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Abstract

Type 2 Diabetes Mellitus (T2DM) is one of the most prevalent metabolic diseases
world wide with its clinical complications imposing major human and financial bur-
den on societies. The etiology of T2DM is rather complex, involving interactions
between various genetic and environmental factors. The underlying pathogenic
mechanisms are not fully understood. Until today, there is no cure for T2DM.
Functional studies aiming at the investigation of the disease’s underlying causes
are primarily done in animal models, in particular in mouse models. While the
clinical phenotypes of such models are usually well characterized, it is often not
known how well they actually mimic the disease’s physiology on the molecular level.
This gap of knowledge clearly complicates the replication of results among differ-
ent models as well as the transfer of findings from animal models to human set-
tings.

The objective of this thesis was to assess the comparability of findings in mouse mod-
els for diabetes research on the basis of results from large scale screening methods
(›omics‹). To this end, I address the within-species comparison of gene-expression
changes in liver in response to Non-Alcoholic Fatty-Liver Disease (NAFLD) – a con-
dition often found in people with T2DM – within four different mouse models of diet
induced NAFLD in the first part of my thesis. Using whole genome mRNA profil-
ing in 72 murine liver samples, the changes of 22,030 genes across the four models
were compared. Although heterogenous genetically, the models display consider-
able overlap among their genetic responses to the NAFLD phenotypes. I discuss
how such universal adaptions to NAFLD progression in all four models might be
relevant for the disease progression in human. In the second part of my work, I
investigated the cross-species translatability of metabolic changes as observed in
the genetic db/db mouse model of obesity linked T2DM to humans. To this end,
targeted and untargeted metabolomics were applied to 666 human serum and 40
murine plasma samples, measuring 319 metabolites that are present in the blood
of both species. Comparing the metabolic changes linked to T2DM in humans with
those observed in the db/db mouse model, we found consistent changes both in the
carbohydrate and the amino acid metabolism. In contrast, the changes of lipids
were mainly uncorrelated. Potential reasons for these similarities and dissimilarities
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are discussed in the context of the db/db mouse model, providing the basis for a
reliable transfer of metabolomics data from the db/db mouse model to the human
system.

Both studies demonstrate the value of system-wide characterizations of animal mod-
els on the molecular level employing omics technologies. In particular, using molecu-
lar traits, i.e. changes in gene-expression or metabolite levels in response to disease
phenotypes, instead of their clinical phenotypes alone, these models can be described
in much more detail. Taken together, the comparison of molecular alterations across
models or between models and humans provides valuable information about com-
mon and distinct molecular features. This is crucial for the interpretation of findings
from different studies that use the same models and, more importantly, for the trans-
fer of findings obtained in models to humans. Moreover, knowing which molecular
features of human diseases can be adequately mimicked by a model and which can
not is a potential reference point both for the systematic improvement of current
models, and for the design of new and maybe better ones.



Zusammenfassung

Als eine der häufigsten metabolischen Erkrankungen weltweit stellt Typ 2 Diabetes
Mellitus (T2DM) mit seinen klinischen Komplikationen eine immensen sozialen und
finanziellen Belastung für die heutige Gesellschaft dar. Die Etiologie von T2DM

ist komplex und umfasst das Zusammenspiel zahlreicher genetischer und Umwelt-
faktoren. Die der Erkrankung zu Grunde liegende Mechanismen sind nach wie vor
nicht vollständig verstanden und bis heute gibt es kein Heilmittel für T2DM.

Funktionale Studien mit dem Ziel, die Krankheit und ihre Ursachen zu erforschen
werden hauptsächlich in Tiermodellen, primär in Mausmodellen, unternommen.
Während die klinischen Phänotypen dieser Modelle in der Regel sehr gut beschrieben
sind, herrscht häufig Unklarheit darüber, wie gut diese Modelle die Krankheit-
sphysiologie auf molekularer Ebene widerspiegeln. Diese Wissenslücke erschwert die
Einordnung der in solchen Modellen erworbenden Erkenntnisse und lässt verläss-
liche Aussagen über die Bedeutung der Ergebnisse für den Menschen häufig nicht
zu.

Ziel dieser Dissertation war es die Vergleichbarkeit und Übertragbarkeit von wis-
senschaftlichen Ergebnissen aus Mausmodellen in der Diabetesforschung anhand
von Messdaten aus Hochdurchsatzmethoden (›omics‹) auf molekularer Ebene zu
untersuchen. Dazu betrachte ich im ersten Teil meiner Arbeit Änderungen der Gen-
expression in der Leber als Antwort auf das Krankheitsbild der Nicht-alkoholische
Fettleber (NAFLD) – einer häufigen Komplikation in Menschen mit T2DM – in vier
verschiedenen Maumodellen. Anhand genomweiter mRNA Expressionsdaten aus 72
Lebergewebeproben konnten Änderungen in der Expression von 22,030 Genen zwis-
chen allen vier Mausmodellen verglichen werden. Trotz ihrer genetischen Unter-
schiede zeigen alle vier Mausmodellen ähnliche Genexpressionsmuster als Antwort
auf den NAFLD Phänotypen.

Im zweiten Teil meiner Arbeit untersuche ich die Veränderungen im Blutmetabol-
ismus in Menschen mit T2DM und Tieren des db/db Mausmodells mit dem Ziel, die
Übertragbarkeit von Ergebnissen aus dem Modell in den Menschen zu analysieren.
Hierfür wurden Metabolomics Messungen in 666 menschlichen Serumproben und
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40 murinen Plasmaproben unternommen, wodurch 319 Metaboliten identifiziert
werden konnten die im Blut beider Spezies zu finden sind. Der Vergleich der re-
lativen Änderungen der Metabolitenkonzentrationen zwischen Menschen mit T2DM

und Tieren des db/db Mausmodells offenbart ähnliche Muster in Kohlenhydrat und
Aminosäurestoffwechsel, und größere Differenzen im Lipidstoffwechsel. Erkenntnisse
über die stoffwechselspezifischen Ähnlichkeiten und Unterschiede zwischen Modell
und Mensch schaffen eine Basis für einen verlässlicheren Ergebnistransfer von Meta-
bolomics Messungen.

Beide Studien verdeutlichen das Potential systemweiter Charakterisierungen der
Krankheitsphysiologie von Tiermodellen auf molekularer Ebene, in diesem Fall mit
Hilfe von omics Messmethoden. Molekularer Merkmale wie zum Beispiel spezifische
Änderungen der Genexpression oder relative Änderungen von Metabolitenkonzen-
trationen beschreiben Modelle deutlich detaillierter als ihre phänotypischen Merk-
male. Der Vergleich solcher Mermale zwischen Modellen oder zwischen Modell und
Mensch liefern wertvolle Hinweise über modell- oder spezies-spezifische Gemein-
samkeiten und Unterschiede in der Krankheitsphysiologie. Erkenntnisse darüber,
welche Aspekte der Krankheitsphysiologie tatsächlich von einem Modell simuliert
werden und welche nicht, ermöglichen neben einer verlässlichen Interpretation von
Ergebnissen die gezielte Verbesserung existierender und die Schaffung neuer Tier-
modelle.
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Chapter 1

Introduction

Diabetes (from the Greek verb ›diabaínein‹, meaning ›to pass through‹) is as old
as written history. The first records about it date back to 1500 BC, when ancient
Egyptian physicians described conditions of excessive thirst, continuous urination
and heavy weight loss. In 1675, English physician Thomas Willis wrote in ›Pharma-
ceutice Rationalis‹ about a case study of a man who, within twenty four hours, has
voided almost a gallon and a half of limpid, clear, and wonderful sweet water, that
has tasted as if it had been mixed with honey [1]. In his description, Willis coined
the term ›mellitus‹ (Latin: ›honey sweet‹), and subsequently the term ›diabetes
mellitus‹ was used to differentiate the disease from unrelated conditions with sim-
ilar symptoms such as diabetes insipidus (from the Latin noun ›insidipus‹, meaning
›without taste‹).

Diabetes mellitus (abbreviated ›diabetes‹ in the following) summarizes a group of
chronic metabolic disorders that are characterized by high blood glucose (›hyper-
glycemia‹), which is, according to the latest report of the World Health Organiza-
tion (WHO) and the International Diabetes Foundation (IDF) consultation in 2006,
defined as fasting glucose levels in blood or plasma ≥ 7 mmol l−1 [2]. Based on the
underlying etiology and the clinical stages reflecting the various degrees of hypergly-
cemia, different types of diabetes are distinguished. The two most common forms of
diabetes are Type 1 Diabetes Mellitus (T1DM) and T2DM. While T1DM is an autoim-
mune disease where the body’s immune system attacks and destroys the pancreatic
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beta cells, resulting in a lack of insulin (›absolute insulin deficiency‹), T2DM is caused
by a combination of factors including deficient insulin secretion (›relative insulin de-
ficiency‹ or ›insulin insufficiency‹) and impaired insulin action (›insulin resistance‹).
In addition to these two main types, there are some less common forms of diabetes.
Gestational diabetes, for instance, is a transient form of diabetes with similar symp-
toms like those of T2DM, emerging during pregnancy and in most cases disappearing
shortly after delivery [3].

Although they are essential for the assessment and diagnosis of the disease, such
classifications may conceal known and unknown varieties of the disease. Hence,
it is important to note that diabetes comes in diverse forms with sometimes very
different underlying causes [3].

1.1 Diabetes: an epidemic of the 21st
century

In its status report on noncommunicable diseases from 2014 [4], the WHO estimated
the global prevalence of diabetes among adults (> 18 years) to 9%. At the same
time, the IDF came to a similar conclusion stating that worldwide, approximately
387 million adults between 20 and 79 years lived with diabetes, corresponding to a
prevalence of 8.3% in this age group (Figure 1.1) [3]. More importantly these these
numbers are expected to continue growing. From the 1980s until today, the global
prevalence of diabetes in adults almost doubled [5]. Assuming a similar development
for the next years, the IDF projects the number of diabetes to increase by 55% until
2035, rising beyond 592 million people affected worldwide. Note that these numbers
include an estimate of 46.3% undiagnosed diabetes cases [3].

Although diabetes has traditionally been viewed as a disease of the rich countries,
the current estimates suggest that with 77%, the greater part of people suffering
from diabetes lives in low- to middle-income countries [3].
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Figure 1.1 – Worldwide diabetes prevalence; status as of 2014. Adopted from the IDF
Diabetes Atlas 6th edition (2014 update) [3].

Diabetes imposes a major human burden on societies. In 2014, approximately 4.9
million people died from the consequences of various macro- or micro-vascular com-
plications of diabetes [3]. Diabetics have a two to four times higher risk for coronary
artery disease than the rest of the population, making cardiovascular diseases the
main causes of death (75-80%) in these people [6]. Other disabling and sometimes
life-threatening complications that accompany diabetes include microvascular de-
fects such as retinopathy (eye disease), nephropathy (kidney disease), and neuro-
pathy (nerve damage) [7, 8].

Apart from the obvious human burden, diabetes imposes also significant costs on
public budgets. Given the increasing diabetes rates worldwide, the spendings for
medical treatment will further rise in the next years. In 2014, the global annual
costs for direct medical spendings and reduced productivity were estimated to reach
almost 612 billion US dollars. Note that from this sum, as much as 144.3 billion US
dollars were allocated to Europe [3].

Today, the WHO estimates that worldwide, approximately 90-95% of people suffering
from diabetes have T2DM [9].
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1.2 Etiology and pathogenesis of
T2DM

Hyperglycemia resulting from impaired insulin-mediated regulation of glucose homeo-
stasis is the ultimate and most striking manifestation of T2DM – and maybe the
easiest one to measure [10]. Insulin is a hormone which is produced in pancreatic
β-cells. Together with its counterpart hormone glucagon, insulin regulates glucose
homeostasis (Figure 1.2). Glucose that circulates for instance in response to a car-
bohydrate containing diet is the main stimulus for insulin release from the pancreas.
Insulin promotes glucose uptake from the blood into the body’s cells, where it is
stored or converted to energy. In addition to this feedback loop between insulin and
glucagon, glucose homeostasis is likely to be influenced by other hormons such as
the very recently discovered glucogenic hormone asprosin [11].

The clinical appearance of T2DM is diffuse and ranges from predominant insulin
resistance with relative insulin insufficiency to severe defects of insulin secretion
with or without missing insulin action [12]. However, when T2DM is diagnosed for
the first time, almost always both relative insulin insufficiency and insulin resistance
are present. The underlying etiology that causes the defects in insulin action and
insulin secretion is complex and not fully understood. Since the rates of T2DM

increased very fast in the last decades worldwide, it is unlikely that changes in the
gene pool alone are responsible for the explosion of T2DM prevalence. Instead, it is
generally believed that the interplay between genetic, epigenetic, and environmental
factors are responsible for the onset of T2DM.

T2DM pathogenesis is a slow and silent process. Many people live for years with
intermediate states of hyperglycemia, which are characterized by Impaired Fasting
Glucose (IFG) or Impaired Glucose Tolerance (IGT). In IFG, fasting blood glucose is
higher than normal (≥ 6.1 mmol l−1) but not high enough to be diagnosed as diabetes
(< 7 mmol l−1) [2]. Similarly, in IGT, blood glucose 2 h after a 75 g glucose drink, for
instance as part of an Oral Glucose Tolerance Test (OGTT) [13], is higher than normal
(≥ 7.8 mmol l−1) but below the diagnostic cut-off for diabetes (< 11.1 mmol l−1) [2].
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This early stage of T2DM, which is often referred to as ›prediabetes‹, usually comes
without symptoms.

Figure 1.2 – Glucose homeostasis. Glucose homeostasis is mainly regulated by insulin and
glucagon, two hormones that are released from the pancreas. Figure adapted from [3].

The cause for IFG and IGT in prediabetes are mainly defects in the response to
insulin action. In prediabetes, waning insulin action is balanced by an increased
insulin secretion of pancreatic β-cells, which thereby maintain glucose homeostasis.
Only when insulin resistance becomes more pronounced and increased insulin secre-
tion is not longer able to compensate for missing insulin action the concentrations
of circulating glucose start to rise and hyperglycemia emerges. In the past it was
thought that insulin resistance is the primary dysfunction in T2DM. Today, how-
ever, it is believed that T2DM pathogenesis is mainly driven by the perturbation of
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the feedback loop between insulin-secreting pancreatic β-cells and insulin sensitive
tissues (Figure 1.2) [14].

1.2.1 Environmental and non-genetic risk
factors

Several studies have shown that obesity is the most important single predictor of
T2DM incidence [15–17]. In line with that, the rates of T2DM cases are highest
in countries where prospering wealth leads to an oversupply of food and people
indulge in a sedentary lifestyle. In 2014, approximately 1.9 billion adults were
overweight (BMI ≥ 25 kg m−2) worldwide, of which 600 million were obese (BMI ≥
30 kg m−2) [3]. In many countries, the prevalence for obesity raises in parallel with
the prevalence for T2DM (Table 1.1). Besides the total body weight, the way the
body stores fat seems to be crucial for the individual T2DM risk, as well. People who
store fat primarily in the abdomen seem to be at higher risk for T2DM than people
who store fat in their thighs or hips [18].

Physical inactivity is considered as an independent risk factor for T2DM, although
it is closely related to overweight and obesity. For instance, in a cross-sectional
study in adults without a history of diabetes, physical activity (≥ 2.5 h per week)
significantly reduced the risk for IFG, IGT, and T2DM in both sexes, irrespective of
the body weight [19].

The prevalence of T2DM increases with age. People older than 45 years have a signi-
ficantly higher risk of getting the disease than younger people, most likely because
they tend to exercise less, to loose muscle mass, and to gain body weight. Chen
et al. have suggested that increased T2DM risk in older people may be diet related
[20]. The authors have shown that the differences in glucose tolerance and relative
insulin resistance between old (65-82 years) and young (18-36 years) nonobese men
(body weight within 15% of desirable values according to the 1959 Metropolitan
Life Insurance Co. tables) disappear under a carbohydrate rich diet [20]. However,
we watch the onset of T2DM moving more and more down to young adults and
adolescents lately.
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Table 1.1 – Prevalence of T2DM and overweight or obesity in adults in selected countries
for the years 2010 and 2014

T2DM * (%) Overweight† (%)

Country 2010 2014 Change 2010 2014 Change

Australia 7.6 8.1 +0.5% 63.8 66.4 +2.6%
Brazil 7.0 7.6 +0.6% 50.4 54.2 +3.8%
Canada 8.3 9.1 +0.8% 65.6 67.7 +2.1%
China 8.1 10.1 +2.0% 30.5 35.4 +4.9%
France 7.9 8.6 +0.7% 62.0 64.1 +2.1%
Germany 8.3 9.0 +0.7% 57.6 59.7 +2.1%
India 7.8 8.5 +0.7% 18.9 21.4 +2.5%
Italy 8.8 9.5 +0.7% 61.9 64.0 +2.1%
Japan 10.6 11.2 +0.6% 25.3 26.5 +1.2%
Republic of Korea 8.4 9.4 +1.0% 31.1 35.5 +4.4%
Spain 9.3 9.9 +0.6% 62.9 65.6 +2.7%
United Kingdom 9.2 10.1 +0.9% 64.3 66.7 +2.4%
United States of America 9.4 10.5 +1.1% 67.7 69.6 +1.9%

*People with fasting glucose ≥ 7mmol l−1 or on medication for raised blood glucose or with a history
of diagnosis of diabetes; †BMI ≥ 25 kgm−2; Data according to the WHO [4].

Although glucose tolerance usually returns to normal after pregnancy, women with
a history of gestational diabetes were shown to have increased risk of developing
T2DM in the future [21].

It is estimated that 20-30% of the western population lives with a condition in
which fat is accumulating in the liver, commonly referred to as NAFLD or ›hep-
atosteatosis‹ [22]. NAFLD appears to be linked to T2DM and people with NAFLD

have increased risk to develop T2DM [22, 23]. The prevalence of NAFLD is particu-
larly high among the obese (57%) [24] or in people with T2DM irrespective of their
body weight (70%) [25]. Along with obesity and IFG, NAFLD constitutes a cluster of
diabetes risk factors which is commonly referred to as ›metabolic syndrome‹. Some-
times, NAFLD is referred to as an early (prediabetic) manifestation of T2DM in the
liver.
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Various nutritional factors such as a poor diet (i.e. unfavorable nutrient composi-
tions) have also been shown to increase T2DM risk. In particular, while diets con-
taining high proportions of saturated fats appear to promote insulin resistance and
T2DM, diets rich in nutrients with a low glycemic index (e.g. fibers, minimally pro-
cessed whole grain) seem to lower the risk for T2DM [26, 27].

It has been shown that certain chemicals which are present in consumer products
such as children’s toys, packing materials or detergents, but also food, interfere with
the endocrine system and are related to T2DM risk [28, 29]. For instance, several
studies have shown that the hormonal active chemical Bisphenol A (BPA), which
is one of the highest volume chemicals in the worldwide production of plastic, has
various effects that are linked to obesity and T2DM. In rats, low doses of BPA altered
adipogenesis, leading to a decreased number of adipocytes with in turn increased
cell volumes, resulting in a gain of body weight [28]. Data from other studies have
shown that BPA exposure during the prenatal period results in an increased body
weight in adulthood [29]. One potential mechanism which may explain the manifold
effects of BPA, especially during development, is that it permanently alters gene
transcription by decreasing DNA methylation [29].

Epigenetic factors (e.g. DeoxyriboNucleic Acid (DNA) methylation patterns influ-
encing gene expression), which are invidually achieved, are also suggested to affect
diabetes risk. For example, it has been shown that both the mother’s weight and her
history of gestational diabetes increase the diabetes risk of the offspring [30]. An-
other study done by Ziegler et al. has shown that women with gestational diabetes
who breast fed their children over a period of more than three months developed
T2DM on average ten years later than women who did not breast feed their chil-
dren [31]. Beyond that, recent findings suggest that everyone’s individual intestinal
microbiome is involved in the pathogenesis of T2DM [32].

1.2.2 Genetic risk factors

While the worldwide rising prevalence of T2DM can be explained by environmental
factors, there is clearly an important genetic component, which is reflected in vari-
ations in T2DM prevalence by ethnicity [6, 33] and high rates of T2DM in families
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[34]. Among identical twins, the co-occurrence of T2DM approaches 100%. Factors
such as the Body Mass Index (BMI) or the glucose clearance rate and insulin levels
as part of an OGTT appear to be highly inheritable [34]. Data from another study
involving non-diabetic relatives of people with T2DM suggest that the function of
the β-cells is passed down to the offspring [35].

The genetics of T2DM is polygenic, i.e. the result of combinations of multiple genetic
mutations. Population based studies identified multiple common genetic variants in
different genes, each having small individual effect on the risk for getting the dis-
ease. As of today, more than 65 such T2DM susceptibility loci have been revealed
by Genome Wide Association Studies (GWAS), which all together explain approx-
imately 6% of the disease’s variance [36–39]. Given this small number of explained
disease variance, it appears plausible that less common genetic variants with big-
ger individual effects on T2DM risk exist. However, data on such rare variants is
still sparse as they cannot be easily screened for by population based approaches.
And even if the risk loci are known, their functions have to be characterized and
in many cases it remains to be resolved how they contribute to the pathogenesis of
T2DM.

It is important to note that there exist rare monogenic varieties of diabetes with
manifestations similar to those of T2DM. In contrast to the genetics of T2DM, these
monogenetic forms of diabetes are characterized by relatively uncommon genetic
mutations with high penetrance. Among all known monogenic forms of diabetes,
Maturity-Onset Diabetes of the Young (MODY) is certainly the most common [40].
It is estimated that MODY accounts for 1-2% of all diabetes cases [41]. A population
study in Saxony involving 865 children and adolescents (< 15 years) with newly de-
tected diabetes showed that MODY accounted for 2.4% of these childhood diabetes
cases (T1DM: 96%; T2DM: 0.6%) [42]. It is important to note that MODY is not a
single entity but comprises at least 11 different subtypes (MODY 1-11). Here, each
subtype is characterized by a specific mutation in a single autosomal dominant gene
(40-90% penetrance), resulting in β-cell dysfunction [41]. First symptoms of MODY

generally emerge between 10 and 45 years of age. Because the clinical features of
MODY (e.g. mild to moderate hyperglycemia, sometimes insulin resistance, elev-
ated blood sugar in combination with permanent thirst and urination) overlap with
those of T1DM and T2DM, approximately 80% of MODY cases are misdiagnosed [41].
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Unlike T2DM, for most of the monogenic forms of diabetes the pathogenic mech-
anisms where the mutation of a single gene only causes the onset of the disease is
known.

1.3 Therapeutical concepts for the
management of T2DM

Until today, there is no cure for T2DM. Current approaches for the management of
T2DM distinguish between prevention with the aim to delay or stop the disease on-
set in early stages of the disease’s progress and pharmacotherapeutical treatment in
cases where the disease has already progressed or where it is manifest.

1.3.1 Strategies for the delay and prevention of T2DM
onset

Most prevention strategies aim at reverting some of the modifiable risk factors before
the onset of the disease, in particular overweight or obesity, sedentary lifestyle, and
dietary factors. These changes are mainly achieved by lifestyle modifications such
as regular physical activity or special regimens, which are sometimes supported by
early pharmacotherapy with anti-diabetic drugs to keep blood glucose levels within
the physiological range. Several studies which were conducted in people at high risk
for T2DM (i.e. people with IFG or IGT), examined the potential benefits of different
lifestyle modifications in disease delay and prevention [43–46].

For example, the Diabetes Prevention Programm (DPP) randomized controlled clin-
ical trial [46] was conducted in 3,234 US adults with glucose intolerance. This study
investigated the benefits of an intensive lifestyle modification (Low Fat Diet (LFD),
regular sports) with the aim to reduce body weight by 7% versus the benefits of
pharmaceutical treatment with Metformin on the disease’s progress. After 3 years,
the researchers showed that lifestyle intervention and Metformin treatement reduced
T2DM incidence by 58% and by 31% respectively as compared to a placebo group
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[46]. Based on their findings, the authors state that both lifestyle and drug in-
tervention with Metformin reduces the risk for T2DM in the clinical cohort on the
short-term. Moreover, Knowler et al. demonstrated the long-lasting benefits of both
prevention strategies in a 10 year follow-up of the DPP [47]. Although the authors
found similar incidence rates in the lifestyle, Metformin, and placebo groups during
follow-up (4.9-5.9 per 100 person years), the cumulative incidence over 10 years was
significantly smaller in the lifestyle group (34%) than in people treated with Met-
formin (18%) as compared to the placebo group [47]. The authors were also able to
show that on average, the intensive lifestyle modification delayed the disease onset
longer (4 years) than Metformin treatment (2 years) as compared to the placebo
group [47].

1.3.2 Options for the pharmacotherapeutical treatment
of T2DM

There is a broad panel of anti-diabetic drugs available today (Figure 1.3) [48].
These drugs act in different ways, achieving blood glucose lowering effects by tar-
geting different processes and pathways. The most commonly prescribed anti-
diabetic drugs on the market are Metformin and Thiazolidinediones (Glitazones),
both mainly targeting the metabolic organs including liver, adipose tissue, and
muscle tissue.

Glitazones, for example, are synthetic ligands for Peroxisome Proliferator-Activated
receptors (PPARs), which is a group of nuclear receptors. In a mechanism which
alters the transcription of several genes, activation of PPARs by binding of Glitazones
promotes the storage of fatty acids in adipocytes. As more and more fatty acids are
stored, less of them are available for oxidation and cells become more dependent on
the oxidation of carbohydrates as an energy source. As a result, more circulating
carbohydrates – notably glucose – are consumed, resulting in improved blood glucose
levels [49].

Other anti-diabetic drugs such as Glucagon-like-peptide 1 (GLP-1) receptor agon-
ists, Dipeptidylpeptidase 4 (DPP4) inhibitors, Glinides or Sulfonylurea act on the
pancreas. Medical drugs that were established more recently target also the brain



12 1 Introduction

(Bromocriptine), the kidneys (Sodium Dependent Glucose Transporter 2 (SGLT-2)
inhibitors), or the intestines (Pramlintide, Colesevelam, α-glucosidase inhibitors)
[48].
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Figure 1.3 – Evolution of diabetes treatment. Market launch of established anti-diabetic
drugs. Note that both animal insulin and inhaled insulin (red) are not longer administered in
T2DM therapy. Data according to [48].

In most cases, these drugs allow to manage the disease over a relatively long period
of time and the decline of insulin action and secretion can be compensated by in-
creasing the doses. Sometimes, however, especially in advanced stages of T2DM, the
administration of insulin to reduce circulating glucose represents the only treatment
option that is left.

