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ABSTRACT

In this work we investigate the phase transitions in quantum chromodynamics (QCD) at
finite chemical potential. We analyze the fixed-point structure of four-fermion interactions
in two-flavor QCD and show that there appears to be a mechanism which dynamically locks
the chiral phase transition to the deconfinement phase transition, both at vanishing and
at finite quark chemical potential. As a direct consequence, this observation suggests that
the chiral phase transition and the deconfinement phase transition temperatures lie close
to each other. Further, we propose to apply non-perturbative functional Renormalization
Group methods (FRG) to QCD in order to determine constraints on the parameters used
in low-energy QCD models. In particular, this includes a determination of the dependence
of these parameters on temperature and quark chemical potential. The presented approach
can be used to improve the predictive power of model calculations.

ZUSAMMENFASSUNG

In dieser Arbeit untersuchen wir die Phasenübergänge in Quantenchromodynamik (QCD)
beim endlichen chemischen Potential von Quarks. Wir analysieren die Fixpunktstruktur
von Vier-Fermionen-Wechselwirkung in zwei-Flavor QCD und beschreiben einen dynami-
schen Mechanismus, der den chiralen Phasenübergang erzwingt, falls das Farbconfinement
realisiert ist. Dieser Mechanismus ist gültig sowohl für verschwindend kleine als auch für
endliche Werte vom chemischen Potential von Quarks und führt zu einer Vermutung, dass
der chirale Phasenübergang und der Deconfinementphasenübergang bei gleicher kritischer
Temperatur stattfinden. Außerdem präsentieren wir eine Methode zur Einschätzung von
Parametern der Niederenergiemodellen der QCD. Diese Methode basiert auf der nicht-
perturbativen funktionalen Renormierungsgruppe (FRG). Unter anderem erlaubt diese
Vorgehensweise die Bestimmung der Abhängigkeit der Modellparameter von der Tempe-
ratur und vom chemischen Potential von Quarks. Die präsentierte Methode kann benutzt
werden, um die Vorhersagekraft aktueller Modelle zu steigern.
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1
INTRODUCTION

Quantum Chromodynamics (QCD) is a part of the modern Standard Model of Particle
Physics and is universally accepted as the theory which describes the strong interaction
[1, 2, 3, 4]. Originally introduced in order to explain the hadron spectrum, this non-
Abelian gauge theory postulates the existence of quarks which are assumed to be the
fundamental particles of strongly interacting matter. The quarks carry the so-called color
charge. Since it is strongly believed that there are three different colors, the underlying
symmetry group of QCD is SU(3). Exploiting the principle of local gauge invariance, QCD
also postulates the existence of eight gauge bosons, so-called gluons, which carry different
combinations of color and anti-color and act as mediators of the strong interaction between
quarks. These massless particles are a kind of the QCD equivalent of photons in Quantum
Electrodynamics (QED) but, in contrast to photons, they interact with each other. Among
others, this property of gluons explains why the strong force has only a very short range.
A very characteristic feature of QCD is that no color charged particles, i.e., quarks and

gluons can be observed in nature as isolated states. The quarks appear only as colorless
bound states, namely hadrons which are either the quark-antiquark pairs (mesons) or are
built up of three quarks (baryons). This phenomenon is called confinement and can be
explained by the fact that at large distances the amount of energy needed to separate a
quarks and an antiquark is proportional to the distance between them. At some critical
distance it is even more favorable that a quark-antiquark pair is created and, thus, the
final state are two mesons. Another type of possible colorless states are the so-called
glueballs, particles consisting solely of gluons (and sea quarks). However, up to now such
states have not been unambiguously identified in experiments. Confinement poses one of
the main features of QCD and was observed in numerous studies [5, 6, 7, 8]. However, it
is still not fully understood and needs more extensive research [9].
Even though confinement describes how hadrons are built up of quarks, it cannot explain

some characteristic properties of the hadron spectrum. First, concerning the symmetries
of QCD one would expect the so-called parity doubling, i.e., one would expect to observe
an opposite-parity partner for any hadron in the QCD spectrum. However, from the
experimental side there is no evidence for the existence of such parity partners [10]. Second,
there is a large difference between the mass of pions,mπ ≈ 140 MeV, and the typical masses
of hadrons mH & 1 GeV. Even more, kaons and η-meson also have relatively small masses
∼ 500 MeV. Both these observations suggest that the so-called chiral symmetry, which
is approximately realized in QCD on the level of Lagrangian, is not respected by QCD
ground state. Assuming a full realization of the chiral symmetry in QCD Lagrangian, one
would say that the symmetry is spontaneously broken. Due to the Goldstone theorem
[11], a spontaneous breaking of a continuous symmetry implies the existence of massless
Nambu-Goldstone bosons. Since the chiral symmetry is only an approximate symmetry
of QCD, these bosons remain massive but are still very light. These so-called pseudo
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Figure 1.1: A sketch of conjectured QCD phase diagram taken from [28].

Nambu-Goldstone bosons can be indeed associated with pions, kaons and η-meson, see,
e.g., [12].
Another very characteristic property of QCD is the so-called asymptotic freedom [13, 14]

which means that the coupling strength in QCD decreases with increasing energy or, equiv-
alently, with decreasing distances. It was shown that the origin of this behavior lies in the
non-Abelian nature of QCD [15]. The asymptotic freedom implies that, at high energies,
perturbation theory can be applied to QCD. However, it also implies that at low energies
the coupling strength becomes larger. Consequently, if the coupling achieves values of the
order of one, perturbation theory is no longer applicable and predicts its own breakdown.
The scale where the perturbative coupling even diverges is called Landau pole ΛQCD and
depends on the used renormalization scheme. For the MS-scheme it was calculated to
ΛQCD ≈ 200 MeV [16]. Although perturbative QCD at high energies is well understood
and shows very good agreement with experimental observations, spontaneous breaking
of chiral symmetry as well as confinement are associated with scales where perturbation
theory loses its applicability. Thus, to study this characteristic properties of QCD, one is
restricted to non-perturbative methods. There are a lot of approaches developed to study
low-energy QCD, such as lattice QCD [17, 18], effective field theories [19, 20, 21, 22, 23, 24]
and non-perturbative functional continuum methods [25, 26, 27]. All these approaches are
associated with a certain scope of validity and have their own advantages and weak points.
Asymptotic freedom, spontaneous breaking of chiral symmetry and confinement make

the description of QCD quite challenging. However, it becomes even more involved if we
include finite temperature T and finite quark chemical potential µ1. Inclusion of these
external parameters leads to appearance of various phases of strongly interacting matter,
see Fig. 1.1 and, e.g., [28] for review. The corresponding phase diagram is characterized
by a rich structure and includes phenomena such as liquid-gas phase transition of nuclear
matter [29, 30, 31, 32, 33], color superconductivity [34, 35, 36, 37, 38] and a transition
between the phase where quarks and gluons are confined in hadrons (hadronic phase)

1 Quark chemical potential is given by 1/3 of the baryon chemical potential µB which can be related to the
baryon density.
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and the so-called quark gluon plasma (QGP) – a phase of deconfined quarks and gluons
[39, 40, 41, 42, 43]. The latter transition is of particular interest for this work. In fact,
this transition involves not only the confinement-deconfinement phase transition but also
the so-called chiral phase transition which is associated with the restoration of the chiral
symmetry [11, 44, 45, 46, 47, 48]. The transition between the hadronic phase and QGP
still raises a lot of questions and is the subject matter of intensive research: First, results
from lattice QCD simulations indicate that for vanishing chemical potential the deconfine-
ment and the chiral transition are realized as crossovers2 and take place at approximately
the same temperature [49, 50, 51, 52, 53]. It is not clear whether this statement is also
valid for all values of chemical potential. The possible inequality of (pseudo-)critical tem-
peratures at finite chemical potential has also given a rise to debates about existence of
a new realization of QCD matter, the so-called quarkyonic matter [54, 55, 56, 57, 58].
This exotic phase describes confined quarks with restored chiral symmetry and can arise
if the (pseudo-)critical temperature of the chiral phase transition Tχ is smaller than the
(pseudo-)critical temperature of the deconfinement phase transition Td. Further, follow-
ing the chiral phase boundary, one expects to find the so-called critical point where the
chiral crossover becomes a transition of first order. This point was observed in numerous
calculations employing low-energy QCD models, see, e.g., [59, 60], but its existence is still
under debate. The critical point is associated with enhanced fluctuations which lead to
diverging behavior of susceptibilities. The resulting signatures are very distinct since they
are nonmonotonic as a function of an experimental parameter such as the collision energy,
centrality, rapidity or ion size [61, 62, 63]. Thus, the search for it is of great experimental
interest. Furthermore, it is even possible that the first-order chiral phase transition ends
at another critical point at very high µ and low T . This behavior was observed for three
degenerate quark flavors and implies no clear phase boundary between superfluid nuclear
matter and superconducting quark matter. This phenomenon is also called quark-hadron
continuity, for details see, e.g., [28].
As sketched above, the theoretical investigation of QCD phase diagram is a quite com-

plex task. However, its understanding is also of great importance for many areas of
modern physics ranging from cosmology, e.g., the evolution of the early universe [64, 65],
and astronomy, e.g., the neutron stars [66] throughout to heavy ion collision experiments
[61, 62, 63, 67, 68].
The first part of this work is motivated by the fact that at µ = 0 the pseudo-critical

temperature of the chiral crossover is very similar to the pseudo-critical temperature of the
deconfinement crossover as observed in lattice QCD. This similarity suggests that there
could be a connection between the confinement and the chiral symmetry breaking. In
addition, both these phenomena are driven by gauge dynamics: confinement appears also
in pure Yang-Mills theory where only the gauge degrees of freedom are considered to be
dynamic, and chiral symmetry breaking in full QCD is associated with strong quark self-
interactions which are effectively generated via quark-gluon interactions. Thus, it seems
to be reasonable to search for a mechanism connecting these two phenomena. And indeed,
such a mechanism was already found and discussed in detail in [69, 70] for the case of

2 A crossover is not a real phase transition since different phases are connected continuously. This circum-
stance leads to difficulties in defining critical temperature and one usually speaks about a pseudo-critical
temperature. The chiral transition is a crossover because of the finite current quark masses which explicitly
break the chiral symmetry. If one considers massless quarks (the so-called chiral limit), the chiral transi-
tion becomes a real phase transitions of second order. In contrast, the deconfinement crossover becomes a
phase transition of first order if quarks are infinitely heavy.
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zero chemical potential. More specifically, the authors have analyzed how the fixed-point
structure of the fermionic self-interaction in the Polyakov-loop extended Nambu–Jona-
Lasinio model (PNJL model) is affected by the order parameter of the deconfinement phase
transition. For this purpose, they have employed a model with Nf = 2 massless flavors
and Nc colors which was investigated using the so-called functional renormalization group
(FRG) approach. Further, the authors have partially resolved the momentum dependence
of fermionic self-interaction by considering the so-called Polyakov-loop extended quark-
meson model (PQM model). This has allowed them to study the phase diagram spanned
by the pion decay constant fπ and temperature T and to get access to the physical low-
energy observables. In the first part of this work we aim to extend this analysis to finite
values of the chemical potential µ and beyond the chiral limit.

In the second part of this study we critically discuss approximations applied in common
low-energy QCD models, such as (P)NJL and (P)QM models which are also used in this
work. In short, the critique of modern low-energy QCD models involves the fine-tuning of
model parameters and corresponding ambiguity in the choice of them, negligence of possi-
ble T - and µ-dependence of these parameters and not Fierz-complete interaction channels.
We will see that all these approximations can be potentially improved by the use of QCD
renormalization group (RG) flows [71, 72, 73]. Thereby, the main idea is to study effective
quark self-interactions which are dynamically generated by gauge fields. Consideration of
these effective interactions allows to study the mechanism of chiral symmetry breaking in
QCD directly as it was shown in [71, 72, 73]. In this study, however, we use QCD RG
flows in order to construct a low-energy QCD model. In particular, we introduce a Fierz-
complete set of effective 4-quark interactions which can be also projected onto interaction
channels commonly used in NJL models. Applying the FRG approach, we integrate out
quantum fluctuations in QCD and, thus, generate the couplings of 4-quark interactions.
At some particular momentum scale k = ΛNJL we project our results from QCD RG flows
onto an ansatz for an NJL model. In this way, we can derive a model with parameters
which are not fine-tuned but are predicted by QCD RG flows. Even more, using this
approach the model parameters can be calculated as functions of T and µ.
This work is organized as follows: In Chap. 2 we construct the QCD Lagrangian, briefly

discuss its symmetries and introduce the concept of spontaneous symmetry breaking. Af-
terwards, we give a brief introduction to the FRG approach in Chap. 3. We start with
the concept of the effective action and “upgrade” it to a scale-dependent quantity. Then,
we derive the so-called Wetterich flow equation which is a standard FRG tool. Chap. 4 is
assigned to a study of the mechanism connecting the chiral and the deconfinement phase
transition which was found in Refs. [69, 70]. In the first place, we are interested in the
extension of these studies to finite chemical potential. To this end, we first introduce the
concept of the Polyakov loop and the ansatz for PNJL model. After that, we calculate
the corresponding flow equation and discuss the fixed-point structure of the four-fermion
interaction in the limit of infinite many colors Nc → ∞. We also present our numerical
and analytical results for the physical case of Nc = 3. In a further step, we partially resolve
the momentum dependence of fermionic self-interaction by means of Hubbard-Stratonovich
transformation, i.e., we introduce the PQM model. After derivation of the corresponding
flow equations we study the phase diagram of PQM model spanned by the pion decay
constant fπ and the temperature T . We consider both the chiral limit and the situation of
explicitly broken chiral symmetry. In particular, we pay a close attention to the physical
point in the (T, fπ)-phase diagram. In Chap. 5 we present an idea how a low-energy QCD
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model can be constructed starting from the QCD bare action by using QCD RG flows.
First, we introduce our truncation scheme for dynamically generated effective interactions
which includes a set of Fierz-complete 4-quark interactions. Then, we calculate the flows
of corresponding couplings. In particular, we discuss the mechanism of chiral symmetry
breaking in QCD. As we will see, a necessary condition for chiral symmetry breaking in
the infrared regime is that the strong coupling g2 (or, equivalently, α = g2/(4π)) should
become sufficiently large. For our numerical calculation, we discuss a particular way how
the strong coupling can be computed. As next, we project our results from QCD RG
flows onto an ansatz for an NJL model. We obtain a model with T - and µ-dependent
parameters predicted by QCD RG flow. The numerical output of this model, especially
the phase diagram, is discussed. A summary of our major results and an outlook can be
found in Chap. 6.





2
ASPECTS OF QCD

2.1 qcd lagrangian

In this section we briefly introduce the QCD Lagrangian and discuss some of its properties.
To this end, we start with dynamical massive quarks which, however, do not interact. The
corresponding Lagrangian in Euclidean spacetime1 reads

L = iψ̄(/∂ +m)ψ , (2.1)

where ψ is a column vector in flavor and color space. We denote the number of flavors
with Nf and the number of colors with Nc. The above Lagrangian is invariant under global
SU(Nc) transformations2

ψ(x)→ exp [iΘztz]ψ(x) , (2.2)

where Θz are the real-valued parameters representing generalized rotating angles and tz
denotes generators of the underlying SU(Nc) group in the fundamental representation. In
general, there are N2

c − 1 generators tz which are given in the physical case of Nc = 3 by
eight Gell-Mann matrices tz = λz/2 (z = 1, . . . , 8). The generators of a SU(Nc) group
obey the following commutation relation:

[tz, ty] = tzty − tytz = ifzyxtx , (2.3)

with fzyx the totally antisymmetric structure constants. For more details on properties
of the SU(Nc) group, we refer the reader to App. C.
The Lagrangian (2.1) is only invariant under global SU(Nc) transformations. If a local

gauge symmetry, i.e., Θz(x) is considered, then terms proportional to ∂µΘ would appear.
To make the Lagrangian (2.1) also invariant under the local SU(Nc) transformation, one
has to replace the ordinary derivative ∂µ by the covariant derivative Dµ which is defined
as

Dµ = ∂µ − iḡAµ(x) , (2.4)

with Aµ(x) = Azµ(x)tz and Azµ the auxiliary gauge fields or, in other words, the gluons.
Since for the SU(Nc) group there are N2

c − 1 generators tz, there are also N2
c − 1 gluons.

The covariant derivative in Eq. (2.4) also introduces an interaction between gluons and
quarks. The corresponding interaction strength is denoted by ḡ which is usually called

1 For details on the relation between Minkowski and Euclidean spacetime, see App. A.2.
2 Global means that the transformation is independent of the spacetime coordinates.
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8 aspects of qcd

the strong coupling. To ensure gauge invariance, the gauge fields have to transform in the
following way:

Aµ(x)→ U(x)(Aµ(x) + i
ḡ
∂µ)U †(x) with U(x) = exp [iΘz(x)tz] , (2.5)

or for infinitesimal gauge transformations:

Azµ(x)→ Azµ(x) + 1
ḡ
∂µΘz(x) + fzyxAyµ(x)Θx(x) . (2.6)

Altogether, we have obtained a Lagrangian which is invariant under the local gauge trans-
formation:

L = iψ̄( /D +m)ψ . (2.7)

In this Lagrangian we already have terms representing the interaction between quarks and
gluons. However, to make gluons to the carriers of the strong interaction between quarks,
we have to introduce a gluonic kinetic term. To this end, we consider the commutator of
covariant derivatives:

[Dµ, Dν ]ψ = −iḡFµνψ with Fµν = F zµνt
z. (2.8)

In the above equation, F zµν is the so-called field strength tensor. This quantity poses a
generalization of the usual field tensor in the quantum electrodynamics to the case of the
non-Abelian gauge theories. Its explicit form is given by

F zµν = ∂µA
z
ν − ∂νAzµ + ḡfzyxAyµA

x
ν . (2.9)

Note that the field strength tensor F zµν itself is not a gauge invariant quantity since there
are N2

c − 1 field strengths, i.e., for each gluon its own field strength. However, one notices
that the quantity Fµν transforms in the following way under the SU(Nc) gauge transfor-
mation

Fµν → U(x)FµνU †(x) . (2.10)

This observation allows us to construct a simplest kinetic term for gluons:

LYM = 1
2 tr[FµνFµν ] = 1

4F
z
µνF

z
µν . (2.11)

To derive this equation, we have used the normalization condition for the generators tz:

tr[tzty] = 1
2δ

zy . (2.12)

The theory described by the Lagrangian (2.11) is the famous Yang-Mills theory. It deals
with purely gluonic matter of massless bosons3 and includes interactions between three and
between four gluons. The classical action describing QCD can then be written by adding
the matter-sector Lagrangian in Eq. (2.7) to the Yang-Mills Lagrangian in Eq. (2.11):

SQCD =
∫

d4x

{
iψ̄( /D +m)ψ + 1

4F
z
µνF

z
µν

}
. (2.13)

Up to now, we have considered QCD on the classical level. To be able to calculate
observables, such as cross sections or scattering amplitudes, one has to quantize the theory.
In the case of QCD, it is not a trivial task and involves the introduction of the so-called
Faddeev-Popov ghost fields. A brief introduction to the quantization procedure in QCD
can be found in App. D.

3 Please note that an additional mass term for gluons of the form ∝ m2A2 would violate the local gauge
invariance.
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2.2 symmetries of qcd

The local gauge symmetry is not the only symmetry of QCD. Assuming the chiral limit,
i.e., massless quarks and considering Nf flavors, QCD has an additional UV(Nf)×UA(Nf)-
symmetry which can be decomposed into SUV(Nf) × SUA(Nf) × UV(1) × UA(1). These
symmetries are continuous and correspond on the classical level to conserved currents and
charges by means of the Noether’s theorem [74, 75]. However, not all of the above symme-
tries (and corresponding conserved quantities) are realized in nature since the invariance
which is present on the classical level can be broken due to quantum effects. This is indeed
the case for the UA(1) symmetry and is referred to as the axial anomaly [76, 77, 78]. In
particular, the axial anomaly is responsible for the large mass of η′-meson. In contrast, the
UV(1)-symmetry is unbroken and the associated conserved charge is given by the baryon
number:

B = 1
3

∫
d3xψ†ψ .

Also the SUV(Nf)-symmetry is realized in nature, at least as long as masses for different
flavors are equal4. If one considers a theory with only the two lightest quarks, the SUV(2)-
symmetry is approximately realized even beyond the chiral limit, since the masses of up-
and down-quarks are very similar. In this case the conserved quantity is the isospin.
The remaining SUA(Nf)-symmetry is of particular importance for the present work.

This so-called chiral symmetry is realized on the level of the Lagrangian as long as one
considers the chiral limit and is approximately realized in the case of small current quark
masses. However, the QCD vacuum does not preserve it and one says that the symmetry is
spontaneously broken. This phenomenon is closely connected to the chiral phase transition
at finite temperatures and chemical potentials which is the major topic of this work. In the
following subsequent sections we introduce the concept of spontaneous symmetry breaking
with the aid of the linear sigma-model and discuss how it is realized in QCD.

2.2.1 Chiral Symmetry and Its Spontaneous Breaking

Spontaneous Symmetry Breaking on Example of Linear Sigma-Model

In this section we take a brief look at the so-called linear sigma-model which is the simplest
model with a manifestation of spontaneous chiral symmetry breaking. The model is defined
by the following Lagrangian:

L = 1
2(∂µϕ̄ )2 + 1

2m
2ϕ̄ 2 + 1

4!λ(ϕ̄ 2)2 , (2.14)

where ϕ̄ = (σ, ~π)T is a N -component vector of scalar fields and

V (ϕ̄ 2) = 1
2m

2ϕ̄ 2 + 1
4!λ(ϕ̄ 2)2 (2.15)

is the potential of the model. Note that λ > 0. The above Lagrangian is invariant under
continuous rotations of the field ϕ̄ and, thus, shows the so-called O(N) symmetry.

4 This is, of course, always true in the chiral limit.
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Figure 2.1: A sketch of the potential in Eq. (2.15) for the case of N = 1 and without explicit
symmetry breaking. The symmetry of the model considered in this plot is the so-called discrete
Z(2)-symmetry (alternative notation: O(1)-symmetry). The blue curve corresponds to the choice
m2 > 0 and, thus, to a symmetric ground state, 〈ϕ̄〉 = 0. The red curve was plotted with m2 < 0
and visualizes the case of spontaneously broken symmetry. In this situation, there are a local
maximum and two degenerated minimums. The potential itself still exhibits the Z(2)-symmetry.
However, if one particular minimum is chosen, the ground state is not Z(2)-symmetric any more.

Now, let us discuss the ground state of this model. It is simply given by the global
minimum of the potential V .

δV

δϕ̄i

∣∣∣∣
ϕ̄=〈ϕ̄〉≡ϕ̄0

= 0 . (2.16)

Assuming that the couplingm2 in Eq. (2.15) is positive, the only minimum of the potential
corresponds to the vanishing vacuum expectation value of the fields ϕ̄i (blue curve in
the Fig. 2.1). Now, expanding the potential around its minimum ϕ̄0 = 0, one obtains
the original expression in Eq. (2.15). Since after expansion the potential is still O(N)
symmetric, the particular ground state ϕ̄0 = 0 is also invariant under the rotational
transformations.
However, if the coupling m2 becomes negative, the vacuum expectation value of the

field ϕ̄ obtains a finite value (red curve in the Fig. 2.1). Using an appropriate choice of
coordinates, we can choose one particular ground state and write it as

ϕ̄0 =

√−6m2

λ
,~0

T

. (2.17)

Therefore, the field vector ϕ̄(x) can be now written as

ϕ̄(x) =

√−6m2

λ
+ σ(x), ~π(x)

T

. (2.18)

If we again expand the potential around its new minimum, the Lagrangian takes the form

L = 1
2(∂µσ)2 + 1

2(∂µ~π )2 −m2σ2 +

√
λ

6
√
−m2σ(σ2 + ~π2) + λ

4!(σ
2 + ~π2)2 . (2.19)
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This result is obviously not O(N)-symmetric and, thus, the symmetry is broken in the
ground state. On the other hand, the potential itself is still O(N)-symmetric, even for
m2 < 0. In this situation one speaks about spontaneously broken symmetry. This kind
of symmetry breaking appears because the system chooses one particular ground state.
Further, in accordance with our choice of coordinates, the σ-field obtains a finite mass.
The residual N −1 degrees of freedom, namely the fields ~π, stay massless and degenerated.
This indicates that the ground state has a residual O(N −1)-symmetry. In the Fig. 2.1 we
have visualized our above considerations for the case of N = 1 which is equivalent to the
so-called Z(2)-symmetry. We observe that the massive σ-field corresponds to an oscillation
in the radial direction. In a plot of a potential with spontaneously broken symmetry for
a model with N > 1, the massless π-fields would correspond to oscillations in tangential
directions.
In this section we have seen that the original O(N)-symmetry of the linear sigma-model

can be spontaneously broken in the ground state. Such a symmetry breaking leads to
the appearance of one massive and N − 1 massless fields. Yet, this statement is valid not
only for the linear sigma-model. The so-called Goldstone theorem states that if a generic
continuous symmetry is spontaneously broken, the new massless scalar particles arise in
the spectrum of possible excitations [11]. These particles are called Nambu-Goldstone
bosons. Considering two-flavor QCD in the chiral limit, the Nambu-Goldstone bosons
associated with the spontaneous chiral symmetry breaking are massless pions. Assuming
three massless flavors, the Nambu-Goldstone bosons are pions, kaons and the η-meson. On
the other hand, quarks (and mesons) are not massless in nature where the chiral symmetry
is explicitly broken. However, since their masses are quite small, one can consider the chiral
symmetry as approximately realized. Especially, it is the case for two-flavor QCD since
the up- and down- quarks are very light. In order to get a feeling of how the (small)
explicit symmetry breaking influences the spontaneous breaking of the chiral symmetry in
QCD, we first discuss the same situation in the case of linear sigma-model.

Explicit Symmetry Breaking in the Linear Sigma-Model

We consider a situation when a symmetry is realized only approximately, i.e., the symmetry
is explicitly broken but the strength of this breaking is small. Due the Goldstone theorem,
the Nambu-Goldstone bosons appear also in this case. However, now they become massive,
even though, their mass is small compared to the typical energy scale of the model5. To
introduce the explicit symmetry breaking in the linear sigma-model, we add a new term
−cσ to the original potential in Eq. (2.15):

V (σ, ϕ̄ 2) = 1
2m

2ϕ̄ 2 + 1
4!λ(ϕ̄ 2)2 − cσ . (2.20)

Again, we distinguish between positive and negative m2, see Fig. 2.2. Let us start with
m2 > 0. In order to minimize potential in the radial direction, one has to solve the
following equation:

1
3!λσ

3 +m2σ − c = 0 . (2.21)

5 This statement is indeed very well applicable to two-flavor QCD since the mass of pions is roughly 140 MeV
and is small compared to the typical QCD scale ∼ 1 GeV.
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Figure 2.2: The potential in Eq. (2.20) for a Z(2)-symmetric model with additional explicit
symmetry breaking. The blue curve represents the case of positive and the red one the case of
negative m2. The particular global minimum of the potential is strongly dependent on the choice
of the sign of m2.

Since we explicitly break symmetry only in the σ direction, the ~π-sector is not interesting
for our particular purpose. We assume that the symmetry is approximately realized and,
thus, the parameter c is small. Therefore, we can expand the expectation value of the field
σ in powers of c. Taking into account only the leading-order contribution, we find that

σ0(c) = 〈σ〉 = c

m2 . (2.22)

Consequently, for c → 0 we obtain σ0 = 0. This is exactly what we have found in the
previous section in the case of m2 > 0.
Now, we study the casem2 < 0. We again have to solve Eq. (2.21). But now, proceeding

in the same way as described above, we find three real solutions: two of them correspond
to the minima of potential V (σ, ϕ̄ 2) and one to a maximum. We find that the global
minimum is given by

σ0(c) =

√
−6m2

λ
− c

2m . (2.23)

As one can see, the limit c→ 0 again reproduces our result from the previous section for
the case of spontaneously broken symmetry.
Even though the ground state of our particular model does not respect the O(N) sym-

metry at all, we have illustrated above that the choice of the sign of m2 leads to the
different results for the particular value of σ0. Thus, we have shown that the behavior of a
system with approximate symmetry is strongly influenced by the behavior of this system
in the limit of vanishing c where the symmetry is realized exactly.
Spontaneous chiral symmetry breaking is a necessary condition for the chiral phase

transition in QCD in the chiral limit. However, due to the finite quark masses the chiral
symmetry is explicitly broken and the real phase transition cannot appear. The behavior of
such a system is called crossover. As we have seen above, as long as the explicit symmetry
breaking is small, the crossover behavior is influenced by the behavior of the system in
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the limit of vanishing explicit symmetry breaking. Therefore, if one aims to investigate
the chiral crossover in QCD, it also makes sense to investigate the chiral limit in order to
get a better understanding of the chiral nature of QCD.

Spontaneous Chiral Symmetry Breaking in QCD

We have seen above how spontaneous breaking of the chiral symmetry can take place
in a linear sigma-model. Now, let us discuss how this phenomenon appears in QCD.
Since we will consider two-flavor QCD throughout this work, we restrict our particular
considerations to the case of Nf = 2. The chiral SUA(2)-transformation is given by

ψ → exp[ i2
~ΘA · ~τ γ5]ψ , (2.24)

where ~τ is a vector containing Pauli matrices. The corresponding conserved current and
the conserved charge read

~j µA = 1
2 ψ̄γ

µγ5~τψ and ~QA = 1
2

∫
d3xψ†γ5~τψ . (2.25)

The above symmetry is explicitly broken in QCD if the mass term for fermions is included
in the action. However, since the current quark masses are very small, we restrict the
following discussion to the chiral limit and consider the QCD Lagrangian to be SUA(2)-
invariant.
On the other hand, the theory “loses” chiral symmetry in the ground state if the quark

mass is dynamically generated by loop corrections. This scenario corresponds to the
appearance of a finite expectation value 〈ψ̄ψ〉. This so-called chiral condensate can be
calculated from the commutator of the chiral charge and the composite field ψ̄iγ5~τψ〈[

iQiA, ψ̄iγ5τ
jψ
]〉

= δij〈ψ̄ψ〉 , (2.26)

and was indeed measured in lattice simulations to be finite. In accordance with the
Goldstone theorem, the composite fields ψ̄iγ5τ

iψ with i = {1, 2, 3} correspond to three
massless Nambu-Goldstone bosons. Since these states do not appear in the original QCD
action, they must be bound states. Considering the more realistic case of finite (but small)
explicit symmetry breaking due to the finite current quark masses, the fields ψ̄iγ5τ

iψ

obtain some finite mass which is, however, small compared to the typical scale of QCD
∼ 1 GeV. And indeed, there are bound states in the particle spectrum of QCD which have
noticeable small masses, namely the pions: mπ ≈ 140 MeV. Thus, the composite fields
ψ̄iγ5τ

iψ are identified with pions in the spectrum of physical particles.
The chiral condensate 〈ψ̄ψ〉 is used as the order parameter of the chiral phase transition.

However, there is also another quantity which can be used in order to identify the spon-
taneous break down of chiral symmetry. To see it, let us first introduce an appropriately
normalized one-pion state |πi(p)〉 where p is the momentum and i denotes the isospin in-
dex. Then, since pions couple to the corresponding current, the state jj, µA |0〉 should have
a non-vanishing overlap with the pionic fields:〈

0
∣∣∣jj, µA

∣∣∣πi(p)〉 = −ipµfπδ jie−ipx , (2.27)
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where fπ is the so-called pion decay constant in the chiral limit6 and the momentum
dependence appears because of Lorentz symmetry. As next, we consider the divergence of
the above relation evaluated on shell (p2 = m2

π):〈
0
∣∣∣∂µjj, µA

∣∣∣πi(p)〉 = −m2
πfπδ

jie−ipx . (2.28)

This equation together with Eq. (2.27) implies that the axial current carried by pion can
be written as

~j µA,π = fπ∂
µ~π(x) . (2.29)

and, consequently,

∂µ~j
µ
A,π = fπ∂

2~π(x) . (2.30)

On the other hand, we can assume that the total axial current

~j µA = ~j µA,ψ +~j µA,π = 1
2 ψ̄γ

µγ5~τψ + fπ∂
µ~π(x) . (2.31)

is still conserved, i.e., ∂µ~j µA = 0. Then, using the free Dirac equation, we find

∂2~π(x) = −imq

fπ
ψ̄γ5~τψ , (2.32)

where mq is the constituent quark mass. The above relation is nothing but the Klein-
Gordon equation for a massless pion and describes the coupling of the pions to the quark
current. Such a coupling corresponds to the Yukawa-type interaction with the coupling
strength h. Thus, we can state that

h = mq

fπ
. (2.33)

This result is called Goldberger-Treiman relation7 and relates the pion decay constant fπ
and the constituent quark mass mq. On the other hand, in the chiral limit, the constituent
quark mass is zero if the chiral symmetry is restored and finite if the chiral symmetry is
spontaneously broken. Thus, since the Yukawa coupling is finite, the pion decay constant
fπ should also vanish in the chirally symmetric regime and should be finite in the chirally
broken phase. Therefore, fπ can be seen as an alternative order parameter for the chiral
phase transition.

