

DEVELOPMENT AND SIMULATION-BASED EVALUATION OF AN ALGORITHM FOR

THE RETRIEVAL-IN-SEQUENCE FOR SHUTTLE SYSTEMS

T. Lienert(a), W. A. Günthner(b)

(a),(b)Institute for Materials Handling, Material Flow, Logistics – Technical University of Munich

(a)lienert@fml.mw.tum.de, (b)kontakt@fml.mw.tum.de

ABSTRACT
Autonomous vehicle-based storage and retrieval
systems are used in order to supply picking or
production areas based on the goods-to-person
principle. In these contexts, it is often required that the
point-of-use has to be supplied in a specific sequence of
the retrieval loads. This sequence is normally
established in the pre-storage area. Depending on the
system configuration of an autonomous vehicle-based
storage and retrieval system, it is possible to establish
the required sequence at every input/output location
directly out of the system. In order to enable this
retrieval-in-sequence, we present an efficient algorithm
that is based on the time-window routing method. For
the purpose of evaluation of the performance, we
implemented the algorithm in a simulation environment
and conducted a series of simulation experiments.

Keywords: autonomous vehicle-based storage and
retrieval systems, shuttle systems, time-window routing,
sequencing

1. INTRODUCTION
In addition to ordinary automated storage and retrieval
systems (AS/RS), a new technology has been developed
in the past few years which is based on autonomous
vehicles. Autonomous vehicle-based storage and
retrieval systems (AVS/RS), also known as shuttle
systems, are used for storing small unit loads, as well as
pallets, in order to supply picking or production areas
based on the goods-to-person principle and to store
articles – both for dynamic buffers and for low-access
applications (VDI- Richtlinie 2692).
Shuttle systems are characterised by horizontally-
operating vehicles. These vehicles travel on each tier
along a rail system within the storage rack. For vertical
movements, storage and retrieval transactions, the
vehicles may use lifts that are positioned at fixed
locations along the periphery of the storage rack system
(Malmborg 2002).
Typical features of shuttle systems, as compared to
conventional stacker-crane-based AS/RS, are a higher

performance and a better scalability. The main
disadvantages are higher investment and an increasingly
complex storage management (Kartnig et al. 2012).
Depending on specific scenarios, storage units might
have to be provided in a certain sequence at the point-
of-use. This requirement may, for example, arise in the
following settings:

• Supply of picking areas in sequence of
customer orders

• Supply of gates in sequence of the delivering
order of the trucks

• Supply of production areas in the production
sequence

Geinitz considered a stacker-crane-based AS/RS and
described the effect that retrievals in a required
sequence lead to a loss of throughput (Geinitz 1998).
Due to this loss of throughput, the required sequence is
normally established in the pre-storage area; this
consumes space and requires additional material
handling systems.
Concerning shuttle systems, neither an algorithm for the
retrieval-in-sequence, nor the effect of sequencing, have
been described until now. In this paper, we will fill this
gap. We first specify the shuttle system configuration
that allows sequencing within the storage system.
Subsequently, we present an efficient routing-based
sequencing algorithm and, finally, we investigate the
loss of performance, measured by the throughput, by
performing a simulation study.

2. SCOPE OF THE PAPER
This chapter provides an overview of different shuttle
system configurations and specifies the configuration
that we consider in this paper. Furthermore, we give a
literature review about the research done so far which
deals with shuttle systems.

mailto:lienert@fml.mw.tum.de
mailto:kontakt@fml.mw.tum.de

2.1. Shuttle System Configurations
In the course of recent developments, different system
configurations have evolved. In order to categorise the
system configurations, we introduce movement axes
that describe the movement space of the vehicles. The
x-axis corresponds to the storage aisles. In every system
configuration, the vehicles move along the x-axis in
order to execute the storage and retrieval requests.
Based on the format of vehicle assignment to storage
tiers, Heragu et al. distinguish two different
configurations: Shuttle systems that use tier-to-tier
vehicles and systems that use tier-captive vehicles. In
the tier-to-tier system, the vehicles may move from one
tier to another tier using a lift for the vertical movement
along the y-axis. In the tier-captive system, each vehicle
is dedicated to a single tier and therefore cannot move
to another tier. Lifts are used only to move the unit
loads to the destination tier (Heragu et al. 2011).We
extend that distinction by considering the aisles to
which shuttle vehicles are dedicated as well.
In the aisle-to-aisle configuration, there are cross-aisles
integrated into the storage rack. These aisles are
orthogonally-positioned to the storage racks and
correspond to the z-axis. As a consequence, a vehicle
can travel from one aisle to another aisle on the same
tier. It can reach every position on that tier. In contrast,
in the aisle-captive configuration, vehicles are firmly
assigned to aisles and movements along the z-axis are
not allowed. Figure 1 provides an overview of the four
different configurations that result from the different
movement spaces of the vehicles.