1.3.3 Limits of current therapeutical concepts in the
management of T2DM

Although several studies provided evidence for short-term benefits of lifestyle or
drug interventions in the management of T2DM, there is little known about their
success over longer periods of time (> 10 years). In particular, it remains to be
revealed whether glycemic control reduces clinical endpoints of the disease including
micro- and macro-vascular complications, the latter being the main cause of deaths
in diabetics. To date, there are several (ongoing) studies with the aim to assess
the long- and longer-term benefits of the different therapy concepts in terms of
managing hyperglycemia and their potential to minimize clinical complications [50–
54].

For example, one of the older clinical trials investigating the effects of glycemic
therapies including early pharmacotherapy on clinical complications and mortality
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in people with T2DM was the United Kingdom Prospective Diabetes Study (UKPDS)
randomized clinical trial [50]. The UKPDS took place between 1977 and 1998 and
comprised 5,102 patients with newly diagnosed T2DM. In a 10 year follow-up study,
Holman and Paul compared the long-term effects of these early anti-diabetic drug
therapies (Sulfonylurea, insulin, or Metformin in overweight patients) to those of
glycemic control by dietary restriction on T2DM related endpoints and microvas-
cular disease [55]. Even though the differences in glycemic control in terms of
Glycated Hemoglobin (A1c) levels were lost between the groups after a while, the
authors found that patients who received early anti-diabetic drug treatment showed
significant reductions in their relative risks for any T2DM related endpoints (9-
21%), myocardial infarction (15-33%), and all-cause mortality (12-27%). Moreover,
people on Sulfonylurea or insulin, but not Metformin, had a significantly smal-
ler risk for microvascular disease (24%) than those managed by dietary restriction
[55].

The Action to Control Cardiovascular Risk in Diabetes (ACCORD) randomized clin-
ical trial conducted in 10,251 US american and canadian adults aged between 40
and 79 (mean age 62 years) investigated whether glycemic control reduces the oc-
curence of major cardiovascular events (heart attack, stroke, cardiovascular death)
in patients with T2DM which were at risk or had already a history of cardiovascu-
lar disease [51]. In addition, all participants showed more or less elevated levels
of A1c (7.5-11.0%), which is a surrogate marker for blood glucose levels. After 3.4
years, Riddle et al. compared the intensive glycemic treatment strategy aiming at
the reduction of A1c levels to less than 6% to standard glycemic treatment (A1c

7-9%). The authors found that intensive and standard treatment both produced
a broad range of average A1c levels with a great overlap between the intervention
groups. Although the all-cause mortality rates – approximately 50% of deaths were
related to cardiovascular complications – were similar in the first 2 years, after 3
years it was twice as high in the intensive as in the standard treatment group [56].
In the intensive but not the standard treatment group, mortality linearly correlated
with high average A1c levels greater than 7%, suggesting that for people who present
high average A1c levels, intensive glycemic treatment has no positive or even adverse
effects on cardiovascular outcomes [56].
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Another clinical trial, the Look Action for Health and Diabetes (AHEAD) study
[57], was conducted in 5,145 overweight or obese adults (mean age 58.7 years;
mean BMI ≥ 36 kg m−2) with a history of T2DM (median 5 years). A primary goal
of the AHEAD trial was to investigate the long-term effects of a lifestyle interven-
tion designed to achieve and maintain weight loss on mortality rates related to
certain cardiovascular complications including stroke, heart attack, and cardiovas-
cular death. In the context of this study, 2,570 people underwent the intervention,
including reduced caloric intake and increased physical activity (175 min per week)
with the aim to reduce body weight by at least 7% from the baseline in these people.
A second group of 2,575 participants attended counseling sessions in diabetes man-
agement and social support three times per year. After 10 years, Wing et al. found a
similar number of deaths caused by cardiovascular events in both groups (mortality
rates 1.92 vs. 1.83 per 100 person years; p-value = 0.51), despite the fact that the
people which had undergone the lifestyle intervention displayed greater reductions
both in body weight and A1c levels as compared to the counseling group. Based on
their findings, the authors conclude that in terms of cardiovascular events, intensive
lifestyle intervention does not have a greater effect than counseling in overweight
and obese patients with T2DM [58]. In 2012, the AHEAD trial [57] was prematurely
stopped on the basis that the intervention strategy had no positive effect on the
primary outcome (cardiovascular disease). Post hoc analyses of the trial, however,
suggest that the lifestyle intervention reduces the risk for other complications which
are linked to cardiovascular disease, including chronic renal disease [59], cholesterol
levels, and blood pressure [60]. Moreover, Espeland et al. argue that the reduced
need for anti-diabetic drugs in the intervention group reduces the costs for medical
treatment [61].

The Outcome Reduction With Initial Glargine Intervention (ORIGIN) trial examined
the effects of insulin treatment versus standard care to maintain normal glucose levels
(fasting glucose levels in blood or plasma below 5.3 mmol l−1) on total mortality,
micro-, and macro-vascular outcomes. To this aim, 12,537 adults (mean age 63.5
years) with IFG, IGT, or early T2DM and cardiovascular risk factors were recruited.
After about six years, researchers found no difference on cardiovascular outcomes
between people receiving insulin treatment and those on standard care. Moreover,
although it reduced the incidence of T2DM in people with IGT and IFG, insulin
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treatment led to increased hypoglycemia and modest weight gain (median increase
1.6 kg).

In addition to the uncertain data basis on the long- and longer-term benefits of
prevention strategies and medical treatment, management of T2DM is complicated
by the effectiveness of medical treatment. All current anti-diabetic drugs loose their
glucose lowering effect over time. Considering that worldwide more and more young
people and children have the disease [62], ceasing drug effect will become a major
problem in the treatment of T2DM. A lot of effort is therefore made to find al-
ternative and more sustainable concepts to manage hyperglycemia in T2DM. Some
recent studies investigated the effects of combined administrations of established
anti-diabetic drugs [63, 64]. For instance, the Treatment Options for type 2 Dia-
betes in Adolescents and Youth (TODAY) trial [65] aimed at the investigation of the
effects of Metformin, Metformin and Rosiglitazone combi-therapy, and Metformin
therapy in combination with lifestyle intervention on insulin sensitivity and β-cell
function in 699 overweight adolescents (10-17 years) with a history of T2DM [63].
The authors showed that the combi-therapy provides superior acute improvement
on glycemic control within the first six months as compared to the other two treat-
ments. Moreover, the failure rates of the combi-therapy (39%) are smaller than
those of Metformin monotherapy (52%) or Metformin administration in combina-
tion with lifestyle intervention (47%) [63]. Between six months and four years, both
insulin sensitivity and β-cell function declined in parallel in all three groups. Those
participants who failed to maintain glycemic control displayed higher fasting glucose
levels and lower β-cell function at baseline, with no differences in insulin sensitivity
as compared to the others [63]. Based on their findings, the researchers claim that
the combi-therapy improves short term glycemic control, which translates to smal-
ler treatment failure rates. Thus, the initial reserves of pancreatic β-cells appear to
be crucial for the long-term effect of the treatment, and preventing β-cell loss (for
example by early treatment) should be of primary concern in adolescents with T2DM

[63].

Promising data comes also from a recent study in mice on the potential benefits
of a combi-therapie for T2DM treatment. Neschen et al. investigated the effect of
the combined treatment of db/db mice with Metformin and an SGLT-2 inhibitor,
which blocks the glucose reabsorption by the SGLT-2 transporter in the kidneys [64].
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The authors showed that the combi-therapy of Metformin and the SGLT-2 inhibitor
has a more sustainable effect on glycemic control than treatment with either one
of the drugs alone [64]. Although the mechanism responsible for the improved
effect of the combi-treatment remains to be revealed, based on their findings, the
authors speculate that Metformin supports the glucose-lowering effect of the SGLT-2

inhibitor by restraining endogenous glucose production, leading to improved long-
term glycemic control [64].

Another complication in T2DM management is that both prevention and treatment
strategies, in particular lifestyle interventions and medical drugs, act rather unspe-
cific. Just as disease progressions are unique to each person, the success of current
treatment strategies varies from patient to patient. Drugs that work for one patient
may have only a small effect in another patient. In some people, off-target effects
of current anti-diabetics were shown to lead to other clinical complications [66].
Similarly, the success of lifestyle intervention has been shown to be quite different
among individuals. For example, Schäfer et al. showed that moderate weight loss by
increased physical activity and calorie restriction over roughly 9 months improved
glucose tolerance significantly (2 h glucose during OGTT: −14%) in people with IGT

and increased T2DM risk, however not in people with normal glucose tolerance and
similar body-, and liver-fat, which are at risk for T2DM (2 h glucose during OGTT:
+2%) [67].

Finally, it is frequently questioned how much the broad population benefits from
current therapy approaches, for example from the structured implementation of
lifestyle programs. Livestyle modifications are neither simple nor straightforward
and for many people (e.g. elderly people), such interventions are sometimes simply
not practicable. In line with that, several community studies were not able to
replicate the positive results from clinical trials. It appears that a key problem is
that in the community setting, lifestyle modifications often do not result in similar
reductions of weight as those achieved in clinical trials [68].

Taken together, it is obvious that new therapeutic concepts are needed for T2DM

– pharmacological and non-pharmacological ones. These need to be more efficient,
longer lasting, and rather personalized for each patient. Without doubt, to achieve
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these goals, better knowledge about the etiology and pathogenesis of T2DM is re-
quired.

1.4 Approaches in T2DM research

Today, different research fields, including basic and clinical research, epidemiology,
and translational studies, contribute equally to diabetes research. While clinical and
epidemiological studies involve human beings, pre-clinical studies and basic research
are usually limited to experiments in non-human (animal) models.

1.4.1 T2DM studies in human cohorts

The implementation of numerous epidemiological cohorts facilitated the search for
heritable genetic variants contributing to T2DM risk. Before the advent of the differ-
ent ›omics‹ fields (see Introduction 1.5), genetic variants were usually identified by
so-called ›candidate gene studies‹. In such studies, the impact of genetic variation
in an individual gene on a certain phenotypic trait such as T2DM is investigated.
Suitable candidate genes for such studies are usually selected based on prior know-
ledge from previous studies. The selection is a costly and time-consuming process
and the choice of the ›right‹ candidate is not straightforward. Yet, a few T2DM

risk genes have been identified by candidate gene studies. For instance, Deeb et al.
identified a Single Nucleotide Polymorphism (SNP) in a gene coding for one of the
PPARs, PPAR-gamma. The authors claimed that this variant of the PPAR-gamma
gene largely explains the variability in BMI and insulin sensitivity observed in a
Finnish and a Japanese-American cohort [69].

The advent of genomics in the late 1990s and the introduction of DNA microarrays
(see Introduction, 1.5.1) enabled large-scale screening for T2DM risk loci in GWAS.
Rather than focussing on single pre-selected candidate genes, GWAS investigate hun-
dreds of thousands of genes simultaneously. Comparing individuals with different
phenotypic traits, genetic variants can be associated to these traits. The first GWAS
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on T2DM were published in 2007 [36, 70–74]. Since then, according to the NHGRI-
EBI GWAS Catalog, approximately 36 GWAS and meta-analyses identified around
114 T2DM risk loci (www.ebi.ac.uk/gwas; status as of 7/2015).

A surprising finding of these GWAS is that the variants for which functional roles
could be assessed affected mainly β-cell function rather than obesity or insulin res-
istance [75]. Another interesting result is that several variants that associate with
T2DM do not associate with insulin or glucose homeostasis in healthy populations
[39, 76]. In general, the effect sizes of the currently known T2DM susceptibility
loci are moderate or small, leaving a great gap between explained (5-10%) and es-
timated heritability (approximately 40%) [77, 78]. A potential explanation for this
discrepancy between estimated and explained variance is that GWAS investigate only
common SNPs, which are present in human populations very frequently. In the near
future, new approaches and lower costs for DNA analyses will allow the study of rare
variants (< 1% allele frequency), which may have greater effect sizes and explain
more of T2DM’s genetic variation. Moreover, most current studies are limited to
SNPs as the only type of genetic variation, excluding other sources such as copy
number variants, inversions, or structural variants, as well as factors such as gene-
gene or gene-environment interactions, which may be equally crucial for the genetics
of T2DM.

In addition to genetic markers, identification of non-genetic markers is equally im-
portant for the understanding of both etiology and pathogenesis of the disease.
In particular the investigation of metabolic traits in Metabolome Wide Associ-
ation Studies (MWAS) has been shown to provide crucial insights in disease-related
perturbations of metabolic pathways in patients with T2DM [79–82] and predia-
betes [83, 84], or related risk factors including obesity [80, 85–87] and NAFLD

[88].

For instance, Newgard et al. applied targeted metabolomics to samples from lean
(median BMI 23.2 kg m−2) and obese (median BMI 36.6 kg m−2) humans to study
the metabolic traits of obesity [85]. In their study, the authors revealed a meta-
bolic signature related to Branched Chain Amino Acid (BCAA) metabolism which
differentiated obese from lean humans. Moreover, the alterations within this BCAA-
related pattern correlated with increasing insulin resistance [85]. To test whether
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this BCAA signature contributes to obesity-related comorbidities such as insulin res-
istance and glucose intolerance, they fed Wistar rats with a High Fat Diet (HFD)
and a standard control diet with or without BCAA supplementation. Consistent
with their hypothesis, the authors found that independently of the body weight,
the intake of BCAA contributes to the development of insulin resistance in rats [85].
Based on these data, the authors conclude that BCAAs are likely to contribute to
obesity-related insulin resistance in humans [85].

Another recently published metabolomics study analyzed 265 metabolites in plasma
from 20 insulin-sensitive and 20 insulin-resistant subjects with NAFLD (matched for
liver fat) before and after a 9-month lifestyle intervention [88]. During this inter-
vention period, participants were advised to reduce calorie intake to reduce weight,
mainly by eating less dietary fat and by increasing the intake of fibers. In addition to
dietary counseling, they were asked to do at least three hours of moderate sports per
week, for example walking or swimming [88]. In their work, Lehmann et al. found
that characteristic changes in seven metabolites discriminate insulin-sensitive from
insulin-resistant participants with NAFLD – to their surprise both before and after
the lifestyle intervention [88]. Detailed analysis of these seven metabolites revealed
that lyso-PC C16:0 correlates most strongly with insulin sensitivity in subjects with
NAFLD. Based on their data, the researchers claim that a metabolic signature in-
cluding lyso-PC C16:0 is likely to be an early marker for insulin sensitivity, and
thereby T2DM risk, in people with NAFLD [88].

Although these different GWAS and Metabolome Wide Association Study approaches
are very successful in identifying genetic and metabolic traits of the disease, they are
very limited in studying the causal relation between the marker and the disease’s
physiology. There are several considerations to this limitation: First, many potential
risk loci identified in GWAS lie in inter-genic regions for which the functional link is
unknown. Second, variants are often located in genomic regions that contain more
than one annotated gene and it is not clear which of the genes is functional in the dis-
ease context. Third, even if one is lucky and the locus lies in a gene region for which
the product is known, considering the complex interactions between genetic and en-
vironmental factors it is hard to make statements about the causality of the elusive
relations between the affected gene and the final phenotype.
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1.4.2 Animal Models for T2DM research

Besides factors such as time and costs, functional and mechanistic studies in humans
are complicated and limited to noninvasive procedures. Animal models, on the other
hand, are usually cheap, less time consuming, and can be done under standardized
conditions in the lab. Most importantly, in animal models physiological and invasive
testing can be applied which is otherwise not allowed in humans for obvious ethical
reasons. This is why today animal models and especially murine models are firmly
established in (translational) T2DM research.

The first animal studies in diabetes research date back to the late 19th century.
Oscar Minkowski described symptoms similar to those observed in diabetes mellitus
in dogs whose pancreas was removed (pancreatectomy). Shortly after, Edouard He-
don and Minkowski both proved independently that the total removal of the pancreas
was necessary for the development of the typical symptoms of the disease, suggesting
that the pancreas is crucial for the pathogenesis. In 1893, Gustav-Edouard Laguesse
hypothesized that the islets in the pancreas firstly described by Paul Langerhans
produce an anti-diabetic substance. This unknown substance was referred to as
›insulin‹ for the first time by Jean de Mayer in 1909.

It took until 1922, when Frederick Banting and his graduate student Charles Best
showed in the laboratories of John MacLeod that the administration of pancreatic
extracts from atrophied pancreatic glands taken from dogs to other dogs whose
pancreas were completely removed improved the diabetic-like conditions of the pan-
createctomized animals. After these successful experiments, Banting and Best went
one step further and tested their method on a human patient. Just like in their
experiments with dogs, the injection of their pancreatic extract isolated from dogs
into 14-year old diabetic Leonard Thompson resulted in a significant decrease of the
boy’s blood glucose concentrations to physiological levels. Banting named this anti-
diabetic substance ›isletin‹, which was later changed to ›insulin‹, the name already
given by de Mayer. For their discovery of insulin, which was at the same time the
first treatment for diabetes, Banting and MacLeod were awarded with the the Nobel
price in 1923. Their studies are also a perfect example of the successful translation
of result from animals to humans.
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Today, studies in animals are predominantly conducted in rodents, especially mice,
which has several reasons. The genome sequences of mice and humans are 95%
identical and many identified genes in human have orthologs in mice. This is why
studies in mice are often favored for functional studies on potential risk genes identi-
fied in human trials, for instance by gene knock-outs. Other reasons which make mice
so convenient for research are that they are relatively easy to breed and maintain,
have short generation times, and an accelerated lifespan (1 mouse year corresponds
to approximately 30 human years). Moreover, highly standardized phenotyping pro-
tocols from human diagnostics are also established in mice, including euglycemic-
hyperinsulinemic clamp to measure insulin action, and OGTT to test insulin secretion
and glucose tolerance [13].

Many genetic and non-genetic mouse models have been generated to recreate key
symptoms and risk factors of human T2DM including obesity, insulin resistance, β-cell
failure, or fatty liver disease [89]. These traits are generally the result of naturally oc-
curring mutations, specific genetic manipulations, or special diets.

Classic genetic mouse models include the monogenic ob/ob and db/db strains ori-
ginating from the Jackson Laboratory [90]. In both models naturally occurring
autosomal recessive variants in singles gene coding for leptin (ob/ob) [91] or the
leptin receptor (db/db) [92] induce obesity and hyperglycemia. Leptin and the leptin
receptor build together the leptin-signaling axis which balances food intake. Dis-
ruption of this signaling pathway in ob/ob and db/db mice results in an inability to
feel sated, leading to hyperphagia, obesity and other metabolic complications [93].
As a consequence of obesity, ob/ob and db/db mice become hyperinsulinemic and
insulin resistant. In particular the db/db model is widely applied in T2DM research
[94].

Beside these monogenetic models, a variety of polygenic mouse models of T2DM

have recently been established including the New Zealand Obese (NZO) and TAL-
LYHO/JngJ (TALLYHO) strains. NZO is a spontaneous model of polygenic obesity
and insulin resistance. Mice of this strain become hyperinsulinemic and estab-
lish reduced insulin-stimulated glucose uptake in muscle and adipose tissues. In
addition, they display elevated circulating triglyceride and suffer from high blood
pressure. TALLYHO is another polygenic, naturally occurring model of T2DM [95].
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TALLYHO mice become obese and diabetic and show symptoms of hyperlipidemia
when exposed to a HFD. However, these polygenic models are more complicated than
monogenic mouse models and some of them have not been completely characterized
[96].

In addition to the mice having a specific genetic constitution, researchers often use
special diets (e.g. HFD) to introduce human disease traits into them. For example,
there are several more or less established mouse strains, including 129P2/OlaHsd
(129), C57BL/6J (B6J), C57BL/6NTac (B6N), and C3Heb/FeJ (C3H), which establish
the typical symptoms of NAFLD under HFD exposure. Because in dietary models,
mice usually have the same genetic constitution, those models are supposed to be
more straight forward to be interpreted than mono- or poly-genic models, where the
different genetic constitutions have to be considered.

Most strains used in mouse models are ›inbred strains‹. Inbred strains are the result
of repeated breeding of brother sister pairs over more than 20 generations. As a con-
sequence, the genomes of these strains become fixed and individuals are genetically
identical (›isogenic‹). Just like monozygous twins, individuals from inbred strains
share identical phenotypes. Although inbred strains usually stay genetically stable
for long periods of time, sometimes they change as a result of new mutations leading
to new substrains. This substrain drift can be avoided by the maintaining banks
of frozen embryos. The use of inbred strains for models has some advantages. For
instance, the statistical power of such models is good even with small sample sizes.
In addition, because of the (genetically) controlled biological variability, results ob-
tained in inbred strains are also convenient to be interpreted and results from dif-
ferent studies carried out in the same inbred strain are assumed to be comparable.
In contrast to inbred strains, ›outbred strains‹ are generated by random mating.
Each individual of such an outbred strain possesses its own genetic constitution
and models based on outbred strains are heterogenous genetically. Because of their
genetic heterogeneity and the resultant phenotypic extremes, outbred strains are
sometimes assumed to better reflect the situation of human populations, although
they are obviously less variable genetically. However, because in outbred strains the
genetic variation is not under the control of the researcher, results obtained in such
models are far more complicated to be interpreted and less comparable among each
other. It is therefore often suggested to do multi-strain experiments involving dif-



24 1 Introduction

ferent inbred strains rather than using an outbred strain to cover genetic variability
in animal models.

In the last years, large-scale screening (omics) methods (see 1.5, p. 27) have
been of increasing interest for the application in animal experiments. As a res-
ult, researchers were enabled to do system-wide studies of complex diseases under
rather controlled settings such as large-scale screenings for novel biomarkers [97–
99].

For example, Simonson et al. applied transcriptomics to renal tissue samples in
diabetic db/db versus nondiabetic wt mice to identify secreted proteins which may
serve as new urinary biomarkers for kidney function in T2DM [99]. To this end, they
searched for differentially expressed mRNA of genes that were predicted to encode
secreted proteins and which have orthologs in human. As a result, the researchers
found 36 of such candidate genes that were significantly affected in db/db mice [99].
In a cross-sectional study comprising 56 humans with T2DM, they tested whether
the abundances of their corresponding ortholog proteins in urine correlate with the
Glomerular Filtration Rate (GFR), which is a proxy for kidney function, for 17 out
of the 36 candidates [99]. They found that 6 out of these 17 tested genes correlated
with the GFR, irrespective of urine albumine concentrations, which is an established
marker of renal dysfunction in diabetes [99]. Based on their findings, they state that
these six genes represent promising candidates as early renal risk markers for kidney
failure in T2DM [99].

In a large-scale comparative analysis, Ghazalpour et al. applied transcriptomics and
proteomics to examine the concordance between levels of transcripts and proteins in
liver tissue samples of 97 inbred and recombinant inbred mouse strains [98]. They
compared the variation in 7,185 transcripts with that in 487 proteins. Overall,
the concordance between variation in transcripts and the corresponding proteins
was modest to small, most likely because of post-transcriptional processes including
translational efficiency, alternative splicing, folding, assembly into complexes, trans-
port and degradation [98]. Moreover, they found that the variation in transcript
levels is more strongly associated with clinical traits than the variation in protein
concentrations. Only 15% of significant associations between changes in transcript
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levels and certain phenotypic traits have also been observed for the corresponding
proteins [98].

1.4.3 Limitations in the translatability of results:
Humans are not simply 70-kg mice*

*Citation taken from Leist and Hartung [100].

Undoubtably, many studies showed how valuable the mouse can be as a model to
shed light on the functions of candidate genes which have been initially identified
by human trials [101–104].

Beside these individual success stories, given the large number of published studies
in mice, our knowledge about the pathogenic mechanisms of many complex diseases
including T2DM is still very limited. In fact, quite often, findings obtained in mice
cannot be reproduced in the human setting. Published estimates of irreproducible
preclinical research range from 51-89% [105, 106]. Based on these numbers, Freed-
man et al. estimated that of the approximately 56.4 billion US dollars that were
spent for preclinical research in the USA in 2012, 28.0 billion US dollars accounted
for irreproducible preclinical research [107]. One major reason why many preclinical
studies fail is that the results from the implemented mouse models in which the
efficacy of the novel drugs are tested are irreproducible in humans [106, 108]. More
importantly, this low predictivity of mouse experiments is not limited to comparisons
of mice versus humans: the results obtained in one mouse model can often not be re-
produced by others, even if they are using the very same model.

It is not surprising that mouse models cannot fully reproduce human disease phen-
otypes. There are obvious reasons for that, such as different anatomy, genetics and
physiology. Mestas and Hughes highlighted significant differences in the immune
system between mice and men [109]. In addition, as a result of the excessive in-
breeding strategies applied in most mouse strains used for models, individuals from
a particular model share the exact same genetic constitution and – as a matter of
principle – cannot cover the genetic variation that is prevalent in human popula-
tions.
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Although mouse models are generally well characterized on the phenotypic level,
sometimes the same models display great variation in their physiological responses.
This contributes to the translational gap among models or between species. For
instance, Lai et al. recently examined the physiological responses of animal models
of HFD induced obesity and T2DM systematically. On the basis of six studies im-
plementing the murine B6J model, they found notable intra- and inter-laboratory
variances among the dietary effects observed in these studies. This is most likely
due to more or less variations in the lab protocols [110]. Moreover, the researchers
argue that these phenotypic differences become greater for models which combine
both genetic modifications and dietary interventions, which is not surprising because
such genetically modified models display variable disease phenotypes irrespective of
whether they are exposed to a dietary challenge or not. Based on these data, Lai
et al. conclude that the benefits of studies in mice on our knowledge about the
pathogenesis and treatment of obesity and T2DM in humans is negligible because
the data from such models are confined to the strain, sex, protocol or simply the
experimental conditions [110]. Instead, they suggest to redirect T2DM research back
to humans, rather than spending further efforts on rodent models to study human
conditions [110].

Another study from 2014 adressed the topic of translatability of results from animal
models to humans based on rodent models applied in experimental stroke research
[111]. The researchers claim that the physiology and pathophysiology of rodents
is sufficiently similar to humans in order to make them a highly relevant model
organism and at the same time sufficiently different to mandate an awareness of
potential resulting pitfalls [111]. However, they argue that rather than turning their
backs on mouse models and discarding relevant findings from the past, present, and
future, researchers should focus on the improvement of the validity of the models
[111].

In order to produce more reliable models to overcome the apparent translational
failures, it is therefore essential to know the strengths and weaknesses of models
in recreating the human disease’s physiology. To this end, it will be essential to
determine how well animal models reproduce the human disease’s physiology on the
phenotypic level and below (i.e. on the molecular level) in a more systematic fashion
[112].
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1.5 Omics: research in large-scale

Recent developments in biotechnology led to an increasingly common application
of system-wide and data-driven methods in diverse research areas (Introduction
1.4). Rather than analyzing selected molecules, large-scale screening methods – col-
lectively referred to as ›omics‹ – simultaneously measure thousands of molecules
from individual biological samples and thereby provide systems-level readouts of
cells, tissues, or even whole organisms. There are several omics fields that primar-
ily differ in their objects of study. While genomics refers to the study of whole
genomes, epigenomics, transcriptomics, proteomics, and metabolomics encompass
the entirety of epigenetic modifications (epigenome), RNA (transcriptome), proteins
(proteome), and metabolites (metabolome), respectively. The implementation of
these different omics approaches constituted the start for system-wide analysis both
in human and in non-human studies, most notably that of genome projects, GWAS,
and MWAS.

