
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Lehrstuhl für Informatik VII

CAVA – A Verified Model Checker

René Neumann

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Lehrstuhl für Informatik VII
Grundlagen der Softwarezuverlässigkeit und Theoretische Informatik

CAVA – A Verified Model Checker

René Neumann

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Helmut Seidl

Prüfer der Dissertation:

1. Prof. Dr. Dr. h.c. Francisco Javier Esparza Estaun

2. Prof. Tobias Nipkow, Ph.D.

Die Dissertation wurde am 19. 01. 2017 bei der Technischen Universität München einge-
reicht und durch die Fakultät für Informatik am 08. 05. 2017 angenommen.

Abstract

Model checkers like SPIN provide a way to gain certainty about the behavior of programs
and protocols. To guarantee that the model checker itself is correct, the CAVA project
developed a verified and executable LTL model checker using Isabelle/HOL.

This thesis reports on various building blocks of CAVA by presenting the first formalized
and executable Promela semantics, a framework for verifying depth-first search based algo-
rithms, and an automata library. As a part thereof, this thesis will detail the development
rationale and history of those building blocks.

Kurzzusammenfassung

Modelchecker, wie z.B. SPIN, sind eine Möglichkeit, Gewissheit über das Verhalten von
Programmen und Protokollen zu erlangen. Um nun sicherzustellen, dass der Modelchecker
selber korrekt ist, wurde im Projekt CAVA ein verifizierter und ausführbarer Modelchecker
mit Hilfe von Isabelle/HOL entwickelt.

In dieser Dissertation stellen wir verschiedene Bausteine von CAVA vor: Die erste
formalisierte und ausführbare Semantik von Promela, ein Framework um auf Tiefensuche
basierende Algorithmen zu verifizieren, sowie eine Automatenbibliothek. Ein Augenmerk
liegt dabei auf der Geschichte und den Hintergründen der jeweiligen Implementierung.

v

Acknowledgements

My thanks go first and foremost to Prof. Esparza and Prof. Nipkow for allowing me to
work on this very interesting topic and trying to bridge the world between Interactive
Theorem Proving and Model Checking. This work would also not have been possible
without the important input of Peter Lammich, Thomas Tuerk and Alexander Schimpf.

I also want to thank Michael, Maximilian, Stefan, and André for the vital mental support
and expertise throughout all the years.

This work was funded by the DFG as part of the CAVA project, for which I’m grateful.

vii

Contents

1 Introduction 1

2 Prerequisites 3
2.1 Isabelle/HOL . 3

2.1.1 Basic Notation . 3
2.1.2 Defining new Types . 3
2.1.3 Definitions . 4
2.1.4 Lemmas and Proving Them . 5
2.1.5 Local Context . 6
2.1.6 Deviation from the Theories . 7

2.2 Refinement . 8

3 Constructing the Search Space 11
3.1 The Comprehensive Library . 11

3.1.1 Labeled Transition System . 11
3.1.2 Semi-Automaton . 13
3.1.3 NFA and DFA . 15
3.1.4 Implementation . 16
3.1.5 ω-Automaton . 20
3.1.6 Elementary ω-Automaton . 24

3.2 Current Formalization . 27
3.3 Comparison and Concluding Remarks . 31

4 Checking 33
4.1 Depth-First Search . 33
4.2 A Generic (Depth-First) Search . 36

4.2.1 Why so generic? . 42
4.3 Implementing the Search: A Specific State 44
4.4 Proof Architecture . 47

4.4.1 Library of Invariants . 51
4.5 Refinement . 53

4.5.1 Data Refinement / Projection . 54
4.5.2 Structural Refinement . 59
4.5.3 Code Generation . 63

4.6 An Application in Model Checking: Nested DFS 65
4.6.1 Introduction to Nested DFS . 65
4.6.2 Formalization – Inner DFS . 67
4.6.3 Formalization – Outer DFS . 68

ix

Contents

4.7 An Advanced Application: Tarjan’s Algorithm 71
4.7.1 Implementation in the Framework . 72
4.7.2 Prerequisites for the Correctness Proof 75
4.7.3 Correctness Proof . 78
4.7.4 Concluding Remarks . 80

4.8 Comparison to Previous Approaches . 81
4.8.1 DFS-Framework, the ATX Approach 82
4.8.2 DFS-Framework, the CAV Approach 86
4.8.3 DFS-Framework, a Templating Approach 88

5 Model 97
5.1 Introduction – Boolean Programs . 98
5.2 Promela . 101

5.2.1 Introduction to Promela . 101
5.2.2 Formalization and Implementation 103
5.2.3 Abstract Language . 111
5.2.4 Space State Finiteness . 112
5.2.5 Differences between SPIN and CAVA 114
5.2.6 Evaluation . 117
5.2.7 Related Formalizations . 119
5.2.8 Conclusion . 119

6 Assembling the Model Checker 121

7 Conclusion 125

Bibliography 127

x

1 Introduction

Nearly every hand-written software in the ecosystem suffers from bugs. This is almost
inevitable when the software is geared towards high performance and therefore uses highly
complicated algorithms and data structures which are not easily provable. In Software
Engineering this is, in general, countered by various testing techniques. But testing can
inherently only prove the presence of errors, not their absence.

Different approaches exist to respond to this shortcoming and prove the absence of errors
and the adherence to some specification. The most thorough one is to mathematically
prove correctness and soundness of a program. While this is used in different projects
like C compilers [32] or the seL4 operating system kernel [22], in general the effort for
a thorough proof of correctness is too high for most projects. For that matter, other
approaches exist that serve as a middle-way between mathematical proof and plain testing.
One such measure is model checking [55], where an implementation or protocol is checked
for adherence to some specification (or, conversely, ensuring a certain condition does not
hold). The downside to a manual proof is the possible non-termination, i. e., the checker
may not find a result. The upside is the automatic way of using it: Given that a program
representation exists which is understood by the model checker, there is no further effort
needed short of formalizing the specification / error-conditions.

Applied as such, a model checker is in the role of a trust-multiplier. Hence, their verdict
must not be wrong. Now the recursion begins – or as [52] puts it: “Quis custodiet ipsos
custodes?” – “Who will watch the watchmen?”. That is, how can we ensure that the software
used for model checking is indeed correct, as to avoid the dangerous multiplicative effect
bugs in such a system would have?

Different approaches to tackle this problem exist (an overview is given in [14]). The
CAVA project1, which we were part of, advertises a pragmatic solution to that matter: It
introduced a formally verified and executable LTL model checker for finite-state systems
that can serve as a reference implementation. That is, while not necessarily as efficient as
most products on the market, those products can be tested against the reference imple-
mentation to gain confidence in their implementation. Formalized using the interactive
theorem prover Isabelle/HOL, we gained both correctness in a mathematical sense but
also executable code.

The finite-state LTL model checker presented in CAVA follows the well-known automata-
theoretic approach [55]: Given a finite-state program P and a formula φ, two Büchi
automata are constructed that recognize the executions of P, and all potential executions
of P that violate φ, respectively. Then the product of the two automata is computed and
tested on-the-fly, that is during the product construction, for emptiness (see Fig. 1.1). This
approach is also followed by SPIN [17], which probably is the best-known model checker.
Therefore, we modelled CAVA to be largely compatible to SPIN in order to facilitate using

1http://cava.in.tum.de

1

http://cava.in.tum.de

1 Introduction

LTL Property
(φ)

Property Automaton
(¬φ)

System
(P)

System Automaton

Product Automaton

Translation/
Compilation

Product construction

Emptiness check

Result:
Does P fulfill φ?

If not, present counter example.

Figure 1.1: Model Checker

CAVA directly without larger conversions.
We presented a first version of that model checker in [10] with a later addition of

Promela, the language for program description in SPIN, in [37]. Brunner and Lammich
then extended CAVA with Partial Order Reduction in [4]. Further publications of ours as
part of the CAVA project deal with the generalization of depth-first search in [35, 29]. Most
of the papers are also accompanied with the Isabelle developments. Those are published
in the Archive of Formal Proofs ([11, 36, 30]) or available for download [1].

In this thesis, we will highlight different parts of the development of CAVA in the
interactive theorem prover Isabelle/HOL. Thus, we structure the thesis as follows: In
Chapter 2 we start with an introduction to Isabelle/HOL and to Refinement, a proof/de-
veloping technique that will be used throughout most parts of the thesis. With Chapter 3
we lay out the automata-theoretic foundations of the model-checker. This is followed
by Chapter 4, where we will introduce a generic framework for formalizing depth-first
searches in Isabelle/HOL. We will show the usage of that framework for different use
cases. One use case will be the application inside our model checker for testing the empti-
ness of the product language of system and property. Chapter 5 will describe modelling
input programs, namely a proof-of-concept language for Boolean Programs, and the input
language of SPIN: Promela. All of those parts are then assembled in Chapter 6 to receive a
final model checker2. Finally, we will conclude in Chapter 7.

One particular focus of this work, especially in Chapters 3 and 4, will be to analyze
competing strategies for formalization. That is, show different approaches that we have
taken during the creation process of the model checker and show the different pros and
cons.

2The translation of an input formula in LTL to the corresponding automaton is not covered in this thesis.
Please refer to Schimpf [49] for details on that topic.

2

2 Prerequisites

2.1 Isabelle/HOL

Isabelle/HOL [39] is an interactive theorem prover, based on Higher-Order Logic (HOL).
It allows to declare data structures, functions, and properties about those in a style similar
to functional programming languages. More importantly, Isabelle/HOL allows to show
the mathematical correctness of those properties. In contrast to automatic theorem provers,
the user/developer guides Isabelle/HOL interactively to develop a final proof.

This thesis, to a large amount, consists of developments done in Isabelle/HOL. Therefore,
this section shall allow a reader not familiar with the software and its syntax to read
and understand the snippets in the rest of the thesis. Of course, it is not feasible to
cover all possible concepts of Isabelle used in this thesis. We thus sometimes rely on
the understanding from the context, or that the point made by the snippet should be
comprehensible without knowing every keyword.

A good introduction into the language and the prover system can be found in the book
Concrete Semantics by Nipkow and Klein [38].

2.1.1 Basic Notation

Similar to other functional languages, function application is written f a b instead of f(a,b).
Also, lambda terms with the standard syntax λx. t (i. e., the function mapping x to t) are
employed.

In general, types are not explicitly expressed but are inferred. When explicitly assigning
a type τ to some term t, we write t :: τ. Types can either be a type variable written 'a,
some otherwise declared type (e. g., the well-known bool, int, nat, . . .), functions 'a⇒ 'b,
or compound types. The latter ones are written in a postfix notation, thus 'a list denotes a
list of some type 'a. Other basic compound types are sets ('a set) and tuples ('a × 'b).

On basic datatypes we have well known syntactic sugar like + on int and nat, or ∪ on
sets. On lists, Isabelle introduces x#xs to denote prepending the element x to the list xs.
Also, it denotes appending to lists xs and ys by xs@ys.

2.1.2 Defining new Types

Isabelle/HOL supports various ways of defining new types. We will only show the ones
used throughout the thesis.

Synonyms for existing types, i. e., syntactic sugar only, are defined with

type_synonym ('k,'v) map = 'k⇒ 'v option

Here, we define a new type ('k,'v) map that is identical to the function from 'k to optional
'v. The type 'v option can either be None to denote an empty result, or Some v.

3

2 Prerequisites

Inductive datatypes are introduced using the datatype construction, listing each possible
constructor:

datatype 'a option = None | Some 'a

The construction can be recursive:

datatype nat = Zero | Suc nat

A third way, which we heavily rely on, is the definition of compound structures,
called record in Isabelle. Having defined a new record type 'a point for two-dimensional
coordinates of any kind as

record 'a point =
x :: 'a
y :: 'a

the fields are accessed via accessor functions named similar to the fields, i. e., x p to get the
x-coordinate of some point p. An instance of that record is constructed with the following
syntax:

L x = 0, y = 0 M

Updates1 are written similar:

pL y := 5 M

Records can also be extended. So, for instance, we can add a z-coordinate to the point
definition above, yielding a type 'a coord:

record 'a coord = 'a point +
z :: 'a

Instances of type 'a coord are now also of type 'a point2.

2.1.3 Definitions

In Isabelle/HOL, there are, again, multiple ways of introducing new functions. We will
show the ones used in this thesis.

The most simple variant is an abbreviation of some construct. Similar to type synonyms,
they do not serve as a construct in their own right but are only used for pretty-printing:

abbreviation f_of_x ≡ f x

Full-fledged new definitions are given similarly:

definition first_of_list xs ≡ xs!0

Or more verbose:

definition first_of_list :: 'a list⇒ 'a where
first_of_list xs ≡ xs!0

1As we are in the functional world, this is not an in-place update but returns an updated instance.
2Strictly speaking, they are of type ('a,'more) point_scheme, but we will ignore this for the thesis.

4

2.1 Isabelle/HOL

In this thesis, the semantical differences of definition and abbreviation will not show.
They are only used side-by-side to copy their usage in the theories and for those readers
knowing Isabelle.

Similarly, in definitions we will use ≡ and = interchangebly. That is, the definition above
might also be written

definition first_of_list xs = xs!0

A third variant for definitions is also used sparingly: fun allows for recursion and
pattern-matching on arguments:

fun sum :: nat⇒ nat⇒ nat where
sum Zero b = b

| sum (Suc a) b = sum a (Suc b)

2.1.4 Lemmas and Proving Them

Lemmas are defined as follows:

lemma zero_less_or_equal:
0 ≤ (x::nat)

When assumptions are needed, they can be supplied in different forms:

lemma sum_greater:
x > 0 =⇒ y > 0 =⇒ x + y > 0

lemma sum_greater:
J x > 0; y > 0 K =⇒ x + y > 0

lemma sum_greater:
assumes x > 0 and y > 0

shows x + y > 0

Further, there exist some synonyms for lemma, for instance theorem and corollary. They
only serve as a semantical hint to the human reader and do not have any other effect.

This thesis will only very seldomly contain proofs of lemmas, they are to be found in
the referenced Isabelle theory files instead. But sometimes they are given as an illustration.
A proof can be very short, consisting of one or two calls to proof-procedures:

lemma sum_greater:
x > 0 =⇒ y > 0 =⇒ x + y > 0
by simp

lemma foo:
(* some more complicated property *)
by simp blast

But only a fraction of all properties can be shown in such an easy way. For most of them,
a manual proof is needed:

5

2 Prerequisites

lemma bar:
(* something very elaborate *)

proof −
(* here follows the manual proof *)

qed

We will spare the details of how such a proof looks like and will refer to Isabelle documen-
tation [9].

2.1.5 Local Context

Quite often a collection of properties shares a common set of assumptions and/or defini-
tions (e. g., an invariant on a data structure). It is possible to repeat them for each lemma,
but this clutters the core message of that lemma. For this reason, Isabelle allows local
contexts, called locale, that fix those assumptions and definitions:

locale example =
fixes ds :: data_structure
assumes valid ds

begin
lemma some_property:

some_property ds
proof −

(* in the proof, the fact that ds is valid may be used freely *)
qed

end

For presentation, we do not use the form above. Instead we use a semantically equivalent
variant, where we separate the declaration of the locale from the definitions there-in:

locale example =
fixes ds :: data_structure
assumes valid ds

lemma (in example) some_property:
some_property ds

Similar to records, locales can build a hierarchy. Sublocales hereby inherit lemmas and
definitions of their parent(s). For example, we might define a locale for general graphs:

locale graph =
fixes E :: ('v × 'v) set

definition (in graph) V ≡ Range E ∪ Domain E

On this we base finite graphs, introducing additional assumptions that allow additional
properties to be shown:

locale fin_graph = graph E
for E :: ('v × 'v) set +
assumes finite E

6

2.1 Isabelle/HOL

lemma (in fin_graph) finite_V:
finite V

This hiearchy can also be built after the fact: When using explicit inheritance like
above, the assumptions from the parent locales are added to the one being defined. But
when the child locale already has them given/shown otherwise, duplication would occur.
Therefore one can omit the explicit inheritance and show the sublocale status afterwards.
For instance automata might not be constructed in terms of graphs, but it can be shown
that an automata also can be seen as one:

locale automaton = . . .

sublocale (in automaton) fin_graph
proof −

. . .
qed

Eventually, after having finished a locale, one can interpret a locale, possibly with
concrete parameters. Without this, the properties and definitions of the locale would not
be accessible outside of the locale. For instance

interpretation gen!: fin_graph E for E

would make all lemmas and definitions of fin_graph accessible with the prefix gen but
adding a parameter E and the implicit assumptions of the locale. On the other hand, given
some concrete graph G one could do:

interpretation conc!: fin_graph G
proof −
(* show that G meets all assumptions *)

qed

Now all lemmas and properties would (also) be accessible with the conc prefix, but having
been fixed for G. This, albeit with slightly different syntax, is often used in proofs to make
facts accessible for some concrete instance of that locale which is created in the process of
the proof.

2.1.6 Deviation from the Theories

In this work, we wanted to be true to the Isabelle theories. But sometimes we had to deviate
from them in order to fit something for the writing or to omit certain technicalities that
would distract from the point in question. The deviation also includes slight changes to
the syntax, leaving out some punctuation or rearranging arguments for better readability.

One larger change from the theories is using one locale, where the theories may employ
two or more: In Isabelle it is not possible to use abbreviations or definitions in the
assumptions of the locale that are only valid inside the locale. For that reason, we often
had a locale holding the definitions and a second one adding the properties. This approach
unfortunately bloats the inheritance hierarchy and complicates understanding. That is
why we haven chosen to ignore this limitation in writing.

7

2 Prerequisites

A second point is using explicit sets of edges E and initial nodes V0 to represent graphs.
In the theories they are often, but not always, passed around as a structure. To improve
homogeneity, we have not followed this path here.

2.2 Refinement

When developing formally verified algorithms, there is a trade-off between the efficiency
of the algorithm and the efficiency of the proof: For complex algorithms, a direct proof of
an efficient implementation tends to get unmanageable, as proving implementation details
blows up the proof and obfuscates the main ideas of the proof. A standard approach to this
problem is stepwise refinement [2, 3], where this problem is solved by modularization of
the correctness proof: One starts with an abstract version of the algorithm and then refines
it (in possibly many steps) to the concrete, efficient version. A refinement step may reduce
the non-determinism of a program and replace abstract datatypes by their implementations.
For example, selecting an arbitrary element from a set may be refined to getting the head
of a list. The main point is, that correctness properties can be transferred over refinements,
such that correctness of the concrete program easily follows from correctness of the
abstract algorithm and correctness of the refinement steps. The abstract algorithm is not
cluttered with implementation details, such that its correctness proof can focus on the
main algorithmic ideas. Moreover, the refinement proofs only focus on the local changes
in a particular refinement step, not caring about the overall correctness property.

In Isabelle, this approach is supported by the Isabelle Refinement and Collections
Frameworks [31, 28], and the Autoref tool [24]. Using ideas of refinement calculus [3],
the Isabelle Refinement Framework provides a set of tools to concisely express non-
deterministic programs, reason about their correctness, and refine them (in possibly many
steps) towards efficient implementations. The Isabelle Collections Framework provides
a library of verified efficient data structures for standard types such as sets and maps.
Finally, the Autoref tool automates the refinement to efficient implementations, based on
user-adjustable heuristics for selecting suitable data structures to implement the abstract
types.

In the following, we describe the basics of the Isabelle Refinement Framework. Given
the general result type 'a of an algorithm, it is encapsulated to express the possible
non-determinism of that algorithm in the type 'a nres:

datatype 'a nres = RES 'a set | FAIL

A result RES X expresses that the program returns one of the values of X non-deterministically,
while FAIL expresses failure of an assertion.

On results, we define an ordering by lifting the subset ordering, FAIL being the greatest
element.

RES X ≤ RES Y iff X ⊆ Y | m ≤ FAIL | FAIL 6≤ RES X

Note that this ordering forms a complete lattice, where RES {} is the bottom, and FAIL
is the top element. The intuitive meaning of m ≤ m' is that all possible values of m
are also possible for m'. We say that m refines m'. In order to describe that all values
in m satisfy a condition Φ, we write m ≤ spec x. Φ x (or shorter: m ≤ spec Φ), where
spec x. Φ x ≡ RES {x. Φ x}.

8

2.2 Refinement

Example 2.2.1
Let cyc_checker E V0 be an algorithm that checks a graph over edges E and start
nodes V0 for cyclicity. Its correctness is described by the following formula, stating
that it should return true if and only if the graph contains a cycle reachable from V0,
which is expressed by the predicate cyclic:

cyc_checker E V0 ≤ spec r. r = cyclic E V0

Now let cyc_checker_impl be an efficient implementation of cyc_checker. For refine-
ment, we have to prove:

cyc_checker_impl E V0 ≤ cyc_checker E V0.

Note that, by transitivity, we also get that the implementation is correct:

cyc_checker_impl E V0 ≤ spec r. r = cyclic E V0

To express non-deterministic algorithms, the Isabelle Refinement Framework uses a
monad [56] over non-deterministic results. It is defined by the two functions return and
bind:

return x ≡ RES {x}
bind FAIL f ≡ FAIL | bind (RES X) f ≡ RES (

⋃
x∈X. f x)

Intuitively, return x returns the deterministic outcome x, and bind m f is a sequential
composition, which describes the result of non-deterministically choosing a value from
m and applying f to it. In this thesis, we write x← m; f x instead of bind m f, to make
program text more readable.

Another useful construct are assertions:

assert Φ ≡ if Φ then return () else FAIL

An assertion generates an additional proof obligation when proving a program correct.
However, when refining the program, the condition of the assertion can be assumed.

Example 2.2.2
The following program removes an arbitrary element from a non-empty set. It
returns the element and the new set.

definition select s ≡ do {
assert s 6= {};
x← spec x. x∈s;
return (x, s − {x})}

The assertion in the first line expresses the precondition that the set is not empty.
If the set is empty, the result of the program is FAIL. The second line non-
deterministically selects an element from the set, and the last line assembles the
result: A pair of the element and the new set.

Using the verification condition generator of the Isabelle Refinement Framework,
it is straightforward to prove the following lemma, which states that the program
refines the specification of the correct result:

lemma select_correct:
s 6= {} =⇒ select s ≤ spec (x,s'). {x ∈ s ∧ s' = s−{x}}
unfolding select_def by refine_vcg auto

9

2 Prerequisites

Recursion is described by a least fixed point:

rec x B ≡ do {assert (mono B); lfp B x}

Based on recursion, the Isabelle Refinement Framework provides while and foreach loops.
Note that we agree on a partial correctness semantics in this thesis3, i. e., infinite executions
do not contribute to the result of a recursion.

Typically, a refinement also changes the representation of data, e. g., a set of successor
nodes may be implemented by a list. Such a data refinement is described by a relation R
between concrete and abstract values. We define a concretization function ⇓R, that maps an
abstract result to a concrete result:

⇓R FAIL ≡ FAIL
| ⇓R (RES X) ≡ {c. ∃x∈X. (c,x) ∈ R}

Intuitively, ⇓R m contains all concrete values with an abstract counterpart in m.
Example 2.2.3
A finite set can be implemented by a duplicate-free list of its elements. This is
described by the following relation:

definition ls_rel ≡ {(l,s). set l = s ∧ distinct l}

The select-function from Example 2.2.2 can be implemented on lists as follows:

definition selecti l ≡ do {
assert l 6= [];
x = hd l;
return (x, tl l)}

Again, it is straightforward to show that selecti refines select:

lemma select_refine:
(l,s) ∈ ls_rel =⇒ selecti l ≤⇓(Id×ls_rel) (select s)

unfolding selecti_def select_def
by (refine_vcg) (auto simp: ls_rel_def neq_Nil_conv)

Intuitively, this lemma states that, given the list l is an implementation of set s, the
results of select and selecti are related by Id×ls_rel, i. e., the first elements are equal,
and the second elements are related by ls_rel. When refining functions, we often use
a more concise syntax to express the refinement relation:

(selecti, select) ∈ ls_rel→ (Id × ls_rel)

Note that the assertion in the abstract select-function is crucial for this proof to
work: For the empty set, we have select {} = FAIL, and the statement holds trivially.
Thus, we may assume that s 6={}, which implies l 6=[], which, in turn, is required to
reason about hd l and tl l. The handling of assertions is automated by the verification
condition generator, which inserts the assumptions and discharges the trivial goals.

3The Isabelle Refinement Framework supports both, partial and total correctness semantics. However, the
code generator of Isabelle/HOL currently only guarantees partial correctness of the generated code.

10

3 Constructing the Search Space

A foundational part of a model checker is the representation of the state space of the
program to check. While, in general, a Kripke structure is sufficient to represent the state
space, more advanced structures like different forms of automata are chosen. This is done
because the further operations of the model checker build upon other automata-theoretic
approaches. Namely, representing the property as an automaton and using the product
construction on property and system automaton to yield a resulting automaton. This
automaton is then accepting exactly those runs in the system that fulfill the property.

Due to this automata-theoretic background, CAVA, our model checker, contains also
libraries modelling this background. In this chapter, we want to give an overview about
the evolution of our automata formalization in CAVA. The libraries represented were not
developed as parts of this thesis (except for some work in the first library (Section 3.1) on
the product construction on Büchi automata and the integration of the framework into
CAVA). Instead, we show them here as they form an integral part of the model checker and
also as a show-case for the different development models for a theory. Furthermore, the first
library is not documented anywhere else; Section 3.1 can now be used as documentation
in that regard.

3.1 The Comprehensive Library

Originally, the model checker has not been the main formalization goal. Instead, a
comprehensive automata-theoretic library was envisioned and the model checker should
serve as some non-trivial example usage of that library. For this reason, the library that we
will describe in this section is a comprehensive one. That is, it formalizes more than is
needed inside our model checker, and also does so in a more general way. In this section,
we will show the formalization of this library, with a focus on the parts relevant for the
model checker. In a later section (3.3), we will discuss how this approach is inferior to a
specialized variant as shown in the next Section 3.2.

This library has been designed and implemented by Tuerk and Malik. The ω-automata
were largely designed by Schimpf and Neumann.

3.1.1 Labeled Transition System

The library starts with the general notion of a labeled transition system (LTS), as a relation
of states and label to states:

type_synonym ('q,'l) LTS = ('q × 'l × 'q) set

Here, 'q denotes the type of states and 'l the type of the labels.
Furthermore we make use of the library on infinite words by Stephan Merz, which is

part of [50]. Of interest for this section is the datatype for infinite words:

11

3 Constructing the Search Space

type_synonym 'l word = nat⇒ 'l

From this definition follows, that for some word w the expression w i returns the letter
at the ith position. For finite words, we use the basic datatype 'l list, where the ith letter
(given that i < length w) is accessed with w ! i.

General terms, like finite and infinite runs, or reachability, are defined on our base
structure of labeled transition systems (the LTS is denoted by ∆ in the following):

definition LTS_is_fin_run :: ('q,'l) LTS⇒ 'l list⇒ 'q list⇒ bool where
LTS_is_fin_run ∆ w r←→

length r = Suc (length w) ∧
∀i < length w. (r ! i, w ! i, r ! (Suc i)) ∈ ∆

definition LTS_is_inf_run :: ('q,'l) LTS⇒ 'l word⇒ 'q word⇒ bool where
LTS_is_inf_run ∆ w r←→ ∀i. (r i, w i, r (Suc i)) ∈ ∆

fun LTS_is_reachable :: ('q, 'l) LTS⇒ 'q⇒ 'l list⇒ 'q⇒ bool where
LTS_is_reachable ∆ q [] q'←→ q = q'

| LTS_is_reachable ∆ q (σ # w) q'←→
∃q''. (q, σ, q'') ∈ ∆ ∧ LTS_is_reachable ∆ q'' w q'

Of course, this includes proving properties about those definitions, like showing that each
suffix of an infinite run is again an infinite run

lemma LTS_is_inf_run___suffix :
LTS_is_inf_run ∆ w r
=⇒ LTS_is_inf_run ∆ (suffix k w) (suffix k r)

or linking reachability to finite runs:

lemma LTS_is_reachable_alt_def :
LTS_is_reachable ∆ q w q'←→
∃r. LTS_is_fin_run ∆ w r ∧ hd r = q ∧ last r = q'

Further concepts introduced at this level are determinism and completeness:

definition LTS_is_deterministic :: ('q, 'l) LTS⇒ bool where
LTS_is_deterministic ∆←→
∀q σ q1' q2'. ((q, σ, q1') ∈ ∆ ∧ (q, σ, q2') ∈ ∆) −→ q1' = q2'

definition LTS_is_complete :: 'q set⇒ 'l set⇒ ('q, 'l) LTS⇒ bool where
LTS_is_complete Q Σ ∆←→ ∀q∈Q. ∀σ∈Σ. ∃q'∈Q. (q, σ, q') ∈ ∆

As deterministic transition systems occur often as a basis for automata, they are often
used if the determinism is part of the type (i. e., not explicitly added via an additional
assumption). Thus, an additional type DLTS is introduced, together with conversion
functions. It is to note that here a transition function is used instead of a relation, as
this spares the requirement for an additional invariant of determinism. By chosing two
different types, instead of one plus an invariant, implementations may later be optimized
by allowing different implementations depending on the type:

12

3.1 The Comprehensive Library

type_synonym ('q,'l) DLTS = 'q × 'l⇒ 'q option

definition DLTS_to_LTS :: ('q, 'l) DLTS⇒ ('q, 'l) LTS
where DLTS_to_LTS δ ≡ {(q, σ, q') | q σ q'. δ (q, σ) = Some q'}

definition LTS_to_DLTS :: ('q, 'l) LTS⇒ ('q, 'l) DLTS where
LTS_to_DLTS ∆ ≡ λ(q,σ). if (∃q'. (q,σ,q') ∈ ∆) then Some (ε q'. (q, σ, q') ∈ ∆) else None

Here, ε x. P x is the choice operator, returning some x, such that P x holds.
It is shown that, when a DLTS is converted into the regular LTS, it is a determinstic one:

lemma DLTS_to_LTS___LTS_is_deterministic:
LTS_is_deterministic (DLTS_to_LTS δ)

Similarly, types for complete LTS (CLTS) and deterministic and complete LTS (CDLTS)
are introduced. But we will omit them here.

Finally, multiple operations are defined for such transition systems. The one of most
importance for this work is the definition of a product:

definition LTS_product :: ('q1,'l) LTS⇒ ('q2,'l) LTS⇒ ('q1 × 'q2,'l) LTS where
LTS_product ∆1 ∆2 = {((q1,q2), σ, (q1',q2')) | q1 q1' σ q2 q2'.

(q1, σ, q1') ∈ ∆1 ∧ (q2, σ, q2') ∈ ∆2}
Again, this definition is accompanied by useful properties like showing that determinism
is preserved:

lemma LTS_product_LTS_is_deterministic :
J LTS_is_deterministic ∆1; LTS_is_deterministic ∆2 K =⇒
LTS_is_deterministic (LTS_product ∆1 ∆2)

3.1.2 Semi-Automaton

The next step is to define the notion of a Semi-Automaton, which is the common denom-
inator for finite automata and ω-automata. Compared to the bare LTS, we now add an
explicit set of states and an alphabet. Furthermore, a set of states is declared initial:

record ('q,'l) SemiAutomaton =
Q :: 'q set (* set of states *)
Σ :: 'l set (* set of labels *)
∆ :: ('q,'l) LTS (* transition relation *)
I :: 'q set (* set of initial states *)

Please note that no set of final states or similar is given in this definition. This is because
different kinds of automata define different means to encode acceptance, which therefore
cannot be modelled in a general and useful way.

Besides the data represented by the record, a semi-automaton needs to adhere to
additional wellformedness constraints (∆ is defined in terms of Q and Σ, I is a subset
of Q). Isabelle/HOL allows to define types with an inherent invariant. But for practical
reasons (extensibility, constructing intermediate invalid structures) this is not used. Instead,
the invariants are encapsulated into their own locale. Recall from Section 2.1 that this
mechanism is used to create environments that fix certain assumptions and variables:

13

3 Constructing the Search Space

locale SemiAutomaton =
fixes A::('q,'l) SemiAutomaton
assumes (q,σ,q') ∈ ∆ A =⇒ (q ∈ Q A) ∧ (σ ∈ Σ A) ∧ (q' ∈ Q A)

and I A ⊆ Q A
Later on, it is sufficient to show that some instance A of the record above fulfills the
assumptions of the locale to use all the properties specified therein:

show SemiAutomaton A
This is then extended to also provide for finite semi-automata:

locale FinSemiAutomaton = SemiAutomaton A
for A::('q,'l) SemiAutomaton +
assumes finite (Q A)

and finite (∆ A)
Basic terminologies like finite and infinite runs are lifted from the their LTS-counterparts,

adding the requirements of semi-automata, that is, requiring that a run starts in an initial
node:

definition SemiAutomaton_is_fin_run where
SemiAutomaton_is_fin_run A w r←→
hd r ∈ I A ∧ LTS_is_fin_run (∆ A) w r

definition SemiAutomaton_is_inf_run where
SemiAutomaton_is_inf_run A w r←→
r 0 ∈ I A ∧ LTS_is_inf_run (∆ A) w r

It is then continued with showing properties of (finite) semi-automata like

lemma (in FinSemiAutomaton) finite_I :
finite (I A)

lemma (in SemiAutomaton) SemiAutomaton_∆_cons___is_inf_run :
assumes SemiAutomaton_is_inf_run A w r
shows w i ∈ (Σ A) and r i ∈ (Q A)
The purpose of this semi-automaton formalization, as laid out before, is to give a

foundation for various automaton variants. For this reason, the formalization now defines
a type for deterministic semi-automata and shows certain constructions and special
properties (like Q A 6= {}) for it. We will omit that part here.

We will further omit certain formalized operations like removing unreachable states,
or constructing a semi-automaton from some specified list representation. Both are
for example used in Tuerk’s formalization of Hopcroft’s Algorithm [31] (the latter for
benchmarking), but are not important for model checking.

The next interesting operation then is the product construction on semi-automata, which
is defined using the product operation on LTS:

definition product_SemiAutomaton ::
('q1, 'l) SemiAutomaton⇒
('q2, 'l) SemiAutomaton⇒ ('q1 × 'q2, 'l) SemiAutomaton where

14

3.1 The Comprehensive Library

product_SemiAutomaton A1 A2 ≡ L
Q = Q A1 × Q A2,
Σ = Σ A1 ∩ Σ A2,
∆ = LTS_product (∆ A1) (∆ A2),
I = I A1 × I A2M

This, of course, is combined with appropriate lemmas, like:

lemma product_SemiAutomaton___is_well_formed :
JSemiAutomaton A1; SemiAutomaton A2K
=⇒ SemiAutomaton (product_SemiAutomaton A1 A2)

lemma product_SemiAutomaton_is_fin_run :
SemiAutomaton_is_fin_run (product_SemiAutomaton A1 A2) w r←→
SemiAutomaton_is_fin_run A1 w (map fst r) ∧
SemiAutomaton_is_fin_run A2 w (map snd r)

Again, the formalization here specifies some more operations like the powerset construc-
tion, which we will omit here.

