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Abstract

By contrast to traditional industrial production, the new generation of flexible ro-
bots has to cope with changing tasks in dynamic environments. Trends towards
flexible production in industry and service robotics make new demands on the
design and planning capabilities of robots. Providing a maximum of flexibility,
modern robots are equipped with more degrees of freedom than are necessa-
ry for most of their usual tasks. Resolving this redundancy in an optimal way,
while preserving the real time planning capabilities, is one of the key challen-
ges in modern motion planning and constitutes the main topic of this thesis.
The author presents novel trajectory planning approaches for redundant mani-
pulators in the context of an agricultural robot system for harvesting sweet pep-
pers in a greenhouse. Several approaches to incorporate tactile feedback in real
time are presented, using a distinct nullspace and /or task space projection. When
the robot avoids an obstacle, this approach enables the motion of the end effec-
tor to remain defined. Furthermore, the inverse kinematics algorithm (based on
Automatic Supervisory Control) is extended by predictive optimization of null-
space movements. Applying the conjugate gradient method in a moving horizon
scheme, this approach can be applied in real time. Additionally, an offline tra-
jectory optimization method is evaluated for realistic harvesting scenarios in a
greenhouse w.r.t. computation time, success rates and minimization of the cost
function. The thesis is completed by introducing the required methods and tools.
Amongst other topics, the dynamic model and a proprioceptive joint torque esti-
mation method is shown and a concept for teleoperation by a haptic joystick is
developed. This enables the user to control the manipulator’s end effector in re-
al time while receiving haptic feedback from the arm in situations in which an
autonomous operation fails.
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Zusammenfassung

Im Gegensatz zur klassischen industriellen Produktion ist die neue Generati-
on von vielseitig einsetzbaren Robotersystemen mit wechselnden Aufgaben in
dynamisch verdnderlichen Umgebungen konfrontiert. Insbesondere Trends hin
zu flexibler Produktion und Servicerobotik stellen neue Anforderungen an die
Planung und Steuerung von Robotern. Besondere Beweglichkeit und Flexibilitat
werden durch redundante Manipulatoren erreicht, welche mehr Freiheitsgrade
besitzen, als fiir eine bestimmte Aufgabe notwendig sind. Eine der Schliissel-
herausforderungen moderner Bewegungsplanung sowie Hauptthematik dieser
Arbeit ist, diese Redundanz in einer optimalen Art und Weise in Echtzeit aufzu-
losen. Dabei werden neue Ansidtze zur Trajektorienplanung redundanter Mani-
pulatoren im Umfeld der Agrarrobotik vorgestellt, eingebettet in das Umfeld der
Agrarrobotik mit dem Beispiel der autonomen Ernte von Paprikas in Gewéchs-
h&dusern. Verschiedene Ansitze zur Bertiicksichtigung taktiler Information bei der
Planung in Echtzeit werden entwickelt, wobei die dedizierte Projektion der Reak-
tion in den Null- bzw. Arbeitsraum im Vordergrund steht. Weiterhin wird die auf
dem Konzept der Automatic Supervisory Control basierten Losung der inversen
Kinematik um eine vorausschauende Optimierung von Nullraumbewegungen
erweitert. Dadurch bleibt die Bewegung des Endeffektors bei dem Ausweichen
vor einem Hindernis definiert. Der Einsatz des konjugierten Gradientenverfah-
rens in einem mitbewegten Vorausschaufenster erlaubt dabei eine Anwendung
in Echtzeit. Zuséatzlich wird eine Methode zur Offlinetrajektorienoptimierung an-
hand eines realistischen Ernteszenarios im Gewachshaus hinsichtlich Rechenzeit,
Erfolgsrate und Minimierung der Kostenfunktion bewertet. Die Vorstellung not-
wendiger Methoden und Werkzeuge rundet die Arbeit ab. Unter anderem wird
das Dynamikmodell des Manipulators ebenso entwickelt wie eine Methode zur
Schitzung von Gelenkmomenten ohne zusétzliche Sensorik. Fiir Situationen, in
welchen der autonome Ablauf fehlschlagt, wurde ein Konzept zur Teleoperation
durch einen haptischen Joystick entwickelt. Dieser erlaubt dem Nutzer, den End-
Effektor des Roboters in Echtzeit zu steuern und dabei haptisches Feedback vom
Arm zu erhalten.
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Chapter 1

Introduction

Beginning in the late sixties, large parts of industrial production were affected by
the success of industrial manipulators and automation technology. Production
steps such as welding or assembly operations were converted from manual man-
ufacturing to fully automated processes. Some modern production lines have
not changed their fundamental characteristics for many years. Manipulators ex-
ecute predominantly repetitive operations in a well known, carefully arranged
and controllable environment. Workpieces are arranged in precise fixtures and
no unforeseen obstacles enter the workspace of the robot. Thus, the robot is of-
ten equipped with minimal or even no sensing capabilities at all, its paths and
trajectories are pre-planned and usually do not change during operation. The
kinematic and hardware design of the robot is chosen according to its specific
task, which may not change much during the manipulator’s lifetime. This clas-
sical concept of the use of robots is quite efficient in static production scenarios.
However, more advanced robot technologies are gradually being introduced in
industrial production. For example, vision systems are used to locate workpieces
precisely or robots work side-by-side with human workers, e.g. in a car door as-
sembly line (Knight 2014). Driven by the recent advances in electronics and com-
putational power as well as the dropping prices for robots” hardware, more and
more new fields of application are considered. Applications range from robots in
household, nursing and health care to agricultural tasks. These are often summa-
rized under the topic of service robotics, a subject that has become very popular in
modern society. The IFR (2015b) defines a service robot as "a robot that performs
useful tasks for humans or equipment excluding industrial automation applica-
tion". Compared to classical industrial production, demands on service robot’s
abilities are higher: Based on its perception, the robot has to cope with obsta-
cles in its workspace. Paths and trajectories have to be replanned for every new
action since tasks and the environment vary from one scenario to another. The
kinematic design is no longer adapted to one specific operation, but flexibility is
essential. In order to meet these enhanced requirements, robots are designed in a
more flexible and multipurpose way. Aimed at providing sufficient flexibility for
a wide range of applications and tasks, manipulators can be equipped with more
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2 Introduction

degrees of freedom. At the same time, tasks are given only as precisely as neces-
sary in order to prevent a too narrow limitation of the robot’s path and trajectory.
The gap between a minimal task definition and a high kinematic flexibility of a
robot is often referred as redundancy. Redundant robots have more degrees of
freedom (DOFs) than it would need to fulfill a task. This redundancy can be used
for pursuing additional objectives: Contact forces between the environment and
the robot arm as well as joint velocities can be reduced or kinematic limits and
self-collisions can be avoided better. The key issue now becomes, how the ma-
nipulator should move its joints in an optimal way. This thesis aims at providing
tools and methods in order to solve this problem.

1.1 Contributions

The main contribution of this thesis is to develop trajectory generation algorithms
for redundant manipulators, to extend available methods to new applications
and to provide novel approaches for a more intelligent planning. In more detail,
the contributions can be summarized as follows:

- Application to an Agricultural Manipulator The methods and approaches
developed in this thesis are formulated in a general manner for arbitrary
redundant manipulators. However, in order to show their potential in real
world experiments, they are applied to a nine DOF agricultural manipu-
lator. This manipulator was developed at the author’s institute within the
European research project CROPS!. The agricultural applications of this
project and their requirements and challenges are the major motivation for
the methods and algorithms of this thesis.

- Modeling and Interfaces For planning the motion of a manipulator, knowl-
edge about kinematic and dynamic quantities is required. Thus, this thesis
tirst introduces the kinematic and dynamic models. Parameters are iden-
tified for the considered agricultural manipulator. Additionally, a haptic
interface is shown that enables the user to control the manipulator while
receiving force feedback.

- Planning based on Tactile Feedback In many scenarios, information about
the environment based only on visual data is not sufficient. Thus, two con-
cepts are presented in order to estimate external forces acting on the manip-
ulator: The first one uses an additional tactile sensor, while the second one
requires only information from proprioceptive sensors. This thesis devel-
ops a novel approach for considering tactile information within the motion
planning algorithm of redundant robots. The redundant DOFs are used to
reduce contact forces between the manipulator arm and its environment,

LEuropean Research Project Clever Robots for Crops (CROPS), www.crops-robots.eu. Further infor-
mation can be found in section 2.1.3.
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while using a clear distinction between the influences to the nullspace and
the task space.

- Predictive Inverse Kinematics Instantaneous inverse kinematics (IK) calcu-
lation schemes such as automatic supervisory control (ASC) only consider
information about one next timestep. This thesis develops an approach to
preemptively optimize a manipulator’s motion, i.e. to take into account
several future timesteps. This enables a manipulator to adapt its motion in
the presence of pending collisions or other constraints. Hence, high joint
velocities can be avoided that would otherwise occur as instantaneous re-
actions. Since this approach shall be applied in real time, the computational
effort of the numerical optimization has to be minimized. Thus, the thesis
examines different implementations of the conjugate gradient (CG) method
which enables a real time application of the proposed method.

- Trajectory Optimization Besides the predictive optimization of the inverse
kinematics in real time, another method is presented to optimize a manip-
ulator’s trajectory for a given task in advance, i.e. offline. Based on real
harvesting scenarios in a greenhouse for sweet peppers, the computational
time and anticipated benefits are quantified for an agricultural manipulator.

1.2 Outline

This thesis is divided into five main parts: In chapter 2 an overview is given
of related contributions in the field of agricultural automation and motion plan-
ning for redundant robot systems. The agricultural manipulator, including its
hardware and interfaces, kinematic and dynamic models and concepts for tactile
perception are presented in chapter 3. A solution of the inverse kinematics prob-
lem including secondary objective functions is shown in chapter 4. Furthermore,
this chapter includes innovative approaches to integrate tactile sensor feedback
into the motion planning. A numerically efficient method for extending the in-
verse kinematics calculation by a predictive approach is proposed in chapter 5.
The main focus in this part is the development of a suitable system formulation
and the numerical solution of the optimization problem. Furthermore, this sec-
tion shows an approach to apply this method in real time. The potential of offline
trajectory optimization is evaluated using a sweet pepper harvesting scenario in
chapter 6. In chapter 7 the thesis concludes with a summary and discussion of
the proposed methods. Additionally, it gives an outlook on future research per-
spectives regarding the context of this thesis.






Chapter 2

Literature Survey

By analogy to the highly automated industrial manufacturing, robot systems are
considered to increase productivity in agriculture. The European research project
CROPS aimed at developing new systems and tools to encounter this challenge.
Among a wide variety of possible applications, the CROPS project considered
selective harvesting of sweet peppers in greenhouses or apples in orchards. In
this context, an agricultural manipulator system was designed at the Institute of
Applied Mechanics, Technische Universitit Miinchen (TUM). Since the manip-
ulator was designed for multipurpose usage for different fruit, a highly flexible
kinematic design was required. Flexible manipulators with many DOFs which
operate e.g. in agricultural, natural environments have particular requirements
regarding their planning algorithms. The development of suitable planning algo-
rithms and methods is the main objective of this thesis.

This section summarizes the developments of two topics: First, an overview is
given of automation in agriculture, focusing on autonomous robot systems. The
research project CROPS with its main objectives and achievements is presented
in detail. Second, related motion planning approaches are shown. In correlation
to the concepts developed in this thesis, main aspects are trajectory optimization
and the resolution of redundancy.

2.1 Automation in Agriculture

Today, robot systems play a major role in industrial manufacturing. However, re-
garding agricultural tasks, robots are still barely used. Notwithstanding, econom-
ical and political aspects such as minimum wage or shortage of acreage promote
automation processes in agriculture. The worldwide operational stock of indus-
trial robots in the field of agriculture counted only 1136 units in 2014, correspond-
ing to a share of 0.1% of all operational robots worldwide (IFR 2015a). Facing the
large amount of promising applications, from livestock farming over broad acre
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Figure 2.1: MuNckHOF PLuk-O-TRAK harvesting aid pulled by a tractor through the
orchard. Human pickers place the fruit on the conveyor belt system on the left, which
automatically transports them into a storage container. Image taken from Munckhof
(2016).

to field crop farming and weeding, this amount seems quite low. Especially in
the field of fruit care and harvesting there is as yet no significant automation. The
demanding technical requirements have impeded the usage of robot systems for
agricultural tasks in the past. While automation in industry is characterized by
repetitive tasks in well-structured, controlled and segregated areas, the situation
in greenhouses and orchards is far more challenging: Environmental conditions
in outdoor cultivation vary from bright sunlight to cloudy days and rain. The cli-
mate in greenhouses is mostly hot and humid during the day while temperatures
drop significantly at night which leads to condensation on the plants and the ma-
chinery. Furthermore, the foliage is dense and cluttered, obstacles and fruit may
be hidden from sight. Fruit is non-regularly distributed on the plants. Hence,
every single fruit needs to be localized individually and the motion of the har-
vesting robot has to be adapted accordingly. Many researchers and companies
developed prototypes and concepts for the automation of selective harvesting by
robot systems in the past decades. Some of them are presented in the following.

One of the earliest documented articles was published in the late 60s by Schertz
and Brown (1968) considering the mechanization of citrus fruit harvesting. Be-
sides bulk harvesting methods, they proposed several approaches for selective
fruit harvesting. Nevertheless, to this day "there still remains no viable, cost-
effective approach towards robotic mechanization", almost 50 years later (IFR
2015b, p. 39). Prototype systems have barely been commercialized because of
some unresolved drawbacks: amongst others, slow operation speeds, high costs,
low reliability or the need for adaption of the cultivation system were reported
(Bac et al. 2014; IFR 2015b). By contrast, systems for partial automation are rather
successful: the MUNCKHOF PLUK-O-TRAK, shown in fig. 2.1, supports human
pickers with a conveyor belt system collecting the picked fruit and transporting
them carefully to a large container (Van den Munckhof and Van den Munckhof
1994). Almost 1800 systems were in operation in Europe in 2002 (Ward 2003).
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In the past, a large variety of robot systems were developed in the field of
selective harvesting and plant maintainance operations (PMOs). In the following
sections, some systems were selected which represent the current state-of-the-art
of robot systems in agriculture. A comprehensive overview of the developments
within the past decades is beyond the scope of this thesis. For this purpose, the
reader is referred to further reading: A textbook covering most relevant topics
and systems for agricultural or bioproduction robots was published by Kondo
and Ting (1998). Other comprehensive overviews can be found in Bac et al. (2014),
Henten (2004), Sarig (1993), and Tillett (1993).

Applications considered in this thesis comprise the harvesting and spraying
of medium and large size crops such as sweet peppers, apples, grapes, etc.. The
overview is categorized by kinematics and flexibility of the respective robots:
First, bulk harvesting systems are presented which rely mostly on tree-shaking
mechanisms and bulk fruit collection devices. Second, customized robot sys-
tems with a low number of DOFs or manipulators offering a higher flexibility
for harvesting high quality crops are shown. Lastly, the EU-project CROPS is
introduced, providing the context and background of this thesis.

2.1.1 Bulk Harvesting

Bulk harvesting systems for grapes, citrus fruit, olives or cherries have been avail-
able on the market for years. Although they provide a high harvesting rate, they
are mostly not suited for high quality crops: the fruit’s surface is likely to get dam-
aged by vibrating and shaking mechanisms. Furthermore, no selection is made
regarding the fruit’s maturity state (Sarig 1993; Tillett 1993). The largest field of
application is grape harvesting: Several companies (ERO Gerdtebau GmbH 2016;
New Holland Agriculture 2016; Oxbo International Corporation 2014; Pellenc SA
2015) offer self-propelled or towed harvesting machines moving continuously
along the rows for juice and wine production. Oxbo adapts its shaking devices
for a large variety of crops: Harvesting machines for citrus fruit, berries, coffee or
olives are available. For cherry trees, Munckhof developed a single-tree shaker
and collecting device. A more sophisticated shaking system for apple trees was
presented by Peterson et al. (1999): a customized shaking end effector is moved
to a bunch of fruit. Therefore, they adapted also the cultivation system. The
branches were inclined in order to prevent drop damage.

2.1.2 Selective Harvesting

By contrast to bulk harvesting systems, selective harvesting systems localize and
detach each fruit separately. Thus, a selection of harvested fruit regarding their
maturity state, size or color can be made. Additionally, the detachment as well
as the further transportation of the fruit can be done carefully. In the following,
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Straight line
mechanism

\ Elevator and
fruit conveyor
NN
AN

Figure 2.2: MAGALI apple harvesting robot prototype, 1994. Two of the manipulator
arms (left) are mounted on the backside of a tractor (right). Image taken from Ward
(2003).

systems with customized kinematics and low DOFs are presented first, followed
by systems using articulated arms.

Customized Low-DOF Robot Systems

Beginning in 1986, a French research consortium started the development of an
autonomous apple picking robot, the MAGALI robot (Grand d’Esnon et al. 1987).
Aiming for the harvesting rate of a two-handed human picker (3-4s per fruit),
they designed an elbow mounted on a spherical manipulator with a 2D camera
at its origin. The pantographic mechanism of the elbow assures a straight-line
movement of the vacuum cup end effector along the line of sight of the cam-
era. Two of these manipulators are mounted on a mobile platform. One of the
robot prototypes is shown in fig. 2.2. The system was developed to a status close
to commercialization. However, it was discontinued in 1996 /1997 for economical
reasons (Sarig 1993; Ward 2003). A spherical manipulator extended by a prismatic
joint was introduced by Harrell et al. (1990, 1989) for the harvesting of citrus fruit.
The system, named FLORIDA CITRUS PICKING ROBOT and depicted in fig. 2.3a,
uses a camera mounted in the end effector and avoids self-occlusion by the arm,
as it occurred at MAGALI. Muscato et al. (2005) applied a custom designed robot
system with two 3-DOF telescopic manipulators mounted on an inclined pris-
matic joint for harvesting oranges. A well adapted system for picking kiwifruit
was presented by Scarfe et al. (2009). Each of the four manipulator arms with
3-DOF positions a tube with a cutting end effector for collecting vertically hang-
ing fruit (cf. fig. 2.3b). Cycle times of only 1s per fruit were achieved. The arms
are mounted on a mobile cart which navigates autonomously under the kiwifruit
canopy. A 4-DOF manipulator is presented by Irie et al. (2009) for harvesting as-
paragus. Two revolute and one prismatic joint are used to position a telescopic
arm with a cutting and gripping end effector.
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picking device
camera

joint 2 aluminum tube —/ -:J

nylon rack

joint 2 servo—drive picking device cylinder

joint 2 pinion gear
ring bearing housing

joint 1 servo—drive

support stand
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Figure 2.3: Simple robot systems for selective harvesting of fruit. The manipulator (a)
is designed for picking citrus fruit while the mobile cart (b) with up to 4 robot arms
is able to pick kiwifruit autonomously. Images taken from Harrell et al. (1990) (a) and
Scarfe et al. (2009) (b).

By designing customized robot systems for different crops, the aforemen-
tioned groups achieved promising results regarding the automation of selective
harvesting. With the low number of DOFs, complexity was reduced and fast cy-
cle times were reported. However, none these systems appears to have been com-
mercialized. This may be explained by the more demanding requirements for a
market-ready product regarding reliability and harvesting success rate. Both key
factors have barely been reported by the research groups (Bac et al. 2014). Large
efforts and investments may be necessary for a further development of these pro-
totype systems for a cost efficient implementation in orchards or greenhouses.
However, facing the increasing costs for human labor and the progress regarding
intelligent algorithms in robotics, these systems may again become important.
Recently, the Spanish company Agrobot presented a strawberry harvesting sys-
tem based on the patent by Trinidad (2011). A mobile gantry-like tractor moves
along the raised bed-rows while up to 60 2-DOF manipulators pick the straw-
berries and release them on a conveyor belt (IFR 2015b). Although this system
is reported to operate "impressively", problems regarding the fruit detection re-
main. Furthermore, the grower is forced to adapt his cultivation method: plant
beds have to be raised and the plants have to be distributed more sparsely, de-
creasing the yield per acre (Fruit Growers News 2012).

Articulated Arm Systems

Instead of using low-DOF customized positioning systems as presented in the
previous section, articulated manipulators as known from industrial production
can also be applied for harvesting. A first system for individual tomato harvest-
ing was presented by Kawamura et al. (1985). It consisted of a 5-DOF manipulator
arm with a harvesting end effector, mounted on a battery powered cart. Kondo
et al. (1994) developed a redundant 7-DOF manipulator system with a 5-DOF
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articulated arm mounted on two prismatic joints to harvest tomatoes. By using
a different end effector, the same system was able to harvest cherry tomatoes
as well (Kondo et al. 1996). Van Henten et al. (2002) reported a cucumber col-
lecting system for greenhouses. A standard 6-DOF industrial manipulator was
mounted on a linear guide and equipped with a customized end effector for ver-
tically hanging cucumbers. Baeten et al. (2008) used an industrial manipulator,
mounted on a vertical linear axis on the back of a tractor, for apple picking. The
end effector was designed as a suction cup with a camera at its center. Compared
to Grand d’Esnon et al. (1987), the system achieved a slower cycle time of 9.

Discussion and the Multipurpose Idea

Although the reliability of the manipulator system is increased by using off-the-
shelf industrial manipulators instead of customized prototypes, the same draw-
backs remain regarding the fruit detection and planning system as described in
the previous section for customized robot systems. Additionally, the manipulator
itself becomes more expensive with an increased number of DOFs. Cost efficiency
can be achieved by high utilization rates. One approach is to design a robot sys-
tem for multipurpose usage. Parts of the system such as the manipulator can be
used for other agricultural tasks or crops as well due to its flexible kinematics. In
grapevine production for example, the harvesting period only lasts a few weeks
per year. An efficient approach in order to increase the utilization is to use the
robot system not only for harvesting tasks but also for other PMOs. Based on the
manipulator system developed by Kondo (1995), Monta et al. (1995) showed its
multipurpose application for grapevine production. The polar coordinate 5-DOF
manipulator was equipped with different end effectors for berry-thinning, bag-
ging and spraying. This approach, i.e. the development of a multipurpose agri-
cultural robot system for different PMOs and crops, was the main motivation for
the European research project CROPS. By following a modular concept, the same
manipulator has been used for the selective harvesting of sweet peppers, apples,
grapes and the precision spraying of grapes. Using a kit of customized end effec-
tors, sensors and platforms, the manipulator was able to operate in greenhouses
and orchards. The project, including its motivation, the components and some of
the results are summarized in the following section.

2.1.3 The CROPS Project

In 2010 the collaborative four-year research project CROPS was launched. Funded
by the European Commission! with 7.64 million EUR it involved fourteen part-
ner institutes and companies from Europe, Israel and Chile. Its main objective

IProject Title: "Intelligent sensing and manipulation for sustainable production and harvesting of
high value crops, clever robots for crops”, Duration: Oct. 2010 — Sep. 2014, Grant Agreement Ne246252,
Call ID FP7-NMP-2009-LARGE-3.
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was the development of a modular, multipurpose autonomous robot system for
selective harvesting and spraying of fruit. It comprised research on suitable end
effectors, sensing and control algorithms and the manipulator system itself. Re-
search was also done into forestry operations and canopy spraying. An overview
of the project and its main results was given by Bontsema et al. (2014) and Baur
(2015).

This project provides the background and motivation of the methods and con-
cepts developed in this thesis. In the following, the multipurpose robot system
and its applications are shown.

Multipurpose System

The main hardware components of the multipurpose robot system are the manip-
ulator, end effectors, vision-based sensing systems and carrier platforms. While
the manipulator is designed in modules to fit all applications, other hardware
components remain application specific. Within the project, experiments using
the robot system are conducted for the harvest of sweet peppers in greenhouses,
picking apples and grapes in orchards and precision spraying of grapes. In the
following sections the manipulator system and the applications - except for har-
vesting grapes? - are summarized. Fig. 2.4 shows the application specific config-
urations.

Manipulator System

Two generations of manipulator prototypes were developed at the Institute of
Applied Mechanics, TUM. Both generations have up to 9-DOF and are designed
modularly, enabling customized kinematics. They can be mounted on various
platforms and be equipped with different types of end effectors. More details
about the hardware design, software framework and controls are given in chap-
ter 3, the doctoral theses of Baur (2015) and Pfaff (2015) and were presented at
several international conferences (Baur et al. 2012; Schiitz, Pfaff, Baur, et al. 2014;
Schiitz et al. 2014; Ulbrich et al. 2015).

Applications

Sweet Pepper Harvesting The final integrated robot system for sweet pepper
harvesting in greenhouses is shown in fig. 2.5. The system consists of the manip-
ulator prototype 2 mounted on a mobile carrier platform, an end effector and a

2Although developed and tested under lab conditions, an autonomous grape harvesting system has
not been tested successfully in orchards. Main problems were a lack of time for integration, insufficient
sensor information as well as the need for a more powerful cutting end effector (Wouters et al. 2014).
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Figure 2.4: Modular robot system components (columns) for the respective applica-
tions (rows) developed within the CROPS project (Schiitz 2014). Images taken from
Hemming, Bac, and Edan (2014), Oberti et al. (2014), Oberti et al. (2016), and Wouters
et al. (2014).
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o

(a) Robot system in greenhouse. (b) Fin-Ray gripper.

Figure 2.5: Final prototype of the CROPS sweet pepper harvesting robot system in a
greenhouse at Wageningen, Netherlands (Hemming, Bac, Tuijl, et al. 2014).

sensor rig (fig. 2.5a). Integration and application specific adaption as well as ex-
periments were done by Wageningen UR. The manipulator is used in its 9-DOF
configuration, aiming for a maximum of flexibility. Two different harvesting end
effectors were developed within the project: The Fin-Ray and Lip-Type gripper.
The Fin-Ray gripper has four to six fingers taking advantage of the Fin-Ray prin-
ciple (Gauchel and Saller 2012). Furthermore, scissors for cutting the peduncle
and RGB and time-of-flight (TOF) cameras are integrated. Fig. 2.5b shows this
end effector while approaching a sweet pepper in the greenhouse. The Lip-Type
end effector was developed by Wageningen UR using a suction cup and two clos-
ing cutting rings (Hemming, Bac, Tuijl, et al. 2014). This approach allows a wide
range of orientations for cutting the peduncle. The sensor rig next to the manip-
ulator can be moved on a horizontal slide and includes an illumination system,
two RGB cameras and one TOF camera. Experiments were conducted in a com-
mercial greenhouse in the Netherlands. As known to the author, this was the first
autonomous robot system to harvest sweet pepper in greenhouses. Details on
cycle times and success rates were reported by Hemming, Bontsema, et al. (2014).
A more detailed performance evaluation was given by Bac (2015).

Apple Harvesting The autonomous apple harvesting system was developed
and integrated by MeBios Group, KU Leuven. The manipulator prototype 1 is
mounted on the back of a gantry-like tractor (fig. 2.6c). For better adjustment of
its distance to the canopy, a horizontal prismatic joint is added. The manipulator
is equipped with a membrane jaws gripper (principle presented by Gauchel and
Saller (2012)) with an upper third finger for better detachment of the stalk. Since
fruit are detected using Kinect-like RGB-D sensors, the manipulator operates in
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(a) Harvesting tractor in orchard. (b) Rear view. (c) Manipulator.

Figure 2.6: Apple harvesting robot system developed in the CROPS project. Application
specific integration and development done by KU Leuven. Images taken from Wouters
et al. (2014).

(a) Spraying system in greenhouse. (b) Manipulator Prototype 1
in 6-DOF configuration.

Figure 2.7: Autonomous precision spraying of grapes in a greenhouse at the University
of Milano. Treating only diseased regions on the grapes, the amount of pesticides can
be significantly reduced.
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a tunnel under controlled illumination conditions (see fig. 2.6b). Task and mo-
tion planning methods are reported by Nguyen et al. (2013) while fruit detection
algorithms can be found in Nguyen and Keresztes (2014). Final results of the
application are summarized in Wouters et al. (2014).

Precision Spraying The autonomous precision spraying system aims at selec-
tively spraying only the diseased areas of grapes. The system shown in fig. 2.7
was developed at University of Milano. It consists of a mobile platform, the ma-
nipulator prototype 1 in its 6-DOF configuration, the spraying end effector and a
multispectral and RGB camera system. Experiments were carried out in a green-
house at the University of Milano. Detailed results as well as the robot system
can be found in Oberti and Hocevar (2014) and Oberti et al. (2016).

Summary and Future Directions

The main result of the CROPS project was the development of a multipurpose
agricultural robot system for the selective harvesting of sweet peppers, apples,
grapes and the precision spraying of grapes. From a hardware perspective, the
modular manipulator concept with up to 9-DOF is the main component which
is used for all applications, while end effectors, vision sensors and platforms
were developed specific to the application. It could be shown by experiments
in greenhouses and orchards under nearly real-world conditions that the system
is capable to perform the respective tasks autonomously. However, no commer-
cialization of the system has been made nor is this planned. The main drawbacks
of the final prototype system were its comparatively low reliability, low opera-
tional speed and low success rate. Especially the multipurpose idea of the system
increases the system’s complexity. Thus, the integration of all hard- and software
modules still has a large potential for increasing the overall system performance.

