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Motivation for Nonlinear Model Order Reduction

Given a large-scale nonlinear control system of the form

with and

MOR

Simulation, design, control and optimization cannot be done efficiently!

Reduced order model

with and

Goal:
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Projective nonlinear MOR

Procedure:

1. Replace by its approximation

2. Reduce the number of equations (via projection with )

3. Petrov-Galerkin condition

Approximation in the subspace
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Model Order Reduction (MOR)

Large-scale nonlinear model

Reduced order model (ROM)

MOR

Projection
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• Nonlinear systems can exhibit complex behaviours

– Multiple equilibria

– Stable, unstable or semi-stable limit cycles

– Chaotic behaviours

• Input-output behaviour of nonlinear systems cannot be described with the help of

transfer functions, the state-transition matrix or the convolution (only possible for

special cases)

• Choice of the reduced order basis

– Projection bases should comprise the most dominant directions of the state-space

– Existing approaches:

 Simulation-based methods

 Volterra-based approaches

 Quadratic-bilinear-based techniques

• Expensive evaluation of the full-order vector of nonlinearities

– Approximation by so-called hyper-reduction techniques: EIM, DEIM, Gappy-POD, 

GNAT, ECSW, … 

Challenges of Nonlinear Model Reduction
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• Classification in 

1. Simulation- or trajectory-based methods

2. Volterra-based approaches (bilinear)

3. Polynomialization- and variational analysis-based techniques (quadratic-bilinear)

or

a) Time domain approaches (Simulation- or trajectory-based approaches)

b) Frequency domain approaches (Interpolation-based methods: bilinear & QBMOR)

or

i. Strong nonlinear approaches (POD, NL-BT, Empirical Gramians, TPWL, QBMOR)

ii. Weakly nonlinear approaches (Bilinear models)

• Methods:

1. POD, Nonlinear Balanced Truncation (NL-BT), Empirical Gramians, TPWL

2. Bilinear systems (BT, bilinear RK, BIRKA, Loewner Framework,…)

3. Quadratic-bilinear (BT, RK)

Overview of existing nonlinear model reduction methods
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Overview

Simulation-based methods

Proper Orthogonal 
Decomposition (POD)

Nonlinear Balanced
Truncation

Empirical Gramians

Trajectory piecewise
linear approximation

(TPWL)

Bilinear Rational Krylov

Bilinear IRKA

Bilinear Loewner
Framework

Bilinear Balanced
Truncation

Volterra-based methods Quadratic-bilinear methods

Balanced Truncation
for QBDAEs

Two-sided Rational 
Krylov for QBDAEs
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Starting point: 

1. Choose suitable training input signals

2. Take snapshots from simulated full-order state trajectories

3. Perform singular value decomposition (SVD) of the snapshot matrix

4. Reduced order basis: 

Proper Orthogonal Decomposition (POD)

Advantages Drawbacks

• Straightforward data-driven method

• Error bound for approximation error

• Optimal in least squares sense:

• Simulation of full-order model for

different input signals required

• SVD of large snapshot matrix

• Training input dependency
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Starting point: 

1. Linearize original nonlinear model along simulated state trajectory

2. Reduce linearized models with well-known linear model reduction techniques

(e.g. POD, Balanced Truncation, Rational Krylov, …)

3. Construct reduced order model as weighted sum of linearized reduced models:

Trajectory Piecewise-Linear Approximation (TPWL)

Jacobi matrix
Weighted sum of
linearized models

Weighting functions 
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Offline stage

1. Simulation of full-order model for several appropriate training input signals

2. Selection of linearization points (number and distance ) and linearization at 

selected points

3. Reduction of all linearized models

4. Choice of weighting function (e.g. Gaussian,         squared, trapezoidal, 

triangular, …)

Online stage

1. Calculation of the weights according to the current state

2. Computation of reduced model as convex combination of linearized reduced

models

Trajectory Piecewise-Linear Approximation (TPWL)

Advantages Drawbacks

• Strong nonlinear approach

• Linear model reduction techniques

can be used

• No hyper-reduction step necessary

• Simulation, linearization and

reduction of full-order models

• Many degrees of freedom (           )

