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Zusammenfassung

Die Ionosphäre ist der obere Teil der Erdatmosphäre, in dem die Anzahl der freien
Elektronen ausreicht, um die Ausbreitung elektromagnetischer Signale zu beeinflus-
sen. Die Kenntnis der Elektronendichte ist nicht nur für die Ionosphärenforschung
und die Weltraumwetter-Überwachung wichtig, sondern spielt auch in vielen Anwen-
dungsgebieten, wie z.B. der Positionierung und der Navigation, eine entscheidende
Rolle. Die aktuell verfügbaren Elektronendichtemodelle erfüllen jedoch zumeist nicht
die notwendigen Genauigkeitsanforderungen. Sie sind entweder rein mathematisch
(z.B. voxel-basiert) oder nur klimatologisch, d.h. sie liefern nur monatliche Durch-
schnittswerte (z.B. die Internationale Referenz-Ionosphäre IRI oder NeQuick).

Durch die rasante Entwicklung der geodätischen Raumverfahren in den letzten Jahr-
zehnten sind Anzahl und Qualität der Messungen, die Ionosphärenmodelle verbes-
sern können, drastisch angestiegen. Insbesondere liefern die bodenbasierten Zwei-
Frequenz-Messungen der globalen Navigations-Satellitensysteme (GNSS) hochgenaue
Information über die Elektronendichteverteilung innerhalb der Ionosphäre. Diese In-
formation bezeichnet man als den absoluten Elektronengehalt (engl.: Slant Total
Electron Content, STEC), der sich aus der Integration der Elektronendichte entlang
des Signalweges zwischen Sender und Empfänger berechnet.

Die raumbasierten GNSS Radio-Okkultationsmessungen (RO) ermöglichen die Be-
rechnung von Elektronendichteprofilen (EDPs) mit hoher vertikaler Auflösung und
globaler Überdeckung. Um das Wissen über die Ionosphäre zu erweitern, ist das Zu-
sammenspiel der einzelnen Beobachtungstechniken wichtig, da diese sich durch unter-
schiedliche Datenverteilungen, zeitliche und räumliche Auflösungen sowie spezifische
Sensitivitäten auszeichnen.

Die Ionosphäre setzt sich in Abhängigkeit von ihrer chemischen Zusammensetzung aus
verschiedenen Schichten zusammen; unter denen enthält die sogenannte F2-Schicht
die maximale Elektronendichte. In dieser Arbeit wird ein regionales physikalisch-
basiertes vierdimensionales (4-D) Elektronendichtemodell aus der Kombination der
verschiedenen geodätischen Raumverfahren entwickelt. Dazu werden die Elektronen-
dichteverteilungen der einzelnen Schichten, d.h. der D-, der E- sowie der F1- und der
F2-Schicht durch Chapman-Funktionen beschrieben. Da Chapman-Funktionen zum
Teil physikalisch interpretierbare Parameter enthalten, werden sie auch als physikalisch-
motiviert bezeichnet. In größeren Höhen, zur Plasmasphäre hin, werden die Chapman-
Funktionen mit einem langsam abklingenden exponentiellen Term kombiniert.

Methodisch werden anschließend mittels Sensitivitätsanalysen die sogenannten Schlüs-
selparameter dieser Mehrschichtendarstellung (engl.: multi-layer approach) festge-
legt. Mathematisch werden die raumzeitlichen Variationen dieser Schlüsselparame-
ter durch Reihenentwicklungen in Tensorprodukten aus 1-D lokalisierenden B-Spline
Funktionen beschrieben. Die Koeffizientensätze dieser Reihenentwicklungen stellen
die unbekannten Parameter dar, die mittels eines geeigneten Schätzverfahrens zu



bestimmen sind. Die Inhomogenität der geographischen Beobachtungsorte mit zum
Teil großen Datenlücken stellen eine besondere Herausforderung dar und müssen ge-
sondert, z.B. durch Einführung von Vorinformationen, behandelt werden. Darüber
hinaus sei noch erwähnt, dass B-Spline-Funktionen zur Generierung einer Multiska-
lenrepräsentation (engl: multi-scale representation, MSR) mittels B-Spline Wavelet-
Funktionen verwendet werden können. Eine MSR wird üblicherweise zur Datenkom-
pression eingesetzt. Die Anwendung eines solchen Verfahrens ist beispielsweise bei
der Nutzung sehr großer Datensätze, wie es bei der Ionosphärenmodellierung nötig
ist, sinnvoll.

Der in dieser Arbeit entwickelte Auswerteansatz beinhaltet die verschiedenen sto-
chastischen Informationen für die einzelnen Beobachtungstechniken. Um eine physi-
kalisch sinnvolle Lösung zu erhalten, wird ein beschränktes Optimierungsverfahren
in das Modellkonzept integriert.

Das entwickelte Konzept zur regionalen 4-D Elektronendichtemodellierung wird zu-
nächst durch Modellierung der F2-Schicht mithilfe einer Chapman-Funktion unter-
sucht. Die Schlüsselparameter der F2-Schicht, nämlich die maximale Elektronendich-
te, die zugeordnete Höhe und die Skalenhöhe, werden aus der Kombination von GPS-
STEC-Beobachtungen und GPS-EDPs geschätzt. Anschließend wird die vertikale Be-
schreibung der Elektronendichte innerhalb der Ionosphäre auf den Mehrschichtenan-
satz erweitert. Die Trennbarkeit der ausgewählten Schlüsselparameter wird mittels
simulierter EDPs untersucht. Zusammen mit einer Kreuzvalidierung haben Verglei-
che mit externen Datenquellen, einschließlich Ionosonden-Messungen sowie Model-
len des vertikalen absoluten Elektronengehalts (engl.: vertical total electron content,
VTEC) gezeigt, dass das entwickelte Modellierungskonzept unser Wissen über die
Verhältnisse innerhalb der Ionosphäre erweitert.



Abstract

The ionosphere is the upper part of the Earth’s atmosphere where the number of free
electrons is sufficient to affect the propagation of the electromagnetic signals. The
knowledge of the electron density is not only essential for ionosphere research and
space weather studies, but it also plays a crucial role in a wide range of applications,
e.g., positioning and navigation. However, the currently existing electron density
models usually do not meet the necessary accuracy requirements. They are either
purely mathematical (e.g., voxel-based) or only climatological, i.e., they only provide
monthly averages (e.g., International Reference Ionosphere (IRI) or NeQuick).

With the rapid development of space-geodetic observation techniques, the quantity
and the quality of measurements that can improve ionosphere models have increased
drastically in the last decades. In particular, ground-based dual-frequency measure-
ments of the Global Navigation Satellite System (GNSS) have provided highly accu-
rate information about Slant Total Electron Content (STEC), i.e., the integration of
the electron density along the signal path between transmitter and receiver.

Space-based GNSS Radio Occultation (RO) measurements allow the computation of
Electron Density Profiles (EDPs) with high vertical resolution and global coverage.
To improve our knowledge on the ionosphere, the combination of different observation
techniques is an important task, as they are characterized by different data distri-
butions, temporal and spatial sampling resolutions as well as distinct sensitivities to
ionosphere parameters.

The ionosphere electron density profile exhibits various layers according to their
chemical composition, where the so-called F2 layer contains the maximum electron
density. The thesis addresses the development of a regional physics-motivated four-
dimensional (4-D) electron density model from the combination of various space-
geodetic observation techniques. For this purpose, the electron density distributions
of the individual layers, i.e., the D, E, F1 and F2 layers are described by Chapman
functions. Since Chapman functions contain partly physically interpretable parame-
ters, they are also called physically-motivated. At higher altitudes, toward the plas-
masphere, the Chapman functions are combined with a slowly decaying exponential
term.

The so-called key parameters of this multi-layer approach are defined by means of
sensitivity analysis. The spatiotemporal variations of these key parameters are de-
scribed mathematically by series expansions in terms of tensor products of 1-D lo-
calizing B-spline functions. The sets of coefficients of these series expansions, which
represent the unknown parameters, are determined by means of a suitable estima-
tion method. The inhomogeneity of the geographical observation sites with partly
large data gaps poses a particular challenge and must be considered appropriately,
e.g., by introducing prior information. In addition, it should be noted that B-spline
functions can be used to generate a Multi-Scale Representation (MSR) using B-spline



wavelet functions. A MSR is commonly used for data compression. The application
of such a procedure is meaningful for handling very large data sets, as is necessary
in ionospheric modeling.

The adjustment system developed in this work considers various stochastic infor-
mation for the individual observation techniques. In order to obtain a physically
meaningful solution, a constrained optimization method is integrated into the mod-
eling concept.

The developed regional 4-D electron density modeling concept is firstly investigated
by modeling the F2 layer using a Chapman function. The key parameters of the F2
layer, namely the maximum electron density, the corresponding height and the scale
height, are estimated from the combination of GPS-STEC observations and GPS-
EDPs. Subsequently, the vertical representation of the electron density within the
ionosphere is extended by the multi-layer approach. The separability of the selected
key parameters is studied using simulated EDPs. Together with a cross-validation,
comparisons with external data sources including ionosonde measurements and a
Vertical Total Electron Content (VTEC) model have shown the potential of the
developed 4-D electron density modeling concept to improve our knowledge of the
ionosphere.
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Chapter 1

Introduction

1.1 Motivation

The ionosphere is the upper region of the atmosphere extending from about 50 km above the
Earth’s surface and gradually merges into the plasmasphere. Free electrons and ions are present
there mainly due to Extreme Ultraviolet (EUV) and X-ray solar radiation. The ionosphere is
influenced by space weather1 and highly variable. All satellite signals travel through the iono-
sphere and interact with the ionosphere plasma. Signals of a frequency lower than approximately
30 MHz are reflected by the ionosphere, which makes radio communication over long distances
possible. Signals of a frequency above 30 MHz pass through the ionosphere and are used in
communication with satellites and other spacecraft.

The rapid development of space-geodetic observation techniques has brought out a wide range
of applications such as positioning and navigation. It is well known that the interaction of the
signals of navigation systems such as the Global Navigation Satellite System (GNSS) with the
ionosphere plasma bends the signals and causes a propagation delay, which is one of the main
error sources. Dual-frequency GNSS users may eliminate the first-order ionosphere effect by
using linear combinations of the measurements at two frequencies using the dispersive proper-
ties of the ionosphere. However, single frequency users cannot apply this method and may rely
on ionosphere models (see, e.g., Minkwitz et al., 2014) to correct the propagation delay. The
propagation delay is depending mainly on the frequency of the signal and the integration of the
electron density along the signal path, i.e., the Slant Total Electron Content (STEC). There-
fore, the electron density is the most important and relevant ionosphere parameter from the
perspective of geodetic applications (cf. Bust and Mitchell, 2008; Schmidt, 2011).

Ionosphere models used for correcting GNSS signal delay can be

• Vertical Total Electron Content (VTEC) models: an ionosphere mapping function is re-
quired to convert VTEC to STEC at the Ionospheric Pierce Point (IPP) according to the
Single Layer Model (SLM) [Schaer, 1999]. The SLM (cf. Fig. 1.1) is based on the simple
assumption that all free electrons are concentrated in an infinite thin shell at a certain
height, whereas Ionospheric Pierce Point (IPP) is defined as the intersection between a

1Space weather is a term which describes variations in the Sun, solar wind, magnetosphere, ionosphere, and
thermosphere, which can influence the performance and reliability of a variety of space-borne and ground-based
technological systems and can also endanger human health and safety” [Cannon et al., 2013].
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Ionospheric Pierce Point 
(IPP)

Receiver
a thin shell

Figure 1.1: Schematic illustration of the SLM–an assumed thin shell of the ionosphere.

ray path and the ionosphere. VTEC models have been widely used and well developed
(see, e.g., Hernández-Pajares et al., 2009; Jakowski et al., 2011), but they cannot provide
height information of the ionosphere and they are mostly based on the SLM, which is not
an adequate representation of the ionosphere.

• electron density models (e.g., NeQuick, Radicella, 2009): based on electron density mod-
els, STEC can be calculated by integration of the electron density along the signal path.
However, the existing electron density models usually do not meet the necessary accuracy
requirements. They are either purely mathematical (e.g., voxel-based) or only climatolog-
ical (e.g., the empirical models IRI and NeQuick), i.e., they provide mean conditions and
cannot describe instantaneous status of the ionosphere.

Consequently, development of a 4-D (space and time) electron density model which takes into
account the physics is important for improving a large number of applications, as well as for
ionosphere research and space weather studies.

There are several techniques to gather the information of the electron density. Before the era of
GNSS, traditional techniques were much more limited [Hernández-Pajares et al., 2011]. Globally
distributed ground-based ionosonde/digisonde stations have been used to collect accurate iono-
sphere information for a long time, where the present ionosondes date back to 1932 [Committee on
Solar-Terrestrial Research, 1969]. There are more than 200 ionosondes available worldwide, but
only part of them are routinely operational [Liu et al., 2004]. Consequently, the spatial and tem-
poral distribution of the ionosonde measurements is rather limited. Furthermore, ground-based
ionosondes/digisondes only probe the ionosphere up to the peak of the F2 layer (the ionosphere
is divided into distinct layers and the F2 layer contains the maximum electron density; see Sec-
tion 2.2). Incoherent Scatter Radar (ISR) can provide information about the entire ionosphere,
however, only few radars are in operation worldwide due to their complex and expensive installa-
tions [Hunsucker, 1991]. Topside sounder satellites [Bilitza et al., 2003] can also provide topside
information from the orbit altitude down to the peak of the F2 layer, however, only a few mis-
sions, such as Alouette-1 and -21, ISIS-1 and -22 and Intercosmos-19 (IK-19)3 have been carried
out. They have collected a huge amount of topside ionograms from the sixties to the eighties,
but with limited spatial coverage of various geophysical conditions (e.g., geographic location,
diurnal, seasonal and solar activity) [Sibanda and Mckinnell, 2011]. The modern space-geodetic
techniques have provided excellent opportunities to explore the ionosphere comprehensively and

1Canadian satellites, Alouette-1: 1962–1972, Alouette-2: 1965–1975.
2Canadian satellites, ISIS-1: 1969, ISIS-2: 1971.
3Russian satellite, 02.1979–04.1982.
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cost-effectively (see, e.g., Dettmering et al., 2011b; Jin et al., 2013). On the one hand, the
ionosphere may degrade the ground-based GNSS observations for applications of positioning and
navigation; on the other hand, these observations provide relatively accurate high-sampling-rate
STEC along the signal path from satellite to receiver. With the large amount of GNSS data
available, STEC measurements have become one of the most important input for ionosphere
modeling. However, the geometry of the observations does not allow to obtain adequate vertical
structure of the electron density [García-Fernández et al., 2003]. The Ionospheric Radio Occul-
tation (IRO) measurements made by space-based GNSS receivers on Low Earth Orbiting (LEO)
satellites, on the other hand, allow for calculating the vertical distribution of the electron density
with a global coverage (e.g., Hajj and Romans, 1998; Dettmering, 2003). Each observation tech-
nique has its own unique strengths and weaknesses with respect to the sensitivity to ionosphere
parameters, spatiotemporal resolutions and stochastic behavior. Improved techniques and new
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Figure 1.2: The derived 4-D electron density modeling concept.
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measurements have brought out the demand of ionosphere models that are able to produce the
actual condition of the ionosphere, i.e., switch from ionosphere “climate” to “weather” [Brunini
et al., 2004; Nava et al., 2011].

As a result, a consistent combination of different observation techniques to derive a 4-D physics-
motivated electron density model with high resolution and high precision has become an impor-
tant task. This is in agreement with the goal of the Global Geodetic Observing System (GGOS):

“GGOS integrates different geodetic techniques, different models, different approaches
in order to ensure a long-term, precise monitoring of the geodetic observables”1.

As shown in Fig. 1.2, this thesis will focus on this important task.

1.2 State of the art

Since the 1970s, many empirical models, such as the International Reference Ionosphere (IRI)
[Bilitza et al., 2011a] and NeQuick as mentioned previously, have been developed based on a
large database of traditional ionosphere observations. They are climatological models, which
can only provide monthly averages of the ionosphere behaviour. Additionally, several physical
models based on ionosphere physics and chemistry have been developed. For example, the Global
Assimilative Ionospheric Model (GAIM) [Schunk et al., 2004] is a physics-based data assimilation
model which can assimilate different types of data including ground-based GPS observations and
space-based RO data. Physical models often require high computational efforts. In order to use a
physical model in operational tasks, parametric models have been developed by parameterizing
the physical models through simple analytical functions. One example of such models is the
Parameterized Ionospheric Model (PIM) [Daniell et al., 1995]; more details can be found in
Section 2.5. Various modeling approaches of the electron density have been studied in the last
few decades. There are voxel-based methods that divide the ionosphere into many small elements
of voxels with constant electron density in each voxel (e.g., Juan et al., 1997; Kuklinski, 1997;
Rius et al., 1997; Hernández-Pajares et al., 1999; García-Fernández, 2004; van de Kamp, 2013);
there are also function-based methods, where a set of 3-D basis functions has been employed to
model the electron density (e.g., Brunini et al., 2004; Liu, 2004; Feltens, 2007; Alizadeh, 2013;
Al-Fanek, 2013). Function-based methods for 4-D electron density can be referred to, e.g., Howe
et al. [1998], Schmidt et al. [2008], Zeilhofer [2008], Allain and Mitchell [2010] and Sharifi and
Farzaneh [2016].

The vertical structure of the electron density has been modeled by, e.g., Empirical Orthogo-
nal Function (EOF), localizing B-splines or profilers such as the Chapman function [Rishbeth
and Garriott, 1969] and the Epstein function [Rawer, 1988], where the Chapman function is
derived from a simplified aeronomic theory and frequently used. A single Chapman function has
been applied to represent the electron density distribution by, e.g., Feltens [1998] and Brunini
et al. [2004]; a multi-layer Chapman approach has been used by, e.g., Ching and Chiu [1973]
and Tsai et al. [2011]; a Chapman function with continuously varying scale height, known as
the Vary-Chap function, has been introduced by, e.g., Reinisch et al. [2007] and Nsumei et al.
[2012]. The horizontal variations have been modeled by global basis functions such as spherical
harmonic expansions (e.g., Brunini et al., 2004; Tsai et al., 2011; Alizadeh, 2013; Razin, 2016) or
localizing basis functions such as B-splines (e.g., Schmidt et al., 2008; Zeilhofer, 2008; Zeilhofer

1http://www.ggos.org/.
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et al., 2009). Compared to the spherical harmonic expansions, the local B-splines are compactly
supported (non-zero only in a certain interval) and more appropriate for handling unevenly dis-
tributed observations and data gaps (e.g., Schmidt et al., 2011, 2015). Furthermore, B-splines
can construct a certain class of wavelets, which allow the application of a Multi-Scale Represen-
tation (MSR) of the signal, e.g., data compression [Schmidt, 2007, 2012]. A more comprehensive
overview of different approaches will be given in Chapter 5.

Before signals of GNSS pass through the ionosphere, they first have to travel through the plas-
masphere. According to Lunt et al. [1999], the plasmaspheric contribution is typically 10% to
30% during daytime, and can reach up to about 50% at night, particularly in winter at low solar
activity. Therefore, the electron density modeling approach should also take the plasmaspheric
part into account, in order to obtain a realistic description of the ionosphere. The modeling
approaches considering both the ionosphere and plasmasphere can be referred to, e.g., Jakowski
[2005] and Feltens [2007].

It is known that unrealistic estimates such as negative values of ionosphere parameters, e.g.,
VTEC or the maximum electron density, may appear in the parameter estimation. In order to
obtain realistic estimates, inequality constraints must be incorporated in the estimation process.
This is mathematically equivalent to solving a constrained optimization problem where a number
of optimization algorithms are available. To the best of the author’s knowledge, the optimization
algorithms are rarely applied to ionosphere modeling. An inequality constrained least squares
method has been applied by Zhang et al. [2013] to eliminate negative VTEC values from GPS
data. Besides the estimated quantities, the quality of the estimates should also be studied. In case
of the inequality constrained estimates, no analytical relationship is present between observations
and the unknown parameters. Therefore, the law of error propagation cannot be applied anymore
and a symmetric interval around the estimates in terms of the standard deviation is also not
sufficient to quantify the uncertainty [Roese-Koerner et al., 2012]. In his work (see also Roese-
Koerner, 2015; Roese-Koerner et al., 2015), a Monte Carlo method has been combined with a
Quadratic Programming (QP) algorithm to describe the statistical information of the estimated
quantities.

1.3 Goals and contributions

The objective of this thesis is to develop a regional physics-motivated 4-D electron density model
of the ionosphere from the combination of different space-geodetic observation techniques. Com-
pared with global models, regional ones can reach higher spatial and temporal resolutions if input
data with high resolution is available in the region. To achieve this goal, different approaches are
investigated, combined and adapted within the derived 4-D electron density modeling concept: as
shown in the green box of Fig.1.2 with respect to the model development, the vertical layer struc-
tures of the ionosphere are described by the physics-motivated Chapman functions, which are
combined with a slowly decaying exponential term describing the plasmaspheric electron density.
Multi-dimensional B-spline expansions appropriate for regional modeling and handling inhomo-
geneous data distribution are introduced for modeling the horizontal and temporal dependencies
of ionospheric key parameters. An effective combination strategy that takes into account the
different stochastic information of the observations is used within the parameter estimation. To
overcome data gaps, a regularization approach is introduced. An inequality constrained
optimization algorithm is taken into account. It can be seen in the gray box of Fig.1.2 with
respect to the model output that, the modeling approach allows monitoring ionosphere signals
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at different resolution levels by generating a MSR, with which a data compression can be
applied.

Firstly, a Chapman function representing the F2 layer combined with a slowly decaying plas-
maspheric exponential term following Jakowski [2005] has been used to describe the vertical
electron density distribution. The tensor product of the polynomial B-spline functions following
Schmidt [2007] and Zeilhofer [2008] are taken to represent the spatiotemporal variations of the
corresponding key parameters, namely, the peak density NmF2, the peak height hmF2 and
the Chapman scale height HF2. It will be called within this thesis a F2-layer model. The
fundamentals of the developed F2-layer model have been shown and applied to Electron Density
Profiles (EDPs) from GPS RO data by Limberger [2015]. Special contributions of this thesis
include:

– incorporation of stochastic information of the observations into covariance matrices, in
order to assure realistic accuracies,

– investigation of the estimability of the three F2 Chapman key parameters from a combi-
nation of ground-based GPS observations of STEC and EDPs from ionospheric RO data,

– study of the statistical information of the estimated parameters,

– transformation of the key parameters into a MSR,

– implementation of data compression.

Following the modeling concept of Feltens [2007], the representation of the F2 layer is extended
by a more sophisticated and realistic multi-layer model, where each of the ionosphere layers
is represented by the Chapman function. The number of the key parameters is thus increased
significantly, which brings new challenge, i.e., increasing difficulty in parameter estimation. The
multi-layer approach has recently received a lot of attention because the representation is phys-
ically more realistic. To the best knowledge of the author, separability of the parameters of
the multi-layer approach has been rarely investigated. Specific contributions of the work in this
thesis are:

– investigation of the separability of selected parameters of a multi-layer profile function using
simulated EDPs,

– application of the constrained optimization algorithm to obtain physically reasonable solu-
tions,

– study of the quality of the estimates from inequality constrained problem by a Monte Carlo
method.

These investigations have provided a basis for multi-layer electron density modeling.

1.4 Outline of the thesis

The organization of this thesis is following Fig. 1.2. The blue circle, i.e., the objective of the
thesis, is given in the current Chapter 1. This chapter starts from research motivation, which
is followed by state of the art and then objectives and contributions of this work.

The required background information of the ionosphere, i.e., the right yellow box, is described
in Chapter 2. It includes the ionosphere physics with focus on the balance of the ionization

6



1. INTRODUCTION

and the formulation of the Chapman layer, the vertical structure (various layers) of the iono-
sphere, spatiotemporal variations in the ionosphere, how the ionosphere affects the radio wave
propagation, an overview of the existing ionosphere electron density models, the definition of the
plasmasphere, and an introduction of few selected plasmasphere models.

The available input data for ionosphere modeling, i.e., the left yellow box, is given in Chapter
3. It introduces the principles of the two space-geodetic techniques used in this thesis. They are
the ground-based GNSS techniques including GPS, Global’naya Navigatsionnaya Sputnikovaya
Sistema (GLONASS), BeiDou System (BDS) and Galileo with special emphasis on the GPS, and
space GNSS techniques, i.e., GNSS RO techniques including FORMOSAT-3/COSMIC (F3/C),
Challenging Minisatellite Payload (CHAMP) and Gravity Recovery and Climate Experiment
(GRACE) missions with special focus on the F3/C mission. The ionosphere observables required
in this work are described in detail.

The parameter estimation theory required to solve for the model is introduced in Chapter 4.
It firstly presents the basics of the adjustment system, which includes the concept of lineariza-
tion, the definition of the Gauss-Markov model, solving unknowns within the Gauss-Markov
model without/with equality constraints, rank deficiency and ill-conditioning of the problems,
the corresponding solution via regularization, data combination and VCE as well as hypothe-
sis testing. Afterwards, the basics of inequality constrained optimization is introduced and a
Nonlinear Programming (NLP) algorithm is described.

The derived modeling concept, i.e., the green box, is addressed in Chapter 5. Firstly, an
overview of previous works for modeling the height dependency of the electron density is given.
Then, the well-known mathematical functions used for modeling the horizontal/temporal varia-
tions of ionosphere parameters are introduced. The localizing basis functions used in this work,
i.e., B-splines, are given in details. The advantage of the B-splines that can construct B-spline
wavelets for generating a MSR and the application of data compression are explained. Based on
all information introduced previously, the developed 4-D model is described at last.

The numerical applications of the developed modeling approach, i.e., the gray box, is presented in
Chapter 6. It is composed of two parts. In the first part, numerical examples of the developed
F2-layer model using the combination of ground-based GPS data of STEC and EDPs from
space-based GPS RO data are shown. The performance of the developed model is illustrated
and discussed by validation, i.e., the bottom left pink box. In the second part, an investigation
of the multi-layer model is given. Separability of selected set of key parameters are illustrated by
using simulated EDPs. Application of an inequality constrained optimization algorithms is shown
in order to obtain physically reasonable solutions. Finally, quality description of the estimates
from the inequality constrained optimization by using a Monte Carlo method is illustrated.

The last Chapter 7 gives some conclusions of this work and suggestions for future work, which
highlights the contributions of this dissertation.
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Chapter 2

Ionosphere Background

2.1 Ionosphere physics

The ionosphere is defined as the part of the Earth’s upper atmosphere where ions and electrons
exist, which affects the propagation of radio waves. It extends from an altitude of approximately
50 km over the Earth and has no well-defined upper boundary [Rishbeth and Garriott, 1969],
but the upper boundary is generally regarded to be at an average altitude of roughly 1000 km
where the plasmasphere starts (see Section 2.6) [Carpenter and Park, 1973].

2.1.1 Balance of ionization

The ionosphere is formed by the ionization of atmospheric gases such as N2 (molecular nitro-
gen), O2 (molecular oxygen) and O (atomic oxygen). Pairs of ions and electrons are principally
produced by solar radiation in the EUV and X-ray parts of the spectrum, at least in low- and
mid-latitudes. At high-latitudes and during magnetic storms, however, the production process is
a collision between energetic charged particles precipitated into the atmosphere and the neutral
molecules. Since the ionosphere contains a significant number of ions and free electrons, it is an
electric conductor and a refracting medium for radio waves.

Once ions and electrons are existing, they tend to recombine and to react with gaseous species
[Hargreaves, 1992]. Specifically, the free electrons tend to reunite with the positive ions to produce
neutral atoms again (called the recombination), and attach themselves to neutral molecules to
form negative ions (called the attachment). Furthermore, they can leave a given volume by
movement (called the diffusion/drift) [Davies, 1965]. There is a dynamic equilibrium, which
means, the net concentration of the free electrons (also called the electron density) is subject to
the relative speed of the production and loss processes. Within a cell of unit volume, the rate of
change dNe/dt of the electron density Ne can be formulated by a continuity equation [Rishbeth
and Garriott, 1969]

dNe

dt
= q − l − div(Nev) (2.1)
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2. IONOSPHERE BACKGROUND

where

t time,
q production rate,

l loss rate by recombination and attachment,
v net drift velocity caused by the transport process,
div(Nev) divergence of the flux Nev, representing the loss rate of the

electrons due to transport.

Note that the continuity equation can also be written for either the positive and negative ions,
or for any constituent whose concentration is subject to change.

2.1.2 The Chapman layer

The production rate q of pairs of ions and electrons per unit volume can be written as

q = I η σ n (2.2)

where

I intensity of ionizing radiation at a certain height of the atmo-
sphere,

η ionizing efficiency, i.e., the fraction of the absorbed radiation
that goes into the ionization process,

σ cross section for absorption of radiation in the gas,
n concentration of molecules (or called number density) which

are able to be ionized by that radiation.

Starting from this equation, Sydney Chapman developed in 1931 a formula for the production
function, which describes how the production rate q varies with the height h and the Sun’s zenith
angle χ. In the following part, the derivation of the so-called Chapman function, which mainly
follows the descriptions of Rishbeth and Garriott [1969], will be given. The derivation is based
on the assumptions:

• the radiation is monochromatic, and therefore the intensity of the radiation depends not
on the wavelength, but on the height h, written as I(h),

• the atmosphere is composed of a single absorbing gas with concentration written as n(h),

• the atmosphere is plane and horizontally stratified, i.e., no variations in the horizontal
plane,

• the temperature is constant and the scale height H (defined by Eq. (2.13)) is also constant.

Solar radiation attenuates as it travels downwards through the atmosphere. Figure 2.1 shows
the geometry of the absorption of the solar radiation in the atmosphere, where I∞ denotes the
unattenuated radiation at the top of the atmosphere before any absorption. For a path element
ds along the path of the radiation, the intensity of the radiation varies as

dI/ds = −σ n I (2.3)
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2. IONOSPHERE BACKGROUND

Sun

Figure 2.1: Absorption of radiation from gas, which causes the decrease in the intensity I of the
radiation (modified from Hargreaves, 1992). The minus sign is due to the decrease of the height
along the path of the radiation.

where the minus sign indicates that the solar radiation decreases as the downward path of the
radiation increases.

Rearranging Eq. (2.3) as
dτ := −dI/I = σ n ds (2.4)

yields the definition of dτ , namely, an increment of the optical depth τ , which specifies the atten-
uation of the solar radiation by the atmosphere [Ree, 1989]; see Eq. (2.8) for the mathematical
definition of τ . It holds that τ = 0 at the top of the atmosphere where the solar radiation is
unattenuated and τ → ∞ at the bottom of the atmosphere. Integrating the leftmost side and
the middle term of Eq. (2.4) from the top h∞ of the atmosphere to a certain height h yields1

−
∫ h

h∞

dI

I
=

∫ h

h∞

dτ ,

− ln I
∣∣h
h∞

= τ
∣∣h
h∞

,

− (ln I − ln I∞) = τ ,

ln

(
I

I∞

)
= −τ .

(2.5)

Thus, the variation of the intensity I can be written as

I = I∞ exp(−τ). (2.6)

From the relation that ds = −dh secχ2, we can reformulate Eq. (2.4) as

dτ/dh = σ n ds/dh = −σ n secχ (2.7)
1We have that

∫
dx/x = ln |x|+ c and

∫
dx = x+ c.

2The secant function secχ = 1
cosχ

.
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2. IONOSPHERE BACKGROUND

which is then integrated with respect to the height

τ(h, χ) =

∫ h∞

h
σ n(h′) secχdh′. (2.8)

A comparison of the Eqs. (2.2), (2.6) and (2.8) gives

q = I∞ η σ n exp [−τ(h, χ)] . (2.9)

Hydrostatic equations
The distribution of a neutral atmospheric gas with the height can be assumed to follow the ideal
gas law

p = nkB T (2.10)

that supposes no intermolecular attractive forces [Dickerson et al., 1979]. Herein p [Pa] denotes
the pressure, the concentration n is in units of m−3, and kB is the Boltzmann’s constant1.

The hydrostatic or barometric equation of the atmosphere reads [White, 2008]

dp/dh = −ρ g = −nmg (2.11)

where ρ denotes the density [kg/m3] and g is a mean value of the gravity acceleration (g ≈
9.81 ms−2). Let m be the molecular mass [kg], such that the relation ρ = nm holds. Dividing
this equation by Eq. (2.10) yields

1

p

dp

dh
= − mg

kB T
(2.12)

where the term of the right-hand side relates to the scale height H, defined as

H :=
kB T

mg
. (2.13)

More precisely, H refers to the pressure scale height2 (compare Section 5.2 for the definitions of
the scale height of the electron density). As can be seen from Eq. (2.13), H is dependent on the
temperature T . The integration of Eq. (2.12) with respect to the height under consideration of
Eq. (2.13) gives

−
∫ h

h0

dp

p
= −ln

(
p

p0

)
=

∫ h

h0

(
dh′

H

)
(2.14)

where p0 denotes the pressure evaluated at a reference height h0. In the following the subscript
“0” indicates always the quantities evaluated at the height h0.

Introducing a dimensionless parameter z with an increment dz defined as

dz = dh/H (2.15)

and let z = 0 at some proper reference height h0, the integration of Eq. (2.15) yields the expression
of the so-called reduced height z,

z =

∫ h

h0

(
dh′

H

)
. (2.16)

1kB ≈ 1.38 · 10−23 J/K ≈ 1.38 · 10−23 m2kgs−2K−1.
2A scale height represents the vertical distance within which a quantity (here refers to the pressure of the

atmosphere) decreases by a factor of the base e of the natural logarithm (e ≈ 2.718).
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2. IONOSPHERE BACKGROUND

Substituting Eq. (2.16) into Eq. (2.14) yields

ln

(
p

p0

)
= −z =⇒ p

p0
= exp(−z) . (2.17)

Then, replacing p in this equation by the ideal gas law (2.10), we obtain the following general
formulation for the variation of pressure, concentration and temperature with z

p

p0
=

nT

n0 T0
= exp(−z) . (2.18)

If a single gas is considered and the variation of gravity with height is neglected, the total number
of particles in a column of a unit cross section above the reference height h0 is obtained∫ h∞

h0

ndh

applying Eq. (2.15)︷︸︸︷
=

∫ ∞
0
nH dz

applying Eq. (2.13)︷︸︸︷
=

∫ ∞
0
n
kB T

mg
dz

applying Eq. (2.10)︷︸︸︷
=

1

mg

∫ ∞
0
p dz

applying Eq. (2.18)︷︸︸︷
=

p0
mg

∫ ∞
0

exp(−z) dz =
p0
mg

[− exp(−z)]
∣∣∞
0︸ ︷︷ ︸

=1

=
p0
mg

applying Eq. (2.10)︷︸︸︷
=

n0 kB T0
mg

applying Eq. (2.13)︷︸︸︷
= n0H0

(2.19)

which can be generalized that the integrated content of a column of gas with unit cross section,
above any height h is n(h)H(h).

Now we come back to Eq. (2.8), assume a plane Earth, namely that secχ does not change along
the path, then Eq. (2.8) can be reformulated under consideration of Eq. (2.19) as

τ(h, χ) =

∫ h∞

h
σ n(h′) secχdh′ = σ secχ

∫ h∞

h
n(h′) dh′ = σ secχn(h)H(h) . (2.20)

If the reference height h0, from where the reduced height z is measured, is selected where the
optical depth τ = 1 when the Sun is in zenith direction (i.e., χ = 0◦), then Eq. (2.20) becomes

1 = σ n0H0. (2.21)

Eliminating T in Eq. (2.18) by Eq. (2.13) gives

exp(−z) =
p

p0
=

nH

n0H0
(2.22)

and substituting this equation together with Eq. (2.21) into Eq. (2.20) yields

τ(h, χ) = σ secχn0H0 exp(−z) = exp(−z) secχ . (2.23)

Then, the production function (2.9), can be formulated in terms of the reduced height z using
the Eqs. (2.20) and (2.23) as

q(z, χ) = I∞η
τ(h, χ)

H(h) secχ
exp [− exp(−z) secχ] = I∞η

exp(−z) secχ

H(h) secχ
exp [− exp(−z)secχ]

=
I∞η

H(h)
exp(−z) exp [− exp(−z)secχ] =

η I∞
eH(z)

exp [1− z − exp(−z)secχ] .

(2.24)
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2. IONOSPHERE BACKGROUND

Considering the constant H in the Chapman theory, we obtain the Chapman production function

q(z, χ) = q0 exp[1− z − exp(−z) secχ] with q0 =
ηI∞
eH

(2.25)

where q0 is constant.

Figure 2.2 shows the ratio q(z, χ)/q0 versus the reduced height z for different solar zenith angles
χ. As can be seen, the maximum rate of ionization decreases with increasing angles χ, but the
height where the maximum rate occurs increases. The ratio q(z, χ)/q0 reaches the maximum
value when z = 0 and χ = 0◦.
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Figure 2.2: The Chapman production ratio q/q0 with respect to the reduced height z for different
Sun’s zenith angles χ, based on Eq. (2.25).

It can be expected from Eq. (2.2) that the production rate q reaches its maximum at a certain
height, since the gas concentration n decreases with height, whereas the intensity I of radiation
increases with height. In order to find the peak of q, we can take the logarithm of q in Eq. (2.9)
and solve d (ln q) /dh = 0, i.e.,

d (ln q)

dh
=
d {ln [I∞η σ n exp (−τ(h, χ))]}

dh
= 0 . (2.26)

When I∞η σ is assumed to be a constant, this equation becomes

d [ln (n exp(−τ))]

dh
=

1

n exp(−τ)

[
exp(−τ)

dn

dh
− n exp(−τ)

dτ

dh

]
= 0 . (2.27)

Therefore, the peak of q occurs where the relation

1

n

dn

dh
=
dτ

dh
(2.28)

is satisfied, which indicates that the production reaches a maximum at the level where the
increasing gas concentration n and the increasing attenuation of the radiation as measured by
τ , with decreasing height, are compensated.
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The combination of the Eqs. (2.10), (2.12) and (2.13) yields

− 1

H
=

1

p

dp

dh
=

1

nkBT

(
kBT

dn

dh
+ nkB

dT

dh

)
=

1

n

dn

dh
+

1

T

dT

dh
=

1

n

dn

dh
+

1

H

dH

dh
(2.29)

which is then substituted into Eq. (2.28), the condition

1 +
dH

dh
= −H dτ

dh
(2.30)

can be obtained. Substituting Eq. (2.7) into the above equation under consideration of Eq. (2.20)
yields

1 +
dH

dh
= σ nH secχ = τ. (2.31)

Then, we can find the peak value of the production, denoted as qm,

qm =
I∞η cosχ(1 + dH/dh)

H
exp [−(1 + dH/dh)] (2.32)

by substituting Eq. (2.31) into Eq. (2.9). Under the assumption that the scale height H is
constant, i.e., H does not depend on h, we can obtain dH/dh = 0. Then, the production peak
occurs at the level where the optical depth τ is τ = 1 according to Eq. (2.31). Applying the
definition of τ in Eq. (2.23), the location of the production peak is related to the reduced height
zm, written as

zm = ln secχ . (2.33)

The corresponding maximum production rate Eq. (2.32) can also be simplified as

qm =
ηI∞cosχ

eH
. (2.34)

The production rate q(z, χ) can also be expressed in terms of the production peak qm instead of
q0. To do this, let hm denote the height where the production peak occurs. Since H is assumed
to be constant, Eq. (2.16) can be reformulated as

z =
h− h0
H

. (2.35)

Therefore, Eq. (2.33) can be written as

zm =
hm − h0

H
= ln secχ (2.36)

which yields
hm = h0 +H ln secχ. (2.37)

Let hm be chosen as the reference height, namely, z = 0 at the height hm, we obtain

z =
h− hm
H

=
h− (h0 +Hln secχ)

H
=
h− h0
H

− ln secχ = z − ln secχ (2.38)
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under consideration of the Eqs. (2.35) and (2.37). Substituting Eq. (2.38) into Eq. (2.25) yields

q(z, χ) = q0 exp {1− (z + ln secχ)− exp [−(z + ln secχ)] secχ}
= q0 exp[1− z − ln secχ− exp(−z) exp(−ln secχ) secχ]

= q0 exp(−ln secχ)exp[1− z − exp(−z) exp(−ln secχ) secχ︸ ︷︷ ︸
1

secχ
secχ=1

]

= q0 cosχ exp [1− z + exp(−z)] .

(2.39)

Based on the Eqs. (2.34) and (2.25), the relation

qm = q0 cosχ (2.40)

holds. Hence Eq. (2.39) can be reformulated as

q(z) = qm exp[1− z + exp(−z)] (2.41)

which is an alternative form to Eq. (2.25), expressed in terms of the production peak. This
expression indicates that the shape of the Chapman production function does not depend on
the zenith angles χ. However, the amplitude is scaled by a factor of cosχ and the corresponding
peak height is shifted (see Eq. (2.37)). Therefore, these two quantities vary with the day time.

Once the ion production is obtained, the electron density can then be derived based on Eq. (2.1).
In the lower ionosphere (below 200 km) transport processes are not very important and can be
neglected. Then, Eq. (2.1) becomes

dNe

dt
= q − l . (2.42)

The photochemical equilibrium equation [Rasmussen et al., 1988]

q = l (2.43)

with dNe/dt = 0 can be assumed, which means, the production rate is equal to the loss rate.
This condition is generally adequate for D, E and F1 layer at daytime (see Section 2.2).

