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Abstract—This work presents an online learning framework for
improving the robustness of zero-moment point (ZMP) based biped
walking controllers. The key idea is to learn a feedforward compensative
ZMP (CZMP) trajectory from measured ZMP errors during repetitive
walking motions by applying iterative learning control theory. The
learned CZMP trajectory adjusts the reference ZMP and reduces the
effect of unmodeled dynamics at the pattern generation stage. From
individual learned CZMP trajectories of typical walking parameters,
we can build up a CZMP database. This database can be used for
generating an initial CZMP whenever a new walking pattern is executed.
Prediction from the database is done by k-NN regression based on
the Mahalonobis distance. Compared with state-of-the-art model-based
methods, the proposed learning approach is model free and allows
online adaptation to constant unknown disturbances. Enhanced walking
robustness can be observed from reduced average ZMP error, and more
robust reaction against external disturbances on the DLR humanoid robot
TORO.

Index Terms—Biped walking control, iterative learning control, balance
control.

I. INTRODUCTION

The concept of zero-moment point (ZMP) has been widely adopted
as a stability indicator for gait analysis, synthesis and control of
diverse anthropomorphic locomotion mechanisms since early 1970s
[1]. Based on ZMP and the development of fully actuated humanoid
robots many successful biped walking controllers have been demon-
strated [2], [3], [4], [5]. In this control scheme a dynamically stable
walking pattern is first generated and the walking control relies on
precise execution of the planned trajectory. Early works plan the
walking pattern offline based on accurate robot dynamics model [2],
[4]. In recent years researchers have realized online walking control
by utilizing simplified models for pattern generation [5], [6], [7].
The drawback of the online approaches is the inconsistency between
the robot multi-body dynamics and the simplified models [8], which
will cause ZMP deviation even when the planned walking pattern is
executed faithfully. Combining with a feedback stabilization becomes
a standard way to ease the problem of the unmodeled dynamics as
well as to resist external disturbances [3], [9], [10], [11]. However
they are designed to maintain balance at every control moment,
rather than to solve the modeling problem of pattern generation.
The dynamically inconsistent walking pattern cause persistent ZMP
tracking error even when a feedback balancer is applied.

In this work we focus on the problem of improving walking
robustness by refining the walking pattern, i.e. reducing the effect
of unmodeled dynamics at pattern generation stage. Our key idea
is to learn a feedforward compensative ZMP (CZMP) term through
the measured ZMP error during the repetition of the walking trials.
Because locomotion behavior displays a dominant repetitive phase,
we adopt iterative learning control (ILC) theory [12], [13] as the
learning strategy and name our approach as online iterative learning
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control of ZMP (ZMP-OILC) [14]. The learned CZMP trajectory
adjusts the ZMP reference and reduces the ZMP error caused by the
model inconsistency of online pattern generation. The improvement
of walking robustness is evaluated qualitatively by the reduced
average ZMP error and intuitively by the better resistance to external
disturbances. The learned knowledge of the learning process can
furthermore be used for building up a CZMP database of typical
walking parameters. The CZMP trajectories of new walking motions
are predicted by k-NN regression and applied as a precompensation
for the online learning. Better performance such as higher conver-
gence speed and reduced ZMP error during non-repetitive transition
phases between different walking motions are achieved.

Earlier work of learning control for biped walking was presented
in [15] to learn the necessary feedforward compensation in order to
overcome mechanical disturbances and follow the walking pattern
precisely. Later Li et al. proposed an algorithm to learn a trunk
compensation motion for walking stabilization [16]. However the
approach only works offline for a complete walking sequence. In
contrast our method works online with two footsteps as one itera-
tion, which makes the learning flexible and efficient. State-of-the-
art ZMP compensation method at the pattern generation stage is
the dynamical filter (ZMP-DF) [5], which computes the expected
ZMP error from multi-body model and applies again the preview
control for compenstation. Nishiwaki et al. extended the ZMP-DF by
updating the walking pattern frequently from current robot status with
short cycle time [17]. Compared with these methods, our approach
is model free, with lower computational cost and implementation
complexity. The effect of ZMP-DF is similar to conduct one learning
iteration of ZMP-OILC based on the computed ZMP error from
multi-body model. Moreover ZMP-OILC is able to adapt online to
external constant disturbances and these disturbances are reflected
to the walking pattern directly through the ZMP measurement rather
than measuring the external wrench and computing the corresponding
ZMP error from the dynamics model. ILC implements an integral
action along the iteration domain and thus allows to improve the
tracking performance at every time instant along the periodic tra-
jectory. Notice that this is different from an integral action in time
domain which allows to compensate for steady state errors but has
less benefits for the transient behavior. In the context of walking
control, a feedback controller with integral action has been applied
e.g. in [18] in order to suppresses the steady tracking errors under
presence of constant disturbances like a measurement error in the
center of mass. Finally the proposed learning framework should be
considered as a supplement to the feedback balancer rather than a
counterpart since their combination is easy and effective.