2.2.2 Center Symmetry

In the previous sections concerning QCD symmetries we have considered either the chiral
limit or the case of very small quark masses. Now, let us discuss the opposite case of

6 fπ was measured to fπ = (92.21± 0.01± 0.14) MeV using π− → µ−ν̄µ and π− → µ−ν̄µγ decays [79]. The
errors are due to the uncertainty of |Vud| in the CKM-matrix and due to the higher-order corrections. In
the chiral limit the value of the pion decay constant is slightly smaller, fπ = 87 MeV [80, 81].

7 This relation is formulated on the level of quarks. Originally, the Goldberger-Treiman relation was formu-
lated for nucleons.
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infinitely heavy quarks. This so-called quenched QCD8 exhibits a global discrete Z(Nc)-
symmetry. Using the imaginary-time formalism, one finds that gluons obey periodic bound-
ary conditions in the Euclidean time direction

Aµ(τ + β, ~x) = Aµ(τ, ~x) . (2.34)

Of course, the gauge transformed fields, Eq. (2.5), should also fulfill the above periodicity
condition. It can by trivially achieved if the gauge transformations U(x) are periodic in
the Euclidean time direction by itself

U(τ + β, ~x) = U(τ, ~x) . (2.35)

However, also some topologically non-trivial gauge transformations preserve the required
boundary conditions for the transformed gluonic fields:

U(τ + β, ~x) = z U(τ, ~x) with z ∈ SU(Nc) , (2.36)

see also [82, 83]. Obviously, z is not an arbitrary element of SU(Nc). It can be straight-
forwardly seen from the gauge transformed field A′(τ + β, ~x):

A′µ(τ + β, ~x) = U(τ + β, ~x)(Aµ(τ + β, ~x) + i
ḡ
∂µ)U †(τ + β, ~x)

= z U(τ, ~x)(Aµ(β, ~x) + i
ḡ
∂µ)U †(τ, ~x) z† = z A′µ(τ, ~x) z† .

(2.37)

Consequently, z should be chosen in such a way that

z A′µ(τ, ~x) z† = A′µ(τ, ~x) (2.38)

This relation sets constraints on z. First, since Aµ = Axµ t
x, z should commute with all

elements of the SU(Nc) group. This property defines the so-called center of the group
Z(Nc) and gives rise to the name of the symmetry. Further, due to the Schur’s Lemma,
z should be a complex multiple of unity. Using the fact that z ∈ SU(Nc) and, thus,
det[z] = +1, we can state that

z = exp
[2πin
Nc

]
1 with n ∈ {1, . . . , Nc} , (2.39)

with 1 being the Nc-dimensional identity matrix.
Altogether, we have seen that quenched QCD in Euclidean spacetime exhibits an ad-

ditional Z(Nc) center symmetry. This symmetry, however, is explicitly broken in the
presence of dynamical quarks since the quark fields obey anti-periodic boundary condi-
tions

ψ(τ + β, ~x) = −ψ(τ, ~x) , (2.40)

and transform under the gauge transformation as

ψ′(τ, ~x) = U(τ, ~x)ψ(τ, ~x) . (2.41)

8 Quenched QCD is described by the Yang-Mills Lagrangian Eq. (2.11)
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Using these relations, one finds

ψ′(τ + β, ~x) = −z ψ′(τ, ~x) . (2.42)

This is only fulfilled for z = 1 and therefore the QCD Lagrangian is not invariant under
the Z(Nc) transformation anymore.
At this point we would like to emphasize that Z(Nc) center symmetry is defined in

Euclidean spacetime. Since the local SU(Nc) gauge symmetry is also a symmetry of the
QCD Lagrangian in Minkowski spacetime, the Z(Nc) symmetry should not be considered
as a subgroup of SU(Nc). Consequently, even if the center symmetry is explicitly bro-
ken by the dynamical quarks, the QCD Lagrangian is still invariant under the SU(Nc)
transformations.
An additional feature of the center symmetry is that it can be even broken spontaneously.

This phenomenon is closely related to the so-called Polyakov loop and the deconfinement
phase transition which we will discuss in Sec. 4.1.



3

EFFECTIVE ACTION AND FUNCTIONAL RENORMALIZAT ION
GROUP APPROACH

As we have mentioned in Sec. 1, the QCD coupling becomes large in infrared regime
and, therefore, the perturbation theory is no longer applicable. Additionally, due to the
long-range fluctuations, perturbative calculations cannot be used to study the chiral phase
transition. In this situation the correlation length becomes larger than the distance be-
tween the microscopic degrees of freedom and collective effects dominate the behavior of
the system. Therefore, in order to investigate QCD phase transitions, we need an alter-
native non-perturbative treatment, e.g., the renormalization group approach (RG). The
main idea of RG is the following: we start with some microscopic action S defined at a
very high momentum scale and then we successively integrate out fluctuations down to a
lower momentum scale, say k. As result we obtain an action defined at the scale k which
already includes quantum corrections on the momentum scales p2 & k2. The change of
such a scale-dependent action with respect to the change of k is governed by continuous
RG transformations. The major aim of such calculations is to obtain an action in the
limit k → 0 which should include all quantum fluctuations. We also mention that RG
transformations do not always change the scale-dependent couplings appearing in the ac-
tion. Sometimes, couplings approach constant values at some particular scale and remain
unchanged by further application of RG transformations. In this case one says that RG
flows have achieved a fixed point. Fixed points are very important in statistical and quan-
tum field theories since they are closely related to the phenomenon of universality and to
the critical behavior close to the phase transition. A very important advantage of the RG
is that this approach allows to identify and to study the fixed point structure of a theory.
For more introduction, see, e.g., [84].
In the following chapter we employ the so-called functional renormalization group ap-

proach (FRG) in its particular form given by Wetterich flow equation [85]. To this end
we introduce the concept of effective action Γ and extend it to a scale-dependent effective
action Γk.

3.1 effective action

By introducing the effective action Γ we pursue essentially two objectives: First, we aim at
a quantity which can be viewed as a quantum field theoretical analogon of the Gibbs free-
energy in thermodynamics, i.e., Γ should give a geometrical interpretation of the preferred
states in a quantum system. With other words, the minimum of Γ should correspond to the
“most likely” state of the system which already includes quantum corrections. Additionally,
by analogy with the Gibbs free-energy, Γ should be a function of the expectation value
of the quantum field. Second, we want to have a generating functional of one-particle

17
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irreducible diagrams (1PI). These diagrams cannot be separated into two disjoint diagrams
by cutting one internal line and, therefore, represent a minimal basis for the connected
Feynman graphs. As a consequence, using such a functional we can calculate all connected
correlations of a given theory.
Here we briefly introduce the effective action and discuss its properties. More detailed

discussion can be found in, e.g., Refs. [16, 86]. In order to derive the effective action, we
start with the general definition of generating functional, Z, of a quantum field theory in
Euclidean spacetime:

Z[J ] =
∫
Dφ exp[−S[φ] + (J, φ)] = 〈0|0〉J . (3.1)

S represents the bare action and (J, φ) is the short-hand notation for
∫
d4x J(x)T · φ(x).

The quantum field φ and the corresponding source J are considered as generalized vectors
in field space:

φ =


ψ

ψ̄T

ϕ
...

 , JT = (η̄, ηT , j, . . .) . (3.2)

In this notation ψ denotes a Dirac spinor, ϕ a real scalar field and dots stand for other
types of quantum fields like, e.g., gauge fields.
By taking functional derivatives of Z with respect to the source J we can calculate

correlation functions (Green’s functions) of the corresponding theory. However, it is not
very useful to work with Z in practice since this functional “produces” all possible correla-
tion functions including disconnected functions which do not contribute to the S-Matrix.
Therefore, it is more convenient to use the so-called generating functional for connected
correlation functions:

W [J ] = lnZ[J ] . (3.3)

We will discuss this functional in more details later in this section. At this point, however,
we want to use it in order to define the so-called classical field Φ, which represents the
normalized vacuum expectation value of the field φ in the presence of the source J :

Φa(x) =
−→
δ

δJTa (x)W [J ] = 1
Z

∫
Dφφa(x) exp[−S[φ] + (J, φ)] = 〈0|φa(x)|0〉J

〈0|0〉J
. (3.4)

Since this new variable is given by the functional derivative of W [J ], we should treat Φa

as a conjugate variable to Ja. Inspired by the Gibbs free-energy in thermodynamics, we
can now define the effective action via the following Legendre transformation:

Γ[Φ] = −W [J ] + (J,Φ) . (3.5)

This new functional does not depend explicitly on the source J :
−→
δ

δJTa (x)Γ[Φ] = −Φa(x) +
∫

d4yΦa(y)δ(x− y) = 0 . (3.6)

So, the effective action depends only on the classical field Φ and all fluctuations have been
already integrated out.
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Taking the first derivative of Γ[Φ] with respect to the classical field, we find:

Γ[Φ]
←−
δ

δΦa(x) = JTa (x) . (3.7)

This equation can be seen as the quantum mechanical analogon to the classical field
equation. Moreover, in the absence of an external source J , solutions of this equation
are those values of Φ which correspond to the stable quantum states. In conclusion, the
effective action provide us a geometrical interpretation of the preferred state in a quantum
system and already includes all quantum corrections.
An additional useful property of Γ is that this quantity is the generating functional of

1PI-correlation functions. To show this, we again consider the generating functional for
connected correlation functions, W . The proof that W indeed generates only connected
correlation functions is a straight-forward induction [16]. Here we show only the first step
of this proof by induction. We consider the second derivative of W [JT ]:

−→
δ

δJTa (x)

−→
δ

δJb(y)W [J ] = 〈0|T{φa(x)φTb (y)}|0〉J
〈0|0〉J

− 〈0|φa(x)|0〉J
〈0|0〉J

〈0|φTb (y)|0〉J
〈0|0〉J

. (3.8)

We see that it is given by the full two-point correlation minus its disconnected part, i.e.,
by the connected two-point function or, with other words, by the full propagator G(x, y):

Gab(x, y) ≡
−→
δ

δJTa (x)

−→
δ

δJb(y)W [J ] . (3.9)

Connected parts of the higher order correlation functions can be calculated in the same
way by taking higher derivatives with respect to J .

One may realize immediately that connected higher order correlations produced byW [J ]
are reducible, i.e., they do not represent a minimal basis of connected Feynman diagrams.
Such a minimal basis, however, exists and is given by 1PI-correlation functions. These
diagrams can be obtained by taking functional derivatives of the effective action Γ[Φ] with
respect to the classical field Φ. Again, a rigorous proof can be done by induction [16]. Here
we present only an idea how such a proof can be worked out. First, consider a functional
derivative of the minimization condition (3.7) with respect to the source:

−→
δ

δJTa (x)Γ[Φ]
←−
δ

δΦb(y) = δ(x− y)δab =
∫

d4z Gac(x, z)
( −→

δ

δΦT
c (z)Γ[Φ]

←−
δ

δΦb(y)

)
. (3.10)

Since the last expression is an operator identity, we have shown that:( −→
δ

δΦT
a (x)Γ[Φ]

←−
δ

δΦb(y)

)
= Gab(x, y)−1 . (3.11)

From this crucial result we see that the second derivative of the effective action with respect
to the classical field is the inverse dressed propagator. Further, we can use Eq. (3.11) to
show that

Gab(x, y) ·
( −→

δ

δΦT
b (y)

Γ[Φ]
←−
δ

δΦe(u)

)
·Ged(u, z) = Gad(x, z) , (3.12)
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where dots mean

Gab(x, y) ·
( −→

δ

δΦT
b (y)

Γ[Φ]
←−
δ

δΦe(z)

)
=
∫

d4y Gac(x, y)
( −→

δ

δΦT
c (y)Γ[Φ]

←−
δ

δΦb(z)

)
. (3.13)

The above equation means that two-point correlation can be calculated from 1PI two-
point diagram by dressing external legs with the propagator. This result is general for any
n-point correlations. To see it consider the following operator:

−→
δ

δJTa (x) =
∫

d4y

( −→
δ

δJTa (x)ΦT
b (y)

) −→
δ

δΦT
b (y)

= Gab(x, y) ·
−→
δ

δΦT
b (y)

. (3.14)

Now, we apply this operator on the second derivative of W , i.e., we calculate the three-
point correlation:

−→
δ

δJTa (x)

−→
δ

δJTb (y)

−→
δ

δJc(z)
W [J ] = Gad(x, u) ·

−→
δ

δΦT
d (u)

( −→
δ

δΦT
b (y)

Γ[Φ]
←−
δ

δΦc(z)

)−1

= −Gad(x, u) ·Gbe(y, w) ·
( −→

δ

δΦT
d (u)

−→
δ

δΦT
e (w)Γ[Φ]

←−
δ

δΦf (v)

)
·Gfc(v, z) .

(3.15)

Hence, we have confirmed our above statement also for three-point correlation. To proof
it for the n-point correlation functions the procedure is straight forward: we have to apply
the operator (3.14) on the (n− 1)-point function.
The operator (3.14) also explains the difference between functional derivatives ofW [JT ]

and functional derivatives of Γ[Φ]: a derivative of W with respect to J adds an external
line to a correlation function. A derivative of Γ with respect to Φ, however, not only
adds an external line but also removes the propagator from this line simultaneously. This
corresponds exactly to the procedure of generating the 1PI-diagrams.
Altogether, the effective action is an object which contains all information we need to

provide the physical predictions for a given quantum field theory: it allows us to calculate
all relevant correlations in a very handy manner and gives us a direct access to the ground
state. Therefore, Γ is a convenient tool to study quantum field theories.

3.2 wetterich flow equation

In this section we give a brief introduction to the Wetterich flow equation [85]. For a more
detailed introduction as well as a discussion of different aspects of renormalization group
approaches, see Refs. [87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103].
The Wetterich flow equation is a functional differential equation for the infrared regular-

ized effective action Γk. This quantity depends on the momentum scale k and, in contrast
to the conventional Γ, includes only the quantum corrections on scales p2 & k2. In other
words, the scale-dependent effective action represents an interpolation between micro- and
macroscopic actions and satisfies following ultraviolet (UV) and infrared (IR) constrains:

lim
k→0

Γk = Γ ,

lim
k→Λ

Γk = S , with Λ an UV scale.
(3.16)
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Now, we pursue the following strategy: we start with a bare (microscopic) action S defined
at a very large UV scale and then successively integrate out quantum fluctuations by
lowering the momentum scale k. The way how to integrate out fluctuations is described
by Wetterich equation. In the limit k → 0 we obtain the macroscopic action Γ.
As the first step we extend the concept of the effective action to a scale-dependent

Γk. For this purpose, we insert a scale-dependent infrared cutoff term ∆Sk[φ] into the
definition of Z[J ] in momentum space

Zk[J ] =
∫
Dφ exp[−S[φ] + (J, φ)−∆Sk[φ]] = exp[Wk[J ]] , (3.17)

Further, we apply a modified Legendre transformation to generating functional for con-
nected correlations Wk[J ]

Γk[Φ] = −Wk[J ] + (J,Φ)−∆Sk[Φ] . (3.18)

Here, the field Φ is the classical field and is defined as usual

Φa =
−→
δ

δJTa
Wk[J ] , (3.19)

but is now a scale-dependent quantity. Since Γk should include only fluctuations on scales
p2 & k2, ∆Sk[φ] has to cut off fluctuations with p2 < k2. Furthermore, ∆Sk[φ] should be
quadratic in the fields. This is required in order to obtain a one-loop flow equation. We
choose the following form of ∆Sk[φ]:

∆Sk[φ] = 1
2

∫
ddp

(2π)dφ
T
a (−p)Rabk (p2)φb(p) = 1

2φ
T
a ·Rabk · φb . (3.20)

The function Rk is the so-called regulator function and needs to satisfy following relations:

lim
p2/k2→0

Rk(p2) > 0 ,

lim
k2/p2→0

Rk(p2) = 0 ,

lim
k→Λ

Rk(p2)→∞ .

(3.21)

The first condition is necessary since ∆Sk[φ] should regularize theory in the IR regime.
The second and third conditions ensure that (3.16) is fulfilled and Γk has correct limiting
behavior. Throughout this work we will use the linear form of cutoff functions. It means
that, for fermions, Rk is given by

Rψk (/p) = Zψk /p rψ

(
p2

k2

)
, (3.22)

where rψ(p2/k2) is a dimensionless regulator shape function. In contrast, the bosonic
regulator has the following form:

Rk(p2) = Zkp
2r

(
p2

k2

)
. (3.23)

Here, Zψk and Zk represent momentum-scale-dependent wave-function renormalizations of
fermionic and bosonic fields respectively.



22 effective action and functional renormalization group approach

The regulator of bosonic fields from above is very well applicable to calculations with
scalar degrees of freedom, however, the application of Eq. (3.23) to gauge theories needs
some discussion: Due to the first condition in (3.21) the above regulator acts like a mass
term in IR regime and therefore breaks gauge symmetry. So, we need to find a procedure
to recover gauge invariance. To this end, one may find an inspiration in the conventional
perturbative approach: in these calculations we always have to fix the gauge and any gauge-
fixing procedure inevitably breaks gauge invariance. This problem is solved by applying
Ward-Takahashi identities which allow to recover gauge-invariant results. Therefore, in
the case of additional gauge-symmetry breaking coming from Rk(p2), we can introduce
modified Ward-Takahashi identities [104, 105, 106, 107, 108, 109]. This procedure is
very common nowadays but there are also two alternative methods: background-field
formalism [86, 110] and the construction of manifestly gauge invariant and regularized
renormalization flow equation [100, 111, 112]. We do not discuss details of these methods
here since in this particular work we are interested in the fermionic flows. The influence
of the gauge sector on the fermionic one, in particular the strong coupling α, is considered
as input in this study. Thereby, we can use inputs calculated within any of mentioned
methods.
The scale-dependent effective action Γk is now defined and we can show in analogy to

Sec. 3.1 that it serves as a generator of 1PI-diagrams for the theory at the scale k. The
major difference to calculations in the previous section is that we have to replace Γ by
Γk + ∆Sk[Φ]. As a consequence, the inverse propagator is then given by:( −→

δ

δΦT
a

Γk[Φ]
←−
δ

δΦb

)
+Rabk = (Gabk )−1 . (3.24)

Further, we want to find how Γk changes if we change scale k. At this point, it is useful
to introduce the dimensional scale variable t

t = ln
( k

Λ
)
⇒ ∂t = k∂k . (3.25)

We consider the derivative of Γk with respect to this new scale and keep the classical
field Φ fixed

∂tΓk[Φ] |Φ= −∂tWk[J ] |J −∂t∆Sk[Φ] |Φ . (3.26)

Now let us consider ∂tWk[J ] |J :

∂tWk[J ] |J = exp(−Wk[J ]) ∂tZk[J ]

= −1
2

∫
ddp

(2π)d ∂tR
ab
k (p2) exp(−Wk[J ])

−→
δ

δJTa

−→
δ

δJb
exp(Wk[J ])

= −1
2STr{Gk ∂tRk(p

2)} − ∂t∆Sk[Φ] |Φ .

(3.27)

Here the super-trace means summation over all possible quantum numbers of bosonic and
fermionic degrees of freedom and includes integration over internal loop-momentum. We
note that this trace will cause an additional minus sign in the fermionic sector. The flow
equation for scale-dependent effective action is then given by:

∂tΓk[Φ] |Φ= 1
2STr

(∂tRk(p2)
) [( −→δ

δΦT
Γk[Φ]

←−
δ

δΦ

)
+Rk

]−1 , (3.28)
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or, diagrammatically, by

∂tΓk[Φk] = 1
2 .

The double line in the above representation stands for the dressed propagator of the
theory at a particular momentum scale k. The circle with a cross represents an insertion
of ∂tRk(p2) which specifies details of the momentum-shell integration.
Eq. (3.28) is known as the Wetterich equation. It is a nonlinear differential equation and

has a simple one-loop structure. However, the Wetterich flow equation includes much more
than the standard perturbative loop because it depends on the full dressed propagator.
Indeed, one can show that integrating Eq. (3.28) leads to a summation of arbitrarily high
loop orders [113].
The form of the right-hand side in Eq. (3.28) is convenient and allows a simple diagram-

matic interpretation of ∂tΓk[Φ]. Nonetheless, for some particular problems it is useful to
rewrite it in a bit different form:

∂tΓk[Φ] = 1
2STr ∂̃t ln

( −→
δ

δΦT
Γk[Φ]

←−
δ

δΦ +Rk

)
, (3.29)

where ∂̃t acts only on the regulator Rk. Here, we have dropped the index |Φ for simplicity
but we still evaluate Γk[Φ] at fixed Φ. Next, we decompose

( −→
δ

δΦT Γk[Φ]
←−
δ
δΦ +Rk

)
into a

field-independent (Pk) and a field-dependent (Fk) part
−→
δ

δΦT
Γk[Φ]

←−
δ

δΦ +Rk = Pk + Fk , (3.30)

and expand Eq. (3.29) in powers of Fk/Pk:

∂tΓk[Φ] = 1
2STr

[
∂̃k

(Fk
Pk

)]
− 1

4STr
[
∂̃k

(Fk
Pk

)2
]

+ 1
6STr

[
∂̃k

(Fk
Pk

)3
]

+ · · · .

(3.31)

In the above equation we have already dropped the term 1
2STr

[
∂̃k (Pk)

]
since it con-

tributes only to the flow of the energy. The terms (Fk/Pk)n can be obtained by straight
forward matrix multiplication and the flows for different couplings by comparing pref-
actors of given channels on the left hand-side with those on the right-hand side. The
resulting differential equations are highly coupled. In general, there are infinitely many
equations since couplings of n-point correlations depend on couplings of (n + 1)- and
(n + 2)-correlations. Of course, such systems of equations are not solvable in the most
cases. Therefore, we always have to restrict our calculations to some particular trunca-
tion. To find an appropriate truncation of a theory is often a quite difficult task. One
possibility to check the reliability of a given truncation is to extend it to higher orders and
compare results. However, such a procedure often increases the complexity of calculations
dramatically and still does not ensure that taking into account even higher correlations
would not change the outcome. This is due to the fact that in the expansion in Eq. (3.31)
there is no small expansion parameter and we cannot neglect higher order contributions
a priori. An alternative method to check the reliability of a truncation is to use the fact
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that physical observables should be independent of the regularization scheme. Within the
FRG approach, the regularization scheme is specified by the regulator function Rk. There-
fore, we can try out different choices of Rk and compare the outcomes. If results are not
sensitive to the specific choice of Rk, it indicates that the particular truncation is reliable.
Also one may try to optimize the RG flow of a particular theory under a particular trun-
cation. Thereby, one defines an optimization criterion and considers different choices of
Rk. Then, those regulator functions Rk are optimized which match the given optimization
criterion. There are different criteria on the market: for example one can study the gap

induced in the effective propagator
(( −→

δ
δΦTa

Γk[Φ]
←−
δ
δΦb

)
+Rabk

)−1
, see Refs. [114, 115, 116].

The maximization of the gap corresponds in this procedure to the optimized choice of the
regulator. As an alternative one can consider a given induced gap and compare the full
theory at k = 0 with the regularized theory for different Rk [95]. The optimized Rk should
then correspond to the regularized theory which is closest to the full one. In other words,
this optimization criterion yields a shortest RG trajectory in the theory space connecting
the theories at k = Λ and at k = 0. For detailed discussions of the optimization of RG
flows, we refer the reader to [95, 114, 115, 116].
As a concluding remark we stress that in the Wetterich equation, Eq. (3.28), we evaluate

∂tΓk at fixed Φ. Therefore, we do not take into account a possible contribution of the form
∼ ∂tΦk. We mention here that the inclusion of this term allows to perform so-called con-
tinuous Hubbard-Stratonovich transformations in the RG flows. This technique provides a
bridge between microscopic and macroscopic degrees of freedom, i.e., between quarks and
gluons as fundamental microscopic particles and mesons as effective macroscopic degrees
of freedom [117, 118, 119]. In this work we do not use this technique since we focus on
the fermionic interactions. For more details concerning this powerful extension, we refer
the reader to Refs. [91, 95, 117, 118, 119, 120, 121]. We also mention that these so-called
dynamical hadronization technique was applied in numerous publications in order to study
QCD and its phase diagram from first principles, see e.g. Refs. [122, 123, 124].
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MODELS

As mentioned in Sec. 1, one can study the phase diagram of QCD using models which
respect (some of) underlying symmetries of QCD but neglect the influence of the gluonic
sector at low energy scales. One prominent example for such models is the so-called
Nambu–Jona-Lasinio (NJL) model1 [44, 45, 46, 125]. This model was originally introduced
to study the phenomenon of superconductivity. However, since it includes strongly self-
interacting chiral fermions, it is also very well applicable to describe the spontaneous
breaking of the chiral symmetry (χSB) in QCD. In usual NJL calculations the quark
self-interactions are considered as parameters which should be fitted to a given set of low-
energy observables2, see, e.g., [27, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136].
The simplest version of the NJL model includes only one interaction channel, the so-called
scalar-pseudoscalar channel ((S−P)-channel), and is given by:

LNJL = ψ̄i/∂ψ + λ̄ψ
2

((
ψ̄ψ
)2
−
(
ψ̄γ5ψ

)2
)

, (4.1)

where the coupling λ̄ψ represents the strength of the (S−P)-channel. Here, we have formu-
lated this Lagrangian and the corresponding (S−P)-channel for only one massless quark
flavor. The strength of the coupling λ̄ψ is crucial for our discussion since if λ̄ψ becomes
strong enough, the chiral condensate is generated and we observe spontaneous chiral sym-
metry breaking.

4.1 polyakov-loop extended njl model

4.1.1 Polyakov Loop

While the above NJL model already provides us with insights into the formation of the
chiral condensate and into the dynamical generation of the constituent quark mass, it
completely ignores the gluonic sector of QCD and, therefore, the deconfinement phase
transition. Though, there are two observations which indicate that the gauge dynamics
considerably influence the quark matter sector and, therefore, the chiral phase transition.
First, the pseudo-critical temperatures for the chiral and the deconfinement phase transi-
tions found in lattice QCD simulations at zero chemical potential are remarkably similar,

1 As alternative to the NJL model, one can use its bosonized version, the so-called quark-meson (QM) model.
This model is derived from NJL Lagrangian using Hubbard-Stratonovich transformation and is introduced
in Sec. 4.2.

2 The same is valid for Polyakov-loop extended version of NJL model, see also Sec. 4.1, and for (Polyakov-
loop extended) QM model, see Sec. 4.2. In QM-type models, however, one fits bosonic interactions and
Yukawa-type interactions.
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〈P [A0]〉 = 0 confinement center symmetric system
〈P [A0]〉 6= 0 deconfinement SSB of center symmetry

Table 4.1: An overview over the Polyakov loop.

see, e.g., Refs. [49, 50, 51, 52, 53]. Second, we expect that the quark self-interactions are
dynamically generated by the gauge fields. This expectation was confirmed in numerous
renormalization group (RG) studies [72, 73, 117, 123, 137, 138]. We present and discuss the
corresponding mechanism in Sec. 5.2. These two facts already suggest a possible deeper
relation between chiral and confining dynamics. Such a relation was already found and
discussed in [69, 70] in detail for zero chemical potential, µ = 0. In this chapter we will
extend this analysis to finite values of µ.
A standard tool to incorporate some aspects of the gauge dynamics into the NJL/QM

models is to introduce a background field 〈A0〉. This field is related to the Polyakov
loop [139, 140] which is primarily used in lattice QCD as an order parameter for the
deconfinement phase transition:

P [A0] = trF [L [A0]] = 1
Nc

trF

P exp

iḡ β∫
0

dx0A0(x)


 , (4.2)

where Nc is the number of colors, β represents the inverse temperature, and P is the
path ordering operator. The index F of the trace denotes that A0 is in the fundamental
representation. One can interpret the Polyakov loop as a world line of a infinite heavy
(static) quark which propagates only in the periodic time direction. Hence, the negative
logarithm of the expectation value of the Polyakov loop, 〈P [A0]〉, is proportional to the
free energy of an isolated quark , see also Refs. [141, 142, 143]. In the case of confinement3,
all observed particles should be color-neutral and, therefore, the free energy of a single
quark is infinite. Thus, 〈P [A0]〉 vanishes in the confined phase.
Further, one can show that in the absence of thermal quarks the Polyakov loop “mea-

sures” the center symmetry of the gauge theory, see, e.g., [142, 143] and Sec. 2.2.2. In short,
the center symmetry means that the system is invariant under transformation U → zU,
with U being an element of the special unitary group U ∈ SU(Nc) and z ∈ Z(Nc) its
center. Thereby, the center of a group defines the set of all elements which commute with
all other elements of the group. Any gauge invariant action is also invariant under the
central transformation U→ zU. However, the Polyakov loop is not: P [A0]→ z P [A0]. As
a consequence, a finite expectation value of the Polyakov loop corresponds to the sponta-
neous breaking of the center symmetry. A summary on P [A0] and its connection to the
center symmetry and the deconfinement phase transition can be found in Tab. 4.1.
In the presence of dynamical quarks, there is no center symmetry and 〈P [A0]〉 6= 0.

Thus, there is no spontaneous symmetry breaking and no phase transition. A possible
explanation of this behavior is that the dynamic color sources generated by pair production
screen the color of static external sources [144]. As a consequence, the infinite single-quark
free energy is spoiled and there is no real color confinement. Nonetheless, there is still a

3 Considering the Polyakov loop as an order parameter for deconfinement phase transition, we always speak
about color confinement (or deconfinement).
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Figure 4.1: The normalized order-parameter potential obtained for a SU(3) Yang-Mills theory
from a first-principle RG study [146]. For SU(3) Yang-Mills theory the Cartan subalgebra is two-
dimensional. Here, only the relevant direction of the Cartan subalgebra is shown. The upper
potential corresponds to T = 310 MeV and the lower one to T = 285 MeV. The phase transition
takes place at Td ≈ 290 MeV and turns out to be a transition of first order.

crossover between confined and deconfined phases which turns out to be rather sharp, see,
e.g., [27, 49, 131, 145]. Hence, 〈P [A0]〉 still serves as an approximate order parameter.
While in lattice QCD 〈P [A0]〉 can be calculated directly, in Polyakov-loop extended

NJL model (PNJL) and Polyakov-loop extended QM model (PQM) one needs P [〈A0〉] in
order to define the effective Polyakov potential. These two quantities are related via the
Jensen identity:

P [〈A0〉] ≥ 〈P [A0]〉 . (4.3)

To fix the effective Polyakov potential in PNJL/PQM studies one applies an approximation

P [〈A0〉] = 〈P [A0]〉 and trF [L [〈A0〉]n] = Nc

(P [〈A0〉]
Nc

)n
, (4.4)

and fits the effective potential to results obtained from lattice QCD [27, 126, 127, 128,
129, 130, 131, 132, 133, 134, 135, 136]. Even though the parametrization of the effective
Polyakov potential is not unique, the results for vanishing chemical potential are rather
stable to variations of the parametrization. Also, in the case µ = 0 it was found that
the (pseudo-)critical temperatures of the deconfinement and the chiral phase transitions
are very similar in PNJL/PQM models. This is in great agreement with results from
lattice QCD, e.g., Ref. [49, 50, 51, 52, 53]. However, at finite values of the chemical
potential the results from PNJL/PQM models seem to be quite sensitive to the choice of
the parametrization of the effective potential, see, e.g., [147].
On the other hand, P [〈A0〉] itself is an order parameter for the deconfinement phase

transition as it was shown in [146, 148] for Polyakov-Landau-DeWitt gauge. Thereby,
〈A0〉 is an element of the Cartan subalgebra and is associated with the ground state of
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the corresponding order-parameter potential. This potential was calculated in the first-
principle RG studies in [146, 149], see also Fig. 4.1. Now, it seems to be very natural to use
this result for P [〈A0〉] to incorporate some aspects of the confinement in the PNJL/PQM
models. Applying these strategy, we do not need to introduce the effective Polyakov
potential fitted to lattice results and, therefore, omit the ambiguity in the parametrization.