In order to facilitate the development towards a market-ready implementa-
tion, one first approach is to focus on only one application. The follow-up re-
search project SWEEPER?® follows this idea. Using the technology developed
within the CROPS project, it concentrates on the automation of sweet pepper
harvesting. Another lesson learned within the CROPS project is that for a highly
efficient autonomous harvesting system, cultivation methods and the robot have
to be developed hand in hand. Dense foliage and narrow corridors make the au-
tomation more difficult. New trends such as Vertical Farming approaches (Cho
2011) may encourage the automation in agriculture. Scenarios, where the plant
itself is moved to a "harvesting station" and not vice versa, may be efficient solu-
tions as well.

SSWEEPER - Sweet Pepper Harvesting Robot, Duration Feb. 2015 — Jan. 2018, EU H2020 program,
Grant Agreement Ne644313. http://www.sweeper-robot.eu.


http://www.sweeper-robot.eu

16 Literature Survey

2.2 Motion Planning

Robot systems require a motion planning module, which translates user com-
mands into suitable actuator movements. This principle is exemplified in fig. 2.8:
A user wants the robot to move to a desired location B. He tells the system "Move
to Location B." The robot’s end effector is currently at the location A, thus, the mo-
tion planning module calculates a trajectory g(t) for the robot’s joints to move the
end effector from A to B. This trajectory is passed to the motion control module of
the robot, which controls the motor currents in such a way that the robot moves
its end effector to B.

While the motion control module enables the single joints to follow desired
positions, velocities or forces/torques, the motion planning module can be con-
sidered as the interface between the user, giving the command, and the robot,
performing the actual task. It is responsible for providing joint trajectories that
fulfill the actual task while respecting actuator limitations and other constraints.
For example, constraints may apply for kinematics (position/ velocity/ accel-
eration limits) and dynamics (force/torque limits) of joints or arbitrary parts of
a robot as well as the handling of obstacles. Furthermore, a desired behavior
may include the optimization of time, velocities, efforts or smoothness. In conse-
quence, most motion planning approaches rely on optimization methods. In the
last decades, various concepts have been developed for many robot systems and
applications. Some of the most relevant approaches w.r.t. the scope of this thesis
are presented in the following. For a thorough survey, refer to the textbooks of
Nakamura (1991), Craig (2005), LaValle (2006), Choset et al. (2005) and Siciliano
et al. (2009).

After introducing related terms and definitions, this section divides motion
planning strategies into three categories. Each of them relies on one or several
planning algorithms. Subsequently, trajectory optimization concepts for redun-
dant manipulators related to the methods developed in this thesis are presented
in more detail. Finally, methods to deal with cluttered environments are shown.

User Motion Planning Robot
Gives Command. Calculates Trajectory q(t). Moves.
A — B.
A
IS
)| | &
"Move to B!" 5 d g
721 <
8
B o
ON ' =

Figure 2.8: Motion planning as the interface between the user and the robot system.
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Figure 2.9: Left: Two-DOF manipulator moving from the start position wy to the goal
location wenq. The task space is chosen as the tool center point (TCP) of the manipulator
at the tip of link 2. In blue, the manipulator follows a linear interpolation in task space,
while the green path indicates a linear interpolation in joint space.

Middle: The paths are pictured in both, task and joint space.

Right: The paths are parametrized w.r.t. time using a 5" order polynomial with zero
acceleration and velocity at start tg and end t.,q. Thus, using a 3" dimension, the
trajectory can be pictured. Paths and trajectories are pictured in task and joint-(or:
configuration-) space.

2.2.1 Overview
Terminology

This section introduces relevant terms from the field of motion planning as they
are used within this thesis.

Position and Pose In context of this thesis, position indicates either a scalar joint
position/angle or a position in 2D or 3D Cartesian coordinates. A pose con-
tains position and the respective orientations of a body in Cartesian space.
Thus, in R3, a position has three and a pose six dimensions.

Tool-Center-Point (TCP) The tool-center-point is usually chosen as body-fixed lo-
cation on the manipulator’s end effector, e.g. a central point between the
gripper jaws. In fig. 2.9, the TCP is defined at the end-tip of the 2-DOF
manipulator.
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Joint Space and Task Space Motion planning can be performed in arbitrary co-
ordinate spaces. A common distinction for robots is the joint space, often
referred as configuration space, and its task space. The configuration space
C € R" is typically the description of # joint positions g according to the
robot’s n DOFs. The task space VW depends on the actual task of the robot.
A common choice for manipulators is the pose of its TCP.

Inverse Kinematics The calculation of a configuration g for a given task w is
noted as the inverse kinematics (IK) problem. The opposite term, i.e. the
calculation of the task space representation (e.g. position of the TCP) for a
given configuration, is referred as forward kinematics.

Redundancy The definition of redundancy is closely connected to the definition
of configuration and task space. A system is denoted as redundant, when
its task space has a lower dimension than its configuration space, i.e. it has
more DOFs than required by the actual task. From a mathematical perspec-
tive, the set of equations to calculate the IK is under-determined. Thus, an
infinite number of admissible solutions may exist (— nullspace).

Nullspace The nullspace N of a robot can be illustrated by the variety of joint
velocities 4 and accelerations §, the robot can move without changing its
task space constraint w or @, respectively. Thus, a motion in the nullspace
results in a motion in joint space but not in task space. In non-singular
configurations, the dimension of the nullspace is the difference between the
joint and the task space, i.e. N € R,

Paths and Trajectories One has to distinguish between both terms path and tra-
jectory: A path is a sequence of states without information of time, while a
trajectory comprises system states as a function of time. Regarding a robot
manipulator, a path may be a geometric description of joint angles from
start to goal configuration, while the joint trajectory also has information
about joint velocities and accelerations. The concept of path and trajectory
is pictured in fig. 2.9.

Motion planning handles both, path as well as trajectory planning. How-
ever, the planning process can be decoupled to plan a path first and deter-
mine the trajectory afterwards.

Trajectory Optimization The solution for many motion planning problems is not
unique, i.e. there exists more than one trajectory that fulfills all constraints.
To choose the best admissible trajectory, an additional desired behavior can
be formulated in terms of a cost function. Minimizing this function while
respecting constraints is named trajectory optimization, which leads to the
optimal trajectory. This method is particularly important regarding the res-
olution of redundancy.
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Figure 2.10: Motion planning according to fig. 2.8 in detail. The motion planning con-
cepts are classified into three approaches. All approaches aim for a joint space trajectory
g(t) that fulfills the desired task space goal wg. Concepts presented in this thesis (bold)
are arranged according to the respective approaches and explained in further detail in
section 2.2.2.

Motion Planning Approaches

A categorization of different motion planning approaches and methods is diffi-
cult. Often, the problem is solved using a combination of different approaches.
Furthermore, the methods overlap regarding their planning spaces and applica-
tions. This thesis proposes a classification into three basic categories for redun-
dant robots as follows: The Planning in Configuration Space, Planning in Task Space
and Optimization. Although these categories are not applicable in general, they
shall provide the reader with a rough guideline for the motion planning topics
presented in this thesis.

Planning in Configuration Space Based on the early works of Lozano-Pérez
(1983), a fundamental concept is to plan the path in the configuration space C of
a manipulator. First, the goal configuration g5 has to be found that fulfills the
task space goal wp. This is done by applying Inverse Kinematics and Redundancy
Resolution approaches. Second, a transfer path from the initial to the goal configu-
ration is searched for in the collision-free part of C, Cgee. According to the number
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of joints of a robot 7, its configuration space C has dimension IR". Sampling-Based
Planners allow an efficient exploration of the search space. Some of their concepts
are presented in section 2.2.2. The motion of the manipulator in task space along
the path is usually not taken into account, e.g. a linear movement in C results in
a curved one in VV-space for a manipulator with revolute joints (cf. fig. 2.9).

Once a collision free path has been found, the joint trajectory g(¢) has to be
determined using geometric planning approaches (Trajectory Planner) or Trajec-
tory Optimization techniques. Calculating the path and trajectory subsequently
is denoted as the Decoupling Time concept. This simplifies the planning problem
enormously, since velocities and accelerations are not taken into account while
finding a collision free path. However, capabilities of computed trajectories are
limited and dynamic effects (manipulator accelerations, moving obstacles) can-
not be taken into account during the path planning stage.

Planning in Task Space The second option is to plan a task space trajectory w(t)
tirst and to then map it to the robot’s joint space. This approach is advantageous
for applications which require a particular task space trajectory, e.g. in the case of
welding, gluing or assembly operations. The mapping from task space to confi-
guration space is done by solving the inverse kinematics (IK) and Redundancy Res-
olution problem. State-of-the-art concepts are summarized in section 2.2.2. This
approach requires a low computational effort. In many cases, simple assumptions
for the task space trajectory are sufficient (cf. Baur, Schiitz, Pfaff, Buschmann, et
al. 2014) while the solution of the IK can be done in real time (cf. chapter 4).

Optimization Optimization methods can be applied to both aforementioned
categories. For example, determining the shortest path or the trajectory with
the minimum time or minimum effort may be desirable. Tasks and other con-
straints such as kinematic and dynamic limits as well as obstacles can be taken
into account. Several approaches related to Potential Functions, Indirect and Direct
Methods and (Differential) Dynamic Programming are presented in section 2.2.2.

2.2.2 Planning Concepts

This section provides an overview of related approaches and methods introduced
and classified in the previous section.

Path Planning

A path can be defined either by waypoints or a continuous curve in configura-
tion space or a task space. Advanced methods for finding suitable paths in the
presence of obstacles and other constraints can be found in textbooks of Choset
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et al. (2005), Latombe (1991), and LaValle (2006). One modern approach for find-
ing collision-free paths even in highly cluttered environments is the category of
sampling based planners: Operating in configuration space, the dimension of
the planning space grows according to the number of DOFs of a system and the
complexity of the problem increases exponentially. Within the past decade, sin-
gle query sampling based planners were developed which cope efficiently with
these high-dimensional planning problems. Starting from an initial configura-
tion, they explore the search space by random samples towards a given goal con-
figuration. By contrast to classic planning approaches, no explicit description of
the collision-free C-space is needed, but random samples are checked individ-
ually for collisions. The path results as a connection of collision free samples.
One of the first reports of this approach, known as rapidly-exploring random
trees (RRT), was published by LaValle (1998). A comprehensive survey of related
methods is given in the textbooks of Choset et al. (2005) and LaValle (2006). In
static environments it may be beneficial to reuse explored regions of the search
space for multiple queries. Based on this principle, probabilistic roadmaps were
proposed by Kavraki et al. (1996).

Paths that are generated by sampling based planners can be jerky and long-
winded. Thus, they can be post-processed by heuristic based shortcutting meth-
ods (Chen and Hwang 1998) or be used as a feasible initial guess for trajectory
optimization (El Khoury et al. 2013). Furthermore, there exists a wide variety of
related planners that aim at obtaining higher quality paths by asymptotic opti-
mization (Karaman and Frazzoli 2011; Perez et al. 2012) or that integrate differ-
ential constraints (LaValle 2006).

The availability of open-source implementations of various sampling based
algorithms, e.g. within the OPEN MOTION PLANNING LIBRARY (Sucan et al.
2014) still has a large impact on their success. Sampling based planners are used
for industrial applications as well, e.g. for planning and validation checking of
complex assembling processes (Siemens PLM Software Inc. 2015).

Trajectory Generation

The problem of determining the sequence of states as a function of time is known
as trajectory generation. When a (geometrical) path is given in advance, the prob-
lem is reduced to a time parametrization of the path. In the following, geometrical
trajectory planning as well as trajectory optimization approaches for the transi-
tion "path to trajectory" are presented.

Position, velocity or acceleration joint constraints on the kinematic level can be
taken into account using trapezoidal velocity profiles. Waypoints can be exactly
met by stopping at each of them. In order to achieve a continuous motion of the
robot, intermediate waypoints can be turned into via-points. By limiting the max-
imal accelerations, these via-points are only approximately met. This approach
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is often referred as parabolic blends. Pseudo via-points can be inserted addition-
ally in order to meet the via-points exactly. Other options are interpolation based
schemes using polynomials or splines. An overview of these standard methods
can be found in Craig (2005), Khalil and Dombre (2004), and Vukobratovic and
Kircanski (1986). Although simple and robust, the aforementioned approaches
have several drawbacks. Usually, they are not optimal regarding time and some
do not follow the path exactly or show overshooting. A novel framework which
uses a sequence of motion profiles is the REFLEXXES MOTION LIBRARIES as pre-
sented by Kroger (2010). It is designed to be able to quickly react to sensor infor-
mation while executing the motion. A robust method of a time parametrization
scheme providing synchronized joint trajectories respecting kinematic limits was
developed by the author in collaboration with Lochner (2015).

In the late 80s, time optimal approaches were developed in order to deter-
mine dynamically feasible velocity profiles by parameterizing the path (Bobrow
et al. 1985; Pfeiffer and Johanni 1986; Shin and McKay 1986). These methods
follow the idea that at least one joint is in saturation regarding its velocity or
acceleration limit. Pfeiffer and Johanni (1986) take advantage of the problem’s
topology by projecting the manipulator dynamics along the path. This yields
a one-dimensional optimization problem which can be solved by dynamic pro-
gramming approaches. All of these methods are obviously limited by the geo-
metric path itself, which may not be optimal regarding system dynamics.

Redundancy Resolution

Kinematic redundancy offers additional freedom for motion planning. Secondary
objectives can be pursued within the nullspace of the robot’s motion, i.e. without
interfering with the primary task. Additionally, a formulation of the IK problem
on velocity level yields a linear relation between C- and WW-space, which turns
out to be beneficial for the following methods:

The resolved motion rate control (RMRC) algorithm as reported by Whitney
(1969) uses the Moore-Penrose pseudoinverse of the Jacobian, achieving a local
minimization of joint velocities. Presenting a scheme named automatic super-
visory control (ASC) Liégeois (1977) extended the method, taking into account
secondary objectives by a nullspace projection. Both approaches are explained
in detail in section 4.1. Nakamura and Hanafusa (1987a) assigned priorities to
multiple tasks in their related task priority approach. An overview of hierarchi-
cal approaches resolving redundancy on the velocity level was given by Siciliano
(1990) and Vukobratovic and Kircanski (1986). Formulating the algorithm on the
acceleration level is straight-forward and allows a calculation of the required ac-
tuator forces/torques directly using an inverse dynamic robot model (Luh et al.
1980). This is exploited by the operational space approach as presented by Khatib
(1983) and the work of Hollerbach and Suh (1985) for solving redundancy by
a local optimization of actuator torques. Secondary objectives are mostly taken
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into account using cost functions which are minimized using gradient descent
methods. Limits expressed by penalty functions are therefore soft. This may gen-
erate infeasible solutions in case e.g. joint limits can no longer be respected in
nullspace. One approach is to saturate controls first in nullspace and, if needed,
to alleviate the task space constraint. Recent works of Flacco et al. (2015) present
real time capable efficient algorithms and a review of related approaches.

Feasible trajectories e.g. w.r.t. joint limitations can be calculated using in-
equality constraints. Kinematic and dynamic limits are respected in Cheng et al.
(1994) solving the constraint optimization problem using a quadratic program-
ming (QP) approach. Kanoun et al. (2011) presented a planning framework ex-
tending the QP to multiple equality and inequality constraints able to respect a
hierarchical priorization. Improvements to this approach as well as its real time
implementation were reported by Escande et al. (2010, 2014). Sampling based
planners usually operate in configuration space, i.e. a goal configuration which
tulfills the respective task has to be determined first. For planning with redun-
dant manipulators, this is a limitation since one goal configuration out of an in-
finite number of admissible solutions has to be chosen. This problem has been
addressed in several publications (Berenson et al. 2009; Bertram et al. 2006; Vande
Weghe et al. 2008).

The term of redundant systems always depends on the respective task space
definition. Using only the necessary set of constraints adds flexibility to the
system and extends the range for secondary objectives. Thus, the view of mo-
tion planning as a constrained dynamic optimization problem is a logical conse-
quence. An overview is presented in the following section.

Optimization Based Planning

Motion planning can be formulated as a dynamic optimization problem under
equality and inequality constraints. Although its complexity is high, a growing
number of approaches is reported solving this optimal control problem (OCP)
numerically. Driven by steadily increasing computational power these strategies
become more and more relevant.

Potential Functions Controlling a manipulator by a local descent along gradi-
ents of artificial potential fields was reported by Khatib (1986). This approach en-
ables real time collision avoidance as well as joint limit avoidance. The local
optimization of the potential field can likewise be considered as a cost function.
One drawback is the presence of local minima where the solution may get stuck.
Therefore, Rimon and Koditschek (1988) proposed a specially shaped cost func-
tion (navigation function) which guarantees the existence of only one (global) min-
imum at the goal. Under the assumption that an initial, collision-free path exists,
Quinlan and Khatib (1993) connected the current configuration and the goal with
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an elastic band. Similar to artificial potential fields, obstacles affect the elastic
band by repulsive forces while the band itself is contracted by internal forces.
By physical analogy to a mechanical spring, the path tends to its energy mini-
mum. Dynamically appearing obstacles deform the path incrementally in real
time, while preserving its topological properties. Thus, the path is not affected
by local minima. This framework was also presented in an extended form as
elastic strips by Brock and Khatib (2002). Related to these approaches, but releas-
ing the prerequisite of the initial path being collision-free, the planning algorithm
CHOMP was introduced by Ratliff et al. (2009) and Zucker et al. (2013). A cost
function taking into account the path’s smoothness and penalizing collisions is
minimized by covariant gradient descent. Integrating obstacle distance penalties
along the arc instead of w.r.t. time assures that safety distances are respected even
at higher velocities. Computational efficiency is furthermore increased by using
precomputed voxel-based distance fields. While the aforementioned algorithms
consider obstacles in task space, Shiller and Dubowsky (1991) proposed a global
optimization scheme using C-space obstacle representations.

Indirect and Direct Methods In optimization theory, two categories can be dis-
tinguished regarding the formulation of dynamic optimization problems:

- Indirect Methods start by formulating the hamiltonian and deriving analyti-
cally the adherent differential optimality conditions. These result in a two-
point boundary value problem which is usually solved numerically and
yields the optimal trajectory (“first optimize, then discretize”.)

- Direct Methods transform the dynamic optimization problem to a static one
by discretizing w.r.t. time. The static problem can be solved using nonlinear
programming methods (“first discretize, then optimize”.)

Both approaches can be used to optimize a robot’s trajectory. Their usage depends
on the general set-up of the actual application.

Indirect Methods provide highly accurate solutions, but require a good ini-
tial guess since their convergence ratio is comparatively small (Papageorgiou
et al. 2012). Optimality conditions with a limited system input are given by
Pontryagin’s minimum principle (PMP) (Pontryagin et al. 1962). Based on the for-
mulation of the Hamiltonian, several differential constraints result from the calcu-
lus of variations. Dealing in particular with redundant manipulators, Nakamura
and Hanafusa (1987b) developed a two-point boundary value problem (TPBVP)
formulation based on automatic supervisory control (ASC) (Liégeois 1977), us-
ing a projected nullspace input. This formulation has been used in the author’s
work on predictive inverse kinematics (Schiitz, Buschmann, et al. 2014). Related
to Nakamura and Hanafusa (1987b), Martin et al. (1989) proposed a similar ap-
proach but formulated the task space constraint in terms of position. Minimum
time and energy trajectories for an industrial manipulator were found by Stryk
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(1994), solving the optimality conditions by a multiple shooting approach. Since
this method is sensitive w.r.t. the initial guess, an approximate, suboptimal solu-
tion is generated first using a more robust direct collocation algorithm.

Direct Methods have a larger convergence ratio. Equality or inequality con-
straints can be taken into account more simply. However, the computational
effort may be higher and the solution depends strongly on the chosen repre-
sentation of the control function. Since the system’s ordinary differential equa-
tion (ODE) is taken into account as an equality constraint, a solution may not be
physically valid in case equality constraints are not met. An early example can be
found at Singh and Leu (1991), who investigated trajectory optimization of serial
manipulators in offline simulations. Thereby, they took obstacles into account
by inequality constraints. Wang and Hamam (1992) reported a similar approach
for a 3-DOF manipulator. Schlemmer (1996) divided the overall planning prob-
lem into smaller sub-problems over time. Solving these by sequential quadratic
programming (SQP), he generated optimal trajectories for a 10-DOF manipulator
following a moving goal in 3D task space .

Task space trajectories modeled as cubic splines for stepping over obstacles by
a quadruped robot were found by Kolter and Ng (2009) using convex optimiza-
tion. Convexity is achieved by limiting the joints” workspace to a convex hull. A
hierarchical optimization approach is presented, named TRAJOPT by Schulman et
al. (2013). Infeasible constraints of the initial guess are first handled using penalty
functions in order to "push" the trajectory to feasible regions. The problem is
solved using sequential convex optimization while using efficient formulations
for collision avoidance. A feasible solution for a subsequent optimization of the
discretized problem was found by El Khoury et al. (2013) using sampling based
methods. The author presented the evaluation of a similar approach but using
heuristic task space paths for initialization (Schiitz et al. 2015).

(Differential) Dynamic Programming Another approach for solving dynamic
optimization problems was introduced by Bellman (1954) known as dynamic pro-
gramming. Although this method has been developed independently from Pon-
tryagin’s minimum principle, it can be shown that the resulting optimality con-
ditions can be expressed in terms of Bellman’s equations and vice versa. The dy-
namic programming approach yields a discrete problem. Its complexity grows
exponentially with its dimension ("curse of dimensionality") and even nowadays
it remains impossible to solve higher dimensional problems using this method.
In consequence, Jacobson and Mayne (1970) presented a computationally effi-
cient method known as differential dynamic programming (DDP), which solves
the problem iteratively by second order approximations around an initial guess,
using a feedback pass. This method is proposed by Todorov and Li (2003) for
optimal control of manipulators. In order to increase robustness, Tassa et al.
(2012) present several (numerical) extensions and show its computational effi-
ciency. Control limits are further integrated by adding an additional quadratic
problem (Tassa et al. 2014).
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2.2.3 Planning in Cluttered Environments

Obstacles can be handled in two ways: The classic approach is to avoid obsta-
cles, regardless of their mechanical properties and assuming their geometry is
known. These concepts work well in structured environments with a sparsely
obstructed workspace. By contrast, taking into account biological, cluttered and
unstructured environments, collision free paths may not even exist. A motion
planner has to respect the mechanical properties of objects and to adapt its plan
for obstacles being either compliant or stiff, fixed or movable. Instead of avoiding
collisions, the robot interacts with other objects. An overview of both approaches
is given in the following.

Obstacle Avoidance

The robot’s C-space is divided into the free space Cg,e and the space obstructed
by obstacles” geometry C,,s. Trajectories are only searched for in Cgee. In the
case of potential field approaches, repellent potentials are assigned to obstacles
(Khatib 1986). Most optimization methods are based on this principle, they only
differ in terms of the cost function formulation (which depends on the minimum
distance between two bodies) and obstacle representation. In order to ensure fast
collision checking by minimum distance calculation, simple geometries such as
capsules or spheres are used to model obstacles as shown by Schwienbacher et
al. (2011). Distances are calculated either on demand or can be determined by
precomputed distance fields (Zucker et al. 2013). Motion planning algorithms
based on sampling perform a boolean test for collision of single configurations
(LaValle 2006). Since these tests have to be executed for every new explored state,
efficient environment representations like octomaps are available (Hornung et al.
2013).

Interaction and Tactile Feedback

Planners which allow the robot to displace obstacles were presented by Dogar
and Srinivasa (2011) and Stilman et al. (2007). They assume to have a suitable
model of the environment as well as of obstacles” properties and do not consider
feedback. The deformation of objects is taken into account in the work of Frank
et al. (2011) and Patil et al. (2011) using deformation models. However, these
aforementioned approaches assume either knowledge about the environment or
make simplifying assumptions, which may not be admissible in cluttered and
unknown environments.

The mechanical properties of the actual contact of the robot with the envi-
ronment can be determined using force feedback. A typical application is an
industrial assembly process where even small position inaccuracies can lead to
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high contact forces. Concepts are extensively studied in literature for controlling
the interaction forces of the manipulator (force control) or achieving a compliant
behavior (stiffness or impedance control) while pursuing a task. An overview of
related approaches was given by Villani and De Schutter (2008). Typically, exter-
nal forces at the end effector are taken into account. However, contacts may also
occur at the robot arm itself in cluttered environments. Park and Khatib (2008)
reported a concept which deals with multiple contacts along a robot arm. While
the primary task of the robot is to control these forces, the actual motion task
is projected to the manipulator’s nullspace. Based on the estimation of external
joint torques, safety reaction strategies were developed for a 7-DOF lightweight
manipulator by De Luca et al. (2006) and Haddadin et al. (2008). The manipula-
tor switches its control strategy when collisions are detected and tries to reduce
external torques. Another concept for whole arm tactile planning using a tactile
skin was presented by Jain and Killpack (2013). Contact forces are minimized by
solving a QP while taking into account kinematic and contact force limits as well
as the desired task space demand. A further improvement of this implementation
was reported by Killpack and Kemp (2013) by extending the moving horizon as
well as considering dynamics of the arm. Related to these concepts, the author
presented a planning approach based on the automatic supervisory control (ASC)
(Liégeois 1977) scheme (see section 4.1.2).

2.2.4 Summary

This section summarizes important aspects and concepts for planning the mo-
tion of redundant robot manipulators. Many different approaches can be distin-
guished and the ideal choice strongly depends on the robot structure itself and
its respective application. In many cases, several concepts are applied in parallel
and some new motion planning approaches rely on a combination of known ones.
The core requirement for redundant manipulators is to solve the IK problem and
to resolve its redundancy. For example, while moving in cluttered environments,
it may be necessary to adapt the motion plan in real time. Unforeseen contacts
with other objects require a reaction of the robot.

In this thesis, the redundancy formulations and concepts are presented in de-
tail and extended to a tactile planning framework in chapter 4. Furthermore, in
chapter 5 these redundancy formulations are combined with indirect optimiza-
tion methods in order to achieve real time optimization within a certain predic-
tion horizon. Depending on the particular task, the solution of the motion plan-
ning problem as an offline optimization problem is applicable. Thus, chapter 6
evaluates the benefit of a direct optimization method for finding suitable trajec-
tories for a harvesting manipulator picking peppers.






Chapter 3

Manipulator System

The motion planning methods and algorithms of this thesis were applied and
tested using the CROPS manipulator. Hence, particular challenges and require-
ments regarding their usability in real world experiments could be evaluated.
This section presents this manipulator system. The robot was developed within
the EU-project CROPS (cf. section 2.1.3) at the author’s institute and is the subject
of the PhD theses of Baur (2015) and Pfaff (2015). Overviews of the system were
given at international conferences by the author (Schiitz, Pfaff, Baur, et al. 2014;
Schiitz et al. 2014; Ulbrich et al. 2015).

The main objective of the CROPS manipulator is to pick fruit autonomously
in uncertain environments. In order to be able to solve these tasks, the manip-
ulator has to be equipped with several tools and abilities. First, the robot sys-
tem requires software and hardware interfaces which enable the user to guide its
gripper towards the fruit. The integration of a 3D joystick with haptic feedback
allows the user to teleoperate the arm. Second, for dealing with obstacles in the
workspace of the arm, the manipulator needs information about its environment.
Since the capabilities of vision sensors are limited in cluttered environments like
greenhouses, tactile information is advantageous. This can be done using a tactile
sensor that directly measures the contact forces with the environment. Another
option is to use the signals from current and position sensors of the robots’ joints
to estimate these forces.

This section provides these tools and abilities: First, a brief introduction re-
capitulates the CROPS manipulator system including its hardware, communi-
cation, control and software architecture. For controlling the manipulator, sev-
eral interfaces were implemented, including the teleoperation by a haptic device,
which is shown in section 3.1. Section 3.2 presents appropriate kinematic and
dynamic models required by the proposed motion planning algorithms. Tactile
sensors provide information about contacts of the robot with the environment.
Related concepts are shown in section 3.3.

29
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(a) Prototype 1(9-DOF) (b) Prototype 2 (9-DOF) (c) Prototype 2 (7-DOF)

Figure 3.1: CROPS agricultural manipulator prototypes of generation 1 (a) from 2012
and generation 2 (b,c) from 2014. The generation 2 prototype is shown in a 9-DOF (b)
and 7-DOF (c) configuration emphasizing its modular design.