Figure 1: Shuttle System Configurations

A retrieval-in-sequence directly out of the system is
possible, only if every storage unit can be provided at
every input/output-location (I/O-location). Given the
assumption that the I/O-locations are connected to the
storage systems by the lifts, the precondition for the
retrieval-in-sequence holds for both aisle-to-aisle
configurations. In this paper, we consider the aisle-to-
aisle and tier-to-tier configuration as it is the more
generic one and developed algorithms can be simplified
to match the aisle-to-aisle and tier-captive
configuration.
Further advantages of the considered configuration are a
simple scalability and a good redundancy. As every
shuttle can reach every single position within the
system, it is possible to run the whole system with a
single shuttle. If needed, more and more shuttles can be
added to achieve a higher performance. Should a single
shuttle fail, depending on the specific layout, it might

nevertheless still be possible to reach every single
position within the system.
In more detail, the system configuration, which we are
considering, can be described as follows.

• Shuttles travel along the x-axis in order to
perform storage and retrieval transactions.

• Shuttles are able to change storage aisles by
using cross-aisles along the z-axis.

• Shuttles can operate only on the tier they are
currently moving on, as they do not have a
lifting unit at their disposal.

• Shuttles have unit load capacity.
• The storage rack is single-deep.
• Shuttles are able to change the tier by using a

shuttle lift for vertical movements along the y-
axis.

• Lifts have single capacity.
• Shuttles do not leave the storage system. On

the input/output-level, shuttles remain in the
lift while the handover of storage units takes
place.

• Every point of use is supplied by a single lift.

The developed algorithm is generic and does not depend
on a specific layout. The layout of the storage system
may vary, e.g. the number of tiers, the number of aisles
and cross-aisles per tier and the number and positions of
the lifts. Figure 2 shows an example of the considered
configuration.

Figure 2: System Example

The most important disadvantage of the considered
configuration lies in the complex control strategies that
are necessary to run the system in a robust and efficient
way. As every single shuttle can reach every single
storage position within the system, the question has to
be answered as to which shuttle executes which storage
or retrieval request. On the other hand, different routing
options might exist for reaching a desired position. It
therefore has to be decided which path should be taken.
Finally, the shuttles share the same rail system, so
collisions need to be avoided, as do deadlocks among
the shuttles – situations where the shuttles block each
other – have to be dealt with.

Autonomous vehicle-based storage and retrieval system

Aisles-related
movements

vehicles are dedicated to a single
storage aisle

vehicles can use cross-aisles to
change the storage aisle

Tiers-related
movements vehicles operate on single tier vehicles can use lifts for horizontal

movements and change the tier

aisle - captive
tier-captive

aisle-captive
tier-to-tier

aisle-to-aisle
tier-captive

aisle-to-aisle
tier-to-tierConfigurations

x-axis x-axis, y-axis a-axis, z-axis x-axis, y-axis,
z-axis

Movement
space

x-axis

y-axis

z-axis

I/O-locations

2.2. Literature Review
Research concerning AVS/RS can be divided into two
categories: performance analysis and development of
control algorithms. Most of the research papers
investigate the performance of the considered system
against different parameters, like the storage capacity,
rack configuration and numbers of vehicles and lifts. In
some papers, various controlling strategies have been
developed and tested against each other. Basically, in
the literature, two different approaches to performing
the system evaluation can be found. Analytical models
have been developed, generally based on queuing
networks, to investigate the system behaviour. The
second approach is based on simulation. In order to
identify the impact of different system parameters and
controlling strategies, simulation studies were
conducted. Malmborg first proposed the idea of an
analytical conceptualising tool for AVS/RS. He
compared AVS/RS and AS/RS technologies by varying
the system configuration (Malmborg 2002). Marchet et
al. developed a framework for the design of AVS/RS.
The authors considered a tier-captive and aisles-captive
configuration and included costs in their model
(Marchet et al. 2013). Ekren et al. investigated the effect
of several design factors on the performance of a tier-to-
tier and aisle-to-aisle AVS/RS. The authors vary the
dwell point location, the I/O-location and use basic
scheduling rules for both single and dual command
scheduling (Ekren et al. 2010). Recent work is more
focused on aisle-captive shuttle-systems.
The VDI-Guideline 2962 presents a framework for
performance calculation, both for tier-to-tier and tier-
captive configurations, in order to estimate possible
throughputs achievable with an AVS/RS. The
performance calculation is based on the separate
determination of the mean cycle times of the lift and of
the shuttle. Waiting times of the shuttles for the lift and
different controlling strategies are not considered (VDI-
Richtlinie 2692). Eder and Kartnig provided an
analytical model in order to identify the ideal rack
geometry depending on the storage capacity (Eder and
Kartnig 2015). Lerher developed an analytical travel-
time model for the computation of cycle times for the
double-deep storage rack system (Lerher 2015). Carlo
and Vis considered an AVS/RS system in which two
non-passing lifts share a single mast to transport loads
from the horizontally-operating shuttles to the I/O
location and vice-versa. The study deals with the
scheduling problem of these two lifts, i.e. which lift is
going to handle which request and in which order
(Carlo and Vis 2012).
Research can be found within the area of automated
guided vehicle systems concerning the issue of
deadlock-handling that arises in aisle-to-aisle
configurations. Kim et al. define a system deadlock as a
situation where one or more concurrent processes in a
system are blocked forever because the requests for
resources by the processes can never be satisfied (Kim
et al. 1997). Three different approaches can be
distinguished in deadlock handling. Deadlock-

