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Abstract

Accurate uncertainty quantification for model-based, large-scale inverse problems rep-
resents one of the fundamental challenges in the context of computational science and
engineering. To perform statistical inference for a high number of unknown variables,
state-of-the-art sampling methods are intractable, since they require an exuberant num-
ber of expensive forward calls of the model. In order to address this problem, an efficient
and accurate Bayesian framework is developed in this thesis. It is based on a Variational
Bayesian formulation that aims at approximating the exact posterior density by solving
an optimization problem over an appropriately selected family of distributions. This
enables the computation of a good approximation of the exact posterior density with
very few forward calls.

The main goals of this work are: to overcome the limitations of current algorithms
which cope with the curse of dimensionality, and to accurately quantify uncertainties.
Firstly, a new and effective technique for dimensionality reduction is proposed. It reveals
low-dimensional subspaces where the variance of the approximate posterior density is
concentrated. This technique is based on a novel dictionary learning method based
on a fully Bayesian formulation. Secondly, the challenge of high accuracy in posterior
inference is addressed, which is especially difficult to fulfill for multimodal posteriors. A
novel Variational Bayesian strategy is developed that approximates the posterior using
a mixture of multivariate Gaussian distributions. Each of these mixture components
provides an accurate local approximation of the posterior by identifying a different,
low-dimensional subspace. Finally, besides the presence of observational noise and
parametric uncertainty, another source of uncertainty - up to the present day barely
investigated - is quantified in this thesis. More precisely, the source of constitutive
model inadequacy is incorporated in the statistical assessment of model calibration.
In comparison with non-intrusive algorithms the classical black-box forward problem is
unfolded to identify existing model inadequacies in a physical manner.

The performance of the employed methodology is demonstrated on problems in
nonlinear elastography where the identification of the mechanical properties of biolog-
ical materials can improve non-invasive, medical diagnosis. The discovery of multiple
modes and thus inference-solutions as well as quantifying model inadequacy in such
problems is crucial for the task of achieving the diagnostic objectives. Finally, impor-



tance sampling is employed in order to verify the results and assess the quality of the
provided approximations. It confirms that the bias that is introduced by our method
is small. Thus, the overall introduced Bayesian framework in this thesis allows the
quantification of uncertainties in high-dimensional large-scale inverse problems.



Zusammenfassung

Die akurate Quantifizierung von Unsicherheiten von modellbasierten, hochdimension-
alen inversen Problemen stellt eine der grundlegendsten Herausforderungen der Infor-
matik und Ingenieurswissenschaften dar. Um für eine große Anzahl von Unbekannten
statistische Rückschlüsse ableiten zu können sind selbst moderne Stichprobenverfahren
nicht anwendbar, da sie eine sehr große Menge an aufwändigen Vorwärtsauswertungen
des Modells benötigen. Um dieses Problem zu lösen, werden effiziente und genaue
Bayesische Methoden in dieser Arbeit entwickelt. Die neu entwickelten Verfahren
basieren auf Bayesischen Variationsmethoden, welche die exakte A-posteriori-Wahr-
scheinlichkeitsverteilung über die Lösung eines Optimierungsproblems mit Hilfe von
passend ausgewählten Wahrscheinlichkeitsverteilungen annähert. Die Inferenz approx-
imiert, indem ein deterministisches Optimierungsproblem gelöst wird. Dies ermöglicht
die Berechnung einer guten Abschätzung der exakten A-posteriori- Wahrscheinlichkeits-
verteilung mit sehr wenigen Vorwärtsauswertungen.

Die wichtigsten Ziele dieser Arbeit sind es die Limitierungen der gegenwärtigen Algo-
rithmen, die mit dem Fluch der Dimensionalität zurechtkommen müssen, aufzuheben,
um Unsicherheiten akkurat zu quantifizieren zu können. Zu Beginn wird ein neues
und effektives Verfahren zur Dimensionalitätsreduktion vorgestellt. Dieses Verfahren
ermittelt niedrigdimensionale Teilräume, basierend auf einer vollständig Bayesischen
Formulierung, in denen die Varianz der angenäherten A-posteriori-Dichte konzentriert
ist. Des Weiteren wird die Forderung nach hoher Genauigkeit der A-posteriori Ab-
schätzung adressiert, welche für multimodale A-posteriori-Dichten besonders schwierig
zu erfüllen ist. Es wird eine neuartige Bayesische Variationsmethode vorgestellt, die
die A-posteriori-Dichte durch eine Kombination von multivariaten Gaußverteilungen
annähert. Jede dieser Mischkomponenten liefert eine akkurate, lokale Annäherung der
A-posteriori-Dichte, indem es einen individuellen niedrigdimensionierten Teilraum ab-
bildet. Zuletzt wird in dieser Dissertation, neben der Präsenz von Messungenauigkeiten
und parametrischer Unsicherheit, eine weitere Quelle der Unsicherheit quantifiziert, die
bisher kaum untersucht wurde. Genauer gesagt wird die Quelle von Modellunzulänglich-
keiten in die statistische Bewertung der Modellkalibrierung integriert. Im Vergleich zu
nicht intrusiven Algorithmen wird das klassische Black-Box Vorwärtsproblem entpackt,
um bestehende Modellunzulänglichkeiten auf physikalische Art und Weise zu identi-



fizieren.
Die Leistungsfähigkeit der angewandten Methodik wird anhand von Problemstel-

lungen aus dem Bereich der nichtlinearen Elastografie demonstriert, in der die Iden-
tifizierung von mechanischen Eigenschaften von biologischen Materialien die nichtin-
vasive, medizinische Diagnose verbessern kann. Um die Diagnoseziele zu erreichen,
ist es entscheidend, einerseits mehrere mögliche Lösungen zu finden und anderseits
die Modellunzulänglichkeiten zu quantifizieren. Abschließend werden mit Importance
Sampling die Ergebnisse verifiziert und die Qualität der vorliegenden Abschätzungen
überprüft. Es wird bestätigt, dass die Verzerrungen (Bias), die durch unseren Algo-
rithmus eingeführt werden, klein sind. Demnach ermöglichen die in der Dissertation
eingeführten Bayesischen Verfahren die Quantifizierung von Unsicherheiten hochdimen-
sionaler inverser Probleme.
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Chapter 1

Introduction

“ Most people, if you describe a train of events to them, will tell you
what the result would be. They can put those events together in
their minds, and argue from them that something will come to pass.
There are few people, however, who, if you told them a result, would
be able to evolve from their own inner consciousness what the steps
were which led up to that result. This power is what I mean when I
talk of reasoning backwards.

”
Sherlock Homes to Dr. Watson in: A study in Scarlet by Sir Arthur

Conan Doyle, 1859-1930 [1].

1.1 Motivation and background

Our everyday decisions are based on predictions of future events which come from
extrapolating observations using models of our environment. Models and derived infer-
ences are either applied unconsciously, e.g., a child learns many interactions on the fly
without explicitly formulating a model, or are constructed by purpose and with exper-
tise. For example, in physics many great researchers, pioneers and explorers developed
models to express underlying relationships and correlations over centuries. The models
- which are approximate models, based on excessive complexity or partial understanding
of the reality - are usually designed to represent the major physical relationships and
characteristics of the reality. However, even if we could build exact and perfect models,
accurate input parameters are still needed to predict a correct outcome. The connec-
tion between the input and output parameters, in the absence of measurement noise,
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defines the forward operator. Determining the output with given input parameters
relates to solving the forward or direct problem.

Inversely, inferring unknown input parameters from probably noisy observations cor-
responds to an inverse problem. Model-based inverse problems appear in many scientific
fields, and typically where indirect observations of the quantity of interest are made.
A classic example is the mapping from observed arrival times of seismic waves to the
earth’s subsurface [2, 3]. Other applications are deconvolution problems in astrophysics
[4], finding cracks and interfaces in materials [5], the identification of materials within
medical tomography [6] or permeability estimation for soil transport processes that
can assist in the detection of contaminants, oil exploration and carbon sequestration
[7, 8, 9]. In all cases, experimental or computationally-generated data is used, e.g., for
model calibration in order to adjust model parameters and to obtain improved predic-
tions. The identification of model parameters can provide insight into the process of
interest and feeds the understanding of the system’s behavior. Especially in the last
one or two decades the field of solving inverse problems increased rapidly, supported
by the large increase of computing power and the development of advanced numerical
methods [10].

Elastography as an application

This thesis is particularly concerned with the inverse problem of identifying mechanical
properties of biological materials based on MRI or ultrasound images in the context
of non-invasive medical diagnosis (elastography). The identification of stiffness, or
mechanical properties in general, can potentially lead to earlier and more accurate
diagnosis, e.g., for breast lesions as malignant or benign tumors [11, 12]. It provides
valuable insights to differentiate between modalities of the same pathology [13] and to
monitor the progress of treatments.

The term elastography refers to techniques which relate medical imaging to elastic
properties of soft tissues. It originates from manual palpation, one of the oldest diag-
nostic methods, which was first evidenced in 400BC [14]. Manual palpation assesses
the stiffness of a patient’s tissue by feeling. A stiff lump, explored by touch, might be
an indication for a diseased tissue. Elastography replicates this process. For example,
under ultrasound elastography the body is slightly deformed and the internal deforma-
tion of the body is tracked by multiple images in order to produce certifiable estimates
of the mechanical properties. Testing and comparing the mechanical properties of his-
tologically documented tissues have let to the conclusion that many diseased tissues,
such as breast tumors, are of a different stiffness than their surrounding material. The
diagnostic value of elastography is based on this opportunity to differentiate tissues
based on non-identical mechanical properties. For instance, specific lesions can be
identified as fibrous tissue as they are visibly stiffer than normal tissue. Additionally,
malignant tissues (ductal carcinoma in situ and invasive ductal carcinoma) can be rec-
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ognized and distinguished from benign lesions by their nonlinear stiffness behavior over
different strain levels [15, 16]. In Figure 1.1, the different ratios of the elastic mod-
uli for different levels of compression depict that the nonlinearity in the stress-strain
relationship varies for dissimilar tissues. In addition, this figure also shows that the
magnitude of the stiffness itself varies for different breast tissues.
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Figure 1.1: Elastic modulus for different breast tissues for different strain/compression
levels (in vitro but directly after removal from the body). The elastic modulus mag-
nitude and its variability for different levels of compression can be used to identify the
tissue type. DCa is used as an abbreviation of ductal carcinoma in situ and IDCa stands
for invasive and infiltrating ductal carcinoma (figure is redrawn based on [16]).

There is a mounting body of evidence that indicates the potential of elastography-
based techniques not only for identifying tumors, e.g., breast or prostate tumors [16],
but also for other purposes. Among them are, for example, the identification of other
diseases, such as the characterization of blood clots [17], atherosclerosis [18], osteope-
nia [19] and liver fibrosis/cirrhosis [20]. To be more specific, for instance, liver fibrosis
increases the stiffness as a whole which is difficult to detect with conventional ultra-
sound. However, elastography is advantageous as it is able to identify the increase of
stiffness. The potential of elastography is especially visible considering the percentage
of global causes of death for women. In Figure 1.2, it is shown that 4.94% of causes
of death relates to breast cancer, cirrhosis of the liver and liver cancer, which indirectly
shows the potential for impact of this method if the diseases would have been treated
faster based on an earlier diagnosis. Early detection was identified as a critical factor
in increasing survival rates, e.g., in case of breast cancers: the 5-year survival rate
for women with stage 0-cancer is 98.8% and with stage 4-cancer around 26.3% [22].
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Figure 1.2: Percentage of global causes of death for females in 2012 [21]. COPD is
the abbreviation for chronic obstructive pulmonary disease.

Mammograms and conventional ultrasonography represent the primary detection tech-
nique to pick up breast lesions. However, both have some restrictions. Mammography
performed in dense breasts may often yield false-negative results and ultrasonography
is sensitive in the detection of lesions, but its specificity is poor [23]. Many biopsies
are performed in benign lesions causing discomfort to the patients and increased costs.

The pioneering work of Ophir and coworkers [24], followed by several clinical studies
[25, 26, 27, 28], have demonstrated that the resulting strain images typically improve
the diagnostic accuracy over ultrasound alone. Based on its diagnostic potential and
increased computational capabilities, it becomes more and more important to develop
tools that leverage the capabilities of physics-based models in order to quickly and
accurately produce diagnostic estimates with quantified confidence levels.

Elastography is based on an imaging process, e.g., ultrasound, which relates the
mechanical properties such as relative stiffness of an unknown tissue to applied forces.
This relies on the principle that stiff materials deform less than soft tissues and it is used
to inversely derive the mechanical properties from their deformation. All elastographic
techniques build upon the following three basic steps [29]: 1) Exciting the tissue
using a (quasi-)static, harmonic or transient source, 2) Indirectly measuring interior
tissue deformation, e.g., displacements, velocities, using an imaging technique such as
ultrasound [24], magnetic resonance [30] or optical tomography [31], and 3) Inferring
the mechanical properties from this data by using a suitable continuum mechanical
model of the tissue’s deformation.
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Different elastography techniques can still be grouped by various criteria, as com-
pared in Table 1.1. One classification criterion is based on the measured quantity,
which separates strain (quasi-static or dynamic) and shear wave (dynamic) techniques.
The strain-based elastography technique mechanically deforms the tissue. This is
achieved either by an active external displacement of the tissue surface or passively
in a physiological way within the tissue. A strain map is constructed by calculating the
deformation from images at different stages of a compression cycle.
The acoustic radiation force impulse (ARFI) technique uses an acoustic radiation force
of an ultrasound transducer to perturb the tissue locally at a single location to infer
the deformation of the tissue [32, 33].
Within transient elastography, an external actuator produces a cycle of low-frequency
vibration generating transient shear waves. The velocities of the shear wave are then
measured within the tissue. Based on the velocities of the shear waves, the mechanical
properties are estimated [34].
In supersonic shear-wave imaging (SSI), also called ultra-fast shear wave elastography,
the focus of the radiation force in depth changes faster than the speed of the provoked
shear waves. An ultra-high frame rate is necessary to track the propagation of the
shear waves [35, 34].

measured quantities applied force measuring modalities

Strain elastography strain mechanical images
ARFI strain radiation force images

Transient shear wave speed mechanical point measurements
SSI shear wave speed radiation force images

Table 1.1: Different elastography techniques/products.

Strain elastography is especially advantageous, as it suffices to use just readily
available standard ultrasound transducers. This results in a lower relative cost and an
increased portability. Within strain imaging, there are two approaches for inferring the
constitutive material parameters. In the direct approach, the equations of equilibrium
are interpreted as equations for the material parameters of interest. The inferred interior
strains and their derivatives appear as coefficients and the strain-ratio is then used as
a surrogate index for stiffness in the absence of a true index of the material parameters
[36, 37]. While such an approach provides a computationally efficient strategy, it does
not use the raw data, i.e., noisy displacements. Instead of using raw data, transformed
versions are applied, i.e., strain fields or strain derivatives, for example, by application of
ad hoc filtering and smoothing data. As a result, the informational content of the data
is compromised and the quantification of the effect of observation noise is cumbersome.
Furthermore, employed smoothing can smear regions with sharply varying properties
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and hinder proper identification. In addition, linear elasticity of the material is assumed.
The alternative to direct methods are indirect or iterative procedures which admit

the formulation of the inverse problem of interest in this thesis. The unknown input pa-
rameters refer to the unexplored material parameters which are inferred by minimizing
the discrepancy between observed and model-predicted displacements [38, 39, 40, 41].
In this context, the individual measurement entries are not only used to locally deduce
unknown material parameters but to solve a global system. The solution of the global
system can also be applied to problems where no interior displacements are measured
but only the deformation of the boundary [42]. More importantly, directly incorporated
constitutive laws allow the use of more specific material models, such as hyperelastic
material laws for biomaterials [43, 44, 29]. Thus, the model-based elastography meth-
ods can especially be advantageous in distinguishing cancerous lesions or they can also
be used as an indicator of the histology, as discussed previously. The solving strategies
can be categorized by their optimization method in: Hessian based (Newton method),
gradient based or gradient free optimization methods. While these approaches utilize
the raw data directly, they generally imply a higher computational cost than the for-
ward problem and potential derivatives of the system response with respect to the input
parameters have to be computed several times.

