
Human Movements Prediction
using on-line Gaussian Processes

eingereichte
BACHELORARBEIT

von

Ziyu Wang

geb. am 21.06.1992
wohnhaft in:

Frankfurter Ring, 2b
80807 München

Tel.: 0160 91484492

Lehrstuhl für
STEUERUNGS- und REGELUNGSTECHNIK

Technische Universität München

Univ.-Prof. Dr.-Ing./Univ. Tokio Martin Buss

Betreuer: M. Sc. Matteo Saveriano, Prof. Dongheui Lee
Beginn: 29.02.2016
Zwischenbericht: 22.03.2016
Abgabe: 28.06.2016

TECHNISCHE UNIVERSITÄT MÜNCHEN

LEHRSTUHL FÜR STEUERUNGS- UND REGELUNGSTECHNIK
UNIV.-PROF. DONGHEUI LEE

01 February 2016

B A C H E L O R T H E S I S
for

Ziyu Wang
Student ID 03637901, Degree EI

Human Movements Prediction using On-line Gaussian Processes

Problem description:

A promising strategy for the rehabilitation of patients with impaired body balance consists in providing
a “light touch” balance support, for example by lightly resting a hand on the back of a patient without
taking patient’s weight. If a robotic caregiver is asked to provide this light touch, Cartesian impedance
control strategies [1] can be adopted to guarantee a soft interaction. Cartesian control approaches
require high frequency (≈ 1ms) control loops and the current human tracking systems are not able to
provide references at the required frequency.

In this Bachelor Thesis work the student has to implement an algorithm, based on on-line Gaussian
process regression [2, 3], to predict human’s body part movements in real time given their current
state. These predictions will be used as references for a Cartesian impedance controller providing
robotic light touch.

Tasks:

• Literature overview on on-line Gaussian processes
• Movements prediction algorithm implementation in C++
• Comparison with state-of-the-art approaches (on-line support vector machines)
• Experimental evaluation with a Kuka LWR IV+ robot (optional)

Bibliography:

[1] C. Ott. Cartesian Impedance Control of Redundant and Flexible-Joint Robots, in Springer Tracts
in Advanced Robotics (STAR), 2008.

[2] C. E. Rasmussen and C. K. I. Williams. Gaussian processes for machine learning MIT Press,
2006.

[3] L. Csató. Gaussian Processes - Iterative Sparse Approximations Aston University - PhD disserta-
tion, 2002.

Supervisor: M. Sc. Matteo Saveriano
Start: 29.02.2016
Intermediate Report: 22.03.2016
Delivery: 28.06.2016

(D. Lee)
Univ.-Professor

Abstract

With drastic growth of the computing power in the recent time, robots can be
utilized in many diverse ways, e.g. as a caregiver for patient with impaired bal-
ance control. Due to the high frequency required by the Impedance Controller,
which cannot be provided by the current tracking system, robot might behave in
an unstable manner while interacting with patients. Therefore, we want to develop
and implement a model that can predict human movements given the current state.
Properties such as high accuracy and flexibility make us decide to use Gaussian Pro-
cess Regression(GPR) model for this purpose. Different approaches are suggested
in this thesis to lower the computing time of GP drastically while still remaining
the flexibility and accuracy. First, we investigate the calculation of kernel inversion
within the GP. Two kernel inversion update techniques are proposed and bench-
marked against each other. Choosing the approach with better results, we integrate
it into a better real-time-orientated model, Local Gaussian Process and benchmark
it against standard GP as well as another state-of-the-art model for real-time robot
control, Support Vector Regression(SVR).

2

CONTENTS 3

Contents

1 Introduction 5
1.1 Background . 5
1.2 Motivation and Challenges . 6
1.3 Related Work . 7
1.4 Contribution . 7
1.5 Outline . 8

2 Approaches for on-line Robot Control 9
2.1 Gaussian Process . 9

2.1.1 Gaussian Process Regression 9
2.1.2 On-line Inversion . 10
2.1.3 Cholesky Decomposition . 11

2.2 Local Gaussian Process . 12
2.2.1 Locally Weighted Projection Regression 12
2.2.2 Local Gaussian Process . 13

2.3 Support Vector Regression . 16
2.4 Implementations in C++ . 19

2.4.1 GP and LGP Implementation 19
2.4.2 SVR Implementation . 22

3 Experimental Results 23
3.1 Benchmark between different Inversion Techniques 23

3.1.1 Benchmark of Training Data Manipulation Functions 23
3.1.2 Comparison between Regression Functions 25

3.2 Benchmark between different Models 27
3.2.1 Computing Time Comparison for Data Addition 27
3.2.2 Accuracy Comparison on Trajectory Data 28
3.2.3 Discussion . 34

4 Conclusion 35

List of Figures 39

Bibliography 41

4 CONTENTS

5

Chapter 1

Introduction

With the drastic increase of computer performance and academic research and de-
velopment in the field of machine learning in the recent time, the potential area of
application for robots is getting wider and more diverse than ever. Not only for
industrial purpose as a machine with low failure rate and high efficiency, a robot
can also facilitate as a caregiver in normal life.

1.1 Background

Figure 1.1: Surfers use light touch for stability

Source: J. Jeka. Light Touch Contact: Not Just for Surfers. The Neuromorphic
Engineer. A Publication of INE- WEB.ORG, 2006.

6 CHAPTER 1. INTRODUCTION

A strategy ”light touch” for rehabilitation of patients with impaired balance has been
developed, which intends to facilitate a robot caregiver as an assistant to support
the patient’s balance control by resting a hand on the patient without taking the
patient’s weight. It aims to give the patient feedback signals that allow him /her to
gain enhanced body balance control. The force provided by the caregiver is small
comparing to the force that would be necessary for the actual lifting of patient’s
body, thus, the name ”light touch”. The strategy has been proven to be efficient in
various studies, e.g. [10]. A Cartesian impedance controller is regarded to be the
approach in order to provide the soft and comfortable interaction needed for the
strategy.

1.2 Motivation and Challenges

The Cartesian Impedance Controller operates at a very high frequency, around 1 ms.
This is essential for the soft and fluid interaction between the robot and the patient.
However, the current human tracking systems are not yet able to provide the re-
quired frequency, which might lead to unstable behaviour.

The model Gaussian Process (GP) has a lot of characteristics such as the flexibil-
ity for being non-parametric and high accuracy, which are attractive qualities as a
model for our problem. Thus, the thesis aims to develop and implement an efficient
algorithm that predicts humans body movement in real time given their current
state using on-line Gaussian Process regression, to ”fill the gaps”.