The rest of the paper is organized as follows. In Sec. II a short
review of ILC theory is given. The proposed learning framework
is explained in detail in Sec. III. Learning CZMP database and its
generalization are discussed in Sec.IV. Simulation and experimental
results on the DLR humanoid robot TORO are shown in Sec. V to
verify the effectiveness of the approach. The last section concludes
the presented work.

II. ITERATIVE LEARNING CONTROL

Iterative learning control is a well studied research topic which is
categorized as one branch of intelligent control [19]. The goal of ILC
is to achieve better tracking performance than conventional feedback
controllers through learning from previous control trials. It assumes
deterministic system dynamics and repeatability of the target tracking
task over a finite control horizon. Assume we have a tracking task
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Fig. 1. Overview of online learning framework for ZMP-based biped walking
controller.

with control input u and output error e = yd − y, the P-type ILC
update law with a forgetting factor can be written as

ui+1(t) = u0(t)+ k f [ui(t)−u0(t)]+ klei(t), t ∈ [0,Titer], (1)

in which the subscript i is the iteration number and Titer is the
iteration period. The learning time variable t is reset to 0 at the
beginning of each iteration. kl > 0 and 0 < k f ≤ 1 are the learning
gain and the forgetting factor. In the contraction mapping based
method the learning convergence is predominantly determined by
the static mapping y = du between the system input and output. The
convergence condition of (1) is given as∣∣k f − kld

∣∣< 1. (2)

A system needs to be global Lipschitz continuous to design the stable
learning gain, namely the boundness of d is required. A forgetting
factor smaller than one makes the learning more robust. For detailed
and further information about ILC readers can refer to literature such
as [13].

III. ONLINE ITERATIVE LEARNING CONTROL OF ZMP

The proposed ZMP-OILC framework can be regarded as a feed-
forward augment of the conventional ZMP-based online walking
controllers (see the upper part of Fig. 1). As base line algorithms
we adopt the preview control based pattern generator [5] and the
online feedback balancer proposed by Choi et al. [10]1. The details
of ZMP-OILC are shown in the dashed frame in Fig 1. The rest
of this section will explain each component of the online learning
process.

A. Learning Decision

In this work a sequence of walking steps with same parameters
is denoted as a repetitive phase. As a prerequisite for ILC our
target motion should have dominant repetitive phases. For different
repetitive phases walking parameters, such as step length, turning

1A short revision of ZMP preview controller and the applied online balance
controller is provided in Appendix. The proposed ZMP-OILC works also for
other online pattern generation algorithms, such as [6]. It is chosen for the
purpose of easy comparison with ZMP-DF.
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Fig. 2. Finite state machine for guiding the online iterative learning process.

angle and step time, can vary. During the transition between different
repetitive phases the motion is not repetitive. The learning controller
should be aware of the step information and change its behavior at
the right time. We construct the learning decision block as a finite
state machine (see Fig. 2) to model different states of the learning
controller and guide the learning control to start, stop and transit.

B. Learning Control Law

The ZMP dynamics equation of linear inverted pendulum model
(LIPM) [8] is written as:

ps = c−
cz,m

g
c̈ (3)

in which c is the position of the COM, cz,m is the fixed COM height
of the model and g denotes the gravity constant. ps represents the
ZMP and the subscript s stands for simplified. The measured robot
ZMP pr is considered as a sum of the part of LIPM and an unmodeled
error term:

pr = ps +ep,m (4)

where ep,m (m stands for model) denotes the effect of model
inaccuracy in the form of ZMP error. The goal of ZMP-OILC is to
learn a feedforward signal pl (l stands for learning) for compensating
ep,m by adjusting the reference ZMP trajectories. If pl converges to
pd − ep,m and the pattern generator can track the reference ZMP
sufficiently accurate (ps ≈ pl with sufficiently long preview length),
then the measured robot ZMP pr converges to the desired value pd .