1.5.1 Transcriptomics

The term ›transcriptome‹ refers to the total set of RNA molecules of an organism,
tissues or a single cell at a specific time under a specific condition. Although there are
other forms of RNA molecules including transfer RNA, ribosomal RNA and non-coding
RNA, the term ›transcriptomics‹ generally refers to the study of mRNA molecules (i.e.
the transcribed nucleotide sequences of expressed genes) only. While sinking costs
make the application of Next Generation Sequencing (NGS) based approaches more
and more attractive in transcriptomics, the predominant platform to measure the
levels of individual mRNA molecules are still DNA microarrays.

Measuring techniques

There are basically two different methods for the production of DNA microarrays:
spotted or cDNA microarrays and high-density oligonucleotide microarrays (›chips‹,
Figure 1.4).
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Figure 1.4 – Technical designs of coding DNA (cDNA) and high-density oligonucleotide
microarrays. (A) DNA sequences of the genes whose expression should be measured is ampli-
fied and reversely-transcribed to cDNA. These cDNA strands, each corresponding to one gene,
are printed on the microarray surface. (B) Short oligonucleotide sequences (25 bp), 16 to
20 per gene, are synthesized directly on the microarray surface using photolithography. Each
oligonucleotide perfectly matches a different section of the gene’s DNA sequence (PM). Some
chip-based platforms include additional mismatch oligonucleotides (MM) containing inten-
tional substitutions of single nucleotides which imperfectly match the genes’ sequences. They
are used to adjust for unspecifically hybridized mRNA. Figure adopted from [113].

In cDNA microarrays, cDNA strands of usually more than several hundred base pairs
in length are synthesized beforehand and spotted onto specially manufactured glass
slides in a process that is similar to inkjet printing.

In contrast, high-density oligonucleotide microarrays make use of short nucleotide
sequences (25 bases) that are ›in situ‹ synthesized onto glass wafers using photo-
lithography, a technique similar to that used in the production of computer chips.
These short oligonucleotide sequences, also referred to as ›probes‹ or ›features‹,
perfectly match parts of open reading frames known from nucleotide repositories
such as GenBank® (http://www.ncbi.nlm.nih.gov). On some but not all oligonuc-
leotide microarray platforms, a corresponding mismatch-probe is synthesized as a
specificity negative control for each probe. Such mismatch-probes have the same
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nucleotide sequence except for a single substitution of a nucleotide in a central po-
sition. These negative controls can be used to correct for false-positive signals from
local background or cross-hybridization. Pairs of 16 to 20 matching – and possibly
mismatching – probes are summarized in so called ›probesets‹.

These probesets can then be collected into greater assemblies of ›transcriptclusters‹.
Other than probesets representing exons, transcriptclusters represent entire strands
of transcribed RNA (e.g. the mRNA of a gene). Consequently, the analysis of differ-
entially expressed probesets aims at the study of alternative splicing, whereas the
collection of probesets into transcriptclusters allows the investigation of differentially
expressed genes.

The final expression values of probesets or transcriptclusters are calculated from
the measured intensities of the individual probes (e.g. by taking the mean over the
corresponding probe intensities).

A typical workflow in gene expression profiling

A typical microarray experiment compares the abundance of RNA in samples from
contrasting conditions (e.g. diseased vs. healthy). Although the detailed procedure
may be different depending on the microarray platform and the sample types, the
major steps are similar (Figure 1.5).

Using cDNA microarrays, mRNA is extracted from samples and color-labeled with
fluorescent dyes (one color for each condition). The labeled RNA is then hybridized
altogether to strands of coding DNA on a single array. After a washing step, a
laser scans the microarray to determine the intensities of the different fluorescent
dyes. Here, the ratio of the dye intensities measured for each spot on the array
corresponds thereby to the relative abundance of hybridized RNA from the different
samples.
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Figure 1.5 – Typical workflows in cDNA and oligonucleotide microarray transcriptomics
experiments. (A) Two mRNA samples from two different conditions (e.g. case and control) are
labelled with fluorescent dyes (one dye for each condition, e.g. case = green; control = red).
The labelled mRNA is hybridized to a single microarray. After processing, the microarrays are
scanned twice to determine the intensity of each dye (i.e. amount of mRNA in case and control)
on the microarray. Combining the results of both scans, the color overlay at each spot indicates
the corresponding gene’s relative expression change between the two conditions (i.e. green =
gene is more expressed in case than control). (B) All mRNA samples are similarly labelled
with biotinylated uridine- and cytidine-triphosphate, irrespective of the samples’ conditions
(e.g. case and control). mRNA from each sample is hybridized to its own microarray. After
processing, the microarrays are separately scanned to determine the amount of labelled mRNA
bound to each microarray. The data are then normalized to get the genes’ absolute expression
values within each sample. Comparing the expression values between samples or the mean
expression values between groups of samples, the relative expression changes of genes are
determined. Figure adapted from [113].

For chip based experiments, biotinylated uridine- and cytidine-triphosphate are used
to label the RNA. The biotinylated RNA is then hybridized to different chips (one
chip per sample). After washing, the biotinylated RNA on each chip is stained with
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a fluorophore. A laser subsequently determines the intensity of this fluorophore (i.e.
bound RNA) for each chip separately. From these intensities, the expression values
for each RNA probe on the chips are calculated. Finally, to determine the relative
RNA abundances between samples, the expression values of the respective chips are
compared.

Because photolithography enables the parallel synthesis of hundreds of thousands
of oligonucleotide probes on a single chip, oligonucleotide microarrays are often
preferred over cDNA microarrays for whole genome gene-expression profiling or gen-
otyping experiments [113, 114].

1.5.2 Metabolomics

Just like the transcriptome comprises the totality of DNA and RNA molecules, the
term ›metabolome‹ refers to all metabolites present in a biological sample. Equally,
the term ›metabolomics‹ denotes the study of metabolomes. Metabolomics profiles
the endpoints of epigenetic and transcriptional changes, enzymatic reactions, as well
as environmental impact. Therefore, metabolomics is generally believed to track the
phenotype more closely than any other omics technology. As a result, changes in
the metabolome are often referred to as ›intermediate traits‹.

Measuring techniques

Numerous techniques have been employed for metabolomics, notably Nuclear Mag-
netic Resonance spetroscopy (NMR) [115, 116] and Mass Spectrometry (MS)-based
methods [117, 118]. Each of these techniques has its own individual strengths and
weaknesses. Most importantly, none of the currently available techniques is ex-
haustive and able to measure all metabolites. Thus, in contrast to the other omics
fields such as transcriptomics (see above), which can be typically handled by a
single technique, the study of the metabolome requires the combined application
of multiple, complementary techniques rather than individual methods. Moreover,
other than genomic data, the chemical annotations of metabolomes remain largely
incomplete.



32 1 Introduction

NMR is fast and cheap and usually nondestructive because it can be performed
directly on the samples with little or no need for sample preprocessing. It is not
selective for certain classes of metabolites, can theoretically detect any molecule con-
taining carbon or hydrogen, and is robust, i.e. metabolite profiles are reproducible
(although factors such as sample aging might change the metabolite profiles). The
main weakness of NMR is its relatively low sensitivity (i.e. only medium and highly
abundant metabolites can be detected) and the overlap of signals from different
metabolites, which limits the number of quantifyable distinct metabolites to about
100 in practice. In addition, the post-processing and identification of metabolites
from the spectra generated by NMR is often not straight-forward and in practice,
NMR-based metabolomics is limited to the study of about 100 distinct metabol-
ites.

MS-based approaches are highly sensible and provide unmatched mass resolutions
down to 10−15 mol [118]. In metabolomics, MS is often combined with separation
techniques such as Gas Chromatography (GC) or Liquid Chromatography (LC). Us-
ing separations, MS-based metabolomics is able to distinguish isobaric metabolites
and provides further information about the physico-chemical properties of meta-
bolites. However, MS-based approaches require a fairly extensive and destructive
sample preprocessing (i.e. the sample cannot be reused for further analyses), which
is costly, time-consuming, and a potential source for variation or loss. In addition,
MS-based methods are usually not equally sensitive to all classes of metabolites.
Thus, when using MS-based approaches, the parallel application of different tech-
niques (e.g. GC-MS and LC-MS) is recommended.

Because the metabolomics data used in this thesis was exclusively measured using
GC-MS and LC-MS, I will give a brief introduction on the principles of MS-based
approaches only. Please refer to Blümich [119] for detailed information on NMR

theory.

MS in combination with chromatographic separation has become a widely applied
tool in metabolomics. Although the detailed procedure might differ depending on
the samples and the nature of the study, MS approaches generally comprise the
following steps: (1) sample preprocessing, (2) separation of the metabolites using
chromatography, (3) ionization of the separated metabolites in an ion source, (4)



1.5 Omics: research in large-scale 33

fragmentation, and (5) sorting and detection of the charged metabolites and frag-
ments.

(1) In the preprocessing step, the metabolites are extracted from the biological mat-
rix (e.g. blood serum or plasma, tissue homogenates) using appropriate solvents
(e.g. methanol). In targeted metabolomics, where the analytes are known before-
hand, this preprocessing step is usually optimized to maximize the extraction for the
metabolites of interest. (2) After sample preprocessing, the extracted metabolites
are separated by chromatographic methods such as GC or LC. (3) During separa-
tion, the stream of separated metabolites enters an ion source, where the metabolites
are charged either physically or chemically. Typical ionization techniques are Elec-
tron Spray Ionization (ESI) or Chemical Ionization (CI). Depending on the specific
procedures, metabolites sometimes already break into smaller fragments or build
adducts with other ions in the ion source, which is generally an undesirable effect.
(4) In the collision zone, the ions collide in the gas phase with a neutral gas (e.g.
helium) and break into smaller ion fragments. (5) The ionized molecules and frag-
ments are then sorted for their masses based on the mass-to-charge ratio (m/z)
using electric and magnetic fields. Finally, the relative abundance of each ion is
determined by recording how many of them hit the detector. As a result, the mass
spectrum, which shows the abundance of ions as a function of their m/z ratio, is
produced.

Analysis strategies: targeted and non-targeted
metabolomics

Approaches in the field of metabolomics fall in general into two main classes: tar-
geted (bottom-up) and non-targeted (top-down) metabolomics (Figure 1.6).

Targeted metabolomics is usually applied in hypothesis-driven studies. Based on the
research question, the metabolites of interest are selected prior to the measurements.
Knowing beforehand which metabolites are to be measured has the advantage that
the analysis can be optimized for the selected metabolites. Notably, in targeted
metabolomics, internal isotope-labeled standards (spikes) are added to the samples
prior to the actual analysis. Using these internal standards, metabolite abundances
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can be quantified absolutely and reported in concentrations, usually µmoll−1. Nat-
urally, targeted metabolomics approaches are restricted to metabolites for which
internal standards are available.

Figure 1.6 – Targeted and Non-Targeted Metabolomics. Targeted metabolomics use
a predefined set of standard metabolites, allowing for the absolute quantification of their
concentrations. In contrast, non-targeted metabolomics reports every measurable metabolite
in a sample, however, is limited to qualitative comparisons of metabolite levels between samples.
In non-targeted analyses the measured metabolites’ identities are initially unknown and need
to be clarified by comparing features of the recored spectra to those of known metabolites.
Moreover, measurements from non-targeted analyses always have to be confirmed by targeted
analyses. Figure adapted from [120].

Current targeted metabolomics approaches are able to detect less than 300 discrete
metabolites. Considering estimates of 6,500 total metabolites in the metabolome,
targeted metabolomics covers obviously only small parts of the metabolome [120,
121].

In contrast to targeted metabolomics, non-targeted metabolomics is considered an
explorative, hypothesis-generating approach. Non-targeted approaches do not work
with predefined standards and report every measurable metabolite in a biological
sample, regardless of its chemical class. Using state-of-the-art technologies (see
below), non-targeted approaches are in principal able to measure thousands of
metabolites. However, the lack of internal standards in non-targeted metabolomics
means at the same time that the measurements of such approaches are at best semi-
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quantitative. Non-targeted metabolomics is therefore generally limited to the study
of qualitative differences of metabolite levels (e.g. between contrasting conditions).
In addition, also as a result of the missing internal standards, non-targeted metabolo-
mics approaches are semi-informed, i.e. the identities of the detected metabolites are
initially unknown. Although many identities can be clarified by comparing features
of the recorded spectra to those of known metabolites, in non-targeted metabolom-
ics researchers are usually left with a considerable number of analytes that cannot
be identified. Regardless of whether the identity is known or not, results from non-
targeted analyses need to be ultimately confirmed by additional targeted analyses,
comparing the candidate metabolites to their corresponding standard compounds
[120].

1.5.3 Comparative omics: quantifying within- and
between-species similarities and
differences

With the increasing use of omics, physiological changes can be comprehensively de-
scribed on a whole new level of detail on the basis of molecular traits such as altered
gene expression or changing metabolite concentrations. As a result, using omics
data within- or cross-species comparisons, for example to determine the validity of
mouse models in reproducing human disease traits, are not limited to a handful
of phenotypic traits anymore, but can rather be done on the basis of thousands of
molecular traits.

There are several examples for comparative gene expression studies in the scientific
literature, facilitated by more and more gene expression profiles that are publicly
available in repositories such as the Gene Expression Omnibus [122]. For instance,
Zheng-Bradley et al. studied the conservation of tissue-specific gene expression of
orthologous genes in mice and humans using a large collection of publicly available
human and mouse microarrays. The authors showed that both the most variable
genes and the most ubiquitously expressed genes co-vary across both species and
found the greatest overlap for genes expressed in brain and neural tissue. Based
on their observations, they conclude that gene expression patterns are more similar
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among identical tissues within different species than those among different tissues
within a single species [123].

Another study compared significantly affected genes in response to dietary restric-
tion obtained from 22 studies in 6 different organisms including mouse and rat [124].
They found that there was no single gene commonly affected across all species ex-
amined in their study. However, when they focussed on the functions of the altered
genes rather than the individual gene expression traits, they indeed found some
overlap among species in response to dietary restriction [124]. This finding was in
line with Kumar et al., which stated that abstracting genes to gene ontology terms
allowed comparison across multiple species [125].

Some studies, however, come to contrary conclusions. For instance, only few changes
in the whole genome mRNA expression in leukocytes after ischemic stroke are com-
mon to rodents and humans [126, 127]. Two other studies recently revealed key
differences in the molecular constitutions of distinct mouse models of amyotrophic
lateral sclerosis [128] and human inflammatory diseases [112]. Even though the
models examined in these studies perfectly mimic the key characteristics of the cor-
responding human disease physiologies on the phenotypic level, the gene expression
changes in the models and humans did not correlate significantly. However, using a
slightly different analysis approach, Takao and Miyakawa conclude the exact oppos-
ite of [112] and claim that genomic responses in mouse models greatly mimic human
inflammatory diseases [129].

The field of comparative omics is not limited to the analysis of gene expression and
there are some metabolomics studies addressing the similarities and differences of
metabolic traits between studies. For instance, in a systematic cross-species meta-
bolomics study, Salek et al. compared the urinary metabolic profiles of diabetic
db/db mice, obese Zucker Diabetic Fatty (ZDF) rats, and that of untreated diabetic
patients [130]. They used 1H-NMR spectroscopy and identified 27, 31 and 44 meta-
bolites in mice, rats, and humans, respectively. Comparing these urinary profiles,
the researchers found different metabolic processes that are perturbed in all three
species, although the individual changes of metabolites were sometimes different
between rodents and humans [130].
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Another recently published study combined gene expression and metabolomic pro-
filing in liver from humans, chimpanzees, and rhesus macaques to investigate the
differences in their metabolomes as a result of gene regulatory differences within
these species [131]. In line with previous studies which showed that – probably be-
cause of different eating habits – genes with metabolic functions are enriched among
differentially regulated genes in humans and non-human primates, the research-
ers revealed similar inter-species differences among metabolic concentrations [131].
Furthermore, they showed that the metabolic differences between the three species
correlate with the altered expression of those enzymes which control the corres-
ponding metabolic reactions. Finally, they present several metabolites that change
species-specifically, which is probably due to dietary differences between humans
and non-human primates [131].
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1.6 Aims and structure of the
thesis

Experiments in model animals represent an important tool in T2DM research. Search-
ing for the term ›type 2 diabetes‹ with the filter ›other animals‹ on Pubmed to get
a rough estimate of animal experiments done in diabetes research results in more
than 18,221 documents (status as of June 2015). Dispite this large number, our
understanding about the pathogenic mechanisms of human T2DM is still limited.
Clearly, the translation of animal research into humans is complicated for various
reasons, most obviously because of the species’ different anatomy, genetics, and
physiology. But even across models from the same species the findings often fail to
replicate (see Introduction 1.4.3). Although most animal models are usually well
characterized on the phenotypic level at which they are supposed to mimic the hu-
man phenotype, indeed, for many models only little is known about their underlying
molecular constitutions. As of today, there are no comprehensive characterizations
and comparisons of the molecular constitutions of diabetes in mouse models and
human diabetic patients available.

In this thesis, I present a generic meta-analysis workflow which allows to systemat-
ically study universal and species-specific molecular characteristics based on high-
throughput omics data. Applying this workflow on transcriptomics and metabolom-
ics data from two different mouse experiments, I address two points outlined above:
first, the reproducibility of findings across different mouse models for the same dis-
ease, and second the translatability of findings across mouse models and the corres-
ponding human disease.

After summarizing the data and methods used in this thesis in Chapter 2, I ex-
emplify the use of my meta-analysis workflow for the study of mouse models in the
following two chapters. In Chapter 3, I apply my workflow to whole genome liver
transcriptomics data from four genetically heterogeneous mouse models of NAFLD

to investigate universal and species-specific disease related genomic responses (i.e.
differentially expressed genes). I discuss how the similarities and differences between
the models as revealed by my analysis might influence study outcomes. In Chapter
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4, I use my workflow for the comparative study of metabolomics data across spe-
cies. Comparing the metabolic signatures of the db/db model of obesity and T2DM to
those observed in obese diabetic humans, I explore how well the model mimicks the
metabolic constitution of human diabetes. I discuss which aspectes of the disease are
well reflected and which are not, and provide possible explanations for specificities
in the model’s metabolic make-up.

Finally, I summarize my results in Chapter 5 and provide further thoughts on the
limitations and potential of my workflow and future perspectives.



Chapter 2

Data and Methods

2.1 Mouse models of NAFLD: 129, B6J, B6N
and C3H

In collaboration with the German Mouse Clinic II, 72 male mice from four differ-
ent inbred mouse strains C3Heb/FeJ (C3H), C57BL/6NTac (B6N), C57BL/6J (B6J),
and 129P2/OlaHsd (129) were bred and housed under standard vivarium conditions.
At an age of 14 weeks, animals of each strain were single-housed and allocated to
two groups in a litter-matched manner. One group of each strain was subsequently
fed a High Fat Diet (Ssniff Spezialdiäten, Soest, Germany) to induce the NAFLD

phenotype, while the remaining mice stayed on a Low Fat Diet (Diet#1310, Al-
tromin, Lage, Germany). After 21 days, all 72 mice were sacrificed. Liver samples
were taken and quickly freeze-clamped in liquid nitrogen or immersed in paraform-
aldehyde. Blood and liver samples were deep frozen to −80 ◦C and stored until
analysis.

Animal experiments were approved by the Upper-Bavarian district government (Re-
gierung von Oberbayern, Gz.55.2-1-54-2532-4-11). For a detailed description of the
experimental conditions and sampling refer please to Kahle et al. [132].

41
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2.2 Mouse model of T2DM: db/db

20 male BKS.Cg-Dock7m+/+ Leprdb/J (db/db) mice were used as a model for T2DM

and obesity and 20 male Dock7m+/+ (wt) littermates were used as non-diabetic,
lean, ›wild-type‹ controls (Figure 2.1, B). From an age of three weeks, all 40 mice
were fed a HFD (Ssniff Spezialdiäten, Soest, Germany). All 40 db/db and wt mice re-
ceived vehicle treatment by gavage, as they served as control animals in a pharmaco-
logical treatment experiment [64]. After 8 and 10 weeks, plasma samples of 10 db/db

and 10 wt mice were taken after 2 h fasting and deep frozen to −80 ◦C until further
analysis. Thus, a total of 40 plasma samples were collected.

Animal experiments were approved by the Upper-Bavarian district government (Re-
gierung von Oberbayern, Gz.55.2-1-54-2532-4-11).

2.3 Human cohort of the general population:
KORA F4

All human samples were taken from the Cooperative Health Research in the Re-
gion of Augsburg (KORA) F4 cohort study conducted in 2006 to 2008. KORA F4
is an extensively phenotyped sample (n = 3,080) from the general population for
which several high-throughput data sets are available in addition to anthropometric
phenotypes and clinical outcomes.

Here, we took a subsample (n = 1,768) of the KORA F4 survey for which targeted
as well as non-targeted metabolomics data were available. The results of an OGTT

after overnight fasting were used to divide individuals into ›diabetic‹ (n = 72) and
›healthy‹ (n = 1,138) groups according to [12]. Diabetic and healthy individuals were
further stratified for weight differences into three groups: (1) 45 obese diabetic (od)
individuals (BMI ≥ 30 kg m−2), (2) 231 obese healthy (oh) individuals (BMI ≥
30 kg m−2), and (3) 390 lean healthy (lh) individuals (BMI 18.5− 25 kg m−2). See
Figure 2.1 (A) for additional sample parameters.
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Figure 2.1 – Descriptive characteristics of human and murine samples. Parameters were
tested for significant differences between groups using Wilcoxon test for continous (BMI, age)
or Fisher Exact Test for categorical variables (sex). Abbreviations: od = obese diabetic (n =
45); oh = obese healthy (n = 231); lh = lean healthy (n = 390); db = db/db (n = 20); wt
= wild-type (n = 20); *P < 0.05; **P < 0.01; ***P < 0.001.

Diabetic participants were not under any anti-diabetic drug treatment because they
were firstly diagnosed with the disease at the time of the sampling. Serum samples
were taken after overnight fasting and were processed and deep frozen at −80 ◦C
until further analysis [133].

Written informed consent has been given by all participants. The KORA study
has been approved by the ethics committee of the Bavarian Medical Association
(Bayerische Landesärztekammer).

2.4 Transcriptomics measurements

To examine NAFLD related changes in the liver transcriptomes of the four mouse
models, we applied high-throughput expression profiling on Affymetrix® GeneChip® Mouse
Gene 1.0 ST arrays, which cover a broad spectrum of known murine protein coding
genes.
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2.4.1 Sample preparation and RNA
isolation

Total RNA was isolated from frozen liver homogenates using the miRNeasy Minikit
(Qiagen) including DNAse treatment. RNA quality was assessed with an Agilent
bioanalyzer kit and total RNA (200 ng, RNA integrity number > 5) was amplified
using the Affymetrix® GeneChip® Whole Transcript Sense Target Labeling Assay.
The amplified cDNA was subsequently hybridized on Affymetrix® GeneChip® Mouse
Gene 1.0 ST oligonucleotide arrays. The preparation of tissue samples for mRNA

profiling has been described in detail in [132].

2.4.2 Quality control and data
preprocessing

The latest gene-level annotation data was collected for Affymetrix® GeneChip® Mouse
Gene 1.0 ST arrays from Affymetrix®, Inc. (http://www.affymetrix.com, state as
of 04/2015). All arrays were processed separately for each strain using the Robust
Multichip Average (RMA) algorithm for background-adjustment and normalization.
Briefly, in RMA, intensities are adjusted for non-specific binding and optical noise
using a background plus signal model, assuming that the intensity of each measured
probe set is the convolution of exponentially distributed signals and normally dis-
tributed noise. The background-adjusted intensities are then normalized by quantile
normalization, making the distributions of the probe set intensities equal for all ar-
rays. Finally, the expression values of each probe set are represented as an additive
linear model of the background-adjusted and normalized probeset intensities. For a
detailed description and evaluation of the RMA method, please refer to the original
text in Irizarry et al. [134].

Before and after normalization, and for each strain separately, we checked the arrays
for possible outliers. To this end, we used three different summary metrics and
inspected the corresponding quality plots.
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Figure 2.2 – Distributions of normalized expression values. In 129 and B6J, the intens-
ity distributions of some samples diverge significantly from each other as determined by the
Kolmogorov-Smirnov test.

In short, all these metrics are calculated from the M (minus) values (that is the
log-ratios of the expression values of each probe) and the A (average) values (i.e.
the arithmetic mean of the logarithmized expression values of each probe), which
are defined as follows:

M = log2(l1)− log2(l2) (2.1)

A = log2(l1) + log2(l2)
2 (2.2)
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where l1 denotes the measured intensity of a certain probe on the array of interest,
and l2 the intensity of a ›pseudo‹-array, representing the median of the same probe’s
intensity across different arrays. For a detailed description of the applied metrics
and on how they help to decide whether an array is a possible outlier or not, please
refer to Kauffmann and Huber [135].

The evaluation of the different Quality Control (QC) metrics led us to exclude 2 of 15
samples from the 129 strain, because samples 6 and 9 exceeded a critical Manhattan
distance to the other arrays (Figure 2.3) and their intensity distributions diverged
significantly from those of other samples’ measurements (Figure 2.2). For the same
reasons, we removed one sample (sample 11) from the B6J study (Figure 2.3; Figure
2.2). No samples of strains B6N or C3H were considered as potential outliers in terms
of the three QC criteria outlined above.

The measurements of strains B6J, B6N and C3H showed (even after normalization)
batch effects (Figure 2.3), corresponding to the three (C3H) and two (B6J, B6N)
different measurement dates in these studies. However, because in all studies HFD

and LFD samples were randomly and evenly split over the different measurement
dates, it is safe to assume that the batch effects do not interfere with the comparison
of interest (i.e. HFD vs. LFD).

After QC, 69 out of 72 arrays from the 4 mouse strains were left in the analysis
(Table 2.1).

Table 2.1 – Microarrays left after QC.

Strain High-fat diet (Case) Chow (Control)

129 (13) 6 7
B6J (14) 6 8
B6N (16) 8 8
C3H (26) 8 18

Total 30 42

After removing low-quality arrays, 69 out of the 72 Affymetrix GeneChip® Mouse Gene 1.0 ST arrays
were left for the comparison of transcriptomic responses in the four different mouse strains of NAFLD.
Because of the experimental design, for C3H the LFD samples (controls) were pooled from mice of
different age (age differences between 5 to 33 days).
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Figure 2.3 – Similarity of samples based on their expression profiles. Pairwise Manhattan
distances (L1 distances) between samples of each mouse strain, calculated from the normalized
expression values. Dendrograms show the hierarchical clustering (Ward’s method [136]) of
samples based on their distances. Samples with large distances to the remaining ones are
considered as outliers. We find potential outliers for strains 129 (samples 6 and 9) and B6J
(sample 11). Note that in strains B6J, B6N, and C3H, clear batch effects are visible, because
the measurements in these studies had to be split over several dates.
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2.4.3 Filtering

After QC, the RMA processed data was filtered for unspecific criteria (i.e. fea-
tures irrespective of the samples’ phenotypes) to exclude non-informative probe-
sets.

