
TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Software Engineering betrieblicher Informationssysteme

Empowering End-users to Collaboratively Analyze

Evolving Complex Linked Data

Thomas Georg Reschenhofer

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität München

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Martin Bichler

Prüfer der Dissertation:
1. Univ.-Prof. Dr. Florian Matthes

2. Univ.-Prof. Dr. Ulrich Frank, Universität Duisburg-Essen

Die Dissertation wurde am 03.11.2016 bei der Technischen Universität München

eingereicht und durch die Fakultät für Informatik am 21.02.2017 angenommen.



II



Zusammenfassung

Heutige Unternehmen haben ihre Informationssysteme laufend an sich ändernde Rahmen-
bedingungen anzupassen. Diese Veränderungen werden getrieben von neuen Geschäftsan-
forderungen, von technologischen Innovationen, oder von neuen gesetzlichen Regulierungen.
Die Befähigung der Anwender, sich selbst ihre Informationssysteme anzupassen, kann dabei
zu einer erhöhten Effizienz führen. Das umfasst insbesondere Anpassungen an den domä-
nenspezifischen Datenstrukturen der verwendeten Informationssysteme. Aus sich laufend
ändernden und immer komplexer werdenden Datenstrukturen ergeben sich allerdings neue
Herausforderungen bei der Analyse der Daten und der Generierung von Wissen daraus.

In dieser Arbeit adressieren wir diese Herausforderungen und entwickelten einen Ansatz
für die anwender-basierte Analyse komplexer Datenstrukturen in einer sich ändernden und
kollaborativen Umgebung. Dabei werden Geschäftsanwender dazu befähigt, analytische
Abstraktionen zu definieren und diese visuell in domänenspezifischen Dashboards zu analy-
sieren. Das entwickelte Informationssystem sorgt zum einen dafür, dass benutzerdefinierten
Analyseartefakte stets konsistent bleiben, insbesondere bei Änderungen des Datenmodells.
Andererseits erlaubt es seinen Anwendern, die Analyseartefakte und deren Abhängigkeiten
zueinander zu untersuchen und diesbezüglich Transparenz zu schaffen.

Im ersten Schritt analysieren wir den aktuellen Stand der Technik bei der Fachanwender-
orientierten Datenanalyse (EUA) und bestimmen Erfolgsfaktoren sowie Schwächen aktuel-
ler Werkzeuge. Basierend auf diesen Ergebnissen sowie auf Basis relevanter Literatur leiten
wir Anforderungen für eine kollaborative EUA Lösung ab. Diese dienen dabei als Grundlage
für den konzeptionellen Entwurf eines innovativen Werkzeugs, welches Fachanwendern er-
möglicht, kollaborativ komplexe Datenstrukturen zu analysieren. Durch eine prototypische
Implementierung können wir dessen Benutzerschnittstelle demonstrieren und des Weiteren
eine Evaluation in Kooperation mit unterschiedlichen Industriepartnern durchführen.

Um unterschiedliche Aspekte der entwickelten Konzepte und des Prototyps zu validieren,
haben wir unterschiedliche Evaluationsstrategien angewandt. In einem Online-Experiment
mit Studenten, Forschern und Praktikern bewerteten wir die Bedienbarkeit des Prototyps,
während wir durch Interviews mit Industriepartnern Feedback über dessen Nutzen für
verschiedene Anwendungsfälle sammelten. Des Weiteren waren wir im Rahmen einer um-
fassenden Fallstudie in der Lage, die Anwendbarkeit des Prototyps in der Praxis für einen
bestimmten EUA Anwendungsfall zu untersuchen.

Der Beitrag dieser Arbeit ist vielfältig: Erstens können die abgeleiteten Anforderungen als
Wegweiser für die Entwicklung ähnlicher Softwarewerkzeuge dienen. Zweitens können die
diskutierten Designentscheidungen als Indikatoren dienen, wie diese Anforderungen umge-
setzt werden können. Und drittens repräsentieren die Ergebnisse der Evaluation des Pro-
totyps zum einen interessante Erkenntnisse aus dessen Anwendung in der Praxis, und zum
anderen Verbesserungsvorschläge und damit zukünftige potentielle Forschungsrichtungen.

III



IV



Abstract

Today’s enterprises have to align and adapt their information systems continuously to an
evolving environment which is driven by changing business requirements, technological in-
novations, and new legal regulations. Empowering end-users to adapt information systems
by themselves can improve their autonomy and thus the efficiency of their daily business
operation. This particularly includes the end-user-driven adaption of an information sys-
tem’s data model capturing domain-specific data structures. However, the evolution of
increasingly complex data structures imposes significant challenges to knowledge genera-
tion through analyzing those data structures.

In the thesis at hand, we addressed this issue and developed an approach empowering end-
users to analyze complex data structures in an evolving and collaborative environment.
Thereby, business users are enabled to define analytical abstractions based on an evolving
data model, and to visually analyze them in domain-specific and customizable dashboards.
On the one hand, the presented information system ensures the consistency of end-user-
created analysis artifacts in the light of data model evolution. On the other hand, it also
provides means to enable the exploration of the analysis artifacts and their dependencies
through end-users in order to create awareness in a collaborative environment.

We analyze the state-of-the-art in End-User Analytics (EUA) and determine success factors
of respective tools as well as shortcomings they are currently suffering from. Based on those
findings as well as related literature, we derive generic requirements for a collaborative EUA
solution. Those requirements serve as foundation for the conceptual design of an innovative
tool empowering end-user to collaboratively analyze evolving complex data structures. By
prototypically implementing this solution, we demonstrate its user interface design and
enable its evaluation in cooperation with different industry partners.

We applied different evaluations strategies in order to validate different aspects of the de-
veloped concepts and the corresponding prototype. By conducting an online experiment
with students, researchers, and practitioners, we assessed the prototype’s usability, while
through interviews we gathered feedback on its utility. Furthermore, we conducted a com-
prehensive case study to evaluate the prototype’s practicability. Thereby, three companies
applied it for a concrete EUA use-case and reported on their experiences.

The contribution of this thesis is manifold: First, the derived requirements can serve as
drivers for the development of related software tools empowering end-users to analyze
evolving complex linked data in a collaborative way. Second, the discussions of design
decision regarding the solution’s concepts and user interface provide indications of how
those requirements can be addressed. And third, the findings from the prototype’s eval-
uation represent helpful lessons learned of applying such a solution on the one hand, and
suggestions for improvement and thus future research objectives on the other hand.

V



VI



Acknowledgment

This thesis emerged from my work as a research associate at the Chair for Software Engineering
for Business Information Systems (sebis) at the Technical University of Munich (TUM). Over
that period of time I enjoyed a fruitful cooperation and pleasant time with many people including
my advisors, colleagues, students, family, and friends.

First and foremost, I would like to thank my doctoral father and supervisor Prof. Dr. Florian
Matthes for providing me the opportunity to work on this extremely interesting research topic
under the best possible conditions. Since the very first day you made me feel confident in
working towards my thesis with a well-balanced blend of freedom and supervision. I further
want to express my sincere gratitude to Prof. Dr. Ulrich Frank for being the second supervisor
of my thesis and for our discussions about the subject.

The sebis chair provided an excellent environment for my research. The thesis would not have
been possible without the support of my colleagues. I would like to thank Bernhard Waltl
for his contribution to my research through multiple co-authorships and extensive discussions,
which partially continued even at home. Furthermore, my thanks go to Manoj Mahabaleshwar,
Dr. Ivan Monahov, Dr. Sven-Volker Rehm, Dr. Alexander Schneider, and Klym Shumaiev
for contributing to my research through discussing ideas and co-authoring publications, and to
Adrian Hernandez-Mendez and Felix Michel for their cooperation in developing the SocioCor-
tex platform. Thanks to Pouya Aleatrati Khosroshahi, Dr. Matheus Hauder, Dominik Huth,
Martin Kleehaus, Ömer Uludag, and Marin Zec for the constructive cooperation in teaching and
researching.

I would also like to thank the students who contributed to my research with their theses, guided
research, or as student assistant. Thanks to Patrick Bürgin, Daniel Elsner, Sirma Gjorgievska,
Florian Katenbrink, Matti Maier, Alexander Meissner, Oleksii Moroz, Tobias Schrade, Peter
Velten, and Valérianne Walter. I really enjoyed working with you.

Finally, and most importantly, I express my sincere gratitude to my partner Nicole Kugler
for her unconditional love, support, and patience during this challenging time. Thank you for
reminding me regularly to take a step back from my work in order to refuel new energy. I am
also utmost grateful to my parents Anna and Georg Reschenhofer. Without your great support
and encouragement during my whole life this work would not have been possible.

Garching b. München, 03.11.2016

Thomas Reschenhofer

VII



VIII



Table of Contents

1 Motivation and Introduction 1

1.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Research Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Contributions of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Outline of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Foundations and Related Work 13

2.1 Adaptive Information System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.1 Meta-model-based Information Systems . . . . . . . . . . . . . . . . . . . 14
2.1.2 Hybrid Wikis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Tool-support for End-User Analytics . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1 Characterizing Features of Spreadsheets . . . . . . . . . . . . . . . . . . . 20
2.2.2 Semantic Structures in Today’s Spreadsheets . . . . . . . . . . . . . . . . 22
2.2.3 Usage Patterns in Today’s Spreadsheets . . . . . . . . . . . . . . . . . . . 24
2.2.4 Shortcomings of Spreadsheets from an Information System (IS) Perspective 25

2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.1 Related Work based on Spreadsheets . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 Related Work on End-user-driven and Model-based Analytics and Visual-

izations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.3 Related Work on Self-Service Business Intelligence (BI) and Collaborative

BI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4 Summary of Foundations and Related Work . . . . . . . . . . . . . . . . . . . . . 38

3 Identification of Requirements 41

3.1 A Conceptual Framework for Collaborative EUA . . . . . . . . . . . . . . . . . . 41
3.2 Identification of Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Data Model Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

IX



Table of Contents

3.2.2 Analytical Abstraction Requirements . . . . . . . . . . . . . . . . . . . . . 47
3.2.3 View and View Template Requirements . . . . . . . . . . . . . . . . . . . 49
3.2.4 Meta-Analysis Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Conceptual Design 55

4.1 Hybrid Wikis as Data Model Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1.1 Extending Hybrid Wikis by Complex Attributes . . . . . . . . . . . . . . 55
4.1.2 Assessment of the Meta-model’s Expressiveness . . . . . . . . . . . . . . . 58

4.2 Analytical Abstractions for Hybrid Wikis . . . . . . . . . . . . . . . . . . . . . . 59
4.2.1 Extending Hybrid Wikis by Analytical Abstractions . . . . . . . . . . . . 60
4.2.2 The Model-based Expression Language (MxL) . . . . . . . . . . . . . . . . 61
4.2.3 Assessment of the Expressiveness of MxL . . . . . . . . . . . . . . . . . . 71

4.3 Views and View Templates for Hybrid Wikis . . . . . . . . . . . . . . . . . . . . 73
4.3.1 Extending Hybrid Wikis by Views . . . . . . . . . . . . . . . . . . . . . . 73
4.3.2 Definition of Data Bindings . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.3 Assessment of the Expressiveness of the View Concepts . . . . . . . . . . 76

4.4 Meta-Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Prototypical Implementation and User Interface Design 81

5.1 The SocioCortex Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.1.1 The Core Components of SocioCortex . . . . . . . . . . . . . . . . . . . . 83
5.1.2 Implementation of MxL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.1.3 SocioCortex REST API . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 SocioCortex Frameworks and Libraries . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2.1 sc-angular: An AngularJS-based Wrapper for the SC REST API . . . . . 94
5.2.2 sc-datatable: A User Interface (UI) Component for Managing Complex

Linked Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2.3 mxl-angular: A UI Component for Defining Complex Queries . . . . . . . 100

5.3 SocioCortex Web Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.3.1 The SC Content Manager and the SC Modeler . . . . . . . . . . . . . . . 106
5.3.2 The SC Visualizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6 Evaluation 127

6.1 Evaluation of the UI for Formulating Complex Queries . . . . . . . . . . . . . . . 128
6.1.1 Experiment Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.1.2 Key Findings of the Experiment . . . . . . . . . . . . . . . . . . . . . . . 131

6.2 Evaluation of the Social Information Flow Graph . . . . . . . . . . . . . . . . . . 134
6.2.1 Setting of the Interview Series . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.2.2 Technical Feedback Gained from the Interview Series . . . . . . . . . . . . 137
6.2.3 Identified Concerns Addressable by the Social Information Flow Graph

(SIFG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.3 Evaluation of the Prototype in Practical Environments . . . . . . . . . . . . . . . 140

6.3.1 Case Study Design and Setting . . . . . . . . . . . . . . . . . . . . . . . . 141
6.3.2 Case 1: Ad-hoc Enterprise Architecture (EA) Analysis in a German Lo-

gistics Company . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.3.3 Case 2: Ad-hoc EA Analysis in a German Automotive Supplier . . . . . . 146

X



Table of Contents

6.3.4 Case 3: Ad-hoc EA Analysis in a German Bank . . . . . . . . . . . . . . . 149
6.4 Synthesis of Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7 Conclusion 155

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.2 Critical Reflection and Known Limitations . . . . . . . . . . . . . . . . . . . . . . 159

7.2.1 Functional Limitations of the Prototype . . . . . . . . . . . . . . . . . . . 159
7.2.2 Discussion about the Practicability of the Prototype . . . . . . . . . . . . 162
7.2.3 Critical Reflection on the Evaluation . . . . . . . . . . . . . . . . . . . . . 163
7.2.4 Critical Reflection on the Research Methodology . . . . . . . . . . . . . . 164

7.3 Further Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.3.1 Bottom-up Approach for Defining Analytical Abstractions . . . . . . . . . 165
7.3.2 Impersonation for Evaluation Analytical Abstractions . . . . . . . . . . . 165
7.3.3 Alternative Evaluation Strategies for Analytical Abstractions . . . . . . . 165
7.3.4 Further Research on End-user-driven and Model-based Data Visualizations 166
7.3.5 Further Usage Scenarios for the SIFG . . . . . . . . . . . . . . . . . . . . 166
7.3.6 Market Place for Analytical Abstractions and Visualizations . . . . . . . . 167

Bibliography 169

Abbreviations 185

A Appendix 189

XI



XII



List of Figures

1.1 The SmartNet Navigator Matheis (2013) as an example for a data-driven view . . 4
1.2 Information systems research framework (Hevner et al., 2004) adapted to the

present thesis’ contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 The main contributions of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 An illustration of topics representing foundations and related work and their re-
lation to the thesis’ approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 model-based information systems vs. meta-model-based information systems . . . 15
2.3 The original Hybrid Wiki meta-model as defined by Matthes et al. (2011). The

implementation of the AccessControlled interface is illustrated in Figure 2.5. . . . 16
2.4 The updated Hybrid Wiki meta-model by Reschenhofer et al. (2016a). The im-

plementation of the AccessControlled interface is illustrated in Figure 2.5. . . . . 17
2.5 The authorization model of Hybrid Wikis. Both the Entity and the Workspace

in Figure 2.4 implement the AccessControlled interface. . . . . . . . . . . . . . . . 19
2.6 An integrated semantic meta-model of spreadsheets (Reschenhofer et al., 2016c).

The green classes represent identified semantic patterns. . . . . . . . . . . . . . . 23
2.7 The dimensions and respective categories of the framework for classifying the

spreadsheet usages as well as identified usage patterns (Reschenhofer and Matthes,
2015b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.8 An example of the application of MDSheet showing a spreadsheet instance of a
fictive airline company as well as the corresponding ClassSheet model (Cunha
et al., 2012a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.9 An example of the Formula View visualizing the data flow between cells based
on formulas for the calculation of an exam grade (Hermans et al., 2011b). . . . . 32

2.10 An excerpt of the conceptual model for generating visualizations based on infor-
mation models (Schaub et al., 2012; Hauder et al., 2012). . . . . . . . . . . . . . 33

2.11 The illustration of the analytical information system architecture modules as de-
fined by Sell et al. (2005). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

XIII



List of Figures

2.12 The illustration of the system architecture layers as defined by Spahn et al. (2008b). 36
2.13 The illustration of the architecture of an analytical information system with a

semantic meta-data layer as defined by Mertens and Krahn (2012). . . . . . . . . 36
2.14 The illustration of the architecture for a collaborative BI platform as proposed

by Berthold et al. (2010). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 The Information Visualization Data State Reference Model as defined by Chi and
Riedl (1998). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Conceptual framework for collaborative EUA on complex linked data, inspired by
Chi and Riedl (1998), and Schaub et al. (2012), and related work summarized in
Section 2.3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 An overview over the conceptual meta-model which is based on the Hybrid Wiki
meta-model (Matthes et al., 2011; Reschenhofer et al., 2016a). The data model,
analytical abstraction, and view concepts are described in detail in Sections 4.1,
4.2, and 4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 The conceptual model for the complex type based on a variation of the composite
pattern (Gamma et al., 1994). A complex type defined attributes which are either
of a basic type (e.g., string, number) or again complex. . . . . . . . . . . . . . . . 57

4.3 A detailed excerpt of the extended Hybrid Wiki meta-model (cf. Figure 2.4) with
a focus on the data model concepts. We extended the set of type constraints by
the ComplexConstraint, which refer to composite objects (cf. Figure 4.2). . . . . . 57

4.4 A detailed excerpt of the meta-model (cf. Figure 2.4) with a focus on analytical
abstraction concepts. The definitions of the interfacesMxlDefinable andMxlRefer-
able are depicted in Figure 4.5, while the type MxlParameter describes function
parameters as a pair of a name and a type. . . . . . . . . . . . . . . . . . . . . . 60

4.5 This excerpt of the meta-model shows how the interfaces MxlDefinable and Mxl-
Referable define semantic dependencies between analytical abstractions and data
model elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6 A conceptual overview over MxL’s type hierarchy. We use MOF (Object Man-
agement Group, 2014a) in order to be able to describe generic types. . . . . . . . 64

4.7 An exemplary EA model capturing the application landscape and related con-
cepts. This model is inspired by the work of Schneider et al. (2015). We use the
MxL type notation in order to specify the ComplexConstraint of the Location’s
Address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.8 The information model for the Enterprise Architecture Management (EAM) Key
Performance Indicator (KPI) Application continuity plan availability (Matthes
et al., 2012a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.9 Evaluation and refinement of MxL based on its application for defining EAM
KPIs (Matthes et al., 2012a) and EA complexity metrics (Schneider et al., 2015). 73

4.10 A detailed excerpt of the meta-model (cf. Figure 2.4) with a focus on view and
view template concepts. The definitions of the interfaces MxlDefinable and Ac-
cessControlled are depicted in Figures 4.5 and 2.5 respectively. . . . . . . . . . . 74

XIV



List of Figures

4.11 A Unified Modeling Language (UML) object diagram illustrating the analysis
model for an exemplary Dashboard "EAM Dashboard" including semantic depen-
dencies between the different artifacts (green, orange, and blue). The concepts
are defined in Figures 4.3, 4.10, and 4.5 respectively. The exemplary data model
is depicted in Figure 4.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.12 A conceptual perspective on the artifacts of a EUA tool and their meta-
data (Reschenhofer et al., 2016b). . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.13 The illustration of a Social Information Flow Graph (SIFG) for the example in
Figure 4.11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 The logical architecture of our prototype . . . . . . . . . . . . . . . . . . . . . . . 82
5.2 Interaction model in Tricia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3 Interaction model in SocioCortex. . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4 MxL interpretation pipeline illustrated by an exemplary MxL expression based

on the data model in Figure 4.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.5 An illustration of the concrete implementation of MxL’s basic functions by using

a combination of the prototype and multiton design patterns (Gamma et al., 1994;
Edwin, 2014). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6 An illustration of the concrete implementation of MxlReferences based on the
conceptual model in Figure 4.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.7 A model of the resources exposed via the SC REST API. . . . . . . . . . . . . . . 92
5.8 The components of the sc-angular framework and its dependencies to each other. 94
5.9 The components of the sc-datatable library and its dependencies to each other. . 97
5.10 The sc-datatable supports complex linked data, i.e., multi-valued attributes and

relations as well as composite attribute. . . . . . . . . . . . . . . . . . . . . . . . 98
5.11 The sc-datatable supports all types captured by the extended Hybrid Wiki meta-

model in Figure 4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.12 The different representations of data and data models, and how they are trans-

formed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.13 The components of the mxl-angular framework and its dependencies to each other.101
5.14 The MxL code editor implements syntax highlighting and auto-completion support.101
5.15 MxL expressions inside the code editor are statically analyzed. In case of errors,

those are localized and visualized within the query. . . . . . . . . . . . . . . . . . 101
5.16 By testing the query, the users gets immediate feedback if it behaves like intended.102
5.17 Initially, the model view shows a global overview over the data model including

entity types and relations between them (Reschenhofer and Matthes, 2016b). . . 103
5.18 As soon as the expression within the code editor refers to a data model element,

the model view will switch to a local view of the data model (Reschenhofer and
Matthes, 2016b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.19 The model view provides contextual information to the auto-completion
hints (Reschenhofer and Matthes, 2016b). . . . . . . . . . . . . . . . . . . . . . . 104

5.20 Model elements which are referenced by the expression of the code editor are
visually highlighted, e.g., by blue background and bold labels (Reschenhofer and
Matthes, 2016b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.21 A single entity represented as a wiki page in the SocioCortex (SC) Content Manager.107

XV



List of Figures

5.22 Overview over a workspace’s data model in the SC Modeler. . . . . . . . . . . . . 108
5.23 Overview over an entity type’s attribute definitions in the SC Modeler. . . . . . . 109
5.24 In the SC Modeler, users can change the type of attribute definitions by using

the type picker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.25 Defining a derived attribute in the SC Modeler. . . . . . . . . . . . . . . . . . . . 110
5.26 The conceptual architecture of the SC Visualizer. . . . . . . . . . . . . . . . . . . 111
5.27 The implemented client data model of the SC Visualizer as a concrete manifes-

tation of the conceptual meta-model in Figure 4.10. The coloring of the classes
indicates how they are composed and mapped to respective entity types. . . . . . 112

5.28 An example illustrating the grid system of the SC Visualizer dashboard. . . . . . 113
5.29 The Data Access Object (DAO) classes map the client model to generic Socio-

Cortex entities and attributes, and manage the communication via sc-angular. . . 115
5.30 An exemplary dashboard in the SC Visualizer. . . . . . . . . . . . . . . . . . . . . 116
5.31 A dashboard of the SC Visualizer in edit mode. . . . . . . . . . . . . . . . . . . . 117
5.32 Configuration of a visualization of a dashboard within the SC Visualizer. . . . . . 118
5.33 A screenshot of the SC Visualizer showing a page for editing the visualization

Type "Directed Graph". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.34 A form within the SC Visualizer to define a data binding definition. . . . . . . . . 119
5.35 A UML sequence diagram illustrating how the SC Visualizer generates the Social

Information Flow Graph (SIFG). . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.36 The Social Information Flow Graph (SIFG) for the dashboard in Figure 5.30. . . 123
5.37 Selecting nodes allows users to explore their meta-data, and to identify informa-

tion flow paths going through it. . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.38 The exemplary content of the sidebar on selecting different kinds of nodes. . . . . 125
5.39 To reduce the visual complexity, container nodes (e.g., nodes representing entity

types) can be collapsed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.1 An illustration of the experiment process as defined by Wohlin et al. (2012). . . . 129
6.2 An exemplary challenge presented to the participants of the online experiment. . 130
6.3 An illustration of the allocation of experimentees to two different experiment

cases. The cases differ in the order of steps one and two. . . . . . . . . . . . . . . 131
6.4 An illustration of the case study’s structure. . . . . . . . . . . . . . . . . . . . . . 134
6.5 An exemplary dashboard implementing an EAM use case which was demonstrated

to an industry partner (Bürgin, 2015). . . . . . . . . . . . . . . . . . . . . . . . . 136
6.6 The SIFG for the exemplary dashboard in Figure 6.5 (Bürgin, 2015). . . . . . . . 136
6.7 An illustration of how the case study was prepared and operated through a series

of workshops and individual meetings. . . . . . . . . . . . . . . . . . . . . . . . . 141
6.8 The data model created in case 1. Attributes are hidden for the sake of clarity

and for confidentiality reasons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.9 An exemplary dashboard created by the industry partner in case 1. . . . . . . . . 144
6.10 The data model created in case 2. Attributes are hidden for the sake of clarity

and for confidentiality reasons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.11 An exemplary dashboard created by the enterprise architect in case 2. . . . . . . 148
6.12 The data model created in case 3. Attributes are hidden for the sake of clarity

and for confidentiality reasons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

XVI



List of Figures

6.13 An exemplary dashboard created in case 3. . . . . . . . . . . . . . . . . . . . . . 151
6.14 An excerpt of the SIFG illustrating the semantic dependencies for the dashboard

in Figure 6.13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

XVII



XVIII



List of Tables

2.1 A consolidated list of identified shortcomings as well as an indication of in how
many of the nine observed cases it was mentioned by a respective intervie-
wee (Reschenhofer and Matthes, 2015a). . . . . . . . . . . . . . . . . . . . . . . . 28

6.1 A list of experimentees which finished their tasks and provided a feedback through
a questionnaire. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.1 Requirements identified in Section 3.2 and how we addressed them. . . . . . . . . 160

A.1 Basic object functions. In this table, all functions are applied on an object of
type T, whereas T is an arbitrary MxlType. . . . . . . . . . . . . . . . . . . . . . 189

A.2 Basic static functions. In this table, all functions are static, i.e., they are not
applied to any object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

A.3 Basic number functions. In this table, all functions are applied on an object of
type Number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

A.4 Basic string functions. In this table, all functions are applied on an object of
type String. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

A.5 Basic map functions. In this table, all functions are applied on an object of type
Map<K,V>, whereas K and V are arbitrary MxlTypes. . . . . . . . . . . . . . . 191

A.6 Basic structure functions. In this table, all functions are applied on an object
of type Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

A.7 Common query functions. In this table, all functions are applied on an object
of type Sequence<T>, whereas T, U, K, and V are arbitrary MxlTypes. . . . . . 192

A.8 Quantifier functions mapping a sequence to a boolean value. In this table,
all functions are applied on an object of type Sequence<T>, whereas T is an
arbitrary MxlType. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

A.9 Set functions based on the presence or absence of elements in the same or an-
other sequence. In this table, all functions are applied on an object of type
Sequence<T>, whereas T is an arbitrary MxlType. . . . . . . . . . . . . . . . . . 194

XIX



List of Tables

A.10 Partitioning functions returning a subsequence. In this table, all functions are
applied on an object of type Sequence<T>, whereas T is an arbitrary MxlType. . 194

A.11 Sequence element functions choosing a certain element of the sizrce sequence.
In this table, all functions are applied on an object of type Sequence<T>, whereas
T is an arbitrary MxlType. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

A.12 Aggregation functions folding up all elements to a single value. In this table,
all functions are applied on an object of type Sequence<T>, whereas T and U
are arbitrary MxlTypes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

XX



CHAPTER 1

Motivation and Introduction

New business requirements, changing legal regulations, and technological innovations lead to
continuously changing demands and requirements for information systems in today’s enter-
prises (Teece et al., 1997; Pavlou and El Sawy, 2011; Ahlemann et al., 2012; Aleatrati Khos-
roshahi et al., 2015). Grubb and Takang (2003) even argue that most changes of informa-
tion systems happen after their implementation. Addressing this issue, End-User Develop-
ment (EUD) (Lieberman et al., 2006; Nardi, 1993) empowers end-users to adapt business appli-
cations by themselves in order to tailor it to the changing environment. This kind of end-user
empowerment is a double-edged sword: On the one hand, it imposes significant challenges to
knowledge workers, e.g., the necessity for additional training, or the additional burden through
being responsible for those adaptions (Pinnington et al., 2007). On the other hand, EUD can
improve the autonomy and potentially the efficiency of knowledge workers in their daily business,
since they are not reliant on Information Technology (IT) experts to adapt business applications
accordingly (Mørch et al., 2004; Vitharana, 2003).

For data-driven business applications, EUD is about adapting a domain-specific data model to
changes affecting the corresponding business domain (McGinnes and Kapros, 2015; Curino et al.,
2009). An example for a domain in which the data model can be subject to changes at run-time
is Enterprise Architecture Management (EAM). EAM as a management discipline to holistically
plan, develop, and control the fundamental organization (International Organization for Stan-
dardization, 2007)—also referred to as EA—includes the maintenance of an EA model which
captures components and relationships of an EA and serves as decision support for different EA
stakeholders (Ahlemann et al., 2012). Changing business requirements or other external factors
can imply the need for adaptions of the organization-specific EA model. As a consequence, EA
tools implementing such EA models have to provide EUD means in order to allow enterprise
architects to tailor the implemented EA model to the changing environment (Matthes et al.,
2008). This analogously applies to innovation processes where a conceptual data model cannot

1



1. Motivation and Introduction

be defined beforehand since—naturally—it is not yet known at design-time (Davenport, 2013;
Rehm et al., 2014).

McGinnes and Kapros (2015) describe the adaptability of an information system’s data model
and the decoupling of its implementation from domain-specific structures as conceptual inde-
pendence. It can be achieved by meta-model-based information systems which define a generic
meta-model instead of a domain-specific data model. In this sense, the meta-model represents a
model of the data model, i.e., it specifies the means by which end-users of a meta-model-based
information systems can define data models at run-time.

With this regard, (Matthes et al., 2011) developed a meta-model-based information system in the
shape of the Hybrid Wiki approach. Thereby, wiki pages represent data entities which initially
consist of unstructured textual content and which can be related to each other through embedded
hyperlinks. Those wiki pages can be incrementally and collaboratively structured by assigning
an entity type and by adding attributes and relations. At the same time, modeling experts
can define a data model consisting of entity types and attribute definitions, which stipulate
certain constraints to corresponding data entities and attributes. Therefore, data models emerge
collaboratively through mutual interaction between end-users structuring the data entities and
modeling experts defining the domain-specific structures and constraints. Since the Hybrid Wiki
meta-model not only allows the definition of trivial attributes (e.g., number, string, boolean,
date), but—after a minor extension, cf. Section 4.1.1—also the definition of complex nested
objects (Kim et al., 1989), attributes with multiple values, and relations to other entities, we
refer to the corresponding data structures as complex linked data.

Definition: Complex Linked Data

In the context of this thesis, complex linked data refers to entities which potentially
have arbitrarily nested attributes, attributes with multiple values, and multiple rela-
tions to other data entities.

Based on a domain-specific data model, users typically want to define domain-specific queries and
tailored views (Burnett and Myers, 2014) in order to perform stakeholder-specific data analytics.
In fact, the application of the Hybrid Wiki approach in different research projects and domains,
e.g., EAM (Matthes and Neubert, 2011; Buckl et al., 2009, 2010) and New Product Development
(NPD) (Rehm et al., 2014), also revealed the need for means which enable end-users to analyze
the underlying data, i.e., to create queries and views based on the collaboratively defined data
model (Schneider et al., 2015; Roth et al., 2013; Rehm et al., 2014)—often in an ad-hoc manner.
Tamm et al. (2013) name this kind of self-directed analysis End-User Analytics (EUA). However,
while the adaptability of a meta-model-based information system’s data model as well as their
support for complex linked data structures is appealing and enables tool-support for cases with
uncertain or evolving data structures, those system properties also lead to non-trivial EUA-
related challenges. We will elaborate on those challenges in the following section.

2



1. Motivation and Introduction

1.1. Problem Description

The general research objective of the present thesis is to address the challenges which arise
from the endeavor of applying EUA to collaborative Adaptive Information System (AIS) which
implement evolving and complex linked data structures and support knowledge-intensive team
work (Davenport, 2013). This objective is primarily motivated by the application of Hybrid
Wikis in multiple research projects within the last five years.

For example, the application of Hybrid Wikis in EAM revealed that different EA stakeholders
want to define and evaluate KPIs (Matthes et al., 2012a) and metrics (Schneider et al., 2015) to
facilitate evidence-based decision support, e.g., to support standardization processes by quan-
tifying the diversity of an organization’s application landscape. Consequently, end-users have
to be empowered to define such KPIs and metrics which potentially consist of a series of di-
verse operations, e.g., query, logical, or arithmetic operations (Monahov, 2014). For example, a
metric for calculating the heterogeneity of used database systems in a given functional domain
can be defined as the "diversity of databases used by business applications in a given functional
domain" (Schneider et al., 2015). This metric is based on the entropy measure (𝐸𝑀) which is
formally defined as (Schuetz et al., 2013):

𝐸𝑀 := −
∑︀𝑛

𝑖=1 𝑝𝑖𝑙𝑛(𝑝𝑖) 𝑤𝑖𝑡ℎ 𝑝𝑖 :=
𝑥𝑖∑︀𝑛

𝑗=1 𝑥𝑗

𝑥𝑖 := 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑖

Although, we do not need to understand this formula in detail, it demonstrates that EA metrics
in particular and queries in general can be complex, e.g., they might contain nested aggregations
(sum) and sophisticated mathematical operations (like the natural logarithm). Hauder et al.
(2013) confirm that the definition of metrics is still an open issue for current tools in EAM.

In another context, we applied the Hybrid Wiki tool as a collaborative information system to
systematically share and adaptively integrate knowledge between partners of innovation net-
works (Rehm et al., 2014). For coordinating a development project whose aim is the design of
a new product, involved stakeholders had to be aware of the current state within this project,
whereas the project state can be derived from specific business rules. Addressing this issue, the
so-called SmartNet Navigator (Matheis, 2013) as shown in Figure 1.1 visualizes the phases of
a development project as well as the current status, i.e., which phases are already completed
(green), in progress (orange), or still open (gray). The SmartNet Navigator is data-driven,
since the status of the individual phases are automatically derived by end-user-defined business
rules which are based on an underlying domain-specific data model. The uncertain nature of
innovation processes implies that the data model might evolve over time, which in turn means
that the business rules determining the project status have to be adaptable as well as adaptive.
The former property refers to the changeability at run-time, while the latter one refers to the
automated adaption of a business rule on changes of the underlying data model.

The most obvious approach to End-User Analytics (EUA) would be to simply use spread-
sheets as the most common class EUA tools (Tamm et al., 2013). In this way, the complex
linked data structures have to be imported to a spreadsheet tool, which then provides proven
means for quantitative EUA. The spreadsheet empowers end-users to define calculations and

3



1. Motivation and Introduction

I

Creation of ideas

II

Concept development

III

Prototyping

IV

Sampling

V

Production and Marketing

Planning

Execution

Control

Innovation culture

Innovation strategy and objectives

Identification of opportunities

Framework def. (Concept)

IPR protection planning

Project planning (Concept)

Framework def. (Prototype)

Project planning (Prototype)

Framework def. (Sample)

Planning of sourcing

Project planning for sample 

development

Planning of market introduction 

and marketing

Planning of production and life-

cycle handling

Idea generation

Idea formulation

Concept elaboration

Functional description

Tech. feasibility

Market study

Business plan

Marketing plan

Protection of IPR

Prototype elaboration

Prototype test (α-test)

Sourcing for sampling

Process implementation

Production of samples

Sample test (β-test)

Market introduction

Continuous marketing

Continuous production and life-

cycle handling

Screening and first evaluation

Evaluation of IPR situation

Recommendation of project

Assessment of concept

Evaluation of studies

Financial assessment (Concept)

Launch prototyping

Technical evaluation

Market-oriented evaluation

Financial assessment (Prototype)

Launch for sampling

Evaluation of test results

Evaluation of process reliability

Financial assessment (Sample)

Launch for production

Evaluation of market response

Financial success control

Figure 1.1.: The SmartNet Navigator Matheis (2013) as an example for a data-driven view

quantitative visualizations and to implement KPIs and metrics. However, this leads to several
issues (Reschenhofer and Matthes, 2015a): Firstly, while the rigid spreadsheet grid is an easy-to-
understand metaphor for end-users to manage and analyze data, it hinders the representation of
complex linked data as defined in the previous section. Secondly, repeating certain EUA tasks
on a regular basis requires to redo the data import multiple times. If the data model evolved
and changed since the last import, the spreadsheets importing the newly structured data have
to be manually adapted too. Thirdly, spreadsheets as Desktop tools for personal decision mak-
ing (Senn, 2004) lack collaborative features (Nardi and Miller, 1990; Ginige et al., 2010a) which
would enable end-users to perform EUA collaboratively. In Section 2.2 we elaborate on the role
of spreadsheets in the context of this thesis in more detail.

On a related note, the end-user-friendly analysis of model-based data structures was subject to
research by Roth et al. (2013) which developed an approach to automatically configure visual-
izations based on structural model matching. Thereby, a visualization’s information demand is
defined by an abstract view model capturing generic entities, attributes, and relations. A map-
ping algorithm can identify parts of a domain-specific data model which match to the abstract
view model of a visualization and provide suggestions for binding data entities to visualizations.
While this enables a user-friendly way of configuring model-based visualizations, end-users are
not empowered to perform quantitative analysis, e.g., define complex metrics or calculations
based on the underlying data.

To sum up, the application of Hybrid Wikis as a representative of meta-model-based information
systems revealed that there is the need for performing quantitative EUA on the system’s evolving
complex linked data structures, whereas both aforementioned alternatives—namely spreadsheets
and structured model matching—are not suitable for use cases like the definition and tool-
supported evaluation of KPIs and metrics, or the creation of data-driven views.

4



1. Motivation and Introduction

There are multiple properties of collaborative meta-model-based information systems imposing
significant challenges to the endeavor of applying EUA to this kind of software: Firstly, the
evolution of the data model has multiple consequences. On the one hand, end-users have to be
empowered to define queries and calculations at run-time and in an ad-hoc manner. Since the
data model is continuously evolving, end-users have to be familiarized with the underlying data
model continuously too. Furthermore, already existing and stored queries of the data model have
to be adaptive, i.e., the have to be kept consistent regarding references to changing data model
elements. Secondly, querying complex linked data models implies that the query language has to
provide a respective type system and a sufficient expressiveness which includes an extendable set
of operators required for the definition of complex metrics and calculations. Thirdly, support for
team work and collaborativeness implies the need for access rights in order to control which users
are allowed to interact with which system artifacts in which way. Collaboration support also
includes means to share system artifacts with co-workers. Moreover, to coordinate collaborating
end-users in performing EUA, a respective system should create awareness regarding which
co-workers should be contacted for specific purposes.

Current tools do not address all those challenges. On the one hand, there are traditional EUA
tools (e.g., spreadsheets) and Self-Service BI applications enabling end-users to analyze and
visualize data in a self-directed way. However, those tools typically lack collaboration features
or support for evolving complex linked data. On the other hand, collaborative meta-model-
based information systems support evolving complex linked data structures, but typically lack
capabilities empowering end-users to analyze and visualize it (cf. Chapter 2 for a more detailed
discussion about related research and tools). As a consequence, the general research objective
of this thesis is to close this gap.

1.2. Research Questions

We formalize the main contributions of this thesis by deriving research questions from the
problem statement. Those particularly address the challenges as described in the previous
section. The first research question is about a state-of-the-art analysis of how current EUA
tools are used in industry, and from which shortcomings spreadsheets are suffering when applying
them for knowledge-intensive team work:

RQ 1: What is the state-of-the-art of tool support in EUA, and what are shortcom-
ings of those tools—particularly spreadsheets—in the context of knowledge-intensive
team work?

The state-of-the-art analysis is done by multiple case studies in different companies whose
purpose is the identification of common usage patterns of spreadsheets (Reschenhofer and
Matthes, 2015b) and recurring shortcomings of today’s spreadsheet applications (Reschenhofer
and Matthes, 2015a) (cf. Sections 2.2.2, 2.2.3, and 2.2.4). Furthermore, by analyzing more than
20,000 spreadsheets from two publicly available corpora, we were able to investigate semantic
patterns of spreadsheets (Reschenhofer et al., 2016c) as well as the complexity of their struc-
ture (Reschenhofer et al., 2016d). Utilizing the knowledge of current patterns and shortcomings
of spreadsheets, our intent is to improve the current situation and to identify system princi-

5



1. Motivation and Introduction

ples which have to be implemented by novel solutions to collaborative EUA based on evolving
complex linked data. Therefore, we define the second research question as follows:

RQ 2: What are requirements for empowering end-users to collaboratively analyze
evolving complex linked data structures?

To answer this question, we first derived a conceptual framework for collaborative EUA based
on a meta-model-based information system from related work on end-user-driven data visualiza-
tions (Chi and Riedl, 1998), visual information analysis (Isenberg et al., 2008), end-user-driven
model analysis (Roth et al., 2013), and general EUA (Tamm et al., 2013) (cf. Section 3.1).
Based on this framework as well as on already existing requirements and design principles for
collaborative information systems (de Hertogh et al., 2011) we can define a set of requirements
which guide the system design of a respective tool. This leads to the next research question:

RQ 3: How can a system design for a tool empowering end-users to define data
models, analytical abstractions, and visualizations look like?

The system design includes the definition of a conceptual meta-model for the collaborative
management and analysis of complex linked data. In the present thesis, we use the Hybrid
Wiki meta-model as defined by Matthes et al. (2011) as a foundation and extend it by concepts
required for performing EUA on Hybrid Wiki data models (Reschenhofer and Matthes, 2016a)
(cf. Chapter 4) Although we extend the Hybrid Wiki meta-model, the proposed concepts for
collaborative EUA are applicable to meta-model-based information systems in general, as long
as they share certain properties with the Hybrid Wiki tool. A specific set of properties is about
the query language which is used by end-users to define queries and calculations. This language
is subject to the next research question:

RQ 4: What are features and properties a language for defining queries and calcu-
lations on evolving complex linked data structures must have?

Requirements like the support for complex linked data and adaptiveness also affect the expression
language by which end-users define queries and thus refer to the user-defined and potentially
evolving data model. To meet these requirements, such an expression language has to have
certain properties which will be discussed in Section 4.2. UI-related aspects, e.g., how to define
queries and visualizations, are subject to the next research question:

RQ 5: How can end-users be supported in defining complex queries, calculations,
and visualizations on evolving complex linked data structures?

When defining queries, end-users have to be aware not only of the query language, but also have
to be familiar with the underlying data model (Valencia-García et al., 2011). This is particularly
challenging in the light of frequent data model changes which implies the need for continuous
familiarization of the end-user with the data model. Furthermore, the complex linked nature of
the data model imposes specific requirements to a UI for formulating queries, e.g., when defining
metrics or data-driven visualizations. Respective UI concepts will be described in Section 5.2.3.
Since we aim for collaborative EUA, multiple users are interacting with the systems implying
the need to create awareness of who is doing what, and in particular, which co-workers interact

6



1. Motivation and Introduction

with system artifacts which are relevant for a specific end-user. Therefore, the next research
question is addressing collaboration in general, and the awareness aspect in particular:

RQ 6: How can end-users be supported in performing a meta-analysis on collabo-
ratively defined data models, analytical abstractions, and visualizations?

By making this meta-information explorable for end-users, the system can support them in
performing usage analysis, stakeholder identification, or impact analysis (Reschenhofer et al.,
2016b). Section 4.4 elaborates on concepts and UI-techniques empowering end-users to explore
existing data, analysis, and visualization artifacts and their relations to the system’s users. As
part of the design science research methodology as defined by Hevner et al. (2004), we evaluated
the proposed concepts in multiple iterations and with different evaluation methods, e.g., case
studies and experiments (cf. Chapter 6). The last research question addresses the findings of this
evaluation, particularly those identified in the prototype’s practical application in an industrial
environment:

RQ 7: What is the experience of users of the proposed solution? What are further
challenges of Web 2.0-based EUA?

In the following Section, we elaborate on how we intend to address those research questions from
a research methodology perspective.

1.3. Research Design

This thesis applies the design science research methodology as defined by Hevner et al. (2004).
Figure 1.2 shows how we adopted the framework to this thesis’ context. The purpose of design
science is the creation and evaluation of a new IT artifact based on business needs on the one
hand, and an existing knowledge base on the other hand. In this sense, it provides a framework
for our objective of systematically developing a solution for collaborative EUA on evolving
complex linked data.

The environment as one driving force of the framework represents the problem space and context
and refers to people, organizations, and technologies which drive the design of an IT artifact.
Related to this, Sections 1.1 and 1.2 already introduced the problem statement and correspond-
ing research questions respectively. Chapter 3 will further elaborate on the environment by
describing a conceptual framework of collaborative EUA based on complex linked data which
also includes roles of involved users. The derived requirements represent the business needs as
defined by the design science research method and thus ensure relevance of the designed IT
artifact.

The other driving force of design science is the knowledge base which ensures rigor of the IT
artifact’s design. It captures related work which is summarized in Chapter 2 of this thesis.
On the one hand, we describe related work which serves as foundation for the design of this
thesis’ artifact. This includes research about EUA in general and spreadsheets in particular.
Furthermore, we elaborate on meta-model-based information systems and describe Hybrid Wikis

7



1. Motivation and Introduction

• Need for collaborative 

EUA based on complex 

linked data

• Experiences from 

applications of a meta-

model-based 

information system

• Shortcomings of current 

EUA tools

Related Work, e.g., on,

• EUA in general

• Spreadsheets as EUA 

tools

• Collaborative Business 

Intelligence

• Model-based 

information systems

• Human-Computer 

Interaction (HCI)

• …

Environment Knowledge Base

Design and prototype of 

an IS supporting 

collaborative EUA of 

complex linked data

Multiple iterations of 

different evaluation 

methods

IS Research

Business 

Needs
Applicable

Knowledge

Assess Refine

Application in the Appropriate 

Environment

Additions to the 

Knowledge Base

Relevance Rigor

Figure 1.2.: Information systems research framework (Hevner et al., 2004) adapted to the present
thesis’ contribution

as one of their representatives in detail. On the other hand, we summarize related approaches
to collaborative EUA and differentiate them from the approach as pursued in this thesis.

The heart of the design science research framework—both figuratively and conceptually—is the
design of an IT artifact. This thesis’ core IT artifact is the design and prototypical implemen-
tation of an information system which supports collaborative EUA based on complex linked
data (cf. Chapters 4 and 5). According to Hevner et al. (2004), the IT artifact should be de-
signed in multiple iterations including two different phases: A "Develop/Build" phase in which
concrete design and development activities are carried out, and a "Justify/Evaluate" phase in
which intermediary manifestations are assessed against the business needs in general, and con-
crete requirements in particular. Chapter 6 of this thesis elaborates on how our IT artifact was
evaluated in different phases of the design process and with different evaluation methods, e.g.,
experiments and case studies.

As recommended by Hevner et al. (2004), we follow the seven guidelines which they propose in
order to perform effective design-science research:

1. Design as an Artifact In this thesis, we develop an approach for collaborative EUA based on
complex linked data which represents the main IT artifact in the sense of design science. As
described in Chapter 5, we also implemented a respective prototype and outline technical
implementation highlights, particularly its UI design. Therefore, the prototype is the
instantiation of the designed IT artifact and furthermore serves as a proof of concept.

2. Problem Relevance In Section 1.1, we outlined two domains—EAM and NPD—in which EUA

8



1. Motivation and Introduction

is hindered by challenges induced by, e.g., complex linked data, data model evolution,
and collaboration. As shown in Chapter 2, current EUA approaches and tools do not
address those challenges adequately, or—more specifically—do not meet the requirements
as described in Chapter 3. On the other hand, related research (cf. Section 2.3) shows that
there is a need for a collaborative EUA approach for evolving complex-linked data.

3. Design Evaluation As described in Chapter 6, we validated our approach in multiple iterations.
In the first iteration, we evaluated primarily the expressiveness and utility of the designed
query language by applying the prototype for the definition and automated calculation of
metrics in EAM (cf. Section 4.2.3). In a second iteration, we demonstrated the prototype to
three different organizations in different domains, and interviewed them in order to identify
concrete and practical use cases and concerns which are addressable by our approach (cf.
Section 6.2). As a third evaluation iteration, we conducted experiments for assessing
the usability of the editor for defining complex queries. Finally, in the fourth and final
iteration, we gave the prototype to three enterprises which used it for ad-hoc EA analysis
based on their organization-specific EA data (cf. Section 6.3).

4. Research Contributions The conceptual framework and requirements for an approach to col-
laborative EUA for evolving complex linked data are outlined in Chapter 3. Based on this
foundation, we design generic concepts and generate generic knowledge which serves as
the main research contribution of this thesis. A prototypical implementation serves as a
proof of concept, while the evaluation iterations showed the utility of the prototype and
practicability of the approach.

5. Research Rigor Chapter 2 reports on the foundations and related research of our approach,
e.g., end-user-driven data visualizations (Chi and Riedl, 1998), visual information analy-
sis (Isenberg et al., 2008), end-user-driven model analysis (Roth et al., 2013), and general
EUA (Tamm et al., 2013). Based on this, we derive a conceptual framework for collab-
orative EUA and subsequently derived concrete requirements for a respective approach.
Furthermore, we conduct a state-of-the-art analysis by observing spreadsheets as de facto
standard tools for EUA in corporate environments. Finally, we discuss how we performed
the different iterations of the evaluation, and provide a detailed description on the respec-
tive results and findings.

6. Design as a Search Process The IT artifact was iteratively developed and evaluated. In each
evaluation phase, we also identified open issues and deficiencies of the prototype which
were the input for the redesign of the artifact. For example, in the first iteration we
identified deficiencies regarding the expressiveness of the query language for defining EA
metrics. As a consequence, we utilized those findings by implementing additional opera-
tions and by extending the language’s type system accordingly (cf. Sections 4.2.3). In the
following iterations, we proceeded analogously, whereas the artifact represents the result
of a continuous design and redesign process.

7. Communication of Research We published preliminary and partial results of different phases of
the design process to conferences with a focus on Information System (IS) and Software En-
gineering (SE) and discussed our work with professionally like-minded researchers in related
fields. For example, we published findings of the state-of-the-art analysis of today’s EUA

9



1. Motivation and Introduction

tools (Reschenhofer and Matthes, 2015b,a; Reschenhofer et al., 2016c,d), and UI-related as-
pects of our approach (Reschenhofer et al., 2016b; Reschenhofer and Matthes, 2016b), and
general lessons learned from applying meta-model-based information systems (Reschen-
hofer et al., 2016a).

1.4. Contributions of this Thesis

Figure 1.3 summarizes the contributions of this thesis and relates them to the research questions
raised in Section 1.2, to the chapter of this thesis in which they are discussed and described, to
concrete research artifacts, and to (peer-reviewed) publications which we created in the context
of this thesis.

2 Foundations 
and Related 

Work

3 Identification 
of Requirements

4 Conceptual 
Design

5 Prototypical 
Implementation 

and UI Design
6 Evaluation

7 Conclusion 
and Critical 
Reflection

RQ 1
RQ 5

RQ 6 RQ 7

Concepts and 

Terminology

Identified Research 

Gap

State-of-the-art 

Analysis

System Design

Meta-model

Query Language 

Design

Means for Meta-

analysis

Concepts for Reusable 

Visualizations

Innovative UI Designs

Query Language 

Editor

Reusable Platform 

Components

Lessons Learned

Case Study Reports

Interview Series

Reports from 

Experiments

Open Issues

Known Limitations

Further Research 

Opportunities

R
es

ea
rc

h
 

Q
u
es

ti
o
n
s

T
h
es

is
 

C
h
ap

te
r

R
es

ea
rc

h
 R

es
u
lt

 /
 A

rt
if

ac
t

P
ee

r-
re

v
ie

w
ed

P
u
b
li

ca
ti

o
n
s

RQ 3

RQ 4

[R
esch

en
h
o
fer an

d
 M

atth
es, 2

0
1
5
a]

[R
esch

en
h
o
fer an

d
 M

atth
es, 2

0
1
5
b
]

[R
esch

en
h
o
fer an

d
 M

atth
es, 2

0
1
6
c]

[R
esch

en
h
o
fer an

d
 M

atth
es, 2

0
1
6
d
]

[R
esch

en
h
o
fer et al., 2

0
1
4
b
]

[R
eh

m
 et al., 2

0
1
4
]

[B
h
at et al., 2

0
1
5
]

[W
altl et al., 2

0
1
5
]

[R
esch

en
h
o
fer an

d
 M

atth
es, 2

0
1
6
a]

[R
esch

en
h
o
fer et al., 2

0
1
6
a]

[R
esch

en
h
o
fer et al., 2

0
1
6
b
]

[R
esch

en
h
o
fer an

d
 M

atth
es, 2

0
1
6
b
]

Conceptual Overview 

and Framework

Requirements

RQ 2

Figure 1.3.: The main contributions of this thesis

The first contribution of this thesis is a comprehensive introduction and description of concepts
related to EUA and meta-model-based information system as well as open issues of collaborative
EUA on complex linked data. Thereby, we first describe EUA and meta-model-based information
systems individually, and subsequently elaborate on how we intend to bring them together.

10



1. Motivation and Introduction

Furthermore, we conduct a state-of-the-art analysis of current EUA tools, and elaborate on how
they are currently applied as information systems for the support of knowledge-intensive team
work, and from which shortcomings they suffer in this context. This leads to the identification
of a research gap which was already briefly introduced in Section 1.1. Based on this as well as
on related research, we define a conceptual framework for collaborative EUA based on meta-
model-based information systems. This framework forms the foundation for the identification
of requirements (cf. Chapter 3).

The second contribution is the conceptual design and prototypical implementation of a tool which
supports the collaborative EUA of evolving complex linked data structures. The conceptual
design phase includes the derivation of a system design from the requirements as identified
Chapter 3 as well as the development of conceptual meta-model capturing all concepts required
for EUA based on meta-model-based information management. Moreover, we present the design
of a query language which empowers end-users to define metrics and configure visualizations at
run-time and elaborate on essential properties of this language in the context of evolving complex
linked data structures. To address awareness issues in a collaborative environment, we developed
concepts to enable end-user-driven meta-analysis of data, analysis, and visualization artifacts as
well as their relations to the users of the system (cf. Section 4.4).