In this work the learning iteration is defined as two successive
footsteps2. The difference to the standard ILC is that the learning
process is only repetitive in the local coordinate system Gi of each
iteration3. In the global coordinate system G0 the reference ZMP
trajectory pd,i of each iteration varies (see Fig. 3). Consider planar
walking on a flat surface with the x and y coordinates as well as the
yaw turning angle α , the learning control law of ZMP-OILC based
on the P-type linear ILC with a forgetting factor (1) represented in
the global coordinate system G0 can be written as:

pl,i(t) = pd,i(t)+ k fR∆

[
pl,i−1(t)−pd,i−1(t)

]
+ klR∆

[
pd,i−1(t)−pr f ,i−1(t)

]
, t ∈ [0,Titer], i > 0

(5)

where
R∆ =Rz(∆α) =

[
cos∆α −sin∆α

sin∆α cos∆α

]
. (6)

pl , pd and pr f represent the learned, desired as well as the filtered
and timely aligned ZMP measurement (Sec. III-D) respectively. R∆

rotates the learning information of the last iteration to the current
iteration according to walking turning angle ∆α = αi −αi−1. The
second term of the right hand side represents the learned information
of the previous i−2 iterations which is rotated by R∆ and weighted
by the forgetting factor k f . The third term represents the rotated ZMP
error of the last iteration weighted by the learning gain kl , which
defines how much we should learn from the sensor data.

2The biped system is not necessarily symmetric. This implies that the the
left and right steps are taken as different even with same walking parameters.

3In this work the x and y axes refer to the global coordinate system G0.
For local coordinate system Gi the axes are denoted as saggital (sai) and
lateral axes (lai).



IEEE TRANSANCTION ON ROBOTICS, VOL. , NO. , 2015 3

G 0

G i− 1

G i

G i+ 1

( i− 1) th iteration

ith iteration

∆α

x

y sai− 1

lai− 1

sai

lai

sai+ 1

lai+ 1

Fig. 3. Learning iteration defined for ILC.

C. Continuity of Learning Process

The learning process of ZMP-OILC is conducted continuously
without reset between successive iterations. Therefore it is important
to ensure the continuity. Otherwise the discontinuity will propagate
throughout the whole learning process due to the integration nature
of ILC. During each iteration equation (5) is a linear combination of
continuous signals pd , pr f . The continuity of the learning process can
be confirmed if the connecting points between consecutive iterations
are continuous. It can be shown that if the continuity at the beginning
of the first learning iteration is ensured, the whole learning process is
continuous. An initialization iteration is designed to transit smoothly
from non-learning to learning phases:

pl,1(t) = pd,1(t)+ kl,ini(t)R∆

[
pd,0(t)−pr f ,0(t)

]
(7)

in which kl,ini changes from 0 to desired value of kl . Similarly we
can exit the learning in the last iteration by designing the k f and kl
smoothly decreasing to 0.

D. Time Alignment of Feedback Signal

ILC is essentially a point-wise integration operation of the control
error along the iteration domain. Therefore the accuracy of the time
alignment of the feedback signal is important. Otherwise the learning
information, i.e. the control error will be computed wrongly. The
real ZMP of the robot lags behind the reference due to the structural
compliance and motion control [11]. An additional low pass filter
is used in order to get a cleaner ZMP signal for learning. The total
time lag between the filtered and the reference ZMP signal Tdelay is
identified offline by experiment. Since pattern generation needs future
ZMP information, the following time condition should be fulfilled in
order to achieve online consecutive learning:

Titer ≥ Tpre +Tdelay (8)

where Tpre represents the preview time of the pattern generator. If this
time condition is not satisfied, the corresponding pl(t) of the current
filtered ZMP feedback is already in the preview buffer and cannot be
modified for current iteration. In this work Titer is set to be the time
of two footsteps. Tpre is chosen as 0.1s shorter than Titer since the
experimentally identified Tdelay is always within 0.1s. It is preferable

to choose the preview length as long as possible under the constraint
(8) in order to minimize the effect of the pattern generation error.