prevention is a static approach. A set of generic rules
ensures that a deadlock could never occur. This leads to
poor resource utilisation and a low performance. In the
detection and recovery approach, deadlocks are allowed
to occur. They have to be detected and the system uses
mechanisms for recovery. As some deadlocks might be
hard to discover and, furthermore, deadlocks can
overlap each other, detection and recovery might end in
an inefficient way. The most frequently used approach
is deadlock-avoidance. By using an online control
policy, the resources will be dynamically allocated so
that a deadlock will never occur (Liu and Hung 2001).
Penners considered a simplified isolated tier of an aisle-
to-aisle system (Penners 2015). He adapted two
deadlock-avoiding routing-algorithms that have been
developed for automated guided vehicles and compared
the performance by conducting a simulation study. He
came to the conclusion that the time-window routing
method, presented by ter Mors et al. (ter Mors et al.
2007), achieves a considerably higher throughput than
the modified Banker’s routing, which was described by
Kalinovcic et al. (Kalinovcic et al. 2011).
In the literature on AVS/RS, it has not been possible to
find a paper that deals with sequencing the retrieval
loads within a tier-to-tier and aisle-to-aisle
configuration. We will therefore present an algorithm
that is based on the time-window-routing method and
make use of it for the retrieval-in-sequence. As an
analytic evaluation of the algorithm is hard due to the
complexity of the sequencing problem, we will follow
the simulation-based approach to evaluate the
performance, which is widespread within the area of
warehouse design and management (Roodbergen et al.
2015), (Curico and Longo 2009).

3. SEQUENCING ALGORTIHM
In this section, we briefly describe the system
requirements and the options we have for establishing
the sequence. We briefly introduce the underlying
routing algorithm and finally describe the routing-based
sequencing algorithm.

3.1. System Requirements
We follow the assumption that the required sequence of
the storage units has to be established at the I/O-
location; this means that the final sequence must be
made by the lifts. As every point-of-use is supplied by a
single lift, we maintain a separate sequence for every
lift. As a consequence, we have different sequences
within the system that are independent from each other.

Figure 3: Example with three Independent Sequences

C 9

A10

A15 A17 A13

B10

B 8

C11 C14

C16

B14

A 5 A 8 A12

A 9 A11 A14

A 4 A16

B 4 B 6

B13

B 5 B11

B 7 B 9

C 8 C10 C13

C 3 C 5

C15C 7 C12

A 3 B 2 C 2

B12

C 6A 6 B 3

A 2
A 1

A 0

B 1

B 0

C 1

C 0Sequence A Sequence B Sequence C

C 4

Figure 3 shows a system with three lifts and therefore
three independent sequences A, B and C. Within a
sequence, the unit loads are marked by increasing
sequence numbers. These sequence numbers are unique
within a sequence. As the final sequence is established
by the lift, the control strategy for the lifts is obvious
and simple. For every lift, we will maintain a counter
which stores the current sequence number. After having
finished a transportation task, the lift will search for the
next following sequence number, travel to the
corresponding tier, transfer the waiting shuttle to the
I/O-location and update the counter. In order to enable
this procedure, we have to ensure that on every tier, the
shuttles are waiting in an increasing sequence number
for the lift; this is the more sophisticated task.

3.2. Sequencing Options
In order to establish the sequence on a single tier, there
are different options to be considered:

• Sequencing by dispatching
• Sequencing by clearance
• Sequencing by routing

Dispatching refers to a rule used to select a shuttle to
execute a storage or a retrieval request. Egbelu and
Tanchoco characterise two different dispatching
concepts: tasks-initiated dispatching rules and shuttle-
initiated dispatching rules (Egbelu and Tanchoco 1984).
In our system, we will use a vehicle-initiated
dispatching rule. Whenever a vehicle completes a
retrieval request, it will choose the next retrieval request
from the set of available requests. The shuttle will
choose the retrieval request according to the FIFO rule,
this means it will choose a request with the lowest
sequence number of one of the independent sequences.
By so doing, we pre-sequence the retrieval requests
(sequencing by dispatching). Nevertheless, we cannot
ensure that the shuttles will arrive in ascending
sequence number at the lift. A shuttle to which a
retrieval request was assigned with a higher sequence
number might be faster in executing the retrieval.
In order to ensure the correct sequence at the lift, we
can sequence the shuttles by clearance. In this case, a
shuttle waits at its position, after having picked up the
retrieval load, until it is cleared by the predecessor on
that tier. In figure 4, the shuttle with the sequence
number 1 clears the shuttle with the sequence number 2
as soon as it arrives at the lift. We ensure the sequence
at the lift, but, depending on the size of a tier, there
might be a huge loss of performance, because the
second shuttle might take a certain time to travel to the
lift. Desirable would be for the shuttle with the
sequence number 2 to arrive just after the shuttle with
the sequence number 1 had arrived at the lift. This can
be achieved by the sequencing by routing, upon which
we will focus from now on. The basic idea could be
summarised as follows: instead of routing the shuttles
from the retrieval location to the lift, we route the

shuttles backwards from the lift to the retrieval
locations, ensuring the desired sequence at the lift.

