

Interpolation-based model reduction of nonlinear systems

Maria Cruz Varona

CSC Seminar 2016

MPI Magdeburg, 09.02.2016

Outline

1. Nonlinear Model Order Reduction

- Motivation
- Projective reduction
- Challenges

2. State-of-the-Art Nonlinear Model Reduction Approaches

- Overview
- Proper Orthogonal Decomposition (POD)
- Trajectory piecewise-linear approximation (TPWL)

3. Model Reduction for Bilinear Systems

- Carleman bilinearization
- Output response and transfer functions
- Multimoment-Matching and \mathcal{H}_2 -optimal reduction
- $ightharpoonup \mathcal{H}_2$ pseudo-optimal reduction

4. Summary and Outlook

Discussion

Motivation for Nonlinear Model Order Reduction

Given a large-scale nonlinear control system of the form

$$\det(\mathbf{E}) \neq 0$$

$$\mathbf{\Sigma}: \left\{ egin{aligned} \mathbf{E}\dot{\mathbf{x}}(t) &= \mathbf{f}(\mathbf{x}(t)) + \mathbf{B}\mathbf{u}(t), \\ \mathbf{y}(t) &= \mathbf{C}\mathbf{x}(t), \quad \mathbf{x}(0) &= \mathbf{x}_0 \end{aligned}
ight.$$

$$\mathbf{x}(t) \in \mathbb{R}^n$$

with
$$\mathbf{E} \in \mathbb{R}^{n \times n}$$
, $\mathbf{f}(\mathbf{x}(t)) : \mathbb{R}^n \to \mathbb{R}^n$ and $\mathbf{B} \in \mathbb{R}^{n \times m}$, $\mathbf{C} \in \mathbb{R}^{q \times n}$

Simulation, design, control and optimization cannot be done efficiently!

Reduced order model

$$\Sigma_r : \left\{ \begin{array}{l} \mathbf{E}_r \dot{\mathbf{x}}_r(t) = \mathbf{f}_r(\mathbf{x}_r(t)) + \mathbf{B}_r \mathbf{u}(t), \\ \mathbf{y}_r(t) = \mathbf{C}_r \mathbf{x}_r(t), \quad \mathbf{x}_r(0) = \mathbf{x}_{r,0} \end{array} \right\} \quad \mathbf{x}_r(t) \in \mathbb{R}^r, \ r \ll n$$

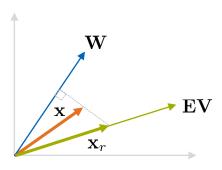
$$\mathbf{A}_{r}(t) \in \mathbb{R}^{n}, T \otimes T$$

with $\mathbf{E}_r \in \mathbb{R}^{r \times r}$, $\mathbf{f}_r(\mathbf{x}_r(t)) : \mathbb{R}^r \to \mathbb{R}^r$ and $\mathbf{B}_r \in \mathbb{R}^{r \times m}$, $\mathbf{C}_r \in \mathbb{R}^{q \times r}$

Projective nonlinear MOR

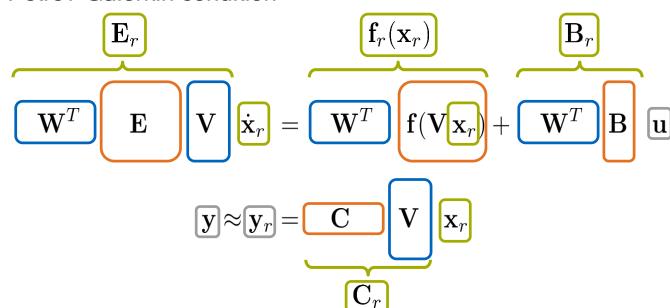
Approximation in the subspace $V = \text{span}(\mathbf{EV})$

$$\mathbf{x} = \mathbf{V} \mathbf{x}_r + \mathbf{e}, \quad \mathbf{V} \in \mathbb{R}^{n \times r}$$



Procedure:

- Replace x by its approximation
- 2. Reduce the number of equations (via projection with $\Pi = \mathbf{EV}(\mathbf{W}^T\mathbf{EV})^{-1}\mathbf{W})^T$
- 3. Petroy-Galerkin condition



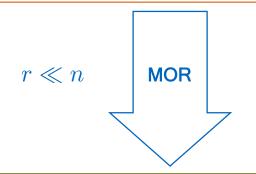
Model Order Reduction (MOR)

Large-scale nonlinear model

$$\Sigma : \begin{cases} \mathbf{E}\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t)) + \mathbf{B}\mathbf{u}(t), \\ \mathbf{y}(t) = \mathbf{C}\mathbf{x}(t), \quad \mathbf{x}(0) = \mathbf{x}_0 \end{cases}$$

$$\mathbf{E} \in \mathbb{R}^{n \times n}, \ \mathbf{f}(\mathbf{x}(t)) : \mathbb{R}^n \to \mathbb{R}^n$$

$$\mathbf{B} \in \mathbb{R}^{n \times m}, \ \mathbf{C} \in \mathbb{R}^{q \times n}$$



Projection

$$\mathbf{V}, \mathbf{W} \in \mathbb{R}^{n \times r}$$

$$\mathbf{E}_r = \mathbf{W}^T \mathbf{E} \mathbf{V}, \mathbf{f}_r = \mathbf{W}^T \mathbf{f}(\mathbf{V} \mathbf{x}_r), \mathbf{B}_r = \mathbf{W}^T \mathbf{B}, \mathbf{C}_r = \mathbf{C} \mathbf{V}$$

$$\mathbf{v} = \mathbf{v} = \mathbf{v} = \mathbf{v} = \mathbf{v} = \mathbf{v}$$

Reduced order model (ROM)

$$\Sigma_r : \begin{cases} \mathbf{E}_r \dot{\mathbf{x}}_r(t) = \mathbf{f}_r(\mathbf{x}_r(t)) + \mathbf{B}_r \mathbf{u}(t), \\ \mathbf{y}_r(t) = \mathbf{C}_r \mathbf{x}_r(t), \quad \mathbf{x}_r(0) = \mathbf{x}_{r,0} \end{cases}$$

$$\mathbf{E}_r \in \mathbb{R}^{r \times r}, \ \mathbf{f}_r(\mathbf{x}_r(t)) : \mathbb{R}^r \to \mathbb{R}^r$$

$$\mathbf{B_r} \in \mathbb{R}^{r \times m}, \ \mathbf{C}_r \in \mathbb{R}^{q \times r}$$

Challenges of Nonlinear Model Reduction

- Nonlinear systems can exhibit complex behaviours
 - Multiple equilibria
 - Stable, unstable or semi-stable limit cycles
 - Chaotic behaviours
- Input-output behaviour of nonlinear systems cannot be described with the help of transfer functions, the state-transition matrix or the convolution (only possible for special cases)
- Choice of the reduced order basis
 - Projection bases should comprise the most dominant directions of the state-space
 - Existing approaches:
 - → Simulation-based methods
 - → Volterra-based approaches
 - → Quadratic-bilinear-based techniques
- Expensive evaluation of the full-order vector of nonlinearities $f(\mathbf{V}\mathbf{x}_r(t))$
 - Approximation by so-called hyper-reduction techniques: EIM, DEIM, Gappy-POD, GNAT, ECSW, ...