E. Convergence Condition

It is quite complex to analyze the convergence property with the
whole system dynamics, since it contains pattern generator, motion
controller and robot dynamics. One of the advantages of ILC is that
it requires very little system knowledge in order to guarantee the
learning convergence in the iteration domain. In our framework if
we consider the system as a whole, with the desired ZMP trajectory
as input and measured robot ZMP as output, the static process gain
d has a value around 1, since the robot ZMP will follow the desired
trajectory with some small deviations (smaller than the size of the
support polygon). Therefore a selection of 0< kl < k f +1 should lead
to the convergence of (5) according to (2). A more appropriate kl will
be verified through simulation and experiment. The convergence can
be evaluated by the average ZMP deviation from the desired value
during one iteration:

ei =
1

Titer

∫ Titer

0

∣∣pd,i(t)−pr f ,i(t)
∣∣dt (9)

If the error variation between two iterations is sufficiently small, we
conclude that the learning process converges.

IV. GENERALIZATION OF LEARNED COMPENSATIVE ZMP

It is common that humans apply knowledge gained from one task
to different but related tasks. With the similar concept we first learn a
database of CZMP for typical walking parameters and then generalize
to different walking parameters by k-NN regression. In this way we
can predict the CZMP without further learning and use the predicted
trajectory as a precompensation.

A. Learning the CZMP Database

After the ZMP-OILC converges for a specific walking motion, we
can extract the compensative ZMP trajectory in a learning iteration
as the acquired knowledge:

∆pc(t) =RT
i
[
pl,i(t)−pd,i(t)

]
(10)

where RT
i represents the transpose of the rotational matrix of Gi.

Since ∆pc is a weighted time integration of sensor data, it is wise
to compute the mean over several iterations after convergence to
reduce the influence of sensor noise and possible non-repetitive
disturbances. The database is then constructed as a lookup table of
CZMP trajectories associated with typical walking parameters.

B. Generalization by k-NN Regression

Assume we have constructed the database, which consists of a
sample parameter vector set Θ = {θi|i = 1, · · · ,m} and their corre-
sponding function values f (θi). The function value is parametrized
by an n dimensional parameter vector θi =

[
θ1,i, · · · ,θn,i

]T . The total
number of samples m depends on parameter ranges and the necessary
density of the sample parameters. Given a new target parameter vector
θ? =

[
θ?

1 , · · · ,θ?
n
]T , a k-Nearest Neighbors (k-NN) regression based

on the Mahalanobis distance conducts following steps to predict the
value of f (θ?):
• Select k closest parameter vectors as regression candidates

according to the Mahalanobis distance:

d(θi,θ
?) =

√
(θi−θ?)TΣ(θi−θ?) (11)

in which Σ is the covariance matrix of parameter vector set Θ.
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Fig. 4. DLR humanoid TORO used for the experiment.

• Compute the weight of each candidate sample:

ω(θi) =
1/d(θi,θ

?)

∑
k
j=1 1/d(θ j,θ?)

, i = 1, · · · ,k. (12)

• Predict the function value as the weighted sum of the k nearest
neighborhoods’ function values:

f (θ?) =
k

∑
i=1

ω(θi) f (θi). (13)

In this work the target value function pc(t;θ) is a finite trajectory.
We can retrieve the predicted trajectory by time rescaling:

∆pc(t;θ?) =
k

∑
i=1

ω(θi)∆pc(
tTs,i

T ?
s

;θi), t ∈ [0,T ?
s ]. (14)

The difference between the right hand side of (13) and (14) is that
we have to interpolate between trajectories with different time length.

C. Precompensation with CZMP

The predicted CZMP is utilized as a precompensation additional
to the online learning process and achieves benefits such as faster
convergence rate and reduced ZMP error during transition between
different motions. The learning control law with ∆pc can be formu-
lated as:

pl,i(t) = pd,i(t)+Ri∆pc(t)

+ k f (t)R∆

[
pl,i−1(t)−pd,i−1(t)−Ri−1∆pc(t)

]
+ kl(t)R∆

[
pd,i−1(t)−pr f ,i−1(t)

]
, i > 0.

(15)

Compared to (5) a precompensation term Ri∆pc(t) is added.