3.1.3 NFA and DFA

Based upon the (final) semi-automaton, both deterministic finite automata (DFA) and
non-deterministic finite automata (NFA) are defined. An NFA is a semi-automaton with
an additional set of final states, so far missing from the semi-automaton:

record ('q,'l) NFA = ('q, 'l) SemiAutomaton +
F :: 'q set (* set of final states *)

locale NFA = FinSemiAutomaton A
for A::('q,'l) NFA +
assumes F A ⊆ Q A
and finite (Σ A)
Based on this definition of final states, the regular acceptance definition is specified for

NFAs:

definition NFA_accept A w ≡ (∃ q∈(I A). ∃ q'∈(F A). LTS_is_reachable (∆ A) q w q')

This can then be used to define the language of such an automaton:

definition L A ≡ {w. NFA_accept A w}
Furthermore, the now well-known operations on semi-automata are also lifted to the

world of the NFA; we will omit this here as they are very straightforward. Of course, this
also includes a product operation (NFA_product). Having defined the language in a former
step, we can also show that the language of the product is as expected:

lemma NFA_product_accept :
J NFA A1; NFA A2 K
=⇒ NFA_accept (NFA_product A1 A2) w
←→ NFA_accept A1 w ∧ NFA_accept A2 w

15

3 Constructing the Search Space

lemma NFA_product_L :
JNFA A1; NFA A2K =⇒ L (NFA_product A1 A2) = L A1 ∩ L A2

The NFA is then extended into a DFA by mixing in the deterministic semi-automaton,
that was mentioned before:

locale DFA = NFA A + DetFinSemiAutomaton A
for A::('q,'l) NFA

It is to note, that here a DFA is not a new structure, but simply the NFA enriched with
the determinism invariants. Then determinisation operations from NFA to DFA are
introduced, together with operations that are possible on DFAs only, like complementing
and minimizing. The latter is described in detail in Tuerk’s paper on the Hopcroft-
Algorithm [31]. Whenever an algorithm is more efficient on DFAs, its implementation will
branch, depending on whether the automaton is deterministic.

We will not cover those details, but instead show how the formalization is refined into
executable code.

3.1.4 Implementation

The goal of the original automata library was to have an executable library, that could be
used by other programs, if needed.

Therefore the formalizations need to be refined to executable code. This, in effect, only
needs to cover the NFA, as a semi-automaton is not going to be used by the user. Since the
main component of an automaton, as described so far, is the underlying transition system,
the LTS is refined on its own and then used by the NFA as an existing component.

The library, due to its age, uses the original version of the Isabelle Collections Frame-
work [28] directly and not the Isabelle Refinement Framework [24] as an intermediary.
In this original framework, the first step (when refining data structures, not necessarily
plain algorithms), is to give a specification of said structure. This is not the formalization,
but a set of functions that an implementation must have (i. e., an interface in Software
Engineering terms).

The most important function of such a specification is the abstraction function (regularly
denoted by the suffix _α) that converts an object of the implementation world into the
datatype as used in the formalization. In case of the labeled transition system, this is the
following function-type, where 'Li is the implementation type:

type_synonym ('q,'l,'Li) lts_α = 'Li ⇒ ('q,'l) LTS

Together with a possible invariant on the implementation this results in a locale repre-
senting some implementation of LTS:

locale lts =
fixes α :: ('q,'l,'Li) lts_α

fixes invar :: 'Li ⇒ bool

Further extensions like finiteness or determinism are gained by extending said locale,
where the aforementioned additional invariant is assumed:

16

3.1 The Comprehensive Library

locale finite_lts = lts +
assumes invar l =⇒ finite (α l)

locale dlts = lts +
assumes invar l =⇒ LTS_is_deterministic (α l)

Operations on the structure are added piece by piece: for each operation a corresponding
function on the implementation is defined, which is then encapsulated in a specific locale
with corresponding assumptions1. For instance, the successor function is added like this:

type_synonym ('q,'l,'Li) lts_succ = 'Li ⇒ 'q⇒ 'l⇒ 'q option
locale lts_succ = lts +

fixes succ :: ('q,'l,'Li) lts_succ
assumes

invar l =⇒ succ l v w = None =⇒ ∀v'. (v, w, v') /∈ (α l)
invar l =⇒ succ l v w = Some v' =⇒ (v, w, v') ∈ (α l)

Here lts_succ is a function type, that when passed an instance of the LTS implementation,
yields a successor function. In the same-named locale, an instance of the lts_succ function
is fixed (i. e., theoretically, an implementation may have multiple variants of successor
definitions).

In the same façon other operations like membership-testing, emptiness check, insertion
etc. are defined.

For an easier usage, common operations are combined into one record-type, so that an
LTS-implemention can be expressed by an instance of such type:

record ('q,'l,'Li) lts_ops =
lts_op_α :: ('q,'l,'Li) lts_α

lts_op_invar :: 'Li ⇒ bool
lts_op_empty :: ('q,'l,'Li) lts_empty
lts_op_memb :: ('q,'l,'Li) lts_memb
lts_op_succ :: ('q,'l,'Li) lts_succ
. . .

The record itself only contains the operations. This has two drawbacks: the correctness
properties defined inside the appropriate locales are not contained, and using any imple-
mentation needs the implementation-record as a parameter, making the code cumbersome
to read and write. For example, given that lts is an LTS and L is the operation, one would
have to write lts_op_succ L lts q a to get the successors for node q and label a.

Therefore, an additional locale2 is introduced: It takes the implementation as a parameter
and then defines abbreviations on them, allowing direct usage of the functions. It also
connects those functions to the appropriate correctness-locale:

locale StdLTS =
finite_lts α invar +
lts_empty α invar empty +

1This approach allows an implementation to only provide a subset of operations.
2For implementation reasons, in Isabelle proper, this is defined as two locales, as inheritance cannot use the

later-defined abbreviations.

17

3 Constructing the Search Space

lts_memb α invar memb +
lts_succ α invar succ +
. . .

fixes ops :: ('q,'l,'Li) lts_ops
begin

abbreviation α where α ≡ lts_op_α ops
abbreviation invar where invar ≡ lts_op_invar ops
abbreviation empty where empty ≡ lts_op_empty ops
abbreviation memb where memb ≡ lts_op_memb ops
abbreviation succ where succ ≡ lts_op_succ ops
. . .

end

A similar locale is created for deterministic LTS.
Tuerk provides multiple implementations of LTS, all of which are based on what he calls

TripleSets, a map of map of sets (those TripleSets are also introduced by Tuerk, but any
details will be omitted here). The difference between those implementations is the order
(starting node × label to set of resulting nodes; label × starting node to set of resulting
nodes; starting node × resulting node to set of labels between them), as the use case might
make one variant perform better than another. All the implementations are based on the
same principle:

1. Define a new locale fixing possible parameters and sub-implementations. In the case
presented this is the actual implementation of TripleSets:

locale ltsbm_QAQ_defs =
ts: triple_set ts_α ts_invar
for ts_α::'ts⇒ ('Q × 'A × 'Q) set
and ts_invar

2. Define the basic constructs: An abstraction function and the general invariant on the
concrete data structure:

abbreviation (in ltsbm_QAQ_defs) ltsbm_α ≡ ts_α
abbreviation (in ltsbm_QAQ_defs) ltsbm_invar ≡ ts_invar

As the LTS implementation is a very shallow layer on top of the TripleSets, both the
abstraction and the invariant do not define anything on their own, but are renames
of the counter-parts in the TripleSet. So they are, in this instance, only defined out of
convenience, because by convention every implementation is expected to provide
both _invar and _α.

3. Define the basic operations as needed by lts_ops and show that they fulfill the
necessary properties as defined in the respective locales. For the LTS implementations,
Tuerk does not define the operations for they are identical to the operations on the
underlying TripleSet. Thus he only proves that they are correct for the application
of an LTS. In theory, additional abbreviations (like for ltsbm_α) could have been
introduced. But in practice the defintions inside the locale are seldomly used and
therefore not necessary.

18

3.1 The Comprehensive Library

lemma ltsbm_memb_correct:
triple_set_memb ts_α ts_invar memb =⇒

lts_memb ltsbm_α ltsbm_invar memb
unfolding lts_memb_def triple_set_memb_def
by simp

lemma ltsbm_add_correct:
triple_set_add ts_α ts_invar add =⇒

lts_add ltsbm_α ltsbm_invar add
unfolding lts_add_def triple_set_add_def
by simp

4. Usually, the final step is the definition of a particular instance of the ops record
(lts_ops) and showing that the assumptions of the according locale (StdLTS) are
matched. Tuerk omits this from the theories for the LTS implementations and instead
only defines them at the stage prior to code generation when all decisions for the
underlying data structures have been made. This is probably due to the number
of parameters that can be passed to the implementations of TripleSets (two for the
maps, one for the final result set). To follow the example of Tuerk, when using
Red-Black-Trees for all those underlying data structures, the final step looks like the
following3:

definition rs_lts_ops :: ('V,'E,('V,'E) rs_lts) lts_ops where
rs_lts_ops ≡ L
lts_op_α = rs_lts_α,
lts_op_invar = rs_lts_invar,
lts_op_empty = rs_lts_empty,
lts_op_memb = rs_lts_memb,
. . . M

lemma rs_lts_impl: StdLTS rs_lts_ops

The implementation of NFAs (represented as a tuple) is then defined in terms of those
LTS implementations:

type_synonym ('q_set, 'l_set, 'd) NFA_impl =
'q_set × 'l_set × 'd × 'q_set × 'q_set

locale nfa_by_lts_defs =
s!: StdSet s_ops (* Set operations on states *) +
l!: StdSet l_ops (* Set operations on labels *) +
d!: StdLTS d_ops (* An LTS *)
for s_ops::('q,'q_set,_) set_ops
and l_ops::('l,'l_set,_) set_ops
and d_ops::('q,'l,'d,_) lts_ops

3The rs_lts_ functions are explicit definitions for an instance of ltsbm_QAQ_defs with Red-Black-Trees. The
old Collections Framework unfortunately needed a lot of boilerplate code and technical definitions being
lifted from locales.

19

3 Constructing the Search Space

Due to the tuple structure, the composing parts of the automaton need additional
extraction functions to remain readable:

definition (in nfa_by_lts_defs) nfa_states A ≡ fst A
definition (in nfa_by_lts_defs) nfa_labels A ≡ fst (snd A)
definition (in nfa_by_lts_defs) nfa_trans A ≡ fst (snd (snd A))
. . .

which can then be used to define the straightforward abstraction function:

definition (in nfa_by_lts_defs) nfa_α :: ('q_set, 'l_set, 'd) NFA_impl⇒ ('q, 'l) NFA where
nfa_α A =
L Q = s.α (nfa_states A),

Σ = l.α (nfa_labels A),
∆ = d.α (nfa_trans A),
I = s.α (nfa_initial A),
F = s.α (nfa_accepting A) M

While the LTS implementation itself was very short and in general only mapped to the
underlying TripleSet, the NFA implementation is more involved (88 lines vs 3500 lines).
This is due to the multitude of operations that are defined on the abstract NFA definition
and now are replaced by efficient implementations. So, while for the LTS we had more or
less a chaining of the underlying map/set structures, the implementations for the NFA
are often very different from their abstract counterpart. Therefore the proofs are more
complicated.

We will not go in any more detail for the NFA implementation. While, as mentioned,
being more complicated, the general idea is like the one given for the LTS.

Eventually, Tuerk defines an instance of the NFA implementation using all Red-Black-
Trees. This is then used for code generation and providing an accessor layer around
the generated structures to make it possible to be used in raw SML or OCaml code
as a mathematically correct library. In [31], Tuerk and Lammich go in more detail for
one specific algorithm (Hopcroft’s algorithm for automata minimisation [20]) and present
benchmarks for the generated code in comparison with other, unchecked, implementations.

3.1.5 ω-Automaton

Similar to how NFA and DFA were defined, general ω-automata are defined in terms of
semi-automata. The only addition to semi-automata is a general set F to be a 'f set, for
some type 'f:

record ('q, 'l, 'f) OmegaAutomaton =
('q, 'l) SemiAutomaton +
F :: 'f set

locale OmegaAutomaton = SemiAutomaton A
for A::('q, 'l, 'f) OmegaAutomaton

F is deliberately not of type 'q set like for NFAs, because different types of ω-automata
have different ways of encoding acceptance. Thus while for Büchi automata (BA) 'q set is a

20

3.1 The Comprehensive Library

right choice, for Generalized Büchi Automata (GBA) a set of sets of nodes ('q set set) has to
be used.

Mixing in finite semi-automata via the locale FinSemiAutomaton, finite ω-automata are
defined:

locale FinOmegaAutomaton = OmegaAutomaton A + FinSemiAutomaton A
for A::('q, 'l, 'f) OmegaAutomaton

A general acceptance condition on ω-automata is defined in terms of an acceptance func-
tion a_fun (OmegaAutomaton_is_inf_run is a typed abbreviation of SemiAutomaton_is_inf_run):

abbreviation ExOmegaAutomaton_accept a_fun A w
≡ ∃r::'q word. OmegaAutomaton_is_inf_run A w r ∧ a_fun A w r

That is, a word w is accepted by A, iff there exists a run r such that some acceptance
condition a_fun holds on it. For Büchi automata, a_fun would for example encode that
“some state of F would occur infinitly often in r”.

Furthermore some general properties on ω-automata are shown. For example, it is
proven that for any infinite run r, the limit, i. e., the set of states that occur infinitly often in
the run r, are all part of Q and also that it is always non-empty:

lemma (in FinOmegaAutomaton) is_inf_run__limit_sub_Q:
assumes OmegaAutomaton_is_inf_run A w r

shows limit r ⊆ Q(A)

lemma (in FinOmegaAutomaton) is_inf_run__limit_nempty:
assumes OmegaAutomaton_is_inf_run A w r

shows limit r ∩ Q(A) 6= {}

Using this as a basis, different kinds of Büchi automata are defined, which we will
describe in detail in the following.

Generalized Büchi Automata

Generalized Büchi Automata are defined in terms of FinOmegaAutomaton, with 'f being
instantiated with 'q set thus modelling sets of sets of states4:

type_synonym ('q,'l) GBArel = ('q, 'l, 'q set) OmegaAutomaton

locale GBArel = FinOmegaAutomaton A
for A::('q,'l) GBArel +
assumes F_consistent:

⋃F (A) ⊆ Q(A)
The acceptance condition is modelled accordingly, thus accepting a word if the run hits

a state of each of the acceptance sets:

definition GBArel_accept ≡
ExOmegaAutomaton_accept (λA w r. (∀S∈F (A). limit r ∩ S 6= {}))

4The name GBArel stems from them being defined in terms of an underlying relation (the LTS), opposed to
the elementary ω-automata of Section 3.1.6.

21

3 Constructing the Search Space

This leads to the obvious definition of its language:

definition L_GBArel A = {w. GBArel_accept A w}

The most important operation for our model checking application is the product con-
struction, which is then defined as a function GBArel_product, such that the following is
true (we omit the definition itself for its technicalities):

lemma GBArel_product_simps:
shows Q(GBArel_product A1 A2) = Q A1 × Q A2

and Σ (GBArel_product A1 A2) = Σ A1 ∩ Σ A2
and (q, a, q') ∈ ∆(GBArel_product A1 A2)←→

(fst q, a, fst q') ∈ ∆ A1 ∧ (snd q, a, snd q') ∈ ∆ A2
and I (GBArel_product A1 A2) = I A1 × I A2
and F (GBArel_product A1 A2) = (λF. F × Q A2) ` F A1 ∪ op × (Q A1) ` F A2

The definition of the acceptance sets expresses5: The cartesian product of each acceptance
set of A1 with all states of A2 union the cartesian product of all states of A1 with each
acceptance set of A2.

It can be shown that this construction is indeed correct:

lemma GBArel_product_is_GBArel:
assumes GBArel A1 and GBArel A2
shows GBArel (GBArel_product A1 A2)

lemma GBArel_product__language_eq:
assumes GBArel A1 and GBArel A2
shows L_GBArel (GBArel_product A1 A2) = L_GBArel A1 ∩ L_GBArel A2

Büchi Automata

Büchi automata are defined similarly to GBAs, but with 'f being instantiated with 'q, thus
defining F A to be a set of states:

type_synonym ('q,'l) BArel = ('q, 'l, 'q) OmegaAutomaton

locale BArel = FinOmegaAutomaton A
for A::('q,'l) BArel +
assumes F A ⊆ Q A

definition BArel_accept ≡ ExOmegaAutomaton_accept (λA w r. (limit r ∩ F A 6= {}))

definition L_BArel A ≡ {w. BArel_accept A w}

Having a Büchi automaton with a non-empty language, we can find a run that is part
of the language, i. e., accepted by the automaton. Such a run is represented by a lasso:
For acceptance in a Büchi automaton, accepting states have to be visited infinitly often,
thus ending the run in a circle. Combined with the (possibly empty) part from an initial

5f ` A denotes the image of f on A.

22

3.1 The Comprehensive Library

node to the first node of the circle, the run forms a lasso. We need to show that this lasso
property holds, i. e., if the language of a Büchi automaton is non-empty, there exists a lasso.
And also the counter-side: If a lasso exists, we can construct a word that is accepted by
this automaton:

lemma BArel_accept_lasso:
assumes L_BArel A 6= {}
shows ∃qi q f r1 r2. qi ∈ I A ∧ q f ∈ F A
∧ (∃w. LTS_is_fin_run (∆ A) w r1) ∧ hd r1 = qi ∧ last r1 = q f

∧ (∃w. LTS_is_fin_run (∆ A) w r2) ∧ hd r2 = q f ∧ last r2 = q f ∧ length r2 > 1

lemma lasso_in_L_BArel:
assumes qi ∈ I A
and q f ∈ F A
and LTS_is_fin_run (∆ A) w1 r1 ∧ hd r1 = qi ∧ last r1 = q f

and LTS_is_fin_run (∆ A) w2 r2 ∧ hd r2 = q f ∧ last r2 = q f ∧ length r2 > 1
shows w1 _ w2

ω ∈ L_BArel A
and OmegaAutomaton_is_inf_run A (w1 _ w2

ω) ((butlast r1) _ (butlast r2)ω)

Here, w1 _ w2 concatenates the two words w1 and w2, and wω denotes the infinite word
w _ w _ w _ ...

Thereafter, the relation between Büchi automata and their generalized counterpart is
established. First the simple direction: A GBA is constructed from a BA. This is expressed
by setting the accepting set of the BA as the one and only accepting set of the GBA. As a
further optimization, when F A = Q A, i. e., each state is accepting, the set of accepting
sets for the GBA is set to the empty set: This is formally equivalent but gives a good
runtime advantage in a later implementation. For technical reasons we omit the full
definition and only show the important part for the initialization of F :

definition BArel_to_GBArel :: ('q, 'l) BArel⇒ ('q,'l) GBArel
where BArel_to_GBArel A ≡ . . . (if F A = Q A then {} else {F A})

This construction is shown to have all expected properties:

lemma BArel_to_GBArel__is_GBArel:
assumes BArel A

shows GBArel (BArel_to_GBArel A)

lemma OmegaAutomaton_is_inf_run__BArel_to_GBArel_eq:
OmegaAutomaton_is_inf_run (BArel_to_GBArel A) w r
←→ OmegaAutomaton_is_inf_run A w r

theorem (in BArel) BArel_to_GBArel__language_eq:
shows L_BArel A = L_GBArel (BArel_to_GBArel A)

Showing the other direction is more involved for the (possible) different accepting sets
need to be encoded as a single set. In this formalization different counter constructions
are used – further details are given by Schimpf [49].

23

3 Constructing the Search Space

System Automata

After having established this relation, it can be shown that the product construction on
GBAs can be lifted to BAs – given that one of the BAs is a System Automaton. With this
term we denote a BA where all states are final. The name stems from the fact that in model
checking the system, or model, (as yielded by the construction in Chapter 5) is represented
by such an automaton. We define such a specialization

locale SArel = BArel A
for A +
assumes F A = Q A

lemma (in SArel) system_accept:
BArel_accept A w←→ (∃r. OmegaAutomaton_is_inf_run A w r)

and show that the native definition of the product is equal to the product at the GBA-level
(AS denotes the system, AB the “normal” Büchi automaton, i. e., the property in model
checking):

definition SArel_BArel_product AS AB ≡
. . . {(q1,q2). q1 ∈ Q AS ∧ q2 ∈ Q AB ∧ q2 ∈ F AB}

definition SArel_BArel_product_gba AS AB
≡ GBArel_to_BArel (GBArel_product (BArel_to_GBArel AS) (BArel_to_GBArel AB))

lemma SArel_BArel_product__SArel_BArel_product_gba__eq:
assumes SArel AS and BArel AB

shows SArel_BArel_product AS AB = SArel_BArel_product_gba AS AB

Labelled Büchi Automata

The algorithm of Gerth [15] uses a different representation of automata, where the labels
are not part of the transition, but part of the state. As the CAVA project uses this algorithm
to convert LTL properties into Büchi automata, they are also modelled here.

We will not go into detail here, and refer to Schimpf instead [49]. It is just to be noted
that those structures are placed in the same hierarchy of automata types, by defining them
as GBAs where the alphabet consists of the single token () and then adding a labelling
function on states.

3.1.6 Elementary ω-Automaton

The Isabelle Collections Framework from the time the original automata framework
was developed was unable to leave out parts of the data structure on refining to an
implementation. This is similar to the early version of the Refinement Framework, which
had the same restriction (cf. Example 4.8.1)6. As a consequence, redundant (or better:

6While by no means a restriction of the theory itself, i. e., one could write the refinement by hand, this would
in essence rule out the usage of the Isabelle Collections Framework and any automations it provided.

24

3.1 The Comprehensive Library

effectively redundant) data would have been necessary in an implementation. In case of
the automata, this especially means the state space: While states are already encoded as
part of the underlying LTS (∆), they are also encoded explicitly (Q)7. For smaller automata,
like the property automata generated from the LTL formula, this might be a nuissance,
but can be easily worked with.

The problem surfaces when trying to encode the system automata: One of the large
obstacles in model checking is representing the state space of the original system, or
(depending on the property) the resulting product automaton. That is, in all other parts of
the model checker a design goal has been to only evaluate the system lazily by providing
a successor function. Hence, having to encode the state space as part of the automaton is a
violation of this goal and could render the whole approach pointless.

One possible train of thought was omitting the set of states from the implementation
and provide them at time of abstraction by UNIV, i. e., the set of all instances of the type
'q. But unfortunately, this poses some problems:

1. If the type variable 'q is instantiated by an infinite type, the set of states of the
automaton would be infinite. This could render certain assumptions moot which
rely on a finite state space.

2. If the type variable 'q is instantiated by a finite type, the number of created states
must not exceed the cardinality of the type’s universe. This is hard to show for a
lazy state space generation, where the number of states is not known before-hand.

3. Even if both those problems could be solved, the abstraction of the concretization of
any automaton might yield a different automaton. This hits the same single-value
restriction as the original problem.

For this reason, an additional refinement layer was created by means of another type
of Büchi automata. This type, named elementary Büchi automaton in early stages, only
consisted of those parts that were required for the operation as part of the model checker:

record ('q, 'l) BA =
BA_∆ :: 'q⇒ 'l⇒ 'q set
BA_I :: 'q set
BA_F :: 'q⇒ bool

Those parts describe a transition function BA_∆ (not a relation, so to better fit the use of
a successor function in the other parts), a set of initial states BA_I , and a characteristic
function for the final states BA_F . The latter is encoded as a function instead of a set,
as the states are in general not known and therefore the final states are neither. But the
characteristic function is known in advance.

The missing parts are defined in terms of the existing ones:

inductive_set BA_Q :: ('q, 'l) BA⇒ 'q set
for A :: ('q, 'l) BA where

q ∈ BA_I A =⇒ q ∈ BA_Q A
| J q ∈ BA_Q A; q' ∈ BA_∆ A q a K =⇒ q'∈BA_Q A

7It is of course possible to add states in Q that are not encoded in ∆. As such states would not be reachable,
they are uninteresting for the use case model checker. Therefore, we used effectively redundant.

25

3 Constructing the Search Space

definition BA_LTS :: ('q,'l) BA⇒ ('q,'l) LTS where
BA_LTS A = {(q, a, q'). q ∈ BA_Q A ∧ q' ∈ BA_∆ A q a}

definition BA_Σ :: ('q,'l) BA⇒ 'l set where
BA_Σ A = LTS_labels (BA_LTS A)

They can then be combined into a mapping function from the elementary Büchi automaton
into the original BArel:

definition BA_to_BArel A
≡ L Q = BA_Q A,

Σ = BA_Σ A,
∆ = BA_LTS A,
I = BA_I A,
F = {q∈BA_Q A. BA_F A q} M

Given the following straightforward definition of acceptance and the language of the
automaton,

definition BA_accept A w
≡ ∃r. r 0 ∈ BA_I A
∧ (∀i. r (Suc i) ∈ BA_∆ A (r i) (w i))
∧ (∃q∈limit r. BA_F A q)

definition L_BA A ≡ {w. BA_accept A w}

it can be shown that BA_to_BArel preserves the language, i. e., that the two variants of a
Büchi automaton are language-equivalent:

lemma BA_to_BArel__language_eq:
L_BArel (BA_to_BArel A) = L_BA A

As, for the usage of model checking, we are only interested in the language of the
automaton, this equivalence is sufficient: Given an elementary automaton created as the
representation of the system for the sake of implementation, we can lift it in the correctness
proofs to a language equivalent relational automaton.

Similar to the more complex relational version of the Büchi automata, we define a
specialization for system automata, where all states are set to be final (definition omitted).
The original product construction on the relational versions cannot be simply used in
the implementation, because it used the set of states of the system automaton, which is,
as detailed earlier, not usefully accessible. Therefore, we define a new, implementable
product construction and show its language-equivalence for the abstract definition:

definition SA_BA_product where
SA_BA_product AS AB

= L BA_∆ = λ(qs,qb) l. BA_∆ AS qs l × BA_∆ AB qb l,
BA_I = BA_I AS × BA_I AB,
BA_F = λ(qs,qb). BA_F AB qb M

26

3.2 Current Formalization

graph
+V: node set
+V₀: node set
+E: (node × node) set
 V₀ ⊆ V
 E ⊆ V × V

igb_graph
+num_acc: nat
+acc: node → nat set
 ⋃(range (igbg_acc G)) ⊆ {0..<(igbg_num_acc G)}
 ∀q. igbg_acc G q ≠ {} ⇒ q ∈ V

gb_graph
+F: node set set
 F ⊆ Pow V
 finite F

igba
+L: node → label → bool
 ∀q l. L q l ⇒ q ∈ V

gba
+L: node → label → bool
 ∀q l. L q l ⇒ q ∈ V

ba_graph
+F: node set
 F ⊆ V

sa
+L: node → label

 F := {{q . i ∈ acc q} | i. i < num_acc}
 L := L

 F := {F}

ba
+F: node set
 F ⊆ V

 F := {F}

Figure 3.1: Structure of the CAVA automata library (based on [26])

lemma product_elem_language_eq_product_language:
L_BA (SA_BA_product AS AB)

= L_BArel (SArel_BArel_product (BA_to_BArel AS) (BA_to_BArel AB))

While the system implementation can easily provide an elementary Büchi automaton,
the LTL-to-BA conversion by Schimpf relied on the relational definition of automata. Due
to the feasible size of the resulting state space, they can be (and are) also mapped directly
to their implementation (omitted here). To make use of the product construction above,
Schimpf therefore provided a mapping from labelled GBAs as used in Gerth’s Algorithm
to our elementary Büchi automata. The mapping is slightly more involved (it needs to
move the labels from the states to the transitions, and also de-generalize). As the LTL part
is not presented in this thesis, we will omit it at this point.

3.2 Current Formalization

In 2014, Lammich re-implemented the automata formalization as used in CAVA [26, 25],
with the goal of gaining a unified framework that fits all the use cases in CAVA and
avoids having multiple versions of the same thing (see the multiple definitions of Büchi
automata from the previous section). In difference to Tuerk, he does not start off with
labelled transition systems, but with generic graphs. Also, he chose to use a node-labelled
representation as it is better suited for the use in CAVA.

We are not going to go into too much detail on the internal workings of the new library;
the paper [26] gives an excellent (albeit slightly outdated) overview and describes design
rationale.

Similar to the original work by Tuerk detailed in the previous section, Lammich chose a
class-based8 approach. The general structure of the classes of graphs/automata provided
are best reflected in Fig. 3.1.

The basis of the object hierarchy is given by a simple definition of a digraph, only
consisting of a set of edges:

8In the object-oriented sense, not the same-named Isabelle type-classes.

27

3 Constructing the Search Space

type_synonym 'v digraph = ('v×'v) set
locale digraph =

fixes E :: 'v digraph

This basis is then used to introduce basic definitions like paths. They are defined as a
list of nodes, where the last node is not included in the list.

inductive path :: 'v digraph⇒ 'v⇒ 'v list⇒ 'v⇒ bool for E where
path E u [] u

| J (u,v)∈E; path E v l w K =⇒ path E u (u#l) w

This definition allows for easy splitting and concatenating of paths: For example, concate-
nation can now be achieved by a simple append of the two paths:

lemma path_conc:
assumes path E u p1 v
assumes path E v p2 w
shows path E u (p1@p2) w

Moreover, the predicate ipath is introduced, defining when a word is an actual infinite
path in a given graph:

definition ipath E r ≡ ∀i. (r i, r (Suc i))∈E

On (infinite) paths as well as other constructs like SCCs, different general properties are
shown, which will not be covered here.

A more complex digraph, now also consisting of a set of nodes and a set of inital nodes,
is then defined:

record 'v graph =
V :: 'v set
E :: 'v digraph
V0 :: 'v set

Properties about graphs in general are shown inside a specific locale that fixes an instance
of the graph together with general assumptions. The assumptions here are well-formedness
spelled out. To ease reading, we will follow the theories and leave out the graph as an
argument when the context is clear, i. e., use V instead of V G when G is fixed and clear to
be a graph:

locale graph =
fixes G :: ('v) graph
assumes V0 ⊆ V
assumes E ⊆ V × V

Here, general concepts like reachability or runs are also defined and basic properties
shown:

definition (in graph) reachable ≡ E∗ `` V0
definition (in graph) is_run r ≡ r 0 ∈ V0 ∧ ipath E r
lemma (in graph) reachable_V:

reachable ⊆ V

28

3.2 Current Formalization

Lammich then introduces the Generalized Büchi Automaton as the first automaton
structure, showing the original intent of the library to serve as the automata library for the
CAVA project. Moreover, as can be seen later, the only introduced operations on automata
will be product and renaming (the latter will not be covered here). That is, while the
general structure of the library allows to introduce any operation needed, its intent is not
to do so until the need arises. This is in contrast to the automata library from the previous
chapter, where the intent originally was to provide as many automata-related operations
as possible (this is not as strong in the later parts of the library, namely ω-automata).

The Generalized Büchi Automaton is modelled first without labels, which are then
added in a second step. The formalization without labels is here called gb_graph:

record 'q gb_graph = 'q graph +
F :: 'q set set

locale gb_graph = graph G
for G :: ('q) gb_graph +
assumes finite F
assumes F ⊆ 2V

As labels are not yet defined, the only additional field is the set of the acceptance classes
F. It is to note, that the class-oriented architecture of the library is reflected here by both
the structure definition and the property-environment (locale) inheriting from the already
defined graph.

For such a gb_graph, accepting runs are defined in the obvious way (with ∃∞i. P i
denoting “there exist inifinitly many i, such that P i”):

definition (in gb_graph) is_acc_run r ≡
is_run r ∧ (∀A∈F. ∃∞i. r i ∈ A)

When adding labels, which are per node, not per transition, one obtains the complete
automaton structure:

record ('q,'l) gba = 'q gb_graph +
L :: 'q⇒ 'l⇒ bool

locale gba = gb_graph G
for G :: ('q,'l) gba +
assumes L q l =⇒ q ∈ V

Now it is also possible to define the language of such an automaton:

definition (in gba) accept w ≡ ∃r. is_acc_run r ∧ (∀i. L (r i) (w i))
definition (in gba) lang ≡ {w. accept w}

A similar construction is done to introduce Büchi automata; the structures are named
ba_graph and ba. We will omit them here.

Additionally, for BAs it is shown that one can construct GBAs

definition (in ba) to_gba ≡ L
V = V,
E = E,

29

3 Constructing the Search Space

V0 = V0,
F = if F = UNIV then {} else {F},
L = L

M

and that this construction yields valid GBAs:

sublocale in (ba) gba!: gba to_gba

Furthermore, Lammich adds a second version of GBAs, indexed GBAs, which he also
proves to be equivalent (proof omitted here). Instead of having a set of acceptance classes
that can be queried for a particular state like gba/gb_graph above, a function is added that
allows to query a node for the classes it is in. Similar to the F -function for BAs in the
previous section, it allows to define the acceptance lazily. Additionally, the number of
acceptance classes is needed, such that acceptance is decidable.

record 'q igb_graph = 'q graph +
num_acc :: nat
acc :: 'q⇒ nat set

locale igb_graph = graph G
for G :: 'q igb_graph +
assumes

⋃
(range acc) ⊆ {0..<num_acc}

assumes acc q 6= {} =⇒ q ∈ V

Accepting runs are then defined as expected:

definition (in igb_graph) is_acc_run r ≡ is_run r ∧ (∀n<num_acc. ∃∞i. n ∈ acc (r i))

Dual to GBAs, labels are added yielding record and locale igba, that defines the language
equally:

definition (in igba) accept w ≡ ∃r. is_acc_run r ∧ (∀i. L (r i) (w i))
definition (in igba) lang ≡ {w. accept w}

While the conversions of ba to gba and igba to gba were straightforward, the other
directions are not. Lammich also provides constructions for those, but we will omit them
here.

Finally, system automata are defined, similar to the original automata library. In a
system automaton, all states are final. In Lammich’s implementation, they do not inherit
from (General) Büchi Automaton but from graphs and therefore there is no need to have
any information about final states at all. Instead, it is encoded implicitly in the language
of such an automaton:

record ('q,'l) sa = 'q graph +
L :: 'q⇒ 'l

locale sa = g: graph G
for G :: ('q, 'l) sa

definition (in sa) accept w ≡ ∃r. is_run r ∧ w = L ◦ r
definition (in sa) lang ≡ {w. accept w}

30

3.3 Comparison and Concluding Remarks

Using those, the first (and only) binary operation on automata is defined: The product
between igba and sa. Following the same strategy as the Isabelle Collection Framework
(cf. Section 3.1.4), the operation is defined inside its own locale that allows to fix the
assumptions at one place. For the use inside a model checker, where the product is simply
searched for an accepting cycle, the labels of that product are of no interest, hence the
result of the operation is an igb_graph:

locale igba_sys_prod_precond = igba!: igba G + sa!: sa S
for G :: ('q,'l) igba
and S :: ('s,'l) sa

definition (in igba_sys_prod_precond)
prod ≡ L

V = igba.V × sa.V,
E = { ((q,s),(q',s')).

igba.L q (sa.L s) ∧ (q,q') ∈ igba.E ∧ (s,s') ∈ sa.E },
V0 = igba.V0 × sa.V0,
num_acc = igba.num_acc,
acc = (λ(q,s). if s ∈ sa.V then igba.acc q else {})

M

Lammich of course also shows this operation to be correct. As a run r on the product
automaton consists of a sequence of pairs of states, one needs to project onto the state of
the system automaton to get the corresponding run in the original system. This is achieved
by snd ◦ r:

lemma gsp_correct1:
assumes prod.is_acc_run r
shows sa.is_run (snd ◦ r) ∧ (sa.L ◦ snd ◦ r ∈ igba.lang)

lemma gsp_correct2:
assumes sa.is_run r and sa.L ◦ r ∈ igba.lang
shows ∃r'. r = snd ◦ r' ∧ prod.is_acc_run r'

After those basic definitions of automata, Lammich further adds a notion of a lasso in
automata. He also adds the notion of stutter extension on automata, i. e., adding a self-loop
for any sink-state in the automaton. This allows to find infinite paths in the automata
where before there were only finite ones.

