.29) as the formation-based set-point generator only generates
the desired manipulator poses ξd

i . We use the storage function

V = Vo + To +
N
∑

i=1

(Vi + Ti), (4.51)

where To, Vo are defined in (2.14) and Ti, Vi are defined as

Ti =
1
2

vᵀi Mi v i and Vi = ξ
ᵀ
i

�

1
2 kI3 0

0 0

�

ξi,

in order to show that the system is output strictly passive. The storage function V is positive
semi-definite as the potential energy terms To and Ti by definition positive definite. Furthermore,
the kinetic energy terms Vo and Vi are positive semi-definite which then shows the positive
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semi-definiteness of V . The time-derivative of V results with (2.7), (2.19), (2.20), and (2.29) as

V̇ =
1
2

vᵀoṀ v o + vᵀoM v̇ o +
N
∑

i=1

ξ̇
ᵀ
i

�

kI3 0
0 0

�

ξi

= −v̇ᵀoD v̇ o + v̇ᵀoK ξd ≤ v̇ᵀoK ξd ,

where we simplify V̇ similar to the considerations outlined in the proof of Prop. 4.9. Hence, we
conclude that the system is output strictly passive.

Remark 4.3. In Theorem 4.5 we neglect the external force given by h̃o = 0 in order to focus on
the L2-stability of the interaction dynamics which arises merely from the input u imp = K ξd .
However, one can analogously show output strictly passivity of (2.29) with the input u imp =
K ξd + h̃o, too.

From output strictly passivity we can deduce L2-stability.

Lemma 4.1 ( [69] ). If the system ẋ = f (t, x , u), y = h(t, x , u) is output strictly passive with
uᵀy ≥ V̇ +κyᵀy , for some κ > 0, then it is finite-gain L2-stable and its L2-gain is less than or
equal to 1

κ .

By applying Lemma 4.1 we are now ready to state the L2-stability of impedance-based
multi-robot dynamics (2.29).

Theorem 4.6. The impedance-based multi-robot dynamics (2.29) are finite-gain L2-stable with
respect to the input u imp =K ξd and the output y imp = v o, and the gain is less or equal to 1

λDmax
.

λDmax denotes the maximum eigenvalue of D .

Proof. We know that (2.29) is output strictly passive with vᵀoK ξd ≥ −vᵀoDv o + vᵀoK ξd ≥
−λDmaxvᵀov o + vᵀoK ξd . Hence, due to Lemma 4.1 the system is also finite-gain L2-stable and the
input-output relation can be defined with two nonnegative gains as:

‖v o‖L2e
≤ γimp‖K ξd‖L2e

+ β imp, (4.52)

where γimp = 1
λDmax

and β imp =
Ç

2
λDmax

V (ξ(t0)) as derived in [69]. V (·) is the storage function
defined in (4.51).

The L2-norm is often used to analyze the system, as a 2-norm can be naturally be interpreted
as an energy-like measure. The L2-stability of the impedance-based interaction dynamics (2.29)
is then formally stated in (4.52).

L2-Stability of the Guided Cooperative Manipulation Task

After seperately establishing the L2-stability of the human-guided set-point generator (4.9) and
the impedance-based multi-robot dynamics (2.29) we are finally ready to state the L2-stability
of the overall system. Before directly connecting the input output relations (4.50) and (4.52) we
have to evaluate the L2-relation of x and ξd defined in (4.46) as

‖u imp‖L2e
= ‖K ξd‖= ‖K̄ (x + dh)‖L2e

≤ γK ‖x‖L2e
+ βK ,
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where we have γK = ‖K̄ ‖. Note here that although γK actually depends on the quaternion q o,
too. However, it has a finite gain due to the structure of the aid matrix U(q o) which is defined
in (2.5). Furthermore, we have βK = γK ‖d ih‖. Now we are ready to state the main result of
input-output stability of the human-guided cooperative manipulation task.

Theorem 4.7. The serial concatenation of human-guided set-point generator (4.9) and the
impedance-based multi-robot dynamics (2.29) with the inputs uh =

�

x ᵀh,qᵀh
�ᵀ

and the output
y = v o is finite-gain L2-stable.

Proof. To show the bounded input and bounded output relationship of the input u = uh and the
output y = v o we have to link the condition derived in (4.50) for the set-point generator and
(4.52) for the multi-robot dynamics as

‖v o‖L2e
≤ γimp‖K ξd‖L2e

+ β imp

≤ γimp‖γK ‖x ‖L2e
+ βK ‖L2e

+ β imp

≤ γimpγK ‖x ‖L2e
+ γimpβK + β imp

≤ γimpγK γp‖x h‖L2e
+ γimpγK γq‖qh‖L2e

+ γimpβK + β imp. (4.53)

We can observe that the input/output pair isL2-stable with the finite gains γimpγK γp and γimpγK γq

and an offset γimpβK + β imp > 0.

In conclusion, the serial conatenation consisting of a human-guided set-point generator (4.9)
and the multi-robot interaction dynamics (2.29) is bounded-input bounded-output stable. Hence,
the velocity of the manipulated object is bounded which can be observed in condition (4.53).
After establishing the stability between a human input uh and the motion of the object v o we are
now ready to introduce a task-dependent feedback to the human operator and later evaluate the
proposed interaction mechanism in a full-scale experiment.

4.7 Task-dependent Vibrotactile Feedback to the Human
Operator

From a system theoretic point of view the shortcoming of a leader-follower dynamical systems
is considered to be the lack of feedback to the leader from the followers. Due to the envisioned
close interaction between human leader and robotic followers the human leader always receives
visual feedback from the robot team. We additionally propose to provide a reality augmenting
vibrotactile feedback to the human operator based on the multi-robot movement. When a human
operator interacts with a team of robot, generally speaking he/she interacts with a redundant
mechanical system. Here, the relevant elements of the mechanical system with which the human
operator interacts are the task variable which are the end-effector poses ξi,ξ

d
i of the robots and ξo

of the object, and the generalized variables θ i, which are the joint configuration of the particular
end-effectors, and the differential relationship between generalized and task variables Ji(θ i)
which are the Jacobian matrices of the particular robots. In general all those entities can be of
interest for the human operator when interacting with a team of cooperating robots since they all
are essential for accomplishing the cooperative robotic manipulation task. Yet, we argue that the

101
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generalized variables θ i are already masked from the human operator by employing a task-space
impedance control as defined in (2.8). Since the human operator only indirectly interacts with the
generalized coordinates by the computed torque input (2.3) we categorize this kind of feedback to
the human operator as subordinate feedback. The Jacobian matrix defined in (2.2) denotes the
differential relation between generalized and task variables and it can be used to quantitatively
measure the interaction of the human operator with the robots. For example it can provide the
human operator with an optimal location of interaction as e.g. presented in [137]. Since our
presented interaction paradigm between human and multi-robot team is defined in task-space
through ξi,ξ

d
i we argue that it is beneficial to feedback task-space variables to the human operator

in our setup. The feedback which we propose is a task-dependent feedback that conceptualizes
the human as a following agent. By doing so we display the transient phase of the robot formation
to the human operator, i.e. we make the human aware when the multi-robot formation and the
object are in motion. The aim of this feedback is to create a feeling of being in touch with the
object to the human during the motion of the object.

4.7.1 Vibrotactile Cue During Transient Phase of the Set-Point Generator

The human-robot interaction paradigm as depicted in Fig. 4.1 envisions a free-space motion where
the haptic channel of the human operator is not overloaded. Thus we propose to supplement a
haptic feedback here. We avoid using the visual channel as we expect that this channel is already
overloaded by the novel experience through the human-robot interaction approach. Furthermore,
we avoid the audio channel as we want a direct addressing of the human operator without annoying
other people around. Addtitionally, the haptic channel can be used to generate the sense of being
in touch with the manipulated object, whereas our proposed approach is rather effortless for
the human operator. In order not to restrict the workspace of the human by the haptic-feedback
generating device as in the classical bilateral teleoperation, we employ wearable haptic technology
here namely a vibrotactile cue. As the transfer of messages through a vibrotactile device is very
limited [159], we only transfer a 1-dimensional scalar v as feedback to the human. The role of
the feedback is to signalize when the robot formation is in the transient phase resulting from a
human input uh. The feedback signal to the human should cover the following features: intuitive,
beneficial for human to accomplish the task, and based on distributed measurements from the
robots. The feedback to the human is defined as

v =
∑

i∈N

(uh − x i)
ᵀ(uh − x i), (4.54)

where the difference between the transformated desired setpoints x i and the human input uh are
projected onto a single scalar v by using the sum of squares as feedback to the human.

The interpretation of this signal v is as follows. Since (4.9) is a dynamical system, an immediate
change of the human input uh always results in a transient phase of the robot followers x . This
transient phase is not caused by a delay, but by the propagation of uh through (4.9a) and (4.9b).
The time until the robots have reached its steady-state and have re-established the human-robot
formation, i.e. ∀i : x i = uh is called convergence time. This convergence time can be influenced
e.g. by a suitable choice of γi in (4.23). As long as the robots are in the transition phase, i.e.
∃i : x i 6= uh, the desired formation is not established. So the signal is v 6= 0 and there is feedback
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to the human depending on how far the robots are apart from the desired formation distance to
the leader. If the desired formation is reached, ∀i : x i = uh, then v = 0 in (4.54) and no signal is
transferred to the human. This is intuitive as it decreases the closer the robots are to their desired
formation. The human operator as a leader clearly benefits from knowing when the robot team
reaches its steady-state or when it is still in the transient phase.

As a single scalar v has to be transmitted by the vibrotactile feedback to the human, we
decide to alter the frequency fvib of the vibrotactile stimuli. Highest sensitivity of the stimuli
for the human is achieved at frequencies up to 300 Hz [159]. Hence, we choose the transmitted
frequencies to be 0 . . . fmaxHz, where 0 Hz means that the robots are in steady-state, z = 0, and
fmax Hz corresponds to a maximal value vmax of v which is heuristically determined. A linear
mapping between the feedback signal v and the vibrotactile frequency is given as

fvib =

¨

αv if αv ≤ fmax

fmax else,
(4.55)

where α > 0 is a scalar of appropriate unit. Using the Euclidean norm measure in (4.54) and
employing a linear regression in (4.55) reflects a straightforward mapping of the distance to
the desired formation and the vibrotactile cure here. More sophisticated solutions can involve
a nonlinear mapping to account to provide more intensive feedback for situations when the
formation is far apart from the desired one. A feedback to the human via a haptic channel is given
by (4.54) and (4.55) which augments the user experience by means of wearable haptics.

4.8 Experiments

The goal of the experimental evaluation is to experimentally validate the previously established
theoretical findings of the guidance of a cooperative manipulation task by a single human. We
perform large-scale experiments to assess the behaviour of the manipulators in different human-
robots formations. We analyze the resulting internal forces, the accuracy, and the sensitivity of
the proposed guidance mechanism. In addition, we discuss the technical difficulties which we
encountered.

4.8.1 Experimental Setup

In this section, behaviours of manipulators in different human robots formations are investigated.
The general setup is depicted in Fig. 4.1. The outline of the human-guided set-point generator (4.9)
and the impedance-based multi-robot dynamics (2.29) is already presented in the Examples 2.1-
4.2. The differences between two formation scenarios are experimentally analyzed with respect to
the motion of the manipulators and the internal force of the manipulated object. The experimental
setup consists of three KUKA LWR 4, see Fig. 4.5. Further details on the robotic system can
be found in Appendix C. A Cartesian impedance control scheme (2.8) is employed to ensure
compliance of the end-effectors. For the sake of exposition we only consider one translational
movement denoted by pi and pd

i for the manipulators i = 1,2, 3 in this section without loosing any
experimental insights, i.e. we uniformly set q i = q d

i = const. Here, k = 3 is the most convenient
degree of freedom as the desired displacements di j,3 = 0 and dih,3 = 0 and so pd

i = x p
i , ∀i. A
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Figure 4.5: Human operator controls a group of robots which cooperatively manipulate an object.

workspace extension for all robotic manipulators by a mobile platform can be accomplished
according to a potential function approach presented in [1]. In our experiments the object is an
exercise ball with a diameter of 0.65 m and a weight of 1.159 kg which is maximally inflated
to have a quasi-rigid object and the end-effectors are designed to obtain a quasi-rigid grasp of
the object. The Cartesian positions p1, p2, p3 of the three robots and the Cartesian position uh of
the human operator’s hand is captured by a passive-marker QualiSys motion capture system at
a frequency of 200 Hz. Further details on the Qualisys motion capture system can be found in
Appendix C. During the experiment, the human participant holds a marker-equipped handle in
order to command the robot formation. A wearable vibrotactile wristband, developed at PERCRO
lab to effectively deliver haptic stimuli at user’s wrist, is used for giving feedback and providing
cues to the human. Further details on the wristband can be found in Appendix (C). The parameters
for the tasks are chosen equally for each manipulator in all dimensions for (2.8) as Mi = 10I3,
Di = 120I3, Ki = 160I3. In order to evaluate different combinations of robotic neighbours and
the importance of providing feedback to the human, three following scenarios are tested:

(a) No feedback to the human, z = 0, and the human neighbors as Nh = {2, 3} and so
bfms = [0, 1,1]ᵀ

(b) No feedback to the human, z = 0, and the human neighbors as Nh = {1, 2,3} and so
bfms = [1, 1,1]ᵀ

(c) Feedback to the human provided by (4.54) & (4.55) and the human neighbors as Nh =
{1, 2,3}
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Eq. Values of Parameters

Desired distance between manipulators (3.25)
d12 = [0.4,0, 0] m

d23 = d13 = [0.2, 0.615,0] m

Desired distance between manipulators
and human

(3.25)
d1h = [1.2, 0.35,0] m
d2h = [0.8, 0.35,0] m
d3h = [1, 0.245,0] m

Cooperation weight between manipula-
tors

(3.25) δi j = 1,∀i, j

Cooperation weight between manipula-
tors and human

(3.25) δih = 2.5,∀i

Impedance parameters (2.8) M = 10I3, D = 120I3, K = 160I3

Tabular 4.1: Control parameters used in experiments

The formations (a) and (b) are different with respect to the number of robots directly influenced
by the human operator, i.e. by the number of controllable subspaces. The differences between the
two formation scenarios are experimentally analyzed with respect to the manipulator motion and
the internal force.

4.8.2 Technical Discussion

This section is a discussion of technical difficulties which we experienced during the experiments.
The impedance parameters Mi, Di, Ki of the individual robots are all selected heuristically since
the robotic performance was initially well in the experiments. However, we can state the following
observations: all impedance parameters are chosen isotropic and homogenous as discussed in
Ass. 2.2 so that there are no undesired internal forces. To enable an isotropic parametrization of
the impedance, the orientation of each robotic manipulator in a common world frame is measured
by the Qualisys motion tracking system. In addition, the damping ratio ζi =

di

2
p

mi ki
= 1.5 is

chosen to be marginally larger than 1, so that the dynamics of the particular manipulators is
overdamped and the steady state is reached in adequate time without oscillating.

Until Sec. 4.8 the manipulators are considered to rigidly grasp the rigid objects while now both
the grasp and the object are only quasi-rigid. Both adaptations are necessary in the experiments
because each LWR manipulator has only a maximum payload of 7 kg which is relatively low.
Note for large objects usually used in cooperative manipulation this payload is drastically reduced
to about 1− 1.5 kg due to large torques. The exercise ball is bulky and relatively light.

To compare conditions (a) and (b) the human input trajectory uh is recorded for reproducibility
of the experiment: the human operator moved the worn marker-equipped handle once from
an initial to a final configuration, waited for about 1 second and then returned to the initial
configuration. The duration of the trajectory uh(t) is about 10s and the covered distance is about
0.5m. The recorded trajectory uh(t) is replayed to cope with the conditions (a) and (b) in an
equal fashion.