3.1 Hardware and Interfaces

3.1.1 Manipulator Prototypes

In the CROPS project, two different versions of an agricultural manipulator were
developed. Generally, a robot manipulator is "assumed to be a system of rigid
bodies connected by ideal joints and powered by ideal force generators" (Feather-
stone 1987, p. 5). The design of the manipulator prototypes follows the paradigm
of a multipurpose usage. Different applications, such as the selective harvest-
ing of different field crops (e.g. sweet peppers, apples, grapes) or the precision
spraying of locally diseased fruit require different manipulator kinematics. Thus,
kinematics of the CROPS manipulators can be changed due to their modular de-
sign. A thorough overview of the developed hardware system can be found in
Pfaff (2015) while Baur (2015) presents its software architecture and motion plan-
ning concepts.

Both manipulator prototype generations are depicted in fig. 3.1: The first gen-
eration, prototype 1!, (left) has one prismatic and eight revolute joints in its most
flexible configuration as it has been used for harvesting sweet peppers and ap-
ples. A 6-DOF version of the prototype 1 has been employed for precision spray-
ing of grapes. The second generation, prototype 2 was developed in 2014 (Pfaff

Two prototypes of generation 1 were build within the project. Both have the same kinematics and
a similar hardware design and are denoted as "prototype 1" in this thesis. While the first one was used
for field experiments at Wageningen UR, KU Leuven and University of Milano, the second one remained
at the author’s institute and is used for laboratory experiments.
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et al. 2014; Schiitz, Pfaff, Baur, et al. 2014). It follows a modular design allowing
various kinematic configurations using integrated drive modules. Fig. 3.1 exem-
plifies a 7-DOF and a 9-DOF configuration of the manipulator. In this thesis, the
trajectory optimization approaches (cf. chapters 5 and 6) are applied to the proto-
type 1. A brief overview of its applications is further given in section 2.1.3. This
section, however, focuses on the prototype 2 in detail. While for the trajectory op-
timization methods only kinematic models were taken into account, an accurate
dynamic model of prototype 2 is used for the proprioceptive sensing of external
torques (section 3.3.3).

3.1.2 Manipulator Hardware

The CROPS manipulator prototype 2 has up to 8 revolute and one prismatic joint.
The revolute joints are actuated by integrated drive modules. Each drive mod-
ule comprises a brushless direct current (BLDC) motor, HARMONIC DRIVE gear,
power electronics and position measurement sensors at the motor shaft and out-
put shaft. The prismatic joint consists of the linear guide FESTO? EGC-TB which
is actuated via belt transmission by a BLDC motor without additional gears. It
is equipped with position sensors on the motor shaft as well as on the linear
guide. The robot’s joints are controlled by ELMO? Gold motor drivers. The mo-
tor drivers implement a cascaded P-PI controller scheme. The outer loop (posi-
tion control) runs at 50 is and can either be closed by the absolute encoder or by
the position sensor on motor side. The weight of the manipulator arm is compen-
sated on the prismatic joint by constant force springs. Except for joint 2, all drive
modules include a brake. For detailed information about the hardware configu-
ration refer to Pfaff (2015).

3.1.3 Communication

The system architecture of the CROPS manipulator is pictured in fig. 3.2. All
joints are serially connected by an ETHERCAT* bus to the real time control unit.
Its high bandwidth allows a sampling rate of 1kHz. Typical sensor data being
transmitted at every cycle are

- Active motor current

- Position & velocity on the motor side

- Position on the output shaft (absolute encoder)
- Status of motor drivers

ZFesto AG & Co. KG, http://www.festo.com.
3Elmo Motion Control Ltd., http://www.elmomc.com.
4Beckhoff Automation GmbH & Co. KG, http://www.beckhoff.com.
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Figure 3.2: Communication Architecture of the CROPS manipulator prototype 2. Op-
tionally, the tactile sensor can be connected to the CAN bus.

Other peripheral devices such as the end effector or the tactile sensor are con-
nected by a CAN bus. Furthermore, the control unit is able to switch off the main
motor power in case an error occurs. The real time control unit (farget PC) runs a
SIMULINK REAL TIME TARGET (Matlab R2014b)® with a base rate of 1 kHz. This
applies to the calculation of time critical components such as direct and inverse
kinematics, including collision and limit checking. Other tasks such as the pre-
calculation of the task space trajectory run at lower sampling rates. A thorough
overview of the software architecture is given in Baur (2015). The user communi-
cates with the control unit via the manipulator client which maps ROS® messages
to UDP signals. The user interfaces are presented in the following section. Fur-
thermore, a host PC can be connected to the target PC for development purposes.

5The MathWorks, Inc., http://www.mathworks.com.

6Robot Operating System (ROS) "is a flexible framework for writing robot software. It is a collection
of tools, libraries, and conventions that aim to simplify the task of creating complex and robust robot
behavior across a wide variety of robotic platforms." (ROS.org 2016) Basically, the ROS middleware is
structured as a decentralized network of nodes that communicate with each other via messages, super-
vised and coordinated by a master. Each node is a software module that provides its own functionality.
For further information, refer to Quigley et al. (2009).
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3.1.4 User Interfaces

Several interfaces for controlling the manipulator are implemented to allow the
user a maximum flexible usage of the system. The user interfaces connect to the
control unit via UDP using an interface ROS node. Furthermore, the user is able
to connect to the control unit directly via MATLAB/SIMULINK on the host PC to
the target PC (cf. fig. 3.2).

This section introduces the general ROS interfaces to the manipulator. These
enable the connection of other peripheral devices such as cameras or joysticks
to the robot. Here, the teleoperation of the robot by a haptic joystick will be
presented in greater detail.

ROS User Interfaces

The ROS software network for controlling the CROPS manipulator with its nodes
is depicted in fig. 3.3. The manipulator client node is the gateway between the
ROS network and the manipulator. A list of manipulator commands is given
in table 3.1. Within the ROS network, the nodes are able to communicate with
each other using ROS communication interfaces such as messages or actions. As
presented by Baur (2015), a GUI is implemented to control and monitor the ma-
nipulator. Furthermore, the ROS communication can be tested without the real
manipulator using a simulator node.

Furthermore, additional peripheral devices can be connected to the ROS net-
work using suitable drivers. Aiming for autonomous harvesting of sweet pep-
pers, a RGB-D camera was integrated for fruit and stem localization (Schiitz,
Pfaff, Baur, et al. 2014). Suitable image processing algorithms for laboratory
demonstrations were developed in the student projects of Hazirbas (2013) and
Yousefpour (2015). While this approach rendered possible the autonomous har-
vesting of fruit in the laboratory, its reliability and accuracy turned out to be in-
sufficient. Therefore, a teleoperation system was developed in order to enable
the user to control the manipulator’s end effector online e.g. for gripping fruit.
A haptic input device allows the control of the manipulator’s end effector online
while providing feedback to the user. This teleoperation system is explained in
the following section.

Teleoperation with Haptic Device

In order to teleoperate the CROPS manipulator, an interface using a 3D joystick
with force feedback (haptic device) was implemented. In the following, two
control strategies are presented, a position and a rate controller. This section is
based on the author’s collaboration with D. Wahrmann and the student project
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Figure 3.3: User Interface structure of the CROPS manipulator. The central part is the
ROS framework, which includes several nodes for communication with the manipulator
and other peripheral devices. The nodes are able to communicate with each other. Using
a simulator, the framework can be tested without the real manipulator. Images taken
from *Novint Technologies Inc. (2012) and **ASUSTeK Computer Inc. (2016).

of Schaller (2016). According to Niemeyer et al. (2008), the principle of teleop-
eration can be described by seven components as depicted in fig. 3.4. In this
work, the master consists of the 3D joystick, which measures the user input. These
commands are interpreted by a controller which is implemented as the ROS node
crops_haptics. Passing the ROS framework and the UDP interface to the manipu-
lator, the manipulator control unit receives the commands. The CROPS manip-
ulator (slave) executes the motion command and interacts with the environment.
Information about the interaction manipulator - environment can be gathered e.g.
by a tactile sensor. In addition to the current status (positions, velocities) of the
manipulator, these are fed back to the user in the opposite direction.

Interface Target Variable ROS topic

Point-to-Point End Effector Movement on Wes Action
straight-line task space path

Point-to-Point End Effector Movement on Wiryit Action
a heuristic task space path accounting for

the stem and fruit position (Baur, Schiitz,

Pfaff, Buschmann, et al. 2014)

Online Joint Velocity Control G des Message
Online End Effector Velocity Control Wes Message
Offline Joint Trajectories (12, 4°); (¢4, 4Y); .. (N, qN)] Message

Table 3.1: Manipulator interfaces provided by the ROS node manipulator client
(crops_manipulator_udp).
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Figure 3.4: The work-flow of teleoperation of the CROPS manipulator according to
the scheme presented by Niemeyer et al. (2008), depicted as a chain of two-port ele-
ments connecting the one-port user with the one-port environment. Signals are drawn
as single lines while interactions are marked as double lines. Image taken from *Novint
Technologies Inc. (2012).

Hardware Setup For the application, the haptic device FALCON from Novint
Technologies Inc. (2012) is used for the 3D information input. The device has
a parallel kinematics design with 3-DOF. Every joint comprises a position en-
coder and an actuator enabling force feedback. It is connected to the user PC
by USB and runs at 1kHz. Its hardware driver and firmware are provided by
the open-source project LIBNIFALCON (Machulis 2010) which computes the di-
rect and inverse kinematics of the device. More information about its workspace
and dynamic properties can be found in Martin and Hillier (2009). Additionally,
the FALCON provides four buttons which are used for activating control options
or to operate the end effector (e.g. close/open the gripper).

Rate and Position Control of the Manipulator In order to control the manipu-
lator in an intuitive manner, the user directly controls the end effector. Thereby,
the ROS interface online end effector velocity control (cf. table 3.1) is used. Hence,
the manipulator executes a task space velocity command w4 which includes
the translational and angular velocity of the end effector. Inverse kinematics are
calculated on the robot’s side using the instantaneous ASC scheme as shown in
section 4.1.2. Two approaches are implemented for controlling the manipulator’s
end effector by the haptic device:

- Rate Control: A deviation of a predefined reference position is interpreted
as a task space velocity of the end effector. This is analogous to a joystick
control in computer games or named jogging for industrial robots (either in
task space or joint space).

- Position Control: A translational movement of the haptic device is mapped
to a translational movement of the end effector. This scheme corresponds to
the control of the cursor by a computer mouse.
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Figure 3.5: Rate and position controller for teleoperation of the CROPS manipulator.

Rate Controller Implementation Since the workspace of the manipulator is very
large compared to the one of the haptic device (= 15 : 1), the concept of the rate
controller is considered to be beneficial (Kim et al. 1987). Starting from a reference
position x,.¢ of the haptic device, the user moves the device to x;. Scaled by an
arbitrary function g(Axy,), the relative position Ax;, := xj, — X, can be directly in-
terpreted as a velocity command for the manipulator. Experiments have shown
that an exponential form with the scalar shaping factors c1, yields an efficient
and intuitive control for the user:

1 A
wy, = g(Axy) = = palldxy | _2¥n_

(3.1)
¢ | Ay |

The resulting task space velocity y, is saturated by a lower/upper bound in or-
der to ensure admissible manipulator commands 4es. Furthermore, the stabil-
ity in the presence of delays is increased by lowering limits. The user receives
a feedback force Fj which is proportional to the commanded velocity i, by a
factor of —k;. Hence, analogously to an exponential spring the haptic device
tends towards its reference position. The scheme of the rate controller is shown
in fig. 3.5a.

Position Controller Implementation The position controller maps a position
user command at the haptic device to a corresponding end effector position of
the manipulator. Since the manipulator provides no online task space position
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interface, a position user command has to be transposed first into a suitable task
space velocity wy,. This is realized by adding an extra control loop. The result-
ing end effector position @ is estimated internally by integrating the commanded
task space velocity wges. The current end effector position w provided by the ma-
nipulator itself cannot be used due to the high round trip delay (=~ 50 — 100 ms)
which leads to instabilities. Experiments showed that the numerical drift can be
neglected since the user compensates deviations by suitable commands. Thus,
the position difference Awy, = k,Ax;, — @ is converted to a task space velocity
command i, by the reciprocal sampling time 1/7. Additionally, the user position
command can be scaled by k, to adapt the covered workspace of the position
controller. The resulting task space velocity i, is again saturated and sent to
the manipulator as wges, the desired task space velocity. Similarly to the rate
controller, the user receives a force feedback on ;. By analogy to a computer
mouse, the user can move the end effector to a goal outside the haptic device’s
workspace by indexing, i.e. by resetting the reference position x.¢ at the border of
its workspace. A block diagram of the position controller is shown in fig. 3.5b.

Since the FALCON has 3-DOF, it is used only for gathering of translational user
commands. The translational velocity of the end effector is expressed in world
coordinates since experiments showed that a co-rotated system of the end effector
is less intuitive for the user. Rotation commands can be given by keyboard inputs
that are mapped to constant angular velocities.

Force Feedback Besides feedback of the motion control commands, other in-
formation can be passed to the user by superposing feedback forces on the 3D
joystick. Two feedback options are implemented:

1. Contact forces of the manipulator arm with its environment are measured
by a tactile sensor (cf. section 3.3.2) and transmitted to the user on the haptic
device.

2. An estimate of the quality of the manipulator’s configuration is given by
the secondary objectives cost function of the inverse kinematics algorithm
(cf. section 4.2). This information can also be mapped to the haptic device.

In the following, both variants are briefly introduced.

The tactile sensor measures a resulting external force Fgen ¢t (cf. section 3.3.2).
One approach is to project the external force to the TCP of the manipulator and to
apply it to the haptic device. At least for the direction, this seems to be an obvious
choice, since user commands and feedback forces are both in task space. Thus,
Foen,ct is first projected to the joints using the transposed translational Jacobian
J PT,OC of the contact point rpo resulting in the generalized external torque Text. In
a subsequent projection, Tex is mapped to the manipulator’s task space by its
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translational Jacobian of the TCP, J1cp. Thus, the resulting force mapped to the
haptic device Fj,; leads to

F ht — ] TCP I gocF sen,ct - (3'2)
T
ext

However, this approach does not appear intuitive to the user, since the absolute
value of the force applied to the haptic device varies with the respective lever
arm. The intensity of the force is lower for the arm being stretched out than for
a folded configuration. This can be compensated by using the direction of the
external force while keeping its magnitude:

Fj,

b 33
[Ens (3:3)

P;z,t - HFsen,ct

As shown in section 4.2, secondary objectives can be expressed in terms of
cost functions H. Examples for secondary objectives are joint limit avoidance, a
comfort pose or self collision avoidance. The gradient V;H yields a descending
direction for each joint, i.e. how a joint has to move in order to minimize H. By
projecting this information to the task space and applying it to the haptic device,
the user can feel which directions are more convenient, i.e. help minimizing these
costs. Thus, the force feedback Fj, ; resulting from the secondary objectives can
be calculated as

oH\ T
Fys = Jtcp (W) : (3:4)

Experiments showed that, by contrast to the mapping of the tactile forces, sec-
ondary objectives Fj ; do not appear intuitive to the user.

All force feedback approaches that are based on sensor information from the
robot are heavily influenced by delays. In the current implementation, the com-
manded task space velocities are limited to comparatively slow dynamics in or-
der to ensure stability. Faster dynamics could be achieved by significantly re-
ducing the delays. A quantitative evaluation of achievable minimal round-trip
delays and their influence on the system stabilities could be a topic of further
research.

Remarks

The user interfaces presented in this section allow the manipulator either to oper-
ate autonomously or to be teleoperated by the user. The ROS interfaces were suc-
cessfully used for picking sweet peppers in greenhouses (Bac et al. 2015), harvest-
ing apples in orchards (Wouters et al. 2014) or the precision spraying of grapes
(Oberti et al. 2016) in an autonomous operation mode. However, this mode relies
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on specific agricultural scenarios and requires many peripherals, such as sensors,
illumination rigs, etc., which are not applicable for modified scenarios or labora-
tory experiments. Furthermore, the robot may get stuck in complicated setups
where user interaction is required. Thus, the teleoperation mode is introduced
in this section. It enables even non-expert users to control the manipulator to
"hand-pick" fruit precisely as was shown in many laboratory demonstrations.
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3.2 Kinematic and Dynamic Models

Motion planning and trajectory optimization methods require knowledge of the
forward kinematics and dynamics of the manipulator system. Especially for real
time applications, an efficient and well structured calculation of those is essen-
tial. Thus, this section presents the kinematic and dynamic models of the CROPS
manipulator. First, the basic concepts for the (recursive) calculation of both are
shown for robots with open chain (tree like) kinematic structures. Second, empir-
ically identified parameter sets for the CROPS manipulator prototype 2 are pre-
sented in section 3.2.3, followed by a validation of the inverse dynamics model.
The models developed in this section for the CROPS manipulator prototype 2 are
based on the work of Baur (2015).

3.2.1 Relative Kinematics

In the following, the computation of the required kinematic quantities for the
inverse dynamics model is summarized briefly. Further detailed descriptions
on relative kinematics and recursive computation can be found in Featherstone
(1987) and Ulbrich (1996).

A serial manipulator consists of links that are connected by n joints, which
correspond to its DOFs. Their current positions are concatenated in the vector
q € R" while each single position is denoted as g;. Thus, g is considered to
be the set of minimal or generalized coordinates of the system. To each link, a
body-fixed frame is assigned with the z-axis aligned to the respective joint axis
following the convention of Craig (2005). A scheme of a prismatic and a revolute
joint including the kinematic quantities (cf. table 3.2) is depicted in fig. 3.6.

For open chain kinematic structures each body’s kinematic quantities can be
calculated recursively, i.e. relative to its parents” forward kinematics. Thus, only
the relative forward kinematics have to be determined for each body. The trans-
lational and rotational kinematic quantities (cf. table 3.2) of the body i can be
calculated by

iti = Ajp pTp +itpi

iti = Aip ptp + ifpi

iti = Aip pip + ifpi (3.5)
iwi = Ajp pwp + jWp,

iwi = Ajp pwp + iWp,

using the relative kinematics given for prismatic and revolute joints in table 3.3.
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(a) Prismatic joint.

(b) Revolute joint.

Figure 3.6: Prismatic and revolute joint kinematics of a serial manipulator. Reference
bodies are depicted in grey color. A list of the kinematic quantities is given in table 3.2.

General

i Index of the current body of interest

p Index of the parent of body i

qi Position of joint i

iv Vector v is given in frame i

{x0,v0,20} Base frame 0

{xi,yi,2i} Body-fixed frame of the i-th body

{ex, ey, €2} Base vectors

Translational

ot Absolute position of i-th body-fixed frame, denoted in frame 0

it pi Relative position of frame i to its parent p, denoted in frame i

Rotational

Ajp Rotation matrix transforming a vector from a representation in frame p to a
representation in frame i

KWk Angular velocity of frame k, denoted in frame k

kW pi Relative angular velocity between frame i and its parent p, denoted in frame i

Jacobians

iIR Rotational Jacobian of body i, denoted in frame i

ilto,i Translational Jacobian of the origin O; of body 7, denoted in frame i

iITpi Translational Jacobian of the relative position vector ;r,;, denoted in frame i

iR pi Rotational Jacobian of the relative position vector ;r,;, denoted in frame i

Table 3.2: Notation of relative kinematics.
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Prismatic Joint Revolute Joint
Translational
Position ifpi = i¥const + Aij;, ez qi ir'pi = iconst
. . AT . ~ .
Velocity itpi = A, €z §i + pWp ity itpi = pwp X iTpi

Acceleration ii;pi = Aip ez i + pwp itpi +2 0y 1'1"';71' ii;pi = pwp X itpi T pwp X (pqu X ii'pi)

Rotational

Velocity iwp =0 iWpi = €z q;
Acceleration  j@,; =0 iWpi = jWi X jWyi + ez i
Jacobians

ilt,pi = Aip (pITo,p + pf‘ipp]R,p) + et iJrpi = pFipp R
iJrpi =0 iTRpi = Jrel
1 forj=3andk =1

cf. Prismatic Joint
0 else.

Jreljk =

Table 3.3: Relative Kinematics equations for a body 7 with its parent p of a tree-like
kinematic structure connected to a prismatic or revolute joint.

The tilde operator () is defined for a vector a = [ay ay a;]” by

0 —a; ay
a:= | a, 0 —ay|. (3.6)
—ay Ay 0

The translational and rotational Jacobian ;Jr; and ;] ;, respectively, w.r.t. the
ith’s body’s origin are calculated by
0if;
ilto, = al—ql = Aip pJrop +ilTpi

. (3.7)
ilri = ﬁ = Aip pIrp T il R pi-

3.2.2 Inverse Dynamics

Considering forces and torques that are "required to cause motion" (Craig 2005,
p.187), is commonly known as the dynamics of a multibody system. General-
ized forces and torques corresponding to a generalized coordinate g; are denoted
by Q;. The calculation of the robot’s motion g, 4, § based on applied forces and
torques Q are denoted as forward dynamics while computing the needed forces
based on a given joint trajectory g, 4, § is named inverse dynamics. In the follow-
ing, the dynamic equations regarding the mechanical model of the manipulator
is explained, while hardware specific parameters and empirical models of fric-
tion, inertia parameters and the springs for gravity compensation can be found
in section 3.2.3.
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O; Origin of body i

m; Mass of body i

rci Absolute position of the i-th body’s COG

roCi Relative position of the i-th body’s COG
w.r.t. O;

Fci Absolute acceleration of COG of body i

w; Angular velocity of body i

Angular momentum of body i w.r.t. O;

Inertia tensor of body i w.r.t. O;
Fii1 Forceonbodyi;i+1in O;;yqq
T;;11 Torque onbody i;i+1in O;;yq

Figure 3.7: Forces and torques on body i with its COG r¢; and mass m;.

In his doctoral thesis Baur (2015) presented the algorithms for a dynamic
model of the CROPS manipulator 1. In addition, this section shows parame-
ters and models adapted and verified for the CROPS manipulator 2. In the case
of tree like manipulator kinematics, i.e. structures without kinematic loops, a
recursive computation of the dynamics typically reduces the computational com-
plexity from O (n?) to O (n) due to the required inversion of the mass matrix.
Forward kinematics are calculated first for obtaining the velocities and accelera-
tions of the respective bodies’ center-of-gravity (COG) based on the given joint
trajectory ¢q,4, 4. In the same way that forward kinematics start with the first
body, the inverse dynamics start with the last one. This can be explained by the
assumption that all torques and forces are known for the last body of the manip-
ulator, since it has no successor.

In the following, the recursive dynamics equations for body i (parent) depen-
dent on its child i + 1 are presented. Fig. 3.7 shows the respective quantities for
the body i with mass m;. For rigid bodies, the COG r(; is fixed w.r.t. to the body-
fixed frame O;. The vector from O; to the origin of its successor i 4 1 is given by
. Forces and torques in O; are denoted as F; and T;, respectively. The inertia

of body i w.r.t. O; is denoted by I foi>. The equilibria of linear (p) and angular
momentum (L;) result in

p; =mifci=F; —Fip1+m; g (3.8)
. (0; 0 - 10; 0; 0; L
Lf ) — 19, -|—wiIl.< Jwj = T; — Tipq + Téj ) — T; ! —miFoc#;  (39)

1 i+1
—— N~
mifoci&  FreFip1

Forces and torques of body i + 1 (F; 1, T;;1) are assumed to be known due to the
recursive calculation. By evaluating eq. (3.8) and eq. (3.9), forces and torques on
body i (F;, T;) are determined. F; and T; can be separated into the generalized
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forces and torques Q and the constrained forces/torques Z.

X,

yi

z,1

A

T
[Zx,i Zyi Qi Zui Zp,i Z%z} for prismatic joints

el

|~ T (3.10)
o [Z vi Zyi Zzi Zai Zp,i Qi] for revolute joints
Y

Z,i |

~.5 5

While constrained forces Z are needed for dimensioning link structures, bearings
or fittings, generalized forces/torques Q give information about motor torques
Tinot,i taking into account friction torques (forces) Ty ; (Fy,;) and the respective gear
reduction ratio N;. According to the motor manufacturer, the motor torque Tyt ;
is proportional to its active current Iy,,o ; by the torque constant k.t ;. Taking into
account possible forces F;, from springs for gravity compensation, the following
relation can be given.

N; kmot,ilmot,i +Ff,i + Fsp  for prismatic joints and
N —’

Tmoti
i = ' 3.11
Qi N; (kmot i Imot,i —{—Tf,i) for revolute joints. (3.11)
—_——

Tmot,i/N,'

Egs. (3.8) and (3.9) form a system of linear equations in triangular form. By mul-
tiplying the system with the translational and rotational Jacobians of the body i
(Newton-Euler Method), the constrained forces/torques Z; are eliminated. Thus,
the equations can be directly solved for the generalized forces and torques Q.

3.2.3 Parameter Identification

This section presents empirical models for the friction, stiffness of the manipu-
lator joints and the springs for gravity compensation of the CROPS manipulator
prototype 2. Kinematic and dynamic parameters are given in appendix A.

Friction

Revolute Joints For the large and medium sized drive modules (joint 2-6) of
the CROPS manipulator 2, the following friction model for revolute joints is pro-
posed by Baur, Dendorfer, et al. (2014):

Trs —Trio

-/ (3.12)
1+ (B

Tf,z',Baur = - Sgn(qinc,i) (Tf,z',O + “L_l |Tl,i|) - Eqinc,i -
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Joint  Ty;o[Nm] -] p[Rms Tys[Nm]  gs[2]
2 276-1001 210-1073 524-10* 1.68-10"! 5.33.10!
34 279-107! 3.75-107% 468-107% 1.28-10"! 8.17-10!
5 1.04-107! 520-107% 1.42-107* 6.03-1072 5.45-10!
6 136-1071 4.40-1073 195-10° 4.77-1072% 6.52- 10"

Table 3.4: Parameters for the friction model eq. (3.13) according to Baur (2015, p.77).

Thus, the friction torque depends on the joint velocity on the motor shaft ginc ; and
the external load T; ;. The parameters [Tf,o, i1, b, Tts,4q s] were experimentally de-
termined on a drive module testbed (cf. table 3.4). However, this model assumes
the motion direction to be non-negative, i.e. § > 0. This is corrected for arbitrary
directions of 4 by introducing the coefficient sgn(ginc;). Furthermore, it is ad-
justed by a piecewise defined correction term yx; for the assembled manipulator.
Hence, the friction law results in:

T = — 580 (Ginc,i) (Tfi0 + 1 Tiil) — biinci—

. Trs—Trip for joint 2 — 6. 3.13
sgn(%nc,i)—f qim{lz — Xi ] (3:13)
1+ (5)

For the small drive modules on the manipulator’s wrist (joint 7-9), a model based
on the gear manufacturer’s catalog was developed by Buschmann (2010). Param-
eters [Ty, 4, bg, v¢] of the original model were identified for the CROPS manip-
ulator by Baur (2015) (cf. table 3.5). Furthermore, the correction term y; for the
assembled manipulator is added as well:

Tfi = — 580 (Ginc,i) (Trio + I T1il)

forjoint7 -9
— (bg + 7| Tyl inci — i )

(3.14)

The piecewise defined correction term y; with its parameters y; (. (ct. table 3.6) is
defined by

o -tanh(N: - 4:) if g;
xi = {Xz,q1<0 tan (Nz %) 11 g; <0 (3.15)

Xig;>0 - tanh(N; - g;)  else.

Joint  Tg;o[Nm] ul—] by [ D Vflseal
79 1.88-1072 1.04-107% 285-10~° 1.50-10°

Table 3.5: Parameters for the friction model eq. (3.14) according to Baur (2015, p. 125)
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Joint 2 3 4 5 6 7 8 9

Xi ;<0 [Nm] +41.00 +7.00 +11.0 —-5.00 -2.00 +1.75 +0.60 +0.70
Xi ;<0 [Nm] 4125 +7.00 +11.0 —450 —-250 +1.50 +1.00 +0.80

Table 3.6: Correction Term of the friction model for the assembled manipulator.

Prismatic Joint The CROPS manipulator 2 uses the linear axis FESTO EGC-TB
for its prismatic joint. Using the model presented by Baur (2015), the friction force
Fy is calculated by

Fr = —sgn (41)Ffo — bgs (3.16)

with the Coulomb friction constant Fyo and the viscous friction gain b. Baur
(2015) identified the parameters of the prismatic joint oriented horizontally with-
out any force. This setup does not correlate to its normal operation. Therefore,
these parameters are recalculated by setting the joint vertically and adding a con-
stant mass (with a comparable weight to the manipulator arm) to joint 1. As
depicted in fig. 3.8 the orientation shows a major influence on the friction param-
eters (cf. table 3.7).

Gravitational Force Compensation

In order to compensate for the gravitational load of the arm, eight constant force
springs are attached to the prismatic joint of the CROPS manipulator 2. Two of
these springs were tested individually by measuring the force while the joint 1
moves up and down. Fig. 3.9 shows typical results for two measurements. Both
springs show a similar behavior, due to Coulomb friction. Their respective forces
Fsp depend on the direction of the movement. Furthermore, the right spring
shows an abnormality, which is explained by a buckling located in the spring.
The average force for all measurements is —50.8 N per spring.

