
TECHNISCHE UNIVERSITÄT MÜNCHEN

Fakultät für Informatik
Computer Aided Medical Procedures & Augmented Reality / I16

Learn to Track: From Images to 3D Data

David Joseph Tan

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Darius Burschka
Prüfer der Dissertation:

1. Prof. Dr. Nassir Navab
2. Prof. Dr. Andrew Davison

Die Dissertation wurde am 29.09.2016 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 03.03.2017 angenommen.

Abstract

Object pose estimation aims at determining the relation between the camera and the
object of interest. For rigid objects, the pose is defined through three degrees of freedom
for rotation and three for translation. Across different applications in robotic perception,
augmented reality and human-computer interaction, achieving a real-time robust object
pose estimation is an integral component to reach their goals. This thesis focuses on
object pose estimation using a temporal tracker from 3D data. The objective is not only
to achieve robustness through public benchmarks, but also to integrate into a wide-range
of real-world applications.

A temporal tracker is a frame-to-frame algorithm that relays the object’s pose from
the previous frame and updates it for the current frame. When we investigate the use
case of temporal trackers, they are frequently applied on reconstruction frameworks to
track a single object or a static scene. However, when tracking several independently
moving objects present in the scene, most frameworks rely on tracking-by-detection.
Conversely, tracking-by-detection methods look at each frame independently. For each
frame, they localize the object on the image and estimate the pose.

On one hand, the limitation of a temporal tracker is the requirement to initialize on
the first frame either manually or by a detector. On the other, the benefit of a temporal
tracker is its efficiency because it simplifies the problem to updating the pose between
two consecutive frames. Intuitively, the combination of both approaches, where the
temporal tracker is initialized by the detector and then temporally track the objects, is
a natural procedure. But, to be robust against clutter, occlusions and fast movements,
most temporal trackers require at least 100 ms per frame with a GPU optimization.
Since independent temporal trackers are triggered for each object in the scene, it also
scales linearly to the number of objects. In effect, tracking-by-detection approaches
overcome the efficiency of the temporal trackers with about five objects in the scene. As
a consequence, the temporal tracker is not commonly used because it cannot uphold to
its promised efficiency.

Keeping this in mind, we formulate a learning-based 3D temporal tracker that learns
random forests solely from a 3D CAD model to predict the transformation update from
the input depth images. On average, it runs at less than 2 ms per frame for each object
on a single CPU core. Hence, even if the computational complexity of the tracker is
linear to the number of objects, the extremely low magnitude of its tracking time allows
the algorithm to track over a hundred moving objects in a scene at 30 fps with only 8
CPU cores. This is significantly faster than any tracking-by-detection approach. Due to
the tracker’s efficiency, we have successfully demonstrated the combination of detection
and temporal tracking in a single framework to achieve a seamless performance, i.e.
with low latency.

Although the first version of the tracker works on specific object instances, meaning
that the shape of the object of interest that appears in the scene has to match the
geometry of the learned CAD model, we further developed an extension that generalizes
the tracker to perform pose estimation for any object within a class. Through the 3D
head pose estimation, this allows the generalized tracker to directly estimate the pose of
an arbitrary user without any a priori information about them.

Nevertheless, tracking with an object instance still attains better accuracy than a
generalized tracker. Due to this, we introduce a fast and reliable calibration procedure
that optimizes the shape model of a specific object from a given class. In this thesis, to

iii

improve the accuracy in hand tracking, we apply the calibration to optimize a detailed
personalized hand shape model for a specific user through a small set of depth images.

iv

Zusammenfassung

Posenbestimmung von Objekten ist die Aufgabe die Relation zwischen der Ka-
mera und eines Objektes zu bestimmen. Für rigide Objekte ist die Pose durch drei
Freiheitsgrade für Translation und drei Freiheitsgrade für Rotation eindeutig bestimmt.
Posenbestimmung in Echtzeit ist für viele Anwendungen wie Wahrnehmung in der
Robotik, Erweiterte Realität und Mensch-Maschine Interaktion von großer Bedeutung.
Diese Arbeit befasst sich mit der Posenbestimmung anhand der Entwicklung eines
temporalen Trackers basierend auf dreidimensionalen Daten. Das Ziel ist es nicht nur
robust in öffentlichen Benchmarks zu sein, sondern auch eine breite Palette von echten
Anwendungen zu erstellen.

Ein Temporaltracker ist ein Frame-To-Frame-Algorithmus, der die Pose eines Ob-
jekts von einem Frame zum nächsten propagiert und dann für den aktuellen Frame
verbessert. Temporaltracker werden häufig in Rekonstruktionssystemen verwendet um
ein einzelnes Objekt oder eine statische Szene zu verfolgen. Wenn jedoch mehrere, sich
unabhängig bewegende Objekte verfolgt werden müssen werden oft Detektionsmetho-
den verwendet die jedes Bild einzeln betrachten und darin, unabhängig vom vorherigen
Bild, die Position und Pose bestimmen.

Einerseits hat ein temporaler Tracker das Problem, dass die Pose im ersten Bild
manuell oder von einem Detektor bestimmt werden muss, andererseits sind temporale
Tracker sehr effizient, da nur die Änderung der Pose von einem Bild zu nächsten
bestimmt werden muss. Deshalb ist die Kombination beider Ansätze intuitiv sinnvoll,
da ein Detektor den Tracker initialisieren kann. Da eine große Robustheit gegenüber
Verdeckungen und anderen Objekten in der Szene erreicht werde muss benötigen die
meisten temporalen Tracker etwa 100ms pro Frame mit GPU Unterstützung. Da für jedes
weitere Objekt ein Tracker benötigt wird, skaliert die Laufzeit linear mit der Anzahl
der Objekte. Das bedeutet, dass ab etwa 5 Objekten in der Szene, Detektionsansätze
effizienter werden als temporale Tracker.

Wir formulieren einen lernbasierten 3D Tracker der mit Hilfe von Random Forests
die nur von 3D CAD Modellen lernen, die Änderung der Objekttransformation zwischen
zwei Tiefenbildern vorhersagt. Im Durchschnitt benötigt der Tracker weniger als 2ms
pro Bild und Objekt in der Szene auf nur einem CPU Kern. Deshalb können mehr als
einhundert unabhängige Objekte mit einer Effizienz von 30 Bildern pro Sekunde und 8
CPU Kernen verarbeitet werden. Das ist deutlich schneller als jeder Detektionsansatz.
Auf Grund dieser Performanz erzielen wir eine erfolgreiche Vereinigung von Detektion
und Tracking, d.h. mit geringer Latenzzeit.

Die erste Variante des Trackers funktioniert mit spezifischen Objektinstanzen, für die
das Objekt als CAD Modell gegeben sein muss. Diese können wir dann aber erweitern
um über verschiedene Instanzen einer Objektklasse generalisieren zu können. Hier
zeigen wir als Anwendung die Bestimmung der Orientierung des Kopfes des Benutzers
ohne dabei die Kopfform des Anwenders kennen zu müssen.

Da Tracking mit einem genauen Modell präziser ist als die generalisierte Variante,
führen wir eine Methode ein, die es erlaubt die Form des Objekts an die aktuelle Instanz
anzupassen. Wir benutzen diese Methode um die Form und Haltung der Hand eines
Benutzers genau bestimmen zu können. Dafür werden nur wenige Tiefenbilder benötigt.

v

Contents

Abstract iii

Zusammenfassung v

Contents vii

I Introduction 1

1 Introduction 3
1.1 Overview . 3
1.2 Motivation to Generalize . 6
1.3 Thesis Outline . 8

II 2D Template Tracking 11

2 2D Template Tracking – From Energy Minimization to Learning 13
2.1 Motivation . 13
2.2 Related Work . 14
2.3 2D Template Tracking . 15

2.3.1 Objective Function . 16
2.3.2 Learning a Linear Predictor 18
2.3.3 Tracking with Linear Predictor 19

2.4 Conclusion . 19

3 Improvements on the Learning-based 2D Template Tracker 21
3.1 Motivation . 21
3.2 Related Work . 22

3.2.1 Comparison of Deformable Trackers 23
3.3 Fast Learning Strategy . 24

3.3.1 Reformulation . 25

vii

3.3.2 Dimensionality Reduction . 31
3.4 Deformable Template Tracking . 38

3.4.1 Deformable Model . 38
3.4.2 Tracking with Linear Predictor 38
3.4.3 Comparison . 39

3.5 Qualitative Results . 43
3.6 Conclusion . 47

III 3D Tracking with Depth Images 49

4 Chameleon Tracker – A Multi-Forest Approach 51
4.1 Motivation . 51
4.2 Related Work . 52
4.3 Generalizing the Tracker . 53

4.3.1 Reformulating the Objective Function 53
4.3.2 Learning a Tracker . 54
4.3.3 Tracking with Forests . 56

4.4 Registration on Different Domains 56
4.4.1 2D Template Tracking . 56
4.4.2 3D Object Tracking . 59

4.5 Conclusion . 68

5 Versatile 3D Tracker with Online Learning Capabilities 69
5.1 Motivation . 69
5.2 Related Work . 70
5.3 3D Temporal Tracker . 71

5.3.1 Learning from One Viewpoint 73
5.3.2 Tracking an Object . 74
5.3.3 Online Learning . 75

5.4 Experimental Results . 75
5.4.1 Robustness . 76
5.4.2 Tracking Time and Computational Cost 82
5.4.3 Memory Consumption . 82
5.4.4 Scalability to Multiple Objects 82
5.4.5 Learning Time . 83
5.4.6 Failure Cases . 83

5.5 Qualitative Results . 84
5.6 Conclusion . 84

6 3D Head Pose Estimation 87
6.1 Motivation . 87
6.2 Related Work . 88
6.3 Tracking Framework . 90

6.3.1 Initialization . 91
6.4 Generalized Model-based Tracker 92

6.4.1 Common Structure . 92
6.4.2 Camera Views . 92

viii

6.4.3 Learning Dataset . 93
6.4.4 Occlusion Handling . 94
6.4.5 Learning the Forests . 94
6.4.6 Tracking . 95
6.4.7 Failure Detection . 95

6.5 Subject-Specific Online Learning . 96
6.6 Multi-Camera System . 96
6.7 Experimental Results . 98

6.7.1 Robustness . 98
6.7.2 Efficiency . 108

6.8 Qualitative Results . 109
6.9 Conclusion . 110

7 Hand Shape Personalization as Prior to Hand Tracking 117
7.1 Motivation . 117
7.2 Related work . 119
7.3 Hand Shape Calibration . 120

7.3.1 Shape and Pose Model . 120
7.3.2 The Golden Energy . 121
7.3.3 Objective Function . 122
7.3.4 Levenberg-Marquardt Optimization 123

7.4 Experimental Results . 126
7.4.1 Synthetic Ground Truth . 127
7.4.2 Marker Localization . 128
7.4.3 NYU Dataset . 129
7.4.4 Dexter Dataset . 129

7.5 Qualitative Results . 131
7.6 Conclusion . 131

IV Conclusion 135

8 Conclusion 137
8.1 Future Directions . 137

8.1.1 Deformable Object . 137
8.1.2 Object Class . 137

A Authored and Co-authored Publications 139

ix

List of Figures

2.1 A template is represented by a set of regularly placed sample points
located at xs. Its pose is parameterized through the displacements of the
four corner points represented by the vectors {(δxc, δyc)}4

c=1 from its
initial state to the transformed. 15

2.2 For every frame in the video sequence, the tracker follows a three step
proceduce where the algorithm (1) utilizes the location of the template
from the previous frame; (2) finds the relative transformation between
consecutive frames; and, (3) updates the current location of the template
using the relative transformation. 16

2.3 Visual representation of the objective function between two consecutive
frames where we are estimating for µt+τ by finding the difference in
parameter δµ between µt and µt+τ . 17

3.1 (a) Comparison of the necessary learning time with respect to the num-
ber of sample points used within the template for the approach proposed
by Jurie and Dhome [65], by Holzer et al. [58] (ALPs) and our approach.
(b) The corresponding speed-up in learning obtained by our approach.
(c) The tracking time per frame with respect to the number of sample
points used for the template. 27

3.2 (a) The time necessary to update an existing tracker with respect to
number of update samples. This update can be performed in parallel
with tracking. (b) The corresponding improvement in success rates with
increasing number of updates. 28

3.3 The dataset used for synthetic experiments. 29
3.4 Comparison of the approach of Jurie and Dhome [65], Holzer et al. [58]

(ALPs), Benhimane et al. [13] (ESM), as well as our approach with and
without normalization, and with updated predictors. We consider four
different types of motions as specified. The success rate indicates the
percent of successful estimation of the applied motions. 31

xi

LIST OF FIGURES

3.5 Comparison of the success rate in tracking with respect to the number
of sample points for the approach of Jurie and Dhome [65], as well as
our approach with normalization and with updated predictors. 32

3.6 Comparison of our approach to the approach of Jurie and Dhome [65]
with respect to sensitivity to noise in tracking. (a) shows the success rate
for different noise levels. (b) shows the average error in the predicted
corner points of the template. 33

3.7 Comparison of timings for the approach of Jurie and Dhome [65] (JD),
Holzer et al. [58] (ALPs), and ours (DCT-x). (a) Comparison of learning
time. (b) Obtained speed-up of our approach with respect to Jurie and
Dhome [65]. (c) Comparison of tracking time. 34

3.8 Evaluation of learning time depending on the number of training sam-
ples used for training. (a) Learning time of our approach (DCT-x) in
comparison to the approach of Jurie and Dhome [65] (JD) and (b) the
speed-up obtained by our approach with respect to the number of DCT
coefficients used for training. The experiments were performed with a
template-size of 150×150 pixels, where 22×22 sampling points were
used. 35

3.9 Comparison of tracking performance for the approaches proposed by
Jurie and Dhome [65] (JD), Holzer et al. [58] (ALPs), Benhimane et
al. [13] (ESM), and our approach (DCT-x). Four different types of
motions are considered – (a) translation, (b) in-plane rotation, (c) scale
and (d) out-of-plane rotation. The experiments were performed with
a template size of 150×150 pixels, where 20×20 sampling points are
used for JD, ALPs and our approach. ESM uses the complete template.
For training we used 1200 training samples. 36

3.10 Evaluation of tracking success rate with respect to the number of training
samples. The left graph shows success rates for random translations in
the range of 30 to 40 pixels while the right one shows them for random
translations in the range of 35 to 45 pixels. For these experiments we
used templates with 22×22 sample points. 37

3.11 Comparison of sensitivity to noise for the approach proposed by Jurie
and Dhome [65] and our approach. 37

3.12 This shows the (a) tracking robustness, (b) learning time and (c) tracking
time with respect to the number of sample points ns = K × K when
using different learning modalities – JD [65], HP [62] and DCT [59].
Using the optimum 26×26 = 676 sample points arrangement, we can
learn the template in 353.38 ms and track in 0.87 ms. 40

3.13 Comparison of tracking robustness between rigid linear predictor (RLP-
JD) [65], and the deformable linear predictor (DLP) using different
learning approaches – JD [65], HP [62] and DCT-81 [59] with nr = 81
coefficients. It evaluates using (a-d) rigid as well as non-rigid transforms
using FFD with (e) 5×5 and (f) 9×9 control points on the entire image
where the x-axis shows the maximum control point displacement. Note
that 5×5 and 9×9 does not refer to the control points of the template
but rather to the deformation of the entire image. 42

xii

LIST OF FIGURES

3.14 These graphs plot the resulting average distance error (in pixels) of the
tracked points to its ground truth from the three sequences. 43

3.15 These figures show the learned template and the worst results from [104]
as well as our approach. For each pair of images, the rectangular image
on the left is a frame from the video sequence while the square image on
the right is the backprojected template using our approach. Moreover,
the ten points in all these images are labelled with green for ground
truth, blue for the results from [104] and yellow for our results. 44

3.16 Qualitative evaluation of the fast learning strategies as an application to
track multiple templates in (a-b) and an application to mobile devices in
(b-d). 45

3.17 Qualitative evaluation of the deformable tracker as an application to
template tracking in (a-b) and an application to track face expressions
in (c-d). 46

4.1 These plots show the tracking robustness of our algorithm with varying
nr (15, 20, 25, 30) and compare it with linear predictor (LR) [65] under
different (a-d) transformations, (e) levels of Gaussian noise and (f)
percentage of occluded region. 58

4.2 Qualitative results of our 2D template tracking algorithm – (a) tracking
with perspective transform, (b) tracking with partial occlusion, and (c-d)
tracking under strong illumination changes with a time-lapse during
sunset in (d). 60

4.3 These images show the frames (a) when our approach becomes unstable
in the driller sequence due to the lack of depth data, and (b-c) when ICP
fails in the cat and bunny sequences. Note that the object of interest is
marked in red. 63

4.4 The first column shows the setup of the four sequences that are used to
evaluate the 3D tracking algorithm where the object of interest is mark
in red; the second shows the mean distance error for each sequence
using LineMod [54] where their peaks indicate detection failures, PCL’s
ICP [1] where ICP fails at frame 116 in (c) and frame 72 in (d), and our
approach; and, the last row shows our tracking results in the correspond-
ing depth image. 64

4.5 These images show examples of our 3D tracking algorithm where the
actor (a) plays with the cat; (b) picks it up; then, (c) drops it. More
examples are in the Supplementary Materials. 65

4.6 Qualitative evaluation on the 3D model-based tracker. Note that only
the depth image is used for tracking. 66

4.7 Qualitative evaluation on the 3D model-based tracker. Note that only
the depth image is used for tracking. 67

5.1 The geodesic grids, which locate the camera around the target object,
are derived from recursively dividing an icosahedron with 12 vertices to
(a) 42, (b) 162, (c) 642 and (d) 2562 vertices. 72

xiii

LIST OF FIGURES

5.2 First row: occluded object when tracking. Second row: learned views
where the occluded region is in blue and the points on the object, which
are projected in the first row, are in yellow. Note that (a-b) are not affect
by occlusion while (c-d) are affected. 73

5.3 (a) Success rate and (b) convergence rate of our proposal with varying
sizes of the learning dataset compared against CT [133]. 76

5.4 (a) Success rate and (b) convergence rate of our proposal with different
number of camera views in the geodesic grid compared against CT [133]. 77

5.5 (a) Success rate, and (b) tracking time and number of trees with respect
to the angular distance threshold within the neighborhood of the camera
location that is used in tracking. 77

5.6 Tracking comparison on the dataset of [133] among ICP [1], CT [133],
and our approach with and without the occlusion handling sample points
selection. 80

5.7 Learning time and memory usage with respect to (a) the number of
camera views and (b) the size of the learning dataset. 81

5.8 Evaluation on 108 moving objects in a 640×480 depth image. 83
5.9 Qualitative results of the (a) robustness to occlusion and (b) scalability

to track multiple objects. 85
5.10 Qualitative results of the online learning framework applied on (a) an

object and (b) a head. 86

6.1 The 3D head models from different subjects from the database of [39]
is rendered at a constant v-th camera view, where the common structure
is highlighted in red. 92

6.2 From different camera views, these are examples of the rendered depth
images of a head model. Depending on the visibility of the common
structure (in red), (a) are poses used for learning while (b) are not. . . 93

6.3 Some RGB-D frames of a sequence in the BiWi Kinect Head Pose
Database [39]. Note that the depth images show the 3D bounding box
from our head pose estimation results. 99

6.4 Using the evaluation on the BiWi Kinect Head Pose Database [39],
these show the success rates with varying thresholds for the error in
translation (in mm). 102

6.5 Some depth frames of a sequence in the ETH Face Pose Range Image
Dataset [22]. Note that the depth images show the 3D bounding box
from our head pose estimation results. 104

6.6 Failure case on the ETH Face Pose Range Image Dataset [22]. 105
6.7 Success rate with varying maximum depth in learning the trees. 106
6.8 Success rate with varying angular threshold (τn) in tracking. 106
6.9 Success rate with varying percentage of predictions to aggregate in

tracking. 107
6.10 (a-b) Convergence rate of the tracker using the synthetic evaluation such

that it plots the error for translation and rotation at the i-th iteration.
(c-d) Given the number of iterations, the plots show the average error
on the evaluation of the BiWi Kinect Head Pose Database [39]. 108

xiv

LIST OF FIGURES

6.11 These video sequences are taken while (a) detecting the head from
multiple users and (b) observing a subject drinking tea. 111

6.12 These video sequences are taken while observing (c) having a Skype
conversation with multiple subjects and (d) a subject wearing a mask
and moves around. 112

6.13 These video sequences are taken while observing (e) a subject jumping
and (f) a subject dancing. 113

6.14 Multi-camera system with the Primesense PSDK 5.0 Device (top) and
the Microsoft Kinect 2.0 (bottom). These video sequences are taken
while (a) the subject is not visible in one of the cameras. 114

6.15 Multi-camera system with the Primesense PSDK 5.0 Device (top) and
the Microsoft Kinect 2.0 (bottom). These video sequences are taken
while (b) the subject jumps as seen from two cameras. 115

7.1 We show how to fit a deformable hand shape basis model [72] to a
small set of depth images. Our method jointly optimizes over the shape
β ∈ RK and F poses θ f to maximize the model’s alignment to the data
in F depth images. The initial hand poses are automatically determined
by a hand tracker that uses the mean shape βmean, but there is clearly
poor alignment between model and data. After our optimization to
obtain personalized shape βpersonalized, the alignment is much better,
with remaining errors largely due to sensor noise. 118

7.2 Golden energy as a function of x-axis translation, for different rendered
tile sizes W × H. Note the globally smooth nature but local discon-
tinuities, which occur at an increasingly small scale with larger tile
sizes. 124

7.3 (a) Visualization of the Jacobian with respect to pose parameters θ. Each
image is reshaped to form a column of J. (b) Rows in Jsub represent
subterms in the energy; columns represent the pose parameters for one
frame. (c) Jacobian of the full lifted energy E′, including the shape
parameters β. (d) Sparsity structure of J>J. 125

7.4 Convergence of E′ for the five subjects in the FingerPaint dataset. Dots
represent successful Levenberg-Marquardt iterations. 127

7.5 Left: Optimizing E′ improves the estimate of β1 which roughly corre-
sponds to scale. Right: The same for the remaining coefficients of β.
Dots show successful Levenberg-Marquardt steps. 128

7.6 Heat maps showing the distance of each vertex to the corresponding
ground truth position, for the (a) initial and (b) final iteration of the
synthetic experiment (Figure 7.5). 128

7.7 Marker localization error on NYU dataset. 130
7.8 Marker localization error on Dexter dataset. The results for this dataset

have been normalized so that each of the 7 sequences has equal weight. 130
7.9 Qualitative example of fit difference between template (left and top-

middle of each set) and personalized model (bottom-middle and right of
each set) for one subject of the NYU (top left), the only subject of the
Dexter (top right) and two subjects of the FingerPaint (bottom) datasets. 131

7.10 Classification error on FingerPaint dataset. 132

xv

LIST OF FIGURES

7.11 Calibration frames at initialization and after convergence of our person-
alization procedure. The template is the wrong shape for the female
subject, too small for the male and wildly too large for the two children.
After personalization, each model fits each user ‘like a glove’. The trun-
cated golden energy makes the system robust to errors in segmenting
the background. 132

xvi

List of Tables

5.1 Errors in translation (mm) and rotation (degrees), and the runtime (ms)
of the tracking results, evaluating with the synthetic dataset [28], of
PCL [119], Choi and Christensen (C&C) [28], Krull et al. [74], and our
approach with the model-based offline learning (Ours) as well as the
image-based online learning (Online). 79

6.1 Based on the evaluation on the BiWi Kinect Head Pose Database [39],
the error values compares the accuracy of different head pose estima-
tion algorithms [39, 108, 113, 122] against our trackers. For the other
methods, the failure case are the percentage of frames where the error
in the translation is above 20 mm for [108] or 50 mm for [39, 113, 122]. 101

6.2 Success rate of different methods where the error in translation is less
than 20 mm or the rotation angle is less than 20◦. The list of competing
methods are the same as Table 6.1. 103

6.3 Based on the evaluation of the ETH Face Pose Range Image Dataset [22],
the error values compare the accuracy of different head pose estimation
algorthms [22, 39, 93] against our tracker. The head pose from [22] is
represented through the face direction given as (θ, φ). 105

6.4 When evaluating one sequence of the BiWi Kinect Head Pose Database [39],
this is the comparison of the error in translation and rotation with differ-
ent focal lengths when rendering images for the learning dataset. Note
that the focal length of the sequence is 575.8. 107

6.5 Timings and the corresponding architecture for different head pose
estimation methods [22, 39, 93, 108, 113, 122]. It also includes the
timings for our three proposed tracking strategies with their learning
time, and for tracking in the multi-camera system. 109

7.1 Step sizes εk used in central differences (7.14). 127

xvii

Part I

Introduction

1

1
Introduction

1.1 Overview

With the constant emergence of affordable depth cameras as well as wearable and mobile
devices with depth sensors, the value of a real-time object pose estimation with 3D data
has found its way into mainstream. It uncovers a wide-range of applications such as
robotic perception, augmented reality (AR) and human-computer interaction.

The goal of object pose estimation is to estimate the 6 d.o.f. transformation of an
object. This includes 3 d.o.f. for translation and 3 d.o.f. for rotation. Algorithms that
aim at the same goal are classified into two categories. The first is the object detection
and pose estimation (alternatively, tracking-by-detection) that localizes the object of
interest in the scene and simultaneously approximate its pose. The other is an object
temporal tracker that relays the transformation from one frame to the next such that the
problem is simplified to refine the pose from the previous frame.

When we compare the two categories, the advantage of the former against the
latter is its independence from the previous frames. This implies that, when one of
the frames fail to estimate the correct pose, the succeeding frames are not affected by
this failure. Conversely, the latter utilizes the pose from the previous frames, which
make it vulnerable to tracking failures and loses the object on the next frames. On the
other hand, the advantage of a temporal tracker is the simplification of the problem to a
frame-to-frame pose refinement. Theoretically, this allows the tracker to be significantly
faster than the detector.

The complementary nature of the two allows them to be combined synergically.
Intuitively, when we personally interact with an object in a scene, we detect an object
and temporally track it across time. But in most object pose estimation framework, the
temporal tracker is not implemented. Although the temporal tracker is theoretically faster
than a detector, this does not hold in practice. Most robust temporal trackers [28, 74, 119]
requires approximately more than 100 ms to track an object with a GPU implementation.
Thus, when we have several independently moving objects in the scene, the time required
to track all of them drastically increases such that the real-time performance is lost.
Therefore, in practice, detecting objects in each frame independently becomes more
efficient.

3

CHAPTER 1: INTRODUCTION

Fast
Learner

A template tracker estimates
the homography of a

template in a sequence of
intensity images. Using a

temporal tracker, we operate
on updating the homography
from one frame to the next,

assuming that the location of
the template in the initial

frame is given. These
methods aim at attaining a

fast 2D temporal tracker with
a fast learning method.

Hence, the speeds enable
these approaches to learn
and track templates using

mobile devices.

Deformable
Tracker

Attempting to move farther
from the 2D rigid template

tracking with homographies,
we explore the possibility of

increasing the number of
control points that distorts

the template in order to
achieve a deformable tracker.

With more control points,
the distortion of the

template follows the 2D free
form deformation with cubic

b-splines interpolation.
Towards the end of this
work, we evaluate the

algorithm in the context of
tracking facial deformations.

Chameleon
Tracker

By observing the similarities
of the objective functions
from different registration

algorithms, we generalize our
learning-based tracker in

order to perform not only 2D
template tracking but also 3D
model-based tracking using
depth images. We boast the
high speed of 2ms per frame
with a single CPU core, which
is specifically a milestone for
3D trackers. Furthermore, we

also claim that this work is
the first learning-based 3D

tracker that estimates the 6
d.o.f. pose of a rigid object.

First-Authored PapersCo-Authored Papers

Type of Papers

4

1.1 OVERVIEW

Versatile
Tracker

Although the Chameleon
tracker is very fast with a

very low computational cost,
it has a lot of constraints in

other aspects. This work
alleviates these constraints
by generating a tracker that
has a fast learning time, low
memory footprint and more
robust to occlusions but still
preserving the tracking time

and computational cost.
All the advancement in

performance led the tracker
to achieve scalability with

respect to multiple objects at
a real-time framerate.

3D Head Pose
Estimation

An interesting end-to-end
application of the versatile
tracker is the 3D head pose
estimation. In this context,

the tracker is initialized by a
face detection through the

RGB image. The tracker then
converts this location into

the 3D space using the depth
image and continuously

estimate the 6 d.o.f. pose of
the head in the scene.

Contrary to learning a tracker
for a specific object, the

challenge here is to learn a
tracker that generalizes for

an arbitrary user.

Hand Shape
Personalization

The cost of generalizing a
tracker to estimate the pose
for a set of objects or users is

the decrease in tracking
accuracy. Given a set of
depth images, this work
proposed a calibration
procedure in order to

personalize a detailed hand
model for a specific user.

Thereafter, the tracker takes
this model and approximate
its deformed pose. Notably,
this work is the first to show

that a personalized model
improve the accuracy in

deformable hand tracking.

Linear Predictors Random Forest Energy Minimization

Type of Algorithms

5

CHAPTER 1: INTRODUCTION

In this thesis, we focus on achieving an object temporal tracker that scales well with
a large number of objects in the scene. Our tracker efficiently tracks in less than 2 ms
per frame per object with only one CPU core. At the same time, it is proven to be robust
against clutter and large occlusions.

As a starting point, we extensively explore the learning-based 2D template track-
ers [60, 61, 62, 65, 132] and investigate the similarity of its 2D registration with 3D
registration [133]. From there, we discovered the first learning-based temporal tracker
that relies on depth images and estimates the 6 d.o.f. pose of an object. An essential
attibute of such approach is its tracking time of 2 ms.

We then continue studying this method and simplify it to consider other aspects of
the algorithm [134]. By changing the objective function and the learning strategy, we
accomplish a versatile tracker that is capable of tracking 108 objects in the scene at
30 fps with 7.4 MB memory consumption of each object, and achieving a remarkable
robustness against large occlusions. It also decreased the learning time by two orders of
magnitude. As a consequence, we also introduce an online learning scheme where the
algorithm tracks and learns the object for each frame.

The temporal tracker has been further studied to estimate the head pose. By initial-
izing the tracker through a face detector [143], we temporally relay the tranformation
from one frame to the next [135]. The challenge in this case is to acquire a tracker that
can estimate the head pose for an arbitrary user. In effect, this work is the successful
attempt to lean and track a class of objects.

Alas, the effects of generalizing the tracker is a decrease in accuracy. Thus, it would
be more beneficial to track an oject from a model specified to the object of interest. We
then propose a fast and reliable calibration procedure to acquire a detailed shape of an
object within a class. This work is used in the context of hand pose estimation in order
to personalize a detailed hand shape for a specified user [131]. Towards the end of this
work, we have quantitatively proven that tracking with a calibrated model generate a
more accurate pose.

Finally, an overview of all the contributions included in this thesis is illustrated
on pages 4-5. In addition, the complete list of publications is in Appendix A. No-
tably, different methods of the object temporal tracker [133, 134] and the head pose
estimation [135] have been presented in Demo sessions of CVPR 2014, ECCV 2014
and CVPR 2016. After combining the temporal tracker with an object detector and
pose estimator, our first seamless object detection and tracking was demonstrated at
CVPR 2016. In this framework, the object detection and pose estimation automatically
initialize the temporal tracker for multiple instance of the object present in the scene. It
highlights the low latency of the tracker such that the users cannot sense the delay in
tracking.

1.2 Motivation to Generalize

The motivation of the work is to encompass different aspects in order to transition from
our theoretical ideas towards solving problems of the real-world applications. From
one chapter to the next, this thesis narrates a constant improvement and a constant
simplification of the algorithm with the goal of achieving generalization – “make

6

1.2 MOTIVATION TO GENERALIZE

(something) more widespread or widely applicable”1.
A typical pipeline to reach practical applications goes through the theory which

is a collection of principles that explains or describes a phenomenon, and algorithm
engineering that implements and optimizes the theory. Although algorithm engineering
bridges the gap between algorithm theory and practical applications, the thesis focuses on
strengthening the theoretical foundation. Evidently, we do not devalue the importance of
a good implementation. However, we believe that the only way to achieve generalization
is through a strong theoretical foundation.

In this context, the goal of generalization manifests in different forms. We begin by
generalizing the 2D template tracking from [8, 48, 60, 61, 62, 65] for a generic learning-
based registration problem. The idea is based on the observation of the similarities
between the objective functions from different registration tasks. As a result, while
moving away from the input RGB images of the 2D template trackers and going to 3D
data, this theory led to the emergence of the first 3D learning-based temporal tracking
approach that learns solely from the rendered synthetic images of the object’s 3D CAD
model and estimates the full 6 d.o.f. pose of the object from real depth images. Notably,
the tracker performs domain generalization where it learns from synthetic images or
perfect data, and tracks on real images with sensor noise, missing data, clutter and
occlusions. In addition, after learning from a specific camera model, the tracker also
generalizes to any depth sensor, i.e. without the requirement to use identical camera
models with similar intrinsic parameters as the learned camera model.

When tracking the 3D object, the next goal is generalizing the algorithm to attain the
same robustness and accuracy for different objects as well as for different environmental
scenarios. This is an example where a strong theoretical foundation of the algorithm
becomes essential. If we engineer the algorithm for an object or some objects, it loses
its capacity to perform in the same way for other objects, which effectively constraints
the approach to the specified objects.

Regarding the environmental factors, we need to handle occlusions from the object’s
surroundings. This frequently occurs in bin-picking scenarios where the objects are on
top of each other or tracking hand-held objects where the object is partially occluded
by the hand. After observing different kinds of occlusions on the images, we theorize
that occlusions are 2D obstructions from an edge of the object. Following this idea, we
adapt the learning component of the tracker and obtain remarkable results in achieving
robustness to large occlusions.

When we step back and look at the big picture, the tracker must not be constrained
to a specific hardware requirement and must generalize to any computational device.
A simple example of such is the implementation on GPU for a real-time performance.
With the emergence of depth sensors specifically suited for mobile devices, the real-
time performance on GPU on a desktop computer does not translate to the real-time
performance on mobile devices. Another aspect to consider is the fact that object
pose estimation is merely a component of a larger framework. For instance, in an AR
application, tracking is used as input to superimpose 3D models on the user’s view.
Tracking then is not the final result but rather an initial information. If tracking requires a
large computational power, real-time performance on AR is no longer possible. Contrary
to this, our tracker runs in less than 2 ms per frame per object using a single core CPU.
Therefore, we solve this generalization by running an extremely fast tracker with the

1Definition of generalize from Oxford dictionary.

7

CHAPTER 1: INTRODUCTION

minimum computational requirement possible.
Other than computational power, we should also consider the memory footprint

since this is a learning-based approach. This aspect is important when we track multiple
objects at the same time. We explicitly address this aspect so that the tracker only utilize
approximately 7.4 MB per object. Thus, considering that we are only using one core,
this work relies on its theoretical merits in order to achieve the robustness and accuracy
in a very short time with a small memory footprint.

In addition to the 3D object tracker, we also discuss the generalization of the head
pose estimation to track an arbitrary user. Thus, when a user is in front of a camera, we
can immediately initialize the tracker to temporally estimate the head pose. Conversely,
we also propose a calibration procedure for the hand pose estimation. In this case,
the calibration is done prior to tracking, where the algorithm deforms the mean hand
model in order to generate a detailed hand shape model. Thereafter, the tracker uses the
resulting personalized model to ensure a good fit to user’s hand on the depth image.

1.3 Thesis Outline
For the next chapters, we provide a short overview and the corresponding related works
associated to them. Most of the methods and materials of the thesis are published or
under-submission for a major conference or journal. Note that the complete list of
papers is listed in Appendix A.

Chapter 2. We review the 2D template tracking approach using linear predictors [65]
with the derivation of the objective function from [8, 48]. This is our starting point.

Chapter 3. Based on [65], this chapter discusses two main improvements. One deals
with instantaneous learning procedures to learn templates on-the-fly while the other
discusses on the extension to 2D deformable trackers. The related works are:

• Holzer, S., Ilic, S., Tan, D.J., Navab, N.: Efficient learning of linear predictors
using dimensionality reduction. In: Asian Conference on Computer Vision, pp.
15–28. Springer (2012) – Best Application Paper Honorable Mention

• Holzer, S., Pollefeys, M., Ilic, S., Tan, D.J., Navab, N.: Online learning of linear
predictors for real-time tracking. In: European Conference on Computer Vision,
pp. 470–483. Springer (2012)

• Tan, D.J., Holzer, S., Navab, N., Ilic, S.: Deformable template tracking in 1ms.
In: British Machine Vision Conference. Citeseer (2014)

Chapter 4. After observing the similarites of the objective function from 2D image
registration and 3D point-based registration, we look into generalizing the work of
[8, 48, 65] to perform a generic learning-based registration using random forest [21]. As
a result, we evaluated the approach as a 2D template tracker as well as a 3D model-based
tracker. The former is similar to [60, 62, 65] but has the advantage of performing better
in the presence of occlusion and extreme global illumination changes. On the other
hand, the latter has the largest impact in relation to its related works. To the best of our

8

1.3 THESIS OUTLINE

knowledge, this is the first learning-based temporal tracking approach that operates on
depth images and estimates the complete 6 d.o.f. pose of an object. The other approach
that performs the same goal is the iterative closest point algorithm (ICP) [15, 118, 123],
which is an energy-based approach. Another interesting attribute of this apporach is the
tracking time of 2 ms per frame with only one CPU core. The related works are:

• Tan, D.J., Ilic, S.: Multi-forest tracker: A chameleon in tracking. In: Conference
on Computer Vision and Pattern Recognition, pp. 1202–1209. IEEE (2014)

Briefly, we also discuss that the 2D tracker from this work is part of our tool tracking
framework for surgical application in:

• Rieke, N., Tan, D.J., Tombari, F., Vizcaino, J.P., di San Filippo, C.A., Eslami,
A., Navab, N.: Real-time online adaption for robust instrument tracking and
pose estimation. In: International Conference on Medical Image Computing and
Computer-Assisted Intervention, pp. 266–273. Springer (2015)

• Rieke, N., Tan, D.J., di San Filippo, C.A., Tombari, F., Alsheakhali, M., Bela-
giannis, V., Eslami, A., Navab, N.: Real-time localization of articulated surgical
instruments in retinal microsurgery. Medical image analysis (2016)

• Rieke, N., Tan, D.J., Alsheakhali, M., Tombari, F., di San Filippo, C.A., Belagian-
nis, V., Eslami, A., Navab, N.: Surgical tool tracking and pose estimation in retinal
microsurgery. In: International Conference on Medical Image Computing and
Computer-Assisted Intervention, pp. 266–273. Springer (2015) – Young Scientist
Award

In the succeeding chapters, we primarily focus on the 3D tracker due to its appeal to a
wide-range of new applications that includes robotic perception, augmented reality and
human-computer interaction.