All experimental results discussed in this section are obtained from a typical run, i.e. not
from the aggregation of repeated experiments. Except for occasional hardware failures of one of
the robotic systems there is no significant difference between any two runs. In our experience
the difference between two runs driven by the same recorded trajectory uh(t) is only marginal.
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Figure 4.6: Three manipulator set-points pd
1 , pd

2 , pd
3 are controlled by the identical human input uh

under different neighborhoods Nh in condition (a) and (b). Different neighborhood
topologies result in different controllable subspaces. Hence, the set-point pd

i in
one direction diverge due to different neighborhood Nh = {2,3} (top left). For
Nh = {1,2, 3} (top right) there is no deviation between the set-points. During the
motion of the object there is a offset between human input uh and the set-points pd

i
during the transient response. (bottom left for condition (a), bottom right for condition
(b))

Hence, we neglect the comparison of multiple runs and focus on the findings resulting from a
typical run.

4.8.3 Results and Discussion for the Set-point Generator

The dynamics of the human-guided set-point generator (4.9) are compared with the conditions (a)
and (b). The conditions differ in the neighborhood set Nh of the human operator and so different
controllable subspaces between (a) and (b) exist: by evaluating (4.16) for condition (a) we observe
that there exist two controllable states x c

1 = pd
1 and x c

2 =
1p
2
(pd

2 + pd
3) with different eigenvalues:

λ
Ac

fms
1 = −3.41 and λ

Ac
fms

2 = −0.5858. Since there are two independently controllable subspaces
for condition (a) with different eigenvalues of the subspaces, there can be significant deviation of
the trajectory pd

1 compared to trajectories pd
2 and pd

3 as shown in Fig. 4.6. As the human operator
has no influence on the uncontrollable subspace x ĉ = 1p

2
(pd

2 − pd
3), both set-point trajectories

pd
2 , pd

3 are equal as depicted on the top left side in Fig. 4.6.
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Figure 4.7: The object trajectory po driven by a human input uh resulting from different scenario
with condition (a) on the left and condition (b) on the right. For each condition
the measured trajectory from the experiments is compared with a trajectory from a
simulation.

For condition (b) the locally controllable subspace is the aggregated state x c = 1p
3
(pd

1+pd
2+pd

3).
Hence, the operator has only access to one controllable subsystem of the multi robot team which
moves the desired position pd

1 , pd
2 , pd

3 simultaneously. This is in line with the Prop. 4.3. Due to
that the set-point trajectories p1, p2, and p3 are equal on the top right side in Fig. 4.6 and there is
no breakup of the formation of set-points. By comparing the top left and top right subfigure in
Fig. 4.6 we observe a significant trajectory deviation of pd

1 , pd
2 , and pd

3 based on the neighborhood
Nh. Here, we conclude that the theoretical results from Eq. (4.12) and the subsequent Prop. 4.1
are validated in the experiments.

During the transient phase there is a offset between between the human input uh and the
manipulator set-points pd

i for both conditions (a) and (b), i.e. the error term uh − pd
i 6= 0 for

u̇h 6= 0 as depicted in the bottom left and right side in Fig. 4.6. For both conditions (a) and (b)
the maximum positive offset is at approximately t = 4.1s and the maximum negative one is
at t = 6.1s. The offsets can be described with the transient response of the dynamical system
representing the human influence on desired set-points (4.9). Note that the the offset is relative
to the settling time and we can tune the settling time with weights as described in (4.23). For
t > 8s the human input uh is constant again and the offset converges to zero which experimentally
demonstrates the stability of the system (4.9). The stability is theoretically derived in Section 4.6.

4.8.4 Results and Discussion for the Multi-robot Dynamics

The robotic manipulators grasp the object and the manipulator set-points are driven by (4.9) under
the conditions (a) and (b) using the recorded human input uh The effect of the different conditions
(a) and (b) on the object trajectory po is as follows: by comparing the black and dashed line of
the left and right side in Fig. 4.7 we observe no significant effect of the different neighbourhoods
Nh on the object trajectory except that the object trajectory excited by the set-point generator in
condition (b) converges slightly faster. We assume that this results from the direct influence of the
human operator on all three set-points pd

i simultaneously in condition (b).
Furthermore, we compare for both conditions the measured trajectory from the experiment

(black, dashed line) with a simulated trajectory (red, solid line) resulting from the impedance-
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Figure 4.8: Internal force acting between manipulator 1 and 3 in direction k = 3 resulting from
different scenarios with condition (a) on the left and condition (b) on the right. The
internal force is significantly increased for condition (a) where Nh 6= {1,2, 3}. For
each condition the measured internal force from the experiments is compared with an
internal force obtained from simulation.

based multi-robot dynamics (2.29) which is driven by the same set-point generator (4.9). The
simulated set-point generator is excited by the identical recorded human input uh. There is a
slight deviation between the measured and the simulated trajectory in Fig. 4.7 which we interpret
as a consequence of deviating impedance parameters in theory and experiments. The reason for
different impedance parameters can be explained by hardware variations. In total the measured
and the simulated trajectory match well which validates the system model for a human-guided
cooperative manipulation task, i.e. the series connection modelling of (4.9) and (2.29).

Since for condition (a) the deviation of the trajectory of pd
1 is not in compliance with the

object geometry an increased measured internal force is acting on the object for this condition,
see the black and dashed line on the left side in Fig. 4.8. For condition (b) with Nh = {1,2, 3}
all manipulator set-points move simultaneously and the internal forces acting on the object are
reduced as shown by the black and dashed line on the right side in Fig. 4.8. This experimental
result is formally stated in Prop. 4.1. Again we compare the measured internal force from the
experiment (black, dashed line) with a simulated internal force (red, solid line) resulting from the
dynamics (4.9) and (2.34). For both conditions (a) and (b) the course of measured and simulated
internal forces match well. However, a deviation between simulation and measurement is always
present which is presumably caused by the force measuring hardware and the deviating impedance
parameters as discussed in the previous paragraph. It is experimentally validated that the scenario
(b), in which the leader controls only one subspace, results in manipulator motions without
considerable deviations and the internal force is significantly reduced.

4.8.5 Results and Discussion of Wearable Feedback

A pilot study about wearable feedback to the human operator is conducted to demonstrate the
successful implementation of the proposed interaction and feedback mechanism.
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Design & Procedure

Three robots are controlled to establish a formation. The participants are told to put on the wearable
wristband and to grasp the handle with their right hand. They are instructed to manipulate the
object by moving the handle. The manipulation phase lasts for approximately 60 seconds. For the
first 30 seconds no feedback is given to the participants (b1). After 30 seconds they are provided
with feedback (c).

Participants

A total of 12 participants volunteered to take part in this study where they became the human
leader in the multi-robot formation. All participants were right handed. The average age of the
participants was 27.7 years at the time of testing, and 3 of them were female. 9 of them have
previously worked with robots.

We use a visual analogue scale to assess the subjective experience of the human in terms of
the safety, ease, likeness of guiding the robotic team. Furthermore, by swapping the feedback in
conditions (b1) and (c) the preference of having the vibrotactile feedback to assist the guidance is
evaluated. In (c) the human received vibrotactile feedback based on (4.54) and (4.55). In (b1) no
feedback was transmitted. The data are normalized between 0− 10 where 10 being the positive
experience, and are averaged across the participant. The results indicated that the participants
experienced the guidance of the robotic team very safe with a mean score of 9.373 ± 0.590.
Furthermore, a high score of ease (M = 9.003± 0.878) and likeness (M = 9.136± 1.121) in
controlling the team are reported. The preference of using the vibrotactile feedback is reported
slightly lower to the other subjective measures, scoring 7.567± 2.05. The analyses indicates that
the user-centric guidance of robotic team is successfully implemented and vibrotactile feedback
design based on the cooperative term (4.54) and (4.55) is preferred by the participants. Further
investigation needs to elucidate wether the lower subjective appreciation of the vibrotactile
feedback is due to the transmitted signal (4.54) or due to the mapping onto the vibrotactile
outputs (4.55).

4.9 Summary
In this chapter we propose a control law and a feedback strategy for a cooperative robot team
controlled by a single human in a cooperative robotic manipulation task under formation-based
paradigms. The human operator is incorporated into the ensemble of cooperating robots by
appointing him/her to be the leader of a virtual and artificial formation which generates the
particular set-points in Section 4.3. Since we envision a contactless interaction and cooperation
between human and the cooperating robots the robot team has no direkt influence on the human
operator and so the operator becomes the explicit leader of the robotic formation-based set-point
generator. A transformation of the robotic set-point states identifies the proposed formation-based
set-point generator to be the widely-used leader-follower consensus protocol. In such a setup
the influence of the leader on the followers or equivalently the controllability is of particular
interest since an improper influence can result in trajectories of the robotic set-points which
violate the cooperative manipulation task constraints and can consequently result in an undesired
internal force acting on the object. By analyzing the controllability of the set-point generator
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of such a human-robot formation we deduce that a one-to-all connection is beneficial for the
manipulation task in Section 4.4. Section 4.5 clarifies that the influence of the human operator
on the overall system which consists of the formation-based set-point generator and the multi-
robot interaction dynamics is mainly dependent on the controllability of the set-point generator.
Equilibria and their asymptotic stability in the overall system which is driven by the human input
is investigated in Section 4.6. We show that the motion of the object being the output is L2-stable
with respect to the human pose being the input to the overall system consisting of set-point
generator and impedance-based interaction dynamics. From a control theoretic point of view the
lack of feedback to the leader is considered to be a major drawback of leader-follower systems.
Besides visual feedback which is present due to the close interaction paradigm we additionally
suggest a task-dependent vibrotactile feedback to the human operator which augments the human
experience during the interaction in Section 4.7. The effectiveness and quality of the virtual
formation to guide a cooperative manipulation task is successfully demonstrated in experiments
and a pilot study in Section 4.8.
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5

System Analysis of Interaction Dynamics
through Graph Partitioning

5.1 Motivation
One fascinating facet of the human-guided cooperative manipulation task is considered to be the
dependence of the human influence on the interaction topology between the robots. This is even
true for a relatively small group of robotic followers. A leader-follower setup with distributed
interaction becomes more attractive for a large number of followers. Large-scale networked
systems have moved into the focus of current research activities in the control community due to
their many societally relevant applications such as environmental monitoring by mobile sensor
nodes and vehicle/robot coordination in production, logistics and transport systems. Since
constrained resources like communication capacities, computation complexities, and energy
consumption need to be considered in such systems, a centralized control method is inappropriate
here. Due to their scalability distributed control approaches are often preferable in such settings.
The consensus problem is a widely studied canonical problem of distributed decision making,
see e.g. [160]. The controlled consensus problem is a modification of the original setting in
the sense that agents are selected to be controlled by an exogenous control input. The selected
agents can be interpreted as leader nodes, while all others are follower nodes. Such dynamical
systems are practically prominent as they can be adopted to effectively command and interact
with quite a few adjustable, mobile manipulators in a cooperative manipulation task [5] or to
model the opinion dynamics of a social network in the presence of stubborn beings [161]. Besides
investigating the system properties like convergence of the system under the regime of such
controlled agreement protocols, one specific research direction focuses on the controllability of
the controlled agreement protocols. Controllability indicates if it is possible for the leader to drive
the system states to any configuration in finite time [162, 163, 164]. The identification of the
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uncontrollable subspace depending on the interaction graph and on the placement of the input
nodes in the graph is an important problem which is studied within this chapter.

5.2 Related work

Controllability in the distributed coordination of a multi-agent system has recently been a com-
pelling research topic. Traditionally, the controllability analysis of leader-follower formations can
be distinguished between results based on algebraic graph properties [162] and results based on
topological graph properties [165]. Algebraic graph properties provide necessary and sufficient
conditions for system controllability in terms of Laplacian graph eigenvectors and eigenvalues.
A remarkable conclusion is that the leader consensus network becomes uncontrollable if the
eigenvector of the Laplacian has a zero-entry at the position of the leader [163, 90]. The al-
gebraic properties for directed graphs are investigated by means of an alternative version of
PageRank in [166]. Although the results on controllability of leader-follower formations based
on algebraic graph theory are to the greatest possible extent complete in terms of necessary and
sufficient conditions these conditions do not explain how the choice of the leader [167, 168] or
the nearest neighbor interconnection [169] affects the system controllability. Especially for a
network designer it is essential to be aware of the influence of the leader and the nearest neighbor
interconnection on the system controllability.

Topological graph properties include the partitioning of the vertices in clusters and it is
shown that particular partitions of the underlying network yield an upper and lower bound for
the controllable subspace in terms of the distance partition and the maximal leader-invariant
almost equitable partition, respectively[170]. The topological characterization in terms of graph
clustering is used to describe to controllable subspace in terms of the maximal leader-invariant
almost equitable partitions (LEP) [154, 171]. Almost equitable partitions are graph clusterings
which are closely related to Laplacian eigenvectors [172] and can thus be used to interpret
algebraic results as topological conditions [173]. In case of distance regular graphs both distance
partition and the maximal leader-invariant almost equitable partition are equal and it is shown that
the complete controllable subspace is completely characterized by topological properties [164].
The role of the agent dynamics and the network topology in the network controllability analysis
is revealed here. In general for graphs which are not distance-regular the complete controllable
subspace is not characterized by a particular partition. Describing the complete controllable
subspace of controlled consensus networks based on topological properties is still an open
issue [86, 174]. Recently, our work [8] partially characterizes the occurence of a gap between the
algebraic and the topological characterization of the controllable subspace by exploiting Faria
vectors [175]. Under specific neighboring circumstances two vertex sets with equal cardinality
lead to Laplacian eigenvectors with entries +1,−1,0, called Faria vector [176, 175]. Note that
the previous results focus on the case of a fixed graph for the interaction topology. Different
from those results, the controllability of leader-follower multi-agent systems under a switching
interaction topology is studied in [177]. Sufficient conditions for the controllability of multi-agent
systems where time delays are explicitly take into account are presented in [178]. Results on
higher-order systems along this research direction can be found in [179, 180].
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5.3 The Controlled Consensus Problem

Until the end of Section 5.3.1 we shortly revise the linear dynamics of the controlled consensus
protocol and its controllability properties based on the Kalman condition in order to make this
chapter self-contained. Since we have already discussed both in Sections 4.3 and 4.4 the mindful
reader can continue to read with Section 5.3.2 without missing any insights by redefining A= Afms

and B = bfms. For the remaining reader we consider in the following analysis a multi-agent system
where each agent is labeled as 1, . . . , N + 1 and the set of all agents is denoted by V . The state of
agent i is identified by x i ∈ Rd where d denotes its dimension. An agent j is called a neighbor
Ni of agent i if agent i has knowledge about the state x j(t). The dynamics of each agent evolve
according to the consensus equation

ẋ i =
∑

j∈Ni

(x j − x i). (5.1)

This system can also be characterized as a graph where each agent is represented by a vertex
in V = {v1, . . . , vN+1}. The neighboring relation between two agents i and j is represented by
an edge in Ei j and the set of all edges E ⊆ V × V . The graph G = (V ,E ) is assumed to be
undirected and static. By concatenating the agent states in x̄ = [x1, . . . , xN+1] and assuming
d = 1 for simplicity of notation in this chapter, (5.1) can be compactly rewritten as

˙̄x = −L x̄ ,

where L denotes the graph Laplacian. We introduce a set Vl of the leader node and distinguish
it from the set V f of follower nodes with V = V f

⋃Vl . We assume that the last node vN+1

corresponds to the leader and the first N nodes are the follower nodes (the labels can always be
re-indexed such that this assumption is satisfied). Under this convention the graph Laplacian L is
decomposed as

L = −
�

A B

BT γ

�

, (5.2)

where A= AT ∈ RN×N , B ∈ RN , and γ ∈ R. By collecting all follower states into x = [x1, . . . , xN]
and using the leader node as input u = [xN+1], we formulate a standard LTI-system for the
controlled system

ẋ = Ax + Bu. (5.3)

Note that the edges belonging to the leader are directed ones here and hence the follower have no
influence on the leader. From a controllability perspective there is no difference if the followers
have influence on the leaders or not as one can always find a novel control law that cancels out
the known BT and γ [164].