An intuitive introduction of GP can be found in the pioneer work in the field by
Rasmussen:

”A Gaussian Process is a generalization of the Gaussian probability distribution.
Whereas a probability distribution describes random variables which are scalars or
vectors (for multivariate distributions), a stochastic process governs the properties
of functions. Leaving mathematical sophistication aside, one can loosely think of a
function as a very long vector, each entry in the vector specifying the function value
f(x) at a particular input x. It turns out, that although this idea is a little naive it
is surprisingly close to what we need. Indeed, the question of how we deal compu-
tationally with these infinite dimensional objects has the most pleasant resolution
imaginable: if you ask only for the properties of the function at a finite number of
points, then inference in the Gaussian Process will give you the same answer if you
ignore the infinitely many other points, as if you would have taken them all into
account! And these answers are consistent with answers to any other finite queries
you may have. One of the main attractions of the Gaussian Process framework
is precisely that it unites a sophisticated and consistent view with computational
tractability.” [16]

1.3. RELATED WORK 7

1.3 Related Work

Non-parametric models, such as Gaussian Process do not make or make fewer as-
sumptions on the size or the distribution of the data than parametric ones. While
having more accurate and energy-efficient robot control, parametric models do not
cope well with unmodeled non-linearities, such as complex friction or actuator dy-
namics. However, these factors have few impact on non-parametric models. Being
less restrictive on the data also offers more flexibility to the model and for these
reasons, non-parametric models are often selected as the standard real-time robot
control approach.
Other such models are e.g. Locally Weighted Projection Regression(LWPR) and
Support Vector Regression(SVR)[19][14].

LWPR is a model suggested by S. Vijayakumar, S. Schaal, and A. D’Souza in 2005.
In its core, it is a non-parametric regression model with locally linear clusters. Due
to this linear nature, the model has a fantastic scaling of O(n) in data size and
has been shown to perform well in domains of high-dimensions[25][26]. The fast
learning speed combined with other properties such as low requirement for training
data memorization, weighting kernels adjustment based on local information and
the ability do to deal with potentially redundant information make this model the
standard robot control method when it comes to real-time learning[17]. An intro-
ductory explanation of its basic principles are explained in section 2.2.1.

Support Vector Machine(SVM) on the other hand, can be traced back to the Gen-
eralized Portrait Algorithm, suggested by Vapnik and Lerner in the 1960s which is
essentially the linear version of SVM. Since then, SVM has been researched actively
for the last several decades. In recent time, SVM has established itself as a stan-
dard machine learning method. Although commonly, it is applied on classification
problems, the basic idea remains the same for regression: to minimize the error by
individualizing a hyperplane that maximizes the margin ε, while trying to stay low-
cost with the help of skilful selection of the parameters. This is also more elaborated
on in section 2.3.

1.4 Contribution

While being a highly performant model for machine learning, one of the major draw-
backs of GP lies in its poor scaling regarding the size of the dataset and the compu-
tation time. Therefore, while keeping the accuracy and flexibility intact, this thesis
aims to lower the computation time by optimizing the model, so that its computa-
tion time can also stand toe-to-toe with other state-of-the-arts. More specifically, the
In-/Decremental Cholesky and In-/Decremental Inversion techniques for the kernel
inversion of GP are investigated, implemented and compared to each other in terms
of efficiency and accuracy. The suitable approach will be then integrated into the

8 CHAPTER 1. INTRODUCTION

Local Gaussian Process implementation which should further lower the computing
time. The approach will be benchmarked against standard GP and another state of
the art approach, Support Vector Regression. The optimized model is planned to
be contributed as reference for the Cartesian impedance controller later on.

1.5 Outline

Main part of the thesis is divided into two chapters:

Chapter two introduces various regression models. This chapter contains the all
the theories behind the models and their on-line update techniques, as well as their
implementations in C++:

First section of this chapter explains the theoretical principles of our GP optimiza-
tion approaches, namely, the Incremental Inversion using Block form and the Decre-
mental Inversion using Sherman-Morrison, Incremental Cholesky. In the second
section, the theory behind LGP approach is introduced. The third section describes
the C++ implementations of the previous sections.

Chapter three can be viewed in three sections:

Comparison results between the implementations of the inversion techniques are
presented in the first section.

The different regression models are compared to each other in terms of time and
accuracy with 1-D data as input in the second section.

In section three, we test these models with a set of positional data sampled from
KUKA robot as input. First the setup and the proceedings are explained, a conclu-
sion is drawn at the end of the chapter.

The last chapter summarizes the work. The limitations of the implemented model
are pointed out and possibilities for future work are suggested.

9

Chapter 2

Approaches for on-line Robot
Control

2.1 Gaussian Process

2.1.1 Gaussian Process Regression

A GP can be used as means for regression as following:
Assuming y being the observation made at the coordinate x and the process is
observed n times. Also assuming the prior mean is set to zero-constant as well as
the covariance matrix is K

(
Θ,X,X

′)
, Θ being the vector of hyperparameters of the

chosen kernel, then we can denote the GP as following:

f(X) ∼ GP (0,K (Θ,X,X′)) (2.1)

And the log marginal likelihood is:

log p(f|X,Θ) = −1

2
fTK−1f− 1

2
log det(K)− n

2
log(2π) (2.2)

For simplicity and readability, a few terms are shortened as following: K = K(Θ,X,X),
K∗ = K(X,X∗) and k∗ = k(x∗).
Maximizing the marginal likelihood function with respect to Θ will deliver us the
full specification of the GP. The first two parts on the right hand side of the equa-
tion can each be thought as the penalty terms for the fitting accuracy and for the
model’s complexity, respectively. With Θ given, making predictions about testing
values x∗ should work as following, given training dataset X, the predictive distri-
bution p(y∗|x∗, f(x),X) = N (y∗|m,var), with m being the posterior mean estimate
and var being the posterior variance estimate, the predictive results m and var for
a single test point x∗ can be calculated as following:

m(x∗) = kT
∗K

−1y (2.3)

10 CHAPTER 2. APPROACHES FOR ON-LINE ROBOT CONTROL

var(x∗) = k(x∗,x∗)− kT
∗K

−1k∗ (2.4)

For GP Regression, the most time consuming operation is the inversion of the kernel
matrix K−1, which can take up to O(n3) flops with Gauss-Jordan. For the time-
crucial operations in strategy ”light touch”, calculating the matrix from scratch
every time a new training pair is added/removed, i.e. adding/removing a new row
and column in the kernel matrix K, this approach will not suffice. In the following
sections, two approaches are introduced, which should lower the computing time
significantly.

2.1.2 On-line Inversion

The main idea behind on-line matrix-inversion is to make use of the old matrix
(Kt+1 = f(Kt)) instead of disposing it entirely and calculating the new matrix from
the scratch.

Incremental Inversion An efficient way of calculating the new matrix Kt+1 is to
use the block form introduced in [6]. If the new entries added to the kernel matrix
are b and c, the incremented kernel matrix would have the following structure:

Kt+1 =

[
Kt b
bT c

]
(2.5)

The inverse K−1
t+1 can be calculated in the following fashion

K−1
t+1 =

[
K−1

t + 1
k
K−1

t bbTK−1
t − 1

k
K−1

t b
− 1

k
bTK−1

t
1
k

]
(2.6)

where k = c−bTK−1
t b. Since the previous inverse matrix K−1

t is given, the cost for
the new inverse consists of matrix-vector multiplications, each of which costs up to
O(2n2) flops.