Both concepts, lassos and the stutter extension, will not be discussed here further.

3.3 Comparison and Concluding Remarks

We have seen two different approaches to modelling automata in Isabelle/HOL. One
difference is the availability of new technologies: The second library by Lammich can
make use of Lammich’s own new or improved frameworks, especially the Refinement
Framework. The latter makes it easier to bridge the multiple phases from abstract definition
to exectuable code – a more complicated and tenious task for the first framework by Tuerk.

31

3 Constructing the Search Space

But such technical foundations are not the main difference, the most important one is
the different directions of purpose in those frameworks. While Tuerks framework, laid
out as a comprehensive automaton library, covers a lot more theoretical fields, Lammich’s
framework is very specialized, tailored for usage as a part of our model checker CAVA.
This becomes visible, naturally, when trying to make them part of that model checker:
We have shown in Section 3.1.5 that the formalization of usable ω-automata was not an
easy task and we needed several versions of Büchi automaton for different use cases. In
Lammich’s framework, we also have different versions of (Generalized) Büchi automata,
but they only differ slightly.

Also, Lammich makes graphs the foundation of his framework, which is of advantage
because it enables the model checker to have one encompassing graph formalization
instead of rolling different versions for different parts that need to be converted when
passing them from one part to another. This lacks in Tuerks version, where the foundation
is the LTS. Similarly, Lammich offers graph versions of the automata, which remove the
labels. This also allows for an easier bridge to other parts that do not need the labels for
their working. In Tuerk’s part they are, due to the LTS, built in at a very deep level and
only removable by workarounds (see for instance Section 3.1.5). To conclude, the aspiration
to be a comprehensive library can stand in the way of the goal to be a simple-to-use part of
a larger product, for the reasons mentioned above: The general versions might not be ideal
for the requirements of the product; and developing the wrapping layer(s) can require the
same amount of work as a from-scratch development.

Of course, one has to take the time-line into consideration: Lammich’s framework
was built when the intention and needed interfaces were mostly laid out, while Tuerk
framework already was developed mostly when it was tried to incorporate into the model
checker. For that reason, the learning effect visible in Tuerk’s framework is already taken
into account by Lammich.

32

4 Checking

Constructing the search space is only one half of the work needed for checking the model.
While we now have obtained a Büchi automaton representing the intersection of the
system with the property, it has to be checked whether there exists an accepting run in this
automaton (which is equivalent to checking the language of the automaton for emptiness).
If there exists such a run, it is possible for the system to encounter a valid state where the
property holds. This approach is the general idea behind model checking and already
detailed by Vardi and Wolper [55].

There are plenty of algorithms for checking the emptiness of such a language. We also
require the algorithm to work on-the-fly, that is, build the search space only on demand
to avoid a memory blowup. This again is not new and algorithms exist in many shapes
and forms (see Zhao et al. [58] for an overview). An intention of the project is therefore
to support not only one, but multiple of such algorithms. This, for instance, allows to
compare the efficiency of different algorithms.

It is, of course, advisable to try to reduce any duplication of the proof effort. Hence, the
current chapter is going to detail the generic framework for formalizing different checking
algorithms and providing insight on the existing formalizations. Furthermore, as in the
previous chapter, we will describe the evolution of the framework and how, due to the
lessons learned throughout this evolution, things are done the way they are done.

There are two different main tendencies on how to write an algorithm for checking the
emptiness of a Büchi automaton: Use nested depth-first search [6] to find a cycle containing
a accepting node, or generate the set of (non-trivial) strongly connected components and
find one that contains an accepting node [7]. Both tendencies have in common their
basing on depth-first search. Hence, instead of creating a framework explicitly tailored
for emptiness checks, a framework for algorithms based on depth-first search has been
developed (an overview over this framework is presented in our paper [29] and available
in the Archive of Formal Proofs [30]).

4.1 Depth-First Search

In its most well-known formulation, depth-first search is a very simple algorithm as laid
out in Alg. 4.1: For each node v0 from a given set V0 of start nodes, we invoke the function
DFS. This function, if it has not seen the node yet, recursively invokes itself for each
successor of the node.

With this simple algorithm, it is already possible to introduce certain notions. While
those notions are, in general, well-known, we will shortly explain them here, as they are
going to be used throughout this section:

search stack The search stack are the nodes which are currently “under examination”,
keeping the history, i. e., a node at position i of the stack is always the successor in

33

4 Checking

Algorithm 4.1 General DFS

1: discovered← {}
2: for all v0 ∈ V0 do
3: DFS v0

4: procedure DFS(u)
5: if u /∈ discovered then
6: discovered← discovered∪ {u}
7: for all v ∈ successors u do
8: DFS v

the graph of the node at position i− 1. While sometimes implicit, for example when
it is only given by the call-stack in our recursive specification in Alg. 4.1, a stack is
always involved in a depth-first search.

discovered A node is discovered if it has been visited by the search so far.

finished A node is finished if it has been discovered and all of its successors are finished.
For most uses, this is identical to the node being discovered but not on the search
stack anymore.

pending An edge (u,v) is pending, when u is part of the stack and the edge has not been
walked yet.

search tree The search tree is a subgraph of the graph we are currently working on and
marks those edges taken through the search which lead to the discovery of new
nodes.

forward edge A forward edge is an edge of the search tree.

cross edge A cross edge is an edge, that, when discovered, links the top of the stack with
an already finished node. When seen in relation to the search tree, it crosses the tree
linking to subtrees.

back edge A back edge is an edge, that, when discovered, links the top of the stack with
another node deeper in the stack. Self-loops are always back edges. When seen in
relation to the search tree, it introduces an edge going back up the tree, introducing
a cycle.

But of course, just traversing the graph is not our sole goal. Instead, we notice that depth-
first search is a basic building block for a variety of algorithms, for example Cyclicity
Checking (Alg. 4.2), Nested Depth-First Search (Alg. 4.3), and Tarjan’s algorithm for
constructing the set of strongly-connected components of a graph (Alg. 4.4). Thus, we
want to extract how the basic search can be extended to yield such algorithms.

We start with the small example of a cyclicity checker, as described in Alg. 4.2. In this
example, which will also serve as the running example throughout the rest of this chapter,
we test whether we have encountered a back edge, i. e., the target node is already on the
stack, as can be seen at line 13. This is a correct implementation, as the stack forms a path

34

4.1 Depth-First Search

Algorithm 4.2 Cycle Detection

1: discovered← {}
2: stack← []

3: procedure Cycle

4: for all v0 ∈ V0 do
5: DFS v0

6: procedure DFS(u)
7: if u /∈ discovered then
8: stack← push u stack
9: discovered← discovered∪ {u}

10: for all v ∈ successors u do
11: DFS v
12: stack← pop stack
13: else if u ∈ stack then
14: report cycle

in the graph, and u is the successor of the top of the stack, hence we have encountered a
cycle if and only if we see a back edge.

This implementation of the cyclicity checker already details the approach for extending
the search algorithm:

1. We need an explicit stack. Hence we must add a new variable and make sure it is
updated accordingly throughout the search.

2. We need our purpose (i. e., checking for cycles) to be part of the search. Thus we
extend the depth-first search by injecting some actions into the case of encountering
a back edge.

The approach can also be seen in the Nested DFS algorithm of Alg. 4.3: This algorithm
is also checking for cycles, but only those which contain at least one accepting node. As
the name already implies, we now have two instances of depth-first search: the blue and
the red search. We will not go into detail here, as this algorithm is discussed in length in
Section 4.6.

Algorithm 4.3 Nested DFS by Courcoubetis et al. [6]

1: discoveredb ← {}
2: discoveredr ← {}
3: seed← ⊥

4: procedure DFS-blue(u)
5: if u /∈ discoveredb then
6: discoveredb ← discoveredb ∪ {u}
7: for all v ∈ successors u do
8: DFS-blue t
9: if accepting u then

10: seed← u
11: DFS-red u

12: procedure DFS-red(seed, u)
13: if u /∈ discoveredr then
14: discoveredr ← discoveredr ∪ {u}
15: for all t ∈ successors s do
16: if t = seed then
17: report cycle
18: DFS-red t

19: procedure Nested-DFS
20: for all v0 ∈ V0 do
21: DFS-blue v0

35

4 Checking

But we see that each instance of the search is equipped with its own set of discovered
nodes, and also we are adding an auxiliary variable seed (line 3). Further, we again need
our purpose to be injected into the search. This time, we extend, in the blue version, the
case of finishing a node (lines 9 to 11) to start the red search. In the red version, we extend
the case of discovering a node by comparing it to seed and, if this is true, reporting a cycle
(line 16).

As a third, and last, example, we want to show an implementation of Tarjan’s algorithm
for computing the set of strongly connected components (SCCs) in Alg. 4.4. Without going
into too much detail on the general working of this algorithm, we have added multiple
additional state variables like the set of found SCCs sccs or the Tarjan stack stacktj. Also,
we enhanced discovered to track the discovery time, and, with a slight abuse of notation,
write discovered x to get the discovery time of x. We extend our basic search algorithm by
some additional actions in case a node is finished (line 17 and following). Also, we have
to extend the case of encountering an already discovered node (line 25 and following),
without differentiating between a back edge and a cross edge.

More details on this algorithm and how it can be implemented inside the DFS framework
is shown later on in Section 4.7.

With those three algorithms serving as examples, we have shown how the basic depth-
first search can, in principle, be extended to become more advanced. We have also
demonstrated that, on the other hand, depth-first search is a basic building block of
various algorithms. Thus, we can also separate the basic search from the extension.
This then can be used to specify properties about the basic search independent from
the extensions, and use those properties later on in reasoning about the extension. This
approach yields two benefits:

1. Properties about the search itself only have to be proven once and can then be used
in multiple algorithms.

2. Separating the concerns often helps understanding the proofs. That is, by not
bloating the correctness proof of an algorithm, for example Tarjan’s algorithm, by
general properties, e. g., about the discovery times of nodes in a depth-first search,
the proofs can focus on the inherent properties of the algorithm itself. To keep with
the example, this would for example include the relation between the lowlink and
the Tarjan stack.

For simple algorithms, like the Cyclicity Checker of Alg. 4.2, this can drastically reduce
the proof of correctness. For our example, the proof of correctness is reduced to show
one property about the algorithm, provable in three steps. This is shown in detail in
Example 4.4.3.

4.2 A Generic (Depth-First) Search

In the simple form presented in the previous section in Alg. 4.1, the algorithm can only
be used to create the set of reachable nodes, i. e., discovered. But as we have also shown,
other algorithms are based on DFS, and thus we need to develop another view of the
algorithm: We want to provide a skeleton DFS algorithm, which is parameterized by

36

4.2 A Generic (Depth-First) Search

Algorithm 4.4 Tarjan’s Algorithm

1: discovered← {}
2: stack← []
3: stacktj ← []
4: sccs← {}
5: lowlink← {}
6: time← 0

7: procedure DFS(u)
8: if u /∈ discovered then
9: stack← push u stack

10: stacktj ← push u stacktj
11: discovered← discovered∪ {(u, time)}
12: lowlink← lowlink ∪ {(u, time)}
13: time← time + 1
14: for all v ∈ successors u do
15: DFS v
16: stack← pop stack

17: if stack 6= [] then
18: let x = top stack
19: let t′ = min (lowlink x)(lowlink u)
20: lowlink← lowlink ∪ {(x, t′)}
21: if lowlink u = discovered u then . Root of SCC
22: let (tj, scc′) = collect and pop everything until u stacktj
23: stacktj ← tj
24: sccs← sccs∪ {scc′}
25: else
26: let x = top stack
27: if discovered u < discovered x ∧ u ∈ stacktj then
28: let t′ = min (lowlink x)(discovered u)
29: lowlink← lowlink ∪ {(x, t′)}

30: procedure Tarjan

31: for all v0 ∈ V0 do
32: DFS v0

33: return sccs

37

4 Checking

hook functions that are called from well-defined extension points (i. e., actions injected by
the extension for the different cases of the search), and modify an opaque extension state
(i. e., a structure holding additional data needed by the extension). Moreover, we add an
additional break condition, which allows to interrupt the search prematurely, before all
reachable nodes have been explored. Hence, an extension of the search is then represented
as a parameterization over the skeleton search algorithm.

Moreover, the specification in Alg. 4.1 was given in a recursive form. For a correctness
proof, we need to establish invariants for the two foreach-loops, and a pair of pre- and
postconditions for the recursive call. This quite complex proof structure hampers the
design of our framework (we will discuss a variant of this framework based on a recursive
definition in Section 4.8.2). Thus, we use an iterative formulation of DFS that only consists
of a single loop. Correctness proofs are done via a single loop invariant for that loop.

Taking these two points into consideration, we create the definition of a depth-first
search given as in Alg. 4.5.

Algorithm 4.5 Generic DFS definition

definition step s ≡
if is_empty_stack s then do {

v0 ← spec v0. v0∈V0 ∧ ¬is_discovered v0 s;
do_new_root v0 s
} else do {

((u, nxt), s')← get_pending s;
case nxt of

None⇒ do_finish u s'
| Some v⇒ do {

if is_discovered v s' then (
if is_finished v s' then

do_cross_edge u v s'
else

do_back_edge u v s'
) else

do_discover u v s'
}
}

definition cond s
≡ (V0 ⊆ {v. is_discovered v s} −→ ¬is_empty_stack s)
∧ ¬break s

definition dfs ≡
s0 ← do_init;
while cond step s0

38

4.2 A Generic (Depth-First) Search

In this specification, we can identify five cases:

new root If the stack is empty, we choose a start node that has not yet been discovered
(the condition guarantees that there is one). This is a special case of disovery, but
allows for a better proof structure, because it explicitly distinguishes between those
two cases.

discover If the stack is non-empty, the get_pending-function tries to select a pending edge
starting at the node u. If a pending edge (u,v) exists and v has not been discovered
so far, we discover it. The edge (u,v) then is a forward edge.

back edge If a pending edge (u,v) exists and v has already been discovered but is not
finished yet, we have a back edge.

finish If there are no such edges left (i. e., nxt is None), u is finished.

cross edge Lastly, if v is also finished, (u,v) is a cross edge.

We want to use each of these cases as extension points. Adding initialization and the
ability to abort the search, we can define the parameterization as:

record ('v,'s,'es) gen_parameterization =
on_init :: 'es nres
on_new_root :: 'v⇒ 's⇒ 'es nres
on_discover :: 'v⇒ 'v⇒ 's⇒ 'es nres
on_finish :: 'v⇒ 's⇒ 'es nres
on_back_edge :: 'v⇒ 'v⇒ 's⇒ 'es nres
on_cross_edge :: 'v⇒ 'v⇒ 's⇒ 'es nres
is_break :: 's⇒ bool

This record used the type variables 'v for the type of nodes, 's for the search state, and
'es for the extension part, i. e., a data structure of its own chosing. Recall from Section 2.2
that 'es nres is the type of all possible results of type 'es, allowing for non-deterministic
specifications. This also implies the type of the hook functions: From a node or an edge,
and the current search state, they are expected to return an (updated) extension state.

This definition might be puzzling, because there is no current extension state as input
for any of those hooks, e. g., one could expect 's × 'es instead of plain 's. This stems from
the fact that states (both search and extension) are modeled as records, where the extension
is defined by extending the search state, i. e., 'es is implicitly given as a component of
's. Unfortunately, this cannot be expressed as a type restriction in Isabelle/HOL. As a
consequence, the extension state is extracted from the search state with the more selector,
and each field of the extension state can be directly queried by name.

For documentation, we will use the following definition when defining hooks without
any functionality:

abbreviation NOOP s ≡ return (more s)

Moreover, we will use a shortcut notation when the extension state consists of multiple
fields and only a subset is going to be updated (here: field1 and field2):

L field1 = value1, field2 = value2, . . . M

39

4 Checking

Example 4.2.1 (Cyclicity Checker)
As already established in the previous section, a simple application of DFS is a
cyclicity check, based on the fact that there is a back edge if and only if there
is a reachable cycle. We will now represent the implementation of Alg. 4.2 as a
parameterization of ours.

The extension state solely consists of a single boolean flag representing whether a
back edge has been encountered. Thus, expecting some search state of type 'v state,
our extended state would be:

record 'v cyc_state = 'v state +
cyc :: bool

With this, we can then define a parameterization for the cyclicity checker with

definition cyc_checker where
cyc_checker = L

on_init ≡ return L cyc = False M, (* initially no cycle has been found *),
on_new_root ≡ λu. NOOP,
on_discover ≡ λu v. NOOP,
on_finish ≡ λu. NOOP,
on_back_edge ≡ λu v s. return L cyc = True M (* cycle! *),
on_cross_edge ≡ λu v. NOOP,
is_break ≡ λs. cyc s (* break iff cycle has been found *)

M.

This covers the exact behavior of a cyclicity checker.

Example 4.2.2 (Edge Classificator)
Another small example to show how the parameterization works, is a DFS extension,
where the encountered edges are classified into forward, back and cross edges.

The extension state now consists of the three different sets of edges. Thus, for
some search state of type 'v state, our extended state would be:

record 'v ec_state = 'v state +
forward :: 'v rel
back :: 'v rel
cross :: 'v rel

With this, we can then define the parameterization as

definition edge_classifier where
edge_classifier = L

on_init ≡ return L forward = {}, back = {}, cross = {} M,
on_new_root ≡ λu. NOOP,
on_discover ≡ λu v s. return Lforward := insert (u,v) (forward s), . . . M)
on_finish ≡ λu. NOOP,
on_back_edge ≡ λu v s. return Lback := insert (u,v) (back s), . . . M,
on_cross_edge ≡ λu v s. return Lcross := insert (u,v) (cross s), . . . M,
is_break ≡ λs. False (* we want to explore the whole graph *)

M.

40

4.2 A Generic (Depth-First) Search

After a successfull run of dfs the sets forward, back, and cross then contain their
appropriate sets (which of course needs to be shown separately). It should be noted
here, that in reality such an extension is unnecessary, as this classification will already
be done by the default state implementation given in Section 4.3. Therefore, we will
also not cover this example any further in the rest of this chapter.

Using our definition of parameterization, we are still missing the link to the DFS
specification given initially in Alg. 4.5. To be able to express this link, we first have to
take a look at the other part of our formalization: The proper search. In our specification,
we use functions like is_empty_stack or on_discovered, but they are not yet defined. As
a consequence the algorithm does not refer to any data structures like a stack or a
set of discovered nodes directly. Thus the formalization is independent of the actual
representation of the search state. But this also entails that we cannot state directly what
the search should do for the different cases. Instead, we want to define the search only in
an abstract manner, in the same way we defined the parameterization abstractly:

record ('v,'s,'es) gen_basic_dfs_struct =
gbs_init :: 'es⇒ 's nres
gbs_is_empty_stack :: 's⇒ bool
gbs_is_discovered :: 'v⇒ 's⇒ bool
gbs_is_finished :: 'v⇒ 's⇒ bool
gbs_get_pending :: 's⇒ ('v × 'v option × 's) nres
gbs_new_root :: 'v⇒ 's⇒ 's nres
gbs_finish :: 'v⇒ 's⇒ 's nres
(* some fields omitted *)

Identically to the parameterization, the type variables 'v, 's, and 'es denote the type of
nodes, search state, and extension part, respectively.

Only when we combine the specification of the search and of the parameterization, we
get a final algorithm. This is expressed by introducing a locale taking three parameters: an
instance of gen_basic_dfs_struct to represent the search, an instance of gen_parameterization
to represent the extension, and additionally the set of initial nodes. The set of edges is not
required explicitly, as get_pending acts as an abstraction.

locale gen_param_dfs =
fixes gbs :: ('v,'s,'es) gen_basic_dfs_struct
fixes param :: ('v,'s,'es) gen_parameterization
fixes V0 :: 'v set

Inside this locale, we place our specification of a parameterized DFS as presented earlier.
We also define the functions therein by chaining the operations of the search with the
operations of the parameterization:

definition (in gen_param_dfs) do_init ≡ do {
e← on_init param;
gbs_init gbs e
}

41

4 Checking

definition (in gen_param_dfs) do_new_root v0 s ≡ do {
s'← gbs_new_root gbs v0 s;
e← on_new_root param v0 s';
return s'Lmore := eM
}

(* same for the remaining operations *)

definition (in gen_param_dfs) get_pending ≡ gbs_get_pending gbs
definition (in gen_param_dfs) is_discovered ≡ gbs_is_discovered gbs
definition (in gen_param_dfs) is_finished ≡ gbs_is_finished gbs
definition (in gen_param_dfs) is_empty_stack ≡ gbs_is_empty_stack gbs

definition (in gen_param_dfs) break ≡ is_break param

As can be seen, some of the functions used are only depending on one of the two parts.
For instance, breaking is just defined by the parameterization, because the search itself
has no use case in aborting. On the other hand dealing with pending edges or discovered
nodes should not be part of the parameterization, but is inherently part of the search.

4.2.1 Why so generic?

We have now presented how we define the generic search algorithm, and how we link
the parameterization and the search itself. But in this process we have kept the search
definition very generic, leaving out any details of the state. The functions gbs_get_pending
or gbs_is_empty_stack serve as good illustrations of this approach. What has not been done
so far, is to explain why this is useful, why we cannot define the search right from scratch,
including the contents of the search state.

The main advantage of this strategy is that it is very unspecific, that is, there are no
additional obligations the algorithm has to fulfill. Or, in other words, any assertions
to be made are completely defined by the structure of the algorithm: For example it
can be asserted that ¬ is_discovered gds v s holds on invocation of on_discover u v s. As a
consequence, it allows to refine this algorithm into other forms very easily, i. e., it does not
require any obligations of its own, thus granting more freedom to the specifications of the
refinements.

The main idea for the refinement is: Any formalization in our framework is (indirectly)
an instantiation of the generic search. If it can be shown that some other algorithm,
depending on the same set of parameters, is a refinement of the generic search, its
instantiation is also a refinement of our formalization.

The need for such easy refinement arises mainly from the possibility of structural
refinement, that is the ability to replace the skeleton search algorithm by something more
suited for the final use case, i. e., a performance optimization. Structural refinement will
be explained later on in Section 4.5.2. There, it will also be clear why we have introduced
the additional abstraction of get_pending, instead of querying the set of edges directly:
A refinement may have additional requirements on returning the next pending edge.
As an additional benefit, when implementing get_pending differently, our framework for

42

4.2 A Generic (Depth-First) Search

depth-first search could be extended to cover other searches like breadth-first search or
priority-based search. But this has not been pursued, yet.

Example 4.2.3 (Search Refinement)
We now want to give an example on how such refinement of the search itself can
look like. We therefore assume some hypothetical formalization of DFS, which is
more efficient than the one defined by us, but has the restriction that initial nodes
may not have any incoming edges.

We start by defining a separate locale for this optimized search, which will inherit
from our gen_param_dfs, but adds the aforementioned restriction:

locale optimized_dfs = gen_param_dfs gbs param V0
for gbs param V0 +
assumes pending s ≤ spec ((u,nxt), s). case nxt of

Some v⇒ v /∈ V0
| None ⇒ True

Inside this locale, we specify the optimized search and also prove that this search
is a refinement of the original dfs:

definition (in optimized_dfs) opt_dfs ≡
(* some definition making use of the parameters given by gbs *)

lemma (in optimized_dfs) opt_dfs_refine:
opt_dfs ≤ dfs

Now we have an optimized search algorithm. Before we can put it to use, we need
an instantiation of the generic search:

definition dfs_instance ≡ L
gbs_init = . . . ,
gbs_is_empty_stack = . . . ,
(* and so on *)

M

We then show that this is indeed a generic parameterized search for any parame-
terization and set of initial nodes, and moreover prove some properties about the
resulting search:

interpretation our_dfs: gen_param_dfs dfs_instance param V0 for param V0 .

lemma dfs_instance_prop:
our_dfs.dfs ≤ spec Φ

Let us assume that the definition of dfs_instance fulfills the requirement needed
by optimized_dfs. Then we can show that our dfs_instance is also an instance of
optimized_dfs, even though this proof might now be more involved due to the addi-
tional assumptions:

interpretation our_dfs: optimized_dfs dfs_instance param V0 for param V0
(* some proof done here *)

43

4 Checking

Due to the refinement shown earlier on the properties about the original generic
search, due to transitivity, carry over to the instantiation of the optimized_dfs. Thus, we
can finally use opt_dfs for code generation while still having our original properties:

lemma opt_dfs_instance_prop:
our_dfs.opt_dfs ≤ spec Φ
by (rule order_trans[OF our_dfs.opt_dfs_refine dfs_instance_prop])

export_code our_dfs.opt_dfs in SML

It should be noted that in the Isabelle theories, there exists another, even more generic
layer on top of gen_param_dfs: This additional level, called gen_dfs does not know anything
about parameterization. As this layer is not needed for the rest of the chapter, it is omitted,
and definitions involving it are changed to use gen_param_dfs directly for presentation.
This might also lead to seemingly useless involvements of the parameterization, like in
optimized_dfs above.

4.3 Implementing the Search: A Specific State

After laying the foundation by specifying a generic search and a generic parameterized
search, we are now continuing by introducing an explicit search instantiation. While this
is more concrete than the generic versions, it is still aimed to be as abstract as possible
by not caring about implementation details. Its goals are mainly to provide the final
means to base an explicit DFS-using algorithm on, and to provide an extensive library
of invariants. Therefore, this stage will be called the abstract level (opposed to the generic
level we described so far, and the concrete (implementation) level which is still to come
(Sections 4.5, 4.5.3)).

For an increased usability, one goal for specifiying this abstract level is to gather as much
information as possible throughout the search process. This enables us to provide detailed
lemmas about the search, which in turn may come in useful for the embedded algorithm.
This is made possible by recent enhancements of the Isabelle Refinement Framework [31]
which allows to remove information when projecting the abstract state onto the concrete
state (details follow in Section 4.5.1), thereby enabling us to generate lean code where the
auxiliary data from the abstract level is no longer present.

The content of the state, i. e., the information gathered, then can be divided into three
categories:

Management information This includes those fields which are essential for conducting
the search at all. This category consists of the search stack and the set of pending
edges. While the first one is natural, the second one can be represented in multiple
ways. One option, which was for example chosen in the first approach [35], is to use
another stack, where each item represents the pending edges of the corresponding
node on the search stack. Unfortunately, proving and enforcing this correspondence
is rather inelegant and clutters the theory, as will be described in Section 4.8.1. A
similar solution where both stacks are combined into one is, again, rather inelegant
on the abstract level, as it needlessly merges two different concepts, but is a viable

44

4.3 Implementing the Search: A Specific State

option to be used in the implementation. The choice for the abstract level then is
indeed the simple set of all the pending edges. While this would be a nightmare
performance-wise in any implementation it is just right for abstract reasoning, as the
pending edges of any node u can be simply queried by pending `` {u}.

Timing information A natural, and necessary, field to have in a depth-first search is the
set of discovered nodes. A generalization is to not only mark the fact of discovery, but
also the order. This information allows advanced reasoning as will be shown later
on by the Parenthesis Theorem and the White Path Theorem, which in turn are needed
for the correctness proof of Tarjan’s algorithm as pictured in Section 4.7. Similarly,
one adds the timing information for backtracking from a node, i. e., finished nodes.
To enable gathering such information, one needs to also keep track of the current
time, therefore a counter has to be added.

Search tree This category keeps track of the edges which have been traversed, differen-
tiating between forward, cross, and back edges (cf. Section 4.1). While they can be
generated from the timing information, we gather them explicitly. This ensures that
there is no uncertainty about them representing the correct information. Also, due
to the aforementioned ability to safely project the state, such additional information
comes for free.

Combined, the state is thus defined as follows:

record 'v state =
counter :: nat
discovered :: 'v⇒ nat option
finished :: 'v⇒ nat option
pending :: 'v rel
stack :: 'v list
tree :: 'v rel
back_edges :: 'v rel
cross_edges :: 'v rel

Now, to help further use, we can already instantiate the type variable for the state in
gen_parameterization to get a shorter type for parameterizations using our state:

type_synonym ('v,'es) parameterization
= ('v, ('v,'es) state_scheme, 'es) gen_parameterization

We then start to specify depth-first search. The search needs two parameters: a graph,
and the parameterization. We formalize graphs as a set of edges E and a set of initial
nodes V0

1:

locale param_DFS = fb_graph E V0
for E :: 'v rel and V0 :: 'v set +
fixes param :: ('v,'es) parameterization

Inside this locale, the implementations for the search procedure are provided, using the
just defined state. Thus, the discovery of a new node is implemented as:

1The fb_graph locale adds the assumption of the graph being finitely branching, i. e., each node having only a
finite number of successors. This is a technical detail needed for being able to reason about foreach loops.

45

4 Checking

definition (in param_DFS) discover
:: 'v⇒ 'v⇒ 'v state⇒ 'v state

where
discover u v s ≡ let

d = (discovered s)(v 7→ counter s);
c = counter s + 1;
st = v#stack s;
p = pending s ∪ {v} × E``{v};
t = insert (u,v) (tree s)

in sL discovered := d, counter := c, stack := st, pending := p, tree := tM

This implementation should not be surprising, as it updates the fields of the state in the
expected way:

• record the discovery time of the new node and increase the timing counter
• push the new node onto the stack
• add all outgoing edges of the new node to the set of pending edges
• record the just taken edge (u is the predecessor of v) as forward edge

The other operations follow in a similar manner and will not be listed here.
Using those operations, we can finally define an instance of gen_basic_dfs_struct, where

each of the fields of the struct is represented by an operation:

definition (in param_DFS) gbs ≡ L
gbs_init = λe. return (empty_state e),
gbs_is_empty_stack = is_empty_stack,
gbs_discover = λu v s. return (discover u v s),
(* rest of fields omitted *)

M

From this and the provided parameterization, it can then be shown that param_DFS is
indeed a sublocale of gen_param_dfs: sublocale gen_param_dfs gbs param V0 .

Example 4.3.1 (Cyclicity Checker continued)
From Example 4.2.1 on page 40, we recall our definition of the cyclicity checker as a
parametrization to the DFS (fields omitted are NOOP):

definition cyc_checker where
cyc_checker = L

on_init ≡ return L cyc = False M, (* initially no cycle has been found *),
on_back_edge ≡ λu v s. return L cyc = True M (* cycle! *),
is_break ≡ λs. cyc s (* break iff cycle has been found *)

M

We now instantiate our newly defined parameterized DFS with our formalization
of cyclicity checking:

interpretation cyc!: param_DFS E V0 cyc_checker for E V0 .

As a result, we now have a fully initiated depth-first search: the search is completely
specified by param_DFS, and the extension by cyc_checker. This enables us to refer to
the final cyclicity checker by cyc.dfs.

46

4.4 Proof Architecture

4.4 Proof Architecture

Properties of the DFS algorithm are shown by establishing invariants, i. e., predicates
that hold for all reachable states of the DFS algorithm. The standard way to establish an
invariant is to generalize it to an inductive invariant, then show that it holds for the initial
state, and is preserved by steps of the algorithm.

When using this approach naïvely, we face a problem: The invariant to prove an
algorithm correct typically is quite complicated. Proving it in one go results in big proofs
that tend to get unreadable and hard to maintain. For example, the version of Schimpf’s
verification of Tarjan’s SCC algorithm (described in [49]) uses an invariant that spans more
than 20 lines, including all the minor details that are needed throughout the proof. The
proof in itself then uses another 1000 lines. Another example, from our own domain, is a
previous version of this framework used in [10] (also see Section 4.8.2).

Such an approach is doable when dealing with only one algorithm (like it was the case
for Schimpf), but poses a problem for our framework: The interesting properties for the
framework are exactly those minor details which are encoded in the invariants (to keep
with the example: e. g., properties about SCCs in itself). When using the framework one
would expect to be able to use them in the proof, instead of having to prove them over and
over again. Especially for a detailed state like ours (cf. Section 4.3), there is a large number
of those invariants, like finished ⊆ discovered or tree ⊆ E or set stack ∩ finished = {}. This set
of problems will also be discussed in Section 4.8.2, where a previous version of the DFS
framework is analyzed. Thus, we need a solution that allows us to establish invariants
incrementally, re-using already established invariants to prove new ones.

A natural solution, which has already been chosen in the first version of the framework,
is to phrase properties of the algorithm as properties over states, namely those states which
can be reached during a run of the algorithm. That is, we fix an arbitrary state s for which
we know it can be reached during the run and show the holding of the property. The
difference to the general way of proving an inductive invariant here lies in having the fixed
state a priori instead of obtaining it only during the proof. This allows the incremental
proof setup as will be clear in a moment.

But before, we have to take one feature of the refinement framework into account
that has been glimpsed over so far: Failure. As our refinement framework allows for
failing assertions, we have to handle them, for we cannot establish any invariants if the
algorithm may reach a failing assertion. Thus we can only establish invariants of the base
algorithm under the assumption that the hook functions do not fail (dfs does not contain
any assertions that may fail).

However, we would like to use invariants of the base algorithm to show that the whole
algorithm is correct, in particular that the hook functions do not fail. Otherwise, we would
have to re-prove any properties about depth-first search needed throughout the non-failure
proof.

While this may be doable for small algorithms, it is a larger burden for more complicated
algorithms like Nested DFS. But in both cases, it is contrary to the framework’s goal of
eliminating the need for duplicity. Therefore we need a solution that allows us to establish
invariants for the non-failing reachable states only, and a mechanism that later transfers
these invariants to the actual algorithm.

47

4 Checking

For this, we introduce another refinement relation2 ≤n where

m ≤n m' ≡ m 6= FAIL −→ m ≤ m'.

Thus, m ≤n spec Φ expresses that m either fails or all its possible values satisfy Φ.
Using this new relation, we can exactly define when a property is an inductive predicate

in our framework:

definition (in param_DFS) is_invar where
is_invar P ≡

init ≤n spec P
∧ (∀s. P s ∧ cond s −→ step s ≤n spec P).

Thus, any lemma showing a certain property P of the algorithm inductively is always of
the form is_invar P.

Combining this definition of an inductive invariant with the idea of phrasing properties
of the algorithm as properties over reachable states, we have to alter the latter slightly
by restricting ourselves to states which can only be reached without any hook functions
failing. We express the property of a reachable state without failing by the predicate rwof
(reachable without failure):

inductive (in param_DFS) rwof where
init: J init = RES X; x∈X K =⇒ rwof x

| step: J rwof x; cond x; step x = RES Y; y∈Y K =⇒ rwof y

Of course, it trivially holds that is_invar rwof. Indeed, rwof is the most specific invariant,
with any other invariant being a consequence thereof. Hence, we can show the following
alternative definition of is_invar:

lemma (in param_DFS) is_invar_alt_rwof_def:
is_invar P ≡ ∀s. rwof s −→ P s.

Any property P formalized in this way as is_invar P can then be discharged to apply to a
specific state via:

lemma (in param_DFS) use_invar:
J is_invar P; rwof s K =⇒ P s

In order to establish invariants of the algorithm, we show that they are inductive
invariants when combined with rwof. This leads to the following rule:

lemma (in param_DFS) establish_invar:
assumes init ≤n spec P
assumes

∧
s. J cond s; rwof s; P s K =⇒ step s ≤n spec P

shows is_invar P

This rule then can be used in the proof of any property, because, as stated earlier, the
lemmas have the form is_invar P. It therefore serves as an introduction rule, i. e., it replaces
the goal by its instantiated assumptions. In particular, during the process of proving a
certain property we can use the aforementioned rule use_invar to use any other already
proven property P'. This can be best expressed with an example:

2As one reviewer of our CPP paper [29] has remarked, this is not a partial order, even though the impression
might arise from the usage of ≤. However, it is reflexive, and fulfills a restricted transitivity law:
a ≤n RES X ≤n c =⇒ a ≤n c

48

4.4 Proof Architecture

Example 4.4.1
Assume we have already proven some property P' as being an invariant:

lemma P'_is_invar:
is_invar P'

Now we would like to prove some other property P to be invariant, and make use of
P' during that proof:

lemma P_is_invar:
is_invar P

proof (rule establish_invar)
fix s
assume cond s and rwof s and P s
from P'_is_invar and `rwof s` have P' s by (rule use_invar)

During the rest of the proof we can thus utilize the fact P' s. The same can be done
for the init case, as rwof init holds trivially.