4.1.2 PNJL-Model Lagrangian

The (scale-dependent) effective action of the PNJL model with only the (S−P)-channel is
defined as:

Γk =
∫

d4x

{
ψ̄(iZψ /∂ + Zψ ḡγ0 〈A0〉+ iγ0µ)ψ + λ̄ψ

2
[
(ψ̄ψ)2 − (ψ̄~τγ5ψ)2

]}
. (4.5)

We consider a model with Nf = 2 massless quark flavors and Nc colors at finite chemical
potential µ and finite temperature T . The vector ~τ contains the Pauli matrices and
describes the coupling of spinors in flavor space. The coupling λ̄ψ represents the strength of
the effective quark self-interactions and is a scale-dependent quantity. In the above action,
Zψ stands for the wave-function renormalization of quarks. In general, this quantity is also
scale dependent and is linked to the quark anomalous dimension ηψ = −∂t lnZψ. However,
for vanishing background field 〈A0〉 this anomalous dimension has been find to be small
[117, 123, 150, 151]. Therefore, we use Zψ = 1 in our further calculations.
In Eq. (4.5) we use only one interaction channel for quarks, the scalar-pseudoscalar

channel. Such a simple ansatz suffers from a problem called Fierz ambiguity, see App. B.2.
In general, this ambiguity comes from the fact that any d× d-matrix M can be expanded
in terms of a complete orthonormal set of d × d-matrices. This transformation causes
an algebraic reordering of the quark fields and, therefore, the emergence of additional
interaction channels which preserve the underlying symmetries of the model. These new
channels can be generated by quantum effects and can influence the phase diagram of
(P)NJL model [57, 152, 153]. One simple example for a Fierz transformation can be found
in App. B.2. Even though our ansatz suffers from the Fierz ambiguity, the major aim
of this chapter is to understand the relation between the deconfinement and the chiral
phase transition on a qualitative level. For more sophisticated ansatz for effective quark
self-interactions, we refer the reader to Chap. 5.
In our particular calculations we consider the 4-quark coupling λ̄ψ in the point-like limit,

i.e., we drop a possible momentum dependence of this coupling: λ̄ψ(|p| � k). Obviously,
this approximation cannot be applied in the chirally broken regime since it does not give
us access to the low-energy observables, such as the mesonic spectrum4. Nonetheless, for
chirally symmetric regime the point-like limit seems to be a reasonable approximation
which allows us to study how the system approaches the chiral phase boundary [73, 154,
123].

4 Mesons (Goldstone bosons) correspond to momentum singularities in the 4-point functions.
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In Sec. 4.2 we will partially resolve the momentum dependence of the 4-quark interaction
by means of Hubbard-Stratonovich transformation, i.e, we will introduce the PQM model
which is given by the following effective action:

Γk =
∫

d4x
{
ψ̄(iZψ /∂ + Zψ ḡγ0 〈A0〉+ iγ0µ)ψ

+1
2Zϕ(∂µϕ̄)2 + ih̄ψ̄(σ + i~τ · ~πγ5)ψ + U(ϕ̄2)

}
,

(4.6)

with ϕ̄ = (σ, ~π)T and

λ̄ψ = h̄2

m̄2 . (4.7)

For more details, see Sec. 4.2. The PQM model will allow us to gain access to low-energy
observables, e.g., mesonic and constituent quark masses. Also, it provides us with a
condition for the spontaneous chiral symmetry breaking in PNJL model: Similarly to the
linear sigma-model in Sec. 2.2.1, the chiral symmetry breaking in PQM model is triggered
by m̄2 = 0. Consequently, due to the mapping identity (4.7), the chiral symmetry breaking
in PNJL model takes place if λ̄ψ → ∞. In this section we use this condition in order to
identify the breaking of the chiral symmetry.
We also mention that in addition to the 4-quark coupling λ̄ψ, higher-order interactions,

e.g., 8-quark interactions are generally allowed. However, the RG flow of λ̄ψ is completely
decoupled from higher-order channels as long one considers the chiral limit, the chirally
symmetric regime and the point-like limit. So, since we do not aim to study the chirally
broken regime in this section, we conclude that the truncation in Eq. (4.5) is sufficient for
our purpose.

4.1.3 Flow Equation for Coupling λ̄ψ and RG Fixed-Point Analysis

Starting with the action (4.5) and using the Wetterich equation (3.28), we can calculate
the RG flow for the coupling λ̄ψ. Thereby, we use the expansion of the Wetterich equation
presented in Eq. (3.31). We mention already at this point that since we have to project
the right-hand side of the Wetterich equation onto the channel

[
(ψ̄ψ)2 − (ψ̄~τγ5ψ)2

]
, all

contributions relevant for the flow of λ̄ψ are included in the term −1
4STr

[
∂̃k
(
Fk
Pk

)2
]
.

Now, let us consider the second derivative of the effective action with respect to the
fermionic fields:

−→
δ

δΦT
Γk[Φ]

←−
δ

δΦ =

−→δ ψT−pΓk←−δ ψp′ −→δ ψT−pΓk←−δ ψ̄ T−p′−→
δ ψ̄p Γk

←−
δ ψ

p′

−→
δ ψ̄p Γk

←−
δ ψ̄ T−p′

 . (4.8)

In our particular calculations we use homogeneous background fields Ψ̄ and Ψ:

ψ̄p = Ψ̄(2π)4δ(4)(p) and ψp = Ψ(2π)(4)δ4(p) . (4.9)

Using the linear cutoff function for fermions, Eq. (E.1), the field-dependent part of the
inverse dressed propagator

( −→
δ

δΦT Γk[Φ]
←−
δ
δΦ +Rk

)
reads

Fk = −λ̄ψ

(
F11 F12
F21 F22

)
(2π)4δ(4)(p− p′) , (4.10)



30 models

with

(F11)abij = Ψ̄T
a,iΨ̄b,j − τ cay γT5 Ψ̄T

c,iΨ̄d,jγ5τ
db
y ,

(F22)abij = Ψa,iΨT
b,j − τacy γ5Ψc,iΨT

d,jγ
T
5 τ

bd
y ,

(F12)abij =
[
(Ψ̄Ψ)(1f)ab(1c)ij + Ψa,iΨ̄b,j

− (Ψ̄τyγ5Ψ)γ5τ
ab
y (1c)ij − τacy γ5Ψc,iΨ̄d,jγ5τ

db
y

]T
= −(FT21)abij ,

(4.11)

where flavor and color indices are represented by (a, b, . . .) and (i, j, . . .) correspondingly.
The index y = {1, 2, 3} indicates a summation over the Pauli matrices.

The field-independent part, Pk, assumes the form:

Pk =
(

0 −
(
/~pT (1 + rψ(y)) + γT0 α+

)
−(/~p(1 + rψ(y)) + γ0 α−) 0

)
(2π)4δ(4)(p− p′) ,

(4.12)

where α± = p0 ± (ḡ 〈A0〉 + iµ) and y = ~p 2/k2. This matrix is used to calculate the
propagator matrix P−1

k . For a detailed description of calculation of P−1
k , we refer the

reader to [155, 156]. Here we only sketch the basic idea: First, we use the fact that the
background field 〈A0〉 is an element of the Cartan subalgebra. Hence, we can parametrize
it as follows:

ḡ 〈A0〉 = 2πT
∑

tz∈Cartan
tzφ(z) = 2πT

∑
tz∈Cartan

tzν(z)|φ| , (4.13)

where tz represent the SU(Nc) generators in fundamental representation, ν(z) the unity
vector and φ(z) the coordinates of 〈A0〉. Note that the dimension of the Cartan subalgebra
is Nc − 1. From this transformation one clearly sees that the matrix Pk is not propor-
tional to unity in the color space and its inversion becomes, in general, a non-trivial task.
However, P−1

k itself is an element of the Cartan subalgebra. So, it can by expanded using
the complete orthogonal basis of the Cartan subalgebra given by the identity and the
generators tz ∈ Cartan:

P−1
k = 1

Nc
trF[P−1

k ]1c + 2
∑

tz∈Cartan
trF[P−1

k tz] tz , (4.14)

where traces are taken in the fundamental representation. As a consequence any matrix
contributing to the right-hand side of Eq. (3.31) is either proportional to 1c or belongs to
the Cartan subalgebra. Thus, all these matrices are commuting hermitian matrices and
share the same set of eigenvectors. Therefore, they can be diagonalized simultaneously. In
particular, this observation allows us to replace the color trace by a sum of the eigenvalues
of the corresponding matrices. For this purpose, we introduce the eigenvalues νl of the
matrix tzν(z) from Eq. (4.13):

νl = spec{(tzν(z))ij | ν2} . (4.15)

Applying this technique we have calculated the relevant term of the expansion in Eq. (3.31),
namely −1

4STr
[
∂̃k
(
Fk
Pk

)2
]
. Besides the color trace, this calculation also includes flavor
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Figure 4.2: Graphical representation of the λ2
ψ-term on the right-hand side of Eq. (4.18). The

double lines denote fully dressed fermionic propagators. The white circle with a cross stands for
∂tRk.

and Dirac traces, integration over internal momenta and the appropriate projection onto
the channel

[
(ψ̄ψ)2 − (ψ̄~τγ5ψ)2

]
. As result we obtain:

∂tλ̄ψ = 4
(

2 + 1
Nc

)
λ̄2
ψ

Nc∑
l=1

∂̃t

∫ d4p

(2π)4

∑
±

1
~p 2(1 + rψ)2 + (p0 ± (2πTνl|φ|+ iµ))2 ,

(4.16)

where ∂̃t acts only on the regulator shape function rψ and νl|φ| represents the dimensionless
coordinates of the background field 〈A0〉. Since we are interested in finite temperatures,
we replace the zero component of the Euclidean momenta, p0, by Matsubara frequencies:

p2
0 → ν2

n and
∞∫
−∞

dp0
(2π) . . .

p2
0 → ν2

n→ T
∑
n

. . . . (4.17)

Since n runs over all integer values from−∞ to +∞, the difference between±-contributions
disappears. Applying the optimized regulator shape function for fermions from Eq. (E.3)
[157], we end with the following flow equation for the dimensionless coupling λψ = Z−2

ψ k2λ̄ψ:

∂tλψ = 2λψ − 16 v4

(
2 + 1

Nc

) Nc∑
l=1

l
(F)
1 (τ, µ̃− i2πτνl|φ|, 0)λ2

ψ , (4.18)

with τ = T/k the dimensionless temperature, µ̃ = µ/k the dimensionless chemical po-
tential and v4 a dimensional factor specified in App. E. We remind the reader that we
use Zψ = 1 in this calculation. The threshold function l

(F)
1 in Eq (4.18) includes the

temperature and chemical-potential dependence as well as the dependence on the input
for νl|φ| and on the regularization scheme. This function corresponds to the one-particle
irreducible (1PI) diagram presented in Fig. 4.2 and can be calculated using the procedure
described in App. E.
Now, let us discuss the fixed-point structure of the flow equation (4.18). Thereby, we pro-

ceed mainly as in Refs. [69, 70] but expand our analysis to finite values of chemical potential.
The flow equation (4.18) has two fixed points which can be calculated setting ∂tλψ = 0.
The first fixed point, λGψ = 0, is a trivial infrared (IR) attractive Gaussian fixed point. It
corresponds to the interactionless theory. The second fixed point, λ∗ψ(τ, µ̃ − i2πτνl|φ|, 0),
is non-trivial and IR repulsive. Its particular value depends on the parameters τ and µ̃

and on the coordinates νl|φ| of the background field 〈A0〉. To understand the properties
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Figure 4.3: Sketch of the flow of the 4-quark coupling λψ for different sets of parameters. The
black solid line corresponds to T = µ = 〈A0〉 = 0, the green dashed one to finite temperature and
chemical potential but vanishing 〈A0〉 (deconfined phase). The blue dashed line represents finite
temperature, finite chemical potential and finite 〈A0〉 (confined phase). For Nc →∞, the blue and
the black line coincide.

of the non-trivial fixed point, let us first start with the case of vanishing temperature and
chemical potential as well as vanishing background field 〈A0〉, see also the black solid line
in the Fig. 4.3. In this limit, one can show that λ∗ψ(τ, µ̃− i2πτνl|φ|, 0) takes the form

λ∗ψ ≡ λ∗ψ(0, 0, 0) = 1
8 v4(2Nc + 1)l(F)

1 (0, 0, 0)
= 6π2

2Nc + 1 , (4.19)

where we have used the limiting behavior of the function l
(F)
1 valid for our choice of

regularization scheme, see App. E. At this point we would like to emphasize that even
though the particular value of λ∗ψ is regularization-scheme dependent, the very existence
of the non-trivial fixed point is a universal property of our model.
Now, we would like to discuss how different initial values of coupling λψ at the ultraviolet

(UV) scale ΛUV influence the model outcome. Choosing an initial value λUV
ψ < λ∗ψ we find

that the model is attracted by the Gaussian fixed point5 and becomes chirally symmetric
in the IR regime. In contrast, if λUV

ψ > λ∗ψ, then the coupling λψ grows rapidly and even
diverges at some finite scale kcr. As we have seen above, the diverging behavior of the
4-quark coupling is associated with spontaneous breaking of the chiral symmetry. Thus,
the value of the non-trivial fixed point λ∗ψ separates regimes with broken and restored
chiral symmetry in our approach.
The critical scale kcr is related to the value of low-energy observables O as follows:

O ∼ kdOcr , (4.20)

with dO the canonical mass dimension of the observable. The analytical expression for kcr
at vanishing T , µ and 〈A0〉 is given by

kcr = ΛUV

(
λUV
ψ − λ∗ψ
λUV
ψ

)1/2

Θ
(
λUV
ψ − λ∗ψ

)
. (4.21)

5 In Fig. 4.3 the direction of the RG flow towards IR regime is denoted by arrows.
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This result shows that the value of the critical scale k2
cr is proportional to the distance

of the initial value λUV
ψ from the value of the non-trivial fixed point λ∗ψ. Consequently,

increasing λUV
ψ leads to increasing kcr and to an increase in the values of the low-energy

observables, such as the pion decay constant fπ or the critical temperature of the chiral
phase transition Tχ.
Since we are aiming at a model which is chirally broken in the limit T → 0, µ → 0,

we shall use some value λUV
ψ > λ∗ψ. For calculations at finite temperature, chemical

potential and background field, we keep this initial condition fixed. This approach ensures
a proper study of effects caused by parameters variation. In Fig. 4.3 we sketch how different
parameters influence the flow equation and the (pseudo-)fixed-point structure. First, let
us discuss the impact of finite temperature. For increasing T we observe that the pseudo
fixed point is shifted to larger values. Hence, at some critical value Tχ it passes the initial
value λUV

ψ and the theory evolves in the direction of the Gaussian fixed point in the RG
flow. Therefore, for T > Tχ our model is in the chirally symmetric regime. A similar
effect is also caused by increasing chemical potential. Thereby, we observe that for any
0 ≤ T < Tχ there is a T -dependent finite value of chemical potential for which the pseudo
fixed point is located at infinity. Consequently, there is only the Gaussian fixed point
which attracts our model towards chirally symmetric regime. To illustrate this rather
complex effect, let us consider the special case T → 0. In this situation the threshold
function l(F)

1 behaves as a Theta-function, see App. E.3:

lim
τ→0

l
(F)
1 (τ, µ̃, 0) = 1

6
v3
v4

Θ(1− µ̃) . (4.22)

Therefore, the fixed-point structure in this case is the same as for T = 0, µ = 0 as long
the RG scale k > µ. For k < µ, the right-hand side of Eq. (4.18) becomes linear in λψ
and has a positive slope. It means that the model is attracted by the Gaussian fixed point
if we further integrate out fluctuations. Thus, if the value of chemical potential is large
enough µ ≥ µχ, λψ at k → 0 becomes sufficiently small and no quark condensate can be
produced. So, we observe restoration of the chiral symmetry.
As next, we discuss the influence of finite background field 〈A0〉 on the fixed-point

structure. 〈A0〉 enters our discussion as an external input parameter and serves as the
order parameter for the deconfinement phase transition. As we have already mentioned,
the confined phase (or, equivalently, the center symmetric ground state of the model) is
indicated by

P [〈A0〉] = 〈P [A0]〉 = 0 . (4.23)

Actually, in pure SU(Nc) Yang-Mills theory the trace of powers of the Polyakov variable
L [〈A0〉] transforms in the similar way as the Polyakov loop under the center transforma-
tion:

trF [L [〈A0〉]n] → zn trF [L [〈A0〉]n] . (4.24)

Therefore, one finds for the confined phase

trF [L [〈A0〉]n] = 0 , (4.25)

with (n mod Nc) = 1, . . . Nc − 1. This condition uniquely determines6 the position 〈A0〉
of the ground state in the confined regime [146, 149]. On the other hand, in the deep

6 Up to center transformations.
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deconfined phase we have 〈A0〉 → 0 and P [〈A0〉] → 1, see, e.g., Refs. [146, 148, 149,
158]. Consequently, for temperatures much higher than the critical temperature of the
deconfinement phase transition, the background field 〈A0〉 does not change the pseudo
fixed-point structure:

λ∗ψ(τ, µ̃− i2πτνl|φ|, 0)→ λ∗ψ(τ, µ̃, 0) for T � Td . (4.26)

Reducing the temperature leads to confinement and to finite 〈A0〉. In this case, the pseudo
fixed point λ∗ψ(τ, µ̃− i2πτνl|φ|, 0) is computed to:

λ∗ψ(τ, µ̃− i2πτνl|φ|, 0) =
(

8v4

(
2 + 1

Nc

) Nc∑
l=1

l
(F)
1 (τ, µ̃− i2πτνl|φ|, 0)

)−1

=
{

1
λ∗ψ

+ 1
6π2

(
2 + 1

Nc

) ∞∑
n=1

(−Nc)−n
(

1 + n

τ

)
(

exp
[
−n(1 + µ̃)

τ

]
trF [L [〈A0〉]n] +

exp
[
−n(1− µ̃)

τ

]
trF

[
L† [〈A0〉]n

])}−1

.

(4.27)

To obtain this result, we have employed the regularization scheme described in App. E.
Nonetheless, one can argue that the general form of this expression holds for any type
of regulator functions [69]. We have also found that in the limit of vanishing chemical
potential Eq. (4.27) coincides with the result which was already obtained in [69, 70]. The
above result is important for our understanding of the limit of infinite many colors. For
Nc →∞, a trace of any power of the Polyakov variable vanishes in the confined phase, at
least as long one considers a pure Yang-Mills theory7. Thus, we find

lim
Nc→∞

λ∗ψ(τ, µ̃− i2πτνl|φ|, 0)
∣∣∣∣
T.Td

= λ∗ψ . (4.28)

Arguing in the same way, we find

lim
Nc→∞

∂tλψ(τ, µ̃− i2πτνl|φ|, 0)
∣∣∣∣
T.Td

= ∂tλψ(0, 0, 0) . (4.29)

This observation means that for infinite many colors the question of whether the spon-
taneous chiral symmetry breaking is realized or not is independent of temperature and
chemical potential but is related only to the choice of λUV

ψ compared to λ∗ψ. Even more,
as long as the initial value of the coupling is chosen such that λUV

ψ ≥ λ∗ψ, the appearance
of the deconfinement phase transition automatically causes the chiral phase transition.
Hence, we observe

Tχ ≥ Td , (4.30)

for Nc → ∞ and λUV
ψ ≥ λ∗ψ, see also Ref. [126]. Thus, there is a dynamical locking

mechanism which enforces the spontaneous breaking of the chiral symmetry in the matter

7 In our further considerations we assume that the presence of dynamical quarks does not impact the ground
state value of 〈A0〉 obtained in the pure Yang-Mills theory. This assumption is based on the fact that for
dynamical quarks we can still expect P [〈A0〉]� 1 in the confined phase.
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sector if the gauge sector is confined [69]. One can think about this mechanism in terms
of thermal quark-fields fluctuations. In general, they tend to restore the chiral symmetry
but since they are directly linked to the background field 〈A0〉, they are suppressed in the
confined phase.
The locking mechanism described above suggests that there is a window in the parameter

space of λUV
ψ where critical temperatures are approximately equal. This window arises

from the fact that there are values of λUV
ψ which would lead to Tχ < Td if the background

field 〈A0〉 is decoupled from the matter sector. However, due to the locking mechanism
the chiral critical temperature is shifted to larger values such that Tχ ≥ Td. Since λUV

ψ

determines the values of low energy-observables, the window in the parameter space of
λUV
ψ can be translated into a corresponding window in the values of low-energy observables.

We will use this fact in our calculations in Sec. 4.2.

4.1.4 Numerical Results

Now, let us consider the physical number of colors, Nc = 3. In this situation, the traces
of powers of the Polyakov variable in Eq. (4.27) with (n mod Nc) = 0 provide a finite
contribution to the value of the pseudo fixed point. Even though the pseudo fixed point
does not coincide with λ∗ψ in the confined phase anymore, the finite value of the background
field 〈A0〉 counteracts the effects of finite temperature and chemical potential on the fixed-
point structure and we always observe

λ∗ψ < λ∗ψ(τ, µ̃− i2πτνl|φ|, 0) < λ∗ψ(τ, µ̃, 0) , (4.31)

see also the blue dashed line in Fig. 4.3. Therefore, also for a finite number of colors,
there should be a window in parameter space where the critical temperatures for de-
confinement and chiral phase transitions are very close to each other. The fact that
λ∗ψ(τ, µ̃ − i2πτνl|φ|, 0) > λ∗ψ only implies that the lower end of the window in the pa-
rameter space is shifted to larger values of λUV

ψ compared to the case of infinite many
colors.
For our Nc = 3 numerical computations we employ the data from [146] as an input

for the coordinates of the ground state 〈A0〉. These data were obtained for pure SU(3)
Yang-Mills theory from the minimization of the corresponding order-parameter potential,
see Fig. 4.1. In [146] the authors parametrize the background field 〈A0〉 as described in
Eq. (4.13). For Nc = 3 there are two generators of the Cartan subgroup which are chosen
to be

t3 = Diag{1/2,−1/2, 0} and t8 = 1/
√

3 ·Diag{1/2, 1/2,−1} . (4.32)

A possible corresponding solution of Eq. (4.25) is then given by (φ(3), φ(8)) = (2/3, 0). In
the left panel of Fig. 4.4 we visualize the result for |φ| from [146] as a function of T/Td.
Thereby, the critical temperature of the deconfinement phase transition was found to be
Td ≈ 290 MeV.8 From the non-continuous behavior of |φ| at T = Td we can see that the
deconfinement phase transition is of the first order if one considers a pure SU(3) Yang-
Mills theory. In the right panel of Fig. 4.4 we present the corresponding Polyakov loop
P [〈A0〉]. As expected, it is zero at center symmetric phase and finite for T > Td.

8 The large value of Td is due to the absence of dynamical quarks.
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Figure 4.4: In this plot we present our input for the background field 〈A0〉 in the parametrization
described in Eq. (4.13) (left panel) and the corresponding Polyakov Loop (right panel). Both
quantities are plotted as function of T/Td. The discontinuous behavior at T = Td signals the
first order phase transition. The values for 〈A0〉 were taken from [146]. In this work the critical
temperature was found to be Td ≈ 290 MeV.

In this particular work we set the UV cutoff scale of the model to ΛUV = 1 GeV and
calculate the critical temperature of the chiral phase transition Tχ as a function of the
initial condition λUV

ψ for different values of the chemical potential. Thereby, we define the
critical temperature as the temperature where the 4-quark coupling λψ diverges:

1
λψ
→ 0 for k → 0 . (4.33)

We mention that this definition provides only an upper boundary for Tχ since it only
signals the formation of the chiral condensate but does not take into account that the
chiral symmetry can be restored by Goldstone-bosons fluctuations in the deep IR, see
[151] and Sec. 4.2. This feature is a direct consequence of the point-like limit we use here
and can be improved using the PQM model, see Sec. 4.2.
Our results for Nc = 3 are presented in Fig. 4.5. In this figure we plot Tχ/Td as a

function of λUV
ψ /λ∗ψ for some chosen values of µ. For µ = 0, our output shows the same

behavior as results from [69, 70]. For all values of chemical potential µ we can basically
distinguish between four different types of Tχ-behavior as function of λUV

ψ : For small initial
values of λψ we observe Tχ = 0. Thereby, the range of the corresponding λUV

ψ -interval is
going to zero for µ → 0 and increases with increasing µ. After this interval, Tχ starts to
grow and approaches Td. For even larger values of λUV

ψ , we observe a window where the
chiral phase transition is locked in by the deconfinement phase transition, i.e., Tχ ≈ Td.
This window is shifted to larger values in the parameter space if we increase the chemical
potential. The range of this interval, however, seems to stay roughly the same. For even
larger λUV

ψ we observe that Tχ > Td.
As already mentioned, our results for µ = 0 reproduce those from [69, 70]. The major

effect of the finite chemical potential is the shift of the phase diagram to larger values
in the parameter space. This behavior also implies that for any pair of the initial value
λUV
ψ > λ∗ψ and the critical temperature with Tχ . Td, there is a certain critical value of the

chemical potential µχ which separates the chirally symmetric and the chirally broken phase.
Thus, for a model with fixed initial condition we observe the expected chiral symmetry
restoration if we keep temperature constant and increase chemical potential.



4.1 polyakov-loop extended njl model 37

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

0.0

0.5

1.0

1.5

λψ
UV/λψ

*

T
χ
/T

d

μ=0 MeV

μ=50 MeV

μ=100 MeV

μ=200 MeV

NC=3

Figure 4.5: Tχ/Td as a function of λUV
ψ /λ∗

ψ for various values of µ. For all values of µ there are
four different domains in the behavior of Tχ (from small to large λUV

ψ ): Tχ = 0, Tχ < Td, Tχ ≈ Td
and Tχ > Td. The range of domain with Tχ = 0 decreases with decreasing µ and approaches zero
for µ→ 0. Our current results are in agreement with [69, 70] and show that the finite µ basically
shifts the phase diagram for µ = 0 to larger values in the parameter space. The dashed lines
correspond to analytical result presented in Eq. (4.38).

The observed behavior of the phase transition line can also be understood analytically,
at least as long as critical temperature Tχ is assumed to be small. To show this, we
start with the flow equation Eq. (4.18) and derive an implicit equation for Tχ using the
definition in Eq. (4.33). We obtain

Nc
2

(
1−

λ∗ψ
λUV
ψ

)
=

Nc∑
l=1

{
3− 3 Tχ

ΛUV
(log[1 +G+] + log[1 +G−])

− (1 +G+)−1 − (1 +G−)−1

+ 3
T 2
χ

Λ2
UV

[
− π2

6 −
1
2(i2πνl|φ| − µ/Tχ)2

− Li2(−G+)− Li2(−G−)
]}

,

(4.34)

where Li2 means the dilogarithm and the functions G± are defined as

G± = exp[ΛUV/Tχ ± i2πνl|φ| ∓ µ/Tχ] . (4.35)

From now on, we consider only temperatures which satisfy
T

ΛUV ± µ
� 1 . (4.36)

Under this assumption our result in Eq. (4.34) simplifies to

Nc
2

(
1−

λ∗ψ
λUV
ψ

)
=

Nc∑
l=1

3
T 2
χ

Λ2
UV

[
π2

6 + 1
2(i2πνl|φ| − µ/Tχ)2

]
. (4.37)
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As next step we specify the number of colors, Nc = 3, and consider a system in the confined
phase, i.e. Tχ < Td. These constrains further simplify our result:

0 <
T 2
χ

Λ2
UV

= 9
π2

[(
1−

λ∗ψ
λUV
ψ

)
− 3 µ2

Λ2
UV

]
Θ(λUV

ψ − λ∗ψ) . (4.38)

We remind the reader that the chiral phase transition can appear in our model only for
λUV
ψ > λ∗ψ. From the above result one can clearly see that for some specific value of the

chemical potential µ, the critical temperature Tχ becomes zero and the chiral symmetry is
restored. For even larger chemical potentials, there is no chiral phase transition anymore.
Further, Eq. (4.38) shows once again that at finite µ the value of λUV

ψ /λ∗ψ should be large
enough in order to observe the finite Tχ. With other words, for any finite value of µ, there
is an interval in the parameter space 1 ≤ λUV

ψ /λ∗ψ ≤ λUV
ψ,χ/λ

∗
ψ where the chiral symmetry

is always restored. this is exactly what we observe in our results in Fig. 4.5. To visualize
our analytical result in Eq. (4.38), we have plotted it in Fig. 4.5 as dashed lines. Our
analytical and numerical results perfectly agree in the regime where constraints needed to
derive Eq. (4.38) are fulfilled, i.e, for Tχ � ΛUV ± µ and Tχ < Td.
Next, we use our results for the phase diagram in (Tχ/Td, λUV

ψ /λ∗ψ)-plane, see Fig. 4.5,
in order to construct a phase diagram spanned by µ and Tχ/Td. To this end, we have to
specify the starting value λUV

ψ . As discussed above, some particular value of λUV
ψ fixes the

low-energy observables. However, since we cannot resolve momentum dependence of λψ in
our current approach, we cannot get access to the physical low-energy observables. Thus,
we cannot find λUV

ψ reproducing the correct low-energy physics. However, we can use
results from lattice simulations as motivation for our choice of λUV

ψ . It is a very prominent
fact that lattice simulations at zero chemical potential have shown very similar critical
temperatures Tχ and Td, e.g., Refs. [49, 50, 51, 52, 53]. Thus, we restrict our further
calculations to the region in the parameter space where the locking window appears for
µ = 0. Our particular results show that the lower edge of the locking window at zero
chemical potential corresponds to λUV

ψ /λ∗ψ = 1.101, see the upper left plot in Fig. 4.6.
Using this value for λUV

ψ /λ∗ψ, one observes that the chiral and the deconfinement phase
transition are equal only for µ = 0. For larger chemical potentials we observe that the
phase transitions are decoupled and Tχ < Td, see the upper right plot in Fig. 4.6. As
alternative to the choice of λUV

ψ /λ∗ψ at the lower boundary of the locking window, we can
consider a larger value λUV

ψ /λ∗ψ = 1.15, see bottom panels of Fig. 4.6. For this choice of
λUV
ψ /λ∗ψ we observe that the the chiral phase transition is dynamically locked in due to

the deconfinement transition and, thus, Tχ ≈ Td. This behavior is realized for chemical
potentials up to µ ≈ 115 MeV. For even larger µ the phase transitions are decoupled again.
At this point we should add a comment on the input for 〈A0〉 used in this work. We

again stress that the data from [146] were calculated in the pure Yang-Mills theory. In
full QCD, the ground state of the potential of the confinement order parameter is affected
by contributions from Feynman diagrams with internal fermionic lines. The presence of
dynamical quarks would also lead to smaller (pseudo-)critical temperature of the decon-
finement phase transition. However, since our analytical findings for Nc → ∞ are based
on the very general properties of the confinement order parameter, we expect that they
are not strongly affected by inclusion of quarks. Therefore, also for finite number of colors
and in the presence of dynamical quarks, we can still expect the presence of a window
in the parameter space where chiral and deconfinement critical temperatures lie close to
each other. Assuming this scenario and that the choice of λUV

ψ /λ∗ψ reproducing the correct
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Figure 4.6: Here, we use our results partially presented in Fig. 4.5 in order to construct a phase dia-
gram in (Tχ/Td, µ)-plane. We consider two different values of the initial condition: λUV

ψ /λ∗
ψ = 1.101

(upper plots) and λUV
ψ /λ∗

ψ = 1.15 (lower plots). In the first case we observe a decoupling of phase
boundaries of chiral and deconfinement phase transitions at finite chemical potentials. In the sec-
ond case we observe Tχ ≈ Td for µ . 115 MeV. The dashed lines in the left plots were obtained
using our analytical result presented in Eq. (4.38). To obtain the phase boundaries with non-
vanishing curvature (right plots), we also use this analytical expression. The points correspond to
our numerical results. We can again state that our analytical result in Eq. (4.38) is in a very good
agreement with numerics as long Tχ . Td.

low-energy observables is located inside of the locking window, one would observe that the
chiral phase transition temperature is locked in to Td. However, now it decreases with in-
creasing µ since Td is expected to decrease at finite quark chemical potential. In any case,
we should keep in mind that our numerical results in Figs. 4.5 and 4.6 will considerably
change on the quantitative level if we include dynamical quarks in calculation of 〈A0〉.
Our results in Figs. 4.5 and 4.6 can also be used in order to calculate the curvature κ

of the QCD phase diagram spanned by µ and T at zero chemical potential. This quantity
serves as an useful tool to compare different approaches which were developed to extend
lattice QCD calculations to finite chemical potential. Even though lattice QCD is one of
the most powerful techniques to study QCD at zero chemical potential, at finite µ these
calculations are very involved because of the so-called sign problem: as many simulations
of stochastic processes, the lattice QCD approach relies on the calculation technique called
importance sampling. The later needs a properly defined probability measure which, in
the case of lattice QCD, is given by the fermion determinant. At finite chemical potential,
however, the fermion determinant becomes complex and, thus, cannot be used as a suitable
probability measure. For more details see, e.g., [48, 159]. There are several methods which
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aim to overcome this problem, e.g., the reweighting of the generated configurations or the
analytic continuation to an imaginary chemical potential. However, all of the common
methods are constrained to regime µ/T . 1 [159, 160]. An alternative method is to
Taylor-expand the observables in µ. This approach is quite useful since the coefficients of
the Taylor series are computed at µ = 0 [161]. Consequently, one can consider the chiral
phase transition temperature Tχ as an expansion in the dimensionless quantity µ/Tχ. Up
to second order it then reads:

Tχ(µ2) ≈ Tχ(1− κµ
2

T 2
χ

) , (4.39)

where

κ = −Tχ
dTχ(µ2)
dµ2

∣∣∣∣∣
µ=0

and Tχ = Tχ(0) . (4.40)

In the above expansion there is no term of the first order. This is because the partition
function Z is invariant under the charge conjugation and, thus, Z(µ) = Z(−µ) [48, 160].
The coefficient κ in Eq. (4.40) is identical to the curvature of the phase diagram up to the
factor 1/2. As already mentioned above, κ is used in order to compare outcome of lattice
QCD simulations at finite chemical potential which use different techniques to overcome
the sign problem. The value of κ was measured, e.g., to 0.0032(1) in [162] and to 0.500(54)
in [163]. These results differ quite strongly since they depend on the specific setup of each
simulation. However, they can give us a feeling of the order of magnitude of κ. In any
case, the curvature of the QCD phase boundary seems to be very small. In our particular
calculations we also observe a strong dependence of κ on the specific configuration of the
model: If we consider small values of λUV

ψ outside of the locking window, i.e., we consider
the region with Tχ < Td in Fig. 4.5, we can show analytically that κ = 27/(2π2) ≈ 1.368.
It follows from Eq. (4.38). This value is clearly too large compared to the lattice outcome.
On the other hand, once we consider the region in the parameter space where locking
mechanism enforces Tχ ≈ Td, the curvature vanishes completely, κ = 0. At this point
we want to mention again that our input for 〈A0〉 was calculated neglecting any back-
reaction of the quarks on the gauge sector. Including such back-reactions would lead to
decrease of Td with increasing µ. Thus, once we consider the locking window, it would
mean that the curvature of the chiral phase transition is determined by the curvature of
the deconfinement phase transition. This statement would then also be valid for some
interval of finite µ.
To complete this section, we recapitulate a comment from [69] which relates our present

study with assumptions typically made in PNJL/PQM studies. In contrast to our present
work and studies in [69, 70], in usual PNJL/PQM calculations one assumes

P [〈A0〉] = 〈P [A0]〉 and trF [L [〈A0〉]n] = Nc

(P [〈A0〉]
Nc

)n
, (4.41)

see, e.g., [126]. These assumptions also implies that Nn
c trF [L [〈A0〉]n] = Nc 〈P [A0]〉n.