V. SIMULATION AND EXPERIMENT

The ZMP-OILC framework is evaluated on the DLR humanoid
robot TORO (Fig. 4), which is about 1.7m tall and 75kg heavy
[20]. For the walking setup we control the 12 DoFs of the legs in
joint position control mode with fixed upper body joints. The ZMP
is measured through the force torque sensors mounted in the feet.
The proposed ZMP-OILC framework is verified both in dynamics
simulation and on the real robot platform. For comparison different
control strategies (listed in TABLE I) for ZMP compensation are
applied. The meaning of the abbreviations in TABLE I is as follow:
BL stands for base line algorithms; P stands for precompensation with
CZMP; DF stands for dynamical filter with an additional preview
control of 0.7s; IL stands for iterative learning.

A. Simulation

In order to verify the convergence of the ZMP-OILC and select
appropriate learning parameters, we first conduct simulation with the
multibody dynamics model of the TORO robot in OpenHRP3 [21].

TABLE I
CONTROL STRATEGIES OF ZMP COMPENSATION

control strategy dynamical filter online ILC precompensation
∆pc

BL no no no
BLP no no yes
DF yes no no
IL no yes no
ILP no yes yes
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1) Convergence and Learning Parameters: Forward walking mo-
tion with step length of 15cm and step time of 0.8s is simulated with
respect to different kl and constant forgetting factor k f = 1. Fig. 5
shows the resulted ZMP trajectories for kl = 0.5. The average ZMP
errors during each iteration with respect to different learning gains
from 0.3 to 1.7 are shown in Fig. 6. As discussed in Sec. III-E, the
learning controller should converge with 0 < kl < 2. With a higher
value of kl , the controller converges faster but with larger average
ZMP error. In simulation the ZMP-OILC converges until kl = 1.3
but starts to diverge for kl = {1.5,1.7}.
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shows the discontinuities of the ZMP measurement due to food landing
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iterations of using constant k f = 1 and varying k f from 1 to 0.9 respectively.

2) ZMP Discontinuity and Varying Forgetting Factor: The mea-
sured ZMP has discontinuities towards the landing foot and away
from the lifting foot (red line in the upper graph of Fig. 7). This
ZMP estimation error is hard to be compensated through the ZMP-
OILC which adjusts the reference ZMP trajectories. In simulation pl
tends to grow large and the resulted pr tends to oscillate during those
time periods (black dotted line and red solid line in the middle graph
of Fig. 7). We introduce a varying forgetting factor to cope with this
measurement error due to the discrete nature of foot contact events.
The forgetting factor k f is set to 1 during the single supporting phase
and smaller than 1 (0.9 in the simulation) during double supporting
phase in which the foot landing and lifting occur. As a result the
divergence of pl and the oscillation of pr are well suppressed, as
shown in the lower graph of Fig. 7. Therefore the learning process
with varying k f will not drift in a long term perspective compared
with constant k f = 1, as shown in Fig. 8.

3) Comparison of Walking Robustness: We apply short and long
period external forces to the robot’s waist during forward walking
motion to verify the improvement of walking robustness. Simulation
results of three control strategies BL, DF and IL are compared. In the
case of IL external forces are exerted after the learning is converged.

Short period disturbance: This scenario considers non-repetitive
disturbances, e.g. unexpected collisions with the environment. Start-
ing from 22s a force of 65N in the saggital direction is exerted
at the robot waist for a period of 0.5s which corresponds to the
marginal force magnitude which leads the robot to fall down without
DF compensation or learning (upper graph of Fig. 9). During the
time period of external disturbance (marked as gray area), ZMP is
pushed to the front edge of the supporting polygon in all three cases.
After the disturbance the BL algorithm already suffered from bad
landing collision (high peaks after the gray area). After the landing
the ZMP lies at the edge of the new support foot for a period but BL

diverges4 while the DF and IL return back to the support polygon.
Compared to the case of BL where the robot tips over, DF and IL
resist the disturbance successfully and only a small twist in walking
direction appears (see attached video). In the case of IL the large ZMP
deviation during the disturbance is also integrated by the learning
and it needs several iterations to converge again. With DF the ZMP
recovers almost immediately after the disturbance. This suggests that
it is better to turn off the learning after the convergence if there are
non-repetitive disturbances from the environment.

Long period disturbance: This scenario considers the case that
the robot dynamics is changed for a longer period e.g. carrying an
unknown object. In the simulation a constant force with the value
of [30,0,−30]N is applied on the robot’s waist to approximate the
situation of carrying an object or inaccurate mass modeling. In all
three cases the robot can still maintain the balance although the ZMP
has a large deviation from the desired value in case of BL and DF
(Fig. 9 lower graph). IL shows the best performance since it adapts to
the long period disturbance and converges to the new situation. The
online adaptivity of ZMP-OILC makes it applicable to situations with
varying dynamics or repeatable environment changes.