Joint Stiffness

In practice, each joint has a limited stiffness. Hence, the difference Ag; between
the joint position on the output shaft g; ,s and on the motor shaft g;in. gives
information about the total acting torque T;. While the positions on the motor and
output shaft can be measured, a model for the stiffness ¢; has to be determined.
This section introduces an empirical model for the joint stiffness ¢;. By analogy to
a torsional spring, the quantities can be written as

T; = ¢; Ag;

(3.17)
A(Pi ‘= fabs — Yiinc-
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Figure 3.8: Friction parameters for the prismatic joint of the CROPS manipulator 2

Parameter Fro [N] b [Ns/m]

Horizontal Setup (Baur)  67.41 22.97
Vertical Setup (Schiitz) 119.1 85.01

Table 3.7: Friction parameter sets for prismatic joint.

Left Sprin Right Sprin
pring ght opring

—40 L

0 JWWWWMWW L (W
w0

—601| o

Force [N]

0 20 40 60 80 100 0 20 40 60 80 100
Time [s] Time [s]

— Measured Force Position = Average Force

Figure 3.9: Forces of two gravitation compensation springs attached to the prismatic
joint of the CROPS manipulator 2. The force F;p is measured (gray) while the joint
1 moves up and down. The position is indicated in green. The average force of the
measurement is given in blue. Both springs are assumed to show a similar behavior.
The right spring shows an abnormality (purple) at one position due to a buckling in the
spring.
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Figure 3.10: Comparison of measured stiffness (gray) from quasi-static experiment and
HARMONICDRIVE catalog data (green). Stiffness measurements for joint 2 (large) and 6
(medium size). Maximal load in the measurements corresponds to 40% of the nominal
torque of joint 2 and 30% of joint 6.

In the following, ¢; is identified in quasi-static experiments. Known forces are
applied to the manipulator, which can be mapped to the single joints as general-
ized torques Q; app- Fig. 3.10 shows the results for a large drive module (joint 2)
with a gear reduction of N, = 50 and for a medium size drive module (joint 6)

with Ng = 100. In this context, the tangent stiffness ¢; is defined as the gradient

aT; . . . . . .
ZE2 A linear fit ¢; of the measurement data is shown which is considered to

dAg,

be Zn appropriate approximation for ¢;, i.e. ¢ ~ c. Stiffness values for the gears
given by the manufacturer are plotted for comparison. The measurements show
a hysteresis, which is larger in joint 2 than in joint 6. Experimental data for joint
2-8 are given in appendix B. Results varied among the different measurements,
their boundary values [ min, Ci max| @s well as the total average value c; of all mea-
surements are listed in table 3.8. Additionally, the stiffness values of the gears’
manufacturer are specified, as well as the boundaries for the piecewise definition
for low, medium and high loads. Note that the measured stiffness of the large
modules coincides with the middle to high range of the catalog stiffnesses. The
measured stiffness of medium sized modules is significantly lower compared to
the catalog data.

3.2.4 Model Validation

The dynamic model is validated for each revolute joint without external loads.
Fig. 3.11 compares the computed torque Tg i 0f the inverse dynamics model with
the estimated torque Ty mot resulting from the measured motor current Ig met for
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Measured Stiffness Catalog Stiffness Catalog Boundaries [Nm]

Jointi Nmeas € Cimin Cimax low medium high low/medium medium/high

2 9 673 59.7 799 54 78 98 29 108
3 6 104 103 105 67 110 120 29 108
4 6 120 119 121 67 110 120 29 108
5 3 119 117 120 16 25 29 7 25
6 6 144 132 149 16 25 29 7 25

Table 3.8: Results of stiffness measurements for joint 2 to 6. All stiffness values are

given in [103 D],

joint 6 while tracking a desired trajectory g 4 ;- Similiar evaluations of the other
revolute joints are given in appendix B.2. Evidently, the model follows the esti-
mated motor torque except for sections with nearly zero velocity (highlighted in
light gray) where a large discrepancy can be observed. Due to the high influence
of stick-slip effects of the drive modules, the model gives no valid information.
The bandwidth of the static friction is indicated in dark gray in fig. 3.11. Further-
more, oscillations are induced in the measured motor current by the joint con-
troller. The root-mean square error (RMSE) for several measurements is shown
for the revolute joints of the manipulator in fig. 3.12. It is calculated for joint i

over the time t* € [0, tNi] by

1 Ni

2
_ k k
RMSEayn; = || 57 kzo (T = Thnor) (3.18)

It can be seen that the absolute error for the large drive modules (joint 2-4) is
higher than for the medium size (joint 5,6) and the manipulator wrist (joint 7-9).
However, normalizing the RMSE to the respective nominal torque (drawn as gray
bars in fig. 3.12), the error in the model for the large and medium sized modules
(<= 5%) is lower than for the wrist (=~ 10%).
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Figure 3.11: Comparison of the computed torque of the inverse dynamics model Tt
(blue) and the torque Tot (black) resulting from the measured motor current Ijot. Sec-
tions with a joint velocity 4 (green) close to zero are marked as gray. The sticking friction
band is shown in dark gray. For comparison, the nominal torque of joint 6 is 28 Nm (Pfaff

et al. 2014).
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Figure 3.12: Root-mean square error of the inverse dynamics model for several tests:
The computed joint torque is compared to the torque calculated based on the measured
motor currents and the proportional motor constant eq. (3.11). Only intervals where the
respective joints are moving are taken into account.
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3.3 Tactile Perception

In order to safely plan the motion of a robot, knowledge is required about the
planning scenario, i.e. the robot and its environment. Information about the robot
system itself is given by its joint encoders and dynamic as well as geometrical
models. By contrast, the environment can either be modeled offline or by using
additional perception. Tactile sensing capabilities extend the field of applications
for robot systems significantly. Obstacles may be soft or hard, movable or fixed,
elastic or stiff. Vision sensors give only information about geometries. Further-
more, their field of view may be occluded in cluttered and dense environments.
Mechanical properties or contact states can only be measured by force sensing
capabilities. This is especially important for a robot system which interacts with
its environment or other objects. Concepts for manipulation and exploration us-
ing tactile sensing in occluded areas are shown by Jain and Killpack (2013) or in
the author’s previous work (Schiitz et al. 2015). An approach that uses the ex-
ternal force information within the inverse kinematics algorithm is introduced in
section 4.3.

After a brief classification and overview for tactile sensing approaches, two
different concepts for the measurement of external forces and torques are pre-
sented in this section which are applied to the CROPS robot: The first concept
uses an additional tactile sensor attached to the manipulator arm while the sec-
ond estimates external torques by proprioceptive sensor information and models.

3.3.1 Basic Concepts

This section briefly recapitulates the main concepts of existing measurement de-
vices and sensing concepts. Detailed reviews about tactile sensors, technologies
and applications are given in Cutkosky et al. (2008), Dahiya et al. (2013), Howe
(1993), Lee (2000), and Lee and Nicholls (1999).

Sensing Principles & Transductions

Forces are measured by considering the deformations they induce. Most of the
sensing devices available rely on the piezoresistive effect, where materials such as
semiconductors or polymers change electrical resistance when mechanical stresses
are applied. Using appropriate electrical circuits and materials, drift free and
static measurements with high accuracies can be realized. By contrast, the piezo-
electric effect causes voltages due to unbalanced charges. This effect characteris-
tically shows drift, which is why it is mostly suited for dynamic measurements.
Deformations or displacements in conductive fluids or materials cause changes
of electrical impedance and/or capacity which can be measured between elec-
trodes. Another principle is the optical detection of deformations. Hence, the
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Figure 3.13: Comparison of extrinsic and intrinsic tactile sensors.

surface of soft and easily deformable materials of known shapes is monitored
e.g. by cameras.

In the following, examples for different transduction types are given. Forces
can either be applied directly to the sensor by contacts with solid materials or
by fluids. Zillich and Feiten (2012) presented a device using an air chamber cov-
ered with a viscoelastic material and a barometric sensor. Syntouch, LLC. offers
a tactile fingertip that consists of several electrodes that measure the electrical
impedance and are embedded in a conductive fluid covered with a viscoelastic
skin, equipped with a pressure sensor as well as temperature sensors (Fishel et al.
2014; Fishel et al. 2008).

Design Types

Tactile sensors differ in their structural design, i.e. how they are applied to a
robot system. In the literature they are commonly grouped into intrinsic and
extrinsic ones (cf. fig. 3.13), an overview of both is given in the following. An
early comparison of expected accuracies regarding an estimation of the contact
location is presented by Son et al. (1996).

Extrinsic Sensors With extrinsic devices, force is directly applied to the sensor
or sensor array, i.e. the sensor is in contact with the object (cf. fig. 3.13a). Typical
examples comprise tactile skins or sensor arrays covering the surface of a robot
system. A summary of methods and concepts was given by Schmitz et al. (2011).
Duchaine et al. (2009) presented a pressure sensitive resistive rubber layer where
resistance is measured by taxel-wise arranged plane electrodes. Bhattacharjee et
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al. (2013) extended these concepts by using stretchable fabrics. Their skin was
used as a tactile sleeve covering a manipulator arm in Jain and Killpack (2013) for
manipulation in unstructured environments. A similar concept was shown by
Strohmayr and Schneider (2013) and Strohmayr et al. (2013): Two orthogonally
arranged layers with parallel conductive polymer wires define a matrix struc-
ture where mechanical stresses can be located at the respective crossing points.
Classical unidirectional force as well as temperature and proximity sensors were
mounted on hexagonal taxels by Mittendorfer and Cheng (2011). In Tenzer et al.
(2014) barometric sensors covered by a rubber material formed a low-cost sensing
array.

Intrinsic Sensors By contrast, intrinsic designs measure the resulting force (cf.
tig. 3.13b): another structure (rigid or viscoelastic covering) of known geometry
is in contact with the object and the force is transmitted to a sensor. The contact
location is estimated by balancing forces/torques and the structure’s geometry.
They offer a high bandwidth and highly accurate sensor signal that can be used
directly for force control. A common example are force/torques (F/T) sensors
at the end effector of robot arms. This concept was first introduced by Nevins
and Whitney (1979) and is widely used in industrial applications like grinding,
tightening of screws, etc.. Jamisola et al. (2014) and Jain and Killpack (2013) used
wrist-mounted F/T sensors for exploring unknown environments. An early ap-
plication of intrinsic sensing is grasping: Bicchi et al. (1989) and Salisbury (1984)
used small-sized F/T sensors with a viscoelastic fingertip for robot hands. Larger
sensors were applied in the ankle of a humanoid robot for determining contact
forces with the ground (Loffler et al. 2004; Lohmeier 2010). Rigid covers mounted
on force sensors were presented for humanoid limbs (Iwata et al. 2001) or mo-
bile robots (Tsuji et al. 2009). Recently, a similar concept was developed by Pfaff
(2015) covering one link of the CROPS manipulator (cf. section 3.3.2).

Joint Torques Another approach related to intrinsic sensing is the calculation of
external forces by measuring joint torques (Eberman and Salisbury 1990). Since
geometry, kinematics and dynamics of a manipulator are assumed to be known,
torques resulting from external forces can be identified. This method has the
disadvantage that in some kinematic configurations, an external force may not
be detectable. Joint torques can be measured directly by torque sensors within
the joints (Eberman and Salisbury 1990), by considering motor currents (De Luca
and Mattone 2005) or relative angular position differences (Zhang et al. 2015). An
estimator for the CROPS manipulator is developed in section 3.3.3.

3.3.2 Tactile Sensor

Pfaff (2015) developed an intrinsic tactile sensor for the CROPS manipulator in
collaboration with Roder (2015) and the author. This sensor is also presented in
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Inner Frame

Outer Frame

Figure 3.14: Left: CROPS manipulator with the tactile sensor on link 4. Right: Tactile
sensor showing its interior design. Images taken from Schiitz, Pfaff, Sygulla, et al. (2015).

a publication by the author (Schiitz, Pfaff, Sygulla, et al. 2015). Its design is pic-
tured in fig. 3.14: The rigid cover of link 4 of the manipulator houses a sensor
frame, itself consisting of two rigid frames. Eight unidirectional force sensors are
mounted between the outer and the inner frame. The forces/torques equilibria
yield the resulting external force Fgen. Furthermore, its theoretical application
point can be estimated by knowledge of the rigid cover’s geometry. The sensor
signals of the force sensors are collected by the CAN interface board and are sent
to the control unit via CAN bus (cf. section 3.1.3). The sensor is able to detect
external forces between 1.3N and 20N. It provides reliable and accurate infor-
mation about external forces which even enables force control based approaches
as shown in section 4.3.

3.3.3 Joint Torque Estimation

This section presents a concept for estimating external torques by using only pro-
prioceptive sensors. The approach and results are based on a former publication
of the author (Schiitz et al. 2016).

General Approach

In section 3.2.2, eq. (3.11), a linear relation between motor torque T, ; and cur-
rent Iy ; with the proportionality constant ko ; (motor constant) was intro-
duced. A second relationship regarding the actual joint torque was given by
eq. (3.17): by measuring the relative torsional angle Ap; between motor (ginc,i)
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Figure 3.15: Scheme for estimating external torques of one exemplary joint module
based on motor currents and relative torsional angles at time #X.

and output shaft (,5;) and using the joint stiffness &, the joint torque Ty, can
be determined as well. In this section, concepts for one revolute joint i are devel-
oped. For convenience, its respective index i is omitted.

Both measurable torques Tot and T, are estimates of the real joint torque
T. Thus, both measurements are combined in the proposed approach aiming to
achieve a more accurate estimate of the actual joint torque T. Uncertainties and
simplifications originate in the modeling of the motor constant kmt and the joint
stiffness ¢. While knot is given by the motor manufacturer, the joint stiffness ¢ is
measured and compared to the data of the gears” manufacturer in section 3.2.3.
The joint torque T is the sum of an internal Tj,; and an external torque Text:

T = Tint + Text (3-19)

The internal torque Tin: comprises all efforts induced by the robot’s motion it-
self. Based on the robot’s trajectory ¢g(t), it can be computed using an inverse
dynamics model, which is presented in section 3.2.2. External torques Tey; result
from the difference between joint torque T and the internal torque Tj,;. Estimated
quantities are noted with circumflex as (). The concept is shown in fig. 3.15 and
can be summarized as follows:

- For every time instant k, the motion planner computes a smooth desired
joint trajectory [g¥, 4*]. The trajectory is communicated to the robot joints as
well as to the inverse dynamics algorithm. Accelerations are calculated by
finite differences.

- The inverse dynamics module computes the internal torque TX, and its rate
of change ATY . These dynamics of the internal torque represent the maxi-
mum information available for the prediction of the joint torque, since the

dynamics of the external torques are assumed to be arbitrary.

"Note that & is assumed to be an arbitrary function describing the stiffness of the joint.
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- The controllers of the drive modules control the motor current I ot accord-
ing to the desired trajectory. The motor current Inot and the positions ginc, Jabs
are measured and sent to the estimator.

- The estimator computes the joint torque T ~ T by sensor data fusion of the
motor current Timot(Imot) and the relative torsional angle T, (Ag).

- The difference between internal torque Ti,; and estimated total torque T
yields the external torque Text.

Estimator Design

Based on the concept shown in fig. 3.15, an estimator for the external joint torque
Text is designed as follows.

System Formulation The system equations for the estimator design are given in
their discrete form at the time t* with the time increment index k. The state space
has dimension 7 and its system equation can be written as

y* = CxF 4 of (320

using the state x* € R”, the output (or measurement) y* € R?" and the system
input u* € R" at t*. The system matrix is denoted as A € R™*", the input map-
ping as B € R"*" and the output matrix as C € R?**". The vectors w* € R" and
v* € R?" represent the process and measurement noise, respectively. w* and o
are assumed to behave as white noise, hence being independent of each other.

The inputs u, outputs y and states x are chosen as

I
x=T, u=ATi, y = { X‘(;t} . (3.21)
The state x is is chosen as the joint torque T. The system input u is defined as
the change of the internal torque Tj,: between two consecutive time increments,
ie ATE =T, — Tﬁ;l. The system output is given by the measurement of the
motor current I'nmet and the relative torsion angle Ag. Thus, the matrices A, B, C

can be written as:

—1/(N1km,1) .. 0 i
1
A=1¢ ]Rnxn, B=1¢c¢ ]Rnxn, C = 0 s /(Nnkm,n) c IRann‘
1/C1 P 0
L 0 .. 1/c,
(3.22)

with the gear ratios N;, the motor constants k,, ; and the linear approximated joint
stiffness values c;.
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Kalman Filter The estimator is designed as a Kalman filter (Kalmén 1960). The
Kalman filter consists of two consecutive steps in every control cycle: the predic-
tion (noted as (-) ) and the correction step.

1. Prediction: The time update leads to the a priori estimate #~ and the a priori
error covariance matrix PX~ using estimates from the previous time incre-
ment *~1 and the process noise covariance matrix Q:

& =A% 4+ But!

3.23
P = AP 1AT 4+ Q. (3.23)

2. Correction: In the correction step, the estimate is updated to the a posteri-
ori guess " by the measurement y* using the Kalman filter gain K and
the measurement noise covariance R. Furthermore, the a posteriori error
covariance matrix P¥ is calculated.

2 =3 1 K (y* - ca')
K = pP--cT(cPcT+R)! (3.24)
P* = P — K*cP* = (1 - K*C)P*~

The characteristics of the Kalman filter are set up by designing the process noise
covariance matrix Q € R"*" and the measurement noise covariance R € RR?**?",
The a posteriori state estimate #* is calculated as a combination of the a priori state
estimate 2~ and a weighted difference between the actual measurement y* and
the predicted measurement C#*~. The weighting matrix K¥ € R"*?" is called
Kalman filter gain and P¥ € R"*" is the a posteriori estimate error covariance
matrix. In order to reduce computing time for the real time application, a steady
state Kalman filter is used. This is motivated by the fact that both matrices K*
and P converge to a constant value.

The output of the Kalman filter is an estimate of the effective torque T := & in
the joints. In a subsequent step, the external share is calculated by the difference
to the internal torques given by the inverse dynamics model:

A A

Text = T — Tint (3-25)

Reference Torque For an evaluation and parametrization of the filter coeffi-
cients, knowledge about the actual external torque T, is advantageous. Thus,
a variable external force Feyt is applied to the TCP of the CROPS manipulator,
which can be mapped to the joint torques by the transposed translational Jaco-
bian of the TCP | %,tcp yielding the reference torque Thf:

Tet=17 %tch ext (3.26)
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Figure 3.16: Test setup of the validation experiments of the external torque estimator.
The force is applied in horizontal direction and measured by a force gauge.

The external force Fey is measured by a unidirectional force gauge IMADA DS28,
which is connected to the real time control unit for logging the measurement data.
The manipulator’s TCP moves on a horizontal or vertical straight line according
to the measurement direction. For the horizontal measurement, the force gauge
is mounted horizontally as shown in fig. 3.16. The TCP is connected to the force
gauge with a spring. Thus, variable loads are applied to the manipulator’s TCP
while moving. By comparing the reference torque T.¢; of the force measurement
to the estimated external torque Text,,-, the estimation error can be quantified.

Parametrization The filter is parametrized by adjusting the process noise co-
variance matrix Q and the measurement noise covariance matrix R. Since the
model and measurement are independent for each joint, both are chosen in di-
agonal form. Their diagonal entries are constant and parametrized for each joint
individually. The values of Q remain fixed, while the entries of R are varied. R
contains separated diagonal entries for the current R; and torsion measurement
Ry:

_[R; 0
R = { 01 R(J (3.27)

The RMSE of the actual torque Ty () and the estimated one Ty over the time

tk € [19, V] is chosen as evaluation criterion:

1 Y .
— k k
RMSE; = | = ;;)( T — TE ) (3.28)

8IMADA Inc., imada.com/products/ds2-digital-force-gauge/.
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Figure 3.17: Determination of the covariance entries for R at joint 6. Measurement
noise including information from the torsion and motor current is weighted relatively
to the process noise (Q is kept constant). A low RMSE value signifies a low estimation
error. The minimum is marked in orange.

Fig. 3.17 exemplifies this evaluation depicting the RMSE value for several vari-
ations of R weighting information from the relative torsion angle A¢ and the
motor current Iyt for joint 6. The results show that the measurement of It
yields more reliable information about the torque compared to the information
from Ag. The minimum and therefore best relation is marked in fig. 3.17.

Results

Typical Result This section presents the torque estimation of three joints. The
measured external forces at the TCP are mapped using eq. (3.26) to generalized
reference torques T,e¢ ;. The manipulator moves to two different goal positions on
a straight line and back to its initial position, respectively. Fig. 3.18 shows results
for the horizontal and vertical test setup of joint 2, 3 and 6. For results of the other
joints refer to appendix B.3. Joint velocities are drawn for comparison on the right
hand axis. While the estimate of the external torque shows good results during
motion of the joints (white sections), the estimate differs from the applied torque
at very low or zero joint velocities (gray sections). This discrepancy is mainly
caused by the static friction of the drive modules, whose bandwidth is given in
table 3.9 and depicted as dark gray.

Performance Evaluation Four different experiments with different velocities
and maximum forces were conducted in both horizontal and vertical directions
for evaluating the developed estimation concept. Fig. 3.19 shows in blue the
RMSE value of external torque estimation. For the evaluation, only sections with
non-zero velocity of the manipulator joints (white areas) are considered. The
RMSE for joint 9 is not evaluated, since no considerable loads could be applied
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Figure 3.18: Typical results based on the test setup shown in fig. 3.16. Joint 2 and 6
are evaluated in the horizontal setup and joint 3 in the vertical setup. The signal of
the force gauge mapped to the corresponding joint torques by eq. (3.26) (black) serves
as a reference T,.r; while the estimated torque Test,l- is depicted in blue. Additionally,
the respective desired joint velocity ¢, ; is shown in green. Sections with joint velocities
close to zero are highlighted in gray and the corresponding static friction band in dark

gray.
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Joint 2 3-4 5 6 7-9
Static Friction Band [Nm] +84 +12.8 +£6.03 +4.77 +1.88

Table 3.9: Friction band of the joints.

using the chosen experimental setup. For comparison, the RMSE of the inverse
dynamics model is depicted as black markers. This RMSE of the inverse dyna-
mics model is calculated comparing the torque of the measured motor currents
and the estimated ones while moving without external loads.The error in the es-
timation of Tey shows a correlation to the error of the inverse dynamics model.
This can be explained by the fact that, according to eq. (3.25), the inverse dyna-
mics model determines the ratio of internal and external torques. The normalized
average torque estimation error (w.r.t. the nominal joint torques) of joint 2-6 and
8 is below 5%, only joint 7 shows a larger error (8%).

3.3.4 Comparison

In order to compare the tactile sensor (Pfaff 2015) with the proposed proprio-
ceptive torque estimation, the measured force of the tactile sensor is mapped to
generalized torques in the joints. For the comparison, the following assumptions
were made:

- The threshold for the minimum detectable external force of the tactile sensor
is 2N (Schiitz, Pfaff, Sygulla, et al. 2015).

- The force application point of the tactile sensor is fixed at the middle of link
4 (cft. fig. 3.20).

- For the proprioceptive torque estimation approach, the most favorable con-
figuration of the manipulator is considered (i.e. with the maximum lever
arm). This assumption yields the highest resolution of the proprioceptive
sensing w.r.t. to the considered force application point at link 4. The confi-
guration is shown in fig. 3.20a.

An external force that is applied to link 4 (cf. fig. 3.20a) results (depending on the
kinematic configuration and direction of the force) in an external torque in the
joints 1 to 4. In table 3.10, the minimum force threshold of the tactile sensor of
Fy, = 2N is mapped to joint 2-4 with the maximum lever arm d; 4s max and com-
pared to the performance evaluation of the proprioceptive estimation of external
torques.

By comparison to the tactile sensor presented in Schiitz, Pfaff, Sygulla, et al.
(2015), the detection by the proprioceptive approach is significantly poorer. One
limitation is the detection of external loads while the manipulator is not moving
due to the high static friction. Furthermore, the performance of the approach is
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Figure 3.19: Evaluation of the proposed approach for estimating external torques. The
RMSE of several experiments with external loads for joint 2-8 is plotted in blue. By
comparison, the error of the inverse dynamics model for the same experiments with-
out external loads are shown as black markers. The estimation error normalized to the
nominal torque of the respective joints is given as gray bars.
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Figure 3.20: Lever Arm of joint 2 for the comparison of the minimum detectable torque
by the tactile sensor and the proprioceptive torque estimation approach.
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Jointi d;;smax Tactile Sensor Proprioceptive Torque Estimation

2 0.51m < 1.02Nm 3.0Nm
3 0.51m < 1.02Nm 7.0 Nm
4 0.16 m < 0.32Nm 8.0 Nm

Table 3.10: Comparison of the minimal measurable external torque of the tactile sensor
and the torque estimation approach.

intrinsically limited by the accuracy of the inverse dynamics model. Its further
investigation and an improved parametrization may yield a higher detection ac-
curacy. By contrast, it is shown in Schiitz, Pfaff, Sygulla, et al. (2015) that the
signal quality of the tactile sensor is sufficient for the implementation of force
control related approaches.

However, external torques above a certain threshold can be detected reliably
and may still be used e.g. for collision detection. The respective threshold is
quantified in several experiments. Since the approach uses only sensor informa-
tion that is already available, its implementation is very simple and inexpensive.
By contrast to the tactile sensor, which covers only one link of the manipulator
in the current setup, the torque estimator provides information about all joints
without additional hardware.






Chapter 4

Inverse Kinematics

The mapping of a task space coordinate to the configuration space is referred to as
the inverse kinematics (IK) problem. An introduction of the related terms can be
found in previous sections of this thesis (section 2.2.1). For a thorough overview
of related approaches, their theoretical background and further references refer
to Buschmann (2014), Nakamura (1991), and Siciliano et al. (2009). This chapter
presents common approaches and methods for solving in real time the IK with fo-
cus on redundant systems. Additionally, extensions for planning based on tactile
feedback are developed.

4.1 Basic Concepts

For tree like kinematic structures, the forward kinematics w := ®(g)! can be
calculated directly, e.g. by employing a recursive scheme. While the mapping ®
is unique, its inverse ® ! can have either no, exactly one, more than one or an
infinite number of solutions. The inverse kinematics problem can be summarized
as the solution of the forward kinematics equation for the configuration g4 at a
given desired task space coordinate wqes:

Wees = P (q) (4.1)

4.1.1 Non-Redundant Systems

First, the non-redundant case, i.e. m = n is considered. Since ®(gq) is nonlinear,
an analytical solution can only be found for simple or special kinematics. For
the general kinematic structure, the system of nonlinear equations can be solved

Un this chapter, the terms forward and inverse kinematics always refer to the definition of a task
space W € R™ as the TCP at the end effector of a manipulator with n-DOF, i.e. C € R".

65
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using numerical methods. The Newton-Raphson method provides an efficient
solution on the position level. It approximates (4.1) linearly at g, with g = g, +
Aq:

od
Wyes = P(g) + Aq) = ®(q,) + 3 Ag = ®(q,) + J,(q0)Aq (4.2)
90

The solution is found iteratively, starting at the initial guess (or current configu-
ration) g, with the task space Jacobian J,, until the error |Aw| is smaller than e.
Thus, its convergence relies on a well chosen initial guess q,. An implementation
is given in alg. 1.

Algorithm 1 Newton-Raphson IK algorithm, position level

k<+ 0, qk 4y

repeat
Aw <+ Wdes — q)(qk)
Solve J,Aq = Aw
qk—l-l «— qk+Aq
k+—k+1

until [|[Aw| <€

return qk

Related to the solution of the linearized IK problem on the position level, the
IK problem can be solved efficiently by differentiating eq. (4.1) w.r.t. time, i.e.
calculating the IK on the velocity level.

d I () _ 2P 41

o7
Waes = Jwq (4.4)
4 = ]z_ulwdes (4.5)

Thus, a linear mapping from the C to the ¥V space can be performed using the task
space Jacobian J,,. Providing the fact, that there exists a solution ¢ for J 4 = w,
the IK can be solved. Joint positions are obtained by numerical integration, e.g.
the explicit Euler method.