Overview of existing nonlinear model reduction methods

Classification in

- 1. Simulation- or trajectory-based methods
- 2. Volterra-based approaches (bilinear)
- 3. Polynomialization- and variational analysis-based techniques (quadratic-bilinear)

or

- a) Time domain approaches (Simulation- or trajectory-based approaches)
- b) Frequency domain approaches (Interpolation-based methods: bilinear & QBMOR)

or

- i. Strong nonlinear approaches (POD, NL-BT, Empirical Gramians, TPWL, QBMOR)
- ii. Weakly nonlinear approaches (Bilinear models)

Methods:

- 1. POD, Nonlinear Balanced Truncation (NL-BT), Empirical Gramians, TPWL
- 2. Bilinear systems (BT, bilinear RK, BIRKA, Loewner Framework,...)
- 3. Quadratic-bilinear (BT, RK)

Overview

$$\mathbf{E}\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t)) + \mathbf{B}\mathbf{u}(t)$$
$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$$

$$\mathbf{E}\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}) + \mathbf{B}\mathbf{u}$$
$$\mathbf{y} = \mathbf{C}\mathbf{x}$$

$$\begin{aligned} \mathbf{E}\dot{\mathbf{x}} &= \mathbf{A}\mathbf{x} + \mathbf{N}\mathbf{x}\mathbf{u} + \mathbf{B}\mathbf{u} \\ \mathbf{y} &= \mathbf{C}\mathbf{x} \end{aligned}$$

$$\begin{aligned} \mathbf{E}\dot{\mathbf{x}} &= \mathbf{A}\mathbf{x} + \mathbf{H}(\mathbf{x} \otimes \mathbf{x}) + \mathbf{N}\mathbf{x}\mathbf{u} + \mathbf{B}\mathbf{u} \\ \mathbf{v} &= \mathbf{C}\mathbf{x} \end{aligned}$$

Proper Orthogonal Decomposition (POD)

Nonlinear Balanced Truncation

Empirical Gramians

Trajectory piecewise linear approximation (TPWL)

Bilinear Balanced
Truncation

Bilinear Rational Krylov

Bilinear IRKA

Bilinear Loewner Framework Balanced Truncation for QBDAEs

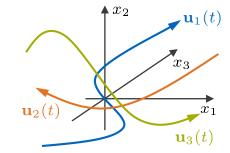
Two-sided Rational Krylov for QBDAEs

Proper Orthogonal Decomposition (POD)

Starting point:
$$\mathbf{E}\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t)) + \mathbf{B}\mathbf{u}(t)$$

 $\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$

1. Choose suitable training input signals $\mathbf{u}_1(t), \mathbf{u}_2(t), \dots, \mathbf{u}_t(t)$



2. Take snapshots from simulated full-order state trajectories

$$\mathbf{X}_{(n,t\cdot N)} = \begin{bmatrix} \mathbf{x}^{\mathbf{u}_1}(t_1), \ \mathbf{x}^{\mathbf{u}_1}(t_2), \cdots, \ \mathbf{x}^{\mathbf{u}_1}(t_N) & \mathbf{x}^{\mathbf{u}_2}(t_1), \ \mathbf{x}^{\mathbf{u}_2}(t_2), \cdots \end{bmatrix}$$

3. Perform singular value decomposition (SVD) of the snapshot matrix X

$$\mathbf{X} = \mathbf{M} \sum_{(n,n)} \mathbf{N}^{T} \approx \mathbf{M}_{r} \sum_{r} \mathbf{N}_{r}^{T}$$

$$= (n,r) (r,r) (r,t \cdot N)$$

4. Reduced order basis: $\mathbf{V} = \mathbf{M}_r \in \mathbb{R}^{n \times r}$

Advantages

- Straightforward data-driven method
- Error bound for approximation error
- Optimal in least squares sense:

$$\min_{\operatorname{rank}(\mathbf{X}_r)=r} ||\mathbf{X} - \mathbf{X}_r||_2$$

Drawbacks

- Simulation of full-order model for different input signals required
- SVD of large snapshot matrix X
- Training input dependency

Trajectory Piecewise-Linear Approximation (TPWL)

Starting point:
$$\mathbf{E}\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t)) + \mathbf{B}\mathbf{u}(t)$$

 $\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$

1. Linearize original nonlinear model along simulated state trajectory

Weighted sum of
$$s$$
 linearized models
$$\begin{bmatrix} \mathbf{E}\dot{\mathbf{x}}(t) = \sum_{i=1}^s \omega_i(\mathbf{x}) \ (\mathbf{f}(\mathbf{x}_i) + \mathbf{A}_i(\mathbf{x} - \mathbf{x}_i)) + \mathbf{B}\mathbf{u}(t) \\ \mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) \end{bmatrix} \mathbf{A}_i(\mathbf{x} - \mathbf{x}_i) + \mathbf{B}\mathbf{u}(t)$$

$$\mathbf{A}_i = \frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}} \bigg|_{\mathbf{x}_i}$$

$$\mathbf{A}_i = \left. rac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}} \right|_{\mathbf{x}}$$

- Reduce linearized models with well-known linear model reduction techniques (e.g. POD, Balanced Truncation, Rational Krylov, ...)
- 3. Construct reduced order model as weighted sum of linearized reduced models:

$$\mathbf{W}^{T}\mathbf{E}\mathbf{V}\dot{\mathbf{x}}_{r}(t) = \sum_{i=1}^{s} \omega_{i}(\mathbf{x}_{r})\mathbf{W}^{T}\left(\mathbf{f}(\mathbf{x}_{i}) - \mathbf{A}_{i}\mathbf{x}_{i}\right) + \sum_{i=1}^{s} \omega_{i}(\mathbf{x}_{r})\left(\mathbf{W}^{T}\mathbf{A}_{i}\mathbf{V}\mathbf{x}_{r}\right) + \mathbf{W}^{T}\mathbf{B}\mathbf{u}(t)$$

$$\mathbf{y}_{r}(t) = \mathbf{C}\mathbf{V}\mathbf{x}_{r}(t)$$
Weighting functions

Weighting functions
$$\sum_{i=1}^s \omega_i(\mathbf{x}_r(t)) = 1, \quad \omega_i(\mathbf{x}_r(t)) \geq 0$$

Trajectory Piecewise-Linear Approximation (TPWL)

Offline stage

- 1. Simulation of full-order model for several appropriate training input signals
- 2. Selection of linearization points (number s and distance δ) and linearization at selected points
- 3. Reduction of all linearized models
- 4. Choice of weighting function (e.g. Gaussian, $\sin c$ squared, trapezoidal, triangular, ...)

Online stage

- 1. Calculation of the weights according to the current state
- Computation of reduced model as convex combination of linearized reduced models

Advantages

- Strong nonlinear approach
- Linear model reduction techniques can be used
- No hyper-reduction step necessary

Drawbacks

- Simulation, linearization and reduction of full-order models
- Many degrees of freedom (s, δ, ω_i)
- Training input dependency

Trajectory Piecewise-Linear Approximation (TPWL)

Variations and extensions of the TPWL approach

- Fast approximate simulation
 - select the linearization points using the linearized or the reduced trajectory
- Reduction of the linearized models
 - Using global projection matrices: $\mathbf{V} = \begin{bmatrix} \mathbf{V}_1^{(1)} \ \mathbf{V}_1^{(2)} \ \mathbf{V}_2^{(1)} \ \mathbf{V}_2^{(2)} \ \dots \ \mathbf{V}_s^{(1)} \ \mathbf{V}_s^{(2)} \end{bmatrix}$ $\operatorname{span}\{\mathbf{V}_i^{(1)}\} = \mathcal{K}_r \left((\mathbf{A}_i - s_0 \mathbf{E})^{-1} \mathbf{E}, (\mathbf{A}_i - s_0 \mathbf{E})^{-1} \mathbf{B} \right)$ $\operatorname{span}\{\mathbf{V}_i^{(2)}\} = \mathcal{K}_r \left((\mathbf{A}_i - s_0 \mathbf{E})^{-1} \mathbf{E}, (\mathbf{A}_i - s_0 \mathbf{E})^{-1} (\mathbf{f}(\mathbf{x}_i) - \mathbf{A}_i \mathbf{x}_i) \right)$
 - Using local projection matrices: $\mathbf{V}_1 = \left[\mathbf{V}_1^{(1)} \ \mathbf{V}_1^{(2)}\right], \dots, \mathbf{V}_s = \left[\mathbf{V}_s^{(1)} \ \mathbf{V}_s^{(2)}\right]$
 - → Computation of state transformations to common subspace are necessary
- Generation of stable TPWL reduced models
- Reduction of nonlinear, parametric models using TPWL + pMOR by Matrix Interpolation
- Reduction of nonlinear DAE models (e.g electrostatic beam, IMTEK) using TPWL

