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ABSTRACT
Modern malware interacts with multiple internet domains
for various reasons: communication with command and con-
trol (C&C) servers, boosting click counts on online ads or
performing denial of service attacks, among others. The
identification of malign domains is thus necessary to prevent
(and react to) incidents. Since malware creators constantly
generate new domains to avoid detection, maintaining up-
to-date lists of malign domains is challenging. We propose
an approach that automatically estimates the risk associated
with communicating with a domain based on the data flow
behavior of a process communicating with it. Our approach
uses unsupervised learning on data flow profiles that capture
communication of processes with network endpoints at sys-
tem call level to distinguish between likely malign or benign
behavior. Our evaluations on a large and diverse data set
indicate a high detection accuracy and a reasonable perfor-
mance overhead. We further discuss how this concept can be
used in an operational setting for fine-grained enforcement
of risk-based incident response actions.

CCS Concepts
•Security and privacy→Malware and its mitigation;
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1. INTRODUCTION
Malware remains one of the biggest IT security threats. Due
to increasingly sophisticated measures like encryption or ob-
fuscation [22], malware detection companies are significantly
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challenged in keeping up the pace with a professionalized
malware industry. As a consequence, research on advanced
malware detection techniques has recently gained momen-
tum. In particular, state-of-the-art behavior-based malware
detection approaches have shown to be effective in detect-
ing unknown or highly obfuscated malware samples where
purely signature-based mechanisms fail [5, 15]. But even
the most sophisticated malware detection mechanisms al-
ways leave a certain chance to malware to avoid detection.
This is a consequence of the use of obfuscation techniques,
exploitation of monitoring “blind-spots”, or outdated be-
havior profiles. Besides sophisticated detection mechanisms
it is important to also consider risk mitigation in terms of
detecting and dealing with already infected computers.
Most modern malware is internet-based, i.e. its prime at-
tack vectors are drive-by downloads through exploit kits
on compromised websites or direct infections through mali-
cious domains embodied in scam or phishing emails. More-
over malware includes functionality to communicate with
command-and-control (C&C) servers to receive new instruc-
tions, download additional malicious payload, update itself,
or send home harvested and stolen sensitive data. On the
other hand, many modern malware families communicate
with benign web sites to perform malicious activities like
boosting click counts on advertisements, performing dis-
tributed denial of service attacks, or spoofing ratings.
Detecting and evaluating the domain names or IP addresses
related to C&C servers is thus important to prevent (new)
infections, contain damages, or identify infected hosts. Typ-
ical risk mitigation measures include marking a host as in-
fected with a specific malware upon detection of a respective
request to a known C&C server or block certain IPs with
a firewall. Unfortunately, lists from sources like Google’s
SafeBrowsing API are known to only cover a small percent-
age of actual malicious domains used by malware and are
challenged by domain generation algorithms [10].
In such cases it is often necessary for organizations to main-
tain their own blacklists. To do so, on-site malware anal-
ysis is done to extract potentially malicious domains and
IPs from malware captured in the wild. This is done in
a semi-automated way, e.g. with malware sandboxes [12].
While feeding these domains into respective blacklists seems
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tempting, doing so in many cases is not advisable. As dis-
cussed before, malware communicate with a variety of be-
nign web sites to e.g. perform internet accessibility checks,
click count spoofing, or to intentionally hide the malicious
communication within a cloud of benign web activities. Sim-
ply passing all extracted domains would thus often lead to
severe interference with benign business processes.
To counter this risk of false positives, security experts then
manually perform “sanity checks” on the domains extracted
from malware. This quickly becomes tedious and costly.
Moreover, modern malware families like Conficker or Zeus
use DNS techniques like fast flux or domain flux to hide their
C&C infrastructure. This results in the dynamic creation of
hundreds to thousands newly registered and used domains
per day per malware family; manual analysis does not scale.
Automating the domain classification process of extracted
domains thus could help to reduce costs and improve effec-
tiveness by compensating error-prone human analysis. This
paper proposes an automated classification and risk catego-
rization approach for domains extracted from malware sam-
ples. By capturing the interaction of malware with the ex-
tracted domains at host-level in form of induced quantifiable
data flows we establish a notion of host-based activity profile
for specific classes of domains.
Coarsly adopting a quantitative data flow analysis based
malware detection concept from the literature [17], we then
apply a clustering scheme on these profiles to obtain clus-
ters of domains with similar data flow characteristics. These
clusters get assigned a numeric threat level, roughly captur-
ing the ratio and threat potential of different kinds of known
malign and benign domains associated to the clusters. With
this technique we can assign risk levels to unknown domains
that then can be used to decide upon triggering fine-grained
risk-dependent incident response actions. The risk is cal-
culated based on the distance of the feature vectors to the
centroids of the clusters and their respective threat levels.
Opposite to related work [1,4,6,7,11,20] our approach is en-
tirely based on quantitatively profiling network-related ac-
tivity captured at host-level. In contrast to more coarse-
grained network-based approaches this allows us to analyze
the interactivity of individual processes with potentially ma-
licious domains and remote resources independent of specific
communication protocols or network topologies and can be
seamlessly integrated into standard dynamic malware anal-
ysis sandbox environments. Finally, our approach allows to
conduct fine-grained incident response strategies based on
assessed risk of identified potentially malign domains, inde-
pendent of concrete communication protocols.
Seeing more regular and predictive patterns in malware in-
duced data flows than in benign communication we show
that host-level data flow profiling is useful for C&C server
detection. We further consider our approach to be more
precise and targeted than approaches that use network-level
monitors, since it allows us to inhibit communication at a
per-processes, or even per-socket level if malign behavior
is detected. In contrast, network-based approaches reason
about entire hosts, IP address ranges, or ports in such cases
and thus are considerably less targeted and more intrusive.
Problem: We tackle the problem of identifying C&C servers