4.1.2 Redundant Systems

For redundant systems, i.e. n > m, the system of equations of the IK is under-
determined and the inverse J,,! does not exist. Thus, there is in general an infinite
number of solutions ¢ fulfilling w < ®(gq). Whitney (1969) proposed an opti-
mization based scheme, denoted as resolved motion rate control (RMRC). The
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IK is written as an optimization problem with the cost function /, a (diagonal)
weighting matrix W and the equality constraints g:

S
IRMRC = >4 Wq 47)
SRMRC = Waes — Jwd =0
(4.8)

This problem is solved by the weighted Moore-Penrose pseudoinverse Ji, of J.,:
qg=17 i%\/Zbdes
# 14T —1yr) 7!
T =w L (1w

This scheme minimizes the (weighted) squared joint velocities locally, i.e. for
every time increment, while fulfilling the task space constraint wges. Liégeois
(1977) proposed the extension of eq. (4.6) by an additional term H for secondary
objectives. Thus, the cost function [ 45¢ is extended by the change AH of the ob-
jective function H(q) in the next time increment At and its linear approximation

AH = G1At:

(4.9)

1. 9H,
lasc = 54 Wq + “NW‘? 4.11)

Sasc = Wyes _]wq =0

The solution introduced by Liégeois (1977) is known as automatic supervisory
control (ASC) and can be written using the weighted nullspace projection matrix
N wW-

. . oH\ '
G = Jiydes + Nw (W) (4.12)

Nw = ay (1 . ﬁ\,]w>

This scheme can be explained as follows: Since the system of equations of the IK
is under-determined, its kernel or nullspace N € IR"~" can be used for secondary
objectives | while respecting the primary objective, i.e. the task space constraint.
Examples for secondary objective functions are given in section 4.2. While joint
velocities are locally minimized by the weighted pseudoinverse J#,, Ny projects
the gradient V;H into the nullspace of the task space velocity.

Another approach for solving the IK for redundant systems is the augmenta-
tion of the task space. Secondary objectives are taken into account by additional
task space variables leading to a determined systems of equations with n = m.
Details on this approach and an overview of related algorithms can be found in
Siciliano (1990).
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4.1.3 Acceleration Level Inverse Kinematics

By differentiating the aforementioned algorithms w.r.t. time, they can be formu-
lated on the acceleration level as well. For some applications, this formulation
is beneficial since forces and torques can be considered in a more natural way
due to Newton’s second law of motion. Related to the approaches presented in
section 4.1.2, Luh et al. (1980) present a scheme known as resolved acceleration
control (RAC). Differentiating eq. (4.4) w.r.t. time leads to

Waes = ]wq + qu (4-13)

By analogy to eq. (4.10) the correspondent optimal constraint problem in terms
of accelerations for one time increment At at ¥, using the linear approximations
AH = %i;th and § = §At, is formulated as:

min lé‘mc, s.t. g’f{AC (4.14)

q

1 oH

ko L ak Tk LanAt 22 .ok

RAC = 54 9 N g tk‘l (4.15)
gllc{AC - 7I)Iéles - ]qu - quk =0

is solved by the RAC algorithm:
. T

§ = Ty (@hes = Jui") + Nwat (VyHY) (4.16)

This solution eq. (4.16) locally minimizes joint accelerations 4* at t = t* for the
next time increment At and the secondary objectives H while respecting the task
space constraint eq. (4.13).

4.1.4 Remarks on the Implementation

Numerical Drift

The IK calculation on the velocity or acceleration levels requires the numerical
integration of g4 or §, respectively. A simple and well established scheme is the
explicit Euler method. Joint positions g1 of a consecutive time increment ¢<+1
are calculated by

g = gk + gk A
§ =g+ 4 At (4.17)

This open loop scheme shows a numerical drift, i.e. an integration error accumu-
lates over time. This problem can be addressed by closing the loop, introducing
a proportional control gain K for the integration error we,, in task space. K is
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chosen as a diagonal matrix with scalar gains for each task space dimension. The
error is calculated by the desired task space position wgqes and the resulting posi-
tion from the calculated joint positions w(q). The loop is closed by adjusting the
input, the task space velocity wges Or task space acceleration 4.5, respectively:

Werr *= Wdes — Q)(q) = Wdes — W(l])

Werr = Wdes — ‘i’(l], 4) = Waes — W(q,9)
Weseff = Wdes + KWerr (4.18)
Weseff = Wdes T K'terr + Kwerr (4.19)

This applies to egs. (4.9), (4.12) and (4.16), i.e. the desired task space velocity @ ges
(or acceleration @) is replaced by the effective term w ges off (Wdes eff):

qg=17 #‘#,vu‘)desleff Resolved Motion Rate Control (4.20)

oH\"
g=17 #/deesleff + Nw (W) Automatic Supervisory Control (4.21)

. 9H\"
g=17 #,v (Z‘(')des/eff -] wq) + Nw (W) Resolved Acceleration Control (4.22)

Damping Term

Joint velocities 4 are not considered in the objective function eq. (4.14). Thus,
in order to minimize joint velocities, an additional damping term Hgpp with a
scalar weight qmp > 0 has to be introduced as a secondary objective function in
eq. (4.24):

Hemp = Cdmp 4" 4- (4.23)

Efficient Calculation of the Pseudoinverse

Another aspect relates to the calculation of the pseudoinverse J* of the Jacobian:
Instead of calculating the inverse at eq. (4.9) explicitly, a system of linear equa-
tions is solved as proposed by Klein and Huang (1983). The application of this
algorithm as well as the implementation of the instantaneous schemes for com-
puting the IK regarding the CROPS manipulators is described by Baur (2015).

4.2 Secondary Objective Functions

The pseudoinverse J* minimizes joint velocities for the next timestep in an in-
stantaneous scheme. According to the ASC scheme, other objective functions de-
pending on ¢, summarized as H(q), are minimized by a gradient descent along
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V4H and projected to the nullspace by the projection matrix N. Arbitrary terms
can be included in H: Common terms penalize joint positions that are near kine-
matic limits or may lead to (self-)collisions. Other examples are application spe-
cific: Schwienbacher et al. (2011) add a term for minimizing the vertical angular
momentum of the biped robot LOLA. A function for increasing the manipulabil-
ity in direction of desired task space motions is proposed by Baur et al. (2012) for
the CROPS manipulator.

This section recapitulates the objective functions used for the CROPS manip-
ulator and furthermore presents an extension of the joint limit avoidance by a
comfort pose. The cost function H is a sum of / sub-functions H; weighted by (;:

H= Y GiHi(g) 42

The following subsections present suitable functions for joint limit avoidance Hj,
(in combination with a comfort configuration H,¢) and (self-)collision avoidance
Hon- Note that H only depends on the configuration of the robot g* at the current
timestep t*. For a more convenient presentation of the instantaneous calculation
schemes, the notation of the current timestep is omitted, i.e. g := g*.

4.2.1 Kinematic Configuration

In general, joint positions of a manipulator are limited by a minimum (maximum)
value g, (may)- 10 preserve the manipulator’s flexibility, it is favorable to avoid
configurations near these limits. This section introduces the term Hj, for avoid-
ing explicitly these near-limit regions and a term H.y¢ for a preferred comfort
pose.

Comfort Pose

Many robot systems have a favorable kinematic configuration, i.e. a comfort pose.
This pose may be defined by large kinematic reserves for each joint, e.g. in the
middle position between the respective limits. Regarding a humanoid robot, the
comfort pose may be specified by the definition of a natural, human-like appear-
ance (Schwienbacher et al. 2011). Additionally, the comfort pose encounters in
some way the problem with repeatability of redundant kinematics: After moving
from one task space coordinate to another and back, the robot finishes in a dif-
ferent configuration compared to its initial one. The comfort pose always directs
the robot to its favorable configuration. The comfort pose can be implemented by
using a simple convex penalty term (e.g. of order 2). Weighted by the respective
position range between g, ... and q_ .., the cost function H¢ increases by order 2
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departing from a predefined comfort position g.;. Hems and its gradient V g Hp
for descending in the nullspace can be defined as:

1 (i = Geme)’
Hcmf 2 Z (% max Qi,min)2 (4.25)
qucmf _ chmf chmf chmf . chmf _ qdi — Jemf (4.26)

aql a‘h o aqn ' aqz (Qmax,i - Qmin,i)2

Joint Limit Avoidance

Hjj, penalizes positions near the kinematic joint limits q,;,, max) if a certain thresh-
old (or soft limit) q,yinmax),soft 1S €xceeded. For the penalty function, normalized
polynomial terms are considered that increase from 0 at the soft limit to 1 by the
order o:

n
H]la = 21 I_Ijla,i (4-27)
=

( qi —qmin,soft,i ) 7
( Amin,i ~4min,soft,i )

T if (5]1 < EImin,soft,i)

(4.28)

H’jla,i — (qi_qmax,soft,i)g

T
( Amax,i ~—9max,soft,i )

else if (ql > Qmax,soft,i)

0 else

\

The gradient V4 Hj, is calculated by
aI_Ijla aI_Ijla aI_Ijla

Valhia = |55 3, o,
/ (e—1)
((Zz qmmqsoftf)ﬂ )(7 if (‘11 < qmin,SOft,i)
aHjla - (ql Qmaxsoftl) Y 1 (429)
aqi O'(q - o )(7' else if (ql > qmax,soft,i)
0 else

\

Since the gradient V H is applied directly on the velocity level (cf. eq. (4.12)),
a smooth transition (order 2, ¢ = 3) at the threshold g, is favorable since it
prevents discontinuous accelerations. A comparison of a transition with order 1
(c = 2) and order 2 (¢ = 3) is shown in fig. 4.1.

Combined Term

Both aforementioned penalty terms can be combined to formulate a convex po-
tential function Hn,¢ for each joint. While the maximum value of the joint limit
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Amin,soft Gdmax,soft Amin,soft Amax,soft
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Jemf Jmax Jmin Jemf Gmax
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(b) Hj, with o = 3.

Figure 4.1: Cost function (left) and its gradient (right) for joint limit avoidance (Hj,),
comfort pose (H¢mf) and both combined (H¢) depending on the position g of a single
joint. In dark gray, positions outside the limits min(max) are shown while light gray areas
depict the activation threshold for the soft limits gmin(max)soft- The transition at gsof is
highlighted: for o = 3, the transition at the gradient is smooth by order 2.

avoidance term Hj, is set to 1, the share of the comfort pose term can be weighted
by Ccms- Fig. 4.1 shows the objective function for different o values.

Heme = I—Ijla + CemfHems (4.30)

4.2.2 Collision Avoidance

The secondary objective function for (self-)collision avoidance H is based on
the work of Schwienbacher (2013) and Schwienbacher et al. (2011) and was ap-
plied by Baur (2015) to the CROPS manipulators.

In order to simplify the collision model, the robot’s geometry is approximated
by swept-sphere volumes (SS5Vs). The three elementary SSV types are a point,
a line and a triangular segment. Those are "inflated" by a certain radius to the
respective 3D object. At every time increment, forward kinematics of the SSV
bodies according to the current configuration g are calculated and the smallest
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(a) 4-DOF pendulum. (b) CROPS prototype 1. (c) CROPS prototype 2.

Figure 4.2: Collision models of different robots appearing in this thesis based on the
work of Baur (2015) and Schwienbacher (2013). Robots’ geometries from CAD data are
modeled by swept sphere volumes (transparent green capsules).

distance d between pre-defined collision pairs is determined. The approximation
of both CROPS manipulators and the simplified example of a 4-DOF pendulum
as used in this thesis are depicted in fig. 4.2.

If d(q) exceeds the activation threshold d,, the cost function H; increases by
order 3 up to a maximum value Heyjj max at zero distance d(q) = 0. Heoy [d(q)] is
shown in fig. 4.32.

Hor — {g (da —d(q))* ifd(g) < d,

0 else (4.31)

Hcoll,max

So=3 d3
a

2A similar cost function using a piecewise defined function was presented by Schwienbacher (2013)
and used by Baur (2015).
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Hcoll,max ***************************

Hcoll

Figure 4.3: Cost function H over the minimum distance of the nearest collision pair

d(q).
4.3 Incorporating Tactile Feedback

The aforementioned concepts provide efficient solutions for the inverse kinemat-
ics problem. Knowledge about the planning problem itself, such as kinematics,
limits or collision geometries, is considered to be static and available in advance.
This section extends these methods by also considering tactile sensor information
in real time. The approaches and results shown in this section were presented by
the author (Schiitz, Pfaff, Sygulla, et al. 2015; Sygulla et al. 2016). The planning
concepts were developed, implemented and investigated by Felix Sygulla in his
master’s thesis (Sygulla 2015).

In scenarios where the robot acts in uncertain environments, e.g. natural
surroundings such as greenhouses or orchards, information about the planning
scene is not sufficient: obstacles are occluded or all paths to the goal may be ob-
structed, i.e. collision-free paths may not even exist. Humans and animals use
their sense of touch in addition to visual information: By getting in contact with
the environment, they explore and characterize its varying mechanical proper-
ties. Using this information, they are able to reach even obstructed goal regions
by pushing other objects away. Transferring this concept to robot systems seems
obvious. Equipped with a tactile sensor, the robot measures contact forces with
the environment and adapts its motion plan based on the tactile information. Ex-
amples of different tactile sensor concepts are given in section 3.3.1. An incentive
application is shown in fig. 2.5b. A manipulator system harvests sweet peppers
in a greenhouse while dense foliage occludes fruit and obstacles. Thus, visual in-
formation is limited. The manipulator has to push leaves away while it must not
damage stems or collide with cultivation fixtures. The adaption of the plan has
to be done in real time, since information from tactile sensors is not predictable.
Typically, the contact force as well as the application point are measured by a tac-
tile sensor as presented in section 3.3. While small external forces are admissible,
the robot has to counteract increasing forces with an increasing effort. High loads
have to be avoided in order to prevent damage to the plant.
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Obstacle

X0

N N

(a) In contact: No deformation. (b) In contact: Obstacle is deformed.

Figure 4.4: The robot touches an obstacle. The contact between robot and environment
is modeled as a linear elastic spring with a finite stiffness c. Fig. 4.4a shows the moment
when the robot touches the obstacle and the contact force is zero (F¢¢ ~ 0). At this
point 7poc 0, the spring is unstressed. Fig. 4.4b depicts the deformed state: The spring is
compressed which results in a contact force F.; > 0. The small displacement Arpoc of
the contact point 7y, is assumed to be linear. Note that this drawing depicts a very low
stiffness of the environment compared to the robot: In general, the stiffness ¢ describes
the contact between robot and environment, which is influenced by the robot and the
environment.

4.3.1 Gradient Based Input

The ASC scheme presented in section 4.1.2 is suited to take into account addi-
tional sensor inputs in terms of secondary objectives. By introducing a new po-
tential H, for the contact of the robot with the environment, its gradient can be
used for its instantaneous minimization. A simple assumption is for H, to be a
linear elastic potential of a spring according to Hooke’s law while neglecting all
tangential forces in the contact point rpoc3. The contact force F.; applied at 7poc in-
creases linearly with the constant stiffness c by translational displacement of the
contact point Arpec w.r.t. to the initial (unstressed) position rpoc0. The considered
quantities are depicted in fig. 4.4.

A1’p0c = Tpoc — ¥poc,0 (4.32)
1
He = 5c AtpocArpoc (4.33)

Without contact, the potential H, and Ft vanish. In contact, H, can be interpreted

as a repellent potential causing a force F to the robot. The gradient BBI;E is calcu-

3The point of contact 7o is assumed to be fixed w.r.t. the surface of the deformed environment.
This simplification seems applicable, since only small deformations are expected to occur for each time
increment At.
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lated as follows:

Tpoc
SH s_Arpoc : al] = szf]poa VF: >0
5 =4 fn =~ (4.34)
q ]poc
0 else.

The gradient V,H, of the linear elastic potential corresponds to the contact (spring-

like) force F; multiplied by its effective direction ag‘;"c in C—space. This direction

is determined by the robot’s Jacobian ], at rpoc. One can now take advantage of
the measured contact force signal Ftsen assuming Fetsen ~ Fct and include Ft sen
in the control equation by

Vqu ~ _ngc,sen]poc (4.35)

V4H, can be included in the ASC scheme eq. (4.12) or to RAC eq. (4.16) analo-
gously to other secondary objective functions H with the scalar weight ,:

oH'\T /oH\T
( aq ) ~ (W) +€EIgOCFct,sen- (4-36)

For multiple contact scenarios at the robot arm, sub-potential functions H,; can
be defined for each tactile sensing module or measurable resulting force, respec-
tively. The overall potential for multiple contacts H, nt is calculated as the sum
of H,; with a total number of considered contact forces k:

Ket
He muit = Z H, ;. (4.37)
i=1
This approach provides a simple and intuitive reduction of contact forces by their
projection to C—space that corresponds to external torques in the joints. While
this approach is comparable to an admittance control scheme, the proposed con-
cept differs by the projection of these torques to the nullspace. The robot’s mo-
tion leads to a minimization of a Hooke-like contact potential similar to other
secondary objective functions (cf. section 4.2) without interfering the task space
constraint.

4.3.2 Controller Based Approach

Besides the simple gradient based approach, control theory techniques can also
be used to reduce the contact forces. These approaches were developed and ex-
tensively studied in the master’s thesis of Sygulla (2015). The following section
recapitulates briefly the main ideas for the adaption in nullspace. After adding
a new input to the system, a projection of the input vector along the effective
force direction is introduced, yielding a scalar control equation. While the result-
ing controller can only influence the nullspace due to the system formulation, an
outlook to extended formulations is given in section 4.3.3.
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Scalar Contact Force Dynamics

First, the system input u, ; is added to the system equation based on the ASC
scheme eq. (4.12):

. . 1
q= ]#/dees,eff + —Nw “quHT + Uy (4.38)
aN

Note that the input u,; has dim(C). In order to reduce the complexity of the
controller design, the system equation is projected to the one-dimensional space
along the contact force (denoted as contact space). First, the direction of the contact
force applied at the point of contact rpc is normalized by

(4.39)

The n-dimensional input u,,; can be projected in the effective direction of the
contact force by the Jacobian Jp,. of contact point rpo. and furthermore to its
scalar quantity u, by the effective force direction f :

un = Ipocun,]‘
Uy = fCTtun = chJpocun,j (4.40)
The velocity of the contact point rpoc with the input u,, ; are derived by
. aT’poc . . # . 1 T
Tpoc = Vq = ]pocq = ]poc Iwwdes,eff + @NW <“quH + un,j)
(4.41)

using the robot’s Jacobian J,.. The secondary objective gradients V,H are con-
sidered as superposed dynamics and therefore omitted for the controller design.
This assumption, together with the projection of the system input (4.40) and the
multiplication of eq. (4.41) with the transpose of the normalized effective force
direction fCTt leads to

T. T # . T
fctrPOC = fctIpocIWwdeS,eff + fct]pocNWun,j
;\/4

Xpoc

= fzﬂt]poclﬁvwdes,eff - fgt]pocNW]gocfct Up (4.42)

~~ -~

J.Cpoc,des,eff kn (l’)

and can be written as the scalar equation of the contact point dynamics in contact
space

J'Cpoc - xpoc,des,eff - kn(t)u”

. (4.43)
kn (t) = f(z;]poc]%vwdes,eff-
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The projected dynamics of the contact point to a scalar equation in contact space
Xpoc are used to formulate the dynamics of the scalar contact force F.; according
to Hooke’s law. Assuming a discrete displacement Axpoc in contact space of the

contact point rpoc and a constant stiffness c, the force changes4 by
AFct - _C M Axpoc. (4.44)

For a finite timestep At, the discrete approximation % (+) = A(-) holds. Thus, the
dynamics of the contact force Fyoc in contact space are described by

Fpoc = —CXpoc,des,ett + € kn (1) tn. (4.45)

Controller Design

By applying the concept of feedback linearization, a control input u, can be de-
signed such that a control variable follows specified target dynamics Z(t). Linear
dynamics with a second order decrease, parametrized by the time constant Tz
and the damping factor dz, are a possible choice:

~
ST —
ot —

ZdE = 1
—o 8 ﬁd (4.46)

[laf
el

Equalizing eq. (4.45) with the integrated term of eq. (4.46) and setting = = Fooc
determines the control equation

1 2dz 1 t
= ——x — = Fot — F. . 4.47
Uy kn (t) xpoc,des,eff TE c kn (t) ct Té c kn (t) /O ct dT ( )

Inserting eq. (4.47) into eq. (4.38) and using the measured contact force Fgen as
an estimate of F yields the control law for following the target dynamics Z(f).
The controller itself consists of a proportional and an integral part which depend
on the current force F. The first part includes the desired task space velocity of
the contact point ¥poc deseff, trying to avoid movements of the robot against the
obstacle as feed forward term.

4.3.3 Modification of the Task

The system formulation of the previous sections restricts the adaption of a robot’s
motion plan to its nullspace, i.e. the task space constraint has to be fulfilled. This
limitation may yield forces which exceed the maximum allowed load in case a
reduction within the nullspace is no longer feasible. Extensions to the ASC al-
gorithm by further inputs for the task space u; or joint space u;, as presented

4The minus in the equation results from the definition that movement xpoc causes a force Fyoc in its
opposite direction.
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in Schiitz, Pfaff, Sygulla, et al. (2015), allow a deformation of the task space con-

straints:
oHT
Up,c + (ﬁ )] (4.48)

Using the inputs u;; or u;., the motion planner is no longer restricted to the
nullspace and may override the task space constraint. However, one should note
that the compensation of the numerical drift as presented in section 4.1.4 "pulls”
the end effector back to the task space trajectory. Control laws for u;; and u;
can be derived according to u, ; as presented in the previous section. Results and
further remarks regarding these controllers are presented in Sygulla (2015) and
Sygulla et al. (2016).

. # /.
g =Jw (wdes,eff - ut,t) —Ujc— Nw

Based on the idea to adapt the task space trajectory only in scenarios where
the nullspace is exploited, two controller inputs can be used in the same con-
trol scheme. This approach is denoted as the multi-space tactile feedback and is
reported in Sygulla (2015) and Sygulla et al. (2016). It combines e.g. the task
space controller with the nullspace control input (multi-space/task) in a hierarchi-
cal manner: Only above a certain force threshold F, is the task space controller
activated and adapts wyes(t). Notably, the combination nullspace/task space by
contrast to nullspace/joint space leads to a more comprehensible behavior since
both spaces are orthogonal.

4.3.4 Results

The proposed approaches were extensively tested in several variations and eval-
uated in Sygulla (2015). Some significant results are presented in this section to
show their capabilities and benefit.

Empirically Motivated Extensions

The implementation of the aforementioned algorithms on a real system requires
empirical extensions that are presented in the following.

Closing a control loop usually needs signal processing on the sensor out-
puts. The tactile sensor module presented in section 3.3.2 provides a force sig-
nal Feen € R? and an estimate of the contact point with the environment rpoc sen-
Especially the feedback linearization controller is highly sensitive to the force di-
rection f and the point of contact rpoc. Both directly influence the projection of
the equations to the contact space and the control law. Since experiments showed
that the measured force direction f,, as well as 7poc sen are affected by tangential
(friction induced ) forces and other disturbances, three simplifying assumptions
had to be made for robust behavior:
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Baseline RMRC Baseline RMRC Baseline RMRC
No Contact In Contact Goal Position

Figure 4.5: Test Setup for the proposed tactile feedback control approaches. The 9-
DOF CROPS manipulator hits a vertical latex band at link 4 following a straight-line
task space path. The baseline approach, i.e. without using tactile feedback and the
RMRC approach considering tactile feedback are compared.

- The contact point rpc is approximated by the equidistant body-fixed point
between revolute joints 4 and 5 on link 4.

- Due to the assumption of a frictionless contact, only components of the force
F. normal to the surface of the tactile sensor are taken into account.

- Pretensions in the tactile sensor lead to an offset. Thus, only contact forces
above a certain force threshold Fet > Fit min are considered.

Furthermore, fast and jerking movements of the manipulator induce dynamic
forces to the rigid hull of the tactile sensor. Feeding back these forces in a closed
loop yields an unstable behavior of the planning module. A simple compensation
based on measured velocities and accelerations of the joints showed no improve-
ment due to time lags and unmodeled link elasticities. Therefore, the force signal
is filtered by a low-pass filter (Butterworth, 8th order) with a cutoff frequency of
10 Hz.

In addition to the signal processing, transition strategies for the contact/no-
contact states regarding the integral terms of the feedback controller are required.
To ensure a safe operation even in case the control loop becomes unstable, the
control inputs u.) as well as the gradients V,H, are saturated. Furthermore, the
environment stiffness ¢ is assumed to be known in order to achieve the given
target dynamics. It is shown that the controller performs worse with a given
constant stiffness ¢ than using the real c. Therefore, a simple but efficient online
estimator for the contact stiffness is proposed, based on the measured changes of
the contact force w.r.t. the distance travelled by the contact point. More detailed
information can be found in Sygulla (2015) and Sygulla et al. (2016).

Test Setup

The proposed algorithms were tested in laboratory setup with the CROPS ma-
nipulator prototype 2 in its 9-DOF configuration and equipped with the tactile
sensor at link 4. The manipulator moves along a straight-line trajectory defined
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in a three-dimensional task space (w = [x,y,z]T € R3). The movement of the
arm is obstructed by a vertical band of elastic rubber. Parameters of the scene are
given in table 4.1. Two different tasks are presented:

- Avoidable Scenario: While following the task space path, the manipulator is
able to avoid the obstacle in its nullspace.

- Inevitable Scenario: Due to an extended task space path the manipulator is
no longer capable of avoiding the obstacle in its nullspace: The task space
constraint must be abandoned in order to reduce the contact force to zero.

A typical experiment is shown in fig. 4.5. The manipulator starts moving along a
given task space path (orange line). During the motion, link 4 touches the vertical,
golden latex band. Depending on the chosen controller, the manipulator reduces
the contact force by appropriate nullspace movements. The following controller
implementations are evaluated for the aforementioned scenarios:

Baseline The baseline controller is the implementation of the automatic supervi-
sory control scheme (eq. 4.12) without tactile feedback.

RMRC The gradient based RMRC controller is the extension of the baseline con-
troller but with tactile feedback as a secondary objective function (eq. 4.35).
This controller is limited to the nullspace of the manipulator.

RAC The gradient based RAC controller is analogous to the RMRC controller,
but uses the acceleration level RAC scheme.

Feedback The feedback controller implements the approach proposed in sec-
tion 4.3.2 with a feedback linearization nullspace controller and second or-
der target dynamics.

Multi-Space/Task This controller is a hierarchical combination of a feedback con-
troller in nullspace and task space. When the contact force exceeds a thresh-
old F,, the task space controller is activated and reduces the contact force
by an adaption of the task space constraint.

Measurements

This section evaluates the performance of the different controllers measuring the
normal contact force F.sen and the joint velocities §. For better comparability,
the square root of the pseudo energy 474 (equal to the sum of joint velocities
per timestep Y/ ; qf) is considered over time. The baseline controller, i.e. the
manipulator moving without tactile feedback, is used as the reference.

Fig. 4.6 shows a comparison of both gradient based controllers in the avoid-
able scenario. While the baseline controller does not adapt its motion plan to the
obstacle and the contact force increases to > 9N, the gradient based controllers
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Figure 4.6: Scalar normal force F; (left) and pseudo energy qTq (right) for the avoidable
scenario using the baseline controller (gray, no tactile feedback) and the gradient based
controllers RMRC (blue, velocity level) and RAC (green, acceleration level).

induce a nullspace movement to reduce F.+. The RMRC controller shows a faster
adaption and therefore faster reduction of the contact force compared to the RAC
controller, at the cost of higher joint velocities.

The same scenario is tested using the feedback controller (cf. fig. 4.7). This
controller reacts faster than the RMRC controller, trying to control the contact
force to the threshold F.min. At the beginning (magnification in fig. 4.7), a fast
reduction to F.; ~ 0 can be observed. This can be explained by the feed-forward
term in eq. (4.47) trying to avoid all manipulator movements in direction of the
contact force. Since the reaction of the feedback controller is faster, higher joint
velocities are required. Notably, by contrast to the feedback controller, the RMRC
controller does not achieve a reduction of Fot — Fetmin. This is explained by the
character of the external force being the gradient of a potential function, which is
low for small differences |Fet — Fet min|-

In the inevitable scenario, none of the nullspace control approaches is able to
reduce the contact force when the nullspace is exploited. Thus, after a short ini-
tial reduction, the contact force increases further. In fig. 4.8, this can be observed
for the RMRC as well as for the feedback controller. This scenario is well suited
for showing the idea of the multi-space (task) controller: First, only the nullspace
controller reduces the contact force. Reaching its limits, the force increases again.
Having reached the activation threshold F,.t = 5N, the task space controller is
activated and the task space path is abandoned in favor of a further reduction
of Fi. Until Fot is reached, it can be seen that the multi-space/task and the
feedback controller act the same. The initial fast contact force reduction by the
feed-forward term can also be found in this scenario (magnification at fig. 4.8).
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Figure 4.7: Comparison of scalar normal force F.; (left) and pseudo energy 47 g (right)
for the avoidable scenario using the gradient based RMRC (blue, velocity level) and
the feedback linearization controller (yellow, second order dynamics) controller. Motion
without tactile feedback drawn for comparison (gray).