Decremental Inversion In the decremental case, Sherman-Morrison is the for-
mula that allows us the make use of the old inverse. Let Kt and Kt+1 be matrices
before and after the removal of the last entry:

Kt =

[
Kt+1 b
bT c

]
(2.7)

and K−1
t with following structure:

K−1
t =

[
X [n× 1]

[1× n] [1× 1]

]
using Sherman-Morrison formula combined with block form [7] to calculate the new
inverse K−1

t+1 can be obtained by:

2.1. GAUSSIAN PROCESS 11

K−1
t+1 = X− Xb(Xb)T

c+ bTXb
(2.8)

Like in the incremental case, the operations consuming the most time are still matrix-
vector multiplications with O(2n2) flops of cost.

However, the entry that we intend to remove is usually not the last one. Thus, in
order to use this technique, we can simply swap the desired entries that should be
removed, with the last ones. This swapping is illustrated as following:

1 α 2 3 β
α α α α α
4 α 5 6 β
7 α 8 9 β
β α β β β

 →


1 β 2 3 α
β β β β α
4 β 5 6 α
7 β 8 9 α
α α α α α

 (2.9)

2.1.3 Cholesky Decomposition

The state-of-the-art technique, Cholesky Decomposition is an efficient way of solving
the problem b = Ax given A and b. Instead of calcualting A−1, the idea is to
compute a lower triangular matrix L s. t.

A = LLT (2.10)

Equation b = Ax can then be solved, by solving Ly = b using forward substitution
and LTx = y using back substitution.

Incremental Cholesky Similar to the case with incremental inversion in sub-
section 2.1.2, there is also a way to make use of the old L matrix of the Cholesky
decomposition, instead of calculating the entire decomposition from the scratch.
This technique, introduced in [15], is built-in in the library we use.
Let K be our kernel matrix and L the lower-triangular matrix of its Cholesky De-
composition. knew and knew are the new entries added in the new kernel matrix
Knew:

Knew =

[
K knew

kT
new knew

]
, Lnew =

[
L 0

lTnew lnew

]
(2.11)

then lnew and lnew can be computed by solving:

Llnew = knew, lnew =
√
knew − ‖lnew‖2 (2.12)

The term Llnew = knew can be effectively solved by using back substitution, which
has quadratic cost.

12 CHAPTER 2. APPROACHES FOR ON-LINE ROBOT CONTROL

Decremental Cholesky Decremental Cholesky, however, is only viable for the
removal of the last entry of the kernel matrix K. In that case, simply removing the
last row of L will suffice. If we wish to remove e.g. the first row of K, the resulting
L cannot be done as on-line decremental inversion case by simply swapping the
entry positions, since the rows, specially the first row, influences the rest of the
entries. Although one approach is introduced in [20], it is stated that the method is
not to be recommended from the author’s experience. Therefore, when calculating
the inversion of the kernel matrix after removal of a training pair, the Cholesky
decomposition is computed again from the scratch.

2.2 Local Gaussian Process

While reducing the complexity from O(n3) to O(n2), the scaling is still not quite
as satisfying when facing a very large dataset. With Local Gaussian Process(LGP),
we aim to limit the complexity to a certain dimension, regardless of the size of the
dataset. Combining this with the on-line inversion techniques, the model should
achieve a performance that is able to stand toe-to-toe with state-of-the-art, such as
Support Vector Regression, which we will explain in the next section.

2.2.1 Locally Weighted Projection Regression

Locally Weighted Projection Regression(LWPR)[25] is often applied on simple robot
control tasks. Due the linear nature of this model, it provides one of the best
computation-scaling, but often suffers from suboptimal accuracy. The model is
summarized as following:
As the name may suggest, LWPR predicts value by evaluating several local linear
model with individual weights and approximating the combination of the regression
results of these local models.
Let the weighted mean prediction be ŷ = E{ȳk|x} =

∑M
k=1 ȳkp(k|x) and ȳk be the

regression result at k-th local linear model. M describes the relevant local models
for the regression. Probability of input point x being in model k is according to
Bayes’ rule as following:

p(k|x) =
p(k,x)

p(x)
=

p(k,x)∑M
k=1 p(k,x)

=
wk∑M
k=1wk

(2.13)

The regression of the entire model can then be calculated as

ŷ(x) =

∑M
k=1wkȳk(x)∑M

k=1wk

(2.14)

A similarity measure function should be introduced for the weight wk, which de-
scribes the relevance of the local model k to the input point x.

2.2. LOCAL GAUSSIAN PROCESS 13

wk = f(x, ck,Θk) (2.15)

with ck and Θk being the centroid and parameter-set of local model k, respectively.
The parameter-set Θk should be tuned in the way that error between prediction and
observation minimal.

While having fantastic computation scaling of O(n) due to the linear nature of the
local models, there are also the following drawbacks to be considered:

The manual parameter-tuning for wk as well as for ȳk within each linear model is
difficult since they are highly data-dependent. Since the local models are linear, it
will also require a fairly large amount of them to achieve results with reasonable
accuracy on non-linear dataset.

2.2.2 Local Gaussian Process

Since LWPR and GPR seem to complement each other, we consider the model
LGP[13], which is an approach that combines elements from both, while retaining a
balanced trade-off between accuracy, complexity and flexibility. The regression pro-
cess can be divided into three parts: data-clustering, model-learning and prediction.

For data-clustering, we simply divide our training data into K subsets. Note that
if K = 1, this model is no different than the standard GPR. Each subset can be
limited to a certain certain size Nmax. In our case, we simply divide the dataset in
a chronological order, but principally, the clustering function can be any arbitrary
function. The parameters needed are for the LGP are therefore: amount of subsets
K, maximum size of the subset Nmax and the clustering function. Since the poor
scaling of (O(n3), n is the size of the entire trainingset), which is the major
drawback of GP is, like previously mentioned, due to the inversion of the kernel
matrix, splitting the data into smaller subsets leads to inversion of a much smaller
kernel matrix and thus, reducing the computing time drastically, both for adding
data and calculating regression. By limiting the subsets to a fixed size, the total
complexity is O(MN3), where M is number of relevant models for the prediction
and N is the size of the subsets. In most cases, MN3 � n3.
The model-learning, i.e. adding data to the model and adjust the kernel inverse, can
be done with methods introduced in previous sections 2.1.2 and 2.1.3, which reduce
the complexity dimension of each local model from O(n3) to O(n2). A commonly
used function for weight calculation is the Radial Basis Function:

wk(x) = exp

(
−‖x− ck‖2

2l2

)
(2.16)

l defines the characteristic lengthscale and ck the centroid of k-th local model.

14 CHAPTER 2. APPROACHES FOR ON-LINE ROBOT CONTROL

Assuming points belonging to the same region are more informative for the pre-
diction, this function is our function of choice to determine the relevance wk of a
certain cluster is to a query point. When adding a new point x, the cluster i with
the highest relevance wi will be chosen. If the cluster size exceeds a certain limit, an
old point from the dataset will be removed in order to keep the size of the subset.
A weight threshold wth is introduced, so that if none of the cluster has a sufficiently
high weight, a new cluster will be created with with x as its centroid. These two
steps are can be summarized in Algorithm 1.

For prediction, we can apply the formulas (2.3) from GPR for local regression:

ȳk(x∗) = kT
∗K

−1y (2.17)

and eq.(2.14) from LWPR for final regression:

ŷ(x) =

∑M
k=1wkȳk(x)∑M

k=1wk

(2.18)

where M is number of relevant models for the prediction. This is summarized in
Algorithm 2.