• Training input dependency
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Variations and extensions of the TPWL approach

• Fast approximate simulation

– select the linearization points using the linearized or the reduced trajectory

• Reduction of the linearized models

– Using global projection matrices: 

– Using local projection matrices:

 Computation of state transformations to common subspace are necessary

• Generation of stable TPWL reduced models

• Reduction of nonlinear, parametric models using TPWL + pMOR by Matrix 

Interpolation

• Reduction of nonlinear DAE models (e.g electrostatic beam, IMTEK) using TPWL

Trajectory Piecewise-Linear Approximation (TPWL)
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Overview

Simulation-based methods

Proper Orthogonal 
Decomposition (POD)

Nonlinear Balanced
Truncation

Empirical Gramians

Trajectory piecewise
linear approximation

(TPWL)

Bilinear Rational Krylov

Bilinear IRKA

Bilinear Loewner
Framework

Bilinear Balanced
Truncation

Volterra-based methods Quadratic-bilinear methods

Balanced Truncation
for QBDAEs

Two-sided Rational 
Krylov for QBDAEs
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Starting point:

Goal: Approximation of (weakly) nonlinear systems by Carleman linearization

• Taylor series representation:

• State-space model:

Carleman linearization

Assumptions:

• X

• k
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Starting point:

Goal: Bilinear model

• Consider differential equations for

• Bilinear model:                                                                          with

Carleman bilinearization
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Starting point:

Bilinear model:

Carleman bilinearization: example

Carleman

linearization

Carleman

bilinearization
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Consider bilinear SISO systems of the form

with and .

• Many (weakly) nonlinear systems can be approximated by bilinear systems 

through Carleman bilinearization

Drawback: Dimension of the bilinear model is significantly higher than the original 

state dimension  only applicable for medium-sized (weakly) nonlinear systems

• Linear in input and linear in state, but not jointly linear in state and input

• Advantage: Close relation to linear systems, a lot of well-known concepts can be 

extended, e.g. transfer functions, Gramians, Sylvester and Lyapunov equations.

State-Space Representation of Bilinear Systems
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Some background on Volterra theory

• Output response expressed by Volterra series:

• Multivariable Laplace-transform:

Output response and Transfer Functions of Bilinear Systems

Impulse response / kernel of th degree
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• [Phillips ’00], [Bai/Skoogh ’06], [Breiten/Damm ’10]

• Multimoment-Matching for bilinear systems

Model Reduction of Bilinear Systems

Bilinear Rational Krylov

Bilinear IRKA

Bilinear Loewner
Framework

Bilinear Balanced
Truncation

Volterra-based methods

• [Al-Baiyat ’93], [Benner/Damm ’11]

• Solution of two bilinear Lyapunov equations

• [Zhang/Lam ’02], [Benner/Breiten ’12], [Flagg ’12]

• H2-optimal model reduction for bilinear systems

• [Flagg ’12], [Antoulas ’14]

• Data-driven interpolation-based approach
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Multimoments for bilinear systems: [Bai/Skoogh ’06], [Breiten/Damm ’10]

• Transfer function:

• Multimoments:

• Markov parameters:

MOR for Bilinear Systems: Multimoment-Matching

• Make use of Neumann expansion

• Expansion in a multivariable Maclaurin series

with
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Multimoment-Matching: [Bai/Skoogh ’06], [Feng/Benner ’07], [Breiten/Damm ’10]

1. Calculation of the Krylov subspaces:

2. Computation of the reduced order model:

Example:

• 1st subsystem:  

• 2nd subsystem:

MOR for Bilinear Systems: Multimoment-Matching

for

for
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Multimoment-Matching: [Bai/Skoogh ’06], [Feng/Benner ’07], [Breiten/Damm ’10]

1. Calculation of the Krylov subspaces:

2. Computation of the reduced order model:

Open questions/problems:

• How to choose the expansion points?

 Optimal expansion points via -optimal model reduction (bilinear IRKA)

• How many moments should be matched per subsystem?

• How many subsystems are necessary for a good approximation?

• Error bounds?