In order to use invariants to show properties of the algorithm, we can utilize the fact
that at the end of a loop, the invariant holds and the condition does not:

lemma (in param_DFS) dfs_correct:
dfs ≤ spec s. rwof s ∧ ¬ cond s

Finally, we use the following rule to show that the algorithm does not fail:

lemma (in param_DFS) establish_nofail:
assumes init 6= FAIL
assumes

∧
s. Jcond s; rwof sK =⇒ step s 6= FAIL

shows dfs 6= FAIL

To simplify re-using and combining of already established invariants, we define a locale
DFS_invar as a sublocale of param_DFS, which fixes a state s and assumes that the most
specific invariant holds on this state:

locale DFS_invar = param_DFS E V0 param
for E V0 param +
fixes s
assumes rwof: rwof s

Using the assumption that rwof holds, we can provide a version of use_invar with that
assumption (read: future proof obligation) discharged and the state variable instantiated
with the explicit state s:

lemmas (in DFS_invar) make_invar_thm = use_invar[OF _ rwof]

Whenever we have established an invariant P, we also prove P s inside this locale. That
is, after proving a theorem is_invar P, we lift this into the locale DFS_invar as another
theorem P s. In a proof to establish some invariant, we may then interpret this locale. That
way, any already established invariants of the form P s are available throughout this proof.
This is useful in particular when dealing with multiple states at the same time, when we
know for all of them that rwof holds: We can interpret the locale for each of the states
yielding the right lemmas with the appropriate state being instantiated.

49

4 Checking

It also allows for proving properties that are consequences of other invariants and do
not need the whole inductive proof-setup.

Example 4.4.2
In our parameterized DFS framework, we provide a version of establish_invar that
splits over the different cases of step, and is focused on the hook functions:

lemma (in param_DFS) establish_invar:
assumes init: on_init ≤n spec x. P (empty_state x)
assumes new_root:

∧
v0 s s'. pre_on_new_root v0 s s'

=⇒ on_new_root v0 s' ≤n spec x. P (s'Lmore := xM)
assumes finish:

∧
u s s'. pre_on_finish u s s'

=⇒ on_finish u s' ≤n spec x. P (s'Lmore := xM)
assumes cross_edge:

∧
u v s s'. pre_on_cross_edge u v s s'

=⇒ on_cross_edge u v s' ≤n spec x. P (s'Lmore := xM)
assumes back_edge:

∧
u v s s'. pre_on_back_edge u v s s'

=⇒ on_back_edge u v s' ≤n spec x. P (s'Lmore := xM)
assumes discover:

∧
u v s s'. pre_on_discover u v s s'

=⇒ on_discover u v s' ≤n spec x. P (s'Lmore := xM)
shows is_invar P

Here, the pre_-predicates define the preconditions for the calls to the hook functions.
For example, we have

pre_on_finish u s s' ≡ DFS_invar s ∧ cond s
∧ stack s 6= [] ∧ u = hd (stack s)
∧ pending s `` {u} = {} ∧ s' = finish u s.

That is, the invariant holds on state s and s has no more pending edges from the
topmost node on the stack. The state s' emerged from s by executing the finish-
operation on the base DFS state.

A typical proof of an invariant P has the following structure:

lemma P_invar:
is_invar P

proof (induction rule: establish_invar)
case (discover u v s s')
then interpret DFS_invar s by simp
show on_discover u v s' ≤n spec x. P (s'Lmore := xM)

. . .
next

. . .
qed
lemmas (in DFS_invar) P = P_invar[THEN make_invar_thm]

The different cases that we have to handle correspond to the assumptions of the
lemma establish_invar. The interpret command makes available all definitions and
facts from the locale DFS_invar, which can then be used to show the statement. The
second lemma just transfers the invariant to the DFS_invar locale, in which the fact
P s is now available by the name P.

50

4.4 Proof Architecture

Note that this proof scheme is only suited for invariants with complex proofs.
Simpler invariant proofs can often be stated on a single line. For example, finiteness
of the discovered edges is proved as follows:

lemma is_invar (λs. finite (edges s))
by (induction rule: establish_invar) auto

Furthermore, we provide several special cases of establish_invar for the ease of
the proving process, e. g., instances where handling cross and back edges has been
collapsed.

4.4.1 Library of Invariants

In the previous section we have described the proof architecture, which enables us to
establish invariants of the depth-first search algorithm. In this section, we show how this
architecture is put to use.

Based on the extensive state given in Section 4.3, we provide a variety of invariants
which use the information in the state at different levels of detail. Note that these invariants
do not depend on the extension part of the state, and thus can be proven independently of
the hook functions, which only update the extension part. Further note that we present
them as they occur in the locale DFS_invar, which fixes the state and assumes that the
most specific invariant holds.

Due to how maps work in Isabelle, we will use the shorthand notation δ s v for the
discovery time of node v in state s, and ϕ s v for the finishing time.

For the sets dom (discovered s) of discovered and dom (finshed s) of finished nodes, we
prove, among others, the following properties:

lemma (in DFS_invar) disc_lt_fin: v ∈ dom (finished s) =⇒ δ s v < ϕ s v
lemma (in DFS_invar) stack_set_def: set (stack s) = dom (discovered s) − dom (finished s)
lemma (in DFS_invar) finished_closed: E``(dom (finished s)) ⊆ dom (discovered s)
abbreviation (in DFS_invar) reachable ≡ E∗``V0
lemma (in DFS_invar) nc_finished_eq_reachable:
¬cond s ∧ ¬is_break s =⇒ dom (finished s) = reachable

The first lemma states that for each finished node, the finishing time is smaller than the
discovery time (the assumption is necessary, for there is no finishing time for unfinished
nodes). The lemma thereafter states that the nodes on the stack are exactly those that have
already been discovered, but not yet finished. The third lemma states that edges from
finished nodes lead to discovered nodes, and the last lemma expresses that the finished
nodes are exactly the nodes reachable from V0 when the algorithm terminates without
being interrupted.

We also prove more sophisticated properties found in standard textbooks (e. g., [5, pp.
606–608]), like the Parenthesis Theorem (the discovered/finished intervals of two nodes
are either disjoint or the one is contained in the other, but there is no overlap) or the
White-Path-Theorem (a node v is reachable in the search tree from a node u iff there is a
white path from v to u, i. e., a path where all nodes are not yet discovered when v is).

51

4 Checking

lemma (in DFS_invar) parenthesis:
assumes v ∈ dom (finished s) and w ∈ dom (finished s)
and δ s v < δ s w
shows (* disjoint *) ϕ s v < δ s w
∨ (* v contains w *) ϕ s w < ϕ s v

definition (in DFS_invar) white_path where
white_path x y ≡ x 6=y
−→ (∃p. path E x p y ∧

(δ s x < δ s y ∧ (∀ v ∈ set (tl p). δ s x < δ s v)))

lemma (in DFS_invar) white_path:
assumes v ∈ reachable and w ∈ reachable
and ¬cond s ∧ ¬is_break s
shows white_path v w←→ (v,w) ∈ (tree s)∗

The Parenthesis Theorem is important to reason about paths in the search tree, as it
allows us to gain insights just by looking at the timestamps:

lemma (in DFS_invar) tree_path_iff_parenthesis:
assumes v ∈ dom (finished s) and w ∈ dom (finished s)
shows (v,w) ∈ (tree s)+

←→ δ s v < δ s w ∧ ϕ s v > ϕ s w

This theorem expresses the relation between two discovered nodes v and w: There is a
path in the search tree from v to w iff the discovery and finishing times of v create the
eponymous parenthesis around the times of w.

From the location of two nodes in the search tree, we can deduce several properties
of those nodes (e. g., the → direction of tree_path_iff_parenthesis). This can be used, for
example, to show properties of back edges, as

lemma (in DFS_invar) back_edge_impl_tree_path:
J (v,w) ∈ back_edges s; v 6= w K =⇒ (w,v) ∈ (tree s)+.

That is, for any back edge which is not a self-loop, there exists a path in the search for the
other direction.

Example 4.4.3 (Cyclicity Checker: Proof)
The idea of cycles in the set of reachable edges is independent of any DFS instanti-
ation. Therefore we can provide invariants about the (a)cyclicity of those edges in
the general library, the most important one linking acyclicity to the existence of back
edges:

lemma (in DFS_invar) cycle_iff_back_edges:
acyclic (edges s)←→ back_edges s = {}

Here, edges s is the union of all tree, cross, and back edges.
The→ direction follows as an obvious corollary of the lemma back_edge_impl_tree_path

shown above. The← direction follows from the fact that acyclic (tree s ∪ cross_edges s),
the proof of which uses the Parenthesis Theorem.

52

4.5 Refinement

Moreover, we need the fact that at the end of the search edges s is the set of all
reachable edges:

lemma nc_edges_covered:
assumes ¬cond s and ¬is_break s
shows E ∩ reachable × UNIV = edges s

With those facts from the library, we recall the definition of the cyclicity checker in
our framework as presented in Examples 4.2.1 and 4.3.1:

definition cyc_checker where
cyc_checker = L

on_init ≡ return L cyc = False M, (* initially no cycle has been found *),
on_back_edge ≡ λu v s. return L cyc = True M (* cycle! *),
is_break ≡ λs. cyc s (* break iff cycle has been found *)

M

interpretation cyc!: param_DFS E V0 cyc_checker for E V0 .

As the cyc flag is set when a back edge is encountered, the following invariant is
easily proved:

lemma i_cyc_eq_back:
is_invar (λs. cyc s←→ back_edges s 6= {})
apply (induct rule: establish_invar)
apply (simp_all add: cond_def cong: cyc_more_cong)
apply (simp add: empty_state_def)
done

This happens to be the only invariant that needs to be shown for the correctness
proof. Using the invariants mentioned above, we easily get the following lemma
inside the locale DFS_invar, i. e., under the assumption rwof s:

lemma (in DFS_invar) cycc_correct_aux:
assumes ¬cond s
shows cyc s←→ ¬acyclic (E ∩ reachable × UNIV)

Intuitively, this lemma states that the cyc flag is equivalent to the existence of a
reachable cycle upon termination of the algorithm. Finally, we gain the correctness
lemma of the cyclicity checker as an easy consequence:

lemma cyc_correct:
cyc.dfs E V0 ≤ spec s.

cyc s←→ ¬acyclic (E ∩ reachable × UNIV).

Further examples of general properties (involving SCCs) are presented when proving
the correctness of Tarjan’s algorithm in Section 4.7.2.

4.5 Refinement

So far, we have described the general and the abstract framework. While the former defines
the structure of the parameterized search algorithms, the latter adds an explicit state and

53

4 Checking

therefore allows to reason about its properties. But this is exactly where the scope of
the abstract framework ends: It should only allow to help reasoning about algorithms
implementing DFS, which is achieved by keeping a very high level view – therefore the
designation abstract.

Of course, this is, in most cases, not the final phase. In particular for our goal of
implementing a model checker, we need exectuable code. Directly executing the abstract
definitions, given it was even possible, would yield very unfortunate timings, thereby
rendering any actual use improbable.

The common way to handle this, and the reason the Refinement Framework was
created, is to build a more optimized version of the algorithm (cf. Section 2.2), which
can then be exported into executable code using the code generator of Isabelle/HOL [16].
This optimization process here can consist of different sub-steps, each optimizing a
particular aspect of the algorithm. Such aspects include data refinement, i. e., replacing
data structures by better fitted and more efficient versions (e. g., sets by lists or red-black
trees), and structural refinement, i. e., optimizing the algorithm itself, for example by
adding heuristics.

Both of those large aspects are also directly supported by the framework and detailed in
this section. While those refinement steps are applied sequentially (first data refinement,
then structural refinement, finally code generation), they are in themselves designed
independent of one another: The first two are enabled by providing a library of possible
refinements, which can be used in a sort of plug-and-play system. The last one, code
generation, is done using the Autoref Tool [24] and thus done separately for each algorithm.

4.5.1 Data Refinement / Projection

To get a version of the algorithm over a state that only contains the necessary information,
we use data refinement: We define a relation between the original abstract state, i. e., the
state defined in Section 4.3, and the reduced concrete state, as well as the basic operations
on the concrete state. Then we show that the operations on the concrete state refine their
abstract counterparts. Using the refinement calculus provided by the Isabelle Refinement
Framework, we lift this result to show that the whole concrete algorithm refines the
abstract one.

In order to be modular w. r. t. the hook operations, we provide a library of standard
implementations together with their refinement proofs, which are assuming a valid
refinement for the hooks. As for the abstract state, we also use extensible records for
the concrete state. Thus, we obtain templates for concrete implementations, which are
instantiated with a concrete data structure for the extension part of the state, a set of
concrete hook operations, and refinement theorems for them.

Such templates follow the approach for defining the search itself: At the bottom, we
define data refinement for the generic search, followed by specializations to parameterized
search and then our abstract search framework. For reasons of brevity, only the generic
version will be described here, for the others follow straightforwardly.

First, let us define what a data refinement for a generic search is:

locale gen_param_dfs_refine =
c: gen_param_dfs gbsi parami Vi

0 +

54

4.5 Refinement

a: gen_param_dfs gbs param V0

for gbsi parami Vi
0 gbs parami V0 +

fixes V S X

At the very bottom, we have two instances of the generic search: the abstract version gbs
and its concrete counterpart (i. e., implementation) gbsi, along with the corresponding
parameterization param and parami, respectively. They are also accompanied by different
representations of the set of starting nodes (V0 vs. Vi

0). Moreover, we fix two relations V ,
S , and X for the nodes, the search parts of the states, and the extension part of the states,
respectively. Let us denote the relation of the combined state by SX .

The locale is further equipped with a set of assumptions, detailing the exact nature of
those relations and also of the two search instances.

We have added the parameter V to specify a refinement relation on nodes. This might
become necessary, when the representation of the nodes in the abstract model cannot (or
only inefficently) be used verbatim in the concrete version. An instance is to use natural
numbers abstractly, but machine integers on the concrete level. The assumptions for V
then are:

assumes bijective V
assumes (Vi

0,V0) ∈ 〈V〉set_rel

That is, the node relation must be bijective, for it must not alter the graph. For our example
of naturals versus machine integers, this also implies that it has to be ensured that no
overflow occurs, i. e., the number of nodes must be representable as a machine integer.
The second assumption states that the two sets of starting nodes must be sets, where each
member of Vi

0 must have its counterpart in the abstract V0 under the V relation (and vice
versa because of the additionally required bijectivity).

For the operations defined by the generic search, we require the versions of the concrete
gbsi to be refinements of the abstract version, i. e., the concrete operation must be behav-
iorally equivalent to the abstract one. As a simple first example, we take the requirement
for gbs_is_discovered (please refer to Section 2.2 for some explanation on the syntax):

assumes (gbs_is_discovered gbsi, gbs_is_discovered gbs)∈V→SX→Id

This means, that for any node and state passed to the concrete gbs_is_discovered gbsi, it must
yield the same result as their abstract counterparts passed to the abstract gbs_is_discovered gbs.
Other tests like gbs_is_empty_stack follow suite.

For state modifying operations like gbs_discover, the requirement is similar, but we
weaken the requirement by adding preconditions. The reason is that certain operations are
only valid for some restrictions: To give an example, when refining the set of discovered
nodes by a distinct list, refining the insertion operation by simple appending is only valid
when it is guaranteed not to be called on already inserted nodes. Hence, the requirement
for gbs_discover is formalized as follows, where a.pre_discover is the set of constraints,
containing ¬ gbs_is_discovered gds v s amongst others:

assumes
∧

u v ui vi s0 s si.
Ja.pre_discover u v s0 s; (ui,u)∈V ; (vi,v)∈V ; (si,s)∈SX K
=⇒ gbs_discover gbsi ui vi si ≤⇓ SX (gbs_discover gbs u v s)

55

4 Checking

As already pointed out, this meaning is similar to the simple tests: For any arguments
passed to the concrete function, its result must have at least one abstract counterpart in
the results of the abstract version applied to abstract arguments.

Such assumptions are added in a similar fashion for the extensions contained in the
parameterization:

assumes (is_break parami, is_break param) ∈ SX → Id

assumes
∧

u v ui vi s0 s si s' s'i.
Ja.pre_discover u v s0 s; (ui,u)∈V ; (vi,v)∈V ; (si,s)∈SX ;
(s'i,s')∈SX ; return s' ≤n gbs_discover gbs u v sK

=⇒ on_discover parami ui vi s'i ≤⇓X (on_discover param u v s')

It should be noted that, theoretically, requirements on the simple test may be equipped
with additional restrictions too (e. g., for any call of gbs_is_finished v s, it can be validly
assumed that gbs_is_discovered v s). So far, this has not been done, as the need has not
arisen.

Having defined all those assumptions, the setup of the locale gen_param_dfs_refine is
finished and we show that under those assumptions, the concrete dfs refines the abstract
one under the relation on the states SX .

lemma (in gen_param_dfs_refine) dfs_refine:
c.dfs ≤⇓SX a.dfs

Furthermore, it is shown that for any reachable concrete state, there exists a correspond-
ing abstract state – given that the abstract version does not fail:

lemma (in gen_param_dfs_refine) rwof_refine:
assumes nofail (a.dfs)
assumes c.rwof s
shows ∃s'. (s,s')∈SX ∧ a.rwof s'

Example 4.5.1 (Simple State)
We now give an example on how this can be put to use to define a data refinement
inside the DFS Framework.

For many applications, such as the cyclicity checker from Examples 4.2.1 and 4.3.1,
it suffices to keep track of the stack, the pending edges, and the set of discovered
nodes. We define a state type

record 'v simple_state =
stack :: ('v × 'v set) list
on_stack :: 'v set
visited :: 'v set

and a corresponding refinement relation RX
(si,s) ∈ RX ↔

stack si = map (λu. (u,pending s `` {u})) (stack s) ∧
on_stack si = set (stack s) ∧
visited si = dom (discovered s) ∧
(more si, more s) ∈ X .

56

4.5 Refinement

Note that we store the pending edges as part of the stack, and provide an extra
field on_stack that stores the set of nodes on the stack. This is done with the
implementation in mind, where cross and back edges are identified by a lookup in
an efficient set data structure and the stack may be projected away when using a
recursive implementation. Moreover, we parameterize the refinement relation with a
relation X for the extension state.

Next, we define a set of concrete operations. For example, the concrete discover
operation is defined as:

definition discoveri

:: 'v⇒ 'v⇒ ('v,'es) simple_state_scheme⇒ ('v,'es) simple_state_scheme
where

discoveri u v s ≡ s L
stack := (v, E``{v}) # stack s,
on_stack := insert v (on_stack s),
visited := insert v (visited s) M

It is straightforward to show that discoveri refines the abstract discover-operation:

lemma discover_refine:
assumes (si,s)∈ RX
shows discoveri u v si ≤⇓RX discover u v s

Finally, we can collect these operations into a gen_basic_dfs_struct, say simple_gbs,
to define a new generic DFS:

definition simple_gbs where
simple_gbs = L

. . . ,
discover = discoveri,
. . . M

Using this, we create a new sublocale of the gen_param_dfs_refine locale and thus
present a data refinement of the original generic DFS. As this refinement would be
not very meaningful (we would refine some unknown generic search to our simple
search), we also fix the abstract part as being the parameterized search given in
Section 4.3:

locale simple_impl = p!: param_DFS E V0 param +
gen_param_dfs_refine

where gbs = p.gbs
and gbsi = simple_gbs
and param = param
and V0 = V0
and V = Id
and SX = RX

for E V0 param parami X
The main outcome of this locale is that we obtained a new generic DFS (here: c.dfs),

which is a data refinement of the original DFS of Section 4.3 (here: p.dfs):

57

4 Checking

lemma (in simple_impl) simple_refine:
c.dfs ≤ ⇓RX p.dfs

This can now be used to provide data refinement for the cyclicity checker. We
therefore define the concrete state by extending the simple_state record with a flag,
analogously to Example 4.2.1. The extension state will be refined by identity, i. e., the
refinement relation for the concrete state is RId, as this is the only useful option for
such a simple extension. We also define a set of concrete hook operations (which
look exactly like their abstract counterparts) and name the resulting parameterization
cyc_checkeri:

record 'v cyc_state_impl = 'v simple_state +
cyc :: bool

definition cyc_checkeri where
cyc_checkeri = L

on_init ≡ return L cyc = False M, (* initially no cycle has been found *),
on_new_root ≡ λu. NOOP,
on_discover ≡ λu v. NOOP,
on_finish ≡ λu. NOOP,
on_back_edge ≡ λu v s. return L cyc = True M (* cycle! *),
on_cross_edge ≡ λu v. NOOP,
is_break ≡ λs. cyc s (* break iff cycle has been found *)

M.

Using this implementation of the cyclicity checker, we combine it with the simple_impl
refinement for the search:

interpretation cyc_impl!: simple_impl E V0
where param = cyc_checker

and parami = cyc_checkeri

and X = Id
for E V0

Once this is done, the DFS framework gives us a cyclicity checker over the concrete
state (cyc_impl.dfs), and a refinement theorem relating it to the abstract version
defined before:

lemma cyc_impl_refine:
cyc_impl.dfs ≤⇓RId cyc.dfs.

This yields, as a general property of refinements, also the correctness of the imple-
mentation:

lemma cyc_impl_correct:
cyc_impl.dfs E V0 ≤ spec s.

cyc s←→ ¬acyclic (E ∩ (E∗``V0) × UNIV).

We also provide further implementations (not listed here), which require the hooks
for back and cross edges to have no effect on the state. Thus the corresponding cases

58

4.5 Refinement

can be collapsed and there is no need to implement the on_stack set. As an additional
optimization we pre-initialize the set of visited nodes to simulate a search with some nodes
excluded3. As an example, this is used in the inner DFS of the Nested DFS algorithm (cf.
Section 4.6.2).

4.5.2 Structural Refinement

Up to now, we have represented the algorithm as a while-loop over a step-function. This
representation greatly simplifies the proof architecture. However, it is not how one would
implement a concrete DFS algorithm. As an example, checking the loop condition would
require iteration over all root nodes each time. For this reason, we want to replace the
general algorithmic structure of the depth-first search by something more specific. That is,
we want to refine on the structure. This topic has already been introduced in Section 4.2.1.

We are interested in making the structural refinement of the algorithm independent
of the data refinement, such that we can combine different structural refinements with
different data refinements, without doing a quadratic number of refinement proofs. For this
purpose the structural refinements are formalized in the generic setting (cf. Section 4.2.1).
As it was described there, depending on the desired structure, we have to add some
minimal assumptions on the state and generic operations. The resulting generic algorithms
are then instantiated by the concrete state and operations from the data refinement phase,
thereby discharging the additional assumptions. The consequence of this is a slight loss
of modularity, as indeed each module for data refinement needs to link itself to all those
structural refinements it is going to work with. But we argue that this is a bearable burden,
as in most cases this should be covered by a simple sublocale/interpretation. Of course,
if the refinement introduces new generic operations, the data refinement also needs to
provide an implementation for those.

To help using the framework, we provide two standard implementations which can be
used in lieu of a naïve code export of the generic algorithm: A tail-recursive one and a
recursive one. The recursive implementation uses a recursive function and requires no
explicit stack. The tail-recursive implementation still requires a stack and is in its general
form very similar to the generic algorithm from Section 4.2. The most notable differences
are the replacement of a non-deterministic choice for the next root node by an explicit
iteration over all the nodes, and a more efficient loop condition, which does not require to
check all root nodes on each iteration.

Tail-Recursive Implementation

To create the tail-recursive version, we follow the approach of Section 4.2.1 and create a
new locale, inheriting from gen_param_dfs:

locale tailrec_impl = gen_param_dfs gbs param V0

This locale is also fitted with some more assumptions, but we will omit them here for the
moment. In this locale, we then define our new tail-recursive implementation as given in
Alg. 4.6, using the generic operations defined by the gen_param_dfs.

3This is an optimization that saves one membership query per node.

59

4 Checking

Algorithm 4.6 Tail-Recursive DFS Implementation

definition (in tailrec_impl) tailrec_dfs where
tailrec_dfs ≡ do {

s0 ← do_init;

foreach V0 s0 (λs. ¬break s)
(λv0 s.

if is_discovered v0 s then return s
else

s'← do_new_root v0 s;
while s' (λs. ¬break s ∧ ¬is_empty_stack s)
(λs. do {
((u,nxt), s')← get_pending s;
case nxt of

None⇒ do_finish u s'
| Some v⇒

if ¬ is_discovered v s' then
do_discover gds u v s'

else
if is_finished v s' then

do_cross_edge u v s'
else

do_back_edge u v s'
}))}

This implementation iterates over all root nodes. For each undiscovered root node, it
calls do_new_root and then executes steps of the original algorithm until the stack is empty
again. Note that we effectively replace the arbitrary choice of the next root node by the
outer foreach-loop. In order for this implementation to be a refinement of the original
generic algorithm, we have to assume that

1) the stack is initially empty, such that we can start with choosing a root node, and

2) the same root node cannot be chosen twice, so that we are actually finished when
we have iterated over all root nodes.

In order to ensure 2), we have to assume that do_new_root sets the node to discovered, and
no operation can decrease the set of discovered nodes.

But we have to recall the definition of the do_ functions: They effectively chain the
operations from the search (of gbs) with the operations of the parameterization:

definition do_new_root v0 s ≡ do {
s'← gbs_new_root gbs v0 s;
e← on_new_root param v0 s';
return s'Lmore := eM
}

60

4.5 Refinement

As the extensions of the parameterization cannot modify the search part of the state and
are therefore uninteresting for structural refinement, we have to lift those assumptions
onto the general search algorithm, i. e., on the gbs_ functions. We thus declare them as
direct assumptions in the locale, as it was already hinted at above:

assumes init_empty_stack:∧
es. gbs_init gbs es ≤n spec (gbs_is_empty_stack gbs)

assumes new_root_discovered:∧
v0 s. pre_new_root v0 s
=⇒ gbs_new_root gbs v0 s ≤n spec s'.
{v0} ∪ {v. gbs_is_discovered gbs s v} ⊆ {v. gbs_is_disovered gbs s' v}

assumes finish_incr:∧
s0 s u. pre_finish u s0 s

=⇒ gds_finish gds u s ≤n spec s'.
{v. gbs_is_discovered gbs s v} ⊆ {v. gbs_is_disovered gbs s' v}

(* and so on for the other operations *)

With these assumptions, we can use the infrastructure of the Isabelle Refinement Frame-
work to show that the algorithm tailrec_dfs refines the original dfs:

theorem (in tailrec_impl) tailrec_dfs:
tailrec_dfs ≤ dfs

Recursive Implementation

Similarly, we approach the recursive implementation of DFS by introducing a new locale:

locale rec_impl = fb_graph E V0 + gen_param_dfs gbs param V0
for E and V0 :: 'v set and gbs param
fixes choose_pending :: 'v⇒ 'v option⇒ 's⇒ 's nres

Note that we introduce an additional generic operation choose_pending, which shall have
the implied semantics of removing the passed edge (first argument, second argument) from
the set of pending edges, if the second argument is different from None. Also, we explicitly
refer to fb_graph in this refinement, because we make explicit use of the successors of a
node later on.

With this, we carry on to define the algorithm itself (cf. Alg. 4.7 on the next page): As in
the tail-recursive implementation, we iterate over all root nodes. For each undiscovered
root node, we enter a recursive block. Intuitively, this block handles a newly discovered
node: It iterates over its successors, and for each successor, it decides whether it induces a
cross or back edge, or leads to a newly discovered node. In the latter case, the block is
called recursively (D (v,s'')) on this newly discovered node. Finally, if all successor nodes
have been processed, the node is finished.

Intuitively, this implementation replaces the explicit stack of the original algorithm by
recursion, i. e., the stack is now represented as the call stack of the recursive block.

Apart from the two assumptions from tailrec_dfs, we need some additional assumptions
to show that this implementation refines the original algorithm:

61

4 Checking

Algorithm 4.7 Recursive DFS Implementation

definition (in rec_impl) rec_dfs where
rec_dfs ≡ do {

s0 ← do_init;

foreach V0 s0 (λs. ¬break s) (λv0 s.
if is_discovered v0 s then return s
else do {

s'← do_new_root v0 s;
if break s' then return s'
else

rec (v0, s') (λD (u,s). do { (* D represents the recursive call *)
s'← foreach (E``{u}) s (λs. ¬break s) (λv s. do {

s'← choose_pending u (Some v) s;
if is_discovered v s' then

if is_finished v s' then do_cross_edge u v s'
else do_back_edge u v s'

else do {
s''← do_discover u v s';
if break s'' then return s'' else D (v,s'')
}
});
if break s' then return s'
else do {

s''← choose_pending u None s';
do_finish u s''
}
}) (* end rec *)

}) (* end foreach *)
}

3) The operation gbs_new_root gbs v0 initializes the stack to only contain v0, and the
pending edges to all outgoing edges of v0; the operation gbs_discover gbs u pushes
u onto the stack and adds its outgoing edges to the set of pending edges; the
gbs_finish-operation pops the topmost node from the stack.

4) The get_pending-operation of the original algorithm must have the form of (or can
be refined to) selecting a pending edge from the top of the stack, if any, and then
calling the operation choose_pending for this edge, where choose_pending removes the
edge from the set of pending edges.

Again, these assumptions are added to the locale rec_dfs – but we omit them here.
Eventually we can again show the corresponding refinement theorem:

theorem (in rec_impl) rec_dfs: rec_dfs ≤ dfs

62

4.5 Refinement

While this proof requires the state to contain a stack, it is not used by the recursive
algorithm. Provided that the parameterization does not require a stack either, a data refine-
ment can be chosen where the stack is omitted (e. g., by using the provided simple_state_ns
refinement).

Note that the assumptions introduced by the two structural refinements are, in general,
natural for any set of operations on a DFS state, though 4) is a bit technical. The advantage
of this formulation, i. e., the introduction as assumptions for the structural refinement
instead of providing specifications a priori, is its independence from the actual operations.
Thus, the same formalization for a final algorithm can be used to derive implementations
for all states and corresponding operations, which reduces redundancies, and even makes
proofs more tractable, as it abstracts from the details of a concrete data structure to its
essential properties.

Example 4.5.2
Recall the simple state from Example 4.5.1. The simple implementation satisfies all
assumptions required for the tail-recursive and recursive implementation, indepen-
dent of the parameterization. Thus, upon refining an algorithm to simple_state, we
automatically get a tail-recursive and a recursive implementation, together with their
refinement theorems. In case of the cyclicity checker, we get:

lemma cyc_impl_refine':
cyc_impl.tailrec_dfs ≤⇓RId cyc.dfs and
cyc_impl.rec_dfs ≤⇓RId cyc.dfs

4.5.3 Code Generation

After projection and structural refinement have been done, the algorithm is still described
in terms of quite abstract data structures like sets and lists. In a last refinement step, these
are refined to efficiently executable data structures, like hash-tables and array-lists. To
this end, the Isabelle Collections Framework [28] provides a large library of efficient data
structures and generic algorithms, and the Autoref-tool [24] provides a mechanism to
automatically synthesize an efficient implementation and a refinement theorem, guided by
user-configurable heuristics.

Note that we do this last refinement step only after we have fully instantiated the
DFS-scheme. This has the advantage that we can choose the most adequate data structures
for the actual algorithm. The fact that the refinements for the basic DFS operations are
performed redundantly for each actual algorithm does not result in larger formalizations,
as it is done automatically.

The benefit of our DFS-framework here lies in supporting the user by passing information
up-front to Autoref and the Isabelle Refinement Framework, so that the whole approach is
more automatic. An example for such information is the refinement relation for the used
data refinement. For in-depth details on the process of automatic refinement, we refer to
its documentation [24, 23]. Instead, we will finish the example of the cyclicity checker to
illustrate the process.

Example 4.5.3
In order to generate an executable cyclicity checker, we start with the constant
cyc_impl.tailrec_dfs, which is the tail-recursive version of the cyclicity checker, using

63

4 Checking

the simple_state (cf. Example 4.5.2). The state consists of a stack, an on-stack set, a
visited set, and the cyc-flag. Based on this, we define the cyclicity checker by

definition cyc_checker where
cyc_checker E V0 ≡ do {

s← cyc_impl.tailrec_dfs E V0;
return (cyc s)}

To generate executable code, we first have to write a few lines of canonical
boilerplate (omitted here) to set up Autoref to work with the extension state of
the cyclicity checker. The executable version of the algorithm is then synthesized by
the following Isabelle commands:

schematic_lemma cyc_impl:
fixes V0::'v::hashable set and E::('v×'v) set
defines V ≡ Id :: ('v × 'v) set
assumes [unfolded V_def,autoref_rules]:
(succi,E)∈〈V〉slg_rel
(V0',V0)∈〈V〉list_set_rel

notes [unfolded V_def, autoref_tyrel] =
TYRELI[where R=〈V〉dflt_ahs_rel]
TYRELI[where R=〈V × 〈V〉list_set_rel〉ras_rel]

shows nres_of (?c::?'c dres) ≤⇓?R (cyc_checker E V0)
unfolding cyc_impl.tailrec_dfs_def[abs_def] cyc_checker_def
by autoref_monadic

The first command uses the Autoref-tool to synthesize a refinement. The fixes
line declares the types of the abstract parameters, restricting the node-type to be
of the hashable typeclass. The next line defines a shortcut for the implementation
relation for nodes, which is fixed to identity here, i. e., there should not be any
translation on the nodes. The assumptions declare the refinement of the abstract to
the concrete parameters: The edges are implemented by a successor function, using
the relator slg_rel, which is provided by the CAVA automata library [26]. The set
of start nodes is implemented by a duplication-free list, using the relator list_set_rel
from the Isabelle Collections Framework.

Finally, the notes-part gives some hints to the heuristics: The first hint causes sets
of nodes to be implemented by array hash-tables (therefore the requirement to have
nodes of class hashable). This hint matches the on-stack and visited fields of the state.
The second hint matches the stack field, and causes it to be implemented by an
array-list, where the sets of pending nodes are implemented by duplication-free lists
of their elements. Again, the required datatypes and their relators dflt_ahs_rel and
ras_rel are provided by the Isabelle Collections Framework.

Ultimately, the autoref_monadic method generates a refinement theorem of the
shape indicated by the show-part, where ?c is replaced by the concrete algorithm,
and ?R is replaced by the refinement relation for the result.

Then we continue by defining a new constant for the synthesized algorithm, and
also provide a refinement theorem with the constant folded. As this is a common
operation, this is already provided by the Isabelle Refinement Framework:

64

4.6 An Application in Model Checking: Nested DFS

concrete_definition cycc_exec uses cycc_impl

As the generated algorithm only uses executable data structures, the code generator
of Isabelle/HOL [16] then can be used to generate efficient Standard ML code:

export_code cycc_exec in SML

4.6 An Application in Model Checking: Nested DFS

In the previous sections, we introduced the general setup of a framework for implementing
depth-first search algorithms. In this section, we now want to detail the implementation of
a Nested DFS algorithm inside this framework, as this algorithm is one choice for checking
the language of the product automaton for emptiness, as was described in the introduction
to this chapter.