Within this thesis, we employ model-based strain elastography and explore differ-
ent options to obtain the mechanical properties of the unknown tissue by solving an
inverse problem based on derived deformation maps. We aim to develop rigorous, new
statistical models and efficient computational tools to quantify the material parameters
and their uncertainties, introduced below, for a more precise diagnosis.

Bayesian inference

In most applications, as in model-based elastography, there is no explicit expression
for the inverse relation that maps output data to input parameters. Thus, the forward
problem and potentially its derivatives with respect to the model variables have to be
solved/computed for multiple different plausible input parameters to identify the correct
configuration. This can be expensive, especially for a complex system. Accordingly,
the solution of model-based inverse problems represents a fundamental challenge in the
context of model calibration and system identification. Another challenge working with
inverse problems is that the problem can be ill-posed, i.e., the solution is not unique,
it is sensitive to small perturbations in the data or it might be impossible to perfectly
match the outcome of the forward problem with the observations [45]. In addition,
significant uncertainties, such as observation noise, usually exist [46]. Another source
of uncertainty relates to the incorporation of computational models. Models usually
contain simplifications and approximations of the reality and hence inherently include
model errors.

The sources of errors and uncertainties are schematically depicted in Figure 1.3
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Figure 1.3: Solving the forward or inverse problem is encumbered by different sources
of uncertainties.

where cloudy regions represent possible uncertainties.
Firstly, when solving a forward problem to predict an outcome one may be unsure about
the correct input parameters. This insufficient knowledge should be included into the
algorithm when proposing input parameters. By allowing the model parameters to vary
parameter uncertainty is incorporated.
Secondly, even if we knew the exact input parameters, the model itself is inaccurate,
as no model perfectly reflects the truth. For the majority of applications, the physical
relationships are too complex to describe or processes are not understood well enough
to design the exact model. Thus, approximate models are designed to represent the
major characteristics of the reality. The discrepancy between the outcome of the true
and the assumed model relates to model inadequacy. Since the process itself may
exhibit some natural variations, model inadequacy can be defined as the difference
between the true mean value of the real world process and the model output for true
input parameters [46].
Thirdly, as the models are usually computationally simulated, code error may need
to be included. This may relate to numerical fluctuations in the simulation [47]. In
addition, even if the numerical code is perfectly written and free of errors, it may be
impractical to run the code at all possible combinations of input parameters. Thus,
interpolation errors based on interpolated model output may occur, which should also
be taken into the consideration [46].
Finally, when we want to predict observations we have to also incorporate possible
observation errors, which outline the difference between the actual observation and the
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true outcome.
Therefore, in order to correctly infer model parameters it is essential to incorporate all
the existing uncertainties, when solving inverse problems.

Solving the inverse problem and quantifying uncertainties is a subject of the re-
search field of Bayesian inference. Bayesian formulations offer a rigorous setting for
their solution as they account for various sources of uncertainty that is unavoidably
present in these problems. Furthermore, they possess a great advantage over deter-
ministic alternatives: Apart from point-estimates they provide quantitative metrics of
the uncertainty in the unknowns, encapsulated in the posterior distribution [48].

Nonetheless, the solution of model calibration problems in the Bayesian framework
is hampered by multiple difficulties:
Firstly, for high-dimensional problems an exuberant number of computationally expen-
sive forward calls are required, which poses a prohibitive computational burden.
Secondly, multimodal probability distributions offer many local maxima, which is dif-
ficult for algorithms to correctly identify. For example, Markov chains get caught for
extended periods of time in local maxima or local approximations schemes are only able
to record a single mode.
Thirdly, an obstacle which is, despite its importance, usually ignored is model inade-
quacy. It is often assumed that the model, for example used for calibration, is perfect.
This leads to misidentified model parameters or, even worse, wrong predictions. This
thesis addresses these major challenges and proposes a novel, efficient and accurate
framework. Before deriving details about the main work contributions, a short review
of related work is outlined.

1.2 Related work

Computational efficiency and dimensionality: Solving large-scale inverse problems
is computationally very expensive, if not an intractable process. Finding a solution for
an inverse problem with standard Markov Chain Monte Carlo (MCMC, [49]) techniques
requires an exorbitant number of likelihood evaluations in order to converge, i.e., so-
lutions of the forward model [50, 51, 52, 53], Section 2.2.3. The large number of
required forward calls originates from the poor scaling of traditional Bayesian inference
tools with respect to the dimensionality of the unknown parameter vector - another
instance of the curse-of-dimensionality [54]. As each of these calls implies the solution
of very large systems of (non)linear equations, those approaches are usually imprac-
tical for high-dimensional problems. In problems, such as the elastography example,
the model parameters of interest, i.e., material properties, exhibit spatial variability
which requires fine discretizations in order to be captured. Consequently, the solution
of large-scale inverse problems critically depends on methods to reduce computational
cost. Several authors, such as T. Bui-Thanh, T. Cui, O. Ghattas, N. Petra, Y.M.
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Marzouk, G. Stadler, L.C. Wilcox and many more, work on different efficient methods,
either achieved by reducing the number and/or the cost of a single required forward
call, which will be briefly summarized.

Advanced sampling schemes, like adaptive MCMC [55, 56, 57] and Sequential
Monte Carlo (SMC, [58, 59, 60]) exploit the physical insight and the use of multi-fidelity
solvers in order to expedite the inference process. The use of first-order derivatives,
Hessian [61] or low-rank structure of the Hessian [62, 63] to design effective proposal
distributions has also been advocated either in a standard MCMC format or by de-
veloping advanced sampling strategies [64]. These are generally available by solving
appropriate adjoint problems which are well-understood in the context of deterministic
formulations. Nevertheless, the number of forward calls can still be in the order of tens
of thousands if not even higher.

Several propositions have also been directed towards using emulators, surrogates
or reduced-order models of various kinds [65, 66, 67, 68, 69, 70, 71, 72, 73]. The
forward model is replaced with an inexpensive surrogate to dramatically decrease the
computational cost of a forward call. However, such a task is severely hindered by the
high-dimensionality. More recent methods attempt to exploit the lower-dimensional
structure of the target posterior where maximal sensitivity is observed [74, 75, 76, 73,
77, 78]. This enables inference tasks carried out on spaces of significantly reduced
dimension and are not hampered by the aforementioned difficulties. Generally, all such
schemes construct approximations around the maximum a posteriori (MAP) point by
employing local information, e.g., based on gradients, and are therefore not suitable
for multimodal or highly non-Gaussian posteriors.

An alternative to sampling approaches are non-empirical approximation schemes,
such as Variational Bayesian (VB) [79, 54], see Section 2.2.4, which reduces the number
of expensive forward calls. Such methods have risen into prominence for probabilistic
inference tasks in the machine learning community [80, 81, 82] but have recently also
been employed in the context of inverse problems [83, 84]. They provide approximate
inference results by solving an optimization problem over a family of appropriately
selected probability densities with the objective of minimizing the Kullback-Leibler di-
vergence [85] with the exact posterior. The success of such an approach hinges upon
the selection of appropriate densities that have the capacity of providing good approx-
imations while enabling efficient and preferably closed-form optimization with respect
to their parameters. Based on the great advantages of Variational Bayesian frameworks
advanced VB strategies are employed in this thesis resolving the remaining challenges.
We note that an alternative optimization strategy, originating from a different perspec-
tive and founded on map-based representations of the posterior, has been proposed in
[86].

Multimodality: Multimodal posteriors are not only a challenge for local approx-
imation schemes but also for standard MCMC methods. Multimodality often causes
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mixing problems as the Markov chain is trapped in minor modal areas for long periods
of time. This is especially exacerbated for higher dimensions. Different advanced in-
ference tools [87, 88, 89, 90], such as those based on simulated annealing, annealed
importance sampling or nested sampling, have been developed. However, they require
a very large number of forward model calls, increasing with the number of unknowns.

Alternatively, different mixture models have been developed in various statistical
inference applications, e.g., speaker identification [91], data clustering [92], and also
in combination with Variational Bayesian inference techniques [93, 79, 94]. Neverthe-
less, all of these problems are characterized by inexpensive likelihoods, low-dimensional
problems and multiple data/measurements. In this thesis, a model is developed that
overcomes existing problems with a mixture of Gaussians within an advanced novel
Variational Bayesian framework. It is able to solve computationally expensive, high-
dimensional problems with a physical collection of data in a single test/experiment.

Model inadequacy: Another challenge, which has so far barely been accounted
for, is model inadequacy. In most model calibration studies, it is implicitly assumed
that the model is perfect. However, physical systems are very complex and simple
mathematical models are used to approximate the reality. The Bayesian framework al-
lows the comparison of different models for model selection, e.g., with Bayes factor [95]
or information criteria [96, 97]. Nonetheless, none of these methods explicitly quantify
the model error, nor do they provide a predictive uncertainty that is representative of
the extent of the model error. They merely compare different models with each other.
Different approaches [46, 98, 99, 47] to quantify the model error explicitly model the
model error as an additive term to the model outcome, e.g., by a Gaussian process. In
the view of the fact that he discrepancy model is posed only on the observables quanti-
ties it is fine-tuned with respect to these observations. Thus, it does not provide much
physical insights on model error and does not significantly improve the predictive ca-
pabilities of the model [34]. In addition, it gets entangled with the measurement errors
and a disambiguation of model and data error is difficult. Moreover, multiple physical
experiments are required and it becomes problematic for high-dimensional problems.

In contrast to that, Berliner [100] was one of the very first who embedded an
additive term within a submodel to quantify model error for an example with a small
number of unknown model parameters. This approach of embedding the model error
in a submodel has been extended in the field of fluid dynamics for large-scale problems.
More specifically, within approximate turbulence models, such as RANS, Boussinesq
approximation, Spalart-Allmaras (SA) or the k − ω turbulence model an additional
term, e.g., Gaussian process, is added within the approximate model [101, 102, 103,
104, 105, 106]. The model error for a specific problem is then identified by comparing
the outcome of the approximate model with the outcome derived by direct numerical
simulation (DNS). It relies on the assumption that the outcome of the DNS, which is
computationally very expensive to derive, is the ’true’ outcome [107, 104]. In those
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cases, only the model error is treated as an unknown and no further latent or model
parameters are quantified. This transfers the problem to a model calibration problem
where the model error can be interpreted as a model parameter.

In this thesis, a new developed strategy of identifying model inadequacy is presented.
This strategy is based on a framework by Koutsourelakis [108] but extends it with a
consistent derivation of the normalization term, such that the integration of flexible
prior assumptions is possible. The intrusive framework unravels the forward problem,
which enables us to assess constitutive model error directly without knowing the true
model. In contrast to existing work, the quantification of the model parameters and
the model error is at the same time possible making inference for high-dimensional
problems feasible.

1.3 Work contributions and broader impact

This thesis focuses on computational methods for large-scale nonlinear inverse problems
in a Bayesian framework and addresses the previously explored main three challenges:
Computational efficiency and ’curse of dimensionality’, assessing multimodality and
model inadequacy. The main contributions are threefold:

Firstly, we investigate a computationally efficient Variational Bayesian framework,
directed towards approximating the exact posterior by solving a deterministic opti-
mization problem. Specifically, we propose a dimensionality reduction of the unknown
parameters capturing as much as possible of the associated posterior density. We
elaborate on the lower-dimensional structure of the target posterior by identifying sub-
spaces where most of the probability mass is contained. This is achieved by using a
fully Bayesian argumentation resulting in a highly efficient framework which enables
the solution of high-dimensional nonlinear inverse problems.

Secondly, we propose a Variational Bayesian strategy to capture multimodal proba-
bility distributions. In contrast to existing approaches [93, 79, 94] the inverse problems
considered here are based on a single experiment [109]. Subsequently, we use mixtures
of Gaussians to approximate the posterior for model-based high-dimensional inverse
problems.

Thirdly, we intrusively quantify constitutive model inadequacy in a large-scale in-
verse problem. In contrast to non-intrusive state-of-the-art algorithms we open the
classical black-box forward problem and bring all model equations to the forefront to
identify existing model inadequacies in a physical manner. As a result, the constitutive
model error can be locally quantified. Note that physical constraints are satisfied at
the same time. This direct estimate of the model inadequacy can then be used for
predictive estimates. All this is approached by employing a fully Bayesian formulation.

In this thesis, the developed framework is demonstrated in nonlinear elastography.
Up until now, uncertainties within this application have barely been considered. Just
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recently, uncertainties in the image registration process have been examined [110, 111,
112, 113] whereas the group of Risholm [114] incorporates uncertainty quantification
also for lung elasticity estimation. The authors [108, 115] extended the approaches of
quantifying unknown tissue parameters and their uncertainties, e.g., by incorporating
a dimensionality reduction with radial basis functions. However, in all cases linear
elastic materials are assumed and computationally expensive sampling schemes are
employed. In contrast to that, in this thesis a fast and computationally cheap, but
accurate quantification of the unknown material parameters and the uncertainties for
high- dimensional nonlinear problems is proposed. It provides an accurate diagnosis
within the application: elastography. This methodology can be used to 1) reduce the
required number of performed biopsies in benign lesions which causes discomfort to
patients and increases costs and 2) minimize the number of false-negative results.

These developments are significant because they also contribute to the foundations
of interdisciplinary science of Bayesian inference for large-scale inverse problems, e.g.,
for problems from engineering and medical sciences. Only software interfaces with the
outcome of the forward call and its derivatives need to be available. Then, the new
developed framework, incorporating dimensionality reduction, capturing multimodal
posteriors accurately and quantifying constitutive model error, can directly be applied.
For a different constitutive model the framework of quantifying model inadequacy needs
further research. Specific physical insight can be straightforwardly integrated by priors.

1.4 Outline of the thesis

Chapter 2 contains the fundamental core of the thesis. It introduces the required
basics of uncertainty quantification with a focus on different approximation methods.
In addition, a short overview of solid and computational mechanics is given, which is
used to build the forward model for elastography.

Chapter 3 investigates a novel framework of Variational Bayes for the solution of
nonlinear inverse problems incorporating a dimensionality reduction technique. The
new developed framework is able to compute the posterior with very few forward calls
and is able to find a lower-dimensional subspace where a good approximation of the
posterior can be obtained. This can be achieved with a fully Bayesian argumentation.
Information-theoretical criteria are developed to identify the cardinality of the reduced
coordinates. The performance of the framework is demonstrated for problems of non-
linear elastography. However, the presented methods can also be applied to various
other applications. For verification purposes, importance sampling is employed and
shows the efficacy of the provided approximation.

Chapter 4 is an extension of the previous chapter with the ability to capture and
identify multimodal posteriors. The proposed Variational Bayesian-based strategy ap-
proximates the posterior with a mixture of multivariate Gaussians. For each Gaussian,
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a lower dimensional subspace is identified, where the posterior is mostly concentrated.
The framework is applied to static, nonlinear elastography where a multimodal approx-
imation provides a more accurate picture to the analyst such that better diagnostic de-
cisions can be drawn. Lastly, importance sampling is involved for verification, showing
that the introduced bias by the approximation is small and can efficiently be corrected.

Chapter 5 proposes a new strategy of identifying model inadequacy with an un-
folded ’black-box’ approach. The intrusive framework unravels the forward problem
which enables us to assess constitutive model error directly. Again, a Variational
Bayesian formulation is included for computational efficiency. Specific problems are
analyzed and discussed for the application to elastography.

Chapter 6 concludes this thesis with a summary of the main contributions and
investigated ideas. In addition, some future research recommendations are discussed.
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Chapter 2

Fundamentals

“ An approximate answer to the right problem is worth a good deal
more than an exact answer to an approximate problem.

”
John W. Tukey, 1915-2000 [116].