(1) We excluded probesets belonging to non-protein coding sequences that are
present on chips of the GeneChip® Mouse Gene 1.0 ST oligonucleotide platform
such as non-murine sequences (negative controls) or microRNA. In total, 6,615 of
such probesets were excluded from each of the 69 datasets. (2) In addition, we re-
moved 4,106 probesets without gene annotations. (3) Finally, we collapsed probesets
representing the same gene to a single value by selecting the probeset which shows
the greatest relative expression change, i.e. the greatest absolute log2 fold-change
between HFD and LFD groups. As a result, another 2,805 probesets were excluded
from each dataset. After these filtering steps, the final datasets of each study con-
tained the expression values of 22,030 unique genes (Table 2.2).

Table 2.2 – Filtered transcriptclusters

Strain Total Protein coding With annotation Unique genes Fold change > 1.3

129 35,556 28,941 24,835 22,030 561
B6J 35,556 28,941 24,835 22,030 329
B6N 35,556 28,941 24,835 22,030 436
C3H 35,556 28,941 24,835 22,030 341

Transcriptclusters fulfilling certain criteria, starting from 35,556 total transcriptclusters measured on
each GeneChip® Mouse Gene 1.0 ST array. Annotated transcriptclusters are those with gene
annotations.

For certain statistical analyses, we constrained the data to genes with absolute linear
fold changes greater than 1.3 between HFD and LFD groups for each strain separately
to exclude genes which are not differentially expressed (Table 2.2).
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2.5 Metabolomics measurements

To obtain a comprehensive picture of the murine and human blood metabolomes,
we applied both a targeted metabolomics approach with a specific focus on lipids
and a non-targeted metabolomics approach which broadly covers the spectrum of
known metabolic pathways.

2.5.1 Targeted metabolomics

For targeted metabolite quantifications in human and murine blood samples, we used
the mass spectrometry (MS) based AbsoluteIDQ™ kits p150 and p180 (Biocrates
Life Sciences AG, Austria). Sample preprocessing and analyses were performed ac-
cording to the manufacturer’s instructions, which was described in detail in [133, 137]
for the kit p150. Briefly, after methanolic metabolite extraction from 10 µL of human
serum samples, a flow injection analysis method combined with appropriate internal
standards enables the absolute quantification of 14 amino acids, hexose (about 90-
95% glucose), free carnitine, 40 acylcarnitines, as well as the semi-quantitative as-
sessment of 92 glycerphospho- and 15 sphingo-lipid abundances. Kit p180, which
was applied to murine plasma samples, works similar. An additional liquid chroma-
tography step in the p180 assay allows for quantification of further 7 amino acids and
21 biogenic amines. 161 of 163 metabolites measured by kit p150 are also measured
by the p180 kit.

Liquid handling was performed on a Hamilton Microlab STAR™ robot (Hamilton
AG, Switzerland) and a Ultravap nitrogen evaporator (Porvair Sciences, Leather-
head, U.K.). MS were performed on an API 4000 LC/MS/MS System (AB Sciex
Deutschland GmbH, Darmstadt, Germany) equipped with a 1200 Series HPLC (Agi-
lent Technologies Deutschland GmbH, Böblingen, Germany) and a HTC PAL auto
sampler (CTC Analytics, Zwingen, Switzerland) controlled by the software Analyst
(version 1.6.1). Quantification of metabolite concentrations and quality assessment
was performed with the MetIDQ™ software package, which is part of the Abso-
luteIDQ™ kit.
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2.5.2 Non-targeted metabolomics

For non-targeted metabolite profiling, human and murine blood samples were sent to
Metabolon Inc. (Durham, USA), a commercial supplier of metabolomics analyses.
Profiling was performed on gas and liquid chromatography coupled to mass spectro-
metry (GC/MS and LC/MS, respectively). Sample preparation was performed on a
Hamilton Microlab STAR™ robot (Hamilton AG, Switzerland). LC/MS was done
on an LTQ mass spectrometer (Thermo Fisher Scientific, Waltham, MA) equipped
with a Waters Acquity UPLC system (Waters Corporation, Milford, MA). GC/MS

analysis was done on a Thermo-Finnigan Trace DSQ fast-scanning single-quadrupole
mass spectrometer. Metabolites were identified from the MS data by semiautomated
multiparametric comparison with a proprietary library, containing retention times,
m/z ratios, and related adduct/fragment spectra. Non-targeted profiling for human
and murine samples resulted in 377 and 440 metabolites, respectively, covering a
broad spectrum of metabolic pathways.

2.5.3 Quality control and pre-processing

For the targeted data, we applied the QC procedure described in Jourdan et al.
[86]. Briefly, in the human data, 11 of 163 metabolites were excluded because of
high variance of measured values in reference serum samples (coefficient of variation
> 25%). Another metabolite was excluded because its number of missing values
exceeded 5%. Similarly, 14 of 188 metabolites from the targeted data obtained in
mouse were excluded because of high variation, and 3 measurements because of more
than 5% missing values. Outliers were defined as data points with values greater or
less than the mean ±5 standard deviations for each metabolite over all human or
murine samples. In human, samples with more than three independent outlier data
points (i.e. their correlation with all other outliers in this sample is less than 0.7)
were excluded from further analysis. In mouse, there was no metabolite with more
than three outlying data points. Remaining outlier data points were set missing.
All missing values were imputed using predictive mean matching as implemented in
the R package ›MICE‹.
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QC of the non-targeted data was implemented as described in more detail in Shin
et al. [138]. Accordingly, all 377 and 440 measured raw ion counts in the human
and murine samples were divided by the metabolites’ median of the respective run
day to adjust for instruments’ inter-day variations. The normalized values were
log-transformed (log10), because values show log-normal distributions for the major-
ity of metabolites. We removed individual outlier data points that lay more than
four standard deviations from the mean of the particular metabolite over all hu-
man or murine samples. Metabolites with more than 30% missing values in one
of the human study groups (od, oh, lh), db/db or wt mice were excluded from ana-
lysis.

After QC, the human dataset contained 524 and the murine dataset 516 metabolites.
Thereof, data on 319 metabolites were available in both human and murine blood
samples. 26 out of 319 metabolites were measured on each of the two platforms
(Table 2.3). In addition, 13 metabolites detected on the non-targeted platform
represent isobaric molecules that are measured together in 6 sum measures on the
targeted platform (Table 2.4). Thus, the 319 metabolites measured both in humans
and mice correspond to 287 distinct molecules.
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Table 2.3 – Metabolites measured on both platforms

# Targeted (Names as in Biocrates) Non-targeted (Names as in Metabolon)

1 Gly glycine
2 Ser serine
3 His histidine
4 Tyr tyrosine
5 Phe phenylalanine
6 Trp tryptophan
7 Val valine
8 lysoPC.a.C17.0 1-heptadecanoylglycerophosphocholine
9 C2 acetylcarnitine
10 C0 carnitine
11 C6 (C4:1-DC) hexanoylcarnitine
12 C3 propionylcarnitine
13 lysoPC a C20:4 1-arachidonoylglycerophosphocholine*
14 SM C16:0 palmitoyl sphingomyelin
15 C5 isovalerylcarnitine
16 Gln glutamine
17 Arg arginine
18 C16 palmitoylcarnitine
19 Met methionine
20 lysoPC a C20:3 1-eicosatrienoylglycerophosphocholine*
21 Thr threonine
22 Pro proline
23 C18 stearoylcarnitine
24 C18:1 oleoylcarnitine
25 lysoPC a C14:0 1-myristoylglycerophosphocholine
26 lysoPC a C16:1 1-palmitoleoylglycerophosphocholine*

*Pure substance was not available for spectra comparisons within the same platform.
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Table 2.4 – Isobaric molecules

# Targeted (Names as in Biocrates) Non-targeted (Names as in Metabolon)

1 H1 glucose, fructose, mannose
2 lysoPC a C16:0 1-palmitoylglycerophosphocholine,

2-palmitoylglycerophosphocholine*
3 lysoPC a C18:0 1-stearoylglycerophosphocholine,

2-stearoylglycerophosphocholine*
4 lysoPC a C18:1 1-oleoylglycerophosphocholine,

2-oleoylglycerophosphocholine*
5 lysoPC a C18:2 1-linoleoylglycerophosphocholine,

2-linoleoylglycerophosphocholine*
6 C4 butyrylcarnitine, isobutyrylcarnitine

Isobaric molecules measured on the non-targeted platform that are jointly detected as sum measures
on the targeted platform.

2.6 Statistical analysis

All statistical analyses were done in R (http://www.r-project.org).

2.6.1 Determining the significance of gene expression
traits of NAFLD

For each of the 22,030 measured gene transcripts, the log2 fold change was calculated
as the difference of the mean log2-transformed expression values in the HFD and LFD

groups for each mouse strain separately. The statistical significance of the log2 fold
changes (i.e. whether a gene is significantly differentially expressed or not) was
tested using a moderated T-statistic [139].

For the selection of significantly altered gene expression traits (see below), only
genes which showed fold changes greater than 1.3 between groups were considered
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(Table 2.2). The p-values of these genes were adjusted for multiple testing us-
ing conservative Bonferroni correction, which controls the Family Wise Error Rate
(FWER).

2.6.2 Determining the significance of metabolic traits
of T2DM or obesity

For each metabolite measured in human and mouse, we applied linear regression
models to identify the change in the metabolite’s normalized log10-transformed blood
levels (regression coefficient β) between case and control samples. We used the meta-
bolite levels as continuous dependent variables and adjusted all regression models
for potential confounding by age and sex (human) or the time of sacrifice (mouse; 8
weeks/10 weeks).

For each metabolite, the statistical significance of its estimated regression coefficient
β is derived from a T-statistic:

tβ = β

σn(β) (2.3)

where tβ corresponds to β, standardized by the model’s standard error σn(β).

All p-values were adjusted for multiple testing using conservative Bonferroni correc-
tion (FWER) and less stringent False Discovery Rate (FDR) [140].

2.6.3 Ranking differential gene expression and
alterations in metabolite levels

For each case-control comparison in the murine models and human, we ranked
the corresponding lists of gene expression and metabolic traits according to their
−log10-transformed p-values multiplied by the sign of the log2 fold change (gene
expression) or the regression coefficient β (metabolites):
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ri = −log10(pi) · sign(βi) (2.4)

where ri denotes the rank, pi the p-value, and sign(βi) the effect direction of the ith
gene or metabolite.

Accordingly, genes or metabolites with the most significant increases are placed at
the top of the ranked list, and those with the most significant decreases are placed
at the bottom of the ranking. In the middle of the ranked lists are gene expression
or metabolic traits with small or zero effects.

2.6.4 Determining the global similarities of differential
gene expression or metabolic traits between
strains or species using correlation

We calculated the six pairwise correlations between the four strains of NAFLD (129,
B6J, B6N, C3H) based on their gene expression traits, as well as the three pairwise
correlations between the human study groups (od, oh, lh) and the db/db model based
on their metabolic traits. To avoid an overestimation by the false assumption that
gene expression changes and differences in metabolite levels are normally distrib-
uted, we calculated non-parametric Spearman’s rank correlation on the estimated
effects.

As measures of effect size, we used the log2 fold changes of the means for mRNA

expression data and the standardized regression coefficients (Equation 2.3) for the
metabolomics measurements. To visualize the general agreement of the estimated
effects on gene transcription across strains or metabolite levels between species, we
generated scatter plots contrasting the estimated effects of one against the other
study.
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2.6.5 Determining the global similarities of differential
gene expression or metabolic traits between
strains or species using a weighted sum on ranked
lists

Yang et al. introduced a measure to determine the similarity of ranked lists of gene
expression traits [141]. The authors claim that their measure regards the nature
of the studies of interest, considering only ›biologically relevant‹ traits for their
comparison. To this end, the authors calculated a weighted sum of overlapping
up- and down-regulated genes at each rank, putting more weight on the most up-
and down-regulated genes. Although designed for microarray studies, this method
for comparing ranked lists can be applied to results from other differential analyses
[141].

The method compares two studies A and B based on the results of the differential
analyses, which are summarized in two lists LA = {a1, . . . ,an} and LB = {b1, . . . ,bn}.
Here, each of the two lists contains the names of the n molecules (e.g. gene names,
metabolite names) measured in both studies and is ranked by the estimated effects
(Methods 2.6.3, Equation 2.7) on the individual molecules. Given the ranked lists LA
and LB, the partial overlap O(i) between their i top and i bottom ranked molecules
is defined by:

O(i) =|{a1, . . . ,ai} ∪ {b1, . . . ,bi}|+ |{an−i, . . . ,an} ∪ {bn−i, . . . ,bn}|. (2.5)

The final similarity score between studies A and B based on their ranked lists
of results is the weighted sum of all partial overlaps, which is calculated as fol-
lows:

S =
n∑
j=1

wj ·O(j), j ∈ {1, . . . ,n}. (2.6)
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Here, wj denotes the rank-dependent weight at rank j. The weighting function wj
is defined as:

wj = e−α·j, j ∈ {1, . . . ,n} (2.7)

where α is a tuning parameter which has to be individually tuned for each compar-
ison.

The tuning parameter α determines not only how much weight is put on the top and
bottom ranks in the calculation of the overall score, but also how many genes or
metabolites are used to determine the similarity between two ranked lists because
the weights decay exponentially and approach zero with increasing ranks (Equation
2.7). For choices of large α, only the top ranking up- and down-regulated molecules
are considered for the comparison of the ranked lists, whereas for choices of small
α, more and more molecules up to the middle of the ranked lists are considered to
be ›biologically relevant‹.

Instead of arbitrarily choosing an α, we searched for an optimal choice of α by
resampling as described in [141]. To this end, we used the orignial datasets (gene
expression intensities, metabolite levels) of studies A and B. From these datasets,
k random subsamples were drawn so that each subsample contained 80% cases and
controls from each study. For each of the k subsamples, the differential analyses
were done and the ranked lists generated. As a result, we obtained two sets, each
containing k ranked lists, one set for the results based on the subsamples from study
A, and one for those based on the subsamples of study B. Then, the similarity
scores for all pairs of ranked lists from both sets were calculated, which gave us
a list of k similarity scores Ss = {ss1 , . . . ,ssk

} (signal). To get an estimate for
random similarity scores for studies A and B, the complete resampling procedure
was done on another k subsamples. In this run, however, the class labels within
the datasets of study A and study B were shuffled beforehand. As a result, we
obtained a second list Sn = {sn1 , . . . ,snk

} of k random similarity scores calculated
on noise.
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The resampling was done for l different choices of α. To determine an optimal
choice of α for the comparison of studies A and B, we calculated the Partial Area
Under the Curve (pAUC) score, which measures the ›separability‹ of signal and
noise scores. The pAUC for one particular α ∈ {α1, . . . ,αl} is the integral of the
corresponding Receiver Operating Characteristic (ROC) function for this α over a
given range:

pAUCα(t0,t1) =
t1∫
t0

ROC(t) dt, t0,t1 ∈ [0,1] (2.8)

where the ROC function is defined by the True Positive Rate (TPR) and the False
Positive Rate (FPR):

TPR(t) = |{ss ∈ Ss|ss ≥ t}|
k

(2.9)

FPR(t) = |{sn ∈ Sn|sn ≥ t}|
k

, t ∈ St, St = {ss ∈ Ss ∨ sn ∈ Sn}. (2.10)

Here, k = 1,000 resamples were drawn for each choice of α, i.e. 1,000 subsamples
from the original data and 1,000 subsamples from the data with shuffled class labels.
For the pairwise comparisons of the four mouse models of NAFLD (129, B6J, B6N,
C3H), we specified a set of 20 α so that in each case, the 25 to 500 top and bottom
ranked genes (i.e. 50 to 1,000 ranks in total) were considered. For the comparison
of the changes in metabolite levels in humans and in the db/db mouse model, we
specified a set of 30 α, considering the 5 to 150 top and bottom ranked metabolites
(that is 10 to 300 ranks in total). According to Yang et al. [141], the α whose ROC

function achieves the greatest pAUC score for FPR values from 0 to 0.1 was chosen as
the optimal tuning parameter for the respective comparison.

The statistical significance for the final similarity score for two lists was empirically
determined using 1,000 random rankings of these lists.
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2.6.6 Examining local overlaps of differential gene
expression or metabolic traits between strains or
species using the rank-rank hypergeometric
overlap

To examine local overlaps of ranked gene expression changes among the four NAFLD

mouse strains or of ranked changes in metabolite levels between humans and the
db/db mouse model, which in contrast to the weighted sum approach are not limited
to the top- and bottom-ranks, we applied the Rank-Rank Hypergeometric Overlap
(RRHO) method. Here, the optimized implementation of the RRHO method [142]
was used.

In brief, given two studies A and B with the results of the differential analyses
summarized in lists LA = {a1, . . . ,an} and LB = {b1, . . . ,bn}, respectively. Here,
LA and LB contain the names of the n molecules (e.g. gene names or metabolites)
measured in both studies, ranked by the individual effects (Methods 2.6.3, Equation
2.7). For each combination of i,j ∈ {1, . . . ,n}, the RRHO determines the over-
or under-representation of overlapping molecules within subset LAi

up to rank i

in LA and LBj
up to rank j in LB. The statistical significance for observing an

overlap of size k between LAi
and LBj

is given by the hypergeometric probability
distribution:

h(k; i, j, n) =

(
j
k

)(
n−j
i−k

)
(
n
i

) , i,j ∈ {1, . . . ,n} (2.11)

where k denotes the number of overlapping molecules between the subsections of LA
and LB given the current rank combination (success in sample). Because the hyper-
geometric probability distribution is symmetric, an over-representation between LA
up to rank i and LB up to rank j is equivalent to an under-representation between
LA up to rank i and LB from rank j downwards.
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Plotting the −log10-transformed hypergeometric p-values for all combinations of i,j
in a heatmap for example, different types of overlap between studies such as full
correlation or partial overlaps can be revealed, where the overlaps with the smallest
hypergeometric p-values can be used as an estimate for the total accordance between
results from study A and study B [142].

Note that the actual computation of the hypergeometric p-values was done on binned
data, meaning that not every combination of i,j was tested. Instead, bins of size
n · 10−2 were used for the computation of the RRHO, with n denoting the total
number of genes (22,030) or measured metabolites (319).

2.6.7 Selection of joint and disjoint metabolic changes
in humans and db/db mice

To dissect the changes in the blood metabolomes of humans and db/db mice with
T2DM and obesity in more detail, we defined sets of joint and disjoint metabolic
changes based on their effect directions and statistical significance.

Generally, we distinguished between joint and disjoint metabolic effects. Metabol-
ites that reached statistical significance after Bonferroni correction (α = 5%) in
humans and the db/db model were, irrespective of their effect direction, regarded
as jointly affected in both species. Moreover, to include also borderline cases, we
considered metabolites that meet the Bonferroni criterion (α = 5%) in one, and the
less stringent FDR < 1% in the other study also to be jointly affected. Correspond-
ingly, metabolites with p-values below 0.05 after Bonferroni correction in human
and FDR greater than 1% in the db/db mouse model and vice versa were regarded
to be distinctly affected in humans or mice.

We further distinguished the sets of joint effects into metabolites which changed in
the same direction (e.g. metabolites whose levels are increased in od humans and
db/dbmice) and those changing into different directions (i.e. metabolites whose levels
are increased in od humans but decreased in db/dbmice and vice versa).
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Note that metabolites which were measured more than once (Table 2.3) were con-
sidered as jointly affected in human and mouse if one of the individual metabolic
measures met the selection criterion.





Chapter 3

Comparative transcriptomics in four mouse
models of diet-induced non-alcoholic
fatty-liver disease: universal and unique
Adaptions in their genetic
responses

This chapter bases on a collaboration with the Institute of Experimental Genetics
of the Helmholtz Center Munich. The goal of this cooperation was the deep phen-
otypic comparison of four genetically heterogenous mouse models commonly used
for the study of NAFLD to determine similarities and strain specific phenotypic fea-
tures under highly standardized conditions. In this context, I contributed to the
interpretation of the liver transcript signatures including the preprocessing of the
measured messenger RNA (mRNA) microarrays, their differential anaylsis and the
set-based meta-analysis of differentially expressed genes across strains. The results
of this study were published in Kahle et al. [132].

In addition, I performed a comprehensive meta-analysis of the transcript signatures
measured in this collaborative study that goes beyond the simple set-based com-
parison of significant results as presented in the publication. Here, I developed a
generic workflow for the comparative analysis of the genomic repsonses in the differ-
ent mouse strains. In contrast to established meta-analysis workflows, this workflow

63
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combines correlation analysis with rank-based statistics and set-based meta-analysis
methods to characterize similarities and differences between studies in an unbiased
fashion, covering several levels of detail, starting at the global level (correlation,
rank-based statistics) and ending up with the comparison of single transcripts (rank-
based, set-based). Most imporantly, I aimed to avoid assumptions that hamper the
transfer of the workflow to other scenarios, i.e. other studies, data types or even
species. As a result, I was able to use this workflow for the cross-species compar-
ison of metabolic signatures between human and mouse as presented in Chapter
4.

In the following, I introduce the generic meta-analysis workflow and examplify its
application to mRNA microarray profiles measured in the liver from the four dif-
ferent mouse models of NAFLD, and discuss its potential for the comprehensive
comparison of these mouse models on the molecular level based on their genomic
repsonses.

3.1 Research Design

To estimate the reproducibility of genetic responses across different mouse strains,
I investigated the transcriptomic profiles from four genetically heterogenous mouse
strains for the study of NAFLD. The study was based on a total number of 72 liver
samples from 129, B6J, B6N, and C3H mice: 30 animals exposed for 21 days to a HFD

to induce the NAFLD phenotype and 42 control animals fed a LFD. All samples were
phenotypically characterized using key parameters of clinical chemistry and histolo-
gical stains. In addition, in each liver sample, the expression levels of 22,030 genes
were measured using mRNA micro arrays. The relative expression changes (›gene ex-
pression traits‹) of these genes were determined between HFD and LFD groups by dif-
ferential analysis for each of the four mouse strains separately.

Based on the results of the differential analyses between HFD and LFD groups within
each model, for each pairwise comparison between the four models, I examined the
overall agreement of changes in the genes’ expression in response to the HFD induced
NAFLD phenotype. To estimate the global agreement between the models’ responses,
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Figure 3.1 – Schematic workflow of the comparison of the transcriptomic responses in
response to diet induced NAFLD in livers of 129, B6J, B6N, and C3H mice.

I used correlation analysis and calculated the weighted sum on the ranked results.
To detect non-linear and local correlation trends, I used the RRHO hypergeometric
overlap statistic. Finally, to characterize the effects of NAFLD on the expression of
individual genes and to determine how well these effects replicate across the four
strains, I used a set-based approach.
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3.2 Results

3.2.1 Phenotypic effects of HFD exposure

We measured anthropometric and clinical features to examine the phenotypic effects
of the HFD and LFD on animals of each strain. Except for the strain 129, all control
animals that were fed the LFD did not show significant differences in whole body
mass and whole body fat mass between the start of the study and the time of sacrifice
(Figure 3.2, A-B). LFD fed 129 mice gained both whole body mass and whole body
fat mass over the survey. We observed a small increase of hepatic triacylglycerol
concentrations (averaged over three timepoints in each study) in response to the
LFD in control mice from all four strains, ranging from 1.5% to 2.5% in B6J and 129,
respectively (Figure 3.2, C).

Without exception, the HFD fed mice displayed an increased body mass and whole
body fat mass at the time of sampling as compared to the start of the study (Figure

Figure 3.2 – Clinical chemistry of key parameters measured for all four models. Closed
bars = HFD; Open bars = LFD; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; Figure
adopted from Kahle et al. [132].
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3.2, A-B). Histological stains of liver tissue revealed that these increases in body
mass and fat mass were paralleled by an extension of hepatic lipid-storage (Figure
3.2, C; Figure 3.3). In all four strains, body mass, whole body fat, and hepatic
triacylglycerol concentrations were significantly higher in the HFD groups than in
the LFD group (Figure 3.2, A-C).

Figure 3.3 – Histological stains of liver tissue. Neutral lipid (red) in liver tissue of an-
imals exposed to HFD (upper panel) or LFD (lower panel). Nuclei (blue) are visualized with
hematoxilin. Shown are 20× and 100× magnifications. Figure adapted from Kahle et al. [132].

In strains 129, C3H, and to a lesser extend in B6N, we observed significant increases
in plasma insulin concentrations between HFD and LFD samples (Figure 3.2, D).
In contrast, in strain B6J the HFD did not significantly change the plasma insulin
concentrations as compared to the LFD. In B6N, but not the other three models, the
concentration of plasma glucose was significantly higher in HFD than in LFD samples
(Figure 3.2, E).

3.2.2 Global accordance of differential gene expression
across models

Pairwise correlations of the transcript signatures based on all
22,030 measured gene expression changes

To examine the agreement of the gene expression changes in the liver transcriptomes
of the four mouse strains of NAFLD on the global level, I determined the pairwise cor-
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relations over the relative expression changes (log2 fold changes) in the four strains.
For each of the six pairwise comparisons between the strains 129, B6J, B6N, and C3H,
the correlation over the changes in all 22,030 measured genes is significant (Meth-
ods 2.6.4). The comparisons B6J×B6N, 129×B6J, and B6N×C3H reveal significant
pairwise correlations greater than 0.2. In contrast, for 129×B6N and 129×C3H the
correlations are below 0.1 (Figure 3.4), indicating slightly smaller overall similarities
between these strains.

Pairwise correlations of transcript signatures based on
›responding‹ genes

To verify whether the similarity across the four mouse strains is greater for ›respond-
ing‹ genes that change in response to NAFLD than for all 22,030 genes, I constrained
the individual datasets to genes with absolute linear fold changes greater than 1.3
between the HFD and the LFD group and repeated the correlation analysis. Consider-
ing only responding genes, the correlations of the gene expression changes improved
for all six pairwise comparisons between models (Figure 3.5). I found strong and
significant correlations for the pairwise comparisons of strains 129, B6J, and B6N (r
= 0.84-0.87; p-values < 0.001), whereof the two closely related strains B6J and B6N

featured the highest correlation (r = 0.87; p-value < 0.001). In contrast, the correl-
ations of C3H versus the other three strains were smaller, with 129×C3H correlating
the least (r = 0.21). In C3H, the expression of many genes changed to the opposite
direction in response to the HFD exposure as compared to the other three strains
(Figure 3.5, quadrants II and IV).