Chapter 5. Although the 3D tracker is fast, it does not consider other aspects such as
memory consumption, learning time, robustness to large occlusions and scalability to
multiple objects, that are useful in terms of applications. This work explicitly addresses
these problems while keeping the tracking time low. We achieve this by re-interpreting
the objective function as a point-to-plane registration problem and taking occlusion into
account. With these, we were able to simplify the learning procedure which takes two
orders of magnitude faster than the previous work. Due to the fast learning strategy, we
also introduce an online learning procedure where we begin by identifying the object
of interest in the first frame, and continuously track and learn in the succeeding frames
in order to capture different views of the object. Using only 8 CPU cores, the online
learning framework runs at 30 fps. Notably, the model-based tracker attains a memory
footprint of about 7.4 MB and scales up to tracking 108 objects present in the scene at
30 fps. The related works are:

• Tan, D.J., Tombari, F., Ilic, S., Navab, N.: A versatile learning-based 3d temporal
tracker: Scalable, robust, online. In: International Conference on Computer Vision
(2015)

9

CHAPTER 1: INTRODUCTION

Chapter 6. When we thought of utilizing the temporal tracker as a head pose esti-
mation, we realize the importance of generalizing the tracker to run for different users.
When any user is in front of the camera, the tracker can be initialized and must tempo-
rally estimate the 6 d.o.f. head pose. Thus, based on a set of 3D head models, we learn
a random forest to accomplish this task. Notably, this is the first attempt to generalize
the tracker for a class of objects instead of a specific model for a given user. However,
a generalized tracker is constrained to track the facial structure of the user since this
is common structure that is visible in both the models and the real depth images. As
a consequence, the generalized tracker cannot handle extreme poses where the facial
structures are no longer visible. Due to this, we also propose a subject-specific online
learning approach that captures the unique head structure of the user. In this way, the
head can rotate and track the regions where the generalized tracker had not learned.
Another option is to build a multi-camera system so that, if the structure to track in
not visible in one or more cameras, the other cameras can still track the head pose.
Interestingly, the tracker is well-suited for such system and can aggregate the predictions
from different cameras with ease. The related works are:

• Tan, D.J., Tombari, F., Navab, N.: A combined generalized and subject-specific
3d head pose estimation. In: International Conference on 3D Vision. IEEE (2015)

• Tan, D.J., Tombari, F., Navab, N.: Real-time accurate 3d head tracking and pose
estimation with consumer rgb-d cameras. International Journal of Computer
Vision (2017) – Submitted

Chapter 7. Considering that a generalized tracker tries to utilize a mean model that
averages the structure of different users, this work proposes a fast and reliable calibration
procedure that captures a detailed personalized shape model of a specific user. In the
context of hand pose estimation, the mean model is replaced by the personalized model
in order to improved the accuracy of a generalized tracker. This work follows an energy-
based minimization on the golden energy from [124] which is a pixel-wise difference
between the input depth image and the rendered depth image. The related works are:

• Tan, D.J., Cashman, T., Taylor, J., Fitzgibbon, A., Tarlow, D., Khamis, S., Izadi,
S., Shotton, J.: Fits like a glove: Rapid and reliable hand shape personalization.
In: Conference on Computer Vision and Pattern Recognition (2016)

Chapter 8. We finally conclude the thesis with the future directions.

10

Part II

2D Template Tracking

11

2
2D Template Tracking – From

Energy Minimization to
Learning

2.1 Motivation

Template tracking is an extensively studied field in computer vision. The main task of
template tracking is to follow a template in an image sequence. This is implemented by
estimating the parameters of the template warping function that defines how the pixel
locations, occupied by the template, are warped to the next frame of the image sequence.
Examples for such warping functions are affine transformations or homographies.

Recently, tracking-by-detection methods became popular since they reached a state
where they are able to track close to or at real-time performance. In frame-to-frame
template tracking, image intensity differences between template areas of two consecutive
frames have to be minimized in terms of the template warping parameters. Most of them
are based on energy minimization [7, 8, 13, 24, 36, 48, 85, 87, 125] and in many cases,
an analytical derivation of the Jacobian is used in order to provide real-time tracking
capabilities. Alternative approaches are based on learning [47, 58, 65, 66, 90, 92, 102,
148] where the relation between image intensity differences and template warping
parameters is learned. While energy minimization is flexible at run-time, learning-based
methods have proven to allow much faster tracking.

Jurie and Dhome [65] proposed a successful learning-based template tracker which
learns linear predictors to efficiently compute template warp parameter updates. This is
very fast in tracking and tends to avoid local minima.

The motivation of this chapter is to derive the learning-based approach as proposed
by Jurie and Dhome [65]. We consider this approach as a starting point for which we
improve in Chapter 3, and we generalize to different registration problems in Chapter 4
so to not only perform a 2D template tracker but also a 3D model-based tracker that
estimates the 6 d.o.f. pose of a rigid object.

13

CHAPTER 2: 2D TEMPLATE TRACKING – FROM ENERGY MINIMIZATION TO
LEARNING

2.2 Related Work

The existing template tracking approaches can be categorized in mainly three different
sets of methods: tracking-by-detection (TBD) [51, 52, 53, 57, 100], template tracking
based on energy minimization [7, 8, 13, 24, 32, 36, 48, 85, 87, 112, 125], and methods
that utilize learning [47, 65, 66, 90, 92, 102, 148]. While tracking-by-detection methods
are able to track a template over the whole image independent of the previous position,
they hardly achieve the processing speed of frame-to-frame tracking. Additionally, they
often require a time consuming training procedure and are limited in their possible pose
space. For frame-to-frame tracking, energy minimization-based approaches are generally
more flexible at run-time by allowing fast creation and modification of templates,
while learning-based approaches enable higher tracking speed. Looking at tracking
performance, it has been shown in the past that learning-based approaches outperform
methods based on energy minimization. Jurie et al. [66] demonstrated that linear
predictors are superior to Jacobian approximation and Holzer et al. [58] showed an
experiment where linear predictors are superior to Efficient Second-order Minimization
(ESM) [13].

Tracking-by-Detection-based approaches. Some of the most prominent work on
patch-based TBD was recently proposed by Hinterstoisser et al. [51, 52, 53]. Their
former two methods, called Leopard [51] and Gepard [52], use the patch around detected
keypoints for matching and pose estimation. While these methods enable near real-time
performance, they heavily rely on the repeatability of the underlying keypoint detector.
Additionally, they apply template tracking approaches for pose refinement, which means
that these approaches also benefit from advances in template tracking. To overcome the
dependency on keypoint detectors, they proposed a template matching based approach
(DOT) [53]. However, this requires to learn templates for every possible pose, which
restricts the application space and makes it comparably slow in contrast to frame-to-
frame tracking. Özuysal et al. (FERNs) [100] extract keypoints and match them using a
classification-based approach by estimating the probability on which class the keypoints
belong to. Although this gives real-time performance, it includes a time consuming
learning stage and needs a sufficient number of keypoints visible. This makes it less
useful to track small regions. Holzer et al. (DTTs) [57] proposed a detection based
approach which builds on finding closed contours and matches them using a similar
approach as [100] used for keypoint matching. However, this includes a time consuming
learning stage and detection speed was reported at 10 fps only.

Energy minimization-based approaches. Numerous approaches have followed the
work of Lucas and Kanade [85]. They consist of different update rules of the warp
function [7, 24, 36, 48, 85, 125], handling of occlusions and illumination changes [48],
as well as considering different orders of approximation of the error function [13, 87].
The different update rules of the warp function can be classified into four types, namely,
the additive approach [85], the compositional approach [125], the inverse additive
approach [24, 48] and the inverse compositional approach [7, 36], where the inverse
approaches switch the roles of the reference and current image. As a consequence, it is
possible to transfer some of the computation to the initialization phase, which makes
the tracking computationally more efficient. Compensation of illumination changes and

14

2.3 2D TEMPLATE TRACKING

Initial

Transformed

Sample Point

Figure 2.1: A template is represented by a set of regularly placed sample points located
at xs. Its pose is parameterized through the displacements of the four corner points
represented by the vectors {(δxc, δyc)}4

c=1 from its initial state to the transformed.

occlusions was addressed by Hager and Belhumeur [48]. Faster convergence rates as
well as larger convergence areas can be additionally obtained by using a second-order
instead of a first-order approximation of the error function [13, 87]. A more detailed
overview of energy-based tracking methods is given by Baker and Matthews [8].

Learning-based approaches. In contrast to energy minimization approaches, Jurie
and Dhome [65] proposed a method that learns linear predictors using randomly warped
samples of the initial template while using the learned linear predictors to predict the
parameter updates in tracking. This simplifies the tracking process from the previous
approach by using a matrix vector multiplication. Here, the “Jacobians” are computed
once for the whole method. Furthermore, the same authors extended their approach to
handle occlusions [66]. Other authors such as Gräßl et al. [46] demonstrated how linear
predictors can be made invariant to illumination changes. In addition, to further increase
accuracy in tracking, they [47] also formulated a method on how to select the points for
sampling from the image data. Zimmermann et al. [148] use numerous small templates
and track them individually. Based on the local movements of these small templates,
they estimate the movement of a large template. Holzer et al. [58] start with a small
template and grow it until a large template is constructed online. This idea showcased a
way to adapt existing linear predictors to modify the shape of a template at run-time.
Mayol and Murray [92] stepped back from linear predictors by presenting an approach
that fits the sampling region to pre-trained samples using general regression.

2.3 2D Template Tracking

A frame-to-frame tracking algorithm estimates the transformation parameters of a
template throughout a sequence of images. Let us assign It and Tt as the image and
transformation at time t, respectively. Without loss of generality, the template is defined

15

CHAPTER 2: 2D TEMPLATE TRACKING – FROM ENERGY MINIMIZATION TO
LEARNING

1

Given

2

Find

3

Update

Given the transformation
from the previous frame

Find the relative transformation
that minimizes the objective function

Update the location
of the template

Figure 2.2: For every frame in the video sequence, the tracker follows a three step
proceduce where the algorithm (1) utilizes the location of the template from the previous
frame; (2) finds the relative transformation between consecutive frames; and, (3) updates
the current location of the template using the relative transformation.

as a w× h region on an image with ns = w · h pixels. Notably, this method is not
restricted to this sample point arrangement or rectangular shapes.

Instead of using the full-resolution template, we apply a uniform subsampling as
shown in Figure 2.1 to obtain a grid of ns sample points written as {xs}ns

s=1 at its initial
state. The intensities at the sample points are concatenated into the intensity vector
i = [I(xs)]

ns
s=1.

Assuming a rigid transformation of the template, the template transformation T is
a homography with 8 d.o.f. to represent the current perspective distortion of a planar
template. Since a set four corresponding points is sufficient to estimate a homography,
the location of the template is described through its four corners {(xc, yc)}4

c=1. These
are aggregated to form the transformation vector µ = [x1, y1, x2, y2, x3, y3, x4, y4]

>.
In contrast to tracking-by-detection, frame-to-frame tracking propagates the transfor-

mation from one frame to the next. For instance in Figure 2.2, the transformation from
the previous frame T1 is given. The problem then is diverted to estimate the relative
transformation between T1 and T2 in order to find T2. A similar process then applies to
all the subsequent frames.

2.3.1 Objective Function
The goal of frame-to-frame tracking is to update the parameters at t + τ using the
given parameters µt at time t [48]. Thus, we seek for the change in parameters δµ by
minimizing the registration energy

ε(δµ) =
∥∥∥i(µt + δµ, t + τ)− i(µt0

, t0)
∥∥∥2

(2.1)

16

2.3 2D TEMPLATE TRACKING

Fr
am

e
Template
Location

Image
Intensity

Template
Location

Image
Intensity

Difference in
Parameter

Difference in
Intensity

Pr
ev

io
u

s
Fr

am
e

C
u

rr
en

t
Template ParametersTemplate on the Image

Figure 2.3: Visual representation of the objective function between two consecutive
frames where we are estimating for µt+τ by finding the difference in parameter δµ
between µt and µt+τ .

that compares the intensities at the location of the tempaltes at t + τ and t0. Here, we
define

i(µ, t) = [It(T(µ) · xs)]
ns
s=1 . (2.2)

When comparing (2.1) to Figure 2.3, we assume that, at t, the parameters µt is at the
ground truth location of the template on the image such that

µt = arg min
µ

∥∥∥i(µ, t)− i(µt0
, t0)

∥∥∥2
(2.3)

is optimized. This implies that the intensities in i(µt, t) ≈ i(µt0
, t0), which is constant.

Using Taylor series approximation, the first term in (2.1) is expanded as

i(µt + δµ, t + τ) ≈ i(µt, t) + Jµ(µt, t)δµ + τ
∂i
∂t
(µt, t) (2.4)

where Jµt
= Jµ(µt, t) is the Jacobian matrix of i with respect to µ. A forward difference

approximation on ∂i
∂t (µt, t) simplifies the equation as

i(µt + δµ, t + τ) ≈ i(µt, t) + Jµ(µt, t)δµ + τ

[
i(µt, t + τ)− i(µt, t)

τ

]
(2.5a)

= i(µt, t + τ) + Jµ(µt, t)δµ . (2.5b)

Putting back (2.5b) to (2.1),

ε(δµ) ≈
∥∥∥i(µt, t + τ) + Jµt

δµ− i(µt0
, t0)

∥∥∥2
. (2.6)

17

CHAPTER 2: 2D TEMPLATE TRACKING – FROM ENERGY MINIMIZATION TO
LEARNING

In order to find δµ with the minimum ε, 5δµε is set to zero. After assigning ε̌ =

i(µt, t + τ) + Jµt
δµ− i(µt0

, t0) so that ε ≈ ‖ε̌‖2 = ε̌> ε̌,

5δµε ≈ 2ε̌ · 5δµ ε̌ = 0 . (2.7)

Since5δµ ε̌ = Jµt
is not necessarily zero, then

ε̌ = i(µt, t + τ) + Jµt
δµ− i(µt0

, t0) = 0 (2.8)

⇒ δµ = −J+µt
δi(µt, t + τ) (2.9)

where J+µ =
(

J>µ Jµ

)−1
J>µ and δi(µ, t) = i(µ, t)− i(µt0

, t0) as shown in Figure 2.3.

Similar to [65], we aim to replace the time-consuming −J+µt
, that defines the relation

between the parameter update δµ and the change in intensity δi. Instead, [65] learns a
linear predictor A offline such that tracking is simplified to the matrix multiplication of

δµ = A δi(µt, t + τ) (2.10)

with a constant matrix A.

2.3.2 Learning a Linear Predictor

At t = t0, the image It0 is randomly transformed through δµω where δµω is a small
random disturbances on the template’s corners. The transformed template mimics its
motion from the previous frame to the current frame. We then assign Iω as a transformed
version of the template such that T(δµω) · xs is the ground truth location of the sample
points on Iω . In effect, for every random set of values of δµω , this introduces a variation
of the image intensity differences δii = i(µt0 , ω)− i(µt0 , t0). Hence, with nω random
perturbation, the set of {(δiω, δµω)}

nω
ω=1 is formulated as our learning dataset.

Based on (2.10), an important property of A is that, for each element of the learning
dataset, δµω = Aδiω holds. Then, when concatenating the vectors to construct Y =[

δµ1, δµ2, · · · , δµnω

]
and H = [δi1, δi2, · · · , δinω], the relation Y = AH also holds.

It follows that A is learned by minimizing

arg min
A

nω

∑
ω=1
‖δµω −Aδiω‖2 (2.11)

which results in the closed-form solution [65]

A = YH>
(

HH>
)−1

. (2.12)

To improve invariance to illumination changes, normalization is used on the extracted
image data by imposing zero mean and unit standard deviation. As a consequence, zero
mean makes H lose one rank and the resulting HH> rank-deficient. In order to prevent
this rank-deficiency, random noise is added to H after normalization.

18

2.4 CONCLUSION

2.3.3 Tracking with Linear Predictor
The location of the template is estimated by using a parameter update vector δµt+τ
that corrects the transformation of xs from the frame at t to t + τ. Using the image
difference vector

δit+τ = i(µt, t + τ)− i(µt0 , t0) , (2.13)

where i(µt, t + τ) is a collection of image intensities in the current frame with the
sample point locations of the previous frame, the relation between δit+τ and δµt+τ in
(2.10) can be defined using the linear predictor [65] with

δµt+τ = Aδit+τ . (2.14)

Therefore, to track the reference template, we compute δµt+τ using the given vector
δit+τ and the learned matrix A. Having learned from the same coordinate system as
It0 , the homography follows a compositional update with Tt+τ = Tt · ∆T(δµt+τ)
where ∆T(δµ) is a transformation from the initial state of the four corners at µt0

to its
transformed state at µt0

+ δµ as shown in Figure 2.1.
Similar to an energy minimization approach, learning-based tracking is also iterative.

For improved tracking performance, a multi-predictor approach is implemented such
that multiple linear predictor {Al}

nl
l=1 are learned for one template. Among these, A1 is

trained for large distortions and the subsequent ones for smaller distortions. Intuitively,
A1 accounts for large motions but is less accurate, while Anl can handle only small
template motions but has improved accuracy. During tracking, each linear predictor is
utilized several times before the next level is used. Typically, there are nl = 5 levels
with three iterations for each of them.

2.4 Conclusion
Due to the matrix multiplications during tracking, the work from Jurie and Dhome [65]
manages to track at a very high speed that can reach 1000 fps. We consider this as the
most attractive benefit of their work. However, it also falls under some limitations such
as offline learning and rigid transformations. In the next chapter, we propose several
improvements on the 2D template tracking approach using linear predictors. This
includes a fast learning scheme that can instantaneously learn new templates [60, 61, 62]
while tracking and an extension of the rigid transformation to a deformable model in
order to allow more degrees of freedom on the template’s motion [132].

19

CHAPTER 2: 2D TEMPLATE TRACKING – FROM ENERGY MINIMIZATION TO
LEARNING

20

3
Improvements on the

Learning-based 2D Template
Tracker

3.1 Motivation
Template tracking aims to follow a reference template over a sequence of images.
Assuming that the reference template is located at t0 of a video sequence, its location
is defined by an 8×1 initial parameter vector µt0

that corresponds to concatenation of
the 2D points of the four corners of the template. Within the template, ns 2D points
define the location of the sample points. By collecting the intensities at the ns sample
points, an ns×1 vector it0 corresponds to the image intensities of the template to be
matched across frames. Then, at time t, the parameter vector µt defines the location of
the template in the current frame which, in effect, transforms the location of the sample
points. Henceforth, tracking is accomplished by computing µt.

The learning-based tracker maps the relation between the location of the template and
the intensities within the template. The approach first computes a vector δi = it − it0 of
image differences and then to use this to compute a parameter update δµ which accounts
for the present pose difference. Note that the vector it stores the image values extracted
from the current image and is extracted by computing the sample point locations using
the template pose of the previous image frame.

Jurie and Dhome [65] learns a linear predictor A to compute the unknown δµ based
on the given vector δi with the relation

δµ︸︷︷︸
8×1

= A︸︷︷︸
8×ns

δi︸︷︷︸
ns×1

. (3.1)

Considering a constant A in tracking, (3.1) allows the tracker to be extremely fast with
less than 1 ms per frame.

However, in order to compute δµ, one needs to precompute the matrix A. This
is done by collecting a set of nω random transformations, where nω is significantly
larger than ns, together with its corresponding image difference vectors. These random

21

CHAPTER 3: IMPROVEMENTS ON THE LEARNING-BASED 2D TEMPLATE TRACKER

disturbances δµi and image difference vectors δii are then combined in two matrices

Y =
[
δµ1, δµ2, . . . , δµnω

]
and H = [δi1, δi2, . . . , δinω]. Using the relation from (3.1),

the matrices also formulate the relation

Y︸︷︷︸
8×nω

= A H︸︷︷︸
ns×nω

(3.2)

which solves A through a closed-form solution

A = YH>
(

HH>
)

︸ ︷︷ ︸
ns×ns

−1
. (3.3)

Notably, the typical values of ns is 400 while nω is 1200. A more detailed derivation is
written in Chapter 2.

Based on the derivation above, the motivations of this chapter is to alleviate the
limitations of [65] with regards to (1) the learning time of the linear predictor and (2) the
rigid transformation of the template. Since learning takes a long time due to the inversion
of a large ns × ns ≈ 400×400 matrix in (3.3), Section 3.3 improves on the learning
strategy to achieve an instantaneous learning of an entire template [60, 61, 62]. This is
a crucial ability for many applications that have to deal with data which is not available
for prior offline learning. Some examples for such applications are Simultaneous
Localization and Mapping (SLAM) and Structure from Motion (SfM). We address
this limitation by introducing a more efficient learning procedure for creating linear
predictors. This not only improves the learning speed drastically, but also brings a small
improvement in robustness of tracking with respect to large motions and image noise.

Moreover, having the four corners in µ, the transformation of the template is limited
up to the perspective distortion. Section 3.4 attempts to alleviate this limitation by
incorporting a deformable model in the parameter vector [132].

3.2 Related Work
Jurie and Dhome [65] proposed a method that learns Linear Predictors using randomly
warped samples of the initial template, while using the learned Linear Predictors to
predict the parameter updates in tracking. Here, the “Jacobians" are computed once
for the whole method and a parameter update is computed using a simple matrix
multiplication. The same authors extended their approach to handle occlusions [66].
Invariance to illumination changes was introduced by Gräßl et al. [46]. They [47] also
formulated a method on how to select the points for sampling from image data to further
increase accuracy in tracking. Zimmermann et al. [148] use numerous small templates
and track them individually. Based on the local movements of these small templates,
they estimate the movement of a large template. Holzer et al. [58] start with a small
template and grow it until a large template is constructed online. This idea showcased a
way to adapt existing Linear Predictors to modify the shape of a template at run-time.
Mayol and Murray [92] stepped back from linear predictors by presenting an approach
that fits the sampling region to pre-trained samples using general regression.

All the proposed learning approaches, however, are not able to learn large templates
online. To overcome this limitation, we introduce a learning schemes in Section 3.3,

22

3.2 RELATED WORK

which is different to the one proposed by Jurie and Dhome [65] and enables online
learning of templates.

3.2.1 Comparison of Deformable Trackers

Literature regarding deformable template tracking is classified into two well-known
categories – feature-based methods [29, 104, 105, 146, 147] where features are used to
characterize the images and to estimate the deformation from one image to the other;
and, pixel-based methods [11, 43, 64, 88] where the intensity of the images is directly
used to find the deformation.

Feature-based methods. The steps in feature-based methods can be summarized into
feature correspondence search, outlier rejection mechanism, and finally deformation
model estimation. To detect and match features, most of the literature [104, 105,
121, 146, 147] use keypoint descriptors such as SIFT [84], SURF [12] or randomized
trees [78]. Furthermore, given the correctly matched features from the reference image
to the target image, the thin plate splines of Bookstein [19] is commonly used to estimate
the deformation between the matched keypoints because it offers a closed-form solution.
Another approach with a closed-form solution is from Salzmann and Fua [121] that
reconstructs a 3D model from dense correspondences between the reference template
configuration, and the input image relying on the easy to learn local surface deformation
models and non-linear constraints between vertices of the local surface parts.

Unlike rigid transforms where we estimate a 2D homography with a maximum
of 8 d.o.f. and easily remove incorrectly matched features by using RANSAC [41],
deformable transforms have significantly more degrees of freedom which makes it
difficult to identify whether a matched features is an inlier or an outlier. Thus, a number
of works [104, 105, 80, 141] have focused on the outlier rejection for deformable
transforms. One of the prominent works is from Pizarro et al. [105] where they assume
that the deformation is locally smooth by using a Delaunay triangulation and iteratively
build a set of strong inliers. Another is from Pilet et al. [104] where, aside from the
quadratic deformation energy that penalizes local surface curvature, they introduce a
correspondence energy that includes a ridged shape robust estimator with a decreasing
radius of confidence such that, as the radius of confidence decreases, the estimator
becomes more selective in choosing inliers. In addition, Tran et al. [141] show how to
utilize a “simple” RANSAC algorithm with Radial Basic Function (RBF).

Therefore, the problem in using feature-based methods is that they depend on
the repeatability of the features and require a sufficiently large number of features
in the reference image to have enough inliers when matched with the target image.
This generates a time-consuming outlier rejection and constraints their application to
large templates. As a result, feature-based template matching has reached real-time
application at only 10 fps [104].

Pixel-based methods. On the other hand, less attention has been given to deformable
template matching using pixel-based methods to perform in real-time applications.
These methods are usually associated with the energy minimization-based image regis-
tration, where their energy is composed of the data term that expresses the similarity

23

CHAPTER 3: IMPROVEMENTS ON THE LEARNING-BASED 2D TEMPLATE TRACKER

measure of two images and the smoothing term that defines the rigidity of the deforma-
tion. Notable works in this field is the self-occlusion reasoning of Gay-Bellile et al. [43]
where they added a term called shrinker that shrinks the deformation to prevent it from
folding at self-occluded regions.

On one hand, the main advantage of using an energy-based image registration is that
it can achieve a subpixel accuracy [64] and can handle self-occlusion [43]; on the other,
it requires an extensive amount of time to complete as well as a good initialization to
avoid local minima.

Works that have accomplished real-time application include the Active Appearance
Models (AAM) [30, 91]. It relies on applying Principal Component Analysis (PCA)
on hundreds of labelled images to find the mean and eigenvectors of the shape, which
defines the geometric structure, and appearance, which includes the image intensities.
In this way, their model can be represented by the linear combination of the resulting
mean and eigenvectors. Another real-time method that exploits dense pixel information
and handles deformations is the work of Malis [88]. He mainly concentrates on energy-
minimization based template tracking called Efficient Second-order Minimization (ESM)
which is designed for tracking rigid motion of planar templates and extends it with thin
plate splines to handle surface deformations. However, their method for deformable
surfaces runs at 3.5 seconds per frame.

Nonetheless, we introduce a pixel-based method with linear predictors in Section 3.4
that extends the rigid template tracking of Jurie and Dhome [65] to handle non-rigid
deformations where we use the Free-Form Deformations (FFD) based on cubic B-
Splines [45, 77] as our model. Based on our evaluations, our approach is stable for
several types of deformations and can compete against the feature-based method of [104]
in terms of precision. However, our method is running at less than 1 ms per frame which
makes it the fastest deformable 2D tracking method up-to-date.

3.3 Fast Learning Strategy

When we look at (3.2), due to the pseudo-inverse of H that involves the inverse of an
ns × ns matrix HH>, the approach for learning the linear predictor A as proposed by
Jurie and Dhome [65] is very time consuming and not applicable for learning on-the-fly.
Therefore, this section proposes two methods that are simple yet powerful to learn
much faster than [65]. These involve a reformulation of (3.2) [61, 62] and an image
compression through DCT [60, 61]. Towards the end of this section, the goal is to
propose a learning strategy that can instantaneously learn a template such that, for a
multi-template tracking application, a new template is learned on-the-fly even while
tracking the previously learned templates. Notably, one of our papers [60] is a recipient
of the Best Application Paper Honorable Mention from the 2012 Asian Conference on
Computer Vision (ACCV).

24

3.3 FAST LEARNING STRATEGY

3.3.1 Reformulation

To reduce learning time, the first approach uses the pseudo-inverse of Y, instead of H,
in order to generate a much faster learning process. Using this approach, (3.2) leads to

I = AHY>(YY>)−1 (3.4a)

= AB (3.4b)

where B = HY>(YY>)−1 is an ns× 8 matrix and I is an identity matrix. Hence,
solving for A,

A = (B>B)−1B>. (3.5)

The pseudo-inverse is applied differently in (3.4a) and (3.5), since for matrix Y, the
rows are linearly independent while for matrix B, the columns are linearly independent;
and therefore, computing it the same way leads to a rank-deficient inversion in one of
the two cases [103].

The computation of the matrix A involves the inversion of two matrices. However,
since both YY> and B>B are 8×8 matrices, computing the inverse of two 8×8 matrices
is much faster in comparison to inversion of an ns × ns matrix. In fact, YY> can be
precomputed when the parameters of the random perturbations in the learning dataset
are kept constant for different templates. As a consequence, only a single 8×8 matrix
has to be inverted online.

Since the linear mapping denoted by A should never encode fixed offsets, we
normalize Y such that each parameter has zero mean and unit standard deviation; while
de-normalizing δµ when solving (3.1) in tracking. Unlike the normalization used on H
in Section 2.3.2 to obtain invariance on changes in lighting conditions, this normalization
does not generate a rank-deficient matrix YY> because the normalization is applied on
the rows of Y. The difference in performance using normalized and unnormalized Y is
in the evaluation (see Figure 3.4).

Solving (3.3) from [65] actually corresponds to approximating Y by orthogonally
projecting it on H. On the other hand, solving (3.5) in this approach approximates H
by orthogonally projecting it on Y. Given that we project H on Y, all noise outside of
the low-rank space represented by Y has no effect; while, in case of [65], the noise has
more effect. This makes their approach more sensitive to noise. We also prove this in
the experiments.

Updating the learned A. Similar to [51], we also investigate on the capability to
add new training samples to A after learning by using Sherman-Morrison formula.
Hinterstoisser et al. [51] rely on (3.3) and efficiently update the inverse S = (HH>)−1.
In contrast to this, our method does not compute for S in the learning phase as Jurie and
Dhome [65] do. We propose to derive S from an existing A using (3.3) by

A = YH>(HH>)−1 (3.6a)

= YH>S (3.6b)

= DS (3.6c)

25

CHAPTER 3: IMPROVEMENTS ON THE LEARNING-BASED 2D TEMPLATE TRACKER

where D = YH> is an 8 ×nω matrix. From this, S can be computed using the
pseudo-inverse of D with

S = D>(DD>)−1A. (3.7)

In this computation, we are using the matrix inverse of DD>. Again, this is an 8×8
matrix and can be inverted very fast.

Later, the evaluation in Figure 3.4 shows that updating S by adding training samples
using the Sherman-Morrison formula helps to further improve the tracking performance.
The update is done by

Ŝ =
(

S−1 + δinω+1δi>nω+1

)−1
= S−

Sδinω+1δi>nω+1SI

1 + δi>nω+1Sδinω+1
, (3.8)

where δinω+1 is a vector of image value differences obtained from a new random
transformation applied to the sample points. Note that before computing the updated
linear predictor using (3.6b), the matrices H and Y are updated by concatenating them
with the new training samples. For the normalization of the parameter differences, the
same normalization as applied to the original learning is implemented.

Computational Complexity

In the first evaluation, the computational complexity of this approach is compared to
the approach of Jurie and Dhome [65] and Holzer et al. [58]. Our algorithm is divided
into three parts – learning linear predictor matrices, tracking using the learned A and
updating it while tracking. This section mainly focuses on the amount of time that each
part requires to finish in relation to the number of sample points used.

Learning. The main contribution is reflected on the learning time. We show in
Figure 3.1(a) that, as the amount of sample points increases, the time required for
learning using our approach increases much slower in comparison to the approach of
both, Jurie and Dhome [65] and Holzer et al. [58]. This difference is emphasized in
Figure 3.1(b) where it is evident that for templates with more than 800 sample points
(e.g. 30×30), our approach is more than two orders of magnitude faster, i.e. almost 120
times faster, than Jurie and Dhome [65] and more than 50 times faster than the approach
of Holzer et al. [58].

Tracking. Both the original approach [65] and the proposed approach have similar
tracking time because the time needed to de-normalize the parameter updates in our
approach is negligible. Furthermore, the measure of tracking time per frame with respect
to template size in Figure 3.1(c) demonstrates that our approach can easily reach frame
rates higher than 1000 fps even with large templates. In contrast to Holzer et al. [58],
their method is slightly slower and the necessary time for tracking increases faster as the
template size increases. In comparison to this, the non-linear approach of Benhimane et
al. [13] takes about 10 ms for tracking the same template.

26

3.3 FAST LEARNING STRATEGY

0 200 400 600 800 1000
10

0

10
1

10
2

10
3

10
4

10
5

template size [sample points]

le
ar

ni
ng

 t
im

e
[m

s]

Jurie and Dhome
ALPs
our approach

0 200 400 600 800 1000
0

25

50

75

100

125

150

template size [sample points]

sp
ee

d−
up

 in
 le

ar
ni

ng
 ti

m
e

our appr. vs. Jurie and Dhome
our appr. vs. ALPs

(a) Learning time (b) Speed-up

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

template size [sample points]

tr
ac

ki
ng

 t
im

e
[m

s]

Jurie and Dhome / our approach
ALPs

(c) Tracking time

Figure 3.1: (a) Comparison of the necessary learning time with respect to the number
of sample points used within the template for the approach proposed by Jurie and
Dhome [65], by Holzer et al. [58] (ALPs) and our approach. (b) The corresponding
speed-up in learning obtained by our approach. (c) The tracking time per frame with
respect to the number of sample points used for the template.

Updating. The updating process is a way of adding new training samples to a learned
linear predictor during tracking. Figure 3.2(a) shows the time necessary to update an
existing tracker with respect to the number of update samples, where the number of
update samples corresponds to the number of random transformations applied to the
template. Note that this is the same template as used for the initial learning. This result
illustrates that by adding a small number of training samples at each time, we can keep
the computational cost low while improving the performance of the tracker over time.
In Figure 3.2(b), we show an exemplary improvement of tracking robustness when
updating the linear predictor with a specific number of update samples. The next section
discusses more on the tracking robustness in updating.

Robustness

In this section, we analyze the influence of our learning approach on the robustness of
tracking with respect to different movements and different levels of noise. Accuracy
is measured by finding the correct location of the template after inducing random
transforms to several test images. The images used in the evaluation are taken from the

27

CHAPTER 3: IMPROVEMENTS ON THE LEARNING-BASED 2D TEMPLATE TRACKER

0 500 1000 1500
0

1

2

3

4

5

6

7

number of update samples

up
da

te
 t

im
e

[s
]

0 500 1000 1500
76

78

80

82

84

86

88

number of update samples

su
cc

es
s

ra
te

 [
%

]

(a) Update time (b) Success rate

Figure 3.2: (a) The time necessary to update an existing tracker with respect to number
of update samples. This update can be performed in parallel with tracking. (b) The
corresponding improvement in success rates with increasing number of updates.

Internet (see Figure 3.3). Moreover, the random transforms include translation, rotation,
scale and viewpoint change. Using the test images and random transforms, tracking is
considered successful if the mean pixel distance between the reference template corner
points and the tracked template corner points, that is back-projected into the reference
view, is less than 5 pixels. Hence, robustness is measured as the percent of successfully
tracked templates after applying several random transforms to each test image. For
measuring the robustness in relation to noise, the image is corrupted with noise sampled
from a Gaussian distribution before applying the random transform.

The goal of this type of evaluation is to generate more accurate comparison with the
ground truth measurements. Indeed, there are other methods of testing such as using
markers on real scenes to find the camera motion. However, this approach includes
markers that generate its own error and limit the amount of motion available for testing.
In addition, our evaluation also has the benefit of control which means that it is done
by changing only variables that are being tested while keeping the others constant
throughout the experiment. We can also specify the amount of change to fairly evaluate
at which value the algorithm failed. Note that a similar evaluation is also conducted in
Sections 3.3.2 and 3.4.

Here, the proposed approach is compared to the methods of Jurie and Dhome [65],
Holzer et al. [58], and Benhimane et al. [13]. For the proposed approach, we considered
three different cases:

• unnormalized, where no normalization on the parameter differences is imple-
mented;

• normalized, where the parameter differences is normalized before learning A and
de-normalize them during tracking; and,

• updated, where The parameter differences is normalized and the linear predictor
is updated with 1000 training samples before performing the experiments.

Given the learned linear predictor of a test image, the experiment starts by applying
a random transform to the image and use the linear predictor to track this movement.
This transform includes translation, rotation (in-plane rotation), scale and viewpoint

28

3.3 FAST LEARNING STRATEGY

Figure 3.3: The dataset used for synthetic experiments.

29

CHAPTER 3: IMPROVEMENTS ON THE LEARNING-BASED 2D TEMPLATE TRACKER

change (out-of-plane rotation). Therefore, after imposing several random transforms to
a set of images, robustness is measured as the percent of successful estimation of the
applied motions. For the evaluation with respect to noise, the test image is corrupted
with Gaussian noise before applying the random transforms. Unless otherwise stated,
the experiments are applied on templates of size 150×150 pixels with 18×18 sample
points, and the initial learning of the linear predictor use 3 · 18 · 18 = 972 training
samples; while for the non-linear approach of Benhimane et al. [13], the complete
template is used without subsampling.