2.2. LOCAL GAUSSIAN PROCESS 15

Algorithm 1 Partitioning the data and updating the kernel

Require: New observation data {xnew, ynew}
for k = 1 to M = amount of all clusters do

Calculate the weights of these clusters
wk = f(xnew, ck,Θk)

end for
Choose the cluster with the highest weight
wmax = max(w1, ..., wM)
if wmax > wth then

Add the data pair to the cluster with the highest weight
Xnew = [X,xnew], ynew = [y, ynew]
Update the centroid of the cluster
cnew = mean(Xnew)
Update kernel inverse with techniques introduced in section 2.1.2 and section
2.1.3

else
Build new cluster with xnew as centroid
cM+1 = xnew, XM+1 = [xnew], yM+1 = [ynew]

end if

Algorithm 2 Prediction using LGP

Require: test point x∗, amount of clusters M
for k = 1 to M do

Calculate the weights of the clusters
wk = f(x∗, ck,Θk)
Calculate the mean ȳk using parameters from the local Gaussian Process with
eq.(2.3) and eq.(2.17)
ȳk = mk(x∗) = kT

∗K
−1y

end for
Calculate the weighted mean prediction ŷ from the local clusters with eq.(2.18)

ŷ(x∗) =
∑M

k=1 wkȳk(x∗)∑M
k=1 wk

16 CHAPTER 2. APPROACHES FOR ON-LINE ROBOT CONTROL

2.3 Support Vector Regression

Support Vector Machine(SVM) is one of the state-of-the-arts when it comes real-
time robot control. Being mainly used for classification purposes, it is also applicable
on regression problems.
Similar as in the classification approach, the regression is done by defining a loss
function that ignores errors within a certain margin. This type of function is also
called ε-insensitive loss function. The points within the ε-band are called Support
Vectors.

L(y, f(x, w)) =

{
0, if |y − f(x, w)| < ε

|y − f(x, w)| − ε, otherwise
(2.19)

where f(x, w) is a linear model function

f(x, w) =
m∑
j=1

wjgj(x) + b (2.20)

with gj(x) as a set of transformation functions that are aimed to map input x to
a m-dimensional feature space. b is the bias term, which can be ignored when the
data is preprocessed to be zero-mean.

The function for empirical risk is then:

R =
1

N

N∑
i=1

L(yi, f(xi, w)) (2.21)

The linear regression and complexity reduction is done by minimizing the weight
term. The Quadratic Minimization Problem can be formulated as:

min
1

2
‖w‖2

In order to make the model also feasible for non-linear data, so-called (non-negative)
slack variables ξi and ξ∗i have to be introduced as error tolerances outside the ε-band
in the positive and negative, respectively. The updated minimization problem func-
tional can be formulated as a Lagrangian with constraints as following:

minimize
1

2
‖w‖2 + C

N∑
i=1

(ξi + ξ∗i) s.t.


yi − f(x, w) ≤ ε+ ξ∗i ,

f(x, w)− yi ≤ ε+ ξi,

ξi, ξ
∗
i ≥ 0

(2.22)

2.3. SUPPORT VECTOR REGRESSION 17

The solution to it can be formulated as

f(x) =

nSV∑
i=1

(ai − a∗i)K(xi,x) s.t. 0 ≤ a∗i ≤ C and 0 ≤ ai ≤ C (2.23)

nSV is the number of support vectors and K(xi, x) is the kernel for the SVM, which
transforms the data into higher dimensional space:

K(xi,x) =
m∑
i=1

gj(xi)gj(x)

One of the disadvantages of SVR is that the right parameters ε, C and kernel pa-
rameters are crucial to achieve competitive results while remaining low-cost. Unlike
the hyperparameters in GP, these need to be tuned manually.

All of these are illustrated in Figure 2.1 and Figure 2.2.

18 CHAPTER 2. APPROACHES FOR ON-LINE ROBOT CONTROL

Figure 2.1: Illustration of the basic principles of SVR

Source: http://www.saedsayad.com/images/SVR_1.png

The regression and the complexity reduction is done by minimizing the term 1
2
‖w2‖.

Figure 2.2: Illustration of SVR with slack variables

Source: http://www.saedsayad.com/images/SVR_2.png

Deviations outside the ε-band in the positive and negative can be denoted as ξ
and ξ∗, which are so-called slack variables. The updated minimization problem
functional for non-linear regresssion then becomes eq.(2.22)

http://www.saedsayad.com/images/SVR_1.png
http://www.saedsayad.com/images/SVR_2.png

2.4. IMPLEMENTATIONS IN C++ 19

2.4 Implementations in C++

2.4.1 GP and LGP Implementation

The C++ library libgp[1] by Manuel Blum is used in the implementations of the
thesis. It provides the basic functionalities for the purpose of the our subject, such
as the basic structure of GP, two hyperparameter optimization routines, a set of
covariance functions and a built-in function for on-line usage.

libgp Introduction libgp[1] is a light-weight library for basic GP regression
usage. Despite not providing the range of features that e.g. MatLab-toolbox ”gpml”
by Rasmussen1 does, it still offers the functionalities that this thesis needs, while also
possessing some on-line properties. Its dependencies are cmake2 , an open-source
and cross-platform build system and Eigen33, a state-of-the-art template library for
linear algebra, which not only supports dynamic-sized matrix operations, but also
speeds them up especially for large matrices. In this library, the prior mean is fixed
to zero-constant.
The library has the following structure:
A class with prefix ”cov ” in the name indicates that it is an implementation of one
of the various covariance functions (with ”cov factory” being the generator of the
functions and ”cov” being the base class).
Class sampleset stores the training dataset. It can add, remove new pairs to the
set and read data at a specific index.
Class gp is the class that we utilize in main to perform GP regression.
Classes gp utils and input dim filter provide various utilities for the gp-class.
Classes cg and rprop are implementations of two algorithms for the hyperparamter-
optimzation, conjugated gradient and resilient back-propagation[2]. In our thesis,
the hyperparameters are optimized using the latter.

Built-in On-line Function libgp uses the efficient Cholesky decomposition in-
stead of regular Gauss-Jordan matrix-inversion to solve the kernel inverse. The
on-line incremental update of this Cholesky decomposition is implemented in the
function add pattern(): while adding a new pair of training data into sampleset,
it also performs incremental Cholesky to update the kernel matrix inverse.

1http://www.gaussianprocess.org/gpml/code/matlab/doc/index.html
2https://cmake.org/
3http://eigen.tuxfamily.org/

http://www.gaussianprocess.org/gpml/code/matlab/doc/index.html
https://cmake.org/
http://eigen.tuxfamily.org/

20 CHAPTER 2. APPROACHES FOR ON-LINE ROBOT CONTROL

My Modifications

Function for Training Data Removal Matching the functions add pattern()

in gp and add() in sampleset for adding new training data, the functions
remove pattern() and remove() delete an entry with given index from the training
data while also updating the kernel matrix.