4.3.5 Discussion

In this section, several approaches are presented to integrate tactile sensor feed-
back into the online inverse kinematics planning module for a redundant ma-
nipulator. Based on the RMRC or RAC inverse kinematics solution, external
forces on the manipulator arm can be reduced efficiently by adapting the mo-
tion plan. Dependent on the system formulation, the reaction is either limited

— Baseline ——RMRC Feedback —— Multi-Space/Task
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Figure 4.8: Comparison of scalar normal force F (left) and pseudo-energy qTq (right)
for the inevitable scenario using the nullspace bounded gradient based RMRC (blue, ve-
locity level) and feedback linearization controller (yellow, second order dynamics) as well
as the multi-space/task controller (green, Fo,.t = 5IN). Motion without tactile feedback
drawn for comparison (gray).
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to the robot’s nullspace or is even able to adapt the task space using a hierar-
chical scheme. Apart from the application of a simple gradient-based scheme, a
feedback controller law is proposed. In the following, results are discussed w.r.t.
the implemented approach and compared to the well-known impedance control
approaches. Furthermore, current limitations are summarized and an outlook to
multi-contact scenarios is given.

Gradient-Based Approach vs. Feedback Control The gradient-based approach
directly uses the measured external force in a RMRC or RAC scheme and projects
it to the robot’s nullspace. Thus, this approach can be efficiently implemented and
applied. Besides the filtering of the measured force, only the scalar weight needs
to be tuned. Many public laboratory demonstrations showed that this approach
is especially robust and smooth for human-robot interaction, even for non-expert
users. However, a chosen parametrization is always a trade-off between smooth-
ness and a fast reaction. This makes it difficult for the gradient-based approaches
to cope with obstacles of different stiffnesses. By comparison, the feedback con-
troller approach allows the tuning of its behavior by adapting its target system
dynamics and shows a more "intelligent" behavior. This approach directly tracks
the contact force and is able to achieve a fast reduction, if necessary. Experiments
showed that it was even capable to reduce contact forces sufficiently while collid-
ing with a stiff aluminum bar (Sygulla et al. 2016). For the user, the application of
this approach is more time consuming to achieve robust behavior. Furthermore,
the online estimation of the contact stiffness has a high impact on the controller
performance as was shown by Sygulla et al. (2016).

Relation to Force Control Approaches The presented approaches are closely
related to classic force control methods. However, there are significant differences
regarding performance and application. Indirect force control methods, such as
admittance or impedance control, do not intend a distinct priorization of tasks
and contact forces. Thus, even low external forces may lead to position errors
of the end effector. Classic direct force control approaches mainly consider only
forces on the end effector while the proposed methods aim for a reduction of
contact forces on the arm itself. Generally, these approaches do not distinguish
between nullspace or task space, nor do they provide an adaptive priorization
as shown with the multi-space approach. An appropriate classification of the
proposed approach related for force control was given by Sygulla et al. (2016):
"[It] can be compared with a hybrid force/motion control scheme with adaptive
selection of the spaces for force and motion control."

Current Limitations The presented approaches behave sensitively to the signal
quality of the measured contact force. Therefore, some simplifying assumptions
(body fixed force application point, disregard of tangential forces, minimum force
threshold) had to be taken. With higher signal quality, these simplification may



4.3 Incorporating Tactile Feedback 85

be lifted gradually. This sensitivity is mainly caused by the projection of the force
to the contact space. While this approach facilitates the controller design tremen-
dously, deviations in the force direction are directly transmitted to the motion
plan. Thus, noise, friction at the contact and other disturbances of the force mea-
surement deteriorate the control performance. Some of the previously mentioned
simplifications may be alleviated by the design of a controller in Cartesian space
instead of the contact space and including friction, i.e. tangential contact forces
in the model. Most important, improvements of the tactile sensor hardware itself
would further enhance the force control related approaches.

Extension to Multi-Contact Scenarios In this thesis, the tactile sensor only cov-
ers one link of the manipulator. Thus, only one-contact scenarios were examined
in this section. The application of the proposed approaches to multi-contact sce-
narios are one important direction of future research. For gradient related meth-
ods, a suitable formulation is already given in eq. (4.37). Using the controller
based approaches, a controller for each measured resulting contact force needs to
be implemented. Probably, these may be required to be coordinated on a higher
level.

Summary The approaches developed in this section allow an efficient reduc-
tion of contact forces in unknown cluttered environments. The proposed frame-
work enables the resolution of the conflict between low contact forces and suffi-
cient positional tracking. Contact forces are either reduced by movements in the
nullspace of the manipulator, i.e. precisely keeping track of the desired task, or
by adapting the task, if required.
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Parameter Symbol Value
Inverse Kinematics
Definition task space w [x,y,z]T € R®
Sample time At 0.001s
Measurement duration tineas
for the avoidable scenario 155
for the inevitable scenario 25s
Nullspace weighing matrix w diag(10,1,2,2,1,1,1,1.5,1)
Numerical drift compensation factor K
for joint space controllers 0.5/t
for all other controllers 0.005/,
Scaling factor for self-collision avoidance Ssca
on velocity level 8
on acceleration level 23
Scaling factor for joint limit avoidance Sjla
on velocity level 5
on acceleration level 20

Soft joint limits
for prismatic joints
for revolute joints

qi s,min/max

{41, min + 0.3 G gy — 0.3m}
{qi,h,min +30°; i pmax — 30 O}
7

Scaling factor for acceleration level damping Sdmp
Scaling factor for the elastic potential Se 1
Tactile Feedback
Force threshold for controller activation Fy, 1.3N
Nullspace limitation threshold
on velocity level G, max 5rad/s or 5m/s
on acceleration level Gn,max 20rad/s2 or 20 m/s2
Sample time for the tactile sensor module tst 0.004 s
Time constant for controller target dynamics T 0.5s
Damping factor for controller target dynamics d 0.5
Minimum force for task space relaxation Foin 5N
Transition handling distance dy 0.05m
Max. transition handling time constant T} max 1s
Minimum penetration depth for stiffness estimation ~ Ax,st i 50x107*m
Trajectory and Environment
Relative position of the tool center point Ticp (00000013)" m
Task space trajectory, Avoidable scenario
Start position (-0301301.1)" m
End position (0401011)" m
Execution time ttraj 6s
Task space trajectory, Inevitable scenario
Start position (-0301301.1)" m
End position (0751011)" m
Execution time tiraj 9s
Environment stiffness Thera-band Gold Ce ~ 60N/m
Assumed environment stiffness c 60N/m

Table 4.1: Parameters at the experimental evaluation of the tactile planning ap-

proaches. See also (Sygulla 2015).



Chapter 5

Predictive Inverse Kinematics

The inverse kinematics problem for redundant systems can be solved efficiently
using the resolved motion rate control (RMRC) and automatic supervisory con-
trol (ASC) algorithms by Whitney (1969) and Liégeois (1977). Joint velocities as
well as secondary objective functions are minimized by the pseudoinverse J* and
a local descent along the gradient V,;H of the secondary objective function H.
This method provides a computationally efficient and reliable solution, however,
it only takes into account costs of the next discrete time increment. A more ad-
vanced approach would also take into account constraints of future time incre-
ments such as workspace trajectories, limits, collisions, etc. while planning the
joint space trajectory. Such an approach is developed in this chapter.

Basically, this approach is a computational extension to the ASC scheme. Tak-
ing advantage of its system formulation, an indirect optimization scheme is ap-
plied to the inverse kinematics problem. Thus, future events can be taken into
account while optimizing the nullspace movement of the manipulator. Follow-
ing the idea of model predictive control (MPC), this method can be applied in
real time with a finite prediction horizon. Parts of this chapter, including the
problem formulation, the solution by the conjugate gradient method and real
time implementation are presented in a former publication by the author (Schiitz,
Buschmann, et al. 2014). Furthermore, this chapter shows the solution of the
problem as a two-point boundary value problem (TPBVP) and extends the nu-
merical background of the gradient method by evaluating further algorithms for
the calculation of the conjugate gradient in combination with several line search
approaches.

5.1 The Optimization Problem in Nullspace

This chapter presents a suitable problem formulation and the corresponding opti-
mality conditions according to Pontryagin’s minimum principle (PMP) based on

87
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the system formulation originally presented by Nakamura and Hanafusa (1987b).
Furthermore, two additions are shown that assure continuous behavior on the
position and velocity levels.

5.1.1 Nakamura’s System Equation

Based on the automatic supervisory control scheme shown in section 4.1.2 Naka-
mura (1991) proposed to replace the gradient descent in nullspace %{ by a general
input u and to use it as the system dynamics’ equation f,(-):

fW(q/u) = q = ]#/dees + Nwu

5.1
Nw = an (1= TivJw) G-
For the sake of simplicity, the Jacobian J, its pseudoinverse J* and the nullspace
projection N are used without weights in the further description. However, one
should note that the relative weights are useful, e.g. while dealing with kine-
matic structures which include both prismatic and revolute joints. Without loss
of generality the equations can be written as

flqu)=4= I#wdes+Nu

N = ay (1 - ]#]> . ©-2)

Using the system eq. (5.2), the optimization problem is formulated by Nakamura
and Hanafusa (1987b) using the cost functional L(-) in Lagrangian form:

21(1Tr)1 L(q,u,t)= /Tl (q,u,t)dt (5.3a)

f(g,u) = J*iges + Nu (5.3b)

@ [9(t0)] = Wes,0 (5.3c)
TE [to, tend]

While the end state g(Tepq) is free and inherently fulfills the condition ® [g(feng)] =
W4es,end, the condition eq. (5.3c) applies to the initial configuration q(tg) = q,.
The considered time interval T := t € [t, teng] is fixed. Optimality conditions
for the optimal control problem eq. (5.3) are given by applying PMP (Pontryagin
et al. 1962) using the Hamiltonian H(-) and the adjoint variables A(t)*:

H(g,u, A t) =1(gqut) + AT () f(qut) =1+ATq (5.4a)
S\ T
(5%) = fam =4 (5:40)

IFor the sake of clarity, the explicit notation of the time dependency (-)(t) is omitted, e.g. A def. A(t)
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oH\T . aI\T  [af\T
~(50) =r=-(5) () 049

@ (q) |1, = wo (5.4d)
Ali,., =0 (5.4e)
NA, =0 (5.4f)

Eq. (5.4) defines a TPBVP with the boundary conditions:

- Eq. (5.4d): The initial configuration q|;, has to coincide with the desired
initial position wy in task space (eq. 5.3c).

- Eq. (5.4e): The adjoint variable A|;_, vanishes since the problem has La-
grangian form with a free final state g/;,__,.

- Eq. (6.4f): The transversality condition ensures that the adjoint variables A
are normal to the tangent cone of the constraint set defined by eq. (5.4f).

Due to the transversality condition (eq. 5.4f) the set of boundary conditions is
coupled: The adjoint variable A has to fulfill conditions on both sides: start tg
(left side) and endpoint t,q (right side). The TPBVP has dimension 2n, since
g € C € R" and dim(A) = dim(q).

5.1.2 Extension 1: Decoupling the Problem

The formulation eq. (5.4) is suitable for applications where the initial configura-
tion g, is only constrained by the desired task space pose wy. However, if the
initial configuration is given by the current joint positions, the boundary con-
ditions have to be adapted. In particular, the initial state has to be defined in
order to ensure a continuous operation while planning in an iterative MPC-like
scheme?. Thus, the optimality conditions presented in eq. (5.4) can be rewritten

!
taking into account the initial condition g|;,= g,

H(qu A t) =1(gqut) + AT () f(qut) =1+AT4 (5.5a)
) T
(%) =flgu)=4 (5.5b)
oH\T . AN AN
(%) 2=-() -(5) 559
qlty = 9 (5.5d)
Al =0 (5.5¢)

This formulation decouples the boundary conditions of the differential equations
for the system dynamics and the adjoint variables. While the system equation is
bounded on the left side by the initial system state g/¢,, the right side of the adjoint
equation is determined. The coupling by eq. (5.4f) is no longer applicable. This
property enables an efficient numerical solution of the problem by the (conjugate)
gradient method presented in section 5.2.

2Details on the MPC implementation are presented in section 5.3.
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5.1.3 Extension 2: State Augmentation to Acceleration Level

While extension 1 guarantees continuity on the position level, a state augmenta-
tion of the system equation to the acceleration level ensures continuous velocities.
Therefore, the new system input # is introduced as the time derivative of u. The
new system state variable y is composed of the previous state g and its derivative
4. Thus, the optimization problem (eq. 5.3) using the boundaries (eq. 5.5) can be
rewritten as:

inL= / 1(q,2,t)dt (5.6)
() T
N . / i N
facc(q/ M) =Yy = |:Z:| - |:I wde%’*’ ll:| (57)
q|fo: 90
u‘toz 0 (5.8)
TE [tOI tend]

The optimality conditions according to Pontryagin’s minimum principle with the
augmented adjoint variable A := [A;, A;]” lead to

H(q, i, A) =1(q ) +ATf, (q@)=1+A{ g+ AJa (5.9a)
oH\T .
<ﬁ) = faccl@ ) =9 (5.9b)
T T T
T oH _ (9L _ (94
- e
i ()] B =) - ()
u ou u 2
— |40
yle [0] (5.9d)
A|tend:0

The TPBVP now has the dimension 2 - 2n = 4n.

5.1.4 Cost Function

The cost function can be chosen arbitrarily, in general. This thesis uses a cost
function in Lagrangian form, i.e. a function [(-) is integrated over time to the cost
function L(-):

L(q,u,t) = /Tl(q,u,t)dt

TE [tOI tend]

(5.10)
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By analogy to section 4.2 the objective function I(-) can be composed of a term
dependent only on the current configuration q and [g, 4] respectively.

I(q,4,1) = Cqlq(q) + C4l4(q,q) + Cala(it) (5.11)

The term I; includes e.g. penalty functions for joint limit avoidance (cf. sec-
tion 4.2.1) and collision avoidance (cf. section 4.2.2):

h
lp=H=Y Hi(q) (5.12)
i=1

l; is chosen to minimize joint velocities 4:

1.7,

li(q-4) = 54°4 (5.13)
Furthermore, the input # is damped by the quadratic penalty term:
(i) = %uTu (5.14)

5.2 Numerical Solution

The solution of OCPs, i.e. dynamic optimization problems, by indirect methods
relies on the formulation of the OCP’s Hamiltonian. Applying Pontryagin’s min-
imum principle, the optimality conditions, i.e. the canonical equations can be
derived. Various numerical approaches are capable of determining the optimal
control trajectory:

- Solving a TPBVP: By eliminating the control input, using an expression for
the optimal control input which only depends on the state and adjoint vari-
ables, the problem can be transformed into an ODE with boundary condi-
tions on the left and /or right sides of the time interval. This problem can be
solved by standard solver routines, e.g. the MATLAB function bvp4c.

- Minimizing an objective function: The optimal control input minimizes the
objective function. Thus, it can be solved in an iterative scheme using first
or second order gradient descent methods. In section 5.2, the conjugate gra-
dient method as a first-order algorithm with nearly quadratic convergence
is examined for a predictive solution of the inverse kinematics problem.

- Differential Dynamic Programming: Although originating from the dynamic
programming approach as presented by Bellman (1954), this method is also
related to indirect optimization methods. The cost-to-go (value) function is
approximated quadratically at a current estimate of the optimal trajectory,
yielding a locally optimal feedback law. Promising results are presented by
Tassa et al. (2008, 2012, 2014). These were confirmed for the nullspace opti-
mization problem considered in this thesis by the student theses of Berger
(2015) and Smith (2014).
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One has to note that the aforementioned methods in their original form apply
only to unconstrained problems. Input or state constraints can be taken into ac-
count by penalty functions. However, the system formulation eq. (5.9) based on
Automatic Supervisory Control assures that the task space trajectory constraint
is fulfilled inherently.

5.2.1 Solution as a TPBVP

In order to solve eq. (5.9) as a two-point boundary value problem (TPBVP) by
standard solver algorithms, the control variable # has to be eliminated in the
canonical equations. Thus, this section derives the optimal control input #* and
shows the corresponding TPBVP formulation.

Optimal Control Input u*

The optimal control input #* minimizes the Hamiltonian H(-) yielding the opti-
mal state g* and adjoint variable A*:

u* = argmin H(q*, A%, ,t) (5.15)

u

Since # is unconstrained, the optimal input u* is defined by

oH
i 516
5.16
I T Y R P
—ﬁJFM@ 2@—aﬁ+7\2—€uu+/\2
Ar
u=-—=, 5.17
Za 6.17)

The Two-Point Boundary Value Problem

Egs. (5.9), (56.11) and (5.13) and using the optimal input u* = —% eq. (5.17) yield
the TPBVP:
H(q, i, A) = [Z4lq(q) + C4li(q,4) + Cala(@t)] + AL f(q,u) + A3t (5.18a)
o (QH\" _ [f(g0)] _ [J*daes + Nu] _ [J*irges + Nu
Y=\aa) T a7 i = Zh
(5.18b)

A= — (a_H)T _ Pl} _ | (GqValg + T4Vl + A{qu)T
% A2 (4Vuly + ATVuf)'
(5.18¢)
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~ (Vi)' (g + A1) = Gq (Vlg)"
[ q —NqT (g,;ql+ M)q 99 (5.18d)
_[a
Yl = {001 (5.18¢)
/\’tend =0

Examples for the cost function gradients V)l are shown in section 5.2.3. The
gradients of the system equation V, f, V,, f are calculated by

Vaf = Vot @ — JF Vg u + V' T u (5.19)
(nng)  (nmng)(m1)  (nm)(mmnng)(nl)  (nmng)(mn)(nl)
Vuf= N (5.20)
(n,n) (n,n)

-1 -1 -1
vt =15 (1") —IT[(IIT) (10" +113) (117) } (5.21)

For convenience, the dimensions of the respective tensors are indicated by sub-
scripts. Introducing the state variable z := [y, A]T, the boundary conditions
zo := z(tp) and z, := z(f,) of eq. (5.18) are defined as:

q 4o g
u 0

z = Al 20= 0|2 = |, (5.22)
Ao ] 0

This can be solved directly using e.g. the MATLAB routine bvp4c. The symbol
U denotes a free state. In the following sections, numerically efficient gradient
based methods are presented that allow solving this problem iteratively in real
time as shown in Schiitz (2014). The bvp4c implementation is considered to be
very robust and serves as a reference to the developed gradient based methods.

5.2.2 Minimizing the Objective Function by Gradient Methods

Basic Algorithm

The gradient method is suited for decoupled dynamic optimization problems.
An early description is presented by Kopp et al. (1964). It calculates the trajectory
of the system state y(t) and the adjoint variable A(t) iteratively by forward and
backward integration, respectively. The variable j denotes the j—th iteration. The
control input # is updated by the gradient information g(t) using a step length
o/. Finding the optimal value for &/, i.e. the step length that minimizes the cost
function L(-) (cf. eq. (5.10)) is denoted as the line search problem. The loop is
repeated until the maximum number of iterations jmax is reached, the reduction
in the cost function is smaller than a lower barrier €, or the solution diverges, i.e.
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the cost function increases again. Since only the gradient g = %L; is used, this
method is a first-order optimization scheme. In its simplest form shown in alg. 2,
it is denoted as the steepest descent (SD).

Algorithm 2 Basic Algorithm of the Gradient Method, Steepest Descent (SD)
j — O, T:.=1¢€ [to, tend]-
q°(1) < [ q(a°,t) dt
LY < L(q°% ¢°, a°) (Evaluation of the Cost Function)
repeat .
M(T) + fT/\(qj, qf, i/, t) dt, backward in time: feng — o
8 5
s/ «— _g]
ﬁ(j+1) +— ﬁ] + ajsj
jej+lo
q <« [_q(i/,t)dt, forward in time: tg — teng
U« L(¢,¢/,)

exit < (j > jmax) V (UL—].ET < e> v (L > L)

until (exit = true)
return i/

Further additions to this basic algorithm consider two aspects:

- Search Direction: The use of information from previous iterations accelerates
the convergence of the method by using the CG.

- Adaptive Stepsize: Instead of choosing a fixed step size, line search algorithms
try to approximate the optimal solution for the step size o/.

Conjugate Gradient

Newton methods require the second derivative (Hessian) of the objective func-
tion, whose calculation is more time consuming compared to the first-order gra-
dient. Although their rate of convergence is faster compared to first order meth-
ods, their stability with poor initial guesses is lower. Another option is to use
gradient information from previous iterations to increase convergence, instead of
using only the current gradient. This method is denoted as the conjugate gra-
dient (CG), early descriptions can be found at Hestenes and Stiefel (1952). The
current search direction s/ is determined using the current gradient g/ and the
previous search direction s/~! weighted by /. The algorithm of the CG method
is shown in alg. 3. For the calculation of B several approaches are developed.
While an early approach is presented by Hestenes and Stiefel (1952), the later
adaption of Fletcher and Reeves (1964) is applied by Lasdon et al. (1967) to OCPs.
They show that the convergence of the CG for OCPs is faster than the SD and
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Algorithm 3 Conjugate Gradient Method (CG)

if j # 0 then
B/ < Conjugate Gradient algorithm by eq. (5.23)
sj — —g] + ‘Bjs(j_l)
else ‘
s/ —g
end if
AUty « of 4 ol
jej+1
q < [.q(@/,t)dt, forward in time: tg — teng
L« L(q/,§/,#)
exit < (j > jmax) V (UL—]ET < e) v (U > L)
until (exit = true)
return i/

a descent in every iteration can be guaranteed. An efficient implementation of
the later adaption of the Fletcher/Reeves algorithm by Polak and Ribiere (1969)
is published by Klessig and Polak (1972) and is later used by Haas (1975) in the
context of OCPs.

In the following, the different CG algorithms for calculating ,B]() are shown.
They differ w.r.t. the scalar product of the current iteration’s gradient VHI, and

the previous iteration’s VH{,_lz

(VH,", [VH}, - vH, )
Hestenes and Stiefel (1952) (5.23a)

Bhis = . — -
e ((VH, = VH, T, VH, )

| (VH,T, VH))
Bl = 7 ) Fletcher and Reeves (1964) (5.23b)
(Ve T, vHT)
(VH]", [VH, - VH, "))

(VT vH)

Polak and Ribiere (1969) (5.23¢)

j
Prr =

The scalar product for the vector space of real-valued functions is defined as
follows:

(av) = [ [#0) " bi(n)de (5.24)
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In section 5.2.3 the aforementioned approaches to determine the conjugate gra-
dient are applied to the nullspace OCP eq. (5.9) and compared to the steepest
descent method.

Line Search Algorithms

Once the search direction is found, the step size a/ for descending along this di-
rection has to be determined. The simplest choice is to use a fixed step size, i.e.
& = const.. Thereby, &/ has to be chosen sufficiently small to ensure convergence
for all iterations. However, this obviously results in slow convergence in cases
where larger steps are admissible. Thus, a more sophisticated approach is to use
a variable step size, i.e. to solve the one-dimensional optimization problem in
order to find an optimal &/* that yields the fastest descent:

w/* = argmin L(i/ + a/s/) (5.25)

ol

Usually, the minimum of L(+) is found numerically by multiple evaluations of
the cost function L(-) while varying a/. Thus, one has to be aware of the com-
putational costs of these additional cost function evaluations. In the following, «
instead of &/ is used for convenience.

Recent work by Kdapernick and Graichen (2014) examines two line search meth-
ods for solving OCPs: A polynomial approximation ("adaptive line search") of
the cost function and the secant method ("explicit line search"). Both approaches,
as well as the simple backtracking method, are presented and discussed in the
following.

Backtracking According to the Wolfe conditions (Nocedal and Wright 2006),
a sufficient decrease in the cost function L(-) is obtained in case the following
inequality condition (Armijo condition) is met:

L (qj, w + ocsj> <L (uj> +caVH(u)Ts/ (5.26)

The constant ¢ determines the expected slope of the cost function L with the
search direction s/ and the gradient of the Hamiltonian V H. Evaluating this con-
dition by applying a sequentially decreasing step size a leads to the following
simple alg. 4. It terminates either when the Armijo condition is met or when « is
smaller than a lower threshold &,. This approach is fairly simple: it starts with a
large step size which is iteratively decreased until a sufficient descent is reached.
However, the selection of the expected slope c is difficult. In this thesis it is chosen
empirically as a small value to prevent a premature abortion of the iteration.
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Algorithm 4 Backtracking

a < wg, p€(0,1), ce(0,1)

while (L (¢/,u/ +as/) < L(g/,w/) +caVH(w)s/)and (« > ¢,) do
& pa

end while

return «

Polynomial Approximation The mainidea of the adaptive line search algorithm
is the polynomial approximation of the cost function L w.r.t. the step size x and
choosing its minimum as the approximated optimal step size. This algorithm is
presented by Graichen and Képernick (2011) for the application of OCPs. It is
included in the open-source software framework GRAMPC and further discus-
sions can be found in Kédpernick and Graichen (2014). They report that a second
order polynomial provides a sufficient approximation:

L(¢/,w + as') ~ g(a) == co + c1& + cpa? (5.27)

In order to determine the coefficients c;, the cost function L(a/) has to be evalu-
ated at three points: ay, a2, a3. Graichen and Képernick (2011) propose an equidis-
tant distribution of these points, i.e. a1 < ay < a3.

Solving the set of equations

L(g/,w + a;s/) = L; = g(w;), i=1,2,3 (5.28)
yields the coefficients c;:

vl ([Xl - Déz)leLg + 0(2063(0(2 - 063)L1 + 061063(063 - Dél)Lz

Cop —
(g —ap)(aq —az) (g — a3)
¢ = (a5 —af)La + (af — a®) Lo + (a3 — a3) Ly (5.29)
(a1 — ) (1 — az) (ap — a3)
o (1 —ap)Ls + (ap — a3)Lq + (a3 — 1)Ly
, =
(a1 —ap)(ar — az)(ap — az)

A minimum of ¢(«) exists when the curvature condition ¢, > 0is fulfilled. Hence,
the optimal step size a* is approximated by
* €1

argmin g(a) == a* = T2y (5.30)

o

In case a* lies outside the interval, « is set to the nearest limit. The interval [ay, a3]
can be adapted for the next gradient iteration by the scalar factors k(=) when a*
is outside or near the borders of the bounding box. The method is summarized
in alg. 5.

Approximation of the Secant Method Barzilai and Borwein (1988) suggest a
two-point approximation of the secant method which is reported by Kapernick and
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Algorithm 5 Polynomial Approximation

oy (+ad) /2
co,c1,62 < {Li —g(a;) =0,i € (1,2,3)}
if c; > 0 then
0 5L
(0 ifa* < ag
Wy ifar > g

else

wy if Ly +eg <min{Ly, L3}
o — a3 if L + &g < min{Ll, Lz}

(ap else
end if o
e K+[0(]‘,1Xé] if a* > a1 + ¢ (a3 — 1) and a3 < amax
[IXEH ),aé“ )] — K_[Déjl,txé] if o* <y +ef (a3 —ap) and a1 > amax
[D(]i,lxé] else

Graichen (2014) for dynamic optimization problems. The step size o/ is chosen

J J= ] ]

using the differences Aui =u —u "and Asf{ =8 — s,;1 as follows:

. , 12
o/ = argmin HAui - txAsfc (5.31)

L3[0,T]

a>0
T T . .
L () 5 ()
o = = = Y (5.32)
At kgo (Asf{) As{{ <Ask' Ask>

This method is considered to be computationally very efficient since information
of the last iteration is required, instead of evaluating the cost function L(-).

5.2.3 Example: Collision Avoidance 4-DOF pendulum

In the following, the problem formulation is exemplified by a 4-DOF pendulum
robot. Furthermore, the aforementioned numerical methods to solve the dynamic
optimization problem are investigated. Its configuration space C € R* is defined
by the four joint positions g whereas the task space W € RR? is specified by the
position of its TCP w = [wy, wy]T:

g = [q1,92,q3,q4)" € C € R*

(5.33)
w = [wx,wy]T e W e R?
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Since dimC > dim WV, the robot is redundant. In the example, the robot follows
a given straight-line task space trajectory. A point-like obstacle obstructs the free
motion of the robot but can be avoided in nullspace. Parameters of the scenario
are given in table 5.1. Redundancy is resolved

- using the instantaneous approach based on automatic supervisory control
(cf. section 4.1.2),
- as a TPBVP as shown in section 5.2.1 and

- by minimizing the objective function using the (conjugate) gradient method
(cf. section 5.2.2).