Normalization of parameter differences. As previously mentioned, normalizing
the parameter difference matrix Y before learning is important for our approach. To
emphasize this, we included the results of the unnormalized approach in Figure 3.4. It
clearly shows that the unnormalized approach is not suitable for tracking. In contrast
to that, the normalized approach gives results which are close to the original approach
while the updated approach gets even closer to the results of Jurie and Dhome [65].
On the other hand, the outcome from Holzer et al. [58] also shows that it performs
similarly well as Jurie and Dhome [65]. All the learning based approaches, except
for the unnormalized version of our approach, give superior results compared to the
non-linear approach of Benhimane et al. [13].

Number of samples points. In Figure 3.5, we compare the tracking robustness in
relation to the number of sample points. Note that all the results show similar behavior
across different transformations. The normalized approach replicates the results of
Jurie and Dhome [65] when the number of sample points per template is above 325. In
all the results, the updated approach does not lose tracking robustness and performs
consistently equal to the original approach.

Updating. Figure 3.2(b) depicts the change in robustness when we add new training
samples to a learned linear predictor with normalization during tracking. In this experi-
ment, we applied several random translations of approximately 30 pixels on the set of
test images. After applying the updated linear predictor to the transformed images, we
checked how often the translation was correctly estimated. This was done for linear
predictor matrices updated with different numbers of update samples, where the number
of update samples is the number of random transformations applied to the template.
The results show that tracking robustness increases as the number of update samples
increases. We also show in Figure 3.4 that updating brings the tracking performance
closer to the original learning approach of [65].

Sensitivity to Noise. A comparison among the different methods with respect to noise
sensitivity is presented in Figure 3.6. This experiment corrupts the input image by
Gaussian noise with zero mean and varying standard deviation. After that, we impose
a small translation to the corrupted image and measure the accuracy of the tracker for
each algorithm. The noise parameter in Figure 3.6 corresponds to the standard deviation
of the Gaussian noise and the image intensity of the uncorrupted image ranges from 0
to 255.

While our approach had a slightly worse tracking robustness for large motions as
shown in Figure 3.4, we illustrate in Figure 3.6(a) that the tracking robustness of our

30

3.3 FAST LEARNING STRATEGY

0 10 20 30 40 50
0

20

40

60

80

100

translation [px]

su
cc

es
s

ra
te

 [
%

]

Jurie and Dhome
ALPs
ESM
our normalized
our unnormalized
our updated

−100 −50 0 50 100
0

20

40

60

80

100

rotation angle [°]

su
cc

es
s

ra
te

 [%
]

Jurie and Dhome
ALPs
ESM
our normalized
our unnormalized
our updated

(a) Translation (b) In-Plane Rotation

0 0.5 1 1.5 2
0

20

40

60

80

100

scale

su
cc

es
s

ra
te

 [
%

]

Jurie and Dhome
ALPs
ESM
our normalized
our unnormalized
our updated

0 20 40 60 80
0

20

40

60

80

100

viewing angle [°]

su
cc

es
s

ra
te

 [%
]

Jurie and Dhome
ALPs
ESM
our normalized
our unnormalized
our updated

(c) Scale (d) Out-of-Plane Rotation

Figure 3.4: Comparison of the approach of Jurie and Dhome [65], Holzer et al. [58]
(ALPs), Benhimane et al. [13] (ESM), as well as our approach with and without
normalization, and with updated predictors. We consider four different types of motions
as specified. The success rate indicates the percent of successful estimation of the
applied motions.

approach outperforms the original approach in terms of sensitivity to noise. An evidence
for this is shown in Figure 3.6(b) where we analyze the average distance between
the reference template corner points and the predicted template corner points that is
back-projected into the reference view. Based on the figure, the prediction error of Jurie
and Dhome [65] is smaller compared to our approach for small noise levels, but rapidly
increases as the level of noise increases. Contrary to this, our approach has a higher
error if no or only a small amount of noise is present, but the error increases slower
when more noise is added.

3.3.2 Dimensionality Reduction

Considering that the main drawback of learninig through [65] in Section 3.1 is the
inversion of a large matrix HH>, the idea behind the second learning approach is
to compress the image difference vectors δii before using them to learn the linear
predictor. By reducing the dimensionality of δii from ns to nr, the size of HH> gets
reduced to nr × nr and therefore, the necessary matrix inversion (HH>)−1 becomes
less computational expensive.

We propose to reduce the dimensionality of δii by using Discrete Cosine Transform

31

CHAPTER 3: IMPROVEMENTS ON THE LEARNING-BASED 2D TEMPLATE TRACKER

100 200 300 400 500 600 700 800
0

20

40

60

80

100

num of sample points

su
cc

es
s

ra
te

 [
%

]

Jurie and Dhome
our normalized
our updated

100 200 300 400 500 600 700 800
0

20

40

60

80

100

num of sample points

su
cc

es
s

ra
te

 [
%

]

Jurie and Dhome
our normalized
our updated

(a) Out-of-Plane Angle (b) Scale

100 200 300 400 500 600 700 800
0

20

40

60

80

100

number of sample points

su
cc

es
s

ra
te

 [
%

]

Jurie and Dhome
our normalized
our updated

100 200 300 400 500 600 700 800
0

20

40

60

80

100

num of sample points

su
cc

es
s

ra
te

 [
%

]

Jurie and Dhome
our normalized
our updated

(c) Translation (d) In-Plane Rotation

Figure 3.5: Comparison of the success rate in tracking with respect to the number of
sample points for the approach of Jurie and Dhome [65], as well as our approach with
normalization and with updated predictors.

(DCT). This transform is known to give good results for compressing image data by
removing DCT coefficients that correspond to high frequencies. Keeping only low-
frequency information makes it well-suited for template tracking, since high-frequency
information tends to de-stabilize tracking. In the following, we first introduce the
2-dimensional DCT, then show how we apply it on the 1-dimensional vectors δii which
are sampled from the 2-dimensional templates. Mathematically, the 2-dimensional DCT
U of a k× k matrix V is

U = DCT(V) = CVC> (3.9)

where the elements of the matrix C are defined as

Ci,j =

√
αi
k

cos
[

π(2j + 1)i
2k

]
(3.10)

with

αi =

{
1 if i = 0 ,
2 otherwise .

(3.11)

After transforming δii as δîi = DCT(δii), we form Ĥ = [δî1, δî2, . . . , δînω]. However,
since we reshaped the samples from a 2D template into a vector, (3.9) cannot be directly

32

3.3 FAST LEARNING STRATEGY

0 50 100 150 200
0

20

40

60

80

100

noise

su
cc

es
s

ra
te

 [
%

]

Jurie and Dhome
our normalized
our updated

0 50 100 150 200
0

5

10

15

20

noise

er
ro

r
[p

x]

Jurie and Dhome
our normalized
our updated

(a) Success rate (b) Average Error

Figure 3.6: Comparison of our approach to the approach of Jurie and Dhome [65] with
respect to sensitivity to noise in tracking. (a) shows the success rate for different noise
levels. (b) shows the average error in the predicted corner points of the template.

applied to δii. Therefore, we formulate an ns × ns matrix WDCT which maps the
difference δii of the sampled vectors directly to their DCT counterparts δîi. Assuming
that the vector δii is reshaped from the 2D matrix Vi written as δii = reshape(Vi), we
compute WDCT as

WDCT = (b1, b2, · · · , bns) (3.12)

where bm = reshape(CBmC>) and Bm is a matrix with all elements set to 0 except
for the m-th element which is set to 1. By setting a single element to 1, the set of
matrices {Bs}ns

s=1 are a base of the image space of the template and the set of vectors
{bs}ns

s=1 are the DCT projections of this base. This way, we can directly compute the
2-dimensional DCT of our image difference vectors as

δîi = WDCTδii ⇒ Ĥ = WDCTH . (3.13)

In relation to the original learning formula in (3.3), we reformulate this by using the
relation

H = (WDCT)
−1Ĥ . (3.14)

After subsituting H from (3.14) to (3.2) and solve for the linear predictor A as

AW−1
DCTĤ = Y

AW−1
DCT = YĤ>

(
ĤĤ>

)−1

AW−1
DCTWDCT = YĤ>

(
ĤĤ>

)−1
WDCT

A = YĤ>
(

ĤĤ>
)−1

WDCT . (3.15)

To reduce the necessary computational load, we apply a dimensionality reduction by
defining an nr × ns submatrix W(nr)

DCT with nr < ns, such that the necessary matrix
inversion is no longer applied to an ns × ns matrix but rather to an nr × nr matrix. The

33

CHAPTER 3: IMPROVEMENTS ON THE LEARNING-BASED 2D TEMPLATE TRACKER

0 200 400 600 800 1000
10

1

10
2

10
3

10
4

10
5

Num. of template sample points

le
ar

ni
ng

 ti
m

e
[m

s]

JD
ALPs
DCT−25
DCT−49
DCT−81

0 200 400 600 800 1000
0

25

50

75

100

125

150

Num. of template sample points

sp
ee

d−
up

 in
 le

ar
ni

ng
 ti

m
e

DCT−25 vs. JD
DCT−49 vs. JD
DCT−81 vs. JD

(a) Learning time (b) Speed-up

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

Num. of template sample points

tr
ac

ki
ng

 t
im

e
[m

s]

JD / DCT
ALPs

(c) Tracking time

Figure 3.7: Comparison of timings for the approach of Jurie and Dhome [65] (JD),
Holzer et al. [58] (ALPs), and ours (DCT-x). (a) Comparison of learning time. (b) Ob-
tained speed-up of our approach with respect to Jurie and Dhome [65]. (c) Comparison
of tracking time.

final linear predictor is then computed as

A(nr) = YĤ(nr)>
(

Ĥ(nr)Ĥ(nr)>
)−1

W(nr)
DCT . (3.16)

with Ĥ(nr) = W(nr)
DCTH . Later, our evaluation shows that by keeping nr small, the

learning time for large templates is significantly reduced. Moreover, depending on the
size of nr, the reduction in learning even increases tracking robustness.

Computational Complexity

Similar to Section 3.3.1, timing is measured by counting the amount of time to finish a
specific part of the algorithm, i.e. learning and tracking. We compare the computational
complexity of our approach with the approach of Jurie and Dhome [65] as well as
Holzer et al. [58].

Learning. In Figure 3.7(a), we evaluate the amount of time necessary for learning
with respect to the number of sample points. It shows that as the amount of sample points
increases, the time required for learning using our approach increases much slower in
comparison to the approach of both, Jurie and Dhome [65] and Holzer et al. [58]. As

34

3.3 FAST LEARNING STRATEGY

0 1000 2000 3000 4000 5000
10

1

10
2

10
3

10
4

10
5

Num. of training samples

le
ar

ni
ng

 ti
m

e
[m

s]

JD
DCT−25
DCT−49
DCT−81

0 1000 2000 3000 4000 5000
0

50

100

150

200

Num. of training samples

sp
ee

d
up

 in
 le

ar
ni

ng
 ti

m
e

DCT−25
DCT−49
DCT−81

(a) Learning time (b) Speed-up

Figure 3.8: Evaluation of learning time depending on the number of training samples
used for training. (a) Learning time of our approach (DCT-x) in comparison to the
approach of Jurie and Dhome [65] (JD) and (b) the speed-up obtained by our approach
with respect to the number of DCT coefficients used for training. The experiments were
performed with a template-size of 150×150 pixels, where 22×22 sampling points were
used.

expected, using less DCT coefficients for learning decreases the necessary time. This
difference is emphasized in Figure 3.7(b) where it is evident that for templates with
more than 800 sample points (e.g. 30×30), the proposed approach is more than two
orders of magnitude faster, i.e. almost 150 times faster, than [65] if 25 DCT coefficients
are used. Using 81 DCT coefficients, it is still approximately 70 times faster.

Figure 3.8 compares the necessary learning time with the number of random samples
used for training. Reducing the number of random samples drastically reduces the
necessary time for learning A. Although this comes hand in hand with a decrease in
tracking performance, we show in the next section that our approach is much more
robust against this kind of reduction compared to [65].

Tracking. Both [65] and our approach share the same approach for tracking and
therefore, have equal tracking times. Furthermore, the measure of tracking time per
frame with respect to template size in Figure 3.7(c) demonstrates that our approach can
easily reach frame rates higher than 1000 fps even for templates with a high number of
sample points. In contrast to Holzer et al. [58], their approach is slightly slower and the
necessary time for tracking increases significantly faster as the template size increases.
Considering a non-linear template tracking approach, the method of Benhimane et
al. [13] takes about 10 ms for tracking the same templates.

Robustness

We measure the tracking performance by finding the correct location of the template
after inducing random transformations and noise to several test images. These random
transformations include translation, rotation (in-plane rotation), scale and viewpoint
changes (out-of-plane rotation). For the experiments on the influence of noise, we
corrupted the images with noise sampled from a Gaussian distribution before applying
the random transformation.

35

CHAPTER 3: IMPROVEMENTS ON THE LEARNING-BASED 2D TEMPLATE TRACKER

0 10 20 30 40 50
0

20

40

60

80

100

translation [px]

su
cc

es
s

ra
te

 [%
]

JD
ALPs
ESM
DCT−25
DCT−49
DCT−81

−100 −50 0 50 100
0

20

40

60

80

100

rotation angle [°]

su
cc

es
s

ra
te

 [%
]

JD
ALPs
ESM
DCT−25
DCT−49
DCT−81

(a) Translation (b) In-Plane Rotation

0 0.5 1 1.5 2
0

20

40

60

80

100

scale

su
cc

es
s

ra
te

 [%
]

JD
ALPs
ESM
DCT−25
DCT−49
DCT−81

0 20 40 60 80
0

20

40

60

80

100

viewing angle [°]

su
cc

es
s

ra
te

 [%
]

JD
ALPs
ESM
DCT−25
DCT−49
DCT−81

(c) Scale (d) Out-of-Plane Rotation

Figure 3.9: Comparison of tracking performance for the approaches proposed by Jurie
and Dhome [65] (JD), Holzer et al. [58] (ALPs), Benhimane et al. [13] (ESM), and
our approach (DCT-x). Four different types of motions are considered – (a) translation,
(b) in-plane rotation, (c) scale and (d) out-of-plane rotation. The experiments were
performed with a template size of 150×150 pixels, where 20×20 sampling points are
used for JD, ALPs and our approach. ESM uses the complete template. For training we
used 1200 training samples.

Applying these disturbances to the test images, tracking is considered successful if
the mean pixel distance between the reference template corner points and the tracked
template corner points, which are back-projected into the reference view, is less than
5 pixels. Hence, robustness is measured as the percentage of successfully tracked
templates after applying several random disturbances to each test image.

Number of sample points. In Figure 3.9, we compare the tracking robustness using
different types of transformations in relation to the number of sample points. Here,
we evaluate our approach with different numbers of DCT coefficients as well as the
approach of Jurie and Dhome [65], Holzer et al. [58], and the non-linear approach of
Benhimane et al. [13]. Hereby, the training stage as it is applied for the methods based
on A leads to significantly better results than obtained using the non-linear approach
of Benhimane et al. [13]. Comparing our approach with that of Jurie and Dhome [65]
reveals that our approach is always better or comparable, except for the variant where
we use only 25 DCT coefficients. This gives slightly worse results for large changes
in viewing angle and scale. The approach of [58] tends to give slightly worse results

36

3.3 FAST LEARNING STRATEGY

0 1000 2000 3000 4000 5000
50

60

70

80

90

100

Num. of training samples

su
cc

es
s

ra
te

 [%
]

JD
DCT−25
DCT−49
DCT−81

0 1000 2000 3000 4000 5000
30

40

50

60

70

80

90

Num. of training samples

su
cc

es
s

ra
te

 [%
]

JD
DCT−25
DCT−49
DCT−81

(a) [30, 40] (b) [35, 45]

Figure 3.10: Evaluation of tracking success rate with respect to the number of training
samples. The left graph shows success rates for random translations in the range of 30
to 40 pixels while the right one shows them for random translations in the range of 35
to 45 pixels. For these experiments we used templates with 22×22 sample points.

0 20 40 60 80 100
0

20

40

60

80

100

noise

su
cc

es
s

ra
te

 [%
]

JD
DCT−25
DCT−49
DCT−81

0 20 40 60 80 100
0

5

10

15

20

25

noise

er
ro

r
[p

x]

JD
DCT−25
DCT−49
DCT−81

(a) Success rate (b) Average error

Figure 3.11: Comparison of sensitivity to noise for the approach proposed by Jurie and
Dhome [65] and our approach.

than that of [65]. The improvement in tracking robustness using our approach can be
explained by the fact that only low-frequency data is kept during the compression using
the DCT and high-frequency data of the template is removed. As a result, noise and fine
details, which tend to de-stabilize tracking, are removed.

Having a look at the tracking performance when varying the number of random
transformations used for training (see Figure 3.10), we see that the approach of Jurie
and Dhome [65] lacks robustness when reducing the number of training samples while
our approach still keeps high tracking performance even with reduced training examples.
This property is useful to even further decrease the learning time if necessary, as we
showed in Figure 3.8.

Sensitivity to Noise. The results presented in Figure 3.11 compare our proposed
approach with Jurie and Dhome [65] with respect to sensitivity to noise, where the noise
parameter specifies the standard deviation of the Gaussian noise and is with respect to
an image value range from 0 to 255. Figure 3.11 (a) shows that increasing the number
of used DCT coefficients also increases the robustness against noise. Using 81 DCT

37

CHAPTER 3: IMPROVEMENTS ON THE LEARNING-BASED 2D TEMPLATE TRACKER

coefficients, we obtain a template tracking approach which is more robust against noise
than the one of [65]. Looking at Figure 3.11 (b), we see that our approach, in general,
gives a smaller mean error in the tracking results.

3.4 Deformable Template Tracking
The limitation to track rigid templates is due to the parameterization of the transforma-
tion. Considering the location of the template’s four corners in µ, its 8 d.o.f. is bounded
to distort up to a perspective transformation. In this section, we investigate on adding
more points on the template that controls its distortion in order to perform deformable
tracking.

3.4.1 Deformable Model
Our 2D deformation model is based on the Free-Form Deformations (FFD) using cubic
B-Splines. This model is composed of control points that are uniformly arranged in
a K × L grid around the template. Each control point stores a displacement vector
that defines the movement of the template. Therefore, the deformation Ψ of a pixel
x = (x, y)> is computed as

Ψ ◦ x = x +D (x) (3.17)

such that the displacement vector D (x) of the pixel x is interpolated from the displace-
ment vector di,j at the control points (i, j) using [45]

D (x) =
3

∑
l=0

3

∑
m=0

Bl (u) Bm (v) di+l,j+m (3.18)

where i = bx/δxc − 1, j = by/δyc − 1, u = x/δx − bx/δxc and v = y/δy −
by/δyc with the control point spacings δx = W/(K− 1) and δy = H/(L− 1),
while Bl and Bm are the cubic B-Spline interpolation coefficients [77].

3.4.2 Tracking with Linear Predictor
In tracking, the paremeters of the deformation model is applied on µ. Instead of locating
the four corner points of the template, we generalize to an arbitrary nc control points
the defines the distortion of the template. However, a similar tracking approach applies.
Looking at Section 3.1, the image intensity difference vector δi is computed to find the
parameter updates δµ = [dc]

nc
c=1 for all the nc control points in the deformation model.

The relation between the two vectors follow (3.2). Notably, the same learning strategies
to estimate A also apply to the deformable tracker as Section 2.3.2 through [65] and
Section 3.3 through [60, 61, 62].

Homography Update. Since the estimated displacements are relative to the coor-
dinate system of the reference template, we keep track of a homography Tt which
approximately maps the current control points from the predicted pose of the template
in the current frame to the reference template. Tt is estimated by computing the homog-
raphy between the corner point positions in the reference coordinate system and their

38

3.4 DEFORMABLE TEMPLATE TRACKING

location obtained in the previous frame. To apply the displacements obtained from A,
we initially warp all control points back into the reference coordinate system.

Coarse-to-Fine Strategy. Several linear predictor are learned for a single template
that compensate for large to small deformations such that each Al refines the previously
estimated parameter vector. The coarse-to-fine approach is applied in a hierarchical
way. At the first two levels of hierarchy, the linear predictor are learned with the coarse
2×2 control points; while, in the last three, they are learned with 3×3 control points.
Note that between the second and third level, the number of considered control points
increases and we linearly interpolate the positions of the additional control points.
Furthermore, each linear predictor is iteratively used to generate better results. In this
work, three iterations for each linear predictor are performed.

3.4.3 Comparison

We perform quantitative evaluations on our approach where each template is 150×150
pixels. Learning is parameterized with nω =5·ns training samples where ns is the
number of sample points.

The first quantitative evaluation uses a dataset of 20 images and evaluates the
tracking robustness of our method with respect to rigid and non-rigid transformations.
It also includes the comparison with the fast learning methods from Section 3.3 where
we modify (3.3) to avoid the inversion of the large matrix HH>.

Another quantitative evaluation involves three video sequences that consider prob-
lems such as camera noise and motion blur from real deformations. These sequences
are used to test the precision of our algorithm where we compute the distance of 10
manually selected points on the template from their tracked positions to the ground truth.
Consequently, our results are compared to the ones from the feature-based approach of
Pilet et al. [104].

Robustness

A similar evaluation as Section 3.3 is used to test the robustness through the dataset
from Figure 3.3. In addition to the rigid transformation, including translation, scale,
in-plane rotation and out-of-plane rotation, we also distort the test images using non-
rigid transformations produced from FFD where control points are located on the whole
image. This FFD is parameterized using the maximum displacement that a control point
can randomly move without overlapping each other.

The objective is to remove environmental factors such as noise and motion blur; to
have full control of the warping parametrization; to determine the range of movements
that our approach can handle; and, to find the optimum parameters. Furthermore, we look
into the rigid transforms to find out whether using deformable warping parametrization
in δµ compromises the linear transformations that [65] can manage.

In these evaluations, two parameters are important – time and robustness. The
optimum case is to perform at high-speed with a fast learning procedure without de-
teriorating the tracking robustness. We define tracking robustness as the percent of
successfully recovered template deformations after generating random warps on each

39

CHAPTER 3: IMPROVEMENTS ON THE LEARNING-BASED 2D TEMPLATE TRACKER

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25 30 35 40

SU
C

C
ES

S
R

A
TE

MAXIMUM CONTROL POINT DISPLACEMENT

14x14 SP 18x18 SP 22x22 SP 26x26 SP 30x30 SP

(a) Tracking Robustness

1

10

100

1000

10000

100000

1
9

6

2
9

6

3
9

6

4
9

6

5
9

6

6
9

6

7
9

6

8
9

6

LE
A

R
N

IN
G

 T
IM

E
(M

S)

NUMBER OF SAMPLE POINTS

DLP-JD DLP-HP DLP-DCT-81

0

0.2

0.4

0.6

0.8

1

1.2

1
9

6

2
9

6

3
9

6

4
9

6

5
9

6

6
9

6

7
9

6

8
9

6

TR
A

C
K

IN
G

 T
IM

E
(M

S)

NUMBER OF SAMPLE POINTS

DLP-JD DLP-HP DLP-DCT-81

(b) Learning time (c) Tracking time

Figure 3.12: This shows the (a) tracking robustness, (b) learning time and (c) tracking
time with respect to the number of sample points ns = K × K when using different
learning modalities – JD [65], HP [62] and DCT [59]. Using the optimum 26×26 =
676 sample points arrangement, we can learn the template in 353.38 ms and track in
0.87 ms.

image of the dataset. Here, tracking is successful if the average distance of the back-
warped sample points of the tracked template to the original sample points on the image
is less than 1.5 pixels.

Number of sample points. From the previous section, we know that the sample
points subsample the template and, in effect, replaces the template in all computations.
Thus, it is crucial to determine the optimum number of sample points such that the
time-performance ratio is optimal. We evaluate the tracking robustness in Figure 3.12(a)
with respect to different number of sample points. It shows that there is no significant
improvement between 26×26 = 676 and 30×30 = 900 sample points. Thus, the
optimum number of sample points for our application is 26×26.

Contrary to the rigid transformations from [65], the deformable tracker requires
more sample points because it has more parameters. This is one of the reason why we
use a maximum of 3×3 control points as discussed in Section 3.4.2. Another reason
is because 3×3 control points are sufficient to give a realistic tracking performance as
shown in Figure 3.17.

Furthermore, Figure 3.12(b-c) shows the average learning and tracking time while
using different learning techniques [59, 62, 65]. For a 26×26 sample point arrangement,

40

3.4 DEFORMABLE TEMPLATE TRACKING

we can learn at a minimum of 353.38 ms using [62] and track at approximately 0.87 ms.
In comparison to other deformable template tracking algorithms, we claim that this
method achieves real-time tracking at the minimum time.

Synthetic evaluation. Using the optimum 26×26 samples points, we compare the
performance of our algorithm with the rigid template tracker of Jurie and Dhome [65]
using synthetic rigid and non-rigid deformations of the images of the dataset. The objec-
tive is to identify how well our method can handle rigid transformations in comparison
to the rigid template tracking method [65] and how our method perform under non-rigid
deformations using different learning methods.

For the rigid transforms in Figure 3.13(a-d), the results show that there is no signifi-
cant difference between [65] and our method. This signifies that our performance does
not deteriorate in rigid transformations. On the other hand, it is not surprising that [65]
fails in non-rigid deformations in Figure 3.13(e-f). In Figure 3.13(f), our method starts
to fail after 30 pixel movements. This is because, if the displacements of the 9×9
control points are large, the resulting image has a smudge-like deformation which is not
a realistic surface deformation.

Accuracy

Three real video sequences with a duration of 200 frames are used to evaluate the
accuracy. These are taken using a Logitech Webcam C525. The first two sequences
consist of a textured template that undergoes a flag-like deformation with different
textures, while the last one is a face sequence with relatively low texture undergoing
arbitrary facial expressions.

Our aim is to track the location of 10 points that have been manually selected in
all sequences. To evaluate these points, we compute the average distance between
the tracked points, using our method and the tracking-by-detection method of Pilet et
al. [104], from the manually provided ground truth point locations. The points are
initialized in the sequences as shown in Fig 3.15. For [104], the authors kindly provided
the results for the sequences.

To generate a realistic flag-like deformation, we induce a fast motion on one corner
of the template which results in a motion blur. Throughout the first two sequences, the
largest mean error is 3.6 pixels for our approach as shown in Figure 3.14 and 7.0 pixels
for [104]. Notably, when we backproject the template using the results of our approach,
the resulting images are very similar to the template even if frame 166 from Sequence 1
suffers from motion blur. When comparing these two approaches, we can see that the
errors in tracking are very similar but our approach is 100 times faster.

On the face sequence, all distance errors are less than 5 pixels as plotted in Fig-
ure 3.14 while we show in Figure 3.15 that the frame with the highest error is the one
when the head is tilted up. According to the authors of [104], their work does not work
on faces because their geometric model assumes a planar surface bending smoothly
without holes.

41

CHAPTER 3: IMPROVEMENTS ON THE LEARNING-BASED 2D TEMPLATE TRACKER

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45

RLP-JD DLP-JD DLP-HP DLP-DCT-81

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45

RLP-JD DLP-JD DLP-HP DLP-DCT-81

0

10

20

30

40

50

60

70

80

90

100

0.4 0.67 0.94 1.21 1.48 1.75

RLP-JD DLP-JD DLP-HP DLP-DCT-81

(a) Translation (b) Scale

0

10

20

30

40

50

60

70

80

90

100

-90 -70 -50 -30 -10 10 30 50 70 90

RLP-JD DLP-JD DLP-HP DLP-DCT-81

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80

RLP-JD DLP-JD DLP-HP DLP-DCT-81

(c) In-plane Rotation (d) Out-of-Plane Rotation

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80

RLP-JD DLP-JD DLP-HP DLP-DCT-81

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40

RLP-JD DLP-JD DLP-HP DLP-DCT-81

(e) 5×5 Control Points (f) 9×9 Control Points

Figure 3.13: Comparison of tracking robustness between rigid linear predictor (RLP-
JD) [65], and the deformable linear predictor (DLP) using different learning approaches
– JD [65], HP [62] and DCT-81 [59] with nr = 81 coefficients. It evaluates using (a-d)
rigid as well as non-rigid transforms using FFD with (e) 5×5 and (f) 9×9 control points
on the entire image where the x-axis shows the maximum control point displacement.
Note that 5×5 and 9×9 does not refer to the control points of the template but rather to
the deformation of the entire image.

42

3.5 QUALITATIVE RESULTS

-2.08.0

Ours Pilet

0.0

2.0

4.0

6.0

8.0

0 20 40 60 80 100 120 140 160 180 200

Er
ro

r
(i

n
 p

x)

Frame Index

1

0.0

2.0

4.0

6.0

8.0

0 20 40 60 80 100 120 140 160 180 200

Er
ro

r
(i

n
 p

x)

Frame Index

2

0.0

2.0

4.0

6.0

8.0

0 20 40 60 80 100 120 140 160 180 200

Er
ro

r
(i

n
 p

x)

Frame Index

3

Figure 3.14: These graphs plot the resulting average distance error (in pixels) of the
tracked points to its ground truth from the three sequences.

3.5 Qualitative Results

There are numerous applications to a fast learning strategies from Section 3.3. Achieving
an instantaneous template learning, the proposed approaches are capable of learning and
tracking multiple templates on-the-fly as shown in Figure 3.16(a-b). Such framework
allows the tracker to be more robust against occlusions since, while some templates are
not visible, other templates can utilize their arrangement to determine the homography
of the occluded templates.

Being less sensitive to noise is an advantage in environments with bad lighting
conditions, e.g. at night when the signal-to-noise ratio of cameras usually decreases.
Together with the fast learning and fast tracking algorithms, this is especially the case
for cameras used in mobile devices as demonstrated in Figure 3.16(b-d).

On the other hand, the deformable tracker is applied to wave-like deformations on a
template in Figure 3.17. It also showcases a face tracking framework where the user
produces different facial expressions that deforms the template.

43

CHAPTER 3: IMPROVEMENTS ON THE LEARNING-BASED 2D TEMPLATE TRACKER

2
Frame 74 Frame 184

1
Frame 144 Frame 166

Template Our Worst Results Their Worst Results

3
Frame 35

Figure 3.15: These figures show the learned template and the worst results from [104]
as well as our approach. For each pair of images, the rectangular image on the left is a
frame from the video sequence while the square image on the right is the backprojected
template using our approach. Moreover, the ten points in all these images are labelled
with green for ground truth, blue for the results from [104] and yellow for our results.

44

3.6
C

O
N

C
L

U
S

IO
N

(b
)

(a)
(c)

(d
)

Figure 3.16: Qualitative evaluation of the fast learning strategies as an application to track multiple templates in (a-b) and an application to mobile
devices in (b-d).

45

C
H

A
P

T
E

R
3:

IM
P

R
O

V
E

M
E

N
T

S
O

N
T

H
E

L
E

A
R

N
IN

G
-B

A
S

E
D

2D
T

E
M

P
L

A
T

E
T

R
A

C
K

E
R

(b
)

(a)
(c)

(d
)

Figure 3.17: Qualitative evaluation of the deformable tracker as an application to template tracking in (a-b) and an application to track face expressions
in (c-d).

46

3.6 CONCLUSION

3.6 Conclusion
In this chapter, we propose some improvements on the linear predictors from Jurie and
Dhome [65]. On one hand, the first is based on the reformulation of the learning scheme
and DCT in order to attain instantaneous learning of an entire template. These works
allow us to learn and track multiple templates in real-time. By retaining a geometric
structure between templates, the multiple templates can handle occlusions even if a
template single template is sensitive to it. We also discover the robustness of the template
to noise that allows the algorithm to track in low lighting conditions. With fast learning
and robustness to noise, we demonstrate that these approaches are suitable for mobile
devices. On the other, the second improvement is a simple extension to deformable
tracking by replacing the predicted linear transformation parameters into a deformation
model. For this work, we demonstrate the capacity of the algorithm to track facial
deformations through a rectangular template.

47

CHAPTER 3: IMPROVEMENTS ON THE LEARNING-BASED 2D TEMPLATE TRACKER

48

Part III

3D Tracking with Depth Images

49

4
Chameleon Tracker – A
Multi-Forest Approach

4.1 Motivation

Jurie and Dhome [65] proposes a temporal tracking approach for 2D templates where
the location of template is relayed from one frame of a video sequence to the next frame.
Based on image registration, their work learns a linear predictor that relates the changes
of parameters between consecutive frames with the changes of image intensity on the
template. Thus, in tracking, they utilize a matrix multiplication between the learned
linear predictor and the changes of image intensity to determine the template’s motion.

While [65] have accomplished an extremely fast tracker for 2D template tracking and
the extensions from our previous works [60, 61, 62, 132] in Chapter 3 have improved it
for different use cases, the applicability of such trackers is limited. Essentially, it has
not found a real application where it can thrive. One limitation is the requirement of
a textured template which is not always the case. Furthermore, having implemented
image intensity normalization and multi-template tracking do not solve the problems in
handling non-global illumination changes and occlusion on a single template.

The motivation of this chapter is to generalize the tracker at its core – the objective
function. A significant observation is based on the similarity of error functions from
different registration problems such as the 2D intensity-based registration from template
tracking and the 3D point-based registration from object tracking. Therefore, in this
chapter, we aim at building a tracker that can generalize to different registration problems.
We coined the generalized framework as the chameleon tracker due to its adaptive nature.

In addition to the 2D template tracking, the chapter also explores the possibility of
utilizing the generalized framework on a 3D model-based registration problem. Given
the 3D CAD model of an object, the goal is to track this object across the depth images
of a video sequence by estimating the full 6 d.o.f. pose with three rotation and three
translation parameters in 3D space.

The depth images are taken from consumer depth cameras such as Microsoft Kinect,
Asus Xtion, Intel RealSense, Google Tango and Structure Sensor. Although they are
cheap and readily available, there are special considerations in handling the 3D data

51

CHAPTER 4: CHAMELEON TRACKER – A MULTI-FOREST APPROACH

from these sensors. The challenge of a 3D model-based tracker is that it learns from a
perfect model and tracks in an imperfect depth image with noise and holes (i.e. missing
data).

The holes on the image are invalid pixel values where the sensor failed to determine
the depth value. We associate the holes as small occlusions on several parts of the object.
Since the template tracking approaches that uses a linear predictor [60, 61, 62, 65, 132]
are highly sensitive to occlusions, we propose to change the machine learning approach
to random forest [21]. In this way, we have independent trees that looks at different
regions of the object such that, when occlusions occur, some trees are affected while
the others are not. Notably, we have initially tried to use linear predictor on the 3D
data. This version of the tracker worked well on synthetic evaluation but failed on real
images.

Keeping these problems in mind, when we use the chameleon tracker on 2D tem-
plates, we achieve robustness against occlusions as well as extreme illumination changes
which are limited in [60, 61, 62, 65, 132]. On the other hand, when we apply the
chameleon tracker on 3D data, we have successfully achieved the first learning-based
3D temporal tracker that operates on depth images alone while maintaining a very low
tracking time with less than 2ms per frame. In effect, the 3D tracker unlocks a range
of applications in the robotic perception, human-computer interaction and augmented
reality to be discovered.

4.2 Related Work

Frame-to-frame tracking can be divided into two categories that are based on energy
minimization and learning. The main difference between them is that the former is
generally slower and is more sensitive to local minima; whereas, the latter requires an
extensive training procedure. To have a more focused comparison of our approach with
other methods in these categories, the scope of this section is limited to model-based
frame-to-frame tracking using intensity (or RGB) images, depth images or both.

Energy minimization-based approach. The work of Lucas and Kanade [85] has
significantly triggered an advancement in the field of 2D template tracking. Baker
and Matthews [8] has summarized these through four different update rules – additive
approach [85], compositional approach [125], inverse additive approach [24, 48], and
inverse compositional approach [7, 36]. Among them, the inverse additive and inverse
compositional approaches have decreased tracking time by switching the roles of the
source and target images to evaluate several computations prior to tracking.

On the other hand, ICP [15] and variations of it [118, 123] has dominated the
research field regarding 3D object tracking. However, ICP has problems when foreign
objects such as clutter or hands are close to or occlude the object of interest. For instance,
when tracking hand-held objects in [50], the authors segments the hand through the
intensity image to remove the point clouds associated to it before running ICP. Another
approach in 3D object tracking includes the level sets of Ren et al. [110] that uses a
probabilistic method to statistically determine occlusions. But this also uses intensity
images as an appearance model to help handle occlusions.

52

4.3 GENERALIZING THE TRACKER

Learning-based approach. Using the objective function of an energy-minimization
approach, Jurie and Dhome [65] builds up from the work of Hager and Belhumeur [48]
to learn linear predictors to find the relation of the intensities and parameters by randomly
warping the 2D template using different parameters of the warping function. Then, when
the template is moved, the changes in intensities can predict the warping parameters.
Another work is from Mayol and Murray [92] where they use general regression to fit
the sampling region to pre-trained samples.

There have been successful attempts to handle occlusion using 2D templates. In [58,
66, 148], they represent a template using smaller templates so that, when the template
is partially occluded, only a few smaller templates are affected. However, in addition
to occlusions from other objects where a specific region of the template is affected,
noise and missing data from the sensor can be interpreted as small occlusions, appearing
as small curves or small blobs, that extend throughout the template. As a result, this
could affect a significant number of small templates used in [58, 66, 148] to handle
occlusions. Furthermore, unlike textured images, tracking small templates is unstable in
3D because, if we divide the surface of an object into small portions, most of them have
a very similar structure to their neighbors which makes tracking ambiguous.