based on data extracted from malware samples. That is, we
want to solve the problem of partitioning the set of end-
points contacted by malware into malign and likely benign
ones with good sensitivity and specificity. Note that we do
not target malware classification but rather the discrimi-
nation of respective malign servers from likely benign ones
from a host-based perspective.
Solution: We establish host-based behavioral profiles for
the communication of malware with C&C servers based on
characteristic quantitative data flow patterns between pro-
cesses and contacted endpoints. Using an unsupervised ma-
chine learning approach we then create classification models
to assign risk levels to unknown samples based on their sim-
ilarity to learned data flow profiles.
Contribution: To the best of our knowledge, a) we are
first to leverage host-based quantitative data flow analysis
for C&C server identification; b) to perform risk-based clas-
sification, we are first to propose machine learning based
clustering on features extracted from host-based data flows
to the network; c) our system can automatically conduct
appropriate risk mitigation steps based on predefined risk-
to-incident-response profiles at a per-process granularity.
Organization: We recap the concept of modeling system
calls as quantifiable data flows from the literature and briefly
discuss a generic domain harvesting, assessment, and risk
mitigation workflow in §2. We then present the individ-
ual steps of our approach. We evaluate clustering and risk-
classification effectiveness and efficiency in §4. We put our
approach in context in §5, and conclude in §6.

2. BACKGROUND
To profile communication with malign servers we adopt a
concept from literature [17] of interpreting system calls is-
sued by a process as quantifiable data flows whose basic
ideas we recap in the following. We then briefly describe
a typical workflow for C&C identification to highlight the
constituents targeted by our work.

2.1 WinSock Calls as Quantitative Data Flows
Just like Wuechner et al. [16, 17] we capture and interpret
network-relatedWindowsAPI calls as quantifiable data flows
between a process and a network endpoint. By tracking and
interpreting all network-related WindowsAPI calls issued by
a process, i.e. all invocations of the WinSock Recv or Send
functions, and monitoring the size of the respectively trans-
mitted or received data, we obtain a model of the communi-
cation behavior of this process with the respective endpoint
as sequences of quantitative data flows.
As already shown in literature [16], such quantitative data
flow profiles obtained from interpreting system calls of ma-
lign and benign processes in principal are sufficiently dis-
criminative to allow for highly accurate malware detection.
In addition to that, a considerable amount of work already
successfully leveraged data flow analysis at network level [1,
6, 7], i.e. netflows, for the detection of malign network end-
points. Combining these ideas we expect host-level data
flow profiles obtained from intercepting network-related API
calls of malign and benign processes to also be sufficiently
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characteristic to be leveraged for C&C server detection.
In many cases such communication is bidirectional, i.e. con-
sists of phases where data is send and ones where data is
received. We thus define a data profile as tuple of an in-
coming and an outgoing data flow function that maps the
absolute amount of received or sent data to discrete points
in time. In essence, a data flow profile captures the char-
acteristics of the communication between a process and an
endpoint through the individual courses of the in- and out-
flow functions over time and their relation to each other.
To define the functions and thus profile the actual com-
munication between a process and a server we first ana-
lyze the size of the buffers associated with the intercepted
WinSock functions and record the respectively received or
sent amount of data over time which yields the raw points
of our incoming and outgoing data flow functions. By fit-
ting polynomials of a defined degree on these points we then
obtain the actual data flow functions that together finally
define the actual data flow profiles.
As we will later see data flow profiles of similar communica-
tions, i.e. communication of different malware samples from
the same malware family with their C&C servers, in ma-
jority are sufficiently similar and at the same time distinct
enough to unrelated communications that we can use them
for the subsequently described analysis tasks.