Problem Formulation

The cost function [(-) is the weighted sum of egs. (5.13) and (5.14) and a collision
avoidance term eq. (4.31):

1(9,4,) = Cconleon(q) + T4 15(q,4) +Cala(ir) (5.34)
= ——
3d"4 puli
1 _ 3.
leon(q) = {3 (4 —d(q))" ifd(g) <do (5.35)
0 else
The canonical equations yield
N
j— (8H> B {] wdes—l—Nu} u [1 wj}e\z/—gﬁNu] (5.36)
T
A= gqf + /\1) Ceoll (Vqlcoll) 5.37
[ NT(Gaf + M) 3
Yl = 40 ] Altoq= 0. (5.38)

For the calculation of the collision avoidance gradient, the point on the robot r¢p
of body i which is closest to the point-like obstacle r,,¢ has to be determined. The
gradient V4l and the required quantities are calculated by

Vl@ﬁzp%_ﬂmFVﬂW)iMW)<%

0 else
V.d /d (]TOz ?Cp,i]RO,i)T (GC - robs) if d(q) < dﬂ (5-39)
1 (4) = 0 else

d(q) = \/[robs - rCP(q)}Z'
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Parameter Symbol Value

Inverse Kinematics

Definition task space w (wrwy )T € R
Sample time At 0.04s
Nullspace weighting matrix W diag(1,1,1,1)
Numerical drift compensation factor K 1
Activation distance for collision avoidance d, 0.2
Scaling factor for collision avoidance Ceoll 50 #
Scaling factor for comfort pose Cemt 0
Scaling factor for joint limit avoidance Gila 0
Scaling factor for velocity penalty Cq ras?
Scaling factor for input damping Ca 225
Robot and Trajectory
Link length l 1
Initial configuration q° (7/6,~7/6,~7/6,—7/3 )T
Initial guess i (0,000 )T
Task space trajectory
Start position wo (3731)7
End position Wend (050)"
Execution time traj 4.0s
Obstacle position Tobs (1011)"
TPBVP Solution
Matlab solver algorithm bvp4c
Relative tolerance RelTol 1072
Nodes of initial mesh 20
Gradient Method Approach
Maximum number of iterations Jmax 100
Lower barrier for exit condition € 104
Step size
Fixed step size X 0.01
Variable step size 00, bt 0.05
1Y 0.62
Carmijo 1074
€ Xo,bt * .010

Table 5.1: Parameters of the example of the 4-DOF robot following a straight-line
task space path while avoiding collisions with an obstacle by suitable nullspace motion
(cf. section 5.2.3).



5.2 Numerical Solution 101

Note that the translational and rotational Jacobians of the ith body’s origin, as
well as the closest point r., depend on the robot configuration q. The task space
trajectory w(t), t € [0, ty] is given by
wdes(t) = wO + S(t) (wend - wO) S(t) = 10/t?rajt3 - 15/t%rajt4 + 6/t?rajt5
z/bdes(t) = S(t) (wend o wO) S(t) = 3O/t§’rajt2 B 6O/t§rajt3 + Bo/t?rajt4'
(5.40)

The trajectory of the path parameter s(t) is chosen as a 5th order polynomial
which fulfills the boundary conditions

s(0) =0, S(ttraj) =1, 5(0) = S.(ttraj) =0, 5(0) = g(ttraj) = 0. (5.41)

Numerical Solution

(a) t=0.0s (b) t=2.68s (c) t=3.0s (d) t=4.0s

Figure 5.1: Example with a 4-DOF pendulum showing the benefit of the optimization
of the trajectory in nullspace. The robot follows a straight-line task space trajectory
from top wy = (1,3.73)T to bottom weng = (0.5,0)7, its trace is drawn in green.
At (1,1), the robot encounters an obstacle (orange sphere), which can be avoided by
suitable nullspace motions. The optimized solution (TPBVP) is drawn in blue while the
initial guess (instantaneous solution, cf. section 4.1.2) is depicted in gray.

This dynamic optimization problem (with parameters given in table 5.1) is
solved as a TPBVP and by using the presented gradient approaches. First, the
optimal solution is compared to the instantaneous automatic supervisory control
approach based on this typical example with collision avoidance. Furthermore,
the rate of convergence for different conjugate gradients and line search meth-
ods is discussed. A quantitative evaluation of the proposed methods is given in
section 5.2.4.



102 Predictive Inverse Kinematics

General Remarks on the Optimal Solution Fig. 5.1 shows several snapshots of
the instantaneous and the optimized solution: While the optimal solution (blue
robot) avoids the obstacle by adjusting its motion plan from the outset, the in-
stantaneous approach (gray robot) reacts only when the minimum distance falls
below the activation distance d,. The drawback of this late reaction becomes ap-
parent when the costs for joint velocities and collision avoidance are regarded in
tig. 5.2: Att ~ 2.75s: the robot approaches the obstacle with greater proximity
and has to apply high joint velocities in order to avoid it. By comparison, the
optimized solution accepts slightly higher velocities at the beginning in order to
achieve a more favorable configuration near the obstacle.

3 -
5, [ =49
_2F ‘ -y, [=72
|
; lg,f:46
§ Sy, [=62
s Zcoll’ f =27
leot, | = 9.8
09

Time [s]

Figure 5.2: Cost as a function of time of the instantaneous (dashed) and the optimized
solution (solid) for the scenario shown in fig. 5.1 with the parameters given in table 5.1.
The individual costs for joint velocities I;(t) (blue) and collision avoidance L. (t) (green)
are cumulated to the overall costs Ix(t) (gray).

Conjugate Gradient First, different approaches modifying the search direction
using conjugate gradients (section 5.2.2) are compared, while the step size « re-
mains fixed as & = «g. All approaches yield similar optimization results. How-
ever, their rate of convergence differs: As depicted in section 5.2.3, the algorithm
of Fletcher and Reeves (1964) shows the fastest convergence compared to the
other approaches for the collision avoidance scenario. Furthermore, it should
be noted that the algorithm of Hestenes and Stiefel (1952) converges faster than
the steepest descent while no improvement can be observed with the formulation
of Polak and Ribiere (1969). Additionally, the proportional gain B of the conju-
gate gradients is shown over the iterations. While for the method proposed by
Fletcher and Reeves (1964) B > 0 holds, p may become negative for the Hestenes
and Stiefel (1952) and Polak and Ribiere (1969) algorithms.

Line Search Line search algorithms aim to find the optimal step size for descent
as far as possible along the given search direction. The line search approaches
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—— Steepest Descent
—— CG Hestenes/Stiefel
CG Fletcher/Reeves
CG Polak/Ribiere
| | | |
10 20 30 40 50
2
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L CG Fletcher/Reeves
= 05z I ) CG Polak/Ribiere
v\ ’ >0
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| <0
_05 | | | |
10 20 30 40 50
Iterations

Figure 5.3: Convergence for different conjugate gradient algorithms for the collision
avoidance example: The value of the cost function L and the  factor are plotted as a
function of the the number of iterations. For comparison, the costs from the TPBVP
solution Lipgyp are drawn as a dashed line in the upper figure.

presented in section 5.2.2 are applied to the collision avoidance example with the
simple steepest descent search direction. The results are shown in fig. 5.4: The
backtracking and explicit methods use information from the previous iteration.
Thus, they descend with a fixed step size in the first iteration. By contrast, the
adaptive scheme approximates the optimal a* by three evaluations of the cost
function L(«) and already descends faster at iteration 1. The resulting step sizes
are also depicted in fig. 5.4. One may note that all algorithms with variable step
sizes show a faster convergence compared to the conservatively chosen fixed step
size.
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Figure 5.4: Convergence for different line search algorithms for the collision avoidance
example: The value of the cost function L and the factor 8 calculated by the conjugate
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gradient algorithms section 5.2.2 are shown as a function of number of iterations.

5.2.4 Evaluation of the Numerical Methods

Problem Fo

The presented approaches and variations are evaluated for the example given in
section 5.2.3 using random initial configurations g, and task space goal positions

rmulation

Weng- For this evaluation, the cost function is modified as follows:

1(q,4,%) = Cemtlems(q) + Gitalita(9) + 84 13(q, 4) +Ca l&(/@

-

3dTq

N|—

aTa

(5.42)
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Parameter Symbol Value
Evaluation
Number of experiments Hexp 100
Varied Parameters
Initial Configuration q° q? € RN [—2/37,2/3m]
Task Space Goal Wend Wend,x € RN [—1.5,1.5]

Wendy € RN[0,3]

Cost Function

Scaling factor for collision avoidance Ceoll 0
Joint Limits [Fmin,is Gmax.i] [—7, 7T
Comfort Pose

Scaling factor Cemt 0.5

Comfort Pose 9o (0000)"
Joint Limit Avoidance

Scaling factor Gila 1

Lower Soft Limit Jmin,soft i Jmini + /2

UPP€7” SOf t Limit Y max,soft,i dmax,i — /2
Scaling factor for velocity penalty C4 2
Scaling factor for input damping Ca 2

Table 5.2: Adaption of parameters from table 5.1 for the statistical evaluation presented
in section 5.2.4 of the 4-DOF robot following a straight-line task space path while opti-
mizing joint velocities and its kinematic configuration.

1 & qcmf)2
cmf Py Z 2
2 =1 qz max qi,min)

( (ql _Qmin,soft,i)g (543)

T
( min,i —Jmin,soft,i )

if (ql < qnnin,soft,i)

I_Ijla,i — (qi_qmax,soft,i)a

%
( Admax,i ~dmax,soft,i )

else if (qi > qtnax,soft,i)

0 else
\
For the quantitative comparison of the numerical approaches in many random
settings, the term for collision avoidance is omitted. The parameters shown in
table 5.1 are retained, except for modifications listed in table 5.2.

The following results are obtained solving the dynamic optimization problem
for nexp = 100 random settings. The initial configuration g, and goal position
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Weng have a uniform distribution within the intervals

go; € RN [—2/37,2/3m]
Wend + € RN [~1.5,1.5] (5.44)
Wendy € RN[0,3].

Evaluation Criteria

For the evaluation, the following aspects are considered:

- Improvement: Integral of optimal costs I*(-,t) over time compared to the
instantaneous costs [o(+, t):

j‘t’;end l*() dt _ ftf)end lO() dt
f;;end lO(') dt

A negative value means an improvement w.r.t. the costs while a positive
value is a deterioration (which is considered as a failure).

Improvement = (5.45)

- Relative Improvement: Difference between the improvement obtained by the
method yielding the minimal costs and the considered method. A value
of 0 means that a method yields the minimal costs among the considered
solutions.

- Success Rate: A solution is considered as successful when its cost improve-
ment differs by 5% relative to the method yielding the minimal costs. A
value of 1 means 100% success while a value of 0 means no success.

- Computation Time: Computation time of gradient based methods Ty g is
compared relatively to the computation time needed by the TPBVP solution
(Tcalc,BVP):

Teale, M — Tcale BVP (5.46)

Rel. Computation Time :=
Tcalc,BVP

Absolute Results

In order to evaluate the expectable improvement and computation time of the op-
timization, a statistical evaluation of the reference TPBVP solution is performed.
The cumulative costs for joint velocities L;, comfort pose Loy and joint limit
avoidance Ljj, resulting from the optimization are compared to those of the ini-
tial guess. The costs for input damping L; are neglected since they are not taken
into account by the instantaneous solution. As depicted in fig. 5.5, the costs are
reduced in average by 16% while the distribution is skew symmetric. It should
be pointed out that this quantification of the improvement relies on the absolute
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Figure 5.5: Top: Improvement of the cumulative costs for joint velocities L;, comfort
pose Lcyf and joint limit avoidance Ljj, of the TPBVP solution relative to the initial guess
(instantaneous solution). Bottom: Absolute computation time needed for solving the
TPBVP. Time measured using MATLAB R2016A, UBUNTU 15.10 on an Intel® i5-4310U@
2.00GHz. The average value is denoted by 4 and the median as the vertical line in the
box. Tukey Boxplot, Whiskers £=1.5 Interquartile Range.
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Figure 5.6: Success Rate of the various combinations of conjugate gradient and line
search algorithms. For comparison, the success rate of the TPBVP solution is drawn as
a dashed line.

weighting of the cost function in this example. In order to quantify the compu-
tational effort, the computation time T, gyp is measured as well: The average
computation time is 1.57 s while half of the experiments converge after 1.14 s us-
ing the MATLAB R2016A routine BVPAC on an Intel® i5-4310U@ 2.00GHz.
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Relative Results

Results obtained by the different methods are shown relative to the TPBVP (—
computation time) or minimal cost (— relative improvement) solution. In the
following, the approaches presented in section 5.2.2 for calculating the conjugate
gradient and in section 5.2.2 for determining the optimal step size are combined
with each other.

Success Rate In fig. 5.7 the success rate of the conjugate gradient/line search
combinations is shown. As defined in section 5.2.4, an optimization is considered
as successful when the resulting improvement compared to the instantaneous so-
lution by less than 5% relative to the solution yielding the minimal costs. While
the TPBVP solution is successful in 84% of the experiments, the highest success
rate is achieved by the adaptive line search algorithm and the Fletcher/Reeves
conjugate gradient. Stable results are also obtained using a fixed step size. The ex-
plicit line search algorithm performed the worst for all combinations. However,
the convergence depends heavily on the parametrization of the cost function, the
initial step sizes and the problem itself.

A more detailed illustration of the convergence is given in fig. 5.7. This dia-
gram shows the difference of the improvement achieved by the respective method
to the method yielding the minimal costs ("most optimal" solution). In partic-
ular, a bad convergence is obtained by the backtracking line search with the
Fletcher /Reeves and Polak/Ribiere conjugate gradient and the explicit line search
(all CG versions). By contrast, the versions with fixed step size and with adaptive
line search yield the best results.

Computation Time Apart from the quality of the results as investigated in the
previous paragraph, the computational effort is of particular importance for real
world applications. In fig. 5.8 the relative computation times of the different
methods are given w.r.t. the computation time of the TPBVP solution. In doing
so, only successful experiments are considered. While the quality of the results is
high for the fixed step size algorithms, computation times are longer. However,
using the conjugate gradient methods, in particular the Fletcher/Reeves algo-
rithm, the convergence can be accelerated significantly. A similar behavior can
be observed using the backtracking line search, which shows even faster conver-
gence but worse reliability. The best results are achieved at a high quality level by
the adaptive line search strategy in combination with the Fletcher/Reeves conju-
gate gradient. The lowest computational effort is observed for the explicit line
search methods. However, its optimization process is often stopped prematurely,
before the solution is optimal.
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5.3 Real Time Application

The numerical methods presented in the previous section are capable of solving
dynamic optimization problems formulated as TPBVPs. Thus, one can determine
the optimal joint space trajectory for a given task space trajectory optimizing the
nullspace motion of a redundant robot offline, i.e. before initiating the motion.
For several applications, a real time optimization is desirable: For example, the
task space trajectory may be modified while moving or new obstacles can appear.
Furthermore, when the trajectory is optimized online, the motion can be started
immediately. Even under the assumption that the optimization problem is suffi-
ciently well known in advance, the computational load for longer trajectories is
usually too high to be computed in one time interval of a typical real time scheme.

A well-known approach from control theory is the model predictive control
(MPC) or Moving Horizon scheme (Diehl et al. 2009). This section indicates how
the MPC scheme can be applied to the optimization problem for resolving redun-
dancy using the numerical gradient methods presented in the previous sections.

5.3.1 MPC Algorithm

The main idea of MPC can be summarized as follows: A large optimal control
problem is divided into several smaller sub-problems for a finite prediction hori-
zon Thorizon Starting from the current time increment tk. Once the sub-problem
is solved, the initial part (usually smaller than the prediction horizon) of the cal-
culated input trajectory u*(t;) with 7] = [f, t; + Atmpc] and Atmpe < Thorizon
is applied to the system while the sub-problem of the subsequent time window
T+1 is being solved. The basic scheme is depicted in alg. 6.

Algorithm 6 Model Predictive Control (MPC) Algorithm

fstart = tO/ Tend = tN' AthC = tk+1 B tk
fork=0to N do
T < [tk/ tk 4 Thorizon]
T 4 [t t* + Atmpc]
determine u* (1) using u°(7;) = U revious (Tk)
apply u*(t})
end for
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5.3.2 Implementation

Real Time Capability

In order to assure the real time capability of the implementation, each calculation
routine should provide a feasible solution within a fixed time span. The numeri-
cal solution of the dynamic optimization problem contradicts this hard real time
constraint since the number of iterations to convergence varies. Assuming that
each iteration requires a similar computation time, this issue can obviously be
resolved by limiting the number of iterations. This is only applicable in case the
"not yet converged" or sub-optimal solution still provides a feasible trajectory. This
requirement is inherently fulfilled by the considered system formulation shown
in section 5.2.1. Using a "warm start", i.e. the previous solution u;revious initializes
the subsequent optimization problem, convergence to the optimal solution over
several iterations is shown by Graichen and Kugi (2010).

In Schiitz, Buschmann, et al. (2014) the author reports the real time implemen-
tation for the 9-DOF CROPS manipulator allowing one iteration per sub-problem.
Thereby, the prediction horizon is 0.15 s with a sampling time of 10 ms.

Continuity Considerations

While solving the optimization problem for a moving horizon and subsequently
applying the optimal control inputs #*(7’), one has to assure that the overall con-
trol trajectory u*(t) is continuous. Solving the OCP for the system formulation on
the velocity level eq. (5.5) by a MPC scheme illustrates this problem: As depicted
in fig. 5.9-left for a single joint velocity of a 4-DOF collision avoidance example,
the resulting trajectory (blue) is non-smooth, although the single trajectories solv-
ing the sub-problem are individually smooth. This can be explained by the fact
that the solution has non-zero initial nullspace velocities since nullspace accelera-
tions are not taken into account by the cost function. This issue is encountered in
the extended system formulation presented in section 5.1.3. Using a simple state
augmentation, the new system input # for accelerations instead of velocities in
nullspace is defined. This extension results in continuity on the velocity level as
shown in fig. 5.9-right.

Prediction Horizon

The prediction horizon Ty,oyiz0n has a significant influence on the optimization re-
sult. This insight is evident: The larger the prediction horizon, the earlier the
optimization takes future events into account. Le., the manipulator can adapt its
motion earlier to choose a more favorable configuration. Regarding the squared
joint velocities 47 4 of the self-collision scenario (depicted in fig. 5.10), this effect
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Figure 5.9: Joint velocity for the 4-DOF robot at the collision avoidance scenario us-
ing the MPC solution. Thereby, the system formulation with an input on the velocity
level (left) shows discontinuities while the one on the acceleration level as presented in
section 5.1.3 remains smooth (right).

can be quantified: The manipulator moves on a straight-line task space path from
bottom to top. While moving, the manipulator prevents a self-collision of the arm
with the prismatic joint by an evasive nullspace movement. Following the instan-
taneous solution (gray) as shown in fig. 5.11, high joint velocities are needed to
avoid the collision. Using a large prediction horizon (e.g. Thorizon = 2'S, gteen), the
collision is anticipated early and high velocities are prevented. By comparison,
the smaller horizon of Ty orizon = 0.15s (blue) yields a much smaller improvement
compared to the larger horizon.

5.4 Remarks

In this chapter, a novel method for the optimization of inverse kinematics for
redundant robots has been introduced. By applying the method in a moving
horizon calculation scheme, a predictive optimization of the respective nullspace
motion can be applied in real time. Thus, future constraints and events can
already be taken into account during the calculation of the current time incre-
ment. This method is based on a suitable system formulation for an indirect op-
timization scheme. Two contributions of this thesis, the decoupling and state
augmentation enable its efficient solution. Besides the numerical solution as a
TPBVP, the (conjugate) gradient method is shown in greater detail. Using the
example of a redundant 4-DOF pendulum, the efficiency and robustness of sev-
eral conjugate gradient versions and adaptive step size algorithms are examined.
By evaluating numerous random scenarios of this example, the combination of
the Fletcher/Reeves conjugate gradient and the adaptive line search algorithm
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Vo

Figure 5.10: Collision Avoidance scenario for 9-DOF harvesting manipulator (prototype
1). The end effector moves on a straight-line path from bottom to top. A self-collision of

the arm with the manipulator’s prismatic joint is avoided by suitable nullspace move-
ments.

showed the best results regarding success rate and computation time. Further-

more, the real time application of the proposed method in a moving horizon
scheme was introduced.

The solution of optimal control problems by an indirect method has several
advantages: First, it offers highly accurate solutions to the dynamic problem.
Second, the numerical solution e.g. by the conjugate gradient method is compu-
tationally efficient. Iterations can be interrupted before the problem is fully con-
verged, since the current estimate of the optimal solution is always applicable.
This fact is of particular importance regarding real time applications. However,
several drawbacks have to be considered when applying the proposed method.
The trajectory is optimized locally around the current estimate of the optimal so-
lution. This makes it sensitive to the initial guess. Since optimization takes place

1
:\”’ N —— Instantaneous
£ 05| \V 1 — Thorigon = 0.155
[;@ Thorizon = 28
=
0 | | |
0 1 2 3 4 5

Time [s]

Figure 5.11: Squared joint velocities of revolute joints in self-collision scenario for the
harvesting robot calculated by local inverse kinematics and MPC approach with a mov-
ing horizon of 0.15s and 2s.



5.4 Remarks 115

only in nullspace for the proposed system formulation, an initialization of zeros
or using the gradient V;H of the current timestep leads to good results. Although
the optimization may end in a local minimum, the solution can be expected to
be more favorable compared with the instantaneous calculation scheme (cf. sec-
tion 4.1.2). Another drawback is the sensitivity of the method to the relative
weights within the cost functional. The coefficients {(.) have to be adjusted care-
fully according to the respective system and scenario. Furthermore, constraints
are only taken into account as soft constraints by penalty terms. In the experi-
ments, the latter fact has shown to be no limitation for practical usage.

While the proposed approach shows great potential for the efficient and op-
timized redundancy resolution, two main aspects may be addressed in further
research: the improvement of the collision avoidance formulation and the exten-
sion of the prediction horizon. Using strictly convex geometries and/or a hierar-
chical scheme from large to more detailed geometry models may be beneficial for
convergence of the collision avoidance cost function. A more efficient implemen-
tation of the proposed approach and a faster CPU allows a larger prediction time
window and/or more iterations at each planning step.






Chapter 6

Trajectory Optimization by Direct
Methods

The previous chapter introduced a novel trajectory optimization approach for
redundant robots and the nullspace motion was optimized using an indirect op-
timization method. By contrast, this chapter presents the trajectory optimization
using a direct method. The dynamic optimization problem is transformed to a
static one by discretization. The problem can be solved with off-the-shelf nonlin-
ear programming algorithms, which are able to solve the high-dimensional prob-
lem reliably. Using only the minimum number of constraints, the search space
for optimal, admissible trajectories is very large. Thus, considerable savings in
terms of maximum velocities and energy can be achieved. An extensive evalu-
ation of the proposed approach shows its applicability for real world scenarios
such as the harvesting of sweet pepper fruit in a greenhouse. The method as well
as a summary of related results is presented in earlier work by the author (Schiitz
et al. 2015), while first implementations were done in collaboration with Reuf3
(2013a,b).

6.1 Objectives and Application

The method developed in this chapter has to meet several design criteria regard-
ing the optimization goal itself as well as the practical implementation. Major
optimization objectives can be summarized as follows:

- Minimal set of task space constraints: Using only the necessary constraints re-
garding the task space allows maximum flexibility in order to achieve sec-
ondary objectives. E.g. for selective harvesting tasks, constraints on the end
effector imposed along the path can be freed while only the goal pose is
important.

117
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- Energy optimal trajectory: Joint velocities and accelerations are minimized
while the end time is fixed.

- Respect joint limits: Kinematic joint limits for position, velocity and acceler-
ation must be respected.

- Collision avoidance: Obstacles as well as self-collisions must be avoided.

Regarding the application of the proposed method for a real world scenario, the
following requirements have to be considered regarding the implementation:

- Fault detection: Failures of the optimized trajectory must be detected reli-
ably. Possible errors are an undetected collision or the violation of hard
constraints such as kinematic limits.

- Failure strategy: In case of failures, an alternative solution to the trajectory
optimization has to be found.

- Computational time: Offline numerical computation of the optimal trajectory
has to be feasible within reasonable time. An evaluation of a large number
of samples gives an indication regarding expected computational times and
their distribution.

While the developed method remains general, the application considered in this
thesis is the harvest of sweet peppers by the CROPS manipulator (prototype 1) in
its 9-DOF configuration. The typical scenario in the greenhouse and the abstract
simulation environment are shown in fig. 6.1: The manipulator has to move from
its initial position at the storage container to the fruit, while avoiding collision
with itself and the stems. Typical parameters are given in section 6.4.1. The cy-
cle time of harvesting one fruit is in the range of a few seconds. Thus, the next
trajectory can be pre-planned and optimized within the timespan of actually har-
vesting one fruit.

6.2 The Constrained Problem

Firstly, the optimal control problem (OCP) considered in this chapter is formu-
lated as a constrained nonlinear optimization problem continuous in time. Sys-
tem states x are chosen as the robot’s joint angles g while its inputs u are repre-
sented by joint velocities 4. The mapping between the task space W € R" and
joint space C € R" is given by forward kinematics mapping ®(-).

x=4q
t=u=4g 6.1)
w=®(q).
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(b) Simplified environment.

Figure 6.1: Left: Harvesting sweet peppers with the CROPS manipulator system
(Gen. 1) in a greenhouse. Right: Plants are modeled by vertical stems, simulating the
environment for trajectory optimization.

A cost functional L defined by an integral over a time interval [fo, tonq] Of some
cost function I(-), is minimized by the system states x(-) and the inputs u(-).
Equality conditions g(-) as well as the space of admissible states X} and controls
U have to be respected. Thus, the constrained optimization problem can be writ-
ten in its time-continuous form as follows:

1 a(e), u(t), ) d
min L (x,u,t) = x(t),u(t), t)dt
x(-)u(:) ( ) /to ( )

wrt. &= f(u(t),t)
g (x(t),u(t)) =0
x(t) € Xy, uecl
te [tOI tend]

(6.2)

The resulting set of optimal controls #*(t) and states x*(t) is considered to be the
optimal trajectory for the given task.

6.2.1 Discretization

Instead of formulating optimality conditions according to Pontryagin’s minimum
principle, the OCP is discretized w.r.t. time. Thus, the dynamic problem is trans-
formed to a static optimization problem. Thanks to this transformation it can be
solved using nonlinear programming methods. The time interval [ty, fonq] is dis-
cretized in N steps with the increment At. Variables and functions are expressed
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with the index k:
to=10 <t < .. <tN<toq
At =tk — (k=1
XK, uk = x (), u(t5)
Ik = 1(x5, u")

f£= f )
kelN, 0<k<N

(6.3)

Using the discrete counterparts of variables and functions (- )¥, the problem eq. (6.2)
can be written in its discrete form while the integral is solved using the trape-
zoidal rule.

(u() TS 2

wrt. & = fk

g(xu)=0
X € Xy, up € Uy
ke N, 0<k<N.

(6.4)

In the following, functions and variables are always used in their time-discrete
form.

6.2.2 Cost Function

The cost function I¥ is the sum of arbitrary sub-functions I¥, weighted by scalar

quantities {;. For the "harvesting sweet peppers" scenario, dynamic (lﬁyn) as well

as collision costs (l]éoll) are taken into account. By contrast to the cost functions

presented in section 4.2, there is no term for joint limit avoidance since compli-
ance with joint limits is assured by box constraints (cf. section 6.2.3).

lk = Clcclynl(];yn + gcollllc(oll (6-5)

Dynamic Costs Dynamic costs are defined by the squared joint velocities (pseudo-
energy). The weighting factor gﬁyn increases quadratically from the initial value

ggyn,o to its maximum value C’éyn/N (cf. fig. 6.2). This adaptation is motivated by
the reasoning that the robot system should slow down close to the goal:

T
iy = (4) 4
gdyn,N - gdyn,O
NZ

(6.6)

ggyn = gdyn,o -I_ kz
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Figure 6.2: Weight Z¥ of dynamic costs l]d‘yn as a function of k.

Collision Avoidance Costs Collisions are avoided using the cost function I*

which corresponds to H,oy at the time instance t* as presented in section 4.2.2.
The objective function li(oll as the time-dependent variant of eq. (4.31) can be writ-
ten as:

3 .
ko )3 (da—d)” ifd" <d,
coll 0 else 67)

6.2.3 Constraints

Apart from the cost functional, several equality and inequality constraints have
to be defined. Firstly, the system differential equation is discretized by the trape-
zoidal rule and results in a set of (N — 1) equality constraints:

fk(xk’uk) — xk — q'k — uk

B S

. 1
(6.8)

Other constraints are obtained from the given task: At the start (f = t9), the
initial configuration g° and velocity 4° are known. Furthermore, a desired goal
in task space wg1 and joint velocity 4 g at the end time (tN = toq) can be defined.
Thus, start and end conditions can be summarized as follows using the function
of forward kinematics ®(-) :

= = 5

@(gN) = wy € W € R"
" =4,

(6.9)

Hn case of the scenario given in section 6.1, the goal is given by the desired pose of the gripper.
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The system states x* and inputs #* can be bounded by the kinematic limits X’
and U of the robot system using box constraints [-] with the minimum (- )y and
maximum (-)max values.

k n
x' e X = |Xmin, X € R
. [ min max] ) (6.10)
u e u = [umin, umax] E ]R

6.3 Numerical Solution

The optimization problem is defined in the previous section 6.2. Its properties are
summarized as follows:

- The problem is discretized by time increment At and a total number of steps
N.
- Assuming a robot with n-DOF, the problem has nN states x* and nN inputs
uk.
- The discrete system equation is expressed by nN equality constraints.
- Start and end conditions result in 3n + m equality constraints.
- The states and inputs are bounded by 4nN inequality constraints.
- The end time ¢4 is fixed.
For an efficient numerical solution, a feasible initial guess is beneficial. Addition-
ally, a feasible initial guess may be applied to the system in case the optimization
fails. This section recapitulates briefly the initialization and optimization routine.