Our research objective is to assess unknown parameters based on observations (in-
verse problem) and to quantify underlying uncertainties for high-dimensional problems.
Although the novel framework is generally applicable, in this work it is chiefly applied
to the application elastography (Chapter 1). In this application, unknown material
parameters are inferred from observed deformation maps, e.g., by solving the inverse
problem. In this thesis, the forward continuum mechanics model considers nonlinear
elasticity material models and large deformations. Since in our application different
disciplines, such as uncertainty quantification and computational mechanics are com-
bined, the aim of this chapter is to summarize required fundamental pillars within each
discipline and to provide further references. Within the first subsection, the basic rules
of probability theory are reviewed before addressing the variety of methods for employ-
ing approximate inference when an analytic solution is not achievable. Furthermore,
advantages and disadvantages of the different inference schemes are described. In the
end of the first subsection, we compare Variational Bayes – which is an approximate
inference method – to state-of-the-art inference schemes. In the second subsection,
the basics of computational mechanics, especially of nonlinear solid mechanics, are
summarized. Those methods will be incorporated later on within our application of
interest, elastography.



2.1 Basic concepts of probability theory

2.1 Basic concepts of probability theory

Probability theory concerns with probability and random events in the field of mathe-
matics. Starting from the three axioms of probability, it covers discrete and continuous
probability distributions and how expectation values of random variables are related to
them. It also includes various strategies in cases where such expectation values cannot
be derived analytically. We will elaborate on the last one, approximate inference, in
more detail. For completeness, we briefly cover a few basics and introduce notational
conventions. We refer readers for more introductory literature to [117, 118, 54] and
for more advanced relevant work to [54, 119].

Within this thesis, all random variables are continuous (except one: s, see Section
4.2.1). Therefore, we focus on the characteristics of continuous random variables in
the following. Let p(.) denote a continuous probability density function, Ψ a vector
of random variables and g(Ψ) a function of Ψ. It is often of interest to describe a
probability distribution using, e.g., its first and second moments. In a general way, they
can be derived by taking the expectation

< g(Ψ) >=< g(Ψ) >p(Ψ)=

∫
g(Ψ) p(Ψ) dΨ, (2.1)

with g(Ψ) = Ψ for the first moment/mean value and g(Ψ) = (Ψ− < Ψ >)2 for the
second moment/variance. For notational economy, the index p(Ψ) is usually omitted
unless the expectation is derived under a different probability distribution.

Another important quantity within this thesis is the Kullback-Leibler (KL) diver-
gence KL(q(Ψ)||p(Ψ)) between two probability distributions q(Ψ) and p(Ψ). Emerg-
ing from the field of information theory it is also called relative entropy. The KL-
divergence can be used as a measure of the difference between the two probability
distributions q(Ψ) and p(Ψ) [120]:

KL(q(Ψ)||p(Ψ)) = −
∫
q(Ψ) log

p(Ψ)

q(Ψ)
dΨ = − < log

p(Ψ)

q(Ψ)
>q(Ψ) . (2.2)

By definition, the KL-divergence is non-negative, becomes zero if and only if q(Ψ) =
p(Ψ) and is a nonsymmetric quantity: KL(q(Ψ)||p(Ψ)) 6= KL(p(Ψ)||q(Ψ)).

So far, we have described the definitions of expectations and the KL-divergence,
but we have not mentioned yet any relation of random variables to observed data. Let
the observed data be designated by ŷ ∈ Rdy and the random and unknown parameters
of a given model by Ψ ∈ RdΨ . dy is the dimension of the measurements and dΨ the
dimension of the model parameters. The probability of having a measured output ŷ
based on the parameters Ψ is expressed by the likelihood p(ŷ|Ψ). This likelihood
includes the model one is investigating within physical applications. The likelihood can
be combined with prior beliefs to draw conclusions on unobserved quantities based on
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observed data which is expressed by the posterior. The posterior p(Ψ|ŷ) is the resulting
conditional probability of Ψ conditioned on the observables ŷ. Originally formulated
in the 18th century by Thomas Bayes [121], and in a general form by Laplace [122],
the relation between prior, likelihood and posterior is described by the Bayes rule:

posterior =
likelihood× prior

evidence
, p(Ψ|ŷ) =

p(ŷ|Ψ) pΨ(Ψ)

p(ŷ)
, (2.3)

which follows directly from the product rule (p(ŷ,Ψ) = p(ŷ|Ψ) p(Ψ)). The denom-
inator, the evidence, does not depend on Ψ. It is thus often omitted. This yields the
unnormalized posterior:

p(Ψ|ŷ) ∝ p(ŷ|Ψ) pΨ(Ψ). (2.4)

The evidence is based on the total law of probability p(ŷ) =
∫
p(ŷ|Ψ) p(Ψ) dΨ. Usu-

ally, one would explicitely denote the dependency on a given model M within the prior,
likelihood, evidence or posterior distribution. Nonetheless, we omit it for simpler nota-
tion. Prior beliefs on Ψ before any ŷ are observed are described by a prior distribution
pΨ(Ψ). This distribution can be subjective. Priors can be separated in informative and
non-informative or in conjugate and non-conjugate priors. Informative priors convey
some specific information, e.g., based on personal experience, insight, historical data.
In contrast to this, non-informative priors only possess vague and general information,
e.g., a uniform distribution on the normal mean including all possible values of Ψ. For
details about the advantages and disadvantages of non-informative priors we refer to
[48]. A prior is called conjugate to a likelihood if the posterior belongs to the same
family as the prior. For instance, a Gaussian prior on an unknown mean of a Gaussian
likelihood is conjugate and the posterior is thus Gaussian as well. A mixture of con-
jugate priors is also conjugate. Conjugate priors are advantageous for computational
tractability as posterior distributions become simple.

2.2 Approximate inference

For most problems exact inference on the posterior p(Ψ|ŷ) is intractable. This can,
for instance, be caused by high dimensional or highly complex posterior distributions.
Therefore, many approximation techniques have been developed with different accuracy
and computational cost, such as point estimates, local approximations or Monte Carlo
methods, see Figure 2.1. For verification and comparison purposes, we will shortly
summarize the main aspects of major algorithms (ordered by increasing computational
cost) before discussing Variational Bayesian approximation - mainly used within this
thesis - in detail.
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Point-based approximation

(ML and MAP estimates)

Local approximation

(Laplace approximation)

Empirical approximation

(Monte Carlo methods)

Figure 2.1: Increase of approximation quality and computational cost.

2.2.1 Point-based approximation

Point-based approximations, such as maximum likelihood (ML) and maximum a poste-
riori (MAP), are one of the most rough approximations to Bayesian inference [123, 79].
Within the maximum likelihood or maximum a posteriori estimation, the value Ψ is
identified maximizing the likelihood or posterior. The ML estimate,

ΨML = arg max
Ψ

p(ŷ|Ψ) = arg max
Ψ

log p(ŷ|Ψ), (2.5)

can be heavily biased, especially for a small number of samples. The MAP parameters
are found by:

ΨMAP = arg max
Ψ

p(Ψ|ŷ) = arg max
Ψ

log p(Ψ|ŷ)

= arg max
Ψ

(log p(ŷ|Ψ) + log pΨ(Ψ)).
(2.6)

There are various drawbacks to point estimates [124]: Most importantly, they provide
no measure of uncertainty and are not very representative of the underlying distribution.
In addition, using the MAP estimate can result in overfitting and one is very likely to
be over-confident of the predictions made by the MAP model. Furthermore, it is
problematic that the point estimates are not invariant to reparameterization of the
probability distribution.

However, the normalization constant of the posterior p(Ψ|ŷ), which may be diffi-
cult to compute, is not required for the computation of ΨMAP , as the normalization
constant does not depend on Ψ [125]. The ML or MAP estimates can be calculated in
many different ways: By deterministic numerical optimization (e.g., conjugate gradient
or Newton’s method, which may be sensitive to starting values) or by statistical meth-
ods, such as Monte Carlo methods, using simulated annealing. In any case, deriving
a ML or MAP estimate is computationally cheap compared to other approximation
methods.

2.2.2 Laplace approximation

A simple approximation framework which is also often used is the so called Laplace
approximation [126]. It approximates the continuous probability distribution to be esti-
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mated - referred to as the posterior in this thesis - by a Gaussian around the maximum
(MAP estimate): q(Ψ) = N (ΨMAP ,H

−1). The analytical, local approximation can
be derived by a Taylor series around ΨMAP :

log p(Ψ|ŷ) = t(Ψ)

= t(ΨMAP ) + (Ψ−ΨMAP )T ∂t(Ψ)
∂Ψ

∣∣∣
Ψ=ΨMAP

+1
2
(Ψ−ΨMAP )T ∂2t(Ψ)

∂Ψ∂Ψ

∣∣∣
Ψ=ΨMAP

(Ψ−ΨMAP )

+...
≈ t(ΨMAP ) + 1

2
(Ψ−ΨMAP )T H(Ψ−ΨMAP ),

(2.7)

with H the Hessian of the log-posterior at ΨMAP . The linear term vanishes since the
first order derivatives are zero at ΨMAP . Compared to point-based approximations,
such as MAP, the Laplace approximation also estimates the underlying uncertainties.
The only additional computational cost is the computation of the Hessian (or the ap-
proximation of it) at ΨMAP , since for MAP point estimates the normalization constant
of the true distribution is not required [54]. In general, a Gaussian approximation be-
comes more accurate for an increasing number of experiments (central limit theorem
[118, 119]). Nevertheless, the Laplace approximation is unable of approximating multi-
modal distributions. Furthermore, Gaussian approximations are poorly suited to positive
or constrained parameters, e.g., precisions, as it assigns non-zero mass outside the pa-
rameter domain. This can be avoided by a reparameterization [127] . Nonetheless,
the location of the maximum of p(Ψ|ŷ) is not invariant to a nonlinear reparameteri-
zation. For more information about the Laplace approximation and its characteristics
the reader can result [95, 54, 79].

2.2.3 Empirical approximation - Monte Carlo methods

In the previous two subsections, we reviewed inference approximations which are rel-
atively cheap to calculate numerically but can be far off the real solution. Which
alternatives do exist if the Gaussian approximation (Laplace approximation) is inade-
quate and if computationally more expensive methods can be applied? Although for
some applications the posterior itself is of interest, mostly integrals (e.g., estimates of
the first or second moments, see Equation (2.1)) need to be evaluated. For example,
the expectation of g(Ψ) with respect to the posterior p(Ψ|ŷ), is expressed by the
integral I:

I =

∫
g(Ψ) p(Ψ|ŷ) dΨ. (2.8)

Monte Carlo methods are numerical integration methods which offer a general ap-
proach to approximate integrals. They are, for example, employed for inference, model
validation or prediction, which is often of primary interest. To approximate the integral
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in Equation (2.8) by a Monte Carlo method, a (pseudo-) random number generator is
required. The Monte Carlo algorithm using M number of samples is:

• sample m = 1 : M samples Ψ(m) from p(Ψ|ŷ)

• unbiased estimate of the integral is given by

I ' IM =
1

M

M∑
m=1

g(Ψ(m)),

which converges by the Strong Law of Large Numbers for M → ∞ to: IM → I. To
run Monte Carlo, it suffices to be able to draw samples from p(Ψ|ŷ) and to evaluate
g(Ψ). An increasing amount of samples increases the accuracy and in the limiting case,
M →∞, one obtains the exact value of the integral. However, Monte Carlo methods
can be computationally very expensive as g(Ψ) needs to be evaluated many times.

Later on, we will use some sampling schemes for comparison/verification purposes.
For this reason, we briefly discuss the importance of sampling and the general Metropolis
algorithm in more detail. Additionally, we derive the (normalized) effective sample
size (ESS) for both algorithms. The ESS is used to measure the efficiency of the
algorithms and provides a measure of comparison with other inference strategies. The
ESS determines how informative a given sample is and takes values between 1

M
and 1

[128]. An ESS = 1 relates to an algorithm which is highly efficient compared to one
with an ESS = 1

M
(compare also the ESSIS and ESSMCMC below).

Importance Sampling

In situations when it is not straightforward to sample from a desired probability distri-
bution π(Ψ), here π(Ψ) = p(Ψ|ŷ), but an evaluation of π(Ψ) is easy for a given Ψ,
one can use importance sampling (IS). In IS, one samples from an auxiliary distribution
q(Ψ) and then corrects the estimate by weights, e.g., to approximate the integral:

I =
∫
g(Ψ) π(Ψ) dΨ =

∫
[g(Ψ) π(Ψ)

q(Ψ)
] q(Ψ) dΨ

' IM = 1
M

∑M
m=1 g(Ψ(m)) π(Ψ(m))

q(Ψ(m))
.

(2.9)

The two steps of importance sampling are:

• sample m = 1 : M samples Ψ(m) from q(Ψ)

• approximate the integral by

I ' IM =
1

M

M∑
m=1

g(Ψ(m)) w(m), (2.10)

where w(m) = π(Ψ(m))

q(Ψ(m))
are the corresponding importance weights.
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Belonging to Monte Carlo methods, IS converges by the Strong Law of Large Numbers
for M →∞ to: IM → I.

The (normalized) effective sample size for importance sampling can be expressed
using the importance weights (details in [129]):

ESSIS =
(
∑M

m=1w
(m))2

M
∑M

m=1(w(m))2
. (2.11)

It points out the percentage of number of samples that actually contribute to the
estimate. The latter attains values between the following extremes: In one extreme
(when ESS → 1

M
) a single sample has a unit normalized weight, whereas the others

have zero weights. That happens if q(Ψ) provides a poor approximation and the
ESS is dominated by the largest weight w(Ψ(m)). In the other extreme, when q(Ψ)
coincides with the exact posterior, all samples have equal weights w(Ψ(m)) and are
equally informative (ESS → 1).

The performance of importance sampling can decay rapidly in high dimensions
[130, 79]. Therefore, we discuss a very general and powerful algorithm in the next
subsection, the Markov Chain Monte Carlo method.

Markov Chain Monte Carlo

Importance sampling can be very inefficient (if the proposal distribution is badly se-
lected) and suffers from severe limitations in high-dimensional problems. Interest-
ing and often used alternatives to importance sampling are Markov Chain Monte
Carlo (MCMC) methods which combine Markov chains with Monte Carlo techniques
to focus on more important regions. Within MCMC, a chain of a correlated (and
therefore not independent) sequence of samples is generated starting from any con-
figuration Ψ(1). Each sample is a non-deterministic function of its previous sample

Ψ(m) T (m)

−−−→ Ψ(m+1) (only of the previous sample, following the conditional indepen-
dence property of Markov chains). The construction of samples is based on the us-
age of a transition kernel T (m)(Ψ(m),Ψ(m+1)) = p(Ψ(m+1)|Ψ(m)) in such a way that
Ψ(m+1) ∼ T (m)(Ψ(m),Ψ(m+1)). To ensure convergence of a Markov chain towards the
desired probability distribution in the limit of a large number of samples, it needs to be
invariant with respect to the Markov chain. A more restrictive condition to ensure in-
variance is the fulfillment of detailed balance,

∫
p(Ψ(m)) T (m)(Ψ(m),Ψ(m+1)) dΨ(m) =

p(Ψ(m+1)) where p(Ψ) is the distribution which the samples have to follow. A
Markov chain respecting the detailed balance is also reversible. More information,
also about π-irreducibility and aperiodicity, can be found in [54, 128, 119]. Tradi-
tionally, T (m) is generated using a proposal probability distribution Ψ∗ ∼ q(Ψ|Ψ(m))
dependent on the previous sample. In cases of a non-symmetric proposal distribution
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(q(Ψ(m)|Ψ) 6= q(Ψ|Ψ(m))), one needs to incorporate the ratio q(Ψ(m)|Ψ∗)
q(Ψ∗|Ψ(m))

within the

calculation of the acceptance ratio π(Ψ∗)

π(Ψ(m))
to ensure reversibility.