Assume that there are few negative ions compared with the electron concentration, the electrons
are lost mainly by recombining with positive ions, i.e., X+ + e− → X with X+ denoting the
positive ions and e− a free electron. The loss rate l can then be written as [Davies, 1965]

l = αN2
e (2.44)

where α is called the recombination coefficient. When the number of neutral molecules is signifi-
cantly larger than the number of electrons, l is dominated by the process of attachment, written
as, M + e− → M− with M denoting the neutral species. The loss rate l is then linear with Ne

[Davies, 1965],
l = βNe (2.45)

where β is called the attachment coefficient; see, also e.g., Ratcliffe [1960] for detailed discussions
of this issue.

Now, taking the Chapman production function from the Eqs. (2.25) or (2.41), the following
electron density distribution can be obtained by applying the Eqs. (2.43) and (2.44){

Ne(z) = N0 exp
{
1
2 [1− z − exp(−z) secχ]

}
with N0 = (q0/α)1/2

Ne(z) = Nm exp
[
1
2 (1− z − exp(−z))

]
with Nm = (qm/α)1/2

(2.46)

15



2. IONOSPHERE BACKGROUND

or applying the Eqs. (2.43) and (2.45){
Ne(z) = N0 exp [1− z − exp(−z) secχ] with N0 = q0/β

Ne(z) = Nm exp [1− z − exp(−z)] with Nm = qm/β
. (2.47)

The distribution described by Eq. (2.46) is called the “Chapman alpha”, “α-Chapman”, or simply
a “Chapman” layer, and that described by Eq. (2.47) is called the “β-Chapman” layer. The Chap-
man theory is very useful since it reflects fundamentals of ionosphere formation and radiation
absorption. It provides an invaluable reference point for interpreting observations and a starting
point for ionosphere theory, although it is based on many simplifying assumptions [Hargreaves,
1992].

2.2 Vertical structure of the ionosphere

The ionosphere is commonly subdivided into distinct regions or layers according to different ion
compositions and the wavelengths of solar radiation that are most absorbed in that regions/layers.
The main layers are designated as D, E, F1 and F2 from bottom to top or regions as D, E, and
F. The lower ionosphere is dominated by photochemical processes; the mid ionosphere is an
area in which ionization-recombination processes together with thermal and dynamic processes
play important roles; the upper ionosphere is mainly influenced by the transport processes.
Actually, the real heights of the ionosphere layers vary with solar zenith angle χ, time of day,
seasons, solar cycles and solar activity [Zolesi and Cander, 2014]. As a result, there is not an
unified designation of altitude ranges for different layers and, thus, the designations differ in the
literature. The breakdown of the ionosphere into layers used in this work is shown in Table 2.1.
The different layers are characterized by their critical frequencies foi with i ∈ {D,E, F1, F2},
the maximum electron density value Nmi of that layer, and the peak heights hmi where the
maximum electron densities are located. The critical frequency of an ionosphere layer refers
to the minimum frequency of an electromagnetic wave that can penetrate that layer without
being reflected back to the ground. The different regions/layers have various characteristics that
affect radio communications in different ways. In the following, more details about different
regions/layers will be given. Figure 2.3 shows typical day and night profiles of electron density in
the mid-latitude ionosphere during the maximum and minimum sunspot (see Eq. (2.48) later),
where the various layers are clearly visible.

2.2.1 D region

The D region ranges from an altitude of about 50 km to 90 km and it is decreased extremely
after sunset. The typical electron density values are around 102 to 103 el/cm3. The lower part
of the D region is sometimes called a C layer [Hargreaves, 1992], which refers to the ionization
produced by cosmic rays, and it can cause a sudden increase of electron density at sunrise and
a rapid decrease at sunset [Feltens, 1998, and references therein].

Table 2.1: The main ionosphere regions.

Layers D E F1 F2
Height range [km] 50–90 90–140 140–200 200–1000
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Figure 2.3: Typical day and night EDPs in the mid-latitude ionosphere [Hargreaves, 1992, and
references therein]. el/cm3 is an abbreviation for electrons/cm3.

The number of free electrons in the D region is much smaller than the number of molecules.
The collision frequency [Nicolet, 1953] between electrons and molecules is relatively high, and
therefore the D region mainly has the effect of absorbing or attenuating radio communication
signals. The neutral composition within the D region is virtually the same as that at the ground.
However, minor constituents such as NO (nitric oxide), O3 (ozone) and unstable O2 (molecular
oxygen, see Slanger and Copeland, 2003) play important roles. The major positive ion component
is NO+. The D region is the most complicated part of the ionosphere from the chemical point
of view [Hargreaves, 1992]. The reason is, on the one hand, that the pressure is relatively high
which causes minor and major species to be important in the photochemical reactions; on the
other hand, the reason is that several sources of ionization cause ion production. These sources
include: the Lyman-α line of the solar spectrum (ionizes the minor species NO); EUV spectrum
within a certain wavelength range (ionizes unstable O2); EUV radiation (also ionizes O2 and
N2 (molecular nitrogen)); hard X-rays (ionize all constituents, affect mostly major species O2

and N2); galactic cosmic rays (ionize all atmospheric constituents and, thus, affect the whole
atmosphere, it is a major ionization source in the lower D region); energetic particles from the
Sun or of auroral origin (ionize the D region at high-latitudes).

2.2.2 E region

The E region ranges from an altitude of about 90 km to 140 km and includes mainly the E layer
(regular) and the so-called sporadic E layer.

E layer
The E layer does not vanish completely at night, but is weakly ionized with electron density val-
ues about 5 · 103 el/cm3 [Hunsucker and Hargreaves, 2003], whereas the typical electron density
values at daytime are about a few 105 el/cm3.

The primary positive ions within the region are NO+ and O+
2 ; the secondary positive ion com-

ponents are N+
2 and O+. The main source of ionization is the X-ray emission and the EUV
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radiation. The E layer is generally well described by the α-Chapman layer (e.g., Rishbeth and
Garriott, 1969; Hunsucker and Hargreaves, 2003).

Sporadic E layer
The sporadic E layer, often designated as Es, is a highly variable layer in terms of spatial, diurnal
and seasonal patterns, which is usually considered to be independent of the regular E layer. In
low- and mid-latitudes the Es layer happens mostly during the day and prevalently during the
summer, while at high-latitudes the layer is more likely to happen at night and is frequently
related to aurora [Zolesi and Cander, 2014]. The most important feature is that the magnitude
of the Es layer can be similar to that of the F region.

2.2.3 F region

The F region ranges from an altitude of about 140 km to 1000 km. A typical ionosphere EDP
reaches the highest density in this region. The region is mainly responsible for the reflection
of radio waves in High Frequency (HF) communication and broadcasting. Due to the complex
physical mechanisms involved in its formation, the F region is split into an F1 and an F2 layer
as a result of solar radiation. The F1 layer is only present during the day and disappears for
high solar zenith angles.

F1 layer
The F1 layer lies between 140 km and 200 km and it merges with the F2 layer a few hours after
sunset. The typical electron density values are about several 105 to 106 el/cm3. The F1 layer
is more striking during the summer than during the winter, at high solar activity, and during
ionosphere storms [Davies, 1965]. The primary positive ions are NO+ and O+

2 ; N+ and O+ are
the secondary positive ion components. The primary source of ionization within this layer is the
EUV light, and the F1 layer is considered as the most heavily absorbed part of the solar spectrum
[Hargreaves, 1992]. This layer also behaves like α-Chapman layer [Hunsucker and Hargreaves,
2003]. However, it seldom exists as a distinct peak but a ledge; furthermore, the ledge does not
always exist.

F2 layer
The F2 layer is present during day and night. The maximum electron concentration occurs in
this layer with a value up to several 106 el/cm3. The peak is typically located between 300 and
500 km. This layer is highly variable with timescales ranging from the 11 years of a solar cycle or
even longer, to a few seconds during the strong interactions with the plasmasphere above [Zolesi
and Cander, 2014].

The major ion in the F2 layer is O+ and the secondary ion components are H+ (protons) and He+

(helium ion). Ionization in the F region is mainly caused from the process of photo-ionization by
EUV radiation. The F2 layer is different from the photochemically dominated lower layers and
the diffusion dominated upper part of the topside ionosphere (topside refers to the region above
hmF2). For layers such as D, E, and F1, there are bands of radiation (regions of the spectrum)
that are strongly absorbed and thus the maximum ionization rate is produced. However, no
band of radiation can produce a maximum ionization rate at heights above 180 km. The F2 layer
is produced by the same band of radiation that produces the F1 layer [Barclay, 2003] and is
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formed as an upward extension of the F1 layer due to the height variation of the recombination
rate. Because the electron recombination rate falls off more quickly than the production rate, the
electron density still increases with height above the F1 layer. To explain the peak, diffusion takes
over the role with increasing heights because of the decreasing air density, where the production
and loss processes become less important. The diffusion process leads to an electron density
distribution that decays with height (see Eq. (2.1)), and the maximum electron concentration is
thus reached when these two kinds of processes are equally important; see Hargreaves [1992] for
further details. According to Dieminger et al. [1996], the EDP of the F2 layer is approximately a
Chapman layer even if it includes diffusion processes which are not considered by the Chapman
theory.

The striking characteristic of this layer are the two crests of peak electron densities NmF2 lying
in the vicinity of ±20◦ geomagnetic latitude, called the Equatorial Ionization Anomaly (EIA)
(see Section 2.3.1 for more details).

2.3 Spatiotemporal variations in the ionosphere

Since the ionosphere is ionized mainly by the Sun, the ionosphere in particular the electron
density exhibits spatial (geographical and geomagnetic) and temporal variations (diurnal, sea-
sonal and solar cycle). Here, only regular variations are introduced; information about iono-
sphere disturbances such as ionosphere storms, geomagnetic storms, Traveling Ionospheric Dis-
turbances (TIDs) and ionosphere scintillation can be found in, e.g., Rishbeth and Garriott [1969]
and Zolesi and Cander [2014]. The descriptions of the variations below are mainly following
Davies [1965].

2.3.1 Latitudinal variations

Usually the latitudinal variation is referred to three major geographic regions with rather different
features based on geomagnetic latitude, namely, the low-latitude (0◦ ≤ θ < 20◦ on each side of
the magnetic equator with θ denoting the geomagnetic latitude), the mid-latitude (20◦ ≤ θ < 60◦

on each side of the magnetic equator) and the high-latitude (60◦ ≤ θ < 90◦ on each side of the
magnetic equator) region.

Low-latitude region
This region is characterized by the highest values of NmF2 and the integrated quantity Vertical
Total Electron Content (VTEC); see Section 2.4.2 for details about VTEC. At low-latitudes
the geomagnetic field BBB is nearly horizontal at the magnetic equator, the ionosphere there is
strongly influenced by electromagnetic forces, which leads to vertical drifts of ionization. As
shown in Fig. 2.4, during the daytime the eastward electric field EEE at the equator leads to an
upward vertical plasma drift EEE ×BBB. The plasma is lifted up to high altitudes until the gravity
(ggg) and pressure gradient forces (∇ppp) are large enough to diffuse downward along the magnetic
field lines. This phenomenon is called “fountain effect”. As a consequence, the electron densities
are enhanced to two maxima at geomagnetic latitudes 15◦ to 20◦ on both sides of the magnetic
equator, forming two crests, and the electron densities fall to a minimum (trough) near the
magnetic equator. This phenomenon is called the “EIA” or the “Appleton anomaly”.
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(a)

Figure 2.4: A schema of the fountain effect [Kelley, 2009].

Mid-latitude region
Among the three regions, the mid-latitude zone is generally the least complex and variable as
well as the best understood due to a relatively large number of ionosphere observations. The
ionization there is caused almost completely by energetic Ultraviolet (UV) and X-ray emissions
from the Sun.

High-latitude region
At high-latitudes the geomagnetic field is approximately vertical, which leads to that the iono-
sphere is much more complex than that in either the mid-latitude or low-latitude regions.
Through the magnetic field lines, the high-latitude regions are connected to the outer part of
the magnetosphere which is driven by the solar wind, whereas the ionosphere at mid-latitudes
is connected to the inner magnetosphere that essentially rotates with the Earth [Hunsucker and
Hargreaves, 2003]. The ionization at high-latitudes is dominated by energetic charged particles
and solar EUV radiation. The X-rays are relatively weak due to the low elevation of the Sun.

An important feature in mid- to high-latitudes (between about 50◦ and 70◦ of geomagnetic
latitude) is the “main” trough (Muldrew, 1965, or called the “mid-latitude” trough), which refers
to depletion of the electron density in the F region. It happens mainly at night and more strongly
in winter than in summer in the northern hemisphere. The electron density inside the trough
can be drastically decreased, e.g., by as much as a factor of 2 at an altitude of 1000 km and an
order of magnitude at hmF2 [Dieminger et al., 1996]. For further details about the high-latitude
ionosphere, the interested reader may refer to, e.g., Hunsucker and Hargreaves [2003] or Rodger
et al. [1992].

2.3.2 Temporal variations

The ionosphere generally exhibits diurnal, seasonal, solar activity variations. Because of the
Earth rotation, the relative position of the Sun and the Earth changes with time, which causes
that the ionosphere exhibits a daily variation. Since ionization is mainly driven by the Sun, the
ionosphere follows a seasonal variation and a long-period variation of the Sun’s activity, which
has a main periodicity of about 11 years. The solar activity is usually described by the Wolf (or
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Zürich) sunspot1 number R, which is calculated by [Hargreaves, 1992]

R = K(10G+ S) (2.48)

where G denotes the number of disturbed regions (either a single spot or groups of spots), S is
the total number of individual spots seen, and K is a constant depending on the sensitivity of
the observing equipment. The solar activity can also be indicated by the solar radio flux F10.7,
which is defined as the radio emission from the Sun at the wavelength of 10.7 cm.

There are also temporal anomalies in the ionosphere, e.g., “winter anomaly”; details can be found
in e.g., Hargreaves [1992].

2.4 Ionospheric effects on radio wave propagation

2.4.1 Refractive index

The wave propagation velocity in a medium depends on the refractive index nr of that medium,
which is defined as

nr =
c

v
(2.49)

where v is the propagation velocity in the medium and c the speed of light in vacuum.

In a non-dispersive medium, the phase velocity (the speed of propagation of a pure (unmod-
ulated) wave) is independent of frequency, and the phase velocity and the group velocity (the
speed of propagation of a modulated carrier wave, i.e., a group of waves of different frequencies
are superposed centered on the carrier frequency) are identical; in a dispersive medium, the
propagation velocity of an electromagnetic wave depends on its frequency, and the phase and
group velocities are different. A relationship between the group refractive index ngr and the
phase refractive index nph of a dispersive medium is given by [Davies, 1990]

ngr = nph + f
dnph
df

(2.50)

where f denotes the frequency of a wave.

The ionosphere is a dispersive medium. The phase refractive index nphion of the ionosphere,
applicable to the carrier phase observations of a GNSS signal (see Section 3.1.2), can be approxi-
mated by a series expansion of the Appleton-Hartree formula [Budden, 1985] truncated after the
quadratic term, i.e.,

nphion = 1− 40.3Ne

f2
. (2.51)

This equation includes the first-order ionosphere effect, i.e., the most dominant part.

Substituting Eq. (2.51) into Eq. (2.50) yields the expression of the ionosphere group refractive
index ngrion,

ngrion = 1 +
40.3Ne

f2
(2.52)

which is applicable to the pseudorange observations of a GNSS signal (see Section 3.1.2).
1Sunspots are areas that appear visibly as dark spots, which happen because they have relatively lower

temperature than the surrounding solar photosphere.
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Since Ne is always positive, nphion is smaller than 1. Therefore, a phase travels faster than the
speed of light in vacuum due to Eq. (2.49), which causes the phase advance; in contrary, ngrion is
larger than 1 which leads to the group delay [Hofmann-Wellenhof et al., 2008].

2.4.2 Ionospheric delay

The range between a transmitter and a receiver is defined as

s = c

∫
D

ds

v
=

∫
D
nr ds (2.53)

where D denotes actual signal path with the differential length element ds along the signal path,
v is the actual signal propagation velocity at the given location. Assuming nr = 1, the geometric
range s0 between the emitter and the receiver is obtained analogously

s0 =

∫
D0

ds0 (2.54)

where the integral is performed along the geometrical path D0. Then, the difference between
measured and geometric range, called the ionosphere range error (or called the ionosphere re-
fraction) ∆ρion can be defined as

∆ρion =

∫
D
nr ds−

∫
D0

ds0 . (2.55)

Assuming that the geometrical path D0 is the actual signal path D (i.e., curvature of the signal
path is neglected), the substitution of the Eqs. (2.51) and (2.52) into Eq. (2.55) yields

∆ρ phion = −
∫
D

40.3Ne

f2
ds (2.56)

and
∆ρ grion =

∫
D

40.3Ne

f2
ds (2.57)

respectively, where ∆ρ phion and ∆ρ grion are phase advance and group delay, respectively. Follow-
ing Jakowski et al. [2004], the ray bending error caused from straight line of sight propagation
assumption is in the magnitude of millimeter to centimeter range for ground-based GNSS mea-
surements.

The integration of the electron density along the signal path is defined as Total Electron Content
(TEC), which is given by

TEC =

∫
D
Ne ds . (2.58)

TEC is measured in Total Electron Content Unit (TECU) with 1TECU = 1016 el/m2. The
TEC in the slant direction of signal transmitting is called STEC whereas the one referring to the
zenith direction is called VTEC. GPS generally provides information of STEC whereas satellite
altimetry gives measurements of VTEC. For TEC mapping using space-geodetic techniques,
VTEC is often modeled and can be obtained from STEC by applying the so-called ionosphere
mapping function (see e.g., Schaer, 1999). However, VTEC modeling is not within the interests
of this thesis.
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The substitution of Eq. (2.58) into the Eqs. (2.56) and (2.57) gives an alternative form to the
phase advance

∆ρ phion = −40.3
TEC

f2
(2.59)

and the group delay

∆ρ grion = 40.3
TEC

f2
(2.60)

respectively. The first-order ionosphere group delay (phase advance) accounts for more than
99.9% of the total ionosphere delays at the frequencies of the GNSS signals and is of the order of
∼1–50 m depending on the satellite elevation, ionosphere condition, local time, season and solar
cycle for the GPS signals Kedar et al. [2003]. The second and third-order effects of the ionosphere
on the GPS signal are typically ∼0–2 cm, and ∼0–2 mm at zenith, respectively [Bassiri and Hajj,
1993]; more details about the higher-order can be found in e.g., Fritsche et al. [2005], Hoque and
Jakowski [2007] or Petit and Luzum [2010].

2.5 Electron density models – Ionosphere

Many various ionosphere models have been developed in the last few decades. These ionosphere
models can be broadly categorized into three main types: empirical models, theoretical mod-
els, and parametric models (Cander et al., 1999; Feltens et al., 2011). Empirical models are
developed by statistical analysis of long-term observations, and they are climatological models
representing monthly or seasonal average conditions. They apply appropriate theory-based func-
tions to represent spatial and temporal variations [Bilitza, 2002]. Theoretical models are also
known as physical models, physics-based models, or first-principal models. They solve a set of
first principles continuity, energy, and momentum equations for the electrons and ions [Cander
et al., 1999, and references therein]. Generally, empirical models are available in the form of
computer programs and can be easily applied to a specific problem, whereas theoretical models
require high computational efforts. In order to use the theoretical models in an operational set-
ting, there are the so-called parametric models (or called the analytical models by Heise, 2002),
which simplify the theoretical models by parameterizing them in terms of solar-terrestrial in-
dices and geographical locations, aiming at representing the spatial and temporal structures of
the ionosphere produced from the theoretical models by a limited number of coefficients [Cander
et al., 1999]. They are quite similar to the empirical models, as they use analytical functions to
represent a database of measurements. One of such models is PIM [Daniell et al., 1995], which is
a parameterized version of four separate physical models by using EOF to represent the height
profiles. The parametric models can also be attributed to the theoretical models.

With the rapid development of modern space-geodetic techniques, a large number of ionosphere
models (global, regional or even local), the so-called geodetic models [Schmidt et al., 2015], based
on the space-geodetic techniques have been developed. Many of these models are fully analytical
models, which are based on analytical functions, such as the Chapman function, exponential
function and spherical harmonics (e.g., Fox, 1994; Feltens, 1998; Schaer, 1999; Alizadeh, 2013);
see Chapter 5 for more details. Some of them take a physical model or an empirical model
as background model and update the model parameters (e.g., Schmidt et al., 2008; Zeilhofer
et al., 2009; Brunini et al., 2011; Dettmering et al., 2011b). These models are comparable to
the empirical models in the type of analytical functions, however, instead of a statistical analysis
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of long-term observations, they use up-to-date measurements to compute the model coefficients
and describe instantaneous behaviour of the ionosphere.

A comprehensive overview of existing ionosphere models is referred to, e.g., AIAA [1999], Cander
et al. [1999], Bilitza [2002] and Bust and Mitchell [2008]. Since the EDP is of main interest in
the presented work, some existing models that specify electron density will be given below in
details.

2.5.1 Bent model

The Bent model [Llewellyn and Bent, 1973] is an empirical global model, which predicts the
EDP and the associated delay and directional changes of a wave due to refraction. The required
inputs are satellite and station positions, time and specified solar data such as sunspot number
and solar flux. The database which formed the basis of the model includes about 50,000 Alouette
topside ionograms (1962–1966), 6,000 Ariel 31 in situ measurements (1967–1968), and 400,000
bottomside ionograms (1962–1969). The topside electron density is modeled by a composition
of three exponential functions and a parabola; the bottomside ionosphere is represented by a
so-called bi-parabola (quadratic parabola). Additionally, the topside and bottomside are fit
together with a parabola function. The Bent model has been widely applied in satellite orbit
determination, and has been served as a basis for the development of the topside electron density
for IRI [Bilitza, 2002] introduced in Section 2.5.3.

2.5.2 Ching–Chiu’s model

The Ching–Chiu’s model [Ching and Chiu, 1973; Chiu, 1975] is a global electron density model,
which was designed for global large scale variations of the electron density, i.e., the diurnal,
annual and solar cycle variations. The model describes the vertical distribution of the electron
density Ne(h) at a certain altitude h as a sum of three Chapman functions, one for each layer
E, F1 and F2, which reads

Ne(h) = NE(h) +NF1(h) +NF2(h) (2.61)

where Ni(h) of the different layers i ∈ {E,F1, F2} are given in terms of Chapman functions
where the peak parameters are expressed in terms of local time, annual time (days of year),
altitude, geographic latitude, geomagnetic latitude and smoothed Zürich sunspot number. The
model is based on monthly-averaged hourly ionosphere sounding data from 50 stations during
the period 1957 to 1970.

2.5.3 International Reference Ionosphere (IRI)

The International Reference Ionosphere (IRI) model (Rawer et al., 1978; Bilitza, 1990, 2001;
Bilitza and Reinisch, 2008; Bilitza et al., 2011a) is an international project sponsored by the
Committee on Space Research (COSPAR) and the International Union of Radio Science (URSI).
The IRI model, an internationally recognized and recommended standard for the specification
of plasma parameters in the Earth’s ionosphere, describes monthly averages of the electron den-
sity, electron temperature, ion temperature, ion composition, and several additional parameters

1U.K. satellite, 05.1967–09.1969.
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in the altitude range from 50 km to 2000 km [Bilitza et al., 2011b]. It has been continuously
upgraded through introducing new options as new data and modeling approaches are available.
Model drivers are such as solar indices, ionosphere index and magnetic indices. As an empirical
model, IRI uses most of the available and reliable data sources for the ionosphere plasma. The
information about the data sources is listed in Table 2.2.

Table 2.2: IRI data sources and characteristics.

Data Source Observed quantity Height range Remarks
Ionosonde electron densities till the F2 peak worldwide

ISR
plasma densities,
temperatures,

velocities
the whole ionosphere only at a few selected

locations

Topside sounder
satellite electron densities satellite height down

to the F2 peak global distribution

In situ satellite
measurements

electron densities,
temperatures,

velocities

at the satellite orbit
height

measurements are
along the satellite

orbit

Rocket electron densities, ion
composition lower ionosphere

only reliable method
for plasma

parameters in the D
region

The structure of the vertical EDP of the IRI model is shown in Fig. 2.5. As can be seen, IRI
divides the ionosphere into six sub-regions: from top to bottom they are the topside, the F2-
bottomside, the F1 layer, the intermediate region, the E valley, and the E-bottomside/D layer.
The boundaries of these sub-regions are marked by several profile anchor points including the F2,
F1 and E layer peaks. IRI uses global maps of the characteristic peak densities and heights from
the International Radio Consultative Committee (CCIR) [CCIR, 1996] and the International
Union of Radio Science (URSI) [Rush et al., 1989] as anchor points, and describes the vertical
profile between these points by appropriate analytical functions. The used analytical functions
include e.g., the Epstein function (see Section 5.1.1) and exponential function; see Bilitza [1990]
for detailed descriptions.

2.5.4 NeQuick

The NeQuick (Radicella and Leitinger, 2001; Nava et al., 2008) model is a quick-run electron
density model of the ionosphere, developed at the Aeronomy and Radiopropagation Laboratory
of the Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy and at
the Institute for Geophysics, Astrophysics and Meteorology of the University of Graz, Austria. It
is particularly designed for transionospheric propagation applications. It allows to calculate the
electron density at any given location in the ionosphere and TEC along any ground-to-satellite
ray path by numerical integration. The topside model of NeQuick has been introduced as an
option for the topside part of IRI [Bilitza and Reinisch, 2008]. Furthermore, the model has been
adopted in the framework of the European Galileo project. NeQuick 2 is the latest version of the
model, which describes the electron density of the bottomside ionosphere by a sum of five semi-
Epstein layers [Rawer, 1983] with modeled thickness parameters, while the topside ionosphere
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Figure 2.5: Electron density profile of IRI [Bilitza et al., 2014].

is represented by a semi-Epstein layer with a height dependent thickness parameter empirically
determined. The model is based on three anchor points, namely, the E, the F1 and the F2 layer
peaks. Details about the complete analytical formulation of the NeQuick 2 can be found in Nava
et al. [2008].

2.5.5 Global Assimilative Ionospheric Model (GAIM)

The Global Assimilative Ionospheric Model (GAIM) [Scherliess et al., 2004; Schunk et al., 2004]
is a physics-based data assimilation model of the ionosphere and neutral atmosphere, which
has been developed since 1999 by the Utah State University (USU) under the program Multi-
disciplinary University Research Initiatives (MURI) sponsored by the U.S. Department of De-
fense (DOD). It includes the Global Assimilative Ionospheric Model–Gauss-Markov (GAIM-GM)
[Scherliess et al., 2006] and the Global Assimilative Ionospheric Model–Full Physics (GAIM-FP)
[Scherliess et al., 2009]. The GAIM-GM uses a physics-based model of the ionosphere (Ionosphere
Forecast Model (IFM), Schunk et al., 1997) and a Kalman filter as a basis for assimilating a di-
verse set of real-time (or near real-time) measurements, and covers the height range of from 90 km
to 1400 km. The GAIM-FP uses a physics-based Ionosphere-Plasmasphere Model (IPM) [Schunk
et al., 2004] and an Ensemble Kalman filter as a basis for assimilating the measurements, and
covers the height range of 90 km to 30,000 km. Both GAIM-GM and GAIM-FP can assimilate
different data types, e.g., in situ density measurements from satellite, bottom-side EDPs from
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ionosonde, occultation data, TEC from ground-based GPS, and line-of-sight UV emissions mea-
sured by satellites. The main output is a three-dimensional (3-D) electron density distribution
at user specified times. Auxiliary parameters such as NmE, hmE, NmF2, hmF2, STEC and
VTEC are also provided. GAIM-FP provides additionally quantitative estimates of the accu-
racy of the reconstructed plasma densities and self-consistent drivers such as neutral winds and
electric fields.

2.5.6 3-D mathematical ionosphere model at European Space Agency (ESA)/
European Space Operations Center (ESOC)

The model developed at ESA/ESOC in Darmstadt, Germany, one of the four IGS Ionosphere
Associate Analysis Centers (IAACs), is an electron density model where the height distribution
is represented by a sum of profile functions, one for each layer (D1, D2, E, F1, F2, plasmasphere),
which follows the concept of the Ching–Chiu’s model introduced in Section 2.5.2. The lowest
layer D is subdivided into D2 and D1 layers, which is referred to the D and C layer introduced
in Section 2.2.1. The electron density Ne(h) at a certain altitude h of the model reads [Feltens,
2007]

Ne(h) =ND1(h) +ND2(h) +NE(h) +NF1(h) +NF2(h) +Np(h ≥ hmF2)

=NmD1 · PD1(h) +NmD2 · PD2(h) +NmE · PE(h) +NmF1 · PF1(h)

+NmF2 · PF2(h) +Np(h ≥ hmF2)

(2.62)

where

Ni(h) EDP of the layers i ∈ {D1, D2, E, F1, F2},
Nmi peak density of the layer i,
Pi(h) profile function describing the electron density distribution of the layer i

of the total range of the ionosphere,
Np(h ≥ hmF2) exponential correction to the topside part of the profile function of the

F2 layer for the plasmasphere.

Three types of profile functions are presented by Feltens [2007] for Pi(h), namely, a MacLaurin
series expansion1 of the α-Chapman layer, a superimposition of the Chapman profile function
with its mirrored counterpart and a function based on the hyperbolic secant (see also Sec-
tion 5.1.1). An empirical exponential correction function with a large scale height is selected for
Np(h ≥ hmF2).

2.6 Plasmasphere

Above some height level of the topside ionosphere, probably 1000 km, the domination of ions by
O+ is transferred to H+; the corresponding region is called plasmasphere (or protonsphere, due
to the domination by H+). The height at which the plasmasphere starts is called the O+–H+ ion
transition level, namely, O+ and H+ have a certain equilibrium relation. The upper boundary
where the plasmasphere ends is called plasmapause. The plasmasphere is the inner part of the
magnetosphere that co-rotates with the Earth. Typical electron density values there are about

1The MacLaurin series is the Taylor series centered at zero.
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104 el/cm3 and drop by about 1–2 orders of magnitude at the plasmapause, which can range
from an L shell1 of approximately 6 under quiet condition to a value of 2 or 3 during a large
disturbance.

Actually there is no plasma production in the plasmasphere and the ionized particles have to
diffuse up from the ionosphere, i.e., related to the final term of the continuity equation (2.1).
The plasmasphere acts in the manner of a reservoir; during the day, it takes plasma from the
ionosphere and stores it in a loss-free environment, while during the night it returns the plasma
back to the ionosphere which maintains the nighttime F region [Dieminger et al., 1996]. According
to Hargreaves [1992], when the plasma is in equilibrium (i.e., the distribution does not change
with time), the plasma density N is assumed to distribute exponentially as

N = N0 exp(−h/HP ) (2.63)

with the density N0 at the ground and the plasma scale height HP defined as

HP =
kB TP
mi g

(2.64)

where k is the Boltzmann constant (see Eq. (2.10)) and g = 9.81 m/s2 is the gravity acceleration;
mi is the ion mass; the plasma temperature TP is defined as TP = Te+Ti where Te and Ti denote
the electron and ion temperatures, respectively.

2.7 Electron density models – Plasmasphere

There exist several plasmasphere models e.g., the Global Core Plasma Model (GCPM) [Gal-
lagher and Craven, 2000], the IZMIRAN plasmasphere model [Gulyaeva et al., 2002a,b], the
Global Plasmasphere Ionosphere Density (GPID) model [Webb and Essex, 2001, 2003], and the
IMAGE/RPI plasmasphere model [Huang et al., 2004]. They have been developed theoreti-
cally, semi-empirically or fully empirically [Goto et al., 2012]. An overview of these different
plasmaspheric models can be found in e.g., Gulyaeva and Bilitza [2012] and from the web-
site http://ccmc.gsfc.nasa.gov/modelweb/models_home.html. In the following some details
about two selective models will be given.

2.7.1 Global Core Plasma Model (GCPM)

The Global Core Plasma Model (GCPM) provides an empirical description of electron densities
as a function of geomagnetic and solar conditions throughout the inner magnetosphere, and it
merges with IRI at low altitudes. The model is based on data from the Dynamic Explorer (DE)2

and the International Sun Earth Explorer (ISEE)3. It integrates region-specific models of plasma
density and is composed of separate models of the ionosphere, plasmasphere, plasmapause, mag-
netospheric trough, and polar cap.

1The L shell [Mcilwain, 1961] is a parameter describing the equatorial radius of a magnetic shell, e.g., L = 6
means that the set of the Earth’s magnetic field lines which cross the Earth’s magnetic equator six Earth radii
from the center of the Earth.

2National Aeronautics and Space Administration (NASA) mission, 08.1981–02.1991.
3NASA and European Space Research Organisation (ESRO)/ESA program.
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The plasmaspheric electron density Np at the magnetic equator is represented by

log10(Np) = (−0.79L+ 5.3)

+

[
0.15

(
cos

2π(d+ 9)

365
− 0.075 cos

4π(d+ 9)

365

)
+ 0.00127R− 0.0635

]
exp

(
L− 2

1.5

) (2.65)

where L refers to the L shell, d denotes the day of the year, and the 12-month average sunspot
number is used for R in the latest model version 2.4. The plasmaspheric densities extend inward
only to ∼ 2RE with RE denoting the Earth’s mean radius. The IRI-2007 is used to represent
the electron densities at low altitudes, till an altitude of the maximum negative density gradient
above the F2 peak (about 400–600 km). Above this altitude, an extrapolation is made to connect
the plasmaspheric density profile by the interpolation function

Ne = exp

(
h

d0
+ d1

)
(2.66)

where d0 and d1 are constants which are fit to the slope and density at the upper boundary that
IRI is used. The formulations for the plasmapause, trough and polar cap will not be included
here; interested readers may refer to Carpenter and Anderson [1992] or Gallagher and Craven
[2000]. The GCPM also provides the relative composition of plasmaspheric H+, He+ and O+.
The Fortran model code can be downloaded from the website http://plasmasphere.nasa.gov/
models/.

2.7.2 The IZMIRAN plasmasphere model and IRI-Plas

The IZMIRAN plasmasphere model, i.e., the Russian Standard Model of the Ionosphere and
Plasmasphere (SMI), is developed by IZMIRAN (the Institute of Terrestrial Magnetism, Iono-
sphere and Radio Waves Propagation of the Russian Academy of Sciences). It is an empirical
model based on many years of measurements (whistler and satellite observations) [Gulyaeva and
Gallagher, 2007], aiming at describing typical conditions as a function of geomagnetic and solar
activity. The model provides global vertical EDPs towards the plasmapause up to 36,000 km.
The IRI-Plas model is the IRI extension with SMI. In order to have a smooth connection between
SMI and IRI, the shape of the IRI topside EDPs is switched in the IRI-Plas based on ISIS-1,
ISIS-2 and IK19 satellite data.

In the IRI-Plas model, different types of expressions are used for the lower and upper part of
the plasmasphere. For altitudes htop < h ≤ RE with htop denoting the height of the topside
boundary of the ionosphere, the electron density Np(h) is calculated by the formulas of the SMI
model (cf. Gulyaeva et al., 2002a, and references therein):

Np(h) = Ntop exp[(htop − h)/(H0 L
2
0)] (2.67)

with
H0 = 0.25(RE − htop)/ ln

(
Ntop/NRE

)
, and L0 = 1 + h/RE

where Ntop is the electron density at htop and NRE denotes the electron density at the height
h = RE . At altitudes RE < h ≤ hpp with hpp referring to the height of the plasmapause, Np(h)
is calculated using

Np(h) = C1A1A2 exp(A3BL) (2.68)
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which is fit to the plasmapause electron density Npp. Here C1 and A1 are functions of local
time. A2 and A3 are functions of solar index. BL depends on L0, longitude and day. Note,
that the above formulas are based on the latest version of the IRI-Plas source code (modified on
24.03.2016), which have slight modifications to the formulation shown by Gulyaeva et al. [2002a].
The source code can be downloaded from the site ftp://ftp.izmiran.rssi.ru/pub/izmiran/
SPIM/.
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Chapter 3

Space-geodetic Observation Techniques

Modern space-geodetic observation techniques, such as GNSS [Hofmann-Wellenhof et al., 2008],
RO [Rocken et al., 1997], satellite altimetry [Fu et al., 1994], Very Long Baseline Interferometry
(VLBI) [Schlüter and Behrend, 2007] and Doppler Orbitography and Radiopositioning Integrated
by Satellite (DORIS) [Auriol and Tourain, 2010], play indispensable roles in obtaining a better
understanding of the processes in the system Earth. Signals related to all these observation
techniques travel through the Earth’s ionosphere, and thus the measurements can be applied
to obtain information about the ionosphere. In the following, GNSS and LEO RO techniques
will be introduced in detail as they are the main focuses within this thesis; other space-geodetic
techniques for ionospheric studies can be found in, e.g., Hobiger et al. [2005], Todorova [2008] or
Dettmering et al. [2010, 2011b].

3.1 GNSS

The GNSS currently consists of the American Global Positioning System (GPS), the Russian
GLONASS, the Chinese BeiDou System (BDS), and the European Galileo. The most important
applications of GNSS are positioning and navigation. Through receiving signals from several
satellites simultaneously receiver’s position can be determined. An overview of different GNSS
can be found in e.g., Hofmann-Wellenhof et al. [2008].

3.1.1 GPS

The GPS, officially called the Navigational Satellite Timing and Ranging (NAVSTAR) GPS, is
an all-weather, space-based satellite navigation system that was developed and realized by the
U.S. Department of Defense (DOD), initially for military deployment and later for civilian use
as well. The GPS provides users with Positioning, Navigation and Timing (PNT) services and
consists of three segments: the space, the control and the user segments.

Space segment
The space segment, consisting of a constellation of satellites, broadcasts radio signals towards
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Figure 3.1: The constellation of the expandable 24 GPS satellites, source: http://www.gps.gov.

users. The GPS consists of a minimum of 24 operational satellites1, which are distributed in six
equally-spaced circular orbital planes (see Fig. 3.1) at an altitude of approximately 20,200 km
above the Earth. The orbital planes have an inclination of 55◦ with a period of one-half of a
sidereal day, i.e., about 11 h 58 min. This constellation guarantees that a global coverage with
four to eight satellites above 15◦ elevation can be observed simultaneously at any time of day
[Hofmann-Wellenhof et al., 2001].

Control segment
The control segment, consisting of a global network of ground facilities, tracks the GPS satellites,
monitors their transmissions, performs analyses, and uploads the data message to satellites. The
current operational control segment contains a master control station located in Colorado Springs,
Colorado, U.S.A., 15 monitor stations and a few ground control stations (ground antennas)
located throughout the world.

User segment
The user segment, consisting of the GPS receiver equipment for military and civilian users,
receives and interprets the signals broadcast by the GPS satellites.

The GPS satellites are equipped with highly accurate atomic (rubidium and cesium) clocks,
which produce the fundamental L band frequency of 10.23 MHz. Each GPS satellite transmits
signals continuously on frequencies which are derived from the fundamental frequency. The
original GPS design includes two carriers, the main L1 carrier centered at a carrier frequency f1
with wavelength λ1:

f1 = 154× 10.23 MHz = 1575.42 MHz, λ1 = c/f1 ≈ 19.0 cm

and the L2 carrier centered at a carrier frequency f2 with wavelength λ2:

f2 = 120× 10.23 MHz = 1227.60 MHz, λ2 = c/f2 ≈ 24.4 cm .

1The Air Force has currently employed 31 operational GPS satellites (http://navcen.uscg.gov/?pageName=
GPSmain).
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The GPS modernization program introduced a new L5 carrier centered at a carrier frequency f5
with wavelength λ5:

f5 = 115× 10.23 MHz = 1176.45 MHz, λ5 = c/f5 ≈ 25.5 cm .

With such high frequencies, the effect of the ionosphere can be reduced, since the ionospheric
effect becomes smaller with increasing frequencies (see the Eqs. (2.59) and (2.60)). However,
the frequencies should not be too high, since a received satellite signal becomes weaker with
increasing frequency for a given transmitter power. The L band frequencies are thus a good
compromise between the space loss and the perturbing effect of the ionosphere [Langley, 1996].

Each carrier is modulated with Pseudorandom Noise (PRN) codes. Within this work, we have
used two types of the PRN ranging codes on the L1 and L2 carriers, namely, the Coarse/Acquisition
Code (C/A-code) and the Precision code (P-code):

• the C/A-code: it is available for civilian use and designated as the Standard Positioning
Service (SPS). It is modulated only onto the L1 carrier;

• the P-code: it is reserved for U.S. military and other authorized users, and designated as
the Precise Positioning Service (PPS). It is modulated onto both L1 and L2 carriers, which
allows for removing the first-order ionospheric effect. When the “Anti-Spoofing (A-S)” is
active, the P-code is encrypted into the Y-code.

In addition, both carriers are modulated by the navigation message which provides all the nec-
essary information to allow user to calculate the position. The navigation message includes, e.g.,
the ephemerides of the satellites, the time parameters and clock corrections, system status, and
the ionospheric parameters of the Klobuchar model [Klobuchar, 1987]. The new L5 carrier is
available in new GPS satellites and is modulated with new types of PRN ranging codes, see, e.g.,
Kaplan and Hegarty [2006] for more details.