The third contribution arises from the evaluation of our approach and prototype in experiments
and case studies as described in Chapter 6. The thesis reports on specific findings from applying
the prototype for the definition and evaluation of complexity metrics in EAM, demonstrating it
to practitioners in the domains of Enterprise Architecture Management, Financial Risk Manage-
ment, and Data Quality Management, conducting experiments with students, researchers, and
practitioners, and utilizing the tool for ad-hoc EA analysis in a corporate environment. Those
findings particularly include open issues and shortcomings of the current prototype. On the top
of this, the thesis reports on lessons learned from the implementation of our approach.

1.5. Outline of this Thesis

The structure of this thesis is primed by the problem statement and the research methodology as
described in Sections 1.1 and 1.3 respectively. As illustrated in Figure 1.3, the thesis is divided
into the following chapters:

Chapter 1: Motivation and Introduction motivates the thesis and describes the concrete prob-
lem statement which is addressed. Furthermore, this chapter reports on derived research
questions and summarizes the main contributions which are implied by them.

Chapter 2: Foundations and Related Work introduces to related research which forms the foun-
dations for this thesis’ approach. It also contains a state-of-the-art analysis of how spread-
sheets as de facto standard EUA tools are currently applied for supporting knowledge-
intensive team work. Additionally, this chapter gives an overview over related research
about similar approach, and differentiates them from ours.

Chapter 3: Identification of Requirements presents a conceptual framework of how we perceive
collaborative EUA based on related research in the field of end-user-driven data visualiza-

11



1. Motivation and Introduction

tions (Chi and Riedl, 1998), visual information analysis (Isenberg et al., 2008), end-user-
driven model analysis (Roth et al., 2013), and general EUA (Tamm et al., 2013). Based
on this, the chapter describes how we derived a set of requirements which were drivers for
the conceptual design of our solution.

Chapter 4: Conceptual Design elaborates on different aspects of the design of a system for col-
laborative EUA on evolving complex linked data structures. It covers the conceptual
architecture and conceptual meta-model as well as the design of a formal language em-
powering end-users to define complex queries, e.g., metrics in EAM.

Chapter 5: Prototypical Implementation and User Interface Design presents selected highlights of
the prototype’s implementation. This particularly refers to UI-related design decisions,
e.g., the design of a query editor and the design of an end-user explorable meta-analysis
surface. Furthermore, the thesis also describes the concrete system architecture which
extends the architecture of an already existing Hybrid Wiki prototype (Matthes et al.,
2011).

Chapter 6: Evaluation reports on how we conducted multiple evaluations during the course of
the design and prototypical implementation of our approach. The chapter also highlights
respective key findings and how they drove the redesign of the prototype.

Chapter 7: Conclusion summarizes the main contributions of the thesis, and comprehensively
and critically reflects on the research process and results regarding potential threats. Fur-
thermore, the last chapter outlines possible future research activities which are enabled by
this thesis.

12



CHAPTER 2

Foundations and Related Work

This chapter provides the foundation for the derivation of requirements in Chapter 3 and rep-
resents an overview over the related knowledge base in the sense of Hevner et al. (2004).

This thesis’ main contribution is the development of an approach empowering end-users to
collaboratively analyze evolving complex linked data. As shown in Figure 2.1, our approach
is developed by bridging the gap between two complimentary fields of research, namely meta-
model-based information systems on the one hand, and tool-support for End-User Analytics
(EUA) on the other hand. Meta-model-based information systems address the support for
adaptable and evolving data structures, while EUA is about tools empowering end-users to
analyze data in a self-directed way. We introduce those two research fields in Sections 2.1 and
2.2 respectively. Section 2.3 provides an overview over related research approaches which are
also considered as a combination of meta-model-based information systems and EUA approaches,
although with different focuses.

Meta-model-based Information Systems

(Section 2.1)

Tool-support for End-User Analytics

(Section 2.2)

Related Work

(Section 2.3)

Our 

Approach

Figure 2.1.: An illustration of topics representing foundations and related work and their relation
to the thesis’ approach.

13



2. Foundations and Related Work

2.1. Adaptive Information System

Adaptive Information Systems (AIS) address the problem of changing requirements due to vari-
ous factors, e.g., new legal regulations, or technological innovations. They provide means which
allow end-users to quickly tailor them to the changing demands relevant to a particular do-
main. This is often referred to as End-User Development (EUD) or Domain Expert Configura-
tion (DEC) (Mørch et al., 2004; Vitharana, 2003). Thereby, domain experts adopt a consulting
role and configure the information system to the (potentially evolving) domain-specific envi-
ronment (Følstad, 2007). This not only means a reduced effort and thus reduced costs when
adapting the software at run-time, but also improves the efficiency due to the better fit with
the domain-specific setting (Spahn et al., 2008a; Wulf and Jarke, 2004). Utilizing user creativ-
ity and user acquired habits for the continuous redesign are further motivations for EUD and
DEC (Costabile et al., 2003). While not being able to adapt information systems at run-time
to changing environments might lead to a decrease of the quality of support (van Oosterhout
et al., 2006), EUD can impose significant challenges to a system’s user as well (Pinnington et al.,
2007). For example, EUD requires additional training for end-users, and an increased awareness
of the implications of adaptions to the software.

2.1.1. Meta-model-based Information Systems

One elementary aspect of information systems which usually is changed very frequently is its
data model (McGinnes and Kapros, 2015). Addressing this issue, meta-model-based informa-
tion systems enable end-users to adapt (domain-specific) data models at run-time and to tailor
them to changing environments. A meta-model describes a "model of a data model" and thus
captures the means by which end-users can define and manipulate data models. In this sense,
the domain-specific structures of a data model can be implemented and adapted at run-time
and are decoupled of the information system’s implementation. This system property is called
conceptual independence (McGinnes and Kapros, 2015). Figure 2.2 illustrates how model-based
information systems compare to meta-model-based information systems in terms of the data
model’s adaptability.

In general, there are two co-existing user roles for managing data models in meta-model-based
information systems (Spahn et al., 2008a; Wulf and Rohde, 1995): Model designers (or Modeling
experts) define and adapt the data model, and data owners maintain the data and perform
changes to it. As illustrated in Figure 2.2, data is defined by data owners and consists of entities
defined through their attributes and relations, while the data model imposes a given structure
and constraints to the data. In meta-model-based information systems, the data model can
be defined at run-time by model designers based on the system’s meta-model. Therefore, in
this kind of system, data and model co-evolve by a traditional top-down approach, by an agile
bottom-up approach, or by a combination of them (Reschenhofer et al., 2016a).

In the top-down (model-first) approach, the co-evolution of the data and its model is triggered
by model designers. This means that one or multiple model designers define the data model
based on initial requirements, and tailor it if those requirements change. As a consequence, data
owners have to adapt the data for which they are responsible for in order to keep it consistent

14



2. Foundations and Related Work

Model-based Information System

Data
Entities, attributes, relations 

created by data owners

Model
Hard-coded types, structure, 

constraints

Imposes constraints 

to the data

Instantiates 

the model

Meta-model-based Information System

Data
Entities, attributes, relations 

created by data owners

Model
Types, structure, constraints, 

defined by model designers

Imposes constraints 

to the data

Instantiates 

the model

Meta-model
Hard-coded means for 

designing data models

Determines how 

to define models

Instantiates the 

meta-model

Hard-coded / not adaptable at runtime

Adaptable at runtime

Figure 2.2.: model-based information systems vs. meta-model-based information systems

with the changing data model. In this way, the top-down approach structures the problem
domain and enforces data owners to ensure consistency of the data and its model.

On the other hand, in the bottom-up (data-first) approach, the data is captured and structured
before an actual data model is defined. Based on this and supported by the data modeler, a
data model and data model adaptions can be derived semi-automatically from existing data
structures. This allows data owners to contribute with their domain-specific knowledge to the
design of the data model and reduces the number of hand-shakes required in updating the data
model.

In cases where the data model is not known from the start, a hybrid approach might be the
most appropriate (Reschenhofer et al., 2016a). This means that in early stages, the bottom-up
approach enables model designers to harness collective intelligence of domain experts to design
the model. If the data model evolves and matures, a switch to a top-down approach helps model
designers to control the evolution of the data model and to reach a desired target model. Hybrid
Wikis as defined by Matthes et al. (2011) support such a mixed approach.

2.1.2. Hybrid Wikis

The concept of Hybrid Wikis was introduced by Matthes et al. (2011) as a knowledge manage-
ment means based on the common Web 2.0 concept of wikis. Originally, the term Hybrid referred
to the fact that it only integrates a subset of semantic wiki features (Krötzsch et al., 2006). How-
ever, with the modeling approach of model-first and data-first in mind, hybrid can also express a

15



2. Foundations and Related Work

mixed approach to data modeling. Hybrid Wikis support both approaches simultaneously, and
model designers can switch between them seamlessly.

Wiki

TypeTagDefinition

AttributeDefinition

WikiPage

type

0..1

1

Attribute

AttributeValue

StringValue LinkValue

1

definition

1

Validator

MultiplicityValidator TypeValidator

1..*

*

*

*

name : String

1

1

*

*

1

1

*

*

name : String

name : String

TypeTag.name

conforms

TypeTagDefinition.name

Attribute.name

conforms

AttributeDefinition.name

TypeTag

name : String

*

*

AccessControlled

AccessControlled

has ▼

has ▼

has ▲

◄ has has ►

is restricted by ▼

is defined by ▼

Figure 2.3.: The original Hybrid Wiki meta-model as defined by Matthes et al. (2011). The
implementation of the AccessControlled interface is illustrated in Figure 2.5.

Figure 2.3 shows the original conceptual Hybrid Wiki meta-model by Matthes et al. (2011).
Based on traditional wiki systems, it captures the concepts of Wikis and Wikipages which are
connected through a composition association. One of the characterizing features of Hybrid Wikis
is the possibility to attach Attributes to Wikipages, which in turn can have potentially multi-
ple AttributeValues—either simple StringValues or LinkValues representing relations to other
Wikipages. In this sense, those concepts represent the data of the Hybrid Wiki system. The Hy-
brid Wiki system’s data model is composed by TypeTagDefinitions which are defined through
AttributeDefinitions. AttributeDefinitions define potentially multiple validators which impose
certain constraints to corresponding Attributes. For example, TypeValidators can force corre-
sponding Attributes to be of a particular type, while MultiplicyValidators enforce a particular
cardinality (e.g., there has to be at least one AttributeValue for the corresponding Attribute).
The data is connected to its model via so-called TypeTags. In this way, data owners can assign
TypeTags to a givenWikiPage. As a consequence, theWikiPage has to comply to the structure as
defined by the TypeTagDefinition whose name matches with the TypeTag within the same Wiki.
This means that all of theWikiPage’s Attributes which have a corresponding AttributeDefinition
(again, Attributes and AttributeDefinitions are matched by their names) have to comply to the

16



2. Foundations and Related Work

respective Validators as defined by the model designer. It is worth noting that within the Hybrid
Wiki meta-model, data and model concepts are defined on the same meta level. This means
that from a conceptual point of view, WikiPages and TypeTagDefinitions are connected through
intra-level associations instead of inter-level "instance of" relationships (Geisler et al., 1998).
Consequently, there can be WikiPages which are not assigned to any TypeTagDefinition.

Workspace

EntityType

AttributeDefinition

Entity
type

0..1

1

Attribute

AttributeValue

NumberValue …Value

1

definition

0..1

TypeConstraint

NumberConstraint …Constraint

has ▼

*

*

0..1

*

name : String

multiplicity : Multiplicity

«enumeration»

Multiplicity

Any number

At least one

Exactly one

Maximal one

1

1

* *

1

1

*

*

name : String

name : Stringtype : String

Entity.type

conforms

EntityType.name

Attribute.name

conforms

AttributeDefinition.name

AccessControlled

AccessControlled

has ▼

◄ has has ►

is defined by ▼

is restricted by ▼

Figure 2.4.: The updated Hybrid Wiki meta-model by Reschenhofer et al. (2016a). The imple-
mentation of the AccessControlled interface is illustrated in Figure 2.5.

After more than five years of applying the Hybrid Wiki system in different domains (e.g., En-
terprise Architecture Management and New Product Development), the feedback of users led to
the need for changes of the Hybrid Wiki meta-model (Reschenhofer et al., 2016a). The updated
Hybrid Wiki meta-model is depicted in Figure 2.4. First of all, Hybrid Wikis were applied not
only as knowledge management tool, but also as user-driven and model-based data repository.
As a consequence, users of the Hybrid Wiki system were referring to information objects as En-
tities instead of WikiPages. This more general designation of information objects also detaches
them from their specific representation as wiki pages. At the same time, Wikis were renamed to
Workspaces, and TypeTagDefinitions were renamed to EntityTypes. Renaming concepts seems
to be a negligible adaption of the meta-model. However, collaborative information management
requires to communicate with co-workers using terms and concepts as provided by the informa-
tion system. Therefore, the terminology of the meta-model and the naming of concepts is of a
significant relevance.

Another change to the Hybrid Wiki meta-model was the removal of the TypeTag concept as an
association class between WikiPages/Entities and TypeTagDefinitions/EntityTypes. Further-

17



2. Foundations and Related Work

more, the Hybrid Wiki system’s application revealed that the possibility of assigning multiple
TypeTags to one WikiPage was perceived as unintuitive on the one hand, and caused distraction
in case of conflicts regarding constraints of Attributes on the other hand (e.g., if there are two
or more AttributeDefinitions with the same name but with divergent TypeValidators). In the
updated meta-model, the association between Entities and EntityTypes was modeled as a many-
to-one relationship. However, data owners can still create Entities which are not assigned to any
EntityType and thus do not underlie any restrictions defined by model designers. Analogously,
data owners can also add Attributes to Entities which are not (yet) defined as corresponding
AttributeDefinitions. Those Attributes are also called Free Attributes.

Based on the feedback gained from the Hybrid Wiki system’s application, the set of attribute
types was extended. In total, the updated Hybrid Wiki meta-model supports the following
attribute types, i.e., for each type T there is a respective TValue and TConstraint class:

String An arbitrary string which can be further restricted by model designers by either providing
a regular expression or a predefined set of enumeration values.

Link A reference to another entity. Model designers can specify LinkConstraints in a way that
only references to Entities of a specific EntityTypes are allowed.

Number Both integers and decimals.

Boolean Either true or false.

Date A date consisting of a day, month, and year component.

Since supporting attributes with multiple values as well as multiple relations to other data
entities, the Hybrid Wiki system only lacks support for arbitrarily nested attributes in order to
fit the definition of complex linked data structures from Chapter 1. Therefore, by extending the
Hybrid Wiki meta-model accordingly (cf. Section 4.1.1), it qualifies as conceptual and technical
foundation for this thesis’ approach and prototype.

On the top of data management and structuring concepts, the Hybrid Wiki system also provides
the following relevant basic collaboration and content management features (Neubert, 2012):

Access Control To control which users are allowed to see and/or edit entities, the Hybrid Wiki
system implements access control lists. Thereby, administrators of an entity specify a
set of users or groups which are allowed to read (readers), edit (writers), or set access
rights (administrators) of this entity. Those access rights can also be set on the level of
workspaces specifying a default behavior for the entities of a workspace.

Figure 2.5 illustrates the authorization model. The AccessControlled interface represents
objects which are controlled by access control lists. In the Hybrid Wiki meta-model in
Figure 2.4, the Entity and Workspace classes implement this interface. Users and Groups
are subsumed under the abstract class Principal by using the composite pattern (Gamma
et al., 1994), which can be assigned to an access-controlled object either as readers, writers,
or administrators.

Version History The Hybrid Wiki system automatically tracks the evolution of entities within
their life-cycle which is referred to as version history (Büchner, 2007). Thereby, for each

18



2. Foundations and Related Work

Principal

0..1

▲is member of

*

name : String

Group User

readers ►

writers ►

administrates ►

*

*

1..*

* * *

«interface»

AccessControlled

Figure 2.5.: The authorization model of Hybrid Wikis. Both the Entity and the Workspace in
Figure 2.4 implement the AccessControlled interface.

entity the system maintains a chronologically ordered list of change events which capturing
contextual meta-information, e.g., the time when the event occurred, or the user who
triggered the event.

File Attachments Users can attach an arbitrary number of files to entities. Those files are also
captured by the system’s access control and version history mechanisms.

Full Text Search with Facets Since originally designed as a knowledge management tool, the Hy-
brid Wiki system empowers users to find entities by full text search capabilities. Further-
more, the search results can be refined and filtered by using facets addressing the structure
properties of the entities in the result set.

Watching The Hybrid Wiki system allows users to explicitly watch entities of interest, i.e., users
are notified if specific events are triggered for this entity, e.g., if it is changed.

In this sense, the Hybrid Wiki system does not only provide useful properties regarding the
iterative definition of data models, but also a variety of collaboration features. This further
underlines the Hybrid Wiki system’s applicability as conceptual and technical foundation for a
collaborative EUA tool as intended by this thesis.

2.2. Tool-support for End-User Analytics

The digital transformation of today’s enterprises leads to an increasing importance of knowl-
edge workers which are able to perform complex information management and analysis tasks
autonomously and collaboratively (Davenport, 2013). On this note, Tamm et al. (2013) de-
fine End-User Analytics (EUA) as a sub-domain of End-User Development (EUD) empowering
end-users to make evidence-based decisions by self-directed data analysis. They differentiate
between two types of business analytics users: Analytics Professionals use powerful means and
tools (e.g., data mining, simulation, prescriptive modeling) to perform sophisticated data science
tasks (Davenport and Patil, 2012), while Analytics End-Users use mostly predefined reports,
dashboards, and—most notably—spreadsheets. In the thesis at hand, we particularly focus on
the latter user role which is empowered to create value from data by herself.

Spreadsheets provide versatility in the sense that they empower end-users to structure, analyze

19



2. Foundations and Related Work

and visualize data by themselves (Pemberton and Robson, 2000). However, spreadsheets were
designed with a "focus on solving problems aiding in personal decision making, and increasing
personal productivity"(Senn, 2004). Therefore, traditional spreadsheets are EUA tools for in-
dividuals. Ironically, well-founded decision making should include multiple stakeholders with
different expertises at different stages of the decision making process (Berthold et al., 2010). In
this sense, collaborative EUA involves multiple end-users in defining the data model, analyt-
ical abstractions, and visualizations. This leads to new challenges (Kaufmann and Chamoni,
2014), particularly since a collaborative environment no longer matches the initial purpose of
spreadsheets as personal productivity tools.

Nevertheless, spreadsheets are still the most-prominent and most-used software tool in general,
and the most important EUA tool in particular. More than 90% of all desktops worldwide have
spreadsheets installed (Bradley and McDaid, 2009), while a huge majority of enterprises in the
United States and Europe use spreadsheets for different business analytics tasks (Panko, 2006).
Due to their overwhelming quantity and importance, but at the same time their invisibility to an
organization’s IT departments, Panko and Port (2012) famously called spreadsheets the "dark
matter" of corporate IT.

In this thesis, we aim for a novel EUA approach to empower end-users to analyze evolving com-
plex linked data. As a consequence, we want to understand the success factors and shortcomings
of current EUA tools. For this reason, we performed a state-of-the-art analysis of spreadsheets as
the de facto standard among s EUA tool. In Section 2.2.1, we outline the characterizing features
of spreadsheets which also represent the success factors of this kind of EUA tools. Subsequently,
Sections 2.2.2, 2.2.3, and 2.2.4 summarize our findings from analyzing spreadsheets and their
usage in different domains as well as shortcomings occurring in those contexts respectively.

2.2.1. Characterizing Features of Spreadsheets

According to Hermans (2012), the spreadsheet paradigm is the most successful programming
paradigm. Even in 2005, Scaffidi et al. (2005) estimated that the number of end-user pro-
grammers in general and spreadsheet users in particular is much higher than the number of
professional programmers.

The first spreadsheet software system—VisiCalc —was released in 1979. It already supported
interaction features which still characterize today’s spreadsheet software. IBM and Microsoft
followed by building and releasing IBM Lotus 1-2-3 and Microsoft Excel respectively. There are
even more spreadsheet tools and approaches which were developed in the last decades (Abraham
et al., 2008). Most of them share a common set of features which characterize spreadsheets and
represent the success factors of the spreadsheet paradigm:

Flexible Data Management The study by Pemberton and Robson (2000) shows that spreadsheets
are heavily used for flexible data management, e.g., to sort and organize data, or to apply
advanced database functions. By using the spreadsheet grid as an intuitive UI, end-users
are able to maintain and structure huge data sets primarily consisting of textual and
numerical data (Chambers and Scaffidi, 2010). While the flexibility regarding the data
structures is a characterizing feature of spreadsheets, the lack of an explicit data model

20



2. Foundations and Related Work

makes it difficult for users to understand a spreadsheet’s design which in turn can lead
to errors (Hermans, 2012). Section 2.3.1 outlines approaches for the explicit definition of
spreadsheet models.

Analytical Functions The most obvious characteristic of spreadsheets is the empowerment of end-
users to define calculations by themselves (Hermans, 2012). Thereby, the grid based data
reference model turned out to be a very intuitive and user-friendly way of defining formulas
based on the spreadsheet’s data (Abraham et al., 2008). Users mostly use simple formu-
las and operations (Chambers and Scaffidi, 2010), e.g., simple arithmetic calculations.
However, a considerable proportion of spreadsheet users also applies more sophisticated
analytical functions, e.g., regression and correlation analysis and advanced statistical anal-
ysis (Pemberton and Robson, 2000).

Visual Analysis through Charts According to the study by Pemberton and Robson (2000), end-
users utilize spreadsheets to create charts as graphical representations of their data and
respectively derived analytical abstraction. Again, they mostly use basic charts types,
e.g., bar charts, or line charts (Reschenhofer et al., 2016c). Chambers and Scaffidi (2010)
argue that in certain cases there is also a need for customizations of existing charts or the
creation of new "exotic" chart types.

Immediate Visual Feedback As a cross-cutting UI aspect, immediate visual feedback on in-
teractions of the user with the spreadsheet is an essential feature of the spreadsheet
paradigm (Abraham et al., 2008). Originally described by the term "liveness" (Tanimoto,
1990), visual feedback refers to the spreadsheet’s automated recalculation and redrawing of
formulas and visualizations respectively on changes of the artifact itself or one of its inputs.
In this way, users can immediately check if the performed action leads to the intended out-
come. Consequently, this feature forms the foundation for related research on improving
the testability of spreadsheets, e.g., the "What You See Is What You Test" (WYSIWYT)
methodology (Rothermel et al., 2000; Burnett et al., 2001). On a negative note, imme-
diate visual feedback can also hinder effective problem solving, and it certainly does not
guarantee the absence of errors (Svendsen, 1991; Wilcox et al., 1997).

Interoperability Interoperability with related systems, e.g., databases, word processors, or sta-
tistical software (Pemberton and Robson, 2000), is one of the deciding success factors of
spreadsheets. Pemberton and Robson (2000) even claim that the position of Microsoft
Excel as the market leader in the context of spreadsheet software is mainly due to its
integration with other Microsoft products. In fact, in many cases companies do not even
evaluate alternative spreadsheet solutions before turning to Microsoft Excel (Robson and
Pemberton, 1996).

In Chapters 3 and 4 we will revive those features and elaborate on how they can be integrated
into a collaborative and meta-model-based information system supporting evolving complex
linked data.

21



2. Foundations and Related Work

2.2.2. Semantic Structures in Today’s Spreadsheets

As a next step of the state-of-the-art analysis of spreadsheets, we outline our findings of analyzing
semantic structures which typically occur in today’s spreadsheets (Reschenhofer et al., 2016c).
For this purpose, we analyzed 200 random spreadsheets of the Enron corpus (Hermans and
Murphy-Hill, 2015) which consists of more than 15,000 spreadsheets extracted from emails of
the Enron corporation (Klimt and Yang, 2004). Based on this analysis as well as mostly on the
work done by Hermans et al. (2010), Erwig and Engels (2005), and Cunha (2011), we derived
an integrated semantic meta-model of spreadsheets as shown in Figure 2.6.

This semantic meta-model captures the following structural patterns (Reschenhofer et al.,
2016c):

Entity List This is the most common and most discussed semantic spreadsheet pattern. It rep-
resents multiple data objects organized in a table. An entity list is defined through its
(potentially grouped) attributes which either represent input fields or derived attributes
defined by formulas. This structure of classes conforms to the composite pattern (Gamma
et al., 1994). While most entity lists (80 %) have a simple structure, some of them are
more complex due to groupings, aggregations, or constraints.

Time Series Time series are an extension of entity lists and add a specific temporal timestamp
attribute to the data objects which also implies an intrinsic order of data objects. Fur-
thermore, the time series also marks a specific set of numerical attributes as its time series
variables, based on which one can perform common time series analytics (Brockwell and
Davis, 2009).

Singleton While entity lists represent an array of data objects, the singleton pattern refers
to a single structured data item. Again, through the adoption of the composite pat-
tern (Gamma et al., 1994), singleton attributes can be grouped (Knight et al., 2000).

Matrix Although only identified twice in 200 spreadsheets, we defined matrix as a spreadsheet
structure having two fixed axes and respective values in the cells within the area spanned
by those axes.

Chart We also interpret charts as a separate semantic component, although they are different
from a syntactical point of view since they are not defined through a specific arrangement
of data on the spreadsheet grid. We differentiate between different chart types, e.g., bar
charts, line charts, or scatter charts.

Our analysis shows that entity lists are by far the most common semantic pattern in today’s
spreadsheets. Including time series as an extension of this pattern, they account for 75 %
of all identified patterns. This means that current analytics end-users (Tamm et al., 2013)
are mostly working with lists and tables of structured data objects. They define analytical
abstractions usually either as derived attributes—calculations based on attributes of the same
data object—or as aggregations, e.g., calculating the sum or average of mostly numerical values.
This knowledge serves as input for the design of a collaborative EUA approach as described in
Chapter 4.

22



2. Foundations and Related Work

E
n
ti

ty
S
tr

u
ct

u
re

E
le

m
en

t

n
am

e:
 S

tr
in

g

▲
d

ef
in

ed
 b

y

1

1
..

*

A
tt

ri
b

u
te

G
ro

u
p

ag
g

re
g

at
io

n
: 

E
x

p
re

ss
io

n

0
..

1

1
..

*

◄
b

el
o

n
g

s 
to

In
p

u
tA

tt
ri

b
u

te
D

er
iv

ed
A

tt
ri

b
u

te

fo
rm

u
la

: 
E

x
p

re
ss

io
n

◄
re

fe
rs

 t
o

*

*

A
tt

ri
b

u
te

H
is

to
ri

za
ti

o
n

ti
m

eR
es

o
lu

ti
o

n
: 

R
es

o
lu

ti
o

n

A
tt

ri
b

u
te

A
g

g
re

g
at

io
n

ag
g

re
g

at
io

n
: 

E
x

p
re

ss
io

n

1
1

..
*

0
..

1

*

h
is

to
ri

ze
s
►

◄
ag

g
re

g
at

es

0
..

1

0
..

1

▲
id

en
ti

fi
er

 f
o

r

0
..

1

0
..

1

h
as

 ►
su

b
g

ro
u

p
 o

f 
►

0
..

1
0

..
1

g
ro

u
p

ed
 b

y
 ►

1
..

*

0
..

1

G
ro

u
p

A
g

g
re

g
at

io
n

ag
g

re
g

at
io

n
: 

E
x

p
re

ss
io

n

◄
ag

g
re

g
at

es

1
*

A
tt

ri
b

u
te

C
o

n
st

ra
in

t

1

◄
co

n
st

ra
in

ts
*

E
n

ti
ty

G
ro

u
p

in
g

E
n

ti
ty

L
is

t

A
tt

ri
b
u
te

at
tr

ib
u

te
T

y
p

e:
 D

at
aT

y
p

e

S
p
re

ad
sh

ee
t

n
am

e:
 S

tr
in

g

C
o

m
p

o
n

en
t

n
am

e:
 S

tr
in

g

W
o
rk

sh
ee

t

n
am

e:
 S

tr
in

g

co
n

ta
in

s 
►

co
n

ta
in

s 
►

1
*

1
*

h
as

 t
im

es
ta

m
p

 

at
tr

ib
u

te
 ▼

1
..

*

T
im

eS
er

ie
s

at
tr

ib
u

te
T

y
p

e:
 D

at
aT

y
p

e

0
..

1

1

0
..

1
▼

h
as

 t
im

e 

se
ri

es
 v

ar
ia

b
le

s

S
in

g
le

to
n

d
ef

in
ed

 b
y

 ▼

1

1
..

*

S
in

g
le

to
n

A
tt

ri
b

u
te

G
ro

u
p

ag
g

re
g

at
io

n
: 

E
x

p
re

ss
io

n

0
..

1

◄
b

el
o

n
g

s 
to

S
in

g
le

to
n

A
tt

ri
b

u
te

at
tr

ib
u

te
T

y
p

e:
 D

at
aT

y
p

e

1
..

*

S
in

g
le

to
n
S
tr

u
ct

u
re

E
le

m
en

t

n
am

e:
 S

tr
in

g

M
at

ri
x

A
x

is

n
am

e:
 S

tr
in

g2

M
at

ri
x

ce
ll

T
y

p
e:

 D
at

aT
y

p
e

▲
b

el
o

n
g

s 
to

1
..

*

M
at

ri
x

A
x

is
E

le
m

en
t

n
am

e:
 S

tr
in

g

o
rd

er
: 

in
t

▲
ax

is
 o

f

1

1

C
h

ar
t

ch
ar

tT
y

p
e:

 C
h

ar
tT

y
p

e

v
is

u
al

iz
es

 ►
1

..
*

*

F
ig
ur
e
2.
6.
:
A
n
in
te
gr
at
ed

se
m
an
ti
c
m
et
a-
m
od
el
of
sp
re
ad
sh
ee
ts
(R
es
ch
en
ho
fe
r
et
al
.,
20
16
c)
.
T
he

gr
ee
n
cl
as
se
s
re
pr
es
en
t
id
en
ti
fie
d

se
m
an
ti
c
pa
tt
er
ns
.

23



2. Foundations and Related Work

2.2.3. Usage Patterns in Today’s Spreadsheets

In the previous section, we examined semantic patterns capturing typical data structures users
are working with. In this section, we study usage patterns describing how users actually utilize
spreadsheets in practice. To this end, we conducted multiple case studies in two German com-
panies (Reschenhofer and Matthes, 2015b). Firstly, we derived seven dimensions that enable
the differentiation of spreadsheet usages based on findings in related work (Ronen et al., 1989;
Simmhan et al., 2005; Hall, 1996; Lawson et al., 2009). The identified categories for distinguish-
ing spreadsheet usages are as follows (Reschenhofer and Matthes, 2015b):

Design Context Captures the usage and temporal scope of the spreadsheet, i.e., if the spreadsheet
is used only by its designer or also by other users, and if the spreadsheet is intended to be
used as an intentional business application (Grossman et al., 2007) or just for solving one
single problem instance (Ronen et al., 1989).

Data Origin Captures the provenance of the data (Simmhan et al., 2005) and the general type
of the data source, i.e., if the input data is based on human-made assessments, or based
on the output of other software systems.

Data Input Method Deals with the way how data is entered into the spreadsheet, e.g., manual
input by users, tool-supported import from other systems.

Computational Complexity Differentiates between three levels of computational complexity (Hall,
1996), namely low (only elementary operations), medium (advanced statistical operations),
and high (customized operations, e.g., through macros). Regarding the complexity of
spreadsheets, we also did our own study (Reschenhofer et al., 2016d) in order to identify
drivers to spreadsheet complexity, which could help to categorize spreadsheets based on a
certain set of metrics.

Output View Captures the type of the spreadsheet’s output, i.e., if the primary output of the
sheet is one or multiple (unformatted) data tables, or visual representations consisting of
charts and visually processed tables.

Data Consumer Analogous to the Data Origin dimension, the framework also deals with the
consumer of the spreadsheet’s output, which can be either another software system, or a
human being.

Data Historization is a cross-cutting dimension and captures how the spreadsheet deals with
historization (Lawson et al., 2009), e.g., if historized data is accumulated within one file,
if spreadsheet files are version-controlled, or if no data historization is provided.

Together with respective categories, the dimensions represent the classification framework as a
so-called Morphological Box (Zwicky, 1969) which is illustrated in Figure 2.7. By applying the
classification framework to nine industrial use cases in two German companies, we identified
three clusters consisting of spreadsheets with similar characteristics. Those clusters form the
following generic spreadsheet usage patterns:

Reporting Sheets This usage pattern refers to spreadsheets which usually integrate data from

24



2. Foundations and Related Work

Frequent usage by 

multiple users

Frequent usage by 

single user

One-shot

User Assessment

Unstructured Data 

Source

Structured Data 

Source

Manual Input

Automatic Import

Low Complexity

Medium Complexity

High Complexity

Raw Data

Dashboard

Software Systems

Design Context Data Origin
Data Input 

Method

Computational 

Complexity
Output View Data Consumer

Hybrid Input

Humans

Accumulation of 

Data

No Historization

Data 

Historization

Versioning of File

Reporting Sheets Documentation Sheets Data Transformation Sheets

Figure 2.7.: The dimensions and respective categories of the framework for classifying the spread-
sheet usages as well as identified usage patterns (Reschenhofer and Matthes, 2015b)

different sources, apply rather complex analytical operations, and generate a graphical
representation which is consumable by a specific group of human stakeholders.

Documentation Sheets Those spreadsheets serve as end-user-friendly data management tools, in
which usually data sets are maintained and viewed by one user group, and consumed by
another one. If at all, they only contain very basic analytical operations and visualizations.

Data Transformation Sheets Spreadsheets of this kind serve as data manipulation tools whose
purpose, e.g., is to restructure the output of a certain software system in order to make it
importable by another tool.

It should be noted that there are further usage patterns which were not identified in the context
of this work, e.g., data form sheets (Chambers and Scaffidi, 2010). Nevertheless, the developed
classification framework helps to categorize spreadsheets regarding how they are actually applied
in specific use cases. On the one hand, this categorization supports users to understand the
nature of the use case and problem for which they apply the spreadsheet, and to compare it
with similar spreadsheet applications. On the other hand, researchers and tool vendors can
address specific usage patterns and thus pattern-specific issues. The novel EUA approach as
presented in this thesis particularly addresses Reporting Sheet use cases.

2.2.4. Shortcomings of Spreadsheets from an IS Perspective

As the final part of the state-of-the-art analysis spreadsheets, we did research on problems and
shortcomings when applying them as information systems to support EUA tasks.

In fact, there is already lots of scientific work on how to classify errors, detect them, and debug
spreadsheets (Powell et al., 2008). With respect to classification, Ronen et al. (1989), Panko and
Halverson Jr. (1996), and Rajalingham et al. (2000) define taxonomies and models to categorize
errors, e.g., into quantitative and qualitative errors, while the former refers to errors which lead

25



2. Foundations and Related Work

to wrong numbers, and the latter defines a design issue which might cause other quantitative
errors. Regarding the identification and elimination of errors, there are multiple approaches
to enable user-friendly and integrated spreadsheet testing (Fisher et al., 2002; Panko, 1999;
Rothermel et al., 2000) and debugging (Abraham and Erwig, 2005; Ayalew and Mittermeir,
2003; Kankuzi and Sajaniemi, 2013). Those technical errors can have a considerable impact
on an organization’s business operation and thus lead to significant financial losses (Caulkins
et al., 2007; Powell et al., 2009). In most cases users are not even aware of those errors and
problems (Panko, 2015).

In addition to those technical errors, there are also shortcomings from an IS perspective. With
IS perspective, we refer to the holistic observation of spreadsheets in their business environment
including technology, people, and business processes. This means that spreadsheets do not have
to be erroneous as such, but might not support specific business processes adequately due to
technical debts. For example, spreadsheets were originally designed for "solving problems, aiding
in personal decision making, and increasing personal productivity" (Senn, 2004). However, in
practice, spreadsheets are often used as "intentional" applications (Grossman et al., 2007), i.e.,
spreadsheets which are purposefully developed and deployed to multiple users instead of using for
personal purposes only. Consequently, the lack of multi-user support (Ginige et al., 2010a) leads
inevitably to shortcomings with respect to the spreadsheet’s support for the knowledge-intensive
team work, although it might contain no errors.

To get an overview over this kind of shortcomings from an IS perspective, we observed cur-
rent spreadsheet applications in two companies as part of a study including nine cases already
described in Section 2.2.3 (Reschenhofer and Matthes, 2015a). In total, we identified 20 short-
comings which we classified into the following six categories:

Readability and Understandability Readability and understandability issues were already dis-
cussed in related research (Hermans et al., 2012; Cunha et al., 2012d) as a main driver
to the risk of errors. As revealed by the case studies, understandability is an issue on
different levels of abstraction. For example, interviewees mentioned a lack of formatability
and commentability of formulas as a concrete shortcoming since this hampers reading and
understanding concrete calculations. On a more general level, the lack of transparency
of a spreadsheet’s dependencies—constituted by its formulas and cell references—hinders
to comprehend the overall design of a spreadsheet (Hermans et al., 2011b) and was also
named as a related shortcoming.

Extendability The case studies revealed that interviewees found it difficult to extend the spread-
sheet software by additional data integration means, analytical operations, and customized
chart types. Although most spreadsheet software provide means to extend the computa-
tional expressiveness through macros, the interviewees consider their imperative paradigm
as not suitable for defining functional operations which can be reused later on by end-users.

Manageability This category refers to shortcomings about designing and maintaining spread-
sheets, particularly when using them over a longer period of time (Grossman et al., 2007).
One concrete shortcoming observed in the context of the cases studies was the lack of
modularity. This is related to the reuse of spreadsheets as already discussed by Chambers
and Scaffidi (2010). Furthermore, a lack of support for Application Lifecycle Manage-

26



2. Foundations and Related Work

ment (ALM) including designing, testing, and debugging spreadsheets was also mentioned
as a shortcoming by interviewees. This, however, is heavily discussed in related spreadsheet
research as described in the introducing paragraph of this section.

Collaboration and Multi-user Support Due to their original purpose of serving as a tool for per-
sonal problem solving and decision making (Senn, 2004), traditional spreadsheet software
naturally suffers from shortcomings regarding multi-user and collaboration support. This
includes the lack of means to efficiently design spreadsheets in a collaborative way, to set
access rights to individual cells, or to define user-specific views.

Data Data-related shortcomings as revealed in the context of the case studies include the lack of
support for complex data types as well as database-like spreadsheet queries. The former
issue was already discussed in Chapter 1, while the latter one was also subject to related
research (Cunha et al., 2013, 2014b).

Processes Process-related shortcomings of spreadsheets mainly refer to a lack of support for
process integration, e.g., to trigger a specific action based on a specific spreadsheet event.

Table 2.1 summarizes the identified shortcomings and indicates in how many of the nine cases
the shortcomings was mentioned by the respective interviewee.

The EUA approach based on Hybrid Wikis as described in this thesis intends to address most
of those shortcomings, particularly the lack of transparency, extendability, multi-user support,
and support for complex data. Therefore, the insights gathered from the studies about spread-
sheet shortcomings from an IS perspective are an essential contribution to the definition of
requirements and the design of the approach in Chapters 3 and 4 respectively.

2.3. Related Work

The previous Sections 2.1 and 2.2 summarize the foundations for our approach, namely meta-
model-based information systems and AIS in general as well as EUA and spreadsheets as the
most prominent representative of EUA tools in particular. Before combining both domains
and deriving requirements for a novel EUA approach to analyze complex linked data, we pro-
vide an overview over related approaches. In fact, we identified three different research areas
which are related to our work: Research on spreadsheets (cf. Section 2.3.1), collaborative BI
(cf. Section 2.3.3), and end-user-driven and model-based analytics and visualizations (cf. Sec-
tion 2.3.2).

2.3.1. Related Work based on Spreadsheets

Spreadsheets have already been studied for more than 25 years (Panko, 2006). Spreadsheet
research is mostly about errors and how to avoid, identify, and fix them (Powell et al., 2008).

In the context of this thesis we propose a novel EUA approach for analyzing complex linked data.
Since spreadsheets already provide proven means for EUA, the most obvious approach would
be to build our solution on the foundations of spreadsheet software. Therefore, we will provide

27



2. Foundations and Related Work

Shortcoming # of Cases

Readability and Understandability

01 Formatability and Commentability of Formulas 3

02 Named Cell Addressing 3

03 Transparency of Information Flow 2

Extendability

04 Integration of Custom Data Sources 3

05 Extendability of Computational Expressiveness 5

06 Custom Visualizations 6

Manageability

07 Managed Evolution of Spreadsheets 3

08 Separation of Data, Schema, and Logic 5

09 Modularity / Reusability 2

10 Application Lifecycle Management 5

Collaboration and Multi-user Support

11 Collaborative Spreadsheet Design 5

12 Element-based Access Control 7

13 Element-based Historization 8

14 User-specific Views 2

Data

15 Complex Data Types 6

16 Scalability 6

17 Spreadsheet Queries 1

18 Custom Spreadsheet Meta-data 1

Processes

19 Support for Automation 1

20 Reasoning of Derived Actions 2

Table 2.1.: A consolidated list of identified shortcomings as well as an indication of in how many
of the nine observed cases it was mentioned by a respective interviewee (Reschenhofer
and Matthes, 2015a).

28



2. Foundations and Related Work

an overview over related research in the field of spreadsheets in general, how related work on
spreadsheets addresses the issues outlined in Section 1.1, and how our approach differentiates
from existing ones. More specifically, related research in the field of spreadsheets is about
model-based spreadsheet engineering as well as spreadsheets in multi-user environments.

2.3.1.1. Model-based Spreadsheet Engineering

Addressing the avoidance of spreadsheet errors, model-based spreadsheet engineering (Cunha,
2011) aims for integrating the concept of structured data models with spreadsheets. Thereby,
spreadsheet modeling takes into account specific spreadsheet aspects, e.g., column arrangements,
and guides users in editing the spreadsheet data in a correct way (Cunha et al., 2014d). Beckwith
et al. (2011) have shown in their study that model-based spreadsheets can improve the effective-
ness of end-users and reduce the risk of errors significantly. This is particularly positive in the
light of legal and compliance regulations which address the risks and impacts of spreadsheets
and their errors when applied for supporting critical business processes (Panko and Ordway,
2005; Leon et al., 2010).

Erwig and Engels (2005) developed one of the first approaches to spreadsheet modeling, namely
ClassSheets. ClassSheets represent spreadsheet templates which capture the structure and re-
lationships of entities as well as descriptions of how attributes are derived from each other (cf.
derived attributes as defined in Section 2.2.2). In this context, spreadsheet modelers use the
Visual Template Specification Language (ViTSL) to define ClassSheets as a structure of verti-
cally and horizontally composable and recurring cell blocks (Abraham et al., 2005). In addition
to ensuring the compliance of spreadsheet instances to ClassSheet models and the resulting
reduction of the risk of errors, the ClassSheet approach is explicitly encouraging the reuse of
components and thus directly addresses shortcoming 09 of Table 2.1.

Cunha et al. (2012c) extend the ClassSheet approach and developed the MDSheet framework
which embeds ClassSheet models in a spreadsheet system in order to provide a coherent envi-
ronment, i.e., end-users use the spreadsheet interface to define spreadsheet models as well as
corresponding spreadsheet instances (Cunha et al., 2011a). Figure 2.8 illustrates an example
with a spreadsheet instance and a corresponding ClassSheet model embedded in a spreadsheet
system. In this example, the model defines a horizontally recurring group of cells containing
fields of different types. Furthermore, it also defines aggregations on the right end of the recur-
ring groups. Based on this template, the spreadsheet software restricts the user in editing the
data, e.g., by making sure that only data of the given type is entered, or that data sets or only
added according to the (horizontally) expandable group.

MDSheet also enables the model-driven evolution of spreadsheets. With respect to this, Cunha
et al. (2011b) propose a transformation system which map adaptions of spreadsheet models to
adaptions of the corresponding spreadsheet instances. For this purpose, they define semantic and
layout rules addressing both model and visual changes. Later on, they extend their approach to
support bi-directional changes (Cunha et al., 2012b), i.e., changes to spreadsheet instances can
be propagated to the corresponding spreadsheet model through model inference (Cunha et al.,
2010, 2014a). This enables an end-user-friendly refactoring of spreadsheets and their models

29



2. Foundations and Related Work

Figure 2.8.: An example of the application of MDSheet showing a spreadsheet instance of a
fictive airline company as well as the corresponding ClassSheet model (Cunha et al.,
2012a).

(Cunha et al., 2014c). In this sense, MDSheet supports both the data-first and model-first
approach to data modeling as described in Section 2.1.1.

On the top of spreadsheet models, end-users are also enabled to define model-based queries,
either by a textual query interface (Cunha et al., 2013) or a visual query language (Cunha et al.,
2014b). This addresses another shortcoming which was identified by our study as described in
Section 2.2.4, namely shortcoming 17 in Table 2.1.

While model-based spreadsheet engineering holds lots of promises (Cunha, 2011; Beckwith et al.,
2011), there are still shortcomings regarding the support for complex linked data as defined in
Chapter 1. Due to the limitation that spreadsheet cells basically only support strings, numbers,
and boolean values (Sestoft, 2011), multiple values as well as nested objects within a spreadsheet
cell are not supported. Furthermore, modeling relations and performing calculations based on
them—usually by applying the VLOOKUP function—is one driver to spreadsheet complexity
and a major cause for errors in spreadsheets (Reschenhofer et al., 2016d; Hodnigg and Mittermeir,
2008). Consequently, although ClassSheets and the MDSheet approach provide useful means
to define spreadsheet models, they are still not able to define complex linked data structures
qualifying to our definition.

2.3.1.2. Spreadsheets in Multi-user Environments

Already in 1990, Nardi and Miller (1990) discussed the support of spreadsheets for the coop-
erative development of applications from an ethnographic perspective. They observed that a
majority of spreadsheets in corporate environments are developed through collaboration of users
with different levels of technical skills and domain knowledge. In this way, tech-savvy developers
contribute to the spreadsheet design by implementing sophisticated code (e.g., complex formulas
or macros), and providing and teaching those code artifacts to less experienced users. Bringing
users with diverse technical skill sets and domain knowledge together fosters the development

30



2. Foundations and Related Work

of spreadsheet applications which are highly tailored to the respective domain setting and thus
can significantly improve the efficiency of their end-users (Spahn et al., 2008a; Wulf and Rohde,
1995).

On the top of bringing technical skills and domain knowledge together, Panko and Halverson Jr.
(1994, 1997, 2001) argue that the collaborative development of spreadsheets reduces the number
of errors significantly. Their studies show that groups of three collaborating users make 78%
fewer errors than single users. Collaborative spreadsheet development not only refers to group
development where multiple users are designing the spreadsheet simultaneously, but also to
scenarios where users are building program modules of spreadsheets independently and perform
a code inspection of each other’s modules (Panko and Halverson Jr., 2001).

While Nardi and Miller (1990) argue that generally a majority of corporate spreadsheets are de-
veloped collaboratively, Ginige et al. (2010a) highlight that today’s spreadsheet software do not
provide technical capabilities and features to support collaboration adequately. For example, col-
laborating users share spreadsheet via email which leads to difficulties in synchronizing changes
and keeping them consistent. Furthermore, the lack of access rights and a revision history are
named as further issues when using spreadsheets in multi-user environments. This observation
matches with our own study on spreadsheet shortcomings as described in Section 2.2.4.

Ginige et al. (2010a) also derive spreadsheet-specific design patterns based on a more general set
of design patterns for cooperative interaction defined by Martin and Sommerville (2004). Those
patterns include Artifact as an Audit Trail and Multiple Representations of Information based
on which they derive UI-related requirements for collaborative spreadsheet solutions covering
the following aspects (Ginige et al., 2010b):

Collaboration Environment Awareness A collaborative spreadsheet tool should create awareness
of which users are interacting with which parts of the spreadsheet. This applies to syn-
chronous as well as to asynchronous collaboration.

Overall Collaboration Process Analysis The spreadsheet tool should support individual end-users
in exploring the personal record of their own activities in order to foster transparency
regarding the current phase within a certain business process.

Operations on the Artifact The spreadsheet should be collaboratively definable and adaptable by
multiple users, including the collaborative maintenance of the spreadsheet’s data, collab-
orative design of its structure, and collaborative definition of its logic (e.g., formulas).

Addressing the second of those points, the general problem of making the design and structure of
a spreadsheet understandable to end-users and particularly co-workers which are not its designer
was already subject to related research in the past, e.g., by Ronen et al. (1989), Shiozawa et al.
(1999), Clermont (2003), and Kankuzi and Ayalew (2008). Most recently, Hermans et al. (2011b)
studied problems of transferring spreadsheets from one user to another, or of understanding and
checking spreadsheets (e.g., as part of an audit) by users other than its designer. They conclude
that the most important information need of users in those scenarios is about the structure of
formula dependencies. For this reason, they propose data flow diagrams to make those semantic
dependencies transparent to end-users.

In their work, Hermans et al. (2011b) developed three graph-based views: The first one is

31



2. Foundations and Related Work

3b.Richard Griffen

3a.Richard Griffen

2b.Richard Griffen

2a.Richard Griffen

1c.Richard Griffen

1b.Richard Griffen

1a.Richard Griffen

SUM points.Richard Griffen

Part I.Richard Griffen

Part II.Richard Griffen

+*/

+*/ Lab grade.Richard Griffen

grade.Richard Griffen

labwork!E3

main exam!L6

lab.Richard Griffen

exam.Richard Griffen

AVERAGE overall.Richard Griffen

Figure 2.9.: An example of the Formula View visualizing the data flow between cells based on
formulas for the calculation of an exam grade (Hermans et al., 2011b).

the Global View which illustrates worksheets (spreadsheet tabs) and data flows between them,
whereas the thickness of edges indicates the number of cross-worksheet references. Analogously,
the second view—the Worksheet View—visualizes data blocks of a single workspace as nodes,
and dependencies between them as edges. The third view is the Formula View which visualizes
the data flow on cell and formula-level, i.e., in this view the nodes are represented by single cells.
Figure 2.9 shows an example for a Formula View based on a simple scenario for the calculation
of an exam grade. In a follow-up publication, they also describe the implementation of the tool
Breviz which automatically generates those views from a given spreadsheet application (Hermans
et al., 2011a).

Hermans et al. (2011b) conclude that the different data flow views help users to understand the
spreadsheet’s design and to familiarize them with the concrete spreadsheet application. Those
data flow views still miss the relations to the users which are interacting with different parts
of the spreadsheet, and thus with the different nodes of the data flow views. However, this is
one of the requirements for collaborative spreadsheet applications as defined by Ginige et al.
(2010a) and as described above. For example, when clicking on a node in the data flow graph
in Figure 2.9 in a multi-user setting, an end-user might want to check who provided the values
for certain cells, or who defined certain formulas in the calculation chain.

In general, we can summarize that although collaborative spreadsheet development was already
discussed by Nardi and Miller (1990), current spreadsheet tools still lack technical capabilities
to support collaboration adequately, e.g., fine-grained access rights, and revision history (Ginige
et al., 2010a). This matches with our observations as described in Section 2.2.4. On the other
hand, researchers already developed approaches to solve related and partial problems, e.g., a tool
to make a spreadsheet’s design transparent and to facilitate the familiarization of users with this
spreadsheet (Hermans et al., 2011b). However, those ideas are still not integrated to a holistic
collaborative spreadsheet approach. By taking also the shortcomings regarding the support for
complex linked data as discussed in the previous Section into account, we conclude that current
spreadsheet software as well as related research approaches do not represent a viable option for
serving as a tool supporting the collaborative EUA of evolving complex linked data structures.

32



2. Foundations and Related Work

2.3.2. Related Work on End-user-driven and Model-based Analytics and
Visualizations

In the previous section, we observed how current spreadsheet approaches providing sophisticated
EUA features relate to our endeavor of developing an approach for collaborative EUA based on
evolving complex linked data. In the following section, our argumentation will start from the
opposite side: Based on collaborative meta-model-based information systems which already
support evolving complex linked data structures, we studied related work on end-user-driven
analytics and visualizations based on those systems.

Abstract Viewpoint

Viewpoint

View ModelInformation Model Visualization Model

Abstract View 

Model

Abstract 

Visualization Model

Figure 2.10.: An excerpt of the conceptual model for generating visualizations based on infor-
mation models (Schaub et al., 2012; Hauder et al., 2012).

On that note, Schaub et al. (2012) developed a conceptual framework for the end-user-driven
definition of interactive visualizations. They argue that the effort for end-users to configure
visualizations should be minimal, i.e., in the best case the configuration should be done auto-
matically. Thereby, the conceptual framework as depicted Figure 2.10 differentiates between the
concepts Information Model, Viewpoint, and Abstract Viewpoint. The Information Model refers
to the actual data model. On the other side, the Abstract Viewpoint represents generic and
configurable visualization templates, which define their generic information demand as Abstract
View Model. To instantiate the Abstract Viewpoint and to create a concrete Viewpoint, the end-
user has to map the Abstract View Model to a matching part of the Information Model, which
in turn is referred to as the View Model. This View Model represents the concrete information
demand of the instantiated visualization. Hauder et al. (2012) apply this framework also for
cross-organizational process visualizations, while Roth et al. (2013) propose a structural model
matching algorithm enabling tools to automatically match a given Abstract View Model with a
respective Information Model.

While the conceptual framework by Schaub et al. (2012) provides a user-friendly way of config-
uring visualizations based on arbitrary information models, it lacks means to define model-based
rules and calculations, e.g., metrics quantifying specific aspects of the information model. Con-
sequently, while the abstract view model matching framework enables end-users to create and
configure qualitative visualizations, the definition of quantitative visualizations require means
to enable end-users to quantify specific aspects of the information model. The EA metrics as
defined by Schneider et al. (2015) and as introduced in Chapter 1 are an example for such quan-
tifications which could not be visualized adequately by the means provided by the abstract view
model matching framework (Schaub et al., 2012).