One of the simplest MCMC methods is the general Metropolis algorithm which
we briefly describe below as we refer to it later. Similar to importance sampling, one
samples from a proposal distribution q(Ψ|Ψ(m)), now depending on the current sample
Ψ(m). In the general Metropolis algorithm, one iterates the following steps M times:

• sample Ψ∗ ∼ q(Ψ|Ψ(m))

• generate a random number α ∼ Uniform[0, 1] and

– accept Ψ∗ for α < π(Ψ∗)

π(Ψ(m))
: Ψ(m+1) = Ψ∗

– or otherwise: Ψ(m+1) = Ψ(m)

• m← m+ 1.

The integral in Equation (2.8) can be approximated similarly to Equation (2.9) by

I ' IM =
1

M

M∑
m=1

g(Ψ(m)). (2.12)

Within the general Metropolis algorithm, the proposal distribution is also symmetric:
q(Ψ(m)|Ψ(m+1)) = q(Ψ(m+1)|Ψ(m)), ∀Ψ(m).

The convergence rate inversely scales with the square root of the number of param-
eters [128]. The constant in front of this rate highly depends on how well the proposal
step fits the specific problem and other algorithmic details. The autocovariance ρ(k)
at lag k can be used to evaluate the independence of the consecutive sample draws
[131]:

ρ(k) =
1

(M − k)ρ0

M−k∑
m=1

(Ψ(m) − Ψ̄)(Ψ(m+k) − Ψ̄), (2.13)

where Ψ̄ is denoted as the mean of Ψ and ρ0 =
∑M
m=1(Ψ(m)−Ψ̄)2

M
. The (integrated)

autocorrelation time τint can be computed as [51, 132, 119]:

τint = 1 + 2
∞∑
k=1

ρ(k). (2.14)

Also the (normalized) effective sample size derives from [119]:

ESSMCMC =
1

τint
=

1

1 + 2
∑∞

k=1 ρ(k)
, (2.15)
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indicating the loss in efficiency due to the usage of a Markov chain. In general, the
more correlated the samples are, the less information they contain.

For further introductory information about Monte Carlo methods the reader can
consult [117]. For particular information about properties of the transition kernel or
about specific MCMC algorithms, such as MALA, Simulated Annealing, Gibbs sam-
pling, we direct the reader to [54, 128, 119]. Whilst MCMC sampling methods are
general algorithms that are guaranteed to yield exact estimates in the limit of a large
number of samples, the number of required samples for accurate estimates can be too
large to make even highly optimized procedures feasible.

2.2.4 Variational Bayes theory

In the last subsections, we discussed different methods to approximate desired proba-
bility distributions, such as single point estimates (ML and MAP), local approximation
(Laplace approximation) and Monte Carlo techniques. Point estimates and local ap-
proximations can be inaccurate whereas Monte Carlo techniques can be computationally
expensive. An alternative, on which we focus within this thesis, is Variational Bayesian
(VB) methods (also known as ensemble learning or variational free energy minimiza-
tion). VB approximates, for example, the posterior p(Ψ|ŷ) using a simpler distribution
q(Ψ). VB is more general than a Laplace approximation but computationally much
more effective than Monte Carlo methods. This places VB between Laplace approx-
imations and Monte Carlo methods in both, accuracy and computational cost, as is
illustrated in Figure 2.2.

Point-based approximation

(ML and MAP estimates)

Local approximation

(Laplace approximation)

Empirical approximation

(Monte Carlo methods)

Variational Bayes

Figure 2.2: Increase of approximation quality and computational cost.

Variational Bayes performs approximate inference by solving an optimization prob-
lem over a family of appropriately selected probability densities with the objective of
minimizing the Kullback-Leibler divergence with the exact posterior. This thesis is
devoted to Variational Bayes. A new and fully Bayesian reduction of dimensionality
and an extension to multimodal densities will be incorporated, among other things,
to accurately solve high-dimensional problems. Before we take a detailed look into
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the proposed framework in Chapters 3- 5, we shortly review Variational Bayes in the
following.

Variational Bayes has its roots in calculus of variations. In calculus of variations,
one searches for a function which optimizes a functional. It has its origin in the 18th

century and is based on the work of Euler, Lagrange and others. We refer to a his-
toric overview on, e.g., ’Elementa calculi variationum’ in [133]. Within the Variational
Bayesian method functionals are optimized, as in calculus of variations, which explains
the relation to its name. The variational lower bound and the Kullback-Leibler diver-
gence are functionals, i.e., they take functions as input arguments and are optimized
by searching for an optimal function (here probability density function). Variational
Bayesian methods for probabilistic models were introduced in the 1990s by the authors
[134, 135] and have their origin in previous work in statistical physics.

Within Variational inference, one approximates the desired probability distribution,
here the posterior p(Ψ|ŷ), by a simpler distribution q(Ψ):

q(Ψ) ≈ p(Ψ|ŷ). (2.16)

By employing Jensen’s inequality [136, 137], one can construct a variational lower
bound F(q(Ψ)) to the log-evidence

log p(ŷ) = log
∫
p(Ψ, ŷ) dΨ

= log
∫
q(Ψ)p(Ψ,ŷ)

q(Ψ)
dΨ

≥
∫
q(Ψ) log p(Ψ,ŷ)

q(Ψ)
dΨ

=< log p(Ψ,ŷ)
q(Ψ)

>q(Ψ)

= F(q(Ψ)).

(2.17)

The lower bound F has very close connection to the Kullback-Leibler divergence (be-
tween approximated posterior and the exact posterior) and the log-evidence [54]:

KL(q(Ψ)||p(Ψ|ŷ)) = log p(ŷ)−F(q(Ψ)). (2.18)

Ideally, one would minimize the KL divergence with respect to q(Ψ), but this is not
possible as the true posterior is not known. However, as log p(ŷ) is constant with
respect to q(Ψ) and as the KL-divergence is strictly non-negative, maximizing F(q(Ψ))
is equivalent to minimizing KL(q(Ψ)||p(Ψ|ŷ)) with respect to q(Ψ), see also Figure
2.3. Convergence to a local maximum of F is guaranteed due to the fact that the KL
divergence is convex and F is consequently concave [54]. If we allow any distribution
for q(Ψ), the lower bound is maximal for q(Ψ) = p(Ψ|ŷ). However, for complex
posteriors this is intractable. Therefore, one usually considers a restricted family of
distributions for which the KL divergence is then minimized. Based on the application
the restriction is a balance between tractability and accuracy.
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log p(ŷ)

F(q(Ψ))

KL(q(Ψ)||p(Ψ||ŷ))

Figure 2.3: Maximizing F(q(Ψ)) is equivalent to minimizing KL(q(Ψ)||p(Ψ|ŷ)) with
respect to q(Ψ) because the sum of both terms, log p(ŷ), does not depend on q(Ψ)
and the KL divergence cannot get negative.

A common and simplifying restriction is to partition q(Ψ) in disjoint groups. This
factorized form of the densities corresponds to the mean field approximation. The
mean field approximation has its origin in statistical physics [138, 139]. It assumes that
the posterior distribution of the parameters separated in subgroups are independent:

q(Ψ) ≈
N∏
i=1

qi(Ψi). (2.19)

The qi()’s can, but do not have to, be of the same kind of probability distribution,
e.g., Gaussian or Gamma distributed. When N is the size of Ψ, it is fully factorized,
otherwise it is referred to as structured. A complete factorization is usually not required
and a structured mean field approximation is preferred. This is usually based on the
logical and physical appearance in the model. Including the (structured) mean field
approximation, the lower bound follows

F ∝ < log p(Ψ, ŷ) >q(Ψ) −
N∑
i=1

< log q(Ψi) >q(Ψi) . (2.20)

The optimal values qopt(Ψi) can be found by differentiating F with respect to each
q(Ψi) and results in:

log qopt(Ψi) = < log p(Ψ, ŷ) >∏
j 6=i q(Ψj), (2.21)
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where < . >∏
j 6=i q(Ψj) refers to an expectation with respect to q(Ψj) for all j, except

of j = i. The following characteristics apply for VB:

• Since log qopt(Ψi) depends on all values qopt(Ψj) for j 6= i, the distributions need
to be updated self-consistently.

• Unlike the Laplace approximation, it is not restricted to approximate the posterior
by a Gaussian.

• Convergence to a local maximum of F is guaranteed (as KL is convex). F is
monotonically increasing (until convergence) as the individual updates are con-
cave with respect to each q(Ψi) [54].

2.3 Fundamentals of Continuum and Computational
Mechanics

Our application of interest is elastography which is governed by the fundamentals of
solid mechanics. For that reason, this subsection contains the basics of nonlinear
continuum mechanics and of finite element methods. The forward problem, taking
a model and model parameters as inputs and calculating what the observed values
should be, is formulated in the general case for a solid mechanics problem and valid for
nonlinear material behavior and large deformations. Nevertheless, the solid mechanics
problems considered in this work are quasi-static and therefore any time-dependent
terms are neglected. For more details on computational solid mechanics we refer the
reader to [140, 141, 142].

2.3.1 Deformation, strain and stress

Let the physical domain be described by Ω0 in R3 in the reference configuration. The
coordinates of the material particles in the undeformed configuration is denoted by X
(material or Lagrangean description) and by x in the deformed configuration (spatial
or Eulerian description). The deformation map φ maps the coordinates of a material
point in the reference and physical domain to the spatial configuration in the deformed
and spatial domain Ω ∈ R3 (in the static case):

φ :

{
Ω0 → Ω

X→ x = φ(X).
(2.22)

From here the displacement field u, the difference between the spatial and material
configurations, follows:

u(X) = x−X = φ(X)−X, (2.23)
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and the deformation gradient F is defined as

F =
∂φ

∂X
=

∂x

∂X
= 1 +

∂u

∂X
. (2.24)

The determinant of F , J = det(F ) > 0, marks the change of the volume (det(F ) > 0
as the volume has to remain positive under deformation) and is for an incompressible
material equal to one. To describe the deformation, we use the Green-Lagrange strain
tensor defined as:

E =
1

2
(F TF − I). (2.25)

The symmetric, positive right Cauchy-Green tensor is defined as C = F TF and is
invariant under any superimposed rigid body motion. Related to the material config-
uration, it is commonly used as a deformation measure. The deformation between a
material element and its neighboring elements results in stresses (which is a measure of
the force per unit area). By bisecting the body, splitting the body by an imaginary cut,
the internal traction force t can be obtained. The traction depends on the orientation
of the cut. Nevertheless, the Cauchy stress tensor σ̃ is independent of this orientation:
t = σ̃ ·n, with n being the outward unit normal vector of the plane. The Cauchy stress
tensor is the actual stress and the stress defined in material configuration is the second
Piola-Kirchoff stress tensor, designated as S = JF−1σ̃F−T . The internal traction
force in the reference configuration is T = (FS) ·N , where N is the outward normal
and T the traction forces in the reference configuration.

2.3.2 Conservation of linear momentum and constitutive law

In the previous subsection, we reviewed one of the governing equations, the strain-
displacement relation, see Equation (2.25). Another important equation is the conser-
vation of linear momentum:

5 · (FS) + ρ0b = 0 in Ω0, (2.26)

where b is body force vector (per unit mass) and ρ0 is the initial density. The governing
equations are supplemented by appropriate Dirichlet and Neumann boundary conditions
as

u = ub on Γu and (2.27)

FS ·N = T̂ 1 on ΓS. (2.28)

27



2.3 Fundamentals of Continuum and Computational Mechanics

Γu and ΓS are subsets of the boundary Γ0 = ∂Ω0, on which displacement and traction
boundary data, û and T̂ , respectively, are specified.
The third governing equation is the constitutive law, the relationship between stresses
and strains. Many biological materials can be modeled by hyperelastic materials (purely
elastic behavior which depends on the current deformation). For hyperelastic materials
a strain energy density function w(E;φ) exists and depends on the invariants of the
Lagrangian strain tensorE and the constitutive material parameters φ(X). The stress-
strain equation is as follows:

S =
∂w

∂E
= S(E;φ). (2.29)

The aforementioned governing equations should be complemented with any additional
information about the problem or the material, such as incompressibility. In fact, incom-
pressibility is frequently encountered in bio-materials and corresponds to the condition
of det(F ) = 1 at all points in the problem domain.

2.3.3 Numerical formulation and solution of the forward prob-
lem

The presented governing equations cannot analytically be solved for the vast majority
of problems and one resorts to numerical techniques which discretize the equations
and the associated fields. The most prominent approach is the finite element method
(FEM), which is employed in this study as well. In the first step, the weak form of the
partial differential equations is derived. By choosing arbitrary weighting functions v and
integrating the residuals of the Equations (2.26),(2.28) and (2.27) over the respective
domain we get:∫

Ω0

(5 · (FS) + ρ0b) · v dV0 +

∫
ΓS

(T̂ − FS ·N ) · v dA0 = 0, (2.30)

such that v = 0 on Γu. Applying the Gauss divergence theorem it follows:∫
Ω0

FS : (5v)T dV0 =

∫
ΓS

T̂ · v dA0 +

∫
Ω0

ρ0b · v dV0, (2.31)

which can equally be derived by the principle of virtual work, where the weighting
functions can be seen as virtual displacements. Subsequently, the problem domain can

1When T̂ is not known in the material configuration but in the deformed configuration t̂, the
corresponding formulations in the deformed configuration should be used. Prestressing techniques can
alternatively be applied for working in the reference configuration with a loaded stress configuration
[143].
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be discretized into finite elements (FE) in space by subdividing the domain into dFE
non-overlapping subdomains

Ω0 ≈
dFE⋃
e=1

Ωe
0. (2.32)

Shape functions are used for the interpolation of the unknown fields. Since this is a very
mature subject from a theoretical and computational point of view, we do not provide
further detail here but point the interested reader to one of many available books
[144, 145]. More specifically in the context of inverse problems for (in)compressible
elasticity we refer to [43, 146].

Most often, all unknowns of the forward problem are expressed in terms of the
discretized displacement field, which is here designated by U ∈ Rn. An approximate
solution of the forward problem can be found by solving an n-dimensional system of
nonlinear algebraic equations which can be written in residual form as:

r(U ; Ψ) = 0. (2.33)

We denote the residual by r : Rn × RdΨ → Rn and the discretized vector of the
constitutive material parameters φ(X) by Ψ ∈ RdΨ . The system can be discretized
in many different ways. For example, the same shape and weighting functions can be
adopted (Bubnov-Galerkin method). Then each entry of the vector Ψ corresponds to
the value of the material parameter at a specific nodal point. Frequently it is assumed
that the value of the constitutive parameters is constant within each finite element. In
this case dΨ coincides with the number of elements dFE in the FE mesh. We would
like to point out that the discretization of Ψ does not need to be associated with
the discretization used for the governing equations and a finer or coarser discretization
might be employed. However, if the material properties exhibit significant variability
within each finite element, i.e., if dΨ � n, special care has to be taken in formulating
the finite element solution and multiscale schemes might need to be employed [147].

The resulting forward problem refers to Equation (2.33), with given discretized
material parameters Ψ. For most nonlinear cases the calculation of U by directly
solving Equation (2.33) cannot be done and an iterative approach, e.g., the Newton-
Raphson method, needs to be applied to solve the forward problem. The Newton-
Raphson method [148, 149, 142], also called Newton’s method, finds the root of a real-
valued differentiable function, here the residual, with respect to U . For this purpose
r(U ; Ψ) is linearized around U (k), where k is the iteration number. The root of the
function is then approximated by the root of the linearized function. Then, the derived
approximation ofU (k) is used for the next linearization. Summarized, the displacements
are found iteratively by:

U (k+1) = U (k) −K−1(U (k))r(U (k); Ψ), (2.34)
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where K is the tangent stiffness matrix

K(U (k)) =
∂r(U (k); Ψ)

∂U (k)
. (2.35)

The iterative procedure is repeated until a convergence criterion is met, e.g., the Eu-
clidean norm of the residual is smaller than a certain threshold ||r(U (k); Ψ)|| < tol.
The speed of convergence depends on the initial estimate U (k=0). The Newton-
Raphson method is a locally convergent scheme and when a stationary point is en-
countered the algorithm will be terminated based on a zero tangent stiffness matrix.