The reference frame of GPS is the World Geodetic System 1984 (WGS-84) developed by the
U.S. DOD. It is an Earth-Centered Earth-Fixed (ECEF) coordinate system and has been refined
several times to be closely coincident with the International Terrestrial Reference Frame (ITRF),
which is administered by the international Association of Geodesy [Kaplan and Hegarty, 2006].
The time reference of GPS is the GPS Time (GPST), which is an atomic time scale. The initial
epoch of the GPST (i.e., GPST = 0) is 0 Coordinated Universal Time (UTC) on 6 January,
1980, where UTC maintained by the United States Naval Observatory (USNO) is based on the
International Atomic Time (TAI) with the relation that TAI−UTC = 19 s at the initial epoch of
GPST. Since then, GPST has not been adjusted by leap seconds which are occasionally applied
to UTC in order to match UTC with the Earth rotation. Therefore, it always follows the relation
that GPST = TAI−19 s. At present, GPST is ahead of UTC by 17 s due to the latest adjustment
in UTC on 30 June 2015 (the next adjustment will be on 31 December, 2016).

3.1.2 Modeling the GPS observables

The basic GPS observables are code pseudorange and carrier phase measurements. They are
obtained from comparisons of the received signal generated by the satellite clock and a replica
of it generated by the receiver clock. In particular, the code pseudorange P ki,j from the satellite
k to the receiver j at a certain carrier frequency fi is derived from the traveling time ∆tki,j of
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the signal from the phase center of the satellite’s antenna to the phase center of the receiver’s
antenna times the speed of light c, which reads

P ki,j = c∆tki,j = c (ti,j − tki ) (3.1)

where ti,j represents the registered time of the signal and tki is the emitted time of the transmitted
signal. In the following the indicators i, j and k will be kept the same for GPS observations. The
traveling time ∆tki,j is determined through a maximum correlation analysis of the PRN codes
(e.g., P(Y)-code, C/A-code) generated by the GPS satellite and the replica generated by the
receiver. Therefore, the calculated ranges are influenced by the satellite and receiver clock errors
and “pseudorange” is named. The accuracy of pseudorange measurements is generally at the
level of meter.

The carrier phase measurements are about two to three orders of magnitude more precise than
the pseudorange measurements [Schaer, 1999] and can be a millimeter accuracy. The carrier
phase measurements are obtained from the phase difference between the transmitted carrier
wave from the satellite and the receiver’s replica. They are ambiguous by an unknown integer
number of wavelengths called the ambiguity, which depends on the receiver-satellite combination
at the initial epoch of the signal acquisition. As long as the carrier phase tracking is continuous
and not interrupted, the ambiguity remains the same. If a discontinuity that so-called cycle-slip
occurs, an integer jump will be introduced and the fractional part of the phase is not influenced.
Different techniques are available for cycle slip detection and repair and this issue shall not be
discussed within this thesis; see, e.g., Blewitt [1990], Liu [2011] or Sharma et al. [2011] for details.

The code and carrier phase measurements are influenced by several different error sources. Gen-
erally, they can be categorized into satellite-related, propagation-medium-related, and receiver-
related errors. The errors caused from satellites include orbital (ephemeris) errors and satellite
clock errors, the errors caused from propagation medium include ionospheric effect and tro-
pospheric effect, and the errors caused from receivers include receiver clock errors, multipath
effect, receiver antenna phase center offsets and variations1, and receiver measurement random
noise. Furthermore, the carrier phase measurements are also influenced by phase wind-up ef-
fect2. More details about these error sources can be found in, e.g., Abdel-salam [2005] and
Hofmann-Wellenhof et al. [2008].

Code pseudorange observation equation
Take the most important error terms into account, the code pseudorange observation equation
reads

P ki,j + eki,j = ρkj + c(δtj − δtk) + ∆ρktrop,j + ∆ρgr,kion,i,j + c(bi,j + bki ) (3.2)

1Receiver antenna phase center is the point of the antenna where the GPS signal is received. Generally, it
does not coincide with the antenna physical (geometrical) center and depends on the elevation, the azimuth and
the frequency of the observed signal.

2Phase wind-up effect is caused by the property of right circularly polarized signal. Any relative rotation
between satellite and receiver antennas will cause a phase variation. However, in order to obtain the maximum
energy, the satellite when moving along its orbit is always rotating to keep its solar panel towards the Sun. This
effect is only necessary to be corrected for high accuracy application such as Precise Point Positioning (PPP).
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where

eki,j measurement random error,

ρkj slant range, i.e., the geometric range between satellite and receiver antenna phase
centers at the signal emission time and the signal reception time, respectively,

δtj , δt
k receiver and satellite clock offsets with respect to the GPST, independent of fre-

quency,
∆ρktrop,j tropospheric delay, which is always positive and independent of frequency,

∆ρgr,kion,i,j frequency-dependent ionospheric delay, defined as Eq. (2.60),

bi,j , b
k
i frequency-dependent receiver and satellite hardware delays on code measurements

(in units of time).

The hardware biases bi,j and bki cannot be separated from the clock offsets δtj and δtk. Addi-
tionally, the hardware delays are rather stable over time, at least on time scales of several days,
but they are generally varying with time (e.g., Sardón and Zarraoa, 1997; Schaer, 1999). Note,
that the term ρkj also includes other unmodeled effects such as relativistic effects due to e.g.,
the satellite’s velocity and the Earth’s gravity field, and the receiver antenna phase center offset
and variation. Furthermore, the frequency-dependent multipath effect1 is not explicitly written
in Eq. (3.2) as it is a systematic effect over a short time period of several minutes, and may be
considered as measurement noise over long time spans [Schaer, 1999].

Carrier phase observation equation
Similarly, the carrier phase observation equation reads

Lki,j + eki,j = ρkj + c(δtj − δtk) + ∆ρktrop,j + ∆ρph,kion,i,j + λiN
k
i,j − c(bi,j + b

k
i ) (3.3)

where

Lki,j carrier phase measured in units of length [m], through multiplying the phase mea-
surements Φk

i,j (in cycles) by the wavelength λi = c/fi,

eki,j measurement random error,

∆ρph,kion,i,j frequency-dependent ionospheric delay, defined as Eq. (2.59), with the relation that
∆ρph,kion,i,j = −∆ρgr,kion,i,j ,

Nk
i,j initial carrier phase ambiguity, which actually contains the phase wind-up effect as

well,

bi,j , b
k
i frequency-dependent receiver and satellite hardware delays on phase measurements

(in units of time).

The ambiguity Nk
i,j and the phase instrumental biases bi,j and b

k
i cannot be separated from

each other, and they could be considered in one unknown bias [Schaer, 1999]. Note, that one
ambiguity parameter Nk

i,j has to be taken into account per satellite pass where the pass is referred

1 Multipath refers to the phenomenon that GPS signals arrive at the receiver’s antenna through two or more
paths caused from reflection by reflecting surfaces surrounding the antenna, such as mountains, buildings, trees
and canyon walls. The multipath effect is much more significant for code pseudorange measurements than for
carrier phase measurements, and happens more frequently for signals with low elevation angles than those with
high elevation angles.
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to a continuous, uninterrupted arc of carrier phase tracking of a given GPS satellite on a specific
receiver channel [Montenbruck, 2003]. However, if cycle-slips are detected and if they cannot be
repaired, additional Nk

i,j has to be taken into account.

3.1.3 Linear combination of dual-frequency GPS observables

Through appropriate linear combinations of the GPS observables, the ionospheric effect can be
modeled or reduced. In the following we concentrate on the geometry-free linear combination
of the pseudorange observable P ki,j and the carrier phase observable Lki,j measured at the same
receiver to one satellite at the two carriers L1 and L2 since only these quantities have been used
within this thesis. Differencing GPS data measured at one receiver to more satellites, or at more
receivers to one or more satellites are also possible, see, e.g., Xu [2003] or Hofmann-Wellenhof
et al. [2008] for details.

Geometry-free linear combination
For the purpose of ionospheric studies, the so-called geometry-free linear combination can be ap-
plied. The geometry-free linear combination cancels all frequency-independent terms (e.g., clock
errors, tropospheric delay) in the Eqs. (3.2) and (3.3), and only the frequency-dependent terms
such as the ionospheric refraction, the differential inter-frequency hardware delays of satellite and
receiver, and ambiguity parameter (only for phase measurements) are left. The geometry-free
linear combinations of the code and phase measurements, denoted as P k4,j and L

k
4,j , read

P k4,j = P k2,j − P k1,j (3.4)

Lk4,j = Lk1,j − Lk2,j . (3.5)

The substitution of the Eqs. (3.2) and (3.3) into the Eqs. (3.4) and (3.5) under consideration of
the Eqs. (2.59) and (2.60) for slant ray paths of GPS signals yields

P k4,j + ek4,j = a · STECkj − c(δbj + δbk) (3.6)

Lk4,j + ek4,j = a · STECkj − c(δbj + δb
k
) +Nk

4,j (3.7)

where

ek4,j , e
k
4,j random error,

a = 40.3

(
f21 − f22
f21 f

2
2

)
frequency-dependent factor,

δbj = b1,j − b2,j receiver inter-frequency or Differential Code Bias (DCB), in units
of time,

δbk = bk1 − bk2 satellite Differential Code Bias (DCB), in units of time,

δbj = b1,j − b2,j receiver inter-frequency or Differential Phase Bias (DPB) [The-
mens et al., 2013], in units of time,

δb
k

= b
k
1 − b

k
2 satellite Differential Phase Bias (DPB), in units of time,

Nk
4,j = λ1N

k
1,j − λ2Nk

2,j ambiguity parameter, defined in units of length.
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Note that the split of signals at different frequencies is ignored here. With appropriate combina-
tion of dual-frequency measurements, the ionosphere-free linear combination can be formed and
the first-order ionospheric effect can thus be eliminated. This is the main reason why at least
two carrier waves are implemented in GNSS satellites [Hofmann-Wellenhof et al., 2008]. Further
details about the ionosphere-free linear or other combinations can be found in, e.g., Schaer [1999].

Code pseudorange smoothing and carrier phase leveling
As introduced previously, the phase measurements are much more precise than the code mea-
surements, but they are ambiguous. In practice, the code and phase measurements are usually
combined to take advantages of both types of measurements.

Based on a continuous time series of dual-frequency code and phase measurements, code pseu-
dorange smoothing can be applied, which significantly reduce the noise of code measurements.
Taking a certain time epoch t into account, the measurements in the Eqs. (3.2) and (3.3) are
reformulated as P ki,j(t) and Lki,j(t). The phase-smoothed code measurements P̃ k1,j(t) and P̃ k2,j(t)
at the two frequencies (i = 1, 2) can be calculated by [Schaer, 1999]

P̃ k1,j(t) = P
k
1,j + ∆Lk1,j(t) + 2

f22
f21 − f22

(
∆Lk1,j(t)−∆Lk2,j(t)

)
P̃ k2,j(t) = P

k
2,j + ∆Lk2,j(t) + 2

f21
f21 − f22

(
∆Lk1,j(t)−∆Lk2,j(t)

) (3.8)

with

∆Lk1,j = Lk1,j(t)− L
k
1,j

∆Lk2,j = Lk2,j(t)− L
k
2,j

(3.9)

where P k1,j and P
k
2,j are the mean code measurements averaged over a common time interval

without a cycle-slip, at two different frequencies, respectively. Similarly, Lk1,j and L
k
2,j are the

mean phase measurements.

Following Schaer [1999], the phase measurements Lk1,j(t) and L
k
2,j(t) are assumed to be error-free.

The noises of the smoothed code measurements are thus reduced by a factor of about
√
n0 based

on Eq. (3.8), where n0 is the considered total number of epochs for calculations of the mean code
and phase measurements. The smoothed code measurements are highly correlated in time, which
may generally result that estimated standard deviations are too optimistic if the measurements
are treated as uncorrelated.

Applying the Eqs. (3.4) and (3.6) to the phase-smoothed code observables yields

P̃ k4,j + ẽkP,j = P̃ k2,j − P̃ k1,j = a · STECkj − c(δbj + δbk) (3.10)

with the random error ẽkP,j , and it can be further formulated as

1

a
P̃ k4,j +

1

a
ẽkP,j = STECkj −

c

a
(δbj + δbk) . (3.11)

Another technique called carrier phase leveling can be applied to remove the phase ambiguity
term to make use of high-precision phase measurements. For any phase connected arc (i.e.,
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a satellite pass), the geometry-free phase observations Lk4,j can be leveled to the geometry-
free pseudorange measurements through an offset Ckj calculated by (cf. Mannucci et al., 1998;
Dettmering, 2003; Themens et al., 2013)

Ckj =
1

narc

narc∑
m=1

[(
P k2,j(tm)− P k1,j(tm)

)
−
(
Lk1,j(tm)− Lk2,j(tm)

)]
(3.12)

where narc is the total number of measurements over the phase connected arc with different time
epochs denoted as tm (m = 1, . . . , narc). Ckj can be considered as the mean difference between
phase-derived and code-derived ionospheric observables. In order to simplify the notation, we
leave the time t out in the following. The leveled L̃k4,j at each time epoch in the arc can then be
calculated by

L̃k4,j = Lk4,j + Ckj . (3.13)

Substituting the Eqs. (3.6) and (3.7) into Eq. (3.12) yields

Ckj = −c(δbj + δbk) + c(δbj + δb
k
)−Nk

4,j (3.14)

where · represents the operation for taking the mean value of the corresponding quantity over the
phase connected arc. Over one arc, these Differential Code Biases (DCBs) and Differential Phase
Biases (DPBs) can be considered to be constant since they are stable over periods much longer
than an arc [Themens et al., 2013, and references therein]. Furthermore, the integer ambiguity
Nk

4,j is also constant. Thus, Eq. (3.14) can be reformulated as

Ckj = −c(δbj + δbk) + c(δbj + δb
k
)−Nk

4,j . (3.15)

The substitution of the Eqs. (3.7) and (3.15) into Eq. (3.13) yields

L̃k4,j + ẽkL,j = a · STECkj − c(δbj + δbk) (3.16)

with the random error ẽkL,j . As can be seen, only ionospheric information and the satellite and
receiver DCBs are left in the new observables L̃k4,j . Similar to Eq. (3.11), we can reformulate
Eq. (3.16) as

1

a
L̃k4,j +

1

a
ẽkL,j = STECkj −

c

a
(δbj + δbk) . (3.17)

3.1.4 Other GNSS

Global’naya Navigatsionnaya Sputnikovaya Sistema (GLONASS)
The Russian Global’naya Navigatsionnaya Sputnikovaya Sistema (GLONASS) is operated by the
Russian Space Forces. Like GPS, GLONASS also consists of the space, the control and the user
segments. GLONASS was intended to be composed of at least 24 satellites, which are equally
distributed in three orbital planes separated by 120◦ with an inclination of 64.8◦. The orbits
are roughly circular with the nominal radius of about 25,500 km (i.e., an orbit altitude of about
19,100 km) and an orbital period of about 11 h 15 min 44 s.

A major difference between GLONASS and GPS is the signal. The GPS satellites transmit
signals on the same carrier frequencies, whereas each GLONASS satellite transmits signals on
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its own carrier frequencies. The GLONASS carrier frequencies f1,i, f2,i related to the channel
number i assigned to a specific satellite are [Leick et al., 2015]

f1,i = 1602 + 0.5625 i ≈ 1598.0625–1605.375 MHz,
f2,i = 1246 + 0.4375 i ≈ 1242.9375–1248.625 MHz

with i = −7,−6, . . . ,+5,+6 and f1,i/f2,i = 9/7 ≈ 1.2857. Besides the above L1 and L2 sub-
bands, the modernization of the GLONASS program introduced a new third L3 band for modern-
ized satellites GLONASS-K. Modernized GLONASS-K satellites, GLONASS-KM to be launched
by 2025 may transmit signals on the L5 band as the same as GPS1. Similar to GPS, each satellite
modulates its L1 carrier with the C/A-code and the P-code, and modulates its L2 carrier only
with the P-code. Since the GLONASS-M satellites, the C/A-code is also modulated on the L2
carrier. Unlike GPS, all GLONASS satellites transmit the same PRN ranging codes at different
frequencies.

The differences to GPS are also related to the reference frame and the time reference. The current
GLONASS coordinates are based on the “Parametry Zemli 1990” (or “The Earth Parameter 1990”
in English), PZ-90.11 reference frame2. The GLONASS time is based on UTC as maintained
at the Russian Institute of Metrology for Time and Space (UTC (SU)). GLONASS time has
an offset with respect to UTC (SU) plus three hours within 1 millisecond. Unlike GPST, leap
seconds are implemented in the GLONASS time and thus its time scale is not continuous. More
details about GLONASS can be found in, e.g., Hofmann-Wellenhof et al. [2008], or the official
website https://glonass-iac.ru.

BeiDou System (BDS)
The Chinese BeiDou navigation satellite system, called BeiDou System (BDS) for short, is the
third navigation system after GPS and GLONASS [Montenbruck and Steigenberger, 2013]. The
BDS is developed by three-step strategies. The first step, realized by BeiDou-1 (also known
as BeiDou Navigation Satellite Demonstration System), is an experimental satellite navigation
system, which consists of three Geostationary Earth Orbit (GEO) satellites. Unlike GPS and
GLONASS, BDS-1 is an active positioning system3. BeiDou-1 was in full operation in 2003
and offered navigation services, providing users in China with positioning, timing, wide-area
differential and short message communication services. The second step is to construct the BDS-
2 (also known as COMPASS), which consists of 5 GEO, 4 Medium Earth Orbit (MEO) and 5
Inclined Geosynchronous Satellite Orbit (IGSO) satellites and has been completed by the end
of 2012. The BDS-2 added the passive-positioning scheme4 and provides positioning services for
users in the Asia-Pacific region. The third step, i.e., the full constellation of the global BDS,
is currently under construction and will inherit both active and passive services [CSNO, 2016].
The full deployment of BDS will be consisted of 5 GEO satellites with an orbital altitude of
35,786 km, 27 MEO satellites with an average orbital altitude of 21,528 km and an inclination of

1https://en.wikipedia.org/wiki/GLONASS.
2PZ-90.11 is an ECEF frame and the specifications of the parameters can be found in “PARAMETRY ZEMLI

1990” Reference Document, Moscow 2014, downloadable from https://www.glonass-iac.ru/en/guide/navfaq.
php.

3It is a two-way ranging system, i.e., the users need to transmit signals to satellites at first and the signals
are then retransmitted to the ground control center. The ground control center computes the users’ positions and
send the information back to the users via satellites. Therefore, the signals travel the distance twice.

4Both GPS and GLONASS are passive one-way downlink ranging systems, i.e., the signal emitted by satellite
travels once from space to the Earth.
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55◦, and 3 IGSO satellites with an orbital altitude of 35,786 km and an inclination of 55◦. The
latest launch in June 2016 is the 23rd satellite. The completion of the constellation deployment
is expected by the end of 2020.

All BeiDou satellites currently transmit signals on the following three nominal frequencies with
corresponding wavelengths,

B1 = 1561.098 MHz, λB1 = 19.2 cm,

B2 = 1207.140 MHz, λB2 = 24.9 cm,

B3 = 1268.520 MHz, λB3 = 23.6 cm.

BDS broadcasts a set of eight correction parameters for single-frequency users to compute the
ionospheric path delays [Montenbruck and Steigenberger, 2013]. The underlying ionospheric
model is the COMPASS Ionospheric Model (CIM) [Wu et al., 2013], which is similar to the GPS
Klobuchar model.

The coordinate system of BDS is the China Geodetic Coordinate System 2000 (CGCS2000),
see, e.g., CSNO [2013] for its definition. The time reference is the BeiDou Time (BDT), which
is a continuous time scale with the initial epoch at 0 UTC on 1 January, 2006. BDT has an
offset with respect to UTC within 100 ns. About further details please refer to CSNO [2013] or
http://en.beidou.gov.cn/.

Galileo
The European global satellite navigation system, Galileo, was a joint initiative of the European
Commission (EC) and the ESA under civilian control, with the aim of providing a highly accurate,
guaranteed global positioning service and being interoperable and compatible with other GNSS.

The Galileo system also consists of three major segments: space, control and user segments.
The satellite constellation will be composed of 24 operational and 3 spare satellites which are
positioned in three MEO planes with an inclination of 56◦. The orbits are nearly circular with an
altitude of 23,222 km. They have a period of 14 hours 4 minute 45 seconds and a ground track
repeat cycle of about 10 days. The full constellation of the 27 operational satellites without
spare satellites will guarantee continuously global coverage, with six to eight visible satellites
at any point and any time over the globe. The Galileo program is structured into three main
phases: the first phase is experimental phase, where two experimental satellites were launched in
December 2005 and April 2008, respectively. They are no longer operational after they finished
their missions that characterized and verified the key technologies required by the Galileo system
and reserved the radio frequencies at the International Telecommunications Union (ITU) as well;
the second phase is In-Orbit Validation (IOV) phase, with the aim of validating the system design
using a reduced constellation of four satellites (two satellites were launched on 21 October 2011
and the other two on 12 October 2012); the third phase is Full Operational Capability (FOC)
phase that will deploy the remaining ground and space infrastructure, which is expected to be
completed by 2020.

The Galileo system transmits signals on four different operating frequency bands with wave-
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lengths:

E1 = 1575.42 MHz, λE1 = 19.0 cm,

E6 = 1278.75 MHz, λE6 = 23.4 cm,

E5a = 1176.45 MHz, λE5a = 25.5 cm,

E5b = 1207.14 MHz, λE5b = 24.8 cm

where E5a and E5b are part of the E5 bandwidth. All satellites exploit the same carrier fre-
quencies for signal transmission. The NeQuick model (see Section 2.5.4) is used by the Galileo
single-frequency users to compute the ionospheric path delays.

The coordinate system of Galileo is the Galileo Terrestrial Reference Frame (GTRF), see, e.g.,
Gendt et al. [2011] for details. The Galileo time reference is the Galileo System Time (GST)
maintained by the Galileo Central Segment and synchronized with TAI within a nominal offset
of 50 ns. Like GPST, the GST is a continuous time scale and the initial epoch is at 0 UTC on
22 August, 1999. About further details please refer to https://www.gsc-europa.eu/.

3.2 Radio Occultation (RO) techniques

With a GNSS receiver onboard a LEO satellite, the signal transmitted by a GNSS satellite can
be received by the LEO satellite passing through the Earth’s atmosphere in a limb sounding
geometry. This refers to the Radio Occultation (RO) technique, which can provide global char-
acteristics of the Earth’s neutral atmosphere and the ionosphere, with a unique combination
of global coverage, high precision, high vertical resolution, long-term stability, and all-weather
viewing [Kursinski et al., 1997]. The RO technique dates back to the early 1960s, when a team
of scientists from the Stanford University and the Jet Propulsion Laboratory (JPL) probed the
atmosphere of Mars. The technique was applied to the Earth in April 1995 with the Global Po-
sitioning System/Meteorology (GPS/MET) experiment onboard the Microlab-1 satellite [Ware
et al., 1996], which used RO observations of GPS satellites to obtain vertical profiles of electron
density in the ionosphere; refractivity, density, pressure, and temperature in the stratosphere
and upper troposphere; and refractivity, density, pressure and water vapor pressure in the lower
troposphere [Rocken et al., 1997]. The success of the GPS/MET experiment have brought about
subsequently several other successful missions with GPS occultation receiver, such as Challeng-
ing Minisatellite Payload (CHAMP), Gravity Recovery and Climate Experiment (GRACE) and
FORMOSAT-3/COSMIC (F3/C). An overview of LEO missions with GNSS RO instruments
can be found in Mannucci et al. [2014].

3.2.1 GPS RO missions

Challenging Minisatellite Payload (CHAMP)
The German Challenging Minisatellite Payload (CHAMP) mission [Reigber et al., 2000] was
launched on 15 July, 2000, with the aim of determining the Earth’s gravity and magnetic fields
and achieving global limb soundings of the Earth’s neutral atmosphere and the ionosphere [Wick-
ert et al., 2001]. The orbit is almost circular and near polar (inclination = 87.2◦) with an initial
altitude of 454 km, which was lowered later due to atmospheric drag. The first RO measurements
were available from its “BlackJack” GPS receiver on 11 February, 2001. From then on, CHAMP
provided about 250 daily RO measurements continuously till October 2008. The satellite has
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burnt up on 19 September, 2010. Further details about the CHAMP mission can be found at
http://op.gfz-potsdam.de/champ/.

Gravity Recovery and Climate Experiment (GRACE)
The U.S./German Gravity Recovery and Climate Experiment (GRACE) mission [Tapley et al.,
2004] was launched on 17 March, 2002, with the aim of mapping the global gravity field. The
GRACE mission comprises two satellites, in near-circular polar orbits (inclination = 89.5◦) at
an altitude of around 500 km. The two satellites are separated from each other by about 220 km
along-track and connected by highly accurate inter-satellite K-band microwave ranging system.
Both satellites are equipped with CHAMP-like “BlackJack” GPS flight receivers. The first oc-
cultation measurements were obtained during a 25 h period on 28/29 July, 2004 aboard the
GRACE-B satellite, a longer period (41 days) of RO data were recorded between 12 January
and 20 February, 2006 aboard the GRACE-A satellites, and continuous RO data were activated
aboard the GRACE-A satellite since 22 May, 2006. Ionospheric profiles have been continuously
provided by GRACE-A since 28 February, 2007 [Wickert et al., 2009]. The GRACE Follow-
On (GRACE-FO) mission is planned to be launched in August 2017. Further details about the
GRACE mission can be found at http://www.csr.utexas.edu/grace/.

FORMOSAT-3/COSMIC (F3/C)
The Taiwan/U.S. FORMOSAT-3/COSMIC (F3/C) mission [Rocken et al., 2000] was launched on
April 15, 2006, with the aim of remotely sensing the Earth’s atmosphere and the ionosphere. It
has a constellation of six microsatellites which are distributed in separate orbital planes with
an inclination of 72◦ and an altitude of about 800 km. F3/C can provide 2000–2500 daily
profiles of key ionospheric and atmospheric properties. The primary data processing center for
F3/C is the University Corporation for Atmospheric Research (UCAR) COSMIC Data Analysis
and Archive Center (CDAAC) (http://cdaac-www.cosmic.ucar.edu/cdaac/). Another data
processing center is the Taiwan Analysis Center for COSMIC (TACC) at Central Weather Bureau
(CWB) (http://tacc.cwb.gov.tw/).

A F3/C follow-on mission named FORMOSAT-7/COSMIC-2 (F7/C2) is currently planned. It
will have a constellation of twelve microsatellites, which have the capability of tracking GPS,
GLONASS and Galileo signals. With the full constellation, F7/C2 can provide more than 12,000
daily ionospheric profiles. Further details about the F3/C and F7/C2 missions can be found at
http://www.cosmic.ucar.edu/.

3.2.2 GPS RO principle

A typical geometry of the RO technique involving a GPS satellite and a LEO satellite is illustrated
in Fig. 3.2. An occultation takes place when a GPS satellite sets or rises behind the Earth’s
ionosphere or lower neutral atmosphere as seen by a GPS receiver onboard a LEO satellite.
During an occultation event, GPS and LEO satellites move relatively, and thus the ray path
descends or ascends through the atmosphere. Each occultation measurement consists of a set of
limb-viewing links with perigee points (or tangent points) ranging from the LEO satellite orbit
height to the surface of the Earth, and an occultation event takes nearly 4–10 min [Hajj et al.,
2000].
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Figure 3.2: A geometry of the RO technique, adapted from http://goes-r.gov.

The signal passing through the atmosphere will not be straight but bent. The degree of bending
will change due to the vertical variation of the atmospheric refractive index [Kursinski et al.,
1997]. For the neutral atmosphere, the refractive index is depending on pressure, humidity and
temperature, whereas in case of the ionosphere it is depending on the electron density. The
amount of bending (i.e., the bending angle) is a key quantity since it can be inverted to the
refractive index using the Abel transform inversion [Fjeldbo and Eshleman, 1969], which in turn
yields the electron density. Furthermore, similar to GPS observations measured by ground-based
receivers, the signal measured by space-based GPS receivers will experience the ionospheric code
delays and phase advances, and therefore the information of the ionosphere in particular STEC
can be extracted by dual-frequency receivers.

3.2.3 EDP retrieval

The most commonly used retrieval technique is the Abel transform through calculation of the
two different quantities: bending angles or STEC. Other methods such as tomographic approach
have also been investigated (e.g., Leitinger et al., 1997; Hernández-Pajares et al., 1998; Jakowski
et al., 2002). The tomographic approach uses a set of orthogonal functions to describe the
electron density and usually requires estimation of a large number of parameters, which might
lead to a low vertical resolution. The Abel inversion has a simpler performance and a better
vertical resolution [Hernández-Pajares et al., 2000]. However, the traditional Abel inversion
technique assumes that the ionospheric electron density distribution in some region around the
tangent points of rays follows spherical symmetry, which means that no horizontal variations is
considered and thus the refractive index depends only on the height. However, it is well known
that the ionosphere exhibits both the vertical and horizontal variations, even in the typical short
time span of few minutes during an occultation event. The spherical symmetry assumption is
considered to be the most significant error source for the retrieval technique (e.g., Schreiner
et al., 1999; García-Fernández, 2004; Wu et al., 2009). Therefore, improved Abel inversions
that take horizontal electron density gradient into account have been proposed (e.g., Hernández-
Pajares et al., 2000; García-Fernández, 2004; Tsai and Tsai, 2004; Tsai et al., 2009, 2011). In
the following, the traditional Abel inversion using STEC along GPS–LEO ray paths that the
approaches of many research faculties as well as F3/C data processing centers are based on will
be briefly described. The Abel inversion using bending angles can be found in e.g., Hajj and
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Figure 3.3: Geometry of ray path for RO technique by assuming a straight line propagation.

Romans [1998], Schreiner et al. [1999], García-Fernández [2004] or Limberger [2015].

The Abel inversion technique using STEC is based on that the bending angle is very small
and negligible in the ionosphere, and thus straight line propagation is assumed (see Fig. 3.3).
According to Schreiner et al. [1999], bending of signals at GPS frequencies in the ionosphere is
small enough that ray separation from straight line propagation for LEO observations is only
about several kilometers or less, even under the worst ionospheric conditions. The quantity is
much smaller than typical vertical scales of the electron density in the F2 layer. However, this
may not be valid for the layers with smaller-scale structures like the E layer, but the influence
is usually less important than the error caused by the spherical symmetry assumption [García-
Fernández, 2004].

The carrier phase observation equation (3.3) is also applicable to space-based GPS phase mea-
surements. The STEC along the GPS ray path from GPS satellite k to LEO satellite j can be
derived from the geometry-free linear combination Lk4,j according to Eq. (3.7), reads (cf. Hajj
et al., 2000)

STECkj − aBk
j = −aLk4,j + e

′k
j (3.18)

where Bk
j is the bias containing Nk

4,j and the receiver and satellite DPBs; e′kj is the random
noise. In order to simplify the notation, we leave the receiver and satellite indices j and k out in
the following. Based on the spherical symmetry assumption of the electron density distribution,
STEC is related to the electron density through the following integral

STEC(r0) =

[∫ rGPS

r0

+

∫ rLEO

r0

]
rNe(r)√
r2 − r20

dr (3.19)

where r0 is the radial distance of the perigee point from the Earth’s center, rGPS and rLEO are
the radial distances of the GPS and the LEO, and r denotes the radius, see Fig. 3.3. The derived
STEC (i.e., the left-hand side of Eq. (3.18)) differs from the actual STEC by an offset aBk

j ,
and it is calibrated so that it approximately represents the portion of STEC below the orbit
height of LEO satellite [Lei et al., 2007], the calibrated S̃TEC(r0) reads

S̃TEC(r0) = STECCD(r0) = STECAD(r0)− STECAC(r0) (3.20)

where A denotes the position of the GPS, D is the position of the LEO, and C is an auxiliary
position with the same radial distance as D, see Fig. 3.3; detailed calibration approach is referred
to Schreiner et al. [1999]. Equation (3.19) can be transformed for calibrated S̃TEC(r0) to

S̃TEC(r0) = 2

∫ rLEO

r0

rNe(r)√
r2 − r20

dr (3.21)
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which can then be inverted using the Abel integral transform to obtain the expression for the
electron density

Ne(r) = − 1

π

∫ rLEO

r

dS̃TEC(r0)/dr0√
r20 − r2

dr0 . (3.22)

Recursive Inversion of STEC data
To solve Eq. (3.21), an onion peeling algorithm is commonly used, i.e., an onion shell structure
depending on the height of the successive tangent points is introduced. For each shell we assume
a constant electron density. A schematic geometry of the onion shell structure is illustrated in
Fig. 3.4. Each STEC observation defines a shell in the vertical profile, and the vertical resolution
of EDP is determined by the sampling rate of the phase measurements [García-Fernández, 2004].
The shells starting from the outermost toward the innermost are denoted as s = 1, . . . ,M . In
this manner, the right-hand side of Eq. (3.21) can be discretized as (cf. García-Fernández, 2004;
Wu et al., 2009; Limberger et al., 2015)

S̃TEC(r0) = 2
s=i∑
s=1

Ne,s lis (3.23)

where Ne,s is the electron density value of the shell s and lis denotes the length of the ray path
at epoch i in the s-th shell. The relation s ≤ i has to be fulfilled. Therefore, the electron density
values can be calculated recursively starting from the uppermost to the bottommost observations.
This method is similar to the one used at CDAAC (e.g., Lei et al., 2007; Syndergaard, 2007).

The inversion errors of the above algorithm stem mainly from the spherical symmetry assumption.
Other error sources include, such as the assumption of straight line propagation of the GPS-
LEO ray paths in the ionosphere, the calibration technique for approximating S̃TEC(r0) and
measurement errors. Further details can be found in, e.g., Schreiner et al. [1999], Wu et al. [2009]
or Yue et al. [2010].

Figure 3.4: Illustration of the onion shell structure that discretizes STEC.
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Chapter 4

Parameter Estimation

This chapter includes two parts. The first part introduces the fundamental of the adjustment
theory whereas the second one explains inequality constrained optimization. In order to solve
for unknown parameters, the functional relations between the unknown parameters and the
observations have to be set up, and the statistical properties of the observations need to be
specified. We start from a nonlinear problem, as it will be tackled within this thesis.

4.1 Nonlinear problem

Let y∗i (i = 1, . . . , n) be the n observations with errors ei and βj (j = 1, . . . , u) the u unknown
parameters, the relations between y∗i and βj can generally be written as

f1(β1, . . . , βu) = y∗1 + e1

f2(β1, . . . , βu) = y∗2 + e2
...

fn(β1, . . . , βu) = y∗n + en

(4.1)

where fi(β1, . . . , βu) are real-valued differentiable functions of βj . Therefore, Eq. (4.1) may be
linearized by means of the Taylor series expansion, cut off at the linear term computed with the
initial parameter vector βββ0 = [β10, . . . , βu0]

T , which collects the initial values βj0 (j = 1, . . . , u)
as [Koch, 1999]

fi(β1, . . . , βu) = fi(β10 + ∆β1, . . . , βu0 + ∆βu)

≈ fi(β10, . . . , βu0)︸ ︷︷ ︸
fi0

+
∂fi
∂β1

∣∣∣∣
βββ0

∆β1 + . . .+
∂fi
∂βu

∣∣∣∣
βββ0

∆βu

≈ fi0 +
(
∇βββfi(βββ0)

)T
∆βββ

(4.2)

with

βββ = βββ0 + ∆βββ, βββ = [β1, . . . , βu]T , ∆βββ = [∆β1, . . . ,∆βu]T
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and

∇βββfi(βββ0) =

[
∂fi
∂β1

∣∣∣∣
βββ0

, . . . ,
∂fi
∂βu

∣∣∣∣
βββ0

]T
where the superscript T denotes the transpose and the symbol ∇βββ represents the gradient with
respect to βββ. Equation (4.1) can then be reformulated under consideration of Eq. (4.2) in matrix
notation as

XXX∆βββ = yyy∗ − yyy0 + eee = ∆yyy + eee (4.3)

with

XXX =


∂f1
∂β1

∣∣
βββ0
· · · ∂f1

∂βu

∣∣
βββ0

∂f2
∂β1

∣∣
βββ0
· · · ∂f2

∂βu

∣∣
βββ0

...
. . .

...
∂fn
∂β1

∣∣
βββ0
· · · ∂fn

∂βu

∣∣
βββ0

 , yyy∗ = [y∗1, . . . , y
∗
n]T ,

yyy0 = [f10, . . . , fn0]
T , eee = [e1, . . . , en]T , and ∆yyy = [y∗1 − f10, . . . , y∗n − fn0]T .

The unknown vector ∆βββ of corrections to the initial parameter vector β0β0β0 has to be estimated
iteratively by introducing the sum of βββ0 and the estimate ∆β̂ββ as the initial parameter vector in
the next iteration step, i.e.,

βββit+1,0 = βββit,0 + ∆β̂ββit (4.4)

where it denotes the iteration step. The estimated observations yyy0 and the partial derivatives in
XXX also have to be recomputed according to βββit+1,0.

4.2 Gauss-Markov model

At each iteration step, the unknown vector ∆βββ can be estimated within a Gauss-Markov model,
which is defined as (see e.g., Koch, 1999)

XXXβββ = yyy + eee︸ ︷︷ ︸
functional part

with D(eee) = D(yyy) = σ2PPP−1︸ ︷︷ ︸
stochastic part

(4.5)

where

XXX n× u coefficient matrix,
βββ u× 1 vector of unknown,
yyy n× 1 vector of observations, yyy = [y1, . . . , yn]T ,

σ2 unknown variance factor or variance of unit weight,
PPP given weight matrix which must be positive definite.

E(·) and D(·) denote the expectation and the covariance operator, respectively. The left set of
equations XXXβββ = yyy+ eee is called observation equations. By substituting βββ = ∆βββ and yyy = ∆yyy, the
linearized model (4.3) is reformulated as the functional part of Eq. (4.5). Usually, the number of
observations n is larger than the number of unknowns u, i.e., n > u. Thus, an overdetermined
system is given to reduce the influence of randomness of the observations on the estimates of βββ
(Koch, 1999, 2007).
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Stochastic model
The covariance matrix D(yyy) (also called the variance-covariance matrix or the dispersion matrix)
is defined as

D(yyy) = E
[
(yyy − E(yyy))(yyy − E(yyy))T

]
=


σ2y1 σy1y2 . . . σy1yn
σy2y1 σ2y2 . . . σy2yn
...

...
. . .

...
σyny1 σyny2 . . . σ2yn

 (4.6)

which is a symmetric matrix, i.e., σyiyj = σyjyi (i, j ∈ {1, . . . , n}). The diagonal elements
denote the variances of the individual observations, whereas the off-diagonal elements indicate
covariances between the observations. The covariances reflect the correlations; the correlation
coefficient ρyiyj of the observations yi and yj is defined as

ρyiyj = σyiyj/(σyi · σyj ) . (4.7)

When σyiyj = ρyiyj = 0, the observations yi and yj are said to be uncorrelated, i.e., independent.
The weight matrix PPP is then a diagonal matrix. If all observations are uncorrelated and of equal
weight, PPP can be chosen as the identity matrix I.

4.2.1 Method of least squares for Gauss-Markov model

Since nonlinear relations may generally be transferred into a linear model via a linearization, the
adjustment theory will be introduced based on the Gauss-Markov model (4.5) in the following.
The method of least squares means to find βββ such that the quadratic function S(βββ) is minimized,
i.e.,

min
βββ∈Ru

S(βββ) = (yyy −XXXβββ)T PPP (yyy −XXXβββ)/σ2

= (yyyTPPPyyy − 2βββTXXXTPPPyyy + βββTXXXTPPPXXXβββ)/σ2
(4.8)

which is obtained by setting the gradient ∇βββS(βββ) equal to zero, i.e.,

∇βββS(βββ) =

[
∂S(βββ)

∂β1
, . . . ,

∂S(βββ)

∂βu

]T
= (−2XXXTPPPyyy + 2XXXTPPPXXXβββ)/σ2 = 000 . (4.9)

This leads to the normal equations

XXXTPPPXXX︸ ︷︷ ︸
NNN

β̂ββ = XXXTPPPyyy︸ ︷︷ ︸
bbb

(4.10)

where β̂ββ is the estimate of βββ, the matrix NNN is called the matrix of normal equations, and bbb is the
right-hand side of the normal equations.

When the coefficient matrix XXX is of full column rank (see Section 4.3 later), i.e., rankXXX = u, NNN
is invertible and a unique estimate β̂ββ is obtained through

β̂ββ =
(
XXXTPPPXXX

)−1
XXXTPPPyyy = NNN−1 bbb. (4.11)
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Substituting the estimate β̂ββ into the observation equations in (4.5), the vector êee of residuals is
obtained as

êee = XXXβ̂ββ − yyy . (4.12)

The variance factor can then be estimated by the weighted sum of squares of the residuals Ω

Ω = êeeT PPP êee . (4.13)

Since the expected value E(Ω) fulfills (cf. Koch, 2007)

E(Ω) = σ2 (n− u) (4.14)

the unbiased estimate σ̂2 of σ2 can be obtained by

σ̂2 =
Ω

r
(4.15)

with the degree of freedom (i.e., the number of redundant equations in the model)

r = n− u . (4.16)

The covariance matrix D(β̂ββ) of the estimate β̂ββ can then be calculated in order to extract the
error information of the estimate. Applying the law of error propagation to Eq. (4.11), one can
obtain D(β̂ββ) by

D(β̂ββ) = σ2
(
XXXTPPPXXX

)−1
= σ2NNN−1. (4.17)

Inserting σ̂2 from Eq. (4.15) into the equation above, we can thus obtain D̂(β̂ββ) by

D̂(β̂ββ) = σ̂2
(
XXXTPPPXXX

)−1
= σ̂2NNN−1. (4.18)

According to the definition of the covariance matrix (cf. Eq. (4.6)), D̂(β̂ββ) can be written as

D̂(β̂ββ) = σ̂2


σ2β1 σβ1β2 . . . σβ1βu
σβ2β1 σ2β2 . . . σβ2βu
...