33



2. Foundations and Related Work

With respect to quantitative and model-based visualizations, Frank et al. (2009) develop a
Domain-Specific Modeling Language (DSML) named ScoreML for the design of a Performance
Management Information System (PMIS). In this system, users can create KPIs by defining
them with an expressive quantification based on a formal calculation rule, and associate them
with objects of an underlying information model. In their work, Frank et al. (2009) focus on
modeling KPIs and their relationships, i.e., they do not elaborate on the formal expressions
for defining calculation rules, but rather discuss how different KPIs are related to each other,
and which meta-information of KPIs is relevant for certain stakeholders. For this purpose, they
present the meta-model for ScoreML, which defines multiple reflective relationships for indicators
as well as additional concepts representing an indicator’s meta-information, e.g., threshold values
or data sources for its computation. Furthermore, the empowerment of end-users to define
visualizations based on those KPIs is also not a subject of their work.

In fact, the endeavor of the thesis at hand to enable EUA based on evolving complex linked data
can be seen as a combination of the approaches of Schaub et al. (2012) and Frank et al. (2009): On
the one hand, end-users should be enabled to define calculation rules representing metrics, KPIs
and other analytical abstractions. The meta-information of those analytical abstractions—as
exemplarily captured by the ScoreML meta-model (Frank et al., 2009)—is particularly relevant
in a collaborative environment, since it allows users to perform a meta-analysis of existing
analytical abstractions and thus to familiarize themselves with existing structures. On the other
hand, in the context of this thesis we also aim for empowering end-users to define visualizations
based on analytical abstractions. For this purpose, we will build on the foundations of Schaub
et al. (2012), and extend the abstract concept of Abstract View Models in order to support the
visualization of analytical abstractions.

2.3.3. Related Work on Self-Service BI and Collaborative BI

In the previous sections we discussed related approaches to EUA for complex linked data which
(at least partially) serve as foundation for the development of our own approach. Conversely,
in this section we will discuss related parallel approaches in the field of end-user oriented (Self-
Service) and collaborative Business Intelligence (BI) (Reschenhofer and Matthes, 2016a).

Sell et al. (2005) argue that analytical tools usually suffer from a lack of flexibility regarding
their exploratory capabilities, lack of support for defining business logic, and missing capabilities
to define stakeholder-specific representations of information. Those observations match the
findings of our study on spreadsheet shortcomings as described in Section 2.2.4. To tackle those
issues, Sell et al. (2005) propose a web-based architecture for analytical information systems
based on user-definable ontologies (cf. Figure 2.11). In general, ontologies represent an "explicit
specification of a conceptualization" (Gruber, 1993). They describe the semantics of information
structures and make their contents explicit (Wache et al., 2001). The layered architecture defined
by Sell et al. (2005) is built on generic BI and specific domain ontologies which can be analyzed
by user-definable functional modules. On the top of the abstract architecture and by using
the capabilities of the functional modules through respective web services, different clients can
represent and process the system’s data in a stakeholder-specific way. While the web-based and
service-based nature of this architecture already enables support for multiple and different users

34



2. Foundations and Related Work

Service 

Ontologies

BI Domain 

Ontology

Domain 

Ontologies
DBMS

Services 

Manager

Ontologies 

Manager

Instances 

Manager

Analysis Manager

PortalsReport ToolsOLAP Tools

F
u

n
ct

io
n

al
 

M
o

d
u

le
s

C
li

en
ts

R
ep

o
si

to
ri

es

Figure 2.11.: The illustration of the analytical information system architecture modules as de-
fined by Sell et al. (2005).

and clients, Sell et al. (2005) do not discuss collaborative analysis and consequences arising from
it. This seems to be an issue in general, as Kaufmann and Chamoni (2014) found out that
collaboration-related challenges are hardly addressed in scientific literature in the context of
EUA.

Similarly, Spahn et al. (2008b) argue that traditional BI systems are too complex to be adapted
by end-users, and that those end-users are not able to tailor the BI systems to changing domain-
specific needs. In addition to the work by Sell et al. (2005), they propose a layered architecture
consisting of ontologies, query transformations, and stakeholder-specific applications (cf. Fig-
ure 2.12). In the context of the work by Spahn et al. (2008b), ontologies define a holistic and
domain-specific data structure which potentially integrates data from multiple sources. Based
on this, end-users can define analytical abstractions, which in turn can be consumed by po-
tentially multiple clients or applications. However, similar to Sell et al. (2005), Spahn et al.
(2008b) discuss neither how the definition of ontologies and queries can be done collaboratively,
nor which consequences would arise from this kind of collaboration.

In 2012, Mertens and Krahn (2012) conducted a study on shortcomings of analytical informa-
tion systems, which enable IT experts to analyze huge data sets. They derive requirements to
make analytical information systems usable by business users with a limited technical expertise,
and develop a layered conceptual architecture addressing those requirements. As illustrated in
Figure 2.13 and similar to the architecture by Spahn et al. (2008b) (cf. 2.12), the bottom layer
represents heterogeneous data sources and services. In the back-end layer of the architecture,
those data sources are integrated and structured through a semantic meta-data component,
which in turn represents the basis for end-user-driven data analysis and data annotation. The
front-end layer provides respective UI components to enable end-users to consume the analysis
services provided by the analytical information system. But again, collaboration and induced
challenges are not subject of the work by Mertens and Krahn (2012).

Studying the works by Sell et al. (2005), Spahn et al. (2008b), and Mertens and Krahn (2012)

35



2. Foundations and Related Work

Source 1 Source 2 Source N

Technical 

Ontology 1

Technical 

Ontology 2

Technical 

Ontology N

Business Level Ontology

In
fe

re
n

ce
 

L
ay

er
A

p
p

li
ca

ti
o
n

 

L
ay

er

D
at

a 
S

to
ra

g
e 

L
ay

er

…

…

Ontology Graph Query Graph

Q
u

er
y

 

T
ra

n
sf

o
rm

at
io

n
 

L
ay

er

Client 1 Client XClient 2 …

Figure 2.12.: The illustration of the system architecture layers as defined by Spahn et al. (2008b).

Front-end – Application Layer

Reports
Supporting Ad-Hoc 

Analysis Application

Standard Ad-Hoc 

Analysis Application

Back-end

Information Self 

Service Layer

Integration and 

Annotation Layer

Analysis Layer
Semantic Meta-data 

Layer

Meta-data Storage

Data Layer (Data Warehouse)

Data Sources and Services

External & Internal 

Services
Data Sources

Figure 2.13.: The illustration of the architecture of an analytical information system with a
semantic meta-data layer as defined by Mertens and Krahn (2012).

36



2. Foundations and Related Work

confirms the observations of Kaufmann and Chamoni (2014)—namely that collaboration-related
challenges are hardly discussed in scientific literature, particularly with respect to conceptual
architectures of BI systems. Nevertheless, these works still provide valuable input for the deriva-
tion of requirements and conceptual design of a tool for collaborative EUA on evolving complex
linked data. All of those architectures share the same abstract conceptual layers: A layer to
empower end-users to define high-level and holistic data structures, one to allow them to define
analytical abstractions based on those data structures (e.g., queries), and one to enable users to
define user-specific data representations and applications. We will elaborate on those layers in
detail in Chapters 3 and 4.

One of the first approaches towards collaborative BI was developed by Dayal et al. (2008) which
derive a set of respective requirements. For example, one of the derived requirements is the need
for means to query, report, and analyze both historical and real-time data. Again, they propose
a conceptual architecture including layers for data integration, data and process modeling, and
analytics, based on which different dashboards visualize the data and analytical abstractions of
the underlying BI platform. However, the focus of the work by Dayal et al. (2008) is the design
of a virtual three-dimensional room to allow real-time collaboration in the context of BI. Just
like in the aforementioned works by Sell et al. (2005), Spahn et al. (2008b), and Mertens and
Krahn (2012), collaboration-induced challenges are hardly discussed.

End-Users

Internal and External Data Sources

Collaborative BI Platform

Ad-hoc and Collaborative Analysis

Information

Self-Service 

Environment

Collaboration 

Rooms

Integration and Enrichment

Business 

Configuration 

(Design Time)

Data Provisioning 

(Run Time)

Global Business Data 

Model

Figure 2.14.: The illustration of the architecture for a collaborative BI platform as proposed
by Berthold et al. (2010).

Berthold et al. (2010) envision a platform for end-user-oriented BI in a collaborative environment.
The goal of this platform is to empower end-users to configure, structure, and analyze data in
a self-directed way and without technical skills. It implements a life cycle for BI consisting of
iterative phases for business configuration (data and process modeling), information self-service,

37



2. Foundations and Related Work

collaborative analysis, and collaborative decision making. The presented architecture consists
of a data integration and enrichment layer as well as an analysis layer including components
enabling information self-service and collaboration (cf. 2.14). However, in their paper, Berthold
et al. (2010) only provide a high-level architecture of a collaborative BI platform, and elaborate
neither on concrete concepts to enable collaboration on all layers of their architecture, nor on
challenges arising from it.

On a related note, Rizzi (2012) interprets collaborative BI as the cooperation of multiple com-
panies as part of a joint endeavor to extend and improve their decision-making processes. For
this purpose, those companies have to connect their individual and autonomous BI systems
which can lead to novel insights. However, the thesis at hand addresses intra-organizational
collaborative EUA rather than inter-organizational decision making.

As a state-of-the-art analysis, Walter (2015) observed Self-Service BI tools which are typically
applied in practice for empowering end-users to perform basic data analytics tasks. Based
on Gartner’s Magic Quadrant for Business Intelligence and Analytics Platforms (Gartner Inc.,
2015), she selected six tools (Tableau Desktop1, Qlik Sense2, Microsoft Excel3, SAS Visual
Analytics4, SAP Lumira5, and IBM Watson Analytics6). These tools were analyzed along seven
different dimensions representing the steps of a typical (Self-Service) BI pipeline, namely the
generation, integration, storage, access, assessment, sharing, and usage of data. One conclusion
of this state-of-the-art study is that current Self-Service BI tools suffer from a lack of support
for evolving complex linked data. Particularly the evolution of the structure of the data to
be analyzed leads to problems since the data structuring and analysis facilities of current Self-
Service BI tools are isolated from each other and thus cannot react adequately on changes of
another part of the BI pipeline.

To summarize related work on Self-Service and collaborative BI: Particularly the works by Sell
et al. (2005), Spahn et al. (2008b), Mertens and Krahn (2012), and Berthold et al. (2010) serve
as a conceptual foundation for the requirements and conceptual design for a tool empowering
end-users to collaboratively analyze evolving complex linked data as described in the following
Chapters 3 and 4. In this sense, we particularly address shortcomings of today’s spreadsheets
(cf. Section 2.2.4) and other self-service BI tools.

2.4. Summary of Foundations and Related Work

In the previous sections, we introduced the foundations for the development of an approach
empowering end-users to collaboratively analyze evolving complex linked data.

In Section 2.1, we discussed adaptive and meta-model-based information systems in general, and
elaborates on the Hybrid Wiki approach as one concrete representative of this class of information

1http://www.tableau.com/desktop, last accessed on: 04.10.2016
2http://www.qlik.com/us/products/qlik-sense/desktop, last accessed on: 04.10.2016
3https://products.office.com/en/excel, last accessed on: 04.10.2016
4http://www.sas.com/en_us/software/business-intelligence.html, last accessed on: 04.10.2016
5http://saplumira.com, last accessed on: 04.10.2016
6https://www.ibm.com/analytics/watson-analytics, last accessed on: 04.10.2016

38

http://www.tableau.com/desktop
http://www.qlik.com/us/products/qlik-sense/desktop
https://products.office.com/en/excel
http://www.sas.com/en_us/software/business-intelligence.html
http://saplumira.com
https://www.ibm.com/analytics/watson-analytics


2. Foundations and Related Work

systems in particular. Hybrid Wiki concepts will serve as a conceptual (and technical) foundation
for the development of our own approach. As described later on in Chapter 4, we will extend
those concepts by means for the end-user-driven analysis of the Hybrid Wiki system’s data
structures.

For this purpose, we studied EUA and its tool-support, and summarize the results in Section 2.2.
Thereby, we particularly observed the success factors and characterizing features of EUA soft-
ware (cf. Section 2.2.1) with the objective of adopting them to our approach. Furthermore, we
conducted a state-of-the-art analysis of spreadsheets in order to reveal how they are applied
in practice, which data structures they usually contain, and from which shortcomings they are
suffering when applied as information systems. The findings of this analysis represent drivers
for the conceptual and technical design of our own EUA approach.

While Sections 2.1 and 2.2 summarize research topics serving as foundation for the develop-
ment of our solution, Section 2.3 discusses related approaches which also aim for bridging the
gap between adaptive information systems and EUA. Section 2.3.1 discusses research about
approaches to model-based and collaborative spreadsheets. In this sense, spreadsheets as the
de facto standard for EUA tools are extended by data modeling and collaboration capabilities
in order to move them towards support for complex linked data structures in a collaborative
environment. In contrast, Section 2.3.2 elaborates on the opposite approach, i.e., moving collab-
orative meta-model-based information systems towards support for EUA. Finally, Section 2.3.3
provides an overview over approaches which are comparable to the approach of this thesis.
Thereby, we outline the highlights and conceptual architectures of collaborative BI platforms
and briefly describe the differences to our own approach.

39



40



CHAPTER 3

Identification of Requirements

In this chapter, we elaborate on how we envision the conceptual framework for empowering
end-users to collaboratively analyze evolving complex linked data. Based on this conceptual
framework and findings of related work, we systematically derive and describe requirements of
five different categories for respective EUA tool support.

In order to enable a plausible derivation of conceptual requirements for EUA based on evolving
complex linked data, we define a framework capturing basic concepts and roles which are involved
in this context. This conceptual framework is based on related work in the field of end-user-driven
data visualizations, visual information analysis, end-user-driven model analysis, and End-User
Analytics (EUA).

3.1. A Conceptual Framework for Collaborative EUA

EUA tools, e.g., spreadsheets, are used to structure, analyze, and visualize data in a self-directed
and ad-hoc manner (Pemberton and Robson, 2000). In this context, Isenberg et al. (2008) de-
scribe an information analysis process consisting of eight steps, e.g., scanning through available
data, and understanding and selecting proper visualizations. To formalize this kind of infor-
mation analysis and visualization process, Chi and Riedl (1998) developed the Information
Visualization Data State Reference Model as illustrated in Figure 3.1 (in the remainder of the
thesis we refer to this model as "data state model"). The data state model describes four states
through which initially raw data is (iteratively) transformed into interactive views. Those four
states describe the following artifacts:

Data/Values represent the raw data and are the starting point of an information flow.

41



3. Identification of Requirements

Data

Data 

Transformation 

Operations

Analytical 

Abstractions

Visualization 

Abstractions
Views

Visualization 

Transformation 

Operation

Visual Mapping 

Transformation 

Operations

Data Stage 

Operations

Analytical 

Abstraction 

Stage 

Operations

Visualization 

Abstraction 

Stage 

Operations

View Stage 

Operations

Figure 3.1.: The Information Visualization Data State Reference Model as defined by Chi and
Riedl (1998).

Analytical Abstractions describe intermediary states of analytical data transformations and meta-
information about the data. For example, in spreadsheets, results of formulas can be
interpreted as analytical abstractions.

Visualization Abstractions are abstract representations of visualizations. From a model-based
perspective, they compare to Abstract Viewpoints as described in Section 2.3.2 and as
defined by Schaub et al. (2012) and Hauder et al. (2012).

Views represent the final picture as shown to users and the end point of an information flow.

Between the artifacts of the stages there are three kinds of cross-stage transformations (Chi
and Riedl, 1998). Data Transformation Operations transform data into analytical abstractions.
Visualization Transformation Operations bind the analytical abstractions to abstract visualiza-
tion models. And Visual Mapping Transformation Operations render the abstract visualization
models to graphical views. In addition to those cross-stage transformations, the data state
model also defines operations between two artifacts within the same stage, e.g., Analytical Stage
Operations as transformation from one analytical abstraction to another one.

As shown by Chi (2000), the data state model is applicable to a diversity of information visu-
alization techniques. In the present thesis, we use it together with the conceptual model for
model-based visualizations (cf. Section 2.3.2) as a foundation for a conceptual framework for
our tool enabling collaborative model-based EUA on evolving complex linked data.

Our understanding of collaborative model-based EUA is captured by the conceptual framework
in Figure 3.2. It is defined by the Data Models, Analytical Abstractions, View Templates, and
Views layers. Those layers consist of interrelated conceptual artifacts which are inspired by
related work (cf. Section 2.3.3) and described in the following.

In a model-based environment, data is structured through respective data models. In the meta-
model-based Hybrid Wiki approach (cf. Section 2.1.2), data models are defined by entity types,
attributes, and relations. Chuah and Roth (1996) argue that adding derived attributes is also
a basic interaction in the context of information analysis. There are multiple roles of users
involved in the definition and management of data models: On the one hand, Data Modeling
Experts as trained experts understand the meta-model and modeling facilities offered by the

42



3. Identification of Requirements

Views

Data Models

Analytical Abstractions

AttributesEntity Types Relations

Dashboards Visualizations

Queries

Analytics 

End-Users

View Templates

Visualization Types

Metrics

Derived 

Attributes
…

…

……

Analytics 

Professionals

Analytics 

Professionals
Data Modeling 

Experts

View Template 

Developers

Reports

Analytics 

End-Users

Analytics 

Professionals

Figure 3.2.: Conceptual framework for collaborative EUA on complex linked data, inspired by
Chi and Riedl (1998), and Schaub et al. (2012), and related work summarized in
Section 2.3.3.

respective tool and are able to define and adapt complex domain-specific data structures and
constraints (Roth, 2014). In this sense, they represent data custodians and stewards (Khatri
and Brown, 2010; Roth, 2014) as well as technical domain experts (Rehm et al., 2014). On the
other hand, Analytics Professionals are involved in the definition of derived attributes which
describe attributes whose values are calculated automatically based on a given calculation rule.
Therefore, derived attributes represent analytical abstractions which are embedded into data
models. With regard to the data state model, changes to the data model qualify as Data Stage
Operations.

Based on the data model, both Analytics Professionals and Analytics End-Users (Tamm et al.,
2013) define analytical abstractions. Those analytical abstractions describe metrics, queries, or
simple calculations, to which both the underlying data model and other analytical abstractions
can serve as input. Therefore, and with regard to the data state model in Figure 3.1, our con-
ceptual framework allows for both Data Transformation Operations and Analytical Abstraction
Stage Operations.

On the top level of the framework depicted in Figure 3.2, Analytics Professionals as well as An-
alytics End-Users can define different kinds of views, e.g., dashboards, visualizations, or reports.
To define views, users have to select from a set of view templates which compare to Abstract
Viewpoints as described in Section 2.3.2. View templates are implemented by View Template
Developers which are professional programmers with a respective skill set and technology knowl-
edge, e.g., about visualization libraries. Therefore, View Template Developers represent Software
engineers and designers as described by Roth et al. (2013). They are also responsible for the

43



3. Identification of Requirements

implementation of Visual Mapping Transformation Operations as well as operations for both
the visualization abstraction and view stage as described by Chi and Riedl (1998).

View templates have to define a data input interface specifying which kind of data they are able
to process and to present, e.g., in the form of an abstract view model (Schaub et al., 2012).
When selecting a view template during the creation of a view, data input interfaces determine
which data or analytical abstractions can serve as input for the view, or how they have to be
transformed in order to serve as input. In this sense, views are created by instantiating view
templates and bind them to analytical abstractions which conform to the view template’s data
input interface. This kind of conceptual framework compares to the Enterprise Mashup (EM)
environment as defined by Pahlke et al. (2010): In this environment, software vendors can
offer different kinds of information services which can serve as input for end-user-definable EM
applications. In terms of the data state model by Chi and Riedl (1998), the binding of analytical
abstractions to view templates represents Visualization Transformation Operations.

In summary, collaborative model-based EUA involves different user-definable artifacts on differ-
ent layers, e.g., data model elements, analytical abstractions, or views. Related work suggests
that there are different types of user roles primarily interacting with artifacts of specific lay-
ers, e.g., Data Modeling Experts define the data model (Roth, 2014; Khatri and Brown, 2010;
Rehm et al., 2014), View Template Developers technically implement abstract views, and Ana-
lytics Professionals as well as Analytics End-Users manage analytical abstractions and concrete
views. As a whole, the artifacts of all layers form an analysis model capturing the artifacts
themselves as well as their dependencies to each other.

For example, we can apply the conceptual framework for collaborative EUA to the domain of
EAM (Roth, 2014): An EA modeling expert would take the role of the Data Modeling Expert
and define an organization-specific EA model. Based on this model, an enterprise architect as
Analytics Professional can define EA metrics and respective visualizations. Other EA stakehold-
ers and decision makers would take the role of Analytics End-Users and would be create new
stakeholder-specific EA visualizations, while they could choose from a predefined set of specific
EA view templates (Roth et al., 2014).

3.2. Identification of Requirements

The conceptual framework for collaborative and model-based EUA as depicted and described
in the previous section defines which user roles are interacting with which artifacts, and how
those artifacts are generally related to each other. Based on this understanding, we can now
derive abstract requirements for tool-support for collaborative model-based EUA. In general,
we apply general collaboration features to the artifacts of all layers of the conceptual framework.
de Hertogh et al. (2011) define them as the basic Web 2.0 requirements, which we adopt to EUA
as follows (Reschenhofer and Matthes, 2016a):

Reusability of Artifacts In a collaborative EUA tool, the artifacts of all layers should be reusable
and combinable by oneself and by other users.

44



3. Identification of Requirements

Adaptability of Artifacts End-users should be able to adapt the artifacts of each layer at any time,
provided they have respective access rights.

Collaborative Content Creation and Modification A collaborative EUA tool facilitates the collab-
orative creation and management of data, analytical abstractions, and views.

No Predefined Structure of Content A collaborative EUA tool should not impose a predefined
structure on its content, i.e., it should support knowledge workers to dynamically enrich
content with additional, not yet defined structure.

Responsive and Personalized UI In this context, responsiveness of a UI refers to immediate feed-
back to users when performing certain actions, while a personalized UI takes into account
the user’s access rights, roles, preferences, etc.

Gathering of Collective Intelligence A collaborative EUA tool should involve knowledge workers
with different domain knowledge in content creation and management.

Together with the findings from related work (cf. Section 2.3) and the identified shortcomings of
current EUA software (cf. Section 2.2.4), those generic Web 2.0 requirements build a foundation
for the derivation of requirements for collaborative EUA tool-support based on evolving complex
linked data. We categorize the requirements based on the layers of our conceptual framework,
namely data model, analytical abstractions, and views with view templates (cf. Sections 3.2.1,
3.2.2, and 3.2.3 respectively). Section 3.2.4 describes requirements related to the meta-analysis
of artifacts and their (potentially cross-layer) relations.

3.2.1. Data Model Requirements

As motivated in Chapter 1, we aim for tool-support for analyzing evolving complex linked data.
In the context of this thesis, complex linked data is defined as entities which potentially have
arbitrarily nested attributes, attributes with multiple values, and multiple relations to other
data entities. Examples for this kind of data structures are EA models (Buckl et al., 2010). The
lack of support for complex linked data was identified as a major shortcoming of current EUA
tools, particularly spreadsheets (cf. Section 2.2.4). A natural consequence for the data model
layer of a supporting EUA tool is that it has to support the user-driven design of complex linked
data models:

Req 1: Modeling of Complex Linked Data

A solution must enable end-users to model complex linked data. This means that the
solution’s meta-model has to define concepts for describing entities with nested and
multi-valued attributes and relations.

Collaborative creation and gathering collective intelligence are both defined as basic Web 2.0
requirements (de Hertogh et al., 2011). In this sense, collaborative modeling of complex linked
data should be performed by cooperating domain experts, data modeling experts, and analytics

45



3. Identification of Requirements

professionals. Those users provide diverse skills and expertises which can be utilized in a collab-
orative data modeling process. Again, as described in Section 2.2.4, current EUA tool-support
does not provide adequate collaboration features.

Req 2: Collaborative Creation of Data Model

Multiple users with different roles and different kinds of expertise should be enabled
to contribute to the collaborative design and creation of the data model.

In a collaborative environment, users contribute to the design of the data model at different
stages of the design process (de Hertogh et al., 2011). For example, domain experts might
identify changes of the domain environment which imply the need for adaptions of the data
model, while analytics professionals can augment the data model with analytical abstractions,
e.g., derived attributes (Chuah and Roth, 1996). Therefore, adaptability and flexibility are
crucial properties of a data model in a collaborative environment (Mertens and Krahn, 2012),
and a fundamental prerequisite for enabling evolving data structures.

Req 3: Adaptability of Data Model

Data models have to be adaptable by end-users at run-time. In this sense, end-users
should be able to iteratively define the data model in an initial design phase, and
subsequently refine and tailor it in accordance to potential environmental changes.

The first step in the information analysis process is to scan through the data in order to gain
some understanding of the available data (Isenberg et al., 2008). In the context of model-based
and collaborative EUA based on evolving complex linked data structures, this means that users
should be enabled to explore the current state of the evolving data model at any time, but
particularly during the definition of model-based analytical abstractions. The evolving nature
of the data model implies that the exploration of the data model is a continuous task for end-
users.

Req 4: Explorability of Data Model

A solution has to provide means and views enabling end-users to explore and browse
through the data model at any time, but particularly during the formulation of queries.

Protecting certain information from unwanted access is an indispensable requirement for collab-
orative enterprise applications (Shen and Dewan, 1992). Addressing this, the purpose of access
control rights is to specify which users or user roles (subject) are allowed to interact with a
certain artifact (object) in a certain way (right). With respect to the data model layer, effective
collaborative data modeling requires respective access control to direct and govern the continu-
ous development of the data model. Furthermore, also the data itself has to be protected by an

46



3. Identification of Requirements

authorization mechanism to ensure that users only see information according to their individual
access rights (Neubert, 2012). This is also true for queries, i.e., queries only retrieve data to
which the executing user has at least read access to.

Req 5: Access Rights for Data and Data Model

A solution has to provide a mechanism enforcing access rights for each user which
ensures a personalized view only showing information and model elements for which
the user is authorized.

3.2.2. Analytical Abstraction Requirements

After deriving requirements on the data model layer, we continue with the identification of
requirements related to analytical abstractions. Analytical abstractions represent any form
of meta-data or derived data. The former refers to information about the data (e.g., who
is the creator of a data object), while the latter one refers to information objects which are
automatically computed based on calculation rules. If those calculation rules reference data
model elements (e.g., count of all objects of a certain type), we refer to them as queries.

As described in Section 3.2.1, requirement Req 1 defines that a solution for EUA based on
complex linked data has to support the creation and management of complex linked data. Con-
sequently, the analytical abstractions layer of such a solution has to provide means to empower
end-users to define queries supporting those complex linked data structures.

Req 6: End-User-Driven Querying of Complex Linked Data

A solution has to support the end-user-driven definition of queries of complex linked
data as defined by requirement Req 1. This explicitly includes the provision of UI
means to facilitate the query formulation by end-users.

In Section 1.1, we described different exemplary queries which we experienced in previous re-
search projects, e.g., a EA complexity metrics using the Shannon entropy (Schuetz et al., 2013),
or a computation rule for deriving the status of a project based on end-user-definable crite-
ria (Matheis, 2013). Those examples show that—in addition to support for complex linked
data—different domains imply different requirements to the expressiveness of a respective query
language. In order to adapt the query language’s expressiveness to domain-specific requirements,
the query language has to be extendable by custom and potentially complex functions. Indeed,
according to Sell et al. (2005), a lack of flexibility and extension is one of the most critical issues
of traditional analytical tools.

47



3. Identification of Requirements

Req 7: Extensibility of the Query Language’s Expressiveness

The query language of a solution has to be extendable in order to enhance its expres-
siveness and to implement complex calculation rules from different domains, e.g., new
complexity metrics in EAM.

Analogous to requirement Req 2, we adopt collaborative creation and gathering collective intel-
ligence as two basic Web 2.0 requirements (de Hertogh et al., 2011) to the analytical abstractions
layer. This means that multiple users with different roles should be able to contribute to the
definition of analytical abstractions. For example, multiple EA stakeholders should be enabled
to contribute to the definition of an EA metric in order to harness each individual’s knowledge
and expertise, e.g., by enabling the definition of reusable functional components which can be
shared with others (Chambers and Scaffidi, 2010; Grossman and Burd, 2015). In this regard,
current EUA tool-support suffers from shortcomings related to collaboration and modularity (cf.
Section 2.2.4).

Req 8: Collaborative Definition of Analytical Abstractions

Multiple users with different roles and kinds of expertise should be enabled to con-
tribute to the collaborative design and creation of analytical abstractions, e.g., by
creating, sharing, and composing reusable functional components.

Environmental changes (e.g., new or changing business requirements) might cause the need for
adaptions of existing analytical abstractions. For example, refining an enterprise’s strategy for
standardizing its application landscape (Schneider, 2015) might imply an adaption of an existing
EA metric measuring database diversity (cf. Section 1.1) and to capture additional aspects of
the EA model. As a consequence, the adaptability of the definitions of analytical abstractions
is essential to tailor them to a changing environment.

Req 9: Adaptability of Analytical Abstraction Definitions

The definitions of analytical abstractions have to be adaptable at run-time.

In addition to adaptability, adaptiveness is another essential feature of analytical abstraction
definitions of the desired solution. While adaptability describes the capability of being manually
editable at run-time by end-users, the adaptiveness of analytical abstraction definitions refers to
their automated adaption on changes of artifacts they are based on, e.g., data model elements
or other analytical abstractions. In the light of requirement Req 3 which implies the need for
adaptable data models, adaptiveness ensures the consistency of analytical abstractions which
are affected by data model changes.

48



3. Identification of Requirements

Req 10: Adaptiveness of Analytical Abstraction Definitions

Analytical abstraction definitions have to be adaptive, i.e., changes of the underly-
ing data model elements should automatically trigger adaptions of affected analytical
abstractions and thus ensure their consistency.

In line with requirement Req 4 which describes the explorability of the data model, end-users
aiming for the definition of analytical abstractions should be enabled to explore already existing
and reusable analytical abstractions. In order to helping users to discover and find an analytical
abstraction, the desired solution has to manage respective meta-information (e.g., a textual
description) or to derive it automatically (e.g., the last modification date).

Req 11: Explorability of Analytical Abstractions

A solution has to provide means and views enabling end-users to explore and browse
through existing analytical abstractions at any time, but particularly during the for-
mulation of queries.

With requirement Req 5 we argue for an authorization mechanism for the data model and the
underlying data. Analogously, analytical abstractions representing derived data should also be
subject to access control (Shen and Dewan, 1992). Consequently, the access control mechanism
as described by requirement Req 5 has to capture also analytical abstractions, i.e., access rights
should control which users are allowed to interact with which analytical abstractions in which
way.

Req 12: Access Rights for Analytical Abstractions

A solution has to provide a mechanism enforcing access rights for each user which
ensures that they can only read analytical abstractions or adapt their definitions if
they are authorized accordingly.

3.2.3. View and View Template Requirements

In the following section, we summarize the requirements for our conceptual framework’s view and
view template layers (cf. Figure 3.2). The former describes concrete views visualizing concrete
data and analytical abstractions, while the latter refers to abstract viewpoints (Schaub et al.,
2012; Hauder et al., 2012) defined by an abstract data input interface through which the actual
visualization is instantiated with data (cf. Section 3.1).

As illustrated in Figure 3.2, visualization templates are created by view template developers
including not only web developers and web designers, but also domain experts which support

49



3. Identification of Requirements

developers and designers in implementing domain-specific visualizations (Roth et al., 2013).
Therefore, multiple users with different roles and kinds of expertise contribute to the development
of view templates.

Req 13: Collaborative Creation of View Templates

Multiple users with different roles and kinds of expertise should be enabled to con-
tribute to the collaborative design and creation of view templates.

Once view templates are created, end-users can instantiate them in order to define concrete views.
However, similar to the data model and analytical abstractions, view templates can be affected
by environmental changes (e.g., new business requirements or the change of corporate design
guidelines) potentially causing adaptions of the implementation or design of view templates.

Req 14: Adaptability of View Templates

View templates should be adaptable at run-time, which in turn should imply the
automated adaption of instantiated views based on the changing templates.

Adapting an existing view template would imply the automated adaption of already instantiated
views. However, this is not always an intended behavior, e.g., when refining a view template
based on domain-specific requirements. In this cases, developers still would like to reuse (parts
of) the already existing view template without adapting it. In this sense, this refers to the
usability requirement as defined by de Hertogh et al. (2011).

Req 15: Reusability of View Templates

A solution has to enable view template developers to reuse existing view templates or
parts of them.

The consequence of the adaption of view templates is the automated update of all views which
are based on this template. In order to avoid the adaption of view templates by unauthorized
users, a solution has to provide an access control mechanism which takes care that only users
with respective access rights are allowed to modify existing view templates.

Req 16: Access Rights for View Templates

A solution has to provide a mechanism enforcing access rights for users which ensures
that they can only modify view templates if they are authorized accordingly.

50



3. Identification of Requirements

Views are created at run-time by analytics professionals or analytics end-users. Similar to re-
quirement Req 14, those users should be enabled to adapt their views in case of corresponding
environmental changes. In this way, a solution provides means which allow to keep the ac-
tual views in line with the domain-specific needs and requirements of the users. Again, this
requirement is in line with the basic Web 2.0 requirements (de Hertogh et al., 2011).

Req 17: Adaptability of Views

Views should be adaptable at run-time in order to allow end-users to align their views
to environmental changes.

Another basic Web 2.0 requirement is reusability (de Hertogh et al., 2011), which again can be
adopted to views. Consequently, a solution has to provide a mechanism to reuse a view or a
part of it and to tailor it to personal needs. Furthermore, an already configured view (or part
of it) might be of interest for multiple stakeholders, wherefore they would like to include it in
their personal views. This means that a solution has to provide means to reuse and share views
and parts of them.

Req 18: Reusability of Views

A solution has to enable end-users to reuse existing views or parts of them.

As stated by Shen and Dewan (1992), protecting information from unwanted access is essential
for collaborative applications. This is particularly true for views which are constituting visual
representations of information. In this sense, the desired solution should provide access control
for views and control which users are allowed to see or modify them.

Req 19: Access Rights for Views

A solution has to provide a mechanism enforcing access rights for users which ensures
that they can only see or adapt views if they are authorized accordingly.

3.2.4. Meta-Analysis Requirements

Sections 3.2.1, 3.2.2, and 3.2.3 described requirements on individual levels of the conceptual
framework in Figure 3.2. In contrast, the following section elaborates on the derivation of cross-
layer requirements related to the holistic analysis model. As described in Section 3.1, the analysis
model represents an abstract graph which nodes and edges are represented by the artifacts of the
conceptual framework and their relations to each other. In this sense, exploring and analyzing
the analysis model and its graph representation is referred to as meta-analysis.

51



3. Identification of Requirements

One important objective in a collaboration environment is to create awareness of important
aspects and activities within the system which might be relevant for a user (Martin and Som-
merville, 2004). Indeed, identifying the right person to interact and coordinate with is one of
the most challenging tasks in collaborative systems (Cataldo et al., 2006). To create awareness
in a collaborative EUA tool, the analysis model serves as foundation for a holistic perspective
on data model elements, analytical abstractions, views, and their dependencies. By providing
an explorable view of the analysis model to end-users, they are enabled to identify artifacts of
interest and to inspect their meta-information, e.g., the creator or owner of the artifact, or the
last modification date. However, this presupposes that a collaborative EUA solution supports
meta-attributes for artifacts of different layers. Those meta attributes can be maintained either
manually through end-users, e.g., owner (Khatri and Brown, 2010), or automatically by the tool,
e.g., revision history (Ginige et al., 2010a)).

Req 20: Meta Attributes of Artifacts

A solution has to support meta attributes for the artifacts of all system layers, i.e.,
data model elements, analytical abstractions, views, and view templates. This involves
manually as well as automatically maintained meta attributes, and meta attributes of
different types, e.g., dates, users, etc.

Meta attributes represent properties of the nodes of the analysis model’s graph representation.
The edges are defined by meta relations between them. Again, those meta relations can be
specified manually by end-users of the system, e.g., "similar to" relationships between analyt-
ical abstractions representing metrics (Frank et al., 2009), or determined automatically by the
system, e.g., dependencies between queries and model elements they are referring to.

Req 21: Meta Relations between Artifacts

A solution has to support meta relations between artifacts of all system layers, i.e., data
model elements, analytical abstractions, views, and view templates. This involves man-
ually as well as automatically maintained relations, and particularly relations across
different layers.

By supporting both meta attributes and meta relations, a tool can automatically generate a
graph representing the analysis model. In order to provide value for end-users, the tool has to
provide a respective graph view making it explorable and analyzable by users. Thereby, users
should be supported in exploring particularly the meta attributes and meta relations of artifacts.
This might be helpful for the coordination with co-workers and for performing different kinds of
meta-analysis, e.g., impact analysis or stakeholder analysis (Reschenhofer et al., 2016b).

52



3. Identification of Requirements

Req 22: Explorability of Analysis Model

A solution should provide views and means for making the analysis model explorable
and analyzable by end-users in order to support them in performing meta-analysis
tasks.

Above mentioned requirements as well as the characterizing features of EUA software describe
the key properties a tool supporting the collaborative EUA of evolving complex linked data has
to fulfill. They are the main drivers of the conceptual and UI design of a respective tool.

In Chapter 7, we will recapitulate the contribution of this thesis in general, and how those
requirements are addressed and met by the proposed conceptual design and prototypical imple-
mentation in particular.

53



54



CHAPTER 4

Conceptual Design

Based on the conceptual framework and requirements described in Chapter 3 as well as related
work summarized in Chapter 2, the following sections describe the conceptual design of a software
solution enabling end-users to collaboratively analyze evolving complex linked data. Thereby,
we discuss and argue about design decisions on a technology-independent abstraction level.

4.1. Hybrid Wikis as Data Model Layer

The conceptual foundation for the data model layer of the desired collaborative EUA tool will be
formed by the Hybrid Wiki system. As already described in Section 2.1.2, this system provides
conceptual features which enable the iterative and collaborative design of data models as well
as further collaboration capabilities, e.g., access rights and version history. In this sense, the
Hybrid Wiki system already supports requirements Req 2, Req 3, and Req 5.

However, requirement Req 1 describing the need for supporting complex linked data (cf. defini-
tion in Chapter 1) is only partially fulfilled by the Hybrid Wiki system: Although it allows the
definition of entity types with multi-valued attributes and relations, it does not yet support the
definition of complex nested attributes. Consequently, we extend the Hybrid Wiki meta-model
as described in the following section.

4.1.1. Extending Hybrid Wikis by Complex Attributes

In the context of this thesis, complex attributes refer to attributes whose values are complex or
composite objects (Kim et al., 1989). As illustrated in Figure 4.2, a composite object is defined
by a CompositeType and has an arbitrary number of attributes. The attributes of a composite

55



4. Conceptual Design

Analytical Abstraction 

Concepts

Data Model 

Concepts

Data Instance 

Concepts

V
ie

w
 a

n
d

 V
ie

w
 

T
em

p
la

te
 C

o
n

ce
p

ts

Workspace

EntityType

AttributeDefinition

1

*

*

1

has▼

has ►

Entity

Attribute

*

*

1

has ▼

1

◄ has

DerivedAttributeDefinition

has ►

1

*

CustomFunction

has ►

0..1 *

Dashboard Visualization VisualizationTemplate

DataBinding DataBindingDefinition

0..1

0..1

*

*

is defined by ►

is defined by ►

is defined by ►

is defined by ►

▲ has

has ►

has ▼ has ▼

1

*

1..* 1..*

1

*

1

*

1*

1*

Figure 4.1.: An overview over the conceptual meta-model which is based on the Hybrid Wiki
meta-model (Matthes et al., 2011; Reschenhofer et al., 2016a). The data model,
analytical abstraction, and view concepts are described in detail in Sections 4.1,
4.2, and 4.3.

object can be either primitive (e.g., strings or numbers) or complex. The recursive definition of
complex attributes enables arbitrarily nested objects as values of complex attributes.

In contrast to relations to other entities, a complex attribute and its value is part of the respective
owner entity. A strict "part-of" relationship has multiple consequences: On the one hand, a
composite object is exclusively part of only one entity, and cannot be contained by multiple
entities. On the other hand, a complex attribute value’s existence is strictly dependent on the
existence of the parent entity, i.e., if an entity is deleted, all its attributes and thus all attribute
values are deleted too. Therefore, complex objects are particularly useful to represent physical
part hierarchies (Motschnig-Pitrik and Kaasboll, 1999).

In order to extend the Hybrid Wiki meta-model by the support for complex linked data, we
extend the set of type constraints by a respective ComplexConstraint class (cf. Figure 4.3). Model
designers can further restrict the structure of respective ComplexValues by defining a minimally
required structure of the complex object. For example, when defining an AttributeDefinition

56



4. Conceptual Design

CompositeType

BooleanTypeNumberType

StringType DateType

CompositeAttribute

name : String [1..1]

CompositeAttributeType

has ► 1..*

1
*

1

◄ is defined by

Figure 4.2.: The conceptual model for the complex type based on a variation of the composite
pattern (Gamma et al., 1994). A complex type defined attributes which are either
of a basic type (e.g., string, number) or again complex.

Workspace EntityType

AttributeDefinition

1

TypeConstraint

LinkConstraint

NumberConstraint

0..1

*

name : String [1..1]

multiplicity : Multiplicity [1..1]

defaultValues : AttributeValue [0..*]

«enumeration»

Multiplicity

Any number

At least one

Exactly one

Maximal one

*

1

1

name : String [1..1]

StringConstraint

regex : String [0..1] contentType : String [0..1]

reverseRoleName : String [0..1]

0..1

*

BooleanConstraint DateConstraint

EnumConstraint

values : StringValue [1..*]

ComplexConstraint

structure : CompositeType [0..1]

is defined by ▼

is restricted by ▼

has ►

▲ refers to

Figure 4.3.: A detailed excerpt of the extended Hybrid Wiki meta-model (cf. Figure 2.4) with a
focus on the data model concepts. We extended the set of type constraints by the
ComplexConstraint, which refer to composite objects (cf. Figure 4.2).

57



4. Conceptual Design

named "Address" as a complex attribute, the model designer can define a ComplexConstraint
whose structure specification requires users to provide the nested string attributes "Street",
"Postal Code", and "City" when instantiating a respective entity. By using the JavaScript
Object Notation (JSON) and particularly, we can express a corresponding complex object as:

{
"Address" : "Boltzmannstr. 3",
"Postal Code" : "85748",
"City" : "Garching",
"Country" : "Germany"

}

Although this object also contains the attribute "Country", it stills complies to the minimal
structure as defined by the model designer.

As stated by Kim et al. (1989), composite objects typically suffer from several shortcomings
causing challenges when implementing them in object-oriented data models, e.g., versioning and
access control for nested objects, softening the exclusiveness of the "part-of" relationship, or
allowing the definition relations from or to inner objects. However, since the data models in
the Hybrid Wiki system have to be designed at run-time through end-users, e.g., domain or
modeling experts, it is essential to keep a balance between expressiveness and usability with
respect to the definition of complex attributes. Therefore, we decided to implement a relatively
simple model for composite objects which supports neither relations from or to inner objects
nor an authentication or versioning mechanism for nested objects.

4.1.2. Assessment of the Meta-model’s Expressiveness

In Section 2.2.2 we presented a semantic meta-model for spreadsheets. This meta-model captures
semantic patterns which typically occur in real-world spreadsheets (Reschenhofer et al., 2016c).
In order to assess the expressiveness of the extended Hybrid Wiki meta-model in Figure 4.3, we
compare it to the semantic spreadsheet meta-model (cf. Figure 2.6) which represent semantic
structures typically occurring in End-User Analytics (EUA).

In general, the EntityType of the Hybrid Wiki meta-model compares to the EntityList spread-
sheet pattern. Analogously, AttributeDefinitions are equivalent to an EntityList ’s InputAt-
tributes. As described later on in Section 4.2.1, the Hybrid Wiki meta-model is extended by
DerivedAttributes which have an eponymous counterpart in the semantic spreadsheet meta-
model. AttributeGroups are implementable by complex attributes as long as inner attributes
are only of primitive types. AttributeAggregations and AttributeHistorizations are not explicitly
supported by the Hybrid Wiki meta-model. However, with custom functions as described in
Section 4.2.1 as well as with the version history mechanism the Hybrid Wiki system provides
means to define emulate the semantics of those two concepts. Furthermore, since TimeSeries
are considered to be a specialization of EntityLists, they are also supported by the Hybrid Wiki
system— at least under the aforementioned conditions.

EntityLists and TimeSeries account for 75 % of all semantic components in spread-

58



4. Conceptual Design

sheets (Reschenhofer et al., 2016c). This number is even higher if we exclude charts as
components which are not related to the data model. Even when taking into account the
restrictions described in the previous paragraph, the Hybrid Wiki meta-model should be com-
patible with a majority of semantic structures in today’s spreadsheets. Furthermore, the support
for evolving complex linked data enables new EUA scenarios, e.g., EA analysis (Matthes et al.,
2012a; Schneider et al., 2015).

Although further concepts could be implemented to support even more EUA use-cases, the
application of the Hybrid Wiki system in different projects has shown that the right balance be-
tween usability and expressiveness of such a tool is essential for its practicability (Reschenhofer
et al., 2016a). The relatively complex semantic spreadsheets meta-model of works because in
spreadsheets data models are defined primarily in an implicit way, e.g., through the arrangement
of data in the spreadsheet grid. However, while this basic spreadsheet property ensures that
spreadsheet users do not have to care about the design of the data model, it is also one of the
major causes for errors in spreadsheets (Reschenhofer et al., 2016c). Furthermore, if users have
to understand a spreadsheet’s design and semantics, the lack of an explicit data model can be
problematic (Hermans, 2012). This is particularly the case in collaborative environments where
multiple users design and analyze data cooperatively, since understanding the contribution of
other users to the data model design is essential. By taking an explicit data modeling approach,
we try to address the issues of an implicit one. For example, an explicitly defined data model
enables the system to generate an accurate view of the data model and thus addressing require-
ment Req 4 without having to "guess" the model from the data. As a consequence of taking an
explicit approach to end-user-driven data modeling, the complexity of a respective meta-model
should be reduced in order to ensure the right balance between expressiveness and usability.

4.2. Analytical Abstractions for Hybrid Wikis

Based on the Hybrid Wiki meta-model which refers to the data model layer of our collabora-
tive EUA framework (cf. Figure 3.2), we define concepts representing analytical abstractions
and means empowering end-users to define the same. Thereby, we particularly address the
requirements as derived in Section 3.2.2.

An important aspect in defining analytical abstractions is the query language which empowers
end-users to define complex queries, metrics, and other analytical abstractions based on a user-
definable and evolving complex linked data model at run-time. The requirements arising from
this were already discussed in Section 3.2.2 and are addressed by the Model-based Expression
Language (MxL). MxL enables end-users to access the underlying data through the correspond-
ing data model and to transform this data through different kinds of operations, e.g., query,
arithmetic, and logical operations (Reschenhofer, 2013). Its design and key features will be de-
scribed in detail in Section 4.2.2. However, before elaborating on MxL’s design, we first describe
extensions to the meta-model by concepts enabling the definition of analytical abstraction.

59



4. Conceptual Design

4.2.1. Extending Hybrid Wikis by Analytical Abstractions

As shown in Figure 4.4, we added two main concepts to the Hybrid Wiki meta-model, namely
DerivedAttributeDefinitions and CustomFunctions (Reschenhofer and Matthes, 2016a).

Workspace

EntityType

AttributeDefinition

1

*

name : String [1..1]

description : String [0..1]

*

1

name : String [1..1]

description : String [0..1]

DerivedAttributeDefinition

*

name : String [1..1]

description : String [0..1]

CustomFunction

name : String [1..1]

description : String [0..1]

parameters : MxlParameter [0..*]

0..1

*
MxLDefinable

MxLReferable

MxLDefinableMxLReferable

MxLReferable

MxLReferable

is defined by ►

is defined by ▼

has ►

has ▼

Figure 4.4.: A detailed excerpt of the meta-model (cf. Figure 2.4) with a focus on analytical
abstraction concepts. The definitions of the interfaces MxlDefinable and MxlRefer-
able are depicted in Figure 4.5, while the type MxlParameter describes function
parameters as a pair of a name and a type.

A DerivedAttributeDefinition specifies a derived attribute whose value is automatically computed
by the system instead of being manually maintained by the system’s user. Chuah and Roth
(1996) refer to derived attributes as an important information analysis and visualization concept.
Derived attributes enable users to augment the data with analytical abstractions and to integrate
their definition directly with the data model.

On the other hand, the CustomFunction concept addresses the reusability of computation rules
and analytical abstractions and thus tackles requirement Req 8. End-users can define poten-
tially parametrized CustomFunctions in order to store (partial) queries or calculations, which
in turn can be reused by others, e.g., for the definition of DerivedAttributeDefinitions or other
CustomFunctions. For example, this empower analytics end-users to outsource and encapsulate
the definition of complex parts of an analytical abstraction definition to analytics professionals.
In this sense, CustomFunctions foster the collaborative creation of analytical abstractions.

A CustomFunction can be either defined locally by assigning it to a Workspace or glob-
ally without relation to a Workspace. In the former case, CustomFunctions can access the
Workspace’s specific data model and—assuming that Workspaces represent a domain and its
model—implement domain-specific functionality. For example, a Workspace representing an EA

60



4. Conceptual Design

model could contain a locally defined CustomFunction which represents a specific EA metric.
In contrast, global CustomFunctions can be used across multiple workspaces and typically de-
fine a very generic functionality. Since it is not assigned to a particular Workspace and thus
not part of a business domain, they neither access domain-specific data models nor implement
domain-specific functionality. For example, an analytics professional could globally define a
generic CustomFunction for the Shannon entropy (Shannon, 1948) in order to make it accessible
in each Workspace.

The conceptual meta-model does not define CustomFunctions and DerivedAttributeDefinitions
as AccessControllables (cf. Figure 2.5). Consequently, the access control rules for analytical
abstractions are not defined explicitly, but derived from the respective Workspace they are
assigned to. For example, editors of the Workspace are inherently allowed to adapt its custom
functions. Furthermore, having the reader role for an analytical abstraction implies that a user
is also allowed to execute is.

«interface»

MxlDefinable refers to ► *

definition : MxlExpression [1..1]

«interface»

MxlReferable*

MxlReference

Figure 4.5.: This excerpt of the meta-model shows how the interfaces MxlDefinable and Mxl-
Referable define semantic dependencies between analytical abstractions and data
model elements.

Both DerivedAttributeDefinitions and CustomFunctions represent user-defined and model-based
analytical abstractions. MxL empowers end-users to create them at run-time. Therefore, we de-
fine the concepts DerivedAttributeDefinitions and CustomFunctions as MxlDefinables, wherefore
they implement a respective interface (cf. Figure 4.4). An MxlDefinable has an MxlExpression
attribute which represents the actual query or calculation rule (cf. Section 4.2.2.3). By referring
to data model elements (e.g., EntityTypes or AttributeDefinitions) or to analytical abstraction
definitions (e.g., DerivedAttributeDefinitions or CustomFunctions), the user formulating the
query defines semantic dependencies between MxlDefinables and so-called MxlReferables which
represent all concepts which are referable and usable in MxL. The static type-safety of MxL
enables the automated determination of those static dependencies through the static analysis of
MxL expressions. Further details of MxL are described in the following section.

4.2.2. The Model-based Expression Language (MxL)

MxL1 was originally developed as an untyped query and expression language to enable the def-
inition of EAM KPIs and metrics at run-time (Monahov et al., 2013). Through incorporating

1Formerly known as TxL (Tricia Expression Language), whereas Tricia represents a concrete implementation of
the Hybrid Wiki approach

61



4. Conceptual Design

the findings from applying an untyped version of MxL in different domains, we found out that
the static analyzability of MxL expression enabled through the language’s type-safety offers sev-
eral benefits, e.g., the automated derivation of semantic dependencies, or automated refactoring
of expressions on changes of dependent elements (Monahov, 2014; Reschenhofer et al., 2014a).
Therefore, we redesigned MxL to be statically type-safe (Reschenhofer, 2013; Reschenhofer et al.,
2014b). Based on the typed version of MxL, we extended and improved the language’s type sys-
tem and operational expressiveness in order to match the requirements identified in Section 3.2.2.
In this section, we summarize the key features of MxL and describe the concepts which we ex-
tended as part of this thesis.

MxL is mainly inspired by the Object Constraint Language (OCL) which—originally developed
by IBM—is part of the UML standard (Object Management Group, 2014b, 2015). OCL is
an obvious choice for defining queries based on UML-based or UML-like data models (Störrle,
2013). However, in order to avoid restrictions with respect to query language-related design
decisions (e.g., type system as discussed in Section 4.2.2.1), we decided to develop MxL as a
variation of OCL instead of using the standardized OCL. Nevertheless, from a syntactical point
of view, MxL is still very similar to OCL which fosters the familiarization of users with MxL if
they already know OCL.

The most important properties of MxL are (Reschenhofer, 2013):

Functional Using the functional programming paradigm for query languages has a long tradi-
tion (Codd, 1972; Buneman and Frankel, 1979; Grust and Scholl, 1999; Wisnesky, 2014).
As outlined by Buneman et al. (1995), functional programming languages are particularly
suitable for defining complex queries on complex objects and collection types. There-
fore, the functional programming paradigm addresses requirements Req 6 and Req 7 as
described in Section 3.2.2.