The Newton-Raphson method requires the solution of a linearized system of equa-
tions in each iteration. This includes each time the formation and inversion of the
tangent stiffness matrix as well as the evaluation of the residual. Alternatively, approxi-
mations of the true tangent stiffness matrix and/or its inverse have been established. A
quasi-Newton method, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is used
within this thesis. We refer to [150, 151] for more details.

We will later compare displacements obtained by solving the forward model with
measured ones. Often the experimental measurements/ observations are (noisy) dis-
placements at specific locations in the physical domain. As a result, one is interested in
a subset or in a lower-dimensional function of U at the same locations as the observa-
tions. We denote these displacements by y ∈ Rdy and they can be formally expressed
as y = QU , where Q is a Boolean matrix which selects the entries of interest from
U . Since U depends on Ψ, y is also a function of Ψ, i.e., y = y(Ψ). We emphasize
that this function is generally highly nonlinear.

2.3.4 Inverse problem and adjoint formulation

In the previous subsection, we revised the ingredients of the solution of the forward
problem. In our application of interest, elastography, it relates to the derivation of the
displacements of the material given the material parameters and boundary conditions.
Despite this, we are interested in identifying the material parameters Ψ based on
observed displacements ŷ ∈ Rdy . This refers to an inverse problem as depicted in
Figure 2.4. Inverse problems are of great interest in many disciplines as they inform
us about underlying model parameters which cannot be observed directly. Detailed
information about solution strategies are found in [45, 131, 152].

To solve the inference scheme of the inverse problem proposed later, we need
both the solution vector of the forward problem U(Ψ) and the derivatives ∂y(Ψ)

∂Ψ
,

as in Equations 3.15,4.20. The computation of the derivatives of the response with
respect to model parameters is a well-studied subject in the context of PDE-constrained
optimization.
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Forward problem:

Material
parameters

Computational
FE model

Prediction of
displacements

Inverse problem:
Estimation
of material
parameters

Computational
FE model

measured
displacements

Figure 2.4: Presentation of the forward and inverse problem in terms of the application
elastography.

The inverse problem can be formulated as: find the spatial distribution of the
material parameters Ψ that minimizes the objective function f :

f(U) =
1

2
||QU (Ψ)− ŷ||2. (2.36)

For the computation of the gradient of the objective function the adjoint approach is
used widely [153, 154, 155].

For any scalar function f(U), one can employ the adjoint form of Equation (2.33),
according to which:

df

dΨk

= −νi
∂ri
∂Ψk

, (2.37)

where the adjoint variable ν ∈ Rn is defined such as:

νj
∂rj
∂Ui

=
∂f

∂Ui
or JTν =

∂f

∂U
. (2.38)

We note that
∂rj
∂Ui

is the Jacobian of the residuals in Equation (2.33), evaluated at the
solution U(Ψ). We point out that if a direct solver for the solution of the linear system
in Equation (2.33) is employed, then the additional cost of evaluating df

dΨ
is minimal

as the Jacobian would not need to be re-factorized for solving Equation (2.38).2 In
the context of the problems considered in this thesis repeated use of Equation (2.38)
is made, where f is a different component of the observables. As such the overall
cost increases proportionally with the number of observables (displacements in our
problems) that are available. In problems where n is so large that it precludes the use
of direct solvers the cost of the solution of the adjoint equations can be increased.
Nevertheless, it is comparable to the cost of a forward solution.

2The cost of evaluating ∂ri
∂Ψk

is negligible compared to other terms as it scales linearly with the

number of elements/nodes.
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In cases where both n and the dimension of Ψ are high, advanced iterative solvers,
suitable for multiple right-hand sides, must be employed [156, 157]. These imply an
added computational burden which scales sublinearly with the dimension of Ψ.

In the incompressible case of the solid mechanics problem, pressure must be taken
into account. For that purpose the pressure trial solutions p ∈ L2(Ω0) and weighting
functions q ∈ L2(Ω0) should also be introduced [146].

2.4 Outlook

In the previous subsection, the fundamentals of continuum and numerical mechanics
are outlined and used to build a forward problem. Afterwards, an inverse problem is
formulated to resolve unknown quantities based on observations.

Although many different elastography techniques exist, underlying uncertainties,
for example, introduced by noise and incomplete observations, are usually neglected.
Recently published research incorporates the underlying uncertainties. A Bayesian es-
timation of material parameters is included to model a non-rigid image registration
more accurately [111]. However, only six material parameters and their uncertainties
are derived, assuming constant properties over different regions. In [114, 108] more
material parameters and their uncertainties are estimated for a linear elastic material
model. Nevertheless, the unknowns are derived by sampling, which is computationally
very expensive for many unknowns.

In the following chapter, we develop an uncertainty quantification method to solve
high-dimensional nonlinear inverse problems. Then, within the application of strain
elastography - usually a high-dimensional problem - we not only quantify the underlying
mechanical properties but furthermore account for their uncertainties. We especially
focus on reducing the number of dimensions as well as computational cost in order to
make derived solution strategies achievable for large systems. In addition, we propose
methods for quantifying model errors. Although we use elastography as our application
example, these methods are easily transferable to other problems of interest.
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Chapter 3

Sparse Variational Bayesian
approximations for nonlinear inverse
problems

“ [...] the statistician knows [...] that in nature there never was a
normal distribution, there never was a straight line, yet with normal
and linear assumptions, known to be false, he can often derive results
which match, to a useful approximation, those found in the real world.

”
George Box, 1919-2013 [158].

This chapter is based on the publication: I. M. Franck, P.S. Koutsourelakis, Sparse
Variational Bayesian approximations for nonlinear inverse problems: Applications in
nonlinear elastography, Computer Methods in Applied Mechanics and Engineering,
Volume 299, 1 February 2016, Pages 215-244 [159]
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3.1 Problem description and introduction

Inference methods, such as Monte Carlo or Variational Bayesian strategies, become
usually problematic with an increasing number of unknowns and problem-dimensionality.
In such problems, dimensionality reduction plays a pivotal role, more specifically on
the identification of lower-dimensional features that provide the strongest signature to
the unknowns and the corresponding posterior. Discovering a sparse set of features
has attracted great interest in many applications, such as in the representation of
natural images [160] or more generally in signal processing applications. A host of
algorithms have been developed for finding such representations and also appropriate
dictionaries for achieving this goal [161, 162, 163, 164]. While all these tools are
pertinent to the present problem they differ in a fundamental way. They are based
on several data/observations/instantiations of the vector that we seek to represent.
However, in our problems we do not have such direct observations, i.e., the available
data pertains to the output of a model which is nonlinearly and implicitly dependent
on the vector of unknowns. Furthermore, we are primarily interested in approximating
the posterior of this vector rather than simply performing dimensionality reduction. We
demonstrate how this can be done by using a fully Bayesian formulation and employing
the marginal likelihood or evidence as the ultimate model validation metric for any
proposed dimensionality reduction.

Let the vector Ψ ∈ RdΨ represent any model parameters for which a model output
y(Ψ) ∈ Rdy is available (forward run) and the calibration of the model is of inter-
est. We also presuppose the availability of the derivatives with respect to the model
parameters ∂y

∂Ψ
. For problems of practical interest, it is assumed that the dimension

dΨ of the unknowns is very large which poses a significant hindrance in finding proper
regularization (in deterministic settings [165]) or in specifying appropriate priors (in
probabilistic settings [166, 167]). The primary focus of the Bayesian model developed
in this section is two-fold:

• Find lower-dimensional representations of the unknown parameter vector Ψ that
capture as much as possible of the associated posterior density.

• Enable the computation of the posterior density with as few forward calls (i.e.,
evaluations of y(Ψ), ∂y

∂Ψ
) as possible.

We denote ŷ ∈ Rdy the vector of observations/measurements. In the context of
elastography the observations are displacements (in the static case) and/or velocities (in
dynamics). The extraction of this data from images (ultrasound or MRI) is a challenging
topic that requires sophisticated image registration techniques [168, 169]. Naturally,
this compromises the informational content of the raw data (i.e., the images). In this
study, we ignore the error introduced by the image registration process, as the emphasis
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is on the inversion of the continuum mechanics, PDE-based model and assume that
the displacement data are contaminated with noise.

We postulate the presence of i.i.d. Gaussian noise, denoted here by the random
vector z ∈ Rdy , such that:

ŷ = y(Ψ) + z, z ∼ N (0, τ−1Idy). (3.1)

N (z|0, τ−1Idy) denotes a multivariate normal distribution of z with a mean 0 and a
covariance of τ−1Idy . Often a short-hand notation, skipping for a simplified notation
the random variable which obeys the normal distribution, is used: N (0, τ−1Idy). We
assume that each entry of z has zero mean and an unknown variance τ−1, which will
also be inferred from the data. We note that other models can also be employed, such
as impulsive noise to account for outliers due to instrument calibration (e.g., to account
for faulty sensors) or experimental conditions [170]. Generally, the difference between
observed and model-predicted outputs can be attributed not only to observation errors
(noise), but also to model discrepancies arising from the discretization of the governing
equations. Another source of error can be an inadequacy of the model, which captures
the underlying physical process, itself. While the former source can be reduced by
considering very fine discretizations (at the cost of increasing the dimensionality of the
state vector u and potentially Ψ), the latter requires a much more thorough treatment
[46, 171, 172, 100, 108, 173, 174], on which we focus on in Chapter 5. Within this
chapter such model errors are lumped with observation errors in the z-term.

The likelihood function of the observed data ŷ, i.e., its conditional probability
density given the model parameters Ψ (and implicitly the modelM itself, as described
by Equation (2.33) and the resulting y(Ψ)) and τ is:

p(ŷ|Ψ, τ) =
( τ

2π

)dy/2
e−

τ
2
||ŷ−y(Ψ)||2 . (3.2)

In the Bayesian advocated framework, one also needs to specify priors on the unknown
parameters. We defer a detailed discussion of the priors associated with Ψ for the next
section where the dimensionality reduction aspects are discussed. With regard to the
noise precision τ we employ a (conditionally) conjugate Gamma prior [175], i.e.,

pτ (τ) = Gamma(a0, b0). (3.3)

The values of the parameters are taken a0 = b0 = 0 in the following examples. This
corresponds to a limiting case where the density degenerates to an improper, non-
informative Jeffreys prior, i.e., pτ (τ) ∝ 1

τ
that is scale invariant [48]. Naturally, more

informative choices can be made if such information is available a priori.
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3.2 Methods

3.2.1 Dimensionality reduction for Ψ

One way to enforce dimensionality reduction is by an appropriate prior specification.
For example, in [176], the Fourier transform coefficients of Ψ corresponding to small-
wavelength fluctuations were turned-off by assigning zero prior probability to non-zero
values. While such an approach achieves the goal of dimensionality reduction it does
not take into account the forward model in doing so. The nonlinear map y(Ψ) as
well as the available data ŷ provide varying amounts of information for identifying
different features of Ψ. One would expect the likelihood (which measures the degree
of fit of model predictions with the data) to exhibit different levels of sensitivity along
different directions in the Ψ-space. Consider the Laplace’s method for example, which
is based on a semi-analytic Gaussian approximation around the Maximum-A-Posteriori
estimate ΨMAP (Section 2.2.2). The negative of the Hessian of the log-posterior
(assuming this is positive-definite) serves as the covariance matrix. As it was shown in
[74], in many inverse problems this covariance matrix exhibits a significant discrepancy
in its eigenvalues which was exploited in constructing low-rank approximations. At
one extreme, there would be principal directions (with small variance) along which
a small distance from the location of ΨMAP would cause a huge decrease in the
posterior p(Ψ|ŷ) and on the other, there would principal directions (with large variance)
along which the posterior would remain almost constant. Such principal directions will
naturally encapsulate the effect of the log-prior. In the proposed scheme however, only
the data log-likelihood affects the directions with the maximal posterior variance [75].
Perhaps more importantly, we propose a unified framework where the identification of
the subspace with the largest posterior variance is performed simultaneously with the
inference of the posterior under the same Variational Bayesian objective. This yields
not only a highly efficient algorithm (in terms of the number of forward solves) but
also a highly extendable framework as discussed in the conclusion of this chapter.

The inference and dimensionality reduction problems are approached by employing a
fully Bayesian formulation and invoking the quality of the approximation to the posterior
as our guiding objective. To that end, we postulate the following representation for
the high-dimensional vector of unknowns Ψ:

Ψ︸︷︷︸
dψ×1

= µ︸︷︷︸
dψ×1

+ W︸︷︷︸
dψ×dθ

Θ︸︷︷︸
dθ×1

+ η︸︷︷︸
dψ×1

. (3.4)

The motivation behind such a decomposition is quite intuitive as it resembles a Principal
Component Analysis (PCA) model [177]. The vector µ represents the mean value of
the representation of Ψ and the columns of the orthogonal matrix W ∈ RdΨ×dΘ span
the aforementioned subspace with reduced coordinates Θ ∈ RdΘ . dΘ is the number of
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reduced variables and η ∈ RdΨ captures the residual variance that complements to the
main effects.

The linear decomposition of a high-dimensional vector, such as Ψ, has received
a lot of attention in several different fields. Most commonly Ψ represents a high-
dimensional signal (e.g., an image, an audio/video recording) and W consists of an
over- or under-complete basis set [160, 178] which attempts to encode the signal
as sparsely as possible. Significant advances in Compressed Sensing [179] or Sparse
Bayesian Learning [180] have been achieved in recent years along these lines. They
are based on several observations of Ψ, whereas in our problem we do not have such
direct observations, i.e., the data available pertains to y which is nonlinearly and
implicitly dependent on Ψ. Furthermore, we are primarily interested in approximating
the posterior on Ψ rather than the dimensionality reduction itself.

We focus now on the representation of Equation (3.4) and proceed to discuss the
identification of µ, W , Θ and η. In a fully Bayesian setting these parameters would
be equipped with priors, say pµ(µ), pW (W ), pΘ(Θ), pη(η) respectively, and their joint
posterior would be sought:

p(µ,W ,Θ,η, τ |ŷ) ∝ p(ŷ|µ,W ,Θ,η, τ) pµ(µ) pW (W ) pΘ(Θ) pη(η) pτ (τ), (3.5)

where pτ (τ) represents the Gamma prior for τ discussed in Equation (3.3). Such an
inference problem would in general be formidable, particularly with regard to µ and W
whose dimension is dominated by dΨ. To address this difficulty we propose computing
point estimates for µ and W while inferring the whole posterior of Θ,η. In computing
the point estimates for µ and W , the natural objective function would be the marginal
posterior p(µ,W |ŷ):

p(µ,W |ŷ) =

∫
p(µ,W ,Θ,η, τ |ŷ) dΘ dη dτ. (3.6)

In such a case the point estimates for µ,W would be the Maximum-a-Posteriori-
Estimates (MAP). We note that (up to an additive constant):

log p(µ,W |ŷ) =
= log

∫
p(µ,W ,Θ,η, τ |ŷ) dΘ dη dτ

= log
∫
p(ŷ|µ,W ,Θ,η, τ) pΘ(Θ) pη(η) pτ (τ) pµ(µ) pW (W ) dΘ dη dτ

= log
∫
p(ŷ|µ,W ,Θ,η, τ) pΘ(Θ) pη(η) pτ (τ) dΘ dη dτ

+ log pµ(µ) + log pW (W )

= log
∫ (

τ
2π

)dy/2
e−

τ
2
||ŷ−y(µ+WΘ+η)||2 pΘ(Θ) pη(η) pτ (τ) dΘ dη dτ

+ log pµ(µ) + log pW (W ).
(3.7)

We indicate that such an integration is analytically impossible primarily due to the
nonlinear and implicit nature of y(µ+WΘ + η) and secondarily due to the coupling
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of Θ,η and τ . To that end, we employ a Variational Bayesian approximation [54] to
the integral in Equation (3.7). We provide further details in the next subsection. We
mention that similar approximations have been employed in previous works [84, 170, 83]
in order to expedite Bayesian inference. The novel element of this work pertains to the
dimensionality reduction that can be achieved.