Remark 5.1. For simplicity of exposition we restrict ourselves to a single leader node in the
problem formulation and the description of leader-invariant AEPs similar to [86, 174, 154,
171, 163, 162]. One main contribution of this chapter is based on a conversion of established
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algebraic conditions for controllability into topological conditions. Note that a vast majority of the
conditions considering algebraic graph properties can only deal with the single leader case which
then restricts the validity of the converted topological conditions for the single leader case, too.
However, the proposed Faria vector condition for uncontrollability also extends to the multi-leader
case as will be discussed later on.

5.3.1 Controllability Problem and Kalman Decomposition

The controllability matrix Q of the controlled consensus system (5.3) is given by

Q =
�

B AB A2B . . . AN−1B
�

. (5.4)

The question to be answered is whether the leader can drive the follower states to any arbitrary
final configuration x f , which is true if and only if rankQ = N . For rankQ < N the uncontrollable
subspace needs to be determined. Here, the structure within the matrices A and B is provided by
the graph. From a controllability point of view there is no difference between the pair (A, B), the
pair (−A,−B).

An exact characterization of the controllable and uncontrollable subspace can be given based
on algebraic properties. If Q is rank deficient the LTI-system (5.3) can be decomposed into its
controllable and uncontrollable part by the Kalman decomposition [154]. In order to perform this
Kalman decomposition by an orthonormal similarity transformation, the matrix Q‖ = range(Q) ∈
RN×rankQ is derived from the orthonormal image of the potentially rank-deficient controllability
matrix Q. The similarity transformation is given by

T =
�

Q‖ | Q⊥
�

,

where Q‖ = range(Q) ∈ RN×rankQ indicates the range of the controllable subspace and
Q⊥ = ker(Qᵀ) the range of the uncontrollable subspace. This similarity transformation results in

T T AT =

�

Ac 0
0 Aĉ

�

, T T B =

�

Bc

0

�

,

and

�

x c

x ĉ

�

= T ᵀx ,

where c and ĉ corresponds to the controllable and uncontrollable part and results in two decoupled
subsystems

ẋ c = Ac x c + Bcuc and

ẋ ĉ = Aĉ x ĉ. (5.5)

By definition the lower left block of T T AT must result in 0 ∈ RrankQ×(N−rankQ) as x c has by defini-
tion no influence on x ĉ. Since A= A>, the upper right block also results as 0 ∈ R(N−rankQ)×rankQ

and hence x c is unaffected by x ĉ, too. The uncontrollable state vector is concatenated as follows:
x ĉ =

�

x ĉ
1, . . . , x ĉ

(N−rank(Q))

�

. Due to the similarity transformation T the eigenvalues denoted as
spectrum σ(A) of A and of T ᵀAT are the same. The spectrum of A is σ(A) = σ(Ac)∪σ(Aĉ) where
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σ(Ac) is the spectra of Ac ∈ RrankQ×rankQ and σ(Aĉ) is the spectra of Aĉ =∈ RN−rankQ×N−rankQ.

Remark 5.2. The uncontrollable part (5.5) is asymptotically stable in case of the controlled consen-

sus problem. Since T represents a similarity transformation, the eigenvalues of A and

�

Ac 0
0 Aĉ

�

remain the same. The eigenvalues of A are negative, which is a consequence of the spectra of
the Laplacian L and that A is a principal submatrix of −L. Note that the spectra of L and −L are
σ(−L) = −σ(L). See [181] for a detailed proof of this fact.

5.3.2 Necessary Conditions for Uncontrollability

In the following the controllability of the controlled consensus protocol is derived from its system
theoretic properties. The system theoretic properties of the system (5.3) incorporate the algebraic
properties of the underlying graph. The reason why we introduce the results considering the
algebraic graph properties here at this point is to latter convert these conditions into topological
properties. For an undirected graph G and a single input, a necessary and sufficient condition
for the controllability of (5.3) is derived based on the eigenvalues of −L and A [180, 163]. It is
shown that system (5.3) is uncontrollable if a Laplacian eigenvector has a 0-entry at the N + 1th
element, where N + 1 denotes the position of the leader. Due to the 0-entry at the leader position,
the leader has no impact on this eigenmode which is formally stated as.

Proposition 5.1 ([90]). Assume the system (5.3) with a single input to be uncontrollable. Then
there exists an eigenvector of L that has a zero component on the index that corresponds to the
input.

Here, the Hautus criterion requires that AνA = λνA and BTνA = 0 are satisfied for each
uncontrollable eigenmode. It is shown in [90] that νA is a left eigenvector of A and

�

νT
A , 0

�

is the
left eigenvector of −L associated with the common eigenvalue λ. Due to the symmetry of −L and
A, the left eigenvectors are equal to the right eigenvectors here.

Proposition 5.2 ([90]). Consider the controlled consensus protocol (5.3) with a single input. If L
has an eigenvalue with geometric multiplicity greater than one, then the system is uncontrollable.

Note that Prop. 5.2 directly follows from Prop. 5.1. For example assume an eigenvalue of
L with geometric multiplicity of two and the corresponding eigenvectors to be ν1 and ν2. By
introducing the scalar c ∈ R, the vector ν= ν1 + cν2 is also an eigenvector of L. As the scalar c
can be freely chosen there is always a c which produces a 0- entry at the N + 1th element. Hence,
due to Prop. 5.1 the system is uncontrollable.

A conclusion of the Propositions 5.1 and 5.2 is to investigate the appearance of 0 elements
in the eigenvectors of Laplacian and relate this to the uncontrollability of controlled agreement
systems. Implicitly, the works of [170] and [154] make use of Prop. 5.1 to provide an upper
bound on the controllable subspace which is the orthogonal complement to the uncontrollable
subspace. Following a brief introduction of the main result of [170] and [154] in the upcoming
section, we are able to argue why their results rather identifies the uncontrollable subspace than
the controllable one. Subsequently, we provide new insights into the topological characterization
of the uncontrollable subspace in a controlled agreement protocol.
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5.3.3 Leader-invariant Almost Equitable Partitions

In large networks it is desirable to characterize the controllable and uncontrollable subspace by
topological properties such as graph invariants or particular clusterings. A promising clustering
which is used in this context are almost equitable partitions (AEP). [86, 154]. Note that in this
context the terms almost equitable partition and external equitable partition are used equivalently
in the literature. AEPs exploit the fact that certain follower agents tend to cluster and in general
only the average of these agents can be controlled. Here, the clustering of nodes of a graph
G = (V ,E ) is defined by a partition map π : V → {C1, . . . , Ck}, where π(vi) is the assigned cell
for node i and k denotes the number of cells under the partition π. Consequently, an inverse
operation π−1(Ci) = {v j ∈ V |π(v j) = Ci} indicates the set of nodes belonging to cell Ci. The set
of all clusters is defined as dom(π) = {C1, . . . , Ck}. The node-to-cell degree degπ(vi, C j) indicates
how many neighbors agent vi has in cell C j regarding the partition π. A clustering π of the nodes
is called almost equitable partition (AEP) if, for all Ci, C j, where i 6= j

degπ(vk, C j) = degπ(vl , C j), for all vk, vl ∈ π−1(Ci), (5.6)

where the clustering considers all nodes inside a cell have the equal number of adjacent nodes in
another neighboring cell. A characteristic matrix Pπ ∈ R(N+1)×k is defined as

Pπ =
�

pi, j

�

=

¨

1 if v j ∈ Ci

0 otherwise,
(5.7)

where pi, j is the (i, j)th entry of the matrix Pπ and so Pπ represents a mapping from a cell
to the belonging vertices. The k column vectors of the characteristic matrix Pπ are called
characteristic vector and denoted by p. Similar to the characteristic matrix we define a matrix
P̄π ∈ R(N+1)×(N+1−k) as P̄π ∈ ker(Pπᵀ) which is the orthogonal complement to the characteristic
matrix Pπ. Note here that P̄π spans a basis for the null space of Pπ with linearly independent
columns. For the sake of completeness the column vectors of P̄π are denoted by p̄i . For a particular
characteristic matrix Pπ given by an AEP, the computation of the orthogonal complement P̄π

is straightforward and uncomplicated. Since any vertex of the graph G can only be mapped
to a single cell all characteristic vector p of Pπ are orthogonal to each other and so P̄π can be
composed of vectors p̄ of which each one is orthogonal to a column vector of the characteristic
matrix Pπ. As now the column vectors of Pπ have equal components for all vertices belonging to
a cell Ci and 0s otherwise, we can compute P̄π from the differences between any two vertices in
the cell Ci. Hence, we define P̄π as

P̄π =
�

P̄π1 . . . P̄πk
�

, (5.8)

where the submatrices P̄πi ∈ RN×(|Ci |−1) are defined as

P̄πi = [p̄ j] =















;, if |Ci|= 1

ek − el ,
otherwise for j = 1, . . . , |Ci| − 1;

∃vk ∈ π−1(Ci),
∀vl ∈ π−1(Ci)\{vk}.

(5.9)
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If |Ci| vertices are mapped to the cell Ci there exist in total |Ci|(|Ci| − 1)/2 of such differences
between any two vertices. Note that we leave out here all cases with different signs, i.e. ei − e j

and e j − ei form the same subspace. Due to the rank-nullity theorem, we know dim(range(Pπ))+
dim(ker(Pπᵀ)) = N + 1. So only |Ci| − 1 of the |Ci|(|Ci| − 1)/2 total differences have to be
considered in order to arrange the null space of a particular column vector of the characteristic
matrix Pπ. For example suppose a characteristic vector p of Pπ to be p = e j + ek + el which
represents a mapping of |Ci|= 3 vertices to a cell Ci . The straightforward and simple computation
of possible vectors orthogonal to p neglecting the signs yields three different vectors: e j − ek,
e j − el , and ek − el . For the construction of P̄π, only two of the three vectors, e.g. e j − ek and
e j − el , are required here.

Remark 5.3. In [172] the almost equitable partitions are defined for simple undirected graphs.
By using the out-degree Laplacian matrix Lout an almost equitable partitions can also be defined
for weighted and directed graphs [182]. The conditions (5.6) apply for the out-degree of each
vertex in the graph by summing up the weights as dout(vk, C j) =

∑

l∈C j
akl , where akl is the weight

between agent k and l, instead of degπ(vk, C j).

Note here that for a particular graph there can exist multiple AEPs. All AEPs feature the
following crucial property relating AEPs to the graph Laplacian L:

Lemma 5.1 ([172]). A partition π is called almost equitable if and only if the characteristic matrix
range(Pπ) is L-invariant.

Suppose now that π = (C1, C2, . . . , Ck) is an almost equitable k-partition of a graph G with
corresponding graph Laplacian L. Since now range(Pπ) is L-invariant, we know that the orthog-
onal complement range(Pπ)⊥ = ker(Pπᵀ) is Lᵀ-invariant. As we consider the graph G to be
undirected, L = Lᵀ and ker(Pπᵀ) is L-invariant, too. Under the almost equitable k-partition π
there are matrices Lπ ∈ Rk×k and L̄π ∈ RN+1−k×N+1−k

LPπ = PπLπ, (5.10)

LP̄π = P̄π L̄π, (5.11)

where Lπ = (PπᵀPπ)−1PπᵀLPπ is called the generalized Laplacian matrix Lπ in the literature.
We now introduce the matrix L̄π as complement generalized Laplacian matrix given by Lπ =
(P̄πᵀ P̄π)−1 P̄πᵀLP̄π. Under the almost equitable k-partition π, the generalized Laplacian Lπ

represents a quotient graph G/π= (Vπ, Eπ, wπ) which is a weighted and directed graph whose
nodes are Vπ = dom(π).

The next proposition is a direct consequence of Lemma 5.1 and the definition of L, Pπ, and
Lπ, and it relates AEPs to the eigenvalues and eigenvectors of the graph Laplacian. It extends
[172][Prop.3] to the case of orthogonal complement P̄π of the characteristic matrix. By doing
so we obtain a profound describtion how AEPs can describe the controllability of a controlled
agreement protocol.

Proposition 5.3. Let L be the Laplacian matrix of the graph G . If π= {C1, . . . Ck} is an almost
equitable partition of G , then the spectra σ(L), σ(Lπ), σ(L̄π) satisfy σ(L) = σ(Lπ) ∪σ(L̄π).
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Furthermore, then

∀λ ∈ σ(Lπ),∃ν ∈ ker(Lπ −λIN+1)⇔ Pπν ∈ ker(L −λIN+1),

∀λ ∈ σ(L̄π),∃ν ∈ ker(L̄π −λIN+1)⇔ P̄πν ∈ ker(L −λIN+1).

Proof. Assuming that L is the graph Laplacian of the graph G and π = {C1, . . . , Ck} is an
almost equitable k-partition, the matrices Pπ and P̄π are defined in (5.7) and (5.8). To see
the similarity between the matrices L and diag(Lπ, L̄π) transformed by the basis

�

Pπ P̄π
�

we
compactly rewrite (5.10) and (5.11) as follows

�

Pπ P̄π
�−1

L
�

Pπ P̄π
�

=

�

Lπ 0
0 L̄π

�

.

Note here that due to the construction of Pπ and P̄π,
�

Pπ P̄π
�

is full rank and invertible. The
eigenvalues of the similar matrices L and diag(Lπ, L̄π) are equal [156]: σ(L) = σ(diag(Lπ, L̄π)).
Due to the block-diagonal structure of diag(Lπ, L̄π) we have σ(diag(Lπ, L̄π)) = σ(Lπ)∪σ(L̄π).
The eigenvectors of Lπ and L̄π are transformed as

Lπν= λν,

PπLπν= λPπν,

LPπν= λPπν,

where we make use of the linear independence of the columns of Pπ and the relation given
by (5.10). The argumentation for L̄π and P̄π is conducted analogously which concludes this
proof.

This proposition is inspired by [172]. According to Proposition 5.3 the characteristic matrix
Pπ of an almost equitable partition and its orthogonal complement P̄π influences the Laplacian
eigenvectors. Hence, particular almost equitable partitions of graphs lead to invariant subspaces
given by Pπ or P̄π. For example a trivial cell, i.e. a cell that only contains a single vertex, directly
affects P̄π and the corresponding eigenvector. We formally state this as follows.

Proposition 5.4. Let L be the Laplacian matrix of the graph G with N vertices. Suppose that
there is an almost equitable k-partition π= {C1, . . . , Ci, . . . , Ck} in which the ith cell only contains
a single vertex i.e. π−1(Ci) = vk. Then there exists an eigenvector of L that has a zero component
on the kth index.

Proof. Following the argumentation of Prop. 5.3 there is an eigenvector P̄πν of L where the P̄π

is defined in (5.9). P̄π is a linearly independent basis of the orthogonal complement to P̄π. We
have |Ci|= 1 since the ith cell only contains a single vertex denoted by vk. By construction (5.9)
the k-th row of P̄π is zero as eᵀk P̄π = 0ᵀ. Hence, multiplying P̄π with u always results in a zero
entry at the kth index which concludes this proof.