To the best of our knowledge, we have implemented the first learning-based tracking
algorithm that uses depth images alone. Nevertheless, our algorithm is a generic
approach that is applicable to both intensity and depth images. Furthermore, it is robust
to occlusions, illumination changes as well as fast motion, and runs in less than 2 ms
per frame with one CPU core.

4.3 Generalizing the Tracker
This work is rooted from the objective function of Hager and Belhumeur [48] in
Section 2.3.1 where they relate the image intensities of a template and transformation
parameters by the pseudo-inverse of a Jacobian matrix [48]. Another work from [65]
replaces the relation by a linear predictor so that tracking becomes very fast. However, in
contrast them, our method uses random forests in lieu of the matrices, which generalizes
it to any input function and not constrained to 2D intensity images.

4.3.1 Reformulating the Objective Function
Given an arbitrary input function Ωt at time t (e.g. intensity images or point clouds), the
location of the reference template is represented by ns sample points {xs ∈ RN}ns

s=1
at t0 such that the template is described by the set of values {Ωt0(xs), ∀ xs}. As the
template moves across time, the sample points are transformed as Φ(µ) ◦ xs, where the
vector µ contains the parameters of the transformation function Φ and its initial value is
µt0

= 0. Therefore, at time t, the objective function minimizes

ε(µt) = ∑
s
|Ωt(Φ(µt) ◦ xs)−Ωt0(xs)|2 (4.1)

such that, at time t + τ, the parameter vector µt updates to µt+τ = µt + δµ by
minimizing

ε(δµ) = ∑
s
|Ωt+τ(Φ(µt + δµ) ◦ xs)−Ωt0(xs)|2 (4.2)

53

CHAPTER 4: CHAMELEON TRACKER – A MULTI-FOREST APPROACH

where δµ is the parameter update vector. To simplify this equation, we assign Ω(µ, t) =
[Ωt(Φ(µ) ◦ xs)]

ns
s=1 as a collection of Ωt(·); hence, (4.2) is rewritten in vector form as

ε(δµ) =
∥∥∥Ω(µt + δµ, t + τ)−Ω(µt0

, t0)
∥∥∥2

. (4.3)

Using Taylor Series Approximation, we have

Ω(µt + δµ, t + τ)

≈ Ω(µt, t) + Jµ(µt, t)δµ + τ
∂Ω

∂t
(µt, t) (4.4a)

= Ω(µt, t + τ) + Jµ(µt, t)δµ (4.4b)

where Jµ(µt, t) is the Jacobian matrix of Ω with respect to µ, and ∂Ω
∂t (µt, t) is estimated

using the forward difference approximation. We substitute (4.4) into (4.3) as

ε(δµ) ≈
∥∥∥Ω(µt, t + τ) + Jµt

δµ−Ω(µt0
, t0)

∥∥∥2
(4.5)

where Jµt
= Jµ(µt, t). Finally, to find δµ with the minimum ε, we set the5δµε to zero,

which implies that

Ω(µt, t + τ) + Jµδµ−Ω(µt0
, t0) = 0 . (4.6)

Then, solving for δµ,

δµ = −J+µt
[Ω(µt, t + τ)−Ω(µt0

, t0)] (4.7a)

= −J+µt
δΩ(µt, t + τ) (4.7b)

where J+µ =
(

J>µt
Jµt

)−1
Jµt

and δΩ(µ, t) = Ω(µ, t) −Ω(µt0
, t0). Therefore, the

pseudo-inverse of the Jacobian matrix−J+µt
in (4.7) represents the relation from the given

δΩ(µt, t + τ) to the parameter update δµ. In this way, δµ updates the transformation
function as

Φ(µt+τ) = Φ(µt) ◦Φ(µt0
+ δµ) (4.8a)

= Φ(µt) ◦Φ(δµ) . (4.8b)

Instead of finding the non-linear relation −J+µt
in (4.7), we formulate a learning method

using random forests to find the relation between δΩ and δµ.

4.3.2 Learning a Tracker
We use regression forests to learn how different values of δµ affect the template in Ωt0

through δΩ. Subsequently, when the input function Ωt+τ and the parameters µt are
given, the forests use δΩ(µt, t + τ) to predict δµ and update the transform to Φ(µt+τ).
Contrary to [48], this learning scheme is not restricted to 2D images and can handle
different types of input function Ω without the necessity or difficulty to derive different
Jacobian matrices.

This method assumes independence between the parameters in µ and learns one
forest for each parameter separately. As a result, there are np forests where np is the
number of parameters in µ and each forest consists of nt trees.

54

4.3 GENERALIZING THE TRACKER

Learning dataset. This process begins by creating a training dataset where we pro-
duce nω random values of δµω to transform the input Ωt0 to Ωω , such that the location
of the sample points in Ωω is computed as Φ(δµω) ◦ xs. It follows that we can define
the learning dataset

S =
{(

δΩω, δµω
p

)
∀ω
}

(4.9)

that is used to construct the p-th forest where the vector δΩω = δΩ(µt0 , ω) is the
input sample of the forest and the scalar δµω

p is the p-th parameter in δµω. In general,
the objective of using such a synthetic training dataset is to generate S ; thus, there are
several ways of creating S and using a synthetic dataset by transforming Ωt0 is just one
of them.

Before training a tree, we randomly select nr points from the ns sample points of
the template and only use these points to construct the tree. The goal is to impose
randomness and to help handle cases when some sample points are not available or have
incorrect values in Ω (e.g. occlusion). Hence, we assign the features {θr}nr

r=1 as the
indices of the θr-th sample point.

Learning the forests. Given the learning dataset S , each feature is used to split the
samples that arrive in the node SN into two subsets Sl and Sr that goes to its left and
right child, respectively. These subsets are defined as

Sl =
{
(δΩω, δµω

p) ∈ SN | δΩω
θr
≥ κθr

}
and (4.10a)

Sr =
{
(δΩω, δµω

p) ∈ SN | δΩω
θr
< κθr

}
(4.10b)

where δΩω
θr

is the θr-th element of δΩω, and κθr is the threshold. Furthermore, to
evaluate the split, we use the information gain to determine whether it produced less
random or more homogeneous subsets, that is written as

G(θr) = σ(SN)− ∑
i∈{l,r}

|Si|
|SN |

σ(Si) (4.11)

where σ(Si) is the standard deviation of all δµω
p in Si. Among all θr, we look for the

best feature with the highest information gain. The node stores the best feature and its
threshold, and passes the subsets to its children. Note that the choice of the threshold
κθr depends on the values of all δΩω

θr
in SN . It can either be a single threshold such as

the median, or multiple threshold candidates such as linearly spaced values. Moreover,
if multiple thresholds are used, each of them is also evaluated using (4.11) and the one
with the highest information gain is stored.

The tree continuously splits the samples and grows until at least one of these stopping
criteria is true:

(1) the maximum depth of the tree is reached;

(2) the number of samples |SN | is small;

(3) the standard deviation σ(SN) is sufficiently low; or,

(4) the information gain of the best feature is less than a threshold.

55

CHAPTER 4: CHAMELEON TRACKER – A MULTI-FOREST APPROACH

Consequently, the node is considered as a leaf and stores the mean and standard deviation
of all δµω

p that reached this leaf. Similarly, the same process occurs for all nt trees in
each forest and for all np forests.

In the succeeding chapters, after creating a different learning dataset S , the same
procedure applies in learning the forests – the branches enfoce the splitting function
from (4.10) with the best information gain from (4.11), while the leaves stores the mean
and standard deviation of the parameter.

4.3.3 Tracking with Forests

Looking at (4.7) for t + τ, the curent input function Ωt+τ and the parameter vector
µt from t are given in order to solve the parameter update δµ. We compute the input
sample δΩ(µt, t + τ) of the the forests to predict δµ that updates the parameters.

Starting from the root node of each tree, the input sample uses the splitting parame-
ters in the node to determine whether to go to the left or right child, and continuously
traverse from the parent node to the child node until it reaches a leaf where the learned
mean and standard deviation that predict a parameter of δµ are stored. As a result, each
of the np parameters have nt predictions.

To find the final prediction of a parameter in δµ, a percentage of the nt predictions
with the lowest learned standard deviation are aggregate by taking the average of the
learned means. Finally, the transform is updated by employing (4.8a) and also update
the location of the sample points in Ωt+τ . Lastly, we iteratively repeat the entire process
to refine the previously predicted parameters.

4.4 Registration on Different Domains
With a generalized Ω, this section investigates on two input domains for tracking. The
first is the 2D template tracking using intensity images in Section 4.4.1. Similar to the
works of [60, 61, 62, 65] in Chapters 2 and 3, the objective is to track a rectangular
template through a homography. However, instead of relying on the linear predictor,
we utilize a random forest approach that makes an individual template robust against
extreme illumination changes and occlusions.

The second investigates on a 3D model-based tracker in Section 4.4.2. To the best of
our knowledge, the closest approach that achieves the same goals in ICP [14, 118, 123].
But the existing ICP algorithms are based on energy-minimization while our work relies
on learning. Thus, for the 3D tracker, we claim that this is the first method that estimates
the full 6D pose of the object through a learning framework using depth images.

4.4.1 2D Template Tracking

Section 4.3 is applied as a 2D template tracking algorithm using intensity images Ω.
Similar to Chapters 2 and 3, we parameterize a rectangular template using the 2D
location of its four corners {xc}4

c=1 at t0, and define its motion by the displacement
of these corners {δxc}4

c=1. From these, the transformation function Φ(µ) is denoted
as a homography that transforms {xc}4

c=1 to {xc + δxc}4
c=1 where µ = [δxc]4c=1and

Φ(µt0
) = I3×3. Moreover, we position the sample points {xs}ns

s=1 on an ns = ng × ng
regular grid fitted into the template.

56

4.4 REGISTRATION ON DIFFERENT DOMAINS

Ω(µ, t) = [Ωt(Φ(µ) · xs)]
ns
s=1 is then a collection of image intensities on the image

Ωt at the transformed sample points, and δΩ(µt0
, ω) = [Ωω(xs)−Ωt0(xs)]

ns
s=0 is the

input sample of the forest where Ωω(xs) is the warped template and Ωt0(xs) is the
reference template. Hence, in training, the synthetic data are transformations of the
image Ωt0 with nω random motions from δµ. Moreover, after predicting the parameters
δµ in tracking, we update the homography as Φ(µt+τ) = Φ(µt) ·Φ(δµ).

To handle illumination changes, we normalize the nr sample points in each tree such
that the intensities on these points have zero mean and unit standard deviation.

Parametrization. Using this concept, we use a 250×250 template and train nt = 50
trees for each np = 8 forests with 25×25 grid enclosed on the template and ns = 625
sample points. For the synthetic dataset, we generate nω = 50,000 transformed images
where the corners moves in the range of [-85, 85] pixels. The thresholding in each
branch uses ten linearly spaced values and the stopping criteria in each node includes
maximum depth of 20, minimum number of samples of 40, minimum standard deviation
of 0.5, and minimum information gain of 0.01. In tracking, we aggregate 20% of the
prediction with the lowest standard deviation and run 15 iterations.

Experimental Results

Using the same dataset in Figure 3.3 and evaluation in Chapter 3, we measure the
tracking robustness of our algorithm and compare it with Jurie and Dhome [65] where
they learn the relation between image intensity difference and parameter update vector
using linear predictor. The choice in comparing with [65] is due to its similarity with
our approach where both are rooted from [48] and replace the pseudo-inverse of the
Jacobian matrix with a learning algorithm. Moreover, it is reported in Chapter 3 that the
overall performance of [65] is either comparable to or better than [13, 58, 59].

Here, we learn the template at the center of the image and track this template after
warping the image. The tracking robustness is computed as the percent of successfully
tracked templates where the average distance of the tracked corners to its ground
truth location is less than 5.0 pixels when backwarped. In addition, we compare our
tracking robustness with different values of nr and, based on the plots in Figure 4.1, the
performance converges when nr = 25. From these evaluations, the average tracking
time of our approach is approximately 1.47 ms when using one core of the CPU, while
linear predictor [65] runs at 0.47 ms. Thus, their approach is 1 ms faster than ours which
is almost negligible.

With different types of image warping in Fig 4.1(a-d), we show that our 2D experi-
ment has similar tracking robustness as the linear predictor [65]. For the evaluation with
respect to noise in Figure 4.1(e) where we randomly translate the image by a maximum
distance of 35 pixels after inducing varying levels of Gaussian noise, it illustrates that
we are slightly better in tracking than [65].

However, our learning approach is much more robust to occlusion than [65] as
shown in Figure 4.1(f) where the image is translated after replacing a percent of the
template’s region by a different image; while, in Figure 4.2(c), we demonstrate its
performance after occluding the template with different objects. Note that this property
becomes a requirement when some of the pixel values from the sensor is not available
such as shadows from depth sensors – a thorough investigation in using our algorithm

57

CHAPTER 4: CHAMELEON TRACKER – A MULTI-FOREST APPROACH

0

20

40

60

80

100

0 30 60 90 120 150

LR Ours-15 Ours-20 Ours-25 Ours-30

0

20

40

60

80

100

0 30 60 90 120 150

LR Ours-15 Ours-20 Ours-25 Ours-30

0

20

40

60

80

100

-90 -60 -30 0 30 60 90

LP Ours-15 Ours-20 Ours-25 Ours-30

(a) Translation (b) In-Plane Rotation

0

20

40

60

80

100

0.3 0.6 0.9 1.2 1.5 1.8 2.1

LP Ours-15 Ours-20 Ours-25 Ours-30

0

20

40

60

80

100

0 20 40 60 80

LP Ours-15 Ours-20 Ours-25 Ours-30

(c) Scale (d) Out-of-Plane Rotation

0

20

40

60

80

100

0 50 100 150 200

LP Ours-15 Ours-20 Ours-25 Ours-30

0

20

40

60

80

100

0% 10% 20% 30% 40% 50%

LP Ours-15 Ours-20 Ours-25 Ours-30

(e) Noise (f) Occlusion

Figure 4.1: These plots show the tracking robustness of our algorithm with varying nr
(15, 20, 25, 30) and compare it with linear predictor (LR) [65] under different (a-d)
transformations, (e) levels of Gaussian noise and (f) percentage of occluded region.

58

4.4 REGISTRATION ON DIFFERENT DOMAINS

for depth images is conducted in Section 4.4.2.
Therefore, although there are similarities with [65], our algorithm has proven to

be a chameleon since its range of application is not limited to a specific sensor and its
tracking robustness is not compromised by this generality. With regards to 2D tracking,
we have demonstrated that both algorithms are equally robust in tracking performance,
but we are more robust in the presence of occlusion and strong illumination changes.

Qualitative Results

Based on the quantitative evaluation, this section aims to reinforce the claims through
qualitative tests. The evaluation begins with a simple tracking example in Figure 4.2(a).
Knowing that [65] is sensitive to occlusions, we demonstrate that our forest-based
tracker in the presence of occlusion in Figure 4.2(b). In addition, we also demonstrate in
Figure 4.2(c-d) that we are also robust to strong illumination changes which [65] cannot
handle.

Application

The forest-based 2D template tracker has been applied as part of the surgical tool
tracking frameworks in [114, 115, 116]. In these works, we aim to develop a tracker that
is robust to illumination changes, different types of light sources and different variations
of reflectance from the metallic tool. Contrary to other template tracking approaches
such [60, 61, 62, 65, 132, 133], instead of learning a single template, a unique attribute
of [114, 115, 116] is that it learns from multiple templates in order to generalize for
different environmental changes.

Learning from multiple templates in one linear predictor [60, 61, 62, 65] is not
possible since it requires a single template to compare its δi. In this framework, we
utilize the intensities from the sample points instead of the difference in intensity. This
is based on the observation that the threshold in splitting uses an element of the learning
dataset. The intensity of un-perturbed template in the intensity difference vector is
always contant across all the dataset and does not affect the information gain in splitting
– thus, it is negligible when learning through random forest.

Notably, one of our papers [114] is a recipient of the Young Scientist Award from
the 2015 conference on Medical Image Computing and Computer Assisted Intervention
(MICCAI).

4.4.2 3D Object Tracking

Through the generalized objective function from (4.3), we designed a model-based
tracking method that finds the pose of a 3D rigid object using the depth image Dt.
The first goal is to derive an objective function that resembles the error function in
(4.3). When accomplished, we follow a similar learning and tracking algorithm as
Sections 4.3.2 and 4.3.3.

Here, the object coordinate system are used, where the centroid of the model’s
vertices is the origin, and the camera coordinate system, where the camera center
is the origin. The camera is parameterized by a 3×3 intrinsic matrix K and a 4×4
transformation matrix Tt0 that relates the camera coordinate system and the object
coordinate system at t0. Moreover, the sample points {Xs}ns

s=1 are 3D homogeneous

59

C
H

A
P

T
E

R
4:

C
H

A
M

E
L

E
O

N
T

R
A

C
K

E
R

–
A

M
U

LT
I-F

O
R

E
S

T
A

P
P

R
O

A
C

H

(a) Trackin
g

(b
) O

cclu
sio

n
(c) Illu

m
in

atio
n

(d
) Tim

e-lap
se

Figure 4.2: Qualitative results of our 2D template tracking algorithm – (a) tracking with perspective transform, (b) tracking with partial occlusion, and
(c-d) tracking under strong illumination changes with a time-lapse during sunset in (d).

60

4.4 REGISTRATION ON DIFFERENT DOMAINS

points on the model as seen by the camera coordinate system. The corresponding points
in the object coordinate system are then computed as {T−1

t0
Xs}ns

s=1.
Looking from the object coordinate system, the rigid transform of the object is

defined by the 4×4 matrix

Tobj(µ) =

[
I3×3 t
0> 1

]
· Rx(α) · Ry(β) · Rz(γ) (4.12)

where t = (tx, ty, tz)> is the translation vector; α, β and γ are the yaw, pitch and roll
angles, respectively; and, the parameter vector µ is composed of the three translation
parameters and three rotation parameters. Therefore, after transforming the object, the
sample points in the camera coordinate system transforms as

Pµ(Xs) = Tt0 Tobj(µ)T−1
t0

Xs (4.13)

where

Pµt0
(Xs) = Xs . (4.14)

Then, the projection of the points into the camera’s image is given as xd
s = [K|0] ·

Pµ(Xs) where xd
s is given in 2D homogeneous coordinates.

If we denote Dt(x) as the backprojection of the pixel x in the depth image Dt, then,
to find the optimum δµ at t + τ, we minimize the sum of the distances∥∥∥Dt+τ([K|0]Pµt+δµ(Xs))−Pµt+δµ(Xs)

∥∥∥2
(4.15)

=
∥∥∥P−1

µt+δµ(Dt+τ([K|0]Pµt+δµ(Xs)))− Xs

∥∥∥2
(4.16)

for all sample points. However, we observed that the difference in the x- and y-
coordinates are close to zero in (4.16). Hence, we simplify the error function by only
using the difference in the z-coordinates

ε(δµ) = ∑
s
|Φt+τ(µt + δµ) ◦ Xs − Xs|2z (4.17)

that resembles the generalized objective function in (4.3) where

Φt(µ) ◦ Xs = P−1
µ

(
Dt
(
[K|0]Pµ (Xs)

))
(4.18)

is a time-varying transformation function that is dependent on the depth image Dt, and
the operator | · |z takes the z-coordinate of the point. When we compare (4.17) with
(4.3), the vector

Ω(µ, t) = [|Φt(µt) ◦ Xs|z]ns
s=1 (4.19)

is described as a collection of the z-coordinates of the transformed sample points where
Ω(µt0

, t0) = [|Xs|z]ns
s=1.

In training, the input sample can be further simplified as

δΩ(µt0
, ω) = [|Dω ([K|0]Xs)− Xs|z]

ns
s=1 (4.20)

61

CHAPTER 4: CHAMELEON TRACKER – A MULTI-FOREST APPROACH

because of (4.14). This implies that δΩ in the learning dataset S only changes with
respect to the depth image across ω. As a consequence, to create the set S for training,
we render nω depth images with different parameters of δµω in Tobj. Moreover, from
the synthetic depth image with Tobj(µ0), the model on the image is enclosed by an
ng × ng regular grid, where the points on the model are backprojected and are used as
the sample points. On the other hand, in tracking, the prediction δµ updates Tobj in the
transformation function Φ through

Tobj(µt+τ) = Tobj(µt) · Tobj(δµ) . (4.21)

Multi-View Tracking. The problem with our sample point arrangement is that it is
restricted to one view of the object. For instance, if the object keeps rotating in one
direction, at some point, the tracker becomes unstable and fails since the number of
visible sample points continuously decreases. Due to this, we individually learn random
forests for nc views of the object where the camera is located around the object using
an icosahedron. It follows that the c-th camera view has its own set of sample points
{Xc

s}
nc

s
s=1 and transformation matrix Tc, and this produces 6·nc · nt trees. Therefore,

using the object coordinate system in tracking, we find the closest learned camera view
to the current position of the camera. Mathematically, to switch from one view to the
other, we modify (4.13) to

Pc
µ(X

c
s) = T0Tobj(µ)T−1

c Xc
s (4.22)

where T0 is the initial object transformation matrix in tracking.

Parametrization. Based on this, we use nt = 100 trees for each np = 6 parameters
with a 40×40 grid enclosed on the model as seen from the depth image where only
points that lie on the model are used as sample points. In training, we render nω =
50,000 depth images where the object randomly transforms with a translation that ranges
in [-35, 35] mm for each axis, and the angles α, β and γ in [-30◦, 30◦]. Moreover, each
tree randomly chooses nr = 20 sample points, each branch uses ten linearly spaced
thresholds and each node checks the stopping criteria with depth of 20, 40 samples,
standard deviation of 0.5, and information gain of 0.01. This is done for nc = 42 camera
views of the model. Then, in tracking, we aggregate 15% of the predictions with the
lowest standard deviation and run ten iterations.

Experimental Results

We created a test dataset with four sequences using PrimeSense’s Carmine 1.09 camera
to track different objects – vise, driller, cat and bunny – in cluttered environments as
shown in the first row of Figure 4.4. We compare our results to the ICP implemen-
tation from PCL [1] where the vertices of the model are used as input source, and
LineMod [54], which is the state-of-the-art 3D object detector, that is taken from the
original implementation of the authors. Note that LineMod refines the pose of the object
after template matching using ICP.

To generate ground truth transforms, we placed the objects on top of a board with
markers on its edges; thus, we can transform the object’s model using the ground truth
and compare it with the location of the tracked object through the mean distance of the

62

4.4 REGISTRATION ON DIFFERENT DOMAINS

(a) Driller (b) Cat (c) Bunny

Figure 4.3: These images show the frames (a) when our approach becomes unstable in
the driller sequence due to the lack of depth data, and (b-c) when ICP fails in the cat
and bunny sequences. Note that the object of interest is marked in red.

model’s vertices as plotted in the second row of Figure 4.4. Moreover, in the vise, driller
and cat sequences, the camera stayed static while the board rotates; but, in the bunny
sequence, both the camera and board moves. Hence, from this dataset, the tracking
results can be summarized as follows:

1. Vise. All approaches works well in this sequence even if there is a small occlusion
from the red screwdriver as illustrated in Figure 4.4(a).

2. Driller. For this sequence, there are some depth images that does not have
sufficient information for a portion of the object as shown in Figure 4.3(a). This
affects both LineMod and our method. However, it is important to mention that
our method became unstable in a small section of the sequence but it did not lose
tracking; while, LineMod frequently fails in detecting the object.

3. Cat. As the cat rotates, the depth image loses information of its tail as shown in
Figure 4.3(b) and its relatively large spherical head dominates the ICP algorithm.
Due to its shape, ICP stayed static and fails to track the rotation of the cat. This
results in a tracking failure for the rest of the images in the sequence. Regarding
LineMod and our algorithm, they work well in this sequence and smoothly track
the cat’s rotation without getting trapped in a local minimum.

4. Bunny. There are two essential criteria to consider in this sequence. The first
is the fast motion of both object and camera which creates a motion blur in the
colored image as well as noise in the depth image as shown in Figure 4.3(c), and
the second is the closeness of the surrounding objects to the object of interest
as depicted in Figure 4.4(d). In this sequence, the bunny is occluded by the cat,
then the duck. Therefore, when the cat occluded a large portion of the bunny, ICP
started incorporating the cat as part of the bunny and loses tracking. For LineMod,
the detector also fails when the objects occlude the bunny, which is indicated

63

CHAPTER 4: CHAMELEON TRACKER – A MULTI-FOREST APPROACH

0

2

4

6

8

10

12

14

16

18

20

0 100 200 300 400

M
ea

n
 E

rr
o

r
(i

n
 m

m
)

Frame Index

LineMod ICP Ours

(a) Vise

0

2

4

6

8

10

12

14

16

18

20

0 100 200 300 400

M
ea

n
 E

rr
o

r
(i

n
 m

m
)

Frame Index

LineMod ICP Ours

(b) Driller

0

2

4

6

8

10

12

14

16

18

20

0 100 200 300 400

M
ea

n
 E

rr
o

r
(i

n
 m

m
)

Frame Index

LineMod ICP Ours

(c) Cat

0

2

4

6

8

10

12

14

16

18

20

0 100 200 300 400

M
ea

n
 E

rr
o

r
(i

n
 m

m
)

Frame Index

LineMod ICP Ours

(d) Bunny

Figure 4.4: The first column shows the setup of the four sequences that are used to
evaluate the 3D tracking algorithm where the object of interest is mark in red; the
second shows the mean distance error for each sequence using LineMod [54] where
their peaks indicate detection failures, PCL’s ICP [1] where ICP fails at frame 116 in (c)
and frame 72 in (d), and our approach; and, the last row shows our tracking results in
the corresponding depth image.

64

4.4 REGISTRATION ON DIFFERENT DOMAINS

(a) Play (b) Pick (c) Drop

Figure 4.5: These images show examples of our 3D tracking algorithm where the actor
(a) plays with the cat; (b) picks it up; then, (c) drops it. More examples are in the
Supplementary Materials.

by the two peaks in Figure 4.4(d). Finally, our approach became unstable but
completely recovers after the occlusion.

On average, our tracking time is 1.75 ms for the vise, 1.76 ms for the driller, 1.84 ms
for the cat and 1.84 ms for the bunny when using only one CPU core. For ICP, the
average tracking time is 189.09 ms for the vise, 72.24 ms for the driller, 65.04 ms for
the cat and 225.72 ms for the bunny. Moreover, the average tracking time for LineMod
is approximately 119 ms for all models.

Taking the results from the dataset into account, we have exhibited different scenarios
and show that, in comparison to LineMod and ICP, our 3D algorithm can avoid local
minima, is more stable in the presence of both noise and occlusion; and, is at least 35
times faster than ICP [1] and two orders of magnitude faster than LineMod [54].

Qualitative Results

Furthermore, we illustrate some tracking examples in Figure 4.5 from a video where
the actor plays with the cat, picks it up through its tail, turns it around, then drops
it. These examples show how well the tracker handles occlusion. For instance, when
the cat is occluded by the hand in Figure 4.5(a), it is not necessary to do any pre-
processing procedure, such as segmenting the hand, even if the object is relatively small.
Additionally, when the cat is turned or dropped, it also shows how well our algorithm
handles fast motion.

Through the examples in Figures 5.9 and 5.10, we demonstrate that we have a
good tracking performance in fast motion as well as partial occlusion. An interesting
characteristic of the tracker is the capacity to handle close-range occlusions such as hand-
held devices. In contrast, ICP usually fails in such scenario since it tries to incorporate
the neighboring objects into the energy minimization as validated in Figure 5.10(b).

65

C
H

A
P

T
E

R
4:

C
H

A
M

E
L

E
O

N
T

R
A

C
K

E
R

–
A

M
U

LT
I-F

O
R

E
S

T
A

P
P

R
O

A
C

H

(b
) B

u
n

n
y

(a) C
at

Figure 4.6: Qualitative evaluation on the 3D model-based tracker. Note that only the depth image is used for tracking.

66

4.5
C

O
N

C
L

U
S

IO
N

(d
) D

riller
(c) V

ise

Figure 4.7: Qualitative evaluation on the 3D model-based tracker. Note that only the depth image is used for tracking.

67

CHAPTER 4: CHAMELEON TRACKER – A MULTI-FOREST APPROACH

4.5 Conclusion
After generalizing the objective function, the novelty of this chapter is the transition
from tracking 2D templates to 3D objects with the estimation of the full 6 d.o.f. pose.
Achieving a robust algorithm and an extemely fast tracking time with a low compu-
tational cost (i.e. less than 2 ms using 1 CPU core), the 3D tracker paves the way to
applications such as robotic applications and human-computer interaction, wherein
the tracker is a significant component of a larger framework. In these applications,
robustness avoids tracking failures and losing the object of interest which then requires
the re-initialization of the frame-to-frame tracker, while the fast tracking time allows
the resulting application to attain low latency.

68

5
Versatile 3D Tracker with

Online Learning Capabilities

5.1 Motivation

Real-time 3D tracking is now the enabling technology for a range of applications in
the field of augmented reality, robotic perception as well as human-machine interaction.
In these cases, tracking multiple objects at real-time becomes an inherent requirement.
Moreover, when using 3D sensors on mobile devices, low computational cost and
memory consumption are required.

This chapter is inspired by our learning-based approach [133] from Chapter 4 that
uses depth images only. Our previous work [133] is a temporal tracking algorithm
based on random forest [21] that runs at 2 ms per frame with a single CPU core. At
the moment, this is the only method that has achieved this efficiency in 3D tracking
with an extremely low computational requirement compared to the literature concerning
3D tracking-by-detection [2, 37, 54] and 3D temporal tracking [14, 27]. However, it
poses problems in the robustness against large occlusions and large holes that results in
tracking errors and failures, memory consumption that limits tracking to a maximum of
9 objects and long learning time that limits its applicability to model-based tracking.

The motivation is to overcome the limitations from [133] to satisfy the diverse
requirement of most 3D tracking applications. In order to transition from achieving the-
oretical goals into a versatile algorithm that solves real-world problems, we summarize
the following required attributes to accomplish this objective:

(1) Robustness. To avoid tracking failures, the tracker must be robust against sensor
noise such as holes and artifacts, commonly present in depth data, as well as
robust against partial occlusion from the environment.

(2) Tracking time and computational cost. Due to the theoretical efficiency, the
tracker must be faster than any tracking-by-detection method. Moreover, it must
specify the computational cost to attain this speed.

(3) Memory consumption. The amount of memory the tracker consumes from RAM

69

CHAPTER 5: VERSATILE 3D TRACKER WITH ONLINE LEARNING CAPABILITIES

for a single target should be small enough to allow simultaneous tracking of
multiple targets along the same sequence.

(4) Scalability to multiple objects. An increase in the number of simultaneously
tracked objects causes an increase in (2) tracking time and computational cost,
and (3) memory consumption in comparison to tracking a single object. Moreover,
it emphasizes how additional objects affect the (1) robustness of the algorithm.

In addition, for all learning-based methods, it is also essential to consider the:

(5) Learning time. This includes the creation of the learning dataset from loading or
rendering images to extracting the input (samples) and output (labels) parameters,
and the construction of the machine learning data structure. It is particularly
important for online tracking, where the object has to be incrementally learned in
the successive frames at real-time.

Therefore, the novelty of this work is that it satisfies all of the aforementioned attributes
simultaneously, while achieving better results against the other methods individually.

Hence, in contrast to [133], the proposed tracker overcomes their limitations through
an algorithm that (1) is more robust to holes and partial occlusions, (3) has a very low
memory footprint, (4) is scalable to track a hundred objects in real-time and (5) has a
fast learning time, while keeping the existing attributes regarding (2) low tracking time
with a low computational expense. Due to the fast learning time, we extended the work
to online model-free tracking. In this case, the tracker initializes the geometry of the
target from a single depth frame and adapts it to changing geometry and unseen camera
viewpoints while tracking.

Our main theoretical contribution is two-fold. On one hand, we propose a novel
occlusion handling strategy that adapts the choice of the input samples being learned. In
effect, this notably increases the overall robustness, as proven through the state-of-the-art
results reported by our method on benchmark datasets (see Section 5.4). On the other
hand, in lieu of the learning strategy employed by [133], we propose to use only one
depth image to create the entire learning dataset, or the entire set of samples and labels
for each camera view. This leads to a novel formulation of the learning strategy, which
allows a much denser sampling of the camera viewpoints with respect to [133]. As a
consequence, we achieve not only a high scalability, but also a remarkably low memory
footprint and fast learning time, that allows our proposal to be deployed in an online 3D
tracking context, which initializes the geometry of the target from a single depth frame,
and adapts it to changing geometry and unseen camera viewpoints while tracking.

5.2 Related Work

If we limit our scope to temporal trackers that estimate the object’s pose using solely
depth images, there are only two existing methods – the energy-minimization such as
Iterative Closest Point (ICP) algorithms [14, 27] and a learning-based algorithm [133].
Most works [2, 55, 63, 95] have applied ICP as an integral component of their algorithms;
while, others [42, 107, 118, 123] have developed it to different extensions. Nonetheless,
to the best of our knowledge, there have been only one learning-based object temporal
tracking algorithm that relies solely on depth images [133].

70

5.3 3D TEMPORAL TRACKER

Furthermore, there are several works that have utilized the RGB-D data. This
includes the hand-held object tracking [50] that uses RGB to remove the hand before
running ICP. Moreover, the particle filter approaches [28, 74] extends existing RGB
trackers to include the depth data. Another work [111] uses level-set optimization
with appearance and physical constraints to handle occlusions from interacting objects;
but, they only conduct their experiments on texture-less objects with simple geometric
structure such as prisms or spheres. Among the RGB-D methods [28, 50, 74, 111], it
is common to implement them in GPU for real-time tracking. In effect, their runtime
depends on the type of GPU that they use, which creates a problem to track more objects
while still keeping the real-time performance.

5.3 3D Temporal Tracker

Tracking aims at solving the registration problem between the 3D points on the object
and the 3D points from the depth image representing the current frame. To register these
two sets of points, the error function is defined as the signed displacement of a point
correspondence

εv
j (T; D) = Nv ·

(
T−1D(xj)− Xj

)
(5.1)

where Xj is a point on the object in the object coordinate system, Nv is a unit vector
that defines the direction of the displacement (see (5.3)), T is the object transformation
from the camera (see (5.2)), xj is the projection of TXj, and D is the depth image with
D(x) as the back-projection function of the pixel x. As notations, we include a tilde as
x̃ to denote inhomogeneous coordinates while x as homogeneous.

The objective of tracking is to locate the object in the image by finding the trans-
formation that registers the points on the object to the points from the depth image.
Specifically, object temporal trackers seek the transformation T̂t from the frames at
time t− 1 to t and transform Xj by Tt = ∏t

i=0 T̂i. In the current frame Dt, it utilizes
the displacement of the points εv

j (Tt−1; Dt) to determine the relative transformation T̂t

that minimizes εv
j (Tt; Dt).

Instead of aggregating the errors as ∑j |εv
j |2 in energy minimizers, we take the

individual values of the signed displacements εv
j (Tt−1; Dt) from nj points on the object

{Xj}
nj
j=1 as the input to the random forest [21] and predict the transformation parameters

of T̂t. However, similar to energy minimizers, the tracker runs several iterations on each
frame to refine the predicted pose.

Parametrization. The rigid transfomation T is constructed with the Euler angles α,
β and γ, and the translation vector t̃ = (tx, ty, tz)> such that

T̂ = Rx(α) · Ry(β) · Rz(γ) ·
[

I3×3 t̃
0> 1

]
(5.2)

with the parameter vector τ = [α, β, γ, t̃>]>.

71

CHAPTER 5: VERSATILE 3D TRACKER WITH ONLINE LEARNING CAPABILITIES

(a) 42 (b) 162 (c) 642 (d) 2562

Figure 5.1: The geodesic grids, which locate the camera around the target object, are
derived from recursively dividing an icosahedron with 12 vertices to (a) 42, (b) 162,
(c) 642 and (d) 2562 vertices.

Dense camera. When the object moves during tracking, its viewpoint changes and
the visible points on the object also vary accordingly. Thus, to ensure the capacity to
track the object from different viewpoints, the algorithm learns the relation between the
error function and the transformation parameters from different viewpoints or camera
views. It follows that, in tracking, the closest camera views have the highest similarity
to the current frame and only the trees from these views are evaluated to predict the
relative transformation.

For instance, in model-based tracking, nv views of the object’s model are syntheti-
cally rendered by positioning the camera on the vertices of a densely-sampled geodesic
grid [120] around the object. This is created by recursively dividing an icosahedron into
equally spaced nv vertices, as shown in Figure 5.1. By increasing nv, the distance be-
tween neighboring cameras is decreased. In effect, the trees from multiple neighboring
camera views predict the output parameters, instead of evaluating a number of trees
from one view in [133]. Consequently, we can significantly decrease the number of
trees per view in comparison to [133]. Thus, each view independently learns one tree
per parameter using the corresponding rendered image. This produces a total 6nv trees
in the forest from all views.

Although one can argue to increase the number of camera views for [133], this is
impractical because of the time required to generate the increased number of rendered
images. As an example, when using 642 views in Figure 5.1(c), they need a total of
32.1M images for the learning dataset from all camera views, while our method needs
642 images, i.e. one for each camera view.

Whether using synthetic or real depth images, the input to learning from one view
is a depth image Dv and its corresponding object transformation T̂v. In the object
coordinate system, the location of the camera X̃v is

X̃v = −R̃>v t̃v ⇒ Nv =

(
X̃>v
‖X̃v‖2

, 0

)>
(5.3)

where R̃v is the 3×3 rotation matrix and t̃v is the translation vector of T̂v. From this, we
define the unit vector Nv from (5.1) as the vector that points towards the camera center.
Instead of the normal to the object’s surface, the advantage of using (5.3) is evident
with real depth images, where the normal to the object’s surface becomes expensive to
compute and prone to large errors due to sensor noise.