2.2 Domain Analysis and Risk Mitigation
Computer Security Incident Response Teams (CSIRTs) an-
alyze malware on a daily basis in order to extract charac-
teristic indicators from malware to later allow detection of
compromised systems. In large organizations, due to the
large scale of such infrastructures, the detection of infected
systems often takes place in the network. A typical task
for an analyst is to manually analyze and extract network
indicators such as domain names from intercepted malware
samples and to rate them as benign or malign. This manual
analysis is time-consuming and error-prone because of the
nature of today’s malware communication: malicious soft-
ware starts many connections to various remote systems,
many of them legitimate servers.
CSIRTs typically obtain network indicators through exe-
cuting suspicious samples within a controlled environment,
analyzing their behavior, and extracting relevant network-
related information. After the analysis of network indica-
tors, CSIRTs maintain blacklists to block malign domains on
the network perimeter, search in the perimeter logs for con-
nection attempts, or define IDS signatures. Another use of
the indicators within an organization’s network is to sinkhole
malign IP addresses or domain names to redirect network
traffic of potentially compromised systems to a controlled
system for further investigations. Depending on the initial
risk ratings the CSIRT decides whether to further analyze
the respective compromised systems or to directly re-install
it to contain the potential threat.
An indicator mistakenly rated as malign can impact the or-
ganization’s business if, e.g., benign websites, necessary for
business-critical transactions, are blocked. Therefore some
sort of automated risk ranking of unknown domains sup-
ports CSIRTs to classify obtained indicators in a more reli-
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Figure 1: Architecture

able and fine-grained way and e.g. plan and conduct appro-
priate incident response strategies.

3. APPROACH
In the following we describe the different analysis and risk es-
timation steps of our approach for C&C server identification.
The upper part of Figure 1 shows our server-side architec-
ture, the lower left part depicts our client-side components.
Solid lines depict the training steps, whereas dashed lines
represent classification steps. The semi-dashed lines denote
processing steps used for both, training and classification.

Step 1: Network Behavior Extraction
To obtain the raw data needed for profiling malware interac-
tion with C&C servers, we execute malware, i.e. executable
PE binaries, infected PDF or Microsoft Word documents
within a customized malware sandbox [12].
Our approach interprets interaction between processes and
contacted domains at system call level as data flows. We
hence only capture networking-related Windows API calls
issued by the executed samples, i.e. calls to the WinSock
Recv and Send functions and their derivatives. We decided
to directly profile the samples at the Windows API level
for two reasons: first, directly capturing network activity by
intercepting system calls allows us to selectively capture net-
work activities of specific processes and thus significantly re-
duce to-be-processed data and noise. This is hard to achieve
with monitors at the network level. Second, if the monitor
is deployed at the host level, the interception of network-
related system calls for individual processes allows us to in-
hibit further malign network activity at a per-process or
even per-socket rather than at a coarse per-machine level
and thus limits the intrusiveness of our approach.
We use the open-source malware sandbox Cuckoo [12] to
capture network-related system call traces from executed
samples for large-scale malware collections. As our approach
relies on the availability of quantitative system call infor-
mation such as the amount of data read or written to a
socket we needed to substitute Cuckoo’s WindowsAPI moni-
tor with a custom built monitor that can deliver the required
information. Specifically, we obtain fine-grained networking
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information like the domain of a remote endpoint by hav-
ing our monitor inspect the buffers of the respective send
or recv WinSock function calls. After submitting a sample
to the sandbox, its network-related WindowsAPI calls are
recorded for a fixed period of 5 minutes. The obtained sys-
tem call traces are input to the subsequent processing and
classification steps.