4.6.1 Introduction to Nested DFS

The language of a Büchi automaton is empty if, and only if, there is a reachable cycle
including an accepting state. Therefore the general idea of Nested DFS covers this behavior:
use a DFS to find accepting states (the “blue DFS”) and check whether one can build a
cycle from there (the “red DFS”).

The first Nested DFS proposal is due to Courcoubetis et al. [6] and is presented in
Alg. 4.84. Here the red search tries to find a path directly to the node it started from (seed
in DFS-red).

Note that the knowledge whether a node has been searched in a red DFS is shared
globally by having the boolean red directly attached to the node (cf. line 11). This avoids
searching subtrees that have been searched already in previous runs of the red DFS.
Without this behavior, a plain DFS with linear runtime (in the size of the edges) is started

4The algorithm has been presented earlier in this chapter, as Alg. 4.3, albeit in a different way. The
formalization in Alg. 4.3 was chosen to highlight the working of the framework. The current formalization
in Alg. 4.8 on the other hand follows the literature.

Algorithm 4.8 Nested DFS by Courcoubetis et al. [6]

1: procedure Nested-DFS
2: DFS-blue start

3: procedure DFS-blue(s)
4: s.blue← true
5: for all t ∈ succs s do
6: if ¬ t.blue then
7: DFS-blue t
8: if s ∈ A then . s is accepting
9: DFS-red(s, s)

10: procedure DFS-red(seed, s)
11: s.red← true
12: for all t ∈ succs s do
13: if ¬ t.red then
14: DFS-red(seed, t)
15: else if t = seed then
16: report cycle

65

4 Checking

Algorithm 4.9 Nested DFS by Schwoon and Esparza [51]

1: procedure DFS-blue(s)
2: s.colour← cyan
3: for all t ∈ succs s do
4: if t.colour = cyan

∧(s ∈ A ∨ t ∈ A) then
5: report cycle
6: else if t.colour = white then
7: DFS-blue t
8: if s ∈ A then
9: DFS-red s s

10: s.colour← red
11: else
12: s.colour← blue

13: procedure DFS-red(s)
14: for all t ∈ succs s do
15: if t.colour = cyan then
16: report cycle
17: else if t.colour = blue then
18: t.colour← red
19: DFS-red(t)

20: procedure Nested-DFS
21: DFS-blue start

for each accepting state. As the number of them is also linear, the resulting runtime for
the whole algorithm would be quadratic. But with the approach shown in Alg. 4.8 the
result is an overall linear runtime for the whole search: We traverse an edge two times in
each colored DFS, once upon reaching the node and once upon backtracking.

Note that this omission of nodes visited in other red searches has the crucial prerequisite
of triggering the red search while backtracking (see line 9). Running the red part directly
in the discovery phase would result in an incomplete algorithm as possible cycles might
be missed.

Enhancements of the basic Nested DFS are for example given by Holzmann et al. [19],
where the red search succeeds if a path to the stack of the blue one has been found, or by
Schwoon and Esparza [51], where also the blue search is utilizied for cycle detection.

For CAVA we chose to implement the version of Schwoon and Esparza, which is given
in Alg. 4.9. The enhancement over the original approach is to also take the stack into
consideration: Whenever we encounter a successor node which is currently coloured cyan
(i. e., it is on the stack), we test whether the current node or its successor are accepting. If
it is, we have succesfully identified a cycle (as the stack forms a path to the current node).
Additionally, in DFS-red the method introduced by [19] is also used, i. e., we check for a
path onto the stack instead of looking exactly for the starting node.

Zhao et al. [58] lists and compares other implementations of Nested DFS, which are, in
imperative implementations, faster than the one by Schwoon and Esparza. We nevertheless
stuck to the latter, because it is quite straightforward to implement in a functional setting.
Also, improvements that are cheap in an imperative setting (e. g., by adding additional
flags for each node) can be expensive in the functional setting (e. g., flags would need some
kind of dictionary structure, where lookups are expensive and memory consumption is
heavier). Still, this has not been benchmarked by us.

66

4.6 An Application in Model Checking: Nested DFS

4.6.2 Formalization – Inner DFS

From the structure of Nested DFS, it is obvious that one needs to instantiate the DFS
framework twice: for the inner and the outer DFS. Taking a closer look at the inner DFS,
one can notice that it is not necessary to use such a special case, but that the inner DFS
represents something more general: It is a general safety checker, i. e., it looks whether
there exists a reachable node with a certain property – in case of Nested DFS, the property
would be lying on the stack.

Therefore we start by formalizing such a general property checker. For this instantiation
we state that the extension state should be the path to a found node5:

record 'v fp0_state = 'v state +
ppath :: ('v list × 'v) option

Here, ppath should then either be None if no node can be found, or Some (p,v), where v is
the node found, and p is the path leading there. This path starts in V0 and does not include
v6. If one of the initial nodes V0 already fulfills the search property, the path-element p is
the empty list.

Using this state, we then assemble our search (hooks not mentioned are no-ops), where
P represents the property we are searching for

definition fp0_params P ≡ L
on_init = return L ppath = None M,
on_new_root = λv0 s. return L ppath = (if P v0 then Some ([], v0) else None) M,
on_discover = λu v s. return L ppath = (

if P v
then (* v is already on the stack, so we need to pop it again *)

Some (rev (tl (stack s)), v)
else None) M,

is_break = λs. ppath s 6= None M

This instantiation can then be shown to fulfill its purpose:

locale fp0 = param_DFS E V0 (fp0_params P)
for E V0 and P :: 'v⇒ bool

lemma (in fp0) fp0_correct:
dfs ≤ spec s. case ppath s of

None⇒ ¬(∃v0∈V0. ∃v. (v0,v) ∈ E∗ ∧ P v)
| Some (p,v)⇒ (∃v0∈V0. path E v0 p v ∧ P v)

Of course, this algorithm would work for a replacement of the inner DFS, but lacks an
important property: It may visit a node that has already been visited by some other run of
the inner DFS, thereby removing an advantage of Nested DFS. We counter this problem by
adding a wrapper around the just defined algorithm. This wrapper will take the regular
input of the safety checker plus an additional restriction set R. Here, R represents a set of
nodes that are to be excluded from the search.

5fp0 stands for “find path with length at least zero”.
6This is the general path definition from Section 3.2. We use it for it allows easy concatenation.

67

4 Checking

The wrapper then returns the result of the search itself plus, if no node has been found,
the union of the restriction set and the set of visited nodes (which just happens to fit the
requirements of the inner DFS):

definition find_path0_restr where
find_path0_restr E V0 P R ≡ do {
s← fp0.dfs (E ∩ (−R) × (−R)) (V0−R) P;
case ppath s of

None⇒ return (Inl (R ∪ dom (discovered s))) (* new restriction *)
| Some (vs,v)⇒ return (Inr (vs,v)) (* path found *)
}
This shows that the restriction is done by removing the restriction set R both from the
edges and the starting nodes. Of course, to still ensure correctness, the set R has to meet
certain requirements:

• The restriction must be closed under E: E `` R ⊆ R. This ensures that no unrestricted
nodes are ”shielded off“ by nodes in R. If this was not the case, there might be nodes
fulfilling P, but only reachable by paths through R.

• The restriction must not contain any node fulfilling P: Collect P ∩ R = {}.

Under these requirements, combined into a single predicate restr_invar, it can be shown
that this restricted search is correct (for restr_invar to be an invariant, it is also demanded
that it is also valid for the new updated restriction set):

lemma find_path0_restr_correct:
assumes restr_invar E R P
shows find_path0_restr E V0 P R ≤ spec r. case r of

Inl R'⇒ R' = R ∪ E∗``V0 ∧ restr_invar E R' P
| Inr (vs,v)⇒ P v ∧ (∃v0∈V0−R. path (E ∩ (−R) × (−R)) v0 vs v)

Note, that R' = R ∪ E∗``V0 ∧ Collect P ∩ R' = {} entails ¬(∃v0∈V0. ∃v. (v0,v) ∈ E∗ ∧ P v).
This is then further extended into find_path1_restr, which bears the additional restriction

that the final path must be at least of length 1. This is necessary for Nested DFS. We will
omit its definition here.

4.6.3 Formalization – Outer DFS

Having laid the foundation for the inner “red” part of Nested DFS, we can continue with
defining the outer part. Again, we begin by stating what the extension part of the state is
going to look like. This time, it will consist of two parts: red being the set of nodes visited
by red search, and lasso, which will be the counter-example we are looking for:

record 'v blue_dfs_state = 'v state +
lasso :: ('v list × 'v list) option (* pr × pl *)
red :: 'v set

Note the form for lasso: it consists of the path to an accepting node (without this node),
and the loop from that node to itself. Also, similarly to the formalization of the safety
checker, it is embedded in an option to signal the non-existance of such a counter-example.

68

4.6 An Application in Model Checking: Nested DFS

Again, we then start a new locale for the DFS7:

locale BlueDFS = fb_graph E V0
for E and V0 :: 'v set +
fixes accpt :: 'v⇒ bool

Note the additional parameter accpt representing the acceptance property on nodes.
Now, inside this locale, we can combine our definition of state with the safety property

checker to gain our equivalent to running the red search:

abbreviation (in BlueDFS) red_dfs R P x ≡ find_path1_restr E {x} P R

Here, {x} is taken as the value for V0 of the safety checker, because this is indeed the only
node where paths should begin. Then we combine it further to also interpret the return
value correctly:

definition (in BlueDFS) run_red_dfs where
run_red_dfs u s ≡ case lasso s of

None⇒ do {
redS← red_dfs (red s) (λx. x = u ∨ x ∈ set (stack s)) u;
return (mk_blue_witness s redS)
}

| _⇒ NOOP s

With this definition, we only call the red DFS if we have not found a counter-example yet.
Also, we state in the property to check for that we are looking for a node which is either
on the stack, or equals the current node. The latter part is needed, because it has already
been popped from the stack when calling this function. The function mk_blue_witness is
used to interpret the result and construct a counter-example, if necessary. Its definition is
as follows:

definition (in BlueDFS) mk_blue_witness where
mk_blue_witness s redS ≡ case redS of

Inl R'⇒ L lasso = None, red = R' M
| Inr (vs, v)⇒ let rs = rev (stack s) in

L lasso = Some (rs, vs@dropWhileNot v rs), red = red sM

This definition states that in case the safety checker just returns a new restriction set, we
take it to represent our new set of nodes visited by red searches. In case we found some
node v on the stack and some path vs leading to it, we build the lasso: The leading path
(to the current node u) is the reversed stack. The loop is then made up of two parts, the
path vs from u to v, and this part of the reversed stack between v and u. While this is not
necessarily the shortest counter-example, it is the easiest one to construct.

We now can already instantiate our DFS framework to yield the outer DFS (omitted
fields again are no-ops):

definition (in BlueDFS) blue_dfs_params where
blue_dfs_params = L

on_init = return L lasso = None, red = {} M,

7One might notice, that this time the new locale does not extend param_DFS. This is due to the fact that we
first need some setup to actually create the DFS definition. The sublocale relation is established later on.

69

4 Checking

on_finish = λu s. if accpt u then run_red_dfs u s else NOOP s,
is_break = λs. lasso s 6= None,

But this only represents the Nested DFS version of Holzmann et al. [19]. To get the one of
Schwoon and Esparza [51], we also need to handle back edges:

on_back_edge = se_back_edge M

The function se_back_edge handles the cases of one of the ends of the edge being accepting.
In any of those cases we get a lasso constructed by the stack and the back edge which
is then created. Of course, nothing is done in case a counter-example has already been
found:

definition (in BlueDFS) se_back_edge where
se_back_edge u v s ≡ case lasso s of

None⇒
(* it's a back edge, so u and v are both on stack *)
(* we differentiate whether u or v is the 'culprit'

to generate a better counter example *)
if accpt u then

let rs = rev (tl (stack s));
ur = rs;
ul = u#dropWhileNot v rs

in return L lasso = Some (ur,ul), red = red s M
else if accpt v then

let rs = rev (stack s);
vr = takeWhileNot v rs;
vl = dropWhileNot v rs

in return L lasso = Some (vr,vl), red = red s M
else NOOP s

| _⇒ NOOP s

To prove correctness for this formalization, we define three different invariants:

• In case we have not found a counter-example yet, we have to show that red is a
restriction set fulfilling the requirements stated earlier, and that it only contains
finished nodes:

lasso s = None −→ restr_invar E (red s) (λx. x∈set (stack s)) ∧ red s ⊆ dom (finished s)

• If we have not found a counter-example yet, there is no accepting finished node
which is part of a cycle:

lasso s = None −→ (∀x. accpt x ∧ x ∈ dom (finished s) −→ (x,x) /∈ E+))

• In the case where we have found a counter-example, it indeed is a lasso:

∀pr pl. lasso s = Some (pr,pl) −→
pl 6= []

∧ (∃v0∈V0. path E v0 pr (hd pl))
∧ accpt (hd pl)
∧ path E (hd pl) pl (hd pl) (* cycle *)

70

4.7 An Advanced Application: Tarjan’s Algorithm

After we have proven that these invariants hold on our definition (via is_invar), they can
be combined into the correctness property of the algorithm:

case lasso s of
None⇒ ¬(∃v0∈V0. ∃v. (v0,v) ∈ E∗ ∧ accpt v ∧ (v,v) ∈ E+)

| Some (pr,pl)⇒ ∃v0∈V0. ∃v.
path E v0 pr v ∧ accpt v ∧ pl 6=[] ∧ path E v pl v

Similarly to our approach on the safety property checker, we can create a definition
outside of the locale to have a stand-alone function for Nested DFS and further lift the
correctness property on this definition:

definition nested_dfs E V0 accpt ≡ do {
s← blue_dfs.dfs E V0 accpt;
return (lasso s)
}

lemma nested_dfs_correct:
assumes fb_graph E V0
shows nested_dfs E V0 accpt ≤ spec r. case r of

None⇒ ¬(∃v0∈V0. ∃v. (v0,v) ∈ E∗ ∧ accpt v ∧ (v,v) ∈ E+)
| Some (pr,pl)⇒ (∃v0∈V0. ∃v.

path E v0 pr v ∧ accpt v ∧ pl 6=[] ∧ path E v pl v)

The development is finished by a straightforward refinement to an implementation and
the eventual export to code.

4.7 An Advanced Application: Tarjan’s Algorithm

The DFS framework has been developed as part of a model checker, but it is intended to
be used in a broad range of applications. To showcase our framework in a more advanced
setting than Nested DFS, we implemented Tarjan’s Algorithm [54] for generating the
set of strongly-connected components (SCCs) of a graph using the framework. While
Tarjan’s algorithm itself is actually used inside the model checker as part of the LTL to
GBA translation [49], our implementation is not, although it would be feasible.

The algorithm has already been mentioned earlier in the introduction to depth-first
search (Section 4.1). For a first overview we repeat the pseudo-code of the algorithm in
Alg. 4.10 on page 73. This section is going to analyze the algorithm futher and to provide
a general picture about its correctness. Thereafter, we detail the implementation inside our
framework and show parts of the proof process leading to the final lemma of correctness.

The most important concepts of Tarjan’s algorithm are the map lowlink and the accompa-
nying “Tarjan stack” stacktj: The “Tarjan stack” contains the current stack plus all nodes of
all SCCs that are currently in progress. That is, any SCC where at least one node has been
discovered, but the SCC is not explored fully, or at least it is unknown whether further
contained nodes exist. Whenever the root of an SCC (the first discovered node of an SCC)
is finished, the whole SCC is popped from the Tarjan stack: By construction, when a root
of an SCC is about to be popped from the normal stack, all elements placed on top of it on
the Tarjan stack form the corresponding SCC.

71

4 Checking

The lowlink map on the other hand represents the current most probable root for the SCC
of each node: Each node is mapped to the identification of the corresponding node that is
(at the current state of exploration) most likely to serve as the root. In our example the
time of its discovery is used, because we have been using this concept already throughout
our DFS formalizations. Other formalizations may choose an explicit index set, or any
other means.

The restriction mentioned above, to only consider the current state of exploration, should
be understood as: Until the SCC is completely determined, its root cannot be identified.
Therefore nodes not equal to the root can (and will) remain equipped only with partial
information. This is not an issue, because, as we will show later on, when the root of the
SCC is to be finished the information in lowlink will be correct, i. e., that node will point to
itself.

Initially (line 12) each node starts out by denoting itself as a possible root, because there
is no knowledge yet about its successors. When encountering a back or cross edge (line 25)
the choice is two-fold:

• When a back edge is encountered (i. e., u ∈ stack, which entails
discovered u ≤ discovered x ∧ u ∈ stacktj) and it is not the top of the stack itself (i. e., a
self-loop), the node u is taken as a new candidate for the root of the current SCC,
given that we haven’t found anything better yet. The latter is ensured by taking the
minimum, i. e., the node highest up in the search tree.

• When a cross edge is encountered and the discovery time of the cross-edge’s target
(u) is greater or equal to the current top of the stack, nothing is done: Even if it were
part of the same SCC it cannot be its root, for the root is defined as having the lowest
discovery time of the SCC.

• When a cross edge is encountered and the edge’s target (u) is not contained on the
Tarjan stack anymore, its SCC has already been found. Therefore the current node
cannot be part of the same SCC and nothing is done.

• When a cross edge is encountered and both of the previous points do not apply, the
target node u is part of the same SCC as the current node. Therefore it serves as a
candidate for the SCC’s root.

On backtracking (line 17), the current information about the SCC’s root is propagated
back up the stack, that is the lowlink of the node on the stack eventually is the minimum
of the lowlink of its successors and its own discovery time.

When, during backtracking, the lowlink of a node is equal to its own discovery time
(line 21), the current node is a root of an SCC and therefore the other nodes of the SCC
can be collected from the Tarjan stack (line 22).

4.7.1 Implementation in the Framework

For the course of this section, we apply some short-hand notation: Similarly to writing
δ s v for the discovery time of node v in state s and ϕ s v for the finishing time (cf. Sec.4.4.1),
we will write ζ s v when referring to the lowlink value8 of node v in state s.

8ζ looks somewhat similar to an l.

72

4.7 An Advanced Application: Tarjan’s Algorithm

Algorithm 4.10 Tarjan’s Algorithm (repetition of Alg. 4.4)

1: discovered← {}
2: stack← []
3: stacktj ← []
4: sccs← {}
5: lowlink← {}
6: time← 0

7: procedure DFS(u)
8: if u /∈ discovered then
9: stack← push u stack

10: stacktj ← push u stacktj
11: discovered← discovered∪ {(u, time)}
12: lowlink← lowlink ∪ {(u, time)}
13: time← time + 1
14: for all v ∈ successors u do
15: DFS v
16: stack← pop stack

17: if stack 6= [] then
18: let x = top stack
19: let t′ = min (lowlink x)(lowlink u)
20: lowlink← lowlink ∪ {(x, t′)}
21: if lowlink u = discovered u then . Root of SCC
22: let (tj, scc′) = collect and pop everything until u stacktj
23: stacktj ← tj
24: sccs← sccs∪ {scc′}
25: else
26: let x = top stack
27: if discovered u < discovered x ∧ u ∈ stacktj then
28: let t′ = min (lowlink x)(discovered u)
29: lowlink← lowlink ∪ {(x, t′)}

30: procedure Tarjan

31: for all v0 ∈ V0 do
32: DFS v0

33: return sccs

73

4 Checking

As usual, the implementation starts by specifying the search state, which equals the
additional variables given in the pseudo-code:

record 'v tarjan_state = 'v state +
sccs :: 'v set set
lowlink :: 'v⇒ nat option
stacktj :: 'v list

This state is initialized empty:

definition tarjan_init ≡ return L sccs = {}, lowlink = Map.empty, stacktj = [] M

On discovering a new node, that node is pushed onto the Tarjan stack and its discovery
time is registered as an initial lowlink, as described earlier:

definition tarjan_disc where
tarjan_disc v s ≡ return L

sccs = sccs s,
lowlink = (lowlink s)(v 7→ δ s v),
stacktj = v#stacktj sM

The function for encountering a back or cross edge is also similar to Alg. 4.10:

definition tarjan_back where
tarjan_back u v s ≡ (

if δ s v < δ s u ∧ v ∈ set (stacktj s) then
let ul' = min (ζ s u) (δ s v)
in return L lowlink := (lowlink s)(u 7→ul'), . . . M

else NOOP s)

The last phase, finishing the current top of the stack, is modeled as:

definition tarjan_fin where
tarjan_fin v s ≡ do {

let ll = (if stack s = [] then lowlink s
else let u = hd (stack s) in
(lowlink s)(u 7→ min (ζ s u) (ζ s v)));

if ζ s v = δ s v then do {
assert (scc_root E s v (scc_of E v));
(tjs,scc)← tj_stack_pop (stacktj s) v;
return L stacktj := tjs, sccs := insert scc (sccs s), lowlink := llM

} else do {
assert (¬ scc_root E s v (scc_of E v));
return L lowlink := ll, . . . M

}}
Here, tj_stack_pop stacktj v takes care of popping all nodes from stacktj until (and including)
v and returns the resulting stack and the set of popped nodes, building a new SCC. Its
definition will be omitted. The two asserts will be discussed later on.

From those building blocks, we construct our DFS implementation, together with its
locale:

74

4.7 An Advanced Application: Tarjan’s Algorithm

definition tarjan_params ≡ L
on_init = tarjan_init,
on_new_root = tarjan_disc,
on_discover = λu. tarjan_disc,
on_finish = tarjan_fin,
on_back_edge = tarjan_back,
on_cross_edge = tarjan_back,
is_break = λs. False M

locale tarjan = param_DFS E V0 tarjan_params
for E V0

Note that is_break is always False as the intention is to explore the whole graph and collect
all SCCs.

Eventually, we wrap the “generated” dfs function from the tarjan locale into a simple
function that, given a graph, should output the set of SCCs of that graph:

definition tarjan E V0 ≡ do {
s← tarjan.dfs E V0;
return (sccs s) }

On it, we are going to prove the following correctness theorem:

lemma tarjan_correct:
tarjan E V0 ≤ spec sccs. ∀scc ∈ sccs.

is_scc E scc
∧ ⋃

sccs = reachable E V0

4.7.2 Prerequisites for the Correctness Proof

To establish the correctness theorem about Tarjan’s algorithm, we have to develop some
basic concepts beforehand.

As laid out earlier in Section 4.4, the framework is meant to be extended easily, even
with general properties about depth-first search without having to modify the original
theories9. For this reason, the following parts are modeled as being part of DFS_invar,
that is, any other DFS-based algorithm only needs to import the respective theory to gain
access to those properties.

Root of an SCC

The first such concept is formalizing the root of an SCC, i. e., the node of an SCC with the
highest position in the tree (or, equivalent: the lowest discovery time of the SCC). This is
expressed as all discovered nodes of the SCC being reachable from the root in the search
tree:

9Of course, exceptions apply for any properties that need additional (general) information. For those, either
an extension to param_DFS and DFS_invar needs to be created, or the original must be extended.

75

4 Checking

definition (in DFS_invar) scc_root where
scc_root s v scc←→ is_scc scc

∧ v ∈ scc
∧ v ∈ dom (discovered s)
∧ scc ∩ dom (discovered s) ⊆ (tree s)∗ `` {v}

Of course, this entails the existence of a path in the search tree from the root of the SCC to
x, for any discovered node x, asserted that x and the root are not identical:

lemma (in DFS_invar) scc_root_scc_tree_trancl:
J scc_root s v scc; x ∈ scc; x ∈ dom (δ s); x 6= v K
=⇒ (v,x) ∈ (tree s)+.

It can also be shown that a root is unique:

lemma (in DFS_invar) scc_root_unique_root:
J scc_root s v scc; scc_root s v' scc K
=⇒ v = v'

Utilizing the knowledge about the search tree, we can eventually show that a node of an
SCC is the root iff it has the minimum discovery time of that SCC.

lemma (in DFS_invar) scc_root_iff_Min_disc:
J is_scc scc; r ∈ scc; r ∈ dom (discovered s) K
=⇒ scc_root s r scc←→ δ s r = Min {δ s v | v ∈ scc ∩ dom (discovered s)}

This is an important fact, and a future building block for the proof of our correctness
theorem: It allows to deduce the root of the SCC from the set of discovery times of that
SCC.

Another important property is that during the search the (determined) root of an SCC
does not change. The following lemma proves that given our state s, in any possible future
state s' the root remains stable. The assumptions model the “possible future”, i. e., it is not
built differently from s. Naturally, the root r must be discovered in s:

lemma (in DFS_invar) scc_root_transfer:
assumes r ∈ dom (discovered s)
assumes future:

DFS_invar G param s'
dom (discovered s) ⊆ dom (discovered s')
∀x∈dom (discovered s). δ s x = δ s' x
∀x∈dom (discovered s') − dom (discovered s). δ s' x ≥ counter s
tree s ⊆ tree s'

shows scc_root s r scc←→ scc_root s' r scc

Lowlink

The second concept to introduce before the correctness proof is a formalization of the
lowlink that is used in Tarjan’s algorithm. While in the main algorithm, the lowlink is a
simple map, it lacks any semantics. Therefore we are going to define an expressive version
of lowlink that can be used to define what lowlink-value any node will have at any point
in time of the exploration.

76

4.7 An Advanced Application: Tarjan’s Algorithm

For this, we develop the concept of a lowlink_path10:

definition (in DFS_invar) lowlink_path where
lowlink_path s v p w ≡ path E v p w ∧ p 6= []

∧ (last p, w) ∈ cross_edges s ∪ back_edges s
∧ (length p > 1 −→

p!1 ∈ dom (finished s)
∧ (∀k < length p − 1. (p!k, p!Suc k) ∈ tree s))

From this definition, a lowlink_path is a (non-empty) path along the search tree – except
for the final edge, which is either a cross or back edge. It denotes those paths that are
inherently necessary to build non-trivial SCCs: Every non-trivial SCC needs a cross or
back edge, for else there is no cycle.

We can then collect the set of nodes reachable via such paths, resulting in the lowlink_set:

definition (in DFS_invar) lowlink_set where
lowlink_set s v ≡ {w ∈ dom (discovered s).

v = w
∨ (v,w) ∈ E+ ∧ (w,v) ∈ E+ ∧ (∃p. lowlink_path s v p w)}

Here, the set lowlink_set s v denotes the set of possible candiates for the root of the SCC of
v, given the current search state s. This time, we also include trivial one-node SCCs by
having the additional condition w = v.

Finally, we define the property LowLink s v to be the minimum discovery time of all
such possible candidates:

definition (in DFS_invar) LowLink s v ≡ Min (δ s ` lowlink_set s v)

From the basic understanding of lowlink follows that it cannot point further down the
tree, thus:

lemma (in DFS_invar) LowLink_le_disc:
v ∈ dom (discovered s) =⇒ LowLink s v ≤ δ s v

A further intuition about lowlink is that whenever LowLink s v = δ s v, then v is a root of
its SCC. Of course, this does not hold at any time: Initially, when no successors of v have
been discovered, the equality holds trivially, while the implication does not.

We can show this intution in its own lemma where the assumptions reflect the state
shortly before a node is popped from the stack, or where it has been popped already. This
is not incidentally.

lemma (in DFS_invar) LowLink_eq_disc_iff_scc_root:
v ∈ dom (finished s) ∨ (stack s 6= [] ∧ v = hd (stack s) ∧ pending s `` {v} = {})
=⇒ LowLink s v = δ s v←→ scc_root s v (scc_of E v)

The proof of this lemma is pretty straightforward in the← direction, using the fact that
LowLink s v ≤ δ s v. The→ direction on the other hand is more involved: We need to show
that every node of the SCC is reachable from v via a path in the search tree. This proof

10The formalization of paths is again the same introduced for automata (Section 3.2) and also the same as
used earlier for Nested DFS (Section 4.6.2). That is, the predicate path E v p w denotes a path from v to w
in E, where p contains all the nodes visited except for the final node. Thus w is not contained in p, given we
do not visit it twice.

77

4 Checking

then makes heavy use of (consequences of) the Parenthesis Theorem, which allows to
assume paths through the tree using timing information, for instance:

lemma (in DFS_invar) parenthesis_impl_tree_path:
assumes v ∈ dom (finished s) and w ∈ dom (finished s)
and δ s v < δ s w and ϕ s v > ϕ s w
shows (v,w) ∈ (tree s)+

A final important lemma is a transfer lemma, i. e., showing that the LowLink value of a
node does not change, under certain conditions, when developping a state further:

lemma (in DFS_invar) LowLink_eqI:
assumes DFS_invar G param s'
assumes discovered s ⊆ discovered s'
assumes lowlink_set s w ⊆ lowlink_set s' w
and lowlink_set s' w ⊆ lowlink_set s w ∪ X
and w ∈ dom (discovered s)
and

∧
x. Jx ∈ X; x ∈ lowlink_set s' wK =⇒ δ s' x ≥ LowLink s w

shows LowLink s w = LowLink s' w

4.7.3 Correctness Proof

After the two building blocks of the formalization of roots of SCCs and an expressive
lowlink variant in the previous subsection, we tackle the final correctness proof of Tarjan’s
algorithm in our framework. In the process, we will only highlight the final parts and skip
over the (mostly) technical lemmas on leading to them.

We use the process described in Section 4.4 for establishing invariants. To ease reading,
we will show here the invariants after being lifted into our locale tarjan declared above,
instead of the ones for the actual proof11.

sccs s are SCCs

Firstly, we show that, as an invariant, all SCCs found during the process are indeed
strongly-connected components:

lemma (in tarjan) sccs_are_sccs:
scc ∈ sccs s =⇒ is_scc E scc

For the proof, we first need to recall the part of our definition of tarjan_fin where new
SCCs were added to sccs s:

assert (scc_root s v (scc_of E v));
(tjs,scc)← tj_stack_pop (stacktj s) v;
return L stacktj := tjs, sccs := insert scc (sccs s), lowlink := ll M

The important part is the first line: we annotated an assertion that v is indeed the root of
its SCC. The Refinement Framework allows to use those assertions in the proof process as

11Please refer to the aforementioned Section 4.4 for how those differ.

78

4.7 An Advanced Application: Tarjan’s Algorithm

additional assumptions (cf. Section 2.2). Only later on, in an additional proof step, it has
to be shown that the assertions hold.

The proof itself boils down to showing that the nodes popped from the stacktj are
equivalent to scc_of E v. The ⊆-direction follows from the Parenthesis Theorem and
properties about the Tarjan stack including:

lemma (in tarjan) tj_stack_reach_hd_stack:
v ∈ set (stacktj s) =⇒ (v, hd (stack s)) ∈ E∗

For the ⊇-direction we use another invariant stating that whenever a root of an SCC is
finished, there are no nodes of the SCC left on the Tarjan stack:

lemma (in tarjan) no_finished_root:
J scc_root s r scc; r ∈ dom (finished s); x ∈ scc K
=⇒ x /∈ set (stacktj s))

Moreover we know that all other nodes of the SCC already must be finished due to the
following lemma:

lemma (in tarjan) scc_root_finished_impl_scc_finished:
J v ∈ dom (finished s); scc_root s v scc K
=⇒ scc ⊆ dom (finished s)

And thirdly, it has been shown that finished nodes are either on the Tarjan stack or
contained in one of the collected SCCs:

lemma (in tarjan) finished_ss_sccstj_stack:
dom (finished s) ⊆ ⋃

sccs s ∪ set (stacktj s)

On combining those three properties, we can deduct that all other nodes of the SCC
must either be removed from the Tarjan stack with the current step, or already be part of
the collected SCCs. The latter is not possible, because due to the induction hypothesis, the
set sccs can only hold complete SCCs, which would imply that also the root of that SCC is
already collected and thereby finished. This is definitly not the case, as we are just in the
process of finishing it. Also, as a node cannot be part of two different SCCs, and roots are
unique, no other SCC or root can serve instead.

Thus, ultimately we can follow that the set of popped nodes equals the SCC of v.

Lowlink Equivalence

In the previous section, we introduced a semantically meaningful version of the lowlink:
LowLink. We also showed that, if the LowLink is equal to the discovery time for a node,
under certain assumptions, this node is a root of its SCC.

In our implementation of Tarjan’s algorithm, we fill a lowlink map without any inherent
meaning. We must therefore prove that the value of a node in that map is equal to its
LowLink value, thereby showing the equivalence of those two representations:

lemma (in tarjan) lowlink_eq_LowLink:
x ∈ dom (discovered s) =⇒ ζ s x = LowLink s x

The definition of LowLink, and especially lowlink_path uses constructs from all possible
phases of the DFS, in particular both discovered and finished. As a consequence, the proof

79

4 Checking

for the lemma is very large (about 500 lines), for we have to show the equivalence holds
throughout all phases (in regular cases, lemmas only have to deal with one or two cases).
Additionally, when processing one node, it influences the LowLink value of other nodes:
For instance, when declaring a node as finished, the lowlink_set of other nodes higher
up on the stack can increase, because all the back and cross edges originating from the
finished node are now possible to be used as the final part of a lowlink_path.

For those reasons, the proof of the equivalence is large, convoluted and very technical.
We are therefore omitting any further discussion of that proof.

The useful consequence stems from its combination with LowLink_eq_disc_iff_scc_root,
yielding

lemma (in tarjan) lowlink_eq_disc_iff_scc_root:
v ∈ dom (finished s) ∨ (stack s 6= [] ∧ v = hd (stack s) ∧ pending s `` {v} = {})
=⇒ ζ s v = δ s v←→ scc_root s v (scc_of E v)

Finalizing the Proof

To finalize the correctness proof, we first need to show that the algorithm does not fail
(for the refinement notion of failing). As no possibly failing operations are used in the
algorithm itself except for the assertions, it needs to be shown that they hold. Obviously,
they follow from the lemma lowlink_eq_disc_iff_scc_root.

The correctness proof also included the property of covering all nodes during the search,
i. e.,

⋃
sccs s = reachable. This is proven with the following lemma, which we will include

in full, as it is self-explanatory and mainly relies on the fact that we already know that the
set of reachable nodes is equal to the set of finished nodes on completion (cf. 4.4.1):

lemma (in tarjan) nc_sccs_eq_reachable:
assumes NC: ¬ cond s
shows reachable =

⋃
sccs s

proof
from nc_finished_eq_reachable NC have [simp]: reachable = dom (finished s) by simp
with sccs_finished show

⋃
sccs s ⊆ reachable by simp

from NC have stack s = [] by (simp add: cond_alt)
with stacks_eq_iff have stacktj s = [] by simp
with finished_ss_sccs_stacktj show reachable ⊆ ⋃

sccs s by simp
qed

Finally, we gain the correctness lemma from a combination of the properties above:

lemma tarjan_correct:
tarjan E V0 ≤ tarjan_spec E V0.

4.7.4 Concluding Remarks

In the previous sections, we have shown how Tarjan’s algorithm can be implemented in our
DFS framework and that its correctness can be proven. We have not shown, as it has not

80

4.8 Comparison to Previous Approaches

been done yet, how the framework can be used to generate resulting code. While a trivial
code export is straightforward (no additional non-deterministic functionality is used and
the data structures involved are already covered in the Isabelle Collections Framework),
an efficient code takes more work: Especially we are, for the first time, using the timing
information and thus cannot simply map it away. Hence, the current data refinements
provided by the framework (cf. Section 4.5.1) are not sufficient and additional refinements
need to be developed.