72

5.3 3D TEMPORAL TRACKER

Learned Images from Different Viewpoints

Input Image in Tracking

(a) (b) (c) (d)

Figure 5.2: First row: occluded object when tracking. Second row: learned views
where the occluded region is in blue and the points on the object, which are projected in
the first row, are in yellow. Note that (a-b) are not affect by occlusion while (c-d) are
affected.

5.3.1 Learning from One Viewpoint

While looking at the object from a given viewpoint v, the depth image Dv and the
corresponding object transformation T̂v are taken as the input to learning. Using Dv
and T̂v from only one view of the object, the visible points on the object are extracted
to create the learning dataset and, eventually, learn the trees. Among the pixels {xi}

ni
i=1

from Dv that are on the object, nj points are selected, back-projected and transformed

to the object coordinate system. These are the set of points on the object χv = {Xj}
nj
j=1

that are used to compute the displacements in (5.1). As a consequence, we are tracking
the location of χv across time by transforming them with Tt.

Occlusion handling. Even though randomly selecting a subset of points on the object
endows the tracker with robustness against small holes on the depth image [133],
occlusions still affect its performance. By observation, we describe an occlusion on an
image as a 2D obstruction that covers a portion of an object starting from an edge of the
object’s silhouette, while the other regions are visible to the camera, as demonstrated in
Figure 5.2. Using this observation, the object on the image are divided into two regions
using a line with a unit normal vector nl , where the pixels from one region is selected
for χv and nl is a random unit vector within the 2π unit circle. Thereupon, the pixels
are sorted based on di = nl · xi such that the pixels with a lower value are located on
one edge of the object while the pixels with a higher value are on the opposite edge.
Hence, only the first 10% to 70% of the sorted pixels are included for the selection of
χv, where we randomly choose the percentage of pixels. In effect, occlusion is handled
by discarding a subregion of the object and selecting the set of points χv from the
remaining subregion as illustrated in Figure 5.2.

Dataset. To build the learning dataset from Dv, T̂v and χv, the rotation angles and
translation vector in τr of (5.2) are randomly parametrized to compose T̂r and formulate

73

CHAPTER 5: VERSATILE 3D TRACKER WITH ONLINE LEARNING CAPABILITIES

Tr = T̂vT̂−1
r . By transforming Xj by Tr, it emulates the location of the points from the

previous frame such that the current frame needs a transformation of T̂r to correctly
track the object. Consequently, Tr is used to compute the displacement vector εv

r =

[εv
j (Tr; Dv)]

nj
j=1. After imposing nr random parameters, the accumulation of εv

r and τr

builds the learning dataset S = {(εv
r , τr)}nr

r=1. In this way, the forest aims at learning
the relation between ε and τ; so that, when ε is given in tracking, the forest can predict
τ.

Learning. Given the dataset S , learning aims at splitting S into two smaller subsets
to be passed down to its children. The tree grows by iteratively splitting the inherited
subset of the learning dataset SN and passing down the resulting Sl and Sr to its left
and right child. The objective is to split using ε while optimizing a parameter in τ to
make the values more coherent which is measured by the standard deviation σ(S) of
the parameter from all τ in S .

To split SN into Sl and Sr, we follow the same procedure as Section 4.3.2. An
element of the vector ε across all SN is thresholded such that all values that are less than
the threshold goes to Sl while the others go to Sr. All of the nj elements of ε and several
thresholds that are linearly space between the minimum and maximum values of the
each element across SN are tested to split the dataset. These tests are evaluated based on
the information gain computed from (4.11) where the test with highest information gain
gives the best split. As a result, the index of the element in the vector and the threshold
that gives the best split are stored in the node.

The tree stops growing if the size of the inherited learning dataset is too small or the
standard deviation of the parameter is less than a threshold. Then, this node is a leaf and
stores the mean and standard deviation of the parameter.

Consequently, the same learning process is applied for each of the parameters in τ
to grow one tree per parameter. It is also applied to all of the nv views of the object.

5.3.2 Tracking an Object

When tracking an object at time t, the given input is the current frame Dt, the object
transformation from the previous frame Tt−1 and the learned forest with 6nv trees.
Ultimately, the forest predicts the parameters of T̂t and updates the object transformation
from Tt−1 to Tt.

From the nv views of the object, a subset of the trees are selected such that the
object’s viewpoint shows the highest similarity with the current frame. To compare the
camera views in the model coordinate system, the camera location

X̃c
t−1 = −R̃>t−1 t̃t−1 (5.4)

is estimated based the pose from t− 1, where R̃t−1 is the 3×3 rotation matrix of T̂t−1
and t̃t−1 is its translation vector. It follows that the unit vector pointing towards the
camera is derived as

Nt−1 =

(
(X̃c

t−1)
>

‖X̃c
t−1‖2

, 0

)>
. (5.5)

74

5.4 EXPERIMENTAL RESULTS

Then, the comparison between the current view of the object from the learned views is
measured through the angular distance between Nt−1 and Nv for all views. Thus, the
subset of trees chosen for evaluation is composed of the trees with the camera view that
are within the neighborhood of Nt−1 such that the angular distance is less than τn.

To evaluate on the v-th view, εv
t−1 = [εv

j (Tt−1; Dt)]
nj
j=1 is constructed as the input

to the trees. The threshold for εv
t−1 at each node guides the prediction to the left or

right child until a leaf is reached. Each leaf stores the predicted mean and standard
deviation of a parameter. After evaluating the trees from all neighboring views, the
final prediction of a parameter is the average of the 20% predicted means with the least
standard deviation. As a result, the average parameters are used to assemble the relative
transformation T̂t and we execute nk iterations.

It is noteworthy to mention that, by taking the trees from a neighborhood of camera
views and by aggregating only the best predictions, our algorithm can effectively handle
large holes and occlusions. Indeed, as demonstrated in Figure 5.2, some trees are
affected by occlusion, the others can efficiently predict the correct parameters.

5.3.3 Online Learning

When tracking an object in real scenes, there are situations when its 3D model is not
at hand, which makes model-based tracking impossible. To track in these scenarios,
we propose to deploy 3D online tracking, where, starting from a single 3D pose on
an initial depth image, the target object is adaptively learned through the successive
frames while being tracked, under unseen camera viewpoints and appearance changes.
In contrast to learning a model-based tracker, only the depth image Dv is given while
the corresponding ground truth object transformation T̂v is unknown.

For this approach, it is necessary to attain not only tracking efficiency but also
learning efficiency. Our proposed tracking algorithm, through its attributes in terms of
efficiency and memory footprint, suits nicely to this application. In particular, from
one frame to the next, we propose to incrementally add new trees to the forest from
different object viewpoint. To achieve this goal, the online learning is initialized by
defining the object to learn in the first frame and a 3D bounding box that encloses
the object. It follows that the centroid of the box is the origin of the object and the
object transformation of the initial frame T̂0 is the translation from the camera center
to the centroid. The bounding box defines the constraints of the object in 3D space
and segments the object for learning. Thereafter, Section 5.3.1 is used to learn with
the segmented image from Dt and the object transform Tt as input. The initial frame
needs to learn nt trees per parameter to stabilize the forest for tracking the object in
the next frames; while, the succeeding frames learn one tree per parameter. In this
case, the geodesic grid from Figure 5.1 is used to avoid re-learning trees from similar
viewpoints. Thus, we find the closest vertex of the grid from the camera location in the
object coordinate system and impose to have only one set of trees in each vertex.

5.4 Experimental Results

This section evaluates the proposed tracking algorithm by taking into consideration, one
at a time, the five essential attributes already discussed in Section 5.1 – (1) robustness,

75

CHAPTER 5: VERSATILE 3D TRACKER WITH ONLINE LEARNING CAPABILITIES

(b) Convergence Rate(a) Success Rate

Ours (250)

Ours (500)

Ours (1,000)

Ours (2,500)

Ours (5,000)

Ours (10,000)

CT (50,000)

0%

20%

40%

60%

80%

100%

0 15 30 45 60 75 90

Su
cc

es
s

R
at

e

Angle (degrees)

0

5

10

15

20

25

30

0 2 4 6 8 10 12

Er
ro

r
(m

m
)

No. of Iterations

Figure 5.3: (a) Success rate and (b) convergence rate of our proposal with varying sizes
of the learning dataset compared against CT [133].

(2) tracking time and computational cost, (3) memory consumption, (4) scalability to
multiple objects and (5) learning time.

5.4.1 Robustness

To evaluate the robustness of our algorithm, we use three benchmark datasets [28, 54,
133]. The evaluation of the first dataset [54] determines the optimum parameters utilized
throughout Section 5.4 and compares against the Chameleon Tracker (CT) [133]; the
second [28] compares the accuracy of the transformation parameters against the RGB-D
particle filter approaches [28, 74, 119]; finally, the third [133] compares the robustness
of our approach against other trackers [1, 133] based on depth images only. Notably,
across all the datasets, our work only uses the depth images of the RGB-D sequences.

Optimum Parameters. The driller dataset from [54] is composed of its model and
1,188 real RGB-D images with the ground truth pose of the object in each image. This
evaluation focuses on the robustness of the algorithm to track an object in the current
frame given its pose in the previous frame. To mimic the transformation of the previous
frame, the ground truth pose is randomly translated and rotated using the Rodrigues’
rotation formula [38, 117]. Thereafter, the tracker estimates the object’s pose and the
error of the estimated pose is computed based on the average distance between the
corresponding vertices from the ground truth pose and the estimated pose.

From this error, the effects of different parameters on the tracker are observed
through the success rate and the convergence rate. According to [54], a successfully
estimated pose has the error value below 0.1 of the object’s diameter. Moreover, the
convergence rate takes the average error across the entire dataset for each of the iterations.
These evaluations aim at finding the optimum parameters that produce the best results
and to compare with CT [133].

In learning, there are two main aspects that affect the performance of the trees.
These are the size of the learning dataset nr and the number of camera views from the
geodesic grid nv. With regards to the size of the learning dataset, Figure 5.3 illustrates
that there is no significant difference in both success rate and convergence rate between
2500, 5000 and 10000; while, with the number of camera views, Figure 6.2 shows that

76

5.4 EXPERIMENTAL RESULTS

0%

20%

40%

60%

80%

100%

0 15 30 45 60 75 90

Su
cc

es
s

R
at

e

Angle (degrees)

0

5

10

15

20

25

30

0 2 4 6 8 10 12

Er
ro

r
(m

m
)

No. of Iterations

(b) Convergence Rate(a) Success Rate

Ours (42)

Ours (162)

Ours (642)

Ours (2,562)

CT (42)

Figure 5.4: (a) Success rate and (b) convergence rate of our proposal with different
number of camera views in the geodesic grid compared against CT [133].

0%

20%

40%

60%

80%

100%

0 15 30 45 60 75 90

Su
cc

es
s

R
at

e

Angular Threshold (degrees)

5° 15° 25° 35° 45° 55°

0

1

2

3

4

5

0

30

60

90

120

150

5 15 25 35 45 55

Tr
ac

ki
n

g
Ti

m
e

N
o

. o
f

Tr
ee

s

Threshold (degrees)

No. of Trees Tracking Time

(b) Tracking Time(a) Success Rate

Figure 5.5: (a) Success rate, and (b) tracking time and number of trees with respect to
the angular distance threshold within the neighborhood of the camera location that is
used in tracking.

77

CHAPTER 5: VERSATILE 3D TRACKER WITH ONLINE LEARNING CAPABILITIES

increasing from 642 to 2562 does not change the performance of the tracker. Thus, the
optimum parameters for learning is 2,500 pairs of samples and labels with 642 camera
views. Furthermore, based on the convergence rate in Figure 5.3(b) and Figure 6.2(b),
10 iterations ensures that the tracker converges to a low error value. We also look into
the angular distance threshold θ of the neighboring trees when tracking. In Figure 5.5(a),
the success rate starts to converges with a threshold of 35◦. On average, this corresponds
to evaluate 58 trees from Figure 5.5(b). For the rest of the evaluation, we use the
parametric values of nr = 2500, nv = 642, nj = 20 and θ = 35◦.

Compared to CT [133], we have a higher success rate when the relative motion
is below 40◦, while their success rate is higher above 40◦ in Figure 5.3. Considering
that an object temporal tracker estimates the transformation of the object between two
consecutive frames, the success rates below 40◦ are, in terms of application, more
relevant than the ones above. Furthermore, the error in their convergence rate initially
drops faster than ours but we converge to a lower error value after as few as 4 iterations.

Synthetic Dataset. We evaluate our tracker on the publicly available synthetic dataset
of [28]. It consists of four objects: each object has its model and 1,000 RGB-D images
with the ground truth pose of the object. This evaluation aims at comparing the accuracy
between the RGB-D particle filter approaches [28, 74, 119] and our method in estimating
the rigid transformation parameters, i.e. the translation in the x-, y- and z-axis, and the
roll, pitch and yaw angles.

Table 5.1 shows that we remarkably outperform PCL [119], and Choi and Chris-
tensen [28] over all sequences. With respect to [74], there is no significant difference in
the error values: on average, we are 0.01 mm better in translation and 1.01◦ better in
rotation. However, the difference between the two algorithms lies in the input data and
the learning dataset. On one hand, they use RGB-D images while we only use the depth;
on the other, their learning dataset includes the object’s model on different backgrounds
while we only learn using the object’s model. The latter implies that they predefine
their background in learning and limit their application to tracking objects in known (or
similarly structured) environments. Due to this, their robustness in Table 5.1 depends
on the learned background and, to achieve these error values, they need to know the
object’s environment beforehand. This is different from our work because we only use
the object’s model without any prior knowledge of the environment.

Real Dataset. This evaluation aims at comparing the robustness of the trackers that
use depth images only, so to analyze in details the consequences in terms of tracking
accuracy arising from the typical nuisances present in the 3D data acquired from
consumer depth cameras.

To achieve our goal, we use the four real video sequences from [133] (see Fig-
ure 5.6(a-d)) as well as an additional sequence with higher amount of occlusions and
motion blur (see Figure 5.6(e)). Each sequence is composed of 400 RGB-D images
and the ground truth pose of the marker board. Across the frames of the sequence, we
compute the average displacement of the model’s vertices from the ground truth to the
estimated pose. Moreover, we compare the robustness of ICP [1], CT [133] and our
approach in the presence of large holes from the sensor, close-range occlusions from the
surrounding objects and motion blur from the camera movement. We also compare our
approach using sample points with random selection and with the selection to handle

78

5.4 EXPERIMENTAL RESULTS

Errors PCL C&C Krull Ours Online

(a
)K

in
ec

tB
ox

tx 43.99 1.84 0.83 1.54 2.25
ty 42.51 2.23 1.67 1.90 3.92
tz 55.89 1.36 0.79 0.34 1.82

Roll 7.62 6.41 1.11 0.42 3.40
Pitch 1.87 0.76 0.55 0.22 1.00
Yaw 8.31 6.32 1.04 0.68 2.23
Time 4539 166 143 1.5 1.1

(b
)M

ilk

tx 13.38 0.93 0.51 1.23 0.86
ty 31.45 1.94 1.27 0.74 1.02
tz 26.09 1.09 0.62 0.24 0.42

Roll 59.37 3.83 2.19 0.50 1.66
Pitch 19.58 1.41 1.44 0.28 1.14
Yaw 75.03 3.26 1.90 0.46 1.29
Time 2205 134 135 1.5 1.3

(c
)O

ra
ng

e
Ju

ic
e

tx 2.53 0.96 0.52 1.10 1.55
ty 2.20 1.44 0.74 0.94 1.64
tz 1.91 1.17 0.63 0.18 1.55

Roll 85.81 1.32 1.28 0.35 2.94
Pitch 42.12 0.75 1.08 0.24 2.37
Yaw 46.37 1.39 1.20 0.37 4.71
Time 1637 117 129 1.5 1.2

(d
)T

id
e

tx 1.46 0.83 0.69 0.73 0.88
ty 2.25 1.37 0.81 0.56 0.81
tz 0.92 1.20 0.81 0.24 0.36

Roll 5.15 1.78 2.10 0.31 0.86
Pitch 2.13 1.09 1.38 0.25 1.03
Yaw 2.98 1.13 1.27 0.34 2.51
Time 2762 111 116 1.5 1.2

M
ea

n Translation 18.72 1.36 0.82 0.81 1.42
Rotation 29.70 2.45 1.38 0.37 2.10

Time 2786 132 131 1.5 1.2

Table 5.1: Errors in translation (mm) and rotation (degrees), and the runtime (ms) of
the tracking results, evaluating with the synthetic dataset [28], of PCL [119], Choi
and Christensen (C&C) [28], Krull et al. [74], and our approach with the model-based
offline learning (Ours) as well as the image-based online learning (Online).

79

CHAPTER 5: VERSATILE 3D TRACKER WITH ONLINE LEARNING CAPABILITIES

0

10

20

30

40

50

0 100 200 300 400

Er
ro

r
(m

m
)

Frame Index

ICP CT Ours - without Occlusion Handling Ours - with Occlusion Handling

0

10

20

30

40

50

0 100 200 300 400

Er
ro

r
(m

m
)

Frame Index

(b) Driller

0

10

20

30

40

50

0 100 200 300 400

Er
ro

r
(m

m
)

Frame Index

(c) Cat

0

10

20

30

40

50

0 100 200 300 400

Er
ro

r
(m

m
)

Frame Index

(d) Bunny with 2 objects

(e) Bunny with 4 objects

(a) Benchvise

0

10

20

30

40

50

0 100 200 300 400

Er
ro

r
(m

m
)

Frame Index

Si
m

p
le

H
o

le
s

O
cc

lu
si

o
n

 +
 M

o
ti

o
n

 B
lu

r

Figure 5.6: Tracking comparison on the dataset of [133] among ICP [1], CT [133], and
our approach with and without the occlusion handling sample points selection.

80

5.4 EXPERIMENTAL RESULTS

0

5

10

15

20

25

30

35

0

20

40

60

80

100

120

140

0 1000 2000 3000

M
em

o
ry

 (
M

B
)

Le
ar

n
in

g
Ti

m
e

 (
se

c)

No. of Camera Views

0

5

10

15

20

25

30

0

20

40

60

80

100

0 2000 4000 6000 8000 10000

M
em

o
ry

 (
M

B
)

Le
ar

n
in

g
Ti

m
e

 (
se

c)

No. of Samples and Labels

Learning Time Memory

(b) Size of Learning Dataset(a) Number of Camera Views

Figure 5.7: Learning time and memory usage with respect to (a) the number of camera
views and (b) the size of the learning dataset.

occlusions.

The first sequence in Figure 5.6(a) is a simple sequence with small holes and small
occlusions, where all trackers perform well. Next, the driller sequence illustrates the
effects of large holes due to the reflectance of its metallic parts. It generates instability on
CT [133] that is highlighted by the peak in Figure 5.6(b). Even if it did not completely
lose track of the object, this instability affects the robustness of the tracker in estimating
the object’s pose. On the contrary, ICP [1] and both versions of our method track the
driller without any instability.

As reported in [133], the toy cat sequence in Figure 5.6(c) causes ICP [1] to get
trapped in a local minimum. When the cat continuously rotate until its tail is no longer
visible due to holes and self-occlusion, the relatively large spherical shape of its head
influences the error in the pose estimation and stays in that position for the succeeding
frames. In contrast, CT [133] and our method track the toy cat without getting trapped
in a local minimum.

The last two sequences in Figure 5.6(d-e) present two important challenges. First,
they exhibit close-range occlusions where the surrounding objects are right next to the
object of interest. This introduces the problem in determining whether nearby objects
are part of the object of interest or not. The second is the constant motion of both the
camera and the object. This induces motion blur on the depth image which, in turn,
distorts the 3D shape of the object.

Since the surrounding objects are close to the object of interest, ICP [1] fails in both
sequences. When occlusions occur, it starts merging the point clouds from the nearby
objects into the object of interest and completely fails tracking. For CT [133], it becomes
unstable when occluded but completely recovers in Figure 5.6(d). But, when larger
occlusions are present such as Figure 5.6(e), tracking fails. In comparison, our method
with the random sample point arrangement has a similar robustness as [133]. However,
our method, by modeling the sample points to handle occlusions smoothly, is able to
track the object without any instability or failures. Among the competing methods, it is
the only one that is able to successfully track the bunny in the last sequence.

81

CHAPTER 5: VERSATILE 3D TRACKER WITH ONLINE LEARNING CAPABILITIES

5.4.2 Tracking Time and Computational Cost

As witnessed in Figure 5.5(b), the tracking time increases with respect to the number of
trees evaluated or the number of camera views included. Using the optimum parameters
from Section 5.4.1, the algorithm runs at 1.5 ms per frame on an Intel(R) Core(TM) i7
CPU, where only one core is used. This is comparable to the time reported by CT in
[133]. With regards to the competing approaches [28, 74, 119] in Table 5.1, their work
takes about 100 times longer than ours while producing slightly higher error values.
Among them, [28, 74] optimize their runtime through GPU.

5.4.3 Memory Consumption

Our memory consumption increases linearly with the number of camera views and the
size of the learning dataset for each view, as shown in Figure 5.7(a) and (b), respectively.
With the parameters from Section 5.4.1, our forests needs 7.4 MB. Compared to [133]
which uses 821.3 MB, our memory requirement is two orders of magnitude less. Most
of the related works do not mention or disregard this measurement from their papers,
but we argue that it is an important aspect especially with regards to scalability towards
tracking multiple objects.

5.4.4 Scalability to Multiple Objects

When tracking multiple objects, we utilize independent trackers for each object. It
follows that the tracking time and the memory usage increase linearly with respect to
the number of objects, where an increased computational expense, i.e. additional CPU
cores, divides the resulting tracking time by the number of cores. Furthermore, the
independence of the trackers for different objects keeps the robustness of the algorithm
unaffected and the same as Section 5.4.1.

Considering a typical computer with 8 GB RAM and 8 CPU cores, a memory
consumption of 7.4 MB for each object allows us to include more than 1,000 objects
into RAM. In contrast to CT [133] where they use 821.3 MB for each object and reached
a maximum limit of 9 objects, our tracker can include at least two orders of magnitude
more objects in memory than [133].

To demonstrate the remarkable scalability of our approach, we synthetically rendered
108 moving objects with random initial rotations in a 3D video sequence as shown in
Figure 5.8; apply one tracker for each object, requiring a total memory footprint of,
approximately, 108 × 7.4 MB = 799.2 MB; and, track them independently. By using
8 CPU cores, our work tracks all 108 objects at 33.7 ms per frame, i.e. yielding a frame
rate of 30 fps. Interestingly, our memory requirement for 108 objects is less than that
required for just one object by CT; while, our tracking time for 108 objects is less than
the GPU implementations of [28, 74] that track one object at 130 ms per frame. It is
important to mention that we had to resort to a rendered input video given the difficulty
of recreating a similar scenario with so many moving objects under real conditions.
Nevertheless, since we only aim at evaluating the scalability of our approach, we can
expect an identical performance under real conditions.

Therefore, although scalability is linear with respect to the number of objects, we
highlight the extremely low magnitude of all the important components – (2) tracking

82

5.4 EXPERIMENTAL RESULTS

9

12

Figure 5.8: Evaluation on 108 moving objects in a 640×480 depth image.

time and computational cost, and (3) memory consumption – that makes tracking a
hundred objects at real-time possible.

5.4.5 Learning Time

The learning time has a linear relation with respect to the number of camera views
and the size of the learning dataset as shown in Figure 5.7. Thus, with the optimum
parameters from Section 5.4.1 and 8 CPU cores, it requires 31.8 seconds to learn the
trees from all of the 642 camera views using 2,500 pairs of sample and label. This is
significantly lower than the 12.3 hours of CT [133]. Even with an increased number of
camera views or a larger learning dataset in Figure 5.7, our learning time remains below
140 seconds.

Online learning. One of the most interesting outcomes of the fast learning time is
the online learning where the tracker does not require the object’s 3D model as input to
learning.

We use the dataset of [28] to evaluate our online learning strategy. In the first frame,
we use the ground truth transformation to locate the object and start learning with 50
trees per parameter, which takes 1.3 seconds. The succeeding frames continues to learn
one tree per parameter, which takes 25.6 ms per frame. In Table 5.1, the average tracking
error of the online learning is comparable to the results of Choi and Christensen [28]. It
performs worse than the model-based trackers with offline learning of Krull et al. [74]
and ours, but performs better than PCL [119]. Furthermore, the combined learning and
tracking time, which is approximately 26.8 ms per frame using 8 CPU cores, is still
faster than the competing approaches [28, 74, 119] that only execute tracking.

5.4.6 Failure Cases

Since we are tracking the geometric structure of the objects through depth images, the
limitation of the tracker is highly related to its structure. Similar to ICP [14, 27], highly

83

CHAPTER 5: VERSATILE 3D TRACKER WITH ONLINE LEARNING CAPABILITIES

symmetric objects loses some degrees of freedom in relation to its axis of symmetry. For
instance, a bowl that has a hemispherical structure loses one degree of freedom because
a rotation around its axis of symmetry is ambiguous when viewed from the depth image.
Therefore, although our algorithm can still track the bowl, it fails to estimate the full 3D
pose with six degrees of freedom.

Specific to online learning, large holes or occlusions in the initial frames create
problems where the forest has not learned enough trees to describe the object’s structure.
Due to this, drifts occur and tracking failures are more probable.

5.5 Qualitative Results
We demonstrate the applicability of the tracker on different scenarios. The first example
in Figure 5.9(a) showcases the ability to track the object under large occlusion.

Considering the very efficient memory footprint, tracking time and computational
cost, the algorithm can independently track multiple distinct objects in the scene at
real-time performance. Although scalability with the number of objects is linear, the low
requirement of the tracker allows it to simultaneously track three objects in Figure 5.9(b).

The other examples in Figure 5.10 illustrates the online learning capabilities of the
work where the model is not given. In this case, we manually initialize a 3D bounding
box on the object of interest then continuously learn new trees in the forest for the
unseen views and track the object in the scene.

An interesting application of the online learning scheme is the head pose estimation
in Figure 5.10(b). Evidently, this is not an optimum framework for a head pose estima-
tion because different subjects follow different coordinate systems depending on the
way the 3D bounding box is initialized. In next chapter, we investigate this application
further in order to allow a standard coordinate system for different subjects as well as
incorporating subject-specific structures through online learning.

5.6 Conclusion
In addition to the extremely fast tracker achieved in Chapter 4, this chapter investigates
various aspects of the tracker in order to make it versatile for different uses. By replacing
the learning method, the resulting tracker highlights the capacity to be robust even under
large occlusions, to have low memory footprint, to track multiple objects in the scene
and to learn an object fast. The speed in learning allows us to learn different views of an
unknown object online.

84

5.6
C

O
N

C
L

U
S

IO
N

(b
) M

u
ltip

le O
b

jects
(a) O

cclu
sio

n

Figure 5.9: Qualitative results of the (a) robustness to occlusion and (b) scalability to track multiple objects.

85

C
H

A
P

T
E

R
5:

V
E

R
S

A
T

IL
E

3D
T

R
A

C
K

E
R

W
IT

H
O

N
L

IN
E

L
E

A
R

N
IN

G
C

A
PA

B
IL

IT
IE

S

(b
) H

ead
(a) O

b
ject

Figure 5.10: Qualitative results of the online learning framework applied on (a) an object and (b) a head.

86

6
3D Head Pose Estimation

6.1 Motivation
Head pose estimation aims at approximating the rotation and translation of the head
and tracking it through a sequence of images. The use of 3D information can yield
the 6 d.o.f. head pose in the 3D space rather than just the 2D pose on the image plane,
which makes this task increasingly relevant for a high number of computer vision and
augmented reality applications relying on accurate 3D head pose. For instance, 3D head
pose is useful to develop Human-Computer Interaction (HCI) interfaces that estimate
input commands from the user by means of specific configurations of its facial features
and head movements, this being particularly exploited also by the gaming industry. In
addition, head pose estimation is relevant for human behavior analysis and gaze analysis
applied to faces, e.g. to automatically understand when the driver of a vehicle falls
asleep. It is a key step for augmented reality applications, e.g. in the fashion industry for
virtual mirrors, as well as in the context of 3D avatar creation for video conferencing
and special effects.

The motivation is to showcase a complete framework that highlights the achieve-
ments from our previous works [133, 134] in Chapters 4 and 5. This work aims at
achieving head pose estimation from RGB-D data by means of a frame-to-frame tem-
poral tracking approach, that incorporates the temporal information so to estimate the
head’s pose throughout the video sequence. The algorithm uses depth images and
random forest [21] to estimate the pose of an object from one frame to the next. How-
ever, in contrast to tracking an object with a precise 3D CAD model available offline
as [133, 134] in Chapters 4 and 5, this work addresses the problem of adapting and
generalizing the tracker to subject-specific variations – including slightly non-rigid – of
the head structures with respect to a given pre-defined 3D model of the head. It involves
combining a generalized model-based tracker with an online learning method to capture
subject-specific structures that makes the tracker more robust against noise, occlusions
and facial deformations.

Moreover, as a temporal tracking approach, it requires an initialization when a new
face appears in the sequence or when the tracker loses the target. For this reason, we
integrate an initialization stage based on a face detector [143] through the RGB images
that are available from the RGB-D sequences. This allows our method to handle a

87

CHAPTER 6: 3D HEAD POSE ESTIMATION

variety of situations such as the absence of people in some frames of the sequence, as
well as the simultaneous presence of more than one person in the scene.

For the purpose of 3D head pose estimation, the proposed algorithm focuses on
achieving a wide range of applications by satisfying all the following fundamental
criteria:

(1) Robustness. Accuracy is the most important aspect to consider in head pose
estimation given that it will serve as input to the aforementioned applications that
need to observe and elaborate the interaction of the user with nearby objects or
with other users. It follows that the accuracy must be robust in the presence of
typical occlusions such as head-wear, props, eyeglasses and hand gestures, as well
as robust in the presence of typical sensor-induced data artifacts such as holes and
noise.

(2) Efficiency. Since most applications require real-time capabilities and feedback,
efficiency is another fundamental characteristic of 3D head pose systems. We
evaluate the efficiency of the algorithm in terms of the runtime per frame with the
required processing power and memory consumption. Also, the ideal algorithm
should attain low runtime with a low processing power.

(3) Lax users. The algorithm has to be capable of estimating the pose within the
camera’s field of view such that the users can move freely without being mindful
of its position with respect to the camera. It must not restrict the users to stay on
a specific distance from the camera or remain in a static position that is close to
the principal point of the image.

(4) Ease of use. When running the algorithm, the users does not have to possess any
special skill or to perform any prerequisite step or movement. It implies that the
algorithm does not require any a priori input information about the user.

Hence, our approach is guided by these criteria to ensure that our algorithm is easily
adaptable for several diverse applications. Conforming to them, our evaluation on
the two benchmark datasets for 3D head pose estimation [22, 39] demonstrate the
remarkable accuracy, efficiency and robustness of our approach, which outperforms the
state-of-the-art methods in terms of accuracy under different nuisances while retaining a
much higher efficiency without the need of GPU processing.

In reference to having lax users, this work extends the head pose estimation algo-
rithm [135] to perform in a multi-camera system such that the head is tracked even
when undergoing full-occlusions from individual cameras. Notably, our method is not
limited to perform on identical camera models as the one used in learning. Since the
tracker entirely relies just on 3D information, the tracker only needs one forest to track
the head from different camera models despite having large variations in their intrinsic
parameters.

6.2 Related Work

A number of works [39, 108, 113, 122] already exist specifically aimed at estimating
the 6 d.o.f. pose of the head’s rigid transformation by means of depth data acquired

88

6.2 RELATED WORK

from consumer RGB-D cameras. In particular, these methods are based on the tracking-
by-detection paradigm, where the head detection and pose estimation is carried out in
each frame independently from the previous ones.

A survey on different head pose estimation algorithms is available in [93, 94].
Several works on head pose estimation that rely on RGB images only focus on tracking
facial features or landmarks instead of estimating the 3D pose of the head [6, 31, 33, 69,
73, 130], or on discretizing the pose to generate crude approximations [44, 67]. Unlike
a rigid object with a constant structure that has a one-to-one relation from the image
space to 3D space, the head structure differs from one subject to the next, which means
that the landmarks does not have a corresponding 3D points and their estimated pose is
inaccurate due to the lack of depth perception of the subject in RGB images.

As for methods based on depth images, Breitenstein et al. [22] proposed to build a set
of hypotheses by means of high-resolution depth images to locate the nose through 3D
shape signatures and evaluate the hypotheses by computing the error from the reference
pose image. Due to its computational requirements, this work uses GPU to run in real-
time. Later, Fanelli et al. [40] also used high-resolution images but achieved real-time
performance without GPU implementation and can handle small occlusions. Another
relevant work from Fanelli et al. [39] proposes a tracking-by-detection framework based
on random forest from consumer depth camera data. Their splitting features involves
locating two 2D patches with random offsets and sizes from a pixel and computing the
difference of the mean depth values enclosed in the patches. Each pixel predicts the
yaw, pitch and roll angles for the head’s rotation and a 3D vector to locate the nose.

With a similar 2D image features in learning as well as the parametrization of the
three angles and a vector, several forest-based methods [108, 113, 122] continued the
work of [39]. Among them, Schulter et al. [122] proposes Alternating Regression Forests
(ARFs) that relates the trees in the forest by optimizing a global loss function, where
their approach on head pose estimation uses the same 2D features as [39]. In [108], they
evaluate four 2D patches as features in learning and introduce the Probabilistic Locally
Enhanced Voting (PLEV) to locally aggregate the predictions of their Hough forest.
Finally, Riegler et al. [113] presents a combination of Hough Forests and Convolutional
Neural Network for head pose estimation, which they call Hough Networks (HN). This
approach extracts overlapping 2D patches in a regular grid on the image, where each
patch is classified as foreground or background, and use the foreground patches to
predict the pose parameters.

These learning-based methods [39, 108, 113, 122] use 2D features to directly predict
the 3D pose. However, instead of using 2D features, our algorithm relies on the 3D data.
The advantage of the using the 3D data is the capacity to use the forest for different
camera models. This becomes essential especially with online learning for a multi-
camera system with distinct camera models (i.e. different camera intrinsic parameters).
After learning the subject-specific structures from one camera online, we use the same
forest for all the other cameras in the system. If we rely on 2D features, it becomes
necessary to utilize independent forest for each camera model. Note that there is an
important benefit to use different camera models in the multi-camera system so that the
depth sensors do not corrupt the data from other sensors. An example of such system is
using a time-of-flight camera and a structured light camera in Figures 6.14 and 6.15.

There are also other 3D head pose estimation algorithms that rely on 3D data. In
this case, they implement an energy minimization based method such as the iterative

89

CHAPTER 6: 3D HEAD POSE ESTIMATION

closest point (ICP) [10, 23, 89, 93] or particle swarm optimization (PSO) [93, 101,
109] to register the model to the depth image. In general, ICP [14, 27] requires a
good initialization to converge to the solution while PSO [70] has a slow convergence
depending on the amount of particles. Thus, a notable work in this field is from Meyer et
al. [93], where they combine ICP and PSO to avoid local minima due to the poor
initialization from ICP and to speed-up the convergence rate of PSO. However, they
reported a tracking rate of 160 ms per frame or approximately 6 frames per second on a
GPU. Their efficiency is significantly low compared to our method that runs at 2 ms per
frame with only CPU.

The value of having an efficient tracking framework is rooted from the wide-range of
applications where the head pose estimation is simply an initial step for a more elaborate
goal such HCI and AR. Efficiency is also valuable to capture the subject’s fast motion.
Considering these, an example where the computational efficiency becomes essential is
estimating the head pose of a subject when undergoing fast motion from a multi-camera
system as illustrated in Figures 6.14 and 6.15. Here, two cameras capture a subject as
he jumps up in the air and lands on a mattress. Due to gravity, the entire motion takes
only a few milliseconds to complete.

Moreover, although the standard datasets from [22, 39] restrict the location of the
subject to be close to the principal point of the image, we illustrate several examples
in Figures 6.11 and 6.12 where the lax users can freely roam around the image. Fur-
thermore, while other approaches generalize their learning method to estimate the head
pose of any subject, our work emphasizes the value of a combined generalized and
subject-specific online learning framework to become robust in handling occlusions and
extreme poses, where a significant amount of the facial features are not visible.

6.3 Tracking Framework

As the subject moves in a sequence of RGB-D images, the goal is to determine the 3D
pose of the head in each frame in order to describe the subject’s motion. Considering
that we are using a model-based tracker, the coordinates of our head model in each frame
will be referred to the model coordinate system. Therefore, the 3D pose is defined as
the 4×4 rigid transformation matrix T that maps the points from the model coordinate
system to the camera coordinate system. In this work, the rigid transformation T is
parameterized the same as (5.2) with

T = Rz(α) · Ry(β) · Rx(γ) ·
[

I3×3 t̃
0> 1

]
(6.1)

where α, β and γ are the yaw, pitch and roll angles while t̃ = [tx, ty, tz]> is the
translation vector with µ = [α, β, γ, tx, ty, tz]> is the parameter vector.