Hierarchical clustering (Manhattan distance, Ward’s method) of the four strains
based on their gene expression changes in response to the HFD (absolute linear fold
change greater than 1.3) illustrates the high similarity between the strains B6J, B6N,
and 129, while the log2 fold changes of the genes’ expression in strain C3H appear to
be different (Figure 3.6).
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Figure 3.4 – General similarity of gene expression changes between HFD and LFD
groups in the four models of NAFLD. Scatterplots and correlation coefficients r (Spearman
correlation) of the gene’s log2 fold changes) are plotted for each pairwise comparison between
the four mouse strains 129, B6J, B6N, and C3H. Regression lines are depicted in blue.
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Figure 3.5 – General similarity of expression changes in responsive genes between
HFD and LFD groups in the four models of NAFLD. Considering only responsive genes
with absolute linear fold changes greater than 1.3, scatterplots and correlation coefficients r
(Spearman) of the gene’s log2 fold changes) are plotted for each pairwise comparison between
the four mouse strains 129, B6J, B6N, and C3H. Regression lines are depicted in blue.
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Figure 3.6 –Hierarchical clustering of models of Non-Alcoholic Steatohepatitis (NASH).
For each study pair, the Manhattan distances between the log2 fold changes of the genes’
expression with absolute linear fold changes greater than 1.3 were calculated and subsequently
clustered using Ward’s method.

Global similarity of transcript signatures in terms of the
weighted-sum rank-based statistic

Correlating the effect sizes (log2 fold changes, cf. Methods 2.6.4) across independent
studies is either sensitive to non-responding genes with small changes in their expres-
sion or subject to selection bias when defining an arbitrary cut-off to exclude these
non-responding genes. In my workflow for comparative omics analysis, I address
this issue by applying additional ranked-based statistics to determine the similarity
of gene expression changes in response to the HFD induced NAFLD phenotypes in
the four mouse models.

For each strain, I ranked the 22,030 genes according to their −log10-transformed
p-value from the differential analysis multiplied by the sign of the log2 fold change
(Methods 2.6.3). Based on these ranked lists of gene expression changes, I calculated
for the six pairwise comparisons between the strains 129, B6J, B6N, and C3H the
weighted summeasure (Methods 2.6.5). Here, the tuning parameter α determines the
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number of ›biologically relevant‹ genes that are considered for the calculation of the
similarity of the individual study pairs. For each comparison, the weighted sums for
the same 20 choices of α were calculated, so that between 25 and 500 top and bottom
ranked gene expression changes were considered to determine the similarity between
strains. For all choices of α, the weighted sums for the six pairwise comparisons
were significant (p-values < 0.01). Although all models showed significant pairwise
overlaps among the ranked gene expression changes, I found substantial differences
in the mean similarity scores of the individual comparisons. On average, the ranked
gene expression traits displayed the smallest similarity scores for the comparisons
of 129×C3H and 129×B6N, while the comparison of B6J×B6N achieved the greatest
weighted sum (Table 3.1).

Table 3.1 – Weighted sum over top ranked gene expression traits

# Genes 129×B6J 129×B6N 129×C3H B6J×B6N B6J×C3H B6N×C3H

...
...

...
...

...
...

...
425 660.31 592.15 516.21 1267.51 808.51 1166.22
450 740.28 661.95 578.31 1416.03 914.26 1313.46
475 824.43 734.94 643.29 1571.50 1025.69 1468.60
500 912.72 811.05 711.10 1733.75 1142.67 1631.49

Mean score 323.55 289.08 249.84 626.44 382.66 564.09

Empirical P-Value = 0 for all scores.

To select an optimal tuning parameter α for each comparison, I resampled the un-
derlying gene expression data and the same data with randomized group labels
(HFD, LFD) 1,000 times. From the 20 choices of α, I chose the one which achieved
the best separation between similarity scores calculated from the 1,000 subsamples
drawn from the original datasets (signal) and those calculated from the 1,000 sub-
samples drawn from the datasets with randomized class labels (noise). The pAUC

score (Methods 2.6.5) was used as a measure of separability. For all comparisons, α
= 0.023 achieved the largest pAUC score, i.e. results in the best possible separation
between signal and noise scores, considering the top and bottom 500 gene expression
traits. Based on this choice of α, strain 129 shows the smallest similarity to the three
other models (weighted sums 711-913), while with 1,631 and 1,734, the weighted
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sums were almost twice as large for the comparisons of B6N×C3H and B6J×B6N,
respectively (Table 3.1).

Local correlation patterns between transcript
signatures

Both correlation analysis and the weighted sum approach determine similarity based
on all effects or those with the highest ranks but do not consider local correla-
tion trends. To identify and visualize such local patterns of similarity between two
strains, I calculated the RRHO for all pairwise comparisons of the strains (Figure
3.7). Given two lists of ranked gene expression changes (Methods 2.6.3), the RRHO

determines the over- or under-representation of common genes between both lists,
where the combination of two rank thresholds i and j (one for each list) limits the
comparison up to rank i in the first list and up to j in the second list. The RRHO is
calculated for all possible rank combinations. Because the lengths of the individual
ranked lists are identical for all strains, the results from the RRHO can be directly
related to each other.

I found significant overlaps of gene expression changes for all pairwise comparisons.
In the case of the comparisons of 129×B6J, B6J×B6N, and B6N×C3H, the ranked
lists of gene expression changes overlapped in large parts. For the comparisons
of 129×B6N, 129×C3H, and B6J×C3H, the overlaps between the ranked lists were
smaller. In particular, for the comparisons of 129×B6N and 129×C3H the overlap
was rather limited to the top and bottom ranked gene expression changes (Figure
3.7).

Considering ›up-regulated‹ genes whose expression is higher in HFD than LFD mice
and which are ranked at the tops of the ranked lists, B6N and C3H displayed the
greatest similarity, i.e. the most significant enrichment for common gene expression
changes (p-value = 2.19× 10−186). Of 273 top up-regulated genes in each of the
two studies, the strains B6N and C3H had 175 in common (Figure 3.8). For the
comparison of B6J×B6N the most significant enrichment was found for 319 common
genes (p-value = 3.84× 10−154) which are shared between the 1,789 and 746 top
ranked up-regulated genes in B6J and B6N, respectively. In terms of the number of
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Figure 3.7 – Pairwise local overlaps of gene-expression changes. Heatmaps of hypergeo-
metric p-values (-log10) for each rank combination between study pairs (x- and y-axes).

shared genes, I found the greatest similarity between the strains 129 and B6J, which
share 475 up-regulated genes (p-value = 2.54× 10−111). The remaining comparisons
(129×B6N, 129×C3H, and B6J×C3H) display less significant enrichments of common
up-regulated genes (p-value = 7.6× 10−46-1.61× 10−52).

Among ›down-regulated‹ genes (i.e. genes whose expression is higher in the LFD than
HFD groups) which are ranked at the bottoms of the ranked lists, strains B6J and
B6N show the greatest similarity (overlap 209; p-value = 3.04× 10−134). In terms of
the number of common down-regulated genes, strains 129 and B6J show the largest
agreement (overlap 306; p-value = 5.73× 10−106) again. For the comparisons of
129×B6N and 129×C3H, the sizes of enriched sets of shared genes are smaller (overlap
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45-81) and less significant (p-value = 2.42× 10−47-2.56× 10−55) as compared to the
RRHO between the remaining strains.

3.2.3 Shared and species-specific gene expression
traits

This part of my workflow was the basis of the comparative transcriptomic analysis
published in Kahle et al. [132].

Differential analysis to define sets of statistically significant
gene expression changes within each strain

In addition to general similarities across the genomic responses of the four mouse
models in response to the HFD induced NAFLD phenotype, I studied the individual
gene expression changes in more detail. In particular, I looked into the individual
genetic responses of each strain and searched for patterns which are common to all
four strains, some but not all strains, or wich are strain-specific. To this end, I
defined sets of statistically significantly changed genes between the HFD and LFD

groups in each strain by filtering the 22,030 measured genes for responding genes, i.e.
genes with absolute linear fold changes greater than 1.3) for each strain separately.
As a result, I obtained four sets of responding genes, one for each strain. For
each of these sets separately, the moderated t-statistic was calculated on the log2

fold changes of the individual genes to determine the statistical significance of their
changes of expression.

Among the four strains, with 87 significantly affected genes (Bonferroni adjusted
p-value, α = 5%) B6N displays the most changes between the HFD and LFD group
(Figure 3.9). In strains C3H and B6J, 76 and 49 genes are differentially expressed,
respectively. Strain 129 showed the fewest changes. Here, the expression of 15 genes
is significantly altered in the livers of mice after 21 days of HFD exposure. In strain
129, 87% of the significantly altered genes are up-regulated (i.e. their expression is
higher in HFD than LFD fed mice). By contrast, with 47% and 53%, respectively, the
proportions of up- and down-regulated genes are almost the same. In turn, in strains
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Figure 3.8 – Overlapping sets of top- and bottom-ranked gene expression traits which
display the smallest hypergeometric p-values. For each pairwise comparison, the rank-
rank combination achieving the smallest hypergeometric p-value is shown. Divided by top-
and bottom-ranked gene expression traits.
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Figure 3.9 – Significantly altered genes in the livers of HFD treated mice. The number
of significantly up- and down-regulated genes (y-axis) in each strain, according to conservative
Bonferroni correction (α = 5%; filled bars) and less stringent FDR (FDR < 1%; shaded bars).

B6N and C3H more genes are up-regulated than down-regulated in mice exposed to
the HFD than in those exposed to the LFD (Figure 3.9).

To find out whether the individual genetic responses to the HFD induced NAFLD

phenotype are enriched for genes involved in specific metabolic pathways, I ex-
amined the sets of significantly altered genes for overrepresentation of genes involved
in the same metabolic pathways (KEGG) for each of the four strains separately.
The KEGG pathways ›drug metabolism‹ (12.2-53.6 fold; p-value = 4.99× 10−4-
3.99× 10−14) and ›metabolism of xenobiotics by cytochrome P450‹ (13.8-60.9 fold;
p-value = 3.05× 10−4-5.01× 10−13) both were enriched in all four strains (Figure
3.10). Some strains showed also enrichment in closely related pathways including
›retinol metabolism‹ (B6J and B6N), ›glutathione metabolism‹, or ›linolenic acid
metabolism‹ (129 and B6J). In strains B6J and C3H, but not 129 or B6J, genes in-
volved in ›fatty acid metabolism‹ and ›PPAR signalling pathway‹ were also signific-
antly overrepresented. In B6N, three more pathways related to fatty acid metabolism
and PPAR signalling were enriched (Figure 3.10).
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Figure 3.10 – Enrichment maps of significantly altered genes in the four strains. Circles
indicate enriched pathways (FDR < 1%) among the sets of differentially expressed genes. Edges
between circles indicate the pairwise overlap of enriched genes within two pathways, with thick
edges corresponding to greater overlap than thin edges. Some pathways show enrichment in
all four strains (purple), some in two (green), and some are only enriched in one strain (black).

Replication of significant gene expression changes across
strains

To determine which genes were similarly altered in more than one strain, I selected
significantly expressed genes (Bonferroni adjusted p-value; α = 5%) with unadjusted
p-values below 0.05 in the remaining strains (Methods 2.6.7); this way, I created sets
of joint and disjoint gene expression changes.
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Figure 3.11 – Overlapping gene expression traits that are significantly associated with
the HFD exposure. Out of 22,030 initially measured genes, 95 are significantly affected in at
least one of the four models of NASH. Of these genes, 16 change significantly between HFD
and LFD groups in all four strains.

Out of the 22,030 initially measured genes, a total of 141 genes were differentially
expressed between the HFD and LFD groups in at least 1 out of 4 strains. Among
these, the results of 36 genes replicated in the remaining strains, i.e. these genes
were ›jointly affected‹ in all 4 mouse strains (Figure 3.11). The remaining gene
expression traits were either shared between three or two, but not all strains. Out
of 141 genes which were differentially expressed in 1 strain, 42 replicate in another
2 strains; 19 genes replicate in one more strain; finally, 22 genes did not replicate in
any other strain, i.e. these genes are significantly affected in one strain but not in
all the others.

Looking for over- or under-represented genes involved in the same metabolic path-
ways among the 36 genes whose expression was jointly altered in all four strains,
I found that they were enriched for genes from three closely related metabolic
pathways (KEGG): ›metabolism of xenobiotics by cytochrome P450‹ (33.1 fold,
p-value = 1.33× 10−9), ›drug metabolism‹ (32.8 fold, p-value = 6.46× 10−11), and
›glutathione metabolism‹ (26.3 fold, p-value = 2.61× 10−5); thereof, ›metabolism
of xenobiotics by cytochrome P450‹ and ›drug metabolism‹ were enriched among
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the individual lists of significantly affected genes in all four strains (see Figure
3.10).

Except for the cytochromes Cyp3a44, Cyp3a11, and Cyp3a41a, 33 out of 36 jointly
affected genes changed to the same direction in all four strains (Figure 3.2). While
Cyp3a44, Cyp3a11, and Cyp3a41a were down-regulated in strains 129, B6J and
B6N, their expression was stimulated by the HFD induced NAFLD phenotype in
C3H.
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Table 3.2 – 36 genes that are significantly affected across all four strains.
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3.3 Discussion

NAFLD and T2DM are closely related, with NAFLD often seen as an early manifesta-
tion of diabetes in the liver. Along with obesity and IFG, NAFLD is assumed to be
a key factor of the metabolic syndrome, a collection of risk factors linked to T2DM.
Targher et al. reported that in their study cohort, 70% of people with diabetes had
also NAFLD [25]. It is clear that both genetic and environmental factors contribute
to the disease’s progress. In the NHGRI-EBI GWAS Catalog, nine NAFLD sus-
ceptibility loci are listed (www.ebi.ac.uk/gwas; state as of 07/2015). However, the
disease’s pathophysiology is not fully understood and the molecular mechanisms of
NAFLD as well as its link to T2DM remain to be revealed.

A common approach to study the mechanisms of human diseases are functional
studies in animal models, in particular mouse models. Several models in differ-
ent mouse strains have been established for the study of NAFLD. For example, in
129, B6J, B6N, and C3H mice, HFD feeding results in phenotypes very similar to
NAFLD. However, results obtained in one model are often irreproducible in other
models. Besides different experimental conditions, the different genetic constitutions
of strains is the main reason for that. In a collaborative study, comparing the HFD

induced NAFLD phenotypes of the genetically heterogenous strains 129, B6J, B6N,
and C3H under similar conditions, revealed slight differences in their phenotypes
[132].

The key to understand these differences lies clearly in their unique molecular con-
stitution. In this chapter, I took a first step to a systematic characterization of
different mouse strains for NAFLD research based on their liver transcript signa-
tures. Whole genome mRNA expression profiling in 72 liver samples of four ge-
netically heterozygous inbred mouse strains (129, B6J, B6N, C3H), which are com-
monly used as models of NAFLD, enabled me to systematically assess the concord-
ances and discordances of the genetic responses to HFD induced NAFLD across these
strains.



84 3 Comparative transcriptomics in mouse models of NAFLD

HFD exposure causes significant gains of body weight and fat
mass

After 21 days of HFD exposure, whole body mass and whole body fat mass was
significantly increased in all four strains as compared to baseline levels (Figure 3.2,
A-B). In comparison to the other three strains, B6J mice on the HFD gained less
body weight and fat mass during the study. In B6J, but not the other strains, LFD
fed mice displayed a slight reduction (1%) in their terminal body weights (Figure
3.2, A-B). Except for the strain B6J, the plasma insulin levels were significantly
increased in the HFD groups as compared to the corresponding LFD controls (Figure
3.2, D). In strain B6J, and even more in strain B6N, the levels of circulating glucose
were increased in the HFD group (Figure 3.2, E).

In all four strains, the gain of body weight that is parallelled by an increase of whole
body fat mass reflects an increase of adipogenesis and lipogenesis in response to the
HFD that appears to be smaller in B6J than in the other strains. Both adipogenesis
and lipogenesis are insulin-dependent processes [143]. It is known that B6J mice are
glucose intolerant, featuring decreased glucose-stimulated insulin secretion [144].
Toye et al. showed that the reason for that is a loss-of-function mutation in the gene
coding for Nicotine amide-Nucleotide Transhydrogenase (Nnt), an enzyme involved
in mitochondrial energy metabolism. Deletion and lower expression of the Nnt gene
in B6J causes a relative decrease in insulin secretion and impaired glucose tolerance
in comparison to other strains, where the gene expression of Nnt is higher [144].
Assuming that insulin stimulated adipogenesis is responsible for the weight gain
under HFD exposure, it is likely that an impaired insulin secretion in B6J mice
because of the Nnt mutation is responsible for the smaller terminal body weight and
whole body fat mass among these mice.

HFD exposure manifests in different grades of hepatic
steatosis

Hepatic Triacylglycerol (TAG) levels were raised in all four strains after 21 days of
HFD exposure (Figure 3.2, C), clearly indicating increased lipid storage in their livers
(›hepatic steatosis‹) – which is a hallmark of NAFLD. The bar-plot of the terminal
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TAG levels roughly resemble the corresponding bar-plots of the whole body weight
and whole body fat mass (Figure 3.2, A-C), suggesting a direct relationship between
weight gain and the degree of lipid storage in the liver. In addition to differences in
terminal levels of TAG, histological staining revealed that the appearance of hepatic
steatosis differed among strains; while in strains 129 and C3H, the lipid vesicles in
the liver were generally large, resembling a form of ›macrovesicular steatosis‹, B6J

and B6N stored hepatic TAG in rather small lipid vesicles, which is comparable to
›microvesicular steatosis‹ (Figure 3.3).

Considering that the liver is insulin responsive and that hepatic fatty acid meta-
bolism is affected by insulin action, I was surprised that, despite their low insulin
secretion, HFD fed B6J mice showed similar increases of terminal TAG levels and signs
of hepatic steatosis. There are mainly two sources of fatty acids for TAG synthesis
in the liver: first, an increased de-novo lipogenesis in liver; and second, an increased
uptake of circulating Nonesterified fatty acids (NEFAs) by the liver. Recently, Vatner
et al. showed that with more than 60%, the greater part of hepatic TAG attributes
to the esterification of circulating NEFAs taken up by the liver rather than fatty
acids that are newly synthesized in de novo lipogenesis, accounting for less than
20% of hepatic TAG [145]. The authors further showed that, in contrast to de novo
lipogenesis, esterification of available fatty acids is primarily dependent on substrate
availability and not hepatic insulin action [145]. Such an insulin independent mech-
anism leading to TAG accumulation in liver would explain why, in comparison to the
remaining three strains, B6J mice displayed similar increases in hepatic lipid storage
despite smaller raises in insulin levels after 21 days of HFD exposure (Figure 3.2,
D).

Pairwise correlations of gene expression changes are small across
the four strains

After examining the phenotypic features of the HFD induced NAFLD phenotypes
in the individual strains, I focussed on the genomic responses in their livers. To
estimate the overall similarity of their genetic responses, I calculated Spearman’s
correlation coefficient on the log2 fold changes of all 22,030 measured genes for
each pairwise comparison between strains: 129×B6J, 129×B6N, 129×C3H, B6J×B6N,
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B6J×C3H, and B6N×C3H. Correlating the fold changes of all 22,030 measured genes,
I found small but significant correlations (Spearman’s rho 0.02-0.22; p-value < 0.01)
for all six pairwise comparisons (Figure 3.4). Considering the close genetic rela-
tionship of the two C57/BL substrains B6J and B6N, I observed surprisingly small
correlations between them.

Many points in the middle of the scatterplots that lie close to the origin indicate
that many of the 22,030 expression changes between the HFD and LFD groups are
negligible (i.e. their expression is likely to be not affected by the HFD induced
NAFLD phenotype) and therefore irrelevant in our setting; hence, I assumed that
correlating all gene expression changes (including those that do not change with
the HFD induced NAFLD phenotype) underestimates the true similarity between the
genomic responses.

There is a clear concordance among biologically relevant genes
across strains

To obtain more realistic estimates, I constrained the comparison to genes that are
›biologically relevant‹ in the genetic response to the HFD induced NAFLD phenotype.
To this end, I pursued two different strategies: first, I constrained the individual
datasets to genes with a minimal absolute fold change of 1.3 between HFD and LFD

groups and re-calculated the pairwise correlations (Spearman’s correlation coeffi-
cient). Second, I calculated the weighted sum over the ranked gene expression
changes for each pairwise comparison between the four strains.

Thresholding constrained the individual datasets to 561, 329, 436, and 341 genes in
129, B6J, B6N, and C3H, respectively (Table 2.2). Correlating the log2 fold changes of
these biologically relevant genes across strains, the Spearman correlation coefficients
became greater for all pairwise comparisons (Spearman’s rho 0.50-0.87). Except for
the comparisons of 129×C3H and B6J×C3H, the scatter-plots resemble almost diag-
onal patterns (Figure 3.5), indicating that changes of genes with linear fold changes
greater than 1.3 are highly concordant across these strains.

In contrast to choosing an arbitrary threshold, the weighted sum approach dynam-
ically choses an optimal weighting factor for each comparison by resampling. This
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weighting parameter defines how many top- and bottom-ranked genes are considered
for the calculation of the similarity between two strains, and how much weight each
single rank contributes to the total sum (Methods 2.6.5); hence, the more similar
the gene expression changes are between two studies, the more genes are considered
for the calculation and the total weighted sum becomes larger. In our setting, the
weighting parameters identified in the resampling procedures were identical for the
six pairwise comparisons. In each case, the 500 top- and bottom-ranked gene ex-
pression changes were considered for the calculation of the corresponding weighted
sums, suggesting that the genomic responses of all four strains are generally similar
(Table 3.1).

Both varying correlation coefficients between the constrained datasets and differ-
ing weighted sums of the ranked gene expression changes suggest closer similarity
between some strains than others. The two C57/BL substrains B6J and B6N achieve
the highest and most significant correlation (Spearman’s rho = 0.87) and the greatest
total weighted sum (weighted sum of the top and bottom 500 genes, 1,734); thus,
in terms of their genetic responses to the HFD induced NAFLD, the strains B6J and
B6N seem to be the most similar among all four strains. In line with that, contrast-
ing their log2 fold changes reveals an almost diagonal pattern (Figure 3.5), with
few genes responding in both strains but changing to different directions in the
individual strains. Considering their common parental strain (C57/BL), it is not
surprising that B6J and B6N are closest in terms of their genomic responses in the
liver in response to the HFD induced NAFLD phenotype. In contrast to that, the
constrained fold changes in 129 and C3H correlate weakly (Spearman’s rho = 0.21),
and the weighted sum of their ranked gene expression changes is smaller (711) than
those of the remaining comparisons (Table 3.1). It appears that many genes with
greater fold changes in strain 129 are much less affected in strain C3H, and vice versa
(Figure 3.5); moreover, many genes change to opposite directions in 129 and C3H,
which explains the small correlation between these two strains. Similarly, genes with
such contrary effects lie at the opposite ends of the ranked lists and reduce the total
score of the weighted sum approach. Based on these results, it appears that, among
all four strains, 129 and C3H have the least in common in terms of their genomic
responses to the HFD induced NAFLD.
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While the results for the comparisons of B6J×B6N and 129×C3H were in line, the
results for the remaining comparison are slightly different for the correlation and
the weighted sum approach. Correlation coefficients between the constrained gene
expression changes suggest that the NAFLD related gene expression changes in the
liver of strains B6J, B6N, and 129 are more similar as compared to the genomic
response in C3H (Figure 3.5). Clustering the pairwise distances between the log2

fold changes (hierarchical clustering, Ward’s method; Manhattan distance) emphas-
izes this observation, with B6J and B6N clustering closely together, 129 clustering
nearby, and C3H being more distant to the other three strains (Figure 3.6). In
contrast to that, calculating the weighted sums of the 500 top- and bottom-ranked
gene expression changes suggests that the genomic responses in the liver of strains
B6J and B6N are more similar to C3H than to 129. In particular, the strains B6N

and C3H achieve the second highest sum among all six comparisons (weighted sum
1,631), indicating that they share a considerable overlap among the 500 top- and
bottom-ranked gene expression changes, which is not evident from the correlation
results.

However, it is difficult to directly compare the results from the correlation analysis
with those of the weighted sum approach. For instance, other than the correlation
approach that works on the constrained datasets of different sizes, the weighted sum
approach initially considers the gene expression changes of all 22,030 measured genes
to determine an optimal weighting parameter; as a result, in any case the 500 top-
and bottom-ranked gene expression changes (i.e. 1,000 in total) are considered to
calculate the weighted sums between the strains. Another factor relating to different
results may be the choice of fold change cut-off used for the correlation analysis.
Because a generally valid fold change cutoff that discriminates responding from
non-responding genes does not exist, the choice of threshold (here: 1.3) is always
arbitrary and biases the results either positively or negatively. Also, the correlation
is calculated from the log2 fold changes, whereas the ranking uses information about
their statistical significance (−log10-transformed p-values). Lastly, the weighted sum
approach is likely to be not as sensible to different orderings of the effects as is the
correlation.
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Genes with greater fold changes are more concordantly affected
across strains than genes with smaller fold
changes

Correlating the constrained datasets and the weighted sum approach both con-
sider only the general similarity between the genetic responses. Moreover, both ap-
proaches determine the pairwise similarity based on the extremes (genes with fold
changes > 1.3; top- and bottom-ranked gene expression changes); hence, patterns
such as correlation trends and local overlaps between strains cannot be considered
by these approaches.

Because of that, I applied another rank-based measure, the RRHO (Methods 2.6.6).
Just like the weighted sum approach, the RRHO works on the lists of ranked gene ex-
pression changes and determines the significance of the over- or underrepresentation
of shared gene expression changes between the two studies from the hypergeomet-
ric distribution for all subsets (i.e. gene expression changes up to a certain rank).
Using this approach has the benefit that it considers also overlaps between sets of
unequal size comparable to non-linear correlation and locally limited overlaps (e.g.,
great overlap in the middle of the lists, while the top ranks are different). Visualiz-
ation of the hypergeometric p-values (−log10-transformed) using heat-maps allows
the convenient identification of such patterns.

The results of the RRHO revealed significant overlaps of different sizes across all
pairwise comparisons of inbred strains. The comparisons of B6J×B6N, 129×B6J,
and B6N×C3H all reveal significant overlaps over the complete ranked list of 22,030
gene expression changes, indicating substantial similarities among their genomic
responses. For all six comparisons, the most significant overlap, i.e. the highest
concordance between genetic responses, is found at the extremes (Figure 3.7, lower
left and upper right corners) between the top and bottom ranks. The subsets with
the most significant p-values are generally bigger for the top ranks (Figure 3.7,
lower left corners; Figure 3.11, upper panel) than for the bottom ranks (Figure
3.7, upper right corner; Figure 3.11, lower panel), suggesting that the similarities
among up-regulated genes (i.e. genes which are more expressed in HFD than LFD

mice) are greater than for down-regulated genes across the strains. Comparing
B6J×B6N and B6N×C3H revealed the most significant overlaps between these strains.
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In case of the comparisons of B6J×C3H and in particular 129×B6N and 129×C3H, the
p-values for comparisons of greater subsets (i.e. greater ranks) become quickly
insignificant, indicating less substantial similarity across their genomic responses.
These results basically reconfirm my findings from the correlation and weighted
sum approach.