Overview

$$\mathbf{E}\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t)) + \mathbf{B}\mathbf{u}(t)$$
$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$$

Simulation-based methods

$$E\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}) + \mathbf{B}\mathbf{u}$$
$$\mathbf{y} = \mathbf{C}\mathbf{x}$$

Volterra-based methods

$$\begin{split} \mathbf{E}\dot{\mathbf{x}} &= \mathbf{A}\mathbf{x} + \mathbf{N}\mathbf{x}\mathbf{u} + \mathbf{B}\mathbf{u} \\ \mathbf{y} &= \mathbf{C}\mathbf{x} \end{split}$$

Quadratic-bilinear methods

$$\begin{split} \mathbf{E}\dot{\mathbf{x}} &= \mathbf{A}\mathbf{x} + \mathbf{H}(\mathbf{x}\otimes\mathbf{x}) + \mathbf{N}\mathbf{x}\mathbf{u} + \mathbf{B}\mathbf{u} \\ \mathbf{y} &= \mathbf{C}\mathbf{x} \end{split}$$

Proper Orthogonal Decomposition (POD)

Nonlinear Balanced
Truncation

Empirical Gramians

Trajectory piecewise linear approximation (TPWL)

Bilinear Balanced
Truncation

Bilinear Rational Krylov

Bilinear IRKA

Bilinear Loewner Framework Balanced Truncation for QBDAEs

Two-sided Rational Krylov for QBDAEs

Carleman linearization

Starting point:
$$\mathbf{E}\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t)) + \mathbf{B}\mathbf{u}(t)$$

 $\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$

Goal: Approximation of (weakly) nonlinear systems by Carleman linearization

Taylor series representation:

$$\mathbf{f}(\mathbf{x}) = \mathbf{f}(\mathbf{x}_0) + \underbrace{\frac{\mathbf{f}^{(1)}(\mathbf{x}_0)}{1!}}_{\mathbf{A}_1}(\mathbf{x} - \mathbf{x}_0) + \underbrace{\frac{\mathbf{f}^{(2)}(\mathbf{x}_0)}{2!}}_{\mathbf{A}_2}(\mathbf{x} - \mathbf{x}_0)^2 + \underbrace{\frac{\mathbf{f}^{(3)}(\mathbf{x}_0)}{3!}}_{\mathbf{A}_3}(\mathbf{x} - \mathbf{x}_0)^3 + \cdots$$

$$\mathbf{A}_1 \in \mathbb{R}^{n \times n}$$

$$\mathbf{A}_2 \in \mathbb{R}^{n \times n^2}$$

$$\mathbf{A}_2 \in \mathbb{R}^{n \times n^2}$$

$$\mathbf{A}_2 \in \mathbb{R}^{n \times n^2}$$

$$\mathbf{A}_3 \in \mathbb{R}^{n \times n^2}$$

$$\mathbf{A}_3 \in \mathbb{R}^{n \times n^3}$$

$$\vdots$$

$$\mathbf{f}(\mathbf{x}) = \mathbf{A}_1 \mathbf{x} + \mathbf{A}_2 (\mathbf{x} \otimes \mathbf{x}) + \mathbf{A}_3 (\mathbf{x} \otimes \mathbf{x} \otimes \mathbf{x}) + \cdots = \sum_{n=1}^{\infty} \mathbf{A}_n \mathbf{x}^{(n)} \approx \sum_{n=1}^{\infty} \mathbf{A}_n \mathbf{x}^{(n)}$$

$$\mathbf{f}(\mathbf{x}) = \mathbf{A}_1 \, \mathbf{x} + \mathbf{A}_2 \, (\mathbf{x} \otimes \mathbf{x}) + \mathbf{A}_3 \, (\mathbf{x} \otimes \mathbf{x} \otimes \mathbf{x}) + \dots = \sum_{k=1}^{n} \mathbf{A}_k \mathbf{x}^{(k)} \approx \sum_{k=1}^{n} \mathbf{A}_k \mathbf{x}^{(k)}$$

State-space model:

$$\mathbf{E}\dot{\mathbf{x}}(t) = \sum_{k=1}^{N} \mathbf{A}_k \mathbf{x}^{(k)} + \mathbf{B}\mathbf{u}(t)$$
 $\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$

Carleman bilinearization

Starting point:
$$\mathbf{E}\dot{\mathbf{x}}(t) = \sum_{k=1}^{\infty} \mathbf{A}_k \mathbf{x}^{(k)} + \mathbf{B}\mathbf{u}(t)$$
 $\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$

Goal: Bilinear model

Consider differential equations for $\mathbf{x}^{(2)}, \mathbf{x}^{(3)}, \dots, \mathbf{x}^{(N)}$

$$\mathbf{E}^{(2)} \frac{\mathrm{d}}{\mathrm{d}t} \mathbf{x}^{(2)} = \frac{\mathrm{d}}{\mathrm{d}t} (\mathbf{E}\mathbf{x} \otimes \mathbf{E}\mathbf{x}) = \mathbf{E}\dot{\mathbf{x}} \otimes \mathbf{E}\mathbf{x} + \mathbf{E}\mathbf{x} \otimes \mathbf{E}\dot{\mathbf{x}}$$

$$= \left(\sum_{k=1}^{N} \mathbf{A}_{k} \mathbf{x}^{(k)} + \mathbf{B}\mathbf{u}\right) \otimes \mathbf{E}\mathbf{x} + \mathbf{E}\mathbf{x} \otimes \left(\sum_{k=1}^{N} \mathbf{A}_{k} \mathbf{x}^{(k)} + \mathbf{B}\mathbf{u}\right)$$

$$= \sum_{k=1}^{N-1} \left[\mathbf{A}_{k} \otimes \mathbf{E} + \mathbf{E} \otimes \mathbf{A}_{k}\right] \mathbf{x}^{(k+1)} + \left[\mathbf{B} \otimes \mathbf{E} + \mathbf{E} \otimes \mathbf{B}\right] \mathbf{x} \otimes \mathbf{u}$$

$$\mathbf{E}^{(3)} \frac{\mathrm{d}}{\mathrm{d}t} \mathbf{x}^{(3)} = \frac{\mathrm{d}}{\mathrm{d}t} (\mathbf{E}\mathbf{x} \otimes \mathbf{E}\mathbf{x} \otimes \mathbf{E}\mathbf{x})$$

$$\mathbf{E}^{(3)}\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x}^{(3)} = \frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{E}\mathbf{x} \otimes \mathbf{E}\mathbf{x} \otimes \mathbf{E}\mathbf{x})$$

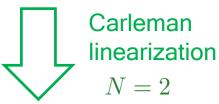
Bilinear model:

$$\begin{pmatrix}
\mathbf{E}^{\otimes}\dot{\mathbf{x}}^{\otimes} = \mathbf{A}^{\otimes}\mathbf{x}^{\otimes} + \mathbf{N}^{\otimes}\mathbf{x}^{\otimes}\mathbf{u} + \mathbf{B}^{\otimes}\mathbf{u} \\
\mathbf{y} = \mathbf{C}^{\otimes}\mathbf{x}^{\otimes}
\end{pmatrix} \text{ with } \mathbf{x}^{\otimes} = \begin{bmatrix}
\mathbf{x}^{(1)} \\
\mathbf{x}^{(2)} \\
\vdots \\
\mathbf{x}^{(N)}
\end{bmatrix}$$

Carleman bilinearization: example

Starting point:
$$\mathbf{E}\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t)) + \mathbf{B}\mathbf{u}(t)$$