In contrast to tracking-by-detection algorithms such as [22, 39, 108, 113, 122] that
estimate the pose independently for each frame, our work is a temporal tracker that
relies on the propagation of the pose from one frame to the next to continuously register
the 3D points from the head model to the depth image D. Aiming at this goal, it relies
on a random forest [21] that learns the relation between the transformation parameters of
T and a set of displacements {εv

h(T; D)}nh
h=1 from (5.1). The displacements are based

90

6.3 TRACKING FRAMEWORK

on nh 3D points {Xh}
nh
h=1 on the head model

εv
h(T; D) = N>v

(
T−1D(xh)− Xh

)
, (6.2)

where Xh is the h-th point on the head model, xh is the projection obtained as TXh,
D(x) is the back-projection of a pixel x through the depth image D, and Nv is a unit
vector that defines the direction of the displacement. Therefore, similar to Chapter 5,
given the pose Tt−1 at time t − 1, the set of the displacements {εv

h(Tt−1; Dt)}nh
h=1

predicts the relative transformation from t− 1 to t, denoted by T̂t, and updates the pose
at time t as Tt = Tt−1T̂t.

To initialize the temporal tracker, the head is localized by means of a face detection
algorithm applied solely on the RGB image. The resulting 2D bounding box is back-
projected as a 3D bounding box on the depth image, which functions as the input to the
tracker. Thereafter, the tracker refines the initial head pose estimation and continues
tracking the head in the subsequent frames. It is noteworthy to mention that, while
the face detection algorithm is applied on the RGB image, the temporal tracker only
processes depth data such that the 3D pose is in metric scale.

Another important trait of our approach relies on combining together two tracking
methods – a generalized model-based tracker with an offline learning stage, and a
subject-specific tracker with an online learning framework. The algorithm begins with
the former as it captures the common structure from multiple CAD models and learns a
generalized tracker from synthetic depth images. Then, while tracking with the former,
the latter continues learning new trees based on real depth fames to adapt the learned
model and capture the unique structures of an individual subject through an online
learning method.

The advantage of having a generalized tracker is its inherent attribute to align
different head models across different subjects into one coordinate system. However,
since the generalized tracker can only learn the common structure, it is limited to
track the facial structure of the subject. This is because the 3D CAD models tend
to have unrealistic non-frontal regions. In contrast, the subject-specific online learner
incorporates the head structure that are unique to an individual. As a result, the combined
method makes the tracker more robust to handle extreme poses which are not included
in the generalized model as well as more robust to handle close-range occlusions such
as hand gestures.

6.3.1 Initialization
With the initial frame at time t0, the face detector of Viola and Jones [143] is applied
on the RGB image to generate a rectangular region around the subject’s face. Using
the centroid of the rectangle xc, we propagate the detected face into 3D through the
back-projection of the corresponding pixel value on the depth image Dt0(xc), and
initializing the head pose as

T0 =

[
I3×3 Dt0(xc)
0> 1

]
. (6.3)

The initial pose is refined using the temporal tracker by finding T̂t0 to update the
transformation as Tt0 = T0T̂t0 . For the next frames, the head pose is continuously

91

CHAPTER 6: 3D HEAD POSE ESTIMATION

Figure 6.1: The 3D head models from different subjects from the database of [39] is
rendered at a constant v-th camera view, where the common structure is highlighted in
red.

estimated through the temporal tracker on the depth images. In case of tracking multiple
subjects as shown in Figure 6.11(a) and (c), we impose that the back-projected pixel
from the face detection is farther than 100 cm from the origin of any currently tracked
subjects. Otherwise, we assume that the detected face is already being tracked.

6.4 Generalized Model-based Tracker

The goal of the generalized tracker is to temporally estimate the head pose of any
subject presented on the camera, irrelevant of whether the subject is included in the set
of learned CAD models or not. Using the 3D CAD models of different subjects, the
algorithm learns a random forest [21] to correlate the effects of the transformations on
the points on the model. As a result, the tracker is capable of estimating the head on any
given subject from real depth images.

6.4.1 Common Structure

Considering that the algorithm learns from 3D CAD models and tracks from real depth
images, it is necessary to determine a common structure of the head that is constantly
visible among them. When comparing the CAD models of different subjects in Figure 6.1
and the depth images in Figure 6.3-6.5, the face is the only common structure across all
images. This highlights the requirement of the generalized tracker to estimate the pose
of the head as a result of estimating the pose of the face.

Therefore, assuming the alignment of different head models, the common structure
is defined as the set of 3D points on the models that are at most τs away from the origin
as illustrated in Figure 6.1. In relation to the error function in (6.2), the selection of the
points {Xs}ns

s=1 to be tracked must satisfy this constraint.

6.4.2 Camera Views

When the subject moves during tracking, the visible points on the model vary from
viewpoint to viewpoint. Instead of learning one forest for the entire model, the tracker
learns one forest for each camera view [133, 134]. The motivation is to focus each forest
on learning and predicting the transformation parameters from the points on the model
that are visible from the camera.

The different camera views are generated by positioning the camera at the vertices
of a geodesic grid [120] with a radius of r. As illustrated in Figure 5.1 from Chapter 5,
the grid is created by recursively dividing an icosahedron into equally spaced vertices.

92

6.4 GENERALIZED MODEL-BASED TRACKER

(a) Used Poses (b) Unused Poses

Figure 6.2: From different camera views, these are examples of the rendered depth
images of a head model. Depending on the visibility of the common structure (in red),
(a) are poses used for learning while (b) are not.

In this layout, the model is located at the center of the grid such that all camera views are
pointing towards the model. For each view, a depth image Dv

s is synthetically rendered.
The generalized tracker is bounded by the common head structure. Contrary to

tacking the full-view of the object from all points of the geodesic grid in [133, 134],
only a subset of views are used because the common structure is not visible from all
camera views. Some examples of rendered views being used and not used for learning
are visualized in Figure 6.2(a) and (b), respectively. Since the common structure is
defined by the face, only the frontal views of the head are rendered, i.e. nv vertices
of the geodesic grid that have the azimuth angle of the spherical coordinate system
between [0, π] and the polar angle between [0, 3π

4].
Finally, for the v-th camera view and the s-th subject, the model is transformed

by means of Tv from the camera coordinate system and the rendered depth image is
denoted as Dv

s , such that the v-th forest learns using the depth images from the same
viewpoint and across different subjects {Dv

s }ns
s=1. Moreover, Nv from (6.2) is defined

as the unit vector directed from the model’s origin to the camera location in the geodesic
grid.

6.4.3 Learning Dataset
Given the synthetic depth images at the v-th view of the ns subjects used for training,
a mean image is constructed to unify all the images. For each pixel location x on the
image, all depth values from the ns range maps are accumulated as χ = {Dv

s (x)}ns
s=1.

Since most values of each range map will represent invalid depth measurements (i.e. not
on the model), we take a subset of χ that have valid pixels and define each pixel at x on
the mean image D̄v as

D̄v(x) =

{
1

nm
∑nm

m=1 Dv
m(x) if nm > ns

2

∞ otherwise
(6.4)

where nm is the number of valid depth measurements for pixel x. In practice, we
invalidate a pixel on the mean image if it does not have at least half valid measurements
across the ns training subjects.

93

CHAPTER 6: 3D HEAD POSE ESTIMATION

The points on D̄v that satisfy the constraint of common structure are collected and
nh points are randomly selected among them. After transforming them to the model
coordinate system by T−1

v , the results are the set of points {Xv
h}

nh
h=1. In relation to the

error function in (6.2), the goal is to register {Xv
h}

nh
h=1 on the depth image.

To build the learning dataset, we need the points on the model {Xv
h}

nh
h=1 and observe

how different transformation parameters affect the error function. By introducing
a transformation of T̂r, the points are transformed by Tr = TvT̂−1

r which creates
the error vector εv

r = [εv
h(Tr; Dv

s)]
nh
h=1 for the nh points on s-th subject. Here, the

transformation of Tr emulates the location of the points from the previous frame such
that a transformation of T̂r brings the points to its ground truth location, where the error
vector is in its optimum. Therefore, after nr random transforms on the ns subjects, the
learning dataset is assembled as S = {(εv

r , µr)}
ns ·nr
r=1 , where µr is the parameter vector

of Tr.

6.4.4 Occlusion Handling

Although randomly selecting a subset of points on the model makes the tracker robust
against small holes on the depth images [133] in Chapter 4, occlusion still affects the
tracker’s performance. Hence, instead of a random selection on the entire model, our
work [134] in Chapter 5 proposes to incorporate the knowledge of occlusions as part of
the selection.

We observe that most cases of occlusion consist of a 2D obstruction that covers a
portion of a subject’s head starting from an edge of its silhouette, while keeping the
other parts of the head visible to the camera. Due to this, we propose to divide the model
on the image into two regions on the image plane, such that one region is used for the
selection of the points while the other is assumed to be occluded.

Using a random unit normal vector within the 2π unit circle, the pixels are sorted
based on di = nl · xi such that the pixels with a lower value are located on one edge
of the head while the pixels with a higher value are on the opposite edge. The first
10% to 70% of the sorted pixels are included for the selection, where the percentage of
pixels is randomly chosen. Therefore, occlusion is handled by discarding a subregion of
the object and selecting the set of points from the remaining subregion as illustrated in
Figure 5.2.

6.4.5 Learning the Forests

Considering the learning dataset S = {(εv
r , µr)}

ns ·nr
r=1 , each tree in the forests learns the

relation of εv
r and a parameter of µr. The tree is constructed by continuously splitting S

into two subsets and passing the subsets down to the children. The objective is to split
using ε while optimizing a parameter in µ to make its values more homogeneous.

Without loss of generality, we denote the set of samples that arrive on the node N as
SN . Similar to (4.10), the feature θN is an index of the vector εv

r such that εv
r [θ] takes

the scalar value of the θ-th index in the vector and the threshold κN is a scalar value that
splits SN into Sl and Sr that goes to the left and right child, respectively.

In order to find the optimum split, all of the nh elements of ε and several thresholds
that are linearly spaced between the minimum and maximum values of each element
across SN are tested to split the dataset. The feature and threshold that best splits the set

94

6.4 GENERALIZED MODEL-BASED TRACKER

is measured by the information gain from (4.11). Hence, the optimum pair of (θN , κN)
is the one with the highest information gain. After iteratively splitting SN to produce
deeper trees, the splitting stops either when the tree reaches its maximum depth, or
when σ(SN) is low, which means that the parameters are homogeneous. Finally, this
node is a leaf and stores the mean and standard deviation of the parameter in all µ from
SN . The same process is applied to different parameters in the µ as well as to different
camera views of the model.

6.4.6 Tracking

At time t, the given input is the current frame Dt, the head pose from the previous frame
Tt−1 and the learned forest with 6nv trees. During tracking, the forest then predicts the
relative transformation T̂t between two consecutive frames and updates the head pose
from Tt−1 to Tt.

Considering the nv views of the head, a subset of the trees are chosen such that
the viewpoint of the learned CAD model shows the highest similarity with the current
frame. Using (5.5), Tt−1 generates the unit vector Nt−1 that points to the camera in the
object coordinate system. Then, the relation between the current view of the object from
the learned views is measured through the angle between Nt−1 and Nv for all views.
Thus, the subset of trees chosen for evaluation is composed of the trees with the camera
view that are within the neighborhood of Nt−1, where the angle is less than τn.

On the v-th view, εv = [εv
h(Tt−1; Dt)]

nh
h=1 is constructed as the input to the trees.

The splitting parameters on the branches maneuver the input towards a leaf. Each leaf
stores the predicted mean and standard deviation of a parameter. After evaluating the
trees from all neighboring views, the final prediction of a parameter is the average
of the predicted means with the least standard deviation. As a result, the average
parameters are used to assemble the relative transformation T̂t and to update the pose
with Tt = Tt−1T̂t. Lastly, we iteratively refine the predictions for each frame.

6.4.7 Failure Detection

The disadvantage of a temporal tracker is the dependence of the current frame from the
previous frame. Thus, when the tracker fails, all the succeeding frames are affected.
Contrary to our work, the tracking-by-detection algorithms [22, 39, 108, 113, 122]
assume the independence of the frames in the sequence. It follows that, when they fail
to estimate the pose in one frame, the pose of the succeeding frames are not affected.
Therefore, determining when the tracker fails is a crucial component of our algorithm.

There are several ways to determine if the tracker fails. For rigid objects, we can
observe the point-to-point error from (6.2) and take the average of the errors as

E(Tt, D) =
1

n′v

1
nh

n′v

∑
v=1

nh

∑
h=1

εv
h(T; D) (6.5)

for all the nh points within the neighborhood of n′v camera views during tracking.
However, the goal of our tracker is different from the rigid objects in [133, 134] because
this work is generalized to estimate the pose of different geometric structure from
different subjects and it has to be robust against facial deformations. Although (6.5)

95

CHAPTER 6: 3D HEAD POSE ESTIMATION

can be used to evaluate when the subject has a neutral facial expression, a simple facial
deformation such as opening the mouth enforces a failed frame.

Since we have learned the geometric structure from multiple subjects in our forest
and the trees in the forest are independent from each other, we assume that, if tracking is
successful, the prediction from individual trees are approximately the same; otherwise,
the predictions are random. We then measure the confidence of the aggregated prediction
by the standard deviation of the best predictions when tracking. The confidence of the
prediction is low if the standard deviation of at least one transformation parameter is
less thatn τc. After having a low confidence for n f consecutive frames, we conclude that
tracker failed. Subsequently, the tracker performs re-initialization using Section 6.3.1.

6.5 Subject-Specific Online Learning

Since the generalized tracker only learns the facial structure of the subjects as shown
in Figure 6.2(b), it is limited to track the frontal view of the head . As the subject
moves and facial structure becomes less visible such as Figure 6.2(a), which we refer
as extreme poses, tracking fails due to the lack of structure on the CAD models that
are consistent across various subjects and the differences with the real depth images.
Therefore, we introduce a subject-specific online learning method into the generalized
tracker. This aims to alleviate the limitation of the tracking the facial structures and
incorporate specific head structure that is unique to an individual.

The online learning method relies on the results from the tracker. At time t, the
depth image Dt and the resulting pose Tt are the input to learning. Imposing (5.5) on
Tt, Nt is derived as the unit normal vector for (6.2). To avoid learning the background,
the head is segmented by enclosing it into a 3D bounding box and removing all pixels
outside this region. Compared to learning the generalized tracker, the nh points in
{Xv

h}
nh
h=1 are randomly selected within the 3D points on the segmented depth image

with the occlusion handling scheme. Using T̂−1
t , the points are then transformed to

the model coordinate system. To build the learning dataset, nr random transformations
Tr are imposed on these points by transforming with Tr = TtT̂r to generate the error
vector εr = [εh(Tr; Dv

s)]
nh
h=1 and assemble the learning dataset S = {(εr, τr)}nr

r=1.
Thereafter, learning using S is carried out in the same way as the model-based in
Section 6.4.5.

During tracking, the neighborhood of camera views from learning incorporates
both the generalized as well as the subject-specific trees. After comparing the resulting
camera location in tracking with the camera locations from all the learned views through
the angular distance between them, the trees that are within τn are evaluated. The final
transformation parameters are the mean of the best predictions from the trees.

6.6 Multi-Camera System

Since we utilize the 3D data from the depth images, we extend our tracking approach in
the case of a multi-camera system. We denote C1, C2, . . . , Cnc as the given nc cameras.
Assuming a calibrated system, the rigid transformation TCi of any subject or, in general,
any object from an arbitraty camera Ci can be propagated to any other j-th camera as

96

6.6 MULTI-CAMERA SYSTEM

TCj = T∆Cj TCi , where T∆Cj is the transformation between two cameras, Ci and Cj, as
a result of the calibration.

The advantage of using our tracker in the multi-camera system is twofold. One is
the constant pose update from t− 1 to t for all cameras. The other is the capacity to use
the same forest for all cameras, even if they have distinct intrinsic parameters.

Consider tracking the head pose with Ci alone, the transformation from t− 1 to t
updates the pose as TCi

t = TCi
t−1T̂t. It follows that the same transformation propagates

to the j-th camera as

T
Cj
t = T∆Cj TCi

t−1︸ ︷︷ ︸
T

Cj
t−1

T̂t = T
Cj
t−1T̂t (6.6)

where T
Cj
t−1 is the given pose for Cj at t− 1. Therefore, T̂t is constant for all cameras.

To generalize, in the same way as Tt from Ci can be used for any Cj, we can predict the
parameters of the pose update Tt from a subset of cameras C. This becomes necessary,
for instance, when the head pose from the previous frame is out of the camera’s field of
view.

Independently for each camera, the tracker evaluates the neighborhood of trees
within τn as well as the corresponding error vector for a tree. The pair (θ, κ) at
the nodes of the tree guides the error vector to the mean and standard deviation of a
parameter at the leaf.

Now, since the pose update is constant for all cameras, we can accumulate all the
predictions from all cameras in C and compute the final prediction as the average of the
predicted means with the least amount of standard deviation. In this way, heads that are
occluded on a camera are ranked lower than a camera with a higher structural similarity
as the learned head model. As a result, in addition to handling poses that are out of the
camera’s field of view, we can also handle full occlusions on a subset of cameras in C as
long as there is at least one camera where the head is not occluded.

Furthermore, since the error function in (6.2) is carried out in 3D space, all the
computations depend on the intrinsic parameters of a given camera through the back-
projection function D(·). This implies that the error function and, in effect, the forest
can adapt to different types of cameras and are not restricted to the learned camera
model. The value of this idea is to generalize the tracker not only to different subjects
but also to different camera models. It also have a relatively small amount of learning
dataset because it only needs one set of camera parameters for the entire dataset, instead
of adding rendered images from different camera models. As a consequence, learning
is faster. Moreover, based on Section 6.5, we are able to learn online from one camera
while being adaptive in evaluating the same forest for all cameras in C, regardless of
whether they have the same intrinsic parameters or not. In practice, this allows us to use
cameras with different technological modalities (e.g. time of flight and structured light)
such that one does not interfere with the depth sensor of the other in constructing the
depth image.

97

CHAPTER 6: 3D HEAD POSE ESTIMATION

6.7 Experimental Results
This section highlights the evaluation of different tracking strategies in terms of robust-
ness and efficiency. Based on the previous sections, we propose three possible tracking
strategies:

(1) Generalized: the generalized model-based tracking;

(2) Subject-Specific: the subject-specific model-based tracking; and,

(3) Combined: the combined generalized tracker with the subject-specific online
learning.

Although the first two methods learn offline from 3D CAD models, the difference is
that the generalized tracker learns from multiple CAD models of various subjects while
the subject-specific tracker learns from a specialized CAD model of an individual. The
subject-specific then follows the same procedure as Chapter 5.

Note that the evaluation of the subject-specific model-based learning is restricted
to datasets such as [39] that have the head model of a specific subject beforehand for
offline learning. The third method starts the generalized tracker to track the head while
learning online with to integrate the individual’s subject-specific structures.

6.7.1 Robustness
We evaluate the robustness of the trackers on the BiWi Kinect Head Pose Database [39]
and the ETH Face Pose Range Image Dataset [22]. These datasets are arguably the most
relevant public datasets with ground truth for head pose estimation from 3D data. As
shown in Figures 6.3 and 6.5, the images in both datasets include also the subject while
turning his/her head.

Throughout the paper, the 3D CAD models for the offline learning are taken from
the BiWi database [39]. The geodesic grid is constructed with 642 vertices, where 332
of them are used after filtering through the azimuth and polar angles in the spherical
coordinate system. Moreover, the head models are rendered with the camera intrinsic
parameters of Primesense PSDK 5.0 Device which has a focal length of 570.3 and
the principal point at (320, 240). In each camera view, we use nr = 2500 random
transformation for each subject and nh = 20 points on the model to learn one tree per
parameter with a maximum depth of 20 and maximum standard deviation of 0.1. The
same learning parameters are used for the online learning method. Moreover, we use
the OpenCV face detector [20] on the RGB images to initialize the tracker.

BiWi Kinect Head Pose Database

The BiWi Kinect Head Pose Database [39] consists of 24 sequences from 20 different
people with a total of approximately 15K images, where all images are labeled with the
ground truth head pose. For each sequence, one of the 20 subjects stands approximately
1 meter away from the camera and close to the principal point of the image. Each
sequence also includes the 3D CAD model of the subject’s head. Some frames of a
sequence are shown in Figure 6.3.

The evaluation of this dataset follows the same experimental framework as [39],
where we learn using 18 subjects and evaluate on the remaining two. In effect, the

98

6.7 EXPERIMENTAL RESULTS

Figure 6.3: Some RGB-D frames of a sequence in the BiWi Kinect Head Pose
Database [39]. Note that the depth images show the 3D bounding box from our head
pose estimation results.

99

CHAPTER 6: 3D HEAD POSE ESTIMATION

learning dataset of the generalized tracker renders depth images through the given 3D
model of the head from the 18 subjects in the dataset, whereas all competing approaches
use real images in the database. For the real images, the sequences are captured by
Microsoft Kinect with a focal length of 575.8 and principal point at (320,240).

The objective of the evaluation is to estimate the head pose while the subject rotates
his head within ±75◦ yaw, ±60◦ pitch and ±50◦ roll angles. We then measure the
error of the estimated pose from the ground truth by computing the difference of the
translation in the x-, y- and z-axis, as well as the rotation in the yaw, pitch and roll angles
for each frame. To aggregate the errors, the mean and standard deviation are calculated
across all frames in Table 6.1. Note that it excludes the frames that failed to estimate
the pose correctly. These are the poses with a translation error above 20 mm [108] or
50 mm [39, 113, 122].

Conversely to the failure case, we also measure the success rate of the tracker as
the percentage of frames where the error in rotation is less than 20◦ and the error in
translation is less than 20 mm in Table 6.2. With our results, we also plot the success
rates with varying thresholds for each transformation parameter in Figure 6.4. Finally,
we compare our results based on the three methods with those reported in the papers of
the four state of the art methods, namely Hough Forest (HF) [39], Hough Forest with
Probabilistic Locally Enhanced Voting (PLEV) [108], Alternating Regression Forests
(ARF*) [122] and Hough Networks (HN) [113]. For this evaluation, we utilize all of the
three proposed tracking strategies since the individual models for each subject is given.

Generalized. When evaluating our generalized tracker on the BiWi dataset [39],
Table 6.1 illustrates that our tracker outperforms the best result [108] from other methods
by 4.5 mm in translation and 4.9◦ in rotation. Hence, our tracker decreases the errors in
both rotation and translation by half. In addition, we achieve better results across all
parameters without any failure case. These results entail a 100% success rate with a
threshold of 20 mm for translation and 20◦ for rotation in Table 6.2.

Our method improves the best results shown in [113] by a 5% increase in translation
and 11% increase in rotation. Based on Figure 6.4, we achieved 100% success rate even
with a threshold of 10 mm and 10◦.

Subject-specific. Interestingly, this database [39] is a special case because they com-
puted the ground truth pose as by-product of creating an accurate 3D CAD model for
each subject. As a result, we can learn a subject-specific model-based tracker using the
individual’s CAD model and numerically measure the loss in generalizing the tracker.

In Table 6.1, the subject-specific tracker improves the state-of-the-art by 5.5 mm
in translation and 5.9◦ in rotation while maintaining a 100% success rate in Table 6.2
and Figure 6.4. This tracker achieves the best overall performance across all methods.
It is not surprising that the subject-specific model-based tracking produces less error
than the generalized tracker. On average, the subject-specific tracker is better than the
generalized tracker by 0.9 mm for translation and 0.9◦ for rotation.

Therefore, this evaluation emphasizes that the cost of generalizing the tracker is
less than 1 mm and 1◦ because the subject-specific tracker can only be used in special
cases where an accurate 3D CAD model of a specific individual is accessible. The
reconstruction of the CAD models for individual subjects is done beforehand but
requiring an a priori knowledge of the subject hinders its application to directly track the

100

6.7
E

X
P

E
R

IM
E

N
TA

L
R

E
S

U
LT

S

Translation tx ty tz Rotation Yaw Pitch Roll Fail
(mm) (mm) (mm) (mm) (degrees) (degrees) (degrees) (degrees) (%)

HF [39] 12.8± 6.8 6.9± 6.7 7.4± 5.6 4.7± 3.4 14.3± 10.0 5.7± 6.1 9.7± 8.9 5.9± 5.2 5.0
PLEV [108] 7.2± 12.1 – – – 7.3± 5.9 4.1± 6.9 3.9± 4.0 3.2± 3.0 5.0

HN [113] 8.1± 5.3 3.8± 4.5 4.6± 4.0 3.7± 3.0 9.8± 8.0 3.8± 3.7 6.7± 6.6 4.3± 4.9 1.0
ARF* [122] 10.8± 6.9 5.5± 5.6 6.2± 6.1 4.1± 3.1 12.2± 9.0 5.5± 5.5 7.8± 7.9 5.0± 4.4 3.0
Generalized 2.7± 0.9 0.9± 0.6 1.3± 1.0 1.8± 0.9 2.4± 1.5 1.7± 1.7 1.5± 1.5 1.4± 1.5 0.0
Combined 2.6 ± 0.8 0.8± 0.6 1.1± 0.9 1.9± 0.8 2.3 ± 1.4 1.7± 1.7 1.5± 1.4 1.5± 1.7 0.0

Subj.-Specific 1.7± 0.7 0.6± 0.5 1.0± 0.8 0.8± 0.5 1.4± 0.8 0.9± 1.1 0.8± 0.7 0.9± 1.0 0.0

Table 6.1: Based on the evaluation on the BiWi Kinect Head Pose Database [39], the error values compares the accuracy of different head pose
estimation algorithms [39, 108, 113, 122] against our trackers. For the other methods, the failure case are the percentage of frames where the error in the
translation is above 20 mm for [108] or 50 mm for [39, 113, 122].

101

C
H

A
P

T
E

R
6:

3D
H

E
A

D
P

O
S

E
E

S
T

IM
A

T
IO

N

Generalized Combined Subject-Specific

0%

20%

40%

60%

80%

100%

0 5 10 15

Su
cc

es
s

R
at

e

Threshold (mm)

0%

20%

40%

60%

80%

100%

0 5 10 15

Su
cc

es
s

R
at

e

Threshold (mm)

0%

20%

40%

60%

80%

100%

0 5 10 15

Su
cc

es
s

R
at

e

Threshold (mm)

0%

20%

40%

60%

80%

100%

0 5 10 15

Su
cc

es
s

R
at

e

Threshold (mm)

0%

20%

40%

60%

80%

100%

0 5 10 15

Su
cc

es
s

R
at

e

Threshold (degrees)

0%

20%

40%

60%

80%

100%

0 5 10 15

Su
cc

es
s

R
at

e

Threshold (degrees)

0%

20%

40%

60%

80%

100%

0 5 10 15

Su
cc

es
s

R
at

e
Threshold (degrees)

0%

20%

40%

60%

80%

100%

0 5 10 15

Su
cc

es
s

R
at

e

Threshold (degrees)

(a) Translation (b) tx (c) ty (d) tz

(e) Rotation (f) Yaw (g) Pitch (h) Roll

Figure 6.4: Using the evaluation on the BiWi Kinect Head Pose Database [39], these show the success rates with varying thresholds for the error in
translation (in mm).

102

6.7 EXPERIMENTAL RESULTS

Translation Rotation
(≤ 20 mm) (≤ 20◦)

HF [39] 82.99% 73.29%
PLEV [108] 95.00% –

HN [113] 95.11% 88.86%
ARF* [122] 88.30% 80.37%
Generalized 100.00% 100.00%
Combined 100.00% 100.00%

Subj.-Specific 100.00% 100.00%

Table 6.2: Success rate of different methods where the error in translation is less than
20 mm or the rotation angle is less than 20◦. The list of competing methods are the
same as Table 6.1.

head of any user in the camera’s field of view. Hence, the subject-specific model-based
learning method is time-consuming and limited in real applications.

Combined. One of the main novelties of our work is to incorporate subject-specific
structures through online learning by incrementally accumulating trees from different
viewpoints of the subject’s head while tracking with the generalized method. When com-
bining the generalized model with the subject-specific online learning, it outperforms
the other methods in Table 6.1. Compared to the generalized tracker, the combined
method produces slightly better results with a 0.1 mm decrease in translation error and
a 0.1◦ decrease in rotation error. Similarly, the success rates is also 100% with approxi-
mately the same curves as the generalized method in Figure 6.4 for all transformation
parameters.

It is a noteworthy observation that the online learning is initially guided by the
generalized tracker. This implies that the combined method cannot have a significantly
better accuracy than the generalized tracker, such as the subject-specific model-based
tracker.

ETH Face Pose Range Image Dataset

We also evaluate on the ETH Face Pose Range Image Dataset [22]. The dataset consist
of over 10K depth images from 20 subjects where they rotate their heads between
±90◦ yaw and ±45◦ pitch while being captured by a stereo enhanced structured light
sensor [144]. Figure 6.5 shows some frames of a sequence in the dataset. Unlike the
BiWi database [39], the ETH dataset does not include any 3D CAD model, which
implies that we do not perform any subject-specific model-based tracking on this dataset.
Since it does not have any 3D CAD model for learning, the same forest as the evaluation
of [39] is used in this section.

Another problem of evaluating this dataset is the lack of RGB image for initialization.
However, since only the head is visible on all images as shown in Figure 6.5, we replace
xc in (6.3) with the centroid of all pixels on the head. Furthermore, the depth images
in the dataset is given as 640×480 image with each pixel represented as a 3D point.
Since our formulation of the error function in (6.2) considers the projective geometry

103

CHAPTER 6: 3D HEAD POSE ESTIMATION

Figure 6.5: Some depth frames of a sequence in the ETH Face Pose Range Image
Dataset [22]. Note that the depth images show the 3D bounding box from our head pose
estimation results.

with the camera intrinsic parameters in order to project and back-project the points,
we algebraically compute the intrinsic parameters by comparing the 3D points with its
location on the image. Then, the entire dataset uses the intrinsic parameters of 1180.6
and 1183.0 as the focal lengths in the x and y directions and (346.2, 282.3) as the
location of the principal point.

To evaluate the dataset, the ground truth head pose for each frame is represented
by the location of the nose tip and a vector for the head’s facing direction. However,
considering that our approach does not compute for the location of the nose tip, we only
compare the direction of the vector given by the dataset as θ and φ. Here, the success
rate is then the percentage of frames where the angular error is below 10◦.

Table 6.3 summarizes the evaluation on the ETH dataset. When tracking with the
generalized method, our work is worse in φ with a difference of 0.2◦ against Meyer
et al. [93] but with a better performance in θ with an improvement of 0.1◦. Overall,
we have a 0.3% higher success rate. However, when using the combined method, we
outperform the state-of-the-art results by 0.3◦ in φ and 0.4% in success rate.

This dataset is essential because it highlights the failure cases of our tracker as
illustrated Figure 6.6. Although the tracker can handle occlusions, it still needs a region
of the head to learn online and to track. When comparing Figure 6.6 to the similar
poses in Figure 6.5, it is evident that a large portion of the head is no longer visible on
the images of the failure cases. In addition, we also highlight that, even with the large
difference in focal length between the learned model which is 570.3 and the focal length
of the dataset which is approximately 1180.6, we still produce better results. A more
elaborate evaluation on the sensitivity to the changes in focal length is in Section 6.7.1.

104

6.7 EXPERIMENTAL RESULTS

Direction θ Direction φ Success
(degrees) (degrees) (%)

Breitenstein [22] 6.1 4.2 80.8
HF [39] 5.7 5.1 90.4

Meyer [93] 2.9 2.3 98.9
Generalized 2.8 2.5 99.2
Combined 2.6 2.3 99.3

Table 6.3: Based on the evaluation of the ETH Face Pose Range Image Dataset [22],
the error values compare the accuracy of different head pose estimation algorthms [22,
39, 93] against our tracker. The head pose from [22] is represented through the face
direction given as (θ, φ).

Figure 6.6: Failure case on the ETH Face Pose Range Image Dataset [22].

Sensitivity Analysis

To avoid overfitting the parameters to the subject’s motion from a specific dataset, we
implement a synthetic evaluation in order to assess the sensitivity of our robustness to
different parameters. Using the frames from the test sequences of the BiWi dataset [39],
we multiply the ground truth pose at each frame with a random rigid transformation, so
to mimic the pose from the previous frame. We then conclude that tracking is successful
if the rotation angle between the estimated pose and the ground truth is less than 20◦

and the translation displacement is less than 20 mm. These thresholds are similar to the
ones used in [39].

Tree depth. In learning, the depth of the trees are essential in identifying whether the
forest over-splits or under-splits the learning dataset. In Figure 6.7, we demonstrate that
there are still small improvements between the tree depth of 16 to 20 but no improvement
between 18 and 20. Since the success rate did not deteriorate at 20, we chose 20 as the
maximum depth of the trees in the forest.

Tracking parameters. When tracking, there are two essential parameters that affects
the performance of the tracker. First, the neighborhood of views (τn) is essential in
order to compare the similarity of the learned view and the current frame. We show
in Figure 6.8 that the success rate starts to converge with a threshold of 35◦ for both
translation and rotation. The other essential parameter in tracking is the percentage of

105

CHAPTER 6: 3D HEAD POSE ESTIMATION

4 8 12 16 18 20

0%

20%

40%

60%

80%

100%

0 5 10 15

Su
cc

es
s

R
at

e

Threshold (degrees)

0%

20%

40%

60%

80%

100%

0 5 10 15

Su
cc

es
s

R
at

e

Threshold (mm)

(a) Translation (b) Rotation

Figure 6.7: Success rate with varying maximum depth in learning the trees.

5 15 25 35 45

(a) Translation (b) Rotation

0%

20%

40%

60%

80%

100%

0 5 10 15

Su
cc

es
s

R
at

e

Threshold (mm)

0%

20%

40%

60%

80%

100%

0 5 10 15

Su
cc

es
s

R
at

e

Threshold (degrees)

Figure 6.8: Success rate with varying angular threshold (τn) in tracking.

the predictions from different trees to aggregate in getting the final pose. Similarly, the
success rate converges at when taking 50% of the predictions in Figure 6.9.

Iterations. As an iterative method, we also look into the number of iterations required
to converge. Figure 7.4(a-b) illustrates that we reached convergence after six iterations.
Nevertheless, we are using 10 iterations in our tracker to ensure convergence. The figure
also demonstrates that the generalize and combined methods have similar convergence
rate while the subject-specific method converges to a lower error value, which validates
our results in Table 6.1.

Then, we look into the frame-to-frame evaluation of the BiWi dataset [39] to
understand the effects of the number of iterations in tracking based on the real frame-to-
frame movements of a subject. Here, we set the total number of iterations for the entire
evaluation instead of looking at the i-th iteration. In Figure 7.4(c-d), four iterations is
satisfactory to achieve the converged error.

106

6.7 EXPERIMENTAL RESULTS

10% 30% 50% 70%

(a) Translation (b) Rotation

0%

20%

40%

60%

80%

100%

0 5 10 15

Su
cc

es
s

R
at

e

Threshold (mm)

0%

20%

40%

60%

80%

100%

0 5 10 15

Su
cc

es
s

R
at

e
Threshold (degrees)

Figure 6.9: Success rate with varying percentage of predictions to aggregate in tracking.

Learned Translation Rotation
Focal Length (mm) (degrees)

300.0 1.6± 0.6 1.0± 0.5
400.0 1.6± 0.7 1.1± 0.6
500.0 1.6± 0.7 1.1± 0.6
600.0 1.6± 0.6 1.1± 0.6
700.0 1.6± 0.8 1.3± 0.9
800.0 1.6± 0.6 1.1± 0.6
900.0 1.5± 0.6 1.2± 0.6

1000.0 1.4± 0.6 1.1± 0.5
1100.0 1.5± 0.6 1.1± 0.5

Table 6.4: When evaluating one sequence of the BiWi Kinect Head Pose Database [39],
this is the comparison of the error in translation and rotation with different focal lengths
when rendering images for the learning dataset. Note that the focal length of the
sequence is 575.8.

Focal length. We evaluate on the effects of changing the focal length when rendering
the synthetic depth images for the learning dataset. In this case, we are using the subject-
specific model-based tracker and investigate using a sequence of the database [39].
Table 6.4 demonstrates that, as the focal length increases, there is no significant change
on the errors in both translation and rotation. It shows the stability of the tracker to
be used for different camera models, especially when the camera model used for the
learning dataset and the camera model used for capturing the test sequence are distinct.
This aspect is important especially since we are using a single tracker for all the cameras
in the multi-camera system. We are also using the trees learned online from one camera
of the multi-camera system to the rest of the system.

107

CHAPTER 6: 3D HEAD POSE ESTIMATION

Generalized Combined Subject-Specific

(a) Translation (b) Rotation

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7 8 9 10

Er
ro

r
(m

m
)

i-th Iteration

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7 8 9 10

Er
ro

r
(d
eg
re
es

)

i-th Iteration

i-
th

It
er

at
io

n

(c) Translation (d) Rotation

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10

Er
ro

r
(m

m
)

Number of Iterations

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10

Er
ro

r
(d
eg
re
es

)

Number of Iterations

N
u

m
b

er
 o

f
It

er
at

io
n

s

Figure 6.10: (a-b) Convergence rate of the tracker using the synthetic evaluation such
that it plots the error for translation and rotation at the i-th iteration. (c-d) Given the
number of iterations, the plots show the average error on the evaluation of the BiWi
Kinect Head Pose Database [39].

6.7.2 Efficiency

In order to find the runtime and the corresponding computational cost, all evaluations
in this section are conducted using Intel(R) Core(TM) i7-3820QM CPU with 16 GB
RAM.

For initialization, the face detection algorithm of [20] runs at approximately 9.1 ms
per frame. Thereafter, our tracker takes over to find the head pose estimate. Table 6.5
summarizes the tracking performance of the three tracking strategies. Among them, the
most efficient is the subject-specific model-based tracker. It requires 18.8 seconds to
learn the forest offline with 8 CPU cores and 1.1 ms to track the head with a single CPU
core.