4) Learning CZMP Database: To learn the CZMP database, we
specified the sample walking parameter sets for saggital and lateral
straight walking (SSW and LSW) as well as circle walking, which are
reasonable for the robot kinematics constraints, as given in TABLE
II. For each sample more than 50 iterations are learned with kl = 0.5
and varying k f with the value from 1 to 0.9. The final ∆pc trajectory
is taken as the average of the last 10 iterations. The learned CZMP
trajectories of SSW walking motion of different walking parameters
are illustrated in Fig. 10.

5) Comparison of ZMP Compensation Methods: To demonstrate
the proposed ZMP-OILC framework with the CZMP database, we
construct a walking sequence which consists of following four
different motions:

motion 1: {dsa = 12cm,dla =−6cm,Ts = 0.9s}
motion 2: {r = 0.9m,∆α = 15◦,Ts = 0.9s}
motion 3: {dsa = 14cm,dla = 0cm,Ts = 1s}
motion 4: {dsa = 0cm,dla = 7cm,Ts = 0.9s} .

For comparison five different control strategies (BL, BLP, DF, IL,
and ILP) are simulated for this walking sequence. During the motion
transitions we apply the predicted CZMP precompensation (for BLP
and ILP) as a mixture of the two motions, which is designed to
smoothly transit from CZMP prediction of one motion to the other.

Fig. 11 shows the CZMP generalization result of motion 2 in
sagittal direction. For circle walking parametrized with 3 parameters 8
candidates (black solid lines) are selected for generalization. The blue
dashed line is the ∆pc obtained by IL after convergence, which can be
considered as optimal trajectory. The red line is the predicted CZMP
from the generalization. The similarity between the predicted and the
optimal trajectories reveals the performance. The k-NN regression
provides a good prediction for a new motion using a-priori learned
dataset, without an online learning process. With this generalization
capability, the robot can estimate suboptimal CZMP trajectories for
a new task reactively. The accuracy of the CZMP prediction depends
both on the density of the walking parameter sets in the database and
the generalization method.

4In Fig. 9 the ZMP measurement looks as if it exceeds the supporting
polygon in two cases: 1) The collision model in OpenHRP creates high
spikes when large impact occurs; 2) The supporting polygon marked with
foot edges in Fig. 9 is according to the planned contact situation. In case
of large disturbance the robot feet will make unexpected contacts with the
ground.
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Fig. 8. Comparison of the average ZMP error with varying and constant k f for 100 iterations of learning.

TABLE II
WALKING PARAMETER SETS FOR LEARNING THE DATABASE IN SIMULATION

Sagittal Straight Walking (SSW) Lateral Straight Walking (LSW) Circle Walking

dsa = {−15,−10,−5,0,5,10,15}cm dsa = 0cm r = {0.5,0.75,1}m
dla = 0cm dla = {−7.5,−5,−2.5,0,2.5,5,7.5}cm ∆α = {10,20}◦
Ts = {0.6,0.8,1.0}s Ts = {0.6,0.8,1.0}s Ts = {0.6,0.8,1.0}s
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Fig. 9. Simulation result of walking robustness against short (top) and long
(bottom) period external forces.

Fig. 12 shows a fraction of the walking sequence between motion 1
and 2 and the resulted ZMP trajectories in 2D view. The upper graph
compares the control strategies without online learning, i.e. BL, BLP
and DF. From the trajectories we can observe large ZMP errors of BL
(red dotted line) and reduced ZMP errors of BLP (green solid line)
and DF (black dotted line). The lower graph compares the ZMP-OILC
with and without precompensation. In both cases the resulted ZMP
tracks the reference well but the ILP converges faster and performs
better during the transition phases. Fig. 13 shows the average ZMP
error with respect to iteration number of motion 1 to 4. Based on the
simulation results we can make following conclusions:

• Generalization of learned database by k-NN regression gives a
good prediction for new walking motions. The performance is
close to ZMP-DF.
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• ZMP-DF can deal with non-repetitive motions such as transition
phases since it is based on dynamics computation. ∆pc is helpful
to reduce the ZMP error during the transition phases.