Defining properties of functional programming and thus of MxL are the absence of side-
effects as well as the support for higher-order functions (van Roy and Haridi, 2004). The
former property means that expressions do not change a program state, while higher-order
programming refers to the possibility of passing functions as arguments to other functions.

Object-oriented Since the Hybrid Wiki meta-model empowers end-users to define complex linked
data, MxL is an object-oriented language in order to provide a convenient access to the
data objects. As described in detail in Section 4.2.2.1, MxL also supports inheritance as
one of the most important concepts of object-orientation (van Roy and Haridi, 2004).

Sequence-oriented Due to MxL’s purpose as query language, it has to provide operations filter
and transform sequences of data objects defined through the data model (Buneman et al.,
1995), e.g., all Entities of a certain EntityType. Section 4.2.2.2 provides an overview over
supported query operators.

Statically Type-safe In contrast to the initial version of MxL, the current one is statically type-
safe (Pierce, 2002). This means that as part of the MxL interpretation process and after
the syntax analysis through scanning and parsing steps, a type checker validates the static
semantics of an MxL expression and thus ensures its semantic consistency at compile-
time. In the context of MxL, compile-time refers to the point in time where an end-user

62



4. Conceptual Design

defines an MxL expression (which can be at run-time of the implementing software tool),
while the execution-time is the point in time where the expression is executed and queries
actual data. In this sense, semantic analysis of an MxL query also implies that the MxL
interpreter checks for the existence and consistency of all (user-definable) data model
elements and analytical abstractions which are used and referred to within the expression.

Temporal Since addressing evolving data models, MxL was extended to be a temporal query
language (Snodgrass, 1987), i.e., it is able to access the version history of the underlying
data model (Bhat et al., 2015). This enables end-users to formulate queries which operate
on a past state of the data model, and thus to analyze the evolution of the data.

In the following sections we elaborate on further important aspects and features of MxL. Basic
language constructs are described in more detail in the master’s thesis by Reschenhofer (2013),
while MxL’s temporal features are discussed by Bhat et al. (2015).

4.2.2.1. The MxL Type system

Figure 4.6 illustrates MxL’s type system depicted as a hierarchy of MxLTypes. The MxLType
itself is also part of the Meta Object Facility (MOF) diagram as aM2 class (Object Management
Group, 2014a). The most generic type and thus instance of the meta type MxlType is Object.
This type can be found in most object-oriented programming languages and refers to the abstract
type Top as defined by Pierce (2002). In a functional programming language, the type hierarchy
is particularly relevant to determine which types of objects can be passed as parameters to
typed functions. In our tool, a generic Object type allows the definition of generic functions
which should operate on any type of object, e.g., the toString function. Furthermore, MxL
supports the special value 𝑛𝑢𝑙𝑙 representing "no value", or "empty value".

As subtypes of Object, MxL provides the (nullable) primitive types String, Number, Boolean,
and Date. As known from most programming languages, Strings are character sequences en-
capsulated in quotation marks. Number represents both integers and decimals, while the only
values of type Boolean are 𝑡𝑟𝑢𝑒 and 𝑓𝑎𝑙𝑠𝑒. Instances of type Date are objects consisting of
the attributes day, month, and year. This set of primitive types is derived from the primitive
type constraints of the Hybrid Wiki meta-model in Figure 4.3, i.e., primitive AttributeDefini-
tions of the Hybrid Wiki system can be straightforwardly mapped to corresponding MxlTypes.
MxL provides a set of basic operators for objects of primitive types, e.g., arithmetic and com-
parison operations for numbers, logical operations and conditionals for boolean values, or date
comparison operators for dates. For example, the following is a valid MxL expression:

let x = 2 * 3 in
if x^2 > 5 and x < 10
then 15.5
else 0

This MxL expression also uses the let-in construct in order to define a constant x in a certain
scope (which comes after the in).

In addition to primitive types, MxL supports a couple of generic types which define one or

63



4. Conceptual Design

M1

Number

Object

Date

String Boolean

MxlType

Sequence

elementType : MxlType [0..1]

Function

parameterTypes : MxlType [0..*]

returnType : MxlType [1..1]

Structure

Map

keyType : MxlType [0..1]

valueType : MxlType [0..1]

StructureAttribute

«instanceOf»

1 1..*

Entity

name : String [1..1]

type : MxlType [1..1]

<User-defined EntityType>

M2

Figure 4.6.: A conceptual overview over MxL’s type hierarchy. We use MOF (Object Manage-
ment Group, 2014a) in order to be able to describe generic types.

more type parameters (Pierce, 2002). The first of them is the Sequence type which represents
an ordered multi-set, i.e., each element has a dedicated index within the Sequence, and there
can be duplicate elements. The optional type parameter elementType specifies the type of the
elements of the Sequence. To define type parameters in MxL, we use the notation Generic-
Type<TypeParameter1,TypeParamater2,...,TypeParameterX>. For example, a numerical col-
lection can be specified by Sequence<Number>. If no type parameter is specified, the element
type is implicitly defined as Object. If a Sequence contains elements of different types, the ele-
ment type of the Sequence is the minimal common subtype of all its elements (cf. intersection
types as defined by Pierce (2002)). For example, a collection containing a String and a Number
is of type Sequence<Object>. MxL defines subtype relationships between Sequence types with
different element types, i.e., a sequence type Sequence<T1> is the subtype of a sequence type
Sequence<T2>, if and only if T1 is a subtype of T2. For example, Sequence<Number> is a
subtype of Sequence (equivalent to Sequence<Object>).

For the construction of Sequences, we use a common notation with a comma-separated list of
its elements and surrounding square brackets. For example, a Sequence with three Strings as its
elements can be constructed as follows:

["One", "Two", "Three"]

Elements of a sequence can be accessed by their (zero-based) index, e.g.:

64



4. Conceptual Design

let x = ["One", "Two", "Three"] in
x[0] /* returns "One" */

The multi-valued Hybrid Wiki Attributes are mapped to Sequences, i.e., if the multiplicity of
an AttributeDefinition is either "At least one" or "Any number", the corresponding MxlType
will be a Sequence whose element type is still derived from the type constraint. For example,
an AttributeDefinition with a NumberConstraint and with the multiplicity "Any number" is
mapped to Sequence<Number>.

As a higher-order language, MxL supports the Function type and thus functions as first-class
objects. A function takes a certain number of parameters and returns a value. In MxL, higher-
order functions are heavily used as generic query operations (cf. Section 4.2.2.2). The types of
the parameters as well as the return type can be specified as type parameters of the Function
type, whereas the last type parameter represents the return type and the others the ordered
parameter types. For example, Function<Number,Number,Boolean> refers to a function which
accepts two numerical parameters and returns a boolean value. Adding a question mark to
a parameter type defines it as an optional parameter. For example, a function of type Func-
tion<Number,Number?,Boolean> accepts one or two parameters. The most trivial function is
the identity function which just returns its only parameter (Pierce, 2002).

MxL defines subtype relationships between different Function types. However, we have to con-
sider contravariance for the parameter types and covariance for the return type of the Function.
This means that a type Function<P1,...,PN,R> is subtype of Function<P1’,...,PM’,R’>, if

∙ N is equal to M, i.e., they have the same number of parameters,

∙ P1’,...,PM’ are subtypes of P1,...,PN respectively (contravariance), and

∙ R is subtype of R’ (covariance).

As a consequence, the most general Function type is not Function<Object,..,Object,Object>, but
Function<Any,..,Any,Object>, whereas Any represents a pseudo type as subtype of every other
MxLType. It is the analogue to the Bottom type as defined by Pierce (2002) and the counterpart
to Object, which is the supertype of all other MxlTypes.

For the purpose of constructing functions, MxL supports lambda expression (Pierce, 2002) using
the notation known from C#, with a list of (type-annotated) parameters followed by an arrow
(=>) and the function’s implementation (Pierce, 2002):

(x:Number, y:Number) => x + y

The function defined in this example takes two numerical parameters and returns the sum of
them. The parameter types are explicitly annotated, while the return type is inferred automat-
ically based on the implementation part of the lambda expression. As described later on, in
most cases parameter types can be automatically derived from the lambda expression’s context
through type interference, i.e., they do not have to be specified explicitly and can be omitted.

For the execution of functions, we use the notation known from most programming languages,

65



4. Conceptual Design

namely FunctionObject(Param1,...,ParamN). The function object can either be a lambda ex-
pression, or a named function referred to via an identifier, e.g.:

let add = (x:Number, y:Number) => x + y in
add(1, 2) /* returns 3 */

The third generic type in MxL is Map which represents a typed dictionary and thus key-value
pairs. The types of the keys and the values can be specified by the type parameters valueType
and keyType. For example, the type Map<String,Number> defines a dictionary which maps
a String to a Number. The main reason for introducing this type was the groupby function
as described in Section 4.2.2.2: Grouping elements by a certain key requires a respective data
structure allowing users to easily access and operate on the identified groups.

Again, MxL defines subtype relationships between different Map types. However, since a Map
type Map<K,V> can be considered as a function of type Function<K,V>, we again have to
apply covariance and contravariance. As a consequence,Map<K,V> is subtype ofMap<K’,V’>,
if K’ is subtype of K, and V is subtype of V’. Maps can be constructed by the notation [ Key1:
Value1, ..., KeyN: ValueN], e.g.:

["One" : 1, "Two" : 2, "Three" : 3]

This example represents a dictionary of type Map<String,Number> with three dictionary items,
which can be accessed by their respective key, e.g.:

let x = ["One" : 1, "Two" : 2, "Three" : 3] in
x["One"] /* returns 1 */

In addition to primitive and generic types, MxL implements the generic composite type Struc-
ture consisting of a specifiable set of attributes. Those attributes are defined as pairs of a name
and a type by using the notation Structure<name1: type1, ..., nameN: typeN>. For example,
Structure<name: String, age: Number> defines the type of a composite object which has a
string attribute "name" and a numerical attribute "age". The Structure type is MxL’s ana-
logue to the ComplexConstraint as described in Section 4.1.1, i.e., AttributeDefinitions with
ComplexConstraints are mapped to respective Structures in MxL.

The subtype relationship between different Structure types is defined as follows:
Structure<name1: type1, ..., nameN: typeN> (referred to as A) is subtype of Structure<name1’:
type1’, ..., nameM’: typeM’> (referred to as B), if

∙ the set of attribute names of A is a superset of the set of names of B, and

∙ the type of each attribute of B is a supertype of the type of an eponymous attribute of A.

For example, Structure<name:String,age:Number> is a subtype of Structure<name:String>,
but not of Structure<name:String:birthdate:Date>. In this sense, MxL is implementing a typed
variant of duck typing as a form of polymorphism (Chugh et al., 2012). In this context, duck
typing refers to the method of determining subtype relationships by an object’s structure rather
than by a strict "is-a" relation.

66



4. Conceptual Design

In MxL, composite objects can be constructed by using the JavaScript Object Notation (JSON),
whereas their attributes are accessed by respective identifiers, e.g.:

let x = { name : "Thomas Reschenhofer", age : 28 } in
x.age /* returns 28 */

As a subtype of Structure, the type Entity is the abstract supertype for all user-defined En-
tityTypes as defined by the meta-model in Figure 4.3. Therefore, EntityTypes can be inter-
preted as specific Structure types, whereas the EntityType’s AttributeDefinitions are translated
to respective StructureAttributes. As a consequence, a function defining a parameter of type
Structure<age:Number> also accepts Hybrid Wiki Entities whose EntityType defines an At-
tributeDefinition named "age" and restricted by a NumberConstraint. Furthermore, objects of
type Entity implicitly have built-in attributes, e.g., an ID and a name.

In summary, the MxL type system complies to the type constraints in Figure 4.3 on the one
hand, and additionally provides types (e.g., Map and Function) enabling the implementation
of generic and common query functions (e.g., groupby) on the other hand. Notable extensions
compared to the MxL version as described by Reschenhofer (2013) are the implementation of
the types Map and Structure as well as the corresponding duck typing approach.

4.2.2.2. Basic Functions in MxL

Basic functions are the default functions provided by MxL. They are summarized in the appendix
in Section A. However, we will briefly describe some of them in more detail in the following
section.

As consequence of its sequence-orientation, MxL provides a default set of basic functions which
operate on sequences and represent common query operations. More specifically, MxL imple-
ments the Standard Query Operators (Heijlsberg and Torgersen, 2013) as defined by Microsoft
and as also applied in their Language Integrated Queries (LINQ). Those operations include
common query functions, quantifier functions, set functions, element functions, partitioning
functions, and aggregation functions.

Most basic functions in general and sequence functions in particular are higher-order functions,
i.e., they accept other functions as parameters. For example, the select function accepts a
function as parameter which maps each element of the original sequence to a new value (cf.
Table A.7). Therefore, the return type of the select function is determined by the return type of
the given mapping function. For example, the following MxL expression shows the application
of the select function to an object of type Sequence<Number> with a parameter of type Func-
tion<Number,String>. The return type of the select function is inferred automatically and thus
is Sequence<String>:

let x = [1, 2, 3] in
x.select(toString) /* returns ["1", "2", "3"] */

Analogously, the where function accepts a predicate (a function returning a boolean value)
as parameter and removes those elements from the original sequence which do not fulfill this

67



4. Conceptual Design

predicate. Consequently, the return type of the where function is just the same as the type of
the original sequence:

let x = [1, 2, 3] in
x.where(e => e > 2) /* returns [3] */

In this example, we do not need to annotate the type of the lambda’s parameter since it can be
automatically inferred from the context.

*

1 Category

id : String

name : String

Function points : Number

Go-live date : Date

/ TIIF : Number

Database

Information Flow

1

*

1

*

Source Target

Protocol : String

Business Application

Databases

*

*

Database Category

*

1..* Location

Functional Domain

Applications

*

0..1

Location

Address : Structure<Street:String, 

PostalCode:String, City:String>

Domain

Domains

Applications

Instances

Outgoing Flows Incoming Flows

Figure 4.7.: An exemplary EA model capturing the application landscape and related concepts.
This model is inspired by the work of Schneider et al. (2015). We use the MxL type
notation in order to specify the ComplexConstraint of the Location’s Address.

Instead of applying the query functions to a statically constructed sequence of numbers, we can
also use the find keyword of MxL in order to retrieve all entities of the specified EntityType.
By considering that the underlying Hybrid Wiki data model defines EA model as illustrated in
Figure 4.7, we can retrieve all business application as follows (the apostrophe is required since
the name of the EntityType contains a special character):

find ’Business Application’

Based on this sequence of type Sequence<’Business Application’> we can now apply arbitrary
sequence operations. For example, to determine the number of business applications whose
function points exceeds a certain value, we can formulate the following query:

find ’Business Application’
.where(ba => ba.’Function points’ > 10)

Through type interference, the parameter type of the lambda expression is automatically de-
termined and thus can be omitted by the user. Furthermore, the semantic analysis of an MxL

68



4. Conceptual Design

expression allows users to apply an implicit lambda expression instead of explicitly formulat-
ing it (Reschenhofer, 2013). As a consequence, the system interprets partial MxL expressions as
lambda expressions, and thus certain identifiers as attributes of the implicit lambda’s parameter.
The following query is semantically equivalent to the former one:

find ’Business Application’
.where(’Function points’ > 10)

In order to define more complex queries, we can append further query operations, e.g., aggre-
gations, and combine them with other operations and functions. For example, we can define
a query which implements the database heterogeneity measure as defined by Schneider et al.
(2015) and as already introduced in Section 1.1 as follows:

/* Get a list of databases used by business applications. This list might contain duplicates
if a database is used by more than one application */

let list = find ’Business Application’.selectMany(Databases) in

/* Determine the total number of database usages */
let totalNumber = list.count() in

/* Map each distinct database to the number of applications by which it is used */
let groups = list.groupby().asSequence() in

/* if there are no database usages, the heterogeneity metric is defined to be 0 */
if totalNumber = 0
then 0
else
/* this is an implementation of the Shannon Entropy */
groups.sum(
let fi = value.count() / totalNumber in
if fi = 0 then 0 else fi * ln(1 / fi)

)

The functions used in this example are described in detail in the appendix (Section A).

4.2.2.3. Defining Custom Functions and Derived Attributes

As shown by the previous example, MxL expressions can become rather complex. Refactor-
ing and restructuring an expression can help to reduce the complexity of an expression, and
increase the reusability of certain parts of an expression. Furthermore, this allows users to out-
source the implementation of (partial) queries, and to share them as potentially parametrized
CustomFunctions. In the previous example, we can define the Shannon entropy as a reusable
CustomFunction. As illustrated in Figure 4.4, a CustomFunction has a name and an optional
description. The name defines the identifier by which CustomFunctions can be referred to within
an MxL expression, while the description provides additional textual information which might

69



4. Conceptual Design

be particularly helpful for other users which intend to reuse the CustomFunction. Furthermore,
a CustomFunction can define a list of parameters which in turn consist of a name and a pa-
rameter type. In general, we use the MxL type notation to specify parameters and their types.
The actual implementation of the CustomFunction is captured by the definition attribute de-
rived from the MxlDefinable interface. CustomFunction can be assigned to workspaces which
implicitly links them to the respective data model. For example, assigning a CustomFunction
to a workspace defining the EA model depicted in Figure 4.7 enables access to the data model
elements, e.g., retrieving entities of a Workspace-specific EntityType.

Referring back to the previous example in Section 4.2.2.2, an Analytics Professional can define
entropy as a CustomFunction with a respective and meaningful textual description. The only
parameter is named "list" and is of type Sequence, whereas the element type does not have to
be specified explicitly and thus is implicitly Object. This parameter is available as an identifier
within the following MxL expression representing the definition of the CustomFunction:

let totalNumber = list.count() in
let groups = list.groupby().asSequence() in

if totalNumber = 0
then 0
else
groups.sum(
let fi = value.count() / totalNumber in
if fi = 0 then 0 else fi * ln(1 / fi)

)

By reusing this CustomFunction, we can reformulate the previous query for the database het-
erogeneity metric as:

/* Get a list of databases used by business applications. This list might contain duplicates
if a database is used by more than one application */

let list = find ’Business Application’.selectMany(Databases) in

/* Apply the Shannon entropy */
entropy(list)

Similarly, we can define DerivedAttributeDefinitions for EntityTypes. In contrast to Attribut-
eDefinitions, they do not describe the to-be structure of respective entities, but define attributes
whose values are automatically computed based on a given MxL query. Therefore, the class
DerivedAttributeDefinitions implements the MxlDefinable interface as illustrated in Figure 4.4.
Derived attributes are defined once at EntityType-level, but executed for each of its Entities.

Referring back to the exemplary EA model in Figure 4.7, the type Business Application contains
a derived attribute TIIF which is an acronym for "Transitive Incoming Information Flows". By
interpreting the application landscape as a directed graph whose nodes are Business Applications
and edges are Information Flows, TIIF is defined as the number of its descending nodes. With

70



4. Conceptual Design

MxL, we can define TIIF as DerivedAttributeDefinition for the EntityType Business Application
as follows:

this.transitive(ba => ba.’Incoming Flows’.select(f => f.Source))
.count()

In the definition of DerivedAttributeDefinition, end-users can use the this keyword in order to
access the Entity for which the derived attribute’s value is computed, which in this case is an
Entity of type Business Application. transitive is defined as a function applicable to an object of
any type T. Its parameter is a mapping function of type Function<T,Sequence<T> >. Initially
applied for the source object, the map function is recursively invoked for the objects returned by
it until no more distinct objects are retrieved. The result of the transitive function is a Sequence
of all traversed objects. In the previous example, the mapping function navigates to incoming
information flows and subsequently to their target application. By recursively repeating this
navigation step through the transitive function and by counting the elements of the resulting
sequence, the DerivedAttributeDefinition computes the desired metric.

MxL offers specific language features to shorten expressions and to make them easier to read. In
addition to the already described implicit lambda, this also includes the implicit this as known
from Java or C# (Reschenhofer, 2013): If an identifier cannot be resolved by MxL’s semantic
analyzer, it is first interpreted as an attribute of an implicit lambda’s parameter. If this fails,
the identifier is interpreted as an attribute of the object represented by the this keyword. In
case this also fails, the semantic analysis will signal a respective validation error. Therefore, we
can reformulate the previous definition of TIIF as follows:

transitive(’Incoming Flows’.select(Source)).count()

4.2.3. Assessment of the Expressiveness of MxL

As shown by Pemberton and Robson (2000), sorting and database functions are the most fre-
quently used operations in spreadsheets. By implementing the Standard Query Operators (Hei-
jlsberg and Torgersen, 2013) as basic functions in MxL, we addressed this issue. However, the
question remains if the type system and set of implemented functions is sufficient to define
complex queries based on complex linked data.

To answer this question, we observed EA KPIs and metrics which are derived from related
literature and from practice. There are two main reasons for choosing the EAM domain as
setting for evaluating the expressiveness of MxL: On the one hand—as already introduced in
Section 1.1—in EAM different stakeholders collaboratively define complex linked data models
and corresponding metrics. On the other hand, the sebis chair has a long tradition in doing
research about EAM in cooperation with industry partners, wherefore we have access to both
data and metrics from industry.

In this context, Matthes et al. (2012a) developed a catalog consisting of 52 EAM KPIs gathered
from literature and industry. Each KPI is described based on a predefined template capturing
general and organization-specific structure elements (Matthes et al., 2012b). One of those general

71



4. Conceptual Design

structure elements is the Calculation representing a textual description of how the KPI has to
be calculated based on a given information model. For example, the information model for the
EAM KPI Application continuity plan availability is depicted in Figure 4.8. The corresponding
calculation is textually described as:

The number of critical applications where tested IT continuity plan is available divided
by the total number of critical applications

.

Business Application

0..1isCritical : Boolean

continuityPlan IT Continuity Plan

isTested : Boolean1..*

Figure 4.8.: The information model for the EAM KPI Application continuity plan availabil-
ity (Matthes et al., 2012a).

In order to evaluate if MxL’s expressiveness, we implemented all KPIs of the EAM KPI cata-
log (Monahov, 2014). For example, the Application continuity plan availability KPI was defined
as follows Reschenhofer (2013):

/* Determine all critical applications */
find(’Business Application’).where(isCritical)

/* Calculate ratio of critical applications covered by a continuity plan */
.ratio(coveringPlan <> null)

In the context of a related research project, Schneider et al. (2015) present EA complexity
metrics which were derived from literature and industry. The metrics were categorized into
Heterogeneity-focused, Industry, and Topology-based metrics. The database heterogeneity metric
shown and explained in Section 4.2.2.2 is a representative of the first class of metrics, while
Industry metrics are similar to the KPIs of the EAM KPI catalog. The topology-based metrics
interpret the application landscape as a directed graph with Business Applications as nodes and
Information Flows between them as edges. Based on the topology of this graph, the metrics
identify four clusters, namely core, control, shared, and periphery applications (Lagerström et al.,
2014).

As shown in Figure 4.9, the application of MxL for defining EAM KPIs and EA complexity
metrics served as an evaluation of the expressiveness of the type system and basic functions.
Based on this evaluation, we had to extend MxL continuously, e.g., by new MxlTypes and basic
functions. For example, the types Map and Structure as well as the basic functions transitive
and ln were added based on feedback gained from the implementation of specific KPIs and
metrics.

The MxL type hierarchy as shown in Figure 4.6 as well as the basic functions as described in
the appendix in Section A represent a state of MxL which provides an expressiveness which
is sufficient to implement all identified EAM KPIs and EA complexity metrics. Therefore, we

72



4. Conceptual Design

MxL

Type 

System

Basic 

Functions

Standard Query Operators 
(Heijlsberg and Torgersen, 2013)

Object Constraint Language
(Object Management Group, 2014b)

General Type Theory
(Pierce, 2002)

define

evaluate

refine

Implementation of

EAM KPI catalog
(Matthes et al., 2012a)

Implementation of EA 

complexity metrics
(Schneider et al., 2015)

Figure 4.9.: Evaluation and refinement of MxL based on its application for defining EAM
KPIs (Matthes et al., 2012a) and EA complexity metrics (Schneider et al., 2015).

consider the expressiveness of MxL as sufficient for the definition of complex queries based on
complex linked data in general.

4.3. Views and View Templates for Hybrid Wikis

On the top of the data model and analytical abstractions layer, the collaborative EUA framework
in Figure 3.2 defines concepts for views which are based on respective view templates. View
templates represent abstract viewpoints as described by Schaub et al. (2012) and have to be
instantiated with a data model in order to generate concrete views. In the following section, we
describe both the view and view template layer, and thus address the requirements as derived
in Section 3.2.3.

4.3.1. Extending Hybrid Wikis by Views

Figure 4.10 shows the extended Hybrid Wiki meta-model including view and view template
concepts (Reschenhofer and Matthes, 2016a).

The View class describes abstract views representing a composition of multiple data Visualiza-
tions. Specific examples for Views are Dashboards and Reports. Since assigned to a dedicated
Workspace, a View is considered to be domain-specific, i.e., it visualizes domain-specific data
defined through domain-specific data models and transformed through domain-specific analyt-
ical abstractions. Furthermore, the View class implements the AccessControlled interface (cf.
Figure 2.5) to enable the specification of which users are allowed to see and edit it.

The Visualization represents a self-contained visual component which can be part of potentially
multiple Views. It is defined by a VisualizationType which contains the actual implementation
and thus defines the type of the visualization (e.g., bar chart, graph view, etc.). Since imple-
menting the AccessControlled interface, the access to VizualizationTypes can be restricted, e.g.,
to specify which users are allowed to modify them. The kind of data which can be visualized

73



4. Conceptual Design

Workspace

1

MxLDefinable

is defined by ►
View

name : String [1..1]

Visualization

name : String [1..1]

VisualizationType

name : String [1..1]

DataBinding

name : String [1..1]

DataBindingDefinition

name : String [1..1]

parameterType : MxlType [1..1]

*

1..* * * 1

is defined by ►

* 1

consists of ►

has ▼

1

*

has ▼

1

*

has ▼

Dashboard Report …

AccessControlled AccessControlled

Figure 4.10.: A detailed excerpt of the meta-model (cf. Figure 2.4) with a focus on view and
view template concepts. The definitions of the interfaces MxlDefinable and Access-
Controlled are depicted in Figures 4.5 and 2.5 respectively.

by a certain VisualizationType is specified by a data input interface defined by a set of typed
DataBindingDefinitions. By using the MxL type system and the corresponding MxL type no-
tation, we can define complex typed DataBindingDefinitions which are compliant to the types
of the underlying analytical abstractions. For example, if a DataBindingDefinition is of type
Number, a user which instantiates a corresponding Visualization has to make sure to define an
MxL query which returns a numerical value for the respective DataBinding.

When creating a Visualization based on a VisualizationType, the user has to instantiate each of
the VisualizationType’s DataBindingDefinitions and thus define a corresponding DataBinding.
A DataBinding links data model elements or analytical abstractions to Visualizations (Soriano
et al., 2007). By using MxL, users are able to define complex queries and to transform the
underlying data or analytical abstractions to match them with the corresponding DataBind-
ingDefinition’s type. As a consequence, DataBindings implement the MxlDefinable interface as
defined in Figure 4.5 and thus have semantic dependencies to MxlReferables, e.g., AttributeDef-
initions or CustomFunctions.

In this sense, the concepts defined in Figure 4.10 relate to the conceptual framework as defined
by Hauder et al. (2012) and Schaub et al. (2012) and as already described in Section 2.3.2: Vi-
sualizationTypes represent Abstract Viewpoints, whereas the Abstract view model is defined by
it DataBindingDefinitions. Visualizations are the analogue to the concrete Viewpoints. The cor-
responding DataBindings explicitly specify the View model which describes the Visualization’s
information demand.

A view’s binding to a domain-specific data model is separated from its actual implementa-
tion, and only connected through a well-defined data input interface. Through this separation,

74



4. Conceptual Design

technology-savvy users, e.g., web developers and web designers, are able to implement generic
visualization types, while domain experts are responsible for binding them to domain-specific
data models (cf. requirement Req 13). This also compares to the Enterprise Mashup (EM) en-
vironment as defined by Pahlke et al. (2010): Virtualized components (VisualizationTypes) can
be assembled by end-users to EM applications (Views) through binding them to different kinds
of resources (DataBinding).

4.3.2. Definition of Data Bindings

The actual logic of a Visualization is implemented in its VisualizationType, whereas the
DataBindingDefinitions represent parameters by which a concrete Visualization instance can
pass concrete data to the implementation. For example, a VisualizationType "Directed Graph"
represents a VisualizationType showing a graph with directed edges. The actual set of nodes and
edges can be defined as DataBindingDefinitions, whereas they have to be bound to an underly-
ing data model or analytical abstractions when creating an instance of the "Directed Graph".
Therefore, a "Directed Graph" can be defined with two DataBindingDefinitions "nodes" of type
Sequence<id:String, label:String> and "edges" of type Sequence<Structure<from: String, to:
String> >. The DataBindingDefinitions do not refer to any domain-specific concepts. As a con-
sequence, the VisualizationType "Directed Graph" can be considered as a generic view template
which can be reused in different domains for the visualization of diverse graph-like structures.

In order to instantiate a "Directed Graph", users have to select an existing VisualizationType
and subsequently bind it to the underlying data model or analytical abstractions by formulating
respective queries for the DataBindingDefinitions. Referring back to the exemplary data model
in Figure 4.7, we can visualize the application landscape consisting of Business Applications and
their Information Flows as a graph. For this purpose, the DataBinding "nodes" can be defined
as follows:

find ’Business Application’
.select({id: id, label: name})

This MxL query retrieves all entities of type Business Application, and maps each of them to a
Structure which conforms to the corresponding DataBindingDefinition of the VisualizationType.
This means that the id and name of each business application is mapped to a corresponding id
and label attribute. Since the id attribute is mapped to an eponymous StructureAttribute, we
can also write the following query:

find ’Business Application’
.select({id, label: name})

With this notation, MxL interprets an unpaired identifier within the constructor of a Structure
as a StructureAttribute, whose name is defined by the identifier’s name, and whose value is the
identifier’s value in its current context.

The DataBinding "edges" can be defined as follows:

75



4. Conceptual Design

find ’Information Flow’
.select({from: Source.id, to: Target.id})

Analogous to the VisualizationType "Directed Graph" and its instantiation for visualizing an
application landscape based on the exemplary EA model in Figure 4.7, we can also define a
very simple VisualizationType "Simple Number" to show the value of the exemplary database
heterogeneity metric as described in Section 4.2.2.3. The number which has to be shown is
defined as a corresponding numerical DataBindingDefinition.

Figure 4.11 illustrates an exemplary dashboard consisting of the aforementioned visualizations.
The UML object diagram shows the relations between Visualizations and VisualizationTypes,
and between DataBindings and DataBindingDefinitions. Furthermore, it also highlights the im-
plicitly derived semantic dependencies from DataBindings and analytical abstractions asMxlDe-
finable to analytical abstractions and data model elements as MxlReferables. In this sense, it
represents the analysis model as holistic perspective on data model elements, analytical abstrac-
tions, and views including semantic dependencies between each other (cf. Section 3.1).

4.3.3. Assessment of the Expressiveness of the View Concepts

As described in Section 4.3.1, a view’s binding to a domain-specific data model is separated
from its actual implementation, and only connected through a well-defined data input interface.
In this Enterprise Mashup-like architecture, end-users are empowered to tailor views to their
individual needs (Pahlke et al., 2010). Furthermore, making the parameterized view templates
explorable by different kinds of users fosters collaboration and innovation (Soriano et al., 2007).
Regarding the technical expressiveness, the design decision of separating the binding to concrete
data from the view’s implementation has the following two main consequences.

First, visualizations consume data through the data input interface which is constituted by a set
of DataBindingDefinitions. Since using the MxL type notation to define DataBindingDefinitions,
and MxL queries to define corresponding DataBindings, the expressiveness of the input data of
views is derived from MxL’s expressiveness and described by MxL’s type system. As argued in
Section 4.2.3, MxL supports the definition of complex analytical abstractions based on complex
linked data, which in turn also applies to DataBindings.

Second, the expressiveness of the visualizations themselves strongly depends on the respective
technical platform. Although the expressiveness of the data input is only restricted by MxL’s
type system, technical constraints of the environment in which the VisualizationTypes are imple-
mented might impose further limitations with respect to how the data can actually be processed
and visualized. This also includes a potential parsing process from the data retrieved through
an MxL query in order to adapt it to the technical environment. However, while the expres-
siveness might suffer from limitations of the technical environment, it can also benefit from an
already existing ecosystem. For example, libraries and frameworks already existing for a chosen
technical platform can be used in order to implement VisualizationTypes. As described later
on in Chapter 5, our prototype will be web-based. On the one hand, this allows us to reuse

76



4. Conceptual Design

A
n

al
y
ti

ca
l 

A
b

st
ra

ct
io

n
s

D
at

a 
M

o
d

el
 O

b
je

ct
s

View Template ObjectsView Objects

visualizationType

nodesDef : DataBindingDefinition

name = „nodes“

type = „Sequence<Structure<id: String, label: String>>“

edgesDef : DataBindingDefinition

name = „edges“

type = „Sequence<Structure<from: String, to: String>>“

visualization

nodes : DataBinding

name = „nodes“

definition = „find 'Business Application'.select({id, label: name})”

definition

definition

busApp : EntityType

name = „Business Application“

infoFlow : EntityType

name = „Information Flow“

target : AttributeDefinition

name = „Target“

source : AttributeDefinition

name = „Source“

entityType

entropy : CustomFunction

name = „entropy“

parameters = „list : Sequence“

definition = „…“

dbHeterogeneity : CustomFunction

name = „databaseHeterogeneity“

definition = „…“

databases : AttributeDefinition

name = „Databases“

entityType

directedGraph : VisualizationType

name = „Directed Graph“

applicationLandscape : Visualization

name = „EA Application Landscape“

template

visualizationType

valueDef : DataBindingDefinition

name = „value“

type = „Number“

visualization

value : DataBinding

name = „value“

definition = „databaseHeterogeneity()”

definition

simpleNumber : VisualizationType

name = „Simple Number“

dbHeterogeneityViz : Visualization

name = „Database Heterogeneity“

template

dashboard

eamDashboard : Dashboard

edges : DataBinding

name = „nodes“

definition = „find 'Information Flow'.select({from: Source.id, to: Target.id})”

name = „EAM Dashboard“

Figure 4.11.: A UML object diagram illustrating the analysis model for an exemplary Dashboard
"EAM Dashboard" including semantic dependencies between the different artifacts
(green, orange, and blue). The concepts are defined in Figures 4.3, 4.10, and 4.5
respectively. The exemplary data model is depicted in Figure 4.7.

77



4. Conceptual Design

existing web data visualization frameworks2. On the other hand, parsing the data retrieved by
MxL queries to JSON objects is straight-forward, since various language features of MxL, e.g.,
the notation for complex objects in MxL, are inspired by JSON.

In summary, the expressiveness of views strongly depends on the technical platform in which they
are implemented. However, particularly in a web-based environment which already provides a
huge ecosystem of data visualization frameworks and libraries, we consider the expressiveness of
views and view templates as described in the previous sections as sufficient for the visualization
of complex linked data.

4.4. Meta-Analysis

As motivated in Section 3.2.4, creating awareness of important aspects and activities is to create
awareness of important aspects and activities is essential in a collaboration environment (Martin
and Sommerville, 2004). In the context of EUA, this includes the identification of co-workers
with which a given person has to interact and coordinate in order to achieve a certain analytics-
related task (Cataldo et al., 2006), e.g., the definition or adaption of a metric or visualization

As shown by the exemplary analysis model in Figure 4.11, the different elements can be highly
connected to each other, i.e., changing one element of the analysis model can have an impact to
multiple other elements. Establishing awareness also means that users know which elements and
thus which other users are affected by different kinds of interactions with specific parts of the
analysis model. Therefore, visualizing the analysis model as shown in Figure 4.11 is only a part
of a possible solution: Maintaining and showing respective meta-information for each element
(e.g., its owner) is also necessary to support users to identify co-workers affected by changes or
other kinds of interactions (cf. requirement Req 20).

Data Model 

Element

Analytical 

Abstraction

Meta

Information

Information 

Asset

◄ has

1

*

1 has ►

View Element

*

Ownership Usage …

User

**

captures ▼

* *

*

**

*

◄ refers to

◄ refers to ◄ refers to

* *

◄ refers to

Figure 4.12.: A conceptual perspective on the artifacts of a EUA tool and their meta-
data (Reschenhofer et al., 2016b).

Figure 4.12 shows a conceptual meta-model as a foundation for an analysis model (Reschenhofer
et al., 2016b). In line with Khatri and Brown (2010), we subsume the basic EUA elements as
described in Sections 4.1, 4.2, and 4.3 (namely data model elements, analytical abstractions, and

2http://keshif.me/demo/VisTools, last accessed on: 04.10.2016

78

http://keshif.me/demo/VisTools


4. Conceptual Design

view elements) under the general concept Information Asset. By their definition, Information
Assets describe documented facts with a potential value for a stakeholder. Therefore, we consider
Data Model Elements, Analytical Abstractions, and View Elements as Information Assets (Waltl
et al., 2015). Information Asset can have an arbitrary number of Meta Information which
represents descriptive information about its structure, context, or semantics (Dinter et al., 2015).
While all types of Information Assets can have a common set of generic Meta Information, e.g.,
the owner of an Information Asset (Khatri and Brown, 2010), its users (Vaduva and Vetterli,
2001), its creators (Hüner et al., 2011), or its revision history (Ginige et al., 2010a), there
are also specific types of Meta Information for specific Information Assets. For example, Frank
et al. (2008) describe a meta-model for metrics (analytical abstractions) including different meta
attributes, e.g., a goal, a purpose, or presumptions. Therefore, when exploring the analysis
model, a respective exploration view has to handle each type of Information Asset individually
and to show not only generic meta-information, but also specific one.

Information Asset are connected to each other through semantic dependencies which represents
an additional kind of meta-information. Those dependencies are determined by MxLReferences
and automatically extracted from MxL expressions (cf. Figure 4.5). By interpreting the semantic
dependencies between views, analytical abstractions, and data model elements as information
flows (if A refers to B, the information flows from B to A), we can represent the analysis model as
an information flow graph. As a consequence, end-users are able to explore the analysis model
via information flow analysis, which is a proven means to empower end-users to coordinate
processes and facilitate collaboration (Durugbo et al., 2013). By augmenting the nodes of this
information flow graph with meta-information (e.g., owners or users of the element represented
by the node), we enable users to not only explore which elements of the analysis model are
affected by certain interactions with one of its nodes, but also to identify co-workers which are
related to them. In this sense, the information flow graph augmented with (user-related) meta-
information enables artifact-centric social network analysis (Cross et al., 2002; Freeman, 2004;
Kilduff and Brass, 2010). For this reason, we name it Social Information Flow Graph (SIFG).

ViewsAnalytical AbstractionsData Model

EAM Dashboard

Database

Information Flow

1 1Source Target

Business Application

Databases*

entropy

dbHeterogeneity Database 

Heterogeneity

EA Application

Landscape

Owner:      John Doe

Used by:     John Doe, Mary Major

Figure 4.13.: The illustration of a Social Information Flow Graph (SIFG) for the example in
Figure 4.11.

Figure 4.13 illustrates the SIFG for the example as described in Section 4.3.2. First and foremost,
it shows how abstract information flows starting from the data model via analytical abstractions

79



4. Conceptual Design

to views. However, it augments each node with respective meta-information, and relates them
to users through different roles. For example, the owner of the "dbHeterogeneity" metric can
observe which elements serve as input for the metric and which visualizations are actually using
his metric, and which users are responsible for those elements. In this way, the SIFG enables new
opportunities and use-cases for end-user-oriented social network analysis (Reschenhofer et al.,
2016b).

80



CHAPTER 5

Prototypical Implementation and User Interface Design

While in Chapter 4 we described the conceptual design of a tool empowering end-users to
collaboratively analyze evolving complex linked data, the following sections discuss the highlights
of a respective prototypical implementation based on the SocioCortex platform. In contrast to
the previous chapter, we will also discuss technical aspects, e.g., decisions regarding the selection
of technical platforms and frameworks, and particularly decisions regarding the design of the
User Interface.

While the conceptual design is based on the Hybrid Wiki meta-model (Matthes et al., 2011), our
prototype builds on the technical implementation of a Hybrid Wiki system named Tricia. By
extending this system as described in the following sections, we renamed it to SocioCortex (SC).
Figure 5.1 illustrates the architecture of our prototype, and highlights logical components which
were already provided by Tricia, and which were added in the context of this thesis.

Tricia already supported managing unstructured complex linked data as well as the collabora-
tive and iterative design of respective data models. Furthermore, it provided additional useful
features, e.g., access control, version history, support for file attachments, and full text search
(cf. Section 2.1.2). SocioCortex and thus our prototype builds on those foundations, and ex-
tends it with the integration of analytical abstraction as described in Section 4.2.1. View and
view Template elements (cf. Section 4.3.1) are not built into the SocioCortex back-end, but are
implemented on the front-end side within the SC Visualizer client which is described in detail
in Section 5.3.2.

As motivated in Section 3.1, multiple end-users with different roles and expertises interact with
the system to explore or manage the data model, analytical abstractions, and views. In or-
der to provide different UIs for those different use-cases, SocioCortex was implemented as a
platform based on which different applications can consume its services through a well-defined
technical interface, i.e., a Representational State Transfer (REST) Application Programming

81



5. Prototypical Implementation and User Interface Design

SocioCortex

Content Management Client
(sc-contentmanager)

Modeling Client
(sc-modeler)

Analytics Client
(sc-visualizer)

Unstructured Complex Linked 

Data
(entities, attributes, files)

Data Model
(entity types, attribute definitions, 

constraints)

Analytical Abstractions
(derived attribute definitions, custom 

functions)

SocioCortex Web Framework

Authentication and Authorization Layer
(readers, writers, administrators)

Generic SocioCortex REST API

Visualization Artifacts
(dashboards, visualizations, visualization 

types)

Existing / Adapted Hybrid Wiki Component New component

REST API Wrapper for AngularJS
(sc-angular)

UI Components for Defining Complex Queries
(mxl-angular)

UI Components for Managing Complex Linked Data
(sc-datatable)

Figure 5.1.: The logical architecture of our prototype

Interface (API). Therefore, while Tricia was a standalone web application including both a
back-end and a front-end, SocioCortex as a platform only refers to the extended back-end part.
Section 5.1 outlines the most important features of the SocioCortex platform as well as its
extensions compared to its predecessor Tricia.

While the core of the SocioCortex application was reduced to its back-end, the SC REST API
enables the implementation of use-case-specific and light-weight front-ends for different kinds of
platforms. As shown in Figure 5.1, our prototype encompasses three different AngularJS-based
web clients which are described in detail in Section 5.3: A content management client to view and
edit the content of the platform, a modeling client to enable end-users to define data models and
analytical abstractions, and a visualization client empowering end-users to create dashboards
and visualization types. Further examples for SC clients are a PDF report generator (Velten,
2016) and a legal workbench (Waltl et al., 2016).

Common SC-related functionality and UI components of those web clients are provided by a
set of modules in order to avoid redundancies and to improve reusability. For example, the
module sc-angular wraps the access to the SC REST API and thus provides a more convenient
access to the services provides by SocioCortex. The mxl-angular and sc-datatable modules

82



5. Prototypical Implementation and User Interface Design

contain reusable UI components for defining MxL queries and for managing complex linked data
respectively. These modules are further described in Section 5.2.

5.1. The SocioCortex Backend

SocioCortex is a Java-based Enterprise 2.0 platform and the successor of Tricia which was
initially developed at the sebis chair at TUM. The most important improvements of SocioCortex
compared to its predecessor Tricia are the following:

∙ Improvement of MxL (e.g., implementation of the type system as described in Sec-
tion 4.2.2.1) and its integration in SocioCortex

∙ Replacement of the tightly-coupled web front-end by a technical REST API

∙ Integration of Adaptive Case Management (ACM) concepts. Since not relevant in the
context of this thesis, we refer to the PhD thesis of Hauder (2015) for more details.

In Section 5.1.2, we will outline the implementation of MxL and its integration in SocioCortex.
Subsequently, we describe the REST API in Section 5.1.3. However, first we will elaborate on
the core components of SocioCortex.

5.1.1. The Core Components of SocioCortex

As illustrated in Figure 5.2, Tricia implemented the Model View Controller (MVC) architecture
pattern (Büchner, 2007). When a client performs an HTTP request (1), the web server as a
dispatcher forwards it to a handler (controller) based on the requested URL (2). The handler
loads (and eventually manipulates) the model (3) and passes it to a view (4). The view is
instantiated based on a view template (5) which is usually defined as an HTML document. The
view is then returned to the web server (6) which creates a respective response for the client
(7).

Since reduced to a back-end platform, the interaction model of SocioCortex (cf. Figure 5.3)
skips the view generation step and instead parses the model object obtained by the handler into
a machine-readable JSON object or JSON array. Thereby, the serialization process creates a
specific JSON representation for each kind of model. In contrast to Tricia, in SocioCortex the
actual view will be generated on the client based on the JSON data. The logical core components
of SocioCortex are:

Web Server Two main tasks of the web server are processing authentication and mapping the
incoming request to the corresponding handler.

Tricia implemented a session-based authentication mechanism. This means that based on
an initial request containing the user’s credentials, the server creates a session, validates
the user credentials, assigns the user identity to the session, and returns a respective session
id. By including this session id in each future request, the server can restore the session
and thus determine the user’s identity again.

83



5. Prototypical Implementation and User Interface Design

Web Server

View

Model

Handler

Template

1

2

3

4

6

7

5

Client

Figure 5.2.: Interaction model in Tricia.

Web Server

Serializer

Model

Handler

1

2

3

4

5

6

Client

Figure 5.3.: Interaction model in SocioCortex.

In contrast to Tricia, SocioCortex communicates with its clients via a REST API. A
defining feature of a REST API is its stateless character, i.e., each request to the web
server is an independent transaction. As a consequence, the session-based authentication
mechanism of Tricia is no longer suitable for SocioCortex as REST API-based platform.
Therefore, we implemented new authentication mechanisms, namely Basic Authentication
and JSON Web Tokens1 (JWT). Both of them are stateless, i.e., each request to the
web server contains all information required to authenticate the respective client without
having to retain session information on the server across multiple requests.

While with Basic Authentication, the user credentials are Base64-encoded and embedded
into the Hyper Text Transfer Protocol (HTTP) header of each request, JSON Web To-
kens (JWT) is a token-based approach. This means that initially the client requests an
authentication token by sending the user credentials. The server validates the creden-
tials and creates an authentication token in JSON format—the JWT. A JWT contains
a header, a payload, and a signature. The header usually consists of meta-information,
e.g., the name of the algorithm used for signing the token. The payload captures the
user’s identity and potentially further properties (e.g., an expiration date). The signature
is created by the web server using an RSA algorithm (Rivest et al., 1978) and ensures the
integrity of the JWT. In all future requests, the JWT has to be included in the HTTP
header so that the web server can validate the signature, check the token’s expiration date,
and authenticate the user.

After successfully completing the authentication step, the web server selects a handler
which is responsible to process the incoming request based on its URL.

Handlers In a first step, a SocioCortex handler determines the HTTP method of the REST re-
quest (e.g., "GET", "POST", "PUT", or "DELETE") and checks if the respective method
is implemented by the handler (e.g., "doGet", "doPost", "doPut", "doDelete"). After

1https://jwt.io/, last accessed on: 04.10.2016

84

https://jwt.io/


5. Prototypical Implementation and User Interface Design

that, the handler ensures that the authenticated user is authorized to perform the action
as determined by the HTTP method.

If the authorization step is successful, the HTTP method-specific business logic is executed.
Typical steps are the extraction of request parameters, the deserialization of the request
payload, manipulation of the SocioCortex model, and the serialization of the response to
the client. For example, a "PUT" request to a specific SocioCortex resource defines an
update operation consisting of the following steps:

1. Extraction of the resource’s ID from the request Uniform Resource Locator (URL)

2. Deserialization of the update instructions contained in the request payload

3. Update of the entity with the given ID and the given update instructions

4. Serialization of the updated entity

Deserialization and serialization are performed by resource-specific Serializers.

Model The SocioCortex Model layer captures all resource types which are persistable within
SocioCortex’s database. This includes the key concepts as defined by the extended Hy-
brid Wiki meta-model in Figure 4.1. For example, SocioCortex implements data model
elements (EntityType and AttributeDefinition) and definitions of analytical abstractions
(CustomFunction and DerivedAttributeDefinition) as built-in entities (Büchner, 2007) im-
plemented by a PersistentEntity class (Büchner, 2007). Each PersistentEntity is mapped
to a table in the underlying database. PersistentEntities are defined through properties
of different types representing its attributes and relations. They are mapped to respec-
tive columns in the PersistentEntity ’s database table. Furthermore, SocioCortex supports
Event Listeners as functions which are automatically triggered on certain data-related
events, e.g., changes of a PersistentEntity. This mechanism is used, e.g., for automati-
cally maintaining the version history, i.e., if the instance of a PersistentEntity is changed,
SocioCortex automatically creates a new entry in this instance’s version history.

View and view template concepts are not mapped to respective built-in model entities
in SocioCortex, but are modeled and implemented on the client (cf. Section 5.3.2) and
stored in SocioCortex as ordinary entities. Since entities support access control and version
history, those features inherently also apply to dashboards, visualizations, and visualization
types.

Serializers While most components of Tricia were adapted in order to fit the needs of a REST
API-based platform (e.g., implementation of stateless authentication mechanisms), the
serializers are a new class of components which were added to SocioCortex. A serial-
izer parses an object from its internal representation to a JSON representation which is
compatible to the REST API definition (serialization), and vice versa (deserialization).

For each model class which has to be exposed via the REST API, there is a respective
model-specific serializer class which provides two essential methods, namely "serialize"
and "deserialize". By passing serialization options to those methods, the serialization and
deserialization process can be configured, e.g., by including or excluding certain properties.

85



5. Prototypical Implementation and User Interface Design

As described in Section 5.1.3, those serialization options can also be defined via the REST
API.

5.1.2. Implementation of MxL

Another essential back-end component of SocioCortex is the Model-based Expression Language
(MxL) which empowers end-users to formulate queries over the SC data model at run-time. A
prior version of MxL was already implemented in Tricia (Reschenhofer, 2013). In the following
section, we will outline highlights of the implementation of MxL on the one hand, and elaborate
on the changes and improvements which were implemented in the context of this thesis on the
other hand.

To evaluate MxL expressions, they have to be translated from a textual representation to exe-
cutable instructions. This process is called interpretation, and consists of multiple consecutive
steps, namely scanning, parsing, and type checking. Figure 5.4 illustrates the interpretation
pipeline using an exemplary MxL query.

First, the textual representation of an MxL query is processed by the MxL scanner which is
based on the open source lexical analyzer generator JFlex 2. The scanner transforms a stream
of characters into a stream of tokens, whereas a lexical grammar specifies which consecutive
characters have to be bundled to one token. In this way, the scanner already determines numbers,
operators, identifiers, keywords, and strings.

Based on a stream of tokens, the MxL parser builds the Abstract Syntax Tree (AST) in the next
step. The MxL parser is generated by the LALR parser generator Beaver3. Analogous to the
scanner, the MxL parser processes the tokens based on syntactical grammar rules in Extended
Backus-Naur Form (Scowen, 1993). As shown in Figure 5.4, the AST represents a hierarchy of
different kinds of expressions, e.g., FunctionApplicationExpression, or IdentifierExpression.

In the final step of the interpretation, the MxL type checker performs a static analysis of the
AST and adds semantic annotations to its nodes. In the example in Figure 5.4, the type checker
first observes the FindByTypeExpression and determines its type. For this purpose, the MxL
type checker accesses the user-defined data model in SocioCortex. By providing a Workspace
as query context, the type checker is able to find an EntityType with the name defined by the
identifier of the FindByTypeExpression. Therefore, the type of the FindByTypeExpression is
set to be Sequence<Business Application>. Knowing the input as well as the parameterized
signature of the average function (cf. Table A.12), the type checker infers the parameter type
(Function<Business Application, Number>). Since Function points is not defined as a global
identifier, the parameter of the average function is automatically interpreted as an implicit
lambda expression mapping each Business Application of the source sequence to the value of the
respective Function points attribute. As a consequence, the type checker successfully finishes
the semantic validation and returns a semantically annotated AST.

The annotations of the type checker serve as concrete instructions for the execution of the expres-
sion. For example, the identifiers average and Function points are resolved once at compile-time

2http://jflex.de/, last accessed on: 04.10.2016
3http://beaver.sourceforge.net/

86

http://jflex.de/
http://beaver.sourceforge.net/


5. Prototypical Implementation and User Interface Design

MxL Scanner

Expression as String

find ‘Business Application’

.average(‘Function points’)

Expression as Tokens

find Business Application . average ( Function points )

MxL Parser

Expression as Abstract Syntax Tree (AST)

FunctionApplication

IdentifierElementSelector

find Business Application . average ( Function points )

FindByType Identifier

Identifier

MxL Type Checker

Expression as Semantically Annotated AST

FunctionApplication

IdentifierElementSelector

find Business Application . average ( Function points )

FindByType Identifier

Identifier

Implicit lambda 

expression of type 

Function<Business 

Application, Number>

Basic function of type 

Function<Sequence<Business 

Application, Function<Business 

Application, Number>, Number>

Entity Type 

Business 

Application

Attribute Definition 

Function points of 

Entity Type Business 

Application

Figure 5.4.: MxL interpretation pipeline illustrated by an exemplary MxL expression based on
the data model in Figure 4.7.