Since the generalized tracker learns offline from multiple 3D CAD models of
different subjects, it requires to learn 9.0 minutes and tracks at approximately 1.5 ms
with a single core. Furthermore, the combined method needs multiple cores to have
sufficient time to learn online. As a consequence, with 8 CPU cores, additional trees
in the generalized tracker for the subject-specific online learning takes 28.1 ms per
frame while tracking takes around 1.4 ms. Note that not all tracked frames are used for

108

6.8 QUALITATIVE RESULTS

Time Architecture
O

th
er

M
et

ho
ds

Breitenstein [22] 23.5 ms GPU
HF [39] 17.8 ms CPU (1 core)

Meyer [93] 160.0 ms GPU
PLEV [108] – –

HN [113] 66.7-100.0 ms GPU
ARF* [122] – –

O
ur

W
or

k

Generalized 1.5 ms CPU (1 core)
Offline Learning 9.0 minutes CPU (8 cores)

Subj.-Specific 1.1 ms CPU (1 core)
Offline Learning 18.8 seconds CPU (8 cores)

Combined 1.4 ms CPU (8 cores)
Online Learning 28.1 ms/frame CPU (8 cores)

Multi-Camera 1.8 ms CPU (8 cores)

Table 6.5: Timings and the corresponding architecture for different head pose estimation
methods [22, 39, 93, 108, 113, 122]. It also includes the timings for our three proposed
tracking strategies with their learning time, and for tracking in the multi-camera system.

learning new trees, and the geodesic grid limits the number of trees for the viewpoint
that are close to each vertex.

In addition, Table 6.5 also compares the efficiency of different head pose estima-
tion methods [22, 39, 93, 113] that evaluated the BiWi database and ETH dataset in
Section 6.7.1. Compared to their work, our trackers are approximately one to two
orders of magnitude faster while using only the CPU. It is noteworthy to mention that
most competing methods run in real-time because the scene in the dataset is almost
empty: each frame includes one person, visualized from head to torso in the BiWi
database [39] while visualized only the head in ETH dataset [22]. Since they employ a
tracking-by-detection framework that jointly estimates the pose and segments the head
in every frame independently, their runtime increases when the scene is not controlled
and the detector is required to distinguish the face from the surrounding objects, such
as a scene where a person is sitting on a couch or holding tools. Nonetheless, since
we are utilizing a temporal tracker, our runtime is constant and is independent of the
surrounding objects in the scene.

6.8 Qualitative Results

To demonstrate the robustness of our algorithm on lax users and its ease of use, we
show several qualitative results in Figures 6.11 and 6.12. It includes users jumping and
dancing as well as candid shots like observing two users in a Skype conversation that
accentuates real-world applications. All qualitative results exhibit the capacity of the
subjects to roam around the camera’s field of view. This is in contrast to the methods of
[22, 39, 93, 108, 113, 122] that relies on constraining the subject to a specified location
within the camera’s field of view.

109

CHAPTER 6: 3D HEAD POSE ESTIMATION

Notably, Figure 6.11(a) illustrates the initialization and the failure detections. One
of the interesting attribute of our work is the capacity to handle close-range occlusions
from external objects in Figure 6.11(b) or from hand gestures in Figure 6.11(c). Due
to the subject-specific online learning, our work can also handle extreme poses in
Figure 6.11(d) which are not included in learning the generalized tracker. In addition,
the tracker is stable to track the subject is moving fast in Figure 6.11(e).

We have implemented the tracker in a multi-camera system with the Primesense
PSDK 5.0 Device and the Microsoft Kinect 2.0 in Figure 6.14-6.15. The advantage of
using two distinct depth sensors is the avoidance of having one interrupt the other’s data
acquisition. In this framework, the tracker combines the prediction of the transformation
parameters from both cameras. As a consequence, we are capable of tracking the head
pose when the subject is not visible from one camera as demonstrated in Figure 6.14.
Furthermore, the most significant advantage of using our tracker in this system is its
capacity to transfer the learned data from one camera model to the other. Thus, after
learning online from the depth images acquired using the Primesense PSDK 5.0 Device,
the tracker can estimate the head from both cameras while the subject undergoes a fast
motion such as a subject jumping on a mattress in Figure 6.15.

6.9 Conclusion
We applied our tracker on a head pose estimation algorithm from a given video sequence
of RGB-D images. Here, the RGB image is used in the first frame to detect the face [143]
and initialize the tracker, while the depth image is used to temporally track the head
pose throughout the sequence using a random forest algorithm.

This paper highlights three types of tracking – the generalized model-based tracking,
the subject-specific model-based tracking as well as the combined generalized tracker
with the subject-specific online learning. The choice of using one of the trackers depends
on the application at hand. Notably, the difference between the model-based learning
and online learning is that: (1) the former tracks the common facial structure while the
latter tracks the head; and, (2) the former has a unified reference coordinate system
while the latter has local coordinate system that varies from one tracker to the rest.

Therefore, for a controlled environment where the face is visible such as the dataset
in [22, 39], the generalized model-based tracker is sufficient; and, if the subject’s
head model is given such as [39], the subject-specific model-based tracker is the best
option. However, for a wider range of applications where the subjects occlude their
faces with hand gestures or move freely around the camera’s field of view as shown in
Figures 6.11 and 6.12, the choice of using the combined method becomes necessary due
to its robustness to handle large occlusions and extreme poses.

Attaining similar characteristics as Chapters 4 and 5, the tracking time is less than 2
ms per frame with only one CPU core, contrary to some methods that use GPU. Overall,
when comparing to other head pose estimation algorithms [22, 39, 93, 108, 113, 122],
this is the fastest and the most computationally efficient, while maintaining a low
tracking error.

Due to its efficiency, we also highlight the capacity of the framework to perform
head pose estimation in a multi-camera system. Other than the remarkable efficiency
achieved, the significance of this work is the capacity of the tracker to estimate the pose
even when the head is not visible from some cameras.

110

6.9
C

O
N

C
L

U
S

IO
N

(b
) D

rin
kin

g Tea
(a) D

etectin
g H

ead
s

Figure 6.11: These video sequences are taken while (a) detecting the head from multiple users and (b) observing a subject drinking tea.

111

C
H

A
P

T
E

R
6:

3D
H

E
A

D
P

O
S

E
E

S
T

IM
A

T
IO

N

(c) Skyp
e C

o
n

versatio
n

(d
) W

earin
g a M

ask

Figure 6.12: These video sequences are taken while observing (c) having a Skype conversation with multiple subjects and (d) a subject wearing a mask
and moves around.

112

6.9
C

O
N

C
L

U
S

IO
N

(e) Ju
m

p
in

g
(f) D

an
cin

g

Figure 6.13: These video sequences are taken while observing (e) a subject jumping and (f) a subject dancing.

113

C
H

A
P

T
E

R
6:

3D
H

E
A

D
P

O
S

E
E

S
T

IM
A

T
IO

N

P
rim

esen
se

P
SD

K
5

.0
 D

evice
M

icro
so

ft K
in

ect 2
.0

Figure 6.14: Multi-camera system with the Primesense PSDK 5.0 Device (top) and the Microsoft Kinect 2.0 (bottom). These video sequences are taken
while (a) the subject is not visible in one of the cameras.

114

6.9
C

O
N

C
L

U
S

IO
N

P
rim

esen
se

P
SD

K
5

.0
 D

evice
M

icro
so

ft K
in

ect 2
.0

Figure 6.15: Multi-camera system with the Primesense PSDK 5.0 Device (top) and the Microsoft Kinect 2.0 (bottom). These video sequences are taken
while (b) the subject jumps as seen from two cameras.

115

CHAPTER 6: 3D HEAD POSE ESTIMATION

116

7
Hand Shape Personalization as

Prior to Hand Tracking

7.1 Motivation

From Chapter 6, we compared three tracking techniques to determine the pose of the
a user’s head: (1) generalized tracker that fits a mean model to different users; (2)
subject-specific tracker that fits the user’s personalized model to the specified user; and
(3) combined tracker that uses the generalized tracker to track an arbitrary user and
an online learning approach to learn poses that are not learned. The first two methods
are purely based on 3D CAD models and the last incorportates an online learning
approach to learn ther user’s unique structure while tracking. Comparing the second
and third techniques that learn subject-specific structures, the second learns from a
given reconstructed 3D CAD model during the offline learning while the third learns
the head structure during tracking. Among them, that chapter demonstrates that the best
tracking results is when we utilize a personalized model instead of a generalized model.
Evidently, the cost of generalization from the first and third techniques increases their
pose estimation error.

The motivation of the chapter is to determine a method that calibrates a personalized
model in a fast and reliable manner so that we can attain the best performance in
tracking. Moving from head pose estimation to the deformable hand tracking, we
proposed a method that personalizes the hand shape for a specific user as a calibration
procedure [131]. It begins by tracking the hand through a mean model and capture a set
of keyframes. The hand model is then deformed to optimize the structure of the user’s
hand based on the given keyframes. After a fast and reliable calibration, the resulting
personalized hand shape model fits the user’s hand like a glove.

The ability to accurately and efficiently reconstruct the motion of the human hand
from images promises exciting new applications in immersive virtual and augmented
realities, robotic control, and sign language recognition. There has been great progress
in recent years, especially with the arrival of consumer depth cameras [71, 98, 99,
124, 126, 127, 129, 137, 140]. However, it remains a challenging task [128] due to
unconstrained global and local pose variations, frequent occlusion, local self-similarity,

117

CHAPTER 7: HAND SHAPE PERSONALIZATION AS PRIOR TO HAND TRACKING

Model near depth data
Model in front of depth data

Model behind depth data

Shape Space Model Fit to Data
Frame 1 Frame 2 Frame F

In
itializatio

n
O

p
tim

ized

Figure 7.1: We show how to fit a deformable hand shape basis model [72] to a small
set of depth images. Our method jointly optimizes over the shape β ∈ RK and F poses
θ f to maximize the model’s alignment to the data in F depth images. The initial hand
poses are automatically determined by a hand tracker that uses the mean shape βmean,
but there is clearly poor alignment between model and data. After our optimization to
obtain personalized shape βpersonalized, the alignment is much better, with remaining
errors largely due to sensor noise.

and a high degree of articulation.
Most recent approaches combine the best of discriminative and generative ap-

proaches: the ‘bottom-up’ discriminative component attempts to make a prediction
about the state of the hand directly from the image data, which then guides a ‘top-down’
generative component by deforming the parameters of a model to try to explain the
data. Discriminative methods can be faster and typically require no temporal history. In
contrast, a good generative model can use its explanatory power and priors to produce
what is usually a more accurate result, even in the presence of occlusion.

Generative models of hands are limited by their capacity to accurately explain the
image observations. High-quality, though expensive and off-line, models have been
shown to reliably fit both the pose and shape of complex sequences [9]. However, most
interactive (real-time) hand tracking systems (e.g. [98, 127]) approximate the hand
surface using primitives such as spheres or cylinders, parameterized to articulate the
surface geometry. Others [124] use a detailed hand mesh model, though only attempt to
fit the hand poses using a fixed template shape. To improve the model’s capacity, some
approaches [86, 127] allow shape deformations of primitive spheres and cylinders, but
these models can only compensate for gross model-data mismatches.

Recent work [139] has investigated an off-line process for ‘personalizing’ a detailed
3D mesh model to an individual’s hand shape using a set of depth images of the hand
in varied poses, each paired with a manually-annotated initialization pose. The mesh
shape is optimized to jointly explain the depth data from each frame, yielding the
user’s personalized model. Unfortunately, this system is likely to be too brittle and
slow for an online setting, as the parameterization of each mesh vertex yields a very
high-dimensional optimization problem,

A promising alternative is to create a much lower-dimensional model that parame-
terizes the hand shape of an entire population of individuals. Khamis et al. [72] take
a cue from the human body shape modeling literature [5, 56] and build a detailed 3D

118

7.2 RELATED WORK

shape basis for human hands by parameterizing a mesh model using a small set of
‘shape coefficients’. Each setting of these coefficients induces a hand model whose
deformations are parameterized by a set of semantically meaningful pose parameters
(e.g. joint angles). Unfortunately, even though Khamis et al. [72] show how to personal-
ize their model for a new user, the lack of a ‘background penalty’ leaves local minima
where the model has grown unrealistically in an attempt to explain the data. To avoid
these local minima, they rely on a high-quality initialization that would be difficult to
obtain reliably in an online setting. Further, they did not investigate whether the use of a
personalized model was important for the accuracy of online hand tracking systems.

In this paper, we address these concerns and show how to use the trained shape basis
from [72] to robustly personalize to an individual in a quick and easy calibration step.
As illustrated in Figure 7.1, our approach fits a single set of shape coefficients β and per-
frame poses {θ f }F

f=1 to a set of F depth images (each supplied with a rough initialization
pose given by a template-based hand tracking system [124]). To do so, we exploit
the ‘golden energy’ from [124], whose ‘render-and-compare’ formulation implicitly
penalizes protrusions into free space. The energy appears to be the combination of
a smooth low-frequency function with a high-frequency, low-amplitude, piecewise-
continuous function (see Figure 7.2). The discontinuities in the latter function are the
result of occlusion boundaries travelling across locations being discretely sampled by
each pixel. This seems to preclude gradient-based optimization, as following the exact
gradient on either side of such a jump would not generally yield a good step direction.

One optimization option might be stochastic search (e.g. Particle Swarm Optimiza-
tion) to avoid relying on derivatives, but this converges slowly and typically only works
well for low-dimensional optimization problems. Our optimization space (one shape and
F poses) is high-dimensional, however, and thus we would like to use a gradient-based
optimizer. Although we could carefully work out the true derivatives of a continuous
form of this energy [34], it is not obvious if we could compute them quickly. We thus
choose to instead use an approximate derivative calculated using central differences.
The step size must be right: large enough to jump over nearby occlusion boundaries,
and small enough to capture the smooth global behavior of the function. We use a GPU-
based tiled renderer to rapidly perform the extra function evaluations that this finite
differencing requires. Given our ability to calculate the golden energy and calculate
approximate derivatives, we are able to exploit Levenberg-Marquardt to minimize the
energy in under a second for a small set of images (e.g. F = 5).

We can therefore demonstrate for the first time the potential for detailed personal-
ization to quantifiably improve the accuracy of a real-time hand tracker. To this end, we
adapt [124] to track using the personalized model, and compare template to personalized
model tracking accuracy across several datasets. We show that our personalized hand
tracking is able to achieve results that are competitive with the state of the art.

7.2 Related work
A large amount of work has been done constructing detailed low-dimensional models
of shape and pose variation for human bodies and faces [3, 4, 17, 26, 35, 49, 79, 81,
142, 145]. While hands may be similar to human bodies in the number of degrees of
freedom, hands exhibit significantly more self-occlusion. They are also much smaller,
which means images from current depth cameras contain fewer foreground pixels and

119

CHAPTER 7: HAND SHAPE PERSONALIZATION AS PRIOR TO HAND TRACKING

suffer from more camera noise. Additionally, the space of hand poses is likely larger
than that of the space of body poses. Consequently, it is only recently that similar
detailed low-dimensional models were built for human hands [72]. Given various
RGB-D sensor measurements, these approaches aim to find the low-dimensional shape
and pose subspaces by fitting the entire set of observed data. This typically amounts
to optimizing a very large number of parameters [18, 72, 83]. Despite the success of
these approaches, the number of parameters prohibits their suitability for online fitting,
although some systems may be close [83].

Recently, morphable subdivision surface models have been used to model other
categories of deformation. Cashman and Fitzgibbon [25] demonstrate that extremely
limited data (30 silhouette images) can be used to learn such a model for a variety
of objects and animals. In more closely-related work, Taylor et al. [139] learn a
personalized hand model from a set of noisy depth images for a single user, which
was the approach adapted by Khamis et al. [72] to train a hand shape model on a large
dataset of hands.

Other related work tackles differentiation for a render-and-compare energy function,
which may at first seem unapproachable due to occlusion boundaries. When the image
domain is kept continuous, however, one can show that such energies are naturally
differentiable and their exact gradient can be laboriously worked out [75]. Nonetheless,
current practical systems discretize the image domain by taking a point sample at each
pixel, which introduces discontinuities in the energy caused by occlusion boundaries
moving from pixel to pixel. In order to avoid such difficulties, it is tempting to instead
approximate the gradient by peering behind these boundaries [16]. Interestingly, Ober-
weger et al. [97] side-stepped this issue completely by training a convolutional neural
network to render hands, as gradients are then easily obtainable using the standard
back-propagation rules for such networks.

7.3 Hand Shape Calibration

Given a set of depth images, the calibration procedure simultaneously optimizes the
hand shape model from all images as well as the pose from independent images by
Levenberg-Marquardt Optimization. Although the ultimate goal is solely to find the
personalized hand shape model, it is also necessary to optimize the hand pose since the
initial pose is simply a rough estimation of the mean hand model.

7.3.1 Shape and Pose Model

We adapt the model developed by Khamis et al. [72]. This model is parameterized by
the hand pose θ ∈ R28 and the hand shape β ∈ RK to deform an M-vertex triangular
mesh, assumed to have a fixed triangulation and hierarchical skeleton.

A vector β of shape coefficients produces a mesh of a hand in a neutral pose, but
with a specific hand shape. Simultaneously, the shape also defines the position of the
B bones of the skeleton. To be precise, given β, the locations of M vertices fill the
columns of the 3×M matrix V(β), and the set of bone locations fill the columns of

120

7.3 HAND SHAPE CALIBRATION

the 3× B matrix L(β):

V(β) =
K

∑
k=1

βkVk and L(β) =
K

∑
k=1

βkLk . (7.1)

The matrices {Vk, Lk}K
k=1 thus form a linear basis for the shape of the model. These

are the same bases as [72] for all values of K ∈ {1, 2, 3, 4, 5} for which they trained.
Note that the regularization used during the training process encouraged the first di-
mension (V1, L1) to represent something akin to a mean hand and skeleton with the
other dimensions serving as offsets. We therefore call βmean = [1, 0, . . . , 0]> ∈ RK

the ‘mean’ hand shape (see Figure 7.1).
The model applies a linear blend skinning (LBS) operator P(θ; V, L) ∈ R3×M to

a mesh V and skeleton L using a set of pose parameters θ ∈ R28 that include global
rotation, translation, wrist and finger joint rotations. LBS is a standard tool in computer
animation. A more dtailed discussion in in [72].

As a new addition to [72], the final step Γ : R3×M → R3×M′ applies a single step
of Loop subdivision [82] to the mesh to produce a denser mesh with M′ vertices. This
brings the resulting mesh into closer alignment with the true ‘limit surface’ that was
fitted to the data in [72], while maintaining efficiency for what follows.

For notational clarity, we combine the steps together as

Υ(θ, β) = Γ(P(θ; V(β), L(β)) ∈ R3×M′ (7.2)

to denote the full deformation model that produces a subdivided mesh with shape β in
pose θ.

7.3.2 The Golden Energy
One way to evaluate whether a specific combination of shape β and pose θ give rise to
an image is to simply render the deformed mesh Υ(θ, β) and compare it to the image. If
this evaluation can be formulated as an energy function that assigns a low value when
the rendered and observed images are close, the problem is then reduced to function
minimization.

We thus define an idealized energy by simply integrating the difference between the
observations and the rendering across the domain of the image I

Êgold(θ, β) =
∫

(u,v)∈I

ρ(D̃(u, v)− R̃(u, v; Υ(θ, β)))2 du dv (7.3)

where ρ(e) = min(
√

τ, |e|) with a constant truncation threshold τ. Here, D̃(u, v)
and R̃(u, v; Υ(θ, β)) give the observed and the rendered depth at the location (u, v),
respectively. (7.3) is adapted from the golden energy of [124] with the following
modifications:

(i) we use an L2 penalty (instead of L1) to allow the use of standard least-squares
optimization techniques; and,

(ii) at least conceptually, we operate on a continuous pixel domain I ⊆ R2 to model
the idealized imaging process [34].

121

CHAPTER 7: HAND SHAPE PERSONALIZATION AS PRIOR TO HAND TRACKING

Note that we generally observe a discretized image and thus D̃(u, v) will be piecewise
constant.

In practice, the integral in (7.3) is difficult and expensive to evaluate so practical
systems instead create a discretization by rendering an image of size W × H. The
(discretized) golden energy is thus given by

Egold(θ, β) =
1

WH

W

∑
i=1

H

∑
j=1

rij(θ, β)2 (7.4)

with the residual rij(θ, β) for pixel (i, j) defined as

rij(θ, β) = ρ(Dij − Rij(Υ(θ, β)) (7.5)

where D ∈ RW×H is appropriately resampled from D̃(·, ·) and Rij(Υ(θ, β)) yields the
value of pixel (i, j) in the rendered depth image.

7.3.3 Objective Function
With the goal of optimizing for the user’s hand shape from a sequence of depth images
{D f }F

f=1, we combine the parameterization from Section 7.3.1 and the golden energy
from Section 7.3.2. To achieve this goal, we want to minimize

E(β) =
F

∑
f=1

min
θ

(
Egold(θ, β; D f) + λpriorEprior(θ)

)
. (7.6)

where Eprior(θ) is the pose prior that provides constraints on the pose in the form of the
negative log-likelihood

Eprior(θ) = (θ − θ̄)>Σ−1(θ − θ̄) (7.7)

of a multivariate normal N (θ̄, Σ). The mean θ̄ ∈ R28 and covariance matrix Σ ∈
R28×28 were fitted to a selected set of valid hand poses {Ptrain

q }Q
q=1 ⊆ R22 captured

using the hand tracker of [124], with the variance on the global pose set to ∞. To make
the resulting value small, a pose θ must be found for each frame that yields both a low
golden energy Egold(θ) and a low pose prior energy Eprior(θ).

Using the standard ‘lifting’ technique (see e.g. [72]), we define a new lifted energy

E′(θ1, θ2, · · · , θF, β) =
F

∑
f=1

[
Egold(θ f , β) + λpriorEprior(θ f)

]
. (7.8)

Since E(β) ≤ E′(θ1, θ2, . . . , θF, β) for any value of {θ f }F
f=1, we seek to implicitly

minimize the former by explicitly minimizing the latter. For simplicity, we assign

µ =

θ1
θ2
...

θF
β

 ∈ R28F+K (7.9)

122

7.3 HAND SHAPE CALIBRATION

as the parameter vector so that E′(θ1, θ2, · · · , θF, β) = E′(µ).
Note that E′ has 28F + K parameters, and thus would be very difficult to optimize

using a stochastic optimizer like PSO [124]. Instead, we use Levenberg-Marquardt, a
gradient-based optimizer that can yield second-order-like convergence properties when
close to the minimum.

7.3.4 Levenberg-Marquardt Optimization
Consider an arbitrary energy function E and a set of parameters to optimize in µ, the
Levenberg-Marquardt Optimization assumes a sum of squares of N residuals written as

E(µ) =
N

∑
i=1

(εi(µ))
2 =

∥∥∥[εi(µ)]
N
i=1

∥∥∥2
(7.10)

where εi(µ) is the i-th residual. The optimizer is an iterative procedure such that, for
each iteration, the parameter vector is proposed to update with

µprop = µ−
(

J>J + γdiag(J>J)
)−1

J>[εi(µ)]
N
i=1 (7.11)

where γ is the damping factor. If E(µprop) < E(µ), then the update is accepted
µ ← µprop and the damping is decreased γ ← 0.1γ. Otherwise, the damping is
increased γ← 10γ and the proposal is recalculated. Eventually, progress will be made
as this is effectively performing a back-tracking line search while interpolating from
Gauss-Newton to gradient descent.

Formulating the lifted energy E′ from Section 7.3.3 as (7.11), we first rewrite the
pose prior as the sum of squared residuals

Eprior(θ) = ‖L(θ − θ̄)‖2 (7.12)

where we use the Cholesky decomposition on Σ−1 = LL>. The lifted energy is then
reinterpreted as a vector of squared residuals with the concatination of the individual
pixel differences ri,j in (7.5) for all F frames from the golden energy and the vector
L(θ − θ̄) from the pose prior.

The optimizer requires the full Jacobian matrix J of the residuals with respect to
the 28F + K parameters (see Figure 7.3(a-c)). Given the independence of the pose
parameters across the F depth images (we do not assume any ordering or temporal
continuity in the depth images, only that they come from the same individual), it follows
that 28F columns of J are sparsely filled by the results of the pixel-wise derivative of
the golden energy from a single image D f with respect to a pose parameter in θ f . This
is combined with the Jacobian matrix of the pose prior energy. The shape coefficients,
however, are the same for all images, so the column that corresponds to a shape
coefficient in J is the concatenation of the pixel-wise derivative of the golden energy
from all images.

Differentiating the golden energy. Note that the golden energy in (7.4) is only piece-
wise continuous (see Figure 7.2), as moving occlusion boundaries cause jumps in the
value of rendered pixels. Our desired optimization procedure requires gradients, but it
is evident that the exact derivative of Egold at any specific point of our approximation

123

CHAPTER 7: HAND SHAPE PERSONALIZATION AS PRIOR TO HAND TRACKING

64 x 64

512 x 512

Tile Size

Tile Size

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0

G
o

ld
en

 E
n

er
gy

Translation Displacement (mm)

Translation
(x-axis)

Translation
(x-axis)

Figure 7.2: Golden energy as a function of x-axis translation, for different rendered tile
sizes W × H. Note the globally smooth nature but local discontinuities, which occur at
an increasingly small scale with larger tile sizes.

will generally not be helpful. One option would be to return to the idealized continu-
ous energy [75]. However, the edge overdraw antialiasing used is considerably more
expensive than a simple render on the GPU. Another approximation [16] is engineered
to look behind the occlusion boundary to try to anticipate what will come into view.
Nevertheless, we take a different approach that lets us exploit standard GPU-accelerated
rendering techniques.

To this end, we note that the curves in Figure 7.2 appear to be the combination
of a well-behaved smooth function at a global scale and a low-amplitude non-smooth
function at a local scale. If we could somehow recover the former, its gradient would
provide a good candidate direction for minimizing (7.4). One option would be to try to
smooth out the discontinuities in the approximation using a Gaussian kernel, but this
would require the function’s evaluation at positions across the entire basin of support
of the kernel. For efficiency, we therefore attempt to approximate the function locally
by fitting a line to two points that are sufficiently far from each other as to capture the
dominant smooth behavior of the energy. Hence, we assign φ =

[
θ> β>

]
with the

parameters associated to an image and approximate the gradient using central differences

∂Egold(φ)

∂φk
≈

Egold(φ + ∆k
2)− Egold(φ− ∆k

2)

εk
(7.13)

where the constant step size εk is set empirically (see Table 7.1) and the value of the kth
element of the vector ∆k ∈ R28+K is set to εk while zero elsewhere.

As with (7.4), the residual at pixel (i, j) is only piecewise continuous, although with
a sparser set of more dramatic jumps. Similarly then, we find that a central difference
with a large step size allows us to approximate the derivative of the residual

∂rij(∂φ)

φk
≈

rij(φ + ∆k
2)− rij(φ− ∆k

2)

εk
. (7.14)

124

7.3
H

A
N

D
S

H
A

P
E

C
A

L
IB

R
A

T
IO

N

(a) Jacobian of the Golden Energy

Global Transformation

Translation RotationForearmPinkyRingMiddleIndexThumb

Joint Rotation

x, y, z 3 anglesFlexion, AbductionFlexion, Abduction,
Flexion, Flexion

Flexion, Abduction,
Flexion, Flexion

Flexion, Abduction,
Flexion, Flexion

Flexion, Abduction,
Flexion, Flexion

Flexion, Abduction,
Flexion, Flexion

Fl
ex
io
n

A
b
d
u
ct
io
n

Fl
ex
io
n

Fl
ex
io
n

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

1

2

3

4

5

6

(c) (d)

Global Tr.

22 6

Ja
co

b
ia

n
 o

f
th

e
G

o
ld

en
 E

n
er

gy
Ja

co
b

ia
n

 o
f

th
e

P
o

se
-P

ri
o

r

Joint Rot.

(b)

Figure 7.3: (a) Visualization of the Jacobian with respect to pose parameters θ. Each image is reshaped to form a column of J. (b) Rows in Jsub represent
subterms in the energy; columns represent the pose parameters for one frame. (c) Jacobian of the full lifted energy E′, including the shape parameters β.
(d) Sparsity structure of J>J.

125

CHAPTER 7: HAND SHAPE PERSONALIZATION AS PRIOR TO HAND TRACKING

Although one might be concerned about the various approximations above, our use
of Levenberg-Marquardt provides a safeguard against catastrophic failure. When steps
fail, the algorithm implicitly performs a back-tracking line search as it interpolates from
Gauss-Newton to gradient descent. This means that in the worst case, the approximate
gradient need only point uphill for progress to be made. In practice, however, we
find the approximate derivatives to work quite robustly resulting in few rejected steps,
indicated by the many dots (acceptances) in the convergence plots in both Figure 7.4
and Figure 7.5.

Differentiating the pose prior. Since we are computing the derivative of the residuals,
the Jacobian matrix of Eprior(θ) with respect to the parameters is simply L. The
importance of the pose prior in our energy becomes more evident in self-occluded poses
where the fingers or forearm are not visible in the rendered image. When performing
a finite difference with respect to transformation parameters, zero pixel residuals can
occur. Thus, without the pose prior, J and J>J become rank-deficient. By including
the pose prior, the angles of the occluded joints approach the conditional mean of the
occluded joints given the visible joints as they remain unobserved by the image.

Box constraints. In addition to the pose prior, we also impose box constraints on
the parameters θ to restrict the hand pose from unnatural or impossible deformations.
These constraints take the form of limiting values [Pmin, Pmax] ∈ R28 ×R28, which we
impose using the projection Π such that Π(µ)i = min(max(Pmin

i , xi), Pmax
i)). Then,

using the Levenberg-Marquardt method with a projected step [68], we propose the
following update of the parameters

µprop = Π
(

µ−
(

J>J + γ diag(J>J)
)−1

J>r
)

(7.15)

where J>J is a sparse matrix as illustrated in Figure 7.3(d).

7.4 Experimental Results

We use both synthetic and real data to elucidate our effectiveness at rapidly minimizing
our shape-fitting energy. We show that this shape calibration gives us an accuracy
improvement on three separate datasets and that our results are competitive with the
state of the art. We refer the reader to the supplementary material for more experiments
and a video of the live system in action.

For all experiments, we use the step sizes in Table 7.1 to calculate finite differences,
a tile size of 256×256 pixels, which gave a good balance of global smoothness and
performance (see Figure 7.2), and a truncation threshold

√
τ = 10cm. While one

could minimize our energy using LM for tracking (as opposed to shape calibration), it
performs only a fairly local optimization. Instead, we use an implementation of [124]1,
augmented with our own pose prior.

1Despite statements to the contrary [86], [124] optimizes over pose only.

126

7.4 EXPERIMENTAL RESULTS

10 20 30 40 50 60 70 80

0.06

0.08

0.1

0.12

0.14

Iteration

E
′ (

β
,Θ

)

Figure 7.4: Convergence of E′ for the five subjects in the FingerPaint dataset. Dots
represent successful Levenberg-Marquardt iterations.

Parameter (each row maps to several ks) Step size

X, Y and Z translations 10 mm
X rotation 5◦

Y and Z rotations 2.5◦

Metacarpal-phalangeal joint flexions 5◦

Metacarpal-phalangeal joint abductions 5◦

Proximal interphalangeal joint flexions 10◦

Distal interphalangeal joint flexions 15◦

Table 7.1: Step sizes εk used in central differences (7.14).

7.4.1 Synthetic Ground Truth

We begin with an experiment on synthetic data to evaluate our optimization strategy
and its ability to find a good hand shape. To this end, we randomly choose a ground
truth shape βgt ∈ RK. We then sample a set of F = 40 poses Θgt = {θgt

f }
F
f=1 from

our pose prior, and render a set of depth images {D f }F
f=1. We then initialize our energy

minimization at the mean with β = βmean. In Figure 7.5, we show the convergence
when we optimize E(Θ, β). One can see in Figure 7.5 (left) that we rapidly descend
the energy landscape in the first 20 iterations. This is clearly correlated with a rapid
reduction of |β1 − β

gt
1 | to near zero, which shows that we quickly obtain the correct

scale. Due to the way the shape basis was trained in [72], β1 is in a unit that roughly
corresponds to the scale of the mean hand whereas the units of the other components
are less interpretable. Nonetheless, one can see in the right of Figure 7.5 that once
scale (i.e. β1) is taken care of, the error in these components is lowered to refine detail.
Figure 7.6 shows that minimizing the energy also gives strong agreement between the
vertex positions V(β) and the corresponding ground truth positions V(βgt).

127

CHAPTER 7: HAND SHAPE PERSONALIZATION AS PRIOR TO HAND TRACKING

E′(β, Θ) |β1 − β
gt
1 |

20 40 60
0

2

4

6

8

×10−2

Iteration

0

0.05

0.1

0.15

E′(β, Θ) ‖β2..K − β
gt
2..K‖

20 40 60
0

2

4

6

8

×10−2

Iteration

0

0.5

1

1.5

Figure 7.5: Left: Optimizing E′ improves the estimate of β1 which roughly corresponds
to scale. Right: The same for the remaining coefficients of β. Dots show successful
Levenberg-Marquardt steps.

(a) Initial (b) Optimized

2cm

1cm

0cm

Figure 7.6: Heat maps showing the distance of each vertex to the corresponding ground
truth position, for the (a) initial and (b) final iteration of the synthetic experiment
(Figure 7.5).

7.4.2 Marker Localization

We now begin exploring the usefulness of our shape calibration procedure in improving
tracking accuracy, for which the most common metric is prediction error for a set
of marker positions that localize semantic points on the hand. As these locations
differ between datasets, we need to create a mapping from the combined shape-and-
pose parameters φ to a marker position. To do so, for each marker t = 1, . . . , T we
identify four vertices on the correct region of the model using a fixed picking matrix2

Yt ∈ R4×M, and define an affine combination of these vertices using the barycentric
coordinates wt ∈ R4 with ∑ wt = 1. We then solve

wt = argmin
w

∑
f∈H

∥∥∥P(θ f ; V(β), L(β))Y>t w− G f t

∥∥∥2
(7.16)

where G f t ∈ R3 is the ground truth location of marker t in frame f , and H ⊆ {1, ..., N}
is an equally spaced 5% sampling of the N frames in the dataset.

2A picking matrix contains zeros except for a single unity entry per row.

128

7.4 EXPERIMENTAL RESULTS

7.4.3 NYU Dataset

We test our method on the popular NYU Hand Pose dataset [140], which comprises
N = 8,252 test frames with captures of two different subjects (i.e. only two different
shapes). Each frame is provided with ground truth locations G f t for 36 positions of the
hand. To compute 3D error for Tompson et al. [140] on this dataset, we follow recent
papers [96, 97, 106] that augment the inferred 2D positions with the captured depth
at each location where valid, and the ground truth depth otherwise. We also obtained
inferred positions from Tang et al. [137], Oberweger et al. [97] and Taylor et al. [138],
selecting a common subset of T = 10 positions (2 per digit) for comparison between all
methods.

We give quantitative results for four different settings (S1-4) in Figure 7.7. (S1)
Since Tompson et al. use no temporal information to estimate hand pose, we also
configure the tracker [124] to rely only on its discriminative initializer to seed each
frame independently. (S2) We used F = 20 evenly distributed poses output by (S1)
to initialize our calibration and create a K = 5 personalized model for each of the
two subjects. We then re-ran (S1) using the appropriate personalized model. (S3) We
re-enable temporal coherency in the hand tracker (a more realistic setting for tracking),
and report the result using the template. (S4) We follow the same procedure as in (S2)
but using poses from (S3) to create personalized models. Again, we report the result
when tracking is run using the appropriate personalized model.

Notice first that our personalized tracker provides a result comparable to Tang et
al. [137]. This machine learning approach was trained directly on the NYU training set,
and thus benefits from the reduced search space induced by this largely front-facing,
limited pose variation dataset. Second, the personalized tracker provides a much better
result than the template tracker. We hypothesize that the superior fit of the personalized
model (see Figure 7.9) creates a much deeper ‘correct’ local minimum closer to the true
pose, making it easier to find the deep ‘correct’ local minimum in the next frame. In
contrast, personalization does not assist as much when temporal coherence is turned off.
Nonetheless, our calibration tool lets us simply upgrade the performance of a compatible
tracker with a personalized model. The recent result from Taylor et al. [138], using the
same personalized models as our result, shows the the accuracy of a gradient-based
hand tracker when combined with our personalization.

7.4.4 Dexter Dataset

To test our ability to perform detailed surface registration, we turn to the hand part
segmentation task required for the FingerPaint dataset [124]. The dataset includes
sequences from five different subjects, with pixels labelled as one of 7 parts (5 fingers,
the palm, and the forearm). To personalize to each subject, we first run the template-
based hand tracker across each sequence. Then, for each subject, we sample F = 30
frames, evenly distributed throughout the dataset, and use the poses to run our shape
optimization. For this dataset, we try personalizing using K = {1, . . . , 5} for the 5
different shape models from [72]. We then run the tracker on the dataset using the
appropriate personalized models, and compare the pixel classification accuracies (see
supplementary material and Figure 7.9 for examples of these personalized models).
Figure 7.10 shows, as expected, the average classification accuracy increases as we
increase K as the deformation model can more accurately register itself to the data.

129

CHAPTER 7: HAND SHAPE PERSONALIZATION AS PRIOR TO HAND TRACKING

S1: Template (per-frame) S2: Personalized (per-frame)
S3: Template (tracking) S4: Personalized (tracking)
Tompson et al. [140] Tang et al. [137]
Oberweger et al. [97] Taylor et al. [138]
Taylor et al. [138] with unpersonalized template model

10 20 30 40

20

40

60

80

100

Marker error threshold ε (mm)%
of

da
ta

se
tw

ith
av

er
ag

e
m

ar
ke

re
rr

or
<

ε

10 20 30 40

20

40

60

80

100

Marker error threshold ε (mm)

%
of

da
ta

se
tw

ith
m

ax
.m

ar
ke

re
rr

or
<

ε

Figure 7.7: Marker localization error on NYU dataset.