Figure 4: Sequencing by Clearance

3.3. Underlying Routing Algorithm
In order to avoid deadlocks among shuttles moving on
the same tier, we make use of the time-window routing
method. The basic idea of the algorithm was invented
by Kim and Tanchoco, who developed a conflict-free
and shortest-time algorithm for routing automated
guided vehicles in a bidirectional path network that is
based on Dijkstra’s shortest path algorithm. The idea of
their algorithm consists of modelling the flow path as a
graph. Every layout segment corresponds to a single
node within the graph (see Figure 5). For each node, the
algorithm maintains a list of time-windows reserved by
routed vehicles and a list of free time-windows
available in which vehicles could be routed. Every free
time-window corresponds to a node in the so-called
time-window graph. The arcs between these nodes
represents the reachability among the free time-
windows. The algorithm then routes vehicles through
the nodes of the time-window graph instead of the
physical nodes of the path network (Kim and Tanchoco
1991). Ter Mors et al. presented an improved version of
the time-window routing which is based on the A*-
algorithm; their version provides a better worst-case
performance and calculates a solution in real-time (ter
Mors et al. 2007).
We make use of their time-window routing method in a
slightly different way. Instead of constructing the whole
time-window graph, we investigate, in every iteration of
the routing process, every free time-window on every
neighbour node, if that free time-window is reachable
from the current time-window. Some conditions must
hold for this, e.g. a minimal length or a minimal
overlapping of the free time-windows.

Figure 5: Concept of the Time-Window Routing

2

1

free time-window

time

𝑟𝑖

𝑟ℎ

𝑟𝑗

reserved time-window

𝑟ℎ
𝑟𝑖
𝑟𝑗

The algorithm finds the fastest path for the vehicle from
the start node to the destination node at the specified
start time under the given reserved time-windows for
other vehicles, if such a path exits. The output of the
algorithm consists of the sequence of nodes along the
path which have to be visited in order to reach the
destination and the time intervals, the shuttle will
occupy these nodes. The corresponding time-windows
will be reserved and the vehicle can travel deadlock-free
through the layout.
One might object in that, should a shuttle be delayed,
the routing is then no longer robust and deadlocks might
occur. However, as Maza and Castagna proved, if the
node’s crossing order of the shuttles, based on the
conflict-free scheduled dates, is fulfilled, then the
absence of conflict is guaranteed even if the arrival
times are not (Maza and Castagna 2005). In summary,
using the time-window method, we do know when a
shuttle is likely to arrive at the lift but, furthermore, we
also know the sequence in which shuttles arrive at the
lift. If the sequence is not correct, we could intervene.

3.4. Routing-Based Sequence-Algorithm
Whenever a shuttle selects the next retrieval request
after having finished the current retrieval request, it will
travel to the corresponding tier by lift. As soon as the
shuttle arrives at that tier, we will run the routing-based
sequence algorithm, shown in figure 6.

Figure 6: Routing-Based Sequencing Algorithm

Firstly, we will check if all the smaller sequence
numbers that have to be retrieved from that tier have
already been routed; this would mean that the assigned
shuttles are already travelling on that tier and
performing the actions. Note that, due to the described
dispatching rule, all the smaller sequence numbers must

have already been assigned to a shuttle. If all the
smaller sequence numbers have not yet been routed, the
shuttle would switch its assigned retrieval task and
would retrieve the load with the smallest sequence
number which has not yet been routed, but is already
assigned to another shuttle. As a consequence, this
shuttle would retrieve the released sequence number.
Subsequently, the whole path will be routed on that tier;
this means, in case of a double-cycle, the path from the
entering lift to the storage location, the path from the
storage location to the retrieval location and, finally, the
path from the retrieval location to the outgoing lift.
After having finished the routing, the computed arrival
time will be stored in the sequence list and the sequence
can be checked. Should the sequence be incorrect, we
start the inverse routing from the lift to the retrieval
location. Instead of the start time, the inverse routing
algorithm requires the desired arrival time at the
destination node. The arrival time has to be chosen in
such a way that the shuttle might arrive right after the
predecessor at the lift.
In the example of figure 7, there are currently three
sequence numbers that have to be retrieved from the
considered tier. A shuttle travels on that tier and stores
the blue box at the designated location. Afterwards, it
moves to the storage location of the sequence number 1,
picks it up and travels to the lift. The estimated arrival
time at the lift is stored in the corresponding sequence
list.

Table 1: Sequence List
Sequence No. Arrival Time

1 38
2
3

Now that a second shuttle has arrived at the tier that has
been assigned to retrieve the sequence number 2, we run
the algorithm. Firstly, it can be seen that all the smaller
sequence numbers have already been routed by
searching for the arrival time in the sequence list. Then,
the path to the storage location of the green box, the
path from the storage location to the retrieval location
of sequence number 2 and, finally, the path to the lift
will be completely routed. According to the routing, the
shuttle will arrive at the lift at () 30arrival liftT s . This
information will be stored in the sequence list.