Consequently, a trace of any power of the Polyakov variable should vanish in the confined
phase in this approximation. This statement is independent of number of colors. Along
the lines of our discussion of Eq. (4.27) for Nc → ∞, one can easily show that this
approximation leads to Tχ ≥ Td for any Nc. As we have shown above, such a behavior
is associated with the limit Nc →∞ if one does not use the approximation in Eq. (4.41).
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Hence, we can conclude that the assumptions usually used in PNJL/PQM studies are
related to large-Nc approximation in the coupling of the matter and the gauge sector.
Following Ref. [69], we want to emphasize that this kind of large-Nc approximation should
not be confused with large-Nc approximation sometimes used in the matter sector of
PNJL/PQM models, such as neglecting pion fluctuations. In any case, from the point of
view of our present analysis, the approximation P [〈A0〉] = 〈P [A0]〉 affects the dynamics
near the finite-temperature and finite-chemical-potential phase boundary and may also
affect the PNJL/PQM-model predictions for the phase diagram spanned by T and µ.
Up to now, the initial value λUV

ψ of the 4-quark coupling was considered as a free
parameter in our calculations. In full QCD, of course, λUV

ψ is not arbitrary and is generated
by gluodynamics. Therefore, it can be related to the strong coupling α, see, e.g., [72, 73,
154, 123] and our study in Chap. 5. On the other hand, α determines all low-energy
observables of QCD. Thus, in model calculations one usually fixes the value of λUV

ψ in
such a way that one reproduces the physical low-energy observables, such as the pion decay
constant, quark and boson masses. In our present study, however, we have employed the
point-like-limit approximation and, therefore, we cannot access the low-energy observables.
We solve this problem in the next section using the partial bosonization of action (4.5),
i.e. we introduce a version of the Polyakov-loop extended quark-meson (PQM) model.

4.2 polyakov-loop extended qm model

4.2.1 PQM-Model Lagrangian

In previous section we have considered a low-energy model of QCD in a purely fermionic
language. In such a model the spontaneous chiral symmetry breaking is associated with
divergence in coupling λψ. As already mentioned, this diverging behavior is an artifact of
the point-like approximation and does not enable to get access to the physical low-energy
observables. Additionally, Tχ calculated using this approach provides only an upper bound
for the critical temperature of the chiral phase transition since bosonic fluctuations, which
tend to restore chiral symmetry, are not included. These facts indicate the necessity to
resolve, at least partially, the momentum dependence of λψ.
To this end, we employ the convenient technique of partial bosonization by means of

Hubbard-Stratonovich transformation [164, 165]. The basic idea of this transformation is
to introduce new auxiliary fields ϕ̄ = (σ, ~π)T into the generating functional of the model.
These fields are assumed to be bound states of quarks:

σ ∼ (ψ̄ψ)
~π ∼ (ψ̄~τγ5ψ) ,

(4.42)

and, consequently, do not carry any internal charge, i.e., flavor and color. In order to
(partially) resolve the momentum dependence of 4-quark coupling, i.e., to make σ and ~π
to mediators of interaction between quarks, we have to make these new fields dynamical.
This is achieved by introduction of corresponding kinetic term ∼ (∂µϕ̄)2. Eventually, we
obtain the following effective action:

Γk =
∫

d4x
{
ψ̄(iZψ /∂ + Zψ ḡγ0 〈A0〉+ iγ0µ)ψ

+1
2Zϕ(∂µϕ̄)2 + ih̄ψ̄(σ + i~τ · ~πγ5)ψ + 1

2m̄
2ϕ̄2 + 1

8 λ̄ϕϕ̄
4
}

,
(4.43)
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where h̄ is a real-valued Yukawa coupling, Zψ and Zϕ are the wave-function renormal-
izations of quarks and bosons correspondingly, m̄ is a bosonic mass parameter and λ̄ϕ
represents a 4-boson interaction. All this quantities are, in general, scale dependent. In
order to insure that the effective action (4.43) represents the bosonized version of the
action in Eq. (4.5) at the initial UV scale ΛUV, one has to impose the following boundary
conditions:

lim
k→ΛUV

Zϕ = 0 ,

lim
k→ΛUV

Zψ = 1 ,

lim
k→ΛUV

λ̄ϕ = 0 ,

(4.44)

and the identity

λ̄ψ = h̄2

m̄2 . (4.45)

The term ∼ ϕ̄4 is not naturally resulting from Hubbard-Stratonovich transformation but
was introduced by hand. The introduction of this term is essential for a study of the chiral
phase transition since the coupling λ̄ϕ is responsible for the mass difference between the
σ and the pions. In the purely fermionic picture the term ∼ ϕ̄4 corresponds to a 8-quark
interaction. The last boundary condition in Eq. (4.44) insures that we do not have to
adjust the parameter λ̄ϕ by hand, i.e., it is not an additional parameter of the model.
Thus, λ̄ϕ is dynamically generated in the RG flow, see, e.g., [25, 117, 123, 150, 151].

In general, one can introduce bosonic interactions up to any order, ϕ̄2n. A bosonic term
of n-th order corresponds then to a fermionic interaction between 4n quarks. Such a proce-
dure is equivalent to the introduction of a general potential U(ϕ̄2) for bosonic interactions
which is then expanded up to desired order in ϕ̄2 around the particular minimum of U(ϕ̄2).
Our ansatz for the effective action in Eq. (4.43) corresponds to a potential U(ϕ̄2) expanded
around zero up to the second order. In the regime of broken chiral symmetry, however,
this ansatz is not valid anymore: once chiral symmetry is broken, the quark condensate
〈ψ̄ψ〉 appears and, therefore, we observe a finite expectation value of the field ϕ̄ in the
direction of σ:

〈ψ̄ψ〉 6= 0 → ϕ̄0 = 〈ϕ̄〉 = (σ0, 0)T with σ0 6= 0 . (4.46)

Then, the minimum of the potential U(ϕ̄2) is given by finite ϕ̄0 and the appropriate
second-order expansion reads

U(ϕ̄2) = λ̄ϕ
8 (ϕ̄2 − ϕ̄2

0)2 . (4.47)

Connecting this expansion with our ansatz for U(ϕ̄2) in the chirally symmetric regime,
one finds

ϕ̄2
0 = −2m̄2

λ̄ϕ
. (4.48)

From this result it is clear that the coupling m̄2 becomes negative in the chirally broken
regime and we can formulate a criterion for the chiral symmetry breaking/restoration in
the RG flow: if m̄2 becomes zero, then the chiral phase transition takes place. Because of
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Eq. (4.45), this condition is equivalent to λ̄ψ → ∞ which triggers the onset of the chiral
symmetry breaking in the purely fermionic description.
To summarize, throughout this work we use the following ansatz for the bosonic inter-

actions:

U(ϕ̄2) =

1
2m̄

2ϕ̄2 + 1
8 λ̄ϕϕ̄

4 in the chirally symmetric regime,
1
8 λ̄ϕ(ϕ̄2 − ϕ̄2

0)2 in the chirally broken regime.
(4.49)

At this point we would like to add a comment about the number of free parameters in our
study. Besides the input for the background field 〈A0〉 and the UV cutoff ΛUV, we had only
one free model parameter in our study of PNJL model, namely, λ̄UV

ψ . In the bosonized
picture, λ̄UV

ψ corresponds to h̄2
UV/m̄

2
UV and one could suggest that our particular model is

completely determined by the choice of the value for this ratio. However, in 4 dimensions
the Yukawa coupling is marginal and serves as an additional input parameter [151, 166].
Indeed, the ratio of low-energy observables, e.g., the ratio of the σ-mass and the constituent
quark mass, depends on both h̄UV and m̄UV [166]. So, we treat the Yukawa coupling and
the mass parameter for bosons as independent input parameters at the UV scale of the
PQM model.

4.2.2 Flow Equations for PQM Model

Now, let us discuss the RG flows of couplings in PQM model. To this end, we introduce
the dimensionless couplings:

m2 = m̄2

Zϕk2 ,

λϕ = λ̄ϕ
Z2
ϕ

,

h = h̄

Z
1/2
ϕ Zψ

.

(4.50)

In our study, we neglect the running of the fermionic and bosonic wave-function renor-
malizations, i.e., we use Zψ = 1 and Zϕ = 1. This approximation is justified by studies
in Refs. [117, 123, 150] where the corresponding anomalous dimensions ηψ and ηϕ have
been found to be small over a wide range of momentum scales. The negligence of the
k-dependence of Zψ can also be motivated by the following argument: The RG flow of
Zψ only includes contributions from 1PI diagrams with at least one internal bosonic and
one internal fermionic line. In the chirally symmetric regime bosons are heavy and in the
regime with broken symmetry the quarks acquire a large mass. Therefore, all contribu-
tions to the flow of Zψ are suppressed in both these regimes. However, we should mention
that in the chiral limit and close to the phase boundary both the fermions and the mesons
become massless. Hence, a study aiming at quantitatively correct description of the phase
transition needs to include the RG running of Zψ. For details, see, e.g., Refs. [117, 123, 150].
For our qualitative study of locking mechanism, however, the approximation Zψ = 1 is
reasonable.
In contrast to negligence of the running of Zψ, setting Zϕ = 1 needs a bit more discussion.

This approximation violates the first boundary condition in Eq. (4.44) and results in the
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fact that the model depends on two parameters instead of one. However, if we compare
our numerical results at µ = 0 with results in [70] where the running of mesonic wave-
function renormalization was taken into account, we observe only an almost negligible
impact of finite ηϕ on the quantitative results for the critical temperature Tχ. Thus, we
conclude that the approximation Zϕ = 1 seems to be reasonable for an explorative study
of the locking mechanism. Nonetheless, we should keep in mind that the running of Zϕ is
important for precise calculations, especially for computation of critical exponents.

Flow Equations in the Chirally Symmetric Regime

To calculate the flow equations for couplings in chirally symmetric regime, we follow the
same strategy as in our calculations in purely fermionic picture in Sec. 4.1.3. The field-
independent part of the inverse dressed propagator

( −→
δ

δΦT Γk[Φ]
←−
δ
δΦ +Rk

)
is calculated to:

Pk =
(
Pk,bos. 0

0 Pk,ferm.

)
(2π)4δ(4)(p− p′) , (4.51)

with bosonic contribution

Pk,bos. =
((
p2

0 + (1 + rB(y))~p 2
)

+ m̄2
)
14 , (4.52)

and fermionic part

Pk,ferm. =
(

0 −
(
/~pT (1 + rψ(y)) + γT0 α+

)
−(/~p(1 + rψ(y)) + γ0 α−) 0

)
. (4.53)

In analogy to Sec. 4.1.3, we have employed here the linear cutoff functions for both fermions
and bosons, see Eq. (E.1) in App. E, and y = ~p 2/k2. The fermionic contribution Pk,ferm. is
identical to our result in Eq. (4.12) for purely fermionic action, i.e., α± = p0±(ḡ 〈A0〉+iµ).
Since Pk is a diagonal block matrix, we can calculate P−1

k inverting bosonic and fermionic
contributions separately. The inversion of Pk,bos. is trivial and for the inversion of Pk,ferm.
we proceed along the lines of Sec. 4.1.3.

Let us now consider the field-dependent part of
( −→

δ
δΦT Γk[Φ]

←−
δ
δΦ +Rk

)
. It reads

Fk =


λ̄ϕ
2

(
ϕ2
14 + 2ϕϕT

) ih̄ψ̄ −ih̄ψT
ih̄ψ̄(iγ5τi) −ih̄ψT (iγ5τi)T

−ih̄ψ̄T −ih̄(iγ5τj)T ψ̄T
ih̄ψ ih̄(iγ5τj)ψ

0 −ih̄(σ + iγ5~π · ~τ)T
ih̄(σ + iγ5~π · ~τ)i 0


× (2π)4δ(4)(p− p′) .

(4.54)

The indices i and j label column entries of the vector ~τ and row entries of the vector ~τ T
respectively. Keep in mind that τTj denote the transposition of the Pauli matrices itself.
Already at this point one can see that in the expansion (3.31) following contributions are
relevant: first and second order terms contribute to ∂tm̄2, second and fourth order terms
to ∂tλ̄ϕ and the third order term to ∂th̄. In the language of 1PI Feynman diagrams these
contributions then reads:

∂tm̄
2 ∼ + , (4.55)
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∂tλ̄ϕ ∼ + , (4.56)

∂th̄ ∼ + , (4.57)

where quarks are denoted by full and mesons by dashed lines. The double lines label
the corresponding fully dressed propagators and the big white circle with a cross stands
for ∂tRk. The small circles denote vertices: the black one corresponds to the Yukawa
interaction ∼ h̄ and the white one the to 4-meson interaction ∼ λ̄ϕ.
Evaluating these diagrams, we find following flow equations for dimensionless couplings:

∂tm
2 = −2m2 − 12v4l

(B)
1 (τ,m2)λϕ + 32v4

Nc∑
l=1

l
(F)
1 (τ, µ̃− i2πτνl|φ|, 0)h2 , (4.58)

∂tλϕ = 24v4l
(B)
2 (τ,m2)λ2

ϕ − 64v4

Nc∑
l=1

l
(F)
2 (τ, µ̃− i2πτνl|φ|, 0)h4 , (4.59)

∂th
2 = − 16

Nc
v4

Nc∑
l=1

l
(FB)
1,1 (τ, µ̃− i2πτνl|φ|, 0,m2)h4 , (4.60)

where the corresponding threshold functions l(B)
1 (τ,m2), l(B)

2 (τ,m2), l(F)
1 (τ, µ̃−i2πτνl|φ|, 0),

l
(F)
2 (τ, µ̃− i2πτνl|φ|, 0) and l(FB)

1,1 (τ, µ̃− i2πτνl|φ|, 0,m2) are defined in App. E. Note that
the zero in the argument of the threshold functions corresponds to ω1 = mq = 0. This is
because quarks are massless in the chirally symmetric regime.

Flow Equations in the Regime of Spontaneously Broken Chiral Symmetry

As already described above, in the chirally broken regime we use

U(ϕ̄2) = λ̄ϕ
8 (ϕ̄2 − ϕ̄2

0)2 , (4.61)

as parametrization of the mesonic potential. Thus, we calculate the RG flow equations
for λ̄ϕ and ϕ̄2

0. To this end, we follow a different strategy as in our calculations for
the chirally symmetric regime: In the beginning we do not specify a particular form
of the potential and calculate the RG flow ∂tU(ϕ̄2) starting from the (non-expanded)
Wetterich flow equation (3.28). After that, we expand the left- and right-hand side of the
Wetterich equation around the ground state ϕ̄0 and compare the corresponding expansion
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coefficients on both sides9. This approach implies that we have to invert the matrix( −→
δ

δΦT Γk[Φ]
←−
δ
δΦ +Rk

)
. Besides the subtleties appearing due to the presence of finite 〈A0〉,

one should keep in mind that the mesonic mass matrix is no longer isotropic. Because of
the finite expectation value ϕ̄0, the original O(4) symmetry of the bosonic sector is broken
down to O(3) symmetry and we have to distinct in the mass matrix between the massive
σ-direction and the massless ~π-direction. However, these directions are orthogonal and we
can split the mesonic mass matrix using the projectors

M̄2
ϕ =

−→
δ

δϕ̄T
U [ϕ̄2]

←−
δ

δϕ̄
= m̄2

σ(ϕ̄2)P ‖ϕ + m̄2
π(ϕ̄2)P⊥ϕ , (4.62)

where P ‖ϕ and P⊥ϕ are longitudinal and transversal projector operators defined as

P ‖ϕ = ϕ̄iϕ̄j
ϕ̄2 and P⊥ϕ = δij − P ‖ϕ ,

with
(
P ‖ϕ

)2
= P ‖ϕ ,

(
P⊥ϕ

)2
= P⊥ϕ and P ‖ϕP

⊥
ϕ = 0 .

(4.63)

Hence, m̄2
σ(ϕ̄2) and m̄2

π(ϕ̄2) denote the eigenvalues of the mass matrix and are given by

m̄2
σ(ϕ̄2) = 2 ∂ϕ̄2U(ϕ̄2) + 4 ϕ̄2∂ 2

ϕ̄2U(ϕ̄2) , (4.64)

and

m̄2
π(ϕ̄2) = 2 ∂ϕ̄2U(ϕ̄2) . (4.65)

Note that these eigenvalues are functions of ϕ̄2 and provides mesonic masses if we evaluate
them at the ground state

m̄2
σ(ϕ̄2)

∣∣∣
ϕ̄2

0
= m̄2

σ = λ̄ϕϕ̄
2
0 ,

m̄2
π(ϕ̄2)

∣∣∣
ϕ̄2

0
= m̄2

π = 0 .
(4.66)

Using above decomposition, we are now able to calculate the flow of the potential U(ϕ̄2):

∂tU(ϕ̄2) =2v4k
4
[
lB0 (τ,m2

σ(ϕ̄2)) + 3lB0 (τ,m2
π(ϕ̄2))

− 8
Nc∑
l=1

l
(F)
0 (τ, µ̃− i2πτνl|φ|,m2

q(ϕ̄2))
]
,

(4.67)

where the threshold functions lB0 (τ,m2
σ/π(ϕ̄2)) and l(F)

0 (τ, µ̃−i2πτνl|φ|,m2
q(ϕ̄2)) are defined

in App. E. In the above equation we have introduced dimensionless mass parameters:

m2
i (ϕ̄2) = m̄2

i (ϕ̄2)
k2 . (4.68)

The constituent quark mass parameter m̄q(ϕ̄2) is given in our model by m̄q(ϕ̄2) = h̄ϕ̄.
This can be easily seen from the classical equation of motion for fermions calculated using
the action in Eq. (4.43). As a consequence, the constituent quark mass is

m̄2
q(ϕ̄2)

∣∣∣
ϕ̄2

0
= m̄2

q = h̄2ϕ̄2
0 . (4.69)

9 This strategy can also be applied to the chirally symmetric regime whereat we should expand around
zero. The resulting flow equations are then identical to those obtained by using expanded version of the
Wetterich equation (3.31).
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On the other hand, the Goldberger-Treiman relation, Eq. (2.33), states that m̄q = h̄fπ.
Hence, we can identify the expectation value ϕ̄0 with pion decay constant which is an
measurable quantity.
Now, we can expand the Eq. (4.67) in ϕ̄2 around ϕ̄2

0 on both left- and right-hand side.
Through a comparison of the expansion coefficients we obtain the following flow equations:

∂tϕ
2
0 =− 2ϕ2

0 + 12v4l
B
1 (τ,m2

σ) + 12v4l
B
1 (τ,m2

π)

− 64v4

Nc∑
l=1

l
(F)
1 (τ, µ̃− i2πτνl|φ|,m2

q)
h2

λϕ
,

(4.70)

∂tλϕ = 18v4l
B
2 (τ,m2

σ)λ2
ϕ + 6lB2 (τ,m2

π)λ2
ϕ − 64v4

Nc∑
l=1

l
(F)
2 (τ, µ̃− i2πτνl|φ|,m2

q)h4 ,

(4.71)

where we have introduced the dimensionless pion decay constant ϕ0 = ϕ̄0/k.
Finally, let us discuss the flow equation for the Yukawa coupling h̄ in the regime of

broken chiral symmetry. In general, we can proceed in the same way as in our calculations
for the restored chiral symmetry. However, applying this procedure one has to be cautious.
Proceeding in exactly the same way as in the previous subsection we would find that due
to the finite expectation value of the field ϕ̄, additional contributions to ∂th̄ arise

∂th̄ ∼ +

+ +

+ + ,

(4.72)

where the cross denotes ϕ̄0. The new diagrams in the second and third line, however,
describe the scattering processes between three mesons and two quarks. This observation
implies that a two-quark multi-meson interaction should be taken into account in order
to obtain the proper flow of the Yukawa coupling. One can do it by introducing a field-
dependent Yukawa coupling and expanding it around the particular value of ϕ̄0 [167]

h̄(ϕ̄2) =
Nh∑
n=0

h̄n
n! (ϕ̄2 − ϕ̄2

0)n . (4.73)

Thereby, the expansion coefficients h̄n are considered as scale-dependent couplings. In
this expansion, the lowest-order coupling h̄0 corresponds to the coupling h̄ used in our



48 models

truncation and the choice Nh = 0 would recover our ansatz for the Yukawa interaction in
Eq. (4.43). Considering this more general ansatz for the Yukawa-type interactions, one
can see that the new diagrams in Eq. (4.72) contribute to the flow of the coupling h̄1. As
a consequence, in our particular truncation with only the lowest order of h̄(ϕ̄2) we should
drop these new contributions. Therefore, we obtain

∂th
2 =− 8

Nc
v4

Nc∑
l=1

[
3 l(FB)

1,1 (τ, µ̃− i2πτνl|φ|,m2
π,m

2
q)

− l(FB)
1,1 (τ, µ̃− i2πτνl|φ|,m2

σ,m
2
q)
]
h4 .

(4.74)

At this point we want to mention that even though our particular truncation covers only
the lowest order of the general field-dependent Yukawa coupling, it is already sufficient for
qualitative studies, such the present one. In Ref. [167] the authors have found that the in-
clusion of higher two-quark multi-meson interactions leads to only quantitative corrections
and the results converge rapidly if one increases the order of the expansion.
In our numerical calculations we use the flow equations for the chirally symmetric regime,

Eqs. (4.58)−(4.60), at high momentum scales where the chiral symmetry is assumed to
be restored. As we will see in Sec. 4.2.3, integrating out fluctuations leads to a decrease
of the bosonic mass parameter m in the RG-flow towards smaller scales. At sufficiently
small temperatures this parameter becomes zero at some critical momentum scale kcr.
This behavior indicates the onset of the chiral symmetry breaking in the RG flow, and is
associated with a diverging 4-fermion coupling λ̄ψ, see our discussion in Sec. 4.1.2. Thus,
in order to integrate out fluctuations on the scales k < kcr, we use the flow equations
for the regime of spontaneously broken chiral symmetry, Eqs. (4.70), (4.71) and (4.74).
At this point we have to mention that the appearance of the onset of chiral symmetry
breaking at the critical scale kcr does not necessarily mean that chiral symmetry is broken
in the infrared, i.e., for k → 0. This is because the mesonic fluctuations tend to restore
the symmetry and, thus, tend to reduce the value of the pion decay constant in the RG
flow in the chirally broken regime. Therefore, it is possible that for k < kcr the pion decay
constant becomes zero again and the symmetry is restored in the RG flow, see also the
right plot in Fig. 4.8 in Sec. 4.2.3. This fact implies that the appearance of the critical
scale kcr is a necessary but not sufficient condition for the chiral symmetry breaking [151].
Thus, our results from the purely fermionic calculation in the point-like limit, Sec. 4.1.4,
should be considered as only an upper boundary for the critical temperature Tχ.

Flow Equations with Explicit Chiral Symmetry Breaking

In our above calculations we have considered the chiral limit, i.e., we have assumed that
the current quarks are massless. In real QCD, however, the quark masses are finite, albeit
small. This leads to an explicit breaking of the chiral symmetry. However, since the quark
masses are rather small, the effect of explicit symmetry breaking is rather weak and chiral
symmetry can be considered as an approximate symmetry of QCD.
To introduce a (small) explicit symmetry breaking in PQM model one has to slightly

deform the potential U(ϕ̄2). To this end, one introduce a new term c̄σ with c̄ < 0
which ensures that the minimum of potential and, consequently, the expectation value
ϕ̄0 are finite at any scale. Using the definition of σ within the Hubbard-Stratonovich
transformation, one can easily see that the term c̄σ corresponds to the finite quark mass
in the PQM action in Eq. (4.43). The introduction of this new term also impacts the
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expansion of the potential U(ϕ̄2) in Eq. (4.61). In order to ensure that we expand around
the true minimum, the potential expansion should be given by

U(ϕ̄2) = − c̄

2ϕ̄0
(ϕ̄2 − ϕ̄2

0) + λ̄ϕ
8 (ϕ̄2 − ϕ̄2

0)2 + c̄σ . (4.75)

Thereby, the parameter c̄ is a scale independent quantity since it appears as a prefactor
of a term linear in the bosonic field σ. Further, this new expansion of U(ϕ̄2) does not
influence the flow equations for couplings λ̄ϕ and h̄. Only the RG flow of ϕ̄2

0 becomes
slightly modified

∂tϕ
2
0 =− 2ϕ2

0 + 12v4l
B
1 (τ,m2

σ) λϕ
λϕ − c/ϕ3

0
+ 12v4l

B
1 (τ,m2

π) λϕ
λϕ − c/ϕ3

0

− 64v4

Nc∑
l=1

l
(F)
1 (τ, µ̃− i2πτνl|φ|,m2

q)
h2

λϕ − c/ϕ3
0
,

(4.76)

where we have introduced the dimensionless explicit symmetry breaking parameter c = c̄/k3.
The definitions of the eigenvalues of the bosonic mass matrix, Eqs. (4.64) and (4.65), do
not change. However, if we evaluate them at the ground state, we obtain different bosonic
masses compared to the chiral limit

m̄2
σ = m̄2

σ(ϕ̄2)
∣∣∣
ϕ̄2

0
= λ̄ϕϕ̄

2
0 −

c̄

ϕ̄0
,

m̄2
π = m̄2

π(ϕ̄2)
∣∣∣
ϕ̄2

0
= − c̄

ϕ̄0
.

(4.77)

Note, especially, that the pions become massive. Setting c to zero, we recover our previous
flow equations for the case of spontaneously broken chiral symmetry.
Since including explicit symmetry breaking means that the pion decay constant ϕ̄0 is

finite at any scale, we only have to use the flow equations (4.76), (4.71) and (4.74) in our
corresponding numerical calculations.

4.2.3 Numerical Results

In this section we present our numerical results for the phase diagram of the PQM model
spanned by the temperature T and the pion decay constant fπ. We consider both the
chiral limit and a model with finite explicit symmetry breaking. We also investigate the
impact of the finite chemical potential on the phase diagram.
As first, we have to specify the parameters of the model. In present calculations we have

used ΛUV = 1 GeV as the UV cutoff, as we have also done it in our considerations of the
PNJL model. The next step is to fix the initial values of the dimensionless couplings at
k = ΛUV. Thereby, we should chose the initial conditions in such a way that for T = µ = 0
our calculations reproduce the low-energy observables in the IR limit k → 0. In the case of
the chiral limit we should fix the bosonic mass parameter m2

UV and the Yukawa coupling
h2

UV to obtain the correct values of the pion decay constant fπ and the constituent quark
mass m̄q. In the presence of the finite explicit symmetry breaking we additionally have to
reproduce the correct pion mass m̄π. To this end, we fix the initial values of ϕ0,UV, h2

UV
and c. Please note that c remains constant in the RG flow and the coupling λϕ is chosen
to be zero at k = ΛUV in order to connect our current PQM ansatz to the ansatz for the
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UV parameters low-energy observables
chiral limit m2

UV = 0.445 fπ = 87 MeV
h2

UV = 5.889 m̄q = 280 MeV
explicit symmetry breaking ϕ0,UV = 3.541 · 10−3 fπ = 93 MeV

h2
UV = 6.671 m̄q = 300 MeV

c = −1.771092 · 10−3 m̄π = 138 MeV

Table 4.2: Summary of the initial conditions for dimensionless couplings reproducing correct low-
energy observables for T = µ = 0. The UV scale was chosen to ΛUV = 1 GeV. In these calculations
we consider a model in the chiral limit (upper part of the tabel) and a model with finite explicit
symmetry breaking (lower part of the tabel).

PNJL model at the UV scale. We also mention that in the chiral limit the value of the pion
decay constant and the value of the constituent quark mass are slightly different compared
to the values measured in experiments [80, 81]10. Additionally, the pion mass is zero in
the chiral limit. Our choice of the initial couplings and the corresponding low-energy
observables for both the chiral limit and the model with explicit symmetry breaking are
presented in the Tab. 4.2. For completeness we mention that in the presence of finite c we
have found the σ-mass to be m̄σ = 467.1 MeV. This result is in accordance with the value
given in Ref. [10].11

In order to plot a phase diagram spanned by T and fπ, we have to consider different
sets of initial conditions compared to the values given in Tab. 4.2. To this end, we vary
the starting value of the parameter m2

UV in our chiral limit calculations and the starting
value of ϕ0,UV for the case of finite explicit symmetry breaking. Thereby, we keep other
initial conditions fixed. Please note that such variations impact not only the value of
the pion decay constant fπ but all low-energy observables. Our results for Nc = 3 and
Nf = 2 and different values of the chemical potential µ are summarized in the left part
of Fig. 4.7. The upper left plot corresponds to the case of the chiral limit and the lower
left plot to a model with explicit chiral symmetry breaking. In both these plots the x-axis
represents different values of the pion decay constant fπ and the y-axis the corresponding
relation of the chiral phase transition temperature to the temperature of the deconfinement
phase transition, Tχ/Td. To implement the deconfinement phase transition numerically, we
have again employed the data from [146] as input for the coordinates of the ground state
〈A0〉. The vertical lines in the left plots of Fig. 4.7 denote the corresponding “physical”
values of the pion decay constant. Note once again that fπ = 87 MeV in the chiral limit
and fπ = 93 MeV in the real QCD with finite quark masses. Please also note that we
do not present our results for the shape of the phase boundary for very small values of
fπ. The reason for that is the following: At finite but not too small chemical potential
µc < µ . m̄q

12, the chiral phase transition turns out to be of the first order. This type of
phase transition corresponds to the appearance of two minimums in the potential U(ϕ̄2).

10 The value of the pion decay constant is measured using π− → µ−ν̄µ and π− → µ−ν̄µγ decays and amounts
to fπ = (92.21± 0.01± 0.14) MeV [79]. The errors are due to the uncertainty of |Vud| in the CKM-matrix
and due to the higher-order corrections.

11 In the real world, the σ-meson is not a particle but a broad resonance in the mesonic spectrum which is some-
times also called f0(500). The mass corresponding to this resonance is constrained to m = 400− 550 MeV.

12 µc denotes the the value of the chemical potential corresponding to the critical endpoint which separates
the regime of the second order phase transition (or crossover) and the regime of the first order phase
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Figure 4.7: On the left: Tχ/Td as a function of fπ for a PQM model in the chiral limit (upper plot)
and with finite explicit symmetry breaking (lower plot) at selected values of chemical potential µ.
In both cases we observe following regimes in the behavior of Tχ (from small to large fπ): Tχ < Td,
Tχ ≈ Td and Tχ > Td. The impact of finite µ is basically a shift of the phase diagram for µ = 0
to larger values in the parameter space. The vertical lines denote fπ = 87 MeV (chiral limit) and
fπ = 93 MeV (explicit symmetry breaking) which correspond to the physical values of the pion
decay constant in each case. The dots stand for Tχ/Td at physical fπ for different µ. On the
right: The phase diagrams spanned by µ and Tχ for the physical values of fπ (on the top: chiral
limit, on the bottom: finite explicit symmetry breaking). Our results are denoted by black curves.
For comparison we also plot the phase diagrams in the case of 〈A0〉 = 0 (red line). Purple line
represents the deconfinement transition temperature of our input Td ≈ 290 MeV [146].