MOR for Bilinear Systems: Multimoment-Matching
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• -norm of a MIMO bilinear system:

Alternative calculation via 

where and are the solutions of the following bilinear Lyapunov equations: 

• Error system:

MOR for Bilinear Systems: -optimal model reduction
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• -norm of error system:

where and are the solutions of the following bilinear Lyapunov equations: 

Assume the reduced model is given by ist eigenvalue decomposition:   

• Necessary conditions for -optimality:

MOR for Bilinear Systems: -optimal model reduction

Optimization

parameters

1

2

3

4
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Bilinear IRKA approach

MOR for Bilinear Systems:      -optimal model reduction
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• Duality: Krylov subspaces with Sylvester equations

• -optimality vs. pseudo-optimality

MOR for Linear Systems:       pseudo-optimal reduction

-optimality pseudo-optimality

• Problem:

• Necessary conditions for local -

optimality (SISO): (Meier-Luenberger)

• minimizes the error locally

within the set of all ROMs of order

• Problem:

• Necessary and sufficient condition

for global pseudo-optimality:

• Pseudo-optimal means optimal in a 

certain subset

• minimizes the error globally

within the subset of all ROMs of

order with poles

: shifts

: tangential directions
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MOR for Linear Systems:       pseudo-optimal reduction

Notation:

Gramian

Scalar product

Krylov

Projection

(known)

(unknown)

(known)

(known)

Let be a basis of a Krylov subspace. Let be the reduced model obtained

by projection with . Then, the following conditions are equivalent:

New conditions for pseudo-optimality [Wolf ’14]:
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MOR for Linear Systems:       pseudo-optimal reduction

PORK: Pseudo-optimal rational Krylov

Advantages and properties of PORK:

• ROM is globally optimal within a subset:

• Eigenvalues of ROM:

 choice of the shifts is twice as important

• Stability preservation in the ROM can be ensured

• Low numerical effort required: solution of a Lyapunov equation and a linear 

system of equations, both of reduced order. 
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• Duality: Bilinear Krylov subspaces with bilinear Sylvester equations [Flagg ’12]

Can we derive new conditions for pseudo-optimality for bilinear systems?

MOR for Bilinear Systems:       pseudo-optimal reduction

: shifts

: tangential directions

: weights
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MOR for Bilinear Systems:       pseudo-optimal reduction

Notation:

Gramian

Scalar product

Krylov

Projection

(known)

(unknown)

(known)

(known)

Let be a basis of a Krylov subspace. Let be the reduced model obtained by

projection with . Then, the following conditions are equivalent:

New conditions for pseudo-optimality for bilinear systems:
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MOR for Bilinear Systems:       pseudo-optimal reduction

BIPORK: Bilinear pseudo-optimal rational Krylov
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Summary and Outlook

► Goal: Reduction of high dimensional nonlinear systems

► Simulation-based, Volterra-based and quadratic-bilinear-based approaches

► Model reduction for bilinear systems (BT, Krylov, BIRKA, Loewner)

► pseudo-optimal model reduction for bilinear systems

► Derivation of new conditions for pseudo-optimality for bilinear systems

► Bilinear pseudo-optimal Rational Krylov (BIPORK)

► Solution of bilinear Lyapunov equations with BIPORK:

► Cumulative reduction of bilinear systems

► Quadratic-bilinear MOR

► Stability-preserving two-sided rational Krylov for QBDAEs?

► IRKA for QBDAEs? Algorithm for choosing optimal expansion points?

Summary:

Outlook:

BI-LR-ADI = RKSM + BIPORK
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Feedback and hints relating the following topics are welcome:

• Numerical solvers (direct and/or indirect) for nonlinear matrix equations

a) Direct solvers

 Direct solvers for bilinear Sylvester and Lyapunov equations

b) Indirect solvers

 Bilinear low-rank ADI method

 Bilinear Extended Krylov Subspace Method (EKSM)

 Other Krylov-based iterative solvers, e.g. CG, PCG, BiCG, BiCGstab

• Error bounds for bilinear systems

– Existing approaches or literature?

• Nonlinear, parametric benchmarks

– Parametric Nonlinear RC-Ladder?

– Parametric Nonlinear Heat Transfer (IMTEK)?

– …

Discussion and open problems
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Thank you for your attention!