...
. . .

...
σβuβ1 σβuβ2 . . . σ2βu

 . (4.19)

The estimate σ̂2βj of the variance of the j-th unknown βj is the j-th diagonal element of D̂(β̂ββ),
i.e.,

σ̂2βj = σ̂2 · σ2βj . (4.20)

Similar to Eq. (4.7), the correlation coefficients ρβiβj (i, j ∈ {1, . . . , u}) between the i-th and j-th
unknown parameters can be estimated by

ρβiβj = σβiβj/(σβi · σβj ) (4.21)

which can then be collected in the so-called correlation matrix, written as

RRR =


1 ρβ1β2 . . . ρβ1βu

ρβ2β1 1 . . . ρβ2βu
...

...
. . .

...

ρβuβ1 ρβuβ2 . . . 1

 . (4.22)

Since σβj1βj2 = σβj2βj1 , the matrix RRR is also symmetric. Note, that for a linearized problem as
given in Eq. (4.2), covariance and correlation matrices should be taken from the computations
according to the Eqs. (4.18) and (4.22) when convergency is reached.
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4.2.2 Gauss-Markov model with equality constraints

Assume the Gauss-Markov model (4.5) is subject to equality constraints

HHHβββ = www (4.23)

where HHH is a p × u matrix of known coefficients with rankHHH = p and p < u, and www is a given
p× 1 vector.

Solving for the unknown vector βββ by the method of least squares means to find a solution βββ
such that S(βββ) (cf. Eq. (4.8)) is minimized subject to Eq. (4.23). The Lagrangian function reads
[Koch, 1999]

L(βββ,kkk) = (yyy −XXXβββ)T PPP (yyy −XXXβββ) /σ2 + 2kkkT (HHHβββ −www)/σ2 (4.24)

where the p× 1 vector 2kkk/σ2 contains the Lagrange multipliers. Equation (4.24) must be mini-
mized by setting the gradients of L(βββ,kkk) with respect to βββ and kkk both equal to zero

∇βββL(βββ,kkk) =
(
−2XXXTPPPyyy + 2XXXTPPPXXXβββ + 2HHHTkkk

)
/σ2 = 000 (4.25a)

∇kkkL(βββ,kkk) = 2(HHHβββ −www)/σ2 = 000 . (4.25b)

This leads to the extended normal equations[
XXXTPPPXXX HHHT

HHH 000

]
︸ ︷︷ ︸

ÑNN

[
β̃ββ
kkk

]
=

[
XXXTPPPyyy
www

]
(4.26)

where β̃ββ is the estimate of the unknown parameter vector βββ subject to the constraints (4.23).
Since NNN = XXXTPPPXXX is invertible and we have rankHHH = p, it follows that det(ÑNN) 6= 01. Therefore,
the values for β̃ββ and kkk are uniquely determined. Similar to Eq. (4.15), the unbiased estimate σ̃2

of the variance factor σ2 follows as [Koch, 1999]

σ̃2 =
ΩH
r′

with ΩH = ẽeeT PPP ẽee (4.27)

where the vector ẽee of residuals is obtained from

ẽee = XXXβ̃ββ − yyy (4.28)

and the degree of freedom r′ reads
r′ = n+ p− u . (4.29)

The covariance matrix of the estimated parameter vector β̃ββ can be extracted from the inverse of
the extended normal equation matrix ÑNN following Eq. (4.18).

1Applying the rule that the determinant det
([
AAA BBB
CCC DDD

])
= det(AAA) det(DDD−CCCAAA−1BBB) when AAA is invertible (cf.

Brookes, 2011).
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4.3 Rank deficiency and ill-conditioning

So far, the coefficient matrixXXX has been assumed to be of full column rank. When rankXXX < u,XXX
is not of full column rank, i.e., rank deficient. The relation rankNNN = rank(XXXTPPPXXX) = rankXXX < u
holds, and therefore NNN is singular and the inverse does not exist. Rank deficiency implies that
there exist rows or columns which are linear combinations of some or all of the remaining rows
and columns. As for an ill-conditioned system of linear equations, the solution is highly sensitive
to the values of the observations.

4.3.1 Singular Value Decomposition (SVD)

A very powerful numerical tool to analyze rank deficient and/or ill-conditioned systems is the
Singular Value Decomposition (SVD). The SVD of a matrix XXX ∈ Rn×u (assume n ≥ u) reads
(e.g., Golub and Van Loan, 1996)

XXX = UUUSSSVVV T =

u∑
m=1

uuum sm vvv
T
m (4.30)

where

UUU = [uuu1, . . . ,uuun] ∈ Rn×n n × n orthogonal matrix with orthonormal columns uuui (i =
1, . . . , n), with UUUTUUU = UUUUUUT = I,

uuui called left singular vector, with uuuTi1 uuui2 = δi1i2 =

{
0 i1 6= i2

1 i1 = i2
(i1, i2 ∈ {1, . . . , n}),

SSS ∈ Rn×u n× u matrix with non-negative elements sm called singular values
on its main diagonal (m = 1, . . . , u),

VVV = [vvv1, . . . , vvvu] ∈ Ru×u u×u orthogonal matrix with orthonormal columns vvvj , with VVV TVVV =
VVV VVV T = I,

vvvj called right singular vector, with vvvTj1 vvvj2 = δj1j2 (j1, j2 ∈
{1, . . . , u}).

The singular values sm along the main diagonal of SSS appear in a decreasing order, i.e.,

s1 ≥ s2 ≥ · · · ≥ su ≥ 0. (4.31)

The rank of the matrix XXX equals to the number of non-zero singular values, which means, if
there exist singular values that are equal to zero, the matrix XXX is not of full column rank and is
said to be rank deficient. Additionally, very small singular values will cause instabilities in the
least squares estimation since it can amplify the noise in the data significantly; see e.g., Hansen
[1990].

4.3.2 Condition number

A measure of the instability of the solution of the linear equation system is the condition number.
Assume that the coefficient matrix XXX is square and invertible (i.e., nonsingular), the condition
number of XXX is defined as (e.g., Higham, 1987)

cond(XXX) = ‖XXX‖ · ‖XXX−1‖ (4.32)
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where ‖ · ‖ denotes a matrix norm1.

Based on the rule that ‖AAABBB‖ ≤ ‖AAA‖ · ‖BBB‖, one can easily obtain that

cond(XXX) = ‖XXX‖ · ‖XXX−1‖ ≥ ‖XXXXXX−1‖ = ‖I‖ = 1. (4.33)

Therefore, the condition number is always not smaller than one. When the condition number is
not too much larger than one, the system of equations is said to be well-conditioned, otherwise
the system is ill-conditioned. A singular matrix has condition number of infinity. In the following
we will see how the condition number reflects the sensitivity of the solution to perturbations in
the data.

Assume that the data distorted by the error vector eee will cause a change of δβββ in the corresponding
solution, i.e.,

XXX(βββ + δβββ) = yyy + eee (4.34)

or written as the two equations

yyy = XXXβββ, (4.35a)

XXXδβββ = eee⇒ δβββ = XXX−1eee . (4.35b)

Taking the norm of the two equations above and applying the rule ‖AAABBB‖ ≤ ‖AAA‖ · ‖BBB‖ yields

‖yyy‖ = ‖XXXβββ‖ ≤ ‖XXX‖ · ‖βββ‖, (4.36a)

‖δβββ‖ = ‖XXX−1eee‖ ≤ ‖XXX−1‖ · ‖eee‖ . (4.36b)

Multiplying the corresponding sides of the two equations and then dividing both sides by ‖βββ‖·‖yyy‖
gives

‖δβββ‖
‖βββ‖

≤ ‖XXX‖ · ‖XXX−1‖︸ ︷︷ ︸
cond(XXX)

· ‖e
ee‖
‖yyy‖

(4.37)

which implies that the relative error ‖δβββ‖/‖βββ‖ of the solution can be amplified by a factor of
cond(XXX) with respect to the relative error ‖eee‖/‖yyy‖ of the observations. Therefore, if the condition
number is very large, a small perturbation in the data vector yyy can cause a large deviation in
the estimate of βββ.

When the Euclidean norm (`2 norm) is used, the condition number can be formulated in terms
of the singular values [Golub and Van Loan, 1996]

cond(XXX) = ‖XXX‖2 · ‖XXX−1‖2 =
s1
su

(4.38)

1For example, the p-norm ‖ · ‖p with p = 1, 2, . . . ,∞ can be used. The p-norms of a matrix AAA ∈ Rm×n can be
obtained from [Golub and Van Loan, 1996]

‖AAA‖p = max
‖xxx‖p=1

‖AAAxxx‖p

with vector xxx ∈ Rn. The p-norms of the vector xxx is defined as

‖xxx‖p = (|x1|p + . . .+ |xn|p)
1
p .
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where the smallest singular value su > 0 holds due to the nonsingularity of XXX. In other words,
the condition number of nonsingular matrix XXX is equal to the ratio between the largest and
the smallest singular values of XXX. Since the method of least squares is applied to solve for the
unknown parameter vector βββ, it makes more sense to consider the condition of the matrix NNN in
Eq. (4.10). In a special case that the weight matrix PPP = I, NNN can be written as

NNN = XXXTXXX = (UUUSSSVVV T )T (UUUSSSVVV T ) = VVVSSSTUUUTUUUSSSVVV T = VVVSSSTSSSVVV T = VVVΛΛΛVVV T (4.39)

under consideration of Eq. (4.30). Herein ΛΛΛ is the diagonal matrix whose diagonal elements are
called the eigenvalues ofXXXTXXX. Following Eq. (4.38), the condition number ofNNN can be obtained
by

cond(NNN) = ‖NNN‖ · ‖NNN−1‖ =
s21
s2u

=
λ1
λu

(4.40)

where λ1 and λu denote the maximum and the minimum eigenvalues and both values are larger
than zero1; see e.g., Kalman [1996], Strang and Borre [1997] or Naeimi [2013] for details.

4.4 Regularization

To solve rank deficient and/or ill-conditioned problems, the method of regularization is often
applied. A detailed overview of different regularization methods can be found in, e.g., Bouman
[1998, 2000]. The most well-known and commonly used method is probably the Tikhonov reg-
ularization (Phillips, 1962; Tikhonov, 1963; Tikhonov and Arsenin, 1977), which stabilizes the
solution by adding a penalty term to the normal equation matrix. The penalty term is a positive
definite matrix times the regularization parameter which is generally unknown. The Tikhonov
regularization can be interpreted by Bayesian statistics as estimation with prior information
[Koch, 1999, 2007; Koch and Kusche, 2002, and references therein].

Within this thesis, we introduce the prior information of βββ to stabilize the estimation process, i.e.,
the u × 1 expectation vector E(βββ) = µµµ and the positive definite covariance matrix D(βββ) = ΣΣΣβ

are given. Considering the prior information as an additional observation technique, we can
formulate the linear model

βββ = µµµ+ eeeµ with D(µµµ) = σ2µPPP
−1
µ (4.41)

with the error vector eeeµ of the prior information, the unknown variance factor σ2µ, and the given
u× u positive definite weight matrix PPPµ = ΣΣΣ−1β .

Assume that the prior information µµµ and the observation vector yyy from Eq. (4.5) are independent,
we can formulate [Koch, 2007]

XXXβββ = yyy + eee (4.42)

with XXX =

[
XXX
I

]
, yyy =

[
yyy
µµµ

]
, eee =

[
eee
eeeµ

]
,

and D(yyy) = σ2
[
PPP−1 000

000 000

]
+ σ2µ

[
000 000
000 PPP−1µ

]
.

1NNN is a positive definite matrix since XXX is invertible. All eigenvalues of a positive definite matrix are positive.
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Substituting Eq. (4.42) in Eq. (4.10), the normal equations(
1

σ2
XXXTPPPXXX +

1

σ2µ
PPPµ

)
β̂ββ =

1

σ2
XXXTPPP yyy +

1

σ2µ
PPPµµµµ (4.43)

can be obtained. By introducing λ = σ2/σ2µ, Eq. (4.43) can be reformulated as(
XXXTPPPXXX + λPPPµ

)
β̂ββ = XXXTPPP yyy + λPPPµµµµ (4.44)

which leads to the Tikhonov regularization with the Tikhonov regularization parameter λ if µµµ
is assumed to be the zero vector. Consequently, the Tikhonov regularization parameter can
be estimated through Variance Component Estimation (VCE) (Koch, 1999, 2007; Koch and
Kusche, 2002; see Section 4.5), since λ is the ratio of σ2 and σ2µ. Small values of σ2µ give strong
regularizations, whereas large values lead to weak regularizations. Many other strategies are
also available for choosing λ, such as the L-curve criterion [Hansen and O’leary, 1993] and the
Generalized Cross Validation (GCV) [Golub et al., 1979]. However, these different methods are
beyond the scope of the thesis; the interested reader may refer to, e.g., Hansen [1996] or Xu et al.
[2016].

4.5 Data combination and Variance Component Estimation (VCE)

Usually, different types (based on e.g., techniques or missions) of observations are combined
to solve the unknown model parameters. The variance factors belonging to different types of
observations are called variance components. The Gauss-Markov model (4.5) can be established
individually for each observation type

XXXoβββ = yyyo + eeeo with D(yyyo) = σ2o PPP
−1
o (4.45)

where o ∈ {1, . . . , c} denotes the different observation techniques with total number c.

If the different types of observations yyyo and the prior information µµµ from Eq. (4.41) are assumed
to be independent, the combination of the c+ 1 observation types yields the following extended
linear model similar to Eq. (4.42) (cf. Koch and Kusche, 2002)

XXX1
...
XXXc

I


︸ ︷︷ ︸

XXX

βββ =


yyy1
...
yyyc
µµµ


︸ ︷︷ ︸

yyy

+


eee1
...
eeec
eeeµ


︸ ︷︷ ︸

eee

(4.46)

with

D(yyy) = D



yyy1
...
yyyc
µµµ


 = σ21MMM1 + . . .+ σ2cMMM c + σ2µMMMµ
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and

MMM1 =


PPP−11 · · · 000 000
...

. . .
...

...
000 · · · 000 000
000 · · · 000 000

 , · · · ,MMM c =


000 · · · 000 000
...

. . .
...

...
000 · · · PPP−1c 000
000 · · · 000 000

 ,MMMµ =


000 · · · 000 000
...

. . .
...

...
000 · · · 000 000
000 · · · 000 PPP−1µ

 .
Similarly, the following normal equations(

c∑
o=1

1

σ2o
XXXT
oPPP oXXXo +

1

σ2µ
PPPµ

)
β̂ββ =

c∑
o=1

1

σ2o
XXXT
oPPP o yyyo +

1

σ2µ
PPPµµµµ (4.47)

are obtained. When the different types of observations are dependent, D(yyy) is no longer a
diagonal block matrix and unknown covariance matrices between different types of observations
have to be taken into account and estimated as well [Koch, 1999].

Since the weight matrices PPP o are positive definite, the matrices XXXT
oPPP oXXXo are at least positive

semidefinite. Furthermore, the weight matrix PPPµ of the prior information is positive definite,
and therefore, the matrix of normal equations

NNN c =
1

σ21
XXXT

1PPP 1XXX1 + . . .+
1

σ2c
XXXT
c PPP cXXXc +

1

σ2µ
PPPµ (4.48)

is regular, i.e., invertible, if appropriate variance components σ2o (o = {1, . . . , c}) and σ2µ are
chosen. The estimate β̂ββ of the unknown vector βββ in case of the model (4.46) according to
Eq. (4.11) is then obtained by

β̂ββ = NNN−1c

(
1

σ21
XXXT

1PPP 1 yyy1 + . . .+
1

σ2c
XXXT
c PPP c yyyc +

1

σ2µ
PPPµµµµ

)
. (4.49)

The unknown variance components can be chosen manually, i.e., empirically, or estimated within
the Variance Component Estimation (VCE). The VCE is an effective approach to estimate the
unknown variance components when different data types have to be combined in a parameter
estimation. There are a number of methods to estimate variance components [Xu et al., 2006,
and references therein], here the method introduced by Koch and Kusche [2002] will be given
briefly.

The estimate σ̂2o of σ2o and the estimate σ̂2µ of σ2µ can be obtained through

σ̂2o =
êeeToPPP o êeeo
ro

, with o ∈ {1, . . . , c}, êeeo = XXXo β̂ββ − yyyo (4.50)

and

σ̂2µ =
êeeTµPPPµ êeeµ

rµ
with êeeµ = β̂ββ −µµµ (4.51)

where êeeo and êeeµ denote the vectors of residuals. The denominators ro and rµ are the partial
redundancies, namely, the contributions of yyyo and µµµ to the total redundancy rc of the model
(4.46). The total redundancy rc is defined as

rc =
c∑

o=1

no + u− u =
c∑

o=1

no (4.52)
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where no denotes the number of observations collected in the vector yyyo. Let
∑c

o=1 no = n, the
relation

c∑
o=1

ro + rµ = rc = n (4.53)

holds based on Eq. (4.52). The partial redundancies ro and rµ can be obtained by

ro = no − Tr

(
1

σ2o
XXXT
o PPP oXXXoNNN

−1
c

)
, (4.54a)

rµ = u− Tr

(
1

σ2µ
PPPµNNN

−1
c

)
(4.54b)

where the symbol Tr denotes the trace. As can be seen from the Eqs. (4.49), (4.50) and (4.51), the
estimated variance components are depending on the observation residuals estimated from the
vector β̂ββ, which in turn depends on the estimated variance components. Thus, the estimation of
variance components has to be performed iteratively. For very large systems of normal equations,
computations of the inverseNNN−1c in Eq. (4.54) are rather expensive. A stochastic trace estimator
can then be used instead (e.g., Hutchinson, 1990; Koch and Kusche, 2002). It is worth noting
that, as VCE interprets the prior information as an additional noisy observation technique, if
the residual vector êeeµ as defined in Eq. (4.51) has no random character, then it cannot be used
to compute a reliable estimation of the variance component σ2µ, and thus for the regularization
parameter.

4.6 Hypothesis testing

A hypothesis is a claim or a statement about a characteristic of one or more populations. Hy-
pothesis testing is used to accept or reject a hypothesis under a given error probability. It can
be done to test the significance of the model parameters. For simplifications, we will introduce
the hypothesis testing based on the Gauss-Markov model (4.5) of full rank.

When a single parameter of the model is tested, we can set up the null hypothesis H0 and the
alternative hypothesis H1

H0 : βj = βoj for a fixed j ∈ {1, . . . , u} versus H1 : βj 6= βoj (4.55)

where βoj is the given value. The test statistic T is defined as [Koch, 1999]

T =
(β̂j − βoj)2

σ̂2βj
(4.56)

if σ̂2βj 6= 0 where σ̂2βj is calculable from Eq. (4.20). If the null hypothesis is true, the distribution
of T follows the F -distribution1 [Phillips, 1982] by

T ∼ F (1, n′ − q) (4.57)
1The F -distribution with ν1 degree of freedom in the numerator and ν2 degree of freedom in the denominator

refers to the variable derived from the ratio of two independent chi-squared distributed random variables u1 ∼
χ2(ν1) and u2 ∼ χ2(ν2) with degrees of freedom ν1 and ν2, respectively. It is written as u1/ν1

u2/ν2
∼ F (ν1, ν2).
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where n′ denotes the total number of observations in the model and q = rankXXX = u. Then, the
calculated value of T is compared to a critical value from the F -distribution for a specific level
γ of significance (e.g., γ = 0.1, 0.05, 0.01), and the decision rule is{

if T ≥ F (1− γ; 1, n′ − q) reject H0;
if T < F (1− γ; 1, n′ − q) fail to reject H0.

(4.58)

Note, that a t-test can also be used for the null hypothesis (4.55) of a single parameter. Instead
of Eq. (4.57), we have

√
T ∼ t(n′−q) with t(n′−q) denoting the Student’s t-distribution [Fisher,

1925] with n′ − q degree of freedom; the outcome will be the same as for the F -test.

We can also set up the joint null hypothesis and the alternative hypothesis

H0 : βj = βoj for all j = j′, . . . , k versus
H1 : βj 6= βoj for at least one j ∈ {j′, . . . , k}.

(4.59)

The test statistic T can be calculated through [Koch, 1999]

T =
1

(k − j′ + 1) σ̂2
(β̂ββj′,...,k − βββo, j′,...,k)T (ΣΣΣβ)−1j′,...,k (β̂ββj′,...,k − βββo, j′,...,k) (4.60)

with

(ΣΣΣβ)j′,...,k = (XXXTPPPXXX)−1j′,...,k =

 σ2βj′
. . . σβj′βk

...
. . .

...
σβkβj′ . . . σ2βk

 (4.61)

which is the part of the covariance matrix in Eq. (4.19) related to the parameters βj (j =
j′, . . . , k). Note that the estimate σ̂2 of the variance factor of the observation residuals in
Eq. (4.19) is moved to the denominator of Eq. (4.60). If the null hypothesis is true, the dis-
tribution of T follows by

T ∼ F (k − j′ + 1, n′ − q) . (4.62)

The calculated value of T is then compared to a critical value from the F -distribution for a
specific level γ of significance{

if T ≥ F (1− γ; k − j′ + 1, n′ − q) reject H0;
if T < F (1− γ; k − j′ + 1, n′ − q) fail to reject H0.

(4.63)

If the null hypothesisH0 is not rejected, none of the parameters βj (j ∈ {j′, . . . , k}) is significantly
different from βoj ; if H0 is rejected, the parameters βj (j = j′, . . . , k) are jointly statistically
significant and at least one of the parameters is not equal to βoj . However, it does not indicate
which parameter is not equal to βoj .

For the model (4.46), the testing approach is also valid, only the variance factors and the covari-
ance matrix used to compute T have to be replaced by the corresponding quantities.

4.7 Constrained optimization

As introduced previously in Section 4.2.2, equality constraints can easily be incorporated into the
adjustment system by the method of Lagrange multipliers. However, when the constraints are
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in the form of inequalities, the problems become more complicated and will lead to optimization
problems, also known as mathematical programming. Mathematically speaking, optimization
is to minimize or maximize a function subject to constraints on its variables, which can be
formulated generally as

min
βββ∈Ru

S(βββ) (4.64a)

s.t. hhh(βββ) = 000 (4.64b)
ggg(βββ) ≥ 000 (4.64c)

where βββ is the vector of unknowns (optimization variables), S(βββ) is the real-valued objective
function of βββ to be minimized, the p× 1 vector-valued functions hhh(βββ) = [h1(βββ), . . . , hp(βββ)]T are
the equality constraints, and the p × 1 vector-valued functions ggg(βββ) = [g1(βββ), . . . , gp(βββ)]T are
the inequality constraints. The symbol large than or equal to “≥” in Eq. (4.64c) represents a
component-wise operator.

Based on characteristics of the objective function, the constraints and the unknowns, optimiza-
tion problems can be classified into different categories; see, e.g., Nocedal and Wright [1999] and
Kumar [2015] for various taxonomies. It is important to identify the type of the problem firstly,
since different optimization algorithms can be suited for a particular type of problems. Within
this thesis, we focus on (inequality) constrained and continuous optimization, which means the
optimization variables are all real values whereas the objective and constraint functions are
continuous. Moreover, both the objective and constraint functions are assumed to be twice con-
tinuously differentiable. According to the nature of the involved expressions in the objective
function and the constraints, the optimization problems can be classified into Linear Program-
ming (LP), QP, and NLP problems [Dutta, 2016]. Various characteristics of these problems are
illustrated in Table 4.1. Note that a QP problem is a special case of the NLP problem.

Table 4.1: Classification of optimization problems based on the nature of the equations involved.

Classification Objective function (standard form) Constraints (equality/inequality)

LP linear (cccTβββ, ccc ∈ Ru) linear

QP quadratic (cccTβββ + 1
2βββ

TQQQβββ, QQQ ∈ Ru×u) linear

NLP at least one of the functions (objective and constraint functions) are nonlinear

The method (4.8) of least squares adjustment in a Gauss-Markov model can actually be formu-
lated as a QP problem, since the objective function S(βββ) has the quadratic form. As we work
on the nonlinear model (4.1), we can directly set up the objective function in the least squares
sense similar to Eq. (4.8) as

S(βββ) = (yyy∗ − fff(βββ))TPPP (yyy∗ − fff(βββ))/σ2 (4.65)

which should be minimized. The problem (4.64) under consideration of the objective func-
tion (4.65) belongs to a NLP problem.

Speaking of constrained optimization, several basic concepts are known. A point that satisfies
all p+ p constraints in the Eqs. (4.64b) and (4.64c) is said to be feasible. The set of all feasible
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points forms a feasible set F , i.e.

F = {βββ|hhh(βββ) = 000; ggg(βββ) ≥ 000} . (4.66)

At a feasible point, the inequality constraint is said to be active if the equal sign in Eq. (4.64c)
holds (i.e., gi(βββ) = 0, i ∈ {1, . . . , p}), whereas the inequality constraint is said to be inactive if
strict inequality is fulfilled (i.e., gi(βββ) > 0, i ∈ {1, . . . , p}).

To solve the constrained NLP problems, there are different methods, such as the penalty and
augmented Lagrangian methods (e.g., Rockafellar, 1973; Fiacco and McCormick, 1990) that
transform the constrained problem into a sequence of unconstrained ones by minimizing a penalty
function that penalizes the constraint violations (i.e., at any infeasible point), the Sequential
Quadratic Programming (SQP) methods (e.g., Han, 1977; Powell, 1978) that transform the
original problem into a sequence of QP subproblems, and the interior-point methods (also called
barrier methods, e.g., Fiacco and McCormick, 1990; Forsgren et al., 2002) where the classical
ones1 transform the constrained problem into a sequence of unconstrained ones by minimizing
a barrier function that introduces a barrier on the boundary of the feasible set, which prevents
iterates starting from the interior of the feasible set leaving it. All these methods apply quadratic
approximations to a function combining the objective function and constraints [Goldsmith, 1999].
An overview of the optimization techniques for NLP problems can be found in, e.g., Venter
[2010]. Among those, the Sequential Quadratic Programming (SQP) methods are probably
the most preferable methods in NLP (see e.g., Schittkowski, 1985; Bogg and Tolle, 1996) and
will be introduced in Section 4.7.2. In the following, the optimality conditions for constrained
optimization problem will be given firstly, since many algorithms are based on them.

4.7.1 Karush–Kuhn–Tucker (KKT) optimality conditions

For a constrained optimization problem, the optimality conditions called the Karush–Kuhn–
Tucker (KKT), also known as the Kuhn–Tucker conditions [Kuhn and Tucker, 1951], have to
be fulfilled at the constrained optimum point. The KKT approach generalizes the Lagrangian
approach that allows only equality constraints (see Eq. (4.24)). The Lagrangian function for the
constrained optimization problem (4.64) is defined as

L(βββ,kkk,kkk) = S(βββ) + kkkThhh(βββ)− kkkTggg(βββ) (4.67)

where the p× 1 vector kkk and the p× 1 vector kkk consist of the Lagrange multipliers.

Suppose βββ∗ is a local minimum, there exist vectors kkk∗ = [k∗1, . . . , k
∗
p]
T and kkk

∗
= [k

∗
1, . . . , k

∗
p]
T

such that the following conditions are satisfied (cf. Nocedal and Wright, 1999; Luenberger and
Ye, 2008)

∇βββL(βββ∗, kkk∗, kkk
∗
) = ∇βββS(βββ∗) +HHHT kkk∗ −GGGT kkk∗ = 000 (4.68a)

hhh(βββ∗) = 000 (4.68b)
ggg(βββ∗) ≥ 000 (4.68c)

gi(βββ
∗) k
∗
i = 0, i = 1, . . . , p (4.68d)

k
∗
i ≥ 0, i = 1, . . . , p (4.68e)

1Most modern interior-point methods are infeasible, i.e., they can start from any initial point. They also
introduce slack variables to transform inequality constraints into equalities [Nocedal and Wright, 1999].
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where HHH and GGG are the Jacobian matrices of the vector-valued constraint functions hhh(βββ) and
ggg(βββ), i.e.,

HHH = [∇βββ h1(βββ∗), . . . ,∇βββ hp(βββ∗)]T

GGG = [∇βββ g1(βββ∗), . . . ,∇βββ gp(βββ∗)]T .
(4.69)

Equation (4.68) is known as the KKT conditions, which are the first-order (due to gradient)
necessary conditions for a point to be a constrained local optimum. A point that satisfies
these conditions is known as a KKT point. Equation (4.68a) indicates that the gradient of
the Lagrangian must vanish at the optimum point. The Eqs. (4.68b) and (4.68c) suggest that
all constraints are fulfilled, i.e., the optimum point is feasible with respect to all constraints.
Equation (4.68d) indicates that if the i-th inequality constraint is inactive, i.e., gi(βββ∗) > 0, then
the corresponding Lagrange multiplier holds k∗j = 0. Therefore, the inactive constraints can be
taken out from Eq. (4.68a). Equation (4.68e) states that the Lagrange multipliers associated
with inequality constraints must be nonnegative. Note, that there is no restriction on the sign
of the Lagrange multipliers associated with equality constraints. If the active set, i.e., the set of
constraints that holds as equality, is known, then the problem (4.64) can be transformed into an
equality constrained problem which can easily be solved.

4.7.2 Sequential Quadratic Programming (SQP) method

The SQP method is an iterative method, where the update of the estimates βββit from the current
iteration to the next iteration for the problem (4.64) is obtained by solving a QP subproblem
(cf. Han, 1977; Powell, 1978; Bogg and Tolle, 1996; Nocedal and Wright, 1999)

min
ppp∈Ru

S(ppp) =
(
∇βββS(βββit)

)T
ppp+

1

2
pppT ∇2

ββββββL(βββit, kkkit, kkkit)ppp (4.70a)

s.t. HHH ppp+ hhh(βββit) = 000 (4.70b)
GGGppp+ ggg(βββit) ≥ 000 (4.70c)

where S(ppp) denotes the objective function with the vector ppp = βββ −βββit of optimization variables,
βββit, kkkit and kkkit are the estimates of parameter vector and vectors of multipliers in the current
iteration, and ∇2

βββ βββL(βββit, kkkit, kkkit) is the Hessian of the Lagrangian function (4.67) with respect
to βββ, which is defined as

∇2
βββ βββL(βββit, kkkit, kkkit) =


∂2L(βββit,kkkit,kkkit)

∂β1∂β1
. . . ∂2L(βββit,kkkit,kkkit)

∂β1∂βu
...

. . .
...

∂2L(βββit,kkkit,kkkit)
∂βu∂β1

. . . ∂2L(βββit,kkkit,kkkit)
∂βu∂βu

 . (4.71)

The Eqs. (4.70b) and (4.70c) are obtained by linearizing the constraints (4.64b) and (4.64c),
whereas the form of Eq. (4.70c) is related to the quadratic Taylor series approximation for the
Lagrangian function (4.67)1.

As can be seen from Eq. (4.70), the computation of the Hessian ∇2
ββββββL(βββit, kkkit, kkkit) is required.

Analytical Hessian might be unavailable or it is computationally expensive in each iteration,
1 At the current iterate (βββit, kkkit, kkkit), the quadratic (second-order) Taylor series expansion for the Lagrangian

reads L(βββ,kkkit, kkkit) ≈ L(βββit, kkkit, kkkit) +
(
∇βββL(βββit, kkkit, kkkit)

)T
(βββ − βββit) + 1

2
(βββ − βββit)T ∇2

ββββββL(βββit, kkkit, kkkit) (βββ − βββit).
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and therefore, it is usually replaced by an approximation BBBit using, e.g., a finite difference
approximation or a quasi-Newton method; further details can be found in, e.g., Powell [1978] or
Nocedal and Wright [1999].

The QP subproblem (4.70) can then be simplified as

min
ppp∈Ru

S(ppp) = cccTppp+
1

2
pppTQQQppp (4.72a)

s.t. HHH ppp+ hhh = 000 (4.72b)
GGGppp+ ggg ≥ 000 (4.72c)

where the iteration index it is dropped for a better readability and

ccc = ∇βββS(βββit), QQQ = ∇2
ββββββL(βββit, kkkit, kkkit) = BBBit,

hhh = hhh(βββit), ggg = ggg(βββit).

There are a variety of algorithms to solve Eq. (4.72) and the algorithms will be introduced in
Section 4.7.2.1. The solution pppit of the QP subproblem (4.72) is then used to form a new iterate

βββit+1 = βββit + αit pppit (4.73)

applying a line search strategy, in order to force convergence from poor starting points [Powell,
1978]. The positive scalar αit, called the step length, gives the size of the step taken from the
current iterate to the next one. For a constrained problem, the step length has to be determined
such that not only the objective function (4.64a) has a sufficient decrease but also the constraints
(4.64b) and (4.64c) are satisfied. This is achieved by a line search to reduce a merit function;
see Section 4.7.2.2 for details.

4.7.2.1 Search direction – Active-set methods

Most of the algorithms that solve the inequality constrained optimization problem (4.72) can
be subdivided into two categories: active-set methods and interior-point methods (e.g., Wong,
2011; Roese-Koerner, 2015). The active-set methods try to predict the true active set and solve
a sequence of equality constrained subproblems iteratively, which follow the boundary of the
feasible set, whereas the interior-point methods compute iterates which follow the interior of the
feasible set. An advantage of the active-set methods is that they allow a “warm start”, namely,
any given active set is allowed to be specified to start the algorithm. This is very useful within
the SQP methods for NLP problem, since each QP subproblem in the sequence is related to the
previous QP subproblem (e.g., Maes, 2011; Wong, 2011).

Thus, we will focus on the active-set methods in particular the primal active-set methods here,
which means that all iterates remain feasible with respect to the primal problem (4.72). Since

Taking a quadratic model of the Lagrangian as the objective function gives

min
ppp∈Ru

(
∇βββL(βββit, kkkit, kkkit)

)T
ppp+

1

2
pppT ∇2

ββββββL(βββit, kkkit, kkkit)ppp .

Equation (4.70a) is equivalent to the equation above for problems with only equality constraints, since the gradient

of the Lagrangian
(
∇βββL(βββit, kkkit, kkkit)

)T
ppp contains an additional term kkkHHH ppp whereas HHH ppp is constant according to

Eq. (4.70b). If inequality constraints exist, the two forms are equivalent if the Lagrange multipliers corresponding
to inactive linearized constraints are zero; details can be found in, e.g., Bogg and Tolle [1996].
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the true active set (if any) is generally unknown, a “working set” (i.e., all the equality constraints
Eq. (4.72b) and some of the inequality constraints in Eq. (4.72c) which are regarded as equalities),
is used to predict the correct active set and is updated during the iterations. Therefore, the
equality constraints (4.72b) should always be included in the working set, whereas the inequality
constraints can be altered during the iterations. We use Wk to refer to those active constraints
from (4.72c) in the working set in the k-th iteration. We use the superscript k to denote the
iteration step in the active-set methods (minor iterations), in order to avoid confusion with the
subscript it for the iterative computations (major iterations) in the SQP methods. We define
the step qqq to the iterate pppk as

qqq = ppp− pppk . (4.74)

Substituting Eq. (4.74) into Eq. (4.72a), we obtain the objective function S̃(qqq) as

S̃(qqq) = cccT (pppk + qqq) +
1

2
(pppk + qqq)T QQQ (pppk + qqq)

= cccTqqq +
1

2
qqqTQQQqqq + lllk

(4.75)

with

ccc = ccc+QQQpppk, lllk = cccTpppk +
1

2
pppkQQQpppk

where lllk is independent of qqq and can be taken out from the objective function S̃(qqq). Therefore,
solving the QP problem (4.72) is transformed into solving the equality constrained subproblem
(cf. Nocedal and Wright, 1999; Roese-Koerner, 2015)

min
qqq∈Ru

cccT qqq +
1

2
qqqT QQQqqq (4.76a)

s.t. HHH (pppk + qqq) + hhh = 000 =⇒ HHH qqq = 000 (4.76b)

G̃GG
k

(pppk + qqq) + g̃gg = 000 =⇒ G̃GG
k
qqq = 000 (4.76c)

where the matrix G̃GG
k
is the part of GGG related to the active constraints in the working set Wk.

If we write GGG as GGG = [ggg1, . . . , gggp]
T with column vector gggi (i = 1, . . . , p), then we can formulate

G̃GG
k

= [. . . , gggj , . . .]
T with j ∈ Wk.

The equality constrained problem (4.76) can be solved by using, e.g., the KKT equations of the
Lagrangian of the problem (similar to the procedure introduced in Section 4.2.2).

Let qqqk be the solution of Eq. (4.76), pppk will be updated through

pppk+1 = pppk + αk qqqk (4.77)

similar to Eq. (4.73), where αk denotes the step length, which should be determined such that
it does not violate any constraint that is not in the working set [Gill et al., 1981], namely, the
feasibility of the next iteration is maintained. The full step length, i.e., αk = 1 is taken if the
solution pppk + qqqk is feasible with respect to all the constraints. Different cases are distinguished
to determine αk.

1) Case 1: qqqk 6= 000
It can easily be obtained that

HHH pppk+1 + hhh = HHH (pppk + αk qqqk) + hhh = HHH pppk + hhh = 000

G̃GG
k
pppk+1 + g̃gg = G̃GG

k
(pppk + αk qqqk) + g̃gg = G̃GG

k
pppk + g̃gg = 000

(4.78)

62



4. PARAMETER ESTIMATION

since the constraints in the working set are satisfied at pppk. Therefore, the constraints in the
working set will also be satisfied at pppk+1 for any value of αk. In other words, the search moves
along the boundary of feasible set formed from the working set.

Let i denote the index of a constraint that is not in Wk (i.e., i /∈ Wk) and gi be the i-th element
of ggg in Eq. (4.72c). When the relation gggTi qqq

k ≥ 0 holds, the inactive constraint, i.e., gggTi ppp
k+gi > 0,

will not be violated through a positive step in the direction qqqk because

gggTi ppp
k+1 + gi = gggTi

(
pppk + αk qqqk

)
+ gi

= gggTi ppp
k + gi︸ ︷︷ ︸
>0

+ αk︸︷︷︸
>0

gggTi qqq
k︸︷︷︸

≥0

> 0 . (4.79)

Therefore, the inactive constraint i (i /∈ Wk) will remain inactive in the next iteration step k+1.
If gggTi qqq

k ≥ 0 holds for every i : i /∈ Wk, the inequality constraints that are not in the working set
will not impose any restriction on the step length. Then, the unit step length αk = 1 along qqqk

is the solution of Eq. (4.76), which achieves the best decrease in the objective function.

However, if there exist some i (i /∈ Wk) satisfy gggTi qqq
k < 0, the corresponding constraints can

become active or violated at the next iterate. The constraints will not be violated only if
gggTi (pppk + αk qqqk) + gi ≥ 0, i.e.,

αk ≤ −gi − g
ggTi ppp

k

gggTi qqq
k

. (4.80)

The optimal step length αkopt, which is the distance to the nearest constraint, is given by

αkopt = min

(
−gi − gggTi pppk

gggTi qqq
k

)
, ∀i : i /∈ Wk and gggTi qqq

k < 0 . (4.81)

When αkopt is taken as the step length αk (i.e., αk = αkopt), the nearest inactive constraint that
prevents a full step holds as equality. This constraint is then added in the working set Wk+1 for
the next iteration and a new equality constrained optimization problem has to be solved.

When αk = 1, pppk+1 = pppk +qqqk is the solution that minimizes the objective function in Eq. (4.76).
Therefore, it is not possible to further decrease the objective function without removing a con-
straint from the working set. Then, the KKT condition introduced previously in Eq. (4.68e) has
to be checked, i.e., the Lagrange multipliers corresponding to the inequality constraints in the
working set must be nonnegative at the optimum point. Actually a negative Lagrange multiplier
associated to an inequality constraint implies that the objective function can be minimized by
removing that constraint (see e.g., Roese-Koerner, 2015 for more details). Therefore, if some
of the multipliers related to the inequality constraints in the working set are negative, one of
these constraints are removed from the working set and a new problem (4.76) in a new itera-
tion is solved. Note, that equality constraints will never be removed. On the other hand, if all
Lagrange multipliers associated to inequality constraints are nonnegative, it is not possible to
further minimize the objective function.