In our particular calculations, however, we use the second order expansion in ϕ̄2 around
ϕ̄2

0 as an ansatz for U(ϕ̄2). Thus, we cannot properly capture the formation of the second
minimum. Since very small values of fπ are associated with very small constituent quark
mass m̄q, this effect already appears at relatively small values of µ and our formalism is
not applicable to the corresponding region in the phase diagram.
Now, let us discuss the shape of the phase diagrams in the left panel of Fig. 4.7. We

basically observe very similar results as in our calculations in purely fermionic picture in
Sec. 4.1.3. It means that we again observe three different modes in the behavior of Tχ
compared to the deconfinement critical temperature Td: for small values of pion decay
constant we have found that Tχ < Td, for large fπ that Tχ > Td and for intermediate
values of fπ we observe Tχ ≈ Td. Thus, also in the bosonized picture we have found a
window in parameter space given by fπ where the chiral phase transition is locked in by

transition in the phase diagram of QCD. For this particular discussion this point is not of interest. In
Secs. 5.6 and 5.7 we present phase diagrams spanned by T and µ which include the critical endpoint.
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chiral limit, 〈A0〉 = 0 chiral limit, 〈A0〉 6= 0 c 6= 0, 〈A0〉 = 0 c 6= 0, 〈A0〉 6= 0
κ 0.125 0.394 0.147 0

Table 4.3: Our results for κ for different (P)QM models.

the gauge dynamics. Thereby, the inclusion of the finite chemical potential shifts the phase
diagram to the larger values in the parameter space and almost does not change the size
of the locking window. However, in contrast to our calculations in Sec. 4.1.3, we are now
able to identify the “physical” point in the parameter space. Considering a model in the
chiral limit, we find that the physical value of fπ = 87 MeV corresponds to a region where
Tχ < Td. In contrast, if we include the finite explicit symmetry breaking, we find that the
point in the parameter space corresponding to the value of fπ = 93 MeV is located inside
of the locking window, at least as long as µ . 170 MeV.
As next, we plot the phase diagrams spanned by µ and Tχ for the physical values of

the pion decay constant. Our results are shown in the right part of Fig. 4.7. The upper
plot corresponds to the chiral limit case and the lower to a model with finite explicit
symmetry breaking. In both these plots the black lines denote our numerical results. For
comparison we also plot the deconfinement phase transition temperature Td ≈ 290 MeV
(purple dashed line) and colored dots which represent our results in the (Tχ/Td, fπ)-plane
at the physical value of fπ. Further, we calculate the phase transition line also in the
absence of the background field 〈A0〉 (QM model). This phase boundary is plotted as a
red line. First, we consider the chiral limit (upper right plot in Fig. 4.7). One observes that
the chiral phase transition boundary is decoupled from the deconfinement phase transition
and Tχ < Td. However, it does not mean that the gauge dynamics do not influence the
chiral symmetry breaking. And indeed, compared to the case of vanishing background field
〈A0〉, our calculations with finite 〈A0〉 lead to larger chiral phase transition temperature
at all considered values of µ. Thus, even though we are out of the locking window, the
confining dynamics tend to push the system into the phase with broken chiral symmetry.
A different situation is realized if we consider the explicit symmetry breaking (lower right
plot in Fig. 4.7). Here, the physical value of fπ lies in the locking region and we observe
Tχ ≈ Td for µ . 170 MeV. A model in the absence of 〈A0〉 produces also in the case of the
finite explicit symmetry breaking considerably smaller Tχ.
Our results in the right part of Fig. 4.7 can also be used in order to calculate the

curvature κ of the phase boundary, Eq. (4.40). To do this, we fit our data for the transition
lines to an even polynomial of sixth degree. Our results are summarized in Tab. 4.3.
In general, we observe that our (P)QM calculations always reproduce quite small κ as
expected from Lattice QCD, e.g., κ = 0.0032(1) in [162] and κ = 0.500(54) in [163].
Especially in the case of finite explicit symmetry breaking and in the presence of the
background field 〈A0〉 the curvature of the phase boundary is exactly zero. It is because
in this case the chiral phase transition is locked in by the gauge dynamics and, thus, the
curvature of the chiral phase transition is given by the curvature of the deconfinement
phase boundary. However, we should mention that a constant Td(µ) is an artifact of
the input for 〈A0〉 where back-reactions from the matter sector on the gauge sector have
been neglected. If such back-reactions are included, we expect to observe a finite κ for the
deconfinement phase transition. Assuming that in this situation the chiral phase transition
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Figure 4.8: Here we present our results concerning the order parameter ϕ̄0 at µ = 0 for a model
in the chiral limit. On the left we plot the order parameter normalized by the physical value of
the pion decay constant as a function of T/Tχ. We consider the model with finite and vanishing
background field 〈A0〉. In both cases we observe a second order chiral phase transition. The
presence of finite 〈A0〉 leads to higher critical temperature. On the right we present the flow of
ϕ̄0(k)/fπ at different temperatures. From this plot one can clearly see that the inclusion of bosonic
fluctuations can lead to chiral symmetry restoration at small momentum scales even if the chiral
symmetry was already broken in the RG-flow [151].

is still locked in by the gauge dynamics, the curvature of the chiral phase boundary would
be the same as κ of the deconfinement transition line.
Further, we observe that the values of κ in the chiral limit and in the case of explicit

symmetry breaking are very similar as long as the background field 〈A0〉 vanishes. In
contrast, in the chiral limit the curvature seems to increase if one includes 〈A0〉. This is
because the confining dynamics favor a ground state with broken chiral symmetry. This
effect is opposite to the restoration of the chiral symmetry caused by thermal fluctuations
at finite T . Therefore, as already mentioned above, for 〈A0〉 6= 0 we observe larger critical
temperature Tχ. This, however, also means that in the region of (T, fπ)-phase diagram
where Tχ < Td, the slope of the phase boundary becomes steeper compared to the case
of vanishing 〈A0〉, consider Fig. 4.7. Consequently, if one increases the chemical potential
and the phase diagram is shifted to larger values of fπ, the steeper slope leads to a larger
curvature of the transition line in (T, µ)-plane.
Before we conclude this chapter, let us discuss some technical details of our numerical

calculations with the (P)QM model. In Fig. 4.7 we have used different definitions of the
chiral phase transition temperature Tχ for the case of the chiral limit and for the case of
finite explicit symmetry breaking. While in the chiral limit the chirally restored phase is
uniquely defined by vanishing expectation value ϕ̄0 at k → 0, in a model with finite explicit
symmetry breaking there is no real chiral phase transition and ϕ̄0 is always larger than
zero. To define Tχ for this so-called crossover behavior, we have to look for an alternative
procedure. Before we discuss this issue, let us discuss the behavior of the order parameter
ϕ̄0 in the case of the chiral limit. In Fig. 4.8 we plot some of our results concerning the
order parameter. In the left plot we present ϕ̄0 as function of T at µ = 0. Thereby
we compare the outcome of a PQM model (finite 〈A0〉) and of a QM model (〈A0〉 = 0).
We observe a continuous behavior of the order parameter and ϕ̄ = 0 for T & Tχ. Thus,
the observed phase transition is of the second order. In agreement with our discussion
of Fig. 4.7, the chiral phase transition temperature Tχ is smaller than Td. Also, the
presence of the background field 〈A0〉 leads to larger Tχ. In the right plot of Fig. 4.8 we
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present the RG flow of the mass parameter m2(k) in combination with ϕ̄(k) for different
temperatures. Thereby, µ = 0 and finite 〈A0〉 is included. At very high temperatures there
is no chiral symmetry breaking and the mass parameter m̄2(k) is always finite. However,
if the temperature is small enough, m̄2(k) becomes zero what indicates the onset of the
chiral symmetry breaking in the RG-flow. We remind the reader that m̄2 = 0 is equivalent
to λ̄ψ →∞ which we have used in our calculations with PNJL model as the indicator for
the chiral phase transition. However, in the bosonic picture we have found that the onset
of the chiral symmetry breaking in the RG flow does not necessarily mean that chiral
symmetry is broken in the limit k → 0. In the right panel of Fig. 4.8 the green curve
shows that even the chiral symmetry becomes broken in the RG flow, it can be restored
at smaller scales due to the bosonic fluctuations [151]. Thus, the condition m̄2 = 0 in the
bosonic or, equivalently, λ̄ψ →∞ in the purely fermionic picture, represents only an upper
bound for the critical temperature Tχ. For T = Tχ (red curve) the restoration of chiral
symmetry due to the bosonic fluctuations happens exactly at k = 0. For even smaller
temperatures the order parameter is finite in the limit k → 0 .
As next, we discuss how the pseudo-critical temperature of the chiral crossover in a

model with explicit symmetry breaking can be determined. In our particular calculations
we define the temperature Tχ using the maximum of the longitudinal susceptibility. In
general, the susceptibility is defined as a derivative of the classical field with respect to
the source

χa =
−→
δ

δJTa (x)Φa(x) =
−→
δ

δJTa (x)

−→
δ

δJa(x)W [J ] , (4.78)

and, thus, is connected to the dressed propagator. Evaluating the susceptibility at the
ground state and considering only the longitudinal part, i.e., only the σ-direction, we find

χσ = V
1
m̄2
σ

, (4.79)

where V denotes the 4d spacetime volume. In the chiral limit χσ diverges at T = Tχ since
m̄2
σ vanishes at the phase boundary. This diverging behavior can also be used in order to

determine Tχ in the chiral limit and leads to exactly the same results as for the condition
of a vanishing ϕ̄0 for T ≥ Tχ. In the case of a crossover, χσ does not diverge but still have
a maximum which can be used to define Tχ. Since we work with infinite volumes, we use
the maximum of χσ(T )/χσ(T = 0) to measure Tχ.
Our results for the susceptibility χσ(T ) normalized by χσ(T = 0) at µ = 0 are presented

in the left plot of Fig. 4.9. We distinguish between two cases: 〈A0〉 = 0 and 〈A0〉 6= 0.
In the first case, we observe a very typical behavior of the susceptibility for a model with
a crossover, i.e., that χσ(T )/χσ(T = 0) is continuous and has a maximum. We use this
maximum in order to define Tχ for the corresponding phase boundary in the lower right
plot of Fig. 4.7. However, if we include the background field 〈A0〉 in our calculations, the
model at µ = 0 is located inside of the locking window and Tχ is determined by Td. Also
the behavior of the susceptibility and the chiral order parameter ϕ̄0 is strongly influenced
by the behavior of the background field 〈A0〉 = 0. Therefore, since our input for 〈A0〉 was
calculated for a pure SU(3) Yang-Mills theory and shows the first order deconfinement
phase transition, we observe a jump in χσ(T )/χσ(T = 0) for T = Td. However, one
should keep in mind that this is an artifact of our input for 〈A0〉. If the back-reaction of
the matter sector on the gauge sector is included, 〈A0〉 would show a crossover behavior.
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Figure 4.9: In the left plot we present our results for the normalized longitudinal susceptibility
χσ(T )/χσ(T = 0) at µ = 0 for a model with explicit symmetry breaking. We consider two cases:
finite and vanishing background field 〈A0〉. For 〈A0〉 = 0 the susceptibility have a peak which is
used to determine the pseudo-critical temperature of the chiral crossover. In the case of finite 〈A0〉,
the chiral phase transition is locked in by the confining dynamics. Thus, we observe a transition
of the first order indicated by a jump in χσ(T )/χσ(T = 0). In the right plot we present the flow
of ϕ̄0(k)/fπ at different temperatures (〈A0〉 6= 0). Since bosonic fluctuations, especially, pions are
massive in the case of finite explicit symmetry breaking, their impact on the restoration of the
chiral symmetry towards k → 0 in the RG-flow is clearly suppressed compared to the chiral limit
(see. the right plot in Fig. 4.8).

Additionally the expectation value of ϕ̄0 is finite for all temperatures. Thus, we should
consider the observed chiral transition as a crossover and not as a transition of first order.
For the sake of completeness, we present in the right panel of Fig. 4.9, the flow of

ϕ̄0(k)/fπ(k = 0) for a model with finite explicit symmetry breaking and in presence of
the background field 〈A0〉 6= 0, where we consider different temperatures. As already
mentioned above, we observe that the order parameter is finite on all scales and for all
temperatures. Thus, the chiral phase transition in the particular model is realized as a
crossover. For low temperatures, we observe a strong increase of ϕ̄0(k)/fπ towards k → 0
which takes place at 400 MeV . k . 600 MeV. Due to the choice of the initial conditions,
for T = 0 and in the infrared, we observe the physical value of the pion decay constant,
ϕ̄0(k) = fπ = 93 MeV. For temperatures T > Tχ the value of ϕ̄0(k)/fπ does not increase
considerably in the RG flow.
To conclude this chapter, we remind the reader that in our particular calculations we

have observed an interval in the parameter space of low-energy QCD models where the
chiral phase transition is locked in due to the gauge dynamics and, thus, Tχ ≈ Td. This
locking window appears both in purely fermionic picture (PNJL model) and in the partially
bosonized model (PQM model). The inclusion of the finite chemical potential basically
shifts the phase diagram and, thus, the locking window to the larger values in the pa-
rameter space. Whether the physical point is located inside of this window is strongly
dependent on the details of the model. In particular a PQM model with finite explicit
symmetry breaking and parameters adjusted to reproduce correct low-energy observables
is located inside of the locking window in our study. Therefore, we can suggest that a
comparable mechanism relating the chiral and the deconfinement phase transition could
also be present in nature. This would explain why the critical temperatures of these
phase transitions are so similar in the lattice QCD simulations, Refs. [49, 50, 51, 52, 53].
However, we should also keep in mind that the current models are based on some approxi-
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mations, such as fine-tuning of the parameters, Fierz-incomplete interaction channels and
negligence of the possible T - and µ-dependence of the initial model parameters. In the
next chapter, we suggest an approach how these problems of the current model calcula-
tions can be improved by means of QCD RG flows. In particular, we apply this approach
in order to derive an NJL model.



5

QCD INSP IRED DETERMINATION OF NJL -MODEL
PARAMETERS

As we have seen in the previous chapter, low-energy QCD models provide us with some
guidance how the phase diagram of QCD could look like. However, in common model
calculations one is restricted to some approximations which could influence the phase-
diagram structure considerably:

1. Model parameters are fine-tuned:
In model calculations one always has to fix the UV scale of the model and the values
of model couplings at this scale, see, e.g., [27, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136]. A particular choice of these parameters is always justified post
festum, i.e., it has to reproduce correct physical observables at zero temperature
and zero chemical potential. However, different sets of starting parameters can
reproduce the correct values of physical observables in the limit T = µ = 0 equally
well. Thereby, they would lead to different realizations of the phase diagram, i.e., to
different critical temperatures, critical endpoints etc. In common model calculations
there is no possibility to justify the exact values of starting parameters from the
point of view of the underlying fundamental theory.

2. Model parameters do not depend on temperature T , and chemical potential µ:
Once model parameters are fixed, one uses them also for finite T - and µ-studies.
But, in general, these parameters will depend on T and µ. In common model studies
there is no possibility to estimate T - and µ-dependence of the starting parameters.
However, as we will see later in this chapter, this dependence can influence the phase
diagram of a particular model significantly.

3. Fierz ambiguity:
Often one uses only the phenomenologically important scalar-pseudoscalar interac-
tion channel for quarks as we have done it in our NJL calculations above1. In general,
there are much more channels which are allowed by Fierz ambiguity2 [168, 169]. For
details on the Fierz transformation, we refer the reader to App. B.2. In short, a Fierz
transformation leads to an algebraic reordering of the fermionic fields in a given inter-
action channel and, thus, to the appearance of additional channels compatible with
underlying symmetries of the model. These channels can be potentially generated by
quantum effects. In different studies it was shown that taking into account additional

1 The scalar-pseudoscalar channel in NJL model translates into the usual quark-meson model with one sigma
and three pions by virtue of a Hubbard-Stratonovich transformation, see Sec. 4.2.1.

2 Inclusion of additional channels in the NJL model would lead to additional mesons in the QM model.
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⇒ + . . .

Figure 5.1: The effective quark self-interactions are generated by gauge dynamics and can be
projected onto interaction channels used in model calculations.

interaction channels can change the phase structure of an NJL model quite strongly
[57, 152, 153]. Even though the studies with more interaction channels are more
sophisticated, the problem of parameter choice becomes here more pronounced since
more parameters have to be fine-tuned. This leads to an even stronger ambiguity.

In the light of these problems we can see that predictive power of model calculations
is constrained. Therefore, models require some improvement from the point of view of
the underlying fundamental theory, namely QCD. Such an improvement can be achieved
considering the QCD RG flows [71, 72, 73].

5.1 basic idea and ansatz

To calculate QCD RG flows and to understand how they can improve model calculations
let us first start with the usual QCD Lagrangian in Euclidean space:

LQCD = ψ̄(i/∂ + ḡ /A+ iγ0µ)ψ + 1
4F

z
µνF

z
µν . (5.1)

Compared to Eq. (2.13), we consider QCD in the chiral limit, m̄q = 0, and introduce
the finite chemical potential, µ. In this Lagrangian the interaction between quarks is
mediated by gluons. Now, the idea is to calculate the flow equations for effective quark
self-interactions which are generated by the gauge fields, see Fig. 5.1 [71, 72, 73]. These
effective interactions allow to study mechanisms of chiral symmetry breaking in QCD di-
rectly. In [71, 72, 73] it was shown that very strong (or diverging) couplings of 4-quark
interaction channels, λ̄ψ, trigger the chiral symmetry breaking. We sketch the correspond-
ing mechanism in the next section.
In general there are infinite many effective quark self-interactions. However, the most

interesting for us are the 4-fermion interactions since they can directly be related to order
parameters. The strategy we pursue is as follows (see also Fig. 5.2): First, we consider a
truncation of the scale-dependent effective action of QCD which includes Fierz-complete
effective 4-quark interactions with corresponding couplings λ̄i. For k = ΛUV, QCD, we have

Γk=ΛUV, QCD =
∫

d4xLQCD , (5.2)

with LQCD from Eq. (5.1). It means that for k = ΛUV, QCD the strength of effective
quark self-interactions is zero and we start with the usual QCD action in the UV-regime.
Then, we apply the FRG to integrate out fluctuations and, thus, generate effective quark
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Figure 5.2: We start with QCD at very high momentum scale and successively integrate out
fluctuations using FRG. Thereby, we generate effective quark self-interactions. At the scale Λ NJL
we project the results from QCD flows onto channels used in NJL calculations. For even smaller
scales we apply FRG to resulting NJL model. ΛNJL has to be fixed in such a way that correct
low-energy observables are reproduced for T → 0, µ → 0. The NJL couplings, λ̄i, NJL(ΛNJL), are
predicted by QCD flows and include T - and µ-dependence.

self-interactions. At some scale, ΛNJL, we project the 4-fermion interaction channels from
QCD RG flows onto the channels commonly used in NJL studies. For 0 . k ≤ ΛNJL,
we apply the FRG approach to the effective action of the resulting NJL model. In par-
ticular, ΛNJL should be chosen in such a way that our model reproduces the correct
low-energy observables in the limit T → 0, µ → 0, i.e., it should reproduce the correct
quark mass, m̄q ' 300 MeV (or alternatively the correct pion decay constant in the chiral
limit, fπ = 87 MeV).
At this point we emphasize that, due to this strategy, in the left part of Fig. 5.2, we

always deal with the chirally symmetric regime. Only after projection of our QCD flows
onto the model channels and further integrating out fluctuations, right part of Fig. 5.2, we
produce the breaking of the chiral symmetry in NJL model. In particular it means that
for k = ΛNJL the couplings of quark self-interactions, λ̄ψ, are not divergent.
The above strategy allows us to improve model calculations concerning at least some

of the problems mentioned in the beginning of this chapter. First, as we will see later, in
our present calculations we have only one parameter which should be fine-tuned, namely
the UV cut-off of the model, ΛNJL. In contrast to the usual model calculations, the start-
ing values for NJL couplings, λ̄i, NJL(ΛNJL), are predicted by QCD RG flows3. Thereby,
there is an one-to-one correspondence between an particular choice of ΛNJL and resulting
low-energy observables. Therefore, the ambiguity concerning the choice of the model pa-
rameters is much less present in our calculations. Our model is fully constrained by QCD
RG flows and by physical low-energy observables. Second, after ΛNJL is fixed at T = 0
and µ = 0, we can keep ΛNJL constant also for finite T and µ calculations. In contrast,
the staring values of NJL couplings, λ̄i, NJL(ΛNJL) , become now functions of temperature
and chemical potential. Thereby, the T - and µ-dependence of λ̄i, NJL(ΛNJL) results from
T - and µ-dependence of QCD RG flows. Third, we can use the Fierz-complete ansatz for
4-fermion interactions in the calculations with QCD RG flows in order to compare the
relative strength of the NJL couplings at the UV cut-off of the model. This comparison

3 For more sophisticated models further parameters can be predicted as well.
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can be used in order to estimate the importance of different channels in the NJL model.
Now, let us define our ansatz in a formal way. As we have explained above, we consider

the standard gauge and fermionic sectors of QCD plus all effective 4-quark self-interactions
compatible with SU(Nc) gauge symmetry and SU(Nf)L×SU(Nf)R flavor symmetry. The
inclusion of the ghost sector is tacitly assumed but is not relevant for our particular
calculations. At this point we keep the number of colors Nc and number of flavors Nf as
free parameters. Thus, our ansatz for effective scale-dependent action, Γk, in Euclidean
spacetime is [71, 72, 73]:

Γk =
∫

d4x

{
ψ̄(iZψ /∂ + Z1ḡ /A+ iγ0µ)ψ + ZA

4 F zµνF
z
µν +

(∂µAzµ)2

2ξ

+ 1
2
[
Z−λ̄−(V−A) + Z+λ̄+(V + A) + Zσλ̄σ(S− P)

+ ZVAλ̄VA[2(V−A)adj + 1/Nc(V−A)]
]}

,

(5.3)

where Aµ = Azµ t
z with tz generators of SU(Nc) group in fundamental representation. The

last term of the first line in action (5.3) is the so-called gauge fixing term which appears
if one quantizes QCD, see. App. D.
In the above effective action, momentum-scale-dependent wave-function renormaliza-

tions ZA and Zψ correspond to the kinetic terms of gauge and quark fields. The bare
couplings ḡ, λ̄−, λ̄+, λ̄σ and λ̄VA are accompanied by vertex renormalizations Z1, Z−, Z+,
Zσ and ZVA and are linked to dimensionless couplings via relations:

g = ḡZ1

Z
1/2
A Zψ

, λi = Zik
2λ̄i

Z2
ψ

. (5.4)

In this work we consider the Landau gauge, ξ = 0. The major reason to use this fixing con-
dition is that Landau gauge is well known to be a fixed point of the renormalization group
[105]. Additionally, the fermionic wave-function renormalization, Zψ, is not renormalized
in the Landau gauge and in our truncation4. It means that Zψ becomes momentum-scale
independent and we can use Zψ = 1 [16].
The first two 4-fermion channels appearing in Eq. (5.3) are given by:

(V−A) = (ψ̄γµψ)2 + (ψ̄γµγ5ψ)2 ,
(V + A) = (ψ̄γµψ)2 − (ψ̄γµγ5ψ)2 ,

(5.5)

with color (i, j, . . .) and flavor (a, b, . . .) indices contracted pairwise. These two channels
are color and flavor singlets. Channels with non-trivial color and flavor structure are:

(S− P) = (ψ̄aψb)2 − (ψ̄aγ5ψ
b)2

(V−A)adj = (ψ̄γµ tz ψ)2 + (ψ̄γµγ5 t
z ψ)2 ,

(5.6)

where (ψ̄aψb)2 = ψ̄ai ψ
b
i ψ̄

b
j ψ

a
j etc.

In the QCD part of our calculations, i.e., for ΛNJL ≤ k ≤ ΛQCD, UV (left part of
Fiq. 5.2), we consider the 4-fermion couplings in the point-like limit, λ̄i(|p| � k). This

4 In Landau gauge Zψ stays constant as long we do not resolve the momentum dependence of 4-fermion
vertices [117].
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approximation is not applicable in the regime with broken chiral symmetry. It is due to
the fact that corresponding mesons (Goldstone bosons) manifest themselves as momentum
singularities in the 4-fermion couplings. However, for the chirally symmetric regime the
point-like limit serves as a reasonable approximation as it was quantitatively shown for the
zero-temperature chiral phase transition in many flavor QCD in Ref. [72]. Also for finite
temperatures this approximation was successfully applied in, e.g., [73]. Thereby, it was
assumed that mechanisms which determine quark dynamics near the finite-T boundary
and near the many-flavor phase boundary [170, 171, 172] are qualitatively similar.
We emphasize that the channels given in Eqs. (5.5) and (5.6) are different compared

to the channels used in low-energy models, e.g. see Sec. 4.1. However, this set of quark
self-interactions is Fierz-complete. It means that any other 4-fermion interaction compat-
ible with SU(Nc) and SU(Nf)L×SU(Nf)R symmetries can be rewritten in terms of these
interactions by means of the Fierz transformation, App. B.2. Therefore, it is possible to
project the current set of interactions onto the common model channels, for details see
Sec. 5.4. At this point we also want to mention two approximations we have used in our
ansatz: First, we have neglected UA(1)-violating interactions since they are expected to
become important only in the chirally broken regime or for small Nf [73]. In our numerical
calculations we use Nf = 2 and consider the QCD flows only in the chirally symmetric
regime. For Nf = 2 and for the case of restored chiral symmetry, the relative irrelevance of
UA(1)-violating terms compared to channels used in this work was shown in [122]. Second,
strictly speaking Eqs. (5.5) and (5.6) are Fierz-complete only for T = 0 and µ = 0. For
finite temperature and chemical potential additional channels would appear due to the
presence of the heat bath. However, first attempts to include different runnings transver-
sal and longitudinal to the heat bath for Nf = 1-theory suggest that the impact of such
additional channels is rather small [151]. Nonetheless we aim to investigate this issue more
properly in further works.

5.2 flow equations for fermionic interactions

Using the ansatz in Eq. (5.3) and the Wetterich equation, Eq. (3.28), we can calculate
β functions for the dimensionless 4-fermion couplings. Thereby, we proceed similarly to
our calculations in Secs. 4.1.3 and 4.2.2. The major difference to our previous model
calculations is that now we also have gauge bosons in our effective action (5.3). We obtain

∂tλ− = 2λ− − 4v4l
(FB)
1,1 (τ, µ̃, 0, 0)

[ 3
Nc

g2λ− − 3g2λVA

]
− 1

8v4l
(FB)
1,2 (τ, µ̃, 0, 0)

[
12 + 9N2

c
N2

c
g4
]

−8v4l
(F)
1 (τ, µ̃, 0)

[
− 2(Nc +Nf)λ−λVA +Nfλσλ+ −NcNf(λ2

+ + λ2
−)

+ λ2
− + 2λ2

VA

]
,

(5.7)
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, , , ,

, , .

Figure 5.3: Graphical representation of different contributions to the RG flow equations for the
quark self-interactions, Eqs. (5.7)–(5.10). The double lines correspond to the fully dressed fermionic
and gluonic propagators, solid black dots to 4-fermion and quark-gluon vertices. The white circle
with a cross represents the insertion of ∂tRk. λi and λj stay for λ−, λ+, λσ and λVA.

∂tλ+ = 2λ+ − 4v4l
(FB)
1,1 (τ, µ̃, 0, 0)

[
− 3
Nc

g2λ+

]
− 1

8v4l
(FB)
1,2 (τ, µ̃, 0, 0)

[
−12 + 3N2

c
N2

c
g4
]

−8v4l
(F)
1 (τ, µ̃, 0)

[
Nfλσλ− + λσλVA − 2λ+(λ− + (Nc +Nf)λVA)

− 2NcNfλ+λ− − 3λ2
+ + 1

4λ
2
σ

]
,

(5.8)

∂tλσ = 2λσ − 4v4l
(FB)
1,1 (τ, µ̃, 0, 0)

[
6C2(Nc)g2λσ − 6g2λ+

]
−1

4v4l
(FB)
1,2 (τ, µ̃, 0, 0)

[
−24− 9N2

c
Nc

g4
]

−8v4l
(F)
1 (τ, µ̃, 0)

[
−2λσλ− − 2NfλσλVA − 6λ+λσ + 2Ncλ

2
σ

]
,

(5.9)

∂tλVA = 2λVA − 4v4l
(FB)
1,1 (τ, µ̃, 0, 0)

[ 3
Nc

g2λVA − 3g2λ−

]
−1

8v4l
(FB)
1,2 (τ, µ̃, 0, 0)

[
−24− 3N2

c
Nc

g4
]

−8v4l
(F)
1 (τ, µ̃, 0)

[
−(Nc +Nf)λ2

VA −
1
4Nfλ

2
σ + 4λ−λVA

]
.

(5.10)

Here, C2(Nc) = (N2
c −1)/(2Nc) is a Casimir operator of SU(Nc) group and v4 = 1/(32π2).

τ = T/k and µ̃ = µ/k represent the dimensionless temperature and the dimensionless
chemical potential correspondingly. The threshold functions l(F)

1 , l(FB)
1,1 and l(FB)

1,2 include
information about temperature and chemical potential dependence of the flow equations.
Their particular shape also depends on the details of the regularization scheme. In this
work we use the so-called 3d linear regulators for fermions and bosons [157]. These regu-
lators and corresponding threshold functions are summarized and discussed in App. E.
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Figure 5.4: Sketch of a typical β-function for the coupling λσ. At g2 = 0 (black solid line), there
are two fixed points: an IR attractive Gaussian and an IR repulsive non-trivial fixed point. For
small but finite g2 (green solid line) the positions of the fixed points are shifted on the order of
g4. If the strong coupling reaches a critical value g2 = g2

cr, the fixed points melt together (blue
solid line) and for even larger g2 > g2

cr, there are no fixed points (red solid line). In this case the
strength of the quark self-interaction grows rapidly and signals the onset of the chiral symmetry
breaking. For finite temperature and finite chemical potential (magenta dashed line), the parabolas
become broader and higher. Thus, the critical value of the strong coupling, g2

cr, grows and the
chiral symmetry breaking scale, kχSB, decreases. The flows of all other 4-fermion interactions can
be analyzed in the same way.

The flow equations (5.7)–(5.10) are in agreement with results from [73], where also
finite quark masses were introduced. In the zero temperature limit they also reproduce
the results from [71] and [72].
Even though Eqs. (5.7)–(5.10) look quite complex, one may easily understand their

structure if one thinks in terms of corresponding Feynman diagrams, see Fig. 5.3. From
this figure, we can directly see that the change of 4-fermion couplings with a change of
momentum scale k is given by all possible 1-loop contributions allowed by interactions
encoded in Eq. (5.3). The 1-loop structure of the flow equations is a basic feature of the
Wetterich flow equation.

A very remarkable point is that the flow equations (5.7)–(5.10) provide us a simple
picture of the chiral dynamics in QCD [71, 72, 73]. To sketch it, we first consider the
limit of vanishing T and µ. In this limit the threshold functions are simply given by some
constants, see App. E. For simplicity, we look at only one 4-fermion coupling, e.g., λσ,
and assume that all other couplings are zero. Thus, the flow of λσ is given by a simple
equation

∂tλσ = 2λσ − c1g
2λσ − c2g

4 − c3λ
2
σ , (5.11)

which is a function of λσ and g2. The quantities c1, c2 and c3 are constants in the
limit T → 0, µ → 0. Their particular absolute values are not of interest at this point.
However, their signs are crucial for the fixed-point structure. Considering the flow of
λσ, the constants c1, c2 and c3 are positive as long as Nc ≥ 2. Since in our numerical
calculations we use the physical number of colors Nc = 3, in the following discussion, we
consider the case that all constants in Eq. (5.11) are positive. Now let us consider the
limit g2 → 0. In this case the flow ∂tλσ is a parable in λσ opened downwards (black
solid line in Fig. 5.4) and has two zero points which correspond to the fixed points in
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the RG flow. In Fig. 5.4 the arrows represent the direction of the RG-flow, or in other
words, the direction of the change of ∂tλσ and λσ if we integrate out fluctuations. The
two observed fixed points are an infrared attractive Gaussian and an infrared repulsive
non-trivial fixed point. We emphasize that the Gaussian fixed point corresponds to a
theory without any fermionic self-interactions. Of course, in QCD g2 is not zero. However,
for very high momenta the strong coupling g2 is quite small (green solid curve). For finite
but small coupling, the flow-parable is shifted down and the Gaussian fixed point becomes
non-trivial. However, the value of this fixed point is on the order ∼ g4 and therefore very
small5. In our calculations, we indeed start at very high momenta with the boundary
conditions λi = 0. Thus, the coupling λσ grows if we apply the RG-transformation but is
still bounded from above by a small value of the IR attractive non-trivial fixed point. In
this regime of very weak quark self-interactions no quark condensate can be produced and
we are in the regime of restored chiral symmetry.