Functions using In-/Decremental Inversion Functions with prefix ”my ” (to-
gether with the attribute Kinv and the function computeKinv()) are a set of im-
plementations that aims to use on-line inversion techniques to update the kernel
matrix.
Most of the ”my ”-functions are the system-equivalents to their counterparts, func-
tions without ”my ” prefix. (the attribute Kinv of gp-class has similar function as
L in the built-in Cholesky calculation routine). computeKinv() uses Eigen(which
uses LU-decomposition) to compute the inverse of the kernel matrix. However, some
functions are created from the scratch to perform the algorithms in-/decremental
inversion:
my IncrInv() returns the incremental inversion matrix K−1

t+1, given the input K−1
t ,b, c

from eq.(2.5) and size of the kernel entry n.
Similarily, my DecrInv() returns the decremented kernel matrix inverse K−1

t+1, given
the input K−1

t ,b, c from eq.(2.7) and size of the kernel entry n.
my swap() is a function that swaps the entry to be removed with the last one, as
illustrated in eq.(2.9).

Functions for LGP-Framework A special class ”lgp” is created for the imple-
mentation of the Local Gaussian Process. This class functions as a framework that
creates multiple GPs from a file containing training dataset. User can define param-
eters such as the amount of subsets for initial partitioning, the maximum size of a
subset and the weight threshold. The functions add data() and regression() from
class ”lgp” as well as the functions updateCenter(), getCenter() and getWeight()

from class gp are the implementations of the theories introduced in section 2.2.2.

2.4. IMPLEMENTATIONS IN C++ 21

Functions for Movement Prediction based on Velocity Given direction of
the velocity, coordinates of a starting point in [m] and the time interval in [ms], the
function predict 1d() of class gp uses GP regression to predict the position in the
given direction and returns this value.
Unlike the functions in the previous paragraphs, this function is created specifically
for the sake of velocity calculation and point prediction, i.e. when using this func-
tion, it is assumed that the given input-output training pairs represent coordinates
of the point and their current velocity in an arbitrary direction.
intpl 1d() is a standalone-function in main-file. It takes one coordinate from the
start- and end-point of the same direction, the time intervall T and sampling time
step t and interpolate between these two coordinates. The output is a vector listing
n = T

t
+ 2 coordinates between the two input coordinates, with first entry being the

starting and last one being the end coordinate of the input points. Its function is
illustrated in the Figure 2.3.

Figure 2.3: intpl 1d()-function illustration.

−0.5239
−0.5239

−0.5238
−0.5238

−0.5237
−0.5237

−0.5236
−0.5236

−0.2974

−0.2974

−0.2974

−0.2974

−0.2973

0.0501

0.0501

0.0502

0.0502

0.0502

0.0502

0.0502

0.0503

x
1
 in m

""intpl_1d()"−Function Illustration

x
2
 in m

x
3
 i
n

 m

random input point P
1

random input point P
2

"in−between" points

For this figure, the intpl 1d()-function is called three times for positions in every
direction. Inputs are the two blue stars, which are randomly created points. The red
circles illustrate the output of the function, the ”in-between”-points. Parameters for
the function are T = 50 ms and t = 5 ms.

22 CHAPTER 2. APPROACHES FOR ON-LINE ROBOT CONTROL

2.4.2 SVR Implementation

onlineSVR4 is the implementation of choice to benchmark our code against, because
it is, similar to libgp, light-weighted, yet still provides the necessary regression
functionality we need. On top of efficiently implementing the SVR as explained in
section 2.3, it also researches the technique to add/remove new samples without
having to train the SVM entirely from the scratch, which is principally similar to
what we did with GP in the section 2.1.2 and section 2.1.3. Comparing to more
popular and extensive C++ SVM-libraries, such as libsvm5, onlinSVR is able to
achieve lower computing time when executing on-line tasks.[14]. This is shown in
Figure 2.4.

Figure 2.4: OnlineSVR and LibSVM compared in an online training.[14]

4http://onlinesvr.altervista.org/
5https://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://onlinesvr.altervista.org/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/

23

Chapter 3

Experimental Results

In this chapter, the computing time and accuracy between the two kernel inversion
techniques are benchmarked against each other. We then integrate the less time-
consuming approach into the LGP-framework and test it with a set of 3-D robot
positional data and benchmark the standard online GP, LGP and state-of-the-art,
SVR using implementation introduced in section 2.4.2 to each other.

RBF-kernel from eq.(2.16) is selected as the covariance function for GP, LGP and
the kernel for SVR.

k(x,x∗) = exp

(
−‖x− x∗‖2

2l2

)
The prior mean of GP and LGP is fixed to be zero-constant.

All of following tests in this chapter are done on a PC running 64bit-Ubuntu
12.04LTS (Precise Pangolin) and equipped with an Intel Core i5-2500 CPU
@3.30GHz×4.

3.1 Benchmark between different Inversion Tech-

niques

For visibility, the training input x in this chapter are 1-D, pseudo-random values
from 0 ≤ x ≤ 360 generated using drand48()*360 and a random seed function.
The output is a sine-function with additive Gaussian noise. Figure 3.1 shows the
distribution of the training datapoints.

3.1.1 Benchmark of Training Data Manipulation Functions

The computing time between functions add pattern(), which uses incremental
Cholesky and my add pattern(), which uses block form in eq.(2.6) to update the

24 CHAPTER 3. EXPERIMENTAL RESULTS

kernel matrix inversion, is logged. Several scenarios are tested: having a sample set
of n = 100 and n = 1000 training pairs, the time for addition/removal of an extra
pair is logged. This would measure the time that both inversion techniques need for
a matrix inversion of dimension 100× 100 and 1000× 1000, respectively.

Figure 3.1: Distribution of the Sample Data

0 50 100 150 200 250 300 350 400
−1.5

−1

−0.5

0

0.5

1

1.5
Datapoints in the Trainingset

input x in degree

o
u

tp
u

t
y

n = 1000 datapoints are sampled from the basic y = sin(x) + σ function, with σ
being a 0.03 factorized additive Gaussian noise.

Training Data Addition Functions benchmarked With a pre-existing kernel
matrix, the computing time for adding one training pair are to be seen at Table 3.1.

Table 3.1: Computing time for one training pair addition

add pattern() my add pattern()

100→ 101 0.055ms 0.143ms
1000→ 1001 6.873ms 38.399ms

Time needed for adding n = 100 and n = 1000 pairs to the training set is to be
seein at Table 3.2

Table 3.2: Total time needed for adding n = 100 and n = 1000 training pairs

with add pattern() with my add pattern()

n = 100 0.089ms 4.721ms
n = 1000 146.444ms 7204.78ms

3.1. BENCHMARK BETWEEN DIFFERENT INVERSION TECHNIQUES 25

The significant longer computing time needed for my add pattern() causes us to
wonder, so we dig further into the function and only time the essential block respon-
sible for the mathematics introduced in eq.(2.6) and in paragraph 2.1.3, to leave out
the minor incompatibility possiblity that our code might have with libgp structure.
The result is given in Table 3.3.