Figure 7: Inverse Routing from the Lift to the Retrieval
Location

start

route the whole path on that
tier until reaching the lift

store the predicted arrival
time at the lift in the

sequence list

yes

select the smallest sequence
number, that has not been
routed yet and hand over

the dispatched retrieval job
to the corresponding shuttle

end

start inverse routing with
the desired arrival time at

the lift

all smaller
sequence numbers that

have to be retrieved from
that tier have already

been routed

sequence is
correct

yes

no

no

3

2

1

storage location for
shuttle 1

storage location for
shuttle 2

2

1

Table 2: Updated Sequence List
Sequence No. Arrival Time

1 38
2 30
3

As can be seen, sequence number 2 will arrive at the lift
before sequence number 1. As a consequence, we start
the inverse routing with the desired arrival time

() 42arrival liftT s . Assuming a shuttle needs four
seconds for entering an intersection, changing the
moving direction by 90 degrees, and leaving the
intersection entirely, this is the earliest possible arrival
time at the lift for the second shuttle after the arrival of
the first shuttle.
Only the last segment from the retrieval location to the
lift will be rerouted, marked by the dotted line in figure
7. As the shuttle will now arrive later than originally
planned, it will wait for a certain time at the retrieval
location after having picked up the load.
We follow the idea of the time-window routing, but
instead of routing the shuttle ahead, we let the shuttle
route backwards. We therefore have to modify the
achievable conditions to decide whether a free time-
window on neighbour node is reachable from the
current free time-window or not. A free time-window is
defined by its start and its end time.

• ,i kStart : Start time of the k-th free time-
window on the node ir

• ,i kEnd : End time of the k-th free time-window
on the node ir

Figure 8: Free Time-Window

Note, that as we are routing backwards, it counts as

, ,i k i kStart End .
We define the following time-stamps and time durations
which describe the movement of a shuttle through the
nodes of the layout-graph.

• ()ientry rT : Time-stamp, when the shuttle enters

the node ir
• ()iarrival rT : Time-stamp, when the shuttle

resides completely on the node ir and has
completely left the previous node

• ()iexit rT : Time-stamp, when the shuttle has left

the node ir completely

• transt : Time a shuttle needs to enter or exit a
node. More precisely, for the time transt the
shuttle occupies two subsequent nodes

• ()icross rt : Time a shuttle needs to cross the node

ir , should the node’s length exceed the length
of a shuttle

• ()iwait rt : Waiting time on the node ir

The following figure illustrates the relations between
the defined variables:

Figure 9: Time-Stamps and Time Durations Describing
the Shuttle Movement.

To decide whether a free time-window on a neighbour
node is reachable from the current time-window, there
are some conditions that must hold:

, , ()jj l j l trans cross r transStart End t t t    (1)

, ,j l i kStart End (2)

, ,i k j lStart End (3)

The first condition states that the free time-window on
the neighbour node has the minimal size; this means
that the shuttle might have time to enter the node, cross
it and leave it within the free time-window. Condition
(2) and (3) ensure that the two time-windows overlap.
If, until now, all the conditions have held, the entry time
into the free time-window and thereby into the node is
calculated:

() , () ()min{ , }
j i ientry r j l arrival r cross rT Start T t  (4)

The entry into the free time-window cannot occur
before the free time-window starts and, of course, not
before the shuttle has crossed the current node in its
entirety. If the entry time corresponds to the start time
of the free time-window, the shuttle has to wait on the
current node. After having calculated the entry time, the
last conditions can be verified:

() () () ,j i ientry r trans r exit r i kT t T End   (5)

() , ()j jentry r j l trans cross r transT End t t t    (6)

time

𝑟𝑖
𝑆𝑡𝑎𝑟𝑡𝑖,𝑘𝐸𝑛𝑑𝑖,𝑘

k-th free time-window

𝑇𝑒𝑛𝑡𝑟𝑦(𝑟𝑖)

𝑇𝑎𝑟𝑟𝑖𝑣𝑎𝑙(𝑟𝑖)

𝑇𝑒𝑛𝑡𝑟𝑦(𝑟𝑗)

−𝑡𝑡𝑟𝑎𝑛𝑠

−𝑡𝑐𝑟𝑜𝑠𝑠 𝑟𝑖

𝑇𝑎𝑟𝑟𝑖𝑣𝑎𝑙(𝑟𝑗)
=

𝑇𝑒𝑥𝑖𝑡(𝑟𝑖)

𝑟ℎ𝑟𝑗 𝑟𝑖

𝑟ℎ𝑟𝑗 𝑟𝑖

𝑟ℎ𝑟𝑗 𝑟𝑖

𝑟ℎ𝑟𝑗 𝑟𝑖

−𝑡𝑡𝑟𝑎𝑛𝑠

−𝑡𝑤𝑎𝑖𝑡 𝑟𝑖

Condition (5) ensures that the shuttle might leave the
current node before the time-window ends, and
condition (6) ensures that the remaining size of the free
time-window on the neighbour node is sufficient to
enter the node, cross and leave it again. If all these
conditions also hold, the free time-window can be
reached from the current time-window.
In the example shown in figure 10, the free time-
windows on both nodes overlap. The entry time
corresponds to the arrival time on the node ir minus the
time it takes to cross this node. Furthermore, the shuttle
can leave the node ir before the free-time window ends
as () ,iexit r i kT End . Finally, the remaining size of the

free time-window on node jr is sufficient to cross it and
leave it, which is marked by the hatched elements. As a
result, the free time-window on node jr is reachable

form the current time-window on node ir with the given
entry time ()ientry rT into that node.