3.2.2 Variational Bayesian Expectation Maximization algorithm

In practice the posterior is often referred to as analytically intractable. Sampling meth-
ods, such as MCMC, or approximation methods, such as Laplace approximation, are
often either too expensive or not accurate enough (Section 2.2). The option we discuss
in the following is the Variational Bayes method, introduced in Section 2.2.4, which is
now extended to incorporate dimensionality reduction.

Consider an arbitrary joint density q(Θ,η, τ) on the latent variables Θ,η, τ . Then
by employing Jensen’s inequality, one can construct a lower bound to the log-marginal-
posterior log p(µ,W |ŷ) of Equation (3.7) as follows:

log p(µ,W |ŷ) = log
∫
p(µ,W ,Θ,η, τ |ŷ) dΘ dη dτ

= log
∫
q(Θ,η, τ)p(µ,W ,Θ,η,τ |ŷ)

q(Θ,η,τ)
dΘ dη dτ

≥
∫
q(Θ,η, τ) log p(µ,W ,Θ,η,τ |ŷ)

q(Θ,η,τ)
dΘ dη dτ

= F(q(Θ,η, τ),µ,W ).

(3.8)

The Kullback-Leibler divergence between q(Θ,η, τ) and the (conditional) posterior
on (Θ,η, τ):

p(Θ,η, τ |ŷ,µ,W ) =
p(µ,W ,Θ,η, τ |ŷ)

p(µ,W |ŷ)
, (3.9)

relates to the variational lower-bound F :

KL (q(Θ,η, τ)||p(Θ,η, τ |ŷ,µ,W )) = −
〈

log p(Θ,η,τ |ŷ,µ,W )
q(Θ,η,τ)

〉
q

= −
〈

log p(µ,W ,Θ,η,τ |ŷ)
p(µ,W |ŷ) q(Θ,η,τ)

〉
q

= log p(µ,W |ŷ)−F(q(Θ,η, τ),µ,W ),
(3.10)

where < . >q is the expectation with regard to q. If q is not further specified it relates
to the full joint density, otherwise to the specified marginal density, e.g., to q(Θ)
for < . >Θ. The KL-divergence becomes 0 when q(Θ,η, τ) ≡ p(Θ,η, τ |ŷ,µ,W )
(see Section 2.1). Hence, for a given µ,W , constructing a good approximation to
the conditional posterior (in the KL-divergence sense) is equivalent to maximizing the
lower bound F(q(Θ,η, τ),µ,W ) with regard to q(Θ,η, τ) (Section 2.2.4).

The aforementioned discussion suggests an iterative optimization scheme that re-
sembles the Variational Bayes - Expectation-Maximization (VB-EM) methods that have
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log p(µ(t−1),W (t−1)|ŷ)

F(q(t−1),µ(t−1),W (t−1))

KL(q(t−1)||p(.|µ(t−1),W (t−1)))

log p(µ(t−1),W (t−1)|ŷ)

F(q(t),µ(t−1),W (t−1))

KL(q(t)||p(.|µ(t−1),W (t−1)))

log p(µ(t),W (t)|ŷ)

F(q(t),µ(t),W (t))

KL(q(t)||p(.|µ(t),W (t)))

VB-E-step VB-M-step

Figure 3.1: During the VB-E step, optimization with respect to the approximating
distribution q takes place, whereas during the VB-M step, F is optimized with respect
to the model parameters µ,W (adapted from [79]).

appeared in Machine Learning literature [79]. At each iteration t, one alternates be-
tween (Figure 3.1):

• VB-Expectation: Given (µ(t−1),W (t−1)), find:

q(t)(Θ,η, τ) = arg max
q
F(q(Θ,η, τ)),µ(t−1),W (t−1)), (3.11)

• VB-Maximization: Given q(t)(Θ,η, τ), find:

(µ(t),W (t)) = arg max
µ,W
F(q(t)(Θ,η, τ),µ,W ). (3.12)

In plain terms, the strategy advocated in order to carry out the inference task can
be described as a generalized coordinate ascent with regard to F (Figure 3.2).

From Equations (3.5) and (3.8), we have that:

F (q(Θ,η, τ),µ,W ) =

=
∫
q(Θ,η, τ) log p(µ,W ,Θ,η,τ |ŷ)

q(Θ,η,τ)
dΘ dη dτ

=
∫
q(Θ,η, τ) log p(ŷ|µ,W ,Θ,η,τ) pΘ(Θ) pη(η) pτ (τ)

q(Θ,η,τ)
dΘ dη dτ

+ log pµ(µ) + log pW (W )

=
〈

log p(ŷ|Θ,η,τ,µ,W ) pΘ(Θ) pη(η) pτ (τ)

q(Θ,η,τ)

〉
q

+ log pµ(µ) + log p(W )

= F̂(q(Θ,η, τ),µ,W ) + log pµ(µ) + log pW (W ),

(3.13)
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q(Θ,η, τ)

{µ,W }

F(q(Θ,η, τ),µ,W )

Figure 3.2: Schematic illustration of the advocated Variational Bayesian Expectation-
Maximization (VB-EM, [79]).

where (up to an additive constant):

F̂(q(Θ,η, τ),µ,W ) =
〈

log p(ŷ|Θ,η,τ,µ,W ) pΘ(Θ) pη(η) pτ (τ)

q(Θ,η,τ)

〉
q

=
〈

log
(
τ

2π

)dy/2
e−

τ
2
||ŷ−y(µ+WΘ+η)||2

〉
q

+
〈

log pΘ(Θ) pη(η) pτ (τ)

q(Θ,η,τ)

〉
q
.

(3.14)

To alleviate the difficulties with the log-likelihood integral above we employ the follow-
ing approximations:

• We linearize the map y(µ+WΘ + η) at µ. Hence:

y(µ+WΘ + η) = y(µ) +G(WΘ + η) +O(||WΘ + η||2), (3.15)

where G = ∂y
∂Ψ
|Ψ=µ is the gradient of the map at µ.

By keeping the first order terms from Equation (3.15), the term ||ŷ − y(µ +
WΘ + η)||2 in the exponent of the likelihood becomes:

||ŷ − y(µ+WΘ + η)||2 = ||ŷ − y(µ)−GWΘ−Gη||2
= ||ŷ − y(µ)||2 − 2(ŷ − y(µ))TGWΘ
+W TGTGW : ΘΘT

−2ηTGT (ŷ − y(µ)−GWΘ)
+ηTGTGη.

(3.16)
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We note here that a quadratic expression with respect to Θ could also be ob-
tained by considering the 2nd order Taylor series of ||ŷ − y(µ + WΘ + η)||2

around µ directly. In particular, if we denote by g = ∂||ŷ−y(Ψ)||2
∂Ψ

|Ψ=µ and

H = ∂||ŷ−y(Ψ)||2
∂Ψ∂ΨT |Ψ=µ and keeping only up to second order terms yields:

||ŷ − y(µ+WΘ + η)||2 = ||ŷ − y(µ)||2 + gT (WΘ + η)
+1

2
W THW : ΘΘT

+ηTHWΘ
+1

2
ηTHη.

(3.17)

The computation of 2nd order derivatives H can also be addressed within the
adjoint framework. We refer the interested reader to [154, 181] as we do not
pursue this possibility further in this work. The ensuing expressions are based
on Equation (3.16) but can be readily adjusted to include the terms in Equation
(3.17) instead1.

We note that by making use of the linearization of the map y(Ψ) and the
Variational Bayesian approximation, one can obtain a tractable approximation
of the posterior of the latent parameters Θ,η and τ . This will enable us to
ultimately identify all model parameters and through this process the optimal
subspace for approximating the posterior on Ψ. This will be explained in detail
when the final algorithm is presented in Section 3.2.4.

• The aforementioned equations for the VB-Expectation step imply that proba-
bilistic inference can be expressed in terms of a parametric optimization problem.
One can adopt a functional form for q(Θ,η, τ) depending on an appropriate set
of parameters and identify their optimal value by minimizing the KL-divergence
with the posterior or equivalently maximizing F . We adopt a structured mean-
field approximation (see Equation (2.19)) where one looks for factorized densities
of the form:

q(Θ,η, τ) = q(Θ) q(η) q(τ). (3.18)

We make these expressions more specific in the next sections where we discuss
the prior for pΘ(Θ) as well.

3.2.3 Prior specification for Θ,η,µ and W

We discuss first the prior specification on W . Its dΘ columns wi, i = 1, . . . , dΘ span
the subspace over which an approximation of Ψ is sought. We note that Ψ depends on
the product WΘ which would remain invariant by appropriate rescaling of each pair

1The only additional requirement is that H is semi-positive definite or that a semi-positive ap-
proximation H̃ ≈H is used.
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of w′i = αi wi and Θ′i = 1
αi

Θi for any αi. Hence, to resolve identifiability issues we

require that W is orthogonal, i.e., W TW = IdΘ
where IdΘ

is the dΘ−dimensional
identity matrix. This is equivalent to employing a uniform prior on W on the Stiefel
manifold VdΘ

(RdΨ) [182].
The latent, reduced coordinates Θ ∈ RdΘ capture the variation of Ψ around its

mean µ along the directions of W as implied by Equation (3.4). Therefore, it is
reasonable to assume that, a priori, these should have zero mean and should be un-
correlated [177]. For that purpose we adopt a multivariate Gaussian prior (denoted by
pΘ(Θ) in the Equations of the previous section) with a diagonal covariance denoted by
Λ−1

0 = diag(λ−1
0,i ), i = 1, . . . dΘ

pΘ(Θ) = N (0,Λ−1
0 ). (3.19)

We select prior variances λ−1
0,i such that λ−1

0,1 > λ−1
0,2 > . . . > λ−1

0,dΘ
. This induces

a natural (stochastic) ordering to the reduced coordinates Θ since Ψ is invariant to
permutations of the entries of the Θ and the columns of W (Equation (3.4)). As
a result of this ordering, Θ1 is associated with the direction along which the largest
variance in Ψ is attained, Θ2 with the direction with the second largest variance and
so on. We discuss the particular values given to prior hyperparameters λ0,i in the
sequel (Section 3.3) and in Section 3.2.5 the possibility of an adaptive decomposition
is also presented. This enables the sequential addition of reduced coordinates until a
sufficiently good approximation to the posterior is attained.

As the role of the latent variables η is to capture any residual variance (that is not
accounted for by Θ), we assume that, a priori, η can be modeled by a multivariate
Gaussian that has zero mean and an isotropic covariance:

pη(η) = N (0, λ−1
0,ηIdΨ

). (3.20)

The final aspect of the prior model pertains to µ: pµ(µ). We use a hierarchical prior
that induces the requisite smoothness given that Ψ represents the spatial variability of
the material parameters. In particular, the prior model employed penalizes the jumps
in the values of Ψk and Ψl which correspond to neighboring sites/locations k, l. The
definition of a neighborhood can be adjusted depending on the problem. In this work, we
assume that sites/locations belong to the neighborhood if they correspond to adjacent
pixels/voxels.2 Suppose dL is the total number of neighboring pairs of elements. Then
for m = 1, . . . , dL and if km and lm denote the corresponding neighboring pair:

p(µkm − µlm|ξm) =

√
ξm
2π
e−

ξm
2

(µkm−µlm )2

. (3.21)

2This results in four neighbors for a single quadrilateral element and in three neighbors per element
for triangular elements (less for elements at the boundary).
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The strength of the penalty is proportional to the hyperparameter ξm > 0, i.e., smaller
values of ξm induce a weaker penalty and vice versa [183]. Let L the dL × dΨ denote
the Boolean matrix that can be used to produce the vector of all dL jumps (as the one
above) between all neighboring sites from the vector µ as Lµ.3 Ξ = diag(ξm) is the
diagonal matrix containing all the hyperparameters ξj associated with each of these
jumps. We can represent the combined prior on µ as:

p(µ|Ξ) ∝ |Ξ|1/2e−
1
2
µTLTΞLµ. (3.22)

A conjugate prior of the hyperparameters Ξ is a product of Gamma distributions:

pΞ(Ξ) =

dL∏
m=1

Gamma(aξ, bξ). (3.23)

As in [183], the independence is motivated by the absence of correlation (a priori)
with regard to the locations of the jumps. In this work we use aξ = bξ = 0 which
corresponds to a limiting case of a Jeffreys prior that is scale invariant. We note that
in contrast to previous works where such priors have been employed for the vector of
unknowns Ψ and MAP estimates have been obtained [131], we employ this here for µ
which is only part of the overall decomposition in Equation (3.4). We discuss in the
following section the update equations for µ and the associated hyper-parameters Ξ as
well as for the remaining model variables. Furthermore, an Expectation-Maximization
scheme to derive log pµ(µ) will be derived (cf. also Appendix A).

3.2.4 Update equations for q(Θ), q(η), q(τ),µ,W

We postulate that the reduced coordinates Θ as well as η should, a posteriori, have
zero mean as they capture variability around µ and the residual “noise” respectively.
For that purpose we confine our search for q(Θ), q(η) to distributions with zero mean.
Given the aforementioned priors and the linearization discussed in the previous sec-
tion, we can readily deduce from the lower bound, Equation (3.13), that the optimal
approximate posteriors qopt(Θ), qopt(η) and qopt(τ), under the mean-field Variational
Bayesian scheme adopted, will be:

qopt(Θ) ≡ N (0,Λ−1),
qopt(η) ≡ N (0, λ−1

η IdΨ
),

qopt(τ) ≡ Gamma(a, b).
(3.24)

The associated parameters are given by the following iterative equations:

a = a0 + dy/2,
b = b0 + 1

2
||ŷ − y(µ)||2 + 1

2
tr(W TGTGWΛ−1) + 1

2
λ−1
η tr(GTG),

(3.25)

3L has zero entries which are adjusted for m = 1 : dL by L(m, km) = L(m, km) + 1 and
L(m, lm) = L(m, lm)− 1.
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Λ = Λ0+ < τ >τ W
TGTGW , (3.26)

λη = λ0,η +
1

dΨ

< τ >τ tr(G
TG), (3.27)

where < τ >=< τ >τ=< τ >q=
a
b
.

As a result of the aforementioned equations and Equation (3.4), one can establish
that the posterior of Ψ is approximated by a Gaussian with mean and covariance given
by:

< Ψ >q=< µ+WΘ >q= µ,
Cov[Ψ] = WΛ−1W T + λ−1

η IdΨ
.

(3.28)

We note that if we diagonalize Λ−1, i.e., Λ−1 = V DV T where D is diagonal and V
is orthogonal with columns equal to the eigenvectors of Λ−1, then:

Cov[Ψ] = WVDV TW T + λ−1
η IdΨ

= W̃DW̃
T

+ λ−1
η IdΨ

.
(3.29)

W̃ is also orthogonal (i.e., W̃
T
W̃ = IdΘ

) and contains the dΘ principal directions
of the posterior covariance of Ψ. Hence, it suffices to consider approximate posteriors
q(Θ) with covariance Λ−1 that is diagonal, i.e., Λ = diag(λi), i = 1, . . . , dΘ. In this
case the update equations for λi in Equation (3.26) reduce to:

λi = λ0,i+ < τ >τ w
T
i G

TGwi. (3.30)

We would like to point out that, despite the prior assumption on uncorrelated Θ, the
posterior on Ψ exhibits correlation and captures the principal directions along which
the variance is largest. Furthermore, implicit to the aforementioned derivations is the
assumption of a unimodal posterior on Θ and subsequently on Ψ. This assumption
can be relaxed by employing a mixture of Gaussians (e.g., [93]) that will enable the
approximation of highly non-Gaussian and potentially multimodal posteriors. Such
approximations could also be combined with the employment of different basis sets W
for each of the mixture component which would provide a wide range of possibilities. We
defer further discussions along these lines to Section 4. In the examined elastography
applications, the unimodal assumption seems to be a reasonable, due to generally large
amounts of data/observations obtained from various imaging modalities.