Step 2: Data Flow Profiling
After the raw data retrieval we can now extract and con-
stitute the actual data flow profiles. To this end we split
the set of intercepted events into events that lead to out-
going and events that lead to incoming data flows. Each
inflow or outflow event is then interpreted as a point on a
incoming or outgoing data flow function, mapping the ab-
solute amount of transmitted or received data to discrete
points in time. Taken together the functions build a math-
ematically convenient and simple model of the underlying
low-level communication aspects.
The intuition behind using such data flow profiles, i.e. in-
and outflow functions, is that we expect the data flow pro-
files of interaction with malign endpoints to look substan-
tially different from communication with benign endpoints
and very similar for samples belonging to the same mal-
ware family. An example for such a behavioral difference is
connectivity tests of a malware sample with a benign web-
site like google.com. After a successful connectivity test, the
malware would then periodically communicate with its C&C
server to receive new instructions or upload stolen data.
The respective data flow profiles for the interactivity with
the benign website would then likely indicate a steep in-
crease of the transferred data to the respective domains in
the beginning, followed by a long period of silence, as the
benign domain only needs to be contacted once. In contrast,
the malign C&C communication would require periodic in-
teraction and thus would lead to a more “spiky” data flow
profile. Furthermore, specificities of the communication pro-
tocols used by different malware families are likely to yield
characteristic family-specific data flow profiles.
Figure 2 substantiates this assumption by showing data flow
profiles obtained from the real-world execution traces of sev-
eral samples from two different malware families. For sake
of brevity we only show the graphs of the outflow function
part of the data flow profiles, where the y-axis relates to the
total amount of transmitted data in bytes and the x-axis to
time w.r.t. equidistant intervals of about 700ms. The left
part of the figure shows the graphs of the outflow functions
of 117 samples from the Zeus malware family communicat-
ing with their C&C server, the right part shows the outflow
functions of 13 Kraken malware samples.
As we can see from the figure the function shape for both
families differs quite significantly with most of the samples
of one family following the same basic function shape.

Step 3: Training Phase
After having generated data flow profiles for captured event
traces of a large body of executables, we are now ready to
train the machine learning core of our approach.

However, before doing so we first need to transform the data
flow models into a form that is more handy for machine
learning purposes, i.e. into vectors of real numbers. To this
extent we fit polynomials of fixed degree to each function
to approximate its shape while at the same time ignoring
insignificant variations. This approximation allows us to
express data flow models, i.e. their flow functions, through
the coefficients of the polynomials that we fit on them. By
varying the degree of the fitted polynomials we can control
the level of function approximation and thus to some extent
the tolerance to noise in the training data.
Finally, we use the so obtained function coefficients as el-
ements of a vector. Each vector thus consists of the coef-
ficients of the polynomials fitted on the inflow and outflow
function of a data flow profile. Each feature vector f thus
encodes exactly one data flow profile with its dimensionality
depending on the degree of the fitted polynomials.
In principle, one could now simply use these feature vectors
for training a standard supervised machine learning classi-
fier, e.g. using domain blacklists for labeling the vectors
according to the domains or IP addresses the data flow pro-
files correspond to.
Unfortunately, such blacklist are inherently incomplete [10],
quickly become outdated, and thus would often provide in-
correct labels to the feature sets. This is for instance caused
by malign domains taken down by authorities, domains not
anymore used by malware, or blacklists not being able to
keep the pace with malware developers that register hun-
dreds to thousands new websites every day. Trained on
such imprecise labels for the training feature sets, a classifier
would likely incorrectly classify unknown feature samples.
Therefore, our approach instead relies on an unsupervised
clustering technique that takes the unlabeled feature vectors
as input and outputs clusters of samples with approximately
similar data flow profiles. More specifically, we use Mini
Batch k-means, a faster approximate version of the more
expensive k-means clustering [14], to obtain clusters based
on aggregation of instances that are located at a similar dis-
tance around a cluster centroid. This notion of distance of
an instance, i.e. a set of features corresponding to a do-
main instance, to a certain cluster is later needed as the
first component (i.e. likelihood) for calculating individual
distance-based risk scores.