• Online learning (IL and ILP) results in less ZMP error after
convergence compared with only applying predicted ∆pc or
ZMP-DF.

• Applying predicted ∆pc or DF as the starting point of online
learning improves the convergence speed.

B. Experiments

We conducted experiments of forward, backward, side walking
with different step lengths on the real robot to test the ZMP-OILC
algorithm. The convergence performance is influenced by the non-
repetitive disturbances such as small local unevenness of the ground.
Therefore smaller learning gains are applied. We set kl,sa = 0.3 in
sagittal direction and kl,la = 0.2 in lateral direction since the distance
from foot center to foot edge (safety margin of ZMP) is much smaller
in the lateral direction than the sagittal direction.

The landing impact problem becomes severe in the real robot ex-
periments since the walking control relies on high gain joint tracking
control and the ground is not perfectly flat. After applying varying
forgetting factor which decreases from 1 to 0.55 during double
support phases the landing impact problem is solved effectively.
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Fig. 14. Learning results on the real robot platform with kl,sa = 0.3 and
kl,la = 0.2 and varying forgetting factor of one walking trial.

As a result of the small learning gain, the convergence rate is
decreased compared with the simulation. The learning result with
the varying forgetting factor of one forward walking trial is shown
in Fig. 14. In real experiment the average ZMP error does not
necessarily monotonically decrease in a single walking trial due to
non-repetitive disturbances. In order to verify the overall convergence
performance, a set of same forward walking trials are repeated. In
each walking trial 20 learning iterations are performed. Figure 15
displays the mean and standard variance of the average ZMP error
with respect to the learning iteration number of 10 forward walking
trials. The decreasing mean value proves the effectiveness of the
learning algorithm. In average the ZMP tracking error improves from
3.60cm to 1.49cm in lateral direction and from 3.31cm to 1.42cm in
sagittal direction. The average standard variance is 0.44cm in lateral
direction and 0.34cm in sagittal direction.
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Fig. 15. Evolution of mean and standard variance of the average ZMP error
with respect to iteration number of 10 forward walking trials.

VI. CONCLUSIONS

In this paper an online learning control framework for improving
the robustness of biped walking is proposed. During walking repeti-
tions CZMP trajectories can be learned online from measured ZMP
error by applying iterative learning control theory, which adjusts the
ZMP reference and reduces the unmodeled effects of pattern genera-
tion. Improved walking robustness is verified by lower average ZMP
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error and robot’s better resistance to external disturbances. The online
learning process can be further augmented with a CZMP database
of typical walking parameters. We predict the CZMP trajectories of
new walking motions by k-NN regression and apply the prediction
as a precompensation. Benefits such as higher convergence speed
and reduced ZMP error during non-repetitive transition phases are
achieved. Compared with the classical dynamical filter approach, our
method is model free, computationally light and can adapt online
to unknown repetitive disturbances. As the next step we want to
study about different generalization methods for CZMP prediction,
e.g. extrapolation ability and application for non-repetitive walking
motions.

APPENDIX

Pattern Generation by Preview Controller: The preview controller
formulates the pattern generation as a ZMP servo problem. An
optimal preview servo controller is designed based on following
performance index:

J =
∞

∑
i=k

{
Qe(p(i)− pre f (i))2 +R(u(k)−u(k−1))2

}
(16)

in which the weights Qe and R are positive. p(i)− pre f (i) is the
ZMP tracking error and u(k)− u(k− 1) is the incremental input. If
Nl samples of future information are available, the optimal controller
is given by

u(k) =−Gi

k

∑
i=0

(p(k)− pre f (k))−Gxx(k)−
Nl

∑
j=1

Gp( j)pre f (k+ j),

(17)
where Gi, Gx and Gp( j) are the gains calculated from the weights
Qe, R and the system parameters of the discretized linear inverted
pendulum model. In this work the preview controller is applied
unmodified as in [5].

Online Balance Controller: The ZMP-COM online balancer pro-
posed by Choi et al. [10] has the following feedback control law:

u= ċd − kpep + kcec (18)

where u denotes the control input for the COM velocity, ċd is the
reference COM velocity vector, ep and ec are ZMP and CoM error
vector respectively. The error gains kp and kc should obey the stability
condition given in [10]. In our implementation the gains are set to
kp = 2 and kc = 8.
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