Moreover, the proofs are in some instances unpolished and can be, very probably,
fine-tuned and collapsed. Especially the parts about roots of SCCs and LowLink share
proof-work, mainly when it comes to constructing paths between nodes in the search tree.
A more abstract notion about roots of SCCs and lowlink might be desirable, reducing the
need for tedious construction proofs.

Finally, this implementation of Tarjan’s algorithm is not the first one inside the CAVA-
Project: There already exists one by Schimpf [49], that is used for the LTL-to-GBA transla-
tion. Schimpf’s version is not created using the DFS framework, relying instead on the
Refinement Framework alone. As a consequence, the invariants about the algorithm are
encoded in a twenty lines block, followed by more than 900 lines of proof showing all
those invariants at the same time. While Schimpf’s version is shorter as a whole (and does
provide an additional implementation), we prefer the incremental way of building and
proving the algorithm that is allowed by the DFS framework. In particular, refactoring
parts of the proof for new versions of libraries or changed assumptions can require a
whole rewrite in Schimpf’s case (see also the discussion about a former version of the
framework in Section 4.8.2 for related arguments).

4.8 Comparison to Previous Approaches

Our framework for formalizing depth-first search based algorithms that we presented so
far is the result of multiple design iterations. In this section, we want to give an overview
about the lessons learnt from the previous approaches and highlight the differences.

Unfortunately, we cannot point out differences to related work, as there are, to our
knowledge, no similar frameworks existing. The other works so far are merely dealing
with DFS directly, like the work of Nishihara and Minamide [40], where two variants of
a basic DFS are given (one with explicit stack, one without) and their equality is shown.
Furthermore a couple of basic invariants are proven and code export is possible. But there
is neither parameterization (it can solely compute the set of reachable nodes) nor flexible
representation of the graph: It is fixed as a list of pairs. Another basic approach is given
by Pottier [45], where DFS is formalized in Coq to prove correct Kosaraju’s algorithm
for computing the strongly connected components. This formalization also allows for
program extraction, but does not allow easy extension for use in other algorithms.

There are also instances of DFS inside the CAVA project, which are not covered by the
framework. This includes a version of Nested DFS by Peter Lammich, and also his verified
implementation of Gabow’s SCC algorithm [27]. Another notable instance is the version of
Tarjan’s algorithm by Alexander Schimpf [49].

Having stated those usages of DFS directly, we go back to examine the differences, and
the consequences those differences entail, of previous versions of the framework. The

81

4 Checking

versions we want to take as reference are the one described in [35] and the one mentioned
(without going into details there) in [10]. Also, we compare to Lammich’s templating
approach as mandated for example in [27].

4.8.1 DFS-Framework, the ATX Approach

The version of the framework published in the ATX-Paper [35] is the first published
approach to the idea of a framework for DFS-based algorithms. At its start, there was no
support for refinement in Isabelle/HOL and the idea not incorporated in its design.

The general idea of this framework is not different from the one described so far: It
adds extension points to the search algorithm, which can be used by implementations to
enrich the search with their functionality. That is, a search-based algorithm is expressed as
a record of implementations for those hooks:

record ('S, 'n) dfs_algorithm =
dfs_cond :: 'S⇒ bool
dfs_action :: 'S⇒ ('S,'n) dfs_sws⇒ 'n⇒ 'S
dfs_post :: 'S⇒ ('S, 'n) dfs_sws⇒ 'n⇒ 'S
dfs_remove :: 'S⇒ ('S, 'n) dfs_sws⇒ 'n⇒ 'S
dfs_start :: 'n⇒ 'S
dfs_restrict :: 'n set

The type variables 'n and 'S refer to the type of the nodes and the extension state,
respectively. Also ('S,'n) dfs_sws refers to the search state, which will be described later
on.

Problem: Deterministic hooks

While the exact naming and number of hooks differ (for instance, there is no differentiation
between back and cross edges, both are covered by dfs_remove), the main difference is the
result type of the hooks: While the current framework allows for non-deterministic results
(the non-deterministic monad is part of the Refinement Framework), the hook functions of
the ATX-version are deterministic. This has drastic consequences for the expressiveness
of the framework: As an example, it is not possible for a Nested DFS algorithm in this
framework to pass back a counter-example, as the counter-example of the inner DFS
depends on the exact run. As the search algorithm itself is, like we will describe in a
moment, formulated in a non-deterministic way, the resulting counter-example is also not
deterministic.

Problem: Feature overload

Another difference is the parameter dfs_restrict: It allows to specify a set of nodes that
the search will ignore. The motivation for this parameter was the Nested DFS algorithm,
where the inner DFS does not look at nodes that were visited by any of the former runs of
the inner DFS. This approach was chosen, as the alternative would have been to modify
the graph instead – which was found not feasible, as in practice such an operation would
be too costly. The disadvantage of this approach, namely wiring restriction into the core of

82

4.8 Comparison to Previous Approaches

the algorithm, was the obfuscation of the properties of the DFS, since any property had to
take this restriction into account. Examples of such properties are:

lemma finished_implies_succs_discovered:
dfs_constructable dfs s =⇒ v ∈ finished s =⇒ succs v − dfs_restrict dfs ⊆ discovered s

lemma start_restr_reach_discovered:
assumes constr: dfs_constructable dfs s
and stack: stack s 6= []
and discovered: v ∈ discovered s
and ne: v 6= start s
shows start s→\dfs_restrict dfs

+ v

Here, the latter lemma states that each discovered node which is not the start node is
reachable in the graph without visiting any of the restricted nodes.

Problem: Non-abstract state

Similarly to the setup of the hooks, the idea of the DFS state is not far from the current
framework. Again, we have a general state, which is extended by the final algorithm:

record ('S,'n) dfs_sws =
start :: 'n
stack :: 'n list
wl :: 'n set list
discover :: ('n, nat) map
finish :: ('n, nat) map
counter :: nat
state :: 'S

The biggest difference to the current setup is the field wl, which encapsulates the waiting
set for each node on the stack. This formulation stems from the earlier version of having a
list of lists and formulate depth-first search as induction over the stack and the waiting list.

Going with this approach, instead of using a general pending set, induced a complex
handling. For example, it was necessary to have lemmas detailing the relation between the
nth position in the waiting set list with the nth position on the stack:

lemma wl_subset_succs_all:
dfs_constructable dfs s =⇒ ∀n < length (stack s). wl s ! n ⊆ succs (stack s ! n)

Or induction schemes on the stack, which, as a prerequisite, needed to show that stack
and wl are of a certain form, which required substantial additional proof work for every
application:

lemma stack_wl_visit_induct
assumes stack s = x#xs and wl s = w#ws
and stack s' = e#x#xs and wl s' = succs e#(w − {e})#ws
. . .

83

4 Checking

Problem: Proof by state construction

The search itself is expressed as a while-loop over a step-function. The latter returns for
each step the set of the next possible steps. This formulation is then used to introduce
the predicate dfs_constructable dfs s, stating that s is reachable from the starting state by
iterations of dfs_step. This is therefore equivalent to the predicate rwof of the current
framework, and also used for the same purpose: As already visible in the lemmas above,
every property of the depth-first search fixes a state and assumes it is dfs_constructable.
Unfortunately, the ATX-Framework also uses it in an unnecessarily complex way for
specifying correctness properties. As an example, we want to take a look at the correctness
property for a cyclicity checker inside this framework:

lemma dfs_cycle_correct:
assumes x ∈ V
shows dfs cdfs x ≤ spec s. state s←→ cycle

From the looks of this property, there is nothing unusual to it: For the resulting state of the
algorithm, the cyclicity flag should be set if, and only if, there is a cycle. But, as it turns
out, cycle is not defined that way. Instead its definition is:

definition cyclic where cyclic s ≡ stack s 6= [] ∧ hd (stack s)→+hd (stack s) ∧ state s
definition cycle where cycle ≡ ∃s. dfs_constructable dfs s ∧ cyclic s

That is, we stated the correctness by requiring the existence of a constructable state, such
that there exists a cycle for the node on top of the stack. While this is not wrong, because
we also show

lemma cycle_is_cycle:
cycle←→ (∃v. start→∗ v ∧ v→+ v),

it is unnecessarily complicated: For a proof, we have to actually construct a state where
cyclic holds and show that this state can be reached from the starting point. These proofs
were a burden, for one had to construct parts of a search process. Thus it was deemed the
wrong way of specifying properties about searches, and we chose a different way in the
next version of the framework, the CAV version detailed in the following section.

Problem: Two incompatible ways to formulate invariants

As it turned out, this was not the only misconception. Another formalization mistake
was adding the field dfs_invar to the record defining dfs-instances. Its purpose was to
allow the instances to add properties about its extension state and then show “with a
simple proof” that those properties actually hold. To reach this, we defined the additional
predicate dfs_preserves_invar, stating that dfs_invar is an invariant of the algorithm. To keep
the example of the cyclicity checker, its dfs_invar was defined as follows:

definition dfs_invar s ≡ (
(stack s 6= [] −→ ¬ state s −→ (∀n < length (stack s).

(succs (stack s ! n) − wl s ! n) ∩ set (drop n (stack s)) = {}))
∧ (stack s 6= [] −→ (∀x ∈ finished s. ∀y ∈ set (stack s). ¬ x→+ y))
∧ (∀x ∈ finished s. ¬ x→+ x))

84

4.8 Comparison to Previous Approaches

The corresponding proof for dfs_preserves_invar then covers about 100 lines. Thus, we built
something we wanted to avoid from the beginning: large inductive invariants. This stems
from the fact, that we overlooked the link between dfs_constructable and dfs_preserves_invar.
That is, the link that we established between rwof and is_invar in the current framework
(cf. Section 4.4): dfs_constructable is also an invariant, namely the most specific invariant.
In particular it also implies all the specific properties of a DFS instance. Thus we got stuck
with the split into using dfs_constructable for general properties about the search and the
large dfs_invar for properties about the specific instance.

Problem: Reusing large libraries for simple topics

A third misconception was the idea that re-use is better than re-write. While being the
very idea this framework builds upon, it turned out that for easier data structures, in
Isabelle, re-write is better than re-use. The data structure of concern here is graphs.
To avoid having to define our own abstraction over graphs, we used the abstraction by
Noschinski [42, 41] and adapted it to our needs. We were not able to see that for those
basic principles of graphs it would have been easier to start from scratch. Because, as it
turned out, Noschinski’s formalization was more general than ours, in particular it allowed
multi-edges. To fit our needs, we thus had to put a façade in front of this formalization so
that the complicated parts were hidden. This took over 700 lines of proofs, for instance
we had to add conversions between paths defined by edges to paths defined by vertices
(the latter is not sufficient on multi-edge graphs but useful for our use case). This is larger
than the size of the complete graph formalization for the current framework.

Problem: Missing tooling support

Finally, the ATX version of the framework suffered from a limitation of the Refinement
Framework of that time: It required that a refinement relation has to be single valued, i. e.,
that each valid concrete value must have exactly one abstract value. As a consequence,
fields of the concrete state could not be dropped when there was no way to re-construct
them from the remaining fields. Thus, any additional information in the state introduced
a performance penalty – which had to be taken into consideration when designing the
abstract state, as to not make the penalty too large.

Example 4.8.1 (Problem of Single Valued Abstraction)
The problem incured by the restriction of the Refinement Framework’s limitation
is best explained with a small example. Assume the abstract state consists of a
stack and the timings for discovery and finishing. Now, the timing information
is in general an advantage for formulating proofs on the abstract level (examples
are given in Section 4.4.1), but seldomly needed by the algorithm itself. Therefore,
gathering the timing information is unecessary and only costs performance without
gain. Hence, one might be inclined to define a concrete state without this information
and use it as a data refinement, just as described in Section 4.5.1.

But the single-value constraint of the Refinement Framework of that time does
not allow such a refinement: Abstraction must yield at most one value for some
concrete state.This is not possible for the case presented, as one cannot construct the
timing information from the remaining data. It works in the current version of the

85

4 Checking

framework, for the Refinement Framework has been extended to lift the single-value
restriction. Thus, abstraction may now yield more than one abstract state – in this
example, all possible timings can be injected.

Conclusion

To conclude, the version of the framework presented in this section already was equipped
with useful ideas that are to be re-used later. But sometimes connections between the
introduced concepts have been overlooked, leading to unnecessary complexity.

4.8.2 DFS-Framework, the CAV Approach

After the experiences with the ATX-framework and its deficiencies (some of which just
were due to oversights, as pointed out before), it was decided to rewrite from scratch.
This time, the framework should be created around the Refinement Framework. While
keeping the general idea of a search algorithm with extension points, a version building
on explicit inductive invariants was chosen, borrowing from a formalization of Nested
DFS by Lammich for CAVA (which in turn borrowed from the ATX version). This version
is the one presented in [10].

The differences to the other approaches are best described by starting to look at the
formalization of the DFS itself:

definition dfs_algo_body
:: ('S, 'n) dfs_sws⇒ 'n⇒ ('S, 'n) dfs_sws nres

where
dfs_algo_body s0 v0 ≡ rec (s0,v0) (λD (s, v). do {

assert pre_dfs s v ∧ dfs_pre_cond dfs s v ∧ dfs_cond dfs (state s);
if v ∈ discovered s then dfs_rem_step v s
else do {

s'← dfs_disc_step v s;
s''← foreach (E``{v}) s' (λs. dfs_cond dfs (state s)) (λ v s. D (s, v));
assert ∃S. dfs_cond dfs (state s'') −→

inres (dfs_visit dfs s v) S
∧ fe_inv_dfs (disc_step_upd v s S) v {} s''
∧ dfs_fe_inv dfs (disc_step_upd v s S) v {} s'';

s'''← dfs_fin_step v s'';
assert post_dfs s s''' v ∧ dfs_post_cond dfs s s''' v;
return s'''

}})

The first thing to notice is: We are now using a recursive implementation, the reason of
which will be explained later. What is more interesting though, is that we assert certain
invariants to hold. Those invariants (pre_dfs, fe_inv_dfs, and post_dfs for the general search;
dfs_pre_cond, dfs_fe_inv, and dfs_post_cond for the instantiation) are the vehicles used to
prove properties about the algorithm. That is, any property which is necessary must be a
consequence of one of those invariants. In particular, to show something about the final

86

4.8 Comparison to Previous Approaches

algorithm, it must be entailed by post_dfs and dfs_post_cond12.
This approach is very friendly to use with the Refinement Framework, as the framework

in essence is tailored towards invariant propagation.

Problem: Complex invariants and proofs

As everything, in general, must already be covered by the mentioned invariants, those
invariants need to be very complex. As an example, the following predicate common_inv is
part of all the aforementioned invariants:

definition common_inv where
common_inv s v←→

v ∈ V
∧ distinct (stack s)
∧ (∀ n < (length (stack s)) − 1. (stack s ! n) ∈ succs (stack s ! Suc n))
∧ (stack s 6= [] −→ last (stack s) = start s)
∧ (stack s = [] −→ start s = v)
∧ (stack s 6= [] −→ vwalk (rev (stack s)) (E,V))
∧ discovered s ⊆ V
∧ finished s ∪ set (stack s) = discovered s
∧ set (stack s) ∩ finished s = {}

This also influences the way the proofs are written. As the lemmas to show are of the
form “invariant A implies invariant B after some action”, and each of those invariants
consist of different, often unrelated properties, their proofs inherit the same style. Most
consist of different unrelated blocks to show that each of the subproperties of invariant B is
actually fulfilled. Also, if during such a proof it turns out that either of the invariants is not
sufficient (A is not strong enough, B is too strong) it has to be modified. This often leads
to the existing proofs needing adaption. Compare this to the approach of the ATX-version
and the current version, where each property stands for itself. In the latter case, easy
extension is possible: For instance, adding properties about SCCs is done by defining what
an SCC is, and then adding lemmas to prove certain properties are preserved throughout
the run. On the other hand, adding such properties to this CAV-version would require
modifying all the current invariants and also to touch a lot of existing proofs. Hence it
would not be possible to add such additional concepts in additional theories.

Problem: Not mitigating most of the older problems

Apart from this change in concept, the version does not differ from the version before. Thus,
it also inherited its drawbacks, namely the usage of a non-fitting graph representation and
the non-ability to remove fields of the abstract state when refining into the concrete world.

12Of course, from a theoretical point of view, there is no real difference between these approaches, as one
could encode something like rwof into this model. But what this section is about, is the practical usability
from an ITP-view.

87

4 Checking

Excursus: Recursive formulation

Let us explain why a recursive formulation had been chosen, instead of the iterative one
used in ATX and in the current version. The iterative approach is ideal to reason about
single steps, thus allowing to phrase something like reachability of states very naturally
(the transitive closure of the step-function). On the other hand, for the approach used here,
in the CAV-version, it is important to keep some history. That is, we want to be able to
relate states to some certain points in the past, so that the invariants can make use of those
relations. For instance, it is quite natural to relate the state at the beginning of the dfs-body
with the state at its end, i. e., the states marking the points in time before a particular node
is being processed, and the one right after it is finished. A property relating those two
would be, for example, that the stack must be the same for both13.

Conclusion

This version served for learning how to write such a framework tailored towards the
Refinement Framework. It also visualized the advantages of approaches with a most
specific invariant, which allows easier modularization, as it does not need one to explicitly
build large all-encompassing invariants. Especially for our use case to build a framework
that supplies a large set of different properties about different aspects of an algorithm,
monolithic invariants are inconvenient, especially when one searches for properties to
use. This also concerns the proofs: Due to them being a large collection of subproofs for
the different parts of invariants, they are cluttered and do not serve very well for giving
insights into the general working of the algorithm. Hence, the approach used in this
version works very good, especially due to the automation of the Refinement Framework,
for algorithms which are not going to be extended. But it shows the mentioned weaknesses
when used in a framework.

4.8.3 DFS-Framework, a Templating Approach

A third approach is mandated by Lammich: It builds around the general possibility of the
Refinement Framework to automatically determine for some function to have the same
properties (modulo data refinement) as some other function. Again, one starts with some
abstract function as a basis for showing general properties. But, as the framework works
best on syntactically similar functions, the specializations (i. e., the refinements) are created
by copying the literal definition of the abstract version and modifying it where needed. If
phrased right, the verification condition generator (VCG) of the Refinement Framework is
then able to lift the properties of the abstract function onto the new one without much
manual work. As this approach starts with some generic template that is copied for the
specializations, we dub it the Templating Approach.

An example usage of this approach is presented by Lammich in [27] to formalize
Gabow’s algorithm for computing the strongly connected components of a graph [12].
We will use this example to show-case the templating approach. Because we are mainly

13This also serves as a good example why writing general invariants is hard: Of course, this only holds under
the assumption that the search was not aborted in between. In case of abortion, the stack of the latter state
would be an extension of the stack from the beginning.

88

4.8 Comparison to Previous Approaches

Algorithm 4.11 Skeleton Algorithm

definition skeleton :: 'v set nres where
skeleton ≡ do {

let D = {};
r← foreachouter_invar V0 D (λv0 D0. do {

if v0 /∈D0 then do {
let s = initial v0 D0;

(p,D,pE)← whileinvar v0 D0 s (λ(p,D,pE). p 6= []) (λ(p,D,pE).
do {
(* Select edge from end of path *)
(vo,(p,D,pE))← select_edge (p,D,pE);

case vo of
Some v⇒ (* Found outgoing edge to node v *)

if v ∈ ⋃
set p then (* Back edge: Collapse path *)

return (collapse v (p,D,pE))
else if v/∈D then (* Edge to new node. Append to path *)

return (push v (p,D,pE))
else (* Edge to done node. Skip *)

return (p,D,pE)
| None⇒ (* No more outgoing edges from current node on path *)

return (pop (p,D,pE))
}); (* end while *)
return D
} else return D0
}); (* end foreach *)
return r
}

interested in the general way this approach is applied, we will not discuss the specific
purpose of this algorithm. This is already covered by Lammich’s article [27].

The algorithm is used and verified for two different goals: The first one is calculating the
set of SCCs (as it was originally intended to do); the second goal is to be able to determine
whether the language of a generalized Büchi automaton is empty. While it is possible to
implement the latter just as an extension of the SCC-calculation, this is not very efficient,
for it calculates far more information than is needed: If we find an SCC containing nodes
from all of the acceptance classes of the GBA, there is no reason in carrying on calculating
the following sets.

To counter this, Lammich presents two different algorithms, each tailored towards only
one of the goals. Reasonably, he intends to share as much work as possible between those
two algorithms. Thus, while not offering a full-fledged framework for general DFS, it
presents an insight about other ways of how such a framework could be set up.

89

4 Checking

The Skeleton

As laid out above, Lammich starts with some abstract common denominator of the two
algorithms (we want to follow Lammich’s notation here and call this denominator the
skeleton algorithm). This skeleton algorithm, given with Alg. 4.11 on the previous page,
represents the algorithm for a path based SCC algorithm, which is an implementation of DFS
that contracts found cycles into single nodes. It is to note that the skeleton algorithm itself
does not act on the result – it just computes.

We explained that the templating approach relies on copying the original abstract
function (i. e., the skeleton algorithm in this example). Therefore, there is no need for
hooks or other kinds of parameterization – hence the functions referred to throughout this
algorithm (initial, select_edge, collapse, push, and pop) are actual parts of the algorithm, but
outsourced into auxiliary functions (whose definitions are omitted here).

Proving properties

Proving properties of the algorithm is supported by the Refinement Framework’s ability
to annotate invariants and assertions directly inside the function code. Those invariants
are directly employed by the VCG in trying to solve encountered goals, at least partially.
They are also presented as assumptions for visible goals, thereby yielding a well-defined
interface.

This mechanism of annotation is used here for the two loops (additional assertions
were omitted): The two annotated invariants are outer_invar and invar v0 D0. Again, those
invariants are not parameters, but explicitly defined. But instead of regular definitions, the
invariants are stated as locales. As an example, outer_invar is defined as follows, where
fr_graph is another locale for graphs (with a finite set of reachable nodes), introducing the
variables V0 and E for initial nodes and edges, respectively:

locale outer_invar = (* Invariant of the outer loop *)
fr_graph +
fixes it :: 'v set (* Remaining nodes to iterate over *)
fixes D :: 'v set (* Finished nodes *)
assumes it ⊆ V0 (* Only start nodes to iterate over *)
assumes V0 − it ⊆ D (* Nodes already iterated over are visited *)
assumes D⊆E∗``V0 (* Done nodes are reachable *)
assumes E``D ⊆ D (* Done is closed under transitions *)

Choosing a locale to express invariants has multiple advantages: For one, inside the
locale the invariant itself is always an implicit assumption, thereby simplifying the lemmas.
Second, locales can easily be extended and combined:

locale some_more_specific_invar = outer_invar + some_other_invar +
assumes . . .

For convenience, lemmas defined inside the parent locale are available directly inside
the child locale. This feature is used extensively in the templating approach, because in
general each new refinement requires a new invariant, which of course needs to imply the
one in the refined definition.

90

4.8 Comparison to Previous Approaches

The usage of a locale has no immediate disadvantage, as a locale also introduces a
predicate under the same name. This predicate expresses that the assumptions of the
locale are met – which is the reason that the annotations work as presented.

For the presented skeleton algorithm, it can then be shown that the invariant outer_invar
holds on the result:

theorem skeleton_outer:
skeleton ≤ spec (λD. outer_invar {} D)

unfolding skeleton_def select_edge_def select_def
by (refine_rcg WHILEIT_rule[where R=abs_wf_rel v0 for v0])
(vc_solve solve: invar_preserve simp: pE_fin' finite_V0)

From this follows that all consequences of this invariant also hold on the result, for
example that the set of finished nodes is equal to all the reachable ones:

lemma fin_outer_D_is_reachable:
outer_invar {} D =⇒ D = E∗``V0

corollary skeleton_is_reachable:
skeleton ≤ spec (λD. D = E∗``V0)

Specialization

After having defined the skeleton algorithm and having shown some general properties,
Lammich continues and defines the two final algorithms. This works by taking the exact
definition of the skeleton version and change those parts that are different. We only show
one version here, the search for a counter-example in Alg. 4.12 on the following page.

It can be seen that the general structure of the algorithm is kept intact, as the refinement
automatisms work best when for each step on the one side, there is exactly one step on
the other side. One notable addition is the brk field: It either signals that no counter-
example has been found yet (brk = None), or that one has been found (brk = Some p), where
p contains information about the counter-example. Note that, due to the node collapsing
in the algorithm, this is not simply the path, but needs to be expanded later on (details are
omitted here).

The two invariants used here, fgl_outer_invar and fgl_invar, are defined in two different
ways: The latter is an extension of the invar-locale from the original algorithm:

locale fgl_invar = invar G v0 D0 p D pE + igb_graph G
for G v0 D0 brk p D pE +
assumes (* No accepting cycle over visited edges *)

brk = None =⇒
¬(∃v pl. pl 6=[] ∧ path lvE v pl v ∧ (∀i<num_acc. ∃q∈set pl. i∈acc q))

assumes brk = Some (Vr,Vl) =⇒ ce_correct Vr Vl

Recall from Section 3.2 that igb_graph is the locale introducing generalized Büchi automata,
i. e., stating that G is a generalized Büchi automaton, and ce_correct is the correctness
property of the counter-example (omitted here).

91

4 Checking

Algorithm 4.12 Specialization for counter-example search

definition find_ce :: ('v set × 'v set) option nres where
find_ce ≡ do {

let D = {};
(brk,_)←foreachfgl_outer_invar V0 (None, D) (λ(brk,_). brk=None) (λv0 (brk,D0). do {

if v0 /∈D0 then do {
let s = (None,initial v0 D0);

(brk,p,D,pE)← whilefgl_invar v0 D0 s (λ(brk,p,D,pE). brk=None ∧ p 6= []) (λ(_,p,D,pE).
do {
(* Select edge from end of path *)
(vo,(p,D,pE))← select_edge (p,D,pE);

case vo of
Some v⇒ do {

if v ∈ ⋃
set p then do {

(* Collapse *)
let (p,D,pE) = collapse v (p,D,pE);

if ∀i<num_acc. ∃q∈last p. i∈acc q then
return (Some (

⋃
set (butlast p),last p),p,D,pE)

else
return (None,p,D,pE)

}
else if v/∈D then (* Edge to new node. Append to path *)

return (None,push v (p,D,pE))
else return (None,p,D,pE)
}

| None⇒ (* No more outgoing edges from current node on path *)
return (None,pop (p,D,pE))

}); (* end while *)
return (brk,D)
}

else return (brk,D0)
}); (* end foreach *)
return brk
}

92

4.8 Comparison to Previous Approaches

Algorithm 4.13 Introducing acceptance sets

(* original version *)
definition push v PDPE ≡

let
(p,D,pE) = PDPE;
p = p@[{v}];
pE = pE ∪ (E∩{v}×UNIV)

in
(p,D,pE)

(* new, enhanced definition *)
definition gpush v s ≡

let (a,s) = s
in (a@[acc v],push v s)

The other invariant, fgl_outer_invar, is not an extension of the original outer_invar as
outer_invar would not hold when a counter-example has been found and the algorithm
aborts. Thus it is defined on its own, simply leveraging the original invariant:

definition fgl_outer_invar ≡ λit (brk,D). case brk of
None⇒ outer_invar it D ∧ no_acc_over D

| Some (Vr,Vl)⇒ ce_correct Vr Vl

Refinement to executable code

After having defined the specialization of the original skeleton algorithm to get an algo-
rithm for finding counter-examples, Lammich continues with data-refinement: Step-by-step
he introduces better suited data structures (or structures to gather more information) with
the goal of having a basis that allows for an easy and effective refinement into an exec-
tutable version. As the main data-manipulating functions are the auxiliary functions (i. e.,
collapse, push etc.), those are the parts mainly involved in the process: For example, a first
step by Lammich is the introduction of explicit acceptance sets. Thus all auxiliary functions
are equipped to deal with those, as is illustrated by the excerpt given in Alg. 4.13.

The new definitions are then shown to be refinements of the original versions:

lemma gpush_refine:
J(v',v)∈Id; (s',s)∈gstate_relK =⇒ (gpush v' s',push v s)∈gstate_rel

The algorithm itself only needs to be changed to use the newly defined functions, making
the refinement proof of the overall algorithm very simple. Of course, some refinements
are done to make the algorithm more efficient. When this is the case, the changes can
be more invasive and the complexity of the resulting refinement proof increases too. For
illustration, the final algorithm before code-generation (the code-algorithm is generated
using the Autoref-Framework) is given by Alg. 4.14 on page 95.

Evaluation

The main advantage of Lammich’s approach is a better variability in what extensions can
change in the underlying skeleton algorithm. In our general DFS framework, the extension
points are fix and everything that intends to use the foundation laid by the framework
must implement its functionality inside this corsett. Quite often this is possible, but as

93

4 Checking

we learned when implementing Tarjan’s algorithm, the algorithm needs to be massaged
to fit this corset. With Lammich’s approach, the boundaries are defined solely by the
capabilities of the refinement framework and on how much work one intends to invest
into the refinement proofs.

At the same time, this is also the greatest weakness of this approach: To know the
boundaries of the Automatic Refinement Framework, a somewhat intrinsic knowledge
about the internals of it are needed. While Lammich posseses them, for obvious reasons
as the author of the framework, the general public may not. And then the approach
can quickly lose the advantage of working in most ways automatically. While this is
also possible with the DFS framework, as it equally relies on the Automatic Refinement
Framework, the refinement proofs entailed by the extension points are, in general, simpler
as what an arbitrary skeleton algorithm can produce.

A second disadvantage of the approach is harder maintainability: In Software Engineer-
ing, copy-and-paste is being frowned upon, and for good reason: Whenever it is needed
to change something at one point, this change needs to be applied to all places where
the code has been pasted into. It is not possible to abstract changes away, for there is no
separation between some agreed-upon interface and internal implementation.

94

4.8 Comparison to Previous Approaches

Algorithm 4.14 Implementation of counter-example search

definition find_ce_impl :: ('v set × 'v set) option nres where
find_ce_impl ≡ do {

let os = goinitial_impl;
os←foreachλit os.fgl_outer_invar it (goGSα os) V0 os go_is_no_brk_impl (λv0 s0.
do {

if go_is_done_impl v0 s0 then return s0
else do {

let s = (None, ginitial_impl v0 s0);

(brk,s)←whileλ(brk,s).fgl_invar v0 (oGSα(goD_impl s0)) (brk,snd(gGSα s)) s
(λ(brk,s). brk=None ∧ ¬gpath_is_empty_impl s)
(λ(l,s).

do {
(* Select edge from end of path *)
(vo,s)← gselect_edge_impl s;

case vo of
Some v⇒ do {

if gis_on_stack_impl v s then do {
s←gcollapse_impl v s;
b←last_is_acc_impl s;
if b then ce_impl s
else return (None,s)
}
else if ¬gis_done_impl v s then (* Edge to new node. Append to path *)

return (None,gpush_impl v s)
else (* Edge to done node. Skip *)

return (None,s)
}

| None⇒ do {
(* No more outgoing edges from current node on path *)
s←gpop_impl s;
return (None,s)
}

});
return (gto_outer_impl brk s)
}
});
return (goBrk_impl os)
}

95

5 Model

The final aspect when talking about model checking is to discuss what is going to be
checked. That is, one needs to take the model part of model checking into account: How is
the model specified? Possibilities include using the source code directly, i. e., the final Java
or C sources, or another abstract specification.

Using the source code directly is done in different projects, but has the very general
disadvantage that even simple properties might be not decidable, due the complexity of
the languages involved. Often, projects deal with this by approximation, that is they only
support a subset of the languages semantics and ignore or fail on those parts of the project
which are not covered by this subset. This has the advantage that the final implementation
is directly checked, although the necessary restrictions on the language might negate this
effect. Such a negation can occur when the necessary restrictions hinder the language to
be used for more complex applications. An example of such an impractical restriction is
“C without using arrays or pointers”.

When introducing an intermediate modeling language, another layer is built. This is
prone to errors, both in understanding the original implementation and in handling the
modeling language. In particular, absence of errors in the model does not directly imply
absence of errors in the original implementation. On the other hand, such a modeling
language, like Promela [48], may help verification by introducing abstractions (e. g., for
concurrency or communication). They are thus mainly fit for protocols: Protocols are
always specified abstractly, for example as a written natural language specification. Thus
transferring them into a specification language is not a loss, but a gain of concreteness.
Further, there exist approaches, for example by Sharma [53], to directly create executables
from such a model.

Finally, there also exist hybrid approaches, where an implementation is combined with
an additional layer of abstraction. See Holzmann and Joshi [18] as an example.

For CAVA, we provide two different modeling languages. Both are thought to be used as
intermediate languages and not for directly implementing programs, as such intermediate
languages are easier to implement. While formalizations for C [32] or Java [21] are not
outside the scope of a higher-order interactive theorem prover, they are, so far, out of
scope for a verified model checker. It must be noted though, that in general this is not a
restriction of CAVA: Any system is just a system for our model checker, and can thus be
plugged into the model checker anytime.

The first modeling language we provide, a language for Boolean programs, similar to
Dijkstra’s guarded command programs [8], is mainly used as a proof of concept. The
second one is the aforementioned Promela, which was chosen for it is the modeling
language of the well-known explicit state model checker SPIN [17]. Thereby, we allow
model equivalence between SPIN and CAVA [37, 36].

97

5 Model

5.1 Introduction – Boolean Programs

Boolean Programs are our first approach to modeling in CAVA. They operate, as the name
suggests, only on finite fields of Booleans (i. e., bits). This has the advantage of being easily
implementable, which was the main reason why they were chosen: Their main intent is
to serve as a proof-of-concept language, to show the functionality of our model checker.
They were introduced into CAVA in our overview paper [10, 11].

As foundational programming constructs, the language offers the following constructs,
which are phrased very similar to Dijkstra’s guarded command language [8]:

• SKIP
• simultaneous assignment v1,. . . ,vn := b1,. . . ,bn (where the bi are Boolean expressions)
• sequential composition c1; c2
• conditional statements in two variants:

– IF [(b1, c1), . . . ,(bn, cn)] FI, that is, a list of condition/code pairs, offering non-
deterministic choice in case multiple conditions are met

– IF b THEN c1 ELSE c2, which is an optimization of the previous version (equal
to IF [(b, c1),(Not b, c2)] FI), allowing to omit one condition check

• loops WHILE b DO c.

The general idea is to embed the language shallowy into Isabelle. That is, a Boolean
Program is always a function in Isabelle/HOL. As a consequence, a program has to be
embedded into CAVA itself and cannot be loaded at runtime. Embedding a language into
a functional setting is a well-known approach, and as old as ML. A general pointer to how
this is done in Isabelle/HOL can for example be found in Nipkow/Gerwin [38]. In this
chapter, we only want to give a very short introduction how this is implemented.

Generally, a program is represented as a nested data structure, the syntax tree. Leaving
notation aside, for our Boolean Language, we have the following program structure:

datatype
com = SKIP

| nat list ::= bexp list (* assignment *)
| com; com (* sequential composition *)
| IF (bexp × com)list FI (* conditions; variant 1 *)
| IF bexp THEN com ELSE (* conditions; variant 2 *)
| WHILE bexp DO com (* loops *)

The expressions, bexp, are simple expressions on booleans:

datatype bexp = TT | FF | V nat | Not bexp | And bexp bexp | Or bexp bexp

Here, TT and FF represent true and false, respectively. V nat represents a variable as an
offset, because the data any Boolean Program operates on is a field of booleans, and the
sole basic data type we support is a boolean.