 $\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$



$$\mathbf{E}\dot{\mathbf{x}} = \mathbf{A}_1\mathbf{x} + \mathbf{A}_2(\mathbf{x}\otimes\mathbf{x}) + \mathbf{B}\mathbf{u}$$

$$y = Cx$$

Carleman bilinearization
$$\mathbf{x}^\otimes = \begin{bmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{bmatrix}$$

$$\mathbf{E}^{(2)} \frac{\mathrm{d}}{\mathrm{d}t} \mathbf{x}^{(2)} = \frac{\mathrm{d}}{\mathrm{d}t} (\mathbf{E}\mathbf{x} \otimes \mathbf{E}\mathbf{x}) = \mathbf{E}\dot{\mathbf{x}} \otimes \mathbf{E}\mathbf{x} + \mathbf{E}\mathbf{x} \otimes \mathbf{E}\dot{\mathbf{x}})$$

$$= (\mathbf{A}_1\mathbf{x} + \mathbf{A}_2(\mathbf{x} \otimes \mathbf{x}) + \mathbf{B}\mathbf{u}) \otimes \mathbf{E}\mathbf{x}$$

$$+ \mathbf{E}\mathbf{x} \otimes (\mathbf{A}_1\mathbf{x} + \mathbf{A}_2(\mathbf{x} \otimes \mathbf{x}) + \mathbf{B}\mathbf{u})$$

$= [\mathbf{A}_1 \otimes \mathbf{E} + \mathbf{E} \otimes \mathbf{A}_1] \mathbf{x} \otimes \mathbf{x} + [\mathbf{B} \otimes \mathbf{E} + \mathbf{E} \otimes \mathbf{B}] \mathbf{x} \otimes \mathbf{u}$

Bilinear model:

$$\begin{bmatrix} \mathbf{E} & \mathbf{0} \\ \mathbf{0} & \mathbf{E} \otimes \mathbf{E} \end{bmatrix} \dot{\mathbf{x}}^{\otimes} = \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 \\ \mathbf{0} & \mathbf{A}_1 \otimes \mathbf{E} + \mathbf{E} \otimes \mathbf{A}_1 \end{bmatrix} \mathbf{x}^{\otimes} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{B} \otimes \mathbf{E} + \mathbf{E} \otimes \mathbf{B} & \mathbf{0} \end{bmatrix} \mathbf{x}^{\otimes} \mathbf{u} + \begin{bmatrix} \mathbf{B} \\ \mathbf{0} \end{bmatrix} \mathbf{u}$$
$$\mathbf{y} = \begin{bmatrix} \mathbf{C} & \mathbf{0} \end{bmatrix} \mathbf{x}^{\otimes}$$

State-Space Representation of Bilinear Systems

Consider bilinear SISO systems of the form

$$\mathbf{E} \quad \dot{\mathbf{x}} = \mathbf{A} \quad \mathbf{x} + \mathbf{N} \quad \mathbf{x} \, u + \mathbf{b} \quad u$$

$$y = \mathbf{c}^T \quad \mathbf{x}$$

with $\mathbf{E}, \mathbf{A}, \mathbf{N} \in \mathbb{R}^{n \times n}$ and $\mathbf{b}, \mathbf{c} \in \mathbb{R}^n$.

- Many (weakly) nonlinear systems can be approximated by bilinear systems through Carleman bilinearization
 - Drawback: Dimension of the bilinear model is significantly higher than the original state dimension → only applicable for medium-sized (weakly) nonlinear systems
- Linear in input and linear in state, but not jointly linear in state and input
- Advantage: Close relation to linear systems, a lot of well-known concepts can be extended, e.g. transfer functions, Gramians, Sylvester and Lyapunov equations.

Output response and Transfer Functions of Bilinear Systems

Some background on Volterra theory

• Output response expressed by Volterra series: $y(t) = \sum_{k=1}^{\infty} y_k(t)$

$$y_k(t) = \int_0^t \int_0^{t_1} \cdots \int_0^{t_k} \underbrace{\mathbf{c}^T e^{\mathbf{E}^{-1} \mathbf{A} t_k} \, \mathbf{E}^{-1} \mathbf{N} \cdots \mathbf{E}^{-1} \mathbf{N} \, e^{\mathbf{E}^{-1} \mathbf{A} t_1} \mathbf{E}^{-1} \mathbf{b}}_{g_k(t_1, \dots, t_k)} u(t - t_1 - \dots - t_k) \, \dots \, u(t - t_k) \, \mathrm{d} t_k \dots \, \mathrm{d} t_1$$

Impulse response / kernel of kth degree

$$y(t) = \sum_{k=1}^{\infty} \int_{0}^{t} \int_{0}^{t_{1}} \cdots \int_{0}^{t_{k}} g_{k}(t_{1}, \dots, t_{k}) u(t - t_{1} - \dots - t_{k}) \dots u(t - t_{k}) dt_{k} \dots dt_{1}$$

Multivariable Laplace-transform:

$$G_1(s_1) = \mathbf{c}^T (s_1 \mathbf{E} - \mathbf{A})^{-1} \mathbf{b}$$

$$G_2(s_1, s_2) = \mathbf{c}^T (s_2 \mathbf{E} - \mathbf{A})^{-1} \mathbf{N} (s_1 \mathbf{E} - \mathbf{A})^{-1} \mathbf{b}$$

$$G_3(s_1, s_2, s_3) = \mathbf{c}^T (s_3 \mathbf{E} - \mathbf{A})^{-1} \mathbf{N} (s_2 \mathbf{E} - \mathbf{A})^{-1} \mathbf{N} (s_1 \mathbf{E} - \mathbf{A})^{-1} \mathbf{b}$$

$$\vdots$$

$$G_k(s_1,\ldots,s_k) = \mathbf{c}^T(s_k\mathbf{E} - \mathbf{A})^{-1}\mathbf{N} \cdots \mathbf{N}(s_2\mathbf{E} - \mathbf{A})^{-1}\mathbf{N}(s_1\mathbf{E} - \mathbf{A})^{-1}\mathbf{b}$$

Model Reduction of Bilinear Systems

Volterra-based methods

$$\mathbf{E}\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{N}\mathbf{x}\mathbf{u} + \mathbf{B}\mathbf{u}$$
$$\mathbf{y} = \mathbf{C}\mathbf{x}$$

Bilinear Balanced Truncation

- [Al-Baiyat '93], [Benner/Damm '11]
- Solution of two bilinear Lyapunov equations

Bilinear Rational Krylov

- [Phillips '00], [Bai/Skoogh '06], [Breiten/Damm '10]
- Multimoment-Matching for bilinear systems

Bilinear IRKA

- [Zhang/Lam '02], [Benner/Breiten '12], [Flagg '12]
- H2-optimal model reduction for bilinear systems

Bilinear Loewner Framework

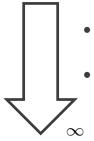
- [Flagg '12], [Antoulas '14]
- Data-driven interpolation-based approach

MOR for Bilinear Systems: Multimoment-Matching

Multimoments for bilinear systems: [Bai/Skoogh '06], [Breiten/Damm '10]

Transfer function:

$$G_k(s_1,\ldots,s_k) = \mathbf{c}^T(s_k\mathbf{E} - \mathbf{A})^{-1}\mathbf{N} \cdots \mathbf{N}(s_2\mathbf{E} - \mathbf{A})^{-1}\mathbf{N}(s_1\mathbf{E} - \mathbf{A})^{-1}\mathbf{b}$$



- Make use of Neumann expansion
 Expansion in a multivariable Maclaurin series

$$G_k(s_1,\ldots,s_k) = \sum_{l_k=1}^{\infty} \cdots \sum_{l_1=1}^{\infty} m(l_1,\ldots,l_k) \cdot (s_1 - \sigma_1)^{l_1-1} \cdots (s_k - \sigma_k)^{l_k-1}$$