Although some strains show only overlap among the most extreme gene expres-
sion changes, assuming that genes with greater fold changes ranked at the top
or bottom of the lists are biologically more relevant than genes with smaller fold
changes ranked somewhere in between, these significant overlaps between the top
and bottom ranks found for all comparisons indicate a – more or less general –
common genomic response to the HFD induced NAFLD in the liver of all four inbred
strains.

The individual genetic responses are enriched for genes involved in
the same metabolic pathways

Assessing the overall similarities of genetic responses across strains suggested that
all strains have some expression changes in common. In particular, genes which
display the greatest changes in their expression between the HFD and LFD groups
seemed to be commonly affected by the HFD induced NAFLD phenotype in all four
inbred strains.

I defined the set of differentially expressed genes in response to the HFD induced
NAFLD by selecting genes with linear fold changes greater than 1.3 and whose differ-
ential expression between the HFD and LFD groups was statistically significant after
Bonferroni correction (α = 5%) (Figure 3.9, closed bars) for each strain separately.
In terms of the number of significantly up- and down-regulated genes, the genetic re-
sponse to the HFD induced NAFLD differed across strains. While in B6N 20% of genes
were differentially affected by NAFLD, the fractions were notably smaller in strains
B6J (15%), C3H (15%) and 129 (3%). Such differences may be mainly caused by
true biological variation or undesired batch effects. Although I cannot exclude with
certainty that the latter caused these differences, regarding the study design and my
analysis strategy there are some considerations on why these differences reflect the
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genetic variation among the four inbred mouse strains: first, all experiments were
done in the same lab, all mice were held under the same standardized conditions us-
ing identical protocols, and gene expression profiling measurements were done using
the same platform (Affymetrix® GeneChip® Mouse Gene 1.0 ST), minimizing the
risk for unwanted batch effects; second, all mice received the same diets, thus the
differences in the number of differentially expressed genes are likely to be not diet
related; lastly, except for strain C3H, the sample sizes were similar among strains
and I used the same statistical methods, excluding these factors as potential sources
of bias. In addition, despite the numerical discrepancies of differentially affected
genes, the individual sets were enriched for genes with similar metabolic functions
(Figure 3.10), in particular ›drug metabolism‹ and ›metabolism of xenobiotics by
cytochrome p450‹. Cytochrome P450 (CYP) monooxygenases catalyze various en-
dogenous and exogenous compounds, particularly drugs and other xenobiotics, but
also fatty acids and steroids [146]; hence, overrepresentation of members of the CYP

family among differentially expressed genes in all four strains could be related to the
HFD feeding and may be important for the genetic adaptions in the HFD induced
NAFLD.

All four strains share major parts of their genetic responses to
HFD induced NAFLD

To determine joint and disjoint gene expression changes, I assessed the individual
sets of differentially expressed genes for replication among strains. Notably, out of
the 141 genes that were significantly altered in at least 1 of 4 strains (Bonferroni,
α = 5%), the results of 84% replicated in at least 1 more strain, and almost 26%
replicated in all 4 strains. The results of 16% of 141 genes did not replicate in any
other strain (Figure 3.11). Unsurprisingly, I found a significant enrichment of the
›drug metabolism‹ and ›metabolism of xenobiotics by cytochrome p450‹ pathways
among the genes that replicate across all four strains, suggesting an important role of
these pathways in the genetic adaption to the HFD induced NAFLD in strains 129, B6J,
B6N, and C3H. Moreover, 33 of the 36 jointly affected genes were consistently up- or
down-regulated in all 4 strains in response to the HFD, indicating high concordance
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across the genetic responses. I find that interesting, as it may relate to a conserved
genetic response in NAFLD.

In all of the four strains, the gene Vanin-1 (VNN1), which encodes the enzyme
pantetheinase, was strongly induced in mice with NAFLD (Table 3.2). This is in
line with results from another study in B6J mice, where the HFD both induced
NAFLD and resulted in significant overexpression of VNN1 [147]. Pantetheinase is an
ubiquitous, membrane bound enzyme [148] that recycles pantothenic acid (vitamin
B5); furthermore, under physiological conditions pantetheinase is the primary source
of cysteamine, a potent anti-oxidant [148]. Correspondingly, an induction of VNN1

expression might act as a counter-mechanism in response to increased oxidative
stress in mice with NAFLD, for example caused by increased fatty acid oxidation in
their steatotic livers [149].

In line with a potentially increased oxidative stress level in the livers of mice with
NAFLD, five genes coding for Glutathione S-Transferase (GST) (GSTa2, GSTa4, GSTm1,
GSTm3, GSTm6) and a sixth one coding for an aldo-keto reductase (Akr1c19) were
concertedly down-regulated in the HFD groups of all strains (Table 3.2). Their
down-regulation suggests an decreased conjugation of glutathione, another import-
ant anti-oxidant, potentially leading to an impaired defense to reactive oxygen spe-
cies in HFD induced NAFLD. Accordingly, Aleksunes and Manautou showed that
differential expression of some GST genes associates with changes in the redox state
in conjunction with oxidative stress [150].

Three genes coding for enzymes from the same CYP subfamily (CYP3a) were signi-
ficantly up-regulated in C3H and at the same time down-regulated in 129, B6J, and
B6N in response to the HFD: CYP3a11, CYP3a41a, and CYP3a44 (Table 3.2). CYPs

are regulated through the activation of various nuclear receptors, notably the preg-
nane X receptor, the aryl hydrocarbon receptor, and the constitutive androstane
receptor. From all cytochromes, CYP3a is the predominant CYP subfamily and the
major drug-metabolizing enzyme expressed in liver. The results of multiple studies
in rat suggest that their gene expression and enzymatic activity decreases with ste-
atosis and NAFLD [151–153]. In contrast to that, Baumgardner et al. showed that
NAFLD induced by overfeeding with a HFD containing much high-polyunsaturated fat
in rats resulted in the overexpression of certain CYP3a isoforms [154]. Results from
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two other studies in rats demonstrated a temporal pattern in the regulation of several
CYPs during NAFLD progression, showing that the gene expression of CYP3a gener-
ally decreased after 2 weeks, increased between 2 and 8 weeks, and decreased again
after 12 weeks [151, 152]. However, the results from both genetic and nutritional
mouse models for NAFLD are inconsistent: while in many genetic mouse models of
obesity and diabetes no alterations of CYP3a expression were found, in mouse models
where NAFLD is diet induced changes of CYP3a expression could be observed [154].
Here, I can exclude dietary factors as the source for different CYP regulation, since
the diets used in our setting was the same for all four strains.

Taken together, I showed that in four genetically heterogenous mouse strains for
the study of HFD induced NAFLD (129, B6J, B6N, and C3H), the expression of many
genes was equally affected indicating for conserved, genotype-independent genetic
adaptions to diet induced NAFLD. In particular, these genotype-independent adap-
tions in response to hepatic lipid accumulation included various genes coding for
proteins (GSTs, VNN1) which are involved in the response to oxidative stress. Hence,
the defenses against reactive oxygen species appears to be similarly impaired by the
HFD induced NAFLD phenotype in all four models. Given that most genes involved
in these genotype-independent genetic adaptions have orthologs in human, they
present promising candidates for translational functional studies on the molecular
mechanisms of NAFLD’s pathogenesis.





Chapter 4

Comparative metabolomics in obese diabetic
humans and mice: how well does the
monogenetic db/db model mimic the metabolic
alterations of type 2 diabetes?

While in the previous chapter, I compared high-troughput transcriptomics data to
determine the within-species reproducibility of findings obtained in different mouse
models for the study of NAFLD, in this chapter I focus on the cross-species com-
parison of metabolic profiles measured in mice and humans to study how well the
findings in the model correlate with the findings in humans.

To this end, I adapted the meta-analysis workflow established on transcriptomics
data presented in Chapter 3. It is important to note that as of today, there is no
established workflow for the meta-analysis of results across different species. The
primary reason for that is that current meta-analysis methods are of limited use
for this kind of analyis. For example, commonly applied meta-analysis approaches
comparing effect-sizes such as fixed effects or random effects models would be biased
by the different experimental conditions in the two studies. Similarly, approaches
which combine p-values from the individual studies into meta-p-values (e.g. Fisher’s
P, Stouffer’s Z) would be driven by the study with the greater statistical power. And
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finally, approaches which compare sets of meaningful results are obviously biased by
the selection of results (by a certain statistical test).

Here I present the first steps to a systematic metabolic characterization of mouse
models to provide a reliable basis for knowledge transfer to human. My work was the
basis of a reasearch proposal which was successfully approved for funding to char-
acterize two more mouse models for T2DM research (not presented in this thesis).
Moreover, in the context of a poster talk, I presented my results to an international
audience on the International Conference on Systems Biology in 2014. A public-
ation is currently under preparation/submitted/under revision and is going to be
published in 2016.

4.1 Research Design

Our study is based on 666 serum samples from 45 obese diabetic humans (newly
diagnosed, without any previous anti-diabetic drug treatment) and 621 healthy
humans (390 lean, 231 obese), as well as 40 plasma samples from 20 db/db and
20 wt mice. Targeted and non-targeted metabolomics were applied to measure a
broad spectrum of metabolites from all major metabolic pathways, including amino
acids (46), carbohydrates (7), cofactors and vitamins (5), metabolites related to
energy metabolism (3), lipids (189), nucleotides (5), and peptides (6). A total
of 319 metabolite measures could be detected in both murine plasma and human
serum. These measures correspond to a panel of 287 unique metabolites (see Meth-
ods 2.5.3).

Using these data, I determined the effect of obesity and diabetes on individual
metabolite levels within mouse and human in a differential analysis. To this end, I
calculated linear regression models on the metabolite levels measured in BKS.Cg-
Dock7m+/+ Leprdb/J (db/db) and Dock7m+/+ (wt) mice, and obese diabetic (od)
and lean healthy (lh) humans. Based on these results, I compared the metabolic
changes in mice and humans using correlation and rank-based statistics. Moreover, I
assessed the metabolite associations for joint and species-specific effects, which might
be relevant for the transfer of results from the model to human.
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Figure 4.1 – Schematic representation of the analysis workflow for the cross-species
comparison of metabolic changes in response to obesity and T2DM in humans and
db/db mice.

To get additional evidence about the potential reasons for joint and species-specific
metabolic changes and to characterize these in greater detail, I did another dif-
ferential analysis using additional human samples from healthy obese participants.
Calculating linear regression models on samples from obese diabetic (od) and obese
healthy (oh), and obese healthy (oh) and lean healthy (lh), I determined the indi-
vidual effects of obesity and T2DM on metabolite levels.
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The schematic workflow of the characterization of metabolic traits in serum of obese
diabetic humans and plasma of db/db mice and the cross-species comparison of these
traits is given in Figure 4.1.

4.2 Results

4.2.1 Metabolic signals of obesity and T2DM in human
serum and murine plasma

Here, it is important to note that diabetic db/db mice are inherently heavier than
their wt controls; hence, to make the results from both species better comparable, I
contrasted data from obese diabetic to lean healthy humans. To determine the effect
of obesity and T2DM on metabolite levels in human serum and the corresponding
db/db phenotype in murine plasma samples, I calculated the linear regression models
for both studies separately, including age and sex (human) or the time of sacrifice
(mouse) as covariates (see Methods 2.6.2). As a result, I obtained the estimated
effect size, the effect’s direction (i.e. whether the metabolite’s level is increased or
decreased in the diabetic group), and the effect’s respective statistical significance
for each of the 319 metabolites.

Table 4.1 – Significant metabolic traits in human and mouse

Significant changes Up Down

Contrasted study groups Bonferroni FDR Bonferroni FDR Bonferroni FDR

od×lh 96 139 51 75 44 64
db/db×wt 111 149 54 73 57 76

od×oh 80 - 43 - 37 -
oh×lh 21 - 13 - 8 -

The number of significant metabolic changes for od×lh, od×oh, and oh×lh (human), and db/db×wt
(mouse) according to the strict Bonferroni criterion (α = 5%) or the less conservative FDR criterion
(FDR < 1%).
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Contrasting samples from obese diabetic (n = 45, BMI ≥ 30 kg m−2) and lean healthy
(n = 390, BMI 18.5-25.0 kg m−2) subjects, I determined the metabolic traits associ-
ated with obesity and T2DM in human serum. Almost half (48%; 152/319) of the
319 investigated metabolites showed significantly different levels (FDR < 1%); 105
metabolites (33%; 105/319) achieved significance after conservative correction for
multiple testing according to Bonferroni (α = 5%, Table 4.1). The top 50 results for
the comparison of od×lh are shown in Table 4.2. Among the metabolites with signi-
ficant concentration differences were 99 lipids, 31 amino acids, all 8 carbohydrates,
4 nucleotides, 3 peptides, 2 cofactors or vitamins, and 1 xenobiotic metabolite. In
addition, there were 4 so-called ›unknown‹ metabolites. These unknown metabol-
ites represent well-defined signatures in the metabolomics experiments that could
not be annotated with a chemical structure yet.

Analogously, to identify metabolic traits associated with the db/db mutation in the
murine db/db model of T2DM, I calculated the linear regression models on samples
from diabetic db/db mutant (n = 20) and wild-type mice (n = 20). I found statistic-

Table 4.2 – Top 10 metabolites whose levels change between obese diabetic and
healthy lean humans.

Metabolite Effect se P-value Bonferroni FDR

Amino acid
Glu 0.21 0.03 1.45× 10−15 4.71× 10−13 7.85× 10−14

Carbohydrate
H1 0.10 0.01 2.52× 10−35 8.19× 10−33 8.19× 10−33

glucose 0.13 0.01 7.85× 10−33 2.55× 10−30 1.28× 10−30

mannose 0.14 0.02 4.04× 10−17 1.31× 10−14 3.29× 10−15

Lipid
lysoPC a C17:0 −0.18 0.02 6.75× 10−18 2.19× 10−15 7.31× 10−16

lysoPC a C18:2 −0.18 0.02 2.92× 10−16 9.50× 10−14 1.90× 10−14

PC ae C34:3 −0.14 0.02 4.48× 10−15 1.46× 10−12 2.08× 10−13

PC ae C36:2 −0.14 0.02 7.10× 10−15 2.31× 10−12 2.88× 10−13

PC ae C42:3 −0.12 0.01 1.35× 10−14 4.39× 10−12 4.52× 10−13

lysoPC a C18:1 −0.14 0.02 1.39× 10−14 4.52× 10−12 4.52× 10−13

Metabolites listed by metabolic pathways, sorted by p-values.
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Table 4.3 – Top 10 metabolites affected by the db/db mutant in mouse.

Metabolite Effect se P-value Bonferroni FDR

Amino acid
trans-4-hydroxyproline −0.82 0.06 6.93× 10−17 2.22× 10−14 1.11× 10−14

Gly −0.29 0.02 1.34× 10−15 4.30× 10−13 8.59× 10−14

glycine −0.56 0.05 4.91× 10−14 1.57× 10−11 1.97× 10−12

Carbohydrate
H1 0.38 0.02 2.98× 10−24 9.53× 10−22 9.53× 10−22

Lipid
PC aa C38:3 0.44 0.03 1.79× 10−16 5.74× 10−14 1.91× 10−14

C10 0.24 0.02 8.77× 10−16 2.81× 10−13 7.02× 10−14

PC aa C38:4 0.29 0.02 9.49× 10−15 3.04× 10−12 4.34× 10−13

PC ae C34:1 −0.25 0.02 5.74× 10−14 1.84× 10−11 2.04× 10−12

PC aa C36:2 0.19 0.02 1.26× 10−13 4.02× 10−11 4.02× 10−12

Peptide
pro-hydroxy-pro −0.41 0.03 2.55× 10−15 8.14× 10−13 1.36× 10−13

Metabolites listed by metabolic pathways, sorted by p-values.

ally significant differences in the levels of 50% (160/319) of all measured metabolites
(FDR < 1%); 119 metabolites met the more stringent Bonferroni criterion (Table
4.1). Refer to Table 4.3 for the top 50 metabolic changes in the db/db mouse model.
The significantly affected metabolites in mouse included 97 lipids, 39 amino acids,
4 cofactors or vitamins, 3 carbohydrates, 3 peptides, 2 nucleotides, 2 energy related
metabolites, and 9 unknown metabolites.

4.2.2 Global accordance of metabolic signals of obesity
and T2DM in humans and mice

Cross-species correlation between the metabolic changes in human
and mouse

To estimate how well the metabolic traits associated to the artificial disease phen-
otype caused by the db/db mutation in the mouse model correspond to those as-
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sociated with human T2DM, I quantified the overall similarity of the effects of
obesity and T2DM on metabolite levels in human and mouse. To this end, I calcu-
lated the Spearman correlation of the standardized regression coefficients resulting
from the separate differential analyses for all 319 metabolite measures (see Methods
2.6.2).

Table 4.4 – Spearman correlation across metabolic changes associated with obesity
and T2DM in human and mouse.

Metabolic pathway (n) Spearman’s rho p-value

All (319) 0.10 0.08
All, w/o H1 and glucose (317) 0.08 0.15

Amino acid (58) 0.47 0.00023
Carbohydrate (8) 0.60 0.13
Carbohydrate, w/o H1 and glucose (6) 0.03 1
Cofactors and vitamins (5) −0.50 0.45
Energy (3) −1.00 0.33
Lipid (208) −0.05 0.43
Nucleotide (5) 0.00 1
Peptide (6) 0.20 0.71
Unknown (24) 0.02 0.91
Xenobiotics (2) - -

Spearman’s rho and their corresponding p-values of the cross-species comparison between effects of
obesity and T2DM in human and the db/db mutant in the mouse model.

The overall correlation across all metabolites was small and non-significant (Spear-
man’s rho = 0.097; p-value = 0.08; Table 4.4). In line with that, the standardized
effects do not show a clear clustering as to represent a straight line (Figure 4.2).
When I excluded the effects of glucose and H1, which both show high cross-species
correlation by the definition of the disease model, from the comparison, the already
small correlation between metabolic traits in human and mouse became even smaller
(Table 4.4).
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Figure 4.2 – Overall correlation of metabolic traits of obesity and T2DM in humans
and the murine db/db model. Scatterplot of the standardized effect estimates (β∗) across
the 319 metabolite measures in human (x-axis) and mouse (y-axis). Both glucose measures
(H1 and glucose) are strongly correlated. The regression line is depicted in blue.

Global similarity of the metabolic signatures in terms of the
weighted-sum rank-based statistic

To assess whether the similarity among metabolites whose levels are strongly af-
fected by obesity and T2DM in either species is higher than that over the whole
panel of metabolic changes, I determined the overlap between the ranked lists of
differentially abundant metabolites. To this end, I calculated the weighted sum over
the overlap of ranked metabolic changes in human and mouse (Methods 2.6.5). De-
pending on the choice of the weighting parameter α, more or less of the top- and
bottom-ranked metabolites were considered for the comparison of two studies; the
greater the choice of α, the more metabolites are compared and used to calculate the
weighted sum. Using a resampling strategy, I empirically determined an ›optimal‹
α from a predefined set of possible choices of α for the comparison of the ranked
lists between human and mouse. Here, optimality was measured by the pAUC score,
which measures the separability between weighted sums calculated on resamples
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and randomized data; the α that achieved the best separability (i.e. the greatest
pAUC) was assumed to be optimal. I defined a set of possible α so that 5 to 150 top-
and bottom-ranked effects were considered for the calculation of the weighted sum.
Again, I excluded the highly correlated and top ranked measures of H1 and glucose
to avoid an overestimation of the overlap.

Figure 4.3 – Optimal tuning parameter α for the comparison of the ranked metabolic
changes between od and lh humans with those between db/db and wt mice. (A) For
30 different choices of the regularization parameter α (x-axis), the pAUC-score (y-axis) was
calculated, measuring the separation of scores calculated on 1,000 resamples of the original
datasets (signal) and 1,000 resamples of the datasets with shuffled class labels (noise). The
vertical line (blue) marks the α providing the best separation (greatest pAUC). (B) Similarity-
score distributions of signal (red) and noise (grey) for chosen α. The vertical line (blue) marks
the actual similarity-score, i.e. the weighted sum of the overlap between the 150 top and
bottom ranked metabolic alterations humans and the db/db mouse model.

In line with the overall small correlation, in terms of the weighted sum there was
no significant overlap between the ranked lists of metabolic traits of T2DM and
obesity in human and the db/db mutant in mouse, irrespective of the choice of α, i.e.
irrespective of how many metabolites were considered to determine the similarity
score. Among the 10 top- and bottom-ranked metabolites (i.e. metabolites whose
levels are most increased or decreased in od or db/db) in either species, glycine was
the only metabolite which human and mouse had in common. The corresponding
weighted sum was almost 0 (p-value = 0.267).
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Resampling resulted in an optimal choice of α = 0.077 (Figure 4.3), corresponding to
the 150 top- and bottom-ranked metabolites. However, the corresponding weighted
sum based on the 150 top- and bottom-ranked effects was not significant (p-value
= 0.96).

Patterns of local accordance between the metabolic
signatures

Correlation analysis and the weighted sum approach both asess the overall ac-
cordance of metabolic changes. Clearly, mouse models imitate some but not all
characteristics of human disease phenotypes; hence it is likely that not all disease
related changes in metabolite levels are reflected in the model. To identify pos-
sible partial overlaps between metabolic changes that link to obesity and T2DM

in human and to the db/db mutant in the mouse model, I focussed on whether
there are groups of metabolic traits such as metabolites within the same metabolic
pathways, which show better concordance across species than others, in the next
steps.

To dissect the overall similarity of metabolic traits by predefined metabolic path-
ways, I calculated the Spearman correlation for each of the nine measured meta-
bolite classes (›Amino acid‹, ›Carbohydrate‹, ›Cofactors and vitamins‹, ›Energy‹,
›Lipid‹, ›Nucleotide‹, ›Peptide‹, ›Xenobiotics‹, ›Unknown‹) separately. Correla-
tions across changes in metabolite levels stratified by pathways revealed a clear
positive and significant correlation of the disease effects on amino acid metabolites
(Table 4.4). For the remaining investigated metabolite classes, there was no sig-
nificant linear relationship between the effects on metabolite levels in human and
the mouse model. However, the strong but non-significant positive correlation of
changes in carbohydrates between both species was clearly driven by the changes in
H1 and glucose.

In addition, to determine possible pathway independent overlaps, I calculated the
RRHO on the ranked effects (without H1 and glucose) on metabolite levels in human
and mouse. The RRHO determines for all pairwise comparisons of subsets of the
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ranked lists (i.e. each rank-rank combination) the significance of their overlap using
the hypergeometric distribution.

Figure 4.4 – Local overlaps between metabolic changes between od and lh humans
and between db/db and wt mice. Left: Heatmap visualizing the hypergeometric p-values
(−log10). Each pixel corresponds to the p-value for the overlap between metabolic changes
up to a certain rank in the human study (x-axis) and the db/db mouse model (y-axis). Here,
pixels in the lower left area correspond to overlaps between traits with positive effect, and
those in the upper right area to overlaps between traits with negative effect in both studies.
Right: Rank-threshold pairs with the most significant overrepresentation of common metabolic
changes.

In line with the overall small correlations, the effect of obesity and T2DM on meta-
bolite levels in humans and the db/db mutant in mice did not show significant overlap
over the complete ranked lists, but rather between the top- and bottom-ranked ef-
fects, i.e. the metabolites whose abundance was most different between diabetic and
healthy subjects (Figure 4.4). In particular, among metabolites whose levels were
raised in obese and diabetic humans and mice, the most significant overlap (overlap
21; p-value = 3.74× 10−3) was found for the top 55 and 73 effects in human and
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Table 4.5 – The 21 metabolites whose levels are raised in diabetic humans and mice
identified by the RRHO approach.

Metabolite Rank human Rank mouse

Amino acid
2-hydroxybutyrate (AHB) 3 20
3-(4-hydroxyphenyl)lactate 6 23
3-methyl-2-oxobutyrate 8 25
tyrosine 9 73
isoleucine 10 47
Tyr 13 49
3-methyl-2-oxovalerate 17 9
valine 18 68
leucine 24 72
Phe 28 67
4-methyl-2-oxopentanoate 33 7
Val 38 57
alpha-hydroxyisovalerate 44 55
tryptophan 46 70
Carbohydrate
erythronate* 14 60
fructose 35 17
Cofactors and vitamins
pantothenate 52 6
Lipid
PC aa C38:3 32 1
dihomo-linolenate (20:3n3 or n6) 51 34
docosapentaenoate (DPA; 22:5n3) 55 21
Peptide
gamma-glutamylphenylalanine 47 43

For metabolites raised in T2DM, human and mouse show the most significant overlap between ranks
73 and 55, respectively. Shown are the common 21 metabolites between these sets.
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mouse. Notably, 67% (14/21) of these metabolites were amino acids or amino acid
degradation products (Table 4.5).

Table 4.6 – The 20 metabolites whose levels are decreased in diabetic humans and
mice identified by the RRHO approach.

Metabolite Rank human Rank mouse

Amino acid
histidine 283 277
Gly 285 316
glycine 311 314
Lipid
PC ae C34:0 281 311
PC ae C32:2 282 293
PC ae C42:2 286 238
PC ae C34:1 288 313
PC ae C40:4 290 256
PC ae C36:3 291 244
PC ae C44:5 296 247
SM (OH) C22:2 298 290
PC ae C44:6 299 246
PC ae C38:2 302 252
PC ae C42:5 305 273
PC ae C36:1 306 265
PC ae C40:5 309 268
PC ae C34:2 310 300
PC ae C42:3 313 255
PC ae C34:3 315 248
lysoPC a C17:0 317 251

For metabolites decreased in T2DM, human and mouse show the most significant overlap between the
lowest 83 and 38 ranks, respectively. Shown are the common 20 metabolites between these sets.

I found an overlap of similar size (overlap 20; p-value = 4.16× 10−5) between the
bottom 38 and 83 metabolites with decreased levels in obese and diabetic humans
and mice (Figure 4.4). Here, except for the amino acids histidine and glycine, 85%
(17/20) of the overlap accounted to lipids (Table 4.6).
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4.2.3 Joint and distinct metabolic changes

To further dissect the similarities and differences between effects obesity and T2DM

on metabolite levels in human and mouse, I determined statistically significant ef-
fects in either study and compared these sets on the metabolite level. Using this
strategy, I was able to consider metabolites whose levels are affected in both stud-
ies, but whose levels change to opposite directions. These are metabolites whose
levels increase in one and decrease in the other study in response to obesity and
diabetes.