Step 4: Classification and Threat Potential
We want to assign a so-called threat potential to domain clus-
ters. This cluster threat potential represents the weighted
potential security threat that arises from communicating
with the members of this cluster and will thus be later used
as the second component (i.e. severity) of the per-sample
risk score calculation.
We first need to obtain additional information for a cluster.
We do so by matching the cluster members’ domains against
various malware domain blacklists. For our prototype, we
use the public API offered by VirusTotal. We differentiate
between two classes of domains: domains that had a match
in a blacklist, denoted by malign, and benign domains that
we did not find in a blacklist.
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Figure 2: Data Flow Profiles of different Malware Families

Formally, let D be a set of domains. Domains d ∈ D have
a type γ ∈ Γ = {malign, benign}. τ : D → Γ returns the
type of a given domain. Let c ∈ C be one specific clus-
ter drawn from a set of clusters, C. Each cluster is a set
of m pairs of domains and their respective feature vectors
(of dimensionality n) c ∈ (D × Rn)m. The threat level of a
domain captures the estimated threat that arises in a spe-
cific deployment context (i.e. one company or organization)
if communication with a potentially malign or benign do-
main is not controlled or blocked, respectively. For known
malign domains we assign a positive threat level and for be-
nign domains a zero threat level. We thus model the threat
level by tl := Γ → Z. One simple threat level function is
tl(malign) = 1 and tl(benign) = 0.
The exact threat levels for the different classes manually
need to be set once to match the protection goals within a
specific context. They can substantially differ for different
operational contexts. In some companies, where undetected
security incidents are considered significantly worse than the
denial of legitimate actions, one might assign a very high
threat level to known malign sites with the risk of produc-
ing false positives (i.e. blocking legit actions). In contrast,
in companies where even slight interference with legitimate
workflows is considered prohibitive, reducing false positives
would be an important goal which can be achieved by as-
signing smaller threat levels to malign domains.
We then calculate the threat potential for each cluster c ∈
C as the average of the cluster members’ individual threat
levels. We compute the average in order to explicitly address
the problem that the individual domain class labels and thus
their individual threat levels might not be up-to-date and
reliable and thus, when taken alone, do not provide enough
reliable training information.
This definition of a cluster’s threat potential means that
the threat potential gets higher the more known malign and
less benign members it has. To project the cluster threat
potential levels to an [0, 1] interval, we divide each individ-
ual cluster threat potential by the size of the cluster. The
cluster threat potential, ctp := C → [0, 1], is thus defined as
ctp(c) := 1

|c| ·
∑

(d,f)∈c
tl(τ(d)).

This way, in contrast to directly using the not fully reliable
labels for supervised learning, we distribute the risk induced
by potentially incorrect labels among the different clusters.
This makes the corresponding predictions less sensitive to-
wards noisy and partially incorrect training data.

Step 5: Risk Assessment Phase
With the trained classifier and the ctp-annotated clusters we
can now assign meaningful risk scores to unknown samples.
To classify an unknown sample, i.e. calculate its risk level,
we determine the cluster with the highest similarity of its
member’s data flow profiles and the test sample’s profile.
For this we compute the distance of each cluster’s centroid
to the feature set of the sample to be classified. As we use a
variant of the k-means algorithm for clustering, centroids in
our case refer to the mean of the feature vectors belonging
to a cluster. As a consequence, we can use the Euclidean
distance between the samples feature vector and the clusters’
centroids. More precisely, we define the distance ‖·‖c : Rn×
C → [0, 1] of a sample, represented by its feature vector
s ∈ Rn, to any cluster c ∈ C as follows:

‖s‖c := min
(

1,
‖s− centroid(c)‖2

N

)
where centroid : C → Rn is the centroid vector of a cluster,
and ‖·‖2 is the Euclidean distance. As for ctp, we want to
project the distance to an interval between 0 and 1. We do
so by normalizing each distance by the diameter N of the
smallest sphere containing all clusters. Since there could be
samples whose distance to a centroid is greater than N , we
set 1 as the maximum possible distance. As an example,
the point s in the 2D projection of Figure 3 is closer to the
centroid of c2 but further away from the centroid of c1.
The actual risk score is then classically computed as “like-
lihood times severity”. Intuitively, the smaller the distance
to a high risk cluster, the higher is the overall risk. This
leads us to using the complement of the normalized distance
to represent the likelihood. It is also intuitive to choose
the risk associated with the closest cluster to the sample.
The risk assessment risk : Rn → [0, 1] is thus computed as
risk(s) = (1 − ‖s‖ĉ) × ctp(ĉ), where ĉ is the cluster closest
to sample s, i.e., ∀ c ∈ C ‖s‖ĉ ≤ ‖s‖c.
By applying this classification strategy we are now able to
determine individual risk scores for unclassified domain com-
munication data flow profiles that we later use for reasoning
about appropriate incident response actions.

Step 6: Deployment and Incident Response
Our approach can now classify unknown endpoint samples
and annotate them with risk scores. We need to map this
risk to specific incident response actions.
For this we define so-called incident response profiles (IRP)
that map risk score intervals to incident response actions,
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e.g. reporting a potential threat, forwarding malign traffic
to a sinkholing server, blocking a domain, or even killing the
respective process. We describe IRPs as partial functions
irp ∈ IRP : R→ A that return a specific incident response
action a ∈ A if a provided risk score r is within a certain
interval. An example for such a profile irp1 ∈ IRP would
be: irp1(r) = Ignore if 0.0 ≤ r ≤ 0.2, irp1(r) = Notify if
0.2 < r ≤ 0.5 and irp1(r) = Block if 0.5 < r ≤ 1.0. Note
that the thresholds in real-world deployment settings need to
be instantiated in congruence to concrete protection goals.
To operationalize this process, MalFlow supports two dis-
tinct deployment modes: server-only and client-server de-
ployment. For server-only deployment, we perform all pre-
viously discussed training and classification steps directly
at the server where the malware sandbox is deployed. The
obtained classification results are then used to e.g. popu-
late proxy blacklists to a-priori block the identified malign
domains or notify security responsibles upon detected con-
nection attempts to these domains. This deployment model
bears the benefit of full centralization and easy integration
into a typical dynamic malware analysis process. The down-
side is that it does not allow to conduct precise per-process
incident response actions at the client side.
This is overcome by our client-server deployment model
where domain classification is pushed to the clients. Rather
than centrally blacklisting domains, the server merely gen-
erates and distributes the classification models to the clients
– classification of unknown endpoints is done by the clients.
To this end, clients periodically receive updated classifica-
tion models from the MalFlow server along with the risk
mitigation mappings. The clients then monitor the system
for potential malign network communication using an IAT-
patching based syscall monitor [18] that gets injected into
each process before its startup. After injection, the monitor
intercepts all WinSock calls and forwards them to the flow
analysis component. The classification manager matches
these feature sets against the classification model, received
from the MalFlow server, and calculates the respective risk
score for the contacted remote endpoint. Together with the
pre-defined IRPs, the risk score then determines the incident
response action for the identified potential threat.

s

c1

c2

Figure 3: PCA projection of Clusters and their Centroids

4. EVALUATION
Our server-side experiments were conducted on an Intel Xeon
12-core 3.5GHz Ubuntu 12.10 machine with 64GByte of
RAM; the client side was evaluated on a dual-core 2.8GHz
Intel i7 Windows 7 machine with 8GByte of RAM.
We executed about 27.000 samples in our sandbox that
we obtained between February and September 2015 from
malshare.com and from an email server under our control,
encompassing of 47 distinct malware families including Zeus,
Conficker, Kraken, or Virut as evaluation baseline.
For approximating the generated data flow profile functions
we least-square-fitted polynomials of degree 5. In total we
obtained a set of 46.312 distinct data flow profile vectors out
of which the matching of the corresponding IP addresses and
domains with VirusTotal revealed about 60% of them refer-
ring to known malign servers, 38% relating to known benign
servers, and 2% being completely unknown to VirusTotal.