2) Case 2: qqqk = 000
If the Lagrangian multipliers kj ≥ 0 for all j ∈ Wk, pppk+1 = pppk is the KKT point and the iteration
terminates; otherwise, if there exists kj < 0 for j ∈ Wk, one of the constraints corresponding
to the negative multipliers is dropped from the current working set and a new problem (4.76) is
solved.
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4.7.2.2 Step length – Line search and merit function

As introduced previously, the solution of the above QP subproblem (4.72) is the search direction
pppit in Eq. (4.73). The step length parameter αit has to be determined, such that not only
the objective function S(βββ) has a sufficient decrease at subsequent iterations but also all the
constraints are satisfied. As these two goals often conflict, a merit or penalty function that
weights their relative importance can be used as a criterion to decide whether one point is
better than another [Moré and Wright, 1993]. The merit function of the form [Powell, 1978, and
references therein]

Ψ(βββ,ννν) = S(βββ) +

i=p∑
i=1

νi · |hi(βββ)|+
i=p+p∑
i=p+1

νi ·
∣∣min (0, gi(βββ))

∣∣ (4.82)

can be used demanding that
Ψ(βββit + αit pppit, ννν) < Ψ(βββit, ννν) (4.83)

where νi > 0 (i = 1, . . . , p) are penalty parameters. Equation (4.82) is called the `1 penalty
function; other merit functions can be found in, e.g., Moré and Wright [1993] or Nocedal and
Wright [1999]. The choice of the penalty parameters can be based on the Lagrange multipliers
at the solution of the QP subproblem (4.72) that defines pppit; further details can be found in, e.g.,
Powell [1978], Coleman et al. [1999] and Matlab [2008].
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Chapter 5

Electron Density Modeling

There are various approaches available for modeling the electron density of the ionosphere. Gen-
erally, these approaches can be categorized into the voxel-based approach and the function-based
approach for ionosphere tomography1 [Liu et al., 2006]. The voxel-based one assumes that the
ionosphere can be subdivided into cells with constant electron density (see e.g., Juan et al., 1997;
Kuklinski, 1997; Hernández-Pajares et al., 1999). The function-based one employs a set of basis
functions modeling the spatiotemporal variations of the ionosphere, respectively. For examples,
Liu and Gao [2004] modeled the electron density correction term that is defined to be relative
to an a priori electron density reference, horizontally by a series of harmonics functions and
vertically by EOF; Schmidt et al. [2008] represented the electron density correction term by a
2-D B-spline (longitude and latitude)/1-D height-dependent EOF tensor product with initially
unknown time-dependent coefficients; an approach of 3-D B-spline expansions with respect to
longitude, latitude and height with initially unknown time-dependent scaling coefficients was also
applied (e.g., Schmidt, 2007; Zeilhofer et al., 2009); Schmidt et al. [2008] proposed a 4-D B-spline
modeling approach, where the time-dependency is also represented by a B-spline function. In
addition, the height-dependency of the electron density is also modeled by so-called ionosphere
“profilers” (in the sense that they use “anchor points”, i.e., layer peaks and provide the vertical
EDP between the anchor points, see Leitinger et al. [2001]), such as the Chapman (both α and β
type), exponential, Epstein (also called sech-squared) and parabolic functions (see details later in
Section 5.1.1). For example, Sharifi and Farzaneh [2016] modeled the electron density vertically
by the Chapman function and horizontally by a Slepian function, whereas the B-spline was used
to account for temporal variations.

Generally, compared with the function-based approach, the voxel-based one is more flexible, as
the spatial and temporal resolutions are not fixed within the region under investigation [Feltens
et al., 2011]. However, the function-based approach allows the computation of the electron
density everywhere within the region under investigation, whereas the voxel-based approach
requires additionally interpolation [Liu et al., 2006].

Within this thesis, the function-based approach with vertical representation in terms of profilers
will be exploited, since these profilers provide directly the key ionosphere parameters with phys-
ical meanings, such as peak densities and peak heights. The vertical profile functions have been
used to model a certain ionosphere layer, part of the ionosphere, or even the whole ionosphere.

1Ionospheric tomography refers to the reconstruction of ionosphere parameters (e.g., the electron density)
from measured signals of the line integrated parameters in various directions [Austen et al., 1988].
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To be specific, the modeling approach using such profilers can be generally divided into three
groups: (1) a one-layer model (e.g., Feltens, 1998), which have limited usage especially during
the day when several layers exist; (2) a two-layer model, i.e., a combination of the bottomside
and topside layers (e.g., Fox, 1994; Ezquer et al., 1996; Alizadeh, 2013); (3) a composite model
considering the various ionosphere layers, i.e., a combination of several profilers (e.g., Rawer
et al., 1978; Radicella and Leitinger, 2001; Feltens, 2007; Tsai et al., 2009; Brunini et al., 2013b).

5.1 General modeling of the vertical electron density distribution

Following the modeling concept introduced in Sections 2.5.2 and 2.5.6, the vertical distribution
of the electron density Ne(h) can be modeled as a superposition of different layers, written as

Ne(h) = ND(h) +NE(h) +NF1(h) +NF2(h) . (5.1)

Ni(h) with i ∈ {D,E, F1, F2} denotes the electron density of the various layers, each of which
can be modeled by means of a certain profile function.

5.1.1 Profile functions for the ionosphere layers

Mathematical representations of the most often used profile functions are listed below. All
these functions are characterized by the peak density Nmi, the peak height hmi, and a scale
height Hi describing the shape (thickness) of the ionospheric EDP (see Section 5.2 for more
details). All functions express the altitude in terms of the dimensionless parameters, the so-
called dimensionless reduced height zi = (h− hmi)/Hi (cf. Eq. (2.35)).

1. Epstein (sech-squared) function (e.g., Booker, 1977; Rawer, 1983; Giovanni and Radicella,
1990)

Ni(h) = Nmi sech2(zi/2)1 = Nmi
4 exp(zi)[

1 + exp(zi)
]2 . (5.2)

2. Exponential function
Ni(h) = Nmi exp (−zi) . (5.3)

Note that the exponential function cannot represent the full range of a certain layer i due
to its monotonicity (below hmi, the electron densities will exceed Nmi), and therefore, it
can be partly used e.g., for the topside ionosphere, i.e., when h > hmF2.

3. Chapman function
Ni(h) = Nmi exp

{
c
[
1− zi − exp (−zi)

]}
. (5.4)

As introduced previously in Section 2.1.2, a Chapman-layer shape is predicted by a simpli-
fied aeronomic theory, with the assumption that photoionization in a one-species neutral
gas, neglecting transport processes [Rishbeth and Garriott, 1969]. This function is de-
pending on a factor c, called α-Chapman for c = 0.5 and β-Chapman for c = 1. The
factor c depends on the assumptions regarding the principles of chemical recombination
[Hargreaves, 1992].

1The hyperbolic secant function is defined as sech(x) = 1
cosh(x)

= 2
ex+e−x
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4. Parabolic function
Ni(h) = Nmi

[
1− (zi/2)2

]
. (5.5)

According to Stankov et al. [2003], this function is appropriate for modeling the profile
near hmF2.
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Figure 5.1: Comparisons of the shapes of different profilers.

A comparison of the shapes of these functions is shown in Fig. 5.1 exemplarily modeled for the F2
layer. To produce these curves, the same values of NmF2, hmF2 and HF2 are used. Note that,
the exponential function below hmF2 is not shown, as the values exceed NmF2. The parabolic
function is also shown partly, since it has nonpositive values when h ≤ hmF2 − 2 · HF2 or
h ≥ hmF2 + 2 ·HF2. As can be seen, the shapes of the resulting vertical distributions of the
electron density are quite different. Specifically, the α-Chapman function is the steepest in the
topside, while the Epstein function is the steepest in the bottomside.

It is not an easy task to find out which profile function is the most suitable mathematical
representation. Some work has compared the performance of the different functions, in particular
for the topside ionosphere. For example, Fonda et al. [2005] compared the Chapman and Epstein
functions using topside EDPs obtained from measurements of IK-19 and ISIS-2 satellites, and
showed the best performance of the α-Chapman function. A two-layer topside formulation (i.e.,
a Chapman function with α < 0.5 below hmF2 + 400 and a different function for the higher
part up to 1000 km above hmF2) was proposed in order to better reproduce the experimental
shape of the topside. More recently, Verhulst and Stankov [2014] evaluated profilers including the
exponential, Chapman and Epstein functions by fitting them to EDPs obtained from ionograms
recorded by the topside sounders onboard the Alouette and ISIS satellites, and found that the
exponential profiler has the best fit in most cases, followed by the Chapman profiler.

These functions with a constant scale height for the whole topside F2 layer are deduced for a
single-constituent (O+) [Nsumei et al., 2010], which is a simplified representation. However,
H+ is also the major ion species in the topside ionosphere by assuming that He+ has little
influence on the EDPs under most conditions [Sibanda and Mckinnell, 2011, and references
therein]. Consequently, a combination of two profile functions with two scale heights individually
for O+ and H+ were applied by e.g., Jakowski [2005] (see Section 5.1.2 for details) and Sibanda
and Mckinnell [2011]. Some authors applied representations with a height-variable scale height,
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such as the well-known Vary-Chap (e.g., Huang and Reinisch, 2001; Reinisch and Huang, 2001)
and Semi-Epstein (e.g., Nava et al., 2008) functions. The Vary-Chap function, i.e., a general
α-Chapman function with a height-dependent scale height H(h), is defined as

Ne(h) = NmF2 ·
(
Hm

H(h)

) 1
2

exp

{
1

2

[
1− y − exp(−y)

]}
(5.6)

with y =

h∫
hmF2

dh

H(h)
,

where Hm denotes the scale height at hmF2. When H(h) is assumed to be constant along the
height and with y = zi, Eq. (5.6) becomes the α-Chapman function (5.4). The solution of H(h)
can be found in e.g., Huang and Reinisch [2001].

The Semi-Epstein function, i.e., an Epstein layer function (5.2) with a height-dependent scale
height H(h), is used for the topside representation in the NeQuick model. The function H(h) is
then defined as

H(h) = H0

[
1 +

r · g(h− hm)

r ·H0 + g(h− hm)

]
with the constant parameters r = 100 and g = 0.125. The parameter H0 is a quantity related
to the scale height of the bottomside F2-layer; for further details see Nava et al. [2008].

5.1.2 Plasmasphere extension

As introduced in Section 2.6, the plasmasphere starts from the height level where the domination
of ion composition changes from O+ to H+. There is actually no clear upper boundary between
ionosphere and plasmasphere. As mentioned above, the electron density N top

e (h) in the topside
ionosphere can be regarded as a sum of the ion densities of O+ and H+ by assuming that He+

is negligible (e.g., Jakowski, 2005; Stankov et al., 2011; González-Casado et al., 2013). The
corresponding ion composition is shown schematically in Fig. 5.2. Therefore, we can write

N top
e (h) = NO+(h) +NH+(h) (h > hmF2) . (5.7)
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Figure 5.2: A schema of Ne profile and ion composition in the upper ionosphere and plasmas-
phere, based on Stankov et al. [2003].
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As a consequence, Eq. (5.1) can be extended by introducing a plasmaspheric term NH+(h >
hmF2), i.e.

Ne(h) = ND(h) +NE(h) +NF1(h) +NF2(h) +NH+(h > hmF2) (5.8)

For the plasmaspheric term NH+(h), the exponential function (2.63) is often used (see e.g.,
Jakowski, 2005; Feltens, 2007). The so-called Topside Ionosphere and Plasmasphere model,
developed by Jakowski [2005] (see also Stankov and Jakowski, 2006), applied a combination of
the α-Chapman function and the exponential function, reads

Ne(h) = NmF2 exp [0.5(1− z − exp(−z))] +NP0 exp(−h/Hp) (h > hmF2) (5.9)

with z = (h − hmF2)/HTS . HTS is the scale height in the topside ionosphere, NP0 is the
plasmaspheric basis density, and Hp is the scale height of the plasmasphere.

5.2 Ionospheric key parameters and modeling approaches

Ionospheric key parameters, e.g., the peak parameters and scale heights are essential for using the
above profile functions. Since the F2 layer peak characteristics play a crucial role in ionosphere
dynamics as well as in radio communication and positioning applications, more details about
NmF2, hmF2 and HF2 will be given in the following.

NmF2
NmF2 can be obtained through its linear relation with the square of the critical frequency foF2
of the F2 layer (see Section 2.2) derived from ionograms recorded by ionosondes1

NmF2︸ ︷︷ ︸
[m−3]

= 1.24 · 1010︸ ︷︷ ︸
[s2/m3]

· (foF2)2︸ ︷︷ ︸
[MHz2]

. (5.10)

The relation also holds for other ionosphere layers.

hmF2
hmF2 can be obtained through its relation with the propagation factorM(3000)F22 derived from
ionograms. Schimazak [1995] proposed an empirical relationship between hmF2 andM(3000)F2,
given as

hmF2︸ ︷︷ ︸
[km]

=

[km]︷︸︸︷
1490

M(3000)F2︸ ︷︷ ︸
[-]

− 176︸︷︷︸
[km]

. (5.11)

1When the wave cannot propagate any further and is reflected, the refractive index of the ionosphere becomes
zero. It holds that f2 = Ne e

2

4π2ε0me
where f is the wave frequency; the natural constants e, ε0 and me are electron

charge, permittivity in vacuum and electron mass, respectively. Equation (5.10) is thus derived; see, e.g., Basu
et al. [1985] or Hargreaves [1992] for details.

2M(3000)F2 = MUF (3000)
foF2

where MUF (3000) is the highest frequency at which a radio wave can be received
over a distance of 3000 km after reflection in the ionosphere [Bradley and Dudeney, 1973].
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However, many authors have found unsatisfactory results and further modified it. For example,
Bilitza et al. [1979] introduced a correction factor DM into Eq. (5.11) based on incoherent scatter
radar measurements, and obtained

hmF2︸ ︷︷ ︸
[km]

=

[km]︷︸︸︷
1490

M(3000)F2︸ ︷︷ ︸
[-]

+DM︸︷︷︸
[-]

− 176︸︷︷︸
[km]

(5.12)

where the correction factor DM is dependent on the ratio foF2
foE , the solar activity in terms of

the sunspot number and the geomagnetic latitude; foE is the critical frequency of the E layer.

HF2
The scale height is a key ionosphere characteristic that reflects the shape (thickness) of the iono-
sphere EDP and connects the ionosphere dynamics, plasma thermal structure and compositions
[Liu et al., 2007a]. Many works investigate the diurnal and seasonal variations as well as solar
activity dependences of the scale height (e.g., Lei et al., 2005; Belehaki et al., 2006; Liu et al.,
2006; Stankov and Jakowski, 2006; Zhang et al., 2006; Liu et al., 2007a,b; Ram et al., 2009).
It is worth noting that there exist various definitions of the scale height in the literature (see
Belehaki et al., 2006; Liu et al., 2007a; Ram et al., 2009). For example, the plasma scale height in
Eq. (2.64) is based on theoretical considerations. The effective scale height or sometimes referred
to the Chapman scale height, is defined as the scale height by fitting the Chapman function to
the EDPs.

Various representations have been used to model the horizontal and temporal variations of these
key parameters, such as spherical harmonics (Tsai et al., 2009; Alizadeh, 2013; Brunini et al.,
2013b), EOF (Zhang et al., 2011, 2009; Yu et al., 2015), B-splines (Limberger et al., 2013;
Liang et al., 2015b), and polynomials (Hoque and Jakowski, 2011; Jakowski et al., 2011). In
the following, we will focus on three frequently used methods, i.e., spherical harmonics, B-spline
representation and EOF. Table 5.1 gives an overview of the essential characteristics of the three
methods.

5.2.1 Spherical harmonics

An ionosphere key parameter κ ∈ {NmE,hmE,HE,NmF2, hmF2, HF2, . . .} can be repre-
sented spatially as a series expansion [Schmidt et al., 2011]

κ(λ, ϕ) =
∞∑
n=0

n∑
m=−n

dn,m Yn,m(λ, ϕ) (5.13)

in terms of spherical harmonics Yn,m(λ, ϕ) which are calculable from

Yn,m(λ, ϕ) =

{
Pn,m(sin(ϕ)) cos(m · λ) for m = 0, . . . , n

Pn,|m|(sin(ϕ)) sin(|m| · λ) for m = −n, . . . ,−1
(5.14)
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Table 5.1: The characteristics of the spherical harmonics, the B-spline representation and EOF,
cf. Jekeli [2005].

Spherical harmonics B-splines EOF
Defined domain surface of a sphere Euclidean space multi-dimensional

vector space
Formula mathematically

given
mathematically

given
empirically defined

by data
Orthogonality yes no yes

Nature of support global supporta local supportb depending on the
area of investigation

Update capability
(e.g., model

update with new
data)

all coefficients need
to be recomputed

only coefficients in
the relevant region

need to be
recomputed

EOF modes have to
be recomputed

Generating
wavelet functions

no yes no

aEach spherical harmonic function is significantly different from zero almost everywhere on the entire sphere
[Jekeli, 2005].

bThe basis function is zero everywhere except in a local region.

with

λ longitude,
ϕ latitude,

Pn,m(sinϕ) associated Legendre functions of degree n and order m,
dn,m unknown spherical harmonic coefficients.

The expansion (5.13) has to be truncated at a finite degree n = N , and the total number of
unknown coefficients yields (N + 1)2, see e.g., Schmidt et al. [2008]. A maximum harmonic
degree N = 15 within a Sun-fixed coordinate system is set up in e.g., IGS daily GIM [Schaer,
1999]. Generally, spherical harmonics are used to model a function on a sphere, and the tempo-
ral variations can be considered by introducing time-dependent spherical harmonic coefficients
dn,m(t).

5.2.2 Empirical Orthogonal Function (EOF)

Empirical Orthogonal Function (EOF) analysis, also known as Principle Component Analysis
(PCA), has been widely used in multivariate data analysis and is suitable for identifying dominant
spatial structures and their temporal evolution (e.g., Divinskikh, 1988; Schmidt et al., 2008,
and references therein). Suppose that the spatial coordinates (λ, ϕ) are discretized with λi,
(i = 1, . . . , p1) and ϕj (j = 1, . . . , p2), and the time coordinate is discretized to tn (n = 1, . . . ,m),
KKK =

(
κ(λi, ϕj , tn)

)
is a m × p matrix with p = p1 · p2, i.e., the two spatial dimensions λ and ϕ

are concatenated together. Take the time average of each spatial grid point, i.e., take the mean
value of each column of KKK, we can obtain the residual map KKK ′ =

(
κ(λi, ϕj , tn)− κ(λi, ϕj)

)
with
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κ(λi, ϕj) = 1
m

∑m
n=1 κ(λi, ϕj , tn). The data set KKK ′ can be generally decomposed into a set of

basis functions with associated coefficients, reads (cf. Zhang et al., 2009)

KKK ′ =

N∑
k=1

KKK ′k(λ, ϕ, t) =
N∑
k=1

aaak · eeeTk (5.15)

where eeek = [e1k, . . . , e
p
k]
T is the k-th EOF pattern representing the spatial structure of the iono-

sphere parameter κ, and aaak = [a1k, . . . , a
m
k ]T is the associated vector of coefficients representing

the temporal behavior. N is the truncation order of the EOF modes. The basis “functions”1 eeek
(k = 1, . . . , N) are orthogonal. The key parameter κ(λi, ϕj , tn) at a certain position and time
can then be written as

κ(λi, ϕj , tn) = κ(λi, ϕj) +

N∑
k=1

ak(tn) · ek(λi, ϕj) (5.16)

where ak(tn) and eTk (λi, ϕj) are the elements of aaak and eeek related to the time tn and the spatial
position (λi, ϕj), respectively. The orthogonal functions eeek are arranged in a descending order
in terms of the variances, which means, the first mode captures the most energy of the original
data set, and the second one captures the second most energy and so on [Zhang et al., 2011,
and references therein]. Usually the first few modes of EOFs capture most of the energy of the
data, and therefore the number of coefficients is drastically reduced. To use the EOF method,
a background model of the key parameter κ is required. A disadvantage of the EOF method
is that the shape of the EOFs is strongly influenced by the background model and may not be
changed within the adjustment [Schmidt et al., 2008].

5.2.3 B-splines

The main advantage of B-spline functions is that they are compactly supported, namely, they
are non-zero only in a finite interval and zero elsewhere. The key parameter κ can be represented
by a series expansion [Schmidt, 2007]

κ(λ, ϕ, t) =

K1−1∑
k1=0

K2−1∑
k2=0

K3−1∑
k3=0

dJ1,J2,J3k1,k2,k3
φJ1,J2,J3k1,k2,k3

(λ, ϕ, t) (5.17)

in terms of 3-D basis function

φJ1,J2,J3k1,k2,k3
(λ, ϕ, t) = φJ1;k1(λ)φJ2;k2(ϕ)φJ3;k3(t) (5.18)

as the tensor product of three 1-D basis functions φJ ;k(x) depending on x ∈ {λ, ϕ, t} with
unknown series coefficients dJ1,J2,J3k1,k2,k3

. φJ ;k(x) is of resolution level J ∈ N0 (J ∈ {J1, J2, J3}) and
shift k ∈ N0 (k ∈ {k1, k2, k3}).

The normalized quadratic B-splines Nm
J ;k(x) with m = 2 can be chosen as φJ ;k(x), i.e.,

φJ ;k(x) = N2
J ;k(x) . (5.19)

1Note that eeek are called functions here, in fact they are vectors.
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Let KJ be a positive integer value, then φJ ;k(x) is defined recursively by a sequence of non-
decreasing values tJ0 , tJ1 , . . . , tJKJ+2, called knots, as

Nm
j;k(x) =

x− tJk
tJk+m − tJk

Nm−1
J ;k (x) +

tJk+m+1 − x
tJk+m+1 − tJk+1

Nm−1
J ;k+1(x) (5.20)

with initial values

N0
J ;k(x) =

{
1 if tJk 6 x < tJk+1 and tJk < tJk+1

0 otherwise

where m = 1, 2 and k = 0, . . . ,KJ − 1; see e.g., Stollnitz et al. [1995b]. Note that the fractions
are set to be 0 when their denominators are 0.

Within this thesis we will deal with a regional problem, the endpoint-interpolating normalized
quadratic B-splines, defined on the unit interval I = [0, 1], are thus introduced (see e.g., Stollnitz
et al., 1995b; Lyche and Schumaker, 2001; Schmidt, 2007). For that purpose, we restrict ourselves
at first to the unit interval and set the first three knots to the value zero and the last three knots
to the value one, and define equally spaced B-splines, i.e.,

0 = tJ0 = tJ1 = tJ2 < tJ3 < . . . < tJKJ−1 < tJKJ = tJKJ+1 = tJKJ+2 = 1 (5.21)

with
tJk+1 − tJk = 2−J for k = 2, . . . ,KJ − 1 (5.22)

and
KJ = 2J + 2 . (5.23)

Assume a region defined as Ω3 = [λmin, λmax]× [ϕmin, ϕmax]× [tmin, tmax] is handled, transforma-
tion equations have to be considered to normalize Ω3 to the unit cube I3 = [0, 1]× [0, 1]× [0, 1]
through

x′ = (x− xmin)/(xmax − xmin) (5.24)

with x ∈ [λ, ϕ, t]. Then Eq. (5.19) under consideration of the Eqs. (5.20) and (5.21) has to be
inserted into Eq. (5.17) for all the variables λ, ϕ and t.

Figure 5.3 shows the family of 1-D endpoint-interpolating normalized quadratic B-spline func-
tions N2

J ;k(x) exemplarily for the level J = 3. As can be seen, the first two functions on the left
and the last two on the right are modified due to the endpoint-interpolating procedure, whereas
the other 6 inner basis functions are not affected. According to Eq. (5.20), it can be derived that
N2
j;k(x) is non-zero on the interval [tJk , t

J
k+3). Therefore, each B-spline has an influence zone, i.e.

a non-zero zone IJk = [tJk , t
J
k+3) ⊂ I. The length of the subintervals IJk is about 3 · dJ where

dJ =
1

KJ − 1
=

1

2J + 1
(5.25)

represents the approximate distance between two adjacent B-spline functions. Take B-splines of
J = 3 shown in the figure as example, the length of the non-zero zone is about 3 ·d3 = 3× 1/9 =
0.33. Furthermore, on any interval [tJk , t

J
k+1), at most three B-spline functions are non-zero and

the sum of them is equal to one (e.g., de Boor, 1993). The higher the level J is chosen the
larger is the number KJ and the more narrow or sharp is each basis function, and thus finer
structure can be modeled. However, the selection of the level J should depend on the sampling
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interval of the input data. Assume that the average sampling interval with respect to λ within
an observation interval of length Λ = λmax−λmin is denoted as ∆λ, the condition [Schmidt et al.,
2011]

∆λ < dJ1 (5.26)

has to be fulfilled. Therefore, the maximum level J1 can be determined under consideration of
Eq. (5.25) by

J1 ≤ log2

(
Λ

∆λ
− 1

)
(5.27)

cf. Schmidt et al. [2011]. The level values J2 and J3 for latitude and time can be chosen in the
same manner.

It is worth to mention that a global application can be obtained by replacing the normal-
ized quadratic B-splines with the trigonometric B-splines for the longitudinal dependence. The
trigonometric B-splines are characterized by its “wrapping around” effect, see e.g., Schumaker
and Traas [1991] and Schmidt et al. [2011] for details.

5.2.3.1 Multi-Scale Representation (MSR)

An important feature of the B-spline basis functions is that they can be used to construct B-
spline wavelets (Stollnitz et al., 1995a,b). Wavelets are mathematical functions for representing
and analyzing multi-scale structures, i.e., to perform a MSR, also known as multi-resolution
analysis or Multi-Resolution Representation (MRR). Since both the ionosphere structures and
the observation distributions are heterogeneous over the globe, the MSR is rather useful in the
field of ionosphere modeling. Such applications towards ionosphere modeling can be found in,
e.g., Schmidt [2007] and Zeilhofer [2008] for V TEC signals, and Liang et al. [2015a] for the
NmF2 signal. The construction of wavelets and the basic theory of a MSR will be given below
following Stollnitz et al. [1995b]; Schmidt [2007, 2012]; Zeilhofer [2008]; Koch [2011]; Koch and
Schmidt [2011]; Schmidt et al. [2015].

1-D scaling and wavelet functions
Within MSR, the basis functions (5.19) are called scaling functions of level J . The 1-D scaling
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Figure 5.3: 1-D endpoint-interpolating normalized quadratic B-spline functions N2
J ;k(x) of reso-

lution level J = 3 for k = 0, . . . , 9 identified by different colors.
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functions φJ ;k(x) set up a basis for the scaling space VJ . The MSR generates a nested set of
spaces

V0 ⊂ V1 ⊂ V2 · · · ⊂ VJ−1 ⊂ VJ ⊂ VJ+1 . . . . (5.28)

Therefore, the scaling functions φJ−1;l(x) ∈ VJ−1 with l = 0, . . . ,KJ−1− 1 can be represented as
a linear combination of the scaling functions φJ ;k(x) ∈ VJ with k = 0, . . . ,KJ − 1, i.e., a linear
relation so-called two-scale relation1

φφφTJ−1(x) = φφφTJ (x)PPP J (5.29)

holds, where the KJ × 1 scaling vector φφφTJ (x) collects all the scaling functions φJ ;k(x) of a given
resolution level J , i.e.,

φφφJ(x) = [φJ ;0(x), . . . , φJ ;KJ−1(x)]T . (5.30)

Similarly, it holds that

φφφJ−1(x) = [φJ−1;0(x), . . . , φJ−1;KJ−1−1(x)]T . (5.31)

The matrix PPP J is a KJ ×KJ−1 matrix of constants that can be determined by solving Eq. (5.29)
for certain values of x.

A detail space WJ−1 is defined as the orthogonal complement of the scaling space VJ−1 in the
scaling space VJ , which means, WJ−1 contains all the functions in VJ that are orthogonal to all
the functions in VJ−1, written as

VJ = VJ−1 ⊕WJ−1 (5.32)

where the symbol ⊕ denotes the direct sum, cf. Koch [1999]. The corresponding basis functions
that constitute a complete basis for WJ−1 are called wavelet functions which are also compactly
supported, denoted as ψJ ;l(x) with l = 0, . . . , LJ − 1 where the relation

LJ = KJ+1 −KJ (5.33)

holds. Based on the relationsWJ−1 ⊂ Vj , ψJ−1;l(x) ∈WJ−1 and φJ ;k(x) ∈ VJ , a second two-scale
relation

ψψψTJ−1(x) = φφφTJ (x)QQQJ (5.34)

can be established where the LJ−1 × 1 wavelet vector

ψψψJ−1(x) = [ψJ−1;0(x), . . . , ψJ−1;LJ−1−1(x)]T (5.35)

is introduced. QQQJ is a KJ × LJ−1 matrix of initially unknown elements that can be determined
from the matrix PPP J . The derivation of QQQj will not be presented within this thesis, details can
be found in e.g., Zeilhofer [2008] or Schmidt [2012].

Here the PPP J and QQQJ matrices, calculated by Stollnitz et al. [1995b] for endpoint-interpolating
1They connect the two resolution levels (also refer to scales) J and J − 1.
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quadratic B-spline wavelets till level J = 3, are listed below:

PPP 1 =
1

2


2 0 0

1 1 0

0 1 1

0 0 2

 , PPP 2 =
1

4



4 0 0 0

2 2 0 0

0 3 1 0

0 1 3 0

0 0 2 2

0 0 0 4


, PPP 3 =

1

4



4 0 0 0 0 0

2 2 0 0 0 0

0 3 1 0 0 0

0 1 3 0 0 0

0 0 3 1 0 0

0 0 1 3 0 0

0 0 0 3 1 0

0 0 0 1 3 0

0 0 0 0 2 2

0 0 0 0 0 4



,

QQQ1 =

√
5

4


−2

3

−3

2

 , QQQ2 =

√
3

4936



−144 0

177 21

−109 −53

53 109

−21 −177

0 144


,

QQQ3 =

√
1

713568



−4283.828550 0 0 0

5208.746077 780 0

−3099.909150 −1949 −11 0

1300.002166 3481 319 0

−253.384964 −3362 −1618 −8.737413

8.737413 1618 3362 253.384964

0 −319 −3481 −1300.002166

0 11 1949 3099.909150

0 −780 −5208.746077

0 0 0 4283.828550



. (5.36)

Figure 5.4 shows the family of 1-D endpoint-interpolating quadratic B-spline wavelets ψJ ;l(x)
exemplarily for the level J = 3.

Now the decomposition equation that is required for the MSR can be derived. According to
the relations φJ(x) ∈ VJ , ψJ−1(x) ∈ WJ−1 and φJ−1(x) ∈ VJ−1, together with Eq. (5.32), the
decomposition equation

φφφTJ (x) = φφφTJ−1(x)PPP J +ψψψTJ−1(x)QQQJ (5.37)

can be established. The KJ−1×KJ matrix PPP J and LJ−1×KJ matrix QQQJ are initially unknown
coefficient matrices. Now inserting the Eqs. (5.29) and (5.34) into Eq. (5.37) gives

φφφTJ (x) = φφφTJ (x)PPP J PPP J +φφφTJ (x)QQQJQQQJ . (5.38)

Since the scaling functions are defined uniquely, the identity

I = PPP J PPP J +QQQJQQQJ =
[
PPP J QQQJ

] [PPP J
QQQJ

]
(5.39)
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Figure 5.4: 1-D endpoint-interpolating quadratic B-spline wavelets ψJ ;l(x) of resolution level
J = 3 for l = 0, . . . , 7 arranged from top to bottom. The first and last two wavelets are affected
by the endpoint-interpolation procedure.

follows. Due to the relation LJ−1 = KJ −KJ−1 according to Eq. (5.33), the matrices
[
PPP J QQQJ

]
and

[
PPP J
QQQJ

]
are both square matrices. PPP J and QQQJ can be derived according to

[
PPP J
QQQJ

]
=
[
PPP J QQQJ

]−1
. (5.40)

MSR of 1-D signal
The basic principle of the MSR is to split an input signal into a smoothed version and a certain
number of detail signals by successive low-pass filtering [Schmidt, 2007]. Thus, the MSR of a
1-D input signal denoted as fJ(x) with fJ ∈ Vj can be written as

fJ(x) = fJ ′(x) +

J−1∑
j=J ′

gj(x) with J ′ ∈ {0, · · · , J − 1} (5.41)
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where fJ ′(x) with fJ ′ ∈ VJ ′ means a smoothed, i.e., a low-pass filtered version of fJ(x) and gj(x)
with gj ∈Wj denotes a detail signal of level j, which is a band-pass filtered version of fJ(x).

The signal fJ ′(x) can be represented as a series expansion in terms of scaling functions φJ ′;k(x)
(k = 0, . . . ,KJ ′ − 1) with unknown scaling coefficients dJ ′;k as

fJ ′(x) =

KJ′−1∑
k=0

dJ ′;k φJ ′;k(x) = φφφTJ ′(x)dddJ ′ (5.42)

where the KJ ′ × 1 scaling coefficient vector

dddJ ′ = [dJ ′;0, . . . , dJ ′;KJ′−1]
T (5.43)

collects all the scaling coefficients of level J ′.

Similarly, the detail signal gj(x) can be represented as a series expansion in terms of wavelet
functions ψj;k(x) (k = 0, . . . , Lj − 1) with unknown wavelet coefficients cj;k as

gj(x) =

Lj−1∑
k=0

cj;k ψj;k(x) = ψψψTj (x)cccj (5.44)

where the Lj × 1 wavelet coefficient vector of level j is defined as

cccj = [cj;0, . . . , cj;Lj−1]
T . (5.45)

According to Eq. (5.41), one can write

fJ(x) = fJ−1(x) + gJ−1(x). (5.46)

Now inserting the Eqs. (5.42) and (5.44) into Eq. (5.46) yields

φφφTJ (x)dddJ = φφφTJ−1(x)dddJ−1 +ψψψTJ−1(x)cccJ−1. (5.47)

A comparison of Eq. (5.47) with Eq. (5.37) yields the relations

dddJ−1 = PPP J dddJ (5.48a)

cccJ−1 = QQQJ dddJ (5.48b)

which reflect the dependency of the scaling and wavelet coefficient vectors between adjacent
levels. This decomposition process, i.e., a downsampling procedure, can be numerically realized
by the highly effective pyramid algorithm (Fast Wavelet Transform (FWT)), which is illustrated
in Fig. 5.5. Starting from the scaling coefficient vector dddJ of the maximum level J , the scaling
and wavelet coefficient vectors of the lower levels can be successively obtained and, thus, the
MSR can be achieved.

Conversely, it is also possible to reconstruct the scaling coefficient vector of a higher level through
scaling and wavelet coefficient vectors of the lower level. To do this, Eq. (5.48) can be written as[

dddJ−1
cccJ−1

]
=

[
PPP J
QQQJ

]
dddJ , (5.49)

and dddj can then be solved under consideration of Eq. (5.40) through

dddJ =
[
PPP J QQQJ

] [dddJ−1
cccJ−1

]
= PPP J dddJ−1 +QQQJ cccJ−1. (5.50)

This reconstruction process, i.e., an upsampling procedure, is illustrated in Fig. 5.6.

78



5. ELECTRON DENSITY MODELING

dJ dJ−1 dJ−2 dJ−3 . . .

cJ−1 cJ−2 cJ−3 . . .

Figure 5.5: 1-D pyramid algorithm (from left to right): scaling coefficient vectors (top) and
wavelet coefficient vectors (bottom). The green arrows indicate low-pass filtering, and the orange
arrows denote band-pass filtering.

. . .dJ−3 dJ−2 dJ−1 dJ

. . . cJ−3 cJ−2 cJ−1

Figure 5.6: 1-D reconstruction algorithm (from left to right): scaling coefficient vectors (top)
and wavelet coefficient vectors (bottom).

3-D scaling and wavelet functions
As shown in Eq. (5.17), ionosphere key parameters are modeled with respect to λ, φ and t, and
thus we have to deal with the MSR of a 3-D signal. As mentioned before, a 3-D B-spline scaling
function φJ1,J2,J3k1,k2,k3

(λ, ϕ, t) is defined as the tensor product of three 1-D scaling function φJ ;k(x)

with x ∈ {λ, ϕ, t} and J ∈ {J1, J2, J3}. The 3-D scaling functions φJJJ ;kkk(λ, ϕ, t) = φJ1,J2,J3k1,k2,k3
(λ, ϕ, t)

with JJJ = [J1, J2, J3]
T and kkk = [k1, k2, k3]

T for k1 = 0, . . . ,KJ1 − 1, k2 = 0, . . . ,KJ2 − 1 and
k3 = 0, . . . ,KJ3 − 1 are collected in the KJJJ × 1 vector φφφJJJ(λ, ϕ, t) with KJJJ = KJ1 ·KJ2 ·KJ3 , and
can be defined as

φφφJJJ(λ, ϕ, t) = [φJJJ ;0,0,0(λ, ϕ, t), . . . , φJJJ ;KJ1−1,KJ2−1,KJ3−1(λ, ϕ, t)]
T

= φφφJ3(t)⊗φφφJ2(ϕ)⊗φφφJ1(λ) ,
(5.51)

wherein the symbol ⊗ denotes the Kronecker product of the three vectors φJ(x) introduced in
Eq. (5.30) (cf. Koch, 1999). Corresponding to the 3-D scaling functions φJJJ ;kkk(λ, ϕ, t), a 3-D
scaling space VVV JJJ is defined by the tensor product of three 1-D scaling spaces VJ1 , VJ2 and VJ3 ,
i.e.,

VVV JJJ = VJ1 ⊗ VJ2 ⊗ VJ3 . (5.52)

According to Eq. (5.32), Eq. (5.52) can be reformulated as

VVV JJJ = (VJ1−1 ⊕WJ1−1)⊗ (VJ2−1 ⊕WJ2−1)⊗ (VJ3−1 ⊕WJ3−1) (5.53)

which leads to altogether 23 tensor product spaces, denoted as

VVV J−1J−1J−1 = VJ1−1 ⊗ VJ2−1 ⊗ VJ3−1,
WWW 1

J−1J−1J−1 = VJ1−1 ⊗ VJ2−1 ⊗WJ3−1,

WWW 2
J−1J−1J−1 = VJ1−1 ⊗WJ2−1 ⊗ VJ3−1,

WWW 3
J−1J−1J−1 = WJ1−1 ⊗ VJ2−1 ⊗ VJ3−1,

WWW 4
J−1J−1J−1 = VJ1−1 ⊗WJ2−1 ⊗WJ3−1,

WWW 5
J−1J−1J−1 = WJ1−1 ⊗ VJ2−1 ⊗WJ3−1,

WWW 6
J−1J−1J−1 = WJ1−1 ⊗WJ2−1 ⊗ VJ3−1,

WWW 7
J−1J−1J−1 = WJ1−1 ⊗WJ2−1 ⊗WJ3−1.

(5.54)
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Consequently, Eq. (5.53) can also be written as

VVV JJJ = VVV J−1J−1J−1 ⊕WWW 1
J−1J−1J−1 ⊕ . . .⊕WWW 7

J−1J−1J−1 . (5.55)

The corresponding basis functions for the above spaces can be formulated as

scaling function φJJJ ;kkk(λ, ϕ, t) = φJ1;k1(λ) · φJ2;k2(φ) · φJ3;k3(t) ,

wavelet function



ψ1
JJJ ;kkk(λ, ϕ, t) = φJ1;k1(λ) · φJ2;k2(φ) · ψJ3;k3(t)

ψ2
JJJ ;kkk(λ, ϕ, t) = φJ1;k1(λ) · ψJ2;k2(φ) · φJ3;k3(t)

ψ3
JJJ ;kkk(λ, ϕ, t) = ψJ1;k1(λ) · φJ2;k2(φ) · φJ3;k3(t)

ψ4
JJJ ;kkk(λ, ϕ, t) = φJ1;k1(λ) · ψJ2;k2(φ) · ψJ3;k3(t)

ψ5
JJJ ;kkk(λ, ϕ, t) = ψJ1;k1(λ) · φJ2;k2(φ) · ψJ3;k3(t)

ψ6
JJJ ;kkk(λ, ϕ, t) = ψJ1;k1(λ) · ψJ2;k2(φ) · φJ3;k3(t)

ψ7
JJJ ;kkk(λ, ϕ, t) = ψJ1;k1(λ) · ψJ2;k2(φ) · ψJ3;k3(t)

.
(5.56)

MSR of 3-D signal
According to Eq. (5.17), a 3-D signal fJJJ(λ, ϕ, t) can be represented as

fJJJ(λ, ϕ, t) =

KJ1−1∑
k1=0

KJ2−1∑
k2=0

KJ3−1∑
k3=0

dJ1,J2,J3k1,k2,k3
φJ1,J2,J3k1,k2,k3

(λ, ϕ, t) = φφφJJJ(λ, ϕ, t)dddJJJ (5.57)

wherein the KJJJ × 1 scaling coefficient vector is defined as

dddJJJ =
[
dJJJ ;0,0,0, . . . , dJJJ ;KJ1−1,KJ2−1,KJ3−1

]T
. (5.58)

Similar to Eq. (5.41), the 3-D MSR of a signal fJJJ(λ, ϕ, t) can be defined under consideration of
Eq. (5.55) as

fJJJ(λ, ϕ, t) = fJJJ−mmm(λ, ϕ, t) +

m∑
i=1

23−1∑
n=1

gnJJJ−iii(λ, ϕ, t) (5.59)

with

JJJ −mmm = [J1 −m,J2 −m,J3 −m]T = [J ′1, J
′
2, J
′
3]
T , m ∈ {1, . . . ,min(J1, J2, J3)}, (5.60)

and JJJ − iii = [J1 − i, J2 − i, J3 − i]T = [J1, J2, J3]
T

where min{·} is the operation for taking the minimum value.