Note that in the following analysis the reported numbers refer to the 287 unique
metabolites.

Jointly affected metabolites in human and mouse

According to my selection criterion (FDR < 1%; Bonferroni, α = 5% in at least
one of both studies; see Methods 2.6.7), the levels of 23% (66/287) of metabol-
ites were significantly different between both od and lh humans, and db/db and wt

mice (irrespective of the direction of the effect): 39 lipids, 20 amino acids, 3 car-
bohydrates, 2 nucleotides, 1 cofactor or vitamin, and 1 peptide (Figure 4.5; Figure
4.6, A).

Asking whether the effects of obesity and T2DM on metabolite levels in certain
metabolic pathways agreed better between human and mouse than in others revealed
a significant overrepresentation of metabolites from the amino acid pathway class
(odds ratio = 3.54; p-value = 2.14× 10−4). Metabolites from other pathways were
not significantly enriched among metabolites whose levels are significantly affected
in human and mouse.

Jointly affected metabolites whose levels change to the same
directions in human and mouse

Taking the direction of the effect into account, out of 66 metabolites that are jointly
affected in both species, 59% (39/66) changed in the same direction between both
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Figure 4.5 – Overlap between significant metabolic changes. Based on my selection
criterion (Methods, 2.6.7), I identified 66 metabolic changes which are significantly affected
by the disease phenotype in both humans and mice (red). The remaining changes with ef-
fects achieving significance according to the conservative Bonferroni criterion (α = 5%) are
considered species-specific (dark blue, dark green).

obese diabetic and lean healthy humans and mice (Figure 4.6, A). Compared to lean
controls, the levels of all carbohydrates were higher in the blood of obese diabetic
mice and humans (Table 4.7). For 80% (16/20) of jointly affected amino acids, I
observed concordant effects in humans and mice. Thereof, the levels of 11 amino
acids including the 3 BCAAs valine, leucine, and isoleucine, several alpha-ketoacids,
phenylalanine, and tyrosine were increased in obese diabetic humans and mice. The
remaining 5 amino acids glycine, serine, histidine, asparagine, and serotonin were
less abundant in obese diabetic humans and mice as compared to lean controls
(Table 4.7).

In contrast to carbohydrates and amino acids, the levels of less than half (46%;
18/39) of the jointly affected lipids were concordantly increased or decreased in both
species, but changed to opposite directions (Figure 4.6, A). Of these 18 concordantly
affected lipids, the levels of 15 were lower in obese diabetic humans and mice than in
their corresponding lean controls (Table 4.7). In contrast to that, the two long chain
fatty acids dihomo-linolenate (20:3) and docosapentaenoate (22:5) and the diacyl-
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Figure 4.6 – Joint and species-specific metabolic traits with significant effects in human
and mouse. (A) Concordant (left) and discordant (right) metabolic traits separated direction
of effect (y-axis) and metabolic pathways (colors). The number of positive and negative
discordant effects in mouse correspond to the inverted values in human shown here (right).
(B) Species-specific metabolic traits with significant effect in human (left) and mouse (right).

Phosphatidylcholine (PC) PC aa C38:3 were more abundant in obese diabetics as
compared to healthy subjects.

The levels of both pantothenate and gamma-glutamylphenylalanine were greater in
the diabetic than in the control groups in either species (Table 4.7).
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Table 4.7 – Metabolites whose levels are similarly affected and which change to the
same direction.

Human Mouse

Metabolite Effect se P-value Effect se P-value

Amino acid
2-hydroxybutyrate (AHB) 0.19 0.03 2.67× 10−13 0.38 0.05 2.62× 10−9

Gly −0.09 0.02 3.40× 10−7 −0.29 0.02 1.34× 10−15

glycine −0.13 0.02 4.80× 10−12 −0.56 0.05 4.91× 10−14

serine −0.08 0.02 6.57× 10−6 −0.26 0.04 1.60× 10−7

histidine −0.05 0.01 4.95× 10−7 −0.09 0.02 2.54× 10−5

Tyr 0.08 0.01 3.79× 10−9 0.14 0.03 1.22× 10−5

tyrosine 0.08 0.01 3.18× 10−10 0.08 0.02 5.64× 10−4

Phe 0.05 0.01 1.15× 10−5 0.09 0.02 1.50× 10−4

3-(4-hydroxyphenyl)lactate 0.15 0.02 4.65× 10−12 0.25 0.04 3.48× 10−8

Serotonin −0.10 0.03 8.57× 10−5 −1.03 0.32 2.29× 10−3

isoleucine 0.07 0.01 4.83× 10−10 0.11 0.02 9.24× 10−6

leucine 0.05 0.01 1.62× 10−6 0.13 0.03 4.50× 10−4

Val 0.06 0.01 6.02× 10−5 0.16 0.03 2.19× 10−5

valine 0.05 0.01 2.14× 10−8 0.13 0.03 1.69× 10−4

3-methyl-2-oxobutyrate 0.08 0.01 2.25× 10−10 0.30 0.04 3.91× 10−8

3-methyl-2-oxovalerate 0.08 0.01 1.38× 10−8 0.31 0.03 1.18× 10−11

4-methyl-2-oxopentanoate 0.06 0.01 4.18× 10−5 0.34 0.03 2.65× 10−12

alpha-hydroxyisovalerate 0.12 0.03 1.55× 10−4 0.16 0.03 1.92× 10−5

asparagine −0.05 0.02 2.58× 10−3 −0.32 0.06 1.98× 10−6

Carbohydrate
erythronate* 0.10 0.02 5.25× 10−9 0.14 0.03 4.95× 10−5

fructose 0.15 0.04 4.45× 10−5 0.55 0.07 1.96× 10−9

glucose 0.13 0.01 7.85× 10−33 0.31 0.03 1.05× 10−12

H1 0.10 0.01 2.52× 10−35 0.38 0.02 2.98× 10−24

Cofactors and vitamins
pantothenate 0.08 0.02 9.59× 10−4 0.32 0.03 7.55× 10−13
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Table 4.7 – Metabolites whose levels are similarly affected and which change to the
same direction, continued.

Human Mouse

Metabolite Effect se P-value Effect se P-value

Lipid
docosapentaenoate (DPA; 22:5n3) 0.09 0.03 1.31× 10−3 0.31 0.04 9.33× 10−9

dihomo-linolenate (20:3n3 or n6) 0.07 0.02 8.27× 10−4 0.24 0.04 1.82× 10−7

lysoPC a C17:0 −0.18 0.02 6.75× 10−18 −0.06 0.02 3.62× 10−3

PC aa C38:3 0.07 0.02 1.55× 10−5 0.44 0.03 1.79× 10−16

PC ae C32:1 −0.06 0.01 7.67× 10−5 −0.10 0.02 6.41× 10−5

PC ae C32:2 −0.07 0.01 5.66× 10−7 −0.14 0.02 2.19× 10−7

PC ae C34:0 −0.09 0.02 5.85× 10−7 −0.26 0.03 1.20× 10−12

PC ae C34:1 −0.08 0.01 9.14× 10−8 −0.25 0.02 5.74× 10−14

PC ae C34:2 −0.12 0.02 5.07× 10−12 −0.14 0.02 6.08× 10−8

PC ae C40:5 −0.08 0.01 5.56× 10−12 −0.09 0.02 1.46× 10−4

PC ae C42:5 −0.08 0.01 7.63× 10−10 −0.06 0.01 6.73× 10−5

PC ae C36:1 −0.10 0.01 1.05× 10−10 −0.08 0.02 2.22× 10−4

PC ae C38:2 −0.10 0.02 2.29× 10−9 −0.07 0.02 3.59× 10−3

PC ae C40:4 −0.07 0.01 6.38× 10−8 −0.08 0.02 1.24× 10−3

PC ae C42:3 −0.12 0.01 1.35× 10−14 −0.09 0.03 1.42× 10−3

PC aa C36:0 −0.07 0.02 3.59× 10−3 −0.17 0.02 1.59× 10−9

SM (OH) C22:2 −0.10 0.02 8.25× 10−9 −0.15 0.03 4.89× 10−7

SM C24:1 −0.05 0.01 8.93× 10−4 −0.26 0.02 1.75× 10−13

Peptide
gamma-glutamylphenylalanine 0.06 0.02 2.86× 10−4 0.15 0.03 3.62× 10−6
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Jointly affected metabolites whose levels change to the opposite
directions in human and mouse

Although jointly affected in both species, the levels of 40% (27/66) of these meta-
bolites were increased in od versus lh humans but decreased in db/db versus wt mice
or vice versa (Figure 4.6, A). Except for 4 metabolites from the amino acid pathway
class (alanine, lysine, kynurenine, cysteine-glutathione disulfide) and the 2 nucle-
otides N1-methyladenosine and pseudouridine, these metabolites comprised solely
lipids (Table 4.8). Among the 21 discordantly affected lipids, the levels of 2 fatty
acids and 4 acylcarnitines were higher in obese diabetic humans and lower in db/db

mice as compared to their respective lean healthy control groups. In contrast,
all 11 glycerophospholipids and glyerco 3-phosphate (G3P) were lower in obese
diabetic humans and higher in db/db mice as compared to their controls (Table
4.8).

Table 4.8 – Metabolites whose levels are similarly affected and which change to the
opposite directions in human and mouse.

Human Mouse

Metabolite Effect se P-value Effect se P-value

Amino acid
alanine 0.07 0.02 4.19× 10−5 −0.18 0.04 9.80× 10−5

cysteine-glutathione disulfide −0.17 0.04 3.06× 10−6 0.14 0.03 2.20× 10−5

lysine 0.05 0.01 1.16× 10−3 −0.10 0.02 1.67× 10−5

kynurenine 0.09 0.02 1.01× 10−8 −0.15 0.03 1.53× 10−5

Lipid
acetylcarnitine 0.08 0.02 1.41× 10−4 −0.19 0.03 4.62× 10−7

C2 0.07 0.02 1.49× 10−3 −0.21 0.04 1.08× 10−6

carnitine 0.03 0.01 2.97× 10−3 −0.30 0.05 9.94× 10−8

hexanoylcarnitine 0.10 0.03 9.82× 10−4 −0.28 0.04 1.40× 10−7

C6 (C4:1-DC) 0.07 0.02 1.41× 10−3 −0.24 0.03 2.21× 10−8

propionylcarnitine 0.07 0.02 1.63× 10−3 −0.17 0.04 3.70× 10−5
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Table 4.8 – Metabolites whose levels are similarly affected and which change to the
opposite directions in human and mouse, continued.

Human Mouse

Metabolite Effect se P-value Effect se P-value

Lipid
glycerol 3-phosphate (G3P) −0.10 0.02 7.89× 10−5 0.13 0.03 6.19× 10−5

eicosenoate (20:1n9 or 11) 0.14 0.03 5.46× 10−6 −0.21 0.04 8.78× 10−6

10-nonadecenoate (19:1n9) 0.12 0.03 7.06× 10−5 −0.18 0.04 2.20× 10−4

lysoPC a C18:0 −0.08 0.02 7.28× 10−6 0.18 0.02 1.62× 10−11

lysoPC a C18:2 −0.18 0.02 2.92× 10−16 0.16 0.03 7.15× 10−6

lysoPC a C20:4 −0.08 0.02 2.51× 10−5 0.08 0.03 4.80× 10−3

PC aa C32:3 −0.07 0.01 5.31× 10−6 0.11 0.02 1.53× 10−5

PC aa C42:0 −0.11 0.02 1.61× 10−8 0.13 0.02 1.74× 10−6

PC ae C40:2 −0.07 0.02 3.80× 10−6 0.09 0.02 5.86× 10−5

PC ae C40:3 −0.07 0.01 1.82× 10−8 0.14 0.02 1.90× 10−7

PC ae C36:2 −0.14 0.02 7.10× 10−15 0.07 0.02 5.89× 10−4

PC ae C44:4 −0.09 0.02 1.81× 10−8 0.07 0.02 1.05× 10−3

PC ae C38:0 −0.07 0.02 2.02× 10−4 0.13 0.03 1.33× 10−5

PC ae C38:3 −0.06 0.01 3.09× 10−5 0.13 0.02 1.53× 10−7

SM C16:0 −0.06 0.01 4.81× 10−7 0.15 0.02 2.18× 10−9

X - 10419|palmitoyl sphingomyelin −0.09 0.02 1.09× 10−7 0.15 0.02 9.53× 10−8

SM (OH) C14:1 −0.10 0.02 2.88× 10−8 0.10 0.02 2.09× 10−5

7-alpha-hydroxy-3-oxo-4-
cholestenoate (7-Hoca)

0.09 0.02 1.68× 10−6 −0.22 0.04 3.57× 10−6

Nucleotide
N1-methyladenosine 0.04 0.01 1.23× 10−5 −0.06 0.02 4.58× 10−3

pseudouridine 0.05 0.01 9.09× 10−5 −0.19 0.02 5.11× 10−10

Distinct changes in metabolite levels in humans and
mice

In addition to the 66 shared metabolic alterations in humans and mice, the levels
of 42 metabolites (15%, 42/287) changed between od and lh humans but not the
db/db mouse model (›human specific‹ alterations), and those of 56 metabolites
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(20%, 56/287) changed in the db/db mouse model but not between od and lh hu-
mans (›mouse specific‹ alterations; Figure 4.6, B). The human specific changes in
metabolite levels encompassed 71% lipids, some carbohydrates, amino acids, nucle-
otides, peptides, 1 cofactor or vitamin, and 1 unknown metabolite (Figure 4.6, B,
left). The mouse-specific metabolic alterations comprised mainly lipids (60%) and
amino acids (21%) (Figure 4.6, B, right).

Please refer to Tables 4.9 and 4.10 for the top 10 human and mouse specific meta-
bolites.

Table 4.9 – Top 10 changes of metabolite levels specific to the human cohort.

Human Mouse

Metabolite Effect se P-value Effect se P-value

Amino acid
Glu 0.21 0.03 1.45× 10−15 0.12 0.04 5.10× 10−3

Carbohydrate
mannose 0.14 0.02 4.04× 10−17 0.06 0.02 2.29× 10−2

lactate 0.11 0.01 2.67× 10−12 −0.03 0.03 2.86× 10−1

Cofactors and vitamins
O-methylascorbate* 0.10 0.01 2.57× 10−11 −0.09 0.04 2.14× 10−2

Lipid
PC ae C34:3 −0.14 0.02 4.48× 10−15 −0.07 0.02 6.46× 10−3

lysoPC a C18:1 −0.14 0.02 1.39× 10−14 −0.01 0.03 6.50× 10−1

PC ae C42:4 −0.11 0.02 1.46× 10−11 0.05 0.02 2.58× 10−2

glycerophosphorylcholine (GPC) −0.16 0.02 4.97× 10−11 0.09 0.04 3.33× 10−2

glycerol 0.14 0.02 6.93× 10−10 0.02 0.02 3.24× 10−1

Nucleotide
urate 0.09 0.01 2.44× 10−12 −0.01 0.04 8.83× 10−1

Top 10 metabolites with changes specific to the human cohort, listed by pathways and sorted by
p-values.

Within each pathway class, I determined whether the fraction of jointly affected
metabolites was greater than the fraction of species specific changes. As a result,
I found that amino acid metabolites were significantly overrepresented among joint
changes (odds ratio = 2.72; p-value = 7.71× 10−3) as compared to species specific
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Table 4.10 – Top 10 changes of metabolite levels specific to the db/db mouse model.

Mouse Human

Metabolite Effect se P-value Effect se P-value

Amino acid
trans-4-hydroxyproline −0.82 0.06 6.93× 10−17 0.03 0.03 2.75× 10−1

pipecolate −0.27 0.03 7.16× 10−11 0.03 0.03 2.71× 10−1

Cofactors and vitamins
alpha-tocopherol 0.31 0.03 4.55× 10−13 −0.01 0.02 5.13× 10−1

Lipid
C10 0.24 0.02 8.77× 10−16 −0.02 0.03 5.11× 10−1

PC aa C38:4 0.29 0.02 9.49× 10−15 0.03 0.02 5.13× 10−2

PC aa C36:2 0.19 0.02 1.26× 10−13 −0.01 0.01 2.41× 10−1

PC aa C36:3 0.24 0.02 1.14× 10−11 0.00 0.01 9.60× 10−1

PC aa C28:1 0.24 0.03 1.45× 10−11 −0.04 0.02 1.28× 10−2

PC aa C40:6 0.23 0.02 1.95× 10−11 0.02 0.02 2.74× 10−1

Peptide
pro-hydroxy-pro −0.41 0.03 2.55× 10−15 −0.06 0.02 6.15× 10−3

Top 10 metabolites with changes specific to the db/db mouse model. Listed by pathways, sorted by
p-values.

ones. I did not find significant enrichments of joint or species specific changes within
the remaining eight pathways classes.

4.2.4 Dissecting the effect of obesity on metabolic
signals in the db/db mouse model

In the murine db/db model of T2DM, it is not possible to distinguish between effects
primarily related to obesity and effects primarily related to T2DM. The reason
for that is the inherent weight difference between diabetic db/db and healthy wt

mice. In contrast to that, such a differentiation can be made in human using two
different case-control settings. Using samples from obese healthy (oh) and lean
healthy (lh) subjects, I determined the individual effect of obesity in the absence
of T2DM on metabolite levels; similarly, using samples from obese diabetic (od) and
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obese healthy (oh) individuals, I estimated the individual effect of T2DM in the
absence of obesity on metabolite levels. Comparing these effects to the changes
linked to the db/db knockout in the mouse model of T2DM, I can make assumptions
about whether individual changes are primarily driven by the obesity phenotype of
the model or mainly T2DM related.

Metabolic signals of T2DM in the human cohort that are
independent of weight differences

To identify the metabolic traits that associate to T2DM without the presence of
obesity, I did a weight-matched differential analysis contrasting serum samples from
od (n = 45) and oh (n = 231) subjects. Calculating the regression models on the
metabolite levels measured in these samples revealed significant differences for 13%
(41/319) metabolites (FDR < 1%); the levels of 22 metabolites (7%; 22/319) were
significantly altered according to conservative Bonferroni correction (α = 5%) in
response to T2DM irrespective of weight differences: 14 lipids, 5 carbohydrates, 1
amino acid, 1 energy related metabolite, and 1 unknown. See Table 4.11 for the
top 10 metabolites whose levels are significantly different between case and control
samples.

Metabolic signals of obesity in the absence of diabetes in the
human cohort

Similarly, to examine the isolated effect of obesity in the disease trait (i.e. the effect
of obesity on the concentrations of metabolites without the presence of T2DM), I
calculated the linear regression models on samples from obese healthy (n = 231)
and lean healthy humans (n = 390). Here, 41% (130/319) of measured metabolites
showed significant changes in their levels (FDR < 1%); according to Bonferroni adjus-
ted p-value (α = 5%), 28% (88/319) of the investigated metabolites displayed signi-
ficant alterations with increased body weight (Table 4.1). Lipids (61%; 79/130) and
amino acids (25%; 32/130) thereby account for the greatest fraction of significantly
altered metabolites. The remaining changes include 5 peptides, 4 carbohydrates,
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Table 4.11 – Top 10 metabolites whose levels are significantly altered between od and
oh humans.

Metabolite Effect se p-value Bonferroni FDR

Amino acid
2-hydroxybutyrate (AHB) 0.15 0.03 1.24× 10−8 4.02× 10−6 1.34× 10−6

Carbohydrate
H1 0.09 0.01 2.14× 10−26 6.97× 10−24 6.97× 10−24

glucose 0.11 0.01 7.69× 10−19 2.50× 10−16 1.25× 10−16

mannose 0.09 0.02 3.96× 10−6 1.29× 10−3 1.61× 10−4

Energy
citrate 0.08 0.02 3.34× 10−6 1.09× 10−3 1.55× 10−4

Lipid
PC ae C36:2 −0.09 0.02 1.27× 10−7 4.12× 10−5 1.03× 10−5

glycerol 0.11 0.02 5.49× 10−7 1.78× 10−4 3.57× 10−5

eicosenoate (20:1n9 or 11) 0.14 0.03 2.26× 10−6 7.33× 10−4 1.22× 10−4

PC ae C34:2 −0.08 0.02 5.16× 10−6 1.68× 10−3 1.86× 10−4

stearate (18:0) 0.07 0.01 6.14× 10−6 1.99× 10−3 1.89× 10−4

Metabolites listed by metabolic pathways, sorted by p-values.

4 nucleotides, 2 cofactors or vitamins, 1 energy related metabolite and 3 unknown
metabolites. The top 10 results are shown in Table 4.12.

Figure 4.7 shows the estimated effect sizes (standardized regression coefficients,
Equation 2.3) for all pairwise group comparisons and the corresponding box plots
of metabolite levels within the groups for selected metabolites.
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Figure 4.7 – Estimated effect sizes for selected metabolites Upper panels: Forrest plots of
the estimated effect sizes for the different pairwise comparisons between od, oh, and lh humans
as well as the db/db mouse model. Lower panels: Box plots of metabolite levels within the
individual study groups.
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Table 4.12 – Top 10 metabolites whose levels are significantly altered between oh and
lh humans.

Metabolite Effect se p-value Bonferroni FDR

Amino acid
tyrosine 0.06 0.01 7.08× 10−20 2.30× 10−17 6.57× 10−18

Glu 0.13 0.01 8.08× 10−20 2.63× 10−17 6.57× 10−18

isoleucine 0.05 0.01 9.12× 10−18 2.96× 10−15 4.94× 10−16

phenylalanine 0.04 0.00 1.36× 10−17 4.43× 10−15 6.33× 10−16

valine 0.04 0.00 4.08× 10−17 1.33× 10−14 1.33× 10−15

Lipid
lysoPC a C18:2 −0.11 0.01 1.31× 10−24 4.24× 10−22 4.24× 10−22

lysoPC a C18:1 −0.09 0.01 3.07× 10−22 9.97× 10−20 4.98× 10−20

PC aa C38:3 0.07 0.01 5.12× 10−18 1.66× 10−15 3.33× 10−16

PC ae C42:3 −0.07 0.01 2.95× 10−17 9.60× 10−15 1.20× 10−15

Nucleotide
urate 0.05 0.01 3.75× 10−17 1.22× 10−14 1.33× 10−15

Metabolites listed by metabolic pathways, sorted by p-values.

Overall similarity between the individual effects of obesity and
diabetes in human, and the effects of the db/db mutant in
mice

Changes in metabolite levels between od and oh humans, i.e. changes that are
associated with T2DM but not obesity did not significantly correlate with changes
in the same metabolites in the db/db mouse model (Table 4.4; Figure 4.8, A). In
contrast to that, the metabolic alterations between oh and lh humans, i.e. changes
of metabolite levels that are associated with obesity but not T2DM, correlate slightly
but significantly with the changes between db/db and wt mice (Table 4.4; Figure 4.8,
B).

Apparently, the effect of T2DM determined between obese diabetic and obese healthy
humans is smaller on most metabolites as compared to the effect of obesity determ-
ined between obese healthy and lean healthy individuals (Figure 4.8).
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Figure 4.8 – Correlation between metabolic changes associated to obesity or T2DM
in human and the db/db mutation in mouse. (A) Scatter-plot of the effect of T2DM on
individual metabolite levels between od and oh humans and that of the db/db mutant in the
mouse model. (B) Similar representation for the effect of obesity, contrasting the changes
between oh and lh human samples to those between db/db and wt mice. Regression lines
depicted in blue.

To further assess the overall similarities between the individual effects of T2DM and
obesity and the mouse model, I calculated the weighted sums on their ranked lists of
metabolic changes for the two pairwise comparisons. Here, I used 30 different choices
for the tuning parameter α, which determines how many metabolites are considered
for the weighted sum, covering the 5 to 150 top- and bottom-ranked metabolic
changes each for the individual comparisons. H1 and glucose were excluded from
this analysis.

There was no significant similarity between the ranked lists of metabolic changes
between obese diabetic and obese healthy humans and that of the mouse model. Res-
ampling resulted in an optimal α = 0.1, corresponding to a weighted sum of 22.7 (p-
value = 0.608) among the 115 top and bottom ranked metabolites.

For the comparison of metabolic changes between obese healthy and lean healthy
humans and changes in the db/db model, the optimal separation of signal and random
scores was achieved for α = 2.203, i.e. the weighted sum was computed on the 5 top
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and bottom ranks. The corresponding weighted sum was marginal and insignificant
(p-value = 0.063); the only shared metabolite among the 5 top and bottom ranked
effects was PC aa C38:3.

Local overlap between metabolic changes linked to T2DM or
obesity in human and the db/db mutant in mouse

For metabolic traits mainly related to T2DM determined between weight-matched
obese diabetics and obese healthy humans, I find small overlap among the top and
bottom ranked metabolic traits in both studies (Figure 4.9, A). The most significant
overlap (p-value = 1.09× 10−3) between top ranked metabolic effects, i.e. metabol-
ites whose levels are increased in obese diabetic versus obese healthy humans and
in db/db versus wt mice, includes 5 metabolites: the carbohydrate fructose, amino
acid degradation products 2-hydroxybutyrate (AHB), 3-(4-hydroxyphenyl)lactate,
3-methyl-2-oxobutyrate, and the lipid docosapentaenoate (DPA; 22:5n3). The over-
lap with the smallest p-value among bottom ranked metabolic effects is slightly
bigger (overlap 14; p-value = 1.05× 10−4); with the exception of the two amino
acids glycine and histidine, this overlap contains only lipids, mainly acyl-alkyl PCs
(PC ae).

In line with the higher correlations between effects (Table 4.4; Figure 4.8, B),
the metabolic traits linked to obesity (oh×lh) show greater overlap with metabolic
changes in the db/db mouse model (Figure 4.9, B) as compared to effects linked to
obesity and T2DM (od×lh) or T2DM (od×oh). Among the 79 and 121 top ranked
metabolic changes in human and mouse, 46 metabolites do significantly overlap (p-
value = 2.20× 10−5); of the metabolites whose levels decrease between obese healthy
and lean healthy humans and between db/db and wt mice, 69 overlap significantly
(p-value = 1.15× 10−3).
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Figure 4.9 – Local overlaps between metabolic traits in mouse and those of T2DM or
obesity. (A) Heatmap of the hypergeometric P-Values for the overlap of metabolic traits of
T2DM in humans and those of db/db mice for all rank-threshold combinations in human (x-axis)
and mouse (y-axis). The corresponding rank-combinations with the most significant overlaps
(smallest hypergeometric P-Value) between top and bottom ranked metabolic traits are shown
below. (B) Similar visualizations for metabolic traits of obesity in human and those in the
murine db/db model.



124 4 Comparative metabolomics in obese diabetic humans and mice



4.3 Discussion 125

4.3 Discussion

The db/db mouse model is one of the most commonly used animal models in diabetes
research and preclinical drug testing. Although phenotypically well described, a sys-
tematic characterization on the molecular level is still missing.