87



5. Prototypical Implementation and User Interface Design

and linked to the corresponding basic function or attribute definition respectively. When exe-
cuting the query, the execution engine already knows how to process the individual expressions
based on the type checker’s annotations. For further details on the interpretation of MxL ex-
pressions we refer to the master’s thesis by Reschenhofer (2013).

FunctionProvider MxlFunction

name : String

ownerType : MxlType

description : String

basicFunctions : Map<MxlFunctionKey, MxlFunction>

MxlParameter

name : String

type : MxlType

isOptional : Boolean

* 1

parameters

MxlFunctionKey

name : String

ownerType : MxlType

evaluate(env : EvaluationEnvironment) : Object

getReturnType(env : TypeCheckingEnvironment) : MxlType

Figure 5.5.: An illustration of the concrete implementation of MxL’s basic functions by using
a combination of the prototype and multiton design patterns (Gamma et al., 1994;
Edwin, 2014).

As described in Section 4.2.2.2, MxL implements a whole number of basic functions, especially
functions which can be applied on sequences representing Standard Query Operators (Heijls-
berg and Torgersen, 2013). Basic functions are implemented using a combination of the proto-
type (Gamma et al., 1994) and multiton (Edwin, 2014) design patterns, whereas the multiton
pattern as a variation of the singleton pattern. In contrast to the singleton design pattern,
the multiton refers to not only one static instance of a class, but to a map of multiple static
instances. As illustrated in Figure 5.5, MxlBasicFunction represents the multiton class, whereas
the MxlFunctionProvider as a singleton serves as an access point to instantiated basic functions.
A basic function is referred to through its name and owner type, which at the same time form
the attributes of the MxlFunctionKey. Consequently, a combination of a basic function’s name
and owner type has to be unique. MxlFunctions have two essential abstract methods—namely
evaluate and getReturnType—which have to be implemented by the developer of concrete ba-
sic functions. The following example illustrates the implementation of the "split" method for
objects of type String (indicated by the first parameter of MxlFunction’s constructor). It takes
one string parameter specifying the delimiter of the operation:

new MxlFunction(BasicTypes.string(), "split",
MxlParameter.get("delimiter", BasicTypes.string()),
"Splits this string around matches of the given delimiter.") {

@Override
protected Object run(EvaluationEnvironment env) throws Exception {
String str = env.getThisObject().toString();
String delimiter = (String) env.getVariableValueNotNull("delimiter");

return Lists.newArrayList(str.split(delimiter));
}

88



5. Prototypical Implementation and User Interface Design

@Override
protected MxlType getReturnType(TypeCheckingEnvironment env) {

return BasicTypes.sequence(BasicTypes.string());
}

}

Through the EvaluationEnvironment and TypeCheckingEnvironment parameters, developers can
access relevant run-time and build-time information during the execution or type checking of
the basic function respectively. In this example, the developer can determine the string object
for which the basic function was invoked by using the getThisObject method of the Evaluatio-
nEnvironment parameter, and the "delimiter" parameter through its getVariableValueNotNull
method. For inferring the return type of the function, the TypeCheckingEnvironment is irrele-
vant, since the result of the basic function is always a sequence of strings.

When the SocioCortex back-end application is initialized, the MxlFunctionProvider collects all
defined MxlFunctions and registers them in its dictionary. Consequently, the system can effi-
ciently determine a specific basic function through the MxlFunctionProvider and subsequently
check its type or evaluate it by providing a respective TypeCheckingEnvironment or Evalu-
ationEnvironment respectively. Developers can simply extend the set of basic functions by
implementing a concrete MxlFunction and registering it in the MxlFunctionProvider. The ex-
tendability of basic functions directly addresses Requirement Req 7 as defined in Section 3.2.2.

MxL expressions are validated and evaluated under the identity of the currently authenticated
user which implies that the type checker and evaluation engine only have access to data, data
model elements, and analytical abstractions to which the user has at least read access to. As
a consequence, a query might generate different results for different users, given they have
a different access right profile. On the one hand, this allows the definition of personalized
analytical abstractions and visualizations since the query only retrieves data which is accessible
by the current user. On the other hand, this also leads to the fact that in the current prototype,
users can not define analytical abstractions which yield the same result for each user. This issue
is discussed again in Section 7.3.

When persisting MxL expressions as part of the definition of DerivedAttributeDefinitions and
CustomFunctions, SocioCortex does not store the textual representation of an expression, but
serializes the semantically annotated AST as generated by the type checker. On doing this,
SocioCortex also persists MxlReferences (cf. Figure 5.6) as built-in model objects. For exam-
ple, if defining the exemplary expression in Figure 5.4, SocioCortex will automatically create
MxlReference objects for the EntityType Business Application and for the AttributeDefinition
Function points.

Maintaining the MxlReferences as built-in model objects has two beneficial consequences: First,
SocioCortex can generate a holistic MxL dependency graph in an efficient way. This depen-
dency graph serves as input for the generation of the information flow graph as described in
Section 4.4. Thereby, an MxlReference from an MxlDefinable to an MxlReferable is interpreted
as an information flow from the MxlReferable to the MxlDefinable.

89



5. Prototypical Implementation and User Interface Design

The second advantage of maintaining MxlReferences is that for each MxlReferable, the system
can efficiently determine all MxlDefinables which are referring to it. This information is helpful
to estimate the impact of changes of an MxlReferable on the one hand, or to keep affected
MxlDefinables consistent in case of actual changes of an MxlReferable. In general, the system
tries to refactor MxLDefinables automatically in order to keep them semantically consist. If
this is not possible, its owner is asked to do it manually. In the following, we describe the
consequences of different kinds of changes of MxlReferables as implemented in the prototype of
today:

MxlDefinable
*

definition : MxlExpression [1..1]

MxlReferable
*

MxlReference

identifierName : String

1 1

*
InvalidMxlReference

identifierName : String

*

1

invalidReferences

references referable

Figure 5.6.: An illustration of the concrete implementation of MxlReferences based on the con-
ceptual model in Figure 4.5.

Change of an MxlReferable’s name Changes of names of MxlReferables can be handled automat-
ically by the system. For this purpose, it simply replaces the name of the identifier in each
affected MxlDefinable with the new name of the changing element. Since the identifier
name does not affect the type of MxL expressions, they do not even have to be revalidated
by the MxL type checker.

Change of an MxlReferable’s type (or multiplicity) If the type of an MxlReferable changes, all
MxlDefinables have to be revalidated by the MxL type checker. If the revalidation fails,
the respective MxlReferences are turned into InvalidMxlReferences (cf. Figure 5.6) which
in turn serves as an indication for the owner of the MxlDefinable that it has to be man-
ually adapted. The change of an MxlReferable’s type not only triggers the revalidation
of MxlDefinables which are directly referencing them, but also of transitively dependent
MxlDefinables.

Creation of an MxlReferable When creating an MxlReferable with a specific name, the system
checks if there are any corresponding InvalidMxlDefinables, and triggers the revalidation
of respective MxlDefinables. If the revalidation fails, they keep their invalid marker. Oth-
erwise, the system considers the MxlDefinable as valid and—if it is an MxlReferable at the
same time—triggers the revalidation of incoming MxlReferences.

Deletion of an MxlReferable When deleting an MxlReferable with at least one incoming MxlRef-
erence, the system provides three options to the user:

1. Mark affected MxlDefinables as invalid

2. If applicable, replace the identifier of the deleted MxlReferable with its current value.

90



5. Prototypical Implementation and User Interface Design

This option is only valid for MxlDefinables representing data objects, e.g., wiki pages
containing an embedded expression (Reschenhofer et al., 2014a)

3. Perform a cascaded deletion, i.e., delete all (transitively) affected MxlDefinables

Deleting an MxlReferable with no incoming MxlReferences has no consequences.

If the system would enable end-users to define subtype relationships between entity types, the
refactoring of MxlDefinables would become significantly more difficult. For example, when re-
naming an AttributeDefinition which overrides a corresponding attribute of the super type, it
has to be decided if MxlDefinables refer to the renamed AttributeDefinition which was origi-
nally defined as MxlReferable, or to the AttributeDefinition of the super type whose name still
matches the original identifier name within the MxlDefinable’s expression. The implementa-
tion of subtype relationships also has analogous effects on handling the creation or deletion of
MxlReferables.

5.1.3. SocioCortex REST API

In SocioCortex, clients communicate with the back-end via a well-defined REST API. A corre-
sponding REST API description defines which REST services are actually provided by Socio-
Cortex4.

In total, SocioCortex provides the following four types of REST API operations:

Create-Read-Update-Delete (CRUD) Operations The key concepts of the extended Hybrid Wiki
meta-model in Figure 4.1 are implemented as REST resources and thus accessible and
manipulable by applying an HTTP method to a corresponding URL. Thereby, the HTTP
methods "POST", "GET", "PUT", and "DELETE" are used to create, read, update, and
delete (CRUD) resources. For example, a "GET" request to "/workspaces" retrieves all
workspaces to which an authenticated user has at least read access to. A "DELETE"
request to "/workspaces/{id}" deletes the workspace with the specified ID. Figure 5.7
shows the resource model of the SC REST API summarizing the relevant resources for in
the context of this thesis, as well as their properties and relations to each other.

MxL Operations In addition to the CRUD-based manipulation of SocioCortex’s key resources,
the platform also provides services to analyze and evaluate MxL expressions in a particular
context, whereas the context can be a workspace, an entity type, or an entity. For example,
a "POST" request to "/workspaces/{id}/mxlValidation" with an MxL expression in its
payload triggers the static analysis of the query in the context of the specified workspace,
e.g.:

{
"expression": "find ’Business Application’.average(’Function points’)"

}

4http://sociocortex.com/documentation/, last accessed on: 04.10.2016

91

http://sociocortex.com/documentation/


5. Prototypical Implementation and User Interface Design

Workspace

AttributeDefinition

1

*

id : String

name : String

href : String

multiplicity : Multiplicity

attributeType : AttributeType

options : AttributeDefinitionOptions

description : String

readOnly : Boolean

defaultValues : Object

history : Versions

mayEdit : Boolean

*

1

0..1

DerivedAttributeDefinition

*

id : String

name : String

href : String

inferredAttributeType : String

explicitAttributeType : String

expression : String

description : String

history : Versions

mayEdit : Boolean

CustomFunction

id : String

name : String

href : String

inferredAttributeType : String

explicitAttributeType : String

expression : String

description : String

parameters : String

mayEdit : Boolean

EntityType

1

Attribute

*

id : String

name : String

href : String

values : Object

validationErrors : String [0..*]

1

1

1..*

id: String

name : String

href : String

content : String

permissions : AccessRights

incommingReferences : Object

history : Versions

createdAt : Date

lastModifiedAt : Date

mayEdit : Boolean

* 0..1

* 1

id: String

name : String

href : String

permissions : AccessRights

history : Versions

entityTree : Object

mayEdit : True

rootEntity1

0..1

workspace

customFunctions *workspace

Entity

0..1

*

parent

entityType

entities

children

attributes

entity

User *

1

1

creator

lastModifier

id: String

name : String

href : String

namePlural : String

icon: String

allowFreeAttribute : Boolean

history : Versions

entitiesCount : Number

mayEdit Boolean

workspace

entityTypes

entityType

attributeDefinitions

attributeDefinition

entities

«enum»

Multiplicity

any

atLeastOne

exacltyOne

maximalOne

«enum»

AttributeType

string

number

date

boolean

enumeration

json

mxl

link

AttributeDefinitionOptions

enumerationValues : String [0..*]

regex : String

jsonTypeDefinition : String

resourceType : String

inverseRoleName : String

entityType0..1

*

entityType

derivedAttributeDefinitions

0..1

entityType

customFunctions *

*

id: String

name : String

href : String

email : String

description : String

lastLoginDate : Date

history : Versions

mayEdit : Boolean

Group

id: String

name : String

href : String

description : String

mayEdit : true

groups *

*users 1..* administrators

*

Figure 5.7.: A model of the resources exposed via the SC REST API.

In addition to the "expression" property, the payload can optionally define an "expect-
edType". With this information, the type checker is able to interpret certain expressions
differently, e.g., as implicit lambdas. For example, the semantic analysis of the following
query would fail because the identifier is unknown:

{
"expression": "’Function points’"

}

However, by adding the "expectedType", the type checker will interpret the expression
as implicit lambda, i.e., the identifier is successfully interpreted as the attribute of the
implicit lambda’s parameter of type Business Application (cf. Figure 4.7):

{
"expression": "’Function points’",
"expectedType": "Function<Business Application, Number>"

}

92



5. Prototypical Implementation and User Interface Design

The result of the "mxlValidation" request contains a semantically annotated AST as well
as a dependency graph representation including all elements the query is transitively de-
pending on. With the same request to "/workspaces/{id}/mxlQuery", SocioCortex is
returning the result of the query’s evaluation instead of its static analysis.

A third type of MxL operation (GET "/workspaces/{id}/autoCompletionHints") returns a
list of MxL identifiers which are available in the specified context, e.g., names of workspace-
specific entity types and their attribute definitions. This operation is particularly helpful
to support the user in formulating queries, e.g., by providing auto-completion in textual
query editors (cf. Section 5.2.3) or a drop-down list in visual query editors.

Search Operations One of the main features of SocioCortex and its predecessor Tricia is its
support for full text search with facets. Thereby, a search can be refined by filtering the
hits by structural information. This service is exposed via the REST API and accessible
through two operations—"/searchHints" and "/searchResults"—which accept the same
set of filter parameters, but return the search result in a different level of detail. The
former only returns basic information including the search hit’s name and a disambiguation
string, while the latter includes a parameterizable set of resource-specific attributes and
meta-information.

Authentication Operations As described in Section 5.1.1, SocioCortex supports JSON Web To-
kens (JWT) as stateless authorization mechanism. For this purpose, the SC REST API
provides an operation ("/jwt") to request an authentication token for given credentials.

When requesting resources via the REST API, the set of attributes and meta-information in-
cluded in the response depends on the actual request type. By default, requesting a list of
resources (e.g., "/workspaces") only returns minimal objects including the resource’s ID, name,
and URL, whereas requesting a single resource (e.g., "/entities/id") returns all of its attributes
and meta-information. Through query string parameters, the attributes and meta-information
to be included in the response can be explicitly specified (e.g., "/entities/id?attributes=Function
points&meta=workspace"). Those parameters are available for all operations returning re-
sources.

5.2. SocioCortex Frameworks and Libraries

By providing a REST API, SocioCortex allows other applications to use and consume its services.
Since building on standard data formats (JSON) and protocols (HTTP), different kinds of
applications running on different kinds of platforms can act as clients for SocioCortex.

As illustrated in Figure 5.1, the three SocioCortex clients relevant in the context of this thesis are
web clients. They use the same abstraction layer which wraps the access to the REST API and
provides a convenient access to the services of SocioCortex. Furthermore, those web clients also
share specific UI components which are defined as part of reusable frameworks. The following
sections describe those web-based frameworks.

93



5. Prototypical Implementation and User Interface Design

5.2.1. sc-angular: An AngularJS-based Wrapper for the SC REST API

All three web clients illustrated in Figure 5.1 are based on the JavaScript MVC framework
AngularJS 5. Consequently, we named the AngularJS-based framework for accessing the SC
REST API sc-angular6.

Key features of AngularJS (version 1.x) are the support for two-way data binding as well as a
broad ecosystem including libraries, frameworks, and respective documentations. For example,
there are AngularJS modules for consuming REST APIs which are reused. On the one hand,
reusing existing libraries reduces the development effort. And on the other hand, this ensures
that the sc-angular framework complies to standards and principles which are implemented by
current AngularJS frameworks and that are already familiar to current AngularJS developers.

scData
Access to 

data 

resources 

(e.g., Entity, 

Attribute)

scModel
Access to data model and 

analytical abstraction 

resources (e.g., EntityType, 

AttributeDefinition, 

DerivedAttributeDefinition)

scPrincipal
Access user and 

group resources 

(User, Group)

scMxl
Submission of 

queries and 

static analysis of 

MxL 

expressions

scUtil
Helper methods, e.g., to generate full 

paths or to check types of resources

scConnection
Contains properties by which the 

services can be configured, e.g., base 

URL of SocioCortex, or authentication 

method to be used

scAuth
Handling of 

authentication 

via a specified 

authentication 

method

scSearch
Helper to 

define a full-

text search 

with facets

$localStorage$resource $http

sc-angular components

Third-party libraries

Figure 5.8.: The components of the sc-angular framework and its dependencies to each other.

The sc-angular framework represents a collection of AngularJS services which fulfill different
purposes, e.g., providing wrappers for the REST API operations, and dealing with authenti-
cation against SocioCortex. Figure 5.8 provides an overview over those services and illustrates
dependencies between them.

The scConnection component represents an AngularJS value and has three properties which
are configurable by the user: The base URL of the SocioCortex back-end, the API version, and

5https://angularjs.org/, last accessed on: 04.10.2016
6https://github.com/sebischair/sc-modeler, last accessed on: 04.10.2016

94

https://angularjs.org/
https://github.com/sebischair/sc-modeler


5. Prototypical Implementation and User Interface Design

the authentication method to be used (options are "basic" and "jwt", cf. Section 5.1.1). For
example, the scConnection value can be configured as follows:

angular.module(’someSocioCortexAngularApp’, [’sociocortex’])
.value(’scConnection’, {
baseUri: ’https://server.sociocortex.com’,
apiVersion: ’v1’,
authenticationMethod: ’jwt’

});

In this example, we create a new AngularJS app named "someSocioCortexAngularApp", with
"sociocortex" representing the sc-angular module as its only dependency. By using the value
method of the AngularJS module, we can define a new value for scConnection and overwrite
the default settings.

Based on those configurable constant properties, the scUtil service provides helper methods,
e.g., to generate full URLs based on relative ones. Furthermore, the scUtil service also defines
a constant containing the URLs for the resource types of SocioCortex.

The main purpose of sc-angular is to provide a convenient way to retrieve and manipulate the
REST API’s resources, and to abstract technical details like URL paths and patterns. This
functionality is divided into the three services scData, scModel, and scPrincipal which abstract
the access to the data elements, data model elements, and users and groups respectively. For
implementing those three services, we use the $resource service of the ngResource module7 which
provides interaction support for REST APIs. More specifically, $resource allows the definition of
resource objects through which developers can apply CRUD operations. By default, a resource
object already defines methods to create, delete, and read a single resource and to retrieve a list
of resources. The update operation can be defined as shown by the following example:

var Entity = $resource(scUtil.getFullUrl("entities/:id"),
{
update: {
method: "PUT"

},
queryByEntityType: {
method: "GET",
url: scUtil.getFullUrl("entityTypes/:id/entities"),
isArray: true

}
});

The $resource service takes a URL pattern as its parameter, whereas the full URL is generated
by scUtil ’s helper method getFullUrl. Based on this URL pattern, ngResource is able to derive
the configurations for HTTP requests to create, delete, and read REST resources. Additional
operations (e.g., "update" to edit an existing entity, or "queryByEntityType" to retrieve all enti-

7https://docs.angularjs.org/api/ngResource, last accessed on: 04.10.2016

95

https://docs.angularjs.org/api/ngResource


5. Prototypical Implementation and User Interface Design

ties for a given entity type) can be defined by providing an explicit HTTP request configuration
as shown in the example.

scMxl and scSearch provide methods to perform MxL and search operations respectively. Since
the corresponding REST API operations are not about the CRUD-based manipulation of REST
resources, scMxl and scSearch do not build on the ngResource service, but use the default $http
service of AngularJS. scMxl provides the methods query, validate, and autoComplete which map
to corresponding REST API operations (cf. Section 5.1.3). Analogously, scSearch defines two
functions to abstract the access to the "searchHints" and "searchResults" REST API operations
as defined in Section 5.1.3.

The scAuth service is an abstraction layer to handle authentication and to store the authenticated
user identity on the client-side. It implements login method which accepts the user credentials
as a pair of user name and password. Based on the selected authentication method, it either
generates a corresponding Basic Authentication field or requests a JSON Web Tokens (JWT)
from the SocioCortex back-end using the "/jwt" REST API operation. scAuth ensures that
each request submitted by the sc-angular framework either adds the generated Basic Authen-
tication field or the JWT to its header. Furthermore, the scAuth service also stores the Basic
Authentication field or the JWT in the browser’s local storage using the $localStorage service
of AngularJS. In this way, the authentication state is retained on the client when closing and
reopening the web client. Of course, if the JWT expires, the user has to login again in order to
retrieve a fresh authentication token. By invoking the logout method of the scAuth service, the
authentication state can be deleted explicitly.

5.2.2. sc-datatable: A UI Component for Managing Complex Linked Data

As described in Section 2.2.1, one of the characterizing features and success factors of spread-
sheets is its grid UI which enables end-users to intuitively view, manipulate, and analyze data
without having to explicitly define a data structure. On the other hand, the implicit and hidden
spreadsheet design is also one of the main sources for errors (Hermans, 2012).

In contrast to spreadsheets, in our prototype the data model is explicitly designed by data model-
ers (cf. Section 3.1). Based on this data models, we can support users in maintaining the data in
a consistent and structured way. In order to preserve flexibility, the Hybrid Wiki approach allows
users to deviate from the defined data structures when entering data into the system. However,
the user is explicitly notified about inconsistencies, e.g., by visually highlighting them.

In an effort to combine the intuitive UI of the spreadsheet grid on the one hand, and the explicit
approach to data modeling as implemented in SocioCortex on the other hand, we developed the
sc-datatable8. This data table empowers the user to edit SocioCortex’s data in a spreadsheet-like
way, e.g., by using the keyboard to navigate through the cells, quickly editing one or multiple
cell values, and copying and pasting cell ranges. In order to ensure its reusability in multiple web
clients, sc-datatable was designed as reusable AngularJS component which primarily consists of
a respective AngularJS directive.

8https://github.com/sebischair/sc-datatable, last accessed on: 04.10.2016

96

https://github.com/sebischair/sc-datatable


5. Prototypical Implementation and User Interface Design

scDatatable
A directive representing a data table to view and edit 

complex linked data. Supports common data table 

features like paging and column-based filtering and 

sorting.

scDatatableService
Helper methods, e.g., to get 

and set the view state of the 

data table.

sc-angular HandsonTable

mxl-angular components

Third-party libraries

Other SC components

MaterialDesign Select2

Figure 5.9.: The components of the sc-datatable library and its dependencies to each other.

Figure 5.9 shows the logical sub components of sc-datatable library. The scDatatable directive
is the most important one, and represents the actual data grid. In general, the data table shows
the entities for a specified entity type, i.e., the table’s columns represent the attribute definitions,
and its rows the entities of the corresponding entity type. Consequently, each cell of the data
table refers to a single attribute of an entity. The data is obtained from SocioCortex via the
sc-angular framework.

The data table supports common data view features, e.g., paging, column selection, and filtering
and sorting by column values. The data table directive is implemented by using the open
source JavaScript spreadsheet library Handsontable9 for its basic structure, the UI framework
AngularMaterial10 for basic controls, and the UI library Select2 11 for multi-valued cell controls.

In order to interact with the host application in which the data table is embedded, sc-datatable
implements the AngularJS service scDatatableService. This service provides methods to, e.g.,
get and set the view state of the data table. The view state includes the data tables filter and
sort configuration, set of selected columns including their width, and current paging size and
number. Getting and setting the view state enables the host application to store and persist the
current view state, e.g., in the user’s profile and to restore a user-specific view as soon as the
user revisits the page containing the table.

Supporting complex linked data as formally defined by the meta-model in Figure 4.3 implies
that the data table provides means to display and edit multi-valued relations and attributes of
primitive and complex data types within its cells. Figures 5.10 demonstrates how an input field
for a multi-valued relation looks like. Thereby, multiple values per cell are enabled by Select2 ’s

9https://handsontable.com/, last accessed on: 04.10.2016
10https://material.angularjs.org, last accessed on: 04.10.2016
11https://select2.github.io/, last accessed on: 04.10.2016

97

https://handsontable.com/
https://material.angularjs.org
https://select2.github.io/


5. Prototypical Implementation and User Interface Design

Figure 5.10.: The sc-datatable supports complex linked data, i.e., multi-valued attributes and
relations as well as composite attribute.

multi-value select boxes. For relations, an auto-completion mechanism supports the user in
selecting an entity which can be referred to based on the attribute definition’s type constraint.
Within the cell, a relation is rendered as a hyperlink.

Figure 5.11.: The sc-datatable supports all types captured by the extended Hybrid Wiki meta-
model in Figure 4.3.

Figure 5.11 shows another data type-specific input field, namely a calendar for cells containing a
date. Furthermore, the data table renders a drop-down list for enumeration values, a check box
for a boolean value, a textual input field with respective validations for strings and numbers, and
a JSON¸ editor for composite objects. Within a cell, those values are transformed into respective
textual representations.

As a consequence from rendering data either to a textual representation within a cell, or into an
input field to edit the value, the data table has to transform its data from an internal canonical
representation to a UI-specific one, e.g., to a type-specific input field representation. Table 5.12
illustrates how data is transformed from one representation to another in the context of sc-
datatable. Based on the input gained from sc-angular, the sc-datatable first transforms the data
into an internal canonical data representation, based on which further transformations follow:

98



5. Prototypical Implementation and User Interface Design

Client SC Front-end

sc-datatable

SC Back-end

Internal SocioCortex Back-end 

Representation

sc-angular

Default JSON Representation

Canonical Data Table Representation

Cell View 

Representation

Input Field 

Representation

Clipboard 

Representation

Server

MS Excel 

Representation
…

sc-datatable data representation

Other data representation

sc-datatable-internal data transformation

Other data transformation

Figure 5.12.: The different representations of data and data models, and how they are trans-
formed.

Transformation to Cell View Representation This transformation generates the Hyper Text
Markup Language (HTML) markup which renders the value within a cell. While strings,
numbers, and dates are transformed into a simple textual representation, relations are
transformed to HTML hyperlinks. This is a one-way transformation, i.e., data cannot be
transformed from the cell view representation to the canonical one.

Transformation to Input Field Representation This transformation generates the data type-
specific input field as demonstrated in Figures 5.10 and 5.11. This is a two-way
transformation, i.e., existing values are transformed from their canonical representa-
tions into the input field representation, and if the value is changed, it is transformed back
to its canonical representation.

Transformation to Clipboard Representation Single cells and cell ranges can be copied into the
client’s clipboard and, e.g., pasted into a MS Excel worksheet. For this, the data table

99



5. Prototypical Implementation and User Interface Design

defines a transformation from its canonical representation to a data format which is com-
patible with common spreadsheet tools, e.g., MS Excel. This is a two-way transformation,
i.e., cells and cell ranges can also be copied from a MS Excel worksheet and pasted into the
sc-datatable component. This transformation addresses particularly the interoperability
feature as motivated in Section 2.2.1.

If a user is editing the value of a cell, this cell is visually highlighted as shown in Figure 5.10.
This means that editing cell values only change the client state. The propagation of the client
state to the server has to be triggered manually by clicking on a save button. Alternatively, the
client state can be reset and overwritten with the server state, i.e., all changes can be reverted.

Technically, the data table is implemented as a reusable AngularJS directive and can be embed-
ded in any AngularJS application as follows:

<sc−datatable entity−type−id="{{entityTypeId}}"></sc−datatable>

The only mandatory parameter of this directive is the ID of the entity type whose entities should
be shown in the data table.

5.2.3. mxl-angular: A UI Component for Defining Complex Queries

An essential feature of an End-User Analytics (EUA) tool is the empowerment of end-users to
define ad-hoc queries and calculations (Tamm et al., 2013; Hermans, 2012). For this purpose,
the tool has to provide a respective UI supporting the end-user to explore queryable elements
in order to define consistent expressions based on them.

In the context of this thesis and as shown in the conceptual architecture of our prototype in
Figure 5.1, defining queries is a use-case in multiple web clients, e.g., to define DerivedAttribut-
eDefinitions in the SC Modeler, or to define DataBindings in the SC Visualizer. For this reason,
we encapsulate the query editor and related UI components into the mxl-angular framework12.

As illustrated in Figure 5.13, the central component within the mxl-angular framework is the
mxl-expression directive which represents the MxL query editor (Reschenhofer et al., 2014b). It
uses the CodeMirror13 library with various extensions and defines MxL-specific adaptions.

By implementing MxL-specific syntax rules, the code editor is able to visually highlight MxL key-
words (e.g., this and find), strings, comments, and other kinds of MxL tokens (cf. Figure 5.14).
Furthermore, by connecting the code editor to a specific SocioCortex workspace, it can gener-
ate domain-specific auto-completion hints. This means that the auto-completion hints not only
include generic elements (e.g., keywords or basic functions), but also workspace-specific data
model elements or analytical abstractions. The example in Figure 5.14 demonstrates how the
name of the attribute "Function points" is proposed to the user based on his input. The code
editor also provides a textual description and type information for the auto-completion hints.

If the MxL expression is not changed for a particular configurable time-span (default is one

12https://github.com/sebischair/mxl-angular, last accessed on: 04.10.2016
13https://codemirror.net/, last accessed on: 04.10.2016

100

https://github.com/sebischair/mxl-angular
https://codemirror.net/


5. Prototypical Implementation and User Interface Design

mxlExpression
A directive representing the MxL code editor. Provides 

feature like MxL-specific syntax highlighting, error 

localization, auto-completion, automated static 

validation, and testing of expressions.

mxlModelView
A directive showing a data model or parts of it as UML 

class diagram. It can be either connected to an mxl-

expression directive, or to a SocioCortex context element, 

e.g., workspace or entity type.

mxlUtil
Helper methods, e.g., to retrieve data 

which is required to generate the 

augmented model view.

sc-angular

CodeMirror

mxl-angular components

Third-party libraries

Other SC components

JointJS

Figure 5.13.: The components of the mxl-angular framework and its dependencies to each other.

Figure 5.14.: The MxL code editor implements syntax highlighting and auto-completion support.

Figure 5.15.: MxL expressions inside the code editor are statically analyzed. In case of errors,
those are localized and visualized within the query.

101



5. Prototypical Implementation and User Interface Design

second), the code editor automatically triggers a static analysis of its input. For this, it uses
the scMxl service of the sc-angular framework. As a result of the invocation of the validate
method of scMxl, the code editor knows if the expression is semantically valid. If this is not the
case, it extracts the error information and location from the validate method’s response, and
visually highlights the erroneous part of the expression. The example in Figure 5.15 shows how
an unknown entity type name is localized and underlined in red. As described in Section 2.2.1,
immediate visual feedback (Tanimoto, 1990) is one of the essential features of EUA tools. In
this case, it empowers end-users to check immediately if the formulated query is syntactically
and semantically valid or not.

Figure 5.16.: By testing the query, the users gets immediate feedback if it behaves like intended.

In order to check not only the syntactic and semantic validity of the expression, but also its
result, end-users can simply trigger the execution of the query and analyze its response. For
this, the code editor uses the query method of the scMxl service. Figure 5.16 shows the code
editor as well as the test result obtained from the query’s execution.

Technically, the MxL code editor is implemented as an AngularJS directive. It can be simply
reused by web developers and embedded in their code as follows:

<mxl−expression style="height:200px;" ng−model="mxlValue"
sc−workspace="{{workspaceId}}" mxl−expected="{{expectedType}}" >

</mxl−expression>

The ng-model attribute binds the given AngularJS model variable to the textual value of the
code editor, i.e., if the input of the code editor is changing, this change is automatically prop-
agated to the respective model variable. Through the sc-workspace attribute, developers can
specify the context in which the expressions of the code editor should be semantically analyzed
and evaluated. The directive also supports analogous sc-entitytype and sc-entity attributes.
Furthermore, the mxl-expected attribute enables web developers to specify an expected type
used for the semantic analysis of the expression (cf. Section 5.1.3).

For formulating a query, the user is assumed to be familiar with the underlying data
model (Valencia-García et al., 2011). In case of continuously evolving data models as described
in Section 1.1, the process of familiarizing oneself with the data model is also a continuous one.
In fact, those cases end-users have to familiarize themselves with the underlying data model each

102



5. Prototypical Implementation and User Interface Design

time they intend to query it. For this reason, we developed an augmented model view which
displays the current data model as a UML class diagram (Reschenhofer and Matthes, 2016b).
The model view represents the second key component of the mxl-angular framework.

Reasons for selecting UML as a visual language to represent data models are two-fold: On
the one hand, UML is widely adopted in related EUA research (Valencia-García et al., 2011;
Störrle, 2011; Hermans et al., 2010). On the other hand, UML is the basis for Object Constraint
Language (OCL) which in turn served as foundation for the design of MxL (cf. Section 4.2.2).
Therefore, we considered UML as a natural choice to formulate OCL-like queries with MxL.

Figure 5.17.: Initially, the model view shows a global overview over the data model including
entity types and relations between them (Reschenhofer and Matthes, 2016b).

Figure 5.17 shows an MxL code editor and an augmented model view for the exemplary data
model in Figure 4.7. To identify a starting point for the formulation of a query, the augmented
model view initially provides a holistic perspective on the data model. This global view includes
the entity types for the workspace that is configured to be the context in which the MxL query is
validated and evaluated. In order to reduce the visual complexity of the model view, attributes
are omitted in the global perspective, while relations are still included.

As soon as the static analysis of the code editor’s query identifies a reference to a data model
element, the augmented model view is automatically updated and switches to a local view. The
local view only contains directly referenced data model elements and—to ensure navigability
through the data model—adjacent entity types. Furthermore, attributes of referenced entity
types are also shown. In this sense, the local view is a measure to cope with the visual complexity
of large data models.

For example, assuming that we want to determine the data base heterogeneity for each function
domain using the metric already introduced in Section 4.2.2.2, we would first start with retrieving
all entities of type Functional Domain with the find construct. As demonstrated in Figure 5.18,

103



5. Prototypical Implementation and User Interface Design

Figure 5.18.: As soon as the expression within the code editor refers to a data model element,
the model view will switch to a local view of the data model (Reschenhofer and
Matthes, 2016b).

the augmented model highlights the respective entity type, and hides non-adjacent entity types.
If there would be attributes for the entity type Functional Domain, they would be displayed.

Figure 5.19.: The model view provides contextual information to the auto-completion
hints (Reschenhofer and Matthes, 2016b).

By navigating further to through the data model, the augmented model view is updated accord-
ingly and extends or reduces the set of visible entity types and attributes (cf. Figure 5.19). For
example, by navigating to the entity type Business Application via the Applications relation,
the attributes of this entity type become visible to the user. In this way, it provides contextual
information to the auto-completion hints of the MxL query editor, i.e., the model view enriches
the textual description and type information of auto-completion hints with an actual context.

Figure 5.20 shows the finished database heterogeneity metric and how the augmented model

104



5. Prototypical Implementation and User Interface Design

Figure 5.20.: Model elements which are referenced by the expression of the code editor are vi-
sually highlighted, e.g., by blue background and bold labels (Reschenhofer and
Matthes, 2016b).

view visually highlights referenced data model elements either by a blue background or by bold
labels.

Technically, the augmented model view is implemented as a separate AngularJS directive (mxl-
model-view, cf. Figure 5.13). To generate the UML visualization, we use the open-source library
JointJS 14.

The directive can be used independently from the code editor in order to visualize a manually
created set of data model elements. For this purpose, the mxlUtil service of the mxl-angular
framework (cf. Figure 5.13) provides helper methods, e.g., to query all data model elements of
a given workspace. For this purpose, the mxlUtil service reuses the sc-angular framework and
its services.

To connect the augmented model view with an MxL code editor, they have to be bound to the
same AngularJS model variable:

<mxl−expression style="height:200px;" ng−model="mxlValue"
sc−workspace="{{workspaceId}}" mxl−expected="{{expectedType}}"
mxl−model−elements="referencedModelElements" >

</mxl−expression>

<mxl−model−view ng−model="referencedModelElements">
</mxl−model−view>

In this example, the AngularJS model variable referencedModelElements is bound to the code
14http://jointjs.com/opensource, last accessed on: 04.10.2016

105

http://jointjs.com/opensource


5. Prototypical Implementation and User Interface Design

editor via the mxl-model-elements attribute, and to the model view via the ng-model attribute.
Due to AngularJS’ two-way data binding, updates to this model variable through the code editor
will be automatically propagated to the model view. The model view component watches the
model variable provided by the ng-model attribute and triggers a regeneration of the data model
visualization if the variable is changing.

Dividing the code editor and the model view into two separate components has two main benefits:
First, the model view can be used without the code editor, e.g., to simply show an overview over
all entity types defined within a workspace. Second, the model view can be arbitrarily arranged
on a web page independently from the code editor’s position.

5.3. SocioCortex Web Clients

As illustrated in Figure 5.1, the prototype for a tool empowering end-users to collaboratively
manage and analyze evolving complex linked data consists of three separate web clients address-
ing different user roles.

The SC Content Manager represents the UI for casual users whose main purpose is the main-
tenance of data, whereas the SC Modeler is the tool for modeling experts allowing them to
define and manage models of data, processes, and analytical abstractions. Those two clients are
described in detail in Section 5.3.1.

As a third web client, the SC Visualizer empowers end-users to create model-based visualizations
and compose them to domain-specific dashboards. The SC Visualizer implements the view and
view template concepts as defined in Figure 4.10. Therefore, it is the central web client for
analytics professionals and analytics end-users (cf. description of user roles in EUA in Section 3.1)
and thus considered to be the most important web client in the context of this thesis. We
elaborate on its design and the key aspects of its implementation in Section 5.3.2.

All three clients use the sc-angular framework in order to communicate with the SocioCortex
back-end. By using the same configuration for the scAuth service (i.e., the same authentication
method), the user has to login only once and is automatically authenticated to all these clients.

5.3.1. The SC Content Manager and the SC Modeler

The SC Content Manager15 and SC Modeler16 address different use-cases: The former web
client provides means to manage instances of data in a collaborative way, while the latter one
allows users to define respective models. Taken together, they emulate the basic functionality
of Tricia’s front-end. However, in contrast to Tricia, the SC Content Manager and SC Modeler
communicate with the back-end via a well-defined REST API on the on hand, and strictly
separate data maintenance and data modeling on the other hand.

The initial design of the SC Content Manager was developed by Katenbrink (2015) in his bache-

15https://github.com/sebischair/sc-contentmanager, last accessed on: 04.10.2016
16https://github.com/sebischair/sc-modeler, last accessed on: 04.10.2016

106

https://github.com/sebischair/sc-contentmanager
https://github.com/sebischair/sc-modeler


5. Prototypical Implementation and User Interface Design

lor’s thesis. Based on lessons learned from the application of Tricia, and particularly based on an
usage analysis with Google Analytics17, mock-ups capturing the basic UI design and functional-
ity of the SC Content Manager were created. Furthermore, Katenbrink (2015) applied principles
and patterns from related work on the design of social web UIs (Crumlish and Malone, 2009;
Kalbach, 2007; Krug, 2014; Scott and Neil, 2009). Based on the mock-ups, Michelsen (2016)
implemented the first prototype of the SC Content Manager.

Figure 5.21.: A single entity represented as a wiki page in the SC Content Manager.

Figure 5.21 shows a screenshot of a wiki page representing a single entity of SocioCortex. In the
top navigation bar, users can select from a workspace and load its entities. In the screenshot,
the workspace "Simple EAM Model" is selected, wherefore its entities are navigable through
the sidebar on the left. In SocioCortex, entities can be organized hierarchically, i.e., originating
from the root entity of a workspace, entities define a hierarchical structure which is displayed in
the SC content manager in a respective tree view.

Selecting an entity loads its textual content as well as its attributes into the main area of the
page. The textual content can be manipulated through a respective rich text editor. Analogous
to the sc-datatable as described in Section 5.2.2, the attributes of an entity are edited via data
type-specific input fields. Clicking on the entity type at the top of the attributes box forwards
the user to a view containing the sc-datatable which shows all entities of the selected entity type.

17https://www.google.com/analytics/, last accessed on: 04.10.2016

107

https://www.google.com/analytics/


5. Prototypical Implementation and User Interface Design

Through those basic UI elements, end-users can either edit a single entity or multiple entities of
a particular entity type.

While the SC Content Manager is the web client for casual users acting as data owners and
custodians (Roth et al., 2014), the SC Modeler provides support for modeling expert. Thereby,
it not only provides means to define data models, but also to define analytical abstractions and
process structures based on Adaptive Case Management (ACM). However, since not relevant in
the context of this thesis, we will not describe the SC Modeler’s support for ACM in detail and
refer to the work by Hauder (2015) and the master’s thesis of Schrade (2016).

Figure 5.22.: Overview over a workspace’s data model in the SC Modeler.

Selecting a workspace in the SC Modeler forwards the user to a dashboard as shown in Fig-
ure 5.22. In addition to a list of entity types in a secondary sidebar, the dashboard provides
some statistics in a visual way. For example, a bar chart visualizes the number of instances for
the most used entity types, while a UML class diagram shows an overview of the workspace’s
data model. For the class diagram, the SC Modeler uses the model view of the mxl-angular
framework (cf. Section 5.2.3). Furthermore, the visualization on the bottom of the page lists a
selection of entity types with each of them having two bars visualizing two different metrics:

Inconsistency The yellow bar indicates the inconsistency of the entities of the entity type. It is
a measure for the ratio of entities that have attributes which are inconsistent with respect
to the attribute definitions of the entity type. A high inconsistency measure and thus a
high yellow bar indicates that the data model does not fit to the respective data or that
it is too specific which in turn implies the need for adaptions.

Unstructuredness The gray bar is an indicator for the unstructuredness of the entity type’s
entities. Since entities can have free attributes (attributes which are not defined by a
respective attribute definition), they might contain structures which are not yet captured

108



5. Prototypical Implementation and User Interface Design

by the data model. A high unstructuredness metric and thus a high gray bar indicates
that the data model is not specific enough which in turn implies the need for adaptions.

The workspace view of the SC Modeler also includes tabs to manage custom MxL functions and
to configure general workspace settings.

Figure 5.23.: Overview over an entity type’s attribute definitions in the SC Modeler.

By clicking on an entity type, the user navigates to the entity type view as shown in Figure 5.23.
In this view, users can manage the attribute definitions for the selected entity type. Users can
change the data type, name, and multiplicity of attribute definitions as well as type-specific
properties. Furthermore, the order of attribute definitions can be adapted via an intuitive
Drag&Drop mechanism.

For changing the type of an attribute, the SC Modeler implements a type picker. As shown in
Figure 5.24, the type picker includes primitive and complex types as defined by the extended
Hybrid Wiki meta-model in Figure 4.3. Furthermore, it also enables users to define relations to
other entity types. For this purpose, it lists the entity types of the same workspace. However,
it also allows to search for entity types of other workspaces in order to define relations across
multiple workspaces.

Clicking on the "Derived Attribute Definitions" tab forwards the user to the definitions of
derived attributes. Figure 5.25 demonstrates how the SC Modeler uses both directives of the
mxl-angular framework, namely the MxL code editor and the MxL model view. In this way, the
augmented model view visualizes the currently defined data model and thus supports the end-
user in defining MxL expressions. The expression for the derived attribute "TIIF" ("Transitive
Incoming Information Flows") was already described in Section 4.2.2.3.

Further tabs within the entity type view are "Task Definitions" and "Stages" referring to ACM

109



5. Prototypical Implementation and User Interface Design

Figure 5.24.: In the SC Modeler, users can change the type of attribute definitions by using the
type picker.

Figure 5.25.: Defining a derived attribute in the SC Modeler.

110



5. Prototypical Implementation and User Interface Design

concepts (Schrade, 2016). Via the "Settings" tab, users can edit general settings of the entity
type, e.g., its name or its icon.

5.3.2. The SC Visualizer

The SC Content Manager and the SC Modeler empower end-users with different roles to manage
and structure complex linked data. However, the actual End-User Analytics (EUA) tasks are
performed through the SC Visualizer18. For this reason, we describe this web client in more
detail, and particularly elaborate on its technical architecture as well as its UI design.

5.3.2.1. Architecture of the SC Visualizer

Analogous to the SC Content Manager, and the SC Modeler, the SC Visualizer is an AngularJS-
based web application (Bürgin, 2015). Therefore, it uses the sc-angular framework to consume
the services and manipulate the resources of SocioCortex. Furthermore, it also integrates mxl-
angular and applies the MxL code editor and model view components.

SC Visualizer

sc-angular

Third-party Visualization 

Libraries (e.g., D3.js, 

Cytoscape.js, Power BI)

mxl-angular

Application-specific Model

Data Access Objects

Client Data Model

User Interface

Dashboard and Visualization 

Area
Visualization Types Area

Social Information Flow Graph 

Area

Figure 5.26.: The conceptual architecture of the SC Visualizer.

In contrast to the other SC web clients as described in Section 5.3.1, the SC Visualizer not
only represents the generic structures as received from SocioCortex, but also implements an
application-specific business logic. The SC Visualizer’s architecture is illustrated in Figure 5.26,
and also includes an application-specific client data model which is mapped to the generic So-
cioCortex resources via Data Access Objects (DAO). Additionally, the SC Visualizer integrates
multiple common JavaScript Visualization Libraries, e.g., D3.js19, Cytoscape.js20, and Power

18https://github.com/sebischair/sc-visualizer, last accessed on: 04.10.2016
19https://d3js.org/, last accessed on: 04.10.2016
20http://js.cytoscape.org/, last accessed on: 04.10.2016

111

https://github.com/sebischair/sc-visualizer
https://d3js.org/
http://js.cytoscape.org/


5. Prototypical Implementation and User Interface Design

BI21. On the top of those components, the SC Visualizer architecture defines different UI com-
ponents for managing dashboards and visualizations, managing and developing visualization
types, and for exploring the Social Information Flow Graph (SIFG).

Dashboard

id : String [1..1]

name : String [1..1]

owner : User [1..1]

workspaceId : String [1..1]

width : int [1..1]

height : int [1..1]

forkedFrom : String [0..1]

mayEdit : boolean [1..1]

Visualization

id : String [1..1]

name : String [1..1]

history : HistoryItem [0..*]

mayEdit : boolean [1..1]

VisualizationType

id : String [1..1]

name : String [1..1]

owner : User [1..1]

forkedFrom : String [1..1]

mayEdit : Boolean [1..1]

DataBinding

key : String [1..1]

value : String [0..1]

DataBindingDefinition

key : String [1..1]

name : String [1..1]

restriction : String [0..1]

isMandatory : Boolean [1..1]

description : String [0..1]

defaultValue : String [0..1]

1 *

*

items

1

* *

DashboardItem

top : String [1..1]

left : String [1..1]

width : int [1..1]

height : int [1..1]

1..*

1visualization

VisualSetting

key : String [1..1]

value : String [0..1]

*

1

visualizationType

1

dataBindings

visualSettings

User

name : String [1..1]

pictureUrl : String [0..1]

dataBindingDefinitions

1

VisualSettingDefinitions

key : String [1..1]

name : String [1..1]

type : VisualSettingType [1..1]

isMandatory : Boolean [1..1]

description : String [0..1]

defaultValue : Object [0..1]

*

1

visualSettingDefinitinons

HistoryItem

user : User [1..1]

description : String [0..1]

date : Date [1..1]

action : String [1..1]

VisualizationImplementation

js : String [0..1]

css : String [0..1]

html : String [0..1]

1visualizationLogic

1

«enumeration»

VisualSettingType

String

Color

Number

Boolean

Figure 5.27.: The implemented client data model of the SC Visualizer as a concrete manifestation
of the conceptual meta-model in Figure 4.10. The coloring of the classes indicates
how they are composed and mapped to respective entity types.

Figure 5.27 depicts the implemented client data model. It is a concrete manifestation of the con-
ceptual data model as described in Section 4.3.1 and as shown in Figure 4.10. It is implemented
as respective classes and attributes in TypeScript22, which is a typed superset of JavaScript.

As a concrete View class, the SC Visualizer implements Dashboard. A Dashboard has an explicit
owner and is assigned to a specific SocioCortex workspace. In order to reuse a dashboard and
its visualizations, users can fork it and independently adapt it to personal demands. To keep
track of which dashboards were forked from others, each Dashboard maintains the relation to its
origin via the forkedFrom attribute. The mayEdit flag indicates if the current user is eligible to
adapt the dashboard.
21https://github.com/Microsoft/PowerBI-JavaScript, last accessed on: 04.10.2016
22https://www.typescriptlang.org/, last accessed on: 04.10.2016

112

https://github.com/Microsoft/PowerBI-JavaScript
https://www.typescriptlang.org/


5. Prototypical Implementation and User Interface Design

left: 13

top: 1

width: 7

height: 12

left: 1

top: 1

width: 11

height: 6

left: 1

top: 7

width: 11

height: 6

left: 21

top: 1

width: 16

height: 12

left: 21

top: 14

width: 16

height: 15

left: 1

top: 14

width: 19

height: 15

Figure 5.28.: An example illustrating the grid system of the SC Visualizer dashboard.

Furthermore, the dashboard’s width and height attributes define the size of the dashboard’s
visual grid on which its visualizations are placed. On this grid system, end-users can place any
number of DashboardItems and align them arbitrarily on the whole dashboard surface. The
position and size of DashboardItems are implemented as respective attributes. Figure 5.28 illus-
trates an exemplary dashboard including dashboard items, and shows their respective position
and size values. Therefore, the SC Visualizer provides an intuitive and flexible way to define,
assemble, and arrange different kinds of visualizations. In this sense, the SC Visualizer complies
to Enterprise Mashup (EM) systems (Soriano et al., 2007; Hoyer et al., 2008; López et al., 2009;
Pahlke et al., 2010) which allow end-users to tailor the application’s behavior to their individual
needs.

Each DashboardItem is the container for exactly one Visualization. In addition to its ID, name,
and a mayEdit flag, each Visualization contains its version history as respective attribute. The
version history is automatically maintained by SocioCortex and is defined by a temporally or-
dered list of HistoryItems which in turn capture who changed what at which time. In line with
the conceptual meta-model in Figure 4.10, a Visualization is defined by a VisualizationType
and is bound to data via DataBindings. The DataBinding only has a key which refers to a
corresponding DataBindingDefinition as well a value containing an actual MxL query which
represents a data transformation tailoring the underlying data to the Visualization information
demand. In addition to DataBindings, a Visualization also contains VisualSettings through
which end-users do not define data to be bound to the Visualization, but static visual prop-
erties, e.g., colors and labels. Analogous to DataBindings, VisualSettings are also defined by
corresponding VisualSettingDefinitions.

The VisualizationType represents reusable visual components (Pahlke et al., 2010). Similar to
Dashboards, VisualizationTypes have an explicit owner. Furthermore, they also provide a forking

113



5. Prototypical Implementation and User Interface Design

mechanism in order to allow the reusability of their implementation and definition. Again, their
relationship to potential origins is maintained by the forkedFrom attribute.

VisualizationTypes define a data input interface constituted by a set of DataBindingDefinitions
through which data obtained through MxL queries from the underlying SocioCortex platform
is entered into its logic. A DataBindingDefinition has a unique key attribute as well as a name
which also serves as label shown to the user. The restriction attribute allows users to define
the type of the DataBindingDefinition by using the MxL type notation (cf. Section 4.3.2). Fur-
thermore, the DataBindingDefinition has self-explanatory attributes isMandatory, description,
and defaultValue. VisualSettingDefinitions are analogously defined with the exception that they
define a type attribute of type VisualSettingType instead of an MxL restriction. Currently
implemented VisualSettingTypes are String, Color, Number, and Boolean.

The implementation of a VisualizationType is defined by an associated VisualizationImplemen-
tation object. This object consists of three attributes for defining the JavaScript (JS), Cascading
Style Sheets (CSS), and HTML part of the visualization implementation. While the CSS and
HTML attributes allow web designers and developers to specify styles and templates, the JS
attribute contains the actual business logic of the VisualizationType. The value of this attribute
is interpreted as the body of a render function which defines three parameters:

element This parameter represents the root element of the visualization component.

data The data parameter encapsulates the data obtained from executing the MxL queries as
defined by the DataBindings. For each DataBinding, the data object contains a corre-
spondingly named property whose value is the result of the query execution. For example,
if the VisualizationType defines a DataBindingDefinition named "numbers" of type Se-
quence<Number>, the data object has a property "numbers" whose value will be a JSON
array containing numbers.

settings Analogous to the data object, the settings object encapsulates the visual settings as
configured by the end-user at run-time.

As described in Section 4.3.1, the SocioCortex back-end does not implement the view and view
template concepts as defined in Figure 4.10 as built-in model classes. Therefore, the client
data model is mapped to respective entity types and attribute definitions. Thereby, the green-
colored concepts of the client data model in Figure 5.27 (Dashboard and DashboardItem) are
composed and mapped to an entity type Dashboard, the orange-colored concepts (Visualization,
DataBinding, and VisualSetting) are composed and mapped to an entity type Visualization, and
the blue-colored concepts (VisualizationType, VisualizationImplementation, DataBindingDefini-
tion, and VisualSettingDefinition) are composed and mapped to an entity type Visualization
Type.

To map objects of the client data model to a corresponding representation as generic entity,
the SC Visualizer defines a Data Access Object (DAO) for each of the entity types Dashboard,
Visualization, and Visualization Type. As shown in Figure 5.29, a DAO class provides meth-
ods to read and write corresponding client model elements. Thereby, they parse the client-side
representation into a generic SocioCortex entity representation, and vice versa. To transfer the
client state from the front-end to the back-end, the DAO object uses the sc-angular framework

114



5. Prototypical Implementation and User Interface Design

DAO

find() : T [0..*]

findOne(id : String [1..1]) : T [1..1]

remove(instance : T) : boolean [1..1]

save(instance : T) : T [1..1]

canCreate() : boolean [1..1]

T

DashboardDAO VisualizationDAO

«bind»

<T → Dashboard>

VisualizationTypeDAO

«bind»

<T → Visualization>

«bind»

<T → VisualizationType>

find(includeVisualizations : Boolean) : T [0..*]

Figure 5.29.: The Data Access Object (DAO) classes map the client model to generic SocioCortex
entities and attributes, and manage the communication via sc-angular.

and particularly its scData service. However, each concrete DAO class can implement its meth-
ods individually, e.g., the find method of the DashboardDAO class defines an optional boolean
parameter includeVisualizations which indicates if each dashboard’s visualizations should be
includes in the response. This is efficiently implemented by a corresponding MxL query and by
using the scMxl service.