Example 5.1.1 (Simple Boolean Program)
To give an example, a simple program toggling one of two-bits non-deterministicly
ad infinitum is thus represented as:

98

5.1 Introduction – Boolean Programs

definition toggle :: com where
toggle = WHILE TT DO IF [

(V 0, 0 ::= [FF]),
(Not (V 0), 0 ::= [TT]),
(V 1, 1 :: = [FF]),
(Not (V 1), 1 ::= [TT])]

In this example we see the outer loop without any abortion condition, and then one
larger choice: For each variable we check whether it is true or false, and set it to the
opposite value.

Due to the nature of shallow embeddings, everything more complex than the basic
operations has to be established using functions inside Isabelle/HOL:

• As protocols must often be sized dynamically (e. g., the number of consumers and
producers), this is represented in the programs by also constructing them according
to a parameter, often using recursion on the parameter(s). For example, the program
for the n dining philosophers is defined as:

fun dining :: nat⇒ (bexp × com) list where
dining 0 = []

| dining (Suc n) = . . . @ dining n

definition philosophers n = WHILE TT DO IF dining n FI

That is, dining constructs the different choices for each philosopher in turn, returning
a list of pairs of Boolean expressions and commands. The top philosophers then
simply chooses one of them ad infinitum.

• Advanced concepts like bounded natural numbers are given as macros, i. e., functions
that just expand to a syntax tree which can be inserted at the current place. For our
Boolean Programs, we provide macros to represent bounded natural numbers in
unary notation, for example. That is, a variable representing a natural number is
made up of bound boolean variables. Thus a macro counter_eq pos bound n comparing
the value of a counter at position pos with bound bound to a natural number n for
equality has to generate code that, generally, needs to count the number of set bits
between positions pos and pos + bound. Given the simple encoding of naturals and
the restricted set of operations for our language, the code can grow very quickly.

• Similarly, named variables are represented as constants or functions returning the
variable at a specific position:

definition Q_error = V 3
definition Eat n i = V (3 + i)
definition One n i = V(n + 3 + i)

In this example, we see the variable Q_error is located at offset 3; the parameterized
variable (working as an array) Eat at the positions thereafter; and another array One,
with offsets just behind Eat, given that Eat has length n. It can be seen that accessing
arrays out of bounds is possible, bearing the well-known problems.

99

5 Model

The semantics of this language is then formalized by a translation into a simple inter-
preted assembly language. The reason is speed: executing commands on the source code
level is slow. Because the execution has to be interleaved with the state space exploration
this would slow down the model checker considerably. The resulting assembly language
only consists of four different operations: assignment, test-else-goto, choice, goto:

datatype instr =
AssI nat list bexp list |
TestI bexp int |
ChoiceI (bexp × int) list |
GotoI int

Thus, we provide a function to compile a list of commands into a list1 of instructions:

fun comp :: comp list⇒ instr list where
comp SKIP = []

| comp (vars ::= vals) = [AssI vars vals]
| comp (c1; c2) = comp c1 @ comp c2
| . . .

Further, we allow to optimize the generated assembly code, by providing the function
opt :: instr list⇒ instr list, which, for example, resolves chains of gotos. This reduces the
state space quite drastically. It has to be noted, that we refrained from showing its
correctness, i. e., preservance of semantics.

A compiled program, as used in the model checker, thus is represented by a list of
instructions. The runtime state, the configuration, is represented as a program counter
into the program array, and the array of booleans.

The semantics of an assembly language program is given by a function nexts that com-
putes the list of possible next configurations from a given configuration. The function nexts
always returns a nonempty list (in the worst case by cycling, also known as “stuttering”),
which means that every program has a run and all runs are infinite. Semantics of a whole
boolean program, as seen by our model checker, is only specified by this nexts function.
That is, we define the language of a Boolean program as:

definition bpc_is_run bpc r ≡ let (bp,c0)=bpc in r 0 = c0 ∧ (∀i. r (Suc i) ∈ set (nexts bp (r i)))
definition bpc_props c ≡ let (pc,vals) = c in vals
definition bpc_lang bpc ≡ {bpc_props ◦ r | r. bpc_is_run bpc r}

That is, a run r is a run of a Boolean program bp and a start configuration c0, if it starts
with c0 and can further be constructed by nexts. The atomic propositions of the run, i. e.,
what is represented at the logic level for forming propositions about a program, are the
variables. The language is hence defined as all valid sequences of variable assignments.

The language for Boolean Programs worked as a proof-of-concept approach to show-case
the model checker and provide first evaluations on the runtime, as was done in [10]. But
that paper also highlighted problems with the approach: Evaluations were not comparable,
as different formalizations of the same problem were used. Also, programs have to be
embedded into the model checker itself, which is not practical.

1For performance reasons arrays are used in the theory, because array access is faster than walking a list.

100

5.2 Promela

Algorithm 5.1 Example Promela Code [47]

// a small example spin model
// Peterson's solution to the mutual exclusion problem (1981)

bool turn, flag[2]; // the shared variables, booleans
byte ncrit; // # procs in critical section

active [2] proctype user() // two processes
{

assert(_pid == 0 || _pid == 1);
again:

flag[_pid] = 1;
turn = _pid;
(flag[1 − _pid] == 0 || turn == 1 − _pid);

ncrit++;
assert(ncrit == 1); // critical section
ncrit−−;

flag[_pid] = 0;
goto again

}

5.2 Promela

After introducing the development of a modeling language for our model checker based
on Boolean Programs, in this section we will formalize an already widely-used language:
Promela. This language is used mainly in the model checker SPIN [17], which is a well-
known explicit state model checker. By supporting its input language, we can re-use
models written for it, which in turn allows easier comparison with it.

As an additional benefit, our formalization [37, 36] serves as the first executable (partial)
formalization of Promela. This will be discussed in more detail in Section 5.2.7.

5.2.1 Introduction to Promela

Promela [48] is a modeling language, mainly used in the model checker SPIN [17]. It offers
a C-like syntax and allows to define processes to be run concurrently. Those processes
can communicate via shared global variables or by message-passing via channels. Inside
a process, constructs exist for non-deterministic choice, starting other processes and
enforcing atomicity. It furthermore allows different means for specifying properties: LTL
formulas, assertions in the code, never claims (i. e., an automaton that explicitly specifies
unwanted behavior) and others. A small example is given in Alg. 5.1.

Some constructs found in Promela models, like #include and #define, are not part of
the language Promela itself, but belong to the language of the C preprocessor. SPIN does

101

5 Model

Promela C-Code
Model Checker

Promela

Result

SPIN Compiler

execute

CAVA

Figure 5.1: Workflow of SPIN vs CAVA

not process those, but calls the C compiler internally to process them. In CAVA we do the
same. This is therefore not implemented in the Isabelle part of CAVA, but instead the SML
frontend passes the input file through cpp before parsing it.

This coupling with C is not a lone instance. Instead, large parts of the language are
modeled after C. This stems from SPIN compiling a Promela model into a C program,
which then serves as the model checker (compare Fig. 5.1). Thus, for efficiency reasons,
parts of Promela are passed verbatim to C (e. g., data types), or others are only very shallow
wrappers around C concepts (e. g., Promela typedef vs C struct). It even allows to embed
C code directly.

As discussed in depth later (Section 5.2.7), there is no usable formal semantics of
Promela. Instead, the main sources for formalization were the Promela manpages [48],
and the descriptions of semantics by Holzmann [17, chap. 3+7]. While those are extensive
in general, covering all of Promelas behavior from a programmer’s point of view, it
lacks a detailed (i. e., formal) description on how constructs are converted into a Kripke
structure. Therefore, observing the output of SPIN and examining the generated graphs
(via pan -d) often is the only way of determining the semantics of a certain construct.
This is complicated further by SPIN unconditionally applying optimizations, for example
resolving chained gotos for nested loops. Reading the sources of SPIN was deemed not
to be a viable option, for it turned out to be rather unreadable. In the end, it is C-code
generating C-code.

As we have to model our formalization using SPIN as some sort of black box, we needed
an easy measure to spot deviations. One such useful measure is the number of possible
configurations reachable in a generated system. We therefore tailored the formalization
to generate identical numbers, which comes with the cost of also having to copy the
unconditional optimizations of SPIN.

As a consequence of the lack of a formal basis, the formalization presented in this work is
not necessarily congruent with SPIN’s implementation. Still, we have not yet seen semantic
differences so far, besides the ones covered in Section 5.2.5, which are also of a conservative
nature. In any case, the need remains for authorative formal semantics of Promela. That
is, a semantics where SPIN is modeled after and not vice versa. Our formalization hence
aims to be solely a substitute to that end. Furthermore, our formalization should allow for
rather easy modifications of the semantics, enabling users to test different approaches and
concepts.

102

5.2 Promela

5.2.2 Formalization and Implementation

The general structure of the formalization and implementation of Promela follows the
general structure already used for the Boolean Programs: We start from an abstract syntax
tree, use this to compile some program representation, and finally have some means of
computing successor states to formalize what a run on such a program represents.

AST Handling

The abstract syntax tree is built by a hand-written SML parser2. The tree is then passed
on to the parts implemented in Isabelle. As a first step there, the simple AST is enriched
with semantic information and some constructs are replaced by semantic equivalents
(“de-sugaring”). Examples for such de-sugaring are simple replacements like i++ by
i = i + 1, or more involved substitutions like

for (i : lb .. ub) steps

being replaced by

i = lb;
do
:: i =< ub −> steps; i = i+1
:: else −> break

od

Also, different syntactical elements with similar semantics are combined into one single
construct bearing different variants, which can for example be expressed with additional
flags. For example, both c!v and c!!v send v on channel c, but while the former simply
appends, the latter inserts in correct order. Both can thus be collapsed in to one Send-node
with a sorted flag.

The reason for such transformations is to shrink later stages of the formalization by
reducing the set of constructs they have to support. Similarly, the enrichment with semantic
information (mostly types) moves some of the burden of static checking to an earlier stage.
For example, usage of unknown variables or using wrong typed arguments can already
be caught at this state. Later stages then can rely on the type information gathered.
Currently, whenever static errors are encountered, the whole model checker terminates
by throwing an exception. Ideally, it would return an error which the model checker
would gracefully handle. Up to now, this has not been implemented in CAVA, due to the
additional overhead of wrapping everything in the option monad.

Compilation

After generating this enriched AST, the real core of the formalization follows: Compiling
the AST into an executable program representation. For an understanding of the require-
ments of the compilation process, we need to look one step ahead and have to analyze
how the set of successors is eventually going to be computed: For each running process

2As a consequence, any other language going to be supported by CAVA and offering the Promela formaliza-
tion needs a new implementation of the parser.

103

5 Model

we collect the set of statements which are executable at the current state. Then, for each of
those statements, we evaluate its effects to obtain a modified state. The set of resulting
modified states now represents the set of successors, which is returned.

Promela also knows atomic blocks: In general, states inside such a block are not visible
outside. Therefore, whenever a statement is marked atomic (i. e., it is part of an atomic
block), we have to re-iterate before returning until we find ourselves in a non-atomic block,
or until we are stuck and cannot process any further. The latter, allowing the middle of an
atomic block as a valid configuration, is an unusual addition to atomicity, which regularly
states that either everything is executed or nothing at all.

This general concept on compilation is taken from [17, Chap. 7], and thus we also use
the name semantic engine coined there for the successor function of the Promela interpreter.

From this behavioral description, we take that the important pieces we need to encode
are: the conditions under which a statement is executable, the effect of this statement and
whether it is atomic or not. Moreover, we need to encode the order of statements in a
process. While this is, strictly speaking, already part of the effect/action pair, it is very
natural to consider this as extra properties. We are therefore going to represent a process’
behavior as a transition system, obtaining the ordering. Each transition (edge) is then to
be annotated by the effect/action pair, amongst others:

record edge =
cond (* Necessary condition *)
effect (* Effect on states *)
target (* Next state *)
prio (* Priority *)
atomic (* Atomicity information *)

The system itself is then composed of a list of lists of transitions, where each position
in the list represents a program point, and the list of edges at that position encodes the
outgoing transitions from that point. The target of a transition is thus a simple offset into
the transition system denoting the subsequent program point.

In this formalization, condition and effect are encoded abstractly, for a later interpretation.
For example, the type for conditions is defined as follows:

datatype edgeCond =
ECElse

| ECTrue
| ECFalse
| ECExpr expr
| ECRun String.literal
| ECSend chanRef
| ECRecv chanRef recvArg list bool

A complete process is then put together from this transition system, plus some more
information like the expected argument list. As a Promela program is mainly a collection
of process definitions, this already amounts to our representation of the program itself3.

3The reality adds some more information, mainly for debugging purposes or for efficiency reasons. For
example, the transition systems are kept in the program, and process definitions just refer to the offset.

104

5.2 Promela

Having the representation of a program, we need to model the compilation process.
At its heart lies a translation from statements in the AST to edges. This translation is
done backwards through the AST. This is motivated by the need to calculate targets of
transitions as offsets into lists: By having later statements at known positions, the target
is already fixed. This works very well for all statements, except gotos, so that the target
position is simply threaded through the compilation.

This compilation of the AST into the transition system is formalized as two mutually
recursive functions stmntToState and stepToState (the difference between step and statement
is minor and not of interest here). In the following, we want to illustrate the compilation
process by giving some example cases (there is one case per AST node type). The first
three examples, assignment, condition, and goto, are straightforward, followed by the
more involved handling of the unless. Note that atomicity is handled later on and is thus
not taken into account in any of those cases, i. e., they default to NonAtomic:

Example 5.2.1 (Assignment Statement)
An assignment can always be executed, therefore the condition is simply “true”. The
assignment needs to be evaluated at runtime, thus it is again stored as such. It also
does not change anything regarding control flow, labels or priority and hence simply
uses the one provided by the vicinity:

stmntToState (StmntAssign v e) (lbls, pri, pos, nxt, _) =
([[L cond = ECTrue, effect = EEAssign v e, target = nxt, prio = pri,

atomic = NonAtomic M]], Index pos, lbls)

Example 5.2.2 (Condition Statement)
The condition is in most respects the counterpart to the assignment, as it does not
have any effect, i. e., the effect is the identity. Instead, it denotes a condition that must
be satisfied. Again, this condition must be evaluated at runtime and is therefore
simply stored; no further changes are done:

stmntToState (StmntCond e) (lbls, pri, pos, nxt, _) =
([[L cond = ECExpr e, effect = EEId, target = nxt, prio = pri, atomic = NonAtomic M]],
Index pos, lbls)

Example 5.2.3 (Goto Statement)
The goto has neither effect nor condition, but nevertheless receives its own effect
marker to make it distinguishable. Instead, it modifies the control flow. This
manifests twofold: First, the target is set to LabelJump l None, i. e., a jump to the
destinated label l as specified by the goto. But this is not sufficient, for it would
render an additional state at runtime (first the goto would be reached, and only
thereafter the jump is taken). So, secondly, the jump target is directly propagated
to the preceding statement4 instead: Note that in the previous examples, we set the
target to the parameter nxt. Note that in those examples, we also return Index pos,
which denotes our current position in the transition system. This is then fed to the

4It is possible to land at the goto indirectly, for instance when the goto is behind another label. Thus we
cannot just remove the gotos from the transition system. Also, in those indirect cases, the back propagating
might not work, so we have to use the two-step jumping semantics regardless.

105

5 Model

preceding statement as nxt. In case of our goto, we therefore also return the jump5:

stmntToState (StmntGoTo l) (lbls, pri, pos, _) =
([[L cond = ECTrue, effect = EEGoto, target = LabelJump l None, prio = pri,

atomic = NonAtomic M]], LabelJump l (Some pos), lbls)

Allowing the back propagation of targets as detailed here, is another reason why
processing the AST in a backward manner is of advantage.

Example 5.2.4 (Unless Statement)
A more advanced example is the compilation of the {s} unless {u} construct, which
serves as an exception handling in Promela: From each step in the sequence s, control
can go the the unless-part u as soon as the first expression in u becomes true. At this
point, the field prio of the edge record becomes important: The priority of the edges
going from some point in s to u is not equal to the priority of the edges advancing in
s, but higher in order to be examined first.

The translation is now done in two steps: First we compile u, which returns the
compiled partial transition system. Due to our backwards processing, the last element
is actually the first transition, i. e., the one carrying the necessary condition. After
having also compiled the s-part (with a lower priority), we add the first transition of
the unless-part to each program point to the transition system of s:

stepToState (StepStmnt s (Some u)) (lbls, pri, pos, nxt, onxt, _) = (
let
(* the 'unless' part *)
(ues,_,lbls') = stmntToState u (lbls, pri, pos, nxt, onxt, True);

(* 'u' is the guard for the whole unless; 'ues' the rest *)
u = last ues; ues = butlast ues;
pos' = pos + length ues;

(* find minimal current priority *)
pri' = min_prio u pri;

(* the main part −−
priority is decreased, because there is now a new unless part with higher prio *)

(ses,spos,lbls'') = stmntToState s (lbls', pri' − 1, pos', nxt, onxt, False);

(* add an edge to the unless part for each generated state *)
ses = map (λ s. u@s) ses

in (ues@ses,spos,lbls''))

In general, all constructs influencing the control flow are more complex, as their main
consequence is not setting condition and effect, but generating the right number of edges
and setting the targets accordingly. To a great degree, the complexity is increased due to
SPIN’s semantic trying to minimize the use of intermediate states, something commonly

5The difference in the second parameter of LabelJump is needed for atomicity calculation and is going to be
explained later.

106

5.2 Promela

happening with nested loops – even more when (nested) unless is involved. And as we
have laid out in Section 5.2.1, our formalization aims to keep step with SPIN here.

Another rather complex matter for constructing the control flow originates from atomic-
ity. While generally the concept is simple (everything inside an atomic block is executed
atomically), it becomes complex when gotos are involved: When jumping from one atomic
block to another one, atomicity is preserved. This does not hold if it is done via a
non-atomic intermediate label. Therefore, the state of atomicity of an edge can only be
determined reliably, when a process is compiled completely and labels are going to be
resolved. Thus, it is required to not only cover the two possibilities Atomic and NonAtomic,
but also InAtomic. The latter states that an edge starts in an atomic block. Hence, if a label
inside an atomic block is resolved to a position where all outgoing edges are InAtomic or
Atomic, the edge itself becomes Atomic, otherwise it remains as InAtomic.

primrec resolveLabels
:: edge list list⇒ labels⇒ edge list⇒ edge list where
resolveLabels _ _ [] = []

| resolveLabels edges lbls (e#es) = (
let check_atomic = λpos. fold (λe a. a ∧ inAtomic e) (edges ! pos) True in
case target e of

Index _⇒ e
| LabelJump l None⇒

let pos = resolveLabel l lbls in
eLtarget := Index pos,

atomic := if inAtomic e then
if check_atomic pos then Atomic
else InAtomic

else NonAtomic M
| LabelJump l (Some via)⇒

let pos = resolveLabel l lbls in
eLtarget := Index pos,
(* NB: isAtomic instead of inAtomic, cf atomize() *)
atomic := if isAtomic e then

if check_atomic pos ∧ check_atomic via then Atomic
else InAtomic

else atomic e M
) # (resolveLabels edges lbls es)

The third case (LabelJump l (Some via)) has already been shortly mentioned in the example
on compiling goto (Ex. 5.2.3). This case occurs whenever we end up at a goto indirectly, for
example with another jump. In order to match SPINs behavior (cf. Section 5.2.1), we try
to avoid intermediate states and thus have to change the edge targeting a goto to point to
the target of the jump. While not a problem in general, it complicates atomicity handling,
because now the atomicity state of the intermediate label itself (the parameter via in the
function above) is also accounted for.

Note that there are also other means of passing atomicity, especially between processes.
But those are resolved at runtime and will be explained there.

The construction of the transition system of a process is finished by adding a final

107

5 Model

ending state, which just self-loops. Every transition which causes a process to terminate is
then changed to target there. This construction ensures that we always have infinite runs
in the system.

Combining the transition system with further information (e. g., the labels, the names of
the defined processes, . . .) we receive the final data structure program. We will not give
the exact definition of this structure here, because it is very technical and mostly depends
on what debugging/pretty-printing information is needed.

Execution

Now, after having covered the compilation of Promela programs, the next important part
is the actual execution of such a program. For that matter, we want to start with the
definition of a configuration of a program: As already covered before, a Promela program
consists of a number of concurrent processes. Thus, we also need to keep a state for each
running process:

record pState =
pid :: nat (* Process identifier *)
vars :: var_dict (* Dictionary of variables *)
pc :: nat (* Program counter *)
channels :: integer list (* List of channels created in the process *)
idx :: nat (* Index defining the underlying transition system *)

The only notable field here is channels: As channels in Promela are by definition global,
they are not accounted for in the states. The only reason to carry the list of local channels
is to mark them as invalid after termination of a process (it is not clear whether channel
numbers are to be reused in SPIN, thus we do not reuse them in CAVA). The transition
system of the process is not stored in the pState, for it would yield unnecessary duplication
(multiple instances of the same process would all contain a copy of the transition system).
For that reason, only an idx is stored which is the offset into the global list of transition
systems.

The global state then contains the list of all program states (the pid being the index). It
further contains the global variables and, as explained, the channels. Additionally, a flag
timeout is added, which is part of Promela’s semantics and is set when no process can
progress.

record gState =
vars :: var_dict
channels :: channels
timeout :: bool
procs :: pState list

This record then serves as the configuration for a Promela program. Promela defines two
more flags, namely else and handshake. As their setting is invisible to an observer, they are
not part of gState but are set internally.

The idea of the semantic engine, that is the function computing the set of successing
configurations, has already been explained earlier: Calculate the set of computable edges
taking priorities into account, and for each of those edges apply the effect onto the current

108

5.2 Promela

state, obtaining the set of resulting states. With the defined representation of the program,
this becomes straigthforward, with g and l holding the global and the local (= process)
state, respectively:

1. For each edge, check wheter its condition cond holds. This is achieved by the
function evalCond getting the condition, the global and the process-local state as
input. Example evaluations are:

evalCond (ECExpr e) g l↔ exprArith g l e 6= 0
evalCond (ECRun _) g l↔ length (procs g) < 255
evalCond (ECSend v) g l↔ withChannel v (λ_ c. case c of

Channel cap _ q⇒ length q < cap
| HSChannel _⇒ True) g l

These examples amount to: expressions must evaluate to something non-zero;
spawning a new process requires the number of currently running processes to
be below some upper bound6; and for sending something over a channel, the
capacity of this channel must not be exhausted.

2. For each pair of process and edge, we then compute its effect: The function evalEffect
takes the effect of an edge, the program itself (for lookup tasks) and again the global
and local state. It returns the updated global and local state:

evalEffect (EEAssign v e) _ g l = setVar v (exprArith g l e) g l
evalEffect (EERun name args) prog g l = let (g,_) = runProc name args prog g l in (g,l)
evalEffect (EEAssert e) _ g l = if exprArith g l e = 0

then setVar __assert__ 1 g l
else (g,l)

In this excerpt, a variable is set to the correct value; a new process is started; the
__assert__ variable is set, if the assertion holds (cf. Section 5.2.5 for assertion
handling). For sending and receiving (not shown) more effort is necessary, stemming
mostly from the zoo of different variants and from the fact that receiving can compare
values, evaluate variables, and set variables at the same time.

This general handling is then enhanced to take atomicity into account. Whenever we
handle an edge with the atomic bit set, we feed it again into our semantic engine with the
additional modification of setting an exclusive field to the process where the edge was part
of, thus barring the other processes from being run. The idea is to complete the whole
atomic block in only one visible global configuration. In case the process cannot perform
the whole atomic block, the state is served as-is, i. e., in the middle of that block. It has to
be noted that this may lead to non-termination.

So, for example, atomic { do :: skip; od } will not terminate, as the successor function loops
forever. This is the intended Promela semantics.

Additional complexity is added by allowing to pass atomicity between processes:

6A necessary condition for a finite state-space.

109

5 Model

chan hs = [0] of { int };

active proctype rcv () {
int r;
atomic { hs?r; ... }

}

active proctype send () {
atomic { ...; hs!1 }

}

Here, the process send can pass its atomicity to rcv via the handshake (or rendezvous)
mechanism: A channel with 0 capacity is a so called handshake channel. Whenever a
process wants to write to it, there must be another process which immediately reads from
it (as there is no capacity). If both the send and the receive operation are inside an atomic
block, as in the example, the atomicity is passed from the sender to the receiver.

Please observe that this definition of the handshake channel also adds the need for a
limited back-tracking, because we cannot execute the sending without having a receive at
the next step. The implementation of this rendezvous mechanism therefore is similar to
the one for atomicity, and thus invisible from the outside.

The semantic engine, including non-covered features like timeout and the similar else, is
exported by the function

definition nexts :: program⇒ gState⇒ gState set nres

As noted earlier, resolving atomic blocks may lead to non-termination. Therefore it is
not possible to refine this nexts function into an implementation which solely returns the
gState set. Instead we, we are stuck with gState set dres, which is the deterministic monad
of the Refinement Framework which still allows non-termination. But as the model checker
framework requires a pure function outside of monads, we have to work around it:

definition dSUCCEED_abort where
dSUCCEED_abort msg dm m = (

case m of
dSUCCEEDi⇒ Code.abort msg (λ_. dm)

| _⇒ m)

definition nexts_code
:: program⇒ gState⇒ gState set

where
nexts_code prog g =

the_res (dSUCCEED_abort (STR ''The Universe is broken!'')
(dRETURN {g})
(nexts_code_aux prog g))

What this definition expresses is abortion in case of non-terminiation. While this is of no
influence to the actual code, it circumvents some logic by failing with exceptions. But as
this is done anyway inside Promela to signal runtime errors, we find this an acceptable
solution.

110

5.2 Promela

5.2.3 Abstract Language

The last and final step is defining the abstract language of such a Promela program.
We define the atomic properties as the set of all possible expressions, and thus positive
properties are those expressions which evaluate to true under the current configuration
(and, as the evaluation requires a process state, an empty process state):

definition promela_props :: gState⇒ expr set where
promela_props g = {e. exprArith g emptyProc e 6= 0}

A run of the program is defined naturally over the nexts_code function:

definition promela_is_run'
:: program × gState⇒ gState word⇒ bool

where
promela_is_run' progg r ≡

let (prog,g0)=progg in
r 0 = g0
∧ (∀i. r (Suc i) ∈ nexts_code prog (r i))

But this definition only defines runs based on the compiled program, which leaves the
compilation to the descretion of the user. As we need our program to be well-formed, we
extend this definition to be defined on the AST, so that compilation is part of the semantics:

definition promela_is_run ≡ promela_is_run' ◦ compile

Combining this, we define our language as:

definition promela_language ast ≡ {promela_props ◦ r | r. promela_is_run ast r}

For technical reasons, the definition of the language used in the model checker is slightly
different: We preprocess the LTL formula to extract the included expressions, and only
use those expressions as the set of atomic properties (APs), i. e., if the formula were
GF((eat[0] −→ ¬fork[0])∨¬__assert__), the atomic properties are eat[0], fork[0] and
__assert__. The LTL formula then is changed to only include pointers to the expressions
instead of the expressions itself. We show that this processed variant behaves equivalently
to the original definition:

lemma promela_run_in_language_iff:
assumes ltl_convert ϕ = (APs,ψ)
shows promela_props ◦ ξ ∈ ltlc_language ϕ

←→ promela_props_ltl APs ◦ ξ ∈ ltlc_language ψ

A last thing to take into account is the counter-example generation. The run returned
by the model checker itself only consists of the externally visible states. If those were
presented to the user as-is, it would not be possible to retrace the run and find the problem.
For instance, atomic intermediary states would not be visible. Therefore, we introduce
another function

definition replay :: program⇒ gState⇒ gState⇒ (edge × pState) list nres

This function takes a program definition together with a state s1 and its successor s2 and
returns the list of edges with their associated local process which were taken to go from

111

5 Model

s1 to s2. Although this function may return an execution different from the one taken
originally, this does not pose a problem, as the result of that execution is identical to the
original executaion (i. e., s2).

5.2.4 Space State Finiteness

As was the case for the Boolean Programs, we do not have some abstract semantics
which we can prove to adhere to. Instead, the semantic engine and the compilation is the
semantics. But nevertheless we have to show a very important property about the Kripke
structure that is defined by our language: It must be finite. Therefore, the set of all states
reachable from some initial state constructed by our compilation process must be finite.

In this section, we will introduce a set of invariants, which our formalization is proven
to honor. These invariants will establish, eventually, the finiteness of the generated state
space, given that the compiled program adheres to some invariant. We will show that our
compilation does adhere to it.

A natural requirement for this to hold is the need for bounds to any variable type,
number of variables, and number of processes. While the number of variables is finite
from restricting the number of processes, we additionally need to enforce bounds on the
length of arrays and the range of variables. This is not a restriction when compared to
SPIN, where, due to relying on C datatypes, the ranges are inherent. But it still can pose a
problem, as the defined bounds are arbitrary. Ideally they could be set as parameters on
the command line when calling the model checker; currently they require modifying the
theories, although without needing to touch any proof.

Using those bounds, we then go forward on defining invariants that have to hold on the
generated program. For example, variables and channels have to adhere to the bounds:

fun varType_inv :: varType⇒ bool where
varType_inv (VTBounded l h)
←→ l ≥ min_var_value ∧ h ≤ max_var_value ∧ l < h

| varType_inv VTChan←→ True

fun variable_inv :: variable⇒ bool where
variable_inv (Var t val)
←→ varType_inv t ∧ val ∈ {min_var_value..max_var_value}

| variable_inv (VArray t sz ar)
←→ varType_inv t
∧ sz ≤ max_array_size
∧ IArray.length ar = sz
∧ set (IArray.list_of ar) ⊆ {min_var_value..max_var_value}

fun channel_inv :: channel⇒ bool where
channel_inv (Channel cap ts q)
←→ cap ≤ max_array_size
∧ cap ≥ 0
∧ set ts ⊆ Collect varType_inv
∧ length ts ≤ max_array_size

112

5.2 Promela

∧ length q ≤ max_array_size
∧ (∀x ∈ set q. length x = length ts
∧ set x ⊆ {min_var_value..max_var_value})

| channel_inv (HSChannel ts)
←→ set ts ⊆ Collect varType_inv ∧ length ts ≤ max_array_size

| channel_inv InvChannel←→ True

It can then be shown that the set of all variables and all channels adhering to those
invariants is finite (recall that Collect Φ ≡ {p. Φ p}) :

lemma variables_finite:
finite (Collect variable_inv)

lemma channels_finite:
finite (Collect channel_inv)

Similar, we define an invariant, depending on the compiled program, for process states.
Besides some bounding properties (amongst others we have to show that the names of the
variables are bounded!), we also introduce necessary correlation properties. For instance,
we also show that the program counter cannot run past the end of the array representing
the transition system:

definition pState_inv :: program⇒ pState⇒ bool where
pState_inv prog p
←→ pid p ≤ max_procs
∧ pState.idx p < IArray.length (states prog)
∧ IArray.length (states prog) = IArray.length (processes prog)
∧ pc p < IArray.length ((states prog) ! pState.idx p)
. . .

Again, we can show that the number of possible program states is finite:

lemma pStates_finite:
finite (Collect (pState_inv prog))

This can be further extended to global states, which follow naturally:

definition gState_inv :: program⇒ gState⇒ bool where
gState_inv prog g
←→ length (procs g) ≤ max_procs
∧ (∀p ∈ set (procs g). pState_inv prog p)
∧ length (channels g) ≤ max_channels
. . .

Unfortunately, Collect (gState_inv prog) no longer is finite. Instead we create some
relation (definition omitted), called gState_progress_rel, for which we will eventually show
that our semantic engine is in that relation. We can then show that the number of successors
of a state under this relation is finite:

lemma gStates_finite:
fixes g :: gState
shows finite ((gState_progress_rel prog)∗ `` {g})

113

5 Model

Finally, we also give an invariant to hold on the compiled program:

definition program_inv where
program_inv prog ←→ . . .

Thereafter, we show that our compilation respects those invariants:

lemma compile_program_inv:
assumes compile ast = (prog,g0)
shows program_inv prog

lemma compile_gState_inv:
assumes compile ast = (prog, g0)
shows gState_inv prog g0

Also, our semantic engine only creates successors which are related to the input via
gState_progress_rel:

lemma nexts_SPEC:
assumes gState_inv prog g
and program_inv prog
shows nexts prog g ≤ spec gs. ∀g' ∈ gs. (g,g') ∈ gState_progress_rel prog

This property carries over, by refinement, onto our executable version:

lemma nexts_code_SPEC:
assumes gState_inv prog g
and program_inv prog
shows g' ∈ nexts_code prog g

=⇒ (g,g') ∈ gState_progress_rel prog

Therefore, we can finally show that the set of reachable states over the nexts_code function
is finite, given the invariants on the program and the initial state hold. But as was shown
earlier, this is indeed the case when using the provided compilation function:

lemma reachable_states_finite:
assumes program_inv prog
and gState_inv prog g
shows finite (reachable_states prog g)

5.2.5 Differences between SPIN and CAVA

It has been established in the beginning of this section on Promela that there is no real and
useful formal description of the language. For this reason we had to see the implementation
in SPIN as the specification. For some reason or other, we had to deviate from those
SPIN-specific specification. We claim, though, that those deviations are conservative: Any
model which runs with CAVA also runs with SPIN and yields the same result. For models
not using those unsupported constructs, we generate the very same number of states as
SPIN does. An exception applies for large goto chains and when simultaneous termination
of multiple processes is involved, as SPIN’s semantics is too vague here, i. e., it does not

114

5.2 Promela

specify whether those processes die at the same time or only one after the other in different
visible states.

In the following, we describe the known differences between our formalization and
what is described for SPINs implementation.

d_step The deterministic step d_step is an alternative to atomic. Everything inside is
collapsed into one visible change, also removing non-determinism. This construct is
not supported by CAVA. Instead one should replace d_step by atomic, which yields the
same semantics (the other direction does not hold), even though generating larger models.
Because CAVA already uses the C preprocessor, this replacement can be easily done by
passing -D d_step=atomic.

run is a statement Following the Promela specification, run is “the only operator allowed
inside expressions that can have a side effect” (from [48]). Of course, having run A() as a
full-fledged expression would be a disaster (and what would run A() + run B() express?).
Thus SPIN enforces some, again rather underspecified, restrictions. As the sole reason for
this semantics is to get hold of the process ID of the spawned process (pid = run A()), for
which there are also other measures, we omitted this feature and made run a statement.
This also improves the formalization, for we now can assume all expression to be free of
side-effects.

asserts do not abort If SPIN comes across a violated assertion, the model checking
process aborts and a counter-example is printed. As our model checker is tailored towards
getting an LTL property as input and take this as its sole responsibility, such behavior
could not be implemented properly inside CAVA. As an alternative, we added the general
atomic property, read: variable, __assert__ which is available in each program. Hence, it
is necessary to actively check this variable in the LTL formula if assertion violation should
be paid attention to.

Other property specifications For the same reason given in the assertion case, property
specifications besides ltl and assert are ignored. In the SPIN-world, a very widely used
approach for specifiying properties are the never-claims. This is an additional process
which expects a property that must not happen. LTL formulas are normally converted
into such a never-claim by SPIN.

Types are bounded As described in the section on finiteness 5.2.4, all types are bounded.
While this does not deviate from the general SPIN behavior, the bounds can be different.
SPIN does not specify any explicit semantics here, but solely refers to the underlying
C-compiler and its semantics. This might result in two models behaving differently on
different systems when run with SPIN, while CAVA, due to the explicit bounds in the
semantics, is not affected. Moreover, in CAVA we do not allow overflowing of values
except for well-defined types like booleans7.