Given the aforementioned results one can obtain an expression for the variational
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lower bound F in Equation (3.13):

F(q(Θ), q(η), q(τ),µ,W ) =
〈

log p(ŷ|Θ,η,τ,µ,W ) pΘ(Θ) pη(η) pτ (τ)

q(Θ,η,τ)

〉
q

+ log pµ(µ) + log pW (W )

= −dy
2

log 2π + dy
2
< log τ >τ

−<τ>
2

< ||ŷ − y(µ)−G(WΘ + η)||2 >q

+1
2

log |Λ0| − 1
2
Λ0 :< ΘΘT >Θ +dΨ

2
log λ0,η

−λ0,η

2
I :< ηηT >η

+(a0 − 1) < log τ >τ −b0 < τ >τ − logZ(a0, b0)
−1

2
log |Λ|+ dΘ

2
− dΨ

2
log λη + dΨ

2

−(a− 1) < log τ >τ +b < τ >τ + logZ(a, b)
+ log pµ(µ) + log pW (W ),

(3.31)

where Z(γ, δ) = Γ(γ)
δγ

is the normalization constant of a Gamma distribution with
parameters γ, δ. The aforementioned equation can be further simplified by making
use of the following expectations: < Θ >Θ= 0, < η >η= 0, < ΘΘT >Θ= Λ−1,
< ηηT >η= λ−1

η IdΨ
:

F(qopt(Θ), qopt(η), qopt(τ),µ,W ) = −dy
2

log 2π + dy
2
< log τ >τ

−<τ>
2
||ŷ − y(µ)||2

−<τ>
2
W TGTG W : Λ−1

−<τ>
2
GTG : λ−1

η IdΨ

+1
2

log |Λ0| − 1
2
Λ0 : Λ−1 + dΨ

2
log λ0,η

−dΨλ0,η

2λη
+ (a0 − 1) < log τ >τ −b0 < τ >τ

− logZ(a0, b0)
−1

2
log |Λ|+ dΘ

2
− dΨ

2
log λη

+dΨ

2
− (a− 1) < log τ >τ +b < τ >τ

+ logZ(a, b) + log pµ(µ) + log pW (W ).
(3.32)

In order to update W in the VB-Maximization step, it suffices to consider only the
terms of F that depend on it which we denote by FW (W ), i.e.:

FW (W ) = −<τ>τ
2
W TGTG W : Λ−1 + log pW (W ). (3.33)

As discussed earlier the prior pW (W ) enforces the orthogonality constraint on W .
To address this constrained optimization problem, we employ the iterative algorithm
proposed in [184] which has proven highly efficient in terms of the number of iterations
and the cost per iterations in several settings. It employs the Cayley transform [185]
to preserve the constraint during the optimization and makes use only of first order
derivatives:

∂FW
∂W

= − < τ >τ G
TGWΛ−1 +

∂ log pW (W )

∂W
, (3.34)
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with

B =
∂FW
∂W

W T −W ∂FW
∂W

T

. (3.35)

The update equations are based on a Crank-Nicholson-like scheme:

W new = (IdΨ
+
αW
2
B)−1(IdΨ

+
αW
2
B)W old, (3.36)

where αW is the step size and IdΨ
∈ RdΨ×dΨ the identity matrix with the dimension

of Ψ, dΨ. One notes that the aforementioned update preserves the orthogonality of
W new ([184]). In order to derive a good step size we use the Barzilai-Borwein scheme
[186] which results in a non-monotone line search algorithm:

αW =
||tr(∆W∆∂FW

∂W
)||

tr(∆∂FW
∂W

T
∆∂FW

∂W
)
, (3.37)

where ∆ represents the difference between the current parameter values as compared
to the previous step and the absolute value of the denominator is taken such that αW
is never negative. As discussed in detail in [184] the inversion of the dΨ × dΨ matrix
(IdΨ

+ αW
2
B) in Equation (3.36) can be efficiently performed by inverting a matrix

of dimension 2dΘ which is much smaller than dΨ. We remark that the updates of
W require no forward calls for the computation of y(µ) or its derivatives G. The
updates/iterations are terminated when no further improvement to the objective is
possible.

The final component involves the optimization of µ. As with W we consider only
the terms of F (Equation (3.32)) that depend on µ which we denote by Fµ(µ), i.e.:

Fµ(µ) = −<τ>τ
2
||ŷ − y(µ)||2 + log pµ(µ). (3.38)

Due to the analytical unavailability of log pµ(µ) and its derivatives ∂ log pµ(µ)

∂µ
, we employ

here an Expectation-Maximization scheme [187, 135] which we describe in Appendix
A for completeness. The output of this algorithm is also the posterior on the hyperpa-
rameters ξm, Equation (3.21), which captures the locations of jumps in µ as well as
the probabilities associated with them. The cost of the numerical operations is minimal
and scales linearly with the number of neighboring pairs dL. In the following, we simply
make use of Equations (A.3) without further explanation.

Formally, the determination of the optimal µ would require the derivatives ∂Fµ(µ)

∂µ

in Equation (3.38). We note that G = ∂y
∂Ψ
|Ψ=µ depends on µ. Hence, finding

∂Fµ(µ)

∂µ
would require the computation of second-order derivatives of y(Ψ) which poses

significantly computational difficulties in the high-dimensional considered setting. To
avoid this and only for the purpose of the µ-updates, we linearize Equation (3.38)
around the current guess by ignoring the dependence of G on µ or equivalently by
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assuming that G remains constant in the vicinity of the current guess. In particular,
let µ(t) denote the value of µ at iteration t, then in order to find the increment ∆µ(t),
we define the new objective F

(t)
µ (∆µ(t)) as follows:

F
(t)
µ (∆µ(t)) = Fµ(µ(t) + ∆µ(t)) + log p(µ(t) + ∆µ(t))

= −<τ>τ
2
||ŷ − y(µ(t) + ∆µ(t))||2

−1
2
(µ(t) + ∆µ(t))TLT < Ξ >Ξ L(µ(t) + ∆µ(t))

≈ −<τ>τ
2
||ŷ − y(µ(t))−G(t)∆µ(t)||2

−1
2
(µ(t) + ∆µ(t))TLT < Ξ >Ξ L(µ(t) + ∆µ(t)).

(3.39)

We remark that there is no approximation with regard to the pµ(µ) prior term. By
keeping only the terms depending on ∆µ(t) in the equation above we obtain:

F
(t)
µ (∆µ(t)) = −<τ>τ

2
(∆µ(t))T (G(t))TG(t) ∆µ(t)

+ < τ >τ (ŷ − y(µ(t)))TG(t) ∆µ(t)

−1
2
(∆µ(t))TLT < Ξ >Ξ L ∆µ(t)

−(µ(t))TLT < Ξ >Ξ L ∆µ(t).

(3.40)

This is concave and quadratic with respect to the unknown ∆µ(t). The maximum can

be found by setting
∂F

(t)
µ (∆µ(t))

∂∆µ(t) = 0, which yields:

(< τ >τ (G(t))TG(t) +LT < Ξ >Ξ L)∆µ(t)

=< τ >τ (G(t))T (ŷ − y(µ(t)))−LT < Ξ >Ξ Lµ
(t).

(3.41)

We note that the exact objective Fµ(µ)+log pµ(µ) is evaluated at µ(t+1) = µ(t)+∆µ(t)

and µ(t+1) is accepted only if the value of the objective is larger than that at µ(t).
Iterations are terminated when no further improvement is possible. Finally, it was
found that activating the regularization term (log pµ(µ)) after five updates/iterations
during which the optimization is performed solely on the basis of Fµ(µ), enabled better
exploration of the feasible solutions. This addresses first an optimization w.r.t. Fµ(µ)
before also the smoothing prior is incorporated.

We summarize below the basic steps of the iterative Variational Bayesian scheme
proposed in Algorithm 1.

Algorithm 1 Variational Bayesian Approach Including Dictionary Learning for fixed dΘ

1: Initialize µ, W , Λ0, λ0,η and the hyperparameters a0, b0, aξ, bξ
2: Update µ using Equation (3.41)
3: while F (Equation (3.32)) has not converged do
4: Update W using Equations (3.33-3.37)
5: Update q(Θ) ≡ N (0,Λ−1), q(η) ≡ N (0, λ−1

η IdΨ
) using Equation (3.30),

Equation (3.27) and q(τ) ≡ Gamma(a, b) using Equation (3.25)
6: end while
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With regard to the overall computational cost we note that the updates of µ are
the most demanding as they require calls to the forward model to evaluate y(µ(t))
and the derivatives G(t) = ∂y

∂Ψ
|Ψ=µ(t) , as described in Appendix D. The updates were

terminated when no further increase in F (Equation (3.32)) can be attained.

3.2.5 Adaptive learning - Cardinality of reduced coordinates

The presentation thus far was based on a fixed number dΘ of reduced coordinates Θ.
A natural question that arises is how many should one consider. In order to address
this issue, we propose an adaptive learning scheme. According to this, the analysis
is first performed with a few (even one) reduced coordinates and upon convergence
additional reduced coordinates are introduced, either in small batches or even one-
by-one. Critical to the implementation of such a scheme is a metric for the progress
achieved by the addition of reduced coordinates and basis vectors which can also be
used as a termination criterion.

In this work, we advocate the use of an information-theoretic criterion which mea-
sures the information gain between the prior beliefs on Θ and the corresponding pos-
terior. To measure such gains, we employ again the KL-divergence between the afore-
mentioned distributions. In particular, if pdΘ

(Θ) (Section 3.2.3) and qdΘ
(Θ) (Equation

(3.30)) denote the dΘ-dimensional prior and posterior respectively, we define the quan-
tity I(dΘ) as follows:

I(dΘ) =
KL(pdΘ

(Θ)||qdΘ
(Θ))−KL(pdΘ−1(Θ)||qdΘ−1(Θ))

KL(pdΘ
(Θ)||qdΘ

(Θ))
, (3.42)

which measures the (relative) information gain from dΘ−1 to dΘ reduced coordinates.
The KL divergence between pdΘ

(Θ) and qdΘ
(Θ), with pdΘ

(Θ) ≡ N (0,Λ−1
0 ) and

qdΘ
(Θ) ≡ N (0,Λ−1) where Λ0,Λ are diagonal as explained previously, follows with:

KL(pdΘ
(Θ)||qdΘ

(Θ)) =
1

2

dΘ∑
i=1

(− log(
λi
λ0,i

) +
λi
λ0,i

− 1), (3.43)

and Equation (3.42) becomes:

I(dΘ) =

∑dΘ

i=1(− log( λi
λ0,i

) + λi
λ0,i
− 1)−

∑dΘ−1
i=1 (− log( λi

λ0,i
) + λi

λ0,i
− 1)∑dΘ

i=1(− log( λi
λ0,i

) + λi
λ0,i
− 1)

. (3.44)

In the simulations performed in Section 3.3, we demonstrate the evolution of this
metric as reduced-coordinates/basis vectors are added one-by-one. The addition of
reduced coordinates was terminated when I(dΘ) was below 1% for at least five con-
secutive dΘ. In Figure 3.3, an overview flowchart of the proposed algorithm is shown.
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It incorporates the VB algorithm including dictionary learning from Algorithm 1 and
the information gain assessment to identify the necessary number of basis vectors from
this subsection.

initialize values

fix W, q,
update µ

with smoothing
prior pµ(µ)

fix µ, q,
update W

with
W TW = IdΘ

fix W, µ,
update q

update iteratively
latent variables

do another
iteration

add a new
basis w,

do another
iteration

Has F
converged?

Has I(dΘ)
converged?

stop

no

yes

no

yes

µ-update:

argmax
µ
Fµ = −<τ>τ

2 ||ŷ − y(µ)||2

+ log pµ(µ)

W-update:

argmax
W
FW = −<τ>τ

2 W TGTGW : Λ−1

+ log pW (W )

q-update:

Λ = Λ0+ < τ >τ W
TGTGW

λη = λ0,η +
1

dΨ
< τ >τ tr(G

TG)

a = a0 + dy/2

b = b0 + 1
2 ||ŷ − y(µ)||2

+1
2 tr(W

TGTGWΛ−1)

+1
2λ
−1
η tr(GTG)

Figure 3.3: Flowchart for the new algorithm. As the µ-update does not depend on
W just one µ-update (which is the expensive part of the full algorithm) is necessary
during the calculations.
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3.2.6 Validation- Combining VB approximations with impor-
tance sampling

Thus far we have employed the variational lower bound in order to identify the optimal
dimensionality reduction and to infer the latent variables that approximate the posterior.
The goal of this section is twofold. Firstly, to show how the biased VB approximation
can be used in order to obtain efficiently, (asymptotically) unbiased estimates with
regard to the true posterior and secondly, to assess (quantitatively) the accuracy of
the VB approximation. To that end, we employ importance sampling (Section 2.2.3)
with the variational posterior as the importance sampling distribution. We can thus
obtain consistent estimators of several exact posterior quantities as well as of measure
the efficiency of importance sampling (IS).

The performance of IS can decay rapidly in high dimensions [79] and due to the
fact that η has a negligible effect in the inferred posterior (as seen in the discussed

examples), we propose using the exact posterior p(Θ|ŷ,µ,W ) = p(ŷ|Θ,µ,W ) pΘ(Θ)
p(ŷ|µ,W )

as
the target density. We note that when τ is unknown, as in the cases considered herein,
the (marginal) likelihood p(ŷ|Θ,µ,W ) can be determined by integrating with respect
to τ . With the conjugate Gamma prior adopted (Equation (3.3)) this can be done
analytically and would yield:

p(ŷ|Θ,µ,W ) =
∫
p(ŷ, τ |Θ,µ,W ) dτ

=
∫
p(ŷ|τ,Θ,µ,W ) pτ (τ) dτ

∝ Γ(a0+dy/2)

(b0+
||ŷ−y(µ+WΘ)||2

2
)a0+dy/2

.
(3.45)

In cases where non-conjugate priors for τ are employed, the IS procedure detailed here
has to be performed in the joint space (Θ, τ).

The evidence is:

p(ŷ|µ,W ) =

∫
p(ŷ|Θ,µ,W ) pΘ(Θ) dΘ, (3.46)

and the expectation of any function g(Ψ) = g(µ + WΘ) with regard to the exact
posterior p(Θ|ŷ,µ,W ):

< g(Ψ) >p(Θ|ŷ,µ,W ) =
∫
g(µ+WΘ) p(Θ|ŷ,µ,W ) dΘ

=
∫
g(µ+WΘ) p(ŷ|Θ,µ,W ) pΘ(Θ)

p(ŷ|µ,W )
dΘ,

(3.47)

can be estimated using IS with respect to the IS density q(Θ) as follows:

1
M

∑M
m=1 w(Θ(m)) → p(ŷ|µ,W ),
1∑M

m=1 w(Θ(m))

∑M
m=1 g(µ+WΘ(m)) w(Θ(m)) → < g(Ψ) >p(Θ|ŷ,µ,W ) .

(3.48)
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The samples {Θ(m)}Mm=1 are independent draws from q(Θ) and the IS weights are
given by:

w(Θ) =
p(ŷ|Θ,µ,W ) pΘ(Θ)

q(Θ)
. (3.49)

The (normalized) effective sample size from Equation (2.11) to measure the de-
generacy in the population of particles/samples as quantified by their variance [188] is:

ESSIS =
(
∑M

m=1w(Θ(m)))2

M
∑M

m=1w
2(Θ(m))

. (3.50)

In summary, the VB framework advocated introduces approximations due to the lin-
earization of the response (Equation (3.15)) and the mean field approximation (Equa-
tion (3.18)). To assess the bias of these approximations in the posterior inferred, we
employ IS as explained above. This can lead to accuracy metrics (e.g., ESS) but more
importantly can produce (asymptotically) unbiased statistics with regard to the exact
posterior, i.e., the one obtained without the approximations mentioned earlier. These
metrics can be readily compared with those of alternative strategies (e.g., MCMC as
in Equation (2.15)). Unequivocally, another important source of error is due to model
discrepancies. That is, if the difference between observables and model predictions in
Equation (3.1) is not valid due missing physics, discretization errors, etc., then the in-
ference results will deviate from reality, irrespectively of the numerical tools one employs
[189, 190, 108]. We emphasize that the methodology proposed, as most strategies for
the solution of inverse problems, is based on the assumption that model errors are zero
or in any case much smaller than the observation errors.