We revise now a result from the literature which relates the controllability of the single-leader
controlled agreement protocol with the leader-invariant AEP. The leader-invariant AEP is defined
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as a clustering where the leader node is in a trivial cell, i.e. π−1(π(vN+1)) = {vN+1}. Furthermore,
a maximal AEP is denoted by π?, where maximal refers to the smallest possible number of
cells. A key result from [171] states a necessary condition for the controllability of single-leader
networks based on the topological property:

Proposition 5.5 ([171]). A single leader network (5.3) is completely controllable only if G is
connected and π∗ is trivial, i.e. π?−1(π?(vi)) = {vi},∀vi ∈ V .

The proof in [171] arguments that the range space of Q‖ corresponds to the spanning set of the
characteristic vectors pi of the follower nodes yielding the following relation

Q‖ ⊆ range(P).

Consequently, the upper bound for the dimension of the controllable subspace of (5.3) is charac-
terized in terms of an inequality as rank(Q)≤ |π?| − 1. Since this proposition lacks sufficiency,
the complete controllable subspace cannot always be completely described by LEPs. As stated
in [86] and [174], there exist trivial LEP for which the complete controllable subspace is still
unknown.

Descriptively speaking the leader-invariant, maximal AEP π∗L (LEP) is a rather good but not
an exact characterization of the controllable subspace. Based on Prop. 5.3 and 5.4 we can now
illustrate the consequence of using π∗L for the uncontrollable subspace and not the controllable one
as often done in the literature. By doing so we look at the controllability problem of the controlled
consensus protocol from a different perspective. The reason why π∗L is a good approximation
is that the AEPs are leader-invariant and so one characteristic vector of the matrix Pπ

∗
L is the

standard basis vector eN+1. Hence, due to the structure of Pπ
∗
L its orthogonal complement P̄π

∗
L

can only have zeros at all N + 1th elements. Due to Prop. 5.3 we know that all eigenvectors
u of the complement matrix L̄π constitute also eigenvectors of the L given by P̄πu. As for the
leader-invariant case P̄π has only zeros at the position of the leader, the N + 1th entry of P̄πu is
also zero as discussed in Prop. 5.4. Due to Prop. 5.1 we know that such a zero entry leads to an
uncontrollable subspace and this renders all eigenvectors of L̄π as uncontrollable ones. We note
here that each almost equitable partition divides the eigenvalues of the graph Laplacian L into two
subsets. The procedure of splitting eigenvalues into controllable and uncontrollable subspace is
already discussed in Section 5.3.1. We link both transformations and come up with the following
formal statement.

Proposition 5.6. Let G be a graph with Laplacian L. L̄π and P̄π is defined as in Prop. 5.3 and the
uncontrollable system matrix Ac̄ is defined as in (5.5). If πL = {C1, . . . , Ck} is an leader-invariant
almost equitable partition, then

σ(L̄π) ⊆ σ(Ac̄),

and

|σ(L̄π)| ≥ |σ(Ac̄)|.
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v1 v2

v5

v6

v3 v4

Figure 5.1: The leader is denoted as • and the partition π∗l is denoted by the gray enclosures
around the nodes. Here, π?l = {{v1}, {v2}, {v3}, {v4}, {v5}, {v6}} is trivial, but x c̄ =
−x5 − x3 + x1 + x2 is uncontrollable. The signs of x c̄ are denoted by •/•.

Proof. Since L̄π result from a similarity of L we know that σ(L̄π) ⊂ σ(L). Furthermore, all
uncontrollable eigenvalues of (5.3) are given by σ(Ac̄) ⊂ σ(A). By applying Prop. 5.1 for all
uncontrollable eigenmodes we know that A and L share the uncontrollable eigenvalues, i.e. we
also have σ(Ac̄) ⊂ σ(L). The sharing of common eigenvalues is also formally stated in e.g. [90,
Lemma 10.4]. As πL is a leader-invariant almost equitable partition, P̄π has only zeros at the
position of the leader. Hence, all eigenvector pairs which intersect L̄π and L as defined in Prop. 5.3
are uncontrollable which follows from Prop. 5.1. Consequently, all corresponding eigenvalues
σ(L̄π) are uncontrollable ones, too. By definition all uncontrollable eigenvalues are contained in
σ(Ac̄) which concludes the proof. The inequality follows consequently.

As π∗L is maximal i.e. it refers to the fewest number of cells, the number of k is minimal. Due
to that the matrix P̄π which describes the uncontrollable subspace becomes larger. Still, there can
exist more eigenvectors leading to an uncontrollable subspace which are not covered by partitions
which are not leader-invariant. We will discuss the influence of leader-noninvariant partitions on
the uncontrollable subspace in the following section. For illustration we consider the following
well-known example from the literature [174].

Example 5.1. We consider the graph of the controlled consensus problem as illustrated in Fig.
5.1. Node 6 is the leader node, all other nodes are followers. The partition π?l is given by
π?l = {{v1}, {v2}, {v3}, {v4}, {v5}, {v6}}, which is trivial. According to Proposition 5.5 we know
that the controllable subspace is rank(Q) ≤ 5. However, from the algebraic condition (5.4) we
know that rank(Q) = 4 and from (5.5) we know that x c̄ = −x5 − x3 + x1 + x2.

A novel method is required to characterize the uncontrollable subsystem as in Fig. 5.1.

5.4 Uncontrollability by Leader-Noninvariant Almost
Equitable Partitions

The topological characterization of the uncontrollable subspaces in a controlled agreement proto-
col can to the greatest possible extent be described by leader-invariant almost equitable partitions.
However, this condition for uncontrollability remains necessary until now. In the following sec-
tion, we discuss how leader-noninvariant almost equitable can affect the uncontrollable subspace.
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Before doing so we first revise [172, Prop. 4] which relates almost equitable bipartitions to integer
eigenvalues and extend its result for the corresponding eigenvector as follows.

Proposition 5.7. Let G be a graph with Laplacian matrix L. Lπ and Pπ is defined as in Prop. 5.3.
If G has an almost equitable bipartition, i.e. a 2-partition, π = {C1, C2} such that ∀vi ∈
C1, degπ(vi, C2) = τ2 and ∀v j ∈ C2, degπ(v j, C1) = τ1, then

λ= degπ(v j, C1) + degπ(vi, C2) ∈ σ(L)∩σ(Lπ),

and

∃ν= Pπ
� −τ2/τ1

1

�

∈ ker(L −λIN+1).

Proof. According to the definition of π it follows that

Lπ =

�

τ2 −τ2

−τ1 τ1

�

,

with the eigenvalues being σ(Lπ) = {0,λ} and the eigenvectors being ν = 1 and ν =
[−τ2/τ1, 1]ᵀ. Therefore, by Prop. 5.3 the result follows.

Following the argumentation of Prop 5.7, we come up with a proposition which relates an
integer eigenvalue with a N −1-almost equitable partition. A N −1-almost equitable partition is a
partition where all N − 2 vertices are in a singleton cell except for two which are in a mutual cell.

Proposition 5.8. Let G be a graph with Laplacian matrix L. L̄π and P̄π is defined as in Prop. 5.3.
If G has an almost equitable N − 1-partition π= {C1, . . . , CN−1} and by definition the two-vertex-
cell is CN−1 = {vi, v j}, then

λ=

¨

deg(v j) if (i, j) /∈ E
deg(v j) + 1 if (i, j) ∈ E ,

and

∃ν= ei − e j ∈ ker(L −λIN+1).

Proof. According to the definition of π it follows that P̄π = ei − e j ∈ RN+1. Therefore, by
Prop. (5.3) we know that P̄π is an eigenvector of L. By evaluating LP̄π = (deg(vi) + [li, j])ei −
(deg(vi)+[l j,i])e j we see that in the Laplacian matrix l j,i = 1 if (i, j) ∈ E and l j,i = 0 if (i, j) /∈ E .
Hence, the result follows.

Based on almost equitable partitions which are not necessarily leader-invariant we are now
able to characterize eigenvalues of the Laplacian. A straightforward application of Prop. 5.8
formally describes an uncontrollable subspaces as
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Proposition 5.9. Let G be a graph with Laplacian matrix L. If G has an almost equitable
N − 1-partition π = {C1, . . . , CN−1} and the leader vertex vl /∈ CN−1 where CN−1 is the two-
vertex-cell then controlled consensus protocol (5.3) is uncontrollable. The eigenvalue λ and the
corresponding eigenvector ν is defined as in Prop. 5.8. The uncontrollable eigenmode is then
represented by the eigenvalue λ and the corresponding eigenvector ν.

Proof. The proof is a straighforward application of Propositions 5.8, 5.4, and 5.1.

Note here that Prop. 5.9 is a special case of Prop. 5.5 where we additionally obtain the
eigenvalue for an almost equitable N − 1-partition. In the following we relate both Prop. 5.7
and 5.8 to the uncontrollability of the controlled consensus protocol.

5.4.1 Geometric Multiplicity and AEPs

In Proposition 5.2 uncontrollability is discussed which is caused by an eigenvalue of the Laplacian
L with geometric multiplicity greater than one. Eigenvalues of L can also be identified by means
of almost equitable partitions using Prop. 5.7 and 5.8. We are now ready to bring together both
results and come up with the following formal statement.

Proposition 5.10. Let G be a graph with Laplacian matrix L with N > 2 nodes. Lπi , Pπi , L̄πi and
P̄πi is defined as in Prop. 5.3 where here the subscript accounts for two different almost equitable
partitions i ∈ 1,2. Suppose that there is

(a) an almost equitable bipartitionπ1 with eigenvalue λ1 = σ(Lπ1)\0 of G as defined in Prop. 5.7
and an almost equitable bipartition π2 of G with eigenvalue λ2 = σ(Lπ2)\0 as defined in
Prop. 5.7 where π2 6= π1 or

(b) an almost equitable N − 1 partition π1 of G with eigenvalue λ1 = σ(L̄π1) as defined in
Prop. 5.8 and an almost equitable N − 1 partition π2 of G with eigenvalue λ2 = σ(L̄π2) as
defined in Prop. 5.8 where π2 6= π1 or

(c) an almost equitable bipartitionπ1 with eigenvalue λ1 = σ(Lπ1)\0 of G as defined in Prop. 5.7
and an almost equitable N − 1 partition π2 of G with eigenvalue λ2 = σ(L̄π2) as defined
in Prop. 5.8.

If now λ1 = λ2, then the controlled consensus protocol (5.3) is uncontrollable.

Proof. The controlled consensus protocol (5.3) is uncontrollable for eigenvalues with geometric
multiplicity greater than one. To prove the statement we have to show that the eigenvalues λ1 and
λ2 described by conditions (a)-(c) have a geometric multiplicity greater than one. We know that
λ= λ1 = λ2 and so the corresponding eigenvectors are

(a) ν1 = Pπ1[−λ 1]ᵀ and ν2 = Pπ2[−λ 1]ᵀ where ν1 6= ν2 as Pπ1 6= Pπ2 following from
π1 6= π2 or

(b) ν1 = P̄π1 and ν2 = P̄π2 where ν1 6= ν2 as P̄π1 6= P̄π2 which follows from π1 6= π2 or

(c) ν1 = Pπ1[−λ 1]ᵀ and ν2 = P̄π2 where ν1 6= ν2 as Pπ1[−λ 1]ᵀ is a vector which has |C1|
entries with −λ and |C2| entries with 1. In contrast, P̄π2 is a vector with just two elements
+1/− 1 different from 0. As now N > 2, ν1 and ν2 must be different.
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v1

v2

v5
v6

v3

v4

Figure 5.2: The leader is denoted as • and the partition π∗l is denoted by the gray enclosures
around the nodes. Here, π?l = {{v1}, {v2}, {v3}, {v4}, {v5}, {v6}} is trivial, but x c̄ =
2x4+ x3− x1− x2− x5 is uncontrollable. The signs of the elements in x c̄ are denoted
by •/•.

As now ν1 6= ν2 there is a eigenvalue which has a geometric multiplicity greater than one which
makes (5.3) uncontrollable.

The next example shows how Prop. 5.10 can be used to account for uncontrollable subspaces
which are not covered by leader-invariant maximal almost equitable partitions.

Example 5.2. Consider the graph G depicted in Fig. 5.2 which is taken from literature [8].
It has a trivial leader-invariant AEP. However, the uncontrollable subspace can be computed
as x c̄ = 2x4 + x3 − x1 − x2 − x5 where the 4th vertex is double weighted here. We can explain
x c̄ by applying Prop. 5.10. The graph G possesses two almost equitable bipartitions π1 and π2

which are illustrated in Fig. 5.3 and 5.4, respectively. Applying Prop. 5.7 yields the corresponding
eigenvalues to be λ1 = 3 and λ2 = 3 which are characterized by π1 and π2, respectively.
Introducing the characteristic matrix Pπ1 and Pπ2 the corresponding eigenvectors are given by

ν1 =

















1 0
1 0
1 0
0 1
1 0
0 1

















� −3
1

�

and ν2 =

















1 0
1 0
0 1
0 1
1 0
1 0

















� −3
1

�

.

As ν1 6= ν2 the eigenvalue λ = 3 has geometric multiplicity greater than one. Hence, the
dynamical system (5.3) is uncontrollable as discussed in Prop. 5.2. The uncontrollable eigenvector
is given by νc̄ = ν1 +αν2 where we set α= 1

3 in order to zeroize the last entry of νc̄. Hence, we
have νc̄ = [−1,−1,1, 2,−1,0]ᵀ which explains the uncontrollable state x c̄ = νc̄ᵀ x̄ .

5.4.2 Non-Trivial AEP of the Quotient Graph

When inspecting the almost equitable partition of a quotient graph G/π, further occurrences of
uncontrollable subspaces can be affected by leader-cell-invariant almost equitable partition of an
almost equitable partition of a graph which are not trivial. Note that G/π is generally directed
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v1

v2

v5

v6

v3

v4

Figure 5.3: The leader is denoted as • and the almost equitable partition π1 is denoted by the
gray enclosures around the nodes. Here, π1 = {{v4, v6}, {v1, v2, v3, v5}} is an almost
equitable bipartition which reveals the eigenvalue λ1 = 3.

v1

v2

v5 v6

v3

v4

Figure 5.4: The leader is denoted as • and the almost equitable partition π2 is denoted by the
gray enclosures around the nodes. Here, π2 = {{v3, v4}, {v1, v2, v5, v6}} is an almost
equitable bipartition which reveals the eigenvalue λ2 = 3.
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and weighted but can in particular be undirected and unweighted. Consequently, AEPs are also
defined for G/π. To formally state our result we first define the leader-cell-invariant almost
equitable partition ρ of an almost equitable partition π. A leader-cell-invariant AEP ρ is then
defined as

ρ−1(ρ(Ck)) = Ck where vN+1 ∈ Ck,

where the cell Ck contains the leader node vk and the cell Ck is in a singleton cell. When inspecting
the leader-cell-invariant AEP ρ of a quotient graph G/π, uncontrollable subspaces can be induced
as formally stated in the following.

Proposition 5.11. Let G be an undirected graph and let π = {C1, C2, . . . , Ck} be an almost
equitable partition of G . If the maximal leader-cell-invariant almost equitable partition ρ =
{S1, S2, . . . , Sl} of the quotient graph G/π is not trivial and G/π is undirected, then the controlled
consensus protocol (5.3) is uncontrollable.

Proof. The characteristic matrices Pπ and P̄ρ are defined as in Prop. 5.3. As ρ is non-trivial we
know that P̄ρ 6= ;. By a repeated application of Prop. 5.3 for we know that a Laplacian eigenvector
is given by ν= Pπ P̄ρz, where z is an eigenvector of the Laplacian of G/π/ρ. Furthermore, since
P̄ρ is leader-cell-invariant and not trivial, the jth row of P̄ρ is zero. Since G/π is undirected, P̄ρ

can be used to computed both left and right eigenvector. Due to the structure of the characteristic
matrix Pπ the zero row propagates also for the N + 1th entry in the eigenvector of L. Hence, (5.3)
is uncontrollable which follows from Proposition 5.1.