Table 3.3: Computing time for calculating inversion

Incremental Cholesky Incremental Inversion
100→ 101 0.076ms 0.13ms

1000→ 1001 0.09ms 2.64ms

Training Data Removal Functions benchmarked With a pre-existing 1000×
1000 kernel matrix, the computing time for removing one training pair are to be seen
at Table 3.4.

Table 3.4: Computing time for one training pair removal

remove pattern() my remove pattern()

remove last pair 0.059ms 24.403ms
remove first pair 108.757ms 44.292ms

remove random pair (at index=250) 112.414ms 38.899ms

The decremental inversion function takes less time in every category except when the
training pair to be removed is the last pair. This is due to the fact, like explained in
paragraph 2.1.3, that in this case, the new Cholesky matrix can simply be generated
by removing the last row.

3.1.2 Comparison between Regression Functions

The functions to be benchmarked in this section are regression functions for pre-
diction purpose. So instead of focusing purely on computing time, the Root-Mean-
Square Error(RMSE) is also logged.
As mentioned in the ”problem statement” section 1.2, the controller needs to oper-
ate at around 1 ms. We observe the time needed for one prediction made for matrix
of different sizes, to determine what is a ”safe” size for the matrix so that the tiem
for prediction can stay under 1 ms. The regression time for f() and f () can be
seen in Figure 3.2 and the RMSE in Table 3.5.

26 CHAPTER 3. EXPERIMENTAL RESULTS

Figure 3.2: Regression Time Comparison f() and my f()

0 200 400 600 800 1000 1200 1400
0

0.5

1

1.5

2

2.5

Size of the Trainingset

T
im

e
 i
n

 [
m

s
]

Regression Time Comparison between f() and my_f()

f()
my_f()

For trainingset of size n = [100, 250, 500, 750, 1000, 1250], the time needed for pre-
dicting a new query point is logged in [ms].

Table 3.5: RMSE for f() and my f()

f() my f()

n = 100 1.53× 10−3 1.53× 10−3

n = 250 3.94× 10−4 3.94× 10−4

n = 500 2.32× 10−4 2.32× 10−4

n = 750 7.38× 10−5 7.38× 10−5

n = 1000 1.00× 10−4 1.00× 10−4

n = 1250 1.22× 10−4 1.22× 10−4

One would soon recognize that the RMSE for f() and my f(), which are tested and
logged separately from each other, are exactly the same, proving the correctness of
the results obtained by the implemented code. In terms of computing time, built-in
routine still beats our modification slightly, being able to handle n = 1250 training
pairs while still staying under 1 ms.

Conclusion With incremental Cholesky outperforming incremental inversion con-
siderably, we chose the Cholesky routine to build the LGP framework on and bench-
mark it with the standard GP as well as SVR [14].

3.2. BENCHMARK BETWEEN DIFFERENT MODELS 27

3.2 Benchmark between different Models

This section benchmarks the LGP approach introduced in section 2.2 to standard
on-line GP in section 2.1 and incremental SVR, section 2.3.
For LGP, the trainingset is partitioned into 3 subsets. RBF function eq.(2.16) is
selected as the weighting function for the local clusters. The weight threshold wth

is set to 1× 10−6.
For SVR, we also use the RBF function as the kernel. Parameters C, ε and the kernel
parameter l are tuned after experimenting so that the RMSE is held relatively low.

3.2.1 Computing Time Comparison for Data Addition

For computing time comparison, we still used the 1-D sine function from Figure 3.1,
and vary the number of sample points between 100, 1000, 2000, 3000. The computing
time in [ms] is logged and plotted, the result is shown in Figure 3.3. It shows that
especially when dealing with very large amount of data, LGP outperforms GP and
SVR noticeably.

Figure 3.3: Computing Time Comparison between GP, LGP and SVR

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

80

90

Computing Time Comparison

Size of the Trainingset

T
im

e
 i
n

 [
m

s
]

online GP
LGP
online SVR

For trainingset of size n = [100, 1000, 2000, 3000], the time needed for learning a new
sample point is logged.

28 CHAPTER 3. EXPERIMENTAL RESULTS

3.2.2 Accuracy Comparison on Trajectory Data

After choosing the routine we think is less time-consuming, we want to test the
accuracy of these models. In this chapter, one of the 3D-trajectory data collected
from a KUKA robot is used as training input.

The Setup and Proceedings

In the following test, the 3D positional data of an arbitrarily chosen trajectory T99
is used as input. It is a T = 20 s long motion sampled with ts = 5 ms , of which we
take the first 15 s from, due to noisy and off-target data in the last 5 s. The values
of the 3D-velocity in x1-, x2- and x3-direction are used as corresponding outputs for
three GPs/LGPs/SVMs. To gain these values, we simply do

v =
∆x

0.001ts

with ∆x being the difference between two consecutive points and ts the sampling
time. The physical unit of the positional data is given in [m] and sampling time is
given in [ms], the resulting velocity in [m/s].
After the three models are fully trained and parameters / hyperparameters optimized
1, we predict the velocities in all three coordinates at all points. We decide to
compare the results for two sampling time step variations: ts = 15 ms and ts =
100 ms.

Velocity and Trajectory Comparisons

For sampling time ts = 15 ms and n = 1000 datapoints Figure 3.4a, 3.4b and
3.6 show the velocity, 1-D and 3-D trajectory comparison between original data and
reconstructed data from different models. Table 3.6 shows the RMSE of each model
in x1-, x2- and x3-direction and is plotted in Figure 3.5.

1100 rprop iterations for each GP are performed. An iterations does not provide any significant
change to the hyperparameters anymore. For SVM, the parameters are tuned manually.

3.2. BENCHMARK BETWEEN DIFFERENT MODELS 29

Figure 3.4: 1-D Camparison for ts = 15 ms

(a) Velocity Comparison

0 100 200 300 400 500 600 700 800 900 1000
−1

0

1

2

3

4

5

6
x 10

−3 Velocity Comparison between Original data, GPR, LGP and SVR

v
1
 i
n

 [
m

/s
]

Original sample points

GPR

LGP with 3 subsets

SVR with RBF−kernel

0 100 200 300 400 500 600 700 800 900 1000
−4

−2

0

2

4
x 10

−3

v
2
 i
n

 [
m

/s
]

0 100 200 300 400 500 600 700 800 900 1000
−4

−2

0

2

4

x 10
−3

Sample points with time step t
s
 = 15ms

v
3
 i
n

 [
m

/s
]

The spikes in green dashed line(LGP) around sample point #350 is due to fact that
the centroids of all three local models are too far away to be informative about value
of the output. The off-target of the magenta line(SVR) values in v2 and v3 are due
to the fact that the weights for the SVM exceeds machine epsilon, therefore the
training data have to be scaled up to perform proper training and regression, which
leads to instability of in the bias term.

(b) Position Comparison

0 100 200 300 400 500 600 700 800 900 1000
−0.55

−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

Reconstructed Positions in 1−D

x
1
 i
n

 [
m

]

Original sample points

GPR

LGP with 3 subsets

SVR with RBF−kernel

0 100 200 300 400 500 600 700 800 900 1000
−0.7

−0.6

−0.5

−0.4

−0.3

x
2
 i
n

 [
m

]

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

Sample points with time step t
s
 = 15ms

x
3
 i
n

 [
m

]

The data are collected with a time step ts = 15 ms and the off-target values from
the velocity Comparison are only off by max. 4× 10−3[m/s], meaning the effect on
the reconstructed the points will be barely noticeable here.