Multimoments:

$$m(l_1,\ldots,l_k) = (-1)^k \mathbf{c}^T (\mathbf{A} - \sigma_k \mathbf{E})^{-l_k} \mathbf{N} \cdots \mathbf{N} (\mathbf{A} - \sigma_2 \mathbf{E})^{-l_2} \mathbf{N} (\mathbf{A} - \sigma_1 \mathbf{E})^{-l_1} \mathbf{b}$$

Markov parameters:

$$\boxed{m^{\infty}(l_1,\ldots,l_k) = \mathbf{c}^T \mathbf{A}^{l_k-1} \mathbf{N} \cdots \mathbf{N} \mathbf{A}^{l_2-1} \mathbf{N} \mathbf{A}^{l_1-1} \mathbf{b}}$$

with
$$G_k(s_1, \dots, s_k) = \sum_{l_k=1}^{\infty} \dots \sum_{l_1=1}^{\infty} m^{\infty}(l_1, \dots, l_k) \cdot s_1^{-l_1} \dots s_k^{-l_k}$$

MOR for Bilinear Systems: Multimoment-Matching

Multimoment-Matching: [Bai/Skoogh '06], [Feng/Benner '07], [Breiten/Damm '10]

Calculation of the Krylov subspaces:

$$\operatorname{span}\{\mathbf{V}^{(1)}\} = \mathcal{K}_{r_1} \left((\mathbf{A} - \sigma_1 \mathbf{E})^{-1} \mathbf{E}, (\mathbf{A} - \sigma_1 \mathbf{E})^{-1} \mathbf{b} \right)$$

$$\operatorname{span}\{\mathbf{V}^{(2)}\} = \mathcal{K}_{r_2} \left((\mathbf{A} - \sigma_2 \mathbf{E})^{-1} \mathbf{E}, (\mathbf{A} - \sigma_2 \mathbf{E})^{-1} \mathbf{N} \mathbf{V}^{(1)} \mathbf{U}^T \right)$$

$$\vdots$$

$$\operatorname{span}\{\mathbf{V}^{(j)}\} = \mathcal{K}_{r_j} \left((\mathbf{A} - \sigma_j \mathbf{E})^{-1} \mathbf{E}, (\mathbf{A} - \sigma_j \mathbf{E})^{-1} \mathbf{N} \mathbf{V}^{(j-1)} \mathbf{U}^T \right), j = 2, \dots, J$$

2. Computation of the reduced order model:

$$\mathbf{E}_r = \mathbf{W}^T \mathbf{E} \mathbf{V}, \quad \mathbf{A}_r = \mathbf{W}^T \mathbf{A} \mathbf{V}, \quad \mathbf{N}_r = \mathbf{W}^T \mathbf{N} \mathbf{V}, \quad \mathbf{b}_r = \mathbf{W}^T \mathbf{b}, \quad \mathbf{c}_r^T = \mathbf{c}^T \mathbf{V}$$

Example:

1st subsystem: $r_1 = 4$, σ_1 $\mathbf{V}^{(1)} = \left[(\mathbf{A} - \sigma_1 \mathbf{E})^{-1} \mathbf{b}, (\mathbf{A} - \sigma_1 \mathbf{E})^{-1} \mathbf{E} (\mathbf{A} - \sigma_1 \mathbf{E})^{-1} \mathbf{b}, \ldots \right]$

$$\mathbf{W}^{(1)} = \left[(\mathbf{A} - \sigma_1 \mathbf{E})^{-T} \mathbf{c}, (\mathbf{A} - \sigma_1 \mathbf{E})^{-T} \mathbf{E}^T (\mathbf{A} - \sigma_1 \mathbf{E})^{-T} \mathbf{c}, \ldots \right]$$

2nd subsystem: $r_2 = 2, \ \sigma_2$

The subsystem:
$$T_2 = 2$$
, σ_2

$$\mathbf{V}^{(2)} = \left[(\mathbf{A} - \sigma_2 \mathbf{E})^{-1} \mathbf{N} \mathbf{V}^{(1)} \mathbf{U}^T, (\mathbf{A} - \sigma_2 \mathbf{E})^{-1} \mathbf{E} (\mathbf{A} - \sigma_2 \mathbf{E})^{-1} \mathbf{N} \mathbf{V}^{(1)} \mathbf{U}^T \right]$$

$$\mathbf{W}^{(2)} = \left[(\mathbf{A} - \sigma_2 \mathbf{E})^{-T} \mathbf{N}^T \mathbf{W}^{(1)} \mathbf{U}^T, (\mathbf{A} - \sigma_2 \mathbf{E})^{-T} \mathbf{E}^T (\mathbf{A} - \sigma_2 \mathbf{E})^{-T} \mathbf{N}^T \mathbf{W}^{(1)} \mathbf{U}^T \right]$$

$$m(l_1) = m_r(l_1)$$
 for $l_1 = 1, \dots, r_1$

$$m(l_1, l_2) = m_r(l_1, l_2)$$

for $l_1 = 1, \dots, r_1$
 $l_2 = 1, \dots, r_2$

MOR for Bilinear Systems: Multimoment-Matching

Multimoment-Matching: [Bai/Skoogh '06], [Feng/Benner '07], [Breiten/Damm '10]

1. Calculation of the Krylov subspaces:

$$\operatorname{span}\{\mathbf{V}^{(1)}\} = \mathcal{K}_{r_1}\left((\mathbf{A} - \sigma_1 \mathbf{E})^{-1} \mathbf{E}, (\mathbf{A} - \sigma_1 \mathbf{E})^{-1} \mathbf{b}\right)$$

$$\operatorname{span}\{\mathbf{V}^{(2)}\} = \mathcal{K}_{r_2}\left((\mathbf{A} - \sigma_2 \mathbf{E})^{-1} \mathbf{E}, (\mathbf{A} - \sigma_2 \mathbf{E})^{-1} \mathbf{N} \mathbf{V}^{(1)} \mathbf{U}^T\right) \qquad \operatorname{span}\{\mathbf{V}\} = \bigcup_{j=1}^{J} \operatorname{colspan}\{\mathbf{V}^{(j)}\}$$

$$\vdots$$

$$\operatorname{span}\{\mathbf{V}^{(j)}\} = \mathcal{K}_{r_j}\left((\mathbf{A} - \sigma_j \mathbf{E})^{-1} \mathbf{E}, (\mathbf{A} - \sigma_j \mathbf{E})^{-1} \mathbf{N} \mathbf{V}^{(j-1)} \mathbf{U}^T\right), j = 2, \dots, J$$

2. Computation of the reduced order model:

$$\mathbf{E}_r = \mathbf{W}^T \mathbf{E} \mathbf{V}, \quad \mathbf{A}_r = \mathbf{W}^T \mathbf{A} \mathbf{V}, \quad \mathbf{N}_r = \mathbf{W}^T \mathbf{N} \mathbf{V}, \quad \mathbf{b}_r = \mathbf{W}^T \mathbf{b}, \quad \mathbf{c}_r^T = \mathbf{c}^T \mathbf{V}$$

Open questions/problems:

- How to choose the expansion points?
 - \rightarrow Optimal expansion points via \mathcal{H}_2 -optimal model reduction (bilinear IRKA)
- How many moments should be matched per subsystem?
- How many subsystems are necessary for a good approximation?
- Error bounds?