Furthermore, the specific structure for interfacing the problem with the solver is
shown.

6.3.1 Initialization

A feasible initial guess is given by a heuristically planned end effector trajectory
(Baur 2015; Schiitz et al. 2015) which is mapped to configuration space using the
inverse kinematics algorithm described in section 4.1.2. While the workspace
path is calculated within some milliseconds in advance, the inverse kinematics
algorithm is computed online. Thus, the scheme can be summarized as follows:

1. Initialization

(a) Planning of feasible task space trajectory by a heuristic planner.

(b) (Real time) solution of inverse kinematics by the automatic supervi-
sory control approach.

2. Optimization (optional)
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Figure 6.3: Sparse Matrix structure of constraints’ Jacobian a%—ix) with N =6, n =9,
m = 6. In blue, the entries of the trapezoidal rule are shown while workspace con-
straints are marked in green.

(a) Discretization of the OCP to a static problem.
(b) Numerical solution of the problem.

3. Application of the computed trajectory.

6.3.2 Solver

In this work the algorithm IPOPT is used to solve the static optimization prob-
lem. IPOPT is an implementation of an interior-point algorithm with a filter line
search method for large nonlinear programming problems (W&chter and Biegler
2006). The linear solver is implemented by the routine MA27. First-order deriva-
tives of the cost function and of the equality constraints are calculated analyti-
cally. The limited memory quasi-newton BFGS? routine approximates the Hes-
sian of the problem. The Jacobian matrix of the equality constraints has a sparse
matrix structure, which is depicted in fig. 6.3. States x and inputs u are concate-
nated in the optimization vector xopt.

Xopt = 4040 --- 90 q7 - qn 40 --- 40 43 ... 4N

6.11
Xopt c RZn(N-f—l)' ( )

6.4 Evaluation

The proposed optimization scheme is evaluated in a realistic test scenario re-
garding success rate, benefit and computational time. Two different initialization
methods (heuristic and straight-line task space path) are investigated.

2 Broyden—Fletcher-Goldfarb-Shanno algorithm for an approximation of Newton’s method.
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Figure 6.4: Evaluation setup with 79 sweet peppers (fruit size is downscaled in this fig-
ure), position data from real plant data measured by Wageningen Greenhouse & Hor-
ticulture.

6.4.1 Test Setup

The proposed trajectory optimization scheme is tested using fruit positions of 79
sweet peppers. The fruit positions are measured in a greenhouse by Wagenin-
gen Greenhouse and Horticulture relative to their main stem position. Details
about growing system and fruit distribution around the stem are presented by
Bac (2015) and Baur (2015). Stems can be approximated by vertical cylinders
which are surrounded radially by fruit. The robot system in a greenhouse and its
abstracted simulation environment are pictured in fig. 6.1. In the test setup, all
fruit positions are projected to one representative stem position (cf. fig. 6.4). The
set of parameters is summarized in table 6.1.

6.4.2 Typical Result

The performance, the general idea and the benefit of the proposed method can
be illustrated by examining a typical result of the proposed optimization. The
chosen harvesting scenario is depicted in fig. 6.5: The stem obstructs the direct
straight-line path between start position (fig. 6.5-1) of the end effector and the
fruit (fig. 6.5-6). Thus, a movement along this line path would cause a collision
of the manipulator with the stem. The heuristic task space planning approach
circumvents the stem and provides a collision free initial guess. The resulting
end effector path is drawn in red and the manipulator is transparent (fig. 6.5).
By comparison to the optimized solution (green path, blue/solid manipulator),
start and goal of both end effector paths are the same due to the constraints on
the initial configuration g, and the goal pose w,. The path itself, however, is
different. The optimized solution provides a more beneficial movement of the
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Parameter Symbol Value
Maximum number of iterations - 1000
Trajectory end time tend 10s
Discretization step size At 100 ms
Number of discretization steps N 100
Degrees-of-freedom n 9
Dimension of task space m 6
Weight dynamic cost, initial value Cdyn,0 0.5
Weight dynamic cost, maximum value {gyn N 1.0
Weight collision cost Ceoll 10.0
Maximum collision cost Leoll max 5
Activation distance d, Self-collisions: 0.05m
Collisions with the environment: 0.07 m

Stem position Xstem 0.241m
ystem 0.81m

Stem radius T'stem 0.015m
Number of fruit - 79

Table 6.1: Set of parameters used for evaluation of the proposed approach.

joints regarding dynamic costs while avoiding collisions®. The initial guess solu-
tion is constrained by the task space trajectory, which is far from being optimal
regarding joint velocities. In fig. 6.7 dynamic costs are plotted over time: Veloci-
ties can be significantly reduced compared to the initial trajectory. Although the
end effector path length is increased (cf. fig. 6.5), velocity peaks are evened out by
choosing more favorable robot configurations. In this scenario, optimization took
76 iterations (time: 3.84 s*) and reduced the dynamic costs by 22.0% relative to the
initial guess. By comparison to the initialization by the feasible initial guess, op-
timization based on the straight-line task space path converged as well, but took
177 iterations (time: 7.57's). A statistical evaluation of all tested fruit positions is
given in section 6.4.3.

The optimized trajectory is applied to the CROPS manipulator: The computed
trajectory with the discretization increment of At = 100 ms is sent to the real time
control unit and up-sampled to Atypanipulator = 5 MS using spline interpolation. In
tig. 6.6 the manipulator is depicted executing the optimized trajectory.

6.4.3 Statistics

A statistical evaluation of the proposed optimization scheme with a sufficient
number of trials allows quantification of the expectable results. In the following,
the median value of the results is preferred for evaluation instead of the average.

3By contrast to the dynamic costs, weights for collision avoidance are chosen to be higher (cf. ta-
ble 6.1).
4Desktop computer, Intel i3-2100@3.1 GHz, single-threaded.
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Figure 6.5: Typical result of optimized trajectory. Previously published in Schiitz et al.
(2015).

— Initial Guess
—— Optimized Solution

(q7q)"

Time [s]

Figure 6.7: Dynamic costs over time of the initial guess (gray) and the optimized tra-
jectory (blue) for the scenario shown in fig. 6.5.
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Parameter Value
Optimization convergence rate 94%
Remaining dynamic costs after

optimization median (average) 36% (29%)
Iterations median (average) Heuristic path init.: 60 (71.3)

Straight-line path init.: 81 (92.2)

Computational time median (average) Heuristic path init.: 3.4 s (5.0s)
Straight-line path init.: 4.8 s (6.6 S)

Table 6.2: Detailed results of the evaluation

Its allocation base is the number of trials so it gives a better estimate for the ex-
pectable result. However, the average is also given in the boxplot figures. All
quantitative results are summarized in table 6.2.

The optimization converges in 94% of all runs. A failure occurs in case a col-
lision occurs for the optimized solution or the optimization does not converge
within the maximum number of iterations. Experiments showed that the feasi-
bility of the initial guess has only a negligible influence on the overall success
rate. Both, the straight line as well as the heuristic task space path, yield com-
parable success rates. Assuming that the resulting trajectory has to be collision
free, dynamic costs are taken into account for evaluating the actual benefit of the
trajectory optimization. Considering the median of the resulting costs, a reduc-
tion down to 36% of the initial costs (heuristic path initialization), corresponding
to 29% on average is achieved (cf. fig. 6.8). For an evaluation of the computa-
tional time and iterations®, the maximum number of iterations is not limited. Us-
ing the straight-line task space path initialization, the problem converges after
81 iterations (median). Using a collision-free feasible heuristic task space path,
only 60 iterations (median) are needed which corresponds to a reduction by 26%.
In accordance with the iterations, the median of time to convergence using the
straight-line approach is 4.78 s and for the heuristic path initialization 3.44 s (re-
duction by 28%). Average values and boxplots are given in fig. 6.9.

6.5 Discussion

In this chapter an offline trajectory optimization approach using a direct method
is presented. The optimal constrained problem is discretized w.r.t. time and
solved by a nonlinear programming solver. Desired behavior of the computed
trajectory can be expressed in terms of cost function as well as equality and in-
equality constraints. This formulation allows the use of a minimum number of

5Computational times measured on the same computer as in section 6.4.2, Intel i3-2100@3.1 GHz,
single-threaded.
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Figure 6.8: Comparision of dynamic costs l4,, of initial guess (gray) and optimized
solution (blue) with heuristic path as initial guess. The average value is denoted by ¢ and
the median as the vertical line in the box. Tukey Boxplot, Whiskers 1.5 Interquartile
Range.
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Figure 6.9: Computational effort for solving the optimization problem based on a
straight-line task space path (green) initialization and a collision free heuristic path
(blue). The average value is denoted by 4 and the median as the vertical line in the box.
Tukey Boxplot, Whiskers £1.5 Interquartile Range.

constraints to achieve the desired goal while providing maximum flexibility for
the trajectory optimization. In the following, results are discussed w.r.t. the in-
fluence of the initial guess, the design objectives presented in section 6.1, current
limitations of the approach and its relation to the indirect method presented in
chapter 5.

Influence of Initial Guess The initial guess is computed by a predefined task
space trajectory which is mapped to the robot joints by an inverse kinematics al-
gorithm. While the time parametrization is fixed by a 5 order polynomial (Baur
2015), the geometric task space path is planned from start to goal pose either
by using a simple linear interpolation ("straight line") or by a heuristic path cir-
cumventing the stem. While the heuristic approach provides a collision free end
effector path, the line path in most cases does not. For the presented test case,
the feasibility in terms of collisions has a negligible impact on the success rate of
the numerical optimization. However, the solver converges with a smaller num-
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ber of iterations, i.e. using less computational time, where a feasible trajectory is
provided.

Failure Detection and Strategy In 6% of the harvesting cycles, a collision is not
avoided in the final solution and the optimized trajectory is discarded. Collision
avoidance is implemented as a soft constraint using a penalty term in the cost
function and is therefore not rigidly enforced. Another problem is caused by the
fixed time discretization and time dependency of the collision cost function. In
some configurations, fast or very close passing or even penetration of the obstacle
is observed. This behavior is enabled by the small dimensions of the thin stem
of the plant in this scenario. An interesting strategy is presented by Zucker et al.
(2013) for coping with this problem: The cost function is integrated along the arc
length of the path, not w.r.t. time. This makes the collision penalty invariant with
time and prevents this behavior.

Application and Calculation Time While the method proposed in chapter 5 is
also suitable for a real time optimization, the method presented in this section
is evaluated in an offline scheme. By contrast to a real time application, it can
be applied as follows to the harvesting sweet pepper scenario: Assuming the
scene is registered by some vision system and fruit/stem positions are known,
the manipulator can start harvesting the first fruit instantaneously by applying
the heuristic task space trajectory and the real time inverse kinematics algorithm.
Each harvesting cycle is expected to take 5-10s. While executing the first trajec-
tory, the manipulator can already start the optimization of the picking of the next
fruit. In case the optimization fails and the initial guess provides a feasible task
space trajectory, the latter can be used as a fall-back solution.

Current Limitations The presented experiments are conducted with a fixed end
time. For real world application, this approach has to be extended to another
problem formulation with a free end time or a suitable post-processing strategy.
Since velocities are considerably lowered by the proposed optimization and a
smooth trajectory is calculated, execution times can be lowered as well. This can
be done by scaling the time interval iteratively until joint velocity and acceleration
limits are met.

Comparison to Indirect Methods Both the approaches developed in chapter 5
(indirect method) and in this chapter (direct method) aim at the optimization of
a robot’s trajectory. Both minimize joint velocities, penalty terms, etc. while re-
specting task space constraints. However, they are based on different problem
formulations: The predictive IK algorithm optimizes the nullspace motion of a
redundant manipulator, i.e. its task space trajectory remains fixed. By contrast,
the problem formulation presented in this chapter only considers the task space
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goal pose, while the joint space and the task space trajectory can be freely chosen.
Furthermore, the indirect approach considers e.g. kinematic limits by penalty
functions, i.e. as soft constraints. The approach of this chapter is able to include
joint limits as hard constraints via box constraints. Unlike the method of chap-
ter 5, the direct method in this chapter takes advantage of off-the-shelf optimiza-
tion algorithms. This facilitates enormously the implementation by the user, e.g.
new constraints can be integrated more easily.

Summary The trajectory optimization approach presented in this chapter al-
lows a significant reduction of joint velocities by alleviating the restrictive task
space trajectory constraints while taking into account only a minimum set of con-
ditions. Evaluation of a large number of realistic harvesting scenarios proved that
the method takes a reasonable amount of time and can be performed during the
short idle states of robot systems.



Chapter 7

Conclusion

By contrast to traditional industrial production, modern robots have to cope with
changing tasks in dynamic environments. Trends towards flexible production
in industry and service oriented robotics make new demands on robots” design
and planning capabilities. Providing a maximum of flexibility, modern robots are
equipped with more degrees of freedom than necessary for most of their usual
tasks. Resolving this redundancy in an optimal way while preserving the online
planning capabilities is one of the key challenges in modern motion planning.
In the following, contributions and main achievements of the thesis are summa-
rized and discussed. Furthermore, an outlook and recommendations are given
for possible future research.

7.1 Summary

This thesis presented novel motion planning approaches for redundant manipu-
lators in the context of an agricultural robot system. Driven by the requirements
of the respective application, e.g. the autonomous harvesting of sweet peppers,
planning and optimization algorithms for a flexible, redundant robot were pre-
sented and evaluated.

To this day, many robot system were developed in order to automate agri-
cultural applications. However, selective harvesting tasks of single, high quality
crops are still performed by human workers. The harvesting period is short and
the utilization rates of specialized robot systems are expected to be low. Thus,
the objective of the European research project CROPS was the development of a
multi-purpose agricultural robot system which is able to harvest sweet peppers,
apples, grapes or to spray precisely diseased regions of fruit. In order to provide
sufficient flexibility for the manifold scenarios, a modular manipulator with up
to nine degrees of freedom was developed at the Institute of Applied Mechan-
ics. Based on the doctoral theses of Baur (2015) and Pfaff (2015), new abilities and
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methods were added to this manipulator: For situations in which an autonomous
operation fails, a concept for teleoperation by a haptic joystick was developed.
This enables the user to control the manipulator’s end effector in real time while
receiving haptic feedback from the arm. Furthermore, another concept for tactile
perception, apart from the tactile sensor of Pfaff (2015), was developed: Without
additional sensors, external forces can be estimated using only information from
motor currents, the torsion in the joints and the dynamic model of the arm. By
comparison to the high quality output of the tactile sensor module, which can be
used closed loop, the torque estimator yields a poorer signal quality, but can still
be used for collision detection with the environment.

By contrast to classical industrial settings, positions of fruit and obstacles dif-
fer in agricultural scenarios from scene to scene. Thus, paths and trajectories have
to be re-planned for every target. The basic strategy, as described by Baur (2015),
is to determine first a suitable task space trajectory, i.e. a trajectory for the ma-
nipulator’s end effector. In a second step, the inverse kinematics are calculated in
real time in an instantaneous scheme while solving redundancy by a gradient de-
scent of the next timestep. This thesis recapitulates this method and presents an
additional important secondary objective, the comfort pose. Furthermore, it en-
counters two important drawbacks of these approaches: First, the former motion
planning approach relies on obstacle data from external vision sensors. In clut-
tered environments such as greenhouses, obstacles may be occluded by leaves
which may cause unforeseen collisions. In this thesis tactile feedback was inte-
grated into the planning approach. Using the sensor information of a tactile cover,
contact forces between manipulator arm and environment are reduced by evasive
movements of the arm. Different control approaches are presented that enable a
controlled reaction while differentiating between nullspace and task space reac-
tions. Second, the instantaneous method only uses information of one subsequent
timestep for the optimization-based redundancy resolution. However, informa-
tion about future events such as kinematic limits or self-collisions are available.
Thus, this thesis develops a novel approach for optimizing the nullspace move-
ment over a certain time window, named as predictive inverse kinematics. This
approach relies on a numerically efficient method which even enables a real time
implementation of the optimization scheme. The problem itself is solved by the
conjugate gradent method. Due to the developed system formulation, even sub-
optimal trajectories that result from a preliminary abortion of the iterations may
be applied. Besides, several aspects of the numerical optimization were inves-
tigated. This includes approaches for calculating the conjugate gradent in com-
bination with different line search methods. An evaluation of a four-DOF pen-
dulum showed that a combination of the Fletcher/Reeves conjugate gradent and
the adaptive line search method yielded the best results. Additionally, an offline
optimization approach for the joint trajectories was evaluated using realistic har-
vesting scenarios based on real data from greenhouses. The problem definition
goes without the separation between task and joint spaces and relies only on a
minimal set of constraints. The average success rates of 94% , an expectable re-
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duction of dynamic costs of 36% and computational times in the range of a few
seconds promote the use of the proposed method for real world scenarios.

7.2 Discussion and Future Directions

Motivated by the application of a nine-DOF agricultural manipulator, this thesis
developed several motion planning approaches for dealing with cluttered envi-
ronments and an optimal redundancy resolution. In this section, I will discuss the
main contributions as introduced in section 1.1 and also give an outlook on future
research directions. Furthermore, I will emphasize the importance of the devel-
oped approaches in the context of a future scenario regarding the application of
autonomous manipulator in agriculture.

7.2.1 Submodules

Modeling Precise dynamic models enable a high quality estimation of quan-
tities of a manipulator that are not directly measurable. While the concept of
proprioceptive torque estimation yielded promising results, its performance was
directly correlated to the accuracy of the dynamics model. Influences such as
varying temperatures, fabrication and actuator tolerances made a reliable and ac-
curate parameter identification difficult. Hence, I assume that the quality of the
dynamics model could only be slightly improved by a more extensive parameter
identification. I therefore doubt that the model accuracy and performance can
be sufficient for the implementation of tactile feedback approaches based on a
proprioceptive torque estimation at the CROPS manipulator. However, the esti-
mated torques are still applicable for emergency functions, such as collision de-
tection.

Teleoperation Interface The implementation of a teleoperation concept is a valu-
able extension for the CROPS manipulator system. Several public demonstra-
tions showed that the teleoperation interface enables even non-expert users to
pick fruit in a laboratory scenario. Another benefit is the usage of the system
for investigation related to future space robotics research topics. E.g. the influ-
ence of time delays on user experience and robust control of the manipulator
can be evaluated. Further investigations can include the development of user
displays for controlling the manipulator remotely or the development of semi-
autonomous planning and control approaches for dealing with long delays. A
further valuable extension of the system is the integration of a 6D instead of the
current 3D joystick. This enables the user to command end effector orientations
as well. Furthermore, an adaption of the inverse kinematics algorithm that al-
lows an arbitrary definition of the manipulator task space would enhance the
user experience and prospects.
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Planning based on Tactile Feedback The performance of the planning approaches
based on tactile feedback in experiments heavily depends on the sensor signal
quality of the tactile cover. In more dynamic scenarios or facing very stiff obsta-
cles, the robot occasionally shows unintuitive or even unstable reactions. One
obvious solution is to improve the signal quality of the tactile sensor, i.e. to min-
imize delays, isolate dynamic forces of the cover and improve the accuracy of
the resulting force vector direction. However, I expect further improvements to
be limited while keeping the efforts on a reasonable level. Therefore, additional
security functions and saturations could be implemented in order to assure a fail-
safe human-robot interaction. While the presented planning framework does not
limit significantly the capabilities of the manipulator, further work could inves-
tigate the transition from nullspace to task space reaction in more detail. Addi-
tionally, the robustness of the feedback linearization control approaches could be
improved in order to enable a smooth human-robot interaction.

Predictive Inverse Kinematics Aspects of the predictive inverse kinematics al-
gorithm such as system formulation and numerical optimization method were
extensively examined in this thesis. Although a prototype implementation was
done for the CROPS manipulator, one major future challenge is the robust imple-
mentation for real systems. A more efficient implementation could yield higher
optimization horizons or more iterations per planning step. Especially, a larger
horizon would be beneficial. Furthermore, the current collision avoidance ap-
proach seems to be not well suited for the optimization scheme. Due to the non-
convexity of the problem, the optimization routine occasionally converges to local
minima. More convex problem formulations could help to resolve this issue. Ac-
cording to my opinion, a promising and robust approach would be the use of the
predictive optimization only for kinematic limits and joint velocities. Collision
avoidance could be integrated in a subsequent step in a standard instantaneous
scheme.

Offline Trajectory Optimization The offline trajectory optimization allows the
user to integrate arbitrary constraints and objectives. One drawback of the pre-
sented problem formulation regarding collision avoidance is the time parametriza-
tion of the trajectory. Since collision avoidance is formulated as a soft constraint
and evaluated at fixed time increments, an optimal trajectory could "miss" an ob-
stacle or pass it very fast. Three approaches may encounter this problem. First,
obstacle geometries could be adapted. Introducing a hierarchical scheme, an
outer, more "inflated" volume could help to avoid local minima. A second, in-
ner volume as a more exact geometry representation may help derive a more
exact solution. Second, collision avoidance may be inserted as a hard inequality
constraint in the formulation of the optimization problem. A third option could
be a transition from a time-based to an arc-length based parametrization of the
trajectory as proposed by Zucker et al. (2013). Another limitation of the system
formulation is the fixed end-time and time parametrization. Thus, the end-time
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of current trajectories has to be specified by the user in advance. One approach
to add more flexibility is to either scale the trajectory afterwards, according to
velocity and acceleration limits of the manipulator, or to insert the time directly
into g in the problem formulation.

7.2.2 Application of Autonomous Manipulators for Agriculture

Lessons Learned in the CROPS Project In 2014, the CROPS agricultural robot
was the first autonomous system to harvest sweet peppers in a greenhouse. How-
ever, two years later there is still no commercial system available on the market,
neither for selective harvesting of sweet peppers nor for apples. Major draw-
backs of the CROPS harvesting system were the long cycle times and low overall
success rates. According to my opinion, both drawbacks could be improved sig-
nificantly by a better integration of the single system components. Due to a lack
of time and resources, this was not feasible within the CROPS project. Under the
assumption that prices for flexible manipulators do not drop significantly in the
next years, the multipurpose approach of the CROPS project may also be a knock-
out criterion for commercialization. A wide variety of applications requires a
flexible design of the manipulator with many joints. Customized kinematics, op-
timally chosen for one specific application, may reduce the system complexity
and costs. Especially regarding the conservative farmers” community, this could
increase the acceptance of autonomous systems. Additionally, growing condi-
tions of greenhouses or orchards should be developed side-by-side with the robot
system. Concepts known as vertical farming are promising approaches that may
also be applied to high value crops such as peppers. Furthermore, a robust major
motion planning strategy including a degradation concept is needed for a suc-
cessful commercial implementation that copes with the elevated requirements of
agricultural scenarios.

Context of the Thesis in a Future Scenario The approaches and algorithms de-
veloped in this thesis can be regarded as necessary and useful tools for an en-
hanced robust motion planning strategy. In the following, I will outline one
promising scenario for the autonomous operation of robot manipulators in agri-
culture.

Both in greenhouses and orchards basic geometries of the environment are
known. This may include the position and height of plants, the width of corri-
dors, the area where fruit can be expected or fixed surroundings such as wires
or other constructions. This static information has to be extended by real time
visual information of cameras or other vision sensors. Based on this information,
an optimized trajectory for the manipulator is determined by the application of
direct methods as proposed in chapter 6. From this trajectory, a rough task space
trajectory that leads the end effector to the fruit can be derived. However, this tra-
jectory may still involve collisions, since the path is obstructed by soft obstacles
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such as leaves. The task space trajectory is given to the real time inverse kine-
matics planner including the extension for tactile planning (chapter 4) and the
predictive optimization (chapter 5). Both modules are based on the ASC system
formulation and can therefore be sequentially combined. The predictive IK op-
timization keeps the manipulator away from kinematic limits and joint velocity
peaks. At the same time, the tactile planning module reduces contact forces with
the environment in an adaptive prioritized scheme. Thus, the intended task space
trajectory can be followed as precisely as possible. During operation, an observer
monitors the current "health" status of the arm. Based on an accurate dynamics
model (chapter 3), this observer recognizes previously undetected collisions with
the environment or hardware defects. In case of hazards or dead ends regarding
the motion planning module, the manipulator can be remotely recovered by the
teleoperation interface.

In summary, the contributions developed in this thesis have a great potential
to advance the autonomous operation of robots in difficult environments such as
agriculture. In combination with appropriately adapted cultivation methods and
a successful integration of all system components, advanced agricultural tasks
such as the selective harvesting of high quality fruit could be automated in the
near future.



Appendix A

Manipulator Parameters

A.1 Kinematics

Frame i irpi [m] @ B 7] T [rad]

1 [0.115 —0.017 0.79]" 0 o o

2 [—0.115 048 0] [0 o m2"

3 0 o -02]" [v2 0 0]"

4 [035 0 0" [ o o

5 (035 0o o [r o o

6 [018 o o]" [~72 0 0]"

7 015 o o" 0 72 o

8 o o 01" [0 —m2 0"

9 [0.065 0 0] 0 =2 o]

Table A.1: Kinematic parameters of the CROPS manipulator prototype 2.
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A.2 Dynamics

Body m; [kg] roci [m] I§Ci> [gm?’]

43334 176.102 141.988
—9.220 141988 549.512

; 619.584 43334 —9.220
1 15.203 [-0.113 0.188 0.104]

43.344 —-3.024 8.064
8.064 —0.298 43.344

2 6.443 [-0.043 —0.007 —0.151]" {3.024 68.544 —0.298

15195  —0.012 —15.195
3 5.083 (0255 0 —0.018]" —0.012 120.547  0.006
—-15195 0006  116.495
11.268 0376  —10.016
4 4.347 (0177 0 —0.036]" 0376 102664  0.136
—-10.016  0.136  102.664
. 3.894 0582 —1.298
5 2.288 [0.131 0.010 —0.008] —-0.582  14.278 —0.220
-1298 —0.220 14278
1244 0011 —0.717
6 1.379 [0.086 0 —0.017]" 0011 6220 0.017
—0.717 0017  6.220
1.069 0 0.355
7 0.460 [-0.039 0 0.047]" 0 1362 —0.001
0355 —0.001  0.659
. 2174  —0.004 0.085
8 1.293 [0.016 0 0.004] —-0.004 3261  —0.006
0085 —0.006 2.174
; 0132 0  0.001
9 0217 0 0 0.010] 0 0130 0
0001 0 0172

Table A.2: Dynamic parameters of the moving bodies of the CROPS manipulator pro-
totype 2.
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Modeling Data

B.1 Joint Stiffness

—— HD Gear Stiffness —— Measurement —— Linear Fitting

Joint 3 Joint 5

Applied Torque T; app [Nm]

-5 0 5

-1 0 1
Ags [rad] 194 Ay [rad] 104 Ags [rad] 103

Figure B.1: Comparison of measured stiffness (gray) from quasi-static experiment and
HARMONICDRIVE catalog data (green). Refer to section 3.2.3 for joint 2 and joint 6.
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B.2 Inverse Dynamics Model
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Figure B.2: Validation of the inverse dynamics model joint 2 and 3. Blue: Computed
torque inverse dynamics model Tiyt. Black: Motor torque Tyt Green: Desired joint
velocity 4. Gray area: Velocities close to zero. Dark-gray: Sticking friction band. Cf.
section 3.2.4.
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Figure B.3: Validation of the inverse dynamics model joint 4-6. Blue: Computed torque
inverse dynamics model Tjn;. Black: Motor torque Tinot. Green: Desired joint velocity 4.
Gray area: Velocities close to zero. Dark-gray: Sticking friction band. Cf. section 3.2.4.
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Figure B.4: Validation of the inverse dynamics model joint 7-9. Blue: Computed torque
inverse dynamics model Tjn;. Black: Motor torque Tinot. Green: Desired joint velocity 4.
Gray area: Velocities close to zero. Dark-gray: Sticking friction band. Cf. section 3.2.4.
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B.3 Torque Estimation
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Figure B.5: Results for joint 4 and 5 in addition to fig. 3.18. Reference torque Tic;
(black), estimated torque Teg ; (blue), desired joint velocity g, ; (green). Gray area: joint
velocities close to zero. Dark-gray area: corresponding sticking friction band.
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Figure B.6: Results for joint 7 and 8 in addition to fig. 3.18. Reference torque Tie;
(black), estimated torque Tes ; (blue), desired joint velocity g, ; (green). Gray area: joint
velocities close to zero. Dark-gray area: corresponding sticking friction band.
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