4.1 Effectiveness
To evaluate our ability to separate malign from (likely) be-
nign endpoints we performed a 10-fold cross validation ex-
periment where we repeatedly trained with 90% parts of the
data set (excluding the samples unknown to VirusTotal) and
used the resulting risk model to calculate the risk for the re-
maining 10% of the data set (including the unknown ones).
To investigate the effects of different risk thresholds θ we
calculated the area under receiver operator curve (AUC)
which is a composed measure to capture false positives and
false negatives. For this we consider benign domains incor-
rectly classified as malign as false positives and benign labels
wrongly classified as malign as false negatives. To obtain
an ROC we evaluated the performance of our classifications
as congruence with the respective VirusTotal classification
information. Given that corresponding blacklists are not al-
ways fully reliable and inherently incomplete [10], there is a
chance that by this some of the samples get mislabeled.
This has some consequences for the interpretation of our
evaluation results. As we cannot say with absolute certainty
that a domain in fact is malign or benign, a disagreement
between predicted class and ground-truth class does not nec-
essarily constitute an incorrect prediction. Correspondingly,
the subsequently presented effectiveness measures need to be
interpreted as lower bounds of the actual effectiveness.
As we employ a unsupervised learning scheme, the effective-
ness of our approach likely dependents on the amount of gen-
erated clusters. The used clustering algorithm demands the
number of clusters to be a-priori fixed, we thus repeated the
cross-validation experiments for different numbers of clus-
ters. Figure 4 gives an overview of the respectively achieved
effectiveness in terms of AUC for different numbers of clus-
ters and the respectively achievable true positive rate (TPR)
when fixing the false positive rate to 2%.
As we can see the maximum effectiveness is achieved with
around 80 clusters after which increasing the cluster count
seems to not significantly improve effectiveness. Considering
the ROC of the best-performing cluster count experiment we
are thus able to correctly identify at least 70% of the malign
servers within the evaluation data set with less than 2% false
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Figure 4: Effectiveness vs. Cluster Count

positives. Again note that these numbers are lower bounds
due to the unreliable ground truth [10].
Finally, a more thorough analysis of the clustering results
revealed that 410 of the 926 samples that were not known to
VirusTotal had almost identical data flow profiles as known
malign ones. Considering the comparably low false positive
rate of our approach we thus assume that we were indeed
able to identify unknown C&C servers.

4.2 Efficiency
For the efficiency evaluation we separately analyzed the server
(training) and the client side components (detection).
To get a realistic estimate of induced performance overheads
we conducted our experiments in a typical client environ-
ment (clients are more resource-limited than servers). For
this we simulated typical networking scenarios like browsing
or downloading files from a server and measured the relative
overhead induced by our client-side component. To this end
we used wget to download files between 0.1 and 100 MByte
of size from a big webspace hoster. To weed out environ-
mental influences we repeated each experiment 100 times.
While the results indicated overheads of up to 7 times the
normal execution time for very short-living processes, the
relative overhead for longer-living processes with continu-
ous networking activities at average remained below 1.2.
For evaluating the training phase costs we measured the to-
tal training time spent on different-sized training sets and
varying cluster counts. Interestingly, our experiments only
revealed a measurable correlation between computation time
and cluster count, but not w.r.t. sample count. We explain
this with the relatively small number of clustering instances
in our setting in comparison to the several orders of magni-
tude bigger sample sizes that the employed clustering algo-
rithm was originally designed for [14]. For the cluster counts
considered in the effectiveness evaluation, training our ap-
proach on the full data set at average took about 380s. As
the bulk of the risk calculation consists of calculating the
Euclidean distance of a sample to all cluster centroids, the
effort is linear with respect to the number of clusters. Con-
sidering the small number of clusters and the comparably
low dimensionality of the vectors in our setting, the result-
ing overhead at average was below 5ms. When compared to
the monitoring overhead, this is negligible.

4.3 Threats to Validity and Limitations
While we could show that our approach performs well in
discriminating domains with reasonable computational over-
head, we are aware of some limitations of our evaluation. As