Personalized Template Sridhar et al. [126]

Tagliasacchi et al. [129] Taylor et al. [138]

Taylor et al. [138] with unpersonalized template model

10 20 30 40

20

40

60

80

100

Marker error threshold ε (mm)

%
of

da
ta

se
tw

ith
av

er
ag

e
m

ar
ke

re
rr

or
<

ε

10 20 30 40

20

40

60

80

100

Marker error threshold ε (mm)

%
of

da
ta

se
tw

ith
m

ax
.m

ar
ke

re
rr

or
<

ε

Figure 7.8: Marker localization error on Dexter dataset. The results for this dataset have
been normalized so that each of the 7 sequences has equal weight.

130

7.5 QUALITATIVE RESULTS

Frame 2430 of Tompson. Frame 50 of Dexter abdadd

NYU Dataset Dexter Dataset

FingerPaint Subject 2FingerPaint Subject 1

Figure 7.9: Qualitative example of fit difference between template (left and top-middle
of each set) and personalized model (bottom-middle and right of each set) for one
subject of the NYU (top left), the only subject of the Dexter (top right) and two subjects
of the FingerPaint (bottom) datasets.

Interestingly, the K = 1 curve which roughly corresponds to a scaled mean hand does
not always perform better than the template. We hypothesize that in these areas of the
curve, any benefits to personalization are not able to compensate for the bias caused
by fitting to a different dataset; in contrast the template is implicitly not biased to any
dataset as it was created by hand. Note that the pose prior explains the improvement in
accuracy seen between template tracking and Sharp et al. [124] in Figure 7.10.

7.5 Qualitative Results
We show that our shape calibration procedure can be used in an online tracker to provide
rapid and reliable detailed personalized tracking for any user (see Figure 7.11). This
work has been implemented with the live tracker of [124] to include the capability to
perform an online personalization of the model. The system starts by using the template
model to track the user’s hand. The user moves their hand into F different poses, and
when the user is comfortable that the tracker has a reasonable pose estimate, a button is
pressed to capture both the depth frame and the pose estimate. When satisfied with these
poses, the user presses a button to initiate shape calibration. Typically, this procedure
takes less than a second, at which point the new personalized model is used for further
tracking. A future work in this direction is to automatically conduct the calibration
procedure while tracking.

7.6 Conclusion
We have presented the first online method for creating a detailed ‘personalized’ hand
model for hand tracking. An easy-to-use calibration step allows a new user to rapidly
transition from template to personalized tracking, yielding more robust tracking and
better surface alignment that can be exploited by higher-level applications. We have

131

CHAPTER 7: HAND SHAPE PERSONALIZATION AS PRIOR TO HAND TRACKING

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

20

40

60

80

100

Classification error threshold ε

%
of

da
ta

se
tw

ith
av

er
ag

e
cl

as
si

fic
at

io
n

er
ro

r<
ε

K = 5 K = 4
K = 3 K = 2
K = 1 Template
Sharp et al. [124]
Taylor et al. [138]
Taylor et al. [138]
unpersonalized

Figure 7.10: Classification error on FingerPaint dataset.

Female Adult

In
it

ia
liz

at
io

n

Male Adult

O
p

ti
m

iz
ed

Child Child

Figure 7.11: Calibration frames at initialization and after convergence of our personal-
ization procedure. The template is the wrong shape for the female subject, too small for
the male and wildly too large for the two children. After personalization, each model
fits each user ‘like a glove’. The truncated golden energy makes the system robust to
errors in segmenting the background.

132

7.6 CONCLUSION

experimentally verified both of these benefits on several standard datasets, showing the
increase in both marker localization and dense pixel classification accuracy one obtains
when a personalized model is used in place of a poorly-fit template model. Users found
our calibration system easy to use and compelling to see a detailed hand avatar. We
leave it as future work to address the question of how to remove the calibration step
entirely and make personalization fully automatic.

Although this work focuses on the calibration of a personalized hand model, an
interesting future direction of the learning-based 3D tracker [133, 134, 135] from the
previous chapters is to include deformable objects such as articulated objects or object
classes. Nevertheless, this work fits perfectly as a prerequisite step in these forms of
tracking.

133

CHAPTER 7: HAND SHAPE PERSONALIZATION AS PRIOR TO HAND TRACKING

134

Part IV

Conclusion

135

8
Conclusion

8.1 Future Directions
With the patterns taht arise from the chapters in this thesis, there are primarily two future
directions in mind – tracker for deformable objects and object classes.

8.1.1 Deformable Object
The deformable learning-based temporal tracker is in line with the hand pose estimation.
Note that the pose estimation in Chapter 7 was based on existing method [138] because
the chapter focuses on hand shape personalization. The ideal case of the deformable
tracker is to achieve the same robustness and efficiency as the rigid case. However, we
foresee that the main issue lies on the deformation model and the number of parameters
associated to it. Finding a generalized deformation model for a generic object is difficult.
In addition, with the increase in the number of parameters, the combination of values
to learn also increases drastically. With these in mind, this direction requires further
investigation.

8.1.2 Object Class
Another direction is based on the head pose estimation that learns a tracker from a class
of head models. The challenge in this problem is the ambiguity of the size and shape of
the objects within the same class. Unlike the case of the head pose estimation where the
head models have similar shapes and size, other object classes have large variations.

Evidently, in addition to the object class, we can also perform a calibration procedure
based on the shape basis to identify the specific model for the object of interest. In this
case, the tracker changes from a generalized model intro an adapative model such that,
given the object shape basis, the tracker can modify the learned model and track the
object with as good accuracy as if it was learned from a single model. Here, in addition
to building an adaptive tracker, the challenge is also to create a large database of object
and indentifying on a one-to-one alignment of the different models in the class.

137

CHAPTER 8: CONCLUSION

138

A
Authored and Co-authored

Publications

Authored:

1. Tan, D.J., Tombari, F., Navab, N.: Real-time accurate 3d head tracking and pose
estimation with consumer rgb-d cameras. International Journal of Computer
Vision (2017)

2. Tan, D.J., Cashman, T., Taylor, J., Fitzgibbon, A., Tarlow, D., Khamis, S., Izadi,
S., Shotton, J.: Fits like a glove: Rapid and reliable hand shape personalization.
In: Conference on Computer Vision and Pattern Recognition (2016)

3. Tan, D.J., Tombari, F., Navab, N.: A combined generalized and subject-specific
3d head pose estimation. In: International Conference on 3D Vision. IEEE (2015)

4. Tan, D.J., Tombari, F., Ilic, S., Navab, N.: A versatile learning-based 3d temporal
tracker: Scalable, robust, online. In: International Conference on Computer Vision
(2015)

5. Tan, D.J., Ilic, S.: Multi-forest tracker: A chameleon in tracking. In: Conference
on Computer Vision and Pattern Recognition, pp. 1202–1209. IEEE (2014)

6. Tan, D.J., Holzer, S., Navab, N., Ilic, S.: Deformable template tracking in 1ms.
In: British Machine Vision Conference. Citeseer (2014)

Co-authored:

1. Rieke, N., Tan, D.J., Tombari, F., Vizcaino, J.P., di San Filippo, C.A., Eslami,
A., Navab, N.: Real-time online adaption for robust instrument tracking and
pose estimation. In: International Conference on Medical Image Computing and
Computer-Assisted Intervention, pp. 266–273. Springer (2015)

2. Rieke, N., Tan, D.J., di San Filippo, C.A., Tombari, F., Alsheakhali, M., Bela-
giannis, V., Eslami, A., Navab, N.: Real-time localization of articulated surgical
instruments in retinal microsurgery. Medical image analysis (2016)

139

CHAPTER A: AUTHORED AND CO-AUTHORED PUBLICATIONS

3. Rieke, N., Tan, D.J., Alsheakhali, M., Tombari, F., di San Filippo, C.A., Belagian-
nis, V., Eslami, A., Navab, N.: Surgical tool tracking and pose estimation in retinal
microsurgery. In: International Conference on Medical Image Computing and
Computer-Assisted Intervention, pp. 266–273. Springer (2015) – Young Scientist
Award

4. Holzer, S., Ilic, S., Tan, D.J., Pollefeys, M., Navab, N.: Efficient learning of linear
predictors for template tracking. International Journal of Computer Vision 111(1),
12–28 (2015)

5. Lallemand, J., Pauly, O., Schwarz, L., Tan, D.J., Ilic, S.: Multi-task forest for
human pose estimation in depth images. In: International Conference on 3D
Vision (2013)

6. Holzer, S., Ilic, S., Tan, D.J., Navab, N.: Efficient learning of linear predictors
using dimensionality reduction. In: Asian Conference on Computer Vision, pp.
15–28. Springer (2012) – Best Application Paper Honorable Mention

7. Holzer, S., Pollefeys, M., Ilic, S., Tan, D.J., Navab, N.: Online learning of linear
predictors for real-time tracking. In: European Conference on Computer Vision,
pp. 470–483. Springer (2012)

140

Bibliography

[1] Documentation - point cloud library (pcl). http://pointclouds.org/
documentation/tutorials/iterative_closest_point.php

[2] Aldoma, A., Tombari, F., Prankl, J., Richtsfeld, A., Di Stefano, L., Vincze,
M.: Multimodal cue integration through hypotheses verification for rgb-d object
recognition and 6dof pose estimation. In: International Conference on Robotics
and Automation, pp. 2104–2111. IEEE (2013)

[3] Allen, B., Curless, B., Popović, Z.: Articulated body deformation from range
scan data. ACM Transactions on Graphics 21(3), 612–619 (2002)

[4] Allen, B., Curless, B., Popović, Z.: The space of human body shapes: recon-
struction and parameterization from range scans. ACM Transactions on Graphics
22(3), 587–594 (2003)

[5] Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: SCAPE:
Shape completion and animation of people. ACM Transactions on Graphics
24(3), 408–416 (2005)

[6] Asthana, A., Zafeiriou, S., Cheng, S., Pantic, M.: Incremental face alignment in
the wild. In: Conference on Computer Vision and Pattern Recognition (2014)

[7] Baker, S., Matthews, I.: Equivalence and efficiency of image alignment al-
gorithms. In: Conference on Computer Vision and Pattern Recognition. Los
Alamitos, CA, USA (2001)

[8] Baker, S., Matthews, I.: Lucas-kanade 20 years on: A unifying framework.
International Journal of Computer Vision (2004)

[9] Ballan, L., Taneja, A., Gall, J., Gool, L.V., Pollefeys, M.: Motion capture of
hands in action using discriminative salient points. In: European Conference on
Computer Vision, pp. 640–653 (2012)

141

BIBLIOGRAPHY

[10] Bär, T., Reuter, J.F., Zöllner, J.M.: Driver head pose and gaze estimation based
on multi-template icp 3-d point cloud alignment. In: Intelligent Transportation
Systems (ITSC), 2012 15th International IEEE Conference on, pp. 1797–1802.
IEEE (2012)

[11] Bartoli, A., Zisserman, A.: Direct estimation of non-rigid registrations. In: British
Machine Vision Conference (2004)

[12] Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In:
European Conference on Computer Vision (2006)

[13] Benhimane, S., Malis, E.: Homography-based 2d visual tracking and servoing.
International Journal of Robotics Research (2007)

[14] Besl, P., McKay, N.D.: A method for registration of 3-d shapes. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)

[15] Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (1992)

[16] Black, M., Loper, M.: OpenDR: An approximate differentiable renderer. In:
European Conference on Computer Vision, pp. 154–169 (2014)

[17] Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: ACM
SIGGRAPH, pp. 187–194 (1999)

[18] Bogo, F., Black, M.J., Loper, M., Romero, J.: Detailed full-body reconstruc-
tions of moving people from monocular RGB-D sequences. In: International
Conference on Computer Vision, pp. 2300–2308 (2015)

[19] Bookstein, F.: Principal warps: Thin-plate splines and the decomposition of
deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence
(1989)

[20] Bradski, G.: The opencv library. Doctor Dobbs Journal (2000)

[21] Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001)

[22] Breitenstein, M.D., Kuettel, D., Weise, T., Van Gool, L., Pfister, H.: Real-time
face pose estimation from single range images. In: Conference on Computer
Vision and Pattern Recognition (2008)

[23] Cai, Q., Gallup, D., Zhang, C., Zhang, Z.: 3d deformable face tracking with
a commodity depth camera. In: Computer Vision–ECCV 2010, pp. 229–242.
Springer (2010)

[24] Cascia, M., Sclaroff, S., Athitsos, V.: Fast, reliable head tracking under varying
illumination: An approach based on registration of texture-mapped 3d models.
IEEE Transactions on Pattern Analysis and Machine Intelligence (2000)

[25] Cashman, T.J., Fitzgibbon, A.W.: What shape are dolphins? Building 3D mor-
phable models from 2D images. IEEE Transactions on Pattern Analysis and
Machine Intelligence 35(1), 232–244 (2013)

142

BIBLIOGRAPHY

[26] Chen, Y., Liu, Z., Zhang, Z.: Tensor-based human body modeling. In: Conference
on Computer Vision and Pattern Recognition, pp. 105–112 (2013)

[27] Chen, Y., Medioni, G.: Object modelling by registration of multiple range images.
Image and vision computing 10(3), 145–155 (1992)

[28] Choi, C., Christensen, H.I.: Rgb-d object tracking: A particle filter approach
on gpu. In: International Conference on Intelligent Robots and Systems, pp.
1084–1091. IEEE (2013)

[29] Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registra-
tion. Computer Vision and Image Understanding (2003)

[30] Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active Appearance Models. PAMI
23(6), 681–685 (2001)

[31] Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE
Transactions on Pattern Analysis and Machine Intelligence (2001)

[32] Dame, A., Marchand, E.: Accurate real-time tracking using mutual informa-
tion. In: Mixed and Augmented Reality (ISMAR), 2010 9th IEEE International
Symposium on, pp. 47 –56 (2010). doi: 10.1109/ISMAR.2010.5643550

[33] Dantone, M., Gall, J., Fanelli, G., Van Gool, L.: Real-time facial feature detection
using conditional regression forests. In: Conference on Computer Vision and
Pattern Recognition (2012)

[34] de La Gorce, M., Fleet, D.J., Paragios, N.: Model-based 3D hand
pose estimation from monocular video. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 33(9), 1793–1805 (2011).
URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=5719617’escapeXml=’false’/>

[35] Delaunoy, A., Prados, E.: Gradient flows for optimizing triangular mesh-based
surfaces: Applications to 3D reconstruction problems dealing with visibility.
International Journal of Computer Vision 95(2), 100–123 (2011)

[36] Dellaert, F., Collins, R.: Fast image-based tracking by selective pixel integration.
In: ICCV Workshop of Frame-Rate Vision (1999)

[37] Drost, B., Ulrich, M., Navab, N., Ilic, S.: Model globally, match locally: Efficient
and robust 3d object recognition. In: Conference on Computer Vision and Pattern
Recognition, pp. 998–1005 (2010)

[38] Euler, L.: Problema algebraicum ob affectiones prorsus singulares memorabile.
Commentatio 407 Indicis Enestoemiani, Novi Comm. Acad. Sci. Petropolitanae
15, 75–106 (1770)

[39] Fanelli, G., Dantone, M., Gall, J., Fossati, A., Van Gool, L.: Random forests for
real time 3d face analysis. International Journal of Computer Vision (2013)

[40] Fanelli, G., Gall, J., Van Gool, L.: Real time head pose estimation with random
regression forests. In: Conference on Computer Vision and Pattern Recognition
(2011)

143

BIBLIOGRAPHY

[41] Fischler, M., Bolles, R.: Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and Automated Cartography. Com-
munications ACM (1981)

[42] Fitzgibbon, A.W.: Robust registration of 2d and 3d point sets. Image and Vision
Computing 21(13), 1145–1153 (2003)

[43] Gay-Bellile, V., Bartoli, A., Sayd, P.: Direct estimation of nonrigid registra-
tions with image-based self-occlusion reasoning. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2010)

[44] Geng, X., Xia, Y.: Head pose estimation based on multivariate label distribution.
In: Conference on Computer Vision and Pattern Recognition (2014)

[45] Glocker, B., Komodakis, N., Tziritas, G., Navab, N., Paragios, N.: Dense image
registration through mrfs and efficient linear programming. Medical Image
Analysis (2008)

[46] Gräßl, C., Zinßer, T., Niemann, H.: Illumination insensitive template match-
ing with hyperplanes. In: Proceedings of Pattern recognition: 25th DAGM
Symposium. Magdeburg, Germany (2003)

[47] Gräßl, C., Zinßer, T., Niemann, H.: Efficient hyperplane tracking by intelligent
region selection. In: Image Analysis and Interpretation (2004)

[48] Hager, G., Belhumeur, P.: Efficient region tracking with parametric models of
geometry and illumination. IEEE Transactions on Pattern Analysis and Machine
Intelligence (1998)

[49] Hasler, N., Stoll, C., Sunkel, M., Rosenhahn, B., Seidel, H.P.: A statistical model
of human pose and body shape. Computer Graphics Forum 28(2), 337–346
(2009)

[50] Held, R., Gupta, A., Curless, B., Agrawala, M.: 3d puppetry: A kinect-based
interface for 3d animation. In: Proceedings of the 25th annual ACM symposium
on User interface software and technology (2012)

[51] Hinterstoisser, S., Benhimane, S., Navab, N., Fua, P., Lepetit, V.: Online learning
of patch perspective rectification for efficient object detection. In: Conference on
Computer Vision and Pattern Recognition. Anchorage, Alaska (2008)

[52] Hinterstoisser, S., Kutter, O., Navab, N., Fua, P., Lepetit, V.: Real-time learning
of accurate patch rectification (2009)

[53] Hinterstoisser, S., Lepetit, V., Ilic, S., Fua, P., Navab, N.: Dominant orientation
templates for real-time detection of texture-less objects (2010)

[54] Hinterstoisser, S., Lepetit, V., Ilic, S., Holzer, S., Bradski, G., Konolige, K., ,
Navab, N.: Model based training, detection and pose estimation of texture-less
3d objects in heavily cluttered scenes. In: Asian Conference on Computer Vision
(2012)

144

BIBLIOGRAPHY

[55] Hinterstoisser, S., Lepetit, V., Ilic, S., Holzer, S., Bradski, G., Konolige, K.,
Navab, N.: Model based training, detection and pose estimation of texture-less
3d objects in heavily cluttered scenes. In: Asian Conference on Computer Vision,
pp. 548–562. Springer (2013)

[56] Hirshberg, D.A., Loper, M., Rachlin, E., Black, M.J.: Coregistration: Simultane-
ous alignment and modeling of articulated 3D shape. In: European Conference
on Computer Vision, pp. 242–255 (2012)

[57] Holzer, S., Hinterstoisser, S., Ilic, S., Navab, N.: Distance transform templates
for object detection and pose estimation (2009)

[58] Holzer, S., Ilic, S., Navab, N.: Adaptive linear predictors for real-time tracking.
In: Conference on Computer Vision and Pattern Recognition (2010)

[59] Holzer, S., Ilic, S., Tan, D., Navab, N.: Efficient learning of linear predictors using
dimensionality reduction. In: Asian Conference on Computer Vision (2012)

[60] Holzer, S., Ilic, S., Tan, D.J., Navab, N.: Efficient learning of linear predictors
using dimensionality reduction. In: Asian Conference on Computer Vision, pp.
15–28. Springer (2012)

[61] Holzer, S., Ilic, S., Tan, D.J., Pollefeys, M., Navab, N.: Efficient learning of
linear predictors for template tracking. International Journal of Computer Vision
111(1), 12–28 (2015)

[62] Holzer, S., Pollefeys, M., Ilic, S., Tan, D.J., Navab, N.: Online learning of linear
predictors for real-time tracking. In: European Conference on Computer Vision,
pp. 470–483. Springer (2012)

[63] Huang, C.H., Boyer, E., Navab, N., Ilic, S.: Human shape and pose tracking
using keyframes. In: Conference on Computer Vision and Pattern Recognition,
pp. 3446–3453. IEEE (2014)

[64] Irani, M., Anandan, P.: About direct methods. Vision Algorithms: Theory and
Practice (2000)

[65] Jurie, F., Dhome, M.: Hyperplane approximation for template matching. IEEE
Transactions on Pattern Analysis and Machine Intelligence (2002)

[66] Jurie, F., Dhome, M.: Real time robust template matching. In: British Machine
Vision Conference (2002)

[67] Kan, M., Shan, S., Chang, H., Chen, X.: Stacked progressive auto-encoders
(spae) for face recognition across poses. In: Conference on Computer Vision and
Pattern Recognition (2014)

[68] Kanzow, C., Yamashita, N., Fukushima, M.: Levenberg-Marquardt methods
with strong local convergence properties for solving nonlinear equations with
convex constraints. Journal of Computational and Applied Mathematics 172(2),
375–397 (2004). URL http://www.sciencedirect.com/science/
article/pii/S0377042704001256

145

BIBLIOGRAPHY

[69] Kazemi, V., Sullivan, J.: One millisecond face alignment with an ensemble of
regression trees. In: Conference on Computer Vision and Pattern Recognition
(2014)

[70] Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Neural Networks,
1995. Proceedings., IEEE International Conference on, vol. 4, pp. 1942–1948
vol.4 (1995). doi: 10.1109/ICNN.1995.488968

[71] Keskin, C., Kiraç, F., Kara, Y.E., Akarun, L.: Hand pose estimation and hand
shape classification using multi-layered randomized decision forests. In: Euro-
pean Conference on Computer Vision, pp. 852–863 (2012)

[72] Khamis, S., Taylor, J., Shotton, J., Keskin, C., Izadi, S., Fitzgibbon, A.: Learning
an efficient model of hand shape variation from depth images. In: Conference on
Computer Vision and Pattern Recognition, pp. 2540–2548 (2015)

[73] Koterba, S., Baker, S., Matthews, I., Hu, C., Xiao, J., Cohn, J., Kanade, T.:
Multi-view aam fitting and camera calibration. In: International Conference on
Computer Vision (2005)

[74] Krull, A., Michel, F., Brachmann, E., Gumhold, S., Ihrke, S., Rother, C.: 6-dof
model based tracking via object coordinate regression

[75] de La Gorce, M., Paragios, N., Fleet, D.J.: Model-based hand tracking with
texture, shading and self-occlusions. In: Conference on Computer Vision and
Pattern Recognition, pp. 1–8 (2008)

[76] Lallemand, J., Pauly, O., Schwarz, L., Tan, D.J., Ilic, S.: Multi-task forest for
human pose estimation in depth images. In: International Conference on 3D
Vision (2013)

[77] Lee, S., Wolberg, G., Shin, S.: Scattered data interpolation with multilevel
b-splines. IEEE Transactions on Visualization and Computer Graphics (1997)

[78] Lepetit, V., Lagger, P., Fua, P.: Randomized trees for real-time keypoint recogni-
tion. In: Conference on Computer Vision and Pattern Recognition (2005)

[79] Li, H., Sumner, R.W., Pauly, M.: Global correspondence optimization for non-
rigid registration of depth scans. Computer Graphics Forum 27(5), 1421–1430
(2008). doi: 10.1111/j.1467-8659.2008.01282.x. URL http://dx.doi.
org/10.1111/j.1467-8659.2008.01282.x

[80] Li, X., Hu, Z.: Rejecting mismatches by correspondence function. International
Journal of Computer Vision (2010)

[81] Liao, M., Zhang, Q., Wang, H., Yang, R., Gong, M.: Modeling deformable
objects from a single depth camera. In: International Conference on Computer
Vision, pp. 167–174 (2009)

[82] Loop, C.T.: Smooth subdivision surfaces based on triangles. Master’s thesis,
University of Utah (1987). URL http://research.microsoft.com/
apps/pubs/default.aspx?id=68540

146

BIBLIOGRAPHY

[83] Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: A
skinned multi-person linear model. ACM Transactions on Graphics 34(6), #248
(2015)

[84] Lowe, D.: Distinctive Image Features from Scale-Invariant Keypoints. Interna-
tional Journal of Computer Vision (2004)

[85] Lucas, B., Kanade, T.: An Iterative Image Registration Technique with an Ap-
plication to Stereo Vision. In: International Joint Conference on Artificial
Intelligence (1981)

[86] Makris, A., Argyros, A.: Model-based 3D hand tracking with on-line hand shape
adaptation. In: British Machine Vision Conference, pp. 77.1–77.12 (2015)

[87] Malis, E.: Improving vision-based control using efficient second-order minimiza-
tion techniques. In: IEEE International Conference on Robotics and Automation
(2004)

[88] Malis, E.: An efficient unified approach to direct visual tracking of rigid and
deformable surfaces. In: International Conference on Intelligent Robots and
Systems (2007)

[89] Martin, M., Van De Camp, F., Stiefelhagen, R.: Real time head model creation
and head pose estimation on consumer depth cameras. In: 3D Vision (3DV),
2014 2nd International Conference on, vol. 1, pp. 641–648. IEEE (2014)

[90] Matas, J., Zimmermann, K., Svoboda, T., Hilton, A.: Learning efficient linear
predictors for motion estimation. In: Computer Vision, Graphics and Image
Processing (2006)

[91] Matthews, I., Baker, S.: Active Appearance Models Revisited. International
Journal of Computer Vision 60, 135–164 (2004)

[92] Mayol, W.W., Murray, D.W.: Tracking with general regression. Journal of
Machine Vision and Applications (2008)

[93] Meyer, G.P., Gupta, S., Frosio, I., Reddy, D., Kautz, J.: Robust model-based 3d
head pose estimation. In: International Conference on Computer Vision (2015)

[94] Murphy-Chutorian, E., Trivedi, M.M.: Head pose estimation in computer vision:
A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence
(2009)

[95] Newcombe, R., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.,
Kohli, P., Shotton, J., Hodges, S., Fitzgibbon, A.: KinectFusion: Real-time dense
surface mapping and tracking. In: Proc. ISMAR (2011)

[96] Oberweger, M., Wohlhart, P., Lepetit, V.: Hands deep in deep learning for hand
pose estimation. In: Proc. Computer Vision Winter Workshop (CVWW) (2015)

[97] Oberweger, M., Wohlhart, P., Lepetit, V.: Training a feedback loop for hand pose
estimation. In: International Conference on Computer Vision, pp. 3316–3324
(2015)

147

BIBLIOGRAPHY

[98] Oikonomidis, I., Kyriazis, N., Argyros, A.: Efficient model-based 3D tracking
of hand articulations using Kinect. In: British Machine Vision Conference, pp.
101.1–101.11 (2011)

[99] Oikonomidis, I., Kyriazis, N., Argyros, A.: Tracking the articulated motion of
two strongly interacting hands. In: Conference on Computer Vision and Pattern
Recognition, pp. 1862–1869 (2012)

[100] Özuysal, M., Fua, P., Lepetit, V.: Fast Keypoint Recognition in Ten Lines of
Code. In: Conference on Computer Vision and Pattern Recognition. Minneapolis,
MI, USA (2007)

[101] Padeleris, P., Zabulis, X., Argyros, A.A.: Head pose estimation on depth data
based on particle swarm optimization. In: Computer Vision and Pattern Recog-
nition Workshops (CVPRW), 2012 IEEE Computer Society Conference on, pp.
42–49. IEEE (2012)

[102] Parisot, P., Thiesse, B., Charvillat, V.: Selection of reliable features subsets
for appearance-based tracking. Signal-Image Technologies and Internet-Based
System (2007)

[103] Penrose, R.: A generalized inverse for matrices. In: Proceedings of the Cambridge
Philosophical Society (1955)

[104] Pilet, J., Lepetit, V., Fua, P.: Fast non-rigid surface detection, registration and
realistic augmentation. International Journal of Computer Vision (2008)

[105] Pizarro, D., Bartoli, A.: Feature-based deformable surface detection with self-
occlusion reasoning. International Journal of Computer Vision (2012)

[106] Poier, G., Roditakis, K., Schulter, S., Michel, D., Bischof, H., Argyros, A.A.:
Hybrid one-shot 3D hand pose estimation by exploiting uncertainties. In: British
Machine Vision Conference, pp. 182.1–182.14 (2015)

[107] Pomerleau, F., Colas, F., Siegwart, R., Magnenat, S.: Comparing icp variants on
real-world data sets. Autonomous Robots 34(3), 133–148 (2013)

[108] Redondo-Cabrera, C., Lopez-Sastre, R., Tuytelaars, T.: All together now: Si-
multaneous detection and continuous pose estimation using a hough forest with
probabilistic locally enhanced voting. In: British Machine Vision Conference
(2014)

[109] Rekik, A., Ben-Hamadou, A., Mahdi, W.: 3d face pose tracking using low quality
depth cameras. In: VISAPP (2), pp. 223–228 (2013)

[110] Ren, C., Prisacariu, V., Murray, D., Reid, I.: Star3d: Simultaneous tracking and
reconstruction of 3d objects using rgb-d data. In: International Conference on
Computer Vision (2013)

[111] Ren, C.Y., Prisacariu, V., Kaehler, O., Reid, I., Murray, D.: 3d tracking of
multiple objects with identical appearance using rgb-d input. In: International
Conference on 3D Vision, vol. 1, pp. 47–54. IEEE (2014)

148

BIBLIOGRAPHY

[112] Richa, R., Sznitman, R., Taylor, R., Hager, G.: Visual tracking using the sum of
conditional variance. In: Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ
International Conference on, pp. 2953 –2958 (2011). doi: 10.1109/IROS.2011.
6094650

[113] Riegler, G., Ferstl, D., Rüther, M., Bischof, H.: Hough networks for head pose
estimation and facial feature localization. In: British Machine Vision Conference
(2014)

[114] Rieke, N., Tan, D.J., Alsheakhali, M., Tombari, F., di San Filippo, C.A., Bela-
giannis, V., Eslami, A., Navab, N.: Surgical tool tracking and pose estimation in
retinal microsurgery. In: International Conference on Medical Image Computing
and Computer-Assisted Intervention, pp. 266–273. Springer (2015)

[115] Rieke, N., Tan, D.J., di San Filippo, C.A., Tombari, F., Alsheakhali, M., Bela-
giannis, V., Eslami, A., Navab, N.: Real-time localization of articulated surgical
instruments in retinal microsurgery. Medical image analysis (2016)

[116] Rieke, N., Tan, D.J., Tombari, F., Vizcaino, J.P., di San Filippo, C.A., Eslami,
A., Navab, N.: Real-time online adaption for robust instrument tracking and
pose estimation. In: International Conference on Medical Image Computing and
Computer-Assisted Intervention, pp. 266–273. Springer (2015)

[117] Rodrigues, O.: Des lois géometriques qui regissent les déplacements d’ un
systéme solide dans l’ espace, et de la variation des coordonnées provenant de
ces déplacement considerées indépendent des causes qui peuvent les produire.
J. Math. Pures Appl. 5, 380–400 (1840)

[118] Rusinkiewicz, S., Levoy, M.: Efficient variants of the icp algorithm. In: 3-D
Digital Imaging and Modeling (2001)

[119] Rusu, R.B., Cousins, S.: 3d is here: Point cloud library (pcl). In: International
Conference on Robotics and Automation, pp. 1–4. IEEE (2011)

[120] Sadourny, R., Arakawa, A., Mintz, Y.: Integration of the nondivergent barotropic
vorticity equation with an icosahedral-hexagonal grid for the sphere 1. Monthly
Weather Review 96(6), 351–356 (1968)

[121] Salzmann, M., Fua, P.: Linear local models for monocular reconstruction of
deformable surfaces. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (2011)

[122] Schulter, S., Leistner, C., Wohlhart, P., Roth, P.M., Bischof, H.: Alternating
regression forests for object detection and pose estimation. In: International
Conference on Computer Vision (2013)

[123] Segal, A., Haehnel, D., Thrun, S.: Generalized-icp. In: Robotics: Science and
Systems (2009)

[124] Sharp, T., Keskin, C., Robertson, D., Taylor, J., Shotton, J., Kim, D., Rhemann,
C., Leichter, I., Vinnikov, A., Wei, Y., Freedman, D., Kohli, P., Krupka, E.,
Fitzgibbon, A., Izadi, S.: Accurate, robust, and flexible realtime hand tracking.
In: Proc. CHI, pp. 3633–3642 (2015)

149

BIBLIOGRAPHY

[125] Shum, H.Y., Szeliski, R.: Construction of panoramic image mosaics with global
and local alignment. International Journal of Computer Vision (2000)

[126] Sridhar, S., Mueller, F., Oulasvirta, A., Theobalt, C.: Fast and robust hand
tracking using detection-guided optimization. In: Conference on Computer
Vision and Pattern Recognition, pp. 3213–3221 (2015)

[127] Sridhar, S., Rhodin, H., Seidel, H.P., Oulasvirta, A., Theobalt, C.: Real-time
hand tracking using a sum of anisotropic Gaussians model. In: Proc. 3DV, pp.
319–326 (2014)

[128] Supančič III, J.S., Rogez, G., Yang, Y., Shotton, J., Ramanan, D.: Depth-based
hand pose estimation: data, methods, and challenges. In: International Confer-
ence on Computer Vision, pp. 1868–1876 (2015)

[129] Tagliasacchi, A., Schröder, M., Tkach, A., Bouaziz, S., Botsch, M., Pauly, M.:
Robust articulated-ICP for real-time hand tracking. Computer Graphics Forum
34(5), 101–114 (2015)

[130] Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: Closing the gap to
human-level performance in face verification. In: Conference on Computer
Vision and Pattern Recognition (2014)

[131] Tan, D.J., Cashman, T., Taylor, J., Fitzgibbon, A., Tarlow, D., Khamis, S., Izadi,
S., Shotton, J.: Fits like a glove: Rapid and reliable hand shape personalization.
In: Conference on Computer Vision and Pattern Recognition (2016)

[132] Tan, D.J., Holzer, S., Navab, N., Ilic, S.: Deformable template tracking in 1ms.
In: British Machine Vision Conference. Citeseer (2014)

[133] Tan, D.J., Ilic, S.: Multi-forest tracker: A chameleon in tracking. In: Conference
on Computer Vision and Pattern Recognition, pp. 1202–1209. IEEE (2014)

[134] Tan, D.J., Tombari, F., Ilic, S., Navab, N.: A versatile learning-based 3d temporal
tracker: Scalable, robust, online. In: International Conference on Computer
Vision (2015)

[135] Tan, D.J., Tombari, F., Navab, N.: A combined generalized and subject-specific
3d head pose estimation. In: International Conference on 3D Vision. IEEE (2015)

[136] Tan, D.J., Tombari, F., Navab, N.: Real-time accurate 3d head tracking and pose
estimation with consumer rgb-d cameras. International Journal of Computer
Vision (2017)

[137] Tang, D., Taylor, J., Kohli, P., Keskin, C., Kim, T.K., Shotton, J.: Opening the
black box: Hierarchical sampling optimization for estimating human hand pose.
In: International Conference on Computer Vision, pp. 3325–3333 (2015)

[138] Taylor, J., Bordeaux, L., Cashman, T., Corish, B., Keskin, C., Sharp, T., Soto,
E., Sweeney, D., Valentin, J., Luff, B., Topalian, A., Wood, E., Khamis, S.,
Kohli, P., Izadi, S., Banks, R., Fitzgibbon, A., Shotton, J.: Efficient and precise
interactive hand tracking through joint, continuous optimization of pose and
correspondences. In: ACM SIGGRAPH (2016). To appear

150

BIBLIOGRAPHY

[139] Taylor, J., Stebbing, R., Ramakrishna, V., Keskin, C., Shotton, J., Izadi, S.,
Hertzmann, A., Fitzgibbon, A.: User-specific hand modeling from monocular
depth sequences. In: Conference on Computer Vision and Pattern Recognition,
pp. 644–651 (2014)

[140] Tompson, J., Stein, M., Lecun, Y., Perlin, K.: Real-time continuous pose recovery
of human hands using convolutional networks. ACM Transactions on Graphics
33(5), #169 (2014)

[141] Tran, Q., Chin, T., Carneiro, G., Brown, M., Suter, D.: In defence of ransac
for outlier rejection in deformable registration. In: European Conference on
Computer Vision (2012)

[142] Tsoli, A., Mahmood, N., Black, M.J.: Breathing life into shape: capturing,
modeling and animating 3D human breathing. ACM Transactions on Graphics
33(4), #52 (2014)

[143] Viola, P., Jones, M.J.: Robust real-time face detection. International Journal of
Computer Vision (2004)

[144] Weise, T., Leibe, B., Van Gool, L.: Fast 3d scanning with automatic motion
compensation. In: Conference on Computer Vision and Pattern Recognition, pp.
1–8. IEEE (2007)

[145] Ye, M., Yang, R.: Real-time simultaneous pose and shape estimation for articu-
lated objects using a single depth camera. In: Conference on Computer Vision
and Pattern Recognition, pp. 2353–2360 (2014)

[146] Zhu, J., Hoi, S., Lyu, M.: Nonrigid shape recovery by gaussian process regression.
In: Conference on Computer Vision and Pattern Recognition (2009)

[147] Zhu, J., Lyu, M.: Progressive finite newton approach to real-time nonrigid surface
detection. In: Conference on Computer Vision and Pattern Recognition (2007)

[148] Zimmermann, K., Matas, J., Svoboda, T.: Tracking by an optimal sequence of lin-
ear predictors. IEEE Transactions on Pattern Analysis and Machine Intelligence
(2009)

151

BIBLIOGRAPHY

152