The smoothed version fJJJ ′(λ, ϕ, t) of level JJJ ′ (= JJJ −mmm) is defined as

fJJJ ′(λ, ϕ, t) =

KJ′1
−1∑

k1=0

KJ′2
−1∑

k2=0

KJ′3
−1∑

k3=0

d
J ′1,J

′
2,J
′
3

k1,k2,k3
φ
J ′1,J

′
2,J
′
3

k1,k2,k3
(λ, ϕ, t) = φφφTJJJ ′(λ, ϕ, t)dddJJJ ′ (5.61)

and the detail signal gn
JJJ

(λ, ϕ, t) of the level JJJ (= JJJ − iii)is defined as

gn
JJJ

(λ, ϕ, t) =

LJ1
−1∑

k1=0

LJ2
−1∑

k2=0

lJ3
−1∑

k3=0

cn
JJJ ;k1,k2,k3

ψn
JJJ ;k1,k2,k3

(λ, ϕ, t) = (ψψψn
JJJ

(λ, ϕ, t))T cccn
JJJ

(5.62)
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where
ψψψn
JJJ

(λ, ϕ, t) = [ψn
JJJ ;0,0,0

, . . . , ψn
JJJ ;LJ1

−1,LJ2−1,LJ3−1
]T (5.63)

and cccn
JJJ
with n = 1, . . . , 23 − 1 is the wavelet coefficient vector, reads

cccn
JJJ

= [cn
JJJ ;0,0,0

, . . . , cn
JJJ ;LJ1

−1,LJ2−1,LJ3−1
]T . (5.64)

The 1-D decomposition equation Eq. (5.48) of coefficient vectors can be extended to the 3-D case
as follows

dddJ−1J−1J−1 = (PPP J3 ⊗PPP J2 ⊗PPP J1)dddJJJ ,

ccc1J−1J−1J−1 = (QQQJ3 ⊗PPP J2 ⊗PPP J1)dddJJJ ,

ccc2J−1J−1J−1 = (PPP J3 ⊗QQQJ2 ⊗PPP J1)dddJJJ ,

ccc3J−1J−1J−1 = (PPP J3 ⊗PPP J2 ⊗QQQJ1)dddJJJ ,

ccc4J−1J−1J−1 = (QQQJ3 ⊗QQQJ2 ⊗PPP J1)dddJJJ ,

ccc5J−1J−1J−1 = (QQQJ3 ⊗PPP J2 ⊗QQQJ1)dddJJJ ,

ccc6J−1J−1J−1 = (PPP J3 ⊗QQQJ2 ⊗QQQJ1)dddJJJ ,

ccc7J−1J−1J−1 = (QQQJ3 ⊗QQQJ2 ⊗QQQJ1)dddJJJ .

(5.65)

Similar to Fig. 5.5, this decomposition process for 3-D signal is illustrated in Fig. 5.7. Once

dJJJ dJJJ−111 dJJJ−222 dJJJ−333 . . .

c1JJJ−111, c
2
JJJ−111, . . . , c

7
JJJ−111 c1JJJ−222, c

2
JJJ−222, . . . , c

7
JJJ−222 c1JJJ−333, c

2
JJJ−333, . . . , c

7
JJJ−333 . . .

Figure 5.7: 3-D pyramid algorithm.

the level-dependent scaling and wavelet coefficient vectors are derived, the smoothed version of
the 3-D signal can be computed according to Eq. (5.61), and the level-JJJ detail signal can be
computed by

gggJJJ(λ, ϕ, t) =

7∑
n=1

gggn
JJJ

(λ, ϕ, t) (5.66)

under consideration of Eq. (5.62).

Similar to the Eqs. (5.49) and (5.50), the reconstruction, i.e., the computation of the level-JJJ
scaling coefficient vector dddJJJ can be derived from the level-(JJJ − 111) vector dddJJJ−111 and cccn

JJJ−111 through
the inversion of the linear equation system (5.65).

MSR application – data compression
Wavelet functions are also localizing (cf. Fig. 5.4), and thus many wavelet coefficients in the
vector cccnJJJ−iii are numerically very small and negligible [Schmidt, 2007]. The wavelet decomposi-
tion can thus be applied for data compression, mainly through choosing empirical thresholds or
statistical hypothesis testing on significance.
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• Empirical thresholds:
Since detail signals of higher-level contain more small-scale structures, more wavelet co-
efficients can usually be neglected. Therefore, level-dependent thresholds can be applied.
Specifically, the wavelet coefficient cnJJJ ;kkk of a certain resolution level JJJ may be neglected
(i.e., cnJJJ ;kkk is set to 0) if |cnJJJ ;kkk| < %JJJ where %JJJ denotes the level-dependent threshold.

• Statistical hypothesis testing on significance:
Applying the law of error propagation to the decomposition equation (5.65), the estimated
covariance matrices of the estimated scaling and wavelet coefficient vectors can be derived,
from the estimated covariance matrix D̂(d̂ddJJJ), which is calculable from Eq. (4.18). After-
wards, hypothesis testing can be performed to check the wavelet coefficients on significance
following the Eqs. (4.56) and (4.57); see, e.g., Koch [1999] for details. Coefficients that fail
the significance test are then neglected.

Other data compression algorithms can be found in e.g., Ogden [1997]. Through the new wavelet
coefficient vectors cccnjjj;kkk whose smallest/most nonsignificant wavelet coefficients are neglected, a
compressed signal fJJJ can then be reconstructed. In an ideal case of data compression, the
reconstructed signal fJJJ does not lose significant information in fJJJ ; very often only a small
number of coefficients need to be stored.

5.3 Set-up of an electron density model

5.3.1 Linearized observation equation system

When the electron density is modeled by Eq. (5.8) with discrete layers being represented by
profilers introduced in Section 5.1.1, the electron density can thus be represented as a function
of the key parameters such as NmF2, hmF2, HF2, NmE etc. Exploiting the localizing feature
of the B-spline basis functions, each of the key parameters can be spatially and temporally
modeled as a series expansion in terms of the 3-D B-spline functions according to Eq. (5.17).
Therefore, STEC observations and electron density observations can be finally represented by a
set of unknown B-spline coefficients. However, mathematical expressions such as the Chapman
or Epstein functions are nonlinear with respect to the parameters peak heights and scale heights,
a nonlinear scheme is thus required to solve the unknown scaling coefficients. Since an explicit
formula (see the Eqs. (6.1) and (6.15) later) is available, the partial derivatives of the electron
density with respect to the key parameters can be computed analytically and easily obtained.
Therefore, a linearization can be applied and an iterative algorithm is performed. For this
purpose, the unknown coefficient vector dddκq of a certain key parameter κq (q = 1, . . . , p with p
denoting the maximum number of key parameters to be modeled) is decomposed into an initial
coefficient vector ddd0,κq and a correction term ∆dddκq .

Let

ddd = [dddTκ1 , · · · , ddd
T
κp ]

T ,

ddd0 = [dddT0,κ1 , · · · , ddd
T
0,κp ]

T ,

∆ddd = [∆dddTκ1 , · · · , ∆dddTκp ]
T ,

(5.67)

we have

ddd = ddd0 + ∆ddd (5.68)
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where the vector ddd0 of initial coefficients can be derived from an external model such as the IRI.
According to Eq. (5.17), we can write the following scalar product

κq(λ, ϕ, t) = φφφTκq(λ, ϕ, t)dddκq (5.69)

with
φφφκq(λ, ϕ, t) = [φφφJ1,J2,J3κq 0,0,0

(λ, ϕ, t), · · · , φφφJ1,J2,J3κqKJ1−1,KJ2−1,KJ3−1
(λ, ϕ, t)]T . (5.70)

for the key parameter κq. Note that the level values J1, J2 and J3 can be different for each key
parameter κq.

Ne model of GNSS IRO observations
Assume thatm profiles pi (i = 1, . . . ,m) with discreteNe observations at n positions (λij , ϕij , hij ,

tij) (j = 1, . . . , n) lie in the region under investigation. Applying the chain rule ∂u(x,y)
∂r =

∂u(x,y)
∂x · ∂x∂r + ∂u(x,y)

∂y · ∂y∂r under consideration of the Eqs. (4.2), (5.68) and (5.69), a system of
linearized observation equations Ne(λ11, ϕ11, h11, t11)

...
Ne(λmn, ϕmn, hmn, tmn)

+

 e(λ11, ϕ11, h11, t11)
...

e(λmn, ϕmn, hmn, tmn)

 =


N e(λ11, ϕ11, h11, t11)

∣∣
ddd0

...
N e(λmn, ϕmn, hmn, tmn)

∣∣
ddd0

+


∂Ne(λ11,ϕ11,h11,t11)

∂κ1

∣∣
ddd0
· ∂κ1(λ11,ϕ11,t11)

∂dddκ1
· · · ∂Ne(λ11,ϕ11,h11,t11)

∂κp

∣∣
ddd0
· ∂κp(λ11,ϕ11,t11)

∂dddκp
...

. . .
...

∂Ne(λmn,ϕmn,hmn,tmn)
∂κ1

∣∣
ddd0
· ∂κ1(λmn,ϕmn,tmn)∂dddκ1

· · · ∂Ne(λmn,ϕmn,hmn,tmn)
∂κp

∣∣
ddd0
· ∂κp(λmn,ϕmn,tmn)∂dddκp

∆ddd

(5.71)
can be derived. In order to avoid confusions, Ne on the left-hand side is assumed to be an
observation with the observation error e(·), whereas N e represents the quantity calculated by a
model, e.g., Eq. (5.8). The first partial derivative term ∂N e/∂κq depends on the used profilers,
and the second term is in fact ∂κq(λij , ϕij , tij)/∂dddκq = φφφT (λij , ϕij , tij) according to Eq. (5.69).
As introduced previously, the variables λ, ϕ and t have to be transformed to λ′, ϕ′, t′ ∈ I. Here
the two notations will not be distinguished to avoid confusions, namely, the observations at
(λij , ϕij , tij) within the investigated region Ω3 have already been normalized into the unit cube
I3 in a preprocessing step before calculating the B-splines. Assume that there are altogether N1

discrete Ne discrete observations, denoted as Ne,1, . . . , Ne,N1 with the corresponding observation
errors e1, . . . , eN1 , Eq. (5.71) can be formulated in the form of the Gauss-Markov model (4.5) as

XXX1 ∆βββ1 = yyy1 + eee1 with D(yyy1) = σ21 PPP
−1
1 (5.72)

where

XXX1 =



∂Ne,1

∂dddκ1

∣∣
ddd0

· · · ∂Ne,1

∂dddκp

∣∣
ddd0

∂Ne,2

∂dddκ1

∣∣
ddd0

· · · ∂Ne,2

∂dddκp

∣∣
ddd0

...
. . .

...
∂Ne,N1
∂dddκ1

∣∣
ddd0
· · · ∂Ne,N1

∂dddκp

∣∣
ddd0


, ∆βββ1 = ∆ddd

yyy1 = [Ne,1 −N e,1

∣∣
ddd0
, . . . , Ne,N1 −N e,N1

∣∣
ddd0

]T , eee1 = [e1, . . . , eN1 ]T .
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The stochastic model of the Ne observations is defined by the covariance matrix D(yyy1) which
includes the given positive definite N1 ×N1 weight matrix PPP 1 and the unknown variance factor
σ21.

Stochastic model of Ne observations
A realistic solution can only be obtained, if the stochastic model in the Gauss-Markov model
(4.5) is set up realistically. In most cases, the weight matrix PPP 1 is simply set to the identity
matrix, e.g., Alizadeh [2013], Limberger et al. [2013] or Liang et al. [2015a].

Recall the onion peeling algorithm Eq. (3.23), collecting all data during an occultation event, a
system of linear equations

S̃TEC(r01)

S̃TEC(r02)
...

S̃TEC(r0M )


︸ ︷︷ ︸

S̃TECSTECSTEC

=


2 l11 0 · · · 0

2 l21 2 l22 · · · 0
...

...
. . .

...
2 lM1 2 lM2 · · · 2 lMM


︸ ︷︷ ︸

BBB


Ne,1

Ne,2
...

Ne,M


︸ ︷︷ ︸

NNNe

(5.73)

can be established. BBB is a lower triangular matrix. The unknown vector NNN e can thus be
determined by

N̂NN e = BBB−1 S̃TECSTECSTEC . (5.74)

Applying to the law of error propagation to Eq. (5.74), the covariance matrix D(NNN e) can be
derived through

D(N̂NN e) = BBB−1D(S̃TECSTECSTEC) (BBB−1)T . (5.75)

If D(S̃TECSTECSTEC) is known, the standard deviations of Ne,i (i = 1, . . . ,M) can be obtained and the
vertical error correlation can also be calculated according to Eq. (4.7). It can be expected that
errors are increasing from the outermost toward the innermost shells (cf. Fig. 3.4). The weight
matrix PPP 1 is then given as

PPP 1 =
(
D(N̂NN e)

)−1
. (5.76)

STEC model of GNSS observations
Within this thesis, carrier phase leveling is applied to GPS observations. According to Eq. (3.17),
we can establish the observation equation as

STEC(R,S, t) + e(R,S, t) =

∫ S

R
N e(λ, ϕ, h, t) ds+ βR + βS (5.77)

where STEC(R,S, t) is assumed to be the observation from a satellite S to a receiver R with
observation error e(R,S, t). βR and βS are biases given as

βR = − c
a
δbR and βS = − c

a
δbS (5.78)
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where δbR and δbS are the DCBs of receiver R and satellite S, respectively. A linearization of
Eq. (5.77) gives

STEC(R,S, t) + e(R,S, t)

=

∫ S

R

N e(λ, ϕ, h, t)
∣∣
ddd0

+

p∑
q=1

∂N e(λ, ϕ, h, t)

∂κq

∣∣∣∣
ddd0,κq

· φφφT (λ, ϕ, t) ·∆dddκq

 ds+ βR + βS

=STEC0(R,S, t) +

p∑
q=1

[∫ S

R

(
∂N e(λ, ϕ, h, t)

∂κq

∣∣∣∣
ddd0,κq

· φφφT (λ, ϕ, t)

)
ds ·∆dddκq

]
+ ∆βR + ∆βS

(5.79)

where STEC0 = STEC
∣∣
ddd0

is the initial STEC value calculated from ddd0 and the initial values of
receiver bias β0R and satellite bias βS0 , and ∆βR and ∆βS are the corresponding corrections. We
assume now that GNSS ray paths with altogether m receivers and n satellites lie in the region
under investigation, written as STEC(Ri, Sj , ti,j). Herein the receiver positions are defined as
Ri (i = 1, . . . ,m) and the satellite positions as Sj (j = 1, . . . , n). It should be noted that it is not
necessary that each receiver i can observe all the n satellite position. Therefore, the total number
of ray paths, denoted as N2, should not exceedm·n. For simplicity, let STEC1, . . . , STECN2 de-
note the N2 distinct observations, with the corresponding observation errors e1, . . . , eN2 . Similar
to Eq. (5.72), the Gauss-Markov model can be established as

XXX2 ∆βββ2 = yyy2 + eee2 with D(yyy2) = σ22 PPP
−1
2 (5.80)

where

XXX2 =


∂STEC1

∂dddκ1

∣∣
ddd0,κ1

· · · ∂STEC1

∂dddκp

∣∣
ddd0,κp

∂STEC1

∂βR1
· · · ∂STEC1

∂βRr

∂STEC1

∂βS1
· · · ∂STEC1

∂βSs

...
. . .

...
...

. . .
...

...
. . .

...

︸ ︷︷ ︸
XXX21

∂STECN2

∂dddκ1

∣∣
ddd0,κ1

. . .
∂STECN2

∂dddκp

∣∣
ddd0,κp ︸ ︷︷ ︸

XXX22

∂STECN2

∂βR1
· · · ∂STECN2

∂βRr

∂STECN2

∂βS1
· · · ∂STECN2

∂βSs

 ,

∆βββ2 = [∆dddT ,∆βββTDCB]T with ∆βββDCB = [∆βR1 , . . . ,∆βRr ,∆β
S1 , . . . ,∆βSs ]T ,

yyy2 = [STEC1 − STEC1

∣∣
ddd0
, . . . , STECN2 − STECN2

∣∣
ddd0

]T , eee2 = [e1, . . . , eN2 ]T .

The matrix XXX21 is the Jacobian matrix of the STEC observation vector with respect to the
scaling coefficient vector, whereas the matrix XXX22 is the Jacobian matrix with respect to the
DCBs. Both the receiver and satellite DCBs can be estimated as additional unknowns and daily
constants can be assumed. ∆βββDCB is the correction vector to be estimated, which is relative
to the initial vector βββ0DCB = [β0R1

, . . . , β0Rr , β
S1
0 , . . . , βSs0 ]T collecting initial values of the biases.

The stochastic model of STEC observations is defined by the covariance matrix D(yyy2) which
includes the given positive definite N2 ×N2 weight matrix PPP 2 and the unknown variance factor
σ22.

In order to avoid rank deficiency and separate receiver and satellite DCBs from each other, an
additional constraint, e.g., the zero-mean condition, must be applied to the DCBs of all GPS
satellites, following the IGS strategy [Schaer, 1999]. With the total number of GPS satellites s′,
the constraint reads

δbS1 + . . .+ δbSs′ = 0 . (5.81)
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According to Eq. (5.78), we have

βS1 + . . .+ βSs′ = 0 . (5.82)

Note, that it might happen that not all GPS satellites are observed over a region within a short
time period, i.e., s < s′. Then the values of the DCBs of the satellite that are not in view are
set as known and can be taken from IGS. Since DCBs are estimated together with the unknown
coefficients of the key parameters, DCBs also have to be estimated iteratively. Introducing the
decomposition of the DCBs of the satellites due to the linearization into Eq. (5.82) and assuming
s = s′ give

∆β1 + . . .+ ∆βSs = −(β10 + . . .+ βSs0 ) = −
s∑

k=1

βSk0 . (5.83)

Introducing the equality constraint (5.83) leads to the following normal equationXXXT
2PPP 2XXX2 hhh

hhhT 0

∆βββ2

k

 =

XXXT
2PPP 2 yyy2

−
s∑

k=1

βSk0

 (5.84)

based on Eq. (4.26) with
hhh = [0, . . . , 0︸ ︷︷ ︸

K

, 0, . . . , 0︸ ︷︷ ︸
r

, 1, . . . , 1︸ ︷︷ ︸
s

]T (5.85)

where K denotes the total number of unknown B-spline coefficients and the total number of
unknowns in the adjustment system is u = K + r + s.

Stochastic model of STEC observations
GPS observations have a high sampling rate, e.g., the IGS daily Receiver Independent Exchange
Format (RINEX) files provide measurements of 30 s sampling rate, therefore the data should be
highly correlated. In case that the correlations are not known, the amount of the data can be
reduced to a lower sampling rate and the weight matrix could be set to PPP 2 = I, cf. Dettmering
et al. [2011a] or Liang et al. [2015a,b].

5.3.2 Gauss integration along the ray-paths

As can be seen from Eq. (5.79), integrals have to be performed along GNSS ray paths from satel-
lite to receiver, i.e., through the ionosphere and plasmasphere from around 50 km to 20,200 km
height above the Earth’s surface. This can be done with the help of numerical integration tech-
niques (called quadrature), that is, the integrand is evaluated at a finite set of points (called
integration knots) and a weighted sum of these values is used to approximate the integral. The
Gauss quadrature is extremely accurate in most cases [Kendall, 1989]. It allows for choosing
the weighting coefficients as well as the locations of the abscissa values at which the function is
evaluated.

Gauss–Legendre quadrature
The original Gauss–Legendre formula is defined on the interval [−1, 1] by [Kendall, 1989]∫ 1

−1
l(x) dx '

n∑
i=1

ωi l(xi) (5.86)
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where l(x) is the function to be integrated, and the integration nodes xi are equal to the zeros
of the degree n of the Legendre polynomial Pn(x) on [−1, 1]. The coefficients ωi are called the
integration weights or quadrature weights, given by

ωi =
2

(1− x2i )[P ′n(xi)]2
. (5.87)

where P ′n denotes the derivative of the Legendre polynomial.

When the integrals are defined on any finite interval [a, b], the following linear transformation∫ b

a
l(x) dx =

b− a
2

∫ 1

−1
l

(
b− a

2
x+

a+ b

2

)
dx (5.88)

has to be performed. Thus, applying the Gauss quadrature to an integral on an interval [a, b]
yields ∫ b

a
l(x) dx ' b− a

2

n∑
i=1

ωi · l
(
b− a

2
xi +

a+ b

2

)
. (5.89)

For the Gauss–Legendre nodes and weights of different degrees n we refer e.g., to Kendall [1989]
and Stroud and Secrest [1966]. According to Eq. (5.79), the electron density and the B-splines
have to be computed for each evaluation point xi along the ray path. These two quantities
have been both expressed in terms of spherical coordinates, but it is more convenient to use the
Cartesian coordinate system to describe the positions of the evaluation points; please refer to
Eq. (5.90) for the transformation from spherical coordinates to the ECEF coordinates.

Transformation between Cartesian and spherical coordinates
According to Eq. (5.79), the electron density and the B-splines have to be computed for each eval-
uation point xi along the ray path. These two quantities are both expressed in terms of spherical
coordinates (λ, φ, h). However, it is more convenient to use the Cartesian coordinate system such
as the Earth-Centered Earth-Fixed (ECEF) coordinate system to describe the positions of the
evaluation points. The ECEF coordinate system is a right-handed Cartesian system (x, y, z). Its
origin is at the center of mass of the Earth, while the z-axis is along the spin axis of the Earth
and pointing to the north pole; the x-axis is pointing to the mean Greenwich meridian; and
the y-axis is orthogonal to the z- and x-axes following the right-hand rule. The transformation
between spherical coordinates (λ, φ, r) and the Cartesian coordinates (x, y, z) reads x

y

z

 =

 r cos ϕ cos λ

r cos ϕ sin λ

r sin ϕ

 and


λ = arctan(y/x)

ϕ = arctan(z/
√
x2 + y2)

r =
√
x2 + y2 + z2

. (5.90)

where r is the radial distance of the point (x, y, z), i.e., r = RE + h with RE ≈ 6371 km the
Earth’s mean radius and h the height over the sphere.

5.3.3 Data combination

As introduced in Section 5.2.3, each B-spline function has a compact influence zone. The cor-
responding coefficient is computable when there is at least one profile lying in or one ray path
penetrating the influence zone. However, even if ground-based GPS observations and IRO data
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are combined, there are still data gaps in particular over the oceans, which will cause that the
corresponding coefficients cannot be supported or only weakly be supported by the observations
and the normal equation system is singular or at least ill-conditioned. Consequently, not all
of the coefficients can be estimated. Solving such a problem, the corresponding columns of XXXi

(i = 1, 2) in the Eqs. (5.72) and (5.80), which correspond to unsupported coefficients, may be
eliminated to form reduced design matrices. Here we introduce prior information as introduced
in Section 4.4 to stabilize the estimation process. In particular, the expectation vector E(ddd) = µµµd
for the vector of the B-spline coefficients with the positive definite covariance matrix D(ddd) = ΣΣΣd

of the unknown coefficient vector ddd are introduced as an additional observation technique by
means of

ddd = µµµd + eeeµ with D(µµµd) = σ2µPPP
−1
µ (5.91)

following Eq. (4.41). Herein eeeµ denotes the error vector of the prior information, σ2µ is the
unknown variance factor, and PPPµ = ΣΣΣ−1d is the given positive definite K×K weight matrix. The
vector µµµd can be approximated from the key parameters provided by/derived from a selected
background model according to Eq. (5.69). It should be pointed that the choice of a background
model is quite important, because the prior information is used to overcome data gaps and can
only be improved in areas and at periods where observations are available. Moreover, the prior
information may be different from the background model, since the accuracy of the representation
of the background model depends on the B-spline levels. Note that the prior information is
always referred to the set of the coefficients ddd, and thus, not changing during the iterative
procedure. Since the decomposition Eq. (5.68) is performed due to linearization, Eq. (5.91) can
be reformulated as

∆ddd = (µµµd − ddd0) + eeeµ with D(µµµd − ddd0) = σ2µPPP
−1
µ . (5.92)

Let

βββ = βββ0 + ∆βββ, βββ0 = [dddT0 , (βββ
0
DCB)T ]T , ∆βββ = [∆dddT ,∆βββTDCB]T , (5.93)

and assume that the different observation techniques are uncorrelated, based on Eq. (4.46), the
combination of the linear models (5.72), (5.80) and (5.92) yields the extended Gauss-Markov
model XXX1 000N1,r+s

XXX21 XXX22

I 000K,r+s


 ∆ddd

∆βββDCB

 =

 yyy1
yyy2

µµµd − ddd0

+

 eee1
eee2
eeeµ

 (5.94)

with the extended stochastic model of the observations yyy = [yyyT1 , yyy
T
2 , (µµµd − ddd0)T ]T

D(yyy) = σ21MMM1 + σ22MMM2 + σ2µMMMµ (5.95)

where

MMM1 =

PPP−11 000 000

000 000 000

000 000 000

 , MMM2 =

000 000 000

000 PPP−12 000

000 000 000

 , MMMµ =

000 000 000

000 000 000

000 000 PPP−1µ

 .
Since no prior information is introduced for the DCBs, the DCB constraint introduced in the
Eqs. (5.83) to (5.85) has to be considered to overcome rank deficiencies of the normal equation
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system for Eq. (5.94), the unknown correction vector ∆βββit at an iteration step it can be solved
by the extended normal equation system

(
2∑
i=1

1
σ2
i
XXX
T
i PPP iXXXi + 1

σ2
µ
PPPµ

)
hhh

hhhT 0


︸ ︷︷ ︸

NNN

∆β̂ββit

k

 =


2∑
i=1

1
σ2
i
XXX
T
i PPP i yyyi + 1

σ2
µ
PPPµ(µµµd − βββit,0)

−
s∑

k=1

βSkit,0

 (5.96)

where

XXX1 = [XXX1 000N1,r+s], XXX2 = [XXX21 XXX22],

µµµd = [µµµTd 000Tr+s,1]
T , PPPµ =

[
PPPµ 000K,r+s

000r+s,K 000r+s,r+s

]
.

As mentioned previously, the variance factors σ21, σ22 and σ2µ are chosen manually by experience
or automatically by using VCE, see Section 4.5.

The initial vector βββit,0 has to be updated during the iteration step through

βββit,0 = βββ0 +
it−1∑
it′=0

∆β̂ββit′ (5.97)

and thus the right-hand side of the linear model (5.92), i.e., µµµd − ddd0, has also to be updated.
Then, the final estimation is

β̂ββitmax = βββitmax,0 + ∆β̂ββitmax = βββ0 +

itmax∑
it′=0

∆β̂ββit′ (5.98)

where itmax signifies the total number of required iterations for convergence point.

The estimated covariance matrix of D̂(β̂ββitmax) can be extracted by the inverse of the matrix
NNN of normal equations in Eq. (5.96) at the last iteration step since the variance components
of the observation techniques have been already included in NNN . The key parameters κq(λ, ϕ, t)
can then be computed everywhere within the 3-D volume Ω3 by introducing the corresponding
B-spline coefficient vector dddκq from Eq. (5.98) into Eq. (5.69), and the variance and covariance
information for the vector κ̂κκq, which collects the estimated κ̂q(λi, ϕi, ti) at a set of points within
Ω3, can be derived by applying the law of error propagation to Eq. (5.69) as

D̂ (κ̂κκq) = YYY D̂(d̂ddκq)YYY
T (5.99)

where YYY collects φφφTκq(λ, ϕ, t) at all the points (λi, ϕi, ti) and D̂(d̂ddκq) is extracted from D̂(β̂ββitmax).
Starting with the correction vector ∆ddd =

∑itmax
it′=0 ∆dddit′ of the selected level JJJ , the pyramid

algorithm 5.65 can be applied to obtain the MSR.

It is possible to introduce other space-geodetic observation techniques (e.g., satellite altimetry,
VLBI) by stacking their observation equations and stochastic models into Eq. (5.95). However, it
should be noted that there might exist offsets between the observation techniques, e.g., between
GPS and satellite altimetry, see Brunini et al. [2005], Todorova [2008] or Dettmering et al.
[2011a]. The inter-techniques biases have to be considered as additional unknowns by extending
the columns of the design matrices in the combination procedure.
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5.3.4 Procedure of model calculation

The main steps of the computation procedure for the discussed electron density model are shown
in Fig. 5.8. The iterative algorithm is terminated when convergence is reached. The convergence
criteria can be chosen so that the corrections of the coefficients become numerically small. In
order to obtain stable and realistic solutions, some issues have to be considered. For example, the
unknown parameters such as peak densities, peak heights and scale heights have very different
magnitudes. The large differences of magnitude may cause that the magnitudes of the singular
values of the matrix of normal equations are very different, and thus, produce a large condition
number according to Eq. (4.40). Therefore, it is necessary to scale the parameters to assure
a well-conditioned numerical estimation, see details below. Furthermore, the ionosphere key
parameters have physical meanings and should be strictly positive, and some key parameters
should fall within a certain interval, and thus inequality constraints might be necessary to be
imposed in case that the estimated parameters are not realistic. An overview about the difficulties
of such inverse problems can be found in, e.g., Garcia and Crespon [2008].

Parameter scaling
For the linear equation system in Eq. (4.5), parameter scaling can be done by right multiplication
of the design matrix XXX by a weighting matrix WWW through [Siciliano and Khatib, 2008]

(XXXWWW )
(
WWW−1βββ

)
= X̃XXβ̃ββ (5.100)

where X̃XX = XXXWWW and β̃ββ = WWW−1βββ denote the scaled design matrix and parameter vector, respec-
tively. There are many approaches to choose the scaling matrixWWW where the most common one
is column scaling. If the matrix XXX is of full column rank,WWW can be defined as a diagonal matrix

WWW = diag{w1, . . . , wk} with wj = ‖xxxj‖−1 (5.101)

where xxxj denotes the j-th column ofXXX and ‖·‖ indicates the Euclidean norm. After the estimation
of the new variable β̃ββ is obtained, the parameter vector β̂ββ can be obtained through β̂ββ = WWWβ̃ββ.
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Figure 5.8: Flowchart of the main steps of calculating 4-D Ne model.
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Chapter 6

Numerical Analysis

This chapter is composed of two sections: the F2-layer modeling and the multi-layer modeling.
The first section is a modified and extended version of the article Regional modeling of ionospheric
peak parameters using GNSS data – an update for IRI [Liang et al., 2015b]. The MSR and data
compression follows the method described in the article Combination of ground- and space-based
GPS data for the determination of a multi-scale regional 4-D ionosphere model [Liang et al.,
2015a].

6.1 F2-layer modeling

6.1.1 Introduction of a regional F2-Chapman/plasmasphere model

Since the F2 layer is the most important part of the ionosphere, the development of the profile
function used in this thesis is firstly started with modeling the F2 layer and the plasmasphere,
i.e., the first three terms of Eq. (5.8) are vanishing. Furthermore, the plasmaspheric term of
Eq. (5.8) is adapted to allow the validity of the whole function over the full height range. Among
the different profilers introduced in Section 5.1.1, the α-Chapman function, i.e., Eq. (5.4) with
c = 0.5, is taken here to model the F2 layer, because the Chapman function is derived by the
simplified aeronomic theory and most modelers have found that α-Chapman function provides
a closer match with observations [Bilitza, 2002]. The plasmspheric representation used here is
based on the exponential function (2.63) and (5.9). The profile function (see Fig. 6.1) reads

Ne(h) = NmF2 exp [0.5 (1− z − exp(−z))] + NP0 exp

(
−|h− hmF2|

Hp

)
(6.1)

where z = (h − hmF2)/HF2. NP0 is called the plasmaspheric basis density, and Hp is the
plasmaspheric scale height. Compared with the plasmaspheric term in Eq. (2.63) or Eq. (5.9),
the exponential part in Eq. (6.1) is taking hmF2 as a base point, and a small Hp value be-
low hmF2 is introduced to ensure a continuous curve for the plasmaspheric part with a very
small contribution below hmF2. It is worth noting that, even though only one constant scale
height HF2 is considered in the Chapman layer for the bottomside and topside, a variation
of the shape of the resultant profile will be indirectly considered by the superposed exponen-
tial decaying function. In the following, the three ionospheric parameters, written in a vector
κκκF2 := [NmF2, hmF2, HF2]T , will be handled, and the left two plasmaspheric parameters are
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Figure 6.1: Vertical distribution of the electron density (Eq. (6.1)) with exemplary values
NmF2 = 1 · 106 el/cm3, hmF2 = 350 km, HF2 = 75 km, and NP0 = 1 · 104 el/cm3.

assumed to be known. Following Jakowski [2005], NP0 is assumed to be proportional to NmF2.
Hp is set to a physically plausible value of 104 km for h ≥ hmF2 (10 km for h < hmF2).

To model the spatiotemporal variations, each key parameter κ ∈ κκκF2 is represented regionally
by a series expansion in terms of tensor products of B-splines according to Eq. (5.17). Following
the Eqs. (5.71) and (5.79), the partial derivatives of Eq. (6.1) with respect to each key parameter
κ ∈ κκκF2 have to be calculated. They are obtained from

∂Ne

NmF2
= exp [0.5 (1− z − exp(−z))] (6.2)

∂Ne

hmF2
=

NmF2
2HF2 exp [0.5 (1− z − exp(−z))] (1− exp(−z)) + NP0

Hp
exp

(
− |h−hmi|Hp

)
if h ≥ hmF2

NmF2
2HF2 exp [0.5 (1− z − exp(−z))] (1− exp(−z))− NP0

Hp
exp

(
− |h−hmi|Hp

)
else

(6.3)

∂Ne

HF2
= NmF2 exp [0.5 (1− z − exp(−z))] h− hmF2

2 (HF2)2
(1− exp(−z)) . (6.4)

The general process of the model calculation follows Fig. 5.8; see also Limberger et al. [2013] and
Liang et al. [2015a,b] for more details. In the following, numerical applications of the developed
model will be given.

6.1.2 Study area and input data

The equatorial region is of primary interest to ionosphere scientists, since the ionosphere char-
acteristics have large spatial gradients [Coco, 1991]. The study area is thus chosen in a South
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American region, within [60◦S, 30◦N] and [250◦E, 340◦E] (a region of 90◦ × 90◦), which includes
the EIA. The developed model is tested for three selected days – a day under high solar activity
(July 1, 2012, solar F10.7 flux1 = 137.9, Kp2 = 3.3), a day under moderate solar activity (July
16, 2011, solar F10.7 flux = 96.9, Kp = 1.0), and a day under low solar activity (July 16, 2008,
solar F10.7 flux = 66.7, Kp = 1.3), respectively. Two types of GNSS data, namely, ground-
based two-frequency GPS observations of STEC and EDPs retrieved from ionospheric GPS RO
measurements acquired by the F3/C mission, are used.

Ground-based GPS data
The GPS observables are provided by the regional densification network Sistema de Referencia
Geocéntrico para las Américas (SIRGAS)3. It comprises about 350 continuously operating GNSS
stations distributed along Latin America and the Caribbean [Sánchez et al., 2013]. As mentioned
previously, leveled phase data after data screening are used. Therefore DCBs have to be consid-
ered in the GPS ionospheric observation (see Eq. (5.77)) and are estimated as a by-product with
daily constants in this study. Additionally, a zero-mean condition (cf. Eq. (5.82)) is applied to
the observed satellite DCBs during one day as explained previously. GPS data are available in
a 30-second sampling rate, which are highly correlated. Therefore, the amount of GPS data is
reduced using a lower time sampling rate. The weighting matrix, i.e., PPP 2 in Eq. (5.80) is thus
set to the identity matrix.

EDPs from ionospheric GPS RO data
The EDPs retrieved from RO data of the F3/C mission are used and kindly provided by the
CSRSR of NCU in Taiwan. Their retrieval technique is an improved Abel inversion which
considers horizontal gradients of the electron density distribution; for details see e.g., Tsai et al.
[2009]. A data screening is performed in a preprocessing step, in order that only profiles with
reasonable shapes around the F2 peak are used as input. In particular, profiles with hmF2 values
locating in a physically reasonable height range of [140 km, 500 km] and with data availability
around hmF2 within ±50 km are used. In addition, profiles dominated by high noises are
considered as outliers and removed. Since the electron densities are retrieved from the GPS
observations which have a high sampling rate during an occultation event, the electron densities
are densely distributed along the profile of about 2 km, and height-dependent correlations are
assumed to exist due to the retrieval algorithm. Let Ne,i and Ne,j denote the electron densities at
the height hi and hj , respectively, the correlation between the two individual electron densities
Ne,i and Ne,j are approximated by the simple and commonly used positive definite Hirvonen’s
covariance function (e.g., Moritz, 1976, and references therein; Koch, 1999)

σ̂i,j = σ̂(∆h) =
σ̂(0)

1 + (∆h/a)2
with ∆h = |hj − hi| (6.5)

where σ̂(0) = σ̂ii = σ̂jj , namely, the standard deviations of the electron densities along the profile
are assumed to be equal. The constant a is the correlation length, which is set to the value 10
such that the correlation of the electrons with a distance of 200 km is close to zero (see Fig. 6.2).

1The solar F10.7 flux and the Kp index are obtainable from the Goddard Space Flight Center/Space Physics
Data Facility (GSFC/SPDF) OMNIWeb interface (http://omniweb.gsfc.nasa.gov).

2Kp index is a global geomagnetic storm index, which is calculated by an average of K indices from a network
of geomagnetic observatories. Kp index ranges from 0 to 9 where 0− 1 means quiet geomagnetic conditions and
Kp ≥ 4 refers to disturbed geomagnetic conditions [Bartels et al., 1939].

3www.sirgas.org.
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Figure 6.2: Covariance function with the correlation length a = 10 and σ̂(0) = 1.

Figure 6.3 shows the distribution of input data exemplarily for July 1, 2012, where the gray
triangles depict the positions of the GPS stations; the red dots indicate the locations of EDPs
(after data screening) labeled with the F3/C satellite identifier C# and the observed time in UT
(hour:minute:second).
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Figure 6.3: Data distribution within the study area on July 1, 2012.

IRI – Background model
As explained previously, the prior information is required to overcome data gaps. In this work,
IRI-2012 is taken as the background model to derive the prior information µµµd of the coefficients.
For this purpose, the B-spline levels in Eq. (5.17) have to be specified. According to Eq. (5.27),
J1 = J2 = J3 = 3 is chosen here, for all three key parameters in κκκF2. In this manner, the model
resolution is adapted to the spatiotemporal distribution of the combined two types of GNSS data
during one day. Based on Eq. (5.23), µµµd is composed of 3 ·KJ1 ·KJ2 ·KJ3 = 3 · (23 + 2)3 = 3000
B-spline coefficients with 1000 for each parameter κq (q = 1 :–NmF2, 2 :–hmF2, 3 :–HF2). To
derive µµµd, time-varying maps of κκκF2 are required in the study area. NmF2 and hmF2 can
be directly predicted by IRI, whereas HF2 can be indirectly obtained from IRI. According to
Jayachandran et al. [2004, and references therein], the relation between the slab thickness τs and
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the scale height HF2 of an α-Chapman layer of the ionosphere

τs = 4.13 ·HF2 (6.6)

holds for an α-Chapman layer, where τs1 is defined as the ratio [Davies, 1990]

τs =
V TEC

NmF2
(6.7)

which represents the equivalent slab thickness of the ionosphere having a constant uniform elec-
tron density equal to NmF2. τs is a significant parameter that contains information about
the neutral temperature and can be related directly to the scale height for an assumed EDP
[Jayachandran et al., 2004; Jin et al., 2007]. Therefore, the relation

HF2 =
V TEC

4.13 ·NmF2
(6.8)

can easily be obtained, namely, HF2 can be indirectly derived as IRI predicts VTEC values.
κκκF2 is stored on a 3-D grid with a resolution of 2.5◦ × 2.5◦ × 6 min with respect to λ, ϕ and t.
Therefore, totally (90/2.5+1)×(90/2.5+1)×(24 ·60/6+1) = 329,929 grid points are used as the
size of the study area is 90◦(λ)× 90◦(ϕ)× 24 h(t). Let κκκIRIq be the vector of a certain parameter
κq which collects the corresponding values from background model of all grid points, eeeκIRIq

be
the error vector including errors resulting from, e.g., modeling approximations, and µµµdκq be the
vector of the prior information of the 1000 coefficients of κq, we can establish the equation

ΦΦΦµµµdκq = κκκIRIq + eeeκIRIq
(6.9)

based on Eq. (5.17) where

ΦΦΦ =


φJ1,J2,J30,0,0 (λ1, ϕ1, t1) · · · φJ1,J2,J3KJ1−1,KJ2−1,KJ3−1

(λ1, ϕ1, t1)

...
. . .

...
φJ1,J2,J30,0,0 (λn, ϕn, tn) · · · φJ1,J2,J3KJ1−1,KJ2−1,KJ3−1

(λn, ϕn, tn)

 . (6.10)

Note that the selected spatiotemporal region [250◦, 340◦] × [−60◦, 30◦] × [0 h, 24 h] has to be
transformed to the unit cube, in order to calculate ΦΦΦ. Then, µµµdκq can be estimated by the
method of least squares through

µ̂µµdκq = (ΦΦΦT ΦΦΦ)−1 ΦΦΦT κκκIRIq . (6.11)

Note, the prior information generally differs from the background model, since the accuracy of
the representation of the background model depends on the selected B-spline levels. If Eq. (6.11)
is applied to all three parameters of κκκF2, the vector µ̂µµd = [µ̂µµTdκ1

, µ̂µµTdκ2
, µ̂µµTdκ3

]T is obtained.