For smaller k the coupling g2 grows and the flow parabola is shifted more and more
downwards. At some critical coupling, g2

cr, both non-trivial fixed points melt together (blue
solid line) and for g2 > g2

cr they disappear (red solid line). In this situation the coupling λσ
is not bounded from above and starts to grow rapidly. At some scale k = kχSB the quark
self-interaction can even diverge. If this behavior appears, the chiral symmetry breaking
takes place. We can see it immediately if we look at our considerations in Sec. 4.2.1 where
bosonized version of PNJL model (PQM model) was introduced. In this section we have
shown that λ̄ψ ∼ 1/m̄2, and m̄2 = 0 indicates the chiral phase transition. Hence, the scale
at which the 4-fermion interactions diverge in our truncation is a good measure for the
chiral symmetry breaking scale kχSB.
In general, for finite temperature and finite chemical potential the parabolas become

broader and higher (for g2 = 0 magenta dashed line). It leads to the larger values of g2
cr

and therefore to smaller chiral symmetry breaking scale kχSB. Hence, for some critical
values of T = Tχ and µ = µχ there is no divergence in the 4-fermion coupling. So, if we
increase temperature or/and chemical potential, the system becomes chirally symmetric,
as it is expected.
Further, we would like to discuss the special case of T → 0 but finite µ, which has never

been discussed before in the context of QCD RG flows. In this limit, the β-function of the
coupling λσ looks different compared to our above discussion. This results from the fact
that the threshold function l

(F)
1 is proportional to Θ(k − µ) in this limit as discussed in

App. E.3. Consequently, if µ > k, the flow of the 4-fermion coupling becomes linear as a
function of λσ, see Eq. (5.9). In addition, the threshold functions l(FB)

1,1 and l(FB)
1,2 become

negative for µ > k, see App. E.3. Thus, the β-function is given by a straight line with
positive slope, see Fig. 5.5. This function has only one fixed point which is non-trivial,
IR attractive, and is located in the region λσ ≤ 0. The second fixed point is shifted
to infinity. In particular, this change in the fixed-point structure means that as long as
the coupling λσ does not diverge at k ≥ µ, integrating out fluctuations at scales k < µ

leads to a reduction of the coupling strength. Further, from our results for the threshold
functions in the limit T → 0 in App. E.3, one can see that if we integrate out fluctuations
down to k → 0, i.e, µ/k → ∞, then the non-trivial fixed point described above becomes
a Gaussian one again and the coupling λσ is attracted towards zero. Thus, QCD remains
in the chirally symmetric regime. This mechanism can take place only if the value of the

5 The fact that the strength of the quark self-interaction generated in this way is on the order λσ ∼ g4 is in
agreement with expectation for a perturbative 1PI scattering amplitude.
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Figure 5.5: Sketch of the β-function for the coupling λσ in the limit T → 0 and for g2 > g2
cr.

For µ < k (green line), the flow is given by a parabola and there are no fixed points. Thus, the
coupling λσ grows rapidly in the RG flow. However, if µ becomes larger then k (blue line) the flow
is given by a straight line with positive slop and there is a non-trivial IR attractive fixed point
associated with negative value of λσ. This fixed point is shifted to λσ = 0 for k → 0. Thus, if the
β-function becomes a straight line, the coupling λσ cannot diverge and becomes zero for k → 0.
This behavior indicates chiral symmetry restoration.

chemical potential is at least as large as the chiral symmetry breaking scale kχSB. Of
course, kχSB itself is µ-dependent. From our analysis, we find that the critical value of
the chemical potential µχ for T → 0 above which QCD remains in the chirally symmetric
regime is given by

µχ = lim
ε→0

kχSB(µχ − ε) . (5.12)

In Sec. 5.4, we will show that for our particular truncation of the effective action and for
the strong coupling calculated as described in Sec. 5.3, the critical value of the chemical
potential at zero temperature is given by µχ = 262 MeV.
At this point we rush to add that the mechanism of chiral symmetry restoration at large

µ and T → 0 described above corresponds to a phase transition of the second order. It is
to some extent in contrast to results observed in model calculations where, depending on
the model parameters, the chiral phase transition at large µ was found to be first order
phase transition. The fact that we observe a second order transition results from our
truncation of the effective action: we consider only the effective 4-quark interactions. In
order to resolve a first order phase transition, however, higher-order quark interactions
need to be taken into account which corresponds to a calculation of the order parameter
potential, see, e.g., our calculations in Secs. 5.5 and 5.6.
In our above discussion of the mechanisms of chiral symmetry breaking/restoration, we

have considered an one-channel approximation of the QCD RG flows. The analysis of
β-functions of λ−, λ+ and λVA can be performed in the same manner as for λσ. The
behavior of these couplings is very similar to the behavior of λσ.
In this work we are not interested in the direct study of the chiral phase transition

in QCD. Our major aim is to construct a low-energy model with starting parameters
generated by the quark self-interaction flows in QCD. Therefore, we will not solve our set
of flow equations down to kχSB. We will stop the QCD flows at k = ΛNJL > kχSB in order
to read off the strength of the couplings which are relevant for NJL-model calculations.
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Thus, our calculations with QCD flows are restricted to the chirally symmetric phase.
We also mention that in our particular numerical calculations we always have µ < ΛNJL.
In summary, the above discussion of the chiral dynamics in QCD already constrains the
possible values of the projection scale at T → 0 and µ→ 0 to kχSB < ΛNJL < k(g2

cr).

5.3 flow of the strong coupling

From the previous section one may immediately see that the quantitative behavior of
4-fermion interactions depends strongly on the behavior of the strong coupling. Unfortu-
nately, this behavior is known exactly only for high momenta where perturbation theory
is valid. Concerning quark self-interactions, however, the most interesting region is where
the strong coupling grows fast so that α = g2/(4π) ∼ O(1), i.e., becomes larger than
αcr = g2

cr/(4π). For instance, at zero temperature and zero chemical potential, the SU(3)
critical coupling is of the order αcr ≈ 0.8 [117], being almost independent of the number
of flavors [72]6. Thus, perturbation theory cannot be applied reliably. In this work we do
not aim to calculate the strong coupling but consider it as an external input.
There are different non-perturbative methods to determine the flow of the strong cou-

pling for low momenta: lattice QCD, FRG and the Dyson-Schwinger formalism. However,
all of them depend on the choice of the gauge condition, renormalization scheme and par-
ticular definition of the strong coupling7. Since we treat the 4-fermion interactions using
FRG and for Landau gauge fixing, it is self-evident to look for the strong coupling pro-
duced using the same method and the same gauge fixing condition. Additionally, we are
interested in the temperature and chemical-potential dependence of quark self-interactions.
Therefore, we would like to use a T - and µ-dependent input for α. Such data is indeed
available [73]. In this work α was calculated as a function of k, Nf and T . Thereby, in order
to preserve the gauge invariance, the background-field formalism was used, Refs. [86, 110].
We also discuss later how the dependence on the finite chemical potential can be included
in this input. At this point we want to mention that α from [73] was calculated using the
wave-function renormalization of gluons. In fact, it would be more consistent to use α from
quark-gluon vertex in our calculations since the α- (or g-) dependence of the 4-fermion
interactions arises from the quark-gluon vertex. Also, in [73] the 4d exponential regulator
was used. This regulator is very convenient for the FRG approach. But in the present
study of 4-fermion interactions we cannot use it since for finite µ it is not well-defined due
to the presence of µ in the shape function8. Altogether, however, the results from [73]
seems to be the most suitable input for our purpose.
In Sec. 5.7 we will also present calculations with another input for the strong coupling

[122]. This FRG calculation in Landau gauge provides us with α(k) calculated from the
quark-gluon vertex using a smooth approximation of the 4d linear regulator. The gauge in-
variance was preserved here by means of modified Slavnov-Taylor identities which are the
non-Abelian generalization of Ward-Takahashi identities. The mayor disadvantage of this
input compared to input from [73] is that it was calculated for T = 0 and µ = 0. Nonethe-

6 This particular value of αcr holds for the class of linear and exponential regulators in the FRG approach.
For other renormalization schemes it can be different. In this work, however, we use only these very
convenient types of regulators.

7 The strong coupling can be defined via quark-gluon, three-gluon, four-gluon or ghost-gluon vertices or via
gluonic wave-function renormalization, see, e.g., Ref. [124].

8 This problem appears for all kinds of 4d regulators
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less, it is useful to consider both inputs to study the influence of different definitions of α
and different renormalization schemes on our results for the phase diagram.
Now, let us discuss how we can introduce the finite chemical potential in the data

provided in Ref. [73]. Since in this paper the background-field formalism was used, the
flow of the strong coupling α is determined by the anomalous dimension of the gauge fields,
ηA,k, [110]:

∂tα(k) = ηA,k α(k) . (5.13)

Thereby, ηA,k contains gluonic and fermionic contributions and is a function of tempera-
ture:

ηA,k(T ) = ηgluons
A,k (T ) + ηquarks

A,k (T ) . (5.14)

In [73], ηA,k was calculated for different flavor numbers, including Nf = 0. As one would
expect, the direct flavor-number dependence appears in the above equation only in the
quark contribution to the gluon anomalous dimension, namely ηquarks

A,k ∝ Nf. Therefore,
for Nf = 0 one obtains

ηA,k(T ) = ηYM
A,k (T ) , (5.15)

with ηYM
A,k the gluon anomalous dimension of the pure Yang-Mills theory. Now, we can use

a common approximation, see, e.g., Refs. [123, 124]:

ηA,k(T ) = ηYM
A,k (T ) + ∆ηA,k(T, µ) , (5.16)

where ∆ηA,k is the vacuum polarization of the gluon calculated as:

∆ηA,k =
Z−1
A,k

3(N2
c − 1)

 ∂

∂p2P
µν
⊥ (p) ·


∣∣∣∣∣∣∣
p=0

. (5.17)

In this equation p is the modulus of the external momentum and Pµν⊥ (p) is the transversal
projection operator, see App. E. The structure of Eq. (5.16) is basically the same as of
Eq. (5.14). The difference is that in quark contribution (5.17) we consider only the leading
term in the external-momentum expansion, whereas in [73] the expansion was done in a
more sophisticated way. Nevertheless, our procedure has an import advantage – namely
that we can incorporate the chemical potential dependence in ∆ηA,k in a straightforward
manner9. Some details on our calculation of ∆ηA,k can be found in App. F. Here, we only
present the result for Nc = 3 and Nf = 2 before evaluation of the Matsubara sum. The
final result is also presented in App. F. Since we are considering the chiral limit, we also
use zero quark mass. Additionally, since we work in Landau gauge, we have ηψ = 0 in our
truncation. We find:

∆ηA,k(T, µ) = − g2

45π2 τ
∑
n

33(ν̃n + iµ̃)4 + 2(ν̃n + iµ̃)2 − 55
((ν̃n + iµ̃)2 + 1)4 , (5.18)

with τ = T/k, µ̃ = µ/k and ν̃n = (2n + 1)πτ the fermionic Matsubara frequencies. This
result was obtained using the 3d linear regulator. For ∆ηA,k with a finite quark mass

9 There is no µ-dependence in ηYMA,k due to the absence of internal fermionic lines.
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Figure 5.6: α(k) in the limit of T → 0 and µ → 0. It was obtained by solving Eq. (5.13) using
the ansatz in Eq. (5.16) and result for ∆ηA,k(T, µ) from Eq. (5.18). ηYM

A,k (T ) was taken from [73].
As boundary condition we use a perturbative result α(k = 20 GeV) = 0.163 [173]. We also plot a
perturbative 1-loop α(k) fixed by the same boundary condition. We observe a perfect agreement
in the UV-regime for k & 2 GeV.

and finite quark anomalous dimension, we refer the reader to [124] where the 4d linear
regulator and the limit of T → 0 and µ→ 0 were used. We also mention that in the limit
of vanishing temperature and chemical potential Eq. (5.18) reduces to ∆ηA,k = g2/(6π2)
which is a well-known result from one-loop perturbation theory.

Using our result for ∆ηA,k(T, µ) and ηYM
A,k (T ) from [73] we can calculate the strong

coupling α. As UV scale we choose ΛUV, QCD = 20 GeV. The corresponding value of the
strong coupling at this scale is well-known from perturbative calculations, α(ΛUV, QCD) =
0.163, and is in line with experimental measurements [173]. Using these values, we solve
Eq. (5.13) for 0.15 GeV < k < 20 GeV. The choice of ΛIR, QCD = 0.15 GeV is small enough
to obtain α > αcr and, therefore, spontaneous chiral symmetry breaking in QCD. To
achieve the limit k → 0 is not of interest in this study. Our result for α(k) in the
limit of vanishing T and µ is presented in the Fig. 5.6. As expected, in the UV-regime
α remains very small but rapidly increases for k . 1 GeV. In the deep IR-regime α
approaches a fixed point and remains constant10. The presence of such an IR fixed point
in Yang-Mills theories is a very well-known phenomenon also in the Landau gauge [174,
175, 176, 177, 178, 179]. However, this observation is of less interest for our work. For
a detailed discussion concerning this IR fixed point we refer the reader to Ref. [73]. In
Fig. 5.6 we also present the perturbative 1-loop result for α(k) fixed by the same boundary
condition α1-loop(k = 20 GeV) = 0.163. We observe perfect agreement in the UV-regime
for k & 2 GeV. For smaller scales α1-loop increases faster and diverges at k ≈ 370 MeV.
This observation justifies the validity of our calculations at UV scales.

10 We have explicitly checked it also for k < 0.15 GeV
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Figure 5.7: α(k) at µ = 0 for different temperatures. For finite T we observe that α(k) increases
stronger with decreasing k. It approaches a maximum at some scale and decreases for even smaller
k. We have explicitly checked that for k → 0 the strong coupling approaches zero for all finite
temperatures presented in this plot. For explanation of this behavior see the main text.

The formalism we are working with allows us to take into account the T - and µ-
dependence of the strong coupling. In Fig. 5.7 we present our results for finite temperature
and zero chemical potential. We observe that inclusion of finite T leads to following mod-
ifications in the behavior of α: First, even though the flow of the strong coupling does
not change for large momentum scale, at smaller scales α becomes stronger if we increase
the temperature. Second, at some scale the strong coupling approaches a maximum and
decreases for even smaller k. Thereby, for larger T the particular value of the maximum
becomes smaller and the position of the maximum is shifted to higher scales. We have
explicitly checked that in the limit k → 0 the strong coupling approaches zero for all finite
temperatures depicted in Fig. 5.7.
Let us first explain the stronger increasing α for increasing T : This behavior takes

place due to the fact that fermions have only hard Matsubara modes or, with other words,
no zero Matsubara mode. So, all Matsubara frequencies which contribute to the flow of
α are proportional to πT/k. Therefore, for sufficiently large T/k the thermal Matsubara
mass becomes large and quark contribution to the gluon anomalous dimension ∆ηA,k(T, µ)
becomes suppressed, see Eq. (5.18). As a consequence, the flow of the strong coupling is
dominated by the Yang-Mills contribution. On the other hand, it is well-known fact that
pure Yang-Mills theory has stronger α compared to the theories with finite flavor number.
Therefore, we observe larger strong coupling for higher temperatures. Also, we mention
that for higher T , quarks decouple already at larger k. This is also in agreement with
above explanation. The line of arguments presented here is quite phenomenological but
very intuitive. For a more formal explanation of the behavior of ∆ηA,k(T, µ) at finite T
and µ we refer the reader to our discussion of finite-µ influence on ∆ηA,k(T, µ) below.
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Figure 5.8: α(k) at T = 50 MeV for different values of chemical potential µ. For increasing
µ we observe the same effect as for increasing T – namely that α(k) increases stronger with
decreasing k. This behavior can be explained by analysis of ∆ηA,k. In deep IR limit we observe
effective dimensional reduction which is caused by the presence of finite T . For explanation of this
behavior, see the corresponding parts in the main text.

The fact that the strong coupling becomes zero in the deep IR-regime is explained in
the following way: For sufficiently small RG-scale, k, we take into account fluctuations
with momentum p2 < T 2. The wavelength of these modes is larger than the extent of the
compactified Euclidean time direction and, therefore, these fluctuations become effectively
3-dimensional. This is also reflected in the limiting behavior of the strong coupling which
is now governed by the dimensional reduced theory. In [73] it was shown that also in
3 dimensions there is a non-trivial IR fixed point in the flow of 3-dimensional strong
coupling α3d. The authors also provide a relation between 3- and 4-dimensional strong
couplings:

α = k

T
α3d . (5.19)

Thus, for k/T → 0, the 4-dimensional coupling α has to approach zero. Thereby, the 3-
dimensional coupling α3d remains finite. We emphasize that it is really a finite-temperature
effect and as long as we consider the limit T → 0, no dimensional reduction can take place.
Further, we mention that this interesting effect of decreasing α is not of interest for our
particular study: We have explicitly checked that in our calculations we never “probe” the
the region where α decreases with decreasing k.
Now, let us discuss the influence of the finite chemical potential on the strong coupling

α(k). An example for T = 50 MeV and different µ is presented in Fig. 5.8. Basically,
we observe the same effect of stronger α(k) as for finite T . To understand how this effect
arises from inclusion of µ, we have to proceed in the following way: Since the µ-dependence
of the strong coupling results in our calculations solely from ∆ηA,k(T, µ), we should look



5.4 projection of the qcd rg flows onto the model channels 71

0.0 0.2 0.4 0.6 0.8 1.0
-0.01

0.00

0.01

0.02

0.03

k [GeV]

Δ
η

A
,k
/g

2

T=0 MeV

T=20 MeV

T=75 MeV

T=100 MeV

μ=0 MeV

0.0 0.2 0.4 0.6 0.8 1.0
-0.01

0.00

0.01

0.02

0.03

k [GeV]

Δ
η

A
,k
/g

2

T=0 MeV

T=20 MeV

T=75 MeV

T=100 MeV

μ=150 MeV

Figure 5.9: ∆ηA,k/g2 for different temperatures at µ = 0 MeV (left) and µ = 150 MeV (right).
We observe that for vanishing temperature ∆ηA,k/g2 ∝ Θ(k−µ). For finite T there is an oscillating
behavior. We also note that ∆ηA,k/g2 ≤ 1/(6π2) for any T , µ and k as long as k > µ. This is
indeed the case in our present study since our IR cut-off of the QCD-flows is larger than the largest
considered value of µ, see Secs. 5.5 and 5.6. The reduction of ∆ηA,k/g2 at finite temperature and
chemical potential leads, in general, to stronger α(k) compared to the limit T → 0, µ→ 0.

at properties of this term. If we consider the limit T/k → 0, ∆ηA,k(T, µ) becomes a
Θ-function, see App. F:

∆ηA,k(T, µ)|T
k
→0 = g2

6π2 Θ(k − µ) . (5.20)

Therefore, as long as k > µ we observe the same behavior as in the limit T → 0, µ → 0.
Indeed, in our present study the IR-scale of QCD-flows is always considerably larger than
the value of the chemical potential, see Secs. 5.5 and 5.6. Thus, in the limit T → 0,
our results for the strong coupling are µ-independent. For finite temperatures the Θ-
function in Eq. (5.20) becomes smeared, see Fig. 5.9 for examples. Thereby, we observe
that ∆ηA,k/g2 ≤ 1/(6π2) for any combination of T , µ and k as long as k > µ. Sometimes,
it can even become negative. As a consequence, ∆ηA,k is either suppressed compared to
the case T → 0, µ → 0 or even acts in the same direction as Yang-Mills contribution,
i.e., it pushes α to larger values for decreasing k. The last case appears if ∆ηA,k/g2 < 0.
A quantitative evaluation of the interplay between T - and µ-effects on ∆ηA,k seems to
be rather complex. Nonetheless, one can conclude that finite temperature and chemical
potential lead, in general, to stronger α(k). But one has to keep in mind that this statement
is valid only as long as dimensional reduction of theory does not set in.

5.4 projection of the qcd rg flows onto the model channels

Before we compute the 4-fermion interactions in QCD using the strong coupling discussed
in Sec. 5.3, we mention once again that the interaction channels introduced in Eq. (5.3)
are defined in a different way as channels used in model calculations, e.g., see Sec. 4.1.
In order to project our original channels and corresponding flow equations from Sec. 5.2
onto channels conveniently used in model calculations, we start with the general Fierz-
transformation, see also App. B.2:

Mad =
n∑
j=1

O
(j)
ad

∑
ef

(M (2)
ce O

(j)
ef M

(1)
fb ) , (5.21)
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where (O1, . . . , On) is a complete orthogonalized basis of (d × d)-matrices M with
Mad = M

(1)
ab M

(2)
cd . Applying this prescription on a product of two identities of an SU(N)

group, we obtain:

11ab11cd = 2( 1
2N −

1
4)11ab11cd + 2

N2−1∑
α=0

tαad t
α
cb , (5.22)

where tα for α = 1, . . . , N2 − 1 are the generators of SU(N) group and t0 = 1
21. Thus, t

α

is a complete set of basis elements of SU(N) group.
We use this identity for N = Nf = 2 and N = Nc = 3 in order to rewrite our channels.

We obtain following results:

(S− P) = (ψ̄aψb)2 − (ψ̄aγ5ψ
b)2

= [(ψ̄ψ)2 − (ψ̄γ5~τψ)2]− [detfψ̄(1 + γ5)ψ + detfψ̄(1− γ5)ψ] ,
(5.23)

(V + A) = (ψ̄γµψ)2 − (ψ̄γµγ5ψ)2

= −2
3[(ψ̄ψ)2 − (ψ̄γ5~τψ)2] + 2

3[detfψ̄(1 + γ5)ψ + detfψ̄(1− γ5)ψ]

− {[(ψ̄λzψ)2 − (ψ̄γ5λ
z~τψ)2]

+ [detfψ̄(1 + γ5)λzψ + detfψ̄(1− γ5)λzψ]} ,

(5.24)

(V−A) = [(ψ̄γµψ)2 + (ψ̄γµγ5ψ)2] , (5.25)

2(V−A)adj + 1
3(V−A) = 2[(ψ̄γµ tz ψ)2 − (ψ̄γµγ5 t

z ψ)2]

+ 1
3[(ψ̄γµψ)2 + (ψ̄γµγ5ψ)2]

= [(ψ̄γµψ)2 + (ψ̄γµγ5ψ)2]
− [detfψ̄γµ(1 + γ5)ψ + detfψ̄γµ(1− γ5)ψ] ,

(5.26)

where ~τ is a vector with Pauli matrices, λz the Gell-Mann matrices and determinants are
performed in the flavor space. From this rewritten form, we can see that the usual scalar-
pseudoscalar channel used in model calculations, [(ψ̄ψ)2−(ψ̄γ5~τψ)2], appears in our (S−P)-
and (V + A)-channels, and the usual vector-axialvector channel, [(ψ̄γµψ)2 + (ψ̄γµγ5ψ)2],
in our (V − A)- and 2(V − A)adj + 1

3(V − A)-channels. In above equations we can also
find UA(1)-symmetry breaking terms including the famous ’t Hooft determinant. However,
since we do not introduce separate couplings for these channels, the UA(1)-symmetry is
preserved in our QCD calculations. Using Eqs. (5.23)–(5.26) we can redefine the basis of
the Fierz-complete channels in such a way that all contributions to each typical model
channel are combined together:

λ−(V−A) + λ+(V + A) + λσ(S− P) + λVA[2(V−A)adj + 1/Nc(V−A)] =

(λσ −
2
3λ+)(S− P)NJL + λ+Chn 2,NJL + (λ− + λVA)(V−A)NJL + λVAChn 4,NJL ,

(5.27)
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with new channels
(S− P)NJL = [(ψ̄ψ)2 − (ψ̄γ5~τψ)2]− [detfψ̄(1 + γ5)ψ + detfψ̄(1− γ5)ψ] ,
Chn 2,NJL = −[(ψ̄λzψ)2 − (ψ̄γ5λ

z~τψ)2]− [detfψ̄(1 + γ5)λzψ + detfψ̄(1− γ5)λzψ] ,
(V−A)NJL = [(ψ̄γµψ)2 + (ψ̄γµγ5ψ)2] ,
Chn 4,NJL = −[detfψ̄γµ(1 + γ5)ψ + detfψ̄γµ(1− γ5)ψ] ,

(5.28)

where index NJL means that in this set of Fierz-complete channels each model channel
appears only once. The first and the third channels in this basis correspond to the channels
used in NJL models. The second and the fourth channels ensure that the current basis is
Fierz-complete. The corresponding couplings are defined as

λσ,NJL = λσ −
2
3λ+ ,

λ2,NJL = λ+ ,
λ−,NJL = λ− + λVA ,
λ4,NJL = λVA ,

(5.29)

The flow equations for these couplings can be calculated straightforwardly from our pre-
vious results in Eqs. (5.7)–(5.10). Here, we again use Nc = 3 and Nf = 2:

∂tλσ,NJL =2λσ,NJL − 32v4l
(FB)
1,1 (τ, µ̃, 0, 0)g2λσ,NJL −

46
9 v4l

(FB)
1,2 (τ, µ̃, 0, 0)g4

− 8v4l
(F)
1 (τ, µ̃, 0)

[35
6 λ

2
σ,NJL + 16

27λ
2
2,NJL + 16

9 λσ,NJLλ2,NJL

− 4
3λσ,NJLλ4,NJL −

10
3 λσ,NJLλ−,NJL + 64

9 λ2,NJLλ−,NJL

− 32
9 λ2,NJLλ4,NJL

]
,

(5.30)

∂tλ2,NJL =2λ2,NJL + 4v4l
(FB)
1,1 (τ, µ̃, 0, 0)g2λ2,NJL + 13

24v4l
(FB)
1,2 (τ, µ̃, 0, 0)g4

− 8v4l
(F)
1 (τ, µ̃, 0)

[
− 26

9 λ
2
2,NJL + 1

4λ
2
σ,NJL −

38
3 λ2,NJLλ−,NJL

+ 10
3 λ2,NJLλ4,NJL + 2λσ,NJLλ−,NJL − λ4,NJLλσ,NJL + 1

3λσ,NJLλ2,NJL
]
,

(5.31)

∂tλ−,NJL =2λ−,NJL + 8v4l
(FB)
1,1 (τ, µ̃, 0, 0)g2λ−,NJL −

17
12v4l

(FB)
1,2 (τ, µ̃, 0, 0)g4

− 8v4l
(F)
1 (τ, µ̃, 0)

[
− 5λ2

−,NJL − 2λ2
4,NJL −

44
9 λ

2
2,NJL −

1
2λ

2
σ,NJL

+ 4
3λσ,NJLλ2,NJL + 4λ4,NJLλ−,NJL

]
,

(5.32)

∂tλ4,NJL =2λ4,NJL − 4v4l
(FB)
1,1 (τ, µ̃, 0, 0)g2

[
− 3λ−,NJL + 4λ4,NJL

]
− 1

8v4l
(FB)
1,2 (τ, µ̃, 0, 0)g4 − 8v4l

(F)
1 (τ, µ̃, 0)

[
− 9λ2

4,NJL −
1
2λ

2
σ,NJL −

2
9λ

2
2,NJL

+ 4λ4,NJLλ−,NJL −
2
3λσ,NJLλ2,NJL

]
.

(5.33)
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Figure 5.10: Here, we present the dimensionful couplings λ̄i,NJL as functions of k at T = 0 and
µ = 0. We constrain this plot to k < 500 MeV since for larger momenta all couplings basically stay
zero. Around k ' 400 MeV couplings start to grow and diverge at k ' 233 MeV. This behavior
indicates the chiral symmetry breaking in QCD.

To use the basis in Eq. (5.28) and the corresponding couplings from Eq. (5.29) in the QCD
part of our calculations has an important advantage – namely that we can easily read off
the starting values for the NJL model couplings at the projection scale k = ΛNJL.
Now, we solve the set of differential equations (5.30)–(5.33) using the strong coupling

from Sec. 5.3. We start at the scale k = ΛUV, QCD = 20 GeV with λi,NJL(ΛUV, QCD) = 0.
First, we do it for T = 0 and µ = 0. Our results for dimensionful couplings λ̄i,NJL are
shown in Fig. 5.10. Thereby, we have assumed that Zi,NJL = 1 for all 4-fermion vertex
renormalizations so that corresponding anomalous dimensions ηi,NJL = −(∂tZi,NJL)/Zi,NJL
vanish. We observe that, for momentum scales k & 400 MeV, all couplings basically remain
zero. It means that the critical value of the strong coupling is not achieved and the
couplings λ̄i,NJL are bounded from above by the value of the slightly shifted IR-attractive
Gaussian fixed point which is on order ∼ g4, see Sec. 5.2. At smaller scales all couplings
start to grow. This observation indicates that the fixed points in the flows of quark
self-interactions disappear. At k ' 233 MeV all 4-fermion couplings even diverge and it
becomes impossible to solve the flows at smaller scales. As discussed in Sec. 5.2, this
behavior indicates chiral symmetry breaking in QCD. For our purposes it means that the
scale where we project the QCD flows results onto the model channels should be chosen in
such a way that ΛNJL > kχSB = 233 MeV. We also observe that the coupling of the usual
scalar-pseudoscalar channel, λ̄σ,NJL, is clearly dominant. Therefore, it seems to be quite
reasonable to use a model with only this channel in our further calculations.
However, before we start with model calculations, we would like to test numerically

the mechanism of chiral symmetry restoration at large µ and T → 0 which was found in
Sec. 5.2. To this end, we now consider all four quark channels used in our truncation of
the effective action. Our results for the flows of dimensionless effective couplings at T → 0
and close to the critical chemical potential µχ are summarized in Fig. 5.11. We observe the
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Figure 5.11: The flows of dimensionless couplings at T → 0 and close to µχ. At µ = 261 MeV
all couplings diverges at the chiral symmetry breaking scale kχSB(µ) = 261.14 MeV. This behavior
indicates chiral symmetry breaking in QCD RG flows. For µ = 262 MeV, the couplings are still
increasing for k ≥ µ but decrease for k < µ and become zero in the limit k → 0. The system is
then in the chirally symmetric regime. Therefore, the critical value of the chemical potential in
the limit T → 0 is given by µχ ≈ 262 MeV in our approach.

following behavior: At µ = 261 MeV all couplings grow rapidly close to the chiral symmetry
breaking scale kχSB(µ) = 261.14 MeV. Especially, λσ grows very fast. At k = kχSB(µ) all
couplings even diverge and we observe chiral symmetry breaking in the QCD RG flows.
However, if the value of the chemical potential is slightly increased, µ = 262 MeV, the
couplings do not diverge anymore. They still become large for k ≥ µ = 262 MeV but
remain finite and decrease again for decreasing k. In fact, in the limit k → 0, they even
become zero and the system is clearly in the chirally symmetric regime. Thus, for our
present QCD RG flows the critical value of the chemical potential in the limit T → 0 is
given by:

µχ ≈ 262 MeV. (5.34)

This observation is in agreement with the mechanism of chiral symmetry restoration at
large µ found in Sec. 5.2. The fact that the effective couplings become smaller for k < µ

is the consequence of the existence of a non-trivial IR attractive fixed point for µ > k

(and T → 0). Since this point becomes a Gaussian fixed point for k → 0, the couplings
vanish if fluctuations are integrated out on all scales. In summary, we state that the
mechanism described in Sec. 5.2 is validated in our numerical calculations and works also
for truncations of the effective action beyond the one-channel approximation, which was
used in Sec. 5.2 for the sake of simplicity.
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5.5 low-energy model

As described above, in the high-energy region we consider the Fierz-complete set of
4-fermion interaction channels. However, we see that the scalar-pseudoscalar channel
seems to be very dominant compared to other three channels. Therefore, in this very
first study of QCD-inspired determination of NJL-model parameters we restrict our cal-
culations to a model with only scalar-pseudoscalar channel. So, we use only the coupling
λ̄σ,NJL in the momentum region k ≤ ΛNJL.
The effective action of such an NJL model is similar to that of the PNJL model in

Sec. 4.1:

Γk =
∫

d4x
{
ψ̄(iZψ /∂ + iγ0µ)ψ + λ̄σ,NJL

2 [(ψ̄ψ)2 − (ψ̄γ5~τψ)2]
}

. (5.35)

Here, however, we do not introduce the Polyakov-loop and, therefore, we cannot incorpo-
rate confinement in our calculations. Further, one may immediately notice that we have
dropped the ’t Hooft term which appears in the definition of the (S − P)NJL-channel in
our QCD calculations. This procedure corresponds to a maximal breaking of the UA(1)-
symmetry at the projection scale ΛNJL. In summary, the effective action in Eq. (5.35)
corresponds to the commonly used form of the NJL model.
In our calculation we use a bosonized version of NJL model:

Γk =
∫

d4x ψ̄(iZψ /∂ + iγ0µ)ψ + 1
2Zϕ(∂µϕ̄)2 + ih̄ψ̄(σ + i~τ · ~πγ5)ψ + 1

2m̄
2ϕ̄2 , (5.36)

with ϕ̄ = (σ, ~π)T and h̄ a real valued Yukawa coupling. The boundary conditions of this
model are

lim
k→ΛNJL

Zϕ = 0 , (5.37)

lim
k→ΛNJL

Zψ = 1 , (5.38)

and

lim
k→ΛNJL

h̄2

m̄2 = λ̄σ,NJL(ΛNJL) . (5.39)

The action in Eq. (5.36) can be derived from the action in Eq. (5.35) using Hubbard-
Stratonovich transformation described in Sec. 4.2.1. In this study we again neglect the
anomalous dimensions ηψ and ηϕ. So, we set Zψ = 1 and Zϕ = 1. For a detailed discussion
concerning this approximations, we refer the reader to Sec. 4.2.2. In this first study we
also ignore the possible running of the Yukawa coupling, h̄, for the sake of simplicity.
Therefore, h̄ is simply a constant which can be obtained using low-energy observables in
the limit T → 0, µ → 0. Thereby, one uses the Goldberger-Treiman relation, Eq (2.33),
and the low-energy values of the constituent quark mass, m̄q ' 300 MeV, and of the pion
decay constant, fπ ' 87 MeV11. So, in our calculations the Yukawa coupling is given by
h̄ ' 3.448.