In this chapter, I took a first step to metabolically characterize the murine db/db

model of T2DM. To this end, I adapted the meta-analysis workflow for the comparat-
ive analysis of genomic responses in four mouse models of NAFLD (Chapter 3). This
enabled me to systematically compare the alterations of the blood metabolomes in
db/db mice with alterations in human T2DM. Along with the identified similarities
and differences in the metabolic alterations between the two species in response to
T2DM, my research provides a profound basis to extrapolate results from the model
to the human setting.

My study was based on plasma samples from 20 BKS.Cg-Dock7m+/+ Leprdb/J
(db/db) and 20 Dock7m+/+ (wt) mice, and serum samples from 45 non-treated,
obese diabetic (od) and 390 lean healthy (lh) humans. A second control group of 291
obese healthy (oh) humans additionally enabled me to dissect metabolic effects that
are mainly driven by obesity, which is prevalent in the animal model. Targeted- and
non-targeted metabolomics were combined to identify 319 shared blood metabolic
features corresponding to 287 unique metabolites from all major pathways detected
in the blood of both humans and mice.

The db/db mouse model mimics some but not all metabolic aspects
of human diabetes

I found a weak overall similarity in changes between obese diabetic and lean healthy
humans and db/db and wt mice; both the cross-species correlation between the stand-
ardized effects (Figure 4.2; Table 4.4), as well as the weighted sum over the ranked
effects on the 319 measured metabolite levels were small and statistically insigni-
ficant. However, when I separately assessed the changes of metabolites from the
same metabolic pathways, I found an improved cross-species correlation and large
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fractions of metabolites changing to the same direction in some cases. In partic-
ular, metabolites involved in carbohydrate and amino acid metabolism seemed to
be similarly affected in both human and mouse. In contrast to that, the effects on
metabolites from other pathways were rather uncorrelated; in fact, many of them
changed to the opposite direction in humans and mice (Table 4.4). In contrast to
the missing correlation among changes in lipids, when I searched for partial overlaps
between the metabolic changes irrespective of an a priori stratification by metabolic
pathways, I found many lipids similarly decreased in obese diabetic humans and
db/db mice; it therefore seems that at least some metabolites involved in the lipid
metabolism are concordantly affected by obesity and T2DM in both species. Gen-
erally, the metabolic changes appear to be most similar among metabolites with
the greatest differences (increase or decrease) of their blood levels between obese
diabetic and lean healthy humans and mice (Figure 4.4). In other words, many
metabolites which are largely affected by the disease in human are also affected in
mouse, indicating that the db/db model mimics at least some (important) metabolic
aspects of T2DM. In line with that, I found 66 metabolites which were significantly
altered in both species (Figure 4.5).

Comparable studies which systematically compared omics data across species are
still sparse. In a study from 2013, Seok et al. correlated the expression changes
of 5,554 genes that were significantly altered in response to human inflammatory
diseases with those in different mouse models. While the transcriptomic responses
within the human conditions (trauma, burns, and endotoxemia) correlated well with
each other, their cross-species correlations between humans and the corresponding
mouse models were marginal and insignificant. Likewise, the correlations of gene
expression changes in activated or suppressed pathways in human between species
were small [112]. The authors found, moreover, that the genomic responses in the
mouse models differed not only from the human conditions, but also from one an-
other. Based on their findings, the authors concluded that the results from mouse
models, developed to mimic human inflammatory diseases, do not translate directly
to the human conditions [112]. Claiming that mice fell short as models for human
diseases, their study unsurprisingly gained a lot of attention both from the sci-
entific community [111, 155, 156] and the mass media [157]. ›The New York Times‹
claimed in response to the work of Seok et al. that mouse models had been totally
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misleading for at least three major killers – sepsis, burns, and trauma. In this article,
they further wrote that years and billions of dollars had been wasted following false
leads [157]. However, shortly after the first publication of their results, criticism
was expressed that the methods used to compare the genomic responses in human
with those in the models were strongly biased. Hence, another group reanalysed the
same data and came to a different conclusion [129]. Takao and Miyakawa found that
the investigated mouse models do indeed mimic some aspects of the transcriptomic
responses in inflammatory conditions observed in humans [129]. Other than Seok
et al., in the reanalysis of the data the authors selected only genes which changed
both in the human disease conditions and the corresponding mouse models, exclud-
ing those genes which do not respond in the mouse models, which would otherwise
produce noise in the correlation analysis. Opposed to the findings of the earlier
publication [112], Takao and Miyakawa found significant correlations between the
gene expression changes in humans and mice. Moreover, without the biased inclu-
sion of genes that respond only in humans, the authors showed that many pathways
were commonly regulated in response to the disease conditions in human and the
corresponding mouse models [129].

Another study applied NMR based metabolomics on urine samples from diabetic
humans, db/db mice, and ZDF rats, and studied these metabolic profiles for similar
changes across species [130]. Of around 40 metabolites measured in each species,
the authors found 29 metabolites that were changed in the urine of diabetic hu-
mans and db/db mice [130]. Despite the expected glycosuria and several changes in
energy metabolism, most of the investigated nucleotides were similarly changed in
humans and mice. Based on their results, the authors claimed that these metabolic
processes are similarly perturbed in both species, making them interesting targets
for biomarker studies in these models [130].

Changes in amino acid and carbohydrate metabolism are more
closely represented by the model than those in lipid
pathways

Unsurprisingly, the changes in measured carbohydrates in db/db mice were very
similar to those in obese human diabetics, indicated by a clear positive but stat-
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istically insignificant correlation between the effects in this pathway (Table 4.4).
Here, the strong correlation is mainly driven by the glucose measures (H1 and gluc-
ose), which are surrogate markers of the hyperglycemic conditions prevalent in the
diabetic groups of both species (Figure 2.1). If I exclude these two measures, the
correlation of the remaining carbohydrates almost vanishes (Spearman’s rho = 0.03;
p-value = 1). However, because of the small number of measured carbohydrates
(8), the statistical power is low and might explain the small and insignificant cor-
relations. Irrespective of statistical significance, the blood levels of all measured
carbohydrates change to the same direction in obese diabetic humans and db/db

mice.

In addition to the increased glucose concentrations which basically reconfirm the
hyperglycemic conditions in both species, I found increased levels of circulating
fructose both in obese diabetic humans and db/db mice (Table 4.7). Increased
fructose levels in human diabetics are often associated with an increased intake of
fructose-sweetened beverages [158, 159]. Analogously, the higher dietary intake of
db/db than control mice because of the disrupted leptin signalling axis in the knock-
out might explain increased fructose levels in db/db mice, although both groups
received the same food. Irrespective of the causal reasons for its increased con-
centrations, elevated blood fructose is known to be associated both with insulin
resistance and T2DM. Most importantly, in contrast to glucose, fructose uptake
and turnover is insulin-independent and can be steadily metabolized in glycolysis.
Moreover, fructose is involved in de-novo lipogenesis which can contribute to insulin
resistance by increasing fatty acid release [158, 160].

Interestingly, the levels of mannose were significantly increased in obese diabetic
versus lean healthy humans, but not in db/db mice; moreover, mannose was sig-
nificantly increased between obese diabetic and obese healthy and between obese
healthy and lean healthy humans, suggesting that both T2DM and obesity affect
mannose levels individually (Figure 4.7). Consistent with this hypothesis, Kalhan
et al. described increased levels of mannose in non-diabetic humans with NAFLD

or NASH as compared to healthy controls [161]. Based on their results, the authors
claimed that mannose – and other hexoses other than glucose – constitute independ-
ent risk factors for T2DM [161]. The reasons for increased mannose levels in diabetics,
however, are unknown. An immoderate consumption of mannitol sweetened food
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such as candy and chewing gums by obese people could be a reasonable explana-
tion; hence, since in our setting db/db and wt mice received the same standardized,
mannitol-free food, I would not expect a difference in mannose levels between these
two groups.

Many amino acid metabolites behaved very similar in obese diabetic humans and
db/db mice, indicated by a significant cross-species correlation (Spearman’s rho =
0.47; p-value < 0.001) and a great fraction of significant changes in the same direc-
tion in humans and mice (approximately 83%). Of all pathway classes, amino acid
metabolites were significantly overrepresented among shared changes. In addition,
of all significantly altered amino acid metabolites, the fraction of shared changes
was significantly greater than the fraction of changes unique to human or mouse.
Many of the joint changes in amino acid metabolites I found in our study are already
known to be markers of obesity, insulin resistance, or T2DM. In particular, increased
concentrations of α-hydroxyisovalerate, branched-chain amino acids, branched-chain
keto acids, tyrosine and phenylalanine, as well as decreased concentrations of glycine
and serine were associated with these risk factors in human [79, 81, 82, 84, 85, 162]
and rodents [163].

In contrast to carbohydrates and amino acid metabolites, the changes in lipid meta-
bolites appeared to be more distinct within both species. I found almost no cor-
relation in the changes of the many lipids measured in human and murine blood
(Table 4.4). Considering the diversity of lipid species, it is likely that the unspecific
classification is responsible for the small correlation, concealing similarities between
lipid subspecies. In line with that, a subset of 17 lipids – mainly acyl-alkyl PCs –
was significantly overrepresented among metabolites whose levels were decreased in
both obese diabetic humans and mice as compared to their corresponding controls
(Figure 4.4; Table 4.6). Similar decreases of these PCs in both species are likely to
be the result of an increased turnover induced by elevated insulin levels in diabetic
subjects [164]. Alteration in single other lipids, for example the eicosanoid progenit-
ors dihomo-linolenate and docosapentaenoate, implicate pro-inflammatory reactions
in both species.
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Many lipids and metabolites from other pathways are uniquely
affected in humans and mice

Most lipids did not jointly change in response to obesity and T2DM in both species.
And even of the 39 lipids whose blood levels were significantly altered in both species,
more than half displayed decreased levels in obese diabetic humans but increased
levels in db/db mice relative to the corresponding controls, or vice versa (Figure 4.6).
For example, the levels of several acylcarnitines including acetylcarnitine, propionyl-,
butyryl- and hexanoyl-carnitine were generally higher in obese diabetic humans,
while in db/db mice their levels were lower. A potential reason for these differences
may be related to mitochondrial fatty acid oxidation. While in people with T2DM,
raising insulin resistance leads to decreases in the capacity of mitochondrial fatty
acid oxidation [165–167], it was shown that the gene transcription of key enzymes
linked to mitochondrial fatty acid oxidation activity was enhanced in several rodent
models of T2DM – including the db/db mouse model [166].

As one of the top hits in the human cohort, the levels of glycerol were significantly
increased in obese diabetic versus lean healthy humans (β = 0.14 ± 0.02; p-value
= 6.93× 10−10). However, in the db/db mouse model, I did not observe a change
of glycerol (Table 4.2). Inspecting the individual effects in humans I found simil-
arly significant effects between the obese diabetic and obese healthy groups, but not
between the obese and lean healthy groups (Figure 4.7); here the interaction term
of BMI and T2DM has significantly more effect on glycerol levels than both terms in-
dividually (p-value = 4.00× 10−3), suggesting that the combination of obesity and
T2DM is decisive for changing glycerol levels in human. The levels of circulating
glycerol are indirectly regulated by insulin, as it inhibits lipolysis of triacylglycerols
in adipocytes. HAGEN et al. showed that in states of decreased insulin sensitivity,
lipolysis increases, which in turn leads to raised glycerol levels [168]. In the liver,
glycerol can be converted to glucose in gluconeogenesis. Although I do not implicate
a causal connection between altered glycerol levels with the disease physiology, con-
sidering its crucial role in connecting lipolysis with endogenous glucose metabolism,
the different results for glycerol could indicate crucial differences in human and the
db/db mouse model’s disease physiology.
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With the exception of some acyl-alkyl PCs, I found that most of the measured
phospholipids (diacyl-, acyl-alkyl-, and lyso-phospholipids) changed differentially
with obesity and T2DM in humans and the db/db mouse model. PCs are major
integral components of the lipoproteins including High Density Lipoprotein (HDL),
Low Density Lipoprotein (LDL), and Very Low Density Lipoprotein (VLDL). Marai
and Kuksis revealed already in the late 1960 differences in the PC profiles of healthy
humans and rodents [169]. They showed that especially the fractions of unsaturated
phospholipids in plasma differ between these species. While the fraction of monoene
PCs in humans was twice as high as in rats, the fraction of hexaene PCs in humans
was three times smaller in humans than in rats [169]. Recently, Wiesner et al. showed
that concentrations of circulating PC correlate with lipoprotein concentrations [170].
It is known that the proportions of these blood lipoproteins differ between human
and rodents. While in rodents, the majority of cholesterol is carried in HDL, in
humans the preferred carrier of cholesterol is LDL. In humans, the levels of HDL

are typically decreased in obesity, insulin resistance, or T2DM [171]; opposite to
that, I observed increased HDL concentrations in db/db mice, which is in line with
results from others [172]. Taken together, it appears that many different changes
in phospholipids within humans and the db/db mouse model mirrors their distinct
lipoprotein metabolism.

Some metabolites from the few other pathways measured by our approach showed
largely different alterations in obese diabetic humans and db/db mice. For instance,
alpha-tocopherol (vitamin E) was massively increased in db/db versus wt mice, while
its levels did not change in the human cohort. Vitamin E is a fat-soluble antiox-
idant which prevents damage by reactive oxygen species. Because oxidative stress
is thought to be a crucial part of T2DM pathophysiology, vitamin E was the sub-
ject to many studies. Some suggested that vitamin E supplementation improves
insulin sensitivity [173], delays the onset of T2DM, and slows down its progression
[174]. Gulec et al. concluded vitamin E supplementation might have been beneficial
in preventing fatty acid induced liver damage [175]. Results from other studies,
however, suggest that there is no effect of vitamin E supplementation on insulin
sensitivity in patients with T2DM [176]. Sesso et al. found that vitamin E treatment
did not reduce the risk for cardiovascular disease, one of the major complications of
T2DM [177]. Clearly, it is possible that the increased levels of vitamin E in the mouse
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model are in fact just an artifact of the specific setting of the model. The stand-
ardized food used in the animal model contained 2% vitamin mix including vitamin
E; hence, the increased levels of alpha-tocopherol in db/db mice might simply reflect
their increased food intake in comparison to wt controls, resulting from impaired
leptin signalling in db/db mice. This hypothesis could be tested using another diet
that does not contain vitamin E for the db/db mouse model. Another potential
reason for the different responses of alpha-tocopherol between the two species is the
more severe state of T2DM and worse metabolic control in db/db mice as compared
to patients with newly diagnosed T2DM as they are in the cohort. Consistent with
this hypothesis, Muis et al. showed in patients with new-onset T1DM that levels of
alpha-tocopherol significantly decrease with improved metabolic control and insulin
treatment during the first three months; after six months, however, the levels re-
turned to the baseline [178]. Irrespective of the potential causes for the increased
levels of alpha-tocopherol in db/db mice, considering previous findings on its poten-
tial role in T2DM, I strongly suggest to consider these differences when extrapolating
the results from the db/db model to humans that did not receive vitamin E supple-
mentation.

The inherent obesity phenotype in the murine model needs to be
considered when translating the metabolic changes to
human

Given the large weight differences between obese diabetic and lean healthy humans
and between db/db and wt mice, I wondered to what extend the observed metabolic
changes reflect weight differences rather than the impact of T2DM. I found that the
overall correlation between the metabolic changes in humans and the db/db mouse
model was better for obesity related effects between obese healthy and lean healthy
humans than for T2DM related effects between obese diabetic and obese healthy
humans (Figure 4.8). Moreover, the partial overlaps of the ranked effects linked to
obesity between human and the mouse model were greater than those for the effects
linked to T2DM. Hence, it seemed that many of the metabolic alterations which
are mimicked by the db/db model are primarily linked to the obesity phenotype
rather than T2DM per se. This observation was not unexpected, because the db/db
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mouse is explicitly a model for obesity linked T2DM. However, in human studies
data is usually adjusted for confounding by weight differences between participants;
in the db/db model, such an adjustment is not possible as the diabetes phenotype
is inherently linked to the db/db knockout induced obesity phenotype. Hence, to
reliably translate results from the unadjusted data from the db/db model to hu-
man, information about the individual effects of T2DM and obesity on metabolites
is crucial.

For example, as one of the top hits among commonly changed metabolites, the levels
of circulating glycine were greatly diminished in both species (Table 4.7); based on
these results, I expected that the effect on glycine levels in the human cohort are well
reflected by the db/db model. However, inspecting the effects on glycine between the
obese diabetic and obese healthy groups and between the obese healthy and lean
healthy groups, I found that obesity and T2DM distinctly affect the levels of glycine
(Figure 4.7). In particular, the effect of T2DM on glycine levels appears to be smaller
and less significant than that of obesity. In the db/db mouse model, the standardized
effect on glycine levels is almost three times higher than that in humans (Figure 4.7).
I have two considerations on this result: first, obesity may be the main driver of
the observed decrease of glycine. This would implicate that the metabolic change
in the db/db mouse model mainly reflects the bold weight difference between db/db

and wt mice, putting the result in another perspective. My second consideration
is that both obesity and T2DM act on glycine levels in combination rather than
independently. In line with this hypothesis, I found that the interaction term of BMI

and T2DM is significantly stronger associated with the changes in glycine than both
terms individually (P < 2.97× 10−2).

Another interesting example was creatine. The levels of circulating creatine were
strongly decreased in db/db versus wt mice. In the human cohort, however, the blood
levels of creatine were only slightly and insignificantly smaller in obese diabetic as
compared to obese healthy controls; but between obese healthy and lean healthy
humans, I found a significant positive effect on creatine levels, i.e. an effect that
is opposed to the one observed in the db/db mouse model (Figure 4.7). Creatine is
primarily transported to and metabolized in muscle tissue. Decreased circulating
creatine in db/db mice may therefore reflect the small proportion of lean to fat body
mass as compared to wild type controls. Similarly, increased levels of creatine in
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obese healthy humans to the other two groups may account to a higher proportion
of muscle mass in these people compared to obese diabetic or lean healthy volun-
teers. It is known that the BMI overestimates the fraction of fat mass in people with
a high fraction of lean mass [179] and in general I expect obese healthy people to
have greater muscle mass than obese diabetic people with an equal BMI. Decreased
levels of creatine in db/db mice may also reflect a higher transport rate because
of increased insulin secretion in these animals. Previous studies in animals have
shown that insulin increases creatine uptake from the blood by an augmentation
of sodium-dependent creatine transport, however, only under supraphysiological in-
sulin concentrations [180].

I found significantly higher levels of 3-hydroxybutyrate (BHBA) in db/db mice but not
in obese diabetic humans relative to the corresponding other two groups; between
obese healthy and lean healthy humans, however, I found significantly decreased
levels of BHBA (Figure 4.7). In addition, the individual effects have significantly
greater impact on the levels of BHBA than the interaction of BMI and T2DM. These
data suggest that the effect on BHBA in the human cohort is mainly obesity-related
and different from that of the db/db knockout in the mouse model. Usually, small
amounts of BHBA are formed during fat burning from acetyl-CoA in ketogenesis.
Smaller levels of BHBA in obese humans could be therefore explained by decreased
rates of fatty acid oxidation and ketogenesis in these people. One reason for that
could be that obese people usually have a higher dietary intake i.e., the diet mostly
covers their energy needs making the oxidation of stored lipids unnecessary. An-
other reason might be that obese people tend to be less physically active than lean
humans. In particular, endurance sports such as running, cycling and swimming
stimulates fat burning and therefore ketogenesis. High levels of circulating BHBA,
however, are typically observed in people with T1DM or long term T2DM, where in-
sufficient insulin secretion creates a persistent state of excess fat burning; hence, the
greatly increased BHBA levels in db/db mice implicate an advanced state of T2DM,
more severe than that in obese diabetic individuals with newly diagnosed T2DM in
our cohort. Translating results in pathways related to fatty acid oxidation and keto-
genesis from the db/db model to humans might therefore be biased towards a more
severe disease progress in mice.
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Taken together and in line with data from other studies, the application of meta-
bolomics and the cross-species comparison of the results provide detailed definitions
of clinical phenotypes. Clearly, just as the models do not recreate the full spectrum
of diseases, they do not mimic the complete panel of molecular perturbations. In-
stead, partial concordance and discordance of metabolites likely point to commonly
affected pathways and species specific alterations, indicating where the transfer of
results is reliable and where it is not.





Chapter 5

Conclusion and Outlook

Type 2 Diabetes Mellitus (T2DM) is one of the most prevalent metabolic diseases
world wide with its clinical complications imposing major human and financial bur-
den on societies. The etiology of T2DM is rather complex, involving interactions
between various genetic and environmental factors. Accordingly, the underlying
pathogenic mechanisms are not fully understood and treatment options are still not
optimal. Functional studies aiming at the investigation of the disease’s causes or
aiming at preclinical testing of antidiabetic drugs are primarily performed in animal
models. Here, the laboratory mouse is widely considered the model organism of
choice. However, in general, many findings obtained in animal models fail to rep-
licate across strains or species, questioning their use in studying human diseases.
One possible reason for the problems in reproducing and transferring results from
these studies is – although they are usually well characterized on the phenotypic
level – that for many models little is known about their underying molecular con-
stitutions.

Recent developments in biotechnology led to an increasingly common application
of system-wide and data-driven methods in diverse research areas. These large-
scale screening methods – collectively referred to as ›omics‹ – simultaneously meas-
ure thousands of molecules from individual biological samples and thereby provide
systems-level readouts of cells, tissues, or even whole organisms.

137
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In this thesis, I took a first step towards a comprehensive investigation of the com-
parability of popular mouse models in T2DM and their human disease counterpart on
a molecular level. To this end, I developed a generic meta-analysis workflow which
allows to systematically study universal and species-specific molecular characterist-
ics across different mouse models, or across mouse models and the corresponding
human diseases based on high-throughput omics data.

In Chapter 3, I applied my workflow on liver mRNA transcriptomics data from four
genetically heterogeneous mouse strains for the study of Non-Alcoholic Fatty-Liver
Disease (NAFLD). Here, I could show how the small differences in the models’
phenotypes are reflected in their liver transcript signatures. A major outcome of
this comparative meta-analysis was that considerable parts of the genes that are
significantly differentially expressed in response to the High Fat Diet (HFD) in-
duced NAFLD phenotype are equally affected in all four genetically different strains.
Moreover, among the common genomic response in the four mouse models of NAFLD,
genes involved in inflammatory pathways were significantly enriched, implicating
functional relevance of these genes in the disease’s etiology. Since most of these
genes have orthologs in humans, this strain-independent genomic response to HFD

induced NAFLD might as well have functional relevance for the disease progression in
humans. Accordingly, findings related to these genes and pathways obtained in one
of the four models might be more likely to be transferrable to human than findings
related to other genes which are less conserved across the four strains. Apart from
the shared features revealed by my meta-analysis, strain-specific gene expression
changes are equally important for the comprehensive molecular characterization of
the strains and for ultimately judging the comparability and transferability of results
across models and species. For example, small differences on the molecular level,
i.e. unique expression changes of single genes, might lead to new explanations for
the irreproducibility of results (e.g. drug candidates which do not replicate across
models) even if the phenotypes of the models are very similar.

In Chapter 4, I adapted my workflow for the comparative analysis of blood metabolic
signatures measured in the popular BKS.Cg-Dock7m+/+ Leprdb/J (db/db) mouse
model for T2DM and corresponding signatures from human patients. The goal of
this study was to estimate the cross-species translatability of findings obtained in
this model to humans. Surprisingly, I found that the changes in blood metabolite
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concentrations in the model only weakly correlated with the human data, indicat-
ing few similarities between the metabolic signature of diabetes in the db/db mouse
model and human T2DM on a first glance. However, detailed inspection of the ac-
cordance of metabolites from different metabolic classes or pathways showed good
correlations for the changes in carbohydrates and amino acids. In contrast, most
lipids were differentially affected in the mouse model and humans, many of them
being uniquely affected in one species but not the other. Taken together, my results
suggest that while the db/db model mimicks metabolic aspects observed in human
diabetics related to changes in carbohydrate and amino acid metabolsism, the value
of the db/db model appears to be very limited for the study of disease related changes
in lipid metabolism. It is important to note that the diabetes phenotype in the db/db

model is strongly connected to an extreme obesity phenotype which is hardly com-
parable to obese humans and therefore likely to be reflected in a different molecular
constitution as well. In line with that, comparing the metabolic signature of the
db/db model to the signatures determined between lean diabetic and lean healthy
people and between obese healthy and lean healthy people, I found that numerous
effects in the model reflect rather obesity than diabetes per se.

Both, the within-species comparison of genomic responses across mouse models of
NAFLD as well as the cross-species comparison of metabolic signatures in the db/db

mouse model of T2DM and humans demonstrated how much such comparative stud-
ies contribute to a broader understanding of these models. Detailed knowledge
about similarities and strain- or species-specific differences on the molecular level
provides a more reliable basis for the interpretation of findings and their transfer
to the human setting than information about phenotypic characteristics alone. In
addition, it enables researchers to make better choices based on facts when searching
the optimal model for working a certain scientific question.

The workflow for comparative, omics based analyses proposed in my thesis is a
first step towards closing the gap which is still existent between the phenotypic
descriptions of animal models and our knowledge about their molecular constitu-
tions. Growing numbers of publicly available omics data sets from soundly described
functional experiments and growing availability of computational tools for compar-
ative studies of these datasets such as the one described here (further approaches
are needed to find the optimal solution), will lead to more comprehensive descrip-
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tions of animal models and finally to better informed selections of models and more
replicable experiments. In addition, given the many biological layers involved in
disease processes, similar analyses on data on other molecules (e.g. proteins) or
measured in other tissues enable deep characterizations that are even more hol-
istic.

Another point I want to make is that molecular characterizations do not only en-
able more reliable conclusion from the own research, but they might also help to
interpret results from other labs and to explain why findings obtained from the same
models are inconsistent across labs. Results are always achieved under the lab’s very
specific conditions, which are likely to be different from those of other labs. As a
result, analysis of the same models in different labs almost certainly reveals different
results, suggesting that the findings from the experiments are not replicable or even
contradictory. From the phenotypic descriptions it is almost impossible to explain
the varation of data between labs. Knowledge about the models’ molecular con-
stitutions, however, would significantly restrict the scope of potential explanations
for these variations. If more labs would systematically characterize their models on
the molecular level, I’m convinced that in many cases the interpretation of formerly
irreproducible results would be eventually possible.

The voices of critics claiming that research has to shift back to the human system
because of the rather small success rates of animal experiments have become louder
in the last years. However, since functional studies and drug testing are not doable
in humans for practical and ethical reasons, it should be clear to everyone that
currently there is no alternative to animal studies in biomedical research. Although
cumbersome and having small scientific impact at first view, I’m convinced that
systematic characterizations of models’ molecular constitutions as presented in this
thesis provide reliable bases for knowledge transfer and are the key to higher success
rates in animal research.
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