On the UI level, the SC Visualizer has three main areas which are also represented by respective
items in the navigation bar at the top of the page:

Dashboards In this area, users can explore existing dashboards and create new ones. If users have
respective access rights, they can also edit existing ones, i.e., add new visualizations, recon-
figure existing ones, rearrange them on the dashboard grid, or remove them (Reschenhofer
and Matthes, 2016a).

Visualization Types In this area, end-users acting as web developers can explore and adapt ex-
isting visualization types and create new ones either from scratch or by forking existing
ones.

Social Information Flow Graph (SIFG) In this area, end-users can perform a meta-analysis of ex-
isting dashboards and their relations and dependencies to underlying analytical abstrac-
tions and data model elements (Reschenhofer et al., 2016b).

Those three areas are explained in detail in the following sections.

5.3.2.2. Dashboards and Visualizations in the SC Visualizer

On the Dashboards area of the SC Visualizer, end-users can explore a list of existing dashboards.
This list not only shows basic information (e.g., the dashboard’s owner), but also provides links
to directly edit the dashboard (if the user has respective access rights) and to open the dashboard
in the SIFG area in order to analyze its dependencies.

115



5. Prototypical Implementation and User Interface Design

Figure 5.30.: An exemplary dashboard in the SC Visualizer.

Selecting a dashboard opens it and loads its visualizations. Figure 5.30 shows an exemplary dash-
board containing visualizations and visualizing metrics which are already described in previous
sections. For example, the Database Heterogeneity visualization visualizes the heterogeneity
metric as defined in Section 4.2.2.3, while the Information Flows between Business Applications
visualization was already explained in Section 4.3.2.

The second-level navigation allows users to navigate back to the list of dashboards and to edit the
selected one. Furthermore, by clicking the "Show in Graph" link the user can open the SIFG
view with only the selected dashboard as subject of the meta-analysis. The number besides
the "Clone" label indicates how often this dashboard was forked, while clicking the right-most
button in the second-level navigation bar opens the dashboard in full-screen mode.

Addressing a shortcoming as identified in our related empirical study on spreadsheets (Reschen-
hofer and Matthes, 2015a), each visualization can be downloaded as editable MS PowerPoint23

slide. In this way, end-users can still perform minor visual adaptions of visualizations and use
generated visualizations as input for MS PowerPoint presentations.

Clicking the "Edit" button switches the dashboard into the edit mode as shown in Figure 5.31.
In this mode, the grid is becoming visible on which users can rearrange and resize visualizations
by an intuitive Drag&Drop mechanism. Figure 5.28 illustrates the configuration of the location
and size of the dashboard’s visualizations. Furthermore, in the edit mode a sidebar appears on
the left-hand side containing input fields to specify the dashboard’s attributes, e.g., its name, its

23https://products.office.com/en/powerpoint, last accessed on: 04.10.2016

116

https://products.office.com/en/powerpoint


5. Prototypical Implementation and User Interface Design

Figure 5.31.: A dashboard of the SC Visualizer in edit mode.

owner, and the SocioCortex workspace it is assigned to. Underneath the dashboard attributes,
the SC Visualizer shows a catalog of available visualization types which can be created and
instantiated in the dashboard. This visualization type catalog compares to the widget catalog
as described by Soriano et al. (2007).

Each visualization is configured separately whereas its configuration can be opened by clicking
the "Edit" icon in the top right corner of a visualization. Since visualizations are configured
independently from each other, they can also be configured in parallel and collaboratively by
multiple users. As demonstrated in Figure 5.32, a visualization’s configuration consists of the
specification of its name and providing queries and values for data bindings and visual settings
as defined by the corresponding visualization type. For the instantiation of a data binding,
end-users have to provide an MxL query which complies to the data binding’s restriction. Of
course, users can refer to and reuse existing analytical abstractions, e.g., custom functions. The
MxL code editor as well as the augmented model view component facilitate the formulation of
the query in general and the familiarization with the underlying data model in particular.

Addressing an essential feature of EUA tools as described in Section 2.2.1, a visualization is
rendered as soon as one of its data bindings or visual settings is adapted without having to
commit and save those changes. In this way, the user gets an immediate visual feedback if the
defined query leads to the intended effect without having to commit changes (Abraham et al.,
2008; Tanimoto, 1990; Rothermel et al., 2000).

To commit changes to the visualizations and the dashboard, users have to click on the "Save"

117



5. Prototypical Implementation and User Interface Design

Figure 5.32.: Configuration of a visualization of a dashboard within the SC Visualizer.

button in the second-level navigation bar. Alternatively, they can revert all changes and restore
the original state of the dashboard and its visualizations.

5.3.2.3. Managing Visualization Types

While the Dashboards area is addressing analytics end-users and analytics professionals (Tamm
et al., 2013), the Visualization Types area is targeting web developers and designers. The landing
page of this area is again a list of all existing visualization types to which the current user has
access to. Each item of the list includes information about the visualization type’s owners and
also the number of visualizations which are instantiating it.

Selecting a visualization type from the list forwards the user to its details as shown in Figure 5.33.
In contrast to dashboards, a visualization type is immediately opened in the edit mode, i.e., the
visualization type’s attributes are already editable. Those attributes include a name, an owner,
and an icon, and can be specified within the sidebar.

In addition to those attributes, users can specify a set of data binding definitions and visual
setting definitions. Figure 5.34 illustrates the specification of the data binding definition "Nodes"
which was already described in Section 4.3.2. The user provides a name which acts as label for
the corresponding data bindings. Using this name, the SC Visualizer also generates an identifier
by which the developers can access the value of the data binding within the visualization type’s
implementation. Adding a restriction by using the MxL type notation ensures that users define
consistent and complying MxL queries when instantiating the visualization type. Furthermore,
defining an optional description using the Markdown24 syntax allows users to attach a textual
information to the data binding definition.

24http://daringfireball.net/projects/markdown/, last accessed on: 04.10.2016

118

http://daringfireball.net/projects/markdown/


5. Prototypical Implementation and User Interface Design

Figure 5.33.: A screenshot of the SC Visualizer showing a page for editing the visualization Type
"Directed Graph".

Figure 5.34.: A form within the SC Visualizer to define a data binding definition.

119



5. Prototypical Implementation and User Interface Design

The main content of the visualization type view is dedicated to its implementation (cf. Fig-
ure 5.33). Through the three tabs JS, CSS, and HTML the user can access the different parts
of the implementation.

Particularly the JS tab is of interest, since in this part the data obtained from executing the
queries as defined by the data bindings is entered. The editable JavaScript code represents the
body of the render function. As already explained in the previous section, the data and settings
parameters represent the input provided by the end-user when configuring an instantiated visu-
alization type. For example, since the visualization type in Figure 5.33 defines a data binding
named "Nodes", the SC Visualizer generates a property "nodes" for the data parameter whose
value is the result of the execution of the data binding’s MxL query. Since the restriction of this
data binding is defined as Sequence<Structure<id:String,label:String> >, the developer of the
visualization type can assume that the value of the "nodes" property is a JSON array consisting
of JSON objects which in turn have at least the properties id and label. Based on this input
and the visual configuration passed within the settings parameter, the developer can implement
visualizations based on proven visualization libraries which are already integrated in the SC
Visualizer, e.g., D3.js, Cytoscape.js, and Power BI.

5.3.2.4. The Social Information Flow Graph (SIFG)

The third part of the SC Visualizer is the Social Information Flow Graph (SIFG) which is
addressing all kinds of end-users (Reschenhofer et al., 2016b). The SIFG can be generated
either for one selected dashboard, or as a holistic graph including all dashboards to which the
current user has read access to.

The generation of the SIFG is done in multiple steps and is illustrated in the UML sequence
diagram in Figure 5.35. All steps except the last one are independent from any actual technology
or technical platform which is used for the implementation of the SIFG.

In the first step, the SIFG component determines all dashboards which have to be analyzed
and loads their details from the SocioCortex back-end. For this purpose, the SIFG component
uses the DashboardDAO object, and invokes the findAll method with its includeVisualizations
parameter set to be true. In case of only one dashboard which has to be specified, the SIFG
component uses the find method of the DashboardDAO and thus only requests a single dashboard
object including its visualizations. The DashboardDAO object generates a corresponding request
by using the scMxl service of the sc-angular framework, and returns the response to the SIFG
component.

In a second step, the SIFG component loads all visualization types in order to be able to add vi-
sualization type-specific information to the visualization instances of the analyzed dashboards.

Subsequently, the SIFG component iterates through the data bindings of all visualizations of
the obtained dashboards, and invokes a static analysis of the MxL queries of each of them. For
this, it uses the validate function of the scMxl service. The result of the static validation is
an object which already includes all transitive dependencies originating from the data binding’s
MxL expression down to data model elements as well as all analytical abstractions in between.
The response of the validate function is designed in a way that it already includes all details of

120



5. Prototypical Implementation and User Interface Design

findAll(true)

SIFG DashboardDAO VisualizationTypeDAO scMxl

dashboards

findAll()

vizTypes

query(„find Dashboard.select (d=>{d,v:d.itemVisualizations})“)

queryResult

scData.Entity

queryByEntityType (viztypeId)

result

generateAbstractGraph()

loop [for each dashboard in  dashboards]

loop [for each visualization in  dashboard.visualizations]

loop [for each dataBinding in  visualization.dataBindings]

validate()

validationResult

queryByWorkspace (dashboard.workspaceId)

queryResult

scModel.EntityType

renderGraph()

Figure 5.35.: A UML sequence diagram illustrating how the SC Visualizer generates the Social
Information Flow Graph (SIFG).

121



5. Prototypical Implementation and User Interface Design

data model elements and analytical abstractions which are required to render the SIFG. As a
consequence, solely based on the results of the individual static analyses, the SIFG component
can build an initial abstract graph for each dashboard already containing all directly and transi-
tively referenced data model elements and analytical abstractions. For example, let us consider
the following exemplary MxL query:

let applications = find ’Business Application’ in

applications.sum(TIIF) / applications.count()^2

This metric is named Average Propagation Cost (Lagerström et al., 2014; Schneider et al., 2015)
and calculates the average ratio of business applications which are affected by changing a random
application. For this, it uses the derived attribute definition TIIF as described in Section 4.2.2.3.
Performing a static analysis of the expression leads to a response of the validate method of the
scMxl service, which encodes the expression’s (transitive) static dependencies. The following
object represents a condensed excerpt of this object:

{
dependencies : [
{
customFunction : { name : "averagePropagationCost" },
dependencies : [
{
entityType : { "name" : "Business Application" }

},
{
derivedAttributeDefinition : { name : "TIIF" },
dependencies : [
{
attributeDefinition : { name : "Target" }

},
{
attributeDefinition : { name : "Source" }

},
{
entityType : { name : "Information Flow" }

}
]

}
]

}
]

}

In this example, we removed all details of each node, e.g., its unique key and context information.
Nevertheless, this object already demonstrates how the (transitive) dependencies of an MxL

122



5. Prototypical Implementation and User Interface Design

expression area encoded within a deeply nested JSON object. For example, not only the derived
attribute definition TIIF is included as dependency, but also the dependencies of TIIF itself.

For specific use cases, entity types which are not (yet) referenced might be of interest. Therefore,
in a next step the SIFG component requests all missing entity types from the workspace assigned
to each analyzed dashboard.

As a last step, the abstract graph consisting of abstract nodes and edges is rendered using a graph
visualization library. In the current implementation, the SIFG component uses the JavaScript
graph library Cytoscape.js. Furthermore, we use the library dagre25 which implements different
layout algorithms for directed graphs and which is already integrated in the Cytoscape.js library.
The layout algorithm is configured to generate a graph whose general flow is directed from left
to right.

Figure 5.36.: The Social Information Flow Graph (SIFG) for the dashboard in Figure 5.30.

Figure 5.36 shows the Social Information Flow Graph for the exemplary dashboard in Figure 5.30.
Dashboards are represented by red boxes, which in turn contain gray nodes referring to the
dashboard’s visualizations. Due to performance reasons as well as for the sake of visual clarity,
visualizations are not rendered according to their visualization type, but only represented by
their icon.

The big gray boxes represent workspaces. Within the workspace boxes, there are two differ-
ent kinds of nodes, namely entity type nodes (light blue boxes) and nodes representing the
workspace’s custom functions (green boxes). An entity types again can have sub-nodes rep-

25https://github.com/cpettitt/dagre, last accessed on: 04.10.2016

123

https://github.com/cpettitt/dagre


5. Prototypical Implementation and User Interface Design

resenting its attribute definitions (blue boxes) and derived attribute definitions (cyan boxes).
Between nodes, directed edges represent an information flow which in turn is defined through a
semantic dependency. This means that a semantic dependency from a node A to a node B is
represented by a directed information flow edge from node B to node A.

The SIFG component supports basic interaction facilities for graph visualizations (Herman et al.,
2000). For example, it supports Geometric Zooming, i.e., the user can zoom into the graph
without changing the level of detail. Furthermore, the SIFG view supports pan movements, i.e.,
the user can simply change the perspective to the graph. By combining the pan feature with
zooming, the end-user can focus an arbitrary section of the SIFG.

While initially the nodes of the graph are arranged automatically by a layout algorithm, they
can be manually rearranged by the end-user. However, in its current state, the prototype is not
able to store the view state and thus the positions of the nodes. This implies that reloading the
SIFG leads to an automated rearrangement of the nodes and manual changes are lost. However,
we admit that storing the view state would be a helpful feature. On the other hand, it also
imposes new challenges to the implementation of the SIFG, e.g., restoring a view state if the set
of nodes or edges changed.

Figure 5.37.: Selecting nodes allows users to explore their meta-data, and to identify information
flow paths going through it.

In addition to those basic graph interaction facilities, the SIFG also supports features which
enhance its usability and explorability as described by Heer and Boyd (2005). First of all,
all nodes of the SIFG are clickable and selectable by the end-user. Selecting a node has two
consequences:

124



5. Prototypical Implementation and User Interface Design

Entity Type Attribute Definition Derived Attribute Definition Custom Function

Figure 5.38.: The exemplary content of the sidebar on selecting different kinds of nodes.

Displaying Meta-information The meta-data of the selected node is displayed in a sidebar on the
right-hand side of the SIFG surface. The actual meta-information depends on the type
of node which is selected. This means that in addition to generic node information (e.g.,
name, owner, and version history), the sidebar also includes node-specific meta attributes,
e.g., a visualization’s data bindings as shown in Figure 5.37. Figure 5.38 shows the content
of the sidebar if another kind of node is selected. For example, on selecting an entity
type, the sidebar includes the inconsistency and unstructuredness metrics as explained in
Section 5.3.1. Furthermore, selecting an analytical abstraction (i.e., a custom function or a
derived attribute definition) also shows the corresponding MxL expression. The intention
of this is to support the user in understanding how the information flows to the selected
node are actually derived.

Currently, the prototype implements a specific set of meta attributes for data model el-
ements, analytical abstractions, and view elements. However, in order to adapt to new
requirements, the set of meta attributes is easily extendable and displayable within the
SIFG sidebar. This is particularly true for the view elements (dashboards, visualizations,
and visualization types), since they are mapped to generic entities whose set of attributes
is extendable at run-time.

Highlighting of Paths The direct and transitive predecessors and successors as well as edges from
and to them are visually highlighted. This interaction feature empowers end-users to iden-
tify data model elements and analytical abstractions which serve as input for a particular
element, and analytical abstractions and visualizations which are consuming a particular
element. This information is helpful, e.g., to identify elements affected by changes, and
subsequently to determine their owners and thus contact persons to interact and coordinate
with (Cataldo et al., 2006). For example, Figure 5.37 highlights the information flow paths

125



5. Prototypical Implementation and User Interface Design

to the selected visualization. It not only highlights directly referenced elements (e.g., the
custom function averagePropagationCost), but also transitively connected elements (e.g.,
the derived attribute definition TIIF as well as its input).

Figure 5.39.: To reduce the visual complexity, container nodes (e.g., nodes representing entity
types) can be collapsed.

In addition to the selectability of nodes, the SIFG supports the collapsing of container nodes to
reduce the visual complexity of the graph and consequently to improve its explorability (Heer
and Boyd, 2005). In the current implementation of the SIFG, collapsable container nodes are
those representing workspaces, entity types, and dashboards. Collapsing a node means that
its sub-nodes are removed from the view, and that all edges to and from the sub-elements
are transformed to edges to and from the collapsing container node. For example, Figure 5.39
shows the SIFG with collapsed entity types, i.e., attribute definitions as well as derived attribute
definitions are hidden. Information flow edges from and to those nodes are transformed to edges
from and to the respective entity type nodes.

In the SIFG, nodes can either be collapsed individually by double-clicking them, or collectively
by selecting a general level of detail to be shown through the buttons at the top right corner of
the SIFG view.

126



CHAPTER 6

Evaluation

In Chapters 4 and 5, we elaborated on the conceptual and UI design of a tool empowering
end-users to collaboratively analyze evolving complex linked data. Based on a prototypical
implementation, we conducted multiple kinds of empirical evaluations to assess different aspects
of our contribution. The purpose of the evaluation is manifold: On the one hand, it lays the
foundation for the refinement of our conceptual contribution in future work. On the other hand,
it serves as an assessment of both the validity of the developed artifacts and the utility and
usability of the prototypical implementation.

Wohlin et al. (2012) outline that empirical strategies specifically include experiments, surveys,
and case studies. The purpose of experiments is to get an understanding of relationships between
specific factors, e.g., if a specific change of a software tool’s UI improves the performance in
completing a specific task. By contrast, surveys and in particular interviews intend to gather
information on the knowledge, preferences, and behavior of individuals (Fink, 2016). As a
complementary empirical strategy, case studies allow researchers to observe a software tool within
a practical environment, and to study its performance in real-life situations (Yin, 2014).

An empirical evaluation should combine those strategies to be considered as convenient classi-
fication (Shull et al., 2001; Wohlin et al., 2012). Furthermore, Patton (2002) and Yin (2014)
argue to use multiple sources of evidence for deriving conclusions in the context of an empirical
study. As a consequence, we chose to perform different kinds of empirical strategies as part of
this thesis’ evaluation:

∙ An (online) experiment among different user groups to assess the usability and utility of
the UI for defining complex queries.

∙ An interview series to gain to assess the usability and utility of the SIFG, and to identify
concrete practical use-cases which are addressable by it.

127



6. Evaluation

∙ Three case studies multiple case studies to get feedback from applying the prototype in
practical environments.

In this chapter, we describe those three parts of the evaluation in detail. In Section 6.1, we
describe the experiment as an evaluation of the MxL query editor’s usability and the augmented
model view’s utility. Furthermore, Section 6.2 summarizes the results of interviews about the
Social Information Flow Graph (SIFG) and particularly the potential benefits of the SIFG as
identified by the interviewees. Finally, in Section 6.3, we elaborate on the evaluation of the SC
Visualizer in the context of three case studies, and highlight obtained key findings. In this sense,
we evaluate how our prototype performs in a practical environment.

6.1. Evaluation of the UI for Formulating Complex Queries

The query formulation UI represents an integral part of our conceptual contribution and proto-
typical implementation. As discussed in Chapters 1 and 2, current EUA tools do not support the
formulation of complex queries based on evolving complex linked data. Therefore, we developed
MxL (cf. Section 4.2.2) and designed respective UI components (cf. Section 5.2.3) to empower
and support end-users to define such complex queries.

Particularly in the light of data model evolution, familiarization with the data model is an
important task and essential prerequisite to define complex queries. As described in Section 5.2.3,
we developed a model view UI component which can be used in conjunction with the MxL query
editor. By this, the augmented model view adds contextual information to the data model-
specific auto-completion hints and thus hypothetically facilitates the end-user’s familiarization
with the underlying data model. In order to support this hypothesis, we evaluated the usability
and utility of the augmented model view in an online experiment.

The goal of the experiment is not to derive statistically significant conclusions. On the contrary:
We are mostly interested in qualitative feedback and assessments from the experimentees. These
findings can serve as input for the further development and improvement of the conceptual
design and prototypical implementation of a UI for defining complex queries on evolving data
structures.

Initial results of this evaluation were already published in preliminary work (Reschenhofer and
Matthes, 2016b). However, in the following sections we describe the setting and results in more
detail and including more responses.

6.1.1. Experiment Setting

The evaluation of the MxL code editor was performed as a technology-oriented online exper-
iment (Wohlin et al., 2012). For this purpose, we developed a dedicated web application im-
plementing the experimentation logic. The URL of this web application as well as detailed
instructions was sent by mail to a selected set of experimentees. Figure 6.1 summarizes and
illustrates the general structure and process of the experiment.

In order to shorten the introduction phase to the MxL query editor and thus to emphasize the

128



6. Evaluation

Experiment Scoping
Definition of the experiment‘s

goal: Evaluating the usability and

utility of the augmented model

view

Experiment Planning
Conceptual design of the

experiment and

implementation of a dedicated

experiment web application

Experiment Operation
Sending out the request to

participate and wait for responses

Analysis & 

Interpretation
Assembling, consolidating, and

interpreting the responses

Presentation
Derivation of key findings

representing potential future

improvements as well as critical

remarks about open issues

Figure 6.1.: An illustration of the experiment process as defined by Wohlin et al. (2012).

augmented model view as main subject of the evaluation, we have chosen only individuals which
already know either the current or a previous version of MxL. The set of experimentees to which
we sent a request for participating in the experiment included 17 individuals of which 11 finished
their tasks and provided a response. Table 6.1 provides an overview including a job description
and a qualitative self-assessment of their knowledge in MxL. The knowledge level ranges from
low to high and is described as follows:

Low The person knows MxL and its basic concepts, but never wrote an MxL expression (before
participating to this experiment)

Medium The person already defined some basic MxL expressions in the past, e.g., simple arith-
metic operations

High The person already defined complex MxL queries based on complex linked data structure

The experiment itself consists of three steps implemented within a web application and thus
doable in the browser:

1. In the first step, the experimentee is asked to define four specific MxL queries. After
the third query, a change of the underlying data model is simulated. For each query, we
provide a brief description and helpful hints as well as a hidden exemplary solution which
can be uncovered on demand. In this step, the augmented model view is not yet provided.

2. In a second step, the experimentee has to define four analogous queries on an isomorphic
data model. In this context, isomorphic means that the data models of those cases only
differ in names of types, attributes, and relations. This time, the augmented model view
is shown beside the MxL query editor.

3. In the final step, the experimentee has to fill out a questionnaire. This questionnaire
includes questions about how they familiarized themselves with the underlying data model,
and if they felt that the augmented model view is helpful in this process. More specifically,
we asked them if they were able to formulate all queries with and without the augmented
model view. In the final part of the questionnaire, we wanted to get feedback about
(potential) current weaknesses and desirable improvements of the query formulation UI in
general, and the augmented model view in particular.

129



6. Evaluation

Code Case
Self-Assessed Knowledge

in MxL
Role and Company

Practitioners

P1 A high
Enterprise Architect in a Swiss Bank
(10,001+ employees)

P2 B medium
Enterprise Architect in a German Bank
(5,000 - 10,000 employees)

P3 A low
Enterprise Architect in a German logistics
company (10,001+ employees)

P4 B low
Enterprise Architect in a German IT ser-
vices provider (5,000 - 10,000 employees)

IS Researchers

R1 A low
Research associate at the Chair of Soft-
ware Engineering of Business Informa-
tion Systems (sebis)

R2 B high
R3 B medium
R4 B medium

Computer Science Students

S1 B medium
Former student doing a thesis at the
sebis chair

S2 B medium
S3 A high

Table 6.1.: A list of experimentees which finished their tasks and provided a feedback through
a questionnaire.

Figure 6.2.: An exemplary challenge presented to the participants of the online experiment.

130



6. Evaluation

Figure 6.2 shows a screenshot of an exemplary query formulation challenge within our dedicated
experiment web application. In this case, the augmented model view is visible and usable for
formulating the query.

The data models of the both steps are isomorphic in order to ensure the comparability of the
difficulty of queries. As a consequence, experimentees might perceive the formulation of queries in
the second step as significantly easier regardless of the augmented model view, since they already
defined analogous queries in the first step. For this reason, we divided the set of experimentees
into two groups: Group A performs the three steps of experiment in the aforementioned order,
i.e., in the first step without the augmented model view, and in the second step with. On the
contrary, in group B the first two steps are exchanged, i.e., the augmented model view is shown
in the first step rather than the second one.

Pracitioners

Information 

Systems 

Researchers

Computer 

Science 

Students

C
as

e 
A

C
as

e 
B

Define MxL 
queries
without

augmented
model view

Define MxL 
queries with
augmented
model view

Provide
answers in the

context of a 
concluding
questionaire

Define MxL 
queries with
augmented
model view

Define MxL 
queries
without

augmented
model view

Provide
answers in the

context of a 
concluding
questionaire

Experimentee with Response Experimentee without Response

Figure 6.3.: An illustration of the allocation of experimentees to two different experiment cases.
The cases differ in the order of steps one and two.

Figure 6.3 illustrates the setting of the experiment. The allocation of the experimentees to the
cases was manually done based on the type (practitioner, researcher, student) and our assessment
of the experimentee’s knowledge level. By this, we tried to reach a balanced allocation with each
group having a comparable profile of experimentees. However, due to different response rates in
groups A and B, we got more responses for the latter (seven) than for the former (four) group.

6.1.2. Key Findings of the Experiment

After the scoping and planning stages of the experiment (Wohlin et al., 2012), we sent out
emails to the selected people including comprehensive instructions as well as the allocation to
the respective experiment case (A or B). Following a time period of three months, we collected all
received responses. As illustrated in Figure 6.3, 11 persons out of 17 contacted ones completed
the tasks and provided an answer to the questionnaire.

By consolidating and interpreting the individual responses, we were able to extract key findings.

131



6. Evaluation

In the following, we summarize them and add direct quotes from experimentees, whereas we
refer to them by their code as defined in Table 6.1:

The augmented model view is helpful for formulating queries All but one respondents explicitly
stated that the formulation of queries is significantly easier and/or faster with the aug-
mented model. They also mentioned that it is particularly helpful in situations in which
users are not familiar with the underlying data model, the data model is subject to frequent
changes, or the data model is not easily accessible.

The aspect of the augmented model view which was found to be the most useful one is
that it helps users to retain the orientation when navigating through the data model. For
example, experimentees stated that "you can see if your expression navigates through the
data model like you expect it" (P2), "the model view helps to understand the current
position within the model and makes it simpler to query without knowing the model in
detail." (R3), and that formulating queries with the augmented model view is "a lot easier,
since you can see the correct attribute names and reference names" (S1).

P1 argued that "In this case, the difficulty was the same" when comparing the formulation
of queries with and without the augmented model view. However, he added that he "could
imagine that it is more helpful when data models are bigger, e.g. more than ten classes
and relationships.".

Showing only a local view has to be reconsidered The current implementation of the augmented
model view only shows a local excerpt of the data model which only includes directly
referenced and adjacent model elements. The intention of this feature was to reduce the
visual complexity of the model view and to emphasize navigable data model elements (cf.
Section 5.2.3).

However, six respondents noted that showing the full data model would be more helpful
than showing only a local excerpt. Experimentee R3 argues that the local view makes it
"difficult to keep track of the big picture". However, they also admitted that in case of
larger data models, showing only a local perspective on the data model might be useful to
hide irrelevant parts. Experimentee R2 suggests to make a compromise and to make this
behavior configurable by the user.

The augmented model view should be better integrated with the textual code editor The aug-
mented model view as of today is automatically generated based on the expression
in a connected MxL code editor, i.e., changing the input of the code editor automatically
updates the augmented model view.

However, three experimentees would like to have an even better integration of those two
components. For example, experimentee S3 suggests to highlight elements within the
augmented model view which are marked within the code editor, or which are currently
focused in the list auto-completion hints. According to S3, this would "make it easier for
users to navigate data models and get feedback for their actions".

Furthermore, P1 and P4 argue for implementing a bi-directional integration, i.e., that not
only the code editor serves as input for the generation of the augmented model view, but

132



6. Evaluation

also vice versa. For example, P1 "could imagine that [he] writes average and then simply
clicks within the model to select the attribute which should be used".

The augmented model view should be more interactive In addition to a deeper integration of the
code editor and the augmented model view, two experimentees also ask for more inter-
activity of the augmented model view component: For example, P4 suggests to enable
end-users to rearrange model elements within the model view by an intuitive Drag&Drop
mechanism. Furthermore, S3 would like to expand and collapse types and their attributes
manually by double-clicking them. This would empower end-users to manually expand the
local view.

The augmented model view might suffer from scaling issues On a critical note, three experi-
mentees mention that they assume scaling issues in case of larger data models. Indeed,
experimentee S2 already had problems with the example models, i.e., "the model view was
too small. It was not possible to read all the multiplicities and names for relationships".
Obviously, larger data models as they appear in practice, e.g., in EAM (Störrle, 2011),
would only aggravate this issue.

Users still have to know the syntax of MxL The main purpose of the augmented model view is the
support for ad-hoc familiarization with the underlying data model. Naturally, it does not
help users to learn the query language MxL and its syntax and semantics. However, this
was still mentioned negatively by four respondents. Their consensus is that MxL queries
and their definition with a textual query editor is "a little bit too complex for a not-trained
/ not-skilled person" (P3). Specifically, P1 stated that "the problem [when formulating
queries] was a combination of how to navigate and how to combine the functions". To-
gether, the code editor and augmented model view component have to provide a more
extensive documentation. For example, experimentee P4 proposes an improvement of the
auto-completion mechanism and to implement a filter facility to enable the selective search
for specific functions.

In summary, the results of the experiments suggest that formulating queries within a textual
editor is easier and/or faster with the augmented model view (as it is today) than without it.
Nevertheless, most responses from experimentees include recommendations to reconsider certain
design decisions (e.g., showing a local view instead of the full data model), or to implement
further UI features to improve the usability and utility of the code editor and the augmented
model view.

Furthermore, the scalability of the augmented model view with respect to the size of the data
model is an open issue which has to be addressed in future work. First, further evaluation has to
identify the concrete pain points when trying to formulate queries on large data models. Based
on those findings, further research can propose concrete solution approaches addressing those
issues.

Finally, while the augmented model view was assessed to be helpful by nearly all experimentees,
the technical and textual nature of defining queries with MxL is considered to be too complex for
casual end-users. For non-technical end-users, they suggest to implement a visual query editor
which provides more guidance by the implementing software. Nevertheless, the experimentees

133



6. Evaluation

still argue that the textual query editor would be the preferred UI for the formulation of complex
queries by expert users.

6.2. Evaluation of the Social Information Flow Graph

In a collaborative environment, identifying the right person to interact and coordinate with is
one of the most challenging tasks (Cataldo et al., 2006). Addressing this issue, we developed the
Social Information Flow Graph (SIFG), whose conceptual design is described in Section 4.4, and
whose prototypical implementation as part of the SC Visualizer was outlined in Section 5.3.2.

The purpose of the SIFG is to provide a means to end-users empowering them to interactively
explore which elements and co-workers are affected by one’s interaction with the EUA system.
For this, we implemented several UI features in order to improve the usability of our prototype
and to facilitate the explorability of the SIFG.

In this section, we outline the highlights of the evaluation of the SIFG through demonstrating
the prototype to multiple practitioners followed by a semi-structured interview. The goal of the
evaluation is two-fold: On the one hand, we gathered feedback on weaknesses and strength of the
presented version of the prototype as well as potential improvements for future development. On
the other hand, we also wanted to provide a proof of concept and to find out concrete use-cases
which are addressable by the SIFG in the interviewee’s opinion.

Highlights of the evaluation’s findings were already published in a preliminary work (Reschen-
hofer et al., 2016b), while details of the evaluation are described in the master’s thesis of Bürgin
(2015).

6.2.1. Setting of the Interview Series

The methodology applied for the evaluation of the SIFG is an exploratory case study including
three multiple cases (Yin, 2014). Figure 6.4 summarizes and illustrates the general structure
and process of the experiment.

Interview Scoping
Definition of the interview‘s goal: 

Evaluating the usability and utility

of the Social Information Flow 

Graph (SIFG)

Interview Planning
Design of the interview structure, 

preparation of exemplary and

domain-themed dashboards, and

conducting a pilot study

Conducting the 

Interview
Interviews with three stakeholders

in three different application

domains

Analysis & 

Interpretation
Assembling, consolidating, and

interpreting the interview reports

Presentation
Derivation of key findings

representing feedback about the

SIFG as well as a list of concrete

concerns addressable by the SIFG

Figure 6.4.: An illustration of the case study’s structure.

134



6. Evaluation

As a preliminary pilot study, we first evaluated the prototype with researchers of the sebis chair.
In this context, the subjects of the study used the prototype while being monitored by us, and
subsequently provided respective feedback, e.g., regarding its usability.

The main study was done in cooperation with three of our industry partners. Thereby, we
identified three different application domains in three different companies. In each of those
cases, respective knowledge workers already use a BI or EUA tool for collaboratively analyzing
and visualizing domain-specific data in an end-user-driven way. Therefore, creating awareness
of who is doing what is an issue in those cases.

In order to get feedback about how the SIFG could support knowledge workers in those do-
mains, we conducted interviews with users which are responsible for the respective cases. The
application domains and corresponding contact persons are:

Enterprise Architecture Management (EAM) The EAM domain was already introduced in Chap-
ter 1. As a brief summary, EAM is a discipline to plan, develop, and control an Enterprise
Architecture (EA). It involves multiple stakeholders to gather, model, and visualize EA
data.

The interviewee in this case was an enterprise architect with over nine years of professional
experience in his role. He currently manages the internal architecture of a German IT ser-
vices provider (5,000 - 10,000 employees). Currently, his team uses a mixture of prevalent
EA tools (Matthes et al., 2008) as well as prevalent spreadsheet software.

Financial Risk Management In the domain of financial services, risk management companies gen-
erate reports about financial scenarios including a plethora of parameters, e.g., interest
rates and stock prices. Through the analysis and assessment of those scenarios, financial
risk management seeks to minimize various risks when making decisions in the financial
market by automatically generating recommendations.

In this domain, we interviewed the IT Infrastructure Manager of a German investment
company (10,001+ employees). In his team, co-workers primarily use prevalent spread-
sheet software as well as numerical computing environments like MATLAB1 in order to
collaboratively define and generate financial reports.

Data Quality Management (DQM) This domain is about roles, responsibilities, and processes re-
garding the acquisition and maintenance of data. Data quality typically not only refers to
the completeness of data, but also to its accuracy and timeliness. The purpose of DQM is
to ensure a certain degree of data quality and thus to reduce the risk of wrong and costly
decisions which are made based on wrong or incomplete data (Shankaranarayanan and
Cai, 2006).

The interview partner in this case was the data quality manager of a German logistics
company (10,000+ employees). Currently, her team uses primarily prevalent spreadsheet
software to acquire and maintain roles and processes for different kinds of data (sources).

Before conducting each actual interview, we prepared an exemplary dashboard which imple-
ments a domain-themed scenario. Consequently, we developed an exemplary EAM dashboard,

1https://www.mathworks.com/products/matlab/index.html, last accessed on: 04.10.2016

135

https://www.mathworks.com/products/matlab/index.html


6. Evaluation

Figure 6.5.: An exemplary dashboard implementing an EAM use case which was demonstrated
to an industry partner (Bürgin, 2015).

Figure 6.6.: The SIFG for the exemplary dashboard in Figure 6.5 (Bürgin, 2015).

136



6. Evaluation

an exemplary financial services dashboard, and an exemplary DQM dashboard. For example,
Figure 6.5 shows the EAM dashboard, and Figure 6.6 the derived SIFG view.

It is worth noting that the SIFG presented to the interviewees is an early version compared to
the prototype described in Section 5.3.2. For example, the version presented in the context of
this case study did not support composite nodes, i.e., sub-element relationships were represented
by a certain kind of edge. Furthermore, analytical abstractions were not shown in the previous
version of the SIFG. Only based on the feedback gained through the case study as described
in the current section, we were able to improve the SIFG and to come up with the version as
described in Section 5.3.2.

The interview itself is based on the qualitative and responsive style as defined by Rubin and
Rubin (2011). This means that the interview primarily consisted of open-ended queries to ensure
flexibility for both the interviewee and the interviewer. Nevertheless, all three interviews followed
a common structure consisting, i.a., of the following steps (Bürgin, 2015):

1. General questions, e.g., addressing the role of data analysis and visualizations in the in-
terviewee’s organization and application domain.

2. Brief introduction to and explanation of the dashboard and visualization type concepts as
implemented by the respective version of the SC Visualizer. The introduction and expla-
nation is based on the domain-specific example dashboard which was prepared beforehand.

3. Brief introduction to and explanation of the Social Information Flow Graph (SIFG) as
implemented by the respective version of the SC Visualizer. Again, the introduction and
explanation is based on the domain-specific example dashboard and the SIFG view derived
from it.

4. Extensive discussion of the SIFG, its strength and weaknesses, desirable improvements,
as well as concrete concerns which would be addressable by applying it in the respective
application domain.

6.2.2. Technical Feedback Gained from the Interview Series

The key findings of the interview series are two-fold: One the one hand, we got feedback regarding
the technical features of the SIFG view. On the other hand, the interviewees described concerns
they typically face in their application domain and which are potentially addressable by the
SIFG.

The former kind of key findings represents rather technical feedback and serves suggestions for
improvements of the prototype. Based on the consolidation of the reports of all three interviews,
we can present the following set of key findings referring to technical aspects of the SIFG:

Different kinds of edges are distracting As shown in Figure 6.6, the initial version of the SIFG
view implemented part-of relationships by dashed edges. For example, the entity type
Information flow is part of the workspace EAMKON Workshop, which is represented by
a dashed line between them. However, when trying to explore information flows, those
additional edges tend to distract users, although edges representing information flows are

137



6. Evaluation

designed slightly differently. For this reason, we opted for an alternative implementation
of part-of relationships, namely as composite nodes (cf. Section 5.3.2).

Collapsing and expanding nodes is a useful feature Although not yet implemented as composite
nodes, elements representing parent or container nodes of other elements were already
collapsible and expandable in the presented version of the SIFG. This feature was explicitly
labeled as "very helpful" by two interviewees.

More details about the data model elements have to be visible in the SIFG The presented version
of the SIFG view only visualized workspaces and entity types as data model elements,
but did not include attribute definitions. The interviewees considered this reduced view
as helpful to obtain an overview over the general data structures. However, in a next step,
the interviewees would expect to be able to drill down into specific data structures in order
to make it explorable by the end-user. As a consequence, we included attribute definitions
as sub-elements of entity types in the current version of the SIFG view (cf. Section 5.3.2).

Analytical abstractions have to be part of the SIFG Similar to the previous point, interviewees
asked for more details about how the data elements represented by entity types are bound
to the visualizations. More specifically, they "would have liked to see the data transfor-
mations" between the actual data model elements and the visualizations. For this reason,
we improved the SIFG and integrated analytical abstractions, i.e., derived attribute def-
initions are shown as sub-elements of respective entity types, while custom functions are
displayed as sub-nodes of a workspace container (cf. Section 5.3.2).

The visibility of information within the SIFG has to be controllable One interviewee voiced his con-
cern about privacy issues, since the SIFG and the underlying system tracks all user’s in-
teractions with the system’s elements and makes them visible to co-workers. He suggested
that "the system should provide sufficient access control capabilities" in order to specify
which interactions of which users should be tracked by the system and displayed within
the SIFG.

The SIFG has to integrate more information about users Contrary to the privacy concern men-
tioned by the aforementioned interviewee, another one asked for even more user- and
interaction-related information. In the SC Visualizer’s version as presented to the inter-
viewees, the SIFG showed owners of elements as well as version histories also capturing
users. However, further user-related meta-information should be potentially displayable in
the SIFG, e.g., users of the elements, or users which are potentially interested in a certain
element.

The SIFG view should offer extensive configuration mechanisms On a general note, the intervie-
wees stated that the SIFG is potentially able to address many concerns (as described later
on in this section). However, the SIFG "view should depend on the question at hand", i.e.,
different concerns require users to focus on different aspects of the SIFG. For example, one
interviewee mentioned that filtering the set of shown nodes and edges by different aspects
would allow to configure the SIFG and to tailor it to specific use cases.

Based on the technical and UI-related feedback gained through the interviews, we improved
the UI design and prototypical implementation of the SIFG and its integration into the SC

138



6. Evaluation

Visualizer. For the case studies described in Section 6.3, we were already able to provide the
updated version as described in Section 5.3.2.

6.2.3. Identified Concerns Addressable by the SIFG

While one goal of the interview series was to evaluate the SIFG and its prototypical imple-
mentation in order to lay the foundation for its refinement, the second goal was to identify
concrete concerns which typically occur in the interviewee’s application domain, and which are
potentially addressable by the SIFG. In this context, the interviewees should assume that the
aforementioned suggestions for improvements are implemented. Therefore, the discussions with
the interviewees were hypothetical ones. Nevertheless, the results of the discussions and the
identified concerns which are addressable by such an improved SIFG are still of interest, since
they can drive the further development of the SIFG by tailoring it to certain use cases.

Analogous to the suggestions for improvement, we consolidated the identified concerns from
each individual interview (Bürgin, 2015). Based on this, we derived the following set of general
concerns which are potentially addressable by the SIFG (Reschenhofer et al., 2016b):

Usage Analysis In all three studied application domains, the interviewees agreed that "the col-
lection of data induces the highest cost in our daily business". As a specific example, one
of them explains that "the more [he] can learn about who uses certain visualizations [etc],
the more [he] can infer about the importance of model elements".

Although the current prototype does not yet support the tracking of users of visualizations
or other elements and thus the SIFG is not yet able to display this information, it already
provides means to explore information flows between elements. Adding usage information
to nodes would instantly enable the tool-supported derivation of the importance of main-
taining certain data elements. As a consequence, the SIFG would enable the optimization
of the data maintenance process.

Stakeholder Identification The interviewees stated that the SIFG empowers end-users to identify
stakeholders which are related to certain data model element or analytical abstraction.
This would enable them to proactively contact users which explicitly expressed their inter-
est in related elements (e.g., by a "follow/subscribe mechanism") and to ask them "whether
they want to participate" or "discuss possible changes".

Again, the current SIFG prototype does not support such a follow/subscribe mechanism.
Nevertheless, it does provide facilities to facilitate the exploration of potential stakeholders
if such a feature would be implemented.

Impact Analysis The enterprise architect among the interviewees described situation in which
users ask him to change data model elements since they are "afraid to break something".
The problem is that users just do not know which parts of the system are affected by
changing a specific element. The SIFG promotes transparency with respect to which
elements are semantically related to each other. In this way, the SIFG "would certainly help
to make the models and relations more transparent", as stated by one of the interviewees.

Support for Data Provenance Sharing data among colleagues is "part of the daily business" of the

139



6. Evaluation

interviewees. As a consequence, it is "interesting to know what the story behind a given
information asset is". Specific questions related to the provenance of data are "Where
does the data come from?", "Who worked on it?", and "When was the last change and
by whom?". Providing an environment to visually explore the SIFG may reduce the
"significant operative cost" induced by struggles when identifying co-workers that faced
similar problems in the past.

Addressing Compliance Demands Driven by compliance demands, organizations particularly in
the financial domain have to be able to reveal the full calculation process behind a given
measure or visualization. The drivers are both of an internal (avoid reputational risk)
and external (financial regulations) nature. For example, even prevalent spreadsheets are
subject to legal regulations if used for financial reporting (Panko and Ordway, 2005). The
SIFG can support responsible analysts and auditors to shed light on how metrics and
visualizations are computed and generated.

On a related note, the increased level of transparency obtained by using the SIFG can also
be used to introduce new hires to the environment.

Support for Data Consolidation The interviewee of the DQM domain stated that the SIFG would
be helpful to initiate the consolidations of dashboards and visualizations which consume
overlapping information, i.e., information which is visualized in different visualizations and
dashboards. Furthermore, the same information can be used to automatically calculate
"similar" dashboards and to recommend them to end-users.

In summary, we were able to identify a set of concerns which typically occur in practice, and
for which the interviewed practitioners are still seeking respective tool-support. However, while
those concerns are potentially addressable by an improved version of the SIFG, this still has to
be tested in a separate evaluation.

Furthermore, there are general open issues: First and foremost, the interviewees stated that
data models and the set of analytical abstractions are usually larger than implemented in the
exemplary dashboards. However, scalability and performance of tools are important aspects
which have to be met by them, and which are not addressed by the SC Visualizer.

Another issue is related to privacy: All interviewees explicitly mentioned that their work councils
"would have major worries if users can explore all activities of their co-workers". This confirms
critical observations of related studies in the field of Social Network Analysis (SNA) which also
outline ethical and privacy issues (Borgatti and Molina, 2003).

6.3. Evaluation of the Prototype in Practical Environments

In Sections 6.1 and 6.2, we evaluated the usability and utility of specific components of our
prototype and its design. In contrast, the purpose of the case study as described in the following
section is to observe how the prototype as a whole performs in a practical environment. In this
sense, the prototype is applied in different companies as a tool supporting ad-hoc EA analysis.
Thereby, practitioners define analytical abstractions, visualizations, and dashboards based on
organization-specific data, and subsequently report on their experiences.

140



6. Evaluation

6.3.1. Case Study Design and Setting

The methodology applied for the evaluation of the prototype in a practical environment is case
study research following a multiple-case holistic design (Yin, 2014). This means that there is a
single unit of analysis which is studied in different cases.

In order to identify potential candidates for the practical contexts for the evaluation of our
prototype, we established the SocioCortex Community with a corresponding workshop series
starting in December 2015 at the Technical University of Munich (TUM). Thereby, we invited
enterprise architects and IT specialists from more than 20 Austrian, German, and Swiss com-
panies from different sectors, e.g., finance, health care, and IT services. In average, about 15
community members attended to the SocioCortex Community workshops which were organized
on a quarterly basis.

1st Workshop 2nd Workshop 3rd Workshop
Individual / Working 

group meeting

Individual / Working 

group meeting

Demonstration of the 

prototype of 

SocioCortex and the SC 

Visualizer, and 

introduction to their 

conceptual design

Selection and 

consolidation of use 

cases, establishment of 

a working group “Ad-

hoc EA Analysis”

Identification of 

potential use cases for 

SocioCortex in general, 

and the SC Visualizer 

in particular

A
ct

iv
it

ie
s 

ca
rr

ie
d

 

o
u

t 
b

y
 u

s
A

ct
iv

it
ie

s 
ca

rr
ie

d
 

o
u

t 
b

y
 p

ra
ct

it
io

n
er

s

Collection of data to be 

analyzed by the SC 

Visualizer

Definition of data 

model and import of 

data provided by 

practitioners. 

Additional training of 

SC Visualizer

Self-directed and 

prototypical use of SC 

Visualizer

Presentation of initial 

results as well as 

discussion of first 

impressions

Final interviews to 

gather feedback on the 

performance of the SC 

Visualizer as tool for 

ad-hoc EA analysis

Figure 6.7.: An illustration of how the case study was prepared and operated through a series
of workshops and individual meetings.

Figure 6.7 illustrates the sequence of organized workshops and intermediary meetings. In the
kick-off workshop, we introduced to the workshop in general and described its intention. In
addition to the identification of concrete application areas for our prototype, another purpose of
the workshop is to empower partners from industry and research to contribute to its development.
Subsequently, we elaborated on the technical platform and the current state of the prototype
including the SC Visualizer, and demonstrated it in form of a live-demo. We concluded the kick-
off workshop by asking the participants to ponder about potential use cases for SocioCortex and
the SC Visualizer which could be discussed in the next meeting.

In the second workshop, we discussed and assembled use cases for our prototype which were
identified and proposed by the workshop participants. In a next step, we consolidated the use
cases and prioritized them based on the number of participants which are interested in it and
willing to contribute it in the form of a specialized working group. As a result of this approach,
we identified and defined the working group "Ad-hoc EA Analysis" three industry partners as
its primary contributors. The goal of this working group was to prototypically implement the

141



6. Evaluation

SC Visualizer as a tool empowering end-users to analyze EA models in an ad-hoc manner. For
this purpose, we provided the SC Visualizer as an online service.

To assist the members of the "Ad-hoc EA Analysis working group, we provided online tutorials
and documentations, and conducted several web conferences and phone calls either with the
whole working group or individual members of it. Thereby, we explained them in detail how to
use the SC Visualizer, and how they can import their organization-specific EA models including
anonymized test data set into SocioCortex in order to make it analyzable by the SC Visualizer.
Furthermore, we served as a technical support, i.e., we provided answers and assistance in case
of technical problems, and fixed possible bugs of the prototype.

In the third SocioCortex Community workshop, we presented intermediary results of the working
groups. This included demonstrations of the dashboards and visualizations created by the
working group members as well as an elaboration and discussion on first impressions of the
SC Visualizer.

After a further time period of three months, we conducted final interviews in order to conclude
the case study. Thereby, we specifically asked for strengths and weaknesses of the SC Visualizer,
particularly when applying in practice and real-world scenarios. Furthermore, the interviewees
provided feedback on technical features they were missing and which they consider as essential
for an ad-hoc EA analysis tool.

In the following sections, we elaborate on three selected cases, whereas each of those cases
represent the application of the SC Visualizer as "Ad-hoc EA Analysis" tool in a different
industry partner and member of the working group. Thereby, we not only present the highlights
of the interview protocols, but also present data models and dashboards as defined by the
respective industry partner as additional sources of evidence for the case study (Patton, 2002;
Yin, 2014). It is noteworthy that the set of industry partners of this case study is distinct to
the set of industry partners of the case study described in Section 6.2.

6.3.2. Case 1: Ad-hoc EA Analysis in a German Logistics Company

This case’s industry partner is a German Company in the logistics sector with 10,001+ employ-
ees. The interviews were conducted with two IT specialists having leading roles in the company’s
EAM department.

Currently, they use a traditional EA tool (Matthes et al., 2008) to manage and analyze an
EA model. For the prototypical application of the SC Visualizer as ad-hoc EA analysis tool,
an excerpt of the traditional EA tool’s model and data was exported to a Microsoft Excel
file in a first step. Subsequently, the data was reduced and anonymized to a test data set.
Finally, we imported the Excel sheet to SocioCortex and consolidated the data model which was
automatically inferred by SocioCortex from the Excel sheet’s internal structure.

The final data model of this case is depicted in Figure 6.8. For the sake of clarity and particularly
for confidentiality reasons, we do not show details of the types, and slightly renamed classes and
relations. However, the data model shown in Figure 6.8 is still semantically equivalent to the
imported data model. Its central elements are business applications which support specific

142



6. Evaluation

Business Support

0..1

Sub domains
Domain

Organization Unit

ICT Object Category

ICT Object

Application

Belongs to 0..*

Domain

Business supports

0..1

0..*

Business supports

Orga unit

0..*

0..1

Applications

ICT Object

0..*

0..1

ApplicationBusiness supports

0..* 0..1

ICT Objects 0..*

Category

0..1

DB CIOO

0..1

0..* 0..1 Belongs toSub categories

Orga units0..*

Belongs to

Sub orga units

0..1

0..*

Figure 6.8.: The data model created in case 1. Attributes are hidden for the sake of clarity and
for confidentiality reasons.

domains in specific organization units via the Business Support class. Furthermore, this excerpt
of the EA model captures ICT objects which are assigned to respective categories. Business
domains, organization units, and ICT object categories are organized hierarchically and thus
have a reflective relation.

Based on the imported data model, enterprise architects of the industry partner created the
exemplary dashboard in Figure 6.9 in an unassisted and iterative way. At the time of the final
interview, the dashboard contained multiple visualizations to quantify and visualize different
aspects of the EA model. They used two different visualization types, namely the "Simple
Number" and "Bar Chart" in order to show the overall number of applications and domains on
the one hand, and different quantified aspects for individual domains on the other hand.

In the concluding interview with this industry partner, the we asked specifically for strength and
weaknesses of the SC Visualizer which were experienced during its application for ad-hoc EA
analysis. Thereby, they named the following positive key aspects of the SC Visualizer client:

Automated analysis and transparency of the analysis model’s dependencies The Social Information
Flow Graph (SIFG) and its view can serve as foundation for an extensive meta-analysis of
the analysis model, e.g., to identify stakeholders (cf. concerns in Section 6.2.3). According
to the industry partner, this feature sets it apart from analysis capabilities of comparable
tools in the field of EAM and even Self-Service BI.

143



6. Evaluation

Figure 6.9.: An exemplary dashboard created by the industry partner in case 1.

Intuitive usability The industry partner highlighted that the familiarization process with the ba-
sic facilities of the SC Visualizer was fostered by its intuitive usability. This included
specifically the management of dashboards and their visualizations as well as operating
the SIFG view.

Grid system of the dashboard The industry partner specifically emphasized the usability of the
grid system of the dashboard (cf. Section 5.3.2). It enables a "smart and dynamic arrange-
ment of elements on the dashboard" by end-users.

Immediate feedback and clear error messages As a defining feature of EUA software (cf. Sec-
tion 2.2.1), the industry partner appreciated the direct feedback and clear error messages
when defining data bindings for visualizations. In this way, he was immediately able to
validate the input and if the visualization is defined as intended.

Visual pleasing design One of the main differences of the SC Visualizer compared to other tools
in the field of EAM was mentioned to be its visual pleasing design. Although the praise
for the design of visualizations has to be forwarded to the integrated visualization libraries
and their developers, the design decision to separate visualization types and bind them to
the underlying data model through a well-defined data input interface (cf. Section 4.3.3)
is essential for being able to integrate common visualization libraries.