The next example shows how Prop. 5.11 can be used to account for uncontrollable subspaces
which are not covered by leader-invariant maximal almost equitable partitions.

Example 5.3. Consider the graph G depicted on the left hand side in Fig. 5.5 which has a
trivial leader-invariant AEP. However, the uncontrollable subspace can be computed as x c̄ =
x4+ x1− x2− x3. We can explain x c̄ by applying Prop. 5.11. The graph G has an almost equitable
3-partition given by π= {{v1, v4}, {v2, v3}, {v5, v6}} of which the characteristic matrix Pπ and the
generalized Laplacian Lπ are given by

Pπ =

















1 0 0
0 1 0
0 1 0
1 0 0
0 0 1
0 0 1

















and Lπ =





1 0 −1
0 1 −1
−1 −1 2



 .

The quotient graph G/π is depicted on the right hand side of Fig. 5.5. The quotient graph G/π
has a non-trivial leader-cell-invariant partition ρ = {{C1, C2}, {C3}}. Hence, the matrix P̄ρ for the
quotient graph G/π is given by P̄ ρ̄ = e1 − e2 and z = 1 where due to Prop. 5.3 the vector P̄ ρ̄ is
an eigenvector of Lπ. A recursive application of Prop. 5.3 yields an eigenvector νc̄ of the graph
Laplacian L given by

νc̄ = PπP ρ̄z = e1 + e4 − e2 − e3,
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v1

v5

v6

v4

v2

v3

C3

C1 C2

ρ−−−→

Figure 5.5: The leader is denoted as • and the almost equitable partitions π and ρ are denoted
by the gray enclosures around the nodes. Here, π = {{v1, v4}, {v2, v3}, {v5, v6}} =
{C1, C2, C3 } is an almost equitable partition whose quotient graph G/π is depicted
on the right side. The maximal leader-cell-invariant almost equitable partition of G/π
is nontrivial as ρ = {{C1, C2}, {C3}}. Hence, the dynamical system is uncontrollable.

which explains the uncontrollable state x c̄ = νc̄ᵀx .

In this section we introduced novel topological conditions which can explain the uncontrolla-
bility of a controlled agreement protocol. The last condition presented in this section considers
Laplacian eigenvectors which have only zero elements except for +1 and −1. In the literature,
these eigenvectors are called Faria vectors and we now discuss their relevance for the controlled
consensus protocol in detail.

5.5 Uncontrollable Subspace by Faria Vectors

5.5.1 General Faria Vectors in Laplacians

A particular structure of Laplacian eigenvectors is called Faria vectors. A Faria vector has only
zero entries except for two which are +1 and −1, see e.g. [176]. Hence, they can lead to an
uncontrollable subspace. A general version of these vectors is first introduced in [175], where
eigenvectors are investigated corresponding to an integer eigenvalue. Faria vectors are examined
in the context of the multiplicity of integer roots of the characteristic polynomial of the Laplacian
L. A Faria vector occurs in a graph if there exists a subset of vertices with the same degree p
which have particular neighbors within the subset and particular edges to the remaining nodes.
This is formally stated in the following.

Proposition 5.12 ([175]). Let G be a graph on N vertices and Vp the set of vertices of G of
degree p. If there are vertices v1, v2, . . . , v2r ∈ Vp, such that Γ (v j) ∩ Γ (vk) = ;, 1 ≤ j < k ≤
r, Γ (v j) ∩ Γ (vk) = ;, r + 1 ≤ j < k ≤ 2r, and Γ ({v1, . . . , vr}) = Γ ({vr+1, . . . , v2r}), then p is an
eigenvalue of L with the corresponding Faria eigenvector ν= [νi], where νi = 1, i = 1 . . . r,νi =
−1, i = r + 1 . . . 2r,νi = 0, i = 2r + 1 . . . N .

In consequence there are Laplacian eigenvectors with 0 entries depending on topological
conditions, which can lead to an uncontrollable subspace. However, this theorem is very strict

126



5.5 Uncontrollable Subspace by Faria Vectors

since all vertices within the set Vp are required to have the same degree p. To obtain a more
general version of the previous theorem, we relax the condition that each vertex of Vp requires the
same degree p. Therefore we divide the considered vertex set into two equal subsets. Here, we
require that each vertex inside one subset is associated with a specific value with respect to its
own degree, its neighbors in its own subset and the neighbors in the other subset. This condition
is less restrictive in finding Faria eigenvectors.

Theorem 5.1. Let G be a graph of N vertices. If there exists a partition π consisting of the
three vertex sets V1 = {v1, . . . , vr}, V2 = {vr+1, . . . , v2r} for some r and Vσ = V \{V1, V2} =
{v2r+1, . . . , vN} and if now

ΓVσ(v j)∩ ΓVσ(vk) = ; 1≤ j < k ≤ r,

ΓVσ(v j)∩ ΓVσ(vk) = ; r + 1≤ j < k ≤ 2r,
(5.12)

and

ΓVσ(V1) = ΓVσ(V2), (5.13)

and

∃p ∈ N,

p = deg(v j)− degπ(v j, V1) + degπ(v j, V2) 1≤ j ≤ r,

p = deg(v j)− degπ(v j, V2) + degπ(v j, V1) r + 1≤ j ≤ 2r,

(5.14)

then p is an integer eigenvalue of L with the associated eigenvector ν= [νi], where νi = 1 for i ∈
{1, . . . , r},νi = −1 for i ∈ {r + 1, . . . , 2r},νi = 0 for i ∈ {2r + 1, . . . , N}.

Proof. For a given r the vertices of G can be relabeled in the following way. Let V1 = {v1, . . . , vr}
be the first r vertices and V2 = {vr+1, . . . , v2r} be the next r vertices. The adjacent vertices of both
V1 and V2 are ordered afterward. The remaining nodes are arbitrarily and thus the Laplacian L is
given by:

L =























deg(v1) Ψ1
. . . Ω Ξ 0

Ψ
ᵀ
1 deg(vr)

deg(vr+1) Ψ2

Ωᵀ
. . . Π 0

Ψ
ᵀ
2 deg(v2r)

Ξᵀ Πᵀ ? ?

0 0 ? ?























,

where due to (5.12) the rows of Π are linearly independent. The same fact is applicable for Ξ.
However, since both sets V1 and V2 have the same set of neighbors due to (5.13), the row space
of Π is equivalent to Ξ. The sum of each row in the strictly upper triangular matrices Ψ1 and Ψ2

is degπ(v j, V1) and degπ(v j, V2), respectively. The sum of each row in Ω and Ωᵀ is degπ(v j, V2)
and degπ(v j, V1), respectively. Since p is equal for vertices in V1, V2, p is an eigenvalue of L with
the corresponding eigenvector ν = [νi], νi = 1, i = 1 . . . r,νi = −1, i = r + 1 . . . 2r,νi = 0, i =
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2r + 1 . . . n.

Theorem 5.1 provides a characterization of Laplacian eigenvectors with 0,−1,+1 entries
based on the topological conditions (5.12)-(5.14). It should be noted that Faria eigenvectors can
only occur if the Laplacian has at least one integer eigenvalue constraining the class of graphs
for which the method is suitable. We now define the set of eigenvalues σ(LFaria) of Laplacian
eigenvalues characterized by Theorem 5.1 as

σ(LFaria) = {p| p ∈ σ(Ac̄)∩ p as defined in Theorem 5.1}.

For the controlled consensus problem we arrive at the following observations.

5.5.2 Faria Vectors in Controlled Consensus Protocols

If the leader node is selected among the nodes of Vσ = {v2r+1, . . . , vN}, the Faria eigenvector
of the Laplacian has a zero entry at the leader position. It follows from Proposition 5.1, that
under this leader the eigenmode associated with this Faria vector is uncontrollable. Note that
analogously to Proposition 5.1 the Faria eigenvector is given as ν =

�

ν
ᵀ
A, 0
�ᵀ

where νA is also
an eigenvector of A. Hence, the Faria vector ν describes one uncontrollable direction x c̄ = νᵀAx
which is asymptotically stable, lim

t→∞ x c̄(t) = 0. Since the Faria vector is constructed as ν= [νi],
νi = 1, i ∈ V1,νi = −1, i ∈ V2 an equality constraint appears for t →∞ as

lim
t→∞

∑

i∈V1

x i(t)−
∑

i∈V2

x i(t) = 0.

If Faria vectors exist in a controlled agreement problem, they lead to equality conditions for
the final states x f of the leader-follower network. Besides characterizing the uncontrollable
subspace, condition (5.14) provides us with the corresponding eigenvalue p. Note that through the
decomposition of (A, B) from −L in (5.2), the eigenvalue of A and −L is −p. Hence, the equation
of motion of the uncontrollable state characterized by a Faria vector ν is given by e−ptν

ᵀ
Ax0 where

p and νA arise from topological properties. If we know all eigenvalues of the uncontrollable
system, we can further conclude about the convergence rate within the uncontrollable subspace.

Corollary 5.1. If the uncontrollable subspace is completely characterized by Faria vectors,
the rate of convergence within the uncontrollable subspace is bounded by the smallest integer
eigenvalue pmin associated with the characterizing Faria eigenvector.

Proof. The dynamics of the uncontrollable subsystems are given as ẋ c̄ = Ac̄ x c̄ and we use the pos-
itive definite V = 1

2 x c̄ᵀx c̄ as Lyapunov function candidate for the uncontrollable dynamics. Hence,
V̇ = 1

2( ẋ
c̄ᵀx c̄ + x c̄ᵀ ẋ c̄) = 1

2 x c̄ᵀ(Ac̄ᵀ + Ac̄)x c̄ ≤ λmax(Ac̄)x c̄ᵀx c̄ < 0 ∀x c̄ 6= 0, where λmax(Aĉ)< 0
is the largest eigenvalue of Aĉ. The spectra of Aĉ and Aĉᵀ are equal, σ(Aĉ) = σ(Aĉᵀ), and the
inequality 1

2 x c̄ᵀ(Ac̄ᵀ + Ac̄)x c̄ ≤ λmax(Ac̄)x c̄ᵀx c̄ follows from the Rayleigh quotient. This proves
that V is a valid Lyapunonv function. By assumption the uncontrollable subspace is completely
characterized by Faria vectors which have associated eigenvalues pi, of which the minimal eigen-
value is denoted as pmin. These eigenvalues pi are also the spectra of −Ac̄ and λmax(Ac̄) = −pmin.
Hence, the uncontrollable states vanish exponentially as |x c̄(t)| ≤ e−pmin t |x c̄(t0)|.
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5.5 Uncontrollable Subspace by Faria Vectors

Remark 5.4. The conditions (5.12)- (5.14) from Theorem 5.1 need to be tested as follows. For
testing the conditions all possible vertex sets V1, V2 for all set cardinalities r = 1 . . . floor

�

N
2

�

have to be created with floor
�

N
2

�

being the maximal cardinality to create two vertex sets with
equal cardinality. The remaining nodes are collected in Vσ. For the simplest cardinality, r = 1,
condition (5.12) is always true. In order to find a Faria eigenvector, condition (5.12)- (5.14) have
to be evaluated for each vertex set V1, V2.

Remark 5.5. Due to the duality of controllability and observability, the obtained results can be
applied to the output node. Consider the consensus equation (5.2) and select an output node y
resulting in the decomposition

ẋ = Ax ,

y = Bᵀx ,
(5.15)

where y represent the output nodes. Then the question is, whether the full system state can be
reconstructed based on the observations at the output node. As a consequence on our results on the
controllability we arrive at the following consideration here. The system (5.15) is unobservable if
L has a Faria eigenvector and an output node belongs to the set Vσ of this Faria eigenvector.

Faria Vectors and Multiple Leaders

LEPs are only valid for single-leader consensus networks. An uncontrollable subspace character-
ized by Faria vectors can also occur for multiple leaders. The argumentation straightforwardly
extends the single leader problem. In case of M leaders, the LTI system (5.2) is resized as
A ∈ R(N+1−M)×(N+1−M) and B ∈ R(N+1−M)×M . The description of uncontrollable subspaces de-
scribed by Faria vectors builds on Proposition 5.1 and this theorem is also valid for multiple
leaders and enhances as follows: If the N − M th entries are 0s in any eigenvector of L the
associated eigenmode is uncontrollable. Consequently, the satisfaction of the conditions within
the follower nodes in Theorem 5.1 leads to an uncontrollable subspace characterized by Faria
vectors. Based on the previous characterization we can provide a design guideline for selecting
the leaders.

Design Guideline for Multiple Leaders

As 0 entries in the Laplacian eigenvector at the leader index lead to an uncontrollable subspace
and Faria eigenvector do only have 0,−1,+1 entries, we are also able to interpret this in the
context of leader-selection.

Corollary 5.2. If a Faria vector is present as an eigenvector of the Laplacian L at least one input
of (5.3) has to be chosen among the set V1 and V2 to avoid an uncontrollable subspace.

Proof. We know from Proposition 5.1 that the corresponding system motion is uncontrollable if
the Laplacian eigenvector has a 0 entry at the leader position From Theorem 5.1 we know that the
vertices of V1, V2 have +1/− 1 entries in the eigenvector. So when picking one leader among the
two sets V1, V2 we avoid the 0 entry in the Laplacian eigenvector at the position of the leader.
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5 System Analysis of Interaction Dynamics through Graph Partitioning

Example 5.4. Consider the graph in Fig. 5.1. If we choose the leader nodes as Vl = {v4, v6} then
the uncontrollable subspace x c̄ = x5 + x3 − x1 − x2 remains uncontrollable despite more inputs.
In contrast by choosing the leader set as Vl = {v1, v6} we have direct access to x c̄ by agent 1 and
the system is then completely controllable.

Faria Vectors and the Edge Principle

Since the entries of Faria vectors can only take the values −1,+1, 0 the edge principle is of
interest here

Theorem 5.2 ([176]). Let λ be an eigenvalue of L associated with the eigenvector ν. If ν[i] =
ν[ j], then λ is an eigenvalue of L(G ?) associated with ν, where G ? is the graph obtained from G
by deleting or adding e = {vi, v j}, depending on whether or not it is an edge of G .

Here it follows that we can add or remove edges connecting nodes within the sets V1 and V2,
respectively, from the graph without effecting the uncontrollable subspace x c̄ . Note that adding or
removing edges can alter the LEP π? and is hence not straightforwardly applicable.

Example 5.5. Note the graph in Fig. 5.1 here as example. Adding the edge e = {v1, v2} or
removing e = {v3, v5} preserves the eigenvector ν = [−1,−1,1, 0,1, 0] and its corresponding
uncontrollable space.

Note that the indistinct occurrence of LEP/Faria vectors is described in Remark 5.6.

5.6 Numerical Investigations
In this section the presented conditions for uncontrollable subspaces in controlled consensus
protocol are evaluated. In the first subsection optimal control is applied to demonstrate the
influence of uncontrollable subspaces in networks, while in the next subsection all non-isomorphic
networks with N = 2 . . . 8 followers are generated to analyze the occurence of LEPs, Faria vectors,
and other uncontrollable subspaces in a empirical way. Finally the influence of the number
of vertices, the number of edges, and the edge probability on the uncontrollable subspaces is
investigated for larger networks.

5.6.1 Open-loop Leader Input

To validate the statements about Faria vectors and LEP numerically we consider the graph depicted
in Fig. 5.6. However, the structure of this graph also reveals two sets with equal cardinality
which satisfy the Faria condition in Theorem 5.1. Here, V1 = {v2, v3}, V2 = {v4, v6}, p = 2
results in an equality constraint for the states and gives x c̄

1 = x6 + x4 − x2 − x3. Furthermore
V1 = {v1}, V2 = {v5}, p = 3 satisfies the Faria conditions. Here, the uncontrollable subspace
x c̄

2 = x1− x5 can also be characterized by the LEP. Based on numerical investigations we observe
the following.