30 CHAPTER 3. EXPERIMENTAL RESULTS

Figure 3.5: RMSE plot for ts = 15 ms

GP LGP SVR
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3
RMSE Comparison for t

s
 = 15ms

R
M

S
E

 i
n

 [
m

]

In x
1
−Direction

In x
2
−Direction

In x
3
−Direction

With a large training data size of 1000 points, these three models’ RMSE barely
differ from each other. In order to make this difference more clear, we further
downsample the data in the next paragraph.

Table 3.6: RMSE Comparison between GP, LGP and SVR for ts = 15 ms

GP LGP SVR
In x1-direction 5.56× 10−4 5.54× 10−4 5.57× 10−4

In x2-direction 9.68× 10−4 9.70× 10−4 9.81× 10−4

In x3-direction 1.14× 10−3 1.14× 10−3 1.14× 10−3

3.2. BENCHMARK BETWEEN DIFFERENT MODELS 31

Figure 3.6: 3-D Trajectory Comparison for time step ts = 15 ms.

−0.55

−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.7

−0.65

−0.6

−0.55

−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x
1
 in [m]

Trajectory Comparison

x
2
 in [m]

x
3
 i
n

 [
m

]

Original sample points

GPR

LGP with 3 subsets

SVR with RBF−kernel

For sampling time ts = 100 ms and n = 150 datapoints To test the accuracy of
the models when receiving only a low amount of training data, we increased the sam-
pling time step to ts = 100 ms, which results in a trainingset of 150 points. Also, the
training output does not need to be scaled for onlineSVR to obtain proper weights,
so the following figures should make the difference between these four models more
noticeable. Table 3.7 shows the RMSE of each model in x1-, x2- and x3-direction.
The RMSE is plotted in Figure 3.8. Figure 3.7a, 3.7b and 3.9 show the velocity, 1-D
and 3-D trajectory comparison between original data and reconstructed data from
different models.

32 CHAPTER 3. EXPERIMENTAL RESULTS

Figure 3.7: 1-D Comparison for ts = 100 ms

(a) Velocity Comparison

0 50 100 150
−0.1

−0.05

0

0.05

0.1

0.15

Velocity Comparison between Original data, GPR, LGP and SVR

v
1
 i
n

 [
m

/s
]

Original sample points

GPR

LGP with 3 subsets

SVR with RBF−kernel

0 50 100 150
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

v
2
 i
n

 [
m

/s
]

0 50 100 150

−0.1

0

0.1

0.2

0.3

Sample point with time step t
s
 = 100ms

v
3
 i
n

 [
m

/s
]

(b) Position Comparison

0 50 100 150
−0.55

−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

Reconstructed Positions in 1−D

x
1
 i
n

 [
m

]

Original sample points

GPR

LGP with 3 subsets

SVR with RBF−kernel

0 50 100 150
−0.7

−0.6

−0.5

−0.4

−0.3

x
2
 i
n

 [
m

]

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

Sample points in time step t
s
 = 100ms

x
3
 i
n

 [
m

]

x-axis shows the sampled points with time step ts = 100 ms and y-axis the velocity
in [m/s]. Blue line shows the flow of the original values. Red dashed line shows the
data obtained from GPR. Green dashed line shows the flow of values obtained from
LGP. The magenta dashed line the values from SVR. The RMSE is listed in Table
3.7.

3.2. BENCHMARK BETWEEN DIFFERENT MODELS 33

Figure 3.8: RMSE plot for ts = 100 ms

GP LGP SVR
0

1

2

3

4

5

6

7

8
x 10

−3
RMSE Comparison for t

s
 = 100ms

R
M

S
E

 i
n

 [
m

]

In x
1
−Direction

In x
2
−Direction

In x
3
−Direction

For ts = 100 ms, the difference between these three models becomes more clear:
while outperforming GP and SVR in computing time, LGP is still able to achieve
reasonable results. Note that in this plot, the y-axis goes from 0 to 8×10−3, whereas
the scale in Figure 3.5 goes from 0 to 1.2×10−3, which might give the false impression
of achieving better result given less data.

Table 3.7: RMSE Comparison between GP, LGP and SVR for ts = 100 ms

GP LGP SVR
In x1-direction 3.06× 10−4 1.23× 10−3 3.06× 10−3

In x2-direction 2.36× 10−4 2.09× 10−3 6.11× 10−3

In x3-direction 2.50× 10−4 1.79× 10−3 7.35× 10−3

34 CHAPTER 3. EXPERIMENTAL RESULTS

Figure 3.9: 3-D Trajectory Comparison for time step ts = 100 ms.

−0.55

−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.7

−0.65

−0.6

−0.55

−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x
1
 in [m]

Trajectory Comparison

x
2
 in [m]

x
3
 i
n

 [
m

]

Original sample points

GPR

LGP with 3 subsets

SVR with RBF−kernel

3.2.3 Discussion

As illustrated last two sections, the predicted velocities are very close to the original
ones and with that also a precise trajectory reconstruction, even with only n = 150
training pairs. This proves that the LGP model is, in terms of accuracy, indeed
viable.

While remaining flexible and highly accurate, our model still outperforms both GP
and the state-of-the-art, SVR in computing time. Defining the parameter N for the
maximum size of the clusters and M for the number of relevant clusters in LGP,
user can rest assured that the computation time will not exceed O(MN2), which
gives the operator control over the computation time instead of being almost entirely
data-reliant. This is a major advantage comparing to other models.

35

Chapter 4

Conclusion

In this thesis, we analyze Gaussian Process Regression and aim to develop an on-
line version of it. First, we investigate calculations within the GP and propose two
techniques to optimize the computing time[7][6]. After implementing them both,
the two techniques are benchmarked against each other. Furthermore, we chose
the technique with better results and integrate it into a more real-time orientated
GP model, LGP[13]. At last, we benchmark the standard GP, LGP and SVR[14]
against each other and draw the conclusion that, the implemented LGP model is
indeed viable.
However, the LGP model can still be improved in the following aspects:

• the training output for the GP/LGP is still 1-D, meaning in order to predict
3-D positions, three of the models have to be created. A model that takes
arbitrary m-dimensional data as training output can be considered for future
work;

• while the improvement might be small due to the small size of the subsets, a
real-time pattern removal function can still be implemented in case the subset
reaches its maximum size;

• predictions still occasionally deviate from the target value when e.g. none of
the cluster-centroids are relevant enough to give informations, as shown in
Figure 3.4a. This effect should become less relevant the larger the sample-set
get. In order to prove/refute that, test with much larger sample-set should be
performed;

• more trajectories can be used for testing to have a comprehensive benchmark
results on the model. Evaluation on a real robot can also considered as part
of the future work.