While the interviewee outlined several strength of the SC Visualizer, particularly when compar-

144



6. Evaluation

ing it to traditional EA tools, the interview also revealed two major weaknesses of the current
prototype:

MxL is too complex for causal end-users Despite our endeavor to empower end-users to formulate
of complex queries based on evolving complex linked data through implementing several
UI features in our query editor interface (cf. Section 5.2.3), the query formulation UI is still
considered as far too complex for casual end-users which are not tech-savvy. One of the
interviewed enterprise architects mentioned that "after several weeks of not dealing with
MxL, [he] was not able to remember the syntax and needed help from MxL tutorials and
documentation". According to him, "MxL is not intuitive enough for the casual end-user".
He proposes to implement an alternative UI for casual end-users enabling the definition of
queries by "more WYSIWYG and Drag&Drop".

However, at the same time the interviewees agree that formulating queries with MxL is
"much easier than with other [textual] query languages because of the auto-completion
feature and augmented model view".

Configurability of visualization types only possible for experts On a similar note, the interviewees
also consider the adaption of visualization types as too complex. Changing supposedly
minor visual properties of visualizations already requires extensive web development skills.

In this regard, it has to be noted that our conceptual framework for collaborative EUA
as described in Section 3.1 provides that the development and adaption of visualization
types is indeed carried out by professional web developers. Nevertheless, the fact that
this point was raised indicates that the tool should foster communication between the
different involved user roles (in this case: analytics end-users and web developers). For ex-
ample, this could be achieved by an integrated tool-support for creating and implementing
visualization-related change requests.

Therefore, the interviewees designate the SC Visualizer as a tool for IT and domain experts
rather than an EUA tool for casual end-users. In the context of EAM, they state that enter-
prise architects as tech-savvy end-users could act as experts and pre-configure dashboards and
visualizations. However, this would not represent "real self-reporting for end-users", as added
by one of the interviewed enterprise architects.

In order to move the SC Visualizer towards such a "real self-reporting tool", the interviewees
suggest the implementation of additional features:

Visual query language Although the interviewed enterprise architects appreciate MxL’s flexibility
and expressiveness, they consider it as not suitable for casual end-users. Therefore, they
would like to have an additional visual query editor which enables the definition of simple
queries and provides more guidance for end-users. In this sense, the EUA tool should
combine two data binding mechanisms: On the one hand, certain use cases still require
the definition of complex queries to configure complex visualizations. On the other hand,
the configuration of simple visualizations could be done by a more user-friendly UI, or
(semi-) automated, e.g., through structural pattern matching (Schaub et al., 2012; Hauder
et al., 2012; Roth et al., 2013).

End-user-configurable view filters In the current prototype of the SC Visualizer, visualization

145



6. Evaluation

types provide two different kinds of parameters: Data bindings to define the data in-
put interface of the visualization type, and visual settings to make visual properties of the
visualization type configurable. In the context of the case study, the interviewees asked for
an additional parametrization of visualization types to define visualization-specific view
filters. In contrast to data bindings and visual settings which are only definable when
configuring a visualization, a view filter would be displayed beside the actual visualization
and rendered as an input field. In this way, end-users could simply pass filter parame-
ters to the visualization without having to adapt the actual visualization. For example,
defining a respective view filter in the "Directed graph" visualization type as described in
Section 4.3.2 would empower end-users to filter the displayed set of nodes or edges.

6.3.3. Case 2: Ad-hoc EA Analysis in a German Automotive Supplier

The industry partner in this case is a German automotive component supplier (10,001+ employ-
ees). The meetings and interviews were conducted with an enterprise architect of the internal
EAM department.

Currently, they use a traditional EA tool (Matthes et al., 2008) to manage an EA model.
Furthermore, at the time of the case study, they are doing research about the integration of
prevalent Self-Service BI tools with their current EA tool. Therefore, they are actively searching
for solutions enabling end-user-oriented ad-hoc EA analysis.

Analogous to the first case, the industry partner created an export of the traditional EA tool’s
model and data in the form of a Microsoft Excel file. The exported data was reduced and
anonymized in order to generate a test data set. In the same fashion as in the first case, we
imported the test data through SocioCortex’s integrated import mechanism for Microsoft Excel
sheets.

The imported data model for the second case is illustrated in Figure 6.8. Again, we maintain
confidentiality by renaming classes and relations, and omitting attributes. Nevertheless, the
data model still has the structural properties of the data model as provided by the industry
partner.

The EA model in this case captures business applications as well as hierarchically organized
functional domains they are used in. Furthermore, they are assigned to an ICT Object by which
they are governed, and to organizational units, e.g., acting as owners. Organizational units are
defined hierarchically too. In this sense, the data model is similar to the one in case 1. However,
it also defines additional concepts, e.g., components, business objects, and devices.

Based on the imported data model and corresponding test data set, the enterprise architect
and one of his colleagues evaluated the SC Visualizer and the underlying SocioCortex platform
by adapting the data and its model, and by creating a simple dashboard. Figure 6.11 displays
the resulting dashboard containing a visualization of type bar chart, which shows the number
of applications per organizational unit. The simplicity of the dashboard is owed to the per-
ceived cumbersomeness of familiarizing with MxL and thus difficulties in defining respective
data bindings.

146



6. Evaluation

Domain Organization Unit

Application

Device Local Component

ICT Object

Component

Business Object

Belongs to

0..1

0..*

Belongs to

0..1

0..*

0..*

0..1ICT Object

0..*

O
w

n
er

G
o

v
ern

an
ce

o
rg

a
u

n
it0..*D

o
m

ai
n

1

0..*

Owner

0..1

0..*

0..1

Governance orga unit

0..*D
o

m
ai

n

0..1

0..*

0..1

G
o

v
ern

an
ce

o
rg

a
u

n
it

0..1

0..*

0..*

O
w

n
er

0..1

Domain

0..*

O
w

n
er

0..1

0..*
G

o
v

ern
an

ce
o

rg
a

u
n

it

0..10..1 Domain

0..* 0..*

Figure 6.10.: The data model created in case 2. Attributes are hidden for the sake of clarity and
for confidentiality reasons.

To conclude the case study with this case’s industry partner, we interviewed the enterprise
architect and asked him about his experiences when using the SC Visualizer and the underlying
SocioCortex platform. He named and described the following positive key features:

Flexibility regarding data modeling As a first point, the interviewee raised the flexibility of the
data modeling approach. The flexible data modeling is empowered by the Hybrid Wiki
concepts, and was particularly experienced during the data consolidation phase.

Flexibility of dashboards and visualizations The enterprise architect also emphasized the flexibility
when designing dashboards and configuring their visualizations. This regards specifically
the grid system of the dashboard and thus the flexibility in specifying the location and size
of multiple visualizations. The statement also includes flexibility in binding the underlying
data to visualizations through complex queries. The interviewee explicitly states that the
prototype’s flexibility is "a big difference compared to [the EA tools] of other vendors".

Extendability of visualization type catalog Another feature which—according to the interviewee–
sets the SC Visualizer apart from comparable tools is the extendable visualization type
catalog. Thereby, web developers can implement new visualization types and add them
to the SC Visualizer at run-time. The interviewed enterprise architect notes that this
enables a "marketplace for visualizations", whereas "one could think of the development
of visualization types through external service providers".

Device-independence As a consequence of building the prototype of the SC Visualizer as web
application, it is a platform-independent application. Furthermore, it does not even re-

147



6. Evaluation

Figure 6.11.: An exemplary dashboard created by the enterprise architect in case 2.

quire end-users to install a Desktop application. This device-independence was explicitly
mentioned as a technical strength of the SC Visualizer.

Complementary to the strength of the SC Visualizer’s prototype, we also discussed its weaknesses
with the enterprise architect of this case’s industry partner. Thereby, he came up with the
following two key issues:

Configuring visualizations requires technical expertise The main conclusion of the second case of
the study is the same as in the first one: Binding data to visualizations is considered as
"not suited for casual end-users". It requires specific technical expertise and knowledge in
defining functional queries with MxL.

Therefore, defining data bindings with MxL is again mentioned as a strength and weakness
of the prototype at the same time. In this sense, the flexibility and expressiveness of the
functional and textual query language MxL competes with the user-friendliness and user-
guidance provided by comparable visual languages (Störrle, 2011; Haag et al., 2015; Soylu
et al., 2015).

Applying the SIFG requires commitment On a related note, the interviewee expressed his reser-
vation about the SIFG. Although he agrees that it can serve as foundation for different
meta-analysis use-cases, it "requires commitment from co-workers to maintain the meta

148



6. Evaluation

data" of all elements within the SIFG. For this, "they have to expect direct benefits in
exchange for the additional effort [when manually maintaining meta-data]".

As a conclusion, the interviewee stated the fact that he would certainly consider in applying the
SC Visualizer as an "expert tool for a central EAM team". However, it still lacks UI facilities to
make it "configurable for casual end-users". In this sense, he comes to the same conclusion as
the interviewees of the first case which further underpins the SC Visualizer’s nature as expert
tool rather than an end-user tool.

Analogous to the first case, the interviewee provided his suggestions for improvements and
features he would like to have in order to use the SC Visualizer as a tool for end-users:

Visual query language Basically repeating the suggestion of the interviewees of the first case, the
enterprise architect of the second case asks for an alternative query formulation UI for
end-users. He outlines that a "query wizard" should enable casual end-users to configure
simple visualizations, while an "expert interface" would enable expert users to configure
more complex visualizations.

Sharing of visualizations and dashboards As a fundamental feature of a collaborative EUA tool,
the enterprise architect names a "complex sharing mechanism for dashboards and visu-
alizations". As a prerequisite, the SC Visualizer has to provide facilities to define access
rights on the level of visualizations in order to define which users are allowed to view and
adapt which visualizations.

As described in Section 5.3.2, dashboards and visualizations are mapped to SocioCortex
entities, which in turn are already subject to SocioCortex’s access control mechanism.
Therefore, the platform already provides the technical capabilities to allow the defini-
tion of access rights through the SC Visualizer. However, the current prototype of the
SC Visualizer does not yet implement a respective UI for managing access rights. Then
again, implementing this feature only requires an adaption of the SC Visualizer front-end
application.

6.3.4. Case 3: Ad-hoc EA Analysis in a German Bank

In the third case, we cooperated with the enterprise architect of a German Bank (5,000 - 10,000
employees).

For managing the holistic EA model of the organization, the EA department of the industry
partner uses traditional EA tools. However, in the past the industry partner already took part in
evaluations of tools implementing an agile approach to EAM. For example, the industry partner
was already part of the Wiki4EAM (Matthes and Neubert, 2011) and thus already assessed the
Hybrid Wikis system as a tool for EA modeling.

In contrast to the other cases described in the previous sections, the industry partner did not
provide a test data set as Microsoft Excel export. They manually created an exemplary data
model for the evaluation of the SC Visualizer. Figure 6.12 illustrates the data model created in
this case. Analogous to the other cases described in this thesis, we renamed classes and relations
and omitted attributes for the sake of confidentiality.

149



6. Evaluation

Application Documentation

0..1

Parent
Domain

0..*

Primary domain1

0..*

Application
Domain

10..*

Source app Target app

0..* 0..*

11

Business Support

Application 1

0..*

Capability 1

0..*

Product
Product

1

0..*

Parent

0..1

0..*

Interface

Figure 6.12.: The data model created in case 3. Attributes are hidden for the sake of clarity and
for confidentiality reasons.

The designed data model essentially captures the organization’s application landscape, i.e., it
documents applications and which products they support in which functional domain. Further-
more, the EA model includes interfaces between applications which compare to information flows
as described in our exemplary data model in Figure 4.7. In addition to data model elements,
the enterprise architect also created analytical abstractions in the form of derived attributes.
For example, he defined a derived attribute for functional domains calculating the number of
business supports which are assigned to it via the capability relation.

Figure 6.13 shows the dashboard as result of the enterprise architect’s endeavor in defining
visualizations based on the underlying data model. Since he created the data model manually
and did not enter any test data, the rendered views of the visualizations are rather irrelevant.
However, switching the dashboard to the edit mode reveals that the enterprise architect was able
to define rather complex data bindings. As shown in Figure 6.13, he configured a visualization of
type "Bar chart" to show the number the value of a self-defined KPI for each functional domain
which have the same parent domain. The corresponding SIFG view as displayed in Figure 6.14
shows that the enterprise architect was capable of defining a remarkably complex analysis model
consisting of multiple visualizations and chains of analytical abstractions.

Again, the enterprise architect provided his impressions of the SC Visualizer as feedback, e.g.,
during individual meetings and the third SocioCortex workshop as illustrated in Figure 6.7.

150



6. Evaluation

Figure 6.13.: An exemplary dashboard created in case 3.

Figure 6.14.: An excerpt of the SIFG illustrating the semantic dependencies for the dashboard
in Figure 6.13.

151



6. Evaluation

The feedback includes both concrete strengths of the current prototype as well as suggestions
for improvements. The strengths were named as follows:

Flexibility of the data model A strength of the prototype which he already experienced during
his evaluation of SocioCortex’s predecessor (Matthes and Neubert, 2011; Neubert, 2012)
is the flexibility of the data modeling approach. This feature was again mentioned as a
"big difference to traditional EA tools".

Intuitive usability of SC Visualizer Another feature which sets the SC Visualizer apart from com-
parable tools is its intuitive usability. This specifically refers to the definition of dashboards
and visualizations through the implemented grid system. The precise arrangement of visu-
alizations seems to be an important feature of dashboards, particularly when considering
that the same point was raised in other cases.

Expressiveness of MxL The enterprise architect stated multiple times that he considers MxL as
"a great tool to define complex EA metrics". In contrast to the feedback gained from the
other cases described in previous sections, he would prefer to define MxL queries through
a textual query editor instead of a visual query interface, particularly since the MxL query
editor provides "useful features like auto-completion and the augmented model view". He
considers MxL as the main feature of the prototype and its defining feature which sets
it apart from other tools. When asked about the complexity of textual MxL queries he
responded that "even in [Microsoft] Excel you’ll find complex formulas".

In addition to strengths of the prototype, the enterprise architect also expressed a particular
suggestion for improvement, namely to "make visual properties of visualizations easier config-
urable". As a concrete example, he named the scaling of dimensions in bar charts. For example,
he intended to position two bar charts side by side. However, since both charts are rendered
independently, the scales of their y-axes did not match to each other. On the one hand, this
could indicate that the web developers defining the visualization types should make the scaling
of axes and other aspects configurable. On the other hand, this could also be interpreted as a
lack of interconnectivity between visualizations, i.e., by connecting different visualizations they
could synchronize certain parameters, e.g., data or visual parameters.

6.4. Synthesis of Evaluation Results

In this section, we briefly summarize the findings of the three evaluation strategies described in
Sections 6.1, 6.2, and 6.3 and derive a common set of lessons learned.

In general, implementing the prototype as a web application based on modern JavaScript tech-
nologies and frameworks enabled us to build a device-independent software solution and to
benefits from the huge JavaScript ecosystem, e.g., modern and visual appealing visualization
libraries. This was unanimously received by evaluation partners as a positive technical decision.
Furthermore, it also facilitated the operation of the evaluation since evaluation partners did not
have the need to install any software, but were able to simply access a web application which
was hosted at the sebis chair.

152



6. Evaluation

On another note, the combination of well-defined data modes, analytical abstractions, and views
paired with a flexible, collaborative, and iterative modeling approach was perceived as a defining
feature which sets it apart from other EUA and particularly EA tools. While prevalent EUA
tools (e.g., spreadsheets) lack an explicit design (cf. Section 2.2.4), traditional BI and EA tools
lack flexibility with respect to adaptability of data models, analytical abstractions, and view.
Our prototype positions itself in between, i.e., data models, analytical abstractions, and views
are explicitly defined, but at the same time adaptable at run-time through end-users.

Further positive remarks address the UI features implemented in our prototype. For example,
the auto-completion feature of the MxL code editor as well as the augmented model view were
received well by participants of both the online experiment and case studies as described in
Section 6.1 and 6.3 respectively. Furthermore, the evaluation revealed that enabling end-users
to arrange and size visualizations freely on the grid of dashboards seems to be a helpful feature
which surpasses the visual modeling capabilities of comparable Self-Service BI systems (Walter,
2015). In this context the case study partners also confirmed that the prototype provides
immediate visual feedback when configuring visualizations and thus implemented one of the
central features of EUA tools (cf. sec:eua:spreadsheetFeatures).

The primary lesson learned of the evaluation is that the prototype still lacks UI features to
consider it as a tool for analytics end-users. The unanimous tenor is that the tool is still "too
technical, but the general approach is good". More specifically, the evaluation partners agree
that it definitely provides means to enable IT and domain experts to define even complex data
models, analytical abstractions, and views. However, it is not applicable for casual end-users.
This is mainly due to the technical and functional nature of MxL and its query formulation
UI. The evaluation partners’ unanimous opinion is that the prototype should provide a visual
query editor which empowers casual end-users to configure at least simple visualizations, while
the textual query editor as presented in this thesis would act as an expert interface which would
still allow the definition of complex queries and the configuration of complex visualizations. In
this sense, it should be considered to combine our approach focusing complex queries with the
end-user-friendly structural model matching approach as defined by Roth et al. (2013).

The next issue relates to the SIFG view: As shown in Section 6.2, the SIFG view of the SC
Visualizer provides transparency of analysis artifacts and makes them explorable by end-users,
which in turn hypothetically enables a couple of interesting use-cases. When asked about its
application in practice, the evaluation partners raised a major concern: The SIFG might be
subject to privacy and surveillance issues. In its current implementation, users can explore
which co-workers are editing or owning certain analysis artifacts. However, showing also the
users of analysis artifacts would be only a minor technical challenge. While this would enable a
whole lot more of use-cases, it also raises the question of what users are allowed to know from
co-workers, or what they should know from them, i.e., which level of transparency or surveillance
is appropriate? In the end, the answer to this question will depend on multiple factors, e.g.,
the actual use-case, or the organization context. Therefore, we cannot and don’t want to give a
general answer. For a general discussion about privacy and surveillance in the context of BI and
SNA, we refer to related literature (Borgatti and Molina, 2003; Gürses and Diaz, 2013; Lyon,
2003; Varian, 2014; Zuboff, 2015).

153



154



CHAPTER 7

Conclusion

In this chapter, we summarize this thesis and conclude on its contribution. Thereby, we specifi-
cally recapitulate the research questions raised in Chapter 1 as well as the requirements defined
in Chapter 3. In Section 7.2, we critically reflect on the findings and methodology as described
in this thesis, and outline known limitations. Finally, in Section 1.5 we propose potential future
research topics which are enabled by this thesis’ contribution.

7.1. Summary

The thesis at hand starts with a motivation of how an increasingly turbulent business envi-
ronment can be tackled by meta-model-based information systems which empower end-users to
dynamically define and adapt data models. However, the problem description in Section 1.1
highlights that the flexible data modeling approach imposes various challenges to the analysis of
complex data structures in collaborative environments. This particularly includes keeping analy-
sis artifacts consistent in light of data model changes, supporting complex linked data structures
according to the definition in Chapter 1, and enabling multiple users to contribute to the analy-
sis approach in order to harness their collective intelligence. Based on the problem description,
Section 1.2 elaborates on the formulation of concrete research questions, while Section 1.3 dis-
cusses the adoption of the design science research methodology to the context of this thesis.
Sections 1.4 and 1.5 summarize the thesis’ core contributions and structure respectively.

Chapter 2 introduce Adaptive Information System (AIS) and elaborates on the Hybrid Wiki
approach as the foundation for the conceptual design of our solution (cf. Section 2.1). Sec-
tion 2.2 summarizes characterizing features of EUA software, e.g., analytical functions as well
as immediate visual feedback. It subsumes with the results of our state-of-the-art analysis of
how spreadsheets as de facto standard EUA tool are applied in practice, and from which short-

155



7. Conclusion

comings they suffer. In Section 2.3, we provide a brief overview over related work in the field of
spreadsheets, model-based analytics and visualizations, and Self-Service and collaborative BI.

In Chapter 3, we describe how we derived the requirements for the conceptual and technical
design of our approach to collaborative EUA on evolving complex linked data. To this end,
in Section 3.1 we first define a respective conceptual framework which captures three different
conceptual layers, namely the data model layer, the analytical abstraction layer, and the view
layer. We further identify different roles of users interacting with the artifacts of the layers. Based
on our conceptual framework as well as on related work on collaborative technology, we describe
the systematic derivation of 22 requirements categorized along the layers of the conceptual
framework and including a cross-cutting category for meta-analysis-related requirements.

Based on the derived requirements, we discuss the conceptual design of our approach in Chap-
ter 4. Again, we separate design decisions along the layers of our conceptual framework. Con-
sequently, Section 4.1 starts with a description of how we extended the original Hybrid Wiki
meta-model in order to be able to support complex linked data. Subsequently, we elaborate
on the design of concepts for analytical abstractions including the design of the query language
MxL (cf. Section 4.2). In Section 4.3, we explain the meta-model for the view layer including a
concept to specify a data input interface through which end-users can enter data into instanti-
ated view templates. For the concepts of all layers, we discuss the design decisions and assess
their consequences. Section 4.4 addresses the meta-analysis of the inter-connected data model
elements, analytical abstractions, and view elements and discusses the conceptual design of the
Social Information Flow Graph (SIFG) as means to ensure transparency of the analysis model
and to make it explorable by end-users.

Chapter 5 outlines the highlights of the implementation of the prototype empowering end-users
to collaboratively analyze evolving complex linked data. As described in Section 5.1, the pro-
totype is based on the SocioCortex platform which implements the data model and analytical
abstraction concepts of the meta-model derived in Chapter 4. Furthermore, we elaborate on
an AngularJS-based web framework which serves as a wrapper for the SocioCortex back-end’s
REST API, and describe further reusable UI components in Section 5.2. Specifically, we present
two UI components for enabling end-users to define complex queries, namely the MxL code
editor and the augmented model view. In the subsequent Section (5.3), we briefly describe three
web clients as part of the SocioCortex front-end, whereas the SC Visualizer as the central EUA
application occupies the most important role in the context of this thesis. It also implements
dashboards, visualizations, and visualization types which correlate to the view concepts as de-
fined in Chapter 4. Furthermore, in this section we also elaborate on conceptual and UI design
decisions regarding the SIFG and its prototypical implementation and integration into the SC
Visualizer.

The prototypical implementation serves as a proof of concept on the one hand, and enables the
evaluation of the developed concepts as described in Chapter 6 on the other hand. Thereby,
we applied different evaluation strategies to validate different aspects of the prototype. In Sec-
tion 6.1, we elaborate on the setting and key findings of an online experiment for the evaluation
of the usability of the query formulation interface. Section 6.2 outlines the setting and key find-
ings of the evaluation of the Social Information Flow Graph by interviews with three different
industry partners. And Section 6.3 summarizes how we prepared and operated a case study

156



7. Conclusion

including three different cases in three companies which enabled us to apply the prototype in
practice for a specific EUA use-case, namely ad-hoc EA analysis.

After summarizing the thesis and its chapters, we assess its results with respect to the research
questions raised in Section 1.2. Therefore, we provide a brief answer and refer to specific sections
of the thesis which provide more details.

RQ 1: What is the state-of-the-art of tool support in EUA, and what are shortcom-
ings of those tools—particularly spreadsheets—in the context of knowledge-intensive
team work?

In order to answer the first research questions, we performed a state-of-the-art analysis of how
spreadsheets as the de facto EUA tool are currently applied in practice. First, we observed
which kind of data is typically maintained in spreadsheets and derived a respective semantic
meta-model capturing typical structural patterns occurring in spreadsheets (cf. Section 2.2.2).
Second, we also conducted case studies in order to investigate HOW spreadsheets are applied in
practice. To this end, we studied different usage scenarios of spreadsheets in practice and derived
respective usage patterns which are described in Section 2.2.3. Third, to identify shortcomings
of today’s EUA tools, we conducted an empirical observation in two German companies (cf.
Section 2.2.4).

In addition to our own empirical studies, we also performed a literature review in the fields
of spreadsheets, EUA in general, Self-Service and collaborative BI, and model-based analytics
and visualizations. On the one hand, the literature review revealed the characterizing features
and success factors of EUA tools. On the other hand, it also provides an overview over related
approaches as well as a differentiation to this thesis’ approach.

RQ 2: What are requirements for empowering end-users to collaboratively analyze
evolving complex linked data structures?

With respect to RQ 2, Chapter 3 not only lists identified requirements, but also describes a
conceptual framework which served as foundation for the systematic derivation of them (cf.
Section 3.1). Thereby, the conceptual framework is based on related work on end-user-driven
data visualizations (Chi and Riedl, 1998), visual information analysis (Isenberg et al., 2008),
end-user-driven model analysis (Roth et al., 2013), and general EUA (Tamm et al., 2013). It
defines three logical layers building on the top of each other, namely a data model, analytical
abstraction, and view layer. By adopting generic requirements for collaborative technology as
defined by de Hertogh et al. (2011) to the artifacts of those layers as well as by addressing
specific shortcomings identified in our state-of-the-art analysis of EUA software, we were able
to systematically derive 22 requirements for a tool empowering end-users to collaboratively
analyze evolving complex linked data. The requirements are categorized and summarized in
Section 3.2.

RQ 3: How can a system design for a tool empowering end-users to define data
models, analytical abstractions, and visualizations look like?

The answer to this research questions is primarily described in Chapter 4: The conceptual
system design is formally defined by a meta-model which captures the artifacts which were

157



7. Conclusion

already defined in our conceptual framework in Section 3.1. The data model concepts are
primarily derived from the Hybrid Wiki meta-model, and extended by additional concepts in
order to support complex linked data structures. Furthermore, in Sections 4.2.1 and 4.3.1 we
describe concepts of the analytical abstraction layer (e.g., custom functions) and the view layer
(e.g., visualizations). The holistic system design for a tool empowering end-users to define
data models, analytical abstractions, and visualizations is illustrated by the meta-model in
Figure 4.1.

The technical system design of our prototype is outlined in Chapter 5. Figure 5.1 illustrates how
the prototype is separated into different components and assembled to a holistic EUA tool. It
consists of three different web-based clients for managing the content, modeling data structures
and analytical abstractions, and defining visualizations.

RQ 4: What are features and properties a language for defining queries and calcu-
lations on evolving complex linked data structures must have?

In Section 4.2.2, we elaborate on the key features and properties of the Model-based Expression
Language (MxL) which serves as a functional, object-oriented, sequence-oriented, and statically
type-safe query language based on the Hybrid Wiki data model. Thereby, we provide a brief
justification for each of those properties, and specifically describe MxL’s type system which
complies to the data model concepts of the underlying Hybrid Wiki meta-model. Furthermore,
Section 4.2.2.2 summarizes basic MxL functions which implement different kinds of operations,
e.g., common query operations (projection, selection, ...), or aggregation operations.

Section 5.1.2 highlights specific aspects of MxL’s implementation, and illustrates the interpreta-
tion process of MxL expressions including a scanning, parsing, and type checking phase. More-
over, this section also elaborates on how the MxL properties enable the prototype to be adaptive,
i.e., to automatically adapt MxL queries on changes of the underlying data model in order to
keep them consistent.

RQ 5: How can end-users be supported in defining complex queries, calculations,
and visualizations on evolving complex linked data structures?

This question is primarily answered in Section 5.2.3 which describes the implementation of the
MxL query formulation UI. Its central component is a textual query editor for MxL providing a
number of features which were confirmed to be helpful during its evaluation (cf. Section 6.1). For
example, it provides MxL-specific syntax highlighting, error localization, and auto-completion
support. Furthermore, an augmented model view illustrating the underlying data model as UML
class diagram supports users in navigating through potentially complex linked data structures.

With respect to the definition of complex visualizations, Section 5.3.2 outlines the highlights
of the implementation of the SC Visualizer in general, and the UI for defining dashboards and
configuring visualizations in particular. Thereby, we adopted characterizing features of EUA
as identified in Section 2.2.1s. For example, when configuring visualizations, immediate visual
feedback enables end-users to check if the provided input leads to the intended visualization
without having to commit its configuration.

158



7. Conclusion

RQ 6: How can end-users be supported in performing a meta-analysis on collabo-
ratively defined data models, analytical abstractions, and visualizations?

Our answer to this research question is the Social Information Flow Graph (SIFG). The SIFG
is a means to ensure transparency of which analysis artifacts are connected in which way, and
awareness of which users are interacting with those artifacts. In this context, analysis artifacts
refer to data model elements, analytical abstractions, and view elements. The SIFG empowers
end-users to interactively explore the analysis model which is formed by those artifacts and
the semantic dependencies between them. The conceptual model of the SIFG is outlined in
Section 4.4.

Based on its conceptual design, we present the SIFG’s visual design in Section 5.3.2. We specifi-
cally elaborate on UI features which facilitate the SIFG’s usability and explorability by end-users,
e.g, highlighting paths through a particular node of the graph, or collapsing composite nodes in
order to reduce the visual complexity of the graph view.

RQ 7: What is the experience of users of the proposed solution? What are further
challenges of Web 2.0-based EUA?

Chapter 6 summarizes the settings and key findings of three different evaluation strategies,
namely an online experiment to validate the usability of the query formulation UI (cf. Sec-
tion 6.1), an interview series with practitioners of different domains to get feedback on the SIFG
(cf. Section 6.2), and a case study including three cases of ad-hoc EA analysis to assess the
prototype’s practicability. Section 6.4 provides a synthesis of the key findings identified with the
different evaluation strategies.

For further challenges of collaborative EUA we refer to Section 7.3 in which we summarize
potential future research opportunities based on the findings of the thesis at hand.

We conclude our summary with a recapitulation of the requirements identified in Section 3.2.
Table 7.1 lists the requirements and provides both a brief description of how we addressed them
and a reference to the respective section of this thesis.

7.2. Critical Reflection and Known Limitations

While the thesis addresses each requirement listed in Table 7.1, we are aware that not all of
them are fully met. Furthermore, the evaluation revealed further limitations of the prototype
which were already discussed in Section 6.4. In the following sections, we recapitulate on known
limitations and critically reflect both this thesis’ contribution and its evaluation.

7.2.1. Functional Limitations of the Prototype

Section 6.4 already discussed limitations revealed by the different evaluation strategies. However,
there are additional noteworthy limitations of the conceptual design and prototypical implemen-
tation of the approach as presented in this thesis. In the following, we systematically discuss
various technical limitations along the layers of our conceptual EUA framework (cf. Section3.1)

159



7. Conclusion

Req Brief Description Sections

Data Model Requirements

Req 1 Extended Hybrid Wiki data model with complex attribute types 4.1.1

Req 2 Hybrid Wiki data modeling approach, SC data table
2.1.2, 5.3.1,
5.2.2

Req 3 Hybrid Wiki data modeling approach, SC data table
2.1.2, 5.3.1,
5.2.2

Req 4 Workspace overview and augmented model view 5.2.3, 5.3.1

Req 5 Hybrid Wiki default feature 2.1.2

Analytical Abstraction Requirements

Req 6 MxL and its query formulation UI 4.2.2, 5.2.3

Req 7 Extendable set of basic functions
4.2.2.2 ,
5.1.2

Req 8 Commentability and shareability of analytical abstractions 4.2.1, 5.3.1

Req 9 Creatability and adaptability of analytical abstractions at run-time 4.2.1, 5.3.1

Req 10 Automated refactoring of analytical abstractions on changes 5.1.2

Req 11
Overviews of custom functions and derived attributes, auto-
completion hints in MxL code editor

5.3.1, 5.2.3

Req 12 Derived from Hybrid Wiki concepts 4.2

View and View Template Requirements

Req 13 Online implementation, separation into logic, template, and style 5.3.2.3

Req 14 Online code-editor enables adaption at run-time 5.3.2.3

Req 15 Forking mechanism for visualization types 5.3.2.3

Req 16 Visualization types are mapped to access-controlled entities 5.3.2.1

Req 17 Dashboards and visualizations are editable at run-time 4.3.1,5.3.2

Req 18 Reusability of visualizations in different dashboards
4.3.1,
5.3.2.1

Req 19 Dashboards, visualizations are mapped to access-controlled entities 5.3.2.1

Meta-Analysis Requirements

Req 20 Extendable set of meta-attributes for information assets 4.4

Req 21 Static type-safety of MxL, MxL dependency management 4.2.2, 5.1.2

Req 22 Social Information Flow Graph 4.4, 5.3.2.4

Table 7.1.: Requirements identified in Section 3.2 and how we addressed them.

160



7. Conclusion

Limitation on the data layer primarily refer to original Hybrid Wiki concepts and its prototype.
For example, Hybrid Wikis support a data-first approach to data modeling, i.e., users can add
initially undefined structure to information objects, based on which a modeler expert can define
a respective data model. Consequently, the system potentially allows states in which information
objects are inconsistent with respect to the explicitly define data model. It depends on the actual
use-case, which level of strictness is appropriate, i.e., if users should be enforced to stick to the
defined data model in order to keep consistency, or if they should be allowed to deviate from the
data model for the sake of flexibility. A more detailed discussion can be found in preliminary
work (Reschenhofer et al., 2016a) as well as in the PhD thesis of Neubert (2012).

A technical limitation which is related to the extension of the Hybrid Wiki meta-model is its
support for complex linked data as described in Section 4.1.1. According to the definition in
Chapter 1, complex linked data is defined as a set of entities which potentially have arbitrarily
nested attributes, attributes with multiple values, and multiple relations to other data entities.
While the original Hybrid Wiki meta-model (Matthes et al., 2011) already supports multi-valued
attributes and relations, we extended the set of possible attribute types by a ComplexConstraint
in order to address nested attributes. However, the CompositeType as defined in 4.2 does neither
support nested relations nor relations to nested objects. This naturally impairs the expressive-
ness of the meta-model with respect to its support for complex linked data.

The potential inconsistencies of the data with respect to its model also has consequences for
the analytical abstractions: MxL expressions are based on the explicitly defined data model and
expect that the data complies to it. If this is not the case, the evaluation will potentially fail,
except the inconsistent value can be parsed successfully into the expected type. The same is
true for empty or non-existent attributes which are represented by null values. Furthermore,
MxL expressions cannot access free attributes of entities since they are not yet captured by the
data model. Therefore, although the Hybrid Wiki meta-model provides great flexibility with
respect to the data modeling approach, MxL does not benefit from them since it is based on
the explicitly defined data model. However, it is noteworthy that MxL supports the evolution
of the data model and ensures consistency of its expressions (cf. Section 5.1.2).

On a different note, the current prototype only implements basic features for the collabora-
tive creation of analytical abstractions. For example, users can annotate MxL expressions and
parts of them with comments and thus provide informal descriptions for oneself and for others.
Furthermore, analytical abstractions can be separated and shared by defining reusable custom
functions. However, the prototype as of today does neither provide an integrated synchronous
messaging facility (chat) to foster communication between the system’s users, nor does it sup-
port real-time collaboration enabling multiple users to define one MxL expression collaboratively.
Therefore, the prototype still lacks sophisticated collaboration facilities and thus only partially
fulfills Requirement Req 8.

Furthermore, in Section 4.2.1 we describe that analytical abstraction concepts are not defined
as AccessControlled artifacts. Instead, the infer their access rights from the workspace they
are assigned to. This behavior is inspired by data model elements (e.g., entity types), which
also only infer the access rights from its workspaces instead of allowing users to define explicit
ones. However, we think that there are use-cases which require a more fine-grained authentica-
tion concept where users should be enabled to define specific access control rules for analytical

161



7. Conclusion

abstractions. Since the current prototype does not implement such a differentiating authenti-
cation concept, it suffers from this kind of technical limitation, and thus only partially fulfills
Requirement Req 12.

The evaluation described in Chapter 6 revealed multiple limitations related to the view layer
of our conceptual framework and related to the SC Visualizer front-end. The most obvious
one which was already discussed in Section 6.4 is the lack of a query formulation UI for casual
end-users. The current prototype only provides a textual query editor which targets technical
experts and addresses the formulation of complex queries. However, missing a visual query
editor for end-user is a major limitation of the prototype as a EUA tool.

Furthermore, although dashboards, visualizations, and visualization types are technically
mapped to SocioCortex entities and thus inherently implement access control lists, the cur-
rent SC Visualizer prototype does not provide UI mechanisms to access and manipulate those
properties. However, this is considered as a purely technical shortcoming whose implementa-
tion would be a minor challenge, particularly since the SC REST API and thus the sc-angular
framework already supports the manipulation of an entity’s access rights.

With respect to the Social Information Flow Graph (SIFG), the prototype only implements
an exemplary set of meta attributes for each kind of analysis artifact. As of now, it only
displays owners and editors of artifacts and thus only a limited set of user-related attributes.
As a consequence, it hardly allows the identification of new social relationships and thus new
SNA use cases as claimed in Section 4.4. However, particularly the meta attributes of analysis
artifacts including data model elements, analytical abstractions, and view elements are easily
extendable by further ones. In the end, the set of required meta attributes depends on an actual
use case, which was also named as a main conclusion by an interview partner as described in
Section 6.2.

7.2.2. Discussion about the Practicability of the Prototype

In addition to concrete functional and technical limitations of the approach and prototype de-
veloped in this thesis, there are further issues related to the practicability.

In Section 2.2.1, we identify interoperability as one of the characterizing features and success
factors of EUA. The EUA tool’s integration into an existing application landscape and the
integration of other data sources are critical aspects when applying it in practice. This was also
confirmed by evaluation partners in our case studies as described in Section 6.3. For example,
the enterprise architect of the second case (cf. Section 6.3.3) intends to use an EUA tool in
conjunction with traditional EA tools in order to benefit from the strength of both kind of
tools. At the same time, one of the main tasks of enterprise architects is the prevention of the
uncontrolled growth of an application landscape and to manage its diversity (Schneider, 2015).
Therefore, implementing for means for a seamless integration of a collaborative EUA approach
is a major challenge.

Furthermore, our approach and prototype still has to be examined with respect to its scalability.
In this context, scalability not only refers to the tool’s ability to handle large data sets, but also to
handle a huge number of analytical abstractions and view elements. On the one hand, scalability

162



7. Conclusion

refers to certain technical arrangements, e.g., a scalable database. On the other hand, it also
implies the need for novel conceptual means, e.g., to allow end-users to effectively explore the
SIFG or the augmented model view even in the light of thousands of nodes and edges. In the
context of this thesis, we already provide related suggestions of how to address the scalability
issue, e.g., showing only a local perspective in the augmented model view, or enabling users to
collapse certain nodes in the SIFG. However, those features were not evaluated with respect to
scalability.

In two of the three interviews as described in Section 6.2, the interviewee stated that their work
council would have worries when applying the SIFG. In general, this issue refers to the topic
of "surveillance vs. privacy" which is also regular subject to public debate. In the concrete
context of Business Intelligence and Business Analytics, the discussion about surveillance can
be narrowed down to the tension between its holistic economic utility for an organization and
each individual’s privacy claims. In fact, Varian (2014) claims that people are willing to make
certain concessions regarding their privacy as long as they "get something back" (Zuboff, 2015).
With respect to the Social Information Flow Graph as introduced in this thesis, this would
imply that its acceptance depends on its utility for the organization and each individual. This,
in turn, depends on the actual use case the SIFG is applied in, and the actual user-related
meta-information which would be necessary to capture and make explorable by co-workers. As
a result, we cannot form a general opinion about the SIFG’s practicability, but only discuss its
potential benefits and drawbacks.

7.2.3. Critical Reflection on the Evaluation

In addition to the actual contribution of this thesis, we also want to critically reflect on method-
ological aspects. This particularly refers to the evaluation part of the thesis and thus the validity
of the conclusion.

Different aspects of the approach and the prototype were validated with different evaluation
strategies, namely an online experiment with 11 responses to validate the usability of the query
formulation UI, an interview series with three practitioners of different domains and different
companies to assess the utility of the SIFG (cf. Section 6.2), and a case study including three
EUA cases in the domain of EAM to evaluate the prototype’s practicability (cf. Section 6.3).

For the online experiment and the validation of the query formulation UI’s usability we have
chosen only individuals which already know MxL in order to minimize the familiarization effort
with the experiment’s subject. However, at the same time the specific selection of experimentees
represents a potential bias and threat to the experiment’s validity. Further experiments with
other individuals are inevitable in order to validate the experiment’s results, although this would
imply a more extensive experiment including a comprehensive introduction phase.

For the second evaluation strategy, we implemented domain-themed dashboards and demon-
strated the resulting SIFG to three different interviewees. Based on this demonstration, we
discussed the potential utility of the SIFG if applied in the respective application domain. How-
ever, the discussions were of a hypothetical nature, since the interviewees did not use the SIFG
by themselves (although they were able to ask questions about it) on the one hand, and the

163



7. Conclusion

SIFG did not implement all features as desired by the interviewees on the other hand. This fact
represents another threat to the evaluation’s validity.

In the context of the case studies, three different industry partners applied the prototype for ad-
hoc EA analysis. Each of them created a custom dashboard based on an organization-specific
data model. However, only one of them also defined reusable analytical abstractions in the
form of custom functions (cf. Section 6.3.4). The others bound the visualizations directly to
the data model elements and thus skipped an essential part of the prototypical solution. As a
consequence, the case studies can only be considered as an evaluation of the front-end part of
the prototype, namely the SC Visualizer application.

Considering all three applied strategies, the evaluation in general is primarily of a qualitative
nature. Although the individual evaluation strategies—particularly the case studies—provide
helpful and in-depth insights into concrete applications of the prototype in specific contexts, the
evaluation’s empirical foundation implies that its results are not generalizable. Furthermore,
most of the evaluation partners are either enterprise architects or IT experts in the domain of
EAM. Therefore, the evaluation is potentially biased towards this specific domain. Its applica-
bility for EUA use-cases in other domains still has to be studied and evaluated.

7.2.4. Critical Reflection on the Research Methodology

As described in Section 1.3, we adopted the design science research framework (Hevner et al.,
2004) in order to systematically develop the approach and prototypical implementation as de-
scribed in the main part of this thesis.

While this framework and its guidelines are widely used and adopted in design science re-
search (Gregor and Hevner, 2013), they are also subject to critics. For example, Frank (2006)
discusses four flaws and misconceptions they are suffering from, namely a lack of accounting
for possible future worlds, insufficient conception of a scientific foundation, a mechanistic world
view, and a lack of appropriate concepts for describing the IT artifact.

For example, Hevner et al. (2004) suggests to focus on problems which are motivated by business
needs as of today. Business needs which might potentially emerge in future are not captured by
the framework. Regarding this, the motivation of this thesis as described in Chapter 1 is indeed
based on current problems, experiences, and business needs, and thus is certainly suffering from
a lack of accounting for possible future worlds. On another note, we derive the requirements
for our IT artifact based on related literature and our perception of collaborative EUA (cf.
Section 3.1). As a consequence, the derived requirements are certainly contingent. This fact is
described by Frank (2006) as one of the key issues of the design science research framework’s
mechanistic world view.

Therefore, it is important to note that the results and conclusions of this thesis have to be
interpreted in the light of those flaws.

164



7. Conclusion

7.3. Further Research

In the final section of this thesis, we outline future research opportunities which are enabled
by this thesis’ contribution and findings. Thereby, we also highlight potential challenges which
might be faced when addressing those opportunities. Natural candidates for future research
opportunities are the limitations described in Section 7.2.1. However, in the following we focus
on research opportunities which are not direct implications from those technical limitations.

7.3.1. Bottom-up Approach for Defining Analytical Abstractions

The Hybrid Wiki system supports both a top-down and a bottom-up approach to data model-
ing (Reschenhofer et al., 2016a). The former approach means that the data model is defined by
modeling experts in a first step, which in turn imposes restrictions to the subsequent creation of
data objects. On the other hand, bottom-up means that first individual data objects are defined
and enriched by attributes, which in turn can be used to infer a data model.

Further research could adopt this principle to analytical abstractions, e.g., derived attributes.
For example, users could be enabled to define derived attributes for individual data instances,
based on which a modeling expert could derive respective measures for the modeling of analytical
abstractions. Specific research challenges are, e.g., merge conflicts in case of diverse definitions
of the same derived attribute, and how those can be resolved in an end-user-friendly way.

7.3.2. Impersonation for Evaluation Analytical Abstractions

In the current prototypical implementation, analytical abstractions are evaluated under the
identity of a currently authenticated user. This ensures that users can only access entities to
which they have read access to, even by querying it with MxL. As a consequence, different users
might get different results when evaluating the same MxL query.

As an alternative, future research activities could be about studying alternatives regarding the
identity under which queries are evaluated in a collaborative environment in which data and
data model elements are subject to authorization. Conceivable approaches would be to define
an explicit identity for an analytical abstraction under which the corresponding MxL query is
evaluated (e.g., the owner of the analytical abstraction), to provide a general system identity
under which all queries are evaluated, or a (configurable) combination of them. In this context,
performing a specific action under a different identity is called impersonation.

7.3.3. Alternative Evaluation Strategies for Analytical Abstractions

As of today, analytical abstractions are evaluated on demand, i.e., each time a user requests the
value of an analytical abstraction, its MxL expression is evaluated.

In contrast, spreadsheets typically implement a different approach: The values of cells are per-
sisted and (by default) only recalculated in case of changes of input cells. The static type-safety

165



7. Conclusion

of MxL already enables the automated determination of elements which serve as input for an
expression. In this sense, it already provides the foundation for a spreadsheet-like reactive
evaluation strategy of analytical abstractions.

However, in our prototype the evaluation of MxL expressions is dependent on the evaluating
user’s identity and respective access right profile. This means that for a reactive evaluation
strategy, the system does not only have to hold one value for an analytical abstraction, but
potentially one for each user of the system. The number of values to be persisted for each
analytical abstraction can be reduced by assigning them not to individual users, but to access
right profiles which can be shared by multiple users. A user’s access right profile encodes to which
information artifacts a user has access to. Obviously, this strategy leads to further complexity
and thus to further challenges which can be tackled in future. This research opportunity might
be even more challenging if combining the implementation of alternative evaluation strategy
with the aforementioned impersonation approach.

7.3.4. Further Research on End-user-driven and Model-based Data
Visualizations

In this thesis, we present concepts for model-based analytics and visualizations as well as UI
features allowing end-users to interact with respective implementations. Based on those foun-
dations, future research could be about improvements or additional concepts and UI facilities
for model-based analytics and visualizations.

For example, one evaluation partner explicitly asked for end-user-configurable view filters. Re-
lated challenges are, e.g., about integrating view filter concepts into our meta-model and pro-
viding UI facilities to empower users to configure different types of view filters. Furthermore,
the aspect data model evaluation could be focused, e.g., by annotating recent changes to the
augmented model view. This feature was a concrete suggestion by one of the reviewers during
the submission process of a preliminary work (Reschenhofer and Matthes, 2016b) and creates
awareness of how the data model is actually changing.

7.3.5. Further Usage Scenarios for the SIFG

In Sections 4.4 and 5.3.2.4 we describe the conceptual and technical design of the Social Informa-
tion Flow Graph (SIFG) respectively. Based on its prototypical implementation on integration
into the SC Visualizer, we identified potential use-cases and concerns addressable by the SIFG
(cf. Section 6.2), e.g., stakeholder analysis, impact analysis, and usage analysis.

Those concerns and addressing them by a SIFG-like approach represent multiple future research
opportunities. Targeting specific concerns and adapting the SIFG adequately would enable an
in-depth evaluation of the SIFG. For example, Maier (2014) developed an alternative SIFG view
in his master’s thesis with a specific focus on impact analysis.

166



7. Conclusion

7.3.6. Market Place for Analytical Abstractions and Visualizations

The approach presented in this thesis enables the end-user-driven definition of reusable analytical
abstractions and visualizations. Thereby, different analytics artifacts can be shared with users
of the same system.

Inspired by a suggestion from an evaluation partner, we outline the idea of a market place
for analytical abstractions and visualizations. Thereby, the market place represents an inter-
organizational catalog of reusable components, which in turn can be deployed and downloaded
by specific user groups. Future research could deal with challenges like the conceptual design
of such a market place, corresponding on- and off-boarding approaches, its integration with the
concepts presented in this thesis, or the socio-technical challenges and consequences of such a
market place.

167



168



Bibliography

Robin Abraham and Martin Erwig. Goal-Directed Debugging of Spreadsheets. Proceedings of
the Symposium on Visual Languages and Human-Centric Computing, pages 37–44, 2005.

Robin Abraham, Martin Erwig, Steve Kollmansberger, and Seifert Ethan. Visual Specifications
of Correct Spreadsheets. Proceedings of the Symposium on Visual Languages and Human-
Centric Computing, pages 189–196, 2005.

Robin Abraham, Margaret Burnett, and Martin Erwig. Spreadsheet Programming. Wiley
Encyclopedia of Computer Science and Engineering, 2008.

Frederik Ahlemann, Eric Stettiner, Marcus Messerschmidt, and Christine Legner. Strategic
Enterprise Architecture Management. Springer, 2012. ISBN 978-3642242229.

Pouya Aleatrati Khosroshahi, Matheus Hauder, Alexander W. Schneider, and Florian Matthes.
Enterprise Architecture Management Pattern Catalog (Version 2.0, November 2015). Tech-
nical Report, Chair for Informatics 19 (sebis), Technische Universität München, Munich,
Germany, 2015.

Yirsaw Ayalew and Roland Mittermeir. Spreadsheet Debugging. Proceedings of the European
Spreadsheet Risks Information Group Conference, pages 67–79, 2003.

Laura Beckwith, Jácome Cunha, João Paulo Fernandes, and João Saraiva. An Empirical Study
on End-Users Productivity Using Model-Based Spreadsheets. Proceedings of the European
Spreadsheet Risks Information Group Conference, 2011.

Henrike Berthold, Philipp Rösch, Stefan Zöller, Felix Wortmann, Alessio Carenini, Stuart Camp-
bell, Pascal Bisson, and Frank Strohmaier. An Architecture for Ad-hoc and Collaborative
Business Intelligence. Proceedings of the EDBT/ICDT Workshops, pages 13:1–13:6, 2010.

Manoj Bhat, Thomas Reschenhofer, and Florian Matthes. A Model-Based Approach for Ret-
rospective Analysis of Enterprise Architecture Metrics. Proceedings of the International Con-
ference on Enterprise Information Systems, pages 595–611, 2015.

169



Bibliography

Stephen P. Borgatti and José Luis Molina. Ethical and Strategic Issues in Organizational Social
Network Analysis. Journal of Applied Behavioral Science, 39(3):337–349, 2003.

Leslie Bradley and Kevin McDaid. Using Bayesian Statistical Methods to Determine the Level
of Error in Large Spreadsheets. Proceedings of the International Conference on Software
Engineering, pages 351–354, 2009.

Peter J. Brockwell and Richard A. Davis. Time Series: Theory and Methods. Springer Science
& Business Media, 2009. ISBN 978-1441903198.

Thomas Büchner. Introspektive Modellgetriebene Softwareentwicklung. PhD Thesis, Technical
University of Munich, Munich, 2007.

Sabine Buckl, Florian Matthes, Christian Neubert, and Christian M. Schweda. A Wiki-based
Approach to Enterprise Architecture Documentation and Analysis. Proceedings of the Euro-
pean Conference on Information Systems, 2009.

Sabine Buckl, Florian Matthes, Christian Neubert, and Christian M. Schweda. A Lightweight
Approach to Enterprise Architecture Modeling and Documentation. In Information Systems
Evolution, pages 136–149. Springer, 2010. ISBN 3642177212.

Peter Buneman and Robert E. Frankel. FQL: A Functional Query Language. Proceedings of the
ACM SIGMOD International Conference on Management of Data, pages 52–58, 1979.

Peter Buneman, Shamim Naqvi, Val Tannen, and Limsson Wong. Principles of Programming
with Complex Objects and Collection Types. Theoretical Computer Science, 149(1):3–48,
1995. ISSN 0304-3975.

Patrick Bürgin. Design and Prototypical Implementation of a Dashboard System for Visualizing
Semi-Structured Data in a Traceable Way. Master’s Thesis, Technical University of Munich,
Munich, Germany, 2015.

Margaret Burnett and Brad A. Myers. Future of End-User Software Engineering: Beyond the
Silos. Proceedings of the International Conference on Software Engineering, pages 201–211,
2014.

Margaret Burnett, John Atwood, RebeccaWalpole Djang, James Reichwein, Herkimer Gottfried,
and Sherry Yang. Forms/3: A First-Order Visual Language to Explore the Boundaries of the
Spreadsheet Paradigm. Journal of Functional Programming, 11(02):155–206, 2001.

Marcelo Cataldo, Patrick A. Wagstrom, James D. Herbsleb, and Kathleen M. Carley. Iden-
tification of Coordination Requirements: Implications for the Design of Collaboration and
Awareness Tools. Proceedings of the Conference on Computer Supported Cooperative Work,
pages 353–362, 2006.

Jonathan P. Caulkins, Erica Layne Morrison, and Timothy Weidemann. Spreadsheet Errors and
Decision Making: Evidence from Field Interviews. Journal of Organizational and End User
Computing, 19(3):1–23, 2007.

170



Bibliography

Chris Chambers and Christopher Scaffidi. Struggling to Excel: A Field Study of Challenges
Faced by Spreadsheet Users. Proceedings of the Symposium on Visual Languages and Human-
Centric Computing, pages 187–194, 2010.

Ed Huai-hsin Chi. A Taxonomy of Visualization Techniques using the Data State Reference
Model. IEEE Symposium on Information Visualization, pages 69–75, 2000.

Ed Huai-hsin Chi and John Riedl. An Operator Interaction Framework for Visualization Sys-
tems. Proceedings of the IEEE Symposium on Information Visualization, pages 63–70, 1998.