Figure 10: From the Current Time-Window on Node

ir the Free Time-Window on Node jr is Reachable.

There are two cases which cause difficulties when
applying the inverse routing. Firstly, it might happen
that there is no route found which ends at the desired
arrival time. Appling the time-window routing
algorithm, the shuttle can delay its departure on the start
node until a route is found. However, as we are routing
backwards, we have to delay the arrival time manually
and start the inverse routing again.
The second problem might arise under certain traffic
conditions within the system. The sequence at the lift is
incorrect and an inverse routing is required, given the
desired arrival time at the lift. The inverse routing leads
to an earlier departure time at the retrieval location than
was originally predicted, by routing the path from the
storage to the retrieval location on the tier. This is, of
course, not valid as the shuttle could not start travelling
to the lift before it had finished loading the retrieval
load. We have to delay the desired arrival time for the
inverse routing again until a valid departure time is
found. Figure 11 clarifies the described problem.

Figure 11: Invalid Inverse Routing

In the subsequently-described simulation, we delayed
the arrival time in both cases in steps of one second.
Once the route is found, the time-windows will be
reserved. The shuttle can leave the lift and start
travelling on the tier. So, the requested sequence at the
lift will be guaranteed.

4. SIMULATION-BASED EVALUATION
In order to test the sequencing algorithm and to quantify
the loss of throughput by the sequencing, we
implemented the algorithm in a simulation environment
and conducted a serious of simulation experiments. The
modelling and implementation is briefly described
before the experiment settings are clarified and the
results presented and discussed.

4.1. Modelling and Implementation
We implemented the simulation model using the
discrete-event simulation software, Plant Simulation.
This software offers various customisable modules, e.g.
roads, warehouses, working stations and vehicles. The
control of information and material flows is realised by
procedures programmed by the user and assigned to a
specific event.
In order to model the storage system, we divided the
layout of a single tier into various resources. A resource
is a layout segment with capacity for exactly one
shuttle. Every resource corresponds to a node within the
graph that is used for the time-window-based routing.
Resources are storage elements, cross-aisles segments
and intersections. In order to avoid having to control the
driving direction of the vehicles, we allowed the
vehicles to only travel in one direction. We modelled
the different directions by two opponent path segments
which are part of the same resource.

Figure 12: Modelling Concept

𝑡𝑡𝑟𝑎𝑛𝑠

time

𝑟𝑖

𝑟𝑗

𝑆𝑡𝑎𝑟𝑡𝑖,𝑘𝐸𝑛𝑑𝑖,𝑘

𝑆𝑡𝑎𝑟𝑡𝑗,𝑙𝐸𝑛𝑑𝑗,𝑙

𝑡𝑡𝑟𝑎𝑛𝑠𝑡𝑐𝑟𝑜𝑠𝑠(𝑟𝑖)

𝑇𝑒𝑛𝑡𝑟𝑦 𝑟𝑖𝑇𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑟𝑖𝑇𝑒𝑥𝑖𝑡 𝑟𝑖

𝑇𝑒𝑛𝑡𝑟𝑦 𝑟𝑗𝑇𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑟𝑗

𝑡𝑡𝑟𝑎𝑛𝑠

𝑡𝑐𝑟𝑜𝑠𝑠(𝑟𝑗)𝑡𝑡𝑟𝑎𝑛𝑠

time
departure
time from
retrieval
location

arrival
time
at lift

desired
arrival
time at lift

modified
departure
time from the
retrieval
location

inverse routing

routing

Figure 12 shows a single tier and a storage element
resource. As time-windows are maintained for every
resource, it is ensured that only one shuttle can occupy a
resource at a time, even though it consists of several
path segments. The routing and sequencing algorithm is
implemented in a central controlling module.
The model allows for the varying of a number of
parameters, such as the number of shuttles or the used
dispatching strategy. The layout of the considered
storage system can be generated automatically or
individually constructed. As the shuttles can only reside
on a resource they have reserved in advance, the
question arises as to how to initialise a simulation run.
We solved this problem by introducing a virtual buffer
for every lift within the system. At the beginning, the
shuttles were distributed equally to these virtual buffers.
From these buffers, the shuttles requested the lift one
after another and were inserted into the storage system.

4.2. Simulation Experiments
In order to test the sequencing algorithm, we built a
model consisting of four tiers with 320 storage locations
each. We integrated four lifts, which are supplied by the
shuttles, to obtain more than one independent sequence.
Basically, the sequencing algorithm runs on a single
tier, but in order to also respect the influences of the
lifts, we extended the system to three more tiers.
Variations of the layout were not part of the simulation
study and should be considered in further research.