11 This value is only valid in the chiral limit. The physical pion decay constant is measured to
fπ = (92.21± 0.01± 0.14) MeV [79].
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In present work we restrict our calculations to the mean field level. It means that we
use

ϕ̄ ≡ (σ, ~π)T mean field= (σ0, 0)T , (5.40)

with σ0 = ϕ̄0 being the expectation value of the field ϕ̄. As we will see, this simplification
provides us a very clear picture of how the projection of results from QCD-flows onto the
model channels works. Inclusion of mesonic fluctuations will be covered in future work.
From Wetterich flow equation (3.28) we can easily calculate the flow of potential Uk on
the mean field level. For a model with Nc = 3, Nf = 2 and in the chiral limit we obtain
the following expression for any 3d-type regulator:

∂tUk = − 6
π2k

3T
∑
n

∫ ∞
0

dy y3/2 (∂trψ(y))(1 + rψ(y))
(ν̃n + iµ̃)2 + y(1 + rψ(y))2 + (m̄q/k)2 , (5.41)

with m̄q = h̄σ0 the constituent quark mass, y = ~p 2/k2 and ν̃n = (2n+1)πT/k the Matsub-
ara frequencies. In analogy to Sec. 4.2.2, we can identify the expectation value σ0 with the
pion decay constant fπ by means of the Goldberger-Treiman-relation, Eq. (2.33). rψ(y)
represents here the dimensionless regulator shape function for fermions and is specified for
3d linear regulator in App. E. In order to get the potential, we integrate the above flow
equation:

U(k = 0) =
0∫

ΛNJL

dk ∂tUk
k

+ U(k = ΛNJL) . (5.42)

Using

U(k = ΛNJL) = 1
2m̄

2ϕ̄2
0 = 1

2λ̄σ,M
m̄2
q , (5.43)

we obtain the following result for 3d linear regulator:

U(k = 0) =− 2
π2

0∫
ΛNJL

dk k3√
1 + (m̄q/k)2

(1− nF(m̄q/k, µ̃)− nF(m̄q/k,−µ̃))

+ 1
2λ̄σ,M

m̄2
q ,

(5.44)

where nF denotes the fermionic occupation number and is given by:

nF(m̄q/k, µ̃)) = 1

exp
(√

1+(m̄q/k)2+µ̃
τ

)
+ 1

. (5.45)

Now, we can use Eq. (5.44) in order to calculate the potential U(k = 0) as a function of σ0
for different values of temperature and chemical potential12. The minimum of this poten-
tial corresponds to the physical ground state and can be used as the order parameter for
the chiral phase transition. Before we can perform such calculations for finite temperature
and chemical potential, we have to fix the UV scale of the NJL model, ΛNJL, in the limit
of vanishing T and µ. Thereby, we should reproduce the correct low-energy observables.

12 As an alternative, one can calculate the potential U(k = 0) as a function of m̄q = h̄σ0
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In the chiral limit it means that we want to obtain σ0 = fπ = 87 MeV. For this purpose
Eq. (5.44) can be used. However, here we use the gap equation to fix ΛNJL since this
alternative method provides us a clear picture of how our previous results from the QCD
RG flows lead to the construction of an NJL model.
For 3d linear regulator the gap equation for NJL model with two flavors, three colors

and zero chemical potential is given by the following expression, see e.g. [103] or [70]:

1 = 24λ̄σ,NJL(ΛNJL)T
∑
n

∞∫
−∞

d3p

(2π)3

[
1

ν2
n + ~p 2 + m̄2

q

− 1
ν2
n + Λ2

NJL + m̄2
q

]

×Θ(Λ2
NJL − ~p 2) ,

(5.46)

with λ̄σ,NJL(ΛNJL) being the starting value of the coupling at the UV cut-off of the model
and m̄q the constituent quark mass in the limit k → 0. Considering T → 0, we can replace
the Matsubara sum by:

T
∑
n

. . .
ν2

n → p2
0→
∞∫
−∞

dp0
(2π) . . . , (5.47)

and then perform the integration over the zero component of the momentum:

1 = 6
π2 λ̄σ,NJL(ΛNJL)

ΛNJL∫
0

dp p2

 1√
~p 2 + m̄2

q

− 1√
Λ2

NJL + m̄2
q

 . (5.48)

After an integration over the spatial momentum, we obtain the following relation:

λ̄σ,NJL(ΛNJL) = π2

3Λ2
NJL

1
γ(m̄q/ΛNJL) , (5.49)

where γ(x) is given by:

γ(x) =
√

1 + x2 + x2 ln
[

x

1 +
√

1 + x2

]
− 2

3
1√

1 + x2
. (5.50)

Using this result, we can choose the desired value of m̄q and calculate the starting value
of the coupling λ̄σ,NJL(ΛNJL) as a function of the UV scale ΛNJL. Thereby, any pair of
λ̄σ,NJL(ΛNJL) and ΛNJL solving Eq (5.49) would lead to one and the same value of m̄q. In
Fig. 5.12 we plot our result for λ̄σ,NJL(ΛNJL) from the gap equation for m̄q = 300 MeV
(fπ = 87 MeV) as a red line. In this plot we also show our result for λ̄σ,NJL(k) obtained
from QCD RG flows (blue line) which was already presented in Fig. 5.10. We observe that
these two lines cross at some scale. It means that if we stop our QCD calculations at this
k and use it together with corresponding value of λ̄σ,NJL(k) as starting parameters of NJL
model for T → 0 and µ → 0, then we reproduce correct low-energy observables. With
other words, we just fixed the projection scale. For the particular input for the strong
coupling it is given by:

ΛNJL = 260 MeV. (5.51)

We emphasize once more that this scale coincides with the IR scale of our QCD-flows
calculation and with the UV scale of the model. One may notice that this scale is quite
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Figure 5.12: Our result for λ̄σ,NJL(ΛNJL) from the gap equation for fπ = 87 MeV (red line) as
well as λ̄σ,NJL(k) obtained from QCD flows using the strong coupling from [73] (blue line). Both
lines were calculated in the limit T → 0, µ → 0. We observe that they cross at k ' 260 MeV. It
means that we have to project our results from QCD RG flows onto the NJL-model channel exact
at this scale.

small compared to the UV scales usually used in NJL calculations. The typical NJL
models are defined at UV scales between 500 MeV and 1 GeV. As we will see later, the
small value of ΛNJL in our calculation is a consequence of the particular choice of the
input for the strong coupling. Different inputs for α would lead to very different results
for ΛNJL. Especially those inputs are of interest for us which provide stronger α at larger
scales. Such inputs lead to stronger λ̄σ,NJL(k) and, consequently, the blue line in Fig. 5.12
would cross the red line at larger k. With other words, the observed projection scale would
be larger. For an example of such an input, we refer the reader to Sec. 5.7.
Nonetheless, in the major part of our calculations we use the input from [73]. This input

includes the temperature and, after manipulations described above, chemical-potential
dependence of the strong coupling. So, it allows us to study the influence of T - and
µ-dependent model parameters on the phase diagram in a more proper way.

5.6 phase diagram of njl model

Since the UV scale of the model and the corresponding value of the 4-fermion coupling are
fixed, we can calculate the phase diagram from our NJL model. Thereby, we can proceed
in two different ways:

1. We can use ΛNJL and λ̄σ,NJL(ΛNJL) obtained for T → 0, µ → 0 also for finite
temperature and chemical potential calculations.

2. We can keep ΛNJL fixed and calculate λ̄σ,NJL(ΛNJL) as a function of T and µ from
QCD RG flows.
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Figure 5.13: The starting values of λ̄σ,NJL(ΛNJL) as a function of temperature for different values
of chemical potential. We observe that λ̄σ,NJL(ΛNJL) generally decreases with increasing T . It
reflects the restoration of chiral symmetry in QCD and is consistent with our qualitative discussion
in Sec. 5.2. However, for small µ we observe a non-monotonous behavior of λ̄σ,NJL(ΛNJL). It
appears due to the suppression of quark contribution to the strong coupling discussed in Sec. 5.3.
This suppression leads to stronger α and, therefore, tends to produce stronger λ̄σ,NJL(ΛNJL). This
effect becomes less relevant with increasing chemical potential.

The first option basically corresponds to the standard procedure in NJL calculations and,
therefore, will produce results which can be used as a reference for a typical NJL-model
outcome. The second option represents an improvement of the typical NJL procedure and
allows us to study the impact of T - and µ-dependence in the model parameters on the
phase diagram.
Before we present phase diagrams for both cases mentioned above, it is useful to discuss

the starting value of the coupling λ̄σ,NJL(ΛNJL) as a function of T and µ, see Fig 5.13.
In this figure we consider λ̄σ,NJL(ΛNJL) as a function of temperature for different values
of chemical potential. We observe that for T → 0 the value of λ̄σ,NJL(ΛNJL) is basically
the same for all considered values of µ. This is due to the fact that ∆ηA,k behaves as a
Θ-function and threshold functions of the fermionic flows have only a weak µ-dependence
in the limit of zero temperature, see App. F and App. E.3 correspondingly. With increasing
temperature λ̄σ,NJL(ΛNJL) becomes generally smaller as one would expect it from the chiral
symmetry restoration in QCD. However, for small values of µ we observe a non-monotonous
behavior of λ̄σ,NJL(ΛNJL): at intermediate temperatures it starts to grow and reaches a
maximum. With further increase of T it decreases again. This unexpected behavior is
a direct consequence of the thermal decoupling of quarks discussed in Sec. 5.3. In this
section we have already argued that at finite temperatures the Yang-Mills contributions
to the strong coupling are dominant and, therefore, α becomes stronger for increasing
T . Therefore, neglecting the T - and µ-dependence of 4-fermion flows, one would expect
that the 4-fermion couplings also become stronger. On the other hand, we have shown
in Sec. 5.2 that for finite temperature and chemical potential the fermionic flows produce
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Figure 5.14: The order parameter fπ for µ = 0 as function of temperature. We consider both
the constant λ̄σ,NJL(ΛNJL) (blue line) and µ-dependent λ̄σ,NJL(ΛNJL) (red line). The resolution in
temperature direction is 1 MeV. fπ calculated with T -dependent starting model parameter shows
weak wave-like behavior which is reminiscent of the non-monotonous behavior of λ̄σ,NJL(ΛNJL) as
function of T and, therefore, of the thermal decoupling of quarks. We observe smaller Tχ in the
case of temperature dependent λ̄σ,NJL(ΛNJL). This is explained be the chiral restoration in QCD
which is neglected in standard NJL procedure.

weaker couplings compared to the limit T → 0, µ → 0. This mechanism reflects the
restoration of chiral symmetry in QCD and acts contrary to the thermal decoupling of
quarks, which leads to a stronger strong coupling and, therefore, favor the breaking of the
chiral symmetry. The interplay of these two effects leads to the non-monotonous behavior
of λ̄σ,NJL(ΛNJL) for small µ. For larger chemical potential, however, the effect of the
thermal decoupling of quarks appears to become subleading and λ̄σ,NJL(ΛNJL) decreases
monotonously with increasing T .
Now, we use these results to calculate the order parameter of the chiral phase transition.

In Fig. 5.14 we present our results for fπ for vanishing chemical potential as function of
T . In this plot we present fπ calculated with a temperature dependent starting value of
the 4-fermion coupling (red line) as well as fπ obtained using the standard procedure of
NJL calculations (blue line). Both curves indicate the second order phase transition as
expected for an NJL model in the chiral limit and differ basically in two aspects: First,
we observe a kind of weakly pronounced wave-like behavior of the order parameter if
we use the temperature dependent starting parameter. This is a consequence of the non-
monotonous behavior of λ̄σ,NJL(ΛNJL) for small µ: larger values of λ̄σ,NJL(ΛNJL) correspond
to stronger breaking of the chiral symmetry and, therefore, push the order parameter to
larger values. This behavior does not appear if we use constant λ̄σ,NJL(ΛNJL) and seems
to be rather unexpected. Nonetheless, it is in full agreement with the observation of the
thermal decoupling of quarks from the gauge sector. We emphasize that the quantitative
impact of this effect on the behavior of fπ strongly depends on the used input for α. For
example, the strong coupling from [73] without modifications performed in this study and
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pronounced effect of thermal decoupling of quarks. This is due to a more sophisticated ansatz for
external-momentum expansion of ηquarks

A,k (T ) in [73].

for Nf = 2 shows a weaker increase of α with increasing T , see Fig. 5.15. According to this,
the strong coupling from [73] would lead to less pronounced non-monotonous behavior of
λ̄σ,NJL(ΛNJL), and to less pronounced, or even negligible, wave-like behavior of fπ.
The second main aspect which distinguishes the red and blue curves in Fig. 5.14 is

that the critical temperature, Tχ, is considerably smaller if we use T -dependent starting
model parameter. It amounts to Tχ ≈ 118 MeV compared to Tχ ≈ 141 MeV for constant
λ̄σ,NJL(ΛNJL). Both these values are smaller than Tχ = (154± 9) MeV measured in lattice
QCD [180]. However, we emphasize that this is an effect of the rather small ΛNJL and,
consequently, of the particular input for the strong coupling used in this study. As we will
see in the next section, other inputs can lead to more realistic values of Tχ. Nonetheless,
the fact that the temperature dependent starting value of the model parameter leads to
a reduction of the critical temperature of the NJL model is very remarkable. It is also
in agreement with the chiral symmetry breaking mechanism described in [71, 72, 73] and
in Sec. 5.2: The restoration of the chiral symmetry in QCD leads to smaller values of
the starting parameter λ̄σ,NJL(ΛNJL). On the other hand, smaller λ̄σ,NJL(ΛNJL) lowers the
order parameter and, therefore, the critical temperature. Even though this effect seems
to be rather intuitive, to our knowledge, it was never incorporated in NJL calculations
before. Typical critical temperatures observed up to date for NJL phase diagram seems
to be too large since no chiral symmetry restoration in QCD itself was taken into account.
In this calculation the critical temperature is lowered by ∼ 16%. This particular number
can be different for models defined at higher UV scale or for different inputs of the strong
coupling. Nonetheless, the major effect will remain the same and should be kept in mind
if one interprets results from usual model calculations.
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µ-dependent λ̄σ,NJL(ΛNJL). The position of critical endpoint is also shifted to smaller values in
this case. For T → 0 both lines coincide. It is a consequence of absence of Silver Blaze problem in
our calculations.

Further, we also consider finite chemical potential. The resulting phase diagram can
be found in Fig. 5.16. The dashed blue line represents a phase transition of second order
and the thick red line a phase transition of first order, the black dot represents the critical
endpoint and separates transitions of different orders. The resolution in Fig. 5.16 is 1 MeV
in T -direction and 5 MeV in µ-direction. We present two transition lines. The upper
one corresponds to the result obtained using the standard NJL model, namely, keeping
λ̄σ,NJL(ΛNJL) constant. The lower transition line was calculated using temperature and
chemical potential dependent starting values of the 4-fermion coupling. In both cases the
structures of the corresponding phase diagrams are very similar and are in agreement with
expectations for the chiral limit13. The main difference, thereby, are values of Tχ. One
observes that also for finite µ the critical temperature lowers if one considers λ̄σ,NJL(ΛNJL)
as a function of T and µ as predicted from QCD flows. Also, the position of the critical
endpoint is shifted to smaller values of (TC, µC).
An interesting observation is that for large µ and small T we observe that both transition

lines basically coincide. This observation is remarkable in the context of the famous Silver-
Blaze problem appearing in QCD at finite chemical potential, see, e.g., Ref [181]14: In
QCD the chemical potential appears in the functional determinant which is a product
of eigenvalues of the Dirac operator. Therefore, any finite value of chemical potential
should alter all of the eigenvalues and one would expect that all observables should change.

13 With finite explicit chiral symmetry breaking one would observe a crossover instead of a second order
phase transition for small and intermediate µ.

14 For isospin chemical potential this problem also appears and was solved in [182].
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Figure 5.17: The order parameter fπ for T → 0 as function of chemical potential. We consider
both the constant λ̄σ,NJL(ΛNJL) (blue line) and temperature dependent λ̄σ,NJL(ΛNJL) (red line).
The resolution in µ-direction is 5 MeV. We observe that both lines coincide within resolution of
our calculations. Also, in both cases fπ stays constant for µ ≤ µχ. This behavior indicates that
no Silver-Blaze problem appear in our results.

However, from the phenomenological point of view we know that a physical system at
vanishing temperature should stay unaffected by a chemical potential unless it exceeds
some critical value. In the case of the (quark) chemical potential used in this work, the
critical value of µ is bounded from above by 1/3 of the nucleon mass. This problem does
not appear in the NJL model. In particular, it means that the value of the order parameter
does not change for µ ≤ µχ at T = 0. In our present calculations we use QCD RG flows
in order to calculate starting parameters of the NJL model in T - and µ-dependent way.
Therefore, one could expect that the Silver Blaze problem may appear in our results.
However, we observe that it is not the case, see Fig. 5.17. The absence of the Silver Blaze
problem in our calculations can be explained by the behavior of λ̄σ,NJL(ΛNJL) at small
temperatures for all values of µ which we have discussed in Fig. 5.13. In the end, it is
caused by the behavior of ∆ηA,k and of threshold functions for 4-fermion couplings in the
corresponding limit. For more details, see App. F and App. E.3.
Altogether, we conclude that the temperature and chemical potential dependent start-

ing parameters improve our understanding of NJL model. They considerably influence
the phase transition diagram on the quantitative level and, in general, lower the critical
temperature for all values of chemical potential. This happens because of the chiral sym-
metry restoration effects in the QCD RG flows. Even though our current model seems to
be defined at too low UV scale, ΛNJL

15, our conclusions are also valid for models defined
at higher scales. To show this, we consider an alternative input for the strong coupling in
the following section.

15 Too small ΛNJL is also the reason for too small Tχ at µ→ 0 and for too small µχ at T → 0.
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5.7 alternative input for the strong coupling

In this section we use an alternative input for the coupling α computed in Ref. [122]. The
advantage of this FRG result in Landau gauge is that the strong coupling was calculated
from the quark-gluon vertex which also enters in our 4-fermion flows. Moreover, in [122] a
smooth approximation of the 4d linear regulator was used. Even though the dimensionality
of this regulator is different compared to 3d linear regulator which was used in this work,
both these regulators are from the same regulator class. A big disadvantage of the input
from [122] is that it was obtained only in the limit T → 0, µ → 0. Therefore, using
this input, we partially lose information about T - and µ-dependence of 4-fermion flows.
Another, rather technical, disadvantage is that ηgluons

A,k is not explicitly given in the results
from [122]. For our calculations, however, these quantity is quite important since it appears
in threshold functions l(FB)

1,1 and l
(FB)
1,2 of fermionic flows, see App. E. Hence, we cannot

provide accurate calculations using this input. Nonetheless, we can consider two different
approximations for ηgluons

A,k : First, we can simply neglect this contribution, i.e., we can
set ηgluons

A,k = 0 in the threshold functions of 4-fermion flows. Second, we can consider
ηgluons
A,k ≈ (∂tα)/α inspired by Eq. (5.13). In this approximation, ηgluons

A,k includes much
more than only contributions from the gluonic sector. It also includes quark contributions
since in [122] the authors have used the dynamical-hadronization technique to calculate
the strong coupling.
The authors of [122] have calculated the strong coupling α using the full tensor structure

of the quark-gluon vertex. Thereby, they have considered different momentum configura-
tions. In this work we consider only the data obtained from the classical tensor structure
and with a momentum configuration where the momentum of the quark is zero and the
momenta of antiquark and gluon are p. Further, in spirit of Wilsonian momentum-shell
integration, we use the approximation α(k) = α(k, p = k). The corresponding strong
coupling can be found in Fig. 5.18. In this figure we also plot the perturbative 1-loop
result for α(k) fixed at k = 20 GeV. However, in contrast to Sec. 5.3, we should use
α(k = 20 GeV) = 0.174. It is the value obtained in [122] at k = 20 GeV and results from
the fact that in [122] the quenched quarks were used. We observe that the result from
[122] agrees with 1-loop α for k & 5 GeV and starts to rapidly grow at much higher scales
compared to our original input for α discussed in Sec. 5.3. For k . 550 MeV the strong
coupling decreases and approaches zero for k → 0 as it was already observed in lattice
QCD calculations in the Landau gauge [183, 184]. However, as we will discuss below, this
effect does not really play a role for our considerations.
Further, we proceed in the same way as described in Sec. 5.5 and Sec. 5.6. We obtain

following projection scales ΛNJL:

ηgluons
A,k ≈ 0⇒ ΛNJL = 502 MeV,

ηgluons
A,k ≈ (∂tα)/α⇒ ΛNJL = 557 MeV.

(5.52)

In the first case, ΛNJL is smaller than k ≈ 550 MeV. It means that we define the model
in the momentum region where α decreases with decreasing k due to the effective gluon
mass. However, the value of α at k = ΛNJL = 502 MeV differs from α at the position of
the peak only by ∼ 1.6% and is larger than the critical value of the strong coupling. In the
case of ηgluons

A,k ≈ (∂tα)/α, the projection scale is even larger than the scale corresponding
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Figure 5.18: α(k) from [122] (T → 0, µ → 0) as explained in the main text. We also plot a
perturbative 1-loop α(k) fixed by α(k = 20 GeV) = 0.174. This is the value of the strong coupling
obtained at k = 20 GeV in [122], where quenched quarks were used. We observe a very good
agreement between these two couplings for k & 5 GeV. We also observe that the coupling from
[122] becomes large already at higher scales compared to the coupling in Sec. 5.3. For k . 550
MeV, α(k) from [122] decreases and approaches zero. This is due to the effective gluon mass.

to the peak in α. Therefore, the effect of decreasing α for k . 550 MeV is not relevant for
our further considerations.
Both values in Eq. (5.52) are considerably larger than ΛNJL = 260 MeV obtained for the

strong-coupling input from [73]. They are also in agreement with common UV scales used
in model calculations. Hence, we conclude that in general the formalism which we use in
this study can produce models with usual boundary conditions. However, the particular
values of the model parameters strongly depend on the input for the strong coupling α. We
emphasize once again that the current input for α was calculated for zero temperature and
zero chemical potential. Therefore, we lose some information about T - and µ-dependence
in the behavior of 4-fermion flows. In particular, no quark decoupling described in Sec. 5.3
can take place. As a consequence, λ̄σ,NJL(ΛNJL) is monotonously decreasing as a function
of T for all values of µ and, therefore, the wave-like behavior of the order parameter does
not appear (compare Sec. 5.6).
In Fig. 5.19 we present the phase diagrams for both approximations discussed above.

To distinguish different cases we use the color scheme described in Tab. 5.1. The criti-
cal endpoints are represented by black dots. Further, the upper lines correspond to the
case of the constant starting parameter λ̄σ,NJL(ΛNJL) and the lower lines to the T - and
µ-dependent λ̄σ,NJL(ΛNJL). The qualitative structure of the phase diagrams is very usual
for NJL model in the chiral limit and is basically the same as in our previous result, see
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Figure 5.19: The phase diagrams for models derived using the input for α(k) from [122]. An
explanation of the color scheme can be found in Tab. 5.1. The upper lines correspond to the case
of constant λ̄σ,NJL(ΛNJL) and lower lines to the case of T - and µ-dependent λ̄σ,NJL(ΛNJL). We
observe similar behavior as in Fig. 5.16 where the input from [73] was used: All diagrams exhibit
the phase structure which is typical for the chiral limit (from left to right): second order phase
transition, critical endpoint, first order phase transition. For T - and µ-dependent λ̄σ,NJL(ΛNJL),
we observe smaller Tχ for all values of µ. The positions of critical endpoints are shifted to smaller
values in this case.

second order phase transition first order phase transition
ηgluons
A,k ≈ 0 green dashed line magenta thick line

ηgluons
A,k ≈ (∂tα)/α blue dashed line red thick line

Table 5.1: Color scheme for Fig. 5.19.

Fig. 5.16. For constant λ̄σ,NJL(ΛNJL) and for µ → 0 we observe the following critical
temperatures:

ηgluons
A,k ≈ 0⇒ Tχ = 155 MeV,

ηgluons
A,k ≈ (∂tα)/α⇒ Tχ = 158 MeV.

(5.53)

These values are very similar and in perfect agreement with Tχ = (154± 9) MeV measured
in lattice QCD [180]. The critical values of µ for T → 0 are in agreement with typical
model predictions:

ηgluons
A,k ≈ 0⇒ µχ = 259 MeV,

ηgluons
A,k ≈ (∂tα)/α⇒ µχ = 269 MeV.

(5.54)

Now, let us discuss the influence of T - and µ-dependent λ̄σ,NJL(ΛNJL). In general, we
observe the same effects as already observed in Sec. 5.6: The critical temperatures become
smaller compared to the case of constant starting parameters. This is valid for all values
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of µ. For µ → 0, Tχ is lowered by ∼ 23% for the case of ηgluons
A,k ≈ 0 and by ∼ 21.5% for

ηgluons
A,k ≈ (∂tα)/α. The positions of critical endpoints are also shifted to smaller values

(TC, µC). We again observe that our formalism does not exhibit the Silver-Blaze problem.
To summarize, we have seen that QCD RG flows allows us to derive low-energy QCD

models which are comparable with phenomenological models on both the qualitative as well
as the quantitative level. However, the quantitative results strongly depends on the input
for the strong coupling. The inclusion of T - and µ-dependent starting parameters in our
calculations is a considerable improvement of the common model-calculations procedure.
It takes into account not only the restoration of the chiral symmetry in the model but
also chiral symmetry restoration effects in QCD. In particular, it leads to smaller critical
temperatures.



6
SUMMARY AND OUTLOOK

This thesis was conducted with the aim to achieve a better understanding of the phase
transitions in QCD at finite chemical potential, guided by two major goals: First, we
sought a better understanding of the connection between the chiral and the deconfine-
ment phase transition at finite chemical potential, which are both associated with very
similar (pseudo-)critical temperatures at zero chemical potential as observed in lattice
QCD simulations. Further, they both are driven by the gauge dynamics but their relation
has not yet been fully understood, neither at zero chemical potential nor at finite chemical
potential. Second, we intended to improve current low-energy QCD models which are
based on several approximations and assumptions. To this end, we proposed an approach
which makes use of QCD RG flows and allows to bring low-energy QCD models closer to
QCD by taking into account the effects of QCD at high energy scales.
To achieve the first goal, we have studied the mechanism of dynamical locking which

enforces the spontaneous breaking of the chiral symmetry if confinement takes place. This
mechanism was first described in Refs. [69, 70] for zero chemical potential and was stud-
ied in this work at finite values of µ. To this end, we have employed a Polyakov-loop
extended Nambu–Jona-Lasinio model with Nf = 2 massless flavors, Nc colors, and a
scalar-pseudoscalar interaction channel. The confining dynamics was included by means
of a temporal gluonic background field taken from [146]. Our analysis of the fixed-point
structure of the four-fermion interaction in the limit of infinite many colors shows that
all finite-temperature and finite chemical-potential corrections to the vacuum fixed point
λ∗ψ disappear as long as T ≤ Td. Consequently, for Nc → ∞ all configurations of the
model or, with other words, any choice of the starting value λUV

ψ ≥ λ∗ψ leads to chiral
symmetry breaking such that Tχ ≥ Td. In particular, it means that for all choices of λUV

ψ

that would allow Tχ < Td, the chiral phase transition temperature is shifted such that
Tχ ≈ Td. Also, for the physical case Nc = 3 we have found a region in the parameter space
of λUV

ψ where the locking window with Tχ ≈ Td is present. However, in contrast to the
limit of infinite colors, there is a regime where Tχ < Td which corresponds to small values
of λUV

ψ . Further, we have observed that the inclusion of finite chemical potential affects
neither the existence nor the width of the locking window. The finite chemical potential
solely shifts the locking window to larger values in the parameter space. This behavior
also explains the shape of the chiral phase boundary in the phase diagram spanned by T
and µ. Since our particular model did not allow to get access to physical observables, we
were basically free in the choice of λUV

ψ as long as λUV
ψ ≥ λ∗ψ. We have observed that this

ambiguity significantly affects our results. In particular, the existence of the locking of
the chiral and deconfinement phase transition in the (T, µ)-phase diagram as well as the
curvature of the corresponding chiral phase transition line strongly depend on the specific
configuration of the model.
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In order to partially resolve the momentum dependence of fermionic self-interaction and
to get access to the physical low-energy observables, we have introduced the Polyakov-loop
extended quark-meson model. This procedure allowed us to study the phase diagram of
PQM model spanned by the pion decay constant fπ and the temperature T . Thereby, we
have considered both the chiral limit and the situation of explicitly broken chiral symmetry.
In both cases we have found again a region where the chiral phase transition is locked in
by the confining dynamics. Similar to our results in purely fermionic picture, we have
observed that the locking window is shifted to the larger values of fπ if we increase the
chemical potential µ. The width of this window is not significantly affected by finite
values of µ. Further, we have payed a close attention to the behavior of the model with
parameters adjusted to the correct low-energy observables. In the chiral limit we have
found that the physical point corresponding to fπ = 87 MeV is located outside of the
locking window. Consequently, we have observed that the critical temperatures of the
chiral and deconfinement phase transitions do not coincide even for vanishing chemical
potential. In contrast, once the explicit breaking of chiral symmetry is included, the chiral
phase transition at the physical point fπ = 93 MeV is indeed locked in by the confining
dynamics. We have found that the equality of the critical temperatures Tχ ≈ Td holds for
µ . 170 MeV. As a consequence, the curvature of the chiral phase transition line in the
(T, µ)-plane at µ = 0 is determined by the curvature of the deconfinement phase transition.
Since the order parameter for the latter was calculated in pure Yang-Mills theory, it is
µ-independent and, thus, the curvature of the chiral phase boundary is given by zero.
To conclude, we have shown that confinement can enforce the breaking of chiral sym-

metry both in the purely fermionic picture as well as in the partially bosonized model.
This statement is valid for all considered values of the chemical potential µ. In our par-
ticular calculations the input for the background field 〈A0〉, which is used as the order
parameter for the deconfinement phase transition, was calculated using pure Yang-Mills
theory. Therefore, we actually miss the back-reaction of the quarks on the gauge sector.
As a consequence, the deconfinement phase transition is µ-independent. Even though the
inclusion of such a back-reaction is of great importance for quantitative studies, our par-
ticular calculations at finite chemical potential already provide an important qualitative
understanding of the impact of confining dynamics in the gauge sector on the chiral phase
transition in the matter sector. In particular, our analytical results in the limit Nc →∞
may affect the interpretation of approximations made in common PNJL and PQM studies.
Working with PNJL and PQM model, we were confronted with commonly used ap-

proximations and assumptions. We have especially emphasized three of them: the Fierz-
incomplete interaction channels, fine-tuning of model parameters and the corresponding
ambiguity in their choice, and the negligence of the possible temperature and chemical-
potential dependence of model parameters. We have presented an approach how these
shortcomings of common models can be potentially improved by means of the QCD RG
flows [71, 72, 73]. The main idea of this approach is to construct a low-energy QCD
model using the flows of Fierz-complete effective 4-quark interactions which are generated
by gluodynamics. We have calculated the flows of the effective couplings with the FRG
approach and have recapitulated the mechanism of chiral symmetry breaking in QCD as
it was shown in [71, 72, 73]. Thereby, we have seen the great importance of the strong
coupling α for this mechanism.
In our numerical calculations we have considered the flow of the strong coupling to

be given by the pure Yang-Mills contributions plus quark corrections. For Yang-Mills
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contributions we have used the data from [73]. The quark corrections were calculated up
to the leading order in the external-momentum expansion. Our procedure has allowed to
calculate α as function of temperature and chemical potential. At vanishing T and µ we
have observed a perfect agreement of our results and the perturbative 1-loop coupling at
large momentum scales. For finite T and µ we have found two interesting effects: First,
we have observed the thermal suppression of quark contributions. This effect implies
the dominance of Yang-Mills contributions at high temperatures and leads to stronger α.
Further, we have seen that for small momentum scales the dimensional reduction of the
theory takes place. In particular, it causes a decrease of the strong coupling to zero for
k → 0. As we have seen, this behavior of the strong coupling in four dimensions does
not mean that the theory becomes weakly interacting but only indicates the existence of a
strong-coupling fixed-point in 3-dimensional Yang-Mills theory which governs the dynamic
of the theory at high temperatures.
Using our results for α we have evaluated the flows of the effective 4-quark couplings.