It can be expected from the characteristics of the B-splines that neighboring overlapped B-splines
coefficients are correlated, see Fig. 5.3. The corresponding correlation matrix of the B-splines can
be calculated according to the Eqs. (4.18), (4.21) and (4.22). Since the correlation matrix of the
B-splines for a certain κq depends only on the covariance matrix (ΦΦΦT ΦΦΦ)−1, which is determined
by positions and times of the grid points and the B-spline levels, the correlations of the B-splines
for a certain κq do not depend on κq itself. Figure 6.4(a) shows the correlation matrix of the
1000 B-spline coefficients, which are arranged as follows: firstly, the shift k1 of the B-splines in
the longitude dimension, i.e., φJ1;k1(λ) (see Eq. (5.18)), is varied, then followed by the shift k2

1A typical value of the slab thickness is 300 km [Davies, 1990].
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Figure 6.4: Correlation matrix of the 1000 B-spline coefficients dJ1,J2,J3k1,k2,k3
of the levels J1 = J2 =

J3 = 3 (a) with the black box (100× 100 coefficients) zoomed in (b), and the black box (10× 10
coefficients) of (b) zoomed in (c). The scales of the three color bars are the same.

of φJ2;k2(ϕ), finally k3 of φJ3;k3(t) is changed, i.e., the shifts of the coefficients are ordered by

1− 100 coefficients


k1 = 0, k2 = 0, k3 = 0→ · · · k1 = 9, k2 = 0, k3 = 0→
k1 = 0, k2 = 1, k3 = 0→ · · · k1 = 9, k2 = 1, k3 = 0→

...
k1 = 0, k2 = 9, k3 = 0→ · · · k1 = 9, k2 = 9, k3 = 0→

101− 1000 coefficients

{
k1 = 0, k2 = 0, k3 = 1→ · · · k1 = 9, k2 = 9, k3 = 1→
k1 = 0, k2 = 0, k3 = 9→ · · · k1 = 9, k2 = 9, k3 = 9 .

Therefore, the ten blocks along the diagonal direction of Fig. 6.4(a) from left to right represent
the changes of the B-splines in the time dimension, corresponding to k3 = 0, . . . , 9. To have a
closer look at a certain block, e.g., the 100 × 100 coefficients in the black box of Fig. 6.4(a), it
is zoomed in Fig. 6.4(b). Again, the ten blocks along the diagonal direction from left to right
indicate the variations of the shift k2. The 10× 10 coefficients in the black box of Fig. 6.4(b) is
zoomed in Fig. 6.4(c), where the ten elements along the diagonal direction refer to the changes
of k1. As can be seen, for a certain B-spline, the correlation structures are visible between it
and its three adjacent B-splines. In particular, a negative correlation of about −0.5 appears
between the nearest neighboring B-splines, which means, an increase of the value of a specific
B-spline will lead to an decrease of the values of the nearest neighbors. This can be expected
from the property of the B-splines introduced in Section 5.2.3, that at most three B-splines
are non-zero on any interval between two neighboring knots and their sum is equal to one. A
positive correlation of approximately 0.2 exists between the second nearest neighbors, which is
followed by the correlation of about −0.1 between the third nearest neighbors. The derived
stochastic information is then introduced into the weight matrix PPPµd for model calculation,
however, correlations between the coefficients of the different parameters are not incorporated
here, i.e.,

PPPµd =

PPPµ, dNmF2
000 000

000 PPPµ, dhmF2
000

000 000 PPPµ, dHF2

 (6.12)

where the assumptions PPPµ, dNmF2
= PPPµ, dhmF2

= PPPµ, dHF2
holds for the weight matrices of the
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three parameters.

6.1.3 Results of the F2 layer parameters and discussions

Since the establishment of the adjustment model considering STEC observations requires a
huge number of integration, the calculation is very time-consuming. According to Stankov et al.
[2003], the electron densities above approximately 2000 km have little contribution to the inte-
grated electron content. In order to integrate efficiently, the numerical integration is performed
from 80 km to 2000 km, as electron content below 80 km is also negligible. Three “integration
layers” with layer-dependent step sizes are introduced to consider the different electron density
distribution, see Fig. 6.5. In particular, the F2 layer has the maximum electron density values

�

�

Figure 6.5: Illustration of the developed integration procedure using the Gauss-Legendre quadra-
ture method [Liang et al., 2015b]. Each key parameter is stored as a 3-D grid with a resolution
of 2.5◦ × 2.5◦ × 6 min. Interpolation should be performed based on the 3-D grid, in order to
calculate electron density values at the evaluation points (in blue) along the ray path.

and the largest variations, and thus the smallest step size is selected for the “integration layer”
covering the F2 layer. The selection of the steps sizes is in consideration of computation time
and accuracy. The specific height boundaries of the introduced “integration layers” and the step
sizes used for integration are shown in Table 6.1. Within each step size (cf. the interval in the

Table 6.1: Introduced “integration layers” and layer-dependent step sizes for the numerical inte-
gration of the electron densities along a certain ray path.

“Integration layer” Height range [km] Step size [km]
“Integration layer” 1 [80, 200] 50
“Integration layer” 2 (200, 1200] 40
“Integration layer” 3 (1200, 2000] 100

black circle of Fig. 6.5), the Gauss–Legendre quadrature (Eq. (5.89)) is performed. The number
of nodes or the degree n is set to 6 for the same consideration of the step sizes. To carry out
model computations, each key parameter κq ∈ κκκF2 = [NmF2, hmF2, HF2]T is stored in a 3-D
grid of resolution 2.5◦ × 2.5◦ × 6 min with respect to λ, ϕ and t, respectively (see Fig. 6.5). In
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this way, the electron density values at the integration nodes are calculable using an interpolation
algorithm.

Since linearization is performed, initial values of the unknowns are required for the iterative
algorithm. The initial values of the coefficients can be derived from an external model, e.g., IRI.
Note, that the external model used to estimate the initial condition needs not be the same as
the background model for deriving the prior information.

To estimate κκκF2, a sequential estimation similar to Alizadeh [2013] is performed in this thesis,
in order to increase the stability of the linearized model, namely

– in the first step, only NmF2 is estimated by assuming hmF2 and HF2 as known,

– in the second step, the estimated NmF2 values are used to estimate hmF2 and HF2
jointly.

The parameter estimation follows Eq. (5.96), where the unknown variance components σ21 of F3/C
observations and σ22 of GPS observations are determined by VCE introduced in Section 4.5. We
introduce different variance components σ2µ,NmF2, σ

2
µ, hmF2 and σ2µ,HF2 for the prior information

of the three key parameters. As introduced previously at the end of Section 4.5, a reliable
estimation of the variance component of the prior information cannot be obtained if the residual
vector in Eq. (4.51) has no random character. This is the case when IRI is used as a given
background model. Thus, the three different variance components for the prior information are
fixed to empirical values. After the unknowns are estimated, κ̂κκF2 can be constructed everywhere
over the study area during the whole day. Figure 6.6 shows exemplarily the estimated key
parameters (bottom) for N̂mF2 (left), ĥmF2 (mid) and ĤF2 (right), which are constructed on
the defined 3-D grid (cf. Fig. 6.5) at 16 UT on July 1, 2012. The used input data as shown in
Fig. 6.3 is also illustrated in the figures, where white dots instead red ones are used to denote
locations of EDPs. The corresponding key parameters derived from IRI-2012 are shown in the
top panels. Comparing the top and the bottom maps, it can clearly be seen that the estimated
signals describe finer structures than IRI, and the differences to IRI appear mainly over the
continent and partly over the ocean where observations are available. Note that, as introduced
previously, each B-spline has an influence zone, and therefore a single observation can influence
only its surrounding area in both, the spatial and temporal domains. The size of the influence
area is based on the resolution of the model according to the selected B-spline levels. For the
selected levels J1 = J2 = J3 = 3, the resolution of the model is about 10◦×10◦×2.7 h. Therefore,
the two profiles at about 17 h 1 min and 17 h 20 min at the bottom right corner can affect the
maps at 16 UT. It can also be seen that, for regions where no observations are available, especially
over the ocean areas, the developed model depends on the quality of IRI. Taking a closer look
to the NmF2 maps, we can see that the estimated N̂mF2 values seem to smooth out the EIA
structure, namely, the estimated N̂mF2 yields lower values than IRI for the double EIA peaks
and higher values for the trough between the two peaks. This phenomenon is consistent with
the studies by, e.g., Yue et al. [2012]. According to Yue et al. [2012, and references therein],
the Abel retrieval from F3/C RO measurements can tend to smooth out the EIA structure
as a result of the assumption of spherical symmetry. Azpilicueta et al. [2015] estimated the
F2 peak parameters using EDPs derived from F3/C, and they also found that the developed
model gives systematically higher values than IRI for the valleys between the two EIA peaks.
The estimated standard deviations of the parameters are computed according to Eq. (5.99) and
shown in Fig. 6.7. It can be seen that the precision could only be improved over regions where
data are available. In particular, the precisions of about 1.3 · 104 el/cm3 for N̂mF2, 2.9 km for
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ĥmF2 and 0.9 km for ĤF2 are reached.
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Figure 6.6: IRI-2012 NmF2 (left), hmF2 (mid) and HF2 (right) at 16 UT on July 1, 2012 (1st

row); estimated final parameters N̂mF2 (left), ĥmF2 (mid) and ĤF2 (right) (2nd row).
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Figure 6.7: Estimated standard deviations of N̂mF2 (left), ĥmF2 (mid) and ĤF2 (right).

In the following, comparisons between the developed model and other data sources will be carried
on. For the purpose of quantifying the comparisons, some useful metrics are defined now. Let
βββ and βββ∗ be two vectors of the same size, where βββ is the model vector and βββ∗ is treated as the
reference vector. Furthermore, · and ·̃ are used to denote the operations for taking the mean
value and the standard deviation of a vector. We define the following statistical quantities:
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• mean difference: βββ − βββ∗,

• standard deviation of difference: β̃ββ − βββ∗,

• mean of relative difference: (βββ−βββ
∗

βββ∗ ),

• standard deviation of relative difference: (̃βββ−βββ
∗

βββ∗ ),

• correlation coefficient [Press et al., 2007]:

∑
i
(βi−βββ)(β∗i −βββ∗)√∑

i
(βi−βββ)2

√∑
i
(β∗i −βββ∗)2

.

Note that these definitions are always referred to a type of variable, which can be one of the
three key parameters or VTEC. Furthermore, when we talk about differences, there is always a
reference model as βββ∗ depending on the place and context in this thesis.

The estimated key parameters are compared with the reference values predicted by IRI at 16 UT,
i.e., for a certain key parameter, βββ is the vector collecting estimated model values of all grid points
over the study area at 16 UT, while βββ∗ is the vector collecting the corresponding values from IRI.
The statistical analyses show that there is no significant difference between the developed model
and IRI. For example, the differences of NmF2 range from −4.3 · 105 el/cm3 to 2.4 · 105 el/cm3,
with a mean value of −3.1 · 104 el/cm3 (−2.6%, mean of relative difference) and a standard
deviation of 1.2 · 105 el/cm3 (12.6%, standard deviation of relative difference). The differences
of hmF2 range from −58.7 km to 32.6 km, with a mean value of −2.5 km (−0.5%, mean of
relative difference) and a standard deviation of 14.8 km (4.9%, standard deviation of relative
difference). Then the statistical quantities of deviations between the developed model and IRI
are also calculated considering all the constructed grid points during the three selected days,
indicating no significant difference as well. The conclusions are compatible with the studies by
e.g., Azpilicueta et al. [2015]: they concluded that there is no significant systematic bias on
both NmF2 and hmF2 between IRI and their La Plata Ionospheric Model (LPIM) [Brunini
et al., 2013a] obtained from F3/C EDPs. Furthermore, the ranges of the deviations of the
two parameters between the developed model and IRI are comparable with the ones shown by
Azpilicueta et al. [2015]. Bilitza et al. [2012] have also reported the discrepancy of IRI hmF2 with
two Brazilian ionosonde stations in the low latitude region, and have revealed the overestimation
of the IRI hmF2 at Sao Luis (near the magnetic equator, geographical coordinate: 2.3◦S, 316◦E))
by about 40 km (cf. Fig. 6.8(B)(a)). It should be kept in mind that IRI is a climatological model
which provides monthly averages based on a large volume of past ground and space data. Since
IRI-2012 has currently not assimilated any space-geodetic observation, the modeling approach
can serve to update the parameters of IRI.

6.1.4 MSR and data compression application

As introduced previously, B-splines can construct wavelet functions which generate a MSR.
Based on the vectors ∆d̂ddNmF2, ∆d̂ddhmF2 and ∆d̂ddHF2 (cf. Eq. (5.68)) of the estimated coefficient
corrections, a MSR is performed. Figure 6.8 presents a graphical demonstration of the MSR
exemplarily applied to the estimated ∆N̂mF2 (Fig. 6.8(A)(a)), ∆ĥmF2 (Fig. 6.8(B)(a)), and
∆ĤF2 (Fig. 6.8(C)(a)) values of the highest levels J1 = J2 = J3 = 3 at 16 UT on July
1, 2012. The ordering of the panels of each subfigure is the same as the arrangement of the
coefficient vectors of the pyramid algorithm explained in Fig. 5.5 (1-D case there, but 3-D case
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Figure 6.8: MSR of the estimated values ̂∆NmF2 (A), ∆̂hmF2 (B) and ∆̂HF2 (C) at 16 UT
on July 1, 2012: low-pass filtered smoothed signals (top: from left to right), estimated band-pass
filtered detail signals (bottom: from left to right). Note that the level refers to all longitude,
latitude and time dimensions.
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here). In particular, the panels (b)-(d) depict the low-pass filtered (smoothed) signals, which are
computed based on the Eqs. (5.42) and (5.48a). The band-pass filtered detail signals are shown
in the panels (e)-(g), and they are computed according to the Eqs. (5.44) and (5.48b). The detail
signals contain the information of the difference between the two adjacent smoothed signals, i.e.,
(e) = (a)− (b), (f) = (b)− (c), and (g) = (c)− (d). Consequently, it can easily be deduced that
(d) + (e) + (f) + (g) = (a), namely, the sum of the smoothed signal at the lowest level (panel
(d)) and the three detail signals (panels (e)-(g)) yields the signal at the highest level (panel (a)),
which reflects the principle of the MSR. It can be seen from the figure that the structures of
both smoothed and detail signals become gradually coarser with decreasing levels.

The number KJJJ of scaling coefficients at different levels JJJ , and the total number LJJJ of wavelet
coefficients as well as the number LnJJJ (n = 1, . . . , 7) of wavelet coefficients of different subbands
(see Eq. (5.56)), are listed in Table 6.2. It is clear from the table that the number of both scaling
and wavelet coefficients decrease with decreasing levels, namely, less coefficients are required to
describe signals with coarser structures. Furthermore, the number of the scaling coefficients of
level JJJ equals the sum of the number of the scaling coefficients and the total number of the
wavelet coefficients of the adjacent lower level J − 1J − 1J − 1 (see Eq. (5.33)), which means, the number
of coefficients during the decomposition process of MSR is also kept.

As an important application of the MSR, data compression can be performed. Since all small-
scale structures are contained in the detail signals of the higher levels, level-dependent thresh-
olds are applied and the wavelet coefficients whose absolute values are smaller than the speci-
fied threshold are neglected. Following Zeilhofer [2008], a relation between the level-dependent

Table 6.2: The number KJJJ of scaling coefficients of levels JJJ ∈ {{3, 3, 3}, . . . {0, 0, 0}}, the total
number LJJJ of wavelet coefficients with the number LnJJJ (n = 1 . . . , 7) of wavelet coefficients of
the 7 subbands.

level JJJ KJJJ Total LJJJ L1
JJJ L2

JJJ L3
JJJ L4

JJJ L5
JJJ L6

JJJ L7
JJJ

3, 3, 3 1000 – – – – – – – –

2, 2 ,2 216 784 144 144 144 96 96 96 64

1, 1, 1 64 152 32 32 32 16 16 16 8

0, 0, 0 27 37 9 9 9 3 3 3 1

thresholds % 0,0,0
κq = 0.5 · % 1,1,1

κq = 0.25 · % 2,2,2
κq are assumed and the threshold % 2,2,2

κq for the detail
signal of the levels J1 = J2 = J3 = 2 is chosen empirically. The more the wavelet coefficients
are neglected, the higher the compression rate. This is clearly reflected from Table 6.3, which
illustrates the variations of the number of neglected wavelet coefficients, compression rate, Root
Mean Square (RMS) value of the deviations between the compressed and the original signal of
the highest level, with respect to different thresholds, exemplarily applied for ∆d̂ddNmF2. The
compression rate ξ is calculated by

ξ =

∑
J ′J ′J ′
mJ ′J ′J ′∑

J ′J ′J ′
LJ ′J ′J ′
× 100% with J ′J ′J ′ ∈ {{2, 2, 2}, {1, 1, 1}, {0, 0, 0}} (6.13)

where the numerator is the total number of neglected wavelet coefficients with mJ ′J ′J ′ the number
of neglected wavelet coefficients of level JJJ ′, and the denominator denotes the total number of
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Table 6.3: Data compression with different level-dependent thresholds: mJ ′J ′J ′ denotes the total
number of neglected wavelet coefficients of the 7 subbands of level J ′J ′J ′.

% 2,2,2
NmF2 [el/cm3] Total #

∑
J ′J ′J ′
mJ ′J ′J ′ m2,2,2 m1,1,1 m0,0,0 ξ RMS [el/cm3]

5 · 104 844 722 105 17 86.7% 5.4 · 104

4 · 104 809 701 93 15 83.1% 5.0 · 104

3 · 104 751 658 81 12 77.2% 4.6 · 104

2 · 104 666 589 69 8 68.4% 3.8 · 104

1 · 104 507 456 47 4 52.1% 2.8 · 104

9 · 103 482 435 43 4 49.5% 2.7 · 104

8 · 103 458 415 39 4 47.1% 2.5 · 104

7 · 103 433 393 36 4 44.5% 2.4 · 104

wavelet coefficients. According to Table 6.2, we have that
∑

J ′J ′J ′ LJ ′J ′J ′ = 784 + 152 + 37 = 973.
The compressed signal is computed on the defined 3-D grids according to the Eqs. (5.44), (5.57)
and (5.59) from the reduced set of coefficients. As can be seen from Table 6.3, with increasing
threshold, more wavelet coefficients are neglected and thus the compression rate becomes larger.
However, larger RMS value is the deviation between the compressed and the original signals.
Usually, the threshold has to be chosen so that a good balance between lost information and
compression rate is achieved.

Taking the threshold % 2,2,2
NmF2 = 8 · 103 el/cm3 for example, the compressed signal of ∆N̂mF2 at

16 UT on July 1, 2012 is shown in the left panel of Fig. 6.9(a) and its deviation to the original
signal (Fig. 6.8(A)(a)) is illustrated in the right panel. As can be seen, there is no large difference,
and therefore no dominant signal is lost. The RMS value of the deviation map is approximately
3.1 · 104 el/cm3. At the selected threshold, it can be seen from Table 6.3 that almost half of the
wavelet coefficients are neglected out of the total 973 wavelet coefficients. Compared with the
1000 scaling coefficients for NmF2 at the highest levels, totally 1000 − 458 = 542 coefficients
needs to be stored. Figure 6.9(b) shows the results for ∆ĥmF2 at the threshold % 2,2,2

hmF2 = 1 km
with the compression rate of 36.3%. The RMS value of the deviation map is about 3.4 km, and
3.8 km considering all the grid points during the whole day. Figure 6.9(c) depicts the results for
∆ĤF2 at the threshold % 2,2,2

HF2 = 0.3 km with the compression rate of 30.5%. The RMS of the
deviations there equals 1.3 km at 16 UT and 1.2 km during one day.

It should be kept in mind that the positions of the nonzero coefficients have also to be stored
besides the nonzero coefficients. Since the input data sets in this scenario are small, the chosen
B-spline levels are not high, i.e., the number of the wavelet coefficients is a few. Consequently,
the effect of data compression cannot be achieved well. The purpose of the examples is to
demonstrate the application of MSR for data compression. An efficient data compression could
be achieved when handling huge data sets.
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Figure 6.9: Approximation of the compressed signal of ∆N̂mF2 with the threshold % 2,2,2
NmF2 =

8 · 103 el/cm3 (a, left), ∆ĥmF2 with the threshold % 2,2,2
hmF2 = 1 km (b, left) and ∆ĤF2 with

the threshold % 2,2,2
HF2 = 0.3 km (c, left) at 16 UT on July 1, 2012 based on reduced number

of wavelet coefficients; Deviations between the compressed and original signals of ∆N̂mF2 (a,
right), ∆ĥmF2 (b, right) and ∆ĤF2 (c, right).
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6.1.5 Validation

In the following, the results of the developed model will be validated by independent datasets:
ionosonde data (Section 6.1.5.1) and VTEC maps computed by a different approach (Section
6.1.5.2). Additionally, the developed model is evaluated by a cross validation with GPS obser-
vations (Section 6.1.5.3).

6.1.5.1 Ionosonde measurements

The principle of ionosonde is to transmit a radio pulse vertically and to measure the travel
time, that is taken to receive the echo because of the reflection of the ionosphere in the different
layers. As the ionosonde transmits signals of different frequencies from low to high, the critical
frequencies (see the introduction of Section 2.2) of the different layers can be deduced from the
so-called ionograms (a graph of “virtual” heights1 versus frequencies), since a signal that has a
higher frequency than the critical frequency of a certain layer will not be reflected from that
layer and it will pass to a denser layer. It is generally stated that ionosondes provide reliable
values of foF2. According to Eq. (5.10), NmF2 can be derived from foF2. The ground-based
ionosonde data from two stations in the study area are used: Jicamarca (geographical coordinate:
(12.0◦S, 283.2◦E)) and Port Stanley (geographical coordinate: 51.6◦S, 302.1◦E)). The data can
be downloaded from the Global Ionospheric Radio Observatory (GIRO) [Reinisch and Galkin,
2011]. All ionogram data from Jicamarca and Port Stanley were manually rescaled using the
visualization and editing tool SAO-Explorer [Khmyrov et al., 2008], to correct the unreliable
autoscaling by the outdated Automatic Real-Time Ionogram Scaler with True height (ARTIST)
4 software [Galkin et al., 2008] that is still being used in the old digisondes at these stations.

Figure 6.10 shows the NmF2 comparison of the developed model and IRI with the ionosonde
measurements as the reference, for the three selected days under high solar activity (top), moder-
ate solar activity (mid) and low solar activity (bottom), respectively. The left column illustrates
the comparison at station Jicamarca and the right for station Port Stanley. The uncertainty of
the estimates (i.e., the standard deviations), computed according to Eq. (4.18), of the developed
model is plotted along with the model estimations. It can be seen that the developed model for
NmF2 generally fits to ionosonde data better than IRI before 14 UT at Jicamarca for July 1,
2012, whereas most of the ionosonde data lie between the developed model and IRI afterwards.
As for Port Stanley, the model estimation is similar to IRI, whereas the ionosonde measurements
almost fall within the model uncertainty range from 0 UT till 11 UT. For July 16, 2011, distur-
bances such as Traveling Ionospheric Disturbances (TIDs)2 can be observed (Reinisch, B. W.,
personal communication, 2014). A good match between the results of the developed model and
the ionosonde measurements can still be seen from 0 UT to 2 UT at Jicamarca, and it is also ap-
parent from the figure that the model estimations are much closer to the ionosonde data than IRI
around the daily maximum of NmF2 at Port Stanley. Furthermore, on July 16, 2008, although
there was a strong spread F3 at night at Jicamarca when the F layer had no well-defined NmF2

1Radio waves travel more slowly in the ionosphere than in free space, however, the radio waves are assumed
to travel at the speed of light to derive the height of the layers from the travel time.

2TIDs refer to irregularities of the F region exhibited as the wave-like structures of electron density oscillations
[Zolesi and Cander, 2014].

3Spread F refers to plasma instability phenomenon occurring in the F region, which stems from the earliest
observations using ionosondes, showing that the reflected echo did not display a well-behaved pattern but was
“spread” in range or frequency [Kelley, 2009, and references therein].
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Figure 6.10: Comparisons of NmF2 estimated from the developed model (blue circles), IRI-2012
(green circles) and ionosonde observations (red circles) at Jicamarca (left) and at Port Stanley
(right) for July 1, 2012 (top), July 16, 2011 (mid) and July 16, 2008 (bottom). The standard
deviations (i.e., the formal errors) are plotted along with the model estimations [Liang et al.,
2015b].
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(Reinisch, B. W., personal communication, 2014), it can still be seen that the developed model
is generally closer to the ionosonde data than IRI from 0 UT to 5 UT. Regarding Port Stanley, a
number of ionograms were unfortunately missing (it is an old Digisonde Portable Sounder (DPS)
installed in 1993), the figure reveals that the developed model for NmF2 is slightly closer to the
ionosonde measurements till 7 UT whereas the developed model and IRI are comparable for the
rest of the day. In general, the modeling approach shows the potential to update IRI NmF2 at
both stations.

With the ionosonde measurements as the reference, some statistical quantities are calculated. The
standard deviations of the difference and the relative difference between the model estimations
and IRI are shown in Table 6.4. It is obvious that for all three days, at Jicamarca, the standard
deviations of the differences between the developed model and ionosonde data are smaller than
the ones between IRI and ionosonde data. At Port Stanley, the developed model also yields
smaller standard deviation of relative differences than IRI for the day under moderate solar
activity (July 16, 2011) and the day under low solar activity (July 16, 2008). However, the
developed model gives a slightly larger standard deviation than IRI for the day under high solar
activity (July 1, 2012). In particular, at Jicamarca, the developed model achieves the data from
2012, 2011 and 2008, respectively, a smaller variation by 10.6%, 6.9% and 5.4% than IRI. These
numbers may indicate that the variations gradually decrease with decreasing solar activity, which
means that the improvements probably increase with increasing solar activity. At Port Stanley,
the developed model reaches the ionosonde measurements with a smaller variation of about 8.6%
than IRI for the day under moderate solar activity, however, the developed model and IRI are
comparable for the other two days.

The relative uncertainty of the model estimations of NmF2 is then computed. We use the term
relative uncertainty of a set of model parameters, which is referred to its standard deviation
divided by the corresponding model estimate. The mean of relative uncertainties of NmF2
estimations of the developed model reaches 6.1% at Jicamarca, and amounts to about 27.0% at
Port Stanley for July 1, 2012. The values are 2.9% at Jicamarca and 21.3% at Port Stanley for
July 16, 2011, and 3.9% and 28.1% at Jicamarca and at Port Stanley, respectively, for July 16,
2008. It is apparent that the uncertainties of the developed model at Port Stanley are larger
than those at Jicamarca, which might be attributed to a better distribution of observations at
Jicamarca than at Port Stanley (cf. gray triangles in Fig. 6.3, less GPS stations exist in the
surrounding area of the station Port Stanley).

Based on the validation by ionosonde data, the following conclusions can be drawn:

• in general, the developed model approaches the ionosonde data better than IRI,

• the improvements are different for the two stations, which is likely due to different data
distributions,

• a clear correlation of the improvements with solar activity is not detectable, which is
probably due to the small database.

6.1.5.2 VTEC

The model is validated additionally by a comparison with the VTEC computed by the IGS IAACs
[Hernández-Pajares et al., 2009]. Based on N̂mF2, ĥmF2 and ĤF2 values of the developed
model, the vertical EDPs are constructed on the defined 3-D grid points. Then VTEC values
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Table 6.4: Standard deviations of the NmF2 differences (absolute and relative) between IRI or
the developed model and the ionosonde data

Jicamarca

2012-07-01 2011-07-16 2008-07-16

IRI [el/cm3] 1.1 · 105 (29.0%) 1.3 · 105 (33.5%) 7.8 · 104 (41.2%)
Model [el/cm3] 8.0 · 104 (18.4%) 1.1 · 105 (26.6%) 7.0 · 104 (35.8%)

Port Stanley

2012-07-01 2011-07-16 2008-07-16

IRI [el/cm3] 9.4 · 104 (61.7%) 8.9 · 104 (74.8%) 2.2 · 104 (35.4%)
Model [el/cm3] 1.0 · 105 (63.7%) 6.0 · 104 (66.2%) 2.2 · 104 (32.7%)

are computed using the Gauss–Legendre quadrature. For more details the VTEC product from
CODE, as one of the IGS IAACs, is taken as a reference for comparison. Their VTEC maps
are based on spherical harmonic representations using ground-based GNSS observations [Schaer,
1999]. The comparison is shown in Fig. 6.11 exemplarily for 16 UT of July 1, 2012. The top
panels (from left to right) illustrate the VTEC maps of the developed model, IRI and CODE,
respectively. The VTEC difference between the estimated model and CODE is shown in the
bottom left panel, whereas the one between IRI and CODE is illustrated in the bottom right
panel. As can be seen from the difference maps, IRI generally has larger differences to CODE than
the developed model in particular over the continent. It can also be seen that the two difference
maps are similar such as the top left corner. This is because that almost no observation is
available there around 16 UT. For those regions without any observation, the developed model
values are dependent on the prior information derived from IRI. The RMS value of the differences
at 16 UT yields 6.8 TECU between IRI and CODE, which is improved to 5.6 TECU by the
developed model. Regarding all the grid points during the whole day, the RMS values of the
differences to CODE is 6.4 TECU for IRI, and 5.7 TECU for the developed model. For July
16, 2011, the RMS value is 4.7 TECU for IRI, which is slightly improved to 4.2 TECU by the
developed model, while for July 16, 2008, the RMS values are comparable, 2.8 TECU for IRI
and 2.7 TECU for the developed model.

It would be interesting to see if there is a discrepancy between the continental and the ocean
areas. For that purpose, all the constructed grid points are divided into either continental or
oceanic points. Then the correlation coefficient is computed to have a quantitative comparison.
At 16 UT the correlation coefficient between IRI and CODE is 0.53 over the continent, increased
significantly to 0.94 by the developed model. The correlation coefficient between IRI and CODE
over the ocean areas is 0.84, compared to 0.86 between the developed model and CODE. As for
all the continental grid points during the whole day, the correlation coefficient between IRI and
CODE is increased by the developed model from 0.82 to 0.92 for July 1, 2012, from 0.87 to 0.94
for July 16, 2011, and from 0.90 to 0.92 for July 16, 2008. However, for the ocean areas, the
developed model and IRI are similar when compared with CODE. Specifically, the correlation
coefficient of the developed model is 0.89 compared to 0.87 of IRI for 2012, and both are about
0.90 for 2011 and 2008. The relatively higher similarity between the developed model and CODE
over the continent is due to the fact that both the developed model and CODE use ground-based
GPS observations as input.
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Figure 6.11: VTEC comparisons (July 1, 2012): VTEC maps at 16 UT from the developed
model, IRI and CODE (top, from left to right); VTEC differences to CODE of the developed
model (bottom left), IRI (bottom right).

Based on the above comparisons, the following statements might be concluded:

• VTEC difference to CODE can be improved by the developed model by up to 10% with
respect to IRI,

• the improvements decrease with decreasing solar activity,

• main improvements can be reached over the continents, since most observations are ground-
based GPS data which are located there.

6.1.5.3 Cross-validation

A simple cross-validation by GPS observations is also applied to evaluate the performance of
the developed model. For this purpose, the input GPS dataset is divided randomly into two
parts with roughly equal number of ray paths: one is used for the parameter estimation (called
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the training set) and the other for validation (called the testing set). Figure 6.12(a, b) display
the geographical distribution of the two datasets exemplarily for July 1, 2012, whereas IPPs are
shown in blue for the training set (a) and in red for the testing set (b), at a selected height of
450 km. Firstly, the developed model is estimated using the dataset (a), then STEC values of
the ray paths of the dataset (b) (as the reference data for comparisons) are calculated based on
the model parameters estimated from (a). Figure 6.12(c) shows the STEC comparison of the
dataset (b) plotted with respect to UT. The blue dot is the calculated model STEC, the red dot
represents the measurements with DCBs subtracted based on the developed model estimation,
and their difference is shown in green. As can be seen, STEC values are larger between 15 UT
and 20 UT, which fits to the local maximum of the ionosphere at about 14 LT. It can also be
seen that the differences of the model and the measurements do not differ with respect to the
time, and have a mean value of approximately 0.3 TECU. The RMS value of the differences is
about 3.9 TECU, which is comparable to the estimated mean standard deviation 3.0 TECU of
the residuals of the GPS observations. For both 2011 and 2008, the RMS values of the difference
of the model STEC and the reference data are about 2.5 TECU with respect to the estimated
mean standard deviations of 2.3 TECU.

It can be concluded from the cross-validation that:

• the STEC residuals have no dependency on UT and solar activity,

• a STEC accuracy of about 4 TECU can be reached by the model.
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Figure 6.12: Cross-validation: datasets for model calculation (a) and for model validation (b)
for July 1, 2012. Blue and red dots show the IPPs of the GPS observations at 450 km; STEC
comparisons (c): computed STEC (blue dots), measurements (red dots) and differences (green
dots) [Liang et al., 2015b].

111



6. NUMERICAL ANALYSIS

6.2 Multi-layer modeling

The model (6.1) includes only the most important F2 layer. To have a physically more realistic
representation, the profile function is extended by considering a multi-layer approach according
to Eq. (5.8). However, this makes parameter estimation more difficult as the number of key
parameters is increased significantly. In order to consider the most important layers, the signif-
icance of the distinct ionosphere layers is investigated firstly. To this end, the contributions of
the different layers in Eq. (5.8) to the VTEC till GPS orbit height are quantified, as GPS data
are one of the main input data for ionosphere modeling.

6.2.1 Significance of distinct layers

For this purpose, EDPs spanning the height range till 20,200 km are required. Since RO data
provide EDPs only till orbit height of LEO satellites, empirical models will thus be applied
to obtain EDPs for the investigation. As introduced in Section 2.5, IRI predicts the electron
density at the height range from 50 km to 2000 km, whereas IRI-Plas provides the electron density
towards the plasmaspause up to 36,000 km. Assuming that IRI with the NeQuick topside option
provides a more reliable electron density distribution than IRI-Plas below 2000 km, IRI with the
NeQuick topside model and IRI-Plas are therefore combined. In particular, the electron densities
till 2000 km are taken directly from IRI and those above 2000 km are obtained from IRI-Plas.
In order to avoid jumps which are caused by an inconsistency of the two models, gradients of
EDP from the IRI-Plas model in the area around 2000 km are compared with the gradient of
EDP from IRI at 2000 km. The used electron density points from IRI-Plas are starting at the
height when the absolute value of the gradient of EDP from IRI-Plas is larger than the value
from IRI at 2000 km. Fig. 6.13 shows exemplarily a profile located at (20◦S, 300◦E) on 20 June,
2012, where the electron density values predicted from IRI are indicated as blue dashed line, the
black dashed line with crosses represents the electron densities obtained from IRI-Plas, and the
red dashed line with circles shows the combined ones.
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Figure 6.13: EDP from IRI (blue dashed line), IRI-Plas (black dashed line with crosses) and the
final combined one (red dashed line with circles). Here only the electron densities below 8000 km
are shown. Note that the x-axis is in logarithmic scale.

Since electron densities are given at discrete heights, interpolation is required at the nodes when
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using the Gauss-Legendre formula (5.86). For convenience, the trapezoidal rule is applied. To
have a quantitative overview at different geographical positions and ionosphere conditions, EDPs
are generated on a regular grid with a resolution of 10◦ × 10◦ over the globe. Four days with
different seasons are selected during 2008 (low solar activity) and 2012 (high solar activity),
respectively. The nighttime condition is not considered because the D and F1 layers disappear
at night [Hargreaves, 1992]. The computation is performed exemplarily at 12 LT.

Figure 6.14 shows the contributions (in percentage) of the different layers, of all grid points over
the globe arranged along the x-axis, exemplarily for the selected day June 20, 2012. It is clearly
visible that the largest contribution comes from the F2 layer, followed by the plasmaspheric part
and the F1 layer. As expected, the smallest contribution is from the D layer. Average contribu-
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Figure 6.14: Contributions of the different layers to VTEC integrated till GPS orbit height
(2012-06-20), at 12 LT.

tions of the different layers over the globe during the selected days are shown in Table 6.5(a) for
2008 and Table 6.5(b) for 2012, where the colors red, green, yellow mark the first three largest
contributions, respectively. The results in various seasons are consistent. The F1 layer seems
to be more significant during the summer and at low solar activity, which is in agreement with
the statement in, e.g., Pezzopane and Scotto [2008]. The contributions of the D layer are within
0.03%.

6.2.2 Introduction of a multi-layer/plasmasphere profile

According to the above results, we neglect the D layer, i.e., the general model (5.8) becomes

Ne(h) = NE(h) +NF1(h) +NF2(h) +NH+(h > hmF2) . (6.14)

Like in Eq. (6.1), the α-Chapman function is used to describe the F2 layer. As introduced
previously in Section 2.2, the E and F1 layers behave like α-Chapman layer. Therefore, three
α-Chapman functions are applied for modeling the E, F1 and F2 layers, respectively. The
plasmaspheric termNH+ uses the exponential function (2.63), and it starts above hmF2 following
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Table 6.5: Average contributions of the different ionosphere layers and plasmasphere over the
globe during selected days of 2008 under low solar activity (a) and 2012 under high solar activity
(b).

(a)

Day D-layer E-layer F1 layer F2 layer Plasmasphere
50–90 km 90–140 km 140–200 km 200–1000 km 1000–20,200 km

2008-03-21 0.02% 3.67% 8.53% 76.25% 11.53%
2008-06-20 0.03% 4.54% 10.93% 71.14% 13.35%
2008-09-19 0.03% 4.30% 9.67% 73.73% 12.27%
2008-12-19 0.02% 3.15% 8.36% 75.20% 13.26%

(b)

Day D-layer E-layer F1 layer F2 layer Plasmasphere
50–90 km 90–140 km 140–200 km 200–1000 km 1000–20,200 km

2012-03-21 0.01% 1.92% 5.13% 82.39% 10.55%
2012-06-20 0.02% 2.59% 7.45% 78.10% 11.84%
2012-09-19 0.02% 2.16% 5.76% 80.94% 11.12%
2012-12-19 0.02% 1.97% 5.84% 79.81% 12.37%

Eq. (5.9). Therefore, Eq. (6.14) is modeled by

Ne(h) =
3∑
i=1

Nmi exp

{
0.5

[
1− h− hmi

Hi
− exp

(
−h− hmi

Hi

)]}
+NP0 exp

(
− h

Hp

)
(6.15)

with altogether eleven key parameters, collected in the 11× 1 vector

κκκ = [NmE,hmE,HE,NmF1, hmF1, HF1, NmF2, hmF2, HF2, NP0, Hp]
T . (6.16)

According to Liu et al. [2006, and references therein], the Chapman function, even with a constant
scale height, fits the topside ionosphere profile well up to several hundred kilometers above the
F2 peak. Within this thesis, the plamaspheric term NH+ is considered to start at hmF2+200 km
whereas 200 km is chosen empirically to better fit the IRI topside. Figure 6.15 shows the profile
function (6.15) with exemplary κκκ vector.

When applying a multi-layer modeling approach, a problem will arise whether such many key
parameters can be separated from each other. In order to check if the key parameters can be
estimated jointly, we use simulated EDPs to estimate the parameters in the following.

6.2.3 Simulation

Investigation of error covariance matrix of EDP
Before simulating EDPs, the error propagation through the onion peeling algorithm is investi-
gated following the strategy introduced in Section 5.3.1. We assume that the errors of the STEC
observables derived from carrier phase observations are statistically independent to each other
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Figure 6.15: Vertical distribution of the electron density with exemplary κκκ vector (Eq. (6.15)).

and are random, Gaussian-distributed. Therefore, the error covariance matrix D(S̃TECSTECSTEC) can
be assumed to be a diagonal matrix. Additionally, the standard deviations of S̃TECSTECSTEC along the
height are considered to be equal to 1 TECU. Therefore, D(S̃TECSTECSTEC) = I is used in the following
numerical computations.

The Ne observations along the profile are considered in a height range of [50, 800] km with a
constant resolution ∆h = 2 km. This leads to altogether 376 Ne observations. The covariance
matrix D(NeNeNe) is then calculated according to Eq. (5.75). The standard deviation σNe,i of Ne

observations along the height h is shown in Fig. 6.16. As can be seen, σNe,i is increasing from top
to bottom, i.e., the errors get larger from top to bottom. This clearly reflects that the errors of
the observations at higher altitudes propagate to the ones at lower altitudes. Except that from
the first to the second observation, the standard deviation increases linearly from top to bottom.
However, σNe,i do not vary strongly along the height where the ratio between the highest and
the lowest points is about 1.3. Consequently, they can be assumed to be of equal quality.
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Figure 6.16: Variations of σNe,i as a function of height.

Based on Eq. (4.7), the correlation coefficient is calculated and organized in the correlation
matrix following Eq. (4.22). The correlation matrix is illustrated in the left panel of Fig. 6.17.
The x- and y-axis indicate the index of the Ne observations along the height, where the top-left
corner denotes the observation at 800 km and the bottom-right corner denotes the observation
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at 50 km. To have a closer look, the part in the black dashed box is zoomed in the right panel. It

Index of Ne points

In
d
e
x
 o

f 
N

e
 p

o
in

ts

Correlation matrix

 

 

50 100 150 200 250 300 350

50

100

150

200

250

300

350

−0.5

0

0.5

1

Index of Ne points

In
d
e
x
 o

f 
N

e
 p

o
in

ts

 

 

210 215 220 225 230 235 240 245

210

215

220

225

230

235

240

245
−0.5

0

0.5

1

Figure 6.17: Correlation matrix ofNe observations along the height (left), where the black dashed
box is zoomed in the right panel.

can be visible that the strongest correlation occurs between the nearest neighboring observations,
with a negative correlation approaching −0.5. This is understandable from the second row of
the triangular matrix BBB in Eq. (5.73). An increased value of an electron density observation will
decrease the value of the nearest observation as the sum of the linear combination of the two
Ne observations is fixed. The second strongest correlation occurs between the second nearest
neighboring observations with a value of about 0.1. Furthermore, nearly no correlation appears.
Generally, a correlation less than 0.5 can be regarded as week correlation, and therefore, the
correlations between Ne observations can be considered to be independent from each other.