usual with machine-learning approaches to malware, we can-
not claim that our results generalize to malware found in the
wild or to other data sets. An objective evaluation of this
generalizability is very hard to achieve.
Also, the usefulness of the effectiveness results highly de-
pends on the reliability of the ground truth database, i.e.
the coverage of the employed domain blacklists. A bad cov-
erage possibly leads to effectiveness reported to be lower
than it actually is. Moreover, the usage of VirusTotal as
fixed source of ground truth in itself is not entirely unprob-
lematic, as malware authors are known to actively prevent
getting listed by VirusTotal which yields domain blacklists
to quickly become outdated. However, we argue that reliable
ground truth is a common issue of malware and C&C server
classification in general and we showed that our approach to
some extent can cope with unreliable ground truth.
Our prototype profiles malware network interaction with a
user-mode WinSock hooks. Kernel-mode malware, or more
generically, malware that does not use the WinSock library
can thus not be profiled by our current prototype.
Furthermore, our current prototype only considers the first
5 minutes of activity of a malware for training. There is thus
a risk of malware delaying the actual malign behavior and
thus subverting our training scope. One can to some extent
counteract this threat by extending the monitoring period
or utilizing stimulus-response techniques [3].
Finally, we are aware that our approach would be chal-
lenged by malware that highly randomizes its network ac-
tivity. However our evaluations indicate a good effectiveness
on state-of-the-art malware and we are not aware of current
commodity malware actively obfuscating its network behav-
ior from a quantitative data flow perspective.

5. RELATED WORK
Identification of malign endpoints has been a very active
area of research in the past decade. Traditionally the focus
has been on identifying suspicious traffic at network level,
e.g. in form of netflows [1, 6, 7]. In [7], Gu et. al. identify
botnet activity by analyzing spatio-temporal correlations in
network traces, e.g. bots reporting the results of a command
to the C&C server at the same time. Wurzinger et al. [19]
derive models of network communication, i.e. sequences of
messages between bots and C&C servers, that allow to de-
tect botnet related traffic. By analyzing a large dataset of
DNS traffic, Bilge et al. [2] identify 15 features that are use-
ful to discriminate benign from malign domains, including
time-based and domain name-based features. Focusing on
domain name-based features, Yadav et al. [21] propose to
identify algorithmically generated malicious domains. Ja-
cob et al. [8] propose to use host-level resource dependency
graphs to relate malign behavior with associated endpoints.
Another line of research, started by Caballero et al. [4], uses
machine learning and active querying to fingerprint (and
thus classify) remote servers based on their responses. Fol-
lowing this idea, Nappa et al. [11] used probing to detect ma-
licious hosts, and were able to identify several C&C servers
and P2P bots on the wild. Xu et al. [20] followed up by
leveraging binary analysis to generate fingerprints even if
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C&C serves where off-line at the time of analysis.
We mainly differ from these approaches in that we perform
quantitative data flow analysis instead of protocol- or query-
based qualitative analysis. Following the evidence and argu-
ments in [17], we believe that our approach is more robust
towards changes in C&C communication protocols, remote
resources, or query structures, but leave a thorough empir-
ical analysis of robustness to future work. Moreover, we
introduce an active risk-based incident response approach
whereas the above approaches concentrate on detection.
Unsupervised learning for malware detection and classifica-
tion has been extensively studied, based on both static and
dynamic features. For instance, Rafique et al. [13] cluster
malware based on network signatures obtained by executing
the malicious samples. Kheir et al. [9] propose to cluster
malware into families with similar HTTP communication
patterns, ignoring the contacted domains. We differ in that
we use unsupervised learning to define a robust classifier
despite unreliable ground truth whereas the mentioned ap-
proaches do pure clustering.
In sum, to our knowledge, and in contrast to related work,
we are the first to do clustering on host-level data flow pro-
files for C&C detection and risk estimation.

6. CONCLUSIONS AND FUTURE WORK
By analyzing similarities in data flows induced by processes
communicating with malign and benign servers at host-level
our MalFlow tool can assesses the risk presented by pro-
cesses communicating with unknown network endpoints. On
a large and diverse dataset we were able to identify at least
70% of the malign endpoints when fixing the acceptable false
positive rate to a maximum of 2%. Furthermore, using our
tool we were able to identify servers unknown to VirusTotal
with data flow profiles very similar to known malign ones
which we thus consider to be most likely also malicious.
In comparison with the currently practiced costly, slow, and
failure-prone alternative – mainly manually categorizing do-
mains extracted from malware samples with help of various
black- and whitelists – we consider our automated approach
a significant improvement. Especially our approach’s capa-
bility of automatically assigning meaningful risk scores to
unknown domains based on a semantically justified decision
model allows companies to some extent to reduce manual
labor of expensive security analysts with our tool.
We also showed how to operationalize our approach by means
of a client component that can issue fine-grained per-process
incident response actions based on our domain risk classi-
fication, which induces an average relative overhead of 1.2
times in real-world networking settings.
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