36 CHAPTER 4. CONCLUSION

37

List of Abbreviations

GP Gaussian Process

GPR Gaussian Process Regression

LGP Local Gaussian Process

LWPR Locally Weighted Projection Regression

RBF Radial Basis Function

RMSE Root-Mean-Square Error

RPROP Resilient Back-Propagation

SVM Support Vector Machine

SVR Support Vector Regression

38 CHAPTER 4. CONCLUSION

LIST OF FIGURES 39

List of Figures

2.1 Illustration of the basic principles of SVR 18
2.2 Illustration of SVR with slack variables 18
2.3 intpl 1d()-function illustration. 21
2.4 OnlineSVR and LibSVM compared in an online training.[14] 22

3.1 Distribution of the Sample Data . 24
3.2 Regression Time Comparison f() and my f() 26
3.3 Computing Time Comparison between GP, LGP and SVR 27
3.4 1-D Camparison for ts = 15 ms . 29
3.5 RMSE plot for ts = 15 ms . 30
3.6 3-D Trajectory Comparison for time step ts = 15 ms. 31
3.7 1-D Comparison for ts = 100 ms . 32
3.8 RMSE plot for ts = 100 ms . 33
3.9 3-D Trajectory Comparison for time step ts = 100 ms. 34

40 LIST OF FIGURES

BIBLIOGRAPHY 41

Bibliography

[1] M. Blum. Gaussian Process Library for Machine Learning. https://github.

com/mblum/libgp, 2012.

[2] M. Blum and M. Riedmiller. Optimization of Gaussian Process Hyperparam-
eters using Rprop. In European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning, 2013.

[3] J. Q. Candela and C. E. Rasmussen. A unifying view of sparse approximate
gaussian process regression. Journal of Machine Learning Research, pages 1939–
1959, 2005.

[4] L. Csató. Gaussian Prcocesses: Iterative Sparse Approximations. PhD. disser-
tation, Aston University, 2002.

[5] L. Csató and M. Opper. Sparse online gaussian processes. Technical report,
Neural Computing Research Group, 2002.

[6] N. Drakos. Computer Based Learning Unit, chapter Network Intrusion Detec-
tion: Evasion, Traffic normalization and End-to-End protocol semantics (1997).
University of Leeds, 1997.

[7] Lars Eldén, Misha E. Kilmer, and Dianne P. O’Leary. G.W. Stewart: Selected
Works with Commentaries, chapter Updating and Downdating Matrix Decom-
positions, pages 45–58. Birkhäuser Boston, 2010.

[8] A. Gijsberts and G. Metta. Real-time model learning using Incremental Sparse
Spectrum Gaussian Process Regression. Neural Networks, August 2012.

[9] D. H. Grollman and O. C. Jenkins. Sparse incremental learning for interactive
robot control policy estimation. In Robotics and Automation, 2008. ICRA 2008.
IEEE International Conference on, pages 3315–3320, 2008.

[10] J. Jeka. Light Touch Contact: Not Just for Surfers. The Neuromorphic Engi-
neer. A Publication of INE-WEB.ORG, 2006.

[11] D. Nguyen-Tuong, M. Seeger, and J. Peters. Local gaussian process regression
for real-time model-based control. In International Conference on Robots and
Systems (IROS 2008), 2008.

https://github.com/mblum/libgp
https://github.com/mblum/libgp

42 BIBLIOGRAPHY

[12] D. Nguyen-Tuong, M. Seeger, and J. Peters. Local gaussian process regres-
sion for real time online model learning and control. In Advances in Neural
Processing Systems (NIPS 2008), 2008.

[13] D. Nguyen-Tuong, M. Seeger, and J. Peters. Model Learning with Local Gaus-
sian Process Regression. Advanced Robotics, 2009.

[14] F. Parella. Online support vector regression. Master’s thesis, University of
Genoa, 2007.

[15] L. Polok, V. Ila, M. Solony, P. Smrz, and P. Zemcik. Incremental Block
Cholesky Factorization for Nonlinear Least Squares in Robotics. In Proceedings
of Robotics: Science and Systems, 2013.

[16] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learn-
ing (Adaptive Computation and Machine Learning). The MIT Press, 2006.

[17] S. Schaal, C. G. Atkeson, and Vijayakumar. Real-time robot learning with
locally weighted statistical learning. In International Conference on Robotics
and Automation(ICRA), 2000.

[18] S. Schaal, C. G. Atkeson, and S. Vijayakumar. Scalable techniques from non-
parametric statistics for real time robot learning. Applied Intelligence - Special
Issue on Scalable Robotic Applications of Neural Networks Vol. 16 No.1, 2002.

[19] B. Schölkopf and A. Smola. Learning with Kernels: A Tutorial Introduction,
chapter Support Vector Regression. the MIT Press, 2002.

[20] M. Seeger. Low rank updates for the cholesky decomposition. Technical report,
2004.

[21] A. Simpkins. Robotic Systems - Applications, Control and Programming (2012),
chapter Real-Time Control in Robotic Systems, pages 209–234. InTech, 2012.

[22] E. Snelson and Z. Ghahramani. Local and global sparse gaussian process ap-
proximations. In Proceedings of the Eleventh International Conference on Ar-
tificial Intelligence and Statistics (AISTATS 2007), pages 524–531, 2007.

[23] J. Sun de la Cruz, Kulić. D., and Owen W. Autonomous and Intelligent Systems,
chapter Online Incremental Learning of Inverse Dynamics Incorporating Prior
Knowledge, pages 167–176. Springer-Verlag Berlin Heidelberg, 2011.

[24] J. Ting, M. Kalakrishnan, S. Vijayakumar, and S. Schaal. Bayesian kernel
shaping for learning control. In D. Koller, D. Schuurmans, Y. Bengio, and
L. Bottou, editors, Advances in Neural Information Processing Systems 21,
pages 1673–1680. Curran Associates, Inc., 2009.

BIBLIOGRAPHY 43

[25] S. Vijayakumar and S. Schaal. Locally weighted projection regression: An o(n)
algorithm for incremental real time learning in high dimensional space. In in
Proceedings of the Seventeenth International Conference on Machine Learning
(ICML 2000), pages 1079–1086.

[26] S. Vijayakumar, S. Schaal, and A. D’Souza. Incremental online learning in high
dimensions. In Neural Computation 17 (2005), pages 2602–2634, 2005.

44 BIBLIOGRAPHY

LICENSE 45

License

This work is licensed under the Creative Commons Attribution 3.0 Germany License.
To view a copy of this license, visit http://creativecommons.org or send a letter to
Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105,
USA.

http://creativecommons.org/licenses/by/3.0/de/

	Introduction
	Background
	Motivation and Challenges
	Related Work
	Contribution
	Outline

	Approaches for on-line Robot Control
	Gaussian Process
	Gaussian Process Regression
	On-line Inversion
	Cholesky Decomposition

	Local Gaussian Process
	Locally Weighted Projection Regression
	Local Gaussian Process

	Support Vector Regression
	Implementations in C++
	GP and LGP Implementation
	SVR Implementation

	Experimental Results
	Benchmark between different Inversion Techniques
	Benchmark of Training Data Manipulation Functions
	Comparison between Regression Functions

	Benchmark between different Models
	Computing Time Comparison for Data Addition
	Accuracy Comparison on Trajectory Data
	Discussion

	Conclusion
	List of Figures
	Bibliography