Remark 5.6. Uncontrollable subspaces characterized by Faria vectors and uncontrollable sub-
spaces by the clustering of an LEP can be equal and are no distinct sets. The coincidence of Faria
vectors and LEPs can be straightforwardly explained by comparing Prop. 5.9 and Theorem 5.1.
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v6 v2 v3
v4

v1

v5

v7

Figure 5.6: The leader is denoted as • and the partition π∗l is denoted by the gray enclosures
around the nodes. We obtain that π?l = {{v1, v5}, {v2}, {v3}, {v4}, {v6}, {v7}} is not
trivial, but |π?l | − 1 6= rank(Q). Here, x c̄

1 = x6 + x4 − x2 − x3 is uncontrollable and is
described by Faria vectors due to the partitions V1, V2. The signs of the elements in x c̄

are denoted by •/•.
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u= 5sin(0.2 ·πt)
|x1 − x5| (LEP & Faria)
|x6 + x4 − x2 − x3| (Faria)

Figure 5.7: Though the system is excited, the uncontrollable subspace characterized by LEP &
Faria vanishes.

We excite the system (5.3) with a sinusoidal signal u(t) = 5sin(0.2 ·πt). We observe that
both uncontrollable subspaces converge as illustrated in in Fig 5.7: lim

t→∞ (x1(t)− x2(t)) = 0 and

lim
t→∞

�

x6(t) + x4(t)− x2(t)− x3(t)
�

= 0.
Often it is necessary to drive the controllable system states from an initial to a final configuration

with an open-loop control input. To drive the controllable states from an initial x c(t0) to a final
configuration x c(t f ) within a finite time horizon t f , we can directly apply the open-loop input

u[0,t f ](t) = −Bc T eAc T (t f −t)W−1
s

�

eAc t f x c(t0)− x c(t f )
�

,

with the Grammian matrix Ws =
t f
∫

0

eAcτBcBc T eAc Tτdτ. As the uncontrollable subspace is asymp-

totically stable, the uncontrollable states x ĉ are located inside an ε-ball after t f

|x ĉ(t)|= |eAĉ t f ||x ĉ(t0)| ≤ eλmax(Aĉ)t f |x ĉ(t0)| ≤ ε.

131



5 System Analysis of Interaction Dynamics through Graph Partitioning
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Figure 5.8: Both uncontrollable subspaces |x6+x4−x2−x3| and |x1−x5| are asymptotically stable.
Both states x1 and x5 eventually evolve equal on the top. The states x2, x3, x4, x5

remain different in the transition phase for the second uncontrollable subspace.

Hence, the minimal time horizon results in

t f ≤
1

λmax(Aĉ)
log(

ε

|x ĉ(t0)|
). (5.16)

We want to drive the controllable states of graph in Fig. 5.6 from an ini-
tial configuration x(0) = [10,−50,−70, 40,50, 60] into a final configura-
tion x(t f ) = [−20,10,−10,10,−20,−10]. The final configuration satisfies both uncontrollable
subspaces since lim

t→∞ (x1(t)− x5(t)) = 0 and lim
t→∞

�

x6(t) + x4(t)− x2(t)− x3(t)
�

= 0. Here,

|x ĉ(t0)| = 223.6. Although {1, 5} can be specified by LEPs, it can also be characterized
by Faria vectors. A side effect of Faria vectors is that we can derive the eigenvalues, here
λ(Ac̄) = (−2,−3) and so λmax(Aĉ) = −2. Due to (5.16) the minimal time t f to drive the system
to a final configuration results as t f ≤ 1

λmax(Aĉ) log( ∆ε
|x ĉ(t0)|) = −

1
2 log( ∆ε220). We assume ∆ε= 1e−2

and thus t f ≤ 4.66. Fig. 5.8 shows the states that are driven from x(0) to x(t f ).
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5.6.2 Graph Size over Uncontrollable Subspace

The major objective of this subsection is to evaluate the quantitative occurrence of uncontrol-
lable subspaces characterized by LEPs, Faria vectors, or Prop. 5.10 for all connected non-
isomorphic graphs with for N + 1 nodes where one node is the anchor/leader node. The
set of all undirected and connected graph with N + 1 vertices and a root is denoted by
Gall,•

N+1. The number of undirected graphs on N + 1 vertices with an anchor vertex is Se-
quence A126100 in the OEIS [183]. For N + 1 = 3 . . . 10 the cardinality of the sets Gall,•

N+1

are 3,11, 58,407, 4306,72489, 2111013,111172234. To obtain the numerical results in a rea-
sonable amount of time we choose N + 1 ≤ 9 and generate all possible graphs with an anchor
node. For larger graphs where N ≥ 9 the occurrence of uncontrollable subspaces is later dis-
cussed based on a generation of random graphs. All non-isomorphic connected undirected graphs
with N + 1 = 2 . . . 9 nodes are efficiently generated using Nauty/Traces [184]. To obtain all
non-isomorphic graphs with a special vertex which is in our scenario the leader the automor-
phism group of each graph and the corresponding orbits of the group are computed. Then one
representative from each different orbit yields a graph with an anchor node1.

For N = 2,3, 4, . . . 8 there are in total 2 · 3,3 · 11,4 · 58, . . . 8 · 2111013 different states for all
non-isomorphic graphs. We checked controllability for each state in graphs with N = 2, 3,4, . . . 8
followers using (5.4) i.e. for N = 2 6 states have to be checked , for N = 3 there are 33 states and
so on. The share of the total number of uncontrollable states in the total number of uncontrollable
states for each N can be computed by

pN ,Kalman(G
all,•
N+1) =

∑

G∈Gall,•
N+1

|σ(Ac̄(G ))|
N |Gall,•

N+1|
,

and is depicted in Fig. 5.9 for N = 2 . . . 8 followers. We observe that for N = 2,3, 4,5 about a
third of all the states is uncontrollable. In our analysis for N ≥ 4 the share decreases until only
9.4% of all states are uncontrollable for N = 8. Though as the total number of states increases as
given by the OEIS sequence A126100 and given by the number of followers the absolute number
of uncontrollable states increases significantly, i.e. 9.4% of 2111013 · 8 is in total 1587737
uncontrollable states which is significantly larger than 33% yielding 2 uncontrollable states for
N = 2. Furthermore, the share of uncontrollable states characterized by LEPs given by Prop. 5.5
and Faria vectors given by Theorem 5.1 is depicted in Fig. 5.9. The major share of uncontrollable
subspaces can by characterized by both LEPs and Faria vectors (red) which is defined as

pN ,Faria∩LEP(G
all,•
N+1) =

∑

G∈Gall,•
N+1

|σ(L̄π∗l )∩σ(LFaria))|
N |Gall,•

N+1|
.

The share of uncontrollable subspaces which are only characterized by LEPs is defined as

pN ,LEP(G
all,•
N+1) =

∑

G∈Gall,•
N+1

|σ(L̄π∗l )\(σ(L̄π∗l )∩σ(LFaria)))|
N |Gall,•

N+1|
,

1The authors thank Gordon Royle and Brendan McKay for their support in this context with nauty.
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Figure 5.9: All non-isomorphic graphs for N = 2 . . . 8 with an additional anchor node are consid-
ered to empirically investigate the share of the total number of uncontrollable states
described by LEP or Faria in the total number of states. Note here that the plots are
stacked for the sake of exposition.

and is less but significant (blue). The share of uncontrollable states only described by Faria vectors
(black) for N > 4 and is minor.

pN ,Faria(G
all,•
N+1) =

∑

G∈Gall,•
N+1

|σ(LFaria))\(σ(L̄π∗l )∩σ(LFaria)))|
N |Gall,•

N+1|
.

The remaining uncontrollable subspaces (green) as e.g. proposed by Prop. 5.10 are given by

pN ,;(G
all,•
N+1) = pN ,Kalman − pN ,Faria∩LEP − pN ,LEP − pN ,Faria.

Yet though the share of pN ,Faria and pN ,; is quite low there are plenty of those subspaces in total
numbers as discussed earlier, e.g. for N = 8 we have p8,Faria ≈ 0.17% and p8,; ≈ 1% which is in
total numbers 30239 and 170829 states.

Furthermore, we are interested in the arithmetic mean of the number of uncontrollable states
|σ(Ac̄(Gall,•

N+1))| =
∑

G∈Gall,•
N+1

|σ(Ac̄(G ))|
|Gall,•

N+1|
by Kalman and |σ(L̄π∗l (Gall,•

N+1))| =
∑

G∈Gall,•
i+1

|σ(L̄π∗l )|
|Gall,•

N+1|
by LEP

and the corresponding standard deviations for controlled consensus networks with all connected
graphs Gall,•

N+1 with N = 2 . . . 8 followers. The mean and standard deviation over the number
of followers N = 2 . . . 8 is depicted in Fig. 5.10. Note that |σ(Ac̄)| ≥ |σ(L̄π∗l )| as specified in
Prop. 5.6 and so it also holds for the arithmetic mean as |σ(Ac̄)| ≥ |σ(L̄π∗l )|. In a very naive
way the arithmetic mean gives us the expected number of uncontrollable states for a particular
graph with N followers. From N = 2 to N = 4 the arithmetic mean increases and later for

N ≥ 5 the arithmetic mean decreases again. The decrease of the arithmetic mean of |σ(Ac̄(Gall,•
N+1)|

for increasing N is unexpected here. Naively speaking the expected number of uncontrollable
states for a particular graph decreases though the number of states N increases. To explore this
phenomena in more detail we investigate larger graphs, i.e. N ≥ 10 in the next subsection.
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Figure 5.10: For all non-isomorphic graphs with a single anchor node for N = 2 . . . 8 the arith-
metic mean and the standard deviation of the uncontrollable state.

5.6.3 Uncontrollable Subspaces and Graph Sparsity

The major objective of this section is to numerically evaluate the share of the uncontrollable
subspace on the total subspace for graphs with different number of edges. For each N =
2, 4,6, . . . 20 followers and one leader and for each edge probability as p = 0.1,0.2, . . . 0.9 10000
connected and undirected graphs are randomly generated using Nauty/Traces. Nauty/Traces
is a software tool for computing automorphism groups of (di)graphs which come along with
efficient generators for (bipartite) graphs, digraphs, and multigraphs in large-scale in a compact
format. For further detail see [184]. After generating a particular graph the leader node is selected
randomly. We denote the set of 10.000 randomly generated connected graphs with N followers
and p edge probability by Gp

N+1 where we have |Gp
N+1|= 10.000 . Note here that the graphs can

be isomorphic, so there are in total 20.000, 40.000 . . . 200.000 states for each p = 0.1, . . . 0.9.
The share pN ,Kalman(G

p
N+1) of the total number of uncontrollable states in the total number of states

over the edge probability p = 0.1, . . . 0.9 for each N is depicted in Fig. 5.11. We observe here
two interesting phenomena.

First, for all connected graphs with N > 4 the share of uncontrollable states in the total number
of states has two peaks, namely for rather sparse graphs, i.e. p = 0.1 and for rather dense
graphs, i.e. p = 0.9. Note here that the share in dense graphs is always larger than the share in
sparse graphs. For graphs with edge probability between p = 0.1 and p = 0.9 there is a valley in
the share.

Second, the more follower there are in the controlled consensus protocol (or equivalently the
larger N is), the lower is the valley in the share between p = 0.1 and p = 0.9. For N > 14 the
share of uncontrollable states in the total number of states for p = 0.5 tends to zero.

Both observations are in line with a very interesting open issue on sparse graph which are
obtained from structural controllability analysis: sparser graphs are known to be more difficult to
control [185]. However, it remains still open whether leader centrality or degree heterogeneity
plays a major role in defining controllability of sparse graphs.

Remark 5.7. Evaluating (5.4) for graphs with N > 15 and N > 40 vertices we faced numerical
issues using MATLAB functions rank/ctrb and ctrbf, respectively. We recommend here to
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Figure 5.11: 10.000 random and connected graphs with each N = 4, 6, . . . , 20 nodes and with each
edge probability ranging from 0.1, . . . 0.9 are generated. The share of uncontrollable
states in the total states over the edge probability shows two peaks for sparse and
dense graphs.

apply the Popov-Belevitch-Hautus (PBH) test when checking for controllability of the controlled
consensus protocol. The PBH test requires the calculation of rank[λi IN − A | b] ∀ λi ∈ σ(A).

5.6.4 Uncontrollable Subspaces and LEPs

The major objective of this section is to numerically evaluate how a different number of nodes
and a different number of edges affects the number of uncontrollable states. Especially, we are
interested how both influence the quantitative difference between the states described by the
Kalman condition and by LEPs.

10.000 connected graphs with N = 49 followers with the edge size being |E |= 1000 . . . 1200
are randomly generated using Nauty/Traces [184]. For each edge size E the set of graphs is
denoted byG|E |50 . Note here that the graphs are not necessarily isomorphic and so there are 490.000
states for each edge size in total. The share of the number of uncontrollable states pN ,Kalman(G

|E |
50 )

is plotted over the edge size in Fig. 5.12. It is apparent here that the share pN ,Kalman(G
|E |
50 ) of

uncontrollable states increases with the number of edges. This observation confirms the statement
in Section 5.6.3. The relative deviation between share pN ,Kalman(G

|E |
50 ) of uncontrollable subspaces

characterized by LEPs in the number pN ,LEP(G
|E |
50 ) of subspaces given by the Kalman criterion is

defined as
pN ,Kalman(G

|E |
50 )−pN ,LEP(G

|E |
50 )

pN ,Kalman(G
|E |
50 )

. We observe in Fig. 5.12 that the relative deviation increases from

|E|= 1000 to |E |= 1175. Especially, here it is relevant to consider Propositions 5.10 and 5.11.
The relative deviation drops again when the graph becomes more complete (|E |> 1175).

Furthermore, 10.000 connected graphs with |E | = 1765 edges and the number of follower
ranging from N = 9 . . . 19 for each are randomly generated using Nauty/Traces [184]. For
each follower size N the set of graphs is denoted by G|E |=1765

N+1 . Note here that the graphs are
not necessarily isomorphic and so there are 9.000, . . . , 19.000 states for the vertex size in total.
The share of uncontrollable states pN ,Kalman(G

|E |=1765
N+1 ) is plotted over the number of followers

in Fig. 5.13. The relative deviation
pN ,Kalman(G

|E |=1765
N+1 )−pN ,LEP(G

|E |=1765
N+1 )

pN ,Kalman(G
|E |=1765
N+1 )

between the uncontrollable
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Figure 5.12: 10.000 random and connected graphs with N = 49 followers are generated with the
edge size being |E |= 1000 . . . 1200. The number of uncontrollable states is plotted
over the number of edges. The relative deviation of uncontrollable subspaces not
characterized by LEP has a peak at |E |= 1175 (right axis).

subspaces characterized by LEPs from the subspaces given by the Kalman criterion increases
with ascending follower number from N = 9 to N = 19. Especially, here it is relevant to consider
Propositions 5.10 and 5.11.