MOR for Bilinear Systems: \mathcal{H}_2 -optimal model reduction

• \mathcal{H}_2 -norm of a MIMO bilinear system:

$$||\mathbf{\Sigma}||_{\mathcal{H}_2}^2 := \operatorname{tr}\left(\sum_{k=1}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \frac{1}{(2\pi)^k} \mathbf{G}_k(j\omega_1, \dots, j\omega_k) \mathbf{G}_k^*(j\omega_1, \dots, j\omega_k) d\omega_k \cdots d\omega_1\right)$$

Alternative calculation via

$$||\mathbf{\Sigma}||_{\mathcal{H}_2}^2 = \operatorname{tr}\left(\mathbf{CPC}^T\right) = \operatorname{tr}\left(\mathbf{B}^T\mathbf{QB}\right)$$

where **P** and **Q** are the solutions of the following bilinear Lyapunov equations:

$$\mathbf{APE} + \mathbf{EPA}^T + \sum_{k=1}^m \mathbf{N}_k \mathbf{PN}_k^T + \mathbf{BB}^T = \mathbf{0}$$
 $\mathbf{A}^T \mathbf{QE} + \mathbf{E}^T \mathbf{QA} + \sum_{k=1}^m \mathbf{N}_k^T \mathbf{QN}_k + \mathbf{C}^T \mathbf{C} = \mathbf{0}$

$$||\mathbf{\Sigma}||_{\mathcal{H}_2}^2 = (\text{vec}(\mathbf{I}_q))^T (\mathbf{C} \otimes \mathbf{C}) \left(-\mathbf{A} \otimes \mathbf{E} - \mathbf{E} \otimes \mathbf{A} - \sum_{k=1}^m \mathbf{N}_k \otimes \mathbf{N}_k \right)^{-1} (\mathbf{B} \otimes \mathbf{B}) \text{vec}(\mathbf{I}_m)$$

• Error system: $\Sigma_e = \Sigma - \Sigma_r$

$$\mathbf{E}_e = egin{bmatrix} \mathbf{E}_e & \mathbf{0} \ \mathbf{0} & \mathbf{E}_r \end{bmatrix}, \; \mathbf{A}_e = egin{bmatrix} \mathbf{A} & \mathbf{0} \ \mathbf{0} & \mathbf{A}_r \end{bmatrix}, \; \mathbf{N}_{k,e} = egin{bmatrix} \mathbf{N}_k & \mathbf{0} \ \mathbf{0} & \mathbf{N}_{k,r} \end{bmatrix}, \; \mathbf{B}_e = egin{bmatrix} \mathbf{B} \ \mathbf{B}_r \end{bmatrix}, \; \mathbf{C}_e = egin{bmatrix} \mathbf{C} & -\mathbf{C}_r \end{bmatrix}$$

MOR for Bilinear Systems: \mathcal{H}_2 -optimal model reduction

• \mathcal{H}_2 -norm of error system:

$$E^{2} = ||\mathbf{\Sigma}_{e}||_{\mathcal{H}_{2}}^{2} = ||\mathbf{\Sigma} - \mathbf{\Sigma}_{r}||_{\mathcal{H}_{2}}^{2} = \operatorname{tr}\left(\mathbf{C}_{e}\mathbf{P}_{e}\mathbf{C}_{e}^{T}\right) = \operatorname{tr}\left(\mathbf{B}_{e}^{T}\mathbf{Q}_{e}\mathbf{B}_{e}\right)$$

where P_e and Q_e are the solutions of the following bilinear Lyapunov equations:

$$\mathbf{A}_e \mathbf{P}_e \mathbf{E}_e + \mathbf{E}_e \mathbf{P}_e \mathbf{A}_e^T + \sum_{k=1}^m \mathbf{N}_{k,e} \mathbf{P}_e \mathbf{N}_{k,e}^T + \mathbf{B}_e \mathbf{B}_e^T = \mathbf{0}$$

$$\mathbf{A}_e^T \mathbf{Q}_e \mathbf{E}_e + \mathbf{E}_e^T \mathbf{Q}_e \mathbf{A}_e + \sum_{k=1}^{T} \mathbf{N}_{k,e}^T \mathbf{Q}_e \mathbf{N}_{k,e} + \mathbf{C}_e^T \mathbf{C}_e = \mathbf{0}$$

Assume the reduced model Σ_r is given by ist eigenvalue decomposition:

$$\mathbf{E}_r^{-1}\mathbf{A}_r = \mathbf{R}\boldsymbol{\Lambda}\mathbf{R}^{-1}, \quad \tilde{\mathbf{N}}_k = \mathbf{R}^{-1}\mathbf{E}_r^{-1}\mathbf{N}_{k,r}\mathbf{R}, \quad \tilde{\mathbf{B}} = \mathbf{R}^{-1}\mathbf{E}_r^{-1}\mathbf{B}_r, \quad \tilde{\mathbf{C}} = \mathbf{C}_r\mathbf{R}$$

$$E^2 = f(\mathbf{A}, \mathbf{\Lambda}, \mathbf{N}_k, \mathbf{\tilde{N}}_k, \mathbf{B}, \mathbf{\tilde{B}}, \mathbf{C}, \mathbf{\tilde{C}}) \rightarrow \min$$

Optimization parameters

• Necessary conditions for \mathcal{H}_2 -optimality:

$$\frac{\partial E^2}{\partial \tilde{C}_{ij}} \stackrel{!}{=} 0 \iff \mathbf{G}(-\overline{\lambda}_{r,i})\tilde{\mathbf{B}}_i^T = \mathbf{G}_r(-\overline{\lambda}_{r,i})\tilde{\mathbf{B}}_i^T \qquad \mathbf{3} \quad \frac{\partial E^2}{\partial \lambda_{r\,i}} \stackrel{!}{=} 0 \iff \tilde{\mathbf{C}}_i^T \mathbf{G}'(-\overline{\lambda}_{r,i})\tilde{\mathbf{B}}_i^T = \tilde{\mathbf{C}}_i^T \mathbf{G}'_r(-\overline{\lambda}_{r,i})\tilde{\mathbf{B}}_i^T$$

$$2 \frac{\partial E^2}{\partial \tilde{B}_{ij}} \stackrel{!}{=} 0 \iff \tilde{\mathbf{C}}_i^T \mathbf{G}(-\overline{\lambda}_{r,i}) = \tilde{\mathbf{C}}_i^T \mathbf{G}_r(-\overline{\lambda}_{r,i}) \qquad 4 \frac{\partial E^2}{\partial \tilde{N}_{k,ij}} \stackrel{!}{=} 0$$

MOR for Bilinear Systems: \mathcal{H}_2 -optimal model reduction

Bilinear IRKA approach

Algorithm 1 Bilinear Iterative Rational Krylov Algorithm (BIRKA)

Input: $\mathbf{E}, \mathbf{A}, \mathbf{N}_k, \mathbf{B}, \mathbf{C}, \mathbf{E}_r, \mathbf{A}_r, \mathbf{N}_{k,r}, \mathbf{B}_r, \mathbf{C}_r$

Output: $\mathbf{E}_r^{\mathrm{opt}}, \mathbf{A}_r^{\mathrm{opt}}, \mathbf{N}_{k,r}^{\mathrm{opt}}, \mathbf{B}_r^{\mathrm{opt}}, \mathbf{C}_r^{\mathrm{opt}}$

1: while (change in $\Lambda > \epsilon$) do

2:
$$\mathbf{E}_r^{-1}\mathbf{A}_r = \mathbf{R}\mathbf{\Lambda}\mathbf{R}^{-1}, \ \tilde{\mathbf{N}}_k = \mathbf{R}^{-1}\mathbf{E}_r^{-1}\mathbf{N}_{k,r}\mathbf{R}, \ \tilde{\mathbf{B}} = \mathbf{R}^{-1}\mathbf{E}_r^{-1}\mathbf{B}_r, \ \tilde{\mathbf{C}} = \mathbf{C}_r\mathbf{R}$$

3:
$$\operatorname{vec}(\mathbf{V}) = \left(-\mathbf{\Lambda} \otimes \mathbf{E} - \mathbf{E} \otimes \mathbf{A} - \sum_{k=1}^{m} \tilde{\mathbf{N}}_{k} \otimes \mathbf{N}_{k}\right)^{-1} (\tilde{\mathbf{B}} \otimes \mathbf{B}) \operatorname{vec}(\mathbf{I}_{m})$$