Our numerical results have shown that the scalar-pseudoscalar interaction channel is
clearly the most dominant channel. Thus, in this first study, we have decided to con-
struct an NJL model only with scalar-pseudoscalar channel. We have used the partially
bosonized ansatz for the NJL model in the chiral limit which was evaluated on the mean-
field level. In order to reproduce correct physical low-energy observables we have projected
our results from QCD RG flows onto the model ansatz at k = ΛNJL = 260 MeV. Using
our approach, we were able to calculate the corresponding starting value of the coupling
λ̄σ,NJL(ΛNJL) as function of T and µ. We have observed that the T - and µ-dependent
λ̄σ,NJL(ΛNJL) leads to smaller critical temperatures compared to the standard NJL proce-
dure where λ̄σ,NJL(ΛNJL) is assumed to be constant. This behavior reflects chiral symmetry
restoration in QCD itself. Our numerical findings suggest that this effect is quite strong
and should be taken into account in quantitative model studies. The observed UV cutoff of
the model, ΛNJL = 260 MeV, is small compared to usual NJL calculations. The smallness
of the UV cutoff also leads to a small critical temperature of the chiral phase transition
compared to lattice QCD results. However, in our approach the particular value of the
model UV cutoff is a direct consequence of the used input for the strong coupling. To
show this, we have considered the zero-temperature coupling α computed in [122] and have
repeated our analysis of the resulting model. This input was suitable to show that in the
limit of T → 0 and µ→ 0 the resulting model has the UV cutoff ΛNJL ∼ 500− 550 MeV.
These values are compatible with UV scales of common NJL calculations. Using the input
from [122] for finite T and µ calculations we have observed again the effect of reduction
of critical temperature due to the chiral symmetry restoration in QCD. We add that our
approach seems to be not affected by Silver-Blaze problem.
We can conclude that the approach presented in this work can improve model calcula-

tions in many senses: First, it allows to estimate the relative strength of different channels
allowed by Fierz ambiguity. Second, the initial values of model couplings at the UV scale
of a model can be calculated as functions of temperature and chemical potential. This
allows to take into account the effects of QCD at high energy scales which was completely
ignored up to now. And last but not least, in the proposed approach there is only one
set of model parameters which reproduces correct physical observables. Consequently, the
ambiguity of the model parameter choice, which is present in the common model calcula-
tions, does not appear here. However, this set of model parameters depends strongly on
the input for the strong coupling. Thus, improved RG flows calculations for the coupling
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α as well as crosscheck against results from lattice QCD and Dyson-Schwinger formalism
are needed. Further, for a quantitative check of our particular results one has to include
the neglected interaction channels in the model ansatz. In addition, to go beyond the
mean-field level posses a natural extension of our particular calculations since it would
allow to study the effects of bosonic fluctuations. Moreover, the set of effective 4-quark
interactions used in the present work is Fierz-complete only for T → 0 and µ→ 0. Consid-
ering finite temperature and chemical potential, new channels would appear, e.g., due to
the presence of the heat bath. We will take into account these channels in the near-future
works.

In summary, our findings concerning the locking of the chiral phase transition due to
the confining dynamics at finite chemical potential and our approach to improve future
model calculations will contribute fruitfully to the theoretical analysis of the QCD phase
diagram and help to push our understanding of the QCD dynamics.



A
CONVENTIONS

a.1 units

In this study we work with natural units commonly used in particle physics and cosmology:

~ = c = kB = 1 , (A.1)

where ~ is the reduced Planck constant, c the speed of light and kB the Boltzmann constant.
In this convention temperature is measured in the units of energy and length in the units
of 1

energy . The corresponding relations to the conventional SI units are given by:

1 m ≈ 5.1× 1012 1
MeV and 1 K ≈ 8.6× 10−11 MeV. (A.2)

Moreover, mass and momentum are also measured in the units of energy

1 kg ≈ 5.6× 1029 MeV and 1 kgms ≈ 1.9× 1021 MeV. (A.3)

a.2 minkowski and euclidean spacetime

Throughout this study we work in four-dimensional Euclidean spacetime. It can be intro-
duced starting with the Minkowski spacetime and applying following transformation:

xM,0 = −ix0 ,
gµνM xM,µxM,ν = x2

M,0 − ~x 2
M = −x2

0 − ~x 2 = −gµνxµxν = −x2 .
(A.4)

The Minkowski metric in above equation is given by gµνM = diag(+,−,−,−) and the
Euclidean metric by the Kronecker-delta, gµν = δµν .

a.3 fourier transformation

Applying Wetterich equation (3.28), we always use the momentum space. Our convention
for Fourier transformation is given by:

ψ(x) =
∫ d4p

(2π)4ψ(p) exp(ipµxµ) , (A.5)

ψ̄(x) =
∫ d4p

(2π)4 ψ̄(p) exp(−ipµxµ) , (A.6)
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for fermionic fields and by:

φ(x) =
∫ d4p

(2π)4φ(p) exp(ipµxµ) , (A.7)

for bosonic fields. This choice of convention also implies that∫
d4x exp(−ipµxµ) = (2π)4δ4(p) . (A.8)

Further, it leads to appearance of additional prefactor, (2π)4, in the functional derivative
of fields in momentum space:

δφ(p)
δφ(q) = (2π)4δ4(p− q) . (A.9)

This is valid both for fermions and bosons.



B
DIRAC ALGEBRA AND F IERZ TRANSFORMATION

b.1 dirac algebra in four dimensions

Since we work in 4d Euclidean spacetime, we have to specify corresponding Dirac algebra
which differs from those used in Minkowski space. Thus, the 4× 4 Dirac matrices should
satisfy following relations:

{γµ, γν} = γµγν + γνγµ = 2δµν , (B.1)

γ†µ = γµ . (B.2)

The fifth gamma matrix is defined as

γ5 = γ1γ2γ3γ0 , (B.3)

and has usual properties:

tr[γ5] = 0 , γ2
5 = 1 , {γ5, γµ} = 0 . (B.4)

We also need to specify the tensor σµν which is given in the case of the Euclidean spacetime
by

σµν = i
2[γµ, γν ] = i

2(γµγν − γνγµ) . (B.5)

The complete basis of the Dirac algebra is then given by sixteen elements γ(A):

γ(A) = {1, γµ, γ5, iγµγ5, σ01, σ02, σ03, σ12, σ13, σ23} . (B.6)

These elements obey

tr[γ(A)γ(B)] = 4δAB , (B.7)

and the following completeness relation

1
4
∑
A

γ
(A)
ab γ

(A)
cd = δadδbc . (B.8)
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b.2 fierz transformation

To understand where the ambiguity in representation of 4-fermion interactions comes from,
we start with the generalized Fierz transformation which bases on the fact that any d× d-
matrix M can be expanded in terms of a complete orthonormal set of d × d-matrices,
(O1, . . . , On):

Mab =
n∑
j=1

O
(j)
ab tr[OjM ] =

n∑
j=1

O
(j)
ab

∑
cd

(O(j)
cd M

(1)
dc ) . (B.9)

Rewriting the matrix M as a combination of two matrices Mad := M
(1)
ab M

(2)
cd , we obtain

for fixed b and c the following relation:

Mad := M
(1)
ab M

(2)
cd =

n∑
j=1

O
(j)
ad

∑
ef

(M (2)
ce O

(j)
ef M

(1)
fb ) . (B.10)

Now, let us consider the particular case of the Dirac algebra which is spanned by elements
γ(A) from Eq. (B.6). Applying the completeness relation from Eq. (B.8), we find:

M
(1)
ab M

(2)
cd = 1

4
∑
A

γAad
∑
ef

(M (2)
ce γ

(A)
ef M

(1)
fb ) . (B.11)

For further considerations we introduce the following notation:

OS = 1 , OV = γµ , OT = 1√
2
σµν , OA = γµγ5 and OP = γ5 . (B.12)

Now, we look at different combinations of 4-fermion channels (ψ̄αOXψβ)(ψ̄γOXψδ) where
Greek indices specify the quark species, i.e., color and flavor, and X = S,V,T,A,P. Ap-
plying transformation in Eq. (B.11) on the product (OX)ab(OX)cd we find:

(ψ̄αOXψβ)(ψ̄γOXψδ) =
∑
Y

CXY(ψ̄αOYψδ)(ψ̄γOYψβ) , (B.13)

with

CXY = 1
4


−1 −1 −1 1 −1
−4 2 0 2 4
−6 0 2 0 −6
4 2 0 2 −4
−1 1 −1 −1 −1

 . (B.14)

Thus, the Fierz transformation can be seen as an algebraic reordering of fermionic fields
which preserves the underlying symmetries of original channels.

To get feeling of how the Fierz ambiguity influences our understanding of 4-fermion
interactions, let us provide a simple example. We consider a model at zero temperature
with only one fermionic species and with interaction channel given by

(ψ̄OSψ)2 − (ψ̄OPψ)2 . (B.15)

From Fierz transformation described above we find

(ψ̄OSψ)2 − (ψ̄OPψ)2 + 1
2((ψ̄OVψ)2 − (ψ̄OAψ)2) = 0 , (B.16)
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so that the channel (ψ̄OVψ)2−(ψ̄OAψ)2 can be completely transformed in (S−P)-channel.
As consequence this combination of vector and axial-vector channels can also contribute
to the original ((ψ̄OSψ)2− (ψ̄OPψ)2)-channel. Therefore, even if we are mostly interested
in the (S−P)-channel, we also have to include the above combination of vector and axial-
vector channels in the ansatz of our calculation.





C
SU (N ) ALGEBRA

In this work we consider QCD with three colors and two flavors. In Chap. 5, in derivation of
Eqs. (5.7)–(5.10) we actually keep the number of colors, Nc, and the number of flavors, N f,
arbitrary. The corresponding underlying group is SU(N ) and is a group of unitary matrices
U of rank N with determinant detU = + 1. This group is generated by generators t z
with z = 1 , . . . , N 2 − 1 which obey following commutation relation:

[ t z , t y ] = t z t y − t y t z = if z y x t x , (C.1)

with f z y x the totally antisymmetric structure constants. The normalization condition
for generators is

t r [ t z t y ] = 1
2 δ

z y . (C.2)

Further, the contraction of two generators is proportional to identity and, therefore, is
an invariant of the algebra. The corresponding proportionality factor is called quadratic
Casimir operator, CF , and is given by

t z t z = CF 1 = N 2 − 1
2N 2 1 . (C.3)

Moreover, the generators fulfill two following (Fierz) completeness relations:

∑
z

( t z ) a b ( t z ) c d = 1
2 δ a d δ b c −

1
2N δ a b δ c d . (C.4)

Here, the subspace spanned by the unity matrix is projected out since the generators are
traceless. The second completeness relation reads to

∑
z

{ ( t z ) a b ( t z ) c d + 1
N

( t z ) a d ( t z ) b c } = N 2 − 1
2N 2 δ a d δ b c . (C.5)

In the case of SU(2), the generators t z are basically given by the Pauli matrices, t z = 1
2 τ

z ,
in the case of SU(3) by the Gell-Mann matrices, t z = 1

2 λ
z .
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D
QUANTIZAT ION OF NON-ABEL IAN GAUGE THEORIES

In this appendix, we discuss the quantization procedure for the classical QCD action
in Eq. (2.13) using a method suggested by Faddeev and Popov. All the subtleties of
quantization of QCD arise from the gauge sector, Eq. (2.11). Thus, we start with the pure
Yang-Mills theory and consider the path integral:

Z =
∫
DAµ exp

[
−
∫

d4x
1
4F

z
µνF

z
µν

]
=
∫
DAµ exp [−SYM] . (D.1)

Now, one can see what kind of problem arises if one try to quantize Yang-Mills theory (or
QCD): The above integral runs over all possible configurations of the gauge field. Conse-
quently, all field configurations which are connected by means of a gauge transformation
are repeatedly counted. These configurations cannot be distinct in the physical sense and
the path integral in Eq. (D.1) loses any physical meaning. To overcome this problem, we
can introduce the so-called orbits. This orbits include all gauge-field configurations which
result by applying all possible gauge transformations to an arbitrarily chosen configura-
tion. Thus, for all configurations inside an orbit the integrand in Eq. (D.1) is the same.
Now, after the whole space of all gauge-field configurations is divided into orbits, we can
pick up only one configuration from each orbit. Proceeding this way, the path integral
runs only over physically distinct configurations and the generating functional Z becomes
well-defined. The formal method to realize the above idea is known as the Faddeev-Popov
trick. This trick includes an implementation of a gauge-fixing condition

Fz[Aµ] = 0 , (D.2)

at each spacetime point by inserting the identity

1 =
∫
DΘ δ

(
Fz[A′µ]

)
det

(
δFz[A′µ]
δΘy

)
, (D.3)

into the generating functional in Eq. (D.1). The prime denotes that the field A′µ was
obtained by applying the gauge transformation in Eq. (2.5) on the original field Aµ. Now,
we have:

Z =
∫
DΘ

∫
DAµ exp [−SYM] δ

(
Fz[A′µ]

)
det

(
δFz[A′µ]
δΘy

)
. (D.4)

The above path integral has some properties which make the calculations easier. First, as
long as the gauge fixing condition Fz[Aµ] is chosen to be linear, its functional derivative
with respect to Θy is independent of Θy (see also the infinitesimal gauge transformation
of the field Azµ in Eq. (2.6)). Second, the Yang-Mills action SYM is invariant under the
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gauge transformation Aµ → A′µ. On the other hand, since the gauge transformation
contains basically a linear shift and a unitary rotation of various components of Azµ(x),
the integration measures DAµ and DA′µ are absolutely the same. Thus, we can rewrite
our partition function as

Z = N

∫
DAµ exp [−SYM] δ (Fz[Aµ]) det

(
δFz[A′µ]
δΘy

)
. (D.5)

Note that the integral over Θ is now factored out and results in a constant factor N which
is not of relevance for calculation of the physical observables.
As next, we specify the gauge-fixing condition. We chose the generalized Lorentz gauge:

Fz[Aµ] = ∂µA
z
µ − ωa , (D.6)

where ωa is an arbitrary function. Since our result in Eq. (D.5) is independent of the
choice of ωa, we can integrate over the whole space of functions ωa and weight each of
them by, e.g., a Gaussian weighting function. This procedure also requires a properly
chosen normalization constant which depends on the weighting function we use. However,
since the constant prefactors in the partition function do not influence the results for
physical observables, we don’t have to specify the normalization constant.

Z =N(ξ)
∫
Dω exp

[
−
∫

d4x
(ωa)2

2ξ

]
×

∫
DAµ exp [−SYM] δ

(
∂µA

z
µ − ωa

)
det

(
δFz[A′µ]
δΘy

)
.

(D.7)

The constant factor N obtained previously is included in N(ξ). Performing integration
over ω, we find

Z = N(ξ)
∫
DAµ exp [−SYM] exp

[
−
∫

d4x
(∂µAzµ)2

2ξ

]
det

(
δFz[A′µ]
δΘy

)
. (D.8)

Now, let us calculate the determinant. Using the gauge-fixing condition in Eq. (D.6)
and the infinitesimal gauge transformation of the field Azµ in Eq. (2.6), we can write the
determinant as

det
(
δFz[A′µ]
δΘy

)
= det

(1
ḡ
δzy ∂2 + fzxy ∂µA

x
µ

)
. (D.9)

one should have noticed that this result is not independent of the gauge field and, thus,
cannot be factored out. However, to absorb the determinant into the Lagrangian, we can
rewrite it as

det
(
δFz[A′µ]
δΘy

)
= N ′

∫
Dc̄Dc exp

[
−
∫

d4x c̄z
(
δzy ∂2 + ḡfzxy ∂µA

x
µ

)
cy
]
. (D.10)

To obtain the above path-integral representation of determinant, we have introduced new
fields c̄ and c1. Thereby, we have used the rules for fermionic functional integrals and,
thus, c̄ and c are anticommuting fields. On the other hand, the above expression shows

1 We have also absorbed the factor 1/ḡ into the normalization of the fields c̄ and c
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that c̄ and c have to behave as scalars under the Lorentz transformation. Therefore, these
so-called Faddeev-Popov ghosts are not physical and cannot appear as external lines in
Feynman diagrams. However, they do appear in the loops.
Now, we are able to write the quantized version of the classical QCD action in Eq. (2.13).

The corresponding Lagrangian includes the matter sector contribution LMatter, which is
not affected by Faddeev-Popov trick described above, the Yang-Mills part LYM, the gauge
fixing term LGF and the ghost term LGhost:

L = LMatter + LYM + LGF + LGhost

= iψ̄( /D +m)ψ + 1
4F

z
µνF

z
µν + 1

2ξ (∂µAzµ)2 + c̄z
(
δzy ∂2 + ḡfzxy ∂µA

x
µ

)
cy .

(D.11)

With this Lagrangian it is possible to calculate observables of QCD. However, to perform
such calculations one first has to fix the gauge parameter ξ. Throughout this work, we
have used the so-called Landau gauge given by ξ = 0.





E
THRESHOLD FUNCTIONS

e.1 regulator functions

Throughout this study we use the linear form of the cutoff functions. Since we investigate
finite temperatures, we consider the 3d case:

Rψk (~p 2) = Zψ/~p rF(~p 2/k2) ,
Rϕk (~p 2) = Zϕ~p

2rB(~p 2/k2) ,

RA,µν
k,zy (~p 2) = ZA~p

2rB(~p 2/k2)(Pµν⊥,zy + 1
ξ
Pµν||,zy) .

(E.1)

The first line represents the cut-off function for fermions in all our calculations, the second
for bosons in quark-meson model and the third for gluons in QCD RG flows. In the last
case, we have to consider longitudinal and transverse projections:

Pµν||,zy = pµpν

p2 δzy, Pµν⊥,zy = δµνδzy − Pµν||,zy . (E.2)

Note that in Landau gauge ξ = 0 and only the transverse projection survives. For regulator
shapes rF/B(y) we use optimized regulators [157]:

rF(y) =
( 1
√
y
− 1

)
Θ(1− y) ,

rB(y) =
(1
y
− 1

)
Θ(1− y) .

(E.3)

e.2 threshold functions

All purely fermionic and purely bosonic threshold functions for 3d linear cut-off functions
can by calculated by following prescription: first we define zero-threshold functions

l
(F)
0 (τ, µ̃, ω) = v3

v4
τ
∑
n

∞∫
0

dy y3/2 (∂trψ(y))(1 + rψ(y))
(ν̃n + iµ̃)2 + y(1 + rψ(y))2 + ω

, (E.4)

l
(B)
0 (τ, ω) = v3

v4

τ

2
∑
n

∞∫
0

dy y3/2 ∂trB(y)
ω̃2
n + y(1 + rB(y)) + ω

, (E.5)

where ν̃n = (2n + 1)πτ and ω̃n = 2nπτ represent the femionic and bosonic Matsubara
frequencies correspondingly, τ = T/k and µ̃ = µ/k are the dimensionless temperature
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and the dimensionless quark chemical potential, and y is defined as y = ~p 2/k2. The
dimensional factors v3 and v4 can be calculated using:

v−1
d = 2d+1πd/2Γ

(d
2
)
. (E.6)

At this point, we should mention that in our calculations we always assume that the wave-
function renormalization of fermions, Zψ, and of bosons in quark-meson model, Zϕ, are
constant. If one takes the running of Zψ and Zϕ into account, the threshold functions l(F)

0
and l(B)

0 have additional terms proportional to ηψ = −(∂tZψ)/Zψ and to ηϕ = −(∂tZϕ)/Zϕ
correspondingly.
All higher threshold functions can be calculated by taking derivatives with respect to

the mass parameter ω:

∂

∂ω
l(F)
n (τ, µ̃, ω) = −(n+ δn,0)l(F)

n+1(τ, µ̃, ω) ,

∂

∂ω
l(B)
n (τ, ω) = −(n+ δn,0)l(B)

n+1(τ, ω) .
(E.7)

For the optimized regulator shape [157] we obtain following zero threshold functions:

l
(F)
0 (τ, µ̃, ω) = v3

v4

1
6

tanh
[√

1+ω−µ̃
2τ

]
+ tanh

[√
1+ω+µ̃

2τ

]
√

1 + ω
,

l
(B)
0 (τ, ω) = v3

v4

1
3

coth
[√

1+ω
2τ

]
√

1 + ω
,

(E.8)

and all higher threshold functions are obtained using prescription described above. In our
calculations only the following pure fermionic/bosonic functions appear: l(F)

1 , l(F)
2 , l(B)

1 ,
l
(B)
2 . The limiting behavior of these threshold functions is:

lim
τ→0

l
(F)
1 (τ, 0, 0) = lim

τ→0
l
(B)
1 (τ, 0) = 1

6
v3
v4

,

lim
τ→0

l
(F)
2 (τ, 0, 0) = lim

τ→0
l
(B)
2 (τ, 0) = 1

4
v3
v4

.
(E.9)

In the flows of the effective 4-fermion couplings in QCD and in the flow of the Yukawa cou-
pling in quark-meson model we have additional threshold functions of the form
l
(FB)
n1,n2(τ, µ̃, ω1, ω2). They can be calculated using the following formula:

l(FB)
n1,n2(τ, µ̃, ω1, ω2) = v3

v4
τ
∑
n

∞∫
0

dy y3/2 1
[(ν̃n + iµ̃)2 + y(1 + rψ(y))2 + ω1]n1

· 1
[ω̃2
n + y(1 + rB(y)) + ω2]n2

(
n1

∂trψ(y)(1 + rψ(y))
(ν̃n + iµ̃)2 + y(1 + rψ(y))2 + ω1

+ n2
2

(∂trB(y)− ηArB(y))
ω̃2
n + yB(1 + rB(y)) + ω2

)
.

(E.10)

In the case of the running Yukawa coupling, ηA is replaced by ηϕ. Since we assume that
Zϕ = 1, the term proportional to ηϕ disappears in this case. Further, ω1 = m2

q , and ω2 is
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given either by the mass parameter m2 in the chirally symmetric regime or by the masses
of Goldstone bosons in the chirally broken phase: ω2 = m2

σ or ω2 = m2
π.

In our QCD calculations ηA = ηgluons
A,k is finite. It is equal to ηYM

A,k for the strong-coupling
input discussed in Sec. 5.3. In Sec. 5.7 we use two different approximations for ηgluons

A,k ,
namely, ηgluons

A,k = 0 and ηgluons
A,k = (∂tα)/α . In the case of QCD flows, the parameters ω1

and ω2 are both zero since we consider the chiral limit ω1 = m2
q → 0 and gluons have no

mass.
In particular, we should calculate functions l(FB)

1,1 and l(FB)
1,2 . The analytical expressions

for these functions are lengthy and we do not present them here. However, they can be
calculated from Eq. (E.10) in a straight-forward way. Here, we only give the limiting
behavior for these threshold functions:

lim
τ→0

l
(FB)
1,1 (τ, 0, 0, 0) = v3

v4

(1
4 −

ηA
40

)
,

lim
τ→0

l
(FB)
1,2 (τ, 0, 0, 0) = v3

v4

( 5
16 −

ηA
24

)
.

(E.11)

e.3 threshold functions in the zero-temperature limit

In our calculations with QCD RG flows we have observed that our results do not exhibit
the Silver-Blaze problem. One of the reasons for this observation is that the threshold
functions l(F)

1 , l(FB)
1,1 and l(FB)

1,2 , which appear in the fermionic flows, show no or only a weak
dependence on the chemical potential µ in the limit T → 0. In this section, we will justify
this statement.
Let us start with function l(F)

1 :

l
(F)
1 (τ, µ̃, 0) = −v3

v4

cosh
[

1+µ̃
2τ

]−2
+ cosh

[
1−µ̃
2τ

]−2
− 2τ

(
tanh

[
1−µ̃
2τ

]
+ tanh

[
1+µ̃
2τ

])
24τ .

(E.12)

In the limit τ → 0, the terms proportional to cosh
[

1±µ̃
2τ

]−2
τ−1 are clearly zero. The

limiting behavior of the sum of terms proportional to hyperbolic tangent depends on
whether k > µ or k < µ and, therefore

lim
τ→0

l
(F)
1 (τ, µ̃, 0) = 1

6
v3
v4

Θ(1− µ̃) . (E.13)

In our numerical calculations with QCD RG flows we always work in the regime with
k > µ and, therefore, we obtain the limiting behavior which is also valid in the limit
T → 0, µ→ 0, Eq. (E.9). Hence, the threshold functions l(F)

1 is µ̃-independent in the limit
τ → 0.
The explicit expressions for functions l(FB)

1,1 and l(FB)
1,2 are quite lengthy. So, we present

here only the results for the limit τ → 0. Thereby, we have to consider two different cases:
k > µ and k < µ. The corresponding behavior of function l(FB)

1,1 is given by:

lim
τ→0

l
(FB)
1,1 (τ, µ̃, 0, 0) = v3

v4

(
l
(FB),1
1,1 (µ̃)− ηA

5 l
(FB),2
1,1 (µ̃)

)
, (E.14)
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Figure E.1: In this plot we consider l(FB),1
1,1 , l(FB),2

1,1 (first column) and l
(FB),1
1,2 , l(FB),2

1,2 (second
column) as functions of k for different values of µ. We always consider the case k > µ. We observe
a rather weak dependence on the chemical potential.

with

l
(FB),1
1,1 (µ̃) =


12−µ̃2

3(µ̃2−4)2 for µ < k ,
− 4+µ̃2

6µ̃(2+µ̃2)2 for µ > k ,
(E.15)

and

l
(FB),2
1,1 (µ̃) =


12−µ̃2

6(µ̃2−4)2 for µ < k ,
− 2+4µ̃+µ̃2

6µ̃2(2+µ̃)2 for µ > k .
(E.16)

For l(FB)
1,2 , we find:

lim
τ→0

l
(FB)
1,2 (τ, µ̃, 0, 0) = v3

v4

(
l
(FB),1
1,2 (µ̃)− ηA

5 l
(FB),2
1,2 (µ̃)

)
, (E.17)

with

l
(FB),1
1,2 (µ̃) =


240−40µ̃2+3µ̃4

12(4−µ̃2)3 for µ < k ,
−12+34µ̃+18µ̃2+3µ̃3

12µ̃2(2+µ̃)3 for µ > k ,
(E.18)

and

l
(FB),2
1,2 (µ̃) =


160−36µ̃2+3µ̃4

12(4−µ̃2)3 for µ < k ,
−8+24µ̃+36µ̃2+18µ̃3+3µ̃4

12µ̃3(2+µ̃)3 for µ > k .
(E.19)
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From this expressions one can already see that the threshold functions l(FB)
1,1 and l(FB)

1,2 have
rather weak µ-dependence. To visualize it, we plot l(FB),1

1,1 , l(FB),2
1,1 , l(FB),1

1,2 and l
(FB),2
1,2 as

functions of k for different values of µ, see Fig. E.1. Thereby, we always consider k > µ

since it is the relevant case for our numerical calculations with QCD RG flows. In the first
column we present our results for functions corresponding to l(FB)

1,1 , in the second column
results corresponding to l(FB)

1,2 . We indeed observe that the µ-dependence of the threshold
functions seems to be negligible. Only for large µ and small k, there are some finite-µ
effects. However, these effects are still small and can contribute to the RG flow only at
rather narrow scale interval.
As a concluding remark, we want to mention that in this study ηA has no µ-dependence:

For calculations with the strong coupling from Sec. 5.3, we use ηA = ηYM
A,k and the results

from the pure Yang-Mills theory cannot depend on µ per definition. The strong coupling
from Sec. 5.7 was obtained only in the limit T → 0, µ→ 0.





F
VACUUM POLARIZAT ION ∆ ηA , k

In this section we present some details of the calculation of ∆ ηA , k which we have already
defined in Eq. (5.17):

∆ ηA , k =
Z − 1
A , k

3 (N 2
c − 1 )

 ∂

∂ p 2 P
µν
⊥ ( p ) ·


∣∣∣∣∣∣∣
p= 0

. (F.1)

Here, p is the modulus of the external momentum and P µν
⊥ ( p ) is the transversal pro-

jection operator defined in Appendix E. The three in the denominator is the number
of spatial dimensions and corresponds to the normalization of the projection operator.
Nc = 3 is, as usual, the number of colors. The graphical representation in the above
equation corresponds to the expression:

= − δ x y

( 2π ) 4 δ ( 0 )

−→
δ

δ A x
µ (− p )

[
1
2 STr

∂ R k

Γ ( 2 )
k + R k

] ←−
δ

δ A y
ν ( p ) , (F.2)

where Γ ( 2 )
k is the second derivative of the scale-dependent effective action with respect

to the fermionic fields. To evaluate this quantity, we can use the expanded version of the
Wetterich equation, Eq. (3.31). Thereby, the relevant term is

− 1
4 STr

[
∂̃ k

( F k
P k

) 2
]

.

Since we are working at finite temperatures, we replace the 4 d momentum projection by
the projection onto the spatial momentum.

∂

∂ p 2 ⇒ ∂

∂~p 2 = 1
2

∂ 2

∂ |~p | 2 . (F.3)

Applying these prescriptions, we find

∆ ηA , k = N f
3 g 2 T

∑
n

∑
±

∫ d3 q

( 2π ) 3
1
2

∂ 2

∂ |~p | 2 ∂̃ t [ ( ν n + iµ ) 2

+ ( 1 + rψ (x ) ) ( 1 + rψ (x ± y ) )~q 2

± 3 ( 1 + rψ (x ) ) ( 1 + rψ (x ± y ) ) |~q | |~p | c o s Θ
+ 2 ( 1 + rψ (x ) ) ( 1 + rψ (x ± y ) )~q 2 c o s 2 Θ ]
× [ ( ( ν n + iµ ) 2 + ( 1 + rψ (x ) ) 2~q 2 ) ( ( ν n + iµ ) 2

+ ( 1 + rψ (x ± y ) ) 2 (~q 2 + ~p 2 ± 2 |~q | |~p | c o s Θ ) ) ]− 1 | |~p |= 0 ,

(F.4)
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where ~q is the momentum in the loop, x = ~q 2 / k 2 , y = ~p 2 / k 2 and Θ the angle between
vectors ~q and ~p. The operator ∂̃ t acts only on rψ and there is a sum over different signs.
In the above equation we have already set the gluonic Matsubara frequencies ω n to zero
since we evaluate the vacuum polarization at p = 0.
Further calculations include application of the operator ∂̃t, expansion in the modulus

of the external spatial momentum |~p|, integration over the internal momentum ~q and
summation over different signs. These calculations are quite lengthy but basically straight-
forward. The only one difficulty is that in these calculations the terms of the form Θ(y)δ(y)
appear in the limit of |~p| → 0. They are not well defined since the Θ-function is not
defined exactly at the point where δ-function has its support. To avoid this problem, we
can introduce the smeared versions of these functions:

lim
ε→0

Θε(x) = Θ(x) ,

δε(x) = ∂xΘε(x) .
(F.5)

Now, we are allowed to exchange the |~p| → 0 and ε→ 0 limits and the problematic terms
become lim

ε→0
Θε(x)δε(x). They are still not well defined but now we can use the following

trick, see, e.g., Refs. [185, 186]:

lim
ε→0

f (x,Θε(x)) δε(x) = δ(x)
1∫

0

duf(0, u) . (F.6)

Using this trick, we obtain for Nf = 2 the result which we have already presented in
Eq. (5.18)

∆ηA,k(T, µ) = − g2

45π2 τ
∑
n

33(ν̃n + iµ̃)4 + 2(ν̃n + iµ̃)2 − 55
((ν̃n + iµ̃)2 + 1)4 , (F.7)

with τ = T/k, µ̃ = µ/k and ν̃n = (2n + 1)πτ the fermionic Matsubara frequencies. Per-
forming Matsubara sum, we end with the following expression for the vacuum polarization:

∆ηA,k(T, µ) = g2

1440π2τ3

 1

cosh
[

1−µ̃
2τ

]4 + 1

cosh
[

1+µ̃
2τ

]4
− 4 τ

cosh
[

1−µ̃
2τ

]2 (15τ + 11 tanh
[1− µ̃

2τ

])

− 4 τ

cosh
[

1+µ̃
2τ

]2 (15τ + 11 tanh
[1 + µ̃

2τ

])

− 32

sinh
[

1−µ̃
2τ

]6
sinh

[
1−µ̃
τ

]4 +
sinh

[
1+µ̃
2τ

]6
sinh

[
1+µ̃
τ

]4
−15

4 τ
3
(

tanh
[1− µ̃

2τ

]
+ tanh

[1 + µ̃

2τ

]))}
.

(F.8)

Using this result, it is easy to see how ∆ηA,k(T, µ) behaves in the limit T → 0. One see
immediately that all term, except of the last two hyperbolic tangents, vanish for T → 0.
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The remaining terms amount to g2/(6π2) for k > µ and to zero for k < µ. Therefore, in
the limit of vanishing temperature we obtain Eq. (5.20)

∆ηA,k(T, µ)|T
k
→0 = g2

6π2 Θ(k − µ) . (F.9)

This result is crucial for the fact that in our calculations no Silver-Blaze problem appears:
Since in our calculations with QCD RG flows we are always working in the regime k > µ,
∆ηA,k(T, µ) is simply a constant as function of µ for T → 0. This observation and the
behavior of the threshold functions in this limit, see App. E.3, leads to the fact that our
results do not depend on µ for T → 0.
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