5.7 Experiencing Network Interaction in a Virtual Reality

Leader-follower dynamics in interconnected systems have various application domains in practice
and are of great relevance in recent theoretical research. For a relative small network of robotic
followers the interaction paradigm was evaluated in Chapter 4. The dominant benefit of leader-
follower consensus is considered to be its scalability, i.e. when the number of followers becomes
large scale. However, the interaction with a large number of actual and real robots is genuinely
hard to realize due to their availability and due to their vulnerability to failures. This section aims
to provide a mechanism for interacting with large-scale network of robotic agents in a virtual
reality which abandons the disadvantages of actual robots mentioned previously. The application
for virtual realities range from consumer gaming experiences to providing simulated environments
that could otherwise not be provided to the human operator. The intended idea is to create and
maintain an impression with the human operator of a reality around him/her that is actually not
physically present. We aim at establishing a system for visualizing the dynamic behavior of
large-scale interconnected dynamical systems. To provide the human operator with the experience
of interaction such a system consists of multiple parts: the first one tracks the motion of the human
as input, the second one processes the human input and excites the controlled consensus dynamics
based on the human input, and the third step visualizes the interaction in a virtual reality to make
the interaction more favorable. To sum up we display the human operator an environment and a
network of objects that are not physically present but the human operator can interact with them.
The experimental setup is described in the upcoming section.
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Figure 5.13: 10.000 random and connected graphs are created with |E | = 1765 edges and the
number of followers ranging from N = 9 . . . 19. The number of uncontrollable
states is plotted over the number of followers. The relative deviation (black) of
uncontrollable subspaces not characterized by LEP increases with ascending number
of followers N .

5.7.1 Experimental Setup

The objective of this section is to illustrate how the human operator can interact with a network of
cooperating agents in order to guide the network with the movement of his/her hand. The setup
consists of three parts: the tracking system is mainly a hardware component, the multi-agent
system is a software system and the visualization is a combination of both hardware and software.
A general overview of the system is depicted in the Fig. 5.14. In the following we clarify the
aspects of each part in detail.

Tracking

Track human hand
as input to

leader-follower
dynamics

Multi Agent System Visualization

Virtual
environment
with artificial
3D objects

A

B

C

D

E

Figure 5.14: Arrangement of different system components. The human hand movement is tracked
by a Qualisys Motion Tracker system. Wearing a head-mounted stereo display the
human operator perceives an interaction with the network of objects based on his/her
arm movement.
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5.7 Experiencing Network Interaction in a Virtual Reality

Tracking System

To collect the data of the human hand motion , a Qualisys Motion Tracker system is employed.
Further details on the motion tracking system can be found in Appendix C. The human operator
is equipped with a marker-equipped glove. The motion capture system can track the motion of
the glove at a very high accuracy which facilitates to transfer relatively small human inputs to the
system dynamics. In order to transmit the motion input data to the multi-agent system simulation
a UDP connection is used to transfer the continuous data stream in real-time

Multi-Agent System

To simulate the system dynamics (5.3) in 3D the multi-agent system is implemented in Simulink
using MTIDS [186]. MTIDS is a Matlab toolbox for creating and simulating large-scale intercon-
nected systems. Using MTIDS we are able to create individual interacting topology with different
agent dynamics. An interface to Simulink is provided which enables an easy and fast integration
of the system. Furthermore, MTIDS provides us with the algebraic graph properties such as the
Laplacian L and system matrix A which are calculated and provided automatically. To serve the
particular purpose of the user experience templates for the three-dimensional consensus protocol
are created.

Visualization

After the human motion is tracked and the network is simulated based on the processed motion
data in Simulink a visualization is required to provide the operator with an intensive experience To
make the interaction with the multi-agent system more realistic the 3D visualization is illustrated
on a head-mounted stereo display namely the Oculus Rift depicted in Fig. 5.15. The Oculus Rift
features 3 axis gyroscopes, accelerometers and magnetometers with an update rate of 1000Hz.
Stereo images are displayed on a 7" display with features a resolution of 1280x800. Fig. 5.17
shows the virtual environment with which the human operator can interact through the motion of
his/her hand. This 3D visualization is then displayed to make interacting with the network in a
virtual reality possible for seamless human-network interaction. The leader node which directly
follows the motion of the human hand is highlighted in red color. Note that the following agents
are illustrated by objects of different shape and color. The interaction topolgy is depicted by solid
lines. To increase the impression of surround vision while compensating for the lack of a third
dimension on the head-mounted display, a black underground is drawn beneath the scene.

While displaying a graphic on a computer monitor one only needs a single image, for stereo
vision two images are required. Note here that both graphics have to be projected by an appropriate
perspective transformation in order to display one plane on the Oculus Rift. The method of
projecting two images is called image rectification. Image rectification is used to create a
3D impression when wearing a head-mounted display. Without that image rectification the
regarded image is distorted as explained in Fig. 5.16 on the left hand side. On the right hand
side the view after a image rectification is shown. Based on an established computer graphics
method, a perspective transformation matrix rectifies the view for the human operator. Using a
motion-tracking system and a head-mount stereo display we are able to provide the user a swarm
interaction experience in an easy and uncomplicated manner.
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Figure 5.15: Head-mounted stereo display Oculus Rift.

Left eyeRight eye Left eyeRight eye

Scene

Figure 5.16: Stereo vision without image rectification yields a distorted image (left). With image
rectification there is no distortion (right).

5.8 Summary

In this chapter we provide a novel approach to characterize the uncontrollable subspace of a
controlled consensus problem based on topological properties. Section 5.3 outlines the controlla-
bility questions for controlled consensus protocol and exposes the most relevant results based on
algebraic graph theory. It is based on the knowledge that almost equitable partitions are closely
related to the Laplacian eigenvectors and here zero entries in the eigenvectors of the Laplacian
result in an uncontrollable subspace of the controlled consensus protocol. The close relation of
almost equitable partitions and Laplacian eigenvectors is analyzed here in detail. The role of gener-
alized almost equitable partitions for characterizing the uncontrollable subspace of the controlled
consensus problem is exposed in Section 5.4. We reveal several novel topological conditions
for describing the uncontrollable subspace. In 5.5 we discuss that the Laplacian eigenvectors
with 0s can be characterized e.g. by Faria vectors which arise from particular adjacency relations
of two equal vertex sets and lead to equality constraints. The proposed approach complements
the existing one based on leader-invariant almost equitable partitions (LEPs). In Section 5.6 we
verify that uncontrollable subspaces for examples of graphs that are previously defined in the
literature can now be identified by the condition provided in this chapter. Furthermore, extensive
numerical investigations considering graphs with different sizes and connectivities evidence the
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5.8 Summary

Figure 5.17: Single view visualization of the multi-agent system. Each agent is a object of
different color and shape. The interaction topology is depicted by brown, solid lines.

relevance of our results. Section 5.7 completes the chapter with the introduction of a new concept
of a virtual reality through which a human operator can interact with a large-scale network in an
easy and uncomplicated manner. Wearing a head-mounted stereo display the human operator can
conveniently and freely lead a virtual network of various followers with the movement of his/her
hand and so experience the feeling of human-network interaction.
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6

Conclusions and Outlook

The interaction and cooperation of robots with humans and among each other is an essential
prerequisite for the acceptance of robotic assistances in our society. The guidance of a cooperative
robotic manipulation task by a human operator encompasses relevant application domains such as
manufacturing, construction, agriculture and forestry, service robotics, search and rescue but also
cooperative aerial and underwater manipulation. A convenient interface of the human operator
to multiple cooperative robotic helpers is realized by means of a pertinent system synthesis: (i)
distributed robot control which facilitates robot autonomy in cooperative manipulation tasks, (ii)
a human-robot-team interaction mechanism by which multiple robots can be simultaneously and
efficiently controlled, and (iii) a system analysis of the interaction topology which characterizes
the influence of the human input on the following robotic agents from a system-theoretic point of
view.

In order to control multiple robots distributedly in a cooperative robotic manipulation task,
Chapter 3 presented a novel LQR-like optimal control design of a control law which drives a
formation of interconnected robots from an initial configuration to a desired final configuration.
An important novel property is the inclusion of the formation rigidity as penalty term into the
cost functional, thus combining the two research directions of formation control and advanced
nonlinear robot dynamics. The resulting cost functional includes biquadratic terms. Two iterative
algorithms, the first based on gradient descent, the second on a quasi-Newton method, are
presented to solve the optimal control problem and derive the feedback matrix. The presented
algorithms are validated in numerical simulations and experiments. Furthermore, a second control
approach based on cooperative dynamic movement primitives (DMPs) is presented. A cooperation
feedback term based on an artificial potential field for formation control is introduced into the
original DMP formulation. The equilibria analysis provides desired and undesired equilibria,
however, the undesired equilibria turn out to be of no practical relevance. The effectiveness and
quality of both proposed controllers with respect to disturbances is successfully demonstrated in
experiments.
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6 Conclusions and Outlook

When a human operator issues commands to a number of robots simultaneously, several
challenges of human-swarm interaction are acknowledged. A distributed control law and a
feedback strategy for a robot team guided by a single human in a cooperative manipulation
task, which makes use of a formation-based paradigm, is presented in Chapter 4. By analyzing
the system properties of such a human-robot formation control we deduce that a human-to-all
connection in the underlying interaction topology is beneficial for a successful manipulation task
execution. The effectiveness and quality of the human-driven set-point generator based on a
virtual and artificial robot formation for a cooperative robotic manipulation task is successfully
demonstrated in experiments and in a user study.

By significantly increasing the number of robotic followers, it is shown that the interaction
topology of the underlying communication network literally plays a dominant role in the charac-
terization of the human influence on particular robots. The influence of the human operator on
particular robotic followers is denoted by the system theoretical property of controllability. In
Chapter 5 a novel approach is presented to describe the uncontrollable subspace of a controlled
consensus problem based on topological properties. It is based on the knowledge that particular
partitions called almost equitable partitions are closely related to the Laplacian eigenvectors and
that zero entries in Laplacian eigenvectors lead to uncontrollable subspaces of the controlled
consensus protocol. These eigenvectors with 0s can be characterized, e.g. by Faria vectors which
arise from particular adjacency relations of two equal vertex sets and lead to equality constraints.
The proposed approach complements the existing one based on leader-invariant almost equitable
partitions (LEPs). We verify these uncontrollable subspaces for counterexamples of graphs
that are previously defined in the literature. Furthermore, extensive numerical investigations
considering graphs with different sizes and connectivities evidence the relevance of our results.

This thesis addressed relevant steps towards rendering the guidance of multiple cooperating
robots by a single human operator possible in order to fulfill a challenging and collective objective.

6.1 Outlook

Human-robot interaction has the ultimate goal of a seamless interaction between the robots and a
human operator. Further research should close the gap between theory and praxis and it should
facilitate the humans to solve ambitious issues better, safer, and faster. The guidance mechanism,
which is presented in the thesis at hand, of a cooperative manipulation task by a single human
operator further elaborates the development in this area towards an efficient but also stable system.
State-of-the-art methods in the context of cooperative manipulation are considered and new
dimensions are introduced in the guidance of multiple robots with the leader-follower interaction
framework for cooperative manipulation. Although relevant issues regarding the control design
were addressed in this thesis, the placement of a cooperative human-guided robotic manipulation
task in daily life requires further research.

Distributed control for flexible objects

The proposed distributed control schemes, which allow for successful and proven cooperative
robotic manipulation, consider multiple robots rigidly grasping a rigid object. Considering a
non-rigid grasp or a flexible manipulated object or both opens up a new dimension of challenges.
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6.1 Outlook

First, a consistent dynamical system model is required for the interaction dynamics. We assume,
that a hybrid formulation of the system dynamics can provide possible solutions to model the
contact of the manipulators with the object for different grasp types. Furthermore, we suggest
that flexible objects should be incorporated in the multi-robot interaction dynamics by exploiting
the results of object impedance control. This extension can further increase the applicability of
our proposed controllers by exhibiting their robustness in different situations including also aerial
or underwater cooperative manipulation.

Adjustable team control for a single human

An architecture for team control allows humans to control other robotic agents but the human
should also to receive feedback cues from the serving agents. The development of a higher level
control architecture for the heterogeneous team of human and robots is essential for a seamless
human-robot interaction which facilitates different modes of operation in the proposed supervisory
control. A major challenge in the development of such an architecture is to what extend the
notification and guidance of a human operator can be effectively accomplished. In order to
obtain fundamental insights into the appropriate allocation of roles, the development of a system
theoretical input-output model of the human operator is considered to be a first step towards
finally installing an entire supervisory control architecture. These are necessary intermediate steps
in applying robots in real-world challenges where complex tasks need to be conducted during an
interactive session.

Degree of controllability for networks

Detached from the cooperative manipulation task, there exist situations in which a network
of agents has to be conducted by a single input and in which it is then necessary to control
not only the collective behavior of the robots but to individually address subgroups. In such a
situation the yes-no question of controllability, which answers if the input can guide specific
robots independently from each other, is often helpful but not sufficient. Often the responsible
system design engineer additionally wonders, how much effort or energy is necessary in order to
issue commands to specific robots. A substantially equivalent question from a control theoretic
point of view here is how close one particular state to uncontrollability is. Defining a degree of
controllability for human network interaction is already a very though and challenging task when
control theoretic results are contemplated. Extending the topological controllability discussion
of leader-follower networks in terms of a degree of controllability gives rise to a complete new
research question.

We are confident that more relevant results can be made in the near future and that the guidance
of multiple robots for achieving a cooperative task will some day be applied in space missions
and in large-scale hazardous and dangerous operations.
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Linear Algebra

Modeling and control of a group of robot manipulators and the interaction of a human with a
network of following robotic agents requires an extensive use of matrices and vectors.

Definitions

A matrix of dimension (m×n) where m and n are positive integers is defined as an array arranged
into m rows and n columns as

A∈ Rm×n⇔ A=
�

ai j

�

i=1,...m,
j=1,...n

=





a11 . . . a1n
...

...
am1 . . . amn



 , ai j ∈ R.

A matrix is said to be square if m = n. A matrix A is called a diagonal matrix if ai j = 0
for i 6= j, i.e. A = diag (a11, a22, . . . , ann). If a diagonal matrix has only unit entries on the
diagonal, i.e. aii = 1, the matrix is called identity matrix and is denoted by In. A matrix is said to
be a null matrix if all elements are zero and it is denoted by 0. Transposition is a basic matrix
operation which is given by

C = Aᵀ⇒ ci j = a ji,

where ()ᵀ is an operation which interchanges the rows and the columns of a matrix. If A= Aᵀ,
then a matrix is said to be symmetric. The rank of a matrix A is denoted by rank(A) and is said to
be the dimension of the space spanned by its columns or its rows. A matrix is said to be full rank
if rank(A) = min(m, n). A square matrix is said to be invertible if there is a matrix A−1 ∈ Rn×n

such that

A−1A= AA−1 = In.
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A matrix is said to be orthogonal if Aᵀ = A−1. The Woodbury identity which can be used to
calculate the inverse of a matrix is known in different variations such as

(A+ CBCᵀ)−1 = A−1 − A−1C(B−1 + CᵀA−1C)−1CᵀA−1,

(A+ UBV )−1 = A−1 − A−1U(B−1 + VA−1U)−1VA−1.

A set of Searle identities which are employed throughout this thesis is given by

(In + A−1)−1 = A(A+ In)
−1,

(A+ BBᵀ)−1B = A−1B(In + BᵀA−1B)−1,

(In + AB)−1 = In − A(In + BA)−1B.

For a general matrix A∈ Rm×n, which is not necessarily square, the pseudo inverse A† of a matrix
A is defined as a matrix that satisfies

AA†A= A,

A†AA† = A,

AA† is symmetric,

A†A is symmetric.

If A is full-rank, then

A† =











A−1, if m= n

(AᵀA)−1Aᵀ if m> n

Aᵀ(AAᵀ)−1 if m< n.

A vector a ∈ Rm is a special case of a matrix where only a single column is present. The scalar
product of two vectors a and b is defined as c = aᵀb. Two vectors a and b are orthogonal if
aᵀb = 0. The 2-norm of a vector is defined as ‖a‖ =paᵀa. The cross product of two vectors a
and b in the Euclidean space is given by

a × b = S(a)b =





a2 b3 − a3 b2

a3 b1 − a1 b3

a1 b2 − a2 b1



 ,

where the matrix operator S(a) is expressed as a skew-symmetric matrix given by

S(a) =





0 −a3 a2

a3 0 −a1

−a2 a1 0



 .
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The following properties hold:

a × b = S(a)b = −S(b)a,

S(a)a = S(a)ᵀa = 0,

S(a)S(b) = abᵀ − aᵀbI3.