4:
$$\operatorname{vec}(\mathbf{W}) = \left(-\mathbf{\Lambda} \otimes \mathbf{E} - \mathbf{E} \otimes \mathbf{A}^T - \sum_{k=1}^m \tilde{\mathbf{N}}_k^T \otimes \mathbf{N}_k^T\right)^{-1} (\tilde{\mathbf{C}}^T \otimes \mathbf{C})^T \operatorname{vec}(\mathbf{I}_q)$$

5:
$$\mathbf{V} = \operatorname{orth}(\mathbf{V}), \ \mathbf{W} = \operatorname{orth}(\mathbf{W})$$

6:
$$\mathbf{E}_r = \mathbf{W}^T \mathbf{E} \mathbf{V}, \, \mathbf{A}_r = \mathbf{W}^T \mathbf{A} \mathbf{V}, \, \mathbf{N}_r = \mathbf{W}^T \mathbf{N} \mathbf{V}, \, \mathbf{B}_r = \mathbf{W}^T \mathbf{B}, \, \mathbf{C}_r = \mathbf{C} \mathbf{V}$$

7: end while

8:
$$\mathbf{E}_r^{\text{opt}} = \mathbf{E}_r$$
, $\mathbf{A}_r^{\text{opt}} = \mathbf{A}_r$, $\mathbf{N}_{k,r}^{\text{opt}} = \mathbf{N}_{k,r}$, $\mathbf{B}_r^{\text{opt}} = \mathbf{B}_r$, $\mathbf{C}_r^{\text{opt}} = \mathbf{C}_r$

MOR for Linear Systems: \mathcal{H}_2 pseudo-optimal reduction

Duality: Krylov subspaces with Sylvester equations

$$\operatorname{span}\{\mathbf{V}\} = \mathcal{K}_r \left((\mathbf{A} - \mathbf{s}_0 \mathbf{E})^{-1} \mathbf{E}, (\mathbf{A} - \mathbf{s}_0 \mathbf{E})^{-1} \mathbf{B} \right)$$
$$\operatorname{span}\{\mathbf{W}\} = \mathcal{K}_r \left((\mathbf{A} - \mathbf{s}_0 \mathbf{E})^{-T} \mathbf{E}^T, (\mathbf{A} - \mathbf{s}_0 \mathbf{E})^{-T} \mathbf{C}^T \right)$$

 $\mathbf{AV} - \mathbf{EVS} = \mathbf{BL}$ $\mathbf{A}^T \mathbf{W} - \mathbf{E}^T \mathbf{WS}^T = \mathbf{C}^T \mathbf{L}$ $\lambda_i(\mathbf{S}) = s_0$: shifts

L: tangential directions

 \mathcal{H}_2 -optimality vs. \mathcal{H}_2 pseudo-optimality

\mathcal{H}_2 -optimality

Problem:

$$\|\mathbf{G} - \mathbf{G}_r\|_{\mathcal{H}_2} = \min_{\dim(\widetilde{\mathbf{G}}_r) = r} \|\mathbf{G} - \widetilde{\mathbf{G}}_r\|_{\mathcal{H}_2}$$

• Necessary conditions for local \mathcal{H}_2 optimality (SISO): (Meier-Luenberger)

$$G(-\overline{\lambda}_{r,i}) = G_r(-\overline{\lambda}_{r,i})$$
$$G'(-\overline{\lambda}_{r,i}) = G'_r(-\overline{\lambda}_{r,i})$$

• G_r minimizes the \mathcal{H}_2 error locally within the set of all ROMs of order r

\mathcal{H}_2 pseudo-optimality

- Problem: $\Lambda = \{\lambda_1, \dots, \lambda_r\}, \ \lambda_i \in \mathbb{C}^ \|\mathbf{G} \mathbf{G}_r\|_{\mathcal{H}_2} = \min_{\widetilde{\mathbf{G}}_r \in \mathcal{G}(\Lambda)} \left\|\mathbf{G} \widetilde{\mathbf{G}}_r\right\|_{\mathcal{H}_2}$
- Necessary and sufficient condition for global \mathcal{H}_2 pseudo-optimality:

$$G(-\overline{\lambda}_{r,i}) = G_r(-\overline{\lambda}_{r,i})$$

- Pseudo-optimal means optimal in a certain subset
- G_r minimizes the \mathcal{H}_2 error globally within the subset of all ROMs of order r with poles Λ

MOR for Linear Systems: \mathcal{H}_2 pseudo-optimal reduction

Notation:

Gramian $\mathbf{A}_r \mathbf{P}_r \mathbf{E}_r^T + \mathbf{E}_r \mathbf{P}_r \mathbf{A}_r^T + \mathbf{B}_r \mathbf{B}_r^T = \mathbf{0}$ (known)

Scalar product $\mathbf{A}\mathbf{X}\mathbf{E}_r^T + \mathbf{E}\mathbf{X}\mathbf{A}_r^T + \mathbf{B}\mathbf{B}_r^T = \mathbf{0}$ (unknown)

Krylov AV - EVS = BL (known)

Projection $\mathbf{B}_{\perp} = \mathbf{B} - \mathbf{E} \mathbf{V} \mathbf{E}_r^{-1} \mathbf{B}_r$ (known)

New conditions for pseudo-optimality [Wolf '14]:

Let V be a basis of a Krylov subspace. Let $G_r(s)$ be the reduced model obtained by projection with W. Then, the following conditions are equivalent:

i)
$$\mathbf{S} = -\mathbf{P}_r \mathbf{A}_r^T \mathbf{E}_r^{-T} \mathbf{P}_r^{-1}$$

ii)
$$\mathbf{E}_r^{-1}\mathbf{B}_r + \mathbf{P}_r\mathbf{L}^T = \mathbf{0}$$

iii)
$$\mathbf{S}\mathbf{P}_r + \mathbf{P}_r\mathbf{S}^T - \mathbf{P}_r\mathbf{L}^T\mathbf{L}\mathbf{P}_r = \mathbf{0}$$

iv)
$$\mathbf{X} = \mathbf{V}\mathbf{P}_r$$

v)
$$\mathbf{A}\widehat{\mathbf{P}}\mathbf{E}^T + \mathbf{E}\widehat{\mathbf{P}}\mathbf{A}^T + \mathbf{B}\mathbf{B}^T = \mathbf{B}_{\perp}\mathbf{B}_{\perp}^T$$

vi)
$$\mathbf{P}_r^{-1} = \mathbf{E}_r^* \widehat{\mathbf{Q}}_r \mathbf{E}_r$$

MOR for Linear Systems: \mathcal{H}_2 pseudo-optimal reduction

PORK: Pseudo-optimal rational Krylov

Algorithm 1 Pseudo-optimal rational Krylov (PORK)

Input: V, S, L, C, such that AV - EVS = BL is satisfied

Output: \mathcal{H}_2 pseudo-optimal reduced model $\mathbf{G}_r(s) = \mathbf{C}_r (s\mathbf{E}_r - \mathbf{A}_r)^{-1} \mathbf{B}_r$

1:
$$\mathbf{P}_r^{-1} = \text{lyap}\left(-\mathbf{S}^T, \mathbf{L}^T \mathbf{L}\right)$$

2:
$$\mathbf{B}_r = -\left(\mathbf{P}_r^{-1}\right)^{-1} \mathbf{L}^T$$

3:
$$\mathbf{A}_r = \mathbf{S} + \mathbf{B}_r \mathbf{L}, \, \mathbf{E}_r = \mathbf{I}, \, \mathbf{C}_r = \mathbf{CV}$$

Advantages and properties of PORK:

- ROM is globally optimal within a subset: $\|\mathbf{G} \mathbf{G}_r\|_{\mathcal{H}_2} = \min_{\widetilde{\mathbf{G}}_r \in \mathcal{G}(\Lambda)} \|\mathbf{G} \widetilde{\mathbf{G}}_r\|_{\mathcal{H}_2}$
- Eigenvalues of ROM: $\Lambda(\mathbf{S}) = \Lambda(-\mathbf{E}_r^{-1}\mathbf{A}_r)$
 - → choice of the shifts is twice as important
- Stability preservation in the ROM can be ensured
- Low numerical effort required: solution of a Lyapunov equation and a linear system of equations, both of reduced order.