7We found one model while benchmarking which was wrongly specified. Due to an integer underflow,
certain paths were never reached. This passed silently in SPIN.

115

5 Model

Certain variable declarations SPIN has strange semantics when it comes to variable
declarations. In earlier versions of SPIN, all variable declarations inside a process definition
were evaluated implicitly as if they were placed at the top of the process definition. That
is, their actual positions were irrevelant, though the order mattered. While this behavior
has been removed, there are occurences where the position is not taken into account. For
instance the following program yields 0, which is expected:

int i
goto L;
i =5;
L: printf("%d", i)

On the other hand, the following yields 5, which is unexpected. An error might have been
better:

goto L;
int i = 5;
L: printf("%d", i)

In CAVA, the latter version is not allowed and would result in an error “unknown
variable i”.

typedef The typedef allows to specify larger structures in Promela models. While this is
an important feature, we thought it not feasible to implement it correctly in CAVA, due to
the rather complicated restrictions on them:

It is not possible to assign the value of a complete typedef object directly to
another such object of the same type in a single assignment. A typedef object
may be sent through a message channel as a unit provided that it contains
no fields of type unsigned and no arrays of typedef’ed structures. A typedef
object can also be used as a parameter in a run statement, but in this case it
may not contain any arrays. (Source: [48])

Binary Operations and unsigned Currently, binary operations on integers are not sup-
ported by CAVA, as is unsigned, which implements bit-fields. Using the native Word
theories by Lochbihler [33] this should be possible to be implemented, though.

Remote References Remote references allow to access other processes’ internal variables,
both from LTL properties and from processes itself. This has not been implemented in
CAVA, because it seems rather obscure and might not be trivial to implement.

Ignored Constructs Various constructs like xr, xs, advanced variable scoping, priorities,
and visibility of variables are ignored. This does not alter the behavior of the model, but
is mostly used for creating more efficient models. Especially advanced variable scoping
is also, again, very underspecified. For example, it seems like even though variables can
be scoped, there must not be two different variables with the same name in one process
but different scopes. Also, all constructs of the print* family are ignored, as they are not
expressible in SML.

116

5.2 Promela

100 200 300 400

10

20

30

40

Time in s (CAVA)

Ti
m

e
in

s
(S

PI
N

)

Test case

Figure 5.2: G true benchmark on 157 tests

5.2.6 Evaluation

With the support for Promela, it is now possible to test the very same models in both
SPIN and CAVA. For this, we used models from [43, 46], with some minor modifications
to match modern Promela syntax. The tests were performed on a Core i7 with 2.7 GHz,
memory being hard-limited to 6.5 GB. Also, a timeout of 800 seconds was set for each run.

CAVA was compiled with MLton 20130715 and used an ad-hoc implementation of
Lammich for Nested DFS. SPIN (version 6.2.5) was used without optimizations, especially
partial-order reduction: spin was run with -o1 -o2 -o3 and the code compiled with
-DNOREDUCE. During the benchmark, SPIN’s search depth was set to 6 ∗ 107 (-m60000000).

Further, -D d_step=atomic was passed to both SPIN and CAVA, replacing d_step blocks
by atomic blocks, as the former is not supported by CAVA (cf. Section 5.2.5). Since d_step
is an optimized and restricted form of the latter (collapsing the sequence into one state),
this is semantically sound, but influences the size of the state space.

The benchmark consists of 306 single tests, 4 of which got removed, as they contained
failing asserts which CAVA ignores by default (cf. Sect. 5.2.1). Further, 50 tests included
features not supported in CAVA, 77 led to failures in SPIN (most often out-of-memory
and exhausted search depth), 94 timed out on CAVA (a test may occur in multiple of those
categories). In total 157 tests performed successfully on both tools. To ensure a complete
search of the state space the property used together with these tests is G true. Each test
was run 5 times, the worst and best time removed and the remaining three averaged. Two
timed out runs mark the whole test as timed out.

This benchmark shows that overall CAVA is about 20 times slower than SPIN. Fig. 5.2
plots the results of the benchmark: the line represents tSPIN = 20tCAVA, so anything above
represents a test where CAVA was less than 20 times slower than SPIN (dots below
analogously). Tests on which it timed out had a mean run time of 89.18 seconds in
SPIN, lying far above timeout

20 . This is a good result for a verified and generated software,

117

5 Model

9 10 11 12 13 14 15

0

200

400

600

N

Ti
m

e
in

s

Dining Phils (single vars) Dining Phils (arrays)

Figure 5.3: Comparison array vs. single variables

especially as SPIN builds a tailored checker for each model, whereas CAVA’s is general.
Further, we tested multiple properties on scaling versions of the leader election protocol

and the “Dining Philosophers”. Here, the LTL-to-Büchi translation is important. As of
this time, the implementation in CAVA is tailored to verification, not efficiency. This leads
to larger-than-necessary state spaces, in particular for formulas containing U. Therefore
the slowdown is a factor between 9 and 70. For negative properties, SPIN found 75 of 77
counter-examples in less than 10 seconds, CAVA 70 of 77. In general, those numbers are
hard to compare though, as the counter-example search heavily depends on choices made
throughout the search process.

The main reason for the difference in performance is the lack of destructive updates in a
purely functional program. In particular we must use trees as our main data structure,
yielding a logarithmic overhead. Arrays can only be used when updates are seldom, as
they cannot be updated in-place but need to be copied in full. Moreover we cannot utilize
pointers for keeping a reference to a changing structure, but have to look up information
each time. The consequences are shown in Fig. 5.3. We ran “Dining Philosophers” modeled
in two different ways:

• using three arrays of length N, i. e., one array for each general variable to keep track
of, where the values for process i is stored at position i in each array

• using 3N different variables, i. e., one variable for each combination of process and
general variable

As can be seen in the figure, the amount of variables has a very notable impact on
performance, even though this does not influence the state-space.

118

5.2 Promela

5.2.7 Related Formalizations

Other formalizations of Promela exist [57, 13, 53]. Unfortunately, it was not possible to use
any of them as a template for our use.

Weise [57] presents a small-step operational semantics for Promela, based on earlier
works of Natarajan and Holzmann [34]. While the rules presented in the paper make
it possible to understand the general concepts, they only represent an old version of
Promela8 – and this one only partially. Furthermore, the semantics described there (for
example regarding atomicity) are not exactly what SPIN is doing, though the possibilty
remains for the semantics having changed in the meantime. Additionally, it suffers from
the main problem of most formalizations, the lack of an implementation. Thus it remains
unclear whether all deviations from SPIN are being mentioned in that paper.

A more recent approach is done by Gallardo et al. [13]. In their paper, they present a
small step operational semantics, which is built using different layers: intra-procedural,
two different notions of inter-procedural, and the observable semantics. While their goal is
to create a semantics which makes it possible to use Promela in abstract model checking,
this paper makes it possible to gain a more detailed view into the behavior of Promela. It
also handles the difficult edge-cases of the language, like passing atomicity via handshakes.

We tried to use the approach by Gallardo for our own formalization. Unfortunately,
it often remained too abstract, making it hard to implement it efficiently. Additional
complexity was introduced by the multiple layers. Thus, we changed back to the approach
of Holzmann [17]. But it may be reasonable to use [13] as the abstract layer atop of the
current formalization.

The last formalization we took into account is the fairly recent work by Sharma [53].
The author presents a refinement framework for refining Promela models to C, in order
to generate implementations of the models. The author also shows that their translation
is sound regarding the LTL properties. Sharma starts with a core part of the language to
establish semantic rules. This is then extended to the overall language. Unfortunately, the
author does not link the two concepts properly, but instead just gives the extension as a
set of syntax rules. It is not explained why this now models all of Promela, and also why
this does not interfere with the correctness properties of the refinement. Also, similar to
Weise [57], the semantics of atomicity defined in the core Promela language is wrong; due
to the missing explanation on the extension to the language proper, this seems to carry
over to the whole model.

5.2.8 Conclusion

Our formalization is, to our awareness, the only executable formalization of Promela so far.
While still lacking some features of the original language (cf. Section 5.2.5), the generated
system automaton does not differ from the one generated by SPIN. We were able to run
large parts of a benchmark suite using this formalization, proving its practicability. As
we can interpret the model on the fly, the workflow is even simpler compared to SPIN,
where three steps are necessary (compile to C, compile to executable, run – cf. Fig. 5.1 on
page 102).

8We cannot find any usage of versioning for Promela after this paper, so it is hard to relate the version
mentioned there to the current one.

119

5 Model

But naturally, the presented formalization is not perfect. The most important point is
the missing features. Of those, only typedef and the binary operations represent features
that would really increase usability. The d_step is definitly a nice-to-have perfomance-wise,
but not essential as it can be replaced, as mentioned, by atomic.

A larger problem with this formalization is its lack of abstraction. Currently, a lot
of the functions involved already take efficiency into account, at least partially. As a
consequence, they have to deal with both their inherent use and the correct use of more
efficient datastructures. A good example for illustration is the use of lists throughout
the whole formalization, whereas sets would have been easier to model. A different
illustration is the function for calculating the set of executable edges: It internally has
two different code paths depending on whether there are priorities involved. While the
effect on readability is neglegible, it has two further consequences: proofs become more
involved, and optimizations are more difficult.

Another important topic to work on are the additional non-trivial optimizations of
SPIN, including partial-order reduction [44]. This technique is an important optimization
used in SPIN to drastically reduce the size of the state-space. This technique is currently
implemented as part of CAVA [4], but needs to be get adapted for Promela. Currently, it is
only formalized for another simplified, but abstract, modeling language that can be seen
as a subset of Promela.

120

6 Assembling the Model Checker

From the different building blocks (System Representation from Chapter 5, Automata
Intersection from Chapter 3, Finding of Counter-Examples from Chapter 4) given in this
thesis, plus the translation from an LTL property into a Büchi automaton described by
Schimpf [49], a complete model checker can be assembled and proven to be correct.

In this chapter we will describe how the different parts are to be assembled to form the
resulting model checker CAVA. Something similar is also given in our former overview
paper [10], where older versions of the different parts where used. Also, in the following,
the assembly makes heavy use of the Refinement Framework, while in the paper, a more
manual approach has been chosen. Using the Refinement Framework now is favorable,
as this is also used in the different parts and therefore the final step, the code generation,
can be done nearly automatically; the assembling is transparent for the Framework and it
can therefore rely on the implementation work already existing as part of the different
building blocks.

For each of the basic building blocks (except for System Representation: it is just encoded
as a system automaton), an abstract function is defined. Each is defined in terms of a
spec, that is, only the property of the outcome is defined. Later on, the implementations
are shown to be a refinement of the abstract definitions, so that the correctness property
follows by transitivity.

For the LTL-to-Büchi translation, we require the resulting GBA to be language equivalent
to the formula passed, and also to have only finitely many states reachable from the initial
states:

definition ltl_to_gba_spec
:: 'prop ltlc⇒ ('q, 'prop set) igba nres
where ltl_to_gba_spec ϕ ≡ spec gba.

igba.lang gba = ltlc_language ϕ ∧ igba gba ∧ finite ((E gba)∗ `` V0 gba))

The types involved define the input to be an LTL formula, where the propositions are
given by some type variable 'prop, and the output to be a GBA (in the form of the new
automata library as described both in [26] and Section 3.2).

Second, the intersection is given by the following definition, returning two things:
First, what the automata framework calls the graph of the product automaton, i. e., the
automaton without labelling information, and second, a projection from the state of the
product automaton onto the original state space of the system automaton. The latter is
needed for presenting the counter-example:

definition inter_spec
:: ('s,'prop set) sa
⇒ ('q,'prop set) igba
⇒ (('prod_state) igb_graph × ('prod_state⇒ 's)) nres
where inter_spec sys ba ≤ spec (G, project).

121

6 Assembling the Model Checker

igb_graph G
∧ finite ((E G)∗ `` V0 G)
∧ (∀r.

(∃r'. igb_graph.is_acc_run G r' ∧ r = project ◦ r')
←→ (graph_defs.is_run sys r ∧ L sys ◦ r ∈ igba.lang ba))

The requirements for the result already state most of the main property of the model
checker: An accepting run on the product exists iff its projected version is a run in the
original system and the trace is in the language given by the property.

Lastly, the search for a counter-example is defined. It shall return None when there is
no accepting run, else Some plus an optional counter-example. Here, the counter-example
is optional to allow for algorithms that are fast for stating the existence, but unusable in
construction of such a counter-example.

definition find_ce_spec
:: 'q igb_graph⇒ 'q word option option nres
where find_ce_spec G ≤ spec result. case result of

None⇒ ¬(∃r. igb_graph.is_acc_run G r)
| Some None⇒ (∃r. igb_graph.is_acc_run G r)
| Some (Some r)⇒ igb_graph.is_acc_run G r

Eventually, they can be combined into a definition for a model checker, which takes a
system and an LTL formula as input:

definition abs_model_check
:: ('s,'prop set) sa
⇒ 'prop ltlc
⇒ 's word option option nres
where
abs_model_check sys ϕ ≡ do {

gba← ltl_to_gba_spec (LTLcNeg ϕ);
(Gprod, project)← inter_spec sys gba;
ce← find_ce_spec Gprod;

case ce of
None⇒ return None

| Some None⇒ return (Some None)
| Some (Some r)⇒ return (Some (Some (project ◦ r)))
}

This can be proven to have the expected property of returning None iff all runs of the
system are a model of ϕ (or equivalent: the language of the system is a subset of the
language of ϕ). If a counter-example is returned, the run is valid but not a model of ϕ:

theorem abs_model_check_correct:
abs_model_check sys ϕ ≤ spec result. case result of

None⇒ sa.lang sys ⊆ ltlc_language ϕ
| Some None⇒ ¬ sa.lang sys ⊆ ltlc_language ϕ
| Some (Some r)⇒ graph_defs.is_run sys r ∧ L sys ◦ r /∈ ltlc_language ϕ

122

Having defined the abstract view of such a model checker, it remains to construct an
actual model checker. For each of the different building blocks, it is shown that they are a
refinement of their corresponding abstract definition as stated above. Those proofs mostly
follow from the correctness properties as shown individually plus technical setup for the
Refinement Framework. We will omit the definitions and proofs here, for they are mainly
boilerplate.

Also, as there exist, for example, multiple implementations for counter-example search,
an additional configuration is added that allows to choose at runtime between the different
implementations. Eventually, a system-agnostic version of the model checker is defined,
named cava_sys_agn. Also, the correctness is shown by refinement1:

theorem cava_sys_agn_correct:
cava_sys_agn ≤ abs_model_check

From the system agnostic model checker, the last step is the addition of a system. While
we have earlier mentioned that the system is “merely” given as a system automaton, this
still has to be implemented. We will highlight this for the Promela setup.

As a first step, we define the system automata given an already translated Promela
program (cf. Sections 5.2.2 and following). Such a translated Promela program consists of
the state-machine representing the program prog, the set of atomic propositions APs, and
an initial configuration g0. The mapping to a system automaton is then given by:

states Since we cannot define the states in general, we simply take the universe of the
underlying type of configurations. This is sufficient, for only finitely many reachable
states are required – which is proven to hold for our Promela implementation (cf.
Section 5.2.4).

transitions The Promela implementation provides a successor function nexts (which was
refered to as semantic engine in the Promela formalization). This is sufficient to define
the transition relation.

initial states The initial state is the given initial configuration.

labels The labels are defined to be those atomic propositions which are true in the current
state.

In code, this reads:

definition promela_to_sa promg ≡ let (prog, APs, g0) = promg in
L

V = UNIV,
E = E_of_succ (Promela.nexts prog),
V0 = {g0},
L = promela_props_ltl APs

M

Requiring a compiled program before stating correctness is unsatisfactory. Therefore
we implement also the compilation from an AST to the Promela program as part of the

1In the actual theories, this refinement is implicit by use of locales. Hence, the theorem itself does not exist,
only the lifted property (as above).

123

6 Assembling the Model Checker

model checker. Recall from Section 5.2.3 that for efficiency reasons propositions inside the
program are only expressed as pointers into this set. To that end, the Promela compiler
also needs to inspect and modify the given LTL property.

definition cava_promela cfg ast ϕ ≡
let

(promg,ϕi) = PromelaLTL.prepare cfg ast ϕ
in

cava_sys_agn (fst cfg) (promela_to_sa_impl promg) ϕi

Finally, we can show that the resulting model checker is still correct, hiding the transla-
tion phases of both the program and the formula.

lemma cava_promela_correct:
case cava_promela cfg ast ϕ of

None⇒ promela_language ast ⊆ ltlc_language ϕ
| Some None⇒ ¬(promela_language ast ⊆ ltlc_language ϕ)
| Some (Some ce)⇒ promela_is_run ast (run_of_lasso ce)

∧ promela_props ◦ run_of_lasso ce /∈ ltlc_language ϕ

Thus, we get a fully verified model checker that is able to understand Promela as part of
its input.

As a last step, the code can be exported

export_code cava_promela

and compiled. Additional setup (like parsing Promela code from some input or parsing
LTL) and outputting the counter-example in usable format is not part of theories and has
to be implemented in the final code wrapper. This is mostly technical and can be found in
the accompanying theories [11].

124

7 Conclusion

In this thesis, we used the Interactive Theorem Prover Isabelle/HOL to develop a reference
implementation of a SPIN-style explicit state LTL model checker. This model checker
then is not only proven to be correct, but also executable. Even more, the created model
checker is comparative with SPIN – both in input and in runtime (cf. Chapter 5). To our
knowledge, on presenting the original paper [10], our work, the CAVA project, was the
first successful approach to achieve this.

Further, as part of this model checker, we formalized the semantics of SPINs modelling
language Promela (cf. Section 5.2). Again, to our knowledge, on original publication [37]
we presented the first result that is also executable.

Other subprojects/developments of this model checker were different formalizations of
automata (cf. Chapter 3) and a generic framework for developing and proving algorithms
based on Depth-First Search in Isabelle/HOL (cf. Chapter 4).

But besides those usable end-products, this thesis also took an in-depth look at different
developing approaches for some of them. We compared various approaches to the formal-
ization of the automata-theoretic foundations in Chapter 3, and different implementations
of how to create a framework that covers depth-first search based algorithms in Chapter 4.
Comparing those different approaches and implementations, as well as taking into account
the lessons learnt from creating and using these approaches and implementations with a
particular goal – the model checker – in mind, led to an insight: In the field of Interactive
Theorem Proving, the more comprehensive approach is often not the one best-suited.

The insight that too comprehensive libraries or toolkits can be obstacles more than
enablers is not new in software development in general1. The, in our opinion, interesting
observation is that it applies to the world of theorems, too. In our understanding pro-
viding comprehensive libraries of theorems is essential for increasing the usefulness of
a particular ITP ecosystem, allowing its usage in more circumstances, in turn leading to
more formalizations. We cannot – and do not want to – refute this. But as we had to learn,
there is a difference between formalizing a particular concept and writing a particular tool.

In the latter case, the goal is not to cover as much as possible about a certain topic but to
implement a certain algorithm. What is more, this algorithm must be exportable to code
with the resulting code being as efficient as possible; an unusable tool would be the result
otherwise. When incorporating a concept or a data structure into such a tool, this concept,
or any algorithms on it, thus needs to be expressed in a way as not to decrease runtime
performance.

In general, most of the libraries available follow the goal of providing abstract concepts
together with their properties. The libraries very seldomly provide an exportable and
efficient2 implementation. And even if they do, the optimizations chosen may not be in

1A compilation of libraries/protocols with too broad a goal and the resulting too complex API given at a
talk at the 26C3: https://events.ccc.de/congress/2009/Fahrplan/events/3691.en.html

2“Efficient” here is meant as efficiency of the execution. Proof-efficiency on the other hand often is a goal of

125

https://events.ccc.de/congress/2009/Fahrplan/events/3691.en.html

7 Conclusion

line with what is needed by the tool one is developing. For that reason, it is safe to assume
that one only has the abstract notions at hand.

Starting with such an abstract notion one has to provide an efficient implementation.
On the other hand, quite often one needs only a few of the properties that are provided by
the framework. Putting those two points together, it shows that the work needed to shape
the provided library in such a way that it can be used successfully in the development of a
tool often is larger than the benefit it provides.

Also, we learnt that when developing a framework and its application side-by-side,
some general design principles of the framework often have to be rethought. This then led
to larger overhauls of the framework itself. This also has to be taken into account for the
cost-benefit-analysis of creating a central framework.

Lammich has shown a slightly different way by providing additional automatization for
usage in the theorem prover. The main example is the Isabelle Refinement Framework [24]
detailed in Section 2.2, and an approach for building DFS-based algorithms was shown
in Section 4.8.3. With this approach, there is no need for a central framework. Instead,
the manual labor needed to derive the specific results for a particular project is reduced.
While we find this still to have some downsides (also given in Section 4.8.3), it serves well
as another starting point.

such a library.

126

Bibliography

[1] Accompanying downloads of CAVA publications. https://cava.in.tum.de/
downloads. Accessed: 2016-12-22.

[2] R.-J. Back. On the correctness of refinement steps in program development. PhD thesis,
Department of Computer Science, University of Helsinki, 1978.

[3] R.-J. Back and J. von Wright. Refinement Calculus — A Systematic Introduction. Springer,
1998.

[4] J. Brunner and P. Lammich. Formal verification of an executable LTL model checker
with partial order reduction. In S. Rayadurgam and O. Tkachuk, editors, Proc. NASA
Formal Methods (NFM ’16), volume 9690 of Lecture Notes in Computer Science, pages
307–321. Springer, 2016.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms,
Third Edition. MIT Press, 2009.

[6] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient algorithms
for the verification of temporal properties. Formal Methods in System Design, 1(2/3):
275–288, 1992.

[7] J.-M. Couvreur. On-the-fly verification of linear temporal logic. In J. Wing, J. Wood-
cock, and J. Davies, editors, Proc. Formal Methods (FM ’99), volume 1708 of Lecture
Notes in Computer Science, pages 253–271. Springer, 1999.

[8] E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. Commun. ACM, 18(8):453–457, 1975.

[9] Documentation of Isabelle/HOL. https://isabelle.in.tum.de/documentation.
html. Accessed: 2016-12-22.

[10] J. Esparza, P. Lammich, R. Neumann, T. Nipkow, A. Schimpf, and J.-G. Smaus. A
fully verified executable LTL model checker. In N. Sharygina and H. Veith, editors,
Proc. Computer Aided Verification (CAV ’13), volume 8044 of Lecture Notes in Computer
Science, pages 463–478. Springer, 2013.

[11] J. Esparza, P. Lammich, R. Neumann, T. Nipkow, A. Schimpf, and J.-G. Smaus. A
fully verified executable LTL model checker. Archive of Formal Proofs, May 2014.
URL http://isa-afp.org/entries/CAVA_LTL_Modelchecker.shtml. Formal proof
development.

[12] H. N. Gabow. Path-based depth-first search for strong and biconnected components.
Information Processing Letters, 74(3):107–114, 2000.

127

https://cava.in.tum.de/downloads
https://cava.in.tum.de/downloads
https://isabelle.in.tum.de/documentation.html
https://isabelle.in.tum.de/documentation.html
http://isa-afp.org/entries/CAVA_LTL_Modelchecker.shtml

Bibliography

[13] M. d. M. Gallardo, P. Merino, and E. Pimentel. A generalized semantics of PROMELA
for abstract model checking. Formal Aspects of Computing, 16(3):166–193, 2004.

[14] F. Gava, J. Fortin, and M. Guedj. Deductive verification of state-space algorithms. In
E. B. Johnsen and L. Petre, editors, Proc. Integrated Formal Methods (IFM ’13), volume
7940 of Lecture Notes in Computer Science, pages 124–138. Springer, 2013.

[15] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic verification
of linear temporal logic. In P. Dembinski and M. Sredniawa, editors, Proc. Int. Symp.
Protocol Specification, Testing, and Verification, volume 38 of IFIP Conference Proceedings,
pages 3–18. Chapman & Hall, 1996.

[16] F. Haftmann and T. Nipkow. Code generation via higher-order rewrite systems. In
M. Blume, N. Kobayashi, and G. Vidal, editors, Proc. Functional and Logic Programming
(FLOPS ’10), volume 6009 of Lecture Notes in Computer Science, pages 103–117. Springer,
2010.

[17] G. J. Holzmann. The Spin Model Checker — Primer and Reference Manual. Addison-
Wesley, 2003.

[18] G. J. Holzmann and R. Joshi. Model-driven software verification. In S. Graf and
L. Mounier, editors, Model Checking Software, volume 2989 of Lecture Notes in Computer
Science, pages 76–91. Springer, 2004.

[19] G. J. Holzmann, D. Peled, and M. Yannakakis. On nested depth first search. In
J.-C. Grégoire, G. J. Holzmann, and D. A. Peled, editors, Proc. of the 2nd SPIN
Workshop, volume 32 of Discrete Mathematics and Theoretical Computer Science, pages
23–32. American Mathematical Society, 1997.

[20] J. E. Hopcroft. An n log n algorithm for minimizing the states in a finite automaton.
In Theory of Machines and Computations, pages 189–196. Academic Press, 1971.

[21] G. Klein and T. Nipkow. A machine-checked model for a Java-like language, virtual
machine and compiler. ACM Trans. Prog. Lang. Syst., 28(4):619–695, 2006.

[22] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4:
formal verification of an OS kernel. In J. N. Matthews and T. E. Anderson, editors,
Proc. ACM Symp. Operating Systems Principles, pages 207–220. ACM, 2009.

[23] P. Lammich. Automatic data refinement. Archive of Formal Proofs, Oct. 2013. URL http:
//isa-afp.org/entries/Automatic_Refinement.shtml. Formal proof development.

[24] P. Lammich. Automatic data refinement. In S. Blazy, C. Paulin-Mohring, and
D. Pichardie, editors, Proc. Interactive Theorem Proving (ITP ’13), volume 7998 of
Lecture Notes in Computer Science, pages 84–99. Springer, 2013.

[25] P. Lammich. The CAVA automata library. Archive of Formal Proofs, May 2014. URL
http://isa-afp.org/entries/CAVA_Automata.shtml. Formal proof development.

[26] P. Lammich. The CAVA automata library. In Isabelle Workshop 2014, 2014.

128

http://isa-afp.org/entries/Automatic_Refinement.shtml
http://isa-afp.org/entries/Automatic_Refinement.shtml
http://isa-afp.org/entries/CAVA_Automata.shtml

Bibliography

[27] P. Lammich. Verified efficient implementation of Gabow’s strongly connected compo-
nent algorithm. In G. Klein and R. Gamboa, editors, Proc. Interactive Theorem Proving
(ITP ’14), volume 8558 of Lecture Notes in Computer Science, pages 325–340. Springer,
2014.

[28] P. Lammich and A. Lochbihler. The Isabelle Collections Framework. In M. Kaufmann
and L. C. Paulson, editors, Proc. Interactive Theorem Proving (ITP ’10), volume 6172 of
Lecture Notes in Computer Science, pages 339–354. Springer, 2010.

[29] P. Lammich and R. Neumann. A framework for verifying depth-first search algorithms.
In Proc. Certified Programs and Proofs (CPP ’15), pages 137–146, New York, 2015. ACM.

[30] P. Lammich and R. Neumann. A framework for verifying depth-first search algo-
rithms. Archive of Formal Proofs, July 2016. URL http://isa-afp.org/entries/DFS_
Framework.shtml. Formal proof development.

[31] P. Lammich and T. Tuerk. Applying data refinement for monadic programs to
Hopcroft’s algorithm. In L. Beringer and A. Felty, editors, Proc. Interactive Theorem
Proving (ITP ’12), volume 7406 of Lecture Notes in Computer Science, pages 166–182.
Springer, 2012.

[32] X. Leroy. A formally verified compiler back-end. J. Automated Reasoning, 43:363–446,
2009.

[33] A. Lochbihler. Native word. Archive of Formal Proofs, Sept. 2013. URL http://isa-afp.
org/entries/Native_Word.shtml. Formal proof development.

[34] V. Natarajan and G. J. Holzmann. Outline for an operational semantics of PROMELA.
In J.-C. Grégoire, G. J. Holzmann, and D. A. Peled, editors, Proc. of the 2nd SPIN
Workshop, volume 32 of Discrete Mathematics and Theoretical Computer Science, pages
133–152. American Mathematical Society, 1997.

[35] R. Neumann. A framework for verified depth-first algorithms. In A. McIver and
P. Höfner, editors, Proc. Workshop on Automated Theory Exploration (ATX ’12), pages
36–45. EasyChair, 2012.

[36] R. Neumann. Promela formalization. Archive of Formal Proofs, May 2014. URL
http://isa-afp.org/entries/Promela.shtml. Formal proof development.

[37] R. Neumann. Using Promela in a fully verified executable LTL model checker. In
D. Giannakopoulou and D. Kroening, editors, Proc. Verified Software: Theories, Tools
and Experiments (VSTTE ’14), volume 8471 of Lecture Notes in Computer Science, pages
105–114. Springer, 2014.

[38] T. Nipkow and G. Klein. Concrete Semantics — With Isabelle/HOL. Springer, 2014. URL
http://concrete-semantics.org.

[39] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-
Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer, 2002.

129

http://isa-afp.org/entries/DFS_Framework.shtml
http://isa-afp.org/entries/DFS_Framework.shtml
http://isa-afp.org/entries/Native_Word.shtml
http://isa-afp.org/entries/Native_Word.shtml
http://isa-afp.org/entries/Promela.shtml
http://concrete-semantics.org

Bibliography

[40] T. Nishihara and Y. Minamide. Depth first search. Archive of Formal Proofs, June
2004. URL http://isa-afp.org/entries/Depth-First-Search.shtml. Formal proof
development.

[41] L. Noschinski. Graph theory. Archive of Formal Proofs, Apr. 2013. URL http://
isa-afp.org/entries/Graph_Theory.shtml. Formal proof development.

[42] L. Noschinski. A graph library for Isabelle. Mathematics in Computer Science, 9(1):
23–39, 2015.

[43] R. Pelánek. BEEM: Benchmarks for explicit model checkers. In D. Bošnački and
S. Edelkamp, editors, Model Checking Software, volume 4595 of Lecture Notes in Computer
Science, pages 263–267. Springer, 2007.

[44] D. Peled. Combining partial order reductions with on-the-fly model-checking. In
D. L. Dill, editor, Proc. Computer Aided Verification (CAV ’94), volume 818 of Lecture
Notes in Computer Science, pages 377–390. Springer, 1994.

[45] F. Pottier. Depth-First Search and Strong Connectivity in Coq. In D. Baelde and
J. Alglave, editors, Vingt-sixièmes journées francophones des langages applicatifs (JFLA ’15),
Jan. 2015.

[46] Promela Database. URL http://www.albertolluch.com/research/promelamodels.
Accessed: 2016-12-22.

[47] Promela Homepage. http://spinroot.com/spin/whatispin.html. Accessed: 2016-
12-22.

[48] Promela Manual Pages. http://spinroot.com/spin/Man/promela.html. Accessed:
2016-12-22.

[49] A. Schimpf. Eine vollständig verifizierte, ausführbare Formelübersetzung à la SPIN. PhD
thesis, Albert-Ludwigs-Universität Freiburg, 2015.

[50] A. Schimpf, S. Merz, and J.-G. Smaus. Construction of Büchi automata for LTL
model checking verified in Isabelle/HOL. In S. Berghofer, T. Nipkow, C. Urban, and
M. Wenzel, editors, Proc. Theorem Proving in Higher Order Logics (TPHOLs ’09), volume
5674 of Lecture Notes in Computer Science, pages 424–439. Springer, 2009.

[51] S. Schwoon and J. Esparza. A note on on-the-fly verification algorithms. In N. Halb-
wachs and L. Zuck, editors, Proc. Tools and Algorithms for the Construction and Analysis of
Systems (TACAS ’05), volume 3440 of Lecture Notes in Computer Science, pages 174–190.
Springer, 2005.

[52] N. Shankar. Trust and automation in verification tools. In S. Cha, J.-Y. Choi, M. Kim,
I. Lee, and M. Viswanathan, editors, Proc. Automated Technology for Verification and
Analysis (ATVA ’08), volume 5311 of Lecture Notes in Computer Science, pages 4–17.
Springer, 2008.

[53] A. Sharma. A refinement calculus for Promela. In Proc. International Conference on
Engineering of Complex Computer Systems (ICECCS ’13), pages 75–84. IEEE, 2013.

130

http://isa-afp.org/entries/Depth-First-Search.shtml
http://isa-afp.org/entries/Graph_Theory.shtml
http://isa-afp.org/entries/Graph_Theory.shtml
http://www.albertolluch.com/research/promelamodels
http://spinroot.com/spin/whatispin.html
http://spinroot.com/spin/Man/promela.html

Bibliography

[54] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160, 1972.

[55] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proc. Logic in Computer Science (LICS ’86), pages 332–344. IEEE, 1986.

[56] P. Wadler. Comprehending monads. Mathematical Structures in Computer Science, 2:
461–478, 1992.

[57] C. Weise. An incremental formal semantics for PROMELA. In Proc. of the 3rd
International SPIN Workshop, 1997.

[58] L. Zhao, J. Zhang, and J. Yang. Advances in on-the-fly emptiness checking algo-
rithms for Büchi automata. In Proc. International Conference on Advanced Computational
Intelligence (ICACI ’12), pages 113–118. IEEE, 2012.

131

	1 Introduction
	2 Prerequisites
	2.1 Isabelle/HOL
	2.1.1 Basic Notation
	2.1.2 Defining new Types
	2.1.3 Definitions
	2.1.4 Lemmas and Proving Them
	2.1.5 Local Context
	2.1.6 Deviation from the Theories

	2.2 Refinement

	3 Constructing the Search Space
	3.1 The Comprehensive Library
	3.1.1 Labeled Transition System
	3.1.2 Semi-Automaton
	3.1.3 NFA and DFA
	3.1.4 Implementation
	3.1.5 -Automaton
	3.1.6 Elementary -Automaton

	3.2 Current Formalization
	3.3 Comparison and Concluding Remarks

	4 Checking
	4.1 Depth-First Search
	4.2 A Generic (Depth-First) Search
	4.2.1 Why so generic?

	4.3 Implementing the Search: A Specific State
	4.4 Proof Architecture
	4.4.1 Library of Invariants

	4.5 Refinement
	4.5.1 Data Refinement / Projection
	4.5.2 Structural Refinement
	4.5.3 Code Generation

	4.6 An Application in Model Checking: Nested DFS
	4.6.1 Introduction to Nested DFS
	4.6.2 Formalization – Inner DFS
	4.6.3 Formalization – Outer DFS

	4.7 An Advanced Application: Tarjan's Algorithm
	4.7.1 Implementation in the Framework
	4.7.2 Prerequisites for the Correctness Proof
	4.7.3 Correctness Proof
	4.7.4 Concluding Remarks

	4.8 Comparison to Previous Approaches
	4.8.1 DFS-Framework, the ATX Approach
	4.8.2 DFS-Framework, the CAV Approach
	4.8.3 DFS-Framework, a Templating Approach

	5 Model
	5.1 Introduction – Boolean Programs
	5.2 Promela
	5.2.1 Introduction to Promela
	5.2.2 Formalization and Implementation
	5.2.3 Abstract Language
	5.2.4 Space State Finiteness
	5.2.5 Differences between SPIN and CAVA
	5.2.6 Evaluation
	5.2.7 Related Formalizations
	5.2.8 Conclusion

	6 Assembling the Model Checker
	7 Conclusion
	Bibliography