Mei C. Chuah and Steven F. Roth. On the Semantics of Interactive Visualizations. Proceedings
of the IEEE Symposium on Information Visualization, pages 29–36, 1996.

Ravi Chugh, Patrick M. Rondon, and Ranjit Jhala. Nested Refinements: A Logic for Duck
Typing. ACM SIGPLAN Notices, 47(1):231–244, 2012.

Markus Clermont. A Scalable Approach to Spreadsheet Visualization. PhD Thesis, Universität
Klagenfurt, Klagenfurt, Austria, 2003.

Edgar F. Codd. Relational Completeness of Data Base Sublanguages. Database Systems, pages
65–98, 1972.

M. F. Costabile, D. Fogli, C. Letondal, P. Mussio, and A. Piccinno. Domain-Expert Users
and their Needs of Software Development1. Proceedings of the International Conference on
Universal Access in Human-Computer Interaction, pages 232–236, 2003.

Rob Cross, Stephen P. Borgatti, and Andrew Parker. Making invisible work visible: Using
social network analysis to support strategic collaboration. California management review, 44
(2):25–46, 2002. ISSN 0008-1256.

Christian Crumlish and Erin Malone. Designing Social Interfaces: Principles, Patterns, and
Practices for Improving the User Experience. O’Reilly Media, 2009. ISBN 978-0596154929.

Jácome Cunha. Model-based Spreadsheet Engineering. PhD Thesis, Universidade do Minho,
Portugal, Braga, 2011.

Jácome Cunha, Martin Erwig, and João Saraiva. Automatically Inferring Classsheet Models
from Spreadsheets. Proceedings of the Symposium on Visual Languages and Human-Centric
Computing, pages 93–100, 2010.

Jácome Cunha, Jorge Mendes, João Saraiva, and João P. Fernandes. Embedding and Evolution
of Spreadsheet Models in Spreadsheet Systems. Proceedings of the Symposium on Visual
Languages and Human-Centric Computing, pages 179–186, 2011a.

Jácome Cunha, Joost Visser, Tiago Alves, and João Saraiva. Type-Safe Evolution of Spread-
sheets. Fundamental Approaches to Software Engineering, pages 186–201, 2011b.

Jácome Cunha, João P. Fernandes, Jorge Mendes, and João Saraiva. MDSheet: A Framework
for Model-driven Spreadsheet Engineering. Proceedings of the International Conference on
Software Engineering, pages 1395–1398, 2012a.

171



Bibliography

Jácome Cunha, João P. Fernandes, Jorge Mendes, and João Saraiva. A Bidirectional Model-
Driven Spreadsheet Environment. Proceedings of the International Conference on Software
Engineering, pages 1443–1444, 2012b.

Jácome Cunha, João P. Fernandes, Jorge Mendes, and João Saraiva. Extension and Imple-
mentation of ClassSheet Models. Proceedings of the Symposium on Visual Languages and
Human-Centric Computing, pages 19–22, 2012c.

Jácome Cunha, Joao Paulo Fernandes, Christophe Peixoto, and João Saraiva. A Quality Model
for Spreadsheets. Proceedings of the International Conference on the Quality of Information
and Communications Technology, pages 231–236, 2012d.

Jácome Cunha, João P. Fernandes, Jorge Mendes, Rui Pereira, and João Saraiva. Querying
Model-Driven Spreadsheets. Proceedings of the Symposium on Visual Languages and Human-
Centric Computing, pages 83–86, 2013.

Jácome Cunha, Martin Erwig, Jorge Mendes, and João Saraiva. Model Inference for Spread-
sheets. Automated Software Engineering, pages 1–32, 2014a.

Jácome Cunha, João P. Fernandes, Rui Pereira, and João Saraiva. Graphical Querying of
Model-Driven Spreadsheets. Proceedings of the International Conference on Human-Computer
Interaction, pages 419–430, 2014b.

Jácome Cunha, João Paulo Fernandes, Martins Pedro, Rui Pereira, and João Saraiva. Refactor-
ing meets Model-Driven Spreadsheet Evolution. Proceedings of the International Conference
on the Quality of Information and Communications Technology, 2014c.

Jácome Cunha, Jorge Mendes, João Saraiva, and Joost Visser. Model-based Programming
Environments for Spreadsheets. Science of Computer Programming, 96:254–275, 2014d.

Carlo A. Curino, Hyun J. Moon, Myung Won Ham, and Carlo Zaniolo. The PRISMWorkwench:
Database Schema Evolution Without Tears. Proceedings of the International Conference on
Data Engineering, pages 1523–1526, 2009.

Thomas H. Davenport. Thinking for a Living: How to Get Better Performances and Results
from Knowledge Workers. Harvard Business Press, 2013. ISBN 978-1591394235.

Thomas H. Davenport and D. J. Patil. Data Scientist: The Sexiest Job of the 21st Century.
Harvard Business Review, 90(10):70–76, 2012.

Umeshwar Dayal, Ravigopal Vennelakanti, Ratnesh Sharma, Malu Castellanos, Ming Hao, and
Chandrakant Patel. Collaborative Business Intelligence: Enabling Collaborative Decision
Making in Enterprises. On the Move to Meaningful, pages 8–25, 2008.

Steven de Hertogh, Stijn Viaene, and Guido Dedene. Governing Web 2.0. Communications of
the ACM, 54(3):124–130, 2011.

Barbara Dinter, Peter Gluchowski, and Christian Schieder. A Stakeholder Lens on Metadata
Management in Business Intelligence and Big Data–Results of an Empirical Investigation.
Proceedings of the Americas Conference on Information Systems, 2015.

172



Bibliography

Christopher Durugbo, Ashutosh Tiwari, and Jeffrey R. Alcock. Modelling Information Flow
for Organisations: A Review of Approaches and Future Challenges. International journal of
information management, 33(3):597–610, 2013. ISSN 0268-4012.

Njeru Mwendi Edwin. Software Frameworks, Architectural and Design Patterns. Journal of
Software Engineering and Applications, 7(8):670, 2014. ISSN 1945-3124.

Martin Erwig and Gregor Engels. ClassSheets: Automatic Generation of Spreadsheet Appli-
cations from Object-Oriented Specifications. Proceedings of the International Conference on
Automated Software Engineering, pages 124–133, 2005.

Arlene Fink. How to Conduct Surveys: A Step-By-Step Guide. Sage Publications, 6 edition,
2016. ISBN 978-1483378480.

Marc Fisher, Mingming Cao, Gregg Rothermel, Curtis Cook, and Margaret Burnett. Auto-
mated Test Case Generation for Spreadsheets. Proceedings of the International Conference on
Software Engineering, pages 141–151, 2002.

Asbjørn Følstad. Work-Domain Experts as Evaluators: Usability Inspection of Domain-Specific
Work-Support Systems. International Journal of Human-Computer Interaction, 22(3):217–
245, 2007. ISSN 1044-7318.

Ulrich Frank. Towards a Pluralistic Conception of Research Methods in Information Systems
Research. Technical Report, University Duisburg-Essen, Institute for Computer Science and
Business Information Systems (ICB), 2006.

Ulrich Frank, David Heise, Heiko Kattenstroth, and Hanno Schauer. Designing and Utilising
Business Indicator Systems within Enterprise Models – Outline of a Method. Proceedings of
the Conference on Modellierung betrieblicher Informationssysteme, pages 89–105, 2008.

Ulrich Frank, David Heise, and Heiko Kattenstroth. Use of a Domain Specific Modeling Language
for Realizing Versatile Dashboards. Proceedings of the OOPSLA Workshop on Domain-Specific
Modeling (DSM), 2009.

Linton Freeman. The Development of Social Network Analysis. Createspace, Vancouver, 2004.
ISBN 978-1594577147.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1994. ISBN 978-0201633610.

Gartner Inc. Magic Quadrant for Business Intelligence and Analyt-
ics Platforms, 2015. URL https://www.gartner.com/doc/2989518/

magic-quadrant-business-intelligence-analytics.

Robert Geisler, Marcus Klar, and Claudia Pons. Dimensions and Dichotomy in Metamodeling.
Proceedings of the Conference on Northern Formal Methods, 1998.

Athula Ginige, Luca Paolino, Monica Sebillo, Richa Shrodkar, and Giuliana Vitiello. User
Requirements for a Web Based Spreadsheet-Mediated Collaboration. Proceedings of the In-
ternational Conference on Advanced Visual Interfaces, pages 133–136, 2010a.

173

https://www.gartner.com/doc/2989518/magic-quadrant-business-intelligence-analytics
https://www.gartner.com/doc/2989518/magic-quadrant-business-intelligence-analytics


Bibliography

Athula Ginige, Luca Paolino, Monica Sebillo, Genoveffa Tortora, Marco Romano, and Giuliana
Vitiello. A Collaborative Environment for Spreadsheet-Based Activities. Proceedings of the
Symposium on Visual Languages and Human-Centric Computing, pages 273–274, 2010b.

Shirley Gregor and Alan R. Hevner. Positioning and Presenting Design Science Research for
Maximum Impact. Management Information Systems Quarterly, 37(2):337–355, 2013.

Thomas A. Grossman, Vijay Mehrotra, and Özgür Özlük. Lessons from Mission-Critical Spread-
sheets. Communications of the Association for Information Systems, 20(1):60, 2007.

Tom Grossman and Erik Burd. Towards Reusable Spreadsheet Code: Experiments to Create
and Interchange Encapsulated Excel Modules. Proceedings of the European Spreadsheet Risks
Information Group Conference, 2015.

Penny Grubb and Armstrong A. Takang. Software Maintenance: Concepts and Practice. World
Scientific, 2003. ISBN 9814485616.

Thomas R. Gruber. A Translation Approach to Portable Ontology Specifications. Knowledge
acquisition, 5(2):199–220, 1993.

Torsten Grust and Marc H. Scholl. How to Comprehend Queries Functionally. Journal of
Intelligent Information Systems, 12(2-3):191–218, 1999.

Seda Gürses and Claudia Diaz. Two Tales of Privacy in Online Social Networks. IEEE Security
& Privacy, 11(3):29–37, 2013. ISSN 1540-7993.

Florian Haag, Steffen Lohmann, Stephan Siek, and Thomas Ertl. Visual Querying of Linked
Data with QueryVOWL. Joint Proceedings of SumPre, pages 2014–2015, 2015.

Maria J. J. Hall. A Risk and Control-Oriented Study of the Practices of Spreadsheet Application
Developers. Proceedings of the Hawaii International Conference on System Sciences, pages
364–373, 1996.

Matheus Hauder. Empowering Users to Collaboratively Structure Knowledge-Intensive Processes.
PhD Thesis, Technical University of Munich, Munich, Germany, 2015.

Matheus Hauder, Florian Matthes, Sascha Roth, and Christopher Schulz. Generating Dynamic
Cross–Organizational Process Visualizations through Abstract View Model Pattern Matching.
Proceedings of the International Conference on Interoperability for Enterprises Systems and
Applications, pages 95–101, 2012.

Matheus Hauder, Sascha Roth, Christopher Schulz, and Florian Matthes. Current Tool Support
for Metrics in Enterprise Architecture Management. Proceedings of the DASMA Software
Metrik Kongress, 2013.

Jeffrey Heer and Danah Boyd. Vizster: Visualizing Online Social Networks. IEEE Symposium
on Information Visualization (INFOVIS), pages 32–39, 2005.

Anders Heijlsberg and Mads Torgersen. Standard Query Operators Overview, 2013. URL
http://msdn.microsoft.com/en-us/library/bb397896.aspx.

174

http://msdn.microsoft.com/en-us/library/bb397896.aspx


Bibliography

Ivan Herman, Guy Melançon, and M. Scott Marshall. Graph Visualization and Navigation in
Information Visualization: A Survey. IEEE Transactions on Visualization and Computer
Graphics, 6(1):24–43, 2000.

Felienne Hermans. Analyzing and Visualizing Spreadsheets. PhD Thesis, Technische Universiteit
Delft, 2012.

Felienne Hermans and Emerson Murphy-Hill. Enron’s Spreadsheets and Related Emails: A
Dataset and Analysis. Proceedings of the International Conference on Software Engineering,
pages 7–16, 2015.

Felienne Hermans, Martin Pinzger, and Arie van Deursen. Automatically Extracting Class
Diagrams from Spreadsheets. Proceedings of the European Conference on Object-Oriented
Programming, pages 52–75, 2010.

Felienne Hermans, Martin Pinzger, and Arie van Deursen. Breviz: Visualizing Spreadsheets
using Dataflow Diagrams. Proceedings of the European Spreadsheet Risks Information Group
Conference, 2011a.

Felienne Hermans, Martin Pinzger, and Arie van Deursen. Supporting Professional Spreadsheet
Users by Generating Leveled Dataflow Diagrams. Proceedings of the International Conference
on Software Engineering, pages 451–460, 2011b.

Felienne Hermans, Martin Pinzger, and Arie van Deursen. Measuring Spreadsheet Formula Un-
derstandability. Proceedings of the European Spreadsheet Risks Information Group Conference,
pages 77–96, 2012.

Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design Science in Informa-
tion Systems Research. Management Information Systems Quarterly, 28(1):75–105, 2004.

Karin Hodnigg and Roland T. Mittermeir. Metrics-Based Spreadsheet Visualization: Support
for Focused Maintenance. Proceedings of the European Spreadsheet Risks Information Group
Conference, 2008.

Volker Hoyer, Katarina Stanoesvka-Slabeva, Till Janner, and Christoph Schroth. Enterprise
Mashups: Design Principles towards the Long Tail of User Needs. Proceedings of the Interna-
tional Conference on Services Computing, pages 601–602, 2008.

Kai M. Hüner, Boris Otto, and Hubert Österle. Collaborative Management of Business Meta-
data. International journal of information management, 31(4):366–373, 2011. ISSN 0268-4012.

International Organization for Standardization. ISO/IEC 42010:2007 Systems and Software
Engineering - Recommended Practice for Architectural Description of Software-Intensive Sys-
tems, 2007. URL http://dx.doi.org/10.1109/ieeestd.2007.386501.

Petra Isenberg, Anthony Tang, and Sheelagh Carpendale. An Exploratory Study of Visual In-
formation Analysis. Proceedings of the Conference on Human Factors in Computing Systems,
pages 1217–1226, 2008.

James Kalbach. Designing Web Navigation: Optimizing the User Experience. O’Reilly Media,
2007. ISBN 978-0596528102.

175

http://dx.doi.org/10.1109/ieeestd.2007.386501


Bibliography

Bennett Kankuzi and Yirsaw Ayalew. An End-User Oriented Graph-Based Visualization for
Spreadsheets. Proceedings of the International Workshop on End-User Software Engineering,
pages 86–90, 2008.

Bennett Kankuzi and Jorma Sajaniemi. An Empirical Study of Spreadsheet Authors’ Men-
tal Models in Explaining and Debugging Tasks. Proceedings of the Symposium on Visual
Languages and Human-Centric Computing, pages 15–18, 2013.

Florian Katenbrink. Optimizing the User Experience of a Social Content Manager for Casual
Users. Bachelor’s Thesis, Technical University of Munich, Munich, Germany, 2015.

Jens Kaufmann and Peter Chamoni. Structuring Collaborative Business Intelligence: A Litera-
ture Review. Proceedings of the Hawaii International Conference on System Sciences, pages
3738–3747, 2014.

Vijay Khatri and Carol V. Brown. Designing Data Governance. Communications of the ACM,
53(1):148–152, 2010.

Martin Kilduff and Daniel J. Brass. Organizational Social Network Research: Core Ideas and
Key Debates. The Academy of Management Annals, 4(1):317–357, 2010. ISSN 1941-6520.

Won Kim, Elisa Bertino, and Jorge F. Garza. Composite Objects Revisited. ACM SIGMOD
Record, 18(2):337–347, 1989.

Bryan Klimt and Yiming Yang. Introducing the Enron Corpus. CEAS, 2004.

Brian Knight, David Chadwick, and Kamalesen Rajalingham. A Structured Methodology for
Spreadsheet Modelling. Proceedings of the European Spreadsheet Risks Information Group
Conference, 2000.

Markus Krötzsch, Denny Vrandečić, and Max Völkel. Semantic Mediawiki. Proceedings of the
International Semantic Web Conference, pages 935–942, 2006.

Steve Krug. Don’t Make Me Think Revisited: A Common Sense Approach to Web and Mobile
Usability. New Riders Publishing, 3 edition, 2014. ISBN 9780321965516.

Robert Lagerström, Carliss Young Baldwin, Alan D. Maccormack, and Stephan Aier. Visu-
alizing and Measuring Enterprise Application Architecture: An Exploratory Telecom Case.
Proceedings of the Hawaii International Conference on System Sciences, pages 3847–3856,
2014.

Barry R. Lawson, Kenneth R. Baker, Stephen G. Powell, and Lynn Foster-Johnson. A Com-
parison of Spreadsheet Users with Different Levels of Experience. Omega, 37(3):579–590,
2009.

Linda A. Leon, Dolphy M. Abraham, and Lawrence Kalbers. Beyond Regulatory Compliance
for Spreadsheet Controls: A Tutorial to Assist Practitioners and a Call for Research. Com-
munications of the Association for Information Systems, 27(28):541–560, 2010.

Henry Lieberman, Fabio Paternò, Markus Klann, and Volker Wulf, editors. End User Develop-
ment. Human-Computer Interaction Series. Springer, 9 edition, 2006. ISBN 978-1-4020-5309-2.

176



Bibliography

Javier López, Fernando Bellas, Alberto Pan, and Paula Montoto. A Component-based Approach
for Engineering Enterprise Mashups. Proceedings of the International Conference on Web
Engineering, pages 30–44, 2009.

David Lyon. Surveillance as social sorting: Privacy, risk, and digital discrimination. Psychology
Press, 2003. ISBN 0415278732.

Matti Maier. A Concept for the Visual and Interactive Impact Analysis and Simulation of Data
Changes to Enterprise Metrics. Master’s Thesis, Technical University of Munich, Munich,
Germany, 2014.

David Martin and Ian Sommerville. Patterns of Cooperative Interaction: Linking Ethnomethod-
ology and Design. ACM Transactions on Computer-Human Interaction (TOCHI), 11(1):59–
89, 2004. ISSN 1073-0516.

Heiko Matheis. SmartNet Navigator and Application Guidelines. Seventh Framework Pro-
gramme, 2013.

Florian Matthes and Christian Neubert. Wiki4EAM - Using Hybrid Wikis for Enterprise Ar-
chitecture Management. Proceedings of the International Symposium on Wikis and Open
Collaboration, page 226, 2011.

Florian Matthes, Sabine Buckl, Jana Leitel, and Christian M. Schweda. Enterprise Architec-
ture Management Tool Survey. Technical Report, Technical University of Munich, Munich,
Germany, 2008.

Florian Matthes, Christian Neubert, and Alexander Steinhoff. Hybrid Wikis: Empowering
Users to Collaboratively Structure Information. Proceedings of the International Conference
on Software and Data Technologies, pages 250–259, 2011.

Florian Matthes, Ivan Monahov, Alexander Schneider, and Christopher Schulz. EAM KPI
Catalog v1.0. Technical Report, Technical University of Munich, Munich, Germany, 2012a.
URL http://wwwmatthes.in.tum.de/pages/19kw70p0u5vwv/EAM-KPI-Catalog.

Florian Matthes, Ivan Monahov, Alexander W. Schneider, and Christian Schulz. Towards a
Unified and Configurable Structure for EA Management KPIs. Proceedings of the Trends in
Enterprise Architecture Research Workshop, 2012b.

Simon McGinnes and Evangelos Kapros. Conceptual Independence: A Design Principle for the
Construction of Adaptive Information Systems. Information Systems, 47:33–50, 2015.

Matthias Mertens and Tobias Krahn. Knowledge Based Business Intelligence for Business User
Information Self-Service. In Stefan Bruggemann, editor, Collaboration and the Semantic Web,
pages 271–296. Information Science Reference, 2012.

Björn Michelsen. Implementing a Web Client for Social Content and Task Management. Master’s
Thesis, Technical University of Munich, Munich, Germany, 2016.

Ivan Monahov. Integrated Software Support for Quantitative Models in the Domain of Enterprise
Architecture Management. PhD Thesis, Technical University of Munich, Munich, 2014.

177

http://wwwmatthes.in.tum.de/pages/19kw70p0u5vwv/EAM-KPI-Catalog


Bibliography

Ivan Monahov, Thomas Reschenhofer, and Florian Matthes. Design and Prototypical Imple-
mentation of a Language Empowering Business Users to Define Key Performance Indicators
for Enterprise Architecture Management. Proceedings of the Trends in Enterprise Architecture
Research Workshop, 2013.

Anders I. Mørch, Gunnar Stevens, Markus Won, Markus Klann, Yvonne Dittrich, and Volker
Wulf. Component-based Technologies for End-user Development. Communications of the
ACM, 47(9):59–62, 2004.

Renate Motschnig-Pitrik and Jens Kaasboll. Part-Whole Relationship Categories and Their
Application in Object-Oriented Analysis. IEEE Transactions on Knowledge and Data Engi-
neering, 11(5):779–797, 1999. ISSN 1041-4347.

Bonnie A. Nardi. A Small Matter of Programming: Perspectives on End User Computing. MIT
Press, 1993. ISBN 0262140535.

Bonnie A. Nardi and James R. Miller. An Ethnographic Study of Distributed Problem Solving in
Spreadsheet Development. Proceedings of the Conference on Computer-Supported Cooperative
Work, pages 197–208, 1990.

Christian Neubert. Facilitating Emergent and Adaptive Information Structures in Enterprise
2.0 Platforms. PhD Thesis, Technical University of Munich, Munich, 2012.

Object Management Group. Meta Object Facility (MOF) v2.4.2, 2014a. URL http://www.

omg.org/spec/MOF/2.4.2/.

Object Management Group. Object Constraint Language (OCL), 2014b. URL http://www.

omg.org/spec/OCL/2.4.

Object Management Group. Unified Modeling Language (UML), 2015. URL http://www.omg.

org/spec/UML/2.5.

Immanuel Pahlke, Roman Beck, and Wolf Martin. Enterprise Mashup Systems as Platform for
Situational Applications. Business & Information Systems Engineering, 2(5):305–315, 2010.

Raymond R. Panko. Applying Code Inspection to Spreadsheet Testing. Journal of Management
Information Systems, pages 159–176, 1999.

Raymond R. Panko. Facing the Problem of Spreadsheet Errors. Decision Line, 37(5):8–10, 2006.

Raymond R. Panko. What We Don’t Know About Spreadsheet Errors Today. Proceedings of
the European Spreadsheet Risks Information Group Conference, 2015.

Raymond R. Panko and Richard P. Halverson Jr. Individual and Group Spreadsheet Design:
Patterns of Errors. Proceedings of the Hawaii International Conference on System Sciences,
pages 4–10, 1994.

Raymond R. Panko and Richard P. Halverson Jr. Spreadsheets on Trial: A Survey of Research
on Spreadsheet Risks. Proceedings of the Hawaii International Conference on System Sciences,
pages 326–335, 1996.

178

http://www.omg.org/spec/MOF/2.4.2/
http://www.omg.org/spec/MOF/2.4.2/
http://www.omg.org/spec/OCL/2.4
http://www.omg.org/spec/OCL/2.4
http://www.omg.org/spec/UML/2.5
http://www.omg.org/spec/UML/2.5


Bibliography

Raymond R. Panko and Richard P. Halverson Jr. Are Two Heads Better than One? (At Reducing
Errors in Spreadsheet Modeling). Office Systems Research Journal, 15(1):21–32, 1997. ISSN
0737-8998.

Raymond R. Panko and Richard P. Halverson Jr. An Experiment in Collaborative Spreadsheet
Development. Journal of the Association for Information Systems, 2(1):4, 2001.

Raymond R. Panko and Nicholas Ordway. Sarbanes-Oxley: What About all the Spreadsheets?
Proceedings of the European Spreadsheet Risks Information Group Conference, 2005.

Raymond R. Panko and Daniel N. Port. End User Computing: The Dark Matter (and Dark
Energy) of Corporate IT. Journal of Organizational and End User Computing, pages 4603–
4612, 2012.

Michael Quinn Patton. Qualitative Evaluation and Research Methods. Sage Publications, 3
edition, 2002. ISBN 978-0761919711.

Paul A. Pavlou and Omar A. El Sawy. Understanding the Elusive Black Box of Dynamic
Capabilities. Decision Sciences, 42(1):239–273, 2011. ISSN 1540-5915.

Jon D. Pemberton and Andrew J. Robson. Spreadsheets in Business. Industrial Management &
Data Systems, 100(8):379–388, 2000.

Benjamin C. Pierce. Types and Programming Languages. MIT Press, Cambridge, Mass, 2002.
ISBN 978-0262162098.

William Pinnington, Ben Light, and Elaine Ferneley. Too Much of a Good Thing? A Field Study
of Challenges in Business Intelligence Enabled Enterprise System Environments. Proceedings
of the European Conference on Information Systems, pages 1941–1952, 2007.

Stephen G. Powell, Kenneth R. Baker, and Barry Lawson. A Critical Review of the Literature
on Spreadsheet Errors. Decision Support Systems, 46(1):128–138, 2008.

Stephen G. Powell, Kenneth R. Baker, and Barry Lawson. Impact of Errors in Operational
Spreadsheets. Decision Support Systems, 47(2):126–132, 2009.

Kamalasen Rajalingham, David Chadwick, Brian Knight, and Dilwyn Edwards. Quality Con-
trol in Spreadsheets: A Software Engineering-Based Approach to Spreadsheet Development.
Proceedings of the Hawaii International Conference on System Sciences, pages 10–18, 2000.

Sven Rehm, Thomas Reschenhofer, and Klym Shumaiev. IS Design Principles for Empower-
ing Domain Experts in Innovation: Findings From Three Case Studies. Proceedings of the
International Conference on Information Systems, 2014.

Thomas Reschenhofer. Design and Prototypical Implementation of a Model-based Structure for
the Definition and Calculation of Enterprise Architecture Key Performance Indicators. Mas-
ter’s Thesis, Technical University of Munich, Munich, Germany, 2013.

Thomas Reschenhofer and Florian Matthes. An Empirical Study on Spreadsheet Shortcomings
from an Information Systems Perspective. Proceedings of the International Conference on
Business Information Systems, pages 50–61, 2015a.

179



Bibliography

Thomas Reschenhofer and Florian Matthes. A Framework for the Identification of Spreadsheet
Usage Patterns. Proceedings of the European Conference on Information Systems, 2015b.

Thomas Reschenhofer and Florian Matthes. Empowering End-users to Collaboratively Manage
and Analyze Evolving Data Models. Proceedings of the Americas Conference on Information
Systems, 2016a.

Thomas Reschenhofer and Florian Matthes. Supporting End-Users in Defining Complex Queries
on Evolving and Domain-Specific Data Models. Proceedings of the Symposium on Visual
Languages and Human-Centric Computing, pages 96–100, 2016b.

Thomas Reschenhofer, Ivan Monahov, and Florian Matthes. Application of a Domain-Specific
Language to Support the User-Oriented Definition of Visualizations in the Context of Collab-
orative Product Development. Proceedings of the International Conference on Interoperability
for Enterprises Systems and Applications, pages 164–169, 2014a.

Thomas Reschenhofer, Ivan Monahov, and Florian Matthes. Type-Safety in EA Model Anal-
ysis. Proceedings of the International Enterprise Distributed Object Computing Conference
Workshops and Demonstrations, pages 87–94, 2014b.

Thomas Reschenhofer, Manoj Bhat, Adrian Hernandez-Mendez, and Florian Matthes. Lessons
Learned in Aligning Data and Model Evolution in Collaborative Information Systems. Pro-
ceedings of the International Conference on Software Engineering, pages 132–141, 2016a.

Thomas Reschenhofer, Patrick Bürgin, and Florian Matthes. A Social Information Flow Graph
- Design and Prototypical Implementation. Proceedings of the International Conference on
Advanced Information Systems Engineering Forum, pages 137–144, 2016b.

Thomas Reschenhofer, Sirma Gjorgievska, Bernhard Waltl, and Florian Matthes. A Semantic
Meta Model of Spreadsheets. Proceedings of the European Conference on Information Systems,
2016c.

Thomas Reschenhofer, Bernhard Waltl, Klym Shumaiev, and Florian Matthes. A Conceptual
Model for Measuring the Complexity of Spreadsheets. Proceedings of the European Spreadsheet
Risks Information Group Conference, 2016d.

Ronald L. Rivest, Adi Shamir, and Leonard Adleman. AMethod for Obtaining Digital Signatures
and Public-Key Cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

Stefano Rizzi. Collaborative Business Intelligence. In Business Intelligence, pages 186–205.
Springer, 2012. ISBN 3642273572.

Andrew Robson and Jonathan Pemberton. Spreadsheet Selection: Good Luck or Good Man-
agement? Logistics Information Management, 9(3):49–56, 1996. ISSN 0957-6053.

Boaz Ronen, Michael A. Palley, and Lucas Jr, Henry C. Spreadsheet Analysis and Design.
Communications of the ACM, 32(1):84–93, 1989.

Sascha Roth. Federated Enterprise Architecture Model Management: Conceptual Foundations,
Collaborative Model Integration, and Software Support. PhD Thesis, Technical University of
Munich, Munich, Germany, 2014.

180



Bibliography

Sascha Roth, Matheus Hauder, Marin Zec, Alexej Utz, and Florian Matthes. Empowering
Business Users to Analyze Enterprise Architectures: Structural Model Matching to Config-
ure Visualizations. Proceedings of the International Enterprise Distributed Object Computing
Conference Workshops and Demonstrations, 2013.

Sascha Roth, Marin Zec, and Florian Matthes. Enterprise Architecture Visualization Tool Survey
2014. epubli GmbH, Berlin, 2014. ISBN 978-3844289381.

Karen Rothermel, Curtis Cook, Margaret Burnett, Justin Schonfeld, Green, Thomas R. G.,
and Gregg Rothermel. WYSIWYT Testing in the Spreadsheet Paradigm: An Empirical
Evaluation. Proceedings of the International Conference on Software Engineering, pages 230–
239, 2000.

Herbert J. Rubin and Irene S. Rubin. Qualitative Interviewing: The Art of Hearing Data. Sage
Publications, 2011. ISBN 978-1412978378.

Christopher Scaffidi, Mary Shaw, and Brad Myers. Estimating the Numbers of End Users and
End User Programmers. Proceedings of the Symposium on Visual Languages and Human-
Centric Computing, pages 207–214, 2005.

Michael Schaub, Florian Matthes, and Sascha Roth. Towards a Conceptual Framework for
Interactive Enterprise Architecture Management Visualizations. Modellierung, 2012.

Alexander W. Schneider. Decision Support for Application Landscape Diversity Management.
PhD Thesis, Technical University of Munich, Munich, Germany, 2015.

Alexander W. Schneider, Thomas Reschenhofer, Alexander Schütz, and Florian Matthes. Em-
pirical Results for Application Landscape Complexity. Proceedings of the Hawaii International
Conference on System Sciences, pages 4079–4088, 2015.

Tobias Schrade. Implementing a Web Client for Integrated Data, Role, Function, and Task
Modelling. Master’s Thesis, Technical University of Munich, Munich, Germany, 2016.

Alexander Schuetz, Thomas Widjaja, and Jasmin Kaiser. Complexity in Enterprise Architec-
tures - Conceptualization And Introduction of a Measure from a System Theoretic Perspective.
Proceedings of the European Conference on Information Systems, 2013.

Bill Scott and Theresa Neil. Designing Web Interfaces: Principles and Patterns for Rich Inter-
actions. O’Reilly Media, 2009. ISBN 978-0-596-51625-3.

Roger S. Scowen. Extended BNF – A Generic Base Standard. Proceedings of the International
Symposium on Software Engineering Standards, 1993.

Denilson Sell, Liliana Cabral, Enrico Motta, John Domingue, Farshad Hakimpour, and Roberto
Pacheco. A Semantic Web based Architecture for Analytical Tools. Proceedings of the Inter-
national Conference on E-Commerce Technology, pages 347–354, 2005.

James A. Senn. Information Technology: Principles, Practices, and Opportunities. Pearson
Prentice Hall, Upper Saddle River, N.J., 3rd ed. edition, 2004. ISBN 9780131246812.

Peter Sestoft. Spreadsheet Technology. Technical Report, IT University of Copenhagen, Copen-
hagen, Denmark, 2011.

181



Bibliography

GANESAN Shankaranarayanan and Yu Cai. Supporting Data Quality Management in Decision-
Making. Decision Support Systems, 42(1):302–317, 2006.

Claude Shannon. A Mathematical Theory of Communication. Bell System Technical Journal,
pages 379–423, 1948.

HongHai Shen and Prasun Dewan. Access Control for Collaborative Environments. Proceedings
of the Conference on Computer-Supported Cooperative Work, 1992:51–58, 1992.

Hidekazu Shiozawa, Ken-ichi Okada, and Yutaka Matsushita. 3D Interactive Visualization for
Inter-Cell Dependencies of Spreadsheets. Proceedings of the IEEE Symposium on Information
Visualization, pages 79–82, 1999.

Forrest Shull, Jeffrey Carver, and Guilherme H. Travassos. An Empirical Methodology for
Introducing Software Processes. ACM SIGSOFT Software Engineering Notes, 26(5):288–296,
2001.

Yogesh L. Simmhan, Beth Plale, and Dennis Gannon. A Survey of Data Provenance in e-Science.
ACM SIGMOD Record, 34(3):31–36, 2005.

Richard Snodgrass. The Temporal Query Language TQuel. ACM Transactions on Database
Systems (TODS), 12(2):247–298, 1987. ISSN 0362-5915.

Javier Soriano, David Lizcano, Miguel A. Cañas, Marcos Reyes, and Juan J. Hierro. Fostering
Innovation in a Mashup-Oriented Enterprise 2.0 Collaboration Environment. Proceedings of
the International Conference on Adaptive Business Systems, 24(2007):62–68, 2007.

Ahmet Soylu, Evgeny Kharlamov, Dmitriy Zheleznyakov, Ernesto Jimenez-Ruiz, Martin Giese,
and Ian Horrocks. Ontology-Based Visual Query Formulation: An Industry Experience. In
Advances in Visual Computing, pages 842–854. Springer, 2015. ISBN 3319278568.

Michael Spahn, Christian Dörner, and Volker Wulf. End User Development of Information
Artefacts: A Design Challenge for Enterprise Systems. Proceedings of the European Conference
on Information Systems, pages 482–493, 2008a.

Michael Spahn, Hoachim Kleb, Stephan Grimm, and Stefan Scheidl. Supporting Business In-
telligence by Providing Ontology-based End-user Information Self-service. Proceedings of the
International Workshop on Ontology-Supported Business intelligence, 2008:10:1–10:12, 2008b.

Harald Störrle. VMQL: A Visual Language for Ad-Hoc Model Querying. Journal of Visual
Languages & Computing, 22(1):3–29, 2011.

Harald Störrle. Improving the Usability of OCL as an Ad-hoc Model Querying Language.
Proceedings of the International Workshop on OCL, Model Constraint and Query Languages,
pages 83–92, 2013.

Gunnvald B. Svendsen. The Influence of Interface Style on Problem Solving. International
Journal of Man-Machine Studies, 35(3):379–397, 1991. ISSN 0020-7373.

Toomas Tamm, Peter Seddon, and Graeme Shanks. Pathways to Value from Business Analytics.
Proceedings of the International Conference on Information Systems, 2013.

182



Bibliography

Steven L. Tanimoto. VIVA: A Visual Language for Image Processing. Journal of Visual Lan-
guages & Computing, 1(2):127–139, 1990.

David J. Teece, Gary Pisano, and Amy Shuen. Dynamic Capabilities and Strategic Management.
Strategic management journal, pages 509–533, 1997. ISSN 0143-2095.

Anca Vaduva and Thomas Vetterli. Metadata Management for Data Warehousing: An Overview.
Journal of Cooperative Information Systems, 10(3):273–298, 2001.

Rafael Valencia-García, Francisco García-Sánchez, Dagoberto Castellanos-Nieves, and Jesu-
aldo Tomás Fernández-Breis. OWLPath: An OWL Ontology-guided Query Editor. Systems,
Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 41(1):121–136,
2011. ISSN 1083-4427.

Marcel van Oosterhout, Eric Waarts, and Jos van Hillegersberg. Change Factors Requiring
Agility and Implications for IT. European Journal of Information Systems, 15(2):132–145,
2006.

Peter van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer Programming.
MIT Press, 2004. ISBN 0262220695.

Hal R. Varian. Beyond Big Data. Business Economics, 49(1):27–31, 2014. ISSN 0007-666X.

Peter Velten. Avoiding Redundancy in the Management of Technical Documentation and Models:
Requirements Analysis and Prototypical Implementation for Enterprise Architecture Manage-
ment. Master’s Thesis, Technical University of Munich, Munich, Germany, 2016.

Padmal Vitharana. Risks and Challenges of Component-based Software Development. Commu-
nications of the ACM, 46(8):67–72, 2003.

Holger Wache, Thomas. Vögele, Ubbo. Visser, Heiner Stuckenschmidt, G. Schuster, H.. Neu-
mann, and S. Hübner. Ontology-Based Integration of Information: A Survey of Existing
Approaches. Proceedings of the IJCAI Workshop on Ontologies and Information Sharing,
pages 108–117, 2001.

Valérianne Walter. Analyzing State-of-the-art Self-Service BI Tools. Bachelor’s Thesis, Technical
University of Munich, Munich, Germany, 2015.

Bernhard Waltl, Thomas Reschenhofer, and Florian Matthes. Data Governance on EA Infor-
mation Assets: Logical Reasoning for Derived Data. Proceedings of the Trends in Enterprise
Architecture Research Workshop, 2015.

Bernhard Waltl, Florian Matthes, Tobias Waltl, and Thomas Grass. LEXIA - A Data Science
Environment for Semantic Analysis of German Legal Texts. Proceedings of the Internationales
Rechtsinformatik Symposium, 2016.

Eric M. Wilcox, John Atwood, Margaret Burnett, Jonathan Cadiz, and Curtis Cook. Does
Continuous Visual Feedback Aid Debugging in Direct-Manipulation Programming Systems?
Proceedings of the Conference on Human Factors in Computing Systems, pages 258–265, 1997.

Ryan Wisnesky. Functional Query Languages with Categorical Types. PhD Thesis, Harvard
University, Cambridge, Massachusetts, 2014.

183



Bibliography

Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell, and Anders Wess-
lén. Experimentation in Software Engineering. Springer Science & Business Media, 2012.
ISBN 978-3642290435.

Volker Wulf and Matthias Jarke. The Economics of End-User Development. Communications
of the ACM, 47(9):41–42, 2004.

Volker Wulf and Markus Rohde. Towards an Integrated Organization and Technology Develop-
ment. Proceedings of the Conference on Designing Interactive Systems, pages 55–64, 1995.

Robert K. Yin. Case Study Research: Design and Methods. Sage Publications, 5 edition, 2014.
ISBN 1483302008.

Shoshana Zuboff. Big Other: Surveillance Capitalism and the Prospects of an Information
Civilization. Journal of Information Technology, 30(1):75–89, 2015.

Fritz Zwicky. Discovery, Invention, Research - Through the Morphological Approach. The
Macmillian Company, Toronto, 1969.

184



Abbreviations

ACM Adaptive Case Management

AIS Adaptive Information System

ALM Application Lifecycle Management

API Application Programming Interface

AST Abstract Syntax Tree

BA Business Analytics

BI Business Intelligence

CRUD Create-Read-Update-Delete

CS Computer Science

CSS Cascading Style Sheets

DAO Data Access Object

DEC Domain Expert Configuration

DSML Domain-Specific Modeling Language

185



Bibliography

DQM Data Quality Management

EA Enterprise Architecture

EAM Enterprise Architecture Management

EBNF Extended Backus-Naur Form

EUA End-User Analytics

EUD End-User Development

EM Enterprise Mashup

HTML Hyper Text Markup Language

HTTP Hyper Text Transfer Protocol

ICT Information and Communication Technology

IS Information System

IT Information Technology

JS JavaScript

JSON JavaScript Object Notation

JWT JSON Web Tokens

KPI Key Performance Indicator

LALR Look-Ahead, Left to Right

LINQ Language Integrated Queries

MOF Meta Object Facility

MVC Model View Controller

MxL Model-based Expression Language

186



Bibliography

NPD New Product Development

OCL Object Constraint Language

PDF Portable Document Format

PMIS Performance Management Information System

REST Representational State Transfer

RSA Rivest-Shamir-Adleman

SC SocioCortex

SE Software Engineering

sebis Chair of Software Engineering of Business Information Systems

SIFG Social Information Flow Graph

SNA Social Network Analysis

TUM Technical University of Munich

UI User Interface

UML Unified Modeling Language

URL Uniform Resource Locator

ViTSL Visual Template Specification Language

WYSIWYG "What You See Is What You Get"

WYSIWYT "What You See Is What You Test"

187



188



APPENDIX A

Appendix

Basic MxL Functions

By default, MxL supports a couple of basic functions which are described in the following tables.
They are derived from Microsoft’s Standard Query Operators (Heijlsberg and Torgersen, 2013)
on the one hand, and from four years of applying the system for different kinds of analysis tasks
(particularly EA analysis, cf. Section 4.2.3).

Name and Description Parameters Returns

toString

Returns a string representation of
the current object.

String

transitive

Performs a depth-first traversion
over all descendants of the cur-
rent object, whereas the descen-
dants are determined by the given
map-function.

map : Function<T, Sequence<T> > Sequence<T>

Table A.1.: Basic object functions. In this table, all functions are applied on an object of type
T, whereas T is an arbitrary MxlType.

189



A. Appendix

Name and Description Parameters Returns

date

Parses the given string to a date. dateAsString : date Date

exp

Returns Euler’s number e raised to the power
of the given value.

n : Number Number

sequence

Returns a sequence of numbers ranging from
the from value (inclusive) to the to value (in-
clusive), whereas the optional interval defines
the step size (default is 1).

from : Number
to : Number
interval? : Number

Sequence<Number>

ln

Returns the natural logarithm of the given
number.

n : Number Number

sqrt

Returns the positive square root of the given
number.

n : Number Number

Table A.2.: Basic static functions. In this table, all functions are static, i.e., they are not applied
to any object.

Name and Description Parameters Returns

format

Formats the current number based on a formatting string
(e.g. "#.##").

formatStr : String String

intdiv

Integer division of the current number through the given
one.

operand : Number Number

mod

Modulo of the integer division of the current number
through the given one.

operand : Number Number

Table A.3.: Basic number functions. In this table, all functions are applied on an object of type
Number.

190



A. Appendix

Name and Description Parameters Returns

length

Returns the number of characters in the current
string.

Number

match

Returns true, if the current string matches the
given regular exrpression, and otherwise false.

regex : String Boolean

split

Splits this string around matches of the given de-
limiter.

delimiter : String Sequence<String>

substring

Returns a new string that is a substring of the
current one string. The substring begins at the
specified start.

start : Number
end? : Number

String

Table A.4.: Basic string functions. In this table, all functions are applied on an object of type
String.

Name and Description Returns

asSequence

Returns all key-value-pairs of the map as a
sequence of structures.

Sequence<Structure<key : K, value : V> >

Table A.5.: Basic map functions. In this table, all functions are applied on an object of type
Map<K,V>, whereas K and V are arbitrary MxlTypes.

Name and Description Returns

asSequence

Returns a sequence of structures con-
taining the name and the value of each
of the source structure’s attributes

Sequence<Structure<key:String,value:Object> >

Table A.6.: Basic structure functions. In this table, all functions are applied on an object of
type Structure.

191



A. Appendix

Name and Description Parameters Returns

select

Applies the map-function to each
element of the source sequence and
returns a sequence containing the
results of each individual applica-
tion.

map : Function<T, U> Sequence<U>

selectMany

Similar to the select-function, how-
ever, in selectMany, the map-
function returns a sequence for each
element. The concatenation of all
sequences forms the result of the
selectMany-function.

map : Function<T, Sequence<U> > Sequence<U>

where

Filters the source sequence by the
given predicate, i.e., all elements
fulfilling the predicate remain in the
sequence.

pred : Function<T, Boolean> Sequence<T>

orderby

Sorts the source sequence by the
(optional) keySel-function, whereas
a natural order will be applied.
The (optional) descending param-
eter determines, if the elements
should be ordered ascending (de-
fault) or descending. The default
value for the keySel-parameter is
the identity function.

keySel? : Function<T, Object>
descending? : Boolean

Sequence<T>

groupby

Groups the elements of the source
list by the keySel-Function and ap-
plies the (optional) map-function
on the elements of each single
group. The default value for the
keySel- and map-parameter is the
identity function.

keySel? : Function<T, K>
map? : Function<Sequence<T>,V>

Map<K,V>

Table A.7.: Common query functions. In this table, all functions are applied on an object of
type Sequence<T>, whereas T, U, K, and V are arbitrary MxlTypes.

192



A. Appendix

Name and Description Parameters Returns

any

Returns true, if at least one element of the
source sequence fulfills the given predicate,
otherwise false.

pred : Function<T, Boolean> Boolean

all

Returns true, if each element of the source
sequence fulfills the given predicate, oth-
erwise false.

pred : Function<T, Boolean> Boolean

none

Returns true, if no element of the source
sequence fulfills the given predicate, oth-
erwise false.

pred : Function<T, Boolean> Boolean

contains

Returns true, if the given element is con-
tained in the source sequence, otherwise
false.

element : T Boolean

isEmpty

Returns true, if the source sequence has no
elements, otherwise false.

Boolean

isNotEmpty

Returns true, if the source sequence has at
least one element, otherwise false.

Boolean

Table A.8.: Quantifier functions mapping a sequence to a boolean value. In this table, all
functions are applied on an object of type Sequence<T>, whereas T is an arbitrary
MxlType.

193



A. Appendix

Name and Description Parameters Returns

distinct

Removes all duplicates of the source sequence. Sequence<T>

except

Returns a sequence with all elements contained in
the source sequence, but not in the other one.

other : Sequence<T> Sequence<T>

intersect

Returns a sequence with all elements contained in
the source sequence and in the other one.

other : Sequence<T> Sequence<T>

concat

Concatenates the source sequence with the other
one, i.e., the resulting sequence contains all ele-
ments of the source sequence, followed by all ele-
ments of the other one.

other : Sequence<T> Sequence<T>

Table A.9.: Set functions based on the presence or absence of elements in the same or another
sequence. In this table, all functions are applied on an object of type Sequence<T>,
whereas T is an arbitrary MxlType.

Name and Description Parameters Returns

rest

Returns the source sequence without the
first element.

Sequence<T>

take

Returns a sequence with the first n ele-
ments of the source sequence.

n : Number Sequence<T>

takeWhile

Returns all elements of the source se-
quence until an element does not satisfy
the predicate.

pred : Function<T,Boolean> Sequence<T>

skip

Returns a sequence without the first n el-
ements of the source sequence.

n : Number Sequence<T>

skipWhile

Skips all elements of the source sequence
as long as these elements satisfy the pred-
icate, and returns the rest.

pred : Function<T,Boolean> Sequence<T>

Table A.10.: Partitioning functions returning a subsequence. In this table, all functions are
applied on an object of type Sequence<T>, whereas T is an arbitrary MxlType.

194



A. Appendix

Name and Description Parameters Returns

first

Returns the first element of the source se-
quence (or the first element satisfying the
predicate). If there is not such an element,
this function throws an exception.

pred? : Function<T,Boolean> T

last

Returns the last element of the source se-
quence (or the last element satisfying the
predicate). If there is not such an element,
this function throws an exception.

pred? : Function<T,Boolean> T

single

Returns the only element of the source se-
quence (or the only element satisfying the
predicate). If there is not such an element, or
if there is more than one element, this func-
tion throws an exception.

pred? : Function<T,Boolean> T

argMax

Determines the element with the maximum
value determined by the map-function (using
a natural order).

map : Function<T,Object> T

argMin

Determines the element with the minimum
value determined by the map-function (using
a natural order).

map : Function<T,Object> T

argMedian

Determines the element with the minimum
value determined by the map-function (using
a natural order).

map : Function<T,Object> T

Table A.11.: Sequence element functions choosing a certain element of the sizrce sequence.
In this table, all functions are applied on an object of type Sequence<T>, whereas
T is an arbitrary MxlType.

195



A. Appendix

Name and Description Parameters Returns

count

Counts all elements of the source sequence (or
counts the elements satisfying the predicate).

pred? : Function<T,Boolean> Number

ratio

Returns the ratio of elements fulfilling the
predicate as a number between 0 and 1.

pred : Function<T,Boolean> Number

sum

Sums up all numbers determined by the op-
tional map-function (default is the identity
function).

map? : Function<T,Number> Number

average

Computes the average of all numbers deter-
mined by the optional map-function (default
is the identity function).

map? : Function<T,Number> Number

max

Determines the maximal value determined by
the optional map-function (using a natural
order, default is the identity function).

map? : Function<T,U> U

min

Determines the minimal value determined by
the optional map-function (using a natural
order, default is the identity function).

map? : Function<T,U> U

median

Determines the median value determined by
the optional map-function (using a natural
order, default is the identity function).

map? : Function<T,U> U

aggregate

The func-function is invoked for the result of
its previous invocation and each of the source
sequence’s elements. For the first iteration
of the func-function, the seed value is used.
The result of the last invocation of the func-
function is the final result.

fun : Function<T, T, T>
seed : T>

T

Table A.12.: Aggregation functions folding up all elements to a single value. In this table, all
functions are applied on an object of type Sequence<T>, whereas T and U are
arbitrary MxlTypes.

196


	Table of Content
	List of Figures
	List of Tables
	1 Motivation and Introduction 
	1.1 Problem Description
	1.2 Research Questions
	1.3 Research Design
	1.4 Contributions of this Thesis
	1.5 Outline of this Thesis

	2 Foundations and Related Work 
	2.1 Adaptive Information System
	2.1.1 Meta-model-based Information Systems
	2.1.2 Hybrid Wikis

	2.2 Tool-support for End-User Analytics
	2.2.1 Characterizing Features of Spreadsheets
	2.2.2 Semantic Structures in Today's Spreadsheets
	2.2.3 Usage Patterns in Today's Spreadsheets
	2.2.4 Shortcomings of Spreadsheets from an IS Perspective

	2.3 Related Work
	2.3.1 Related Work based on Spreadsheets
	2.3.2 Related Work on End-user-driven and Model-based Analytics and Visualizations
	2.3.3 Related Work on Self-Service BI and Collaborative BI

	2.4 Summary of Foundations and Related Work

	3 Identification of Requirements 
	3.1 A Conceptual Framework for Collaborative EUA
	3.2 Identification of Requirements
	3.2.1 Data Model Requirements
	3.2.2 Analytical Abstraction Requirements
	3.2.3 View and View Template Requirements
	3.2.4 Meta-Analysis Requirements


	4 Conceptual Design 
	4.1 Hybrid Wikis as Data Model Layer
	4.1.1 Extending Hybrid Wikis by Complex Attributes
	4.1.2 Assessment of the Meta-model's Expressiveness

	4.2 Analytical Abstractions for Hybrid Wikis
	4.2.1 Extending Hybrid Wikis by Analytical Abstractions
	4.2.2 The Model-based Expression Language (MxL)
	4.2.3 Assessment of the Expressiveness of MxL

	4.3 Views and View Templates for Hybrid Wikis
	4.3.1 Extending Hybrid Wikis by Views
	4.3.2 Definition of Data Bindings
	4.3.3 Assessment of the Expressiveness of the View Concepts

	4.4 Meta-Analysis

	5 Prototypical Implementation and User Interface Design 
	5.1 The SocioCortex Backend
	5.1.1 The Core Components of SocioCortex
	5.1.2 Implementation of MxL
	5.1.3 SocioCortex REST API

	5.2 SocioCortex Frameworks and Libraries
	5.2.1 sc-angular: An AngularJS-based Wrapper for the SC REST API
	5.2.2 sc-datatable: A UI Component for Managing Complex Linked Data
	5.2.3 mxl-angular: A UI Component for Defining Complex Queries

	5.3 SocioCortex Web Clients
	5.3.1 The SC Content Manager and the SC Modeler
	5.3.2 The SC Visualizer


	6 Evaluation 
	6.1 Evaluation of the UI for Formulating Complex Queries
	6.1.1 Experiment Setting
	6.1.2 Key Findings of the Experiment

	6.2 Evaluation of the Social Information Flow Graph
	6.2.1 Setting of the Interview Series
	6.2.2 Technical Feedback Gained from the Interview Series
	6.2.3 Identified Concerns Addressable by the SIFG

	6.3 Evaluation of the Prototype in Practical Environments
	6.3.1 Case Study Design and Setting
	6.3.2 Case 1: Ad-hoc EA Analysis in a German Logistics Company
	6.3.3 Case 2: Ad-hoc EA Analysis in a German Automotive Supplier
	6.3.4 Case 3: Ad-hoc EA Analysis in a German Bank

	6.4 Synthesis of Evaluation Results

	7 Conclusion 
	7.1 Summary
	7.2 Critical Reflection and Known Limitations
	7.2.1 Functional Limitations of the Prototype
	7.2.2 Discussion about the Practicability of the Prototype
	7.2.3 Critical Reflection on the Evaluation
	7.2.4 Critical Reflection on the Research Methodology

	7.3 Further Research
	7.3.1 Bottom-up Approach for Defining Analytical Abstractions
	7.3.2 Impersonation for Evaluation Analytical Abstractions
	7.3.3 Alternative Evaluation Strategies for Analytical Abstractions
	7.3.4 Further Research on End-user-driven and Model-based Data Visualizations
	7.3.5 Further Usage Scenarios for the SIFG
	7.3.6 Market Place for Analytical Abstractions and Visualizations


	Bibliography
	Abbreviations
	A Appendix