Figure 13: A Single Tier of the Simulation Model

The shuttles work constantly in double-cycles. Every
time a retrieval request is fulfilled, the shuttle selects the
retrieval job with the oldest time-stamp (and with the
smallest sequence number) from the available retrieval
requests. Furthermore, a storage load is handed over to
the shuttle. The storage location is chosen randomly on
the same tier upon which the assigned retrieval load is

situated. By so doing, additional travel with the lifts is
avoided and the storage ratio on every tier is kept
constant. We generated a new retrieval task for one of
the sequences every time a retrieval of that sequence
was completed. The retrieval location was chosen
randomly.
Figure 13 shows the layout of a single tier from the
simulated system. Shuttles are moving on that tier and
performing retrieval and storage transactions. As soon
as the storage loads are requested, they are coloured
according to the lift that connects the storage system
with the corresponding I/O-location. Furthermore, the
sequence numbers are assigned. As can be seen, the
shuttles wait for the lift in increasing sequence number
of the retrieval loads. Numbers that do not appear have
to be retrieved from a different tier than the one that is
shown. We varied the numbers of shuttles working in
the system from 5 to 65 in steps of 5. We ran the
simulation twice with every number of shuttles. Firstly,
the retrieval-in-sequence was required and then it was
not. We conducted 5000 double-cycles and measured
the time needed to fulfil these cycles. As the storage and
retrieval locations were randomly determined, we did
three replications per experiment and calculated the
mean time for the evaluation.

4.3. Results and Discussion
The developed algorithm for the retrieval-in-sequence
was validated by conducting the simulation
experiments. At every I/O-location, the sequence
numbers of the retrieval units were stored and the
correctness of the sequence was verified.

Figure 14: Results of the Simulation Experiments

Figure 14 shows the evolution of the completion time
for 5000 double-cycles as a function of the numbers of
shuttles working in the system, both for the retrieval
with sequencing and retrieval without sequencing. As
expected, the completion time lessens with the number
of shuttles working in the system, and the retrieval with
sequencing requires a higher completion time than the
retrieval without.
The loss of performance caused by the retrieval with
sequencing for the different numbers of shuttles is
presented by figure 15. As can be seen, the loss of
throughput is small when there are only a few shuttles

0:00
2:00
4:00
6:00
8:00

10:00
12:00
14:00
16:00
18:00
20:00
22:00
24:00
26:00
28:00
30:00

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

C
om

pl
et

io
n

Ti
m

e
[h

]

Number of Shuttles

5000 Double-Cycles

Retrieval with Sequencing

Retrieval without Sequencing

Maximum Throughput

in the system. With only a few shuttles, the interference
among these is relatively small. In other words, the
probability that two shuttles execute a retrieval request
on the same tier for the same sequence is small.
The loss of throughput rises to 14.60% with 50 shuttles
working in the system. With a higher number of
shuttles, the loss of throughput lowers slightly again.

Figure 15: Loss of Throughput caused by the Retrieval
in Sequence

The maximum system throughput is limited by the lifts.
If the lifts work continuously, the capacity cannot be
augmented by adding more shuttles. Using a chaotic
storage assignment strategy, every tier is piloted by the
shuttles with the same frequency. The mean time of a
double-cycle of a lift can be calculated using a
combinatorial approach, similar to the one presented in
the VDI-Guideline (VDI- Richtlinie 2692). The result of
this maximum throughput calculation is presented by
the dotted line in figure 14. At a certain number of
shuttles, the throughput cannot be further significantly
augmented. This number is reached earlier if the
retrieval in sequence is not required which explains the
decreasing loss of throughput for a high number of
shuttles.
From the chart in figure 14, information can also be
obtained as to how many more shuttles are needed to
compensate for the loss of throughput caused by the
retrieval-in-sequence. For instance, if there are currently
30 shuttles in the system, approximately five more
shuttles are needed to reach the same throughput with
the retrieval-in-sequence.

5. SUMMARY
In this paper, we considered an autonomous vehicle-
based storage and retrieval system, where the vehicles
move along the x-axis and the z-axis on a tier and use
lifts to change the tier along the y-axis. We described an
algorithm for the retrieval-in-sequence that is based on
the time-window routing method and which ensures the
absence of deadlocks. The basic idea of the sequencing
algorithm consists of an inverse routing that is applied if
the required sequence is not correct. We modelled and
implemented the storage system in a simulation
environment in order to test the algorithm and to

quantify the loss of throughput by the retrieval-in-
sequence.
An interesting topic for future work would be the
determination of the number of shuttles needed to
achieve the maximum system throughput. This number
clearly depends on the number of lifts, the layout and
the specific parameters of the lifts and vehicles.
Furthermore, different dispatching strategies, such as
task-initiated despatching rules and different layout
options, should be investigated and analysed.

REFERENCES
Carlo H. J., Vis I. F. A., 2012. Sequencing dynamic

storage systems with multiple lifts and shuttles.
International Journal of Production Economics
140: pp. 844-853.

Curico, D., Longo, F., 2009. Inventory and internal
logistics management as critical factors affecting
the Supply Chain performances. International
Journal of Simulation and Process Modelling.
International Journal of Simulation and Process
Modelling 5: pp. 278-288

Eder M., Kartnig G., 2015. Throughput analysis of S/R
shuttle systems and ideal geometry for high
performance. Proceedings of the XXI International
Conference MHCL, pp. 193-198. September 23-
25, Vienna (Austria).