Linear Transformations

The linear transformation between the vector x ∈ X , where X is a vector space of dimension m,
and y ∈ Y , where Y is a vector space of dimension n, is given by

y = Ax ,

where A∈ Rm×n. The range of the transformation is defined as the subspace

range(A) = { y : y = Ax , x ∈ X} ⊆ Y ,

which is spanned by the linearly independent columns of the matrix A. Hence, we have
dim(range(A)) = rank(A). Moreover, the null space of the linear transformation is the sub-
space defined as

ker(A) = {x : Ax = 0, x ∈ X} ⊆ X .

Assume that we have a matrix A ∈ Rm×n then dim(range(A)) + dim(ker(A)) = n always holds.
Both range and null space are subspaces which are orthogonal to each other from which can
conclude the following:

ker(A) = range(Aᵀ)⊥ and range(A) = ker(Aᵀ)⊥,

where (·)⊥ denotes the orthogonal complement. The invariant subspace of a linear mapping
T :X →X from some vector space X to itself is a subspace Y of X that is preserved by T , i.e.
T (W ) ⊆W .

Eigenvalues and Eigenvectors

The eigenvalues λi and eigenvectors νi of a matrix A∈ Rn×n satisfy

Aνi = λiνi.

If the matrix A is symmetric, then all eigenvalues are real. The matrix V formed by the vectors
νi is full rank and forms a basis of the n-dimensional subspace. Moreover, the transformation
matrix V indicates a similar transformation as D = V−1AV where D is a diagonal matrix so that
D = diag(λ1, . . . ,λN ).

The characteristic polynomial of the matrix A is defined as det(A−λIn) = 0 where

p(λ) = det(A−λIn),

149



A Linear Algebra

is commonly denoted as the characteristic equation. The Cayley-Hamilton theorem says that
every matrix satisfies its own characteristic equation, i.e. p(A) = 0.

The following theorem taken from [121, p. 9.5.1] relates the eigenvalues of a symmetric matrix
to its principal matrix. It is a generalized version of the Cauchy interlacing theorem.

Theorem A.1 ([121]). Let A be a real symmetric n× n matrix and let R be an n×m matrix such
that RᵀR= Im. Set B equal to RᵀAR and let ν1, . . . ,νm be an orthogonal set of eigenvectors of B
such that Bvi = θi(B)vi. Then:

(a) The eigenvalues of B interlace the eigenvalues of A.

(b) If θi(B) = θi(A), then there is an eigenvector y of B with eigenvalue θi(B) such that Ry is
an eigenvector of A with eigenvalue θi(A).

(c) If θi(B) = θi(A) for i = 1, . . . , l, then Rνi is an eigenvector for A with eigenvalues θi(A) for
i = 1, . . . , l.

(d) If the interlacing is tight, then AR= RB.

Eigenvalues and eigenvectors are not defined for non-square matrix A∈ Rn×m where n 6= m.
However, a similar and more general principle for non-square matrices is found in singular value
decomposition (SVD) and it is defined as

A= U DV ᵀ,

where U ∈ Rn×n are the eigenvectors of AAᵀ and V ∈ Rm×m are the eigenvectors of AᵀA. Further-
more, D results as D =

p

diag(eig(AAᵀ)) and the elements of D are called singular values.

Factorizations

QR factorization states that a matrix A ∈ Rm×n can be factored into the product of an upper
triangular matrix R ∈ Rm×n and an orthogonal matrix Q ∈ Rm×m:

A=QR.

QR factorization is widely used in solving least square problems and there exist several methods
to compute the factorization which are mostly based on Householder or Givens transformations.

The intersection of subspaces is a recurring problem in linear algebra. Let A∈ Rm×n and B ∈
Rp×n be given, and consider the problem of determining an orthonormal basis range(A)∩range(B)
which is solved by following algorithm found in [156].

Algorithm 3. 1. Compute the QR factorization A=QARA and B =QBRB.

2. C =QᵀAQB.

3. Compute the SVD: Y ᵀC Z = diag(cos(θk)).

4. QAY (:, 1 : q) =
�

f1| . . . | fq

�

.

5. QB Z(:, 1 : q) =
�

g1| . . . |gq

�

.
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6. Find the index s such that 1= cos(θ1) = . . .= cos(θs)> cos(θs+1).

7. Then range(A)∩ range(B) = span{ f1, . . . , fs}= span{g1, . . . , gs}.
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B

Graph Theory

We assume the interaction of a team of robots or agents with each other through a sensing
or communication network or by a composition of both. It is convenient to characterize the
interaction model among the robots or agents by directed and undirected graphs. Suppose that
the team is composed of N robots or agents. A directed graph G = (V ,E ) of order N is defined
as a pair (V ,E ) where V = { v1, v2, . . . vN} is a finite and nonempty vertex set and E ⊆ V ×V
is the edge set of ordered pair of nodes. Self-edges or loops (vi, vi) are not allowed. If in a
directed graph there is an edge (vi, v j) then the agent j receives information from agent i but
not necessarily conversely. In contrast the pairs of vertices in an undirected graph are unordered
i.e. the edge (vi, v j) denotes that agents i and j can receive information from each other. Note
here that an undirected graph can be regarded as a special case of a directed graph where each
edge (vi, v j) of the undirected one resembles two edges (vi, v j) and (v j, vi) of the directed one. If
there is a (directed) path between every pair of distinct vertices then the G is called (strongly)
connected. A weighted graph assigns a weight to every edge in the graph. The adjacency matrix A
of a directed graph encodes the neighborhood relationship according to

[A]i, j =

¨

ai j if (i, j) ∈ E
0 if (i, j) /∈ E ,

where ai j ∈ R+ is a positive weight and ai j denotes the weights of the edge (v j, vi) ∈ E . If weights
are irrelevant then we set ai j equal to 1 if (v j, vi) ∈ E . For an undirected graph the adjacency
matrix A is defined similarly and we always have ai j = a ji. Hence, A is symmetric for undirected
graphs. We define the in-degree and out-degree of node vi as

∑N
j=1 ai j and

∑N
j=1 a ji. For an

undirected graph both in-degree and out-degree are equal and are generally denoted as degree.
Let the degree matrix D of an undirected graph be a diagonal matrix where the ith entry on the
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diagonal is given by its degree:

[D]i,i =
N
∑

j=1

ai j.

Finally, we defined the matrix L [121] given by

L = D− A.

To associate the matrices L, D, A with a graph G we can also write L(G ), D(G ), A(G ). For an
undirected graph, we have L = Lᵀ, L is positive definite and L is called the Laplacian matrix. For
a directed graph L is called directed Laplacian matrix. Note that the rows of L always sum up to
zero, i.e. we have L1= 0. Hence, 0 is always an eigenvalue of L with corresponding eigenvector
1. For an undirected graph, λi(L) is the ith eigenvalue of L and the eigenvalues can be ordered as

0= λ1(L)≤ λ2(L)≤ . . .≤ λN (L),

where λ1(L) = 0. In general λ2(L) is called algebraic connectivity. Note that G is connected if
and only if λ2(L) > 0. The algebraic connectivity λ2(L) is considered to be a measure for the
convergence rate of the consensus algorithm.

Graph theory has a strong relationship to abstract algebra, especially when we consider the
symmetry structures in a graph and their associated equitable partitions. An automorphism of a
graph G = (V ,E ) is defined as a permutation ψ of V such that

(ψ(vi),ψ(v j)) ∈ E ⇔ (vi, v j) ∈ E .

All possible automorphisms ψ of G is denoted as the automorphism group of G . A permutation
matrix Ψ can be defined for each automorphism as

[Ψ]i, j =

¨

1 if ψ(vi) ∈ j

0 otherwise,
.

Then ψ is an automorphism of G if and only if

ΨA(G ) = A(G )Ψ.

We define a cell C to be a subset of the verstex set V . A partition π of a graph is an apportioning
of the vertex set V into different cells C as π = {C1, . . . Cp}. The cardinality of π is denoted
by p. A p-partition π = {C1, . . . Cp} of V is called equitable if for all i, j every vertex in C j

has the equal number of neighbors in Ci. The N-partition π∗ = {{v1}, {v2}, . . . , {vN}} is the
trivial equitable partition. Generally, equitable partitions can be acquired from the automorphism
groups of a graph. The characteristic vector p i ∈ Rn of the cell Ci of a partition π features 1s
in the entries corresponding to Ci and 0s otherwise. The characteristic matrix P ∈ Rn×r is a
matrix with the vectors pi forming its columns. It is known that π is equitable if and only if P is
A(G )-invariant, i.e.A(G )R(P) ⊆R(P).
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C

Experimental Setups

Six DoF Mobile Manipulator 1
The human-sized robotic platform shown in Fig. C.1 consists of a four-wheeled omni-directional
mobile platform used for repositioning the robot and two identical commercially available KUKA
LWR (light-weight robot) 4+ manipulators. Desired angular movements for desired movements in
task space are computed by an instantaneous inverse kinematics. For measuring resultant forces
independent of the configuration during the cooperative manipulation task, a 6 DoF force/torque
sensor (JR3) is attached to each wrist. As end-effectors, Schunk PG70 two-finger parallel grippers
are used for simple grasping and object pushing with the fingers. Lithium-ion polymer batteries
power the system for long periods without recharging and for expanding the reachable workspace.

For computational power, the robot carries two KUKA control boxes, one for each manipulator
and a single PC. The PC consists of an Intel Core i7 920 running at 2.66 GHz executing control
schemes, implemented in MATLAB/Simulink and executed on the PREEMPT-RT using Matlab’s
Real-Time Workshop. It also ensures real-time control of the mobile platform and a synchronized
data management utilizing the KogmoRTDB real-time database [187]. In order to operate the
KUKA LWRs we use Fast Research Interface (FRI), which allows user control and status
monitoring of the manipulators based on UDP protocol. This software package is integrated
in the real-time robot control framework [188]. All low-level control algorithms runs at a
frequency of 1 kHz. The robot is equipped with a wireless router in the 5GHz band for inter-robot
communication where a UDP protocol is then employed to transmit data between the robots.

Six DoF Mobile Manipulator 2
The human-sized robot as depicted in Fig. C.2 consists of a four-wheeled omni-directional mobile
platform (f) which offers workspace extension and a roughly human-like maneuverability and
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Figure C.1: The robotic platform consisting of two KUKA LWR 4+ manipulators equipped with
two-finger grippers and an omni-directional mobile platform.

smooth motion [189]. Two identical anthropomorphic 7-degrees-of-freedom (DoF) arms (c)
running with incremental encoders to capture the joint angles are front-mounted on the top of the
a rigid torso to provide a human-like working space [77]. Mounted onto a JR3 wrench sensor,
the manipulator is equipped with a Schunk PG70 two-finger parallel gripper (a) which enables a
tight grasp of the object and allows force/torque sensing in order to enable force feedback control.
Lithium-ion polymer batteries(e) mounted at the omni-directional platform power the system and
increase its autonomy. More detailed information on the robot used can be found in [190].

The robotic system carries three PCs (d) for computational power. The first is an Intel Core
i7 920 running at 2.66 GHz executing high-level reasoning tasks exploiting the multi-thread
OpenMP library. The entire manipulator control scheme is implemented in MATLAB/Simulink and
executed on the PREEMT-RT using Matlab’s Real-Time Workshop on a second PC. An appropriate
interface is embedded to a high-level software control framework [191]. The individual low-level
control loops run at a frequency of 1 kHz. The third PC is identical to the first and ensures
real-time control of the mobile platform and a synchronized data management utilizing the
KogmoRTDB real-time database [187] available at [192] and the PREEMPT_RT Linux real-time
kernel patch [193]. For inter-robot data exchange a wireless router in the 5GHz band is attached
to the robot. Data packets are transmitted between the robots over an UDP protocol
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(a)

(b)

(c)

(d)

(e)

(f)

Figure C.2: The human-sized mobile robot is equipped with anthropomorphic manipulators each
featuring two-finger grippers and with an omni-directional mobile platform.

Motion Capture System

Active-Marker Based Tracking

For the experiment described in Section 2.5, camera bars of the system VisualEyez II VZ4000
(PTI PhoeniX Technologies) are used. The camera bars are mounted overhead at a height of
approximately 3m above the work space to be tracked, with the cameras facing downwards
normally and centered around the workspace. The object which needs to be tracked is equipped
with active markers, which are infrared LEDs of high-power and wide-angle type. For capturing
the motion the flash of the active markers is triggered by a wireless target control module in
order to uniquely identify the three-dimensional position of the manipulated object. A proprietary
software package VZSoft for interfacing the motion capture system and gathering motion data
runs on a Microsoft Windows-based personal computer. The real-time interface of the system
provides data at a frequency of 30Hz for on-line processing through a network connection. In
addition, the motion data are simultaneously stored at a frequency of 200Hz for off-line analysis.

Passive-Marker Based Tracking

For most experiments a motion capture system is utilized which consists of 21 networked cameras,
one Oqus 3+ and 20 Oqus 4 (Qualisys). The cameras are mounted at ceiling height approximately
3m over the work space which needs to be tracked. All cameras are distributed on a square-shaped
frame of approximately 20m x 10m centered around the working space and aligned in order to
maximize both the overlapping of the fields of view of each camera and the volume available
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Figure C.3: Qualisys Motion Tracker cam-
era.

Figure C.4: Glove equipped with tracking
markers.

for tracking. The tracking system is calibrated prior to each experiment by a manual calibration
routine yielding an approximate accuracy of < 3mm. Ball-shaped reflective markers are attached
to each robot and the object. In order to form a unique geometrical shape at least four markers are
rigidly attached for a unique object identification. The motion capture system can be interfaced
via the software suite Qualisys Track Manager (QTM) which runs on a Microsoft Windows-
based personal computer. QTM provides capture data in six-dimensional object coordinates at
a frequency of 300Hz through the real-time interface for on-line processing. All data, which is
low-passed filtered using a 25-point moving average FIR filter at a sampling rate of 1 kHz, are
made available to the robot at low latency through a network connection. A camera is depicted in
Fig C.3 and a marker-equipped glove is depicted in Fig C.4.

Wearable Haptic Device
The vibrotactile wristband was developed at PERCRO lab to effectively deliver haptic stimuli at
the operator’s wrist and to provide the operator with vibrotactile cues. The vibrotactile wristband
consists of a band of stretchy fabric in order to ensure user comfort as depicted in Fig. C.5. It
is equipped with four vibratory pads which which are located at the center of the dorsal (top),
ventral (bottom/palm), inner and outer lateral sides of the wrist. The minimum distance between
any two vibratory pads is about 4 cm for ensuring a reliable subjects’ spatial detection [194]. The
motors in the vibratory pads are actuated at a maximum frequency of 180Hz, which is less than
the maximum stimulation of skin mechanoreceptors of the human hands (250 Hz) [195].

The architecture of the on-board electronics is composed of a custom-designed circuit board
with a micro controller PIC18LF2431 from the Microchip PIC®family, a 2.4 GHz Bluetooth
Class 1 module for wireless communication, a lithium-polymer battery, and a USB Battery
Charger. While the rotation frequency of the motor vibrations was kept at a constant value, the
activation frequency (or pulsing period), the duty cycle, and the duration of the vibratory signal
can be used to generate desired wave patterns.
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Figure C.5: The vibrotactile wristband consisting of a band of stretchy fabric in order to ensure
user comfort.
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