MOR for Bilinear Systems: \mathcal{H}_2 pseudo-optimal reduction

Duality: Bilinear Krylov subspaces with bilinear Sylvester equations [Flagg '12]

$$\operatorname{span}\{\mathbf{V}^{(1)}\} = \mathcal{K}_{r_1} \left((\mathbf{A} - \boldsymbol{\sigma}_1 \mathbf{E})^{-1} \mathbf{E}, (\mathbf{A} - \boldsymbol{\sigma}_1 \mathbf{E})^{-1} \mathbf{B} \right)$$

$$\operatorname{span}\{\mathbf{V}^{(j)}\} = \mathcal{K}_{r_j} \left((\mathbf{A} - \boldsymbol{\sigma}_j \mathbf{E})^{-1} \mathbf{E}, (\mathbf{A} - \boldsymbol{\sigma}_j \mathbf{E})^{-1} \mathbf{N} \mathbf{V}^{(j-1)} \mathbf{U}^T \right), \ j = 2, \dots, J$$

$$\operatorname{span}\{\mathbf{W}^{(1)}\} = \mathcal{K}_{r_1} \left((\mathbf{A} - \boldsymbol{\sigma}_1 \mathbf{E})^{-T} \mathbf{E}^T, (\mathbf{A} - \boldsymbol{\sigma}_1 \mathbf{E})^{-T} \mathbf{C}^T \right)$$

$$\operatorname{span}\{\mathbf{W}^{(j)}\} = \mathcal{K}_{r_j} \left((\mathbf{A} - \boldsymbol{\sigma}_j \mathbf{E})^{-T} \mathbf{E}^T, (\mathbf{A} - \boldsymbol{\sigma}_j \mathbf{E})^{-T} \mathbf{N}^T \mathbf{W}^{(j-1)} \mathbf{U}^T \right), \ j = 2, \dots, J$$

$$\bigcup$$

$$\mathbf{AV} - \mathbf{EVS} - \mathbf{NVU}^T = \mathbf{BL}$$

 $\mathbf{A}^T \mathbf{W} - \mathbf{E}^T \mathbf{WS}^T - \mathbf{N}^T \mathbf{WU}^T = \mathbf{C}^T \mathbf{L}$

$$\lambda_i(\mathbf{S}) = s_0$$
 : shifts

 $\boldsymbol{\mathrm{L}}$: tangential directions

 \mathbf{U}^T : weights

Can we derive new conditions for pseudo-optimality for bilinear systems?

MOR for Bilinear Systems: \mathcal{H}_2 pseudo-optimal reduction

Notation:

Gramian
$$\mathbf{A}_r \mathbf{P}_r \mathbf{E}_r^T + \mathbf{E}_r \mathbf{P}_r \mathbf{A}_r^T + \mathbf{N}_r \mathbf{P}_r \mathbf{N}_r^T + \mathbf{B}_r \mathbf{B}_r^T = \mathbf{0}$$
 (known)

Scalar product
$$\mathbf{AXE}_r^T + \mathbf{EXA}_r^T + \mathbf{NXN}_r^T + \mathbf{BB}_r^T = \mathbf{0}$$
 (unknown)

Krylov
$$AV - EVS - NVU^{T} = BL$$
 (known)

Projection
$$\mathbf{B}_{\perp} = \mathbf{B} - \mathbf{E} \mathbf{V} \mathbf{E}_r^{-1} \mathbf{B}_r$$
 (known)

New conditions for pseudo-optimality for bilinear systems:

Let V be a basis of a Krylov subspace. Let Σ_r be the reduced model obtained by projection with W. Then, the following conditions are equivalent:

i)
$$\mathbf{S} = -\mathbf{P}_r \mathbf{A}_r^T \mathbf{E}_r^{-T} \mathbf{P}_r^{-1}$$

ii-1)
$$\mathbf{E}_r^{-1}\mathbf{B}_r + \mathbf{P}_r\mathbf{L}^T = \mathbf{0}$$

ii-2)
$$\mathbf{E}_r^{-1} \mathbf{N}_r \mathbf{P}_r + \mathbf{P}_r \mathbf{U} = \mathbf{0}$$

iii)
$$\mathbf{S}\mathbf{P}_r + \mathbf{P}_r\mathbf{S}^T - \mathbf{P}_r\mathbf{L}^T\mathbf{L}\mathbf{P}_r + \mathbf{P}_r\mathbf{U}\mathbf{N}_r^T\mathbf{E}_r^{-T} = \mathbf{0}$$

iv)
$$\mathbf{X} = \mathbf{V}\mathbf{P}_r$$

v)-vi) Work In Progress (WIP)

MOR for Bilinear Systems: \mathcal{H}_2 pseudo-optimal reduction

BIPORK: Bilinear pseudo-optimal rational Krylov

Algorithm 1 Bilinear pseudo-optimal rational Krylov (BIPORK)

Input: V, S, U, L, C, such that $AV - EVS - NVU^T = BL$ is satisfied

Output: \mathcal{H}_2 pseudo-optimal reduced model Σ_r

- 1: \mathbf{P}_r^{-1} : solution of bil. Lyap. equation: $\mathbf{S}^T \mathbf{P}_r^{-1} + \mathbf{P}_r^{-1} \mathbf{S} \mathbf{U} \mathbf{P}_r^{-1} \mathbf{U}^T \mathbf{L}^T \mathbf{L} = \mathbf{0}$
- 2: $\mathbf{N}_r = -(\mathbf{P}_r^{-1})^{-1}\mathbf{U}\mathbf{P}_r^{-1}$
- 3: $\mathbf{B}_r = -\left(\mathbf{P}_r^{-1}\right)^{-1} \mathbf{L}^T$
- 4: $\mathbf{A}_r = \mathbf{S} + \mathbf{B}_r \mathbf{L} + \mathbf{N}_r \mathbf{U}^T$, $\mathbf{E}_r = \mathbf{I}$, $\mathbf{C}_r = \mathbf{C} \mathbf{V}$

Summary and Outlook

Summary:

- Goal: Reduction of high dimensional nonlinear systems
- Simulation-based, Volterra-based and quadratic-bilinear-based approaches
- Model reduction for bilinear systems (BT, Krylov, BIRKA, Loewner)
- \blacktriangleright \mathcal{H}_2 pseudo-optimal model reduction for bilinear systems
 - \blacktriangleright Derivation of new conditions for \mathcal{H}_2 pseudo-optimality for bilinear systems
 - ▶ Bilinear pseudo-optimal Rational Krylov (BIPORK)

Outlook:

► Solution of bilinear Lyapunov equations with BIPORK:

- Cumulative reduction of bilinear systems
- Quadratic-bilinear MOR
 - Stability-preserving two-sided rational Krylov for QBDAEs?
 - ► IRKA for QBDAEs? Algorithm for choosing optimal expansion points?

Discussion and open problems

Feedback and hints relating the following topics are welcome:

- Numerical solvers (direct and/or indirect) for nonlinear matrix equations
 - a) Direct solvers
 - Direct solvers for bilinear Sylvester and Lyapunov equations
 - b) Indirect solvers
 - Bilinear low-rank ADI method
 - Bilinear Extended Krylov Subspace Method (EKSM)
 - Other Krylov-based iterative solvers, e.g. CG, PCG, BiCG, BiCGstab
- Error bounds for bilinear systems
 - Existing approaches or literature?
- Nonlinear, parametric benchmarks
 - Parametric Nonlinear RC-Ladder?
 - Parametric Nonlinear Heat Transfer (IMTEK)?
 - **–** ...

Thank you for your attention!