Egbelu P. J., Tanchoco J. M. A., 1984. Characterization
of automatic guided vehicle dispatching rules.
International Journal of Production Research 22:
pp. 359-374.

Ekren B. Y., Heragu S. S., Krishnamurthy A.,
Malmborg C. J., 2010. Simulation based
experimental design to identify factors affecting
performance of AVS/RS. Computers & Industrial
Engineering 58: pp. 175-185.

Geinitz, J., 1998. Unerkannte Abhängigkeiten mindern
die Leistungsfähigkeit automatisierter Lager.
Marktbild Lager 18: pp. 16-18.

Heragu S. S., Cai X., Krishnamurthy A., Malmborg
C. J., 2011. Analytical models for analysis of
automated warehouse material handling systems.
International Journal of Production Research 49:
pp. 6833-6861.

Kalinovcic L., Petrovic T., Bogdan S., Bobanac V.,
2011. Modified banker’s algorithm for scheduling
in multi-agv systems. Automation Science and
Engineering (CASE), pp. 351–356. August 24-27,
Trieste (Italy).

Kartnig G., Grösel B., Zrnic N., 2012. Past, State-of-
the-Art and Future of Intralogistics in Relation to
Megatrends. FME Transactions 40: pp. 193-200.

Kim C. W., Tanchoco J. M. A., 1991. Conflict-free
shortest-time bi-directional AGV routing.
International Journal of Production Research 29:
pp. 2377-2391.

Kim C. W., Tanchoco J. M. A., Koo P., 1997. Deadlock
Prevention in Manufacturing Systems with AGV
Systems: Banker’s Algorithm Approach. Journal

1.2%

3.2%

4.9%

6.6%

9.0%
10.0%

12.0%

13.5% 13.9%
14.6%

12.8%
12.0%

11.3%

5 10 15 20 25 30 35 40 45 50 55 60 65
Number of Shuttles

Loss of Throughput

of Manufacturing Science and Engineering 119:
pp. 849-854.

Lerher T., 2015. Travel-time model for double-deep
shuttle-based storage and retrieval systems.
International Journal of Production Research, pp.
1-22.

Liu F., Hung P., 2010. Real-time deadlock-free control
strategy for single multi-load automated guided
vehicle on a job shop manufacturing system.
International Journal of Production Research 39:
pp. 1323-1342.

Malmborg C. J., 2002. Conceptualizing tools for
autonomous vehicle storage and retrieval systems.
International Journal of Production Research 40:
pp. 1807-1822.

Marchet G., Melacini M., Perotti S., Tappia E., 2013.
Development of a framework for the design of
autonomous vehicle storage and retrieval systems.
International Journal of Production Research 51
pp. 4365-4387.

Maza S., Castagna P., 2005. A performance-based
structural policy for conflict-free routing of bi-
directional automated guided vehicles. Computers
in Industry 56: pp. 719-733.

Penners L. T. M. E., 2015. Investigating the effect of
layout and routing strategy on the performance of
the Adapto system. Master’s Thesis. Eindhoven
University of Technology.

Roodbergen, K .J., Vis I. F. A., Taylor, G.D., 2015.
Simultaneous determination of warehouse layout
and control policies. International Journal of
Production Research 53: pp. 3306-3326.

ter Mors A. W., Zutt J., Witteveen C., 2007. Context-
Aware Logistic Routing and Scheduling.
Proceedings of the Seventeenth International
Conference on Automated Planning and
Scheduling, pp. 328-335. September 22-26,
Providence (USA).

VDI-Richtlinie 2692 Blatt 1, 2015. Automated vehicle
storage and retrieval systems for small unit loads.
Berlin: Beuth.

AUTHORS’ BIOGRAPHY
Thomas Lienert, M. Sc. was born in Hamburg,
Germany, and studied industrial engineering and
management at the Karlsruhe Institute of Technology
and the University of Seville with the focus on
operations research and logistics systems. He has been
working as a research assistant at the Institute for
Materials Handling, Material Flow and Logistics,
Technical University of Munich since 2014. His
research mainly deals with the development of control
strategies for autonomous vehicle-based storage and
retrieval systems.

Prof. Dr.-Ing. Dipl.-Wi.-Ing. Willibald A. Günthner
is head of the Institute for Materials Handling, Material
Flow and Logistics, Technical University of Munich.
He is co-founder of the Wissenschaftliche Gesellschaft
für Technische Logistic e.V. and advisory board

member of several associations, federations and
companies.

	1. Introduction
	2. Scope of the Paper
	2.1. Shuttle System Configurations
	2.2. Literature Review

	3. Sequencing Algortihm
	3.1. System Requirements
	3.2. Sequencing Options
	3.3. Underlying Routing Algorithm
	3.4. Routing-Based Sequence-Algorithm

	4. Simulation-Based Evaluation
	4.1. Modelling and Implementation
	4.2. Simulation Experiments
	4.3. Results and Discussion

	5. Summary