A closed-loop simulation is then performed to verify the ability of the adjustment system to solve
for the key parameters simultaneously. Specifically, noisy Ne measurements are simulated and
achieved by a sum of “true” electron density values calculated from a set of predefined “true”
values of parameters according to Eq. (6.15) and random noises. Since Eq. (6.15) depends on
the vector κ, we can write

Ne, j = Ne(hj) = Ne(hj ,κκκtrue) + ej (6.17)

where j = 1, . . . , n indicates the index of the measurements along a profile. The vector κκκtrue
collects predefined “true” values of the parameters in κκκ. Based on the numerical investigations
above, the random measurement noise is assumed to be independently and normally distributed
with a mean value of zero and a fixed standard deviation σe, i.e., the noise vector eee = [e1, . . . , en]T

follows

eee ∼ N (000, σ2e I) with σe =
ε

n
·
n∑
i=1

Ne(hj ,κκκtrue) . (6.18)

By setting yyytrue = [Ne(h1,κκκtrue), . . . , Ne(hn,κκκtrue)]
T , yyy = [Ne,1, . . . , Ne,n]T , we can formulate

yyy = yyytrue + eee with yyy ∼ N (yyytrue, σ
2
e I) . (6.19)

Taking the parameters of the plasmaspheric part into account, measurements will be simulated
in the height range from 90 km to 1200 km with a constant resolution of 2 km. Therefore, we
have a total number n = 556 of observations.
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Figure 6.18(a-c) shows an example of simulated electron density measurements (black dots) at
the different noise level ε = 2% (a), ε = 5% (b) and ε = 10% (c) around the “true” profile (blue
line), where the E, F1, and F2 layers are present. As can be seen, at the relatively low noise level
ε = 2%, most of the measurements follow the trace of the “true” profile well. The measurements
at the upper part of the profile are more noisy. This is due to relatively smaller electron density
values there and thus relatively larger noise-to-signal ratio, as σe of the random noises added in
the simulated data is based on the mean of the total signal (see Eq. (6.18)). This phenomenon
becomes more prominent in the panels (b) and (c), where the electron densities of the upper
part deviate from the “true” more significantly with increasing noise levels. Furthermore, the
lower part of the profile is more noisy than the middle region including the F2 layer. It can be
expected that, parameter estimation will become more difficult with increasing noise levels in
particular for the parameters of the E, F1 layer and the plasmaspheric part.
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Figure 6.18: Simulated EDPs with different noise levels ε around the “true” profiles.

Within this thesis, we will focus on the seven key parameters, written in the unknown parameter
vector

βββ = [NmE,hmE,NmF1, NmF2, hmF2, HF2, NP0]
T . (6.20)

The other four parameters, i.e., HE, hmF1, HF1 and Hp are assumed to be known and without
bias, i.e., no systematic error is introduced. Similar to Eq. (5.72), the Gauss-Markov model of
the linearized observation equation can be established as

XXX∆βββ = yyy + eee with D(yyy) = σ2PPP−1 (6.21)

where

XXX =



∂Ne,1

∂NmE

∣∣
βββ0
· · · ∂Ne,1

∂NP0

∣∣
βββ0

∂Ne,2

∂NmE

∣∣
βββ0
· · · ∂Ne,2

∂NP0

∣∣
βββ0

...
. . .

...
∂Ne,n

∂NmE

∣∣
βββ0
· · · ∂Ne,n

∂NP0

∣∣
βββ0


, βββ0 = [NmE0, . . . , N0

P0],

∆βββ = [∆NmE, . . . , ∆NP0]
T , yyy = [Ne,1 −N e,1|βββ0

, . . . , Ne,n −N e,n|βββ0
]T

by decomposing the unknown parameter vector βββ = βββ0 + ∆βββ into the initial vector βββ0 and
the correction part ∆βββ. The partial derivatives in the design matrix XXX can easily be obtained
from Eq. (6.15) in a similar way as the Eqs. (6.2) to (6.4). According to Eq. (6.18), the weight

117



6. NUMERICAL ANALYSIS

matrix PPP = I will be used. Since the F1 layer does not always exist, two different scenarios
are simulated, one with F1 layer during the day and the other without F1 layer at night. Note,
that the unknown parameter vector is always referred to Eq. (6.20), namely, NmF1 has to be
estimated whether the F1 layer exist or not.

6.2.3.1 Scenario 1 – with F1 layer

As stated previously, the design matrix should be scaled at first if the key parameters have very
different magnitudes. Figure 6.19 shows the importance for introducing a scaling exemplarily
using the simulated data in Fig. 6.18(b), where the eigenvalues of the normal equation matrix,
i.e., XXXTXXX (PPP = I), and the scaled one, i.e., XXXT

sXXXs with XXXs = XXXWWW (see Eq. (5.100)), are shown
in the left and right panels, respectively. As can be seen from the left panel, the maximum
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Figure 6.19: Eigenvalues of the normal equation matrix: original (left); with scaling (right).

eigenvalue is in the magnitude of 109 and the minimum value is in the magnitude of 10. This
will lead to a large condition number according to Eq. (4.40). However, the eigenvalues of the
scaled normal equation matrix are in the same order of magnitude. Therefore, a small condition
number is derived and a stable solution can be obtained. In the following calculations, scaling
will always be introduced in the adjustment system.

The simulated profiles in Fig. 6.18 will be used as input data. The result of profile fitting is
shown in Fig. 6.20 exemplarily at the noise level of ε = 5% . The panel (a) illustrates the total
profile, where the estimated one is marked by the red line, the profile calculated by βββ0 is indicated
by the green line, and the input data are given by the black dots. For a better visualization,
the lower part of the profile is zoomed in. It can be seen that the estimated profile generally
follows along the data well. The standard deviation σ̂ of observation residuals, defined as the
differences between estimated and input electron density values (i.e., êee = ŷyy − yyy), and σe of the
simulated input noise are both about 1.13 · 104 el/cm3. To further look if the various layers can
be partitioned correctly, the estimated and the “true” layers are plotted in the panel (b). It is
clearly visible that the estimation and the “truth” are overlapping with each other. Thus, the
different layers are partitioned fairly well.

The relative error δβ , defined as δβ = |β̂−βtrue|/βtrue, the estimate β̂, and the “true” value βtrue
of all seven unknown parameters β ∈ βββ are illustrated in Table 6.6. It can be seen that small
estimation errors for the parameters of the E, F1 layer and in particular the F2 layer are obtained.
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Figure 6.20: Profile fitting from the simulated data (with F1 layer) at ε = 5% (a); separation
into distinct layers (b).

However, N̂P0 has relatively larger error. This can be expected, because relatively larger noise-
to-signal ratio is in the upper region of the profile, which has an important contribution to
estimate NP0. The error information of the estimated parameters is derived from the covariance
matrix calculated following Eq. (4.18). The estimated standard deviation σ̂β , together with the
relative standard deviation, defined as σ̂β/β̂, is also illustrated in Table 6.6 for all seven unknown
parameters. It can be seen that the parameters of the F2 layer have the highest relative precisions,
whereas NP0 has the largest uncertainty. This is again because that the noise-to-signal ratio of
the input data in the F2 layer is the smallest and that in the upper part of the profile is the
largest, with the mean of the absolute values of the noise-to-signal ratios of the input data in
the height range of [600, 1200] km up to 43.3%. In can be seen from error intervals, defined by
β̂± σ̂β , that the “true” values for all parameters except hmF2 fall within them. The “true” value
of hmF2 is slightly outside one-σ interval.

Table 6.6: Comparisons of β̂, βtrue, δβ [%] together with the error information σ̂β , σ̂β/β̂ [%] from
the simulated data (with F1 layer) at ε = 5%.

NmE
[el/cm3]

hmE
[km]

NmF1
[el/cm3]

NmF2
[el/cm3]

hmF2
[km]

HF2
[km]

NP0

[el/cm3]

β̂ 1.475 · 105 110.08 2.755 · 105 6.638 · 105 384.59 64.88 7.128 · 103

βtrue 1.478 · 105 110.00 2.765 · 105 6.644 · 105 385.00 65.00 6.644 · 103

δβ [%] 0.24 0.07 0.33 0.09 0.11 0.18 7.28

σ̂β 2.597 · 103 0.63 2.106 · 103 1.597 · 103 0.29 0.22 830.09

σ̂β/β̂ [%] 1.76 0.57 0.76 0.24 0.08 0.35 11.65

Error
interval

[1.449 · 105,
1.501 · 105]

[109.45,
110.71]

[2.734 · 105,
2.776 · 105]

[6.622 · 105,
6.654 · 105]

[384.30,
384.88]

[64.66,
65.10]

[6.298 · 103,
7.958 · 103]

The correlation matrix calculated based on the Eqs. (4.21) and (4.22) is shown in Fig. 6.21.
As can be seen, the parameter pair NmF2 and HF2 as well as HF2 and NP0 have moderate
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negative correlations, both with a value of about -0.5. The most positive correlation appears
between NmF1 and hmF2, with the value of about 0.5. This could explain why the estimated
hmF2 is not within one-σ interval.

Correlation matrix
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Figure 6.21: Correlation matrix of the seven key parameters from the simulated data (with F1
layer) in Fig. 6.20(a).

Hypothesis testing
A hypothesis testing is carried out to check if the difference of the parameter β for hmF2 and
the corresponding “true” value βtrue is statistically different form zero, i.e., H0 : β = βtrue versus
H1 : β 6= βtrue for hmF2. Following Eq. (4.56), the test statistic T = (384.59−385.00)2

0.292
≈ 2.0. At

the significance level γ = 0.05, the critical value of the F -distribution is equal to 3.9. According
to Eq. (4.58), we fail to reject the null hypothesis because 2.0 < 3.9. Then, the test statistics
are calculated for any pair in the parameter set based on Eq. (4.60), for the null hypothesis H0 :
βi = βitrue, βj = βjtrue with i, j ∈ {1, . . . , 7} (i 6= j) and the alternative hypothesis H1 : β 6= βtrue
with at least one parameter in (i, j). The largest test statistic is T = 1.4 corresponding to the
parameters NmF2 and hmF2. At the significance level γ = 0.05, the critical value of the F -
distribution is equal to 3.0. Therefore, we do not reject the null hypothesis following Eq. (4.63).
Afterwards, the statistic tests are calculated for any combination of three parameters, where the
largest statistic test value is compared with the critical value; this procedure is performed till
all seven parameters are jointly tested. The final results indicate that model parameters are
consistent with the “truth”.

Convergence test
For nonlinear problems, there might exist multiple minima. In order to check stability of the
adjustment system, the parameter estimation is performed with changing initial values. Fig-
ure 6.22 shows comparisons of the parameter values from 30 runs with different initial values,
where the red line indicates βtrue, the blue dots are β̂ and the green dots represent β0. As can
be seen, the estimations follow the “true” values during 30 runs. This might reflect that a global
minimum (i.e., the results are regardless of initial values) is achieved.

Performance at different noise levels
To have a quantitative comparison of parameter estimations at different noise levels, σe, σ̂e and
the relative standard deviations σ̂β/β̂ are shown in Table 6.7, at ε = 2%, ε = 5% and ε = 10%. It
is clearly visible that σ̂e and σe fit well with each other at all different noise levels. Furthermore,
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Figure 6.22: Estimates β̂ from the simulated data (with F1 layer) at ε = 5% during 30 runs with
different initial values.

the relative standard deviations of all parameters increase with the noise levels, indicating larger
uncertainties.

Table 6.7: Comparisons of the error information of the estimates from the simulated data (with
F1 layer) at different noise levels.

Noise

level
σe σ̂e

σ̂β/β̂ [%]

NmE hmE NmF1 NmF2 hmF2 HF2 NP0

ε = 2% 4.34 · 103 4.30 · 103 0.65 0.22 0.29 0.09 0.03 0.13 4.78

ε = 5% 1.13 · 104 1.13 · 104 1.76 0.57 0.76 0.24 0.08 0.35 11.65

ε = 10% 2.17 · 104 2.15 · 104 3.08 1.17 1.42 0.46 0.14 0.66 24.84

6.2.3.2 Scenario 2 – without F1 layer

In this scenario, nighttime EDPs without F1 layer are simulated. Figure 6.23 shows one possible
result obtained from a simulated profile at ε = 2%. As can be seen, both the estimated total
profile and individual layers fit to the simulated data well. The standard deviations σ̂e and σe
are both about 7.79 · 102 el/cm3. The corresponding β̂, βtrue, δβ and their error information are
displayed in Table 6.8. It can be seen that the relative errors of the estimated parameters for the
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Figure 6.23: An example of profile fitting (unreasonable estimations with negative NmF1) from
the simulated data (without F1 layer) at ε = 2% (a); separation into distinct layers (b).

F2 layer are close to the “true” values and high precisions are obtained. Instead of NP0, NmE
has the largest relative error, since the effective region that determines NmE is located in the
smallest electron density part of the profile for this scenario (see Fig. 6.23(a)). It is also noticed
that N̂mF1 is negative which is physically not meaningful. Since its “true” value 0 is within the
error interval, the estimated NmF1 is not significant and NmF1 can be set to zero.

Table 6.8: Comparisons of β̂, βtrue and δβ , together with the error information from the simulated
data (without F1 layer) at ε = 2%.

NmE
[el/cm3]

hmE
[km]

NmF1
[el/cm3]

NmF2
[el/cm3]

hmF2
[km]

HF2
[km]

NP0

[el/cm3]

β̂ 9.70 · 103 110.50 -300.66 1.80 · 105 282.80 57.96 1.79 · 103

βtrue 9.31 · 103 110.00 0 1.80 · 105 283.00 58.00 1.80 · 103

δβ [%] 4.14 0.45 – 0.07 0.07 0.07 0.71

σ̂β 3.40 · 102 0.47 331.08 168.51 0.11 0.06 50.15

σ̂β/β̂ [%] 3.51 0.43 -110.12 0.09 0.04 0.10 2.81

Error
interval

[9.36 · 103,
1.00 · 104]

[110.03,
110.97]

[-631.74,
30.42]

[1.798 · 105,
1.802 · 105]

[282.69,
282.91]

[57.90,
58.02]

[1.740 · 103,
1.840 · 103]

The corresponding correlation matrix is shown in Fig. 6.24. As can be seen, more parameters are
correlated compared to Fig. 6.21. The peak parameters of the neighboring ionosphere layers tend
to have strong negative correlation. In particular, NmE and NmF1 have a negative correlation
of about −0.8. NmF1 and NmF2 have a correlation of about −0.7. The peak height hmF2 has
also strong correlations with other parameters. A negative correlation appears between hmF2
and NmF2, with a value of about −0.7. A positive large correlation exists between hmF2 and
NmF1, with a value of about 0.8.
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Figure 6.24: Correlation matrix of the seven key parameters obtained from the simulated data
(without F1 layer) in Fig. 6.23(a).

For this scenario, however, iteratively least squares algorithm is not stable anymore, even at the
relatively low noise level ε = 2%. It may yield unrealistic parameter estimates, in particular for
NmE, hmE and NmF1. Figure 6.25 shows one of the possible results. Generally, most part of
the total fitted profile seem to be fine. However, if we look at the zoomed figure of the lower part
shown in the panel (a), it can be noticed that the estimated profile does not actually fit to the
observations. If we look further at the separate layers shown in the panel (b), it can be seen that
the estimated E and F1 layers are far from the “true” layers. The estimated NmE is equal to
−9.27 · 103, which is negative; the estimated NmF1 is equal to 1.23 · 104, which is much larger
than the “true” value of zero.
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Figure 6.25: An example of profile fitting (unreasonable estimations with negative NmE and
large value of NmF1) from the simulated data (without F1 layer) at the noise level ε = 2% (a);
separation into distinct layers (b).

In order to obtain realistic results, inequality constraints must be introduced. Within this the-
sis inequality constraints are put on the three parameters NmE, hmE and NmF1. Accord-
ing to Section 2.2, the E layer is weakly ionized at night, with electron density values about
5 · 103 el/cm3. The height range of hmE is about 90 km to 140 km (see Table 2.1). As also
introduced previously, there is not an unified designation of altitude ranges for different layers
because the real heights of the ionosphere layers vary with many factors such as season, solar
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activity and so on. Here we set a looser range, namely,

NmE ≥ 103, 70 ≤ hmE ≤ 160 and NmF1 ≥ 0 . (6.22)

The problem is then mathematically attributed to optimization problems with inequality con-
straints. Figure 6.26 shows the results from the same input data and the same initial vector βββ0 as
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Figure 6.26: An example of profile fitting (reasonable estimations) from the same input data as
in Fig. 6.25 by using optimization method (a); separation into distinct layers (b).

in Fig. 6.25 by using the method introduced in Section 4.7. As can been seen, the estimated total
profile fits to the observations well, and the estimated E layer is consistent with the simulated
“truth”. The estimated β̂ and δβ is shown in Table 6.9. As can be seen, unrealistic parameter
estimates are avoided.

Table 6.9: Comparisons of β̂, βtrue and δβ from the simulated data (without F1 layer) at ε = 2%
using optimization method.

NmE
[el/cm3]

hmE
[km]

NmF1
[el/cm3]

NmF2
[el/cm3]

hmF2
[km]

HF2
[km]

NP0

[el/cm3]

β̂ 9.45 · 103 110.35 0 1.80 · 105 282.88 57.93 1.80 · 103

δβ [%] 1.55 0.32 – 0.00 0.04 0.11 0.18

Figure 6.27 shows one example of the final estimated profile from the simulated data at increasing
noise level of ε = 5% using optimization method. As can be seen, the estimated profile also fits to
the observations and the various layers can be separated correctly. The corresponding parameter
information are illustrated in Table 6.10, where the parameters of the F2 layer have the best
estimations and NmE has the largest relative error.

Stochastic information
For an inequality constrained optimization implementation, no analytical relationship is present
between observations and the unknown parameters. Therefore, we cannot calculate the covari-
ance matrix based on Eq. (4.18) following the law of error propagation. Furthermore, symmetric
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Figure 6.27: An example of profile fitting using optimization algorithm at ε = 5% (a); separation
into distinct layers (b).

Table 6.10: Comparisons of β̂, βtrue and δβ from the simulated data (without F1 layer) at ε = 5%
using optimization method.

NmE
[el/cm3]

hmE
[km]

NmF1
[el/cm3]

NmF2
[el/cm3]

hmF2
[km]

HF2
[km]

NP0

[el/cm3]

β̂ 1.02 · 104 109.87 0 1.80 · 105 282.99 58.02 1.80 · 103

βtrue 9.31 · 103 110.00 0 1.80 · 105 283.00 58.00 1.80 · 103

δβ [%] 9.86 0.12 – 0.13 0.00 0.04 0.04

interval about the estimates is not appropriate to describe the uncertainty anymore, because a
parameter space may be truncated by inequality constraints. In order to describe the quality of
the estimates of an inequality constrained problem using the optimization method, confidence re-
gions1 can be applied. For this purpose, the Probability Density Function (PDF) of the estimated
parameters must be known [Roese-Koerner et al., 2012].

Let Z be a continuous random variable with values z ∈ R, the Cumulative Distribution Function
(CDF), denoted as F (z), is defined as

F (z) = P (Z < z) (6.23)

where P (Z < z) denotes the probability for Z < z. Let F (z) be continuously differentiable, the
PDF, denoted as p(z), is defined as

p(z) = dF (z)/dz (6.24)

and the CDF can be written as

F (z) =

∫ z

−∞
p(z′) dz′ with p(z) ≥ 0 and

∫ ∞
−∞

p(z′) dz′ = 1 (6.25)

where z′ is a variable of integration.
1A confidence region is a subspace of the parameter space in which the parameter vector zzz is located with a

given probability (e.g., 95%).
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For an n-D continuous random variable (Z1, . . . , Zn) that take on the values z1, . . . , zn ∈ R, the
joint CDF, denoted as F (z1, . . . , zn), of the multi-dimensional variable is defined as

F (z1, . . . , zn) = P (Z1 < z1, . . . , Zn < zn) (6.26)

where P (Z1 < z1, . . . , Zn < zn) denotes the probability for Z1 < z1, . . . , Zn < zn. The corre-
sponding joint PDF is formulated as

p(z1, . . . , zn) = ∂nF (z1, . . . , zn)/∂z1 . . . ∂zn . (6.27)

Similar to Eq. (6.25), it fulfills that

F (z1, . . . , zn) =

∫ zn

−∞
. . .

∫ z1

−∞
p(z′1, . . . , z

′
n) dz′1 . . . dz

′
n

with p(z1, . . . , zn) ≥ 0 and
∫ ∞
−∞

. . .

∫ ∞
−∞

p(z′1, . . . , z
′
n) dz′1 . . . dz

′
n = 1

(6.28)

where z′1, . . . , z′n denote the variables of integration. For a certain Zi, the marginal distribution
function q(zi) can be defined as

q(zi) =

∫ ∞
−∞

. . .

∫ ∞
−∞

p(z′1, . . . , z
′
i, . . . , z

′
n) dz′1 . . . dz

′
i−1 dz

′
i+1 . . . dz

′
n (6.29)

which is only dependent on zi, since it is obtained by integrating the joint PDF with respect to
all variables except zi.

In order to obtain an approximation of the PDF of the model parameters, a Monte Carlo method
can be applied. As we work on simulated data, the probability distribution of the observations
is directly known, i.e., a normal distribution as in Eq. (6.19). Using Monte Carlo method, the
observations are simulated M times where M refers to the number of Monte Carlo iterations.
In particular, M samples yyym (m = 1, . . . ,M) are drawn randomly and independently from the
normal distribution N (yyytrue, σ

2
e I) at a certain noise level ε (2%, 5% or 10%, cf. Eq. (6.18)).

The unknown parameters are then determined from each of the M samples via the inequality
constrained optimization algorithm. It will finally yield M independent estimates β̂ββ

m
. The

histogram of the parameters can then be computed and normalized (e.g., through dividing the
counts in each bin1 by the total number of samples times the width of bin), and it can be
regarded as a discrete approximation of the joint PDF of the parameters. The marginal PDF
can be approximated by adding up the corresponding rows of the hypermatrix (7-D matrix) of
the multi-dimensional histogram. If the number M is selected sufficiently large, the histogram
of the parameters will be adequately representative for the PDF of the parameters. However,
it will be computationally more expensive. Within this thesis, M = 10,000 is chosen to keep
the accuracy and computation time acceptable. Furthermore, from the second Monte Carlo
iteration on, the initial values can be identified with the estimations from the previous iteration,
in order to speed up the convergence of the optimization algorithm, similar to the strategy used
by Roese-Koerner et al. [2012, 2015]. Figure 6.28 depicts the estimated marginal distribution of
a parameter β ∈ βββ from M = 10,000 Monte Carlo iterations with observations at noise levels
ε = 2% (left), ε = 5% (mid) and ε = 10% (right). As can be seen, all parameters except NmF1
tend to be normal distributed. The distributions of NmF1 are skewed right, which results from
the constraint of the zero lower bound, see Eq. (6.22). As expected, the distributions of all
parameters have wider range with respect to the x-axis with increasing noise levels. Based on
β̂ββ
m
, some statistics are computed and illustrated in Table 6.11 with different noise levels. It can
1Bins are the intervals that are taken to count how many values fall into when constructing a histogram.
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Figure 6.28: Estimated marginal PDF of β from M = 10,000 Monte Carlo realizations with
different noise levels.

be seen from the minimum and maximum values of the estimates that, the estimation of hmE
may go to the lower bound of 70 km at the highest noise level ε = 10%.

Now one may think what the optimal estimate is. Based on PDF, at least four different esti-
mates, i.e., the mean, the median, the mode and the point that minimizes the original inequality
constrained problem (i.e., the established problem before starting the Monte Carlo method), can
be used (cf. Zhu et al., 2005). The mean and the median coincide with each other in case of
a symmetric density function. This has been reflected in Table 6.11, where the mean and the
median of all parameters except NmF1 fit to each other well, since the corresponding marginal
distributions in Fig. 6.28 are almost symmetric. If the symmetric density function has a single
mode, the mean, the median, and the mode are all identical. Following Roese-Koerner et al.
[2012], mean and mode are inappropriate when inequality constraints are introduced. The so-
lution that solves original inequality constrained problem is used, e.g., the solution shown in
Fig. 6.26 for the noise level ε = 2% or Fig. 6.27 for the noise level ε = 5%. The estimate is
optimal in the sense that it minimizes the sum of squared residuals in the feasible region.

The parameters are correlated, as shown in Fig. 6.24. Based on the joint PDF of any pair of
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parameters, we can obtain the corresponding correlations. Figure 6.29 shows exemplarily the
estimated joint PDF for parameter pairs NmE and NmF1 (a), NmF2 and NmF1 (b), NmF1
and hmF2 (c) and NmF2 and hmF2 (d) at ε = 2% (left), ε = 5% (mid) and ε = 10% (right).
As it should be, the correlation does not change with the noise levels. It can also be seen that
negative correlations appear between NmE and NmF1 (computed correlation coefficient: -0.6),
between NmF1 and NmF2 (computed correlation coefficient: -0.5), and between NmF2 and
hmF2 (computed correlation coefficient: -0.5), because the trend of the corresponding plot is
down; a positive correlation between NmF1 and hmF2 (computed correlation coefficient: 0.6)
is also visible, since the trend of the plot is up. These relationships are consistent with the ones
in Fig. 6.24.

(a
)

(b
)

(c
)

(d
)

Figure 6.29: Estimated joint PDF of parameter pairs NmE–NmF1 (a), NmF2–NmF1 (b),
NmF1–hmF2 (c), and NmF2–hmF2 (d) from M = 10,000 Monte Carlo realizations with
different noise levels.
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As stated previously, the standard deviation (i.e., the second central moment) is not appropriate
to describe the uncertainty for truncated PDF, which is the case here for NmF1. Following
Roese-Koerner et al. [2012, 2015], the concept that is called the Highest Posterior Density (HPD)
region is appropriate for obtaining the confidence interval of the estimates from Monte Carlo
method. The HPD region is defined as the region Θ including 1− γ percent of the samples, i.e.,

P (βββ ∈ Θ |yyy) = 1− γ (6.30)

with 1 − γ the level of significance. P (βββ |yyy) is the conditional probability that takes the obser-
vations into account. The HPD region for a 1-D case can be obtained by sorting the estimates
from the Monte Carlo method and removing the smallest and largest γ/2 percent of the samples.
For a multi-dimensional problem, the HPD region can be obtained in a similar manner. Instead
of sorting the estimated values, the values of the multi-dimensional histogram are sorted from
the largest to the smallest ones. Then the cumulative sum is calculated until 1− γ is achieved,
and the confidence region is derived from all bins of the histogram that form the probability of
1 − γ. The confidence regions are computed for all the panels in Fig. 6.29, where the bins in
the confidence region are marked with dots and the corresponding γ values are illustrated in the
title. As can be seen, most of the bins fall within the confidence region, and the bins that are
outside the confidence interval are almost on the boundary of the joint PDF.
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Table 6.11: Statistics of the estimates from M = 10,000 Monte Carlo iterations with different
noise levels.

ε 2% 5% 10%

NmE [el/cm3]
true: 9.31 · 103

min 8.15 · 103 5.78 · 103 3.53 · 103

max 1.01 · 104 1.13 · 104 1.44 · 104

range 1.99 · 103 5.54 · 103 1.09 · 104

mean 9.21 · 103 9.07 · 103 8.89 · 103

median 9.22 · 103 9.11 · 103 8.96 · 103

hmE [km]
true: 110.00

min 108.17 104.29 70.00
max 111.91 114.40 120.21
range 3.74 10.11 50.21
mean 109.93 109.79 109.56
median 109.93 109.80 109.64

NmF1 [el/cm3]
true: 0

min 0 0 0
max 1.24 · 103 2.95 · 103 6.61 · 103

range 1.24 · 103 2.95 · 103 6.61 · 103

mean 130.06 309.60 628.58
median 0 0 0

NmF2 [el/cm3]
true: 1.80 · 105

min 1.79 · 105 1.78 · 105 1.77 · 105

max 1.80 · 105 1.81 · 105 1.82 · 105

range 1.05 · 103 2.69 · 103 5.12 · 103

mean 1.80 · 105 1.80 · 105 1.80 · 105

median 1.80 · 105 1.80 · 105 1.80 · 105

hmF2 [km]
true: 283.00

min 282.76 282.35 281.89
max 283.38 283.93 285.28
range 0.62 1.58 3.39
mean 283.03 283.09 283.17
median 283.03 283.07 283.15

HF2 [km]
true: 58.00

min 57.76 57.47 56.97
max 58.19 58.47 58.84
range 0.43 1.00 1.87
mean 57.99 57.97 57.94
median 57.99 57.97 57.94

NP0 [el/cm3]
true: 1.80 · 103

min 1.63 · 103 1.34 · 103 8.87 · 102

max 1.99 · 103 2.25 · 103 2.76 · 103

range 3.61 · 102 9.12 · 102 1.87 · 103

mean 1.80 · 103 1.81 · 103 1.82 · 103

median 1.80 · 103 1.81 · 103 1.82 · 103
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Chapter 7

Summary, Conclusion and Outlook

A regional physics-motivated 4-D modeling concept of the electron density has been derived
and investigated within this thesis. Various methods have been tested, combined and adapted
in the developed 4-D ionosphere modeling approach. It considers the physics-motivated Chap-
man function for the electron density distribution of ionosphere layers and a slowly decaying
exponential term for the plasmaspheric part. Due to the ability for regional modeling, series ex-
pansions in compactly supported multi-dimensional B-spline functions based on tensor products
are applied to model the spatiotemporal variations of the ionosphere key parameters. For each
space-geodetic observation technique, linearized observation equation system together with its
stochastic information is set up within the Gauss-Markov model. The combination of different
space-geodetic observation techniques is performed within a joint adjustment system including
prior information for handling data gaps. The individual weighting of each observation technique
is considered by applying the method of VCE where the unknown B-spline coefficients are solved.
Benefiting from the B-spline functions, the modeling approach allows transforming the model re-
sults into a MSR and further the application of the MSR for data compression. Furthermore, an
inequality constrained optimization method has been considered partly in this work in order to
avoid physically unreasonable parameter estimates. The approach of quantifying the uncertainty
of the inequality constrained estimates has also been studied.

Some issues of the 4-D electron density modeling concept have been investigated numerically in
detail through two different scenarios.

F2-layer model
Firstly, the most important ionosphere layer, namely, the F2 layer, is considered and modeled
by the Chapman function. The characteristics of the F2 layer, namely, the peak density NmF2,
the peak height hmF2 and the Chapman scale height HF2 play essential roles in ionosphere
dynamics. Each of these three parameters has been modeled by a series expansion as tensor
products of three 1-D polynomial B-spline basis functions depending on longitude, latitude and
time with initially unknown series coefficients. The developed model is applied to two types of
GPS data, namely, ground-based dual-frequency GPS observations of STEC and EDPs retrieved
from ionospheric GPS RO measurements acquired by the F3/C mission. A South American
region has been selected as the study area where the EIA is included. Although two observation
techniques have been combined, there are still data gaps, which have caused that some coefficients
are not supported and thus resulted in an ill-conditioned and even singular stacked normal

131



7. SUMMARY, CONCLUSION AND OUTLOOK

equation system. To overcome data gaps, prior information derived from the background model
IRI-2012 has been introduced in the adjustment system, i.e., a kind of regularization is performed
to stabilize the solutions. Linearized observation equation systems of the two types of GPS data
and linearized prior information as well as their stochastic information have been put into a joint
adjustment process to solve for the unknown series coefficients as well as by-products such as the
satellite and receiver DCBs. The individual weighting of the two GPS observation techniques
has been determined by VCE, whereas the weighting of the prior information has been selected
empirically. In order to increase the stability of the linearized model, a two-step approach has
been performed within the parameter estimation. In particular, only NmF2 is estimated firstly,
and hmF2 and HF2 are then estimated jointly. The estimated series coefficients have been then
used to obtain the representations of the three key parameters and their precisions have been
derived by applying the law of error propagation, and further electron densities as well as VTEC
have been constructed everywhere within the study area under the investigated time period.

The developed model has been applied exemplarily on three selected days under low solar activity
(July 16, 2008), moderate solar activity (July 16, 2011) and high solar activity (July 1, 2012),
respectively. The estimated model parameters shown in Fig. 6.6 have clearly demonstrated that
finer structures are obtainable in areas with input data. The results have indicated no significant
difference between the model estimations and IRI. The estimated model key parameters have
been validated by independent data sources, namely, NmF2 from ionosonde data over Jicamarca
and Port Stanley, and VTEC maps from CODE Analysis Center of the IGS. A cross-validation
by STEC values has also been performed. The comparison of NmF2 have shown that a better
consistency with ionosonde data is achieved by the developed model compared with IRI. The
improvements differ for the two stations and it seems that the most significant improvements can
be achieved at Jicamarca under high solar activity. The constructed VTEC map can approach
the CODE map better than IRI, and the improvements decrease with decreasing solar activity.
As ground-based GNSS data are also the input data for CODE GIM and most GPS observations
are over the continents, main improvements have been obtained over the continents. The cross
validation with GPS observations has suggested that the STEC residuals have no dependency on
UT and solar activity. The developed model has reached a STEC accuracy of about 3–4 TECU.
In general, the numerical examples have shown the potential of the derived modeling approach
to update the key parameters of IRI in different solar activities, i.e., providing instantaneous
behavior of the ionosphere using up-to-date observations.

MSR has been applied to the estimated model results to calculate all scaling and wavelet coef-
ficients of the lower levels using the pyramid algorithm. The MSR for the three key parameters
shown in Fig. 6.8 have suggested that the signal structures become coarser with decreasing res-
olution levels. A simple level-dependent thresholding method is then applied to the wavelet
coefficients and a data compression has been demonstrated.

Multi-layer model
Various ionospheric layers have been then considered in the modeling approach. The sensitivities
of the various ionosphere layers, i.e., the D, E, F1 and F2 layers and the plasmaspheric part to
the VTEC till GPS orbit height have been investigated by using simulated EDPs from the com-
bination of IRI and IRI-Plas. The numerical results have clearly demonstrated the significance
of the F2 layer, the plasmaspheric part and the F1 layer. As the multi-layer approach signifi-
cantly increases the number of the unknowns and thus brings great challenge to the parameter
estimation, the D layer has been neglected in the multi-layer modeling approach. The separa-
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bility of the selected seven parameters (NmE, hmE, NmF1, NmF2, hmF2, HF2, NP0) has
been investigated by using a closed-loop simulation. In order to have a more realistic stochastic
model of the EDPs, the error propagation of the electron density observations through the onion
peeling algorithm has been studied, based on the assumption that STEC observables during an
occultation event are independent and follow Gaussian distribution. The results have shown that
the qualities of the electron densities do not degrade significantly along the profile and no strong
height correlations between successive electron densities are introduced. Thus, the identity ma-
trix has been used for the weighting matrix of EDPs. This study gives an understanding how the
errors propagate vertically and how correlations are introduced between the electron densities
from the onion peeling algorithm.

To investigate the separability of the parameters of the multi-layer approach, two different sce-
narios have been simulated: daytime EDPs with F1 layer and nighttime EDPs without F1 layer.
Additive white Gaussian noises with different noise levels have been put on the simulated “truth”.
The numerical results in the scenario with F1 layer have shown that the selected seven parameters
can be separated within the adjustment system. In particular, the three key parameters of the F2
layer can be best estimated. The calculated correlations between the parameters have shown that
moderate correlations exist. For the simulated profiles without F1 layer, correlations between
the parameters become stronger and correlations appear between more parameter pairs. The ad-
justment system has even failed to separate the E and F1 layers: negative value of NmE as well
as unreasonable hmE and NmF1 appear. As a consequence, inequality constraints have been
imposed on these three parameters. Since inequality constraints cannot easily be incorporated
into the adjustment system, the problem has been solved by applying a constrained optimiza-
tion algorithm by which reasonable solutions have been obtained. Using inequality constrained
optimization algorithm, it is not possible to obtain the quality of the estimates by calculating
the covariance matrix, because the relations between observations and the unknowns cannot
be described analytically. In addition, a symmetric standard deviation around estimates is not
sufficient to describe the uncertainty, since the parameter space can be truncated by inequality
constraints. To obtain the quality information of the estimates, a Monte-Carlo method has been
combined with the optimization algorithm, in order to obtain approximations of the PDF of the
model parameters. The estimated marginal PDF in Fig. 6.28 has shown that the range of the
distribution is larger with increasing noise levels for all parameters. This indicates an increase in
uncertainty of the estimates. Furthermore, the PDF of NmF1 is accumulated on the boundary
because of the placed nonnegative constraint. The joint PDF of parameter pairs has reflected
the correlation between the parameters. The derived correlations are consistent with the ones
derived from the adjustment system.

7.1 Conclusions and future works

Based on the numerical examples presented in this work, the following conclusions have been
drawn and future works have been suggested.

F2-layer model

• The combination of ground-based GPS data of STEC and EDPs from GPS RO data has
made a large contribution to 4-D electron density modeling. The derived modeling ap-
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proach enables the electron density to be constructed everywhere over the study area and
continuously during the time period under investigation, which is required for almost all
geodetic applications. Furthermore, since a physics-motivated function is considered, the
model outputs allow some physical interpretation of the ionosphere. This is essential for
ionosphere research and for a better understanding of the space weather.

• Improvement of model resolution and accuracy: the resolution of the developed model is
depending on the levels of the B-spline functions, whereas the levels have to be chosen
according to the average sampling interval of input data. The resolution of the model
is mainly limited by the inhomogeneously distributed data distribution. In general, the
ground-based GNSS observations allow for a relatively high resolution level over the conti-
nent. However, the number of usable EDPs retrieved from F3/C mission is rather limited
as many EDPs have been rejected as outlier profiles. Therefore, the chosen B-spline levels
for model computation are not very high. The resolution and accuracy of the developed
model are expected to be improved when more EDPs are available. With the full constel-
lation, F7/C2 can provide more than 12,000 daily ionosphere profiles. Therefore, it will
have great potential to improve the 4-D electron density modeling in near future.

• Regularization: the weighting of the prior information has been chosen empirically. Con-
ventional methods for determining the regularization parameter, such as L-curve and GCV,
are recommended. Specifically, during each iteration step of the loop with respect to VCE
shown in Fig. 5.8, an optimal regularization parameter is chosen by the conventional meth-
ods based on current variance components of the observation techniques. Then, the correc-
tion vector of the coefficients is estimated. Finally, variance components of the observation
techniques are computed and updated.

• Incorporation of more space-geodetic techniques: the developed model can be easily ex-
tended by introducing other observation types (i.e., techniques or missions) by stacking
the normal equations of each data type. Combining more observation techniques are ab-
solutely recommended to fully exploit the strengths of various space-geodetic observations
and improve resolution and accuracy of the ionosphere model.

• Data compression: the application of data compression has been demonstrated through
a simple level-dependent thresholding algorithm. Data compression will be particularly
useful for handling the huge ionosphere data sets in terms of reducing storage space, and
for real time application in terms of increasing transmission speed. A more reasonable data
compression technique should be performed in future. As introduced in Section 5.2.3.1,
data compression can be performed statistically by hypothesis testing to separate significant
from non-significant model parts.

• Regional densification and a data-adapted model: the presented model results have a
unique resolution for the area under investigation, where the resolution is limited by the
distribution of the input data. A multi-resolution model, namely, a data-adapted model
can be obtained from the derived modeling approach, by means of a combination of a
regional model part and a series of densification areas. Specifically, parameter estimation
is performed separately for the entire regional part and the densification areas. Then, the
pyramid algorithm is applied to the results (scaling coefficients) for all sets of the scaling
coefficients to generate the MSR. Afterwards, image fusion algorithm known from digital
image processing can be applied to the scaling and wavelet coefficients to merge all relevant
information. In this manner, a data-adapted model is achieved by reconstruction of the

134



7. SUMMARY, CONCLUSION AND OUTLOOK

signal.

Multi-layer model

• The multi-layer approach is physically more realistic and should be the main focus in future.

• It is necessary to apply inequality constrained optimization algorithm to the multi-layer
modeling approach.

• The Monte Carlo method is computationally time consuming, but it has provided a means
to obtain the quality of the estimates.

• The performed investigations can serve as a solid foundation for multi-layer modeling ap-
proach. In the next step, the separability of the parameters should be studied by applying
real observations. Then, spatiotemporal variations of the key parameters are modeled
and finally a physically more realistic 4-D regional electron density model of the iono-
sphere/plasmasphere is achieved from the combination of various space-geodetic observa-
tion techniques.

• Besides space-geodetic observation techniques, ionosonde measurements are suggested to be
included, since they will help resolving various layers in the bottomside of the ionosphere.

It can be expected that, the ultimate realization of the physically more realistic 4-D regional
electron density model and with more space-geodetic observations available due to, e.g., the full
constellation of F7/C2, our knowledge on the ionosphere will be improved significantly in future.
This in turn will help to improve a wide range of applications in space geodesy.
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