3.3 Numerical illustration

The elastography examples presented are concerned with the probabilistic identifica-
tion of unknown material parameters from interior measured displacement data. We
demonstrate the efficacy of the proposed methodology in two, two-dimensional cases
where synthetic displacement data are utilized. The data are contaminated with noise
as discussed below. The first example is based on a linear elastic material model. The
second example incorporates the Mooney-Rivlin material model which is used to model
nonlinear and incompressible response.

In the computations, we use a0 = b0 = aξ = bξ = 0. We employ the adaptive
learning scheme discussed in Section 3.2.5 whereby reduced-coordinates/basis vectors
are added one-by-one. The first reduced coordinate is assigned the broadest prior, i.e.,
λ0,1 is the smallest of all other λ0,i and captures the largest expected (a priori) variance.
For subsequent bases i = 2, 3, . . . we assign values to the precision parameters λ0,i as
follows:

λ0,i = max(λ0,1, λi−1 − λ0,i−1), i = 2, 3, . . . , dΘ, (3.51)
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We note that λi−1 corresponds to the posterior precision for the previous reduced
coordinate Θi−1 as found in Equation (3.30) according to which λ0,i =< τ >τ

wT
i−1G

TGwi−1. This essentially implies that, a priori, the next reduced coordinate
Θi will have the precision of the previous one as long as it is larger than the threshold
λ0,1. Since by construction wT

i G
TGwi > w

T
i−1G

TGwi−1, we have that λ0,i+1 ≥ λ0,i.
For the prior of η we use λ0,η = maxi(λ0,i) as η represents the residual variance which
is a priori smaller than the smallest variance of the reduced coordinates Θ.

The most important quantities and dimensions of the ensuing two examples are
summarized in Table 3.1.

Example 1 Example 2

Dimension of observables: dy 198 5100
Dimension of latent variables: dΨ 90 2500

Dimension of reduced latent variables: dΘ 5− 10 15− 25
Nr. of forward calls < 25 < 35

Table 3.1: Summary of the number of observables, forward calls and the dimensionality
reduction in the following two examples.

Details about the implemented software can be found in Appendix E.

Example 1: Linear elastic material

The primary objective of the first example is to assess the performance of the proposed
framework in terms of accuracy and dimensionality reduction in a simple problem with
the absence of model errors. For that purpose, we consider a linear, isotropic elastic
material model where the stress-strain relation is given by:

S = C : E, (3.52)

where C is the elasticity tensor [141]. It is given by:

C =
E

(1 + ν)
(I +

ν

(1− 2ν)
1⊗ 1), (3.53)

and E is the elastic modulus. The second material parameter is Poisson’s ratio ν which
in this example is assumed to be known (ν = 0). The vector of unknown parameters Ψ
consists of the values of the elastic moduli at each finite element. We assume that the
elastic modulus can take two values Einclusion and Ematrix such that Einclusion

Ematrix
= 5. The

ratio is representative of ductal carcinoma in situ in glandular tissue in the breast under
a strain of 5%, cf. [15]. The spatial distribution of the material is shown in Figure
3.4. The problem is Ω0 = [0, L]× [0, L] with L = 10 units. We employ a 10× 10 FE
mesh (for more fundamental detail about computational mechanics and finite element
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(a) Problem configuration. (b) Reference configuration of the mate-
rial parameters E in log-scale.

Figure 3.4: Problem and reference configuration.

methods we refer to Section 2.3 and the references therein). Displacement boundary
conditions are employed which resemble those encountered when static pressure is
applied on a tissue with the ultrasound transducer invoking a 1% strain as depicted in
Figure 3.4. In particular, the boundary displacements at the bottom (x2 = 0) are set
to zero and at the top (x2 = 10) the vertical displacements are set to −0.1 and the
horizontal displacements equal to zero. The vertical edges (x1 = 0, 10) are traction-
free. The parameter values at the top row of elements are assumed known and equal
to the exact values (Ematrix) otherwise any solutions for which Einclusion

Ematrix
= 5 would

yield the same likelihood [43].4 The interior observed displacements, generated using
the reference configuration, were subsequently contaminated with Gaussian noise such
that the resulting Signal-to-Noise Ratio (SNR) was SNR = 105. We adopt a very
vague prior, i.e., λ0,1 = 10−10.

In the top row of Figure 3.5 various aspects of the posterior of the elastic moduli
using 90 basis vectors, dΘ = 90 (equal to the total number of unknown material
parameters, dΨ = 90), are depicted and are compared with the corresponding results
dΘ = 9 (second row). One can see that the inferred posterior means are practically
identical and coincide with the ground truth. The same can be said for the posterior
variances which can be captured to a large extent by employing only dΘ = 9 reduced
coordinates.

A more detailed comparison of the inferred posterior for various dΘ is depicted
in Figure 3.6. In the right subfigure also the relative information gain (as defined in

4This is only required for problems with Dirichlet boundary conditions as configurations with the
same material parameter ratio results in the same displacements. Thus, the inversion scheme will
identify the correct ratio of the material parameters but not necessarily the correct magnitude of it.
This is not the case for given forces/pressure/stresses, Neumann boundary conditions.
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(a) Mean, dΘ = 90 (b) Diagonal cut, dΘ = 90 (c) St. dev., dΘ = 90

(d) Mean, dΘ = 9 (e) Diagonal cut, dΘ = 9 (f) St. dev., dΘ = 9

Figure 3.5: The first row corresponds to results derived with dΘ = 90 and the second
row to dΘ = 9. Figures (a), (d) depict the posterior mean µ of the elastic moduli E
in log-scale which is shown to be independent of the number of reduced coordinates
dΘ. Figures (b), (e) show the posterior mean and posterior quantiles (±3 standard
deviations) along the diagonal from (0, 0) to (10, 10). Figures (c), (f) depict the
posterior standard deviation. The differences are indistinguishable which implies that
the full posterior (dΘ = 90) can be very well approximated with only dΘ = 9 reduced
coordinates/basis vectors.

Section 3.2.5) and the number of forward calls (which determines the computational
cost) as a function of the number of reduced coordinates/basis vectors is shown. One
can notice that the information gain drops to relatively small values only after a small
number of reduced coordinates (after the dΘ = 6, it drops below 10%). For the
posterior approximation obtained with dΘ = 9 (which as shown earlier is practically
indistinguishable from the full-order result with dΘ = 90) only 23 forward calls are
needed. These forward calls are performed at dΘ = 1 and for additional reduced
coordinates no further forward calls are required. A more detailed account of the
optimization with regard to the model parameters µ and W can be seen in Figure 3.7,
where the evolution of the corresponding variational objectives Fµ and FW (Section
3.2.4) is plotted. We note again that the µ-updates are the only ones that require
forward calls. The optimization results with regard to FW are shown for dΘ = 9.
These are performed using the Barzilai-Borwein step size selection discussed previously,
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which results in a non-monotone but robust optimization.

(a) Posterior mean and credible intervals at±3
standard deviations (dashed lines) along the di-
agonal from (0, 0) to (10, 10) for various values
of dΘ.

(b) Information gain I(dΘ) — and computa-
tional cost — as measured by the number of
forward calls over the number of dimensions,
dΘ.

Figure 3.6: Posterior statistics on the diagonal cut and information gain.

(a) Fµ over all bases (b) FW with 9 bases

Figure 3.7: (a): Fµ over the total number of µ-updates. (b): FW during the W -
update, after adding the ninth basis.

The 9 most important basis vectors wi can be seen in Figure 3.8, in decreasing
order, based on the corresponding variance λ−1

i .
Finally, the posterior of τ is depicted in Figure 3.9. One can observe that the

magnitude is captured correctly, compared to the exact value, i.e., the corresponding
variance of the Gaussian noise with which the data was contaminated.

The aforementioned results were verified by employing importance sampling, dis-
cussed in Section 3.2.6. The effective sample size (ESS, Equation (3.50)) was 0.25 (for
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3.3 Numerical illustration

(a) λ−1
1 = 9.8× 10−2 (b) λ−1

2 = 4.0× 10−2 (c) λ−1
3 = 3.0× 10−2

(d) λ−1
4 = 2.3× 10−2 (e) λ−1

5 = 1.4× 10−2 (f) λ−1
6 = 9.5× 10−3

(g) λ−1
7 = 8.0× 10−3 (h) λ−1

8 = 7.5× 10−3 (i) λ−1
9 = 6.6× 10−3

Figure 3.8: The first 9 basis vectors wi in decreasing order, based on the corresponding
variance λ−1

i . One notes that the variance captured by the 9th reduced coordinate is
more than one magnitude smaller than that of the 1st reduced coordinate.

dΘ = 9) which suggests that a good approximation to the actual posterior is provided
by then VB result [128]. More importantly, in Figures 3.10 and 3.11 the first- and
second-order statistics of the exact posterior (estimated with importance sampling) is
shown and displays the good approximation of the posterior with VB.

Example 2: With an incompressible Mooney-Rivlin material

Nonlinear, hyperelastic models have been successfully used in the past to describe
the behavior of several biomaterials [191, 192, 11]. In this example, we employ the
Mooney-Rivlin model [193, 194] that is characterized by the following strain energy
density function w (Equation (2.29)):

w = c1(Î1 − 3) + c2(Î2 − 3) +
1

2
κ(log J)2. (3.54)
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Figure 3.9: Posterior distribution q(τ) for 9 bases and the exact value.

(a) Mean, dΘ = 9 (b) Diagonal cut, dΘ = 9 (c) St. dev.

Figure 3.10: First- and second-order statistics of the exact posterior as estimated
with importance sampling. Subfigure (a) depicts the posterior mean µ of the elastic
moduli E in log-scale. Subfigure (b) shows the posterior mean and posterior quantiles
(±3 standard deviations) along the diagonal from (0, 0) to (10, 10) and subfigure (c)
pictures the posterior standard deviation. These should be compared with the VB
approximations in Figure 3.5.

κ is the bulk modulus, J = det(F ) and Î1 = I1
J2/3 , Î2 = I2

J4/3 , where I1, I2 are the

first and second invariants of the left Cauchy-Green deformation tensor b = FF T .
The last term in Equation (3.54) is related to volumetric deformations whereas the
first two terms to distortional. We consider here an incompressible material, i.e.,
J = 1, in which case the bulk modulus κ plays the role of a penalty parameter that
enforces this constraint. We employ the three-field Hu-Washizu principle in order to
enforce incompressibility and suppress volumetric locking [195, 144]. The three-field
formulation requires a separate integration rule for the dilatational stiffness contribution.
The bulk modulus is chosen as a function of c1 with κ = κoc1. We use κ0 = 1000
[195, 196]. The higher κ0 is, the stronger is the incompressibility constraint.
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3.3 Numerical illustration

Figure 3.11: Posterior mean and posterior quantiles (±3 standard deviations) along
the diagonal from (0, 0) to (10, 10) for VB and importance sampling (IS).

In this example, we assume c2 = 0, which reduces the model to an uncoupled
version of the incompressible neo-Hookean model [141]. The remaining parameter
c1 is assumed to vary in the problem domain which can be seen in Figure 3.12. In
this example we have two inclusions, an elliptic and a circular inclusion, with different
material properties. In the larger, elliptic inclusion c1 = 4000 (red), in the smaller,
circular inclusion c1 = 3000 (orange) and in the remaining material c1 = 1000 (blue).
The problem domain is Ω0 = (0, L)×(0, L) with L = 50. It is discretized with 200×200
finite elements of equal size and the governing equations are solved under plane strain
conditions. The following boundary conditions are employed: both displacements are
set to zero at the bottom (x2 = 0) and vertical nodal loads f = −100 in the vertical
direction (pointing downwards) is applied along the top, i.e., x2 = 50. The vertical
edges (x1 = 0, 50) are traction-free.

Figure 3.12: Reference c1 distribution in the log-scale.
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The forward model for the Bayesian identification employed a regular 50×50 mesh
and only the corresponding (noisy) displacements at the nodes were used as data (ŷ).
We note that due to the different meshes employed the data will also contain model
(discretization) errors. The SNRs reported in the sequence include also these errors.
We further assumed that c1 was constant within each of the elements which resulted
in dΨ = 2500 unknowns. Using the displacements obtained from the fine 200 × 200
mesh we consider three settings:

• Case A (high SNR/low noise): without additional noise resulting in a SNR 1.93×
103.

• Case B (medium SNR/medium noise): the data are contaminated with relatively
smaller Gaussian noise resulting in a total SNR 1.89× 103.

• Case C (small SNR/high noise): the data are contaminated with relatively larger
Gaussian noise resulting in a total SNR 6.9× 102.

The results presented in the sequence were obtained for λ0,1 = 5 × 10−1 and the
material parameters are plotted in the log-scale.

SNR 1.93× 103 SNR 1.89× 103 SNR 6.9× 102

Figure 3.13: Posterior mean of c1 in log-scale for Cases A (large SNR), B (medium
SNR) and C (small SNR).

Figure 3.13 depicts the posterior mean µ for the aforementioned three cases. Figure
3.14 displays the spatial distribution of the posterior standard deviation as obtained by
using the reduced coordinates. We note that in all cases (low to high SNR), µ provides
a reasonable approximation of the ground truth. The advantage of the proposed as well
as all Bayesian techniques is that probabilistic estimates can be obtained in the form
of the posterior density. This is illustrated in Figure 3.15 which depicts the posterior
along the diagonal from (0, 0) to (50, 50). Firstly, we note that in all cases the posterior
quantiles envelop by-and-large the ground truth. Secondly, as expected, these credible
intervals are larger in cases where the SNR is smaller (noise is larger). Thirdly and most
importantly, we mark that these posterior approximations can be obtained by operating
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3.3 Numerical illustration

SNR 1.93× 103 SNR 1.89× 103 SNR 6.9× 102

Figure 3.14: Posterior standard deviation of c1 in log-scale for Cases A (large SNR,
dΘ = 10), B (medium SNR, dΘ = 12) and C (small SNR, dΘ = 13).

on subspaces of dramatically reduced dimension in relation to the number of unknowns
(2500).

SNR 1.93× 103 SNR 1.89× 103 SNR 6.9× 102

Figure 3.15: Posterior mean and credible intervals at ±2 standard deviations (dashed
lines) along the diagonal from (0, 0) to (50, 50) for various values of dΘ and for Cases
A (large SNR), B (medium SNR) and C (small SNR). The larger numbers of dΘ

correspond to the converged results as determined by Figure 3.16.

Figure 3.16 depicts the relative information gain I(dΘ) (Section 3.2.5) for each
SNR. The behavior of the information gain depends on the ratio of the prior λ0,i and
the posterior of the variance λi. As with the previous example, it exhibits a relative
quick decay after a small number of reduced coordinates have been added. Figure
3.16 shows also the number of forward calls as a function of dΘ. As it was observed
previously, the effort is expended in the beginning and in all cases the final result is
obtained with less than 40 forward calls.

Figure 3.17 shows the evolution of Fµ as a function of the number of forward calls.
Figure 3.18 depicts the corresponding evolution of FW for dΘ = 2 and for all three
SNR cases.

Finally, Figure 3.19 depicts 5 basis vectors wi for each SNR in decreasing order
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SNR 1.93× 103 SNR 1.89× 103 SNR 6.9× 102

Figure 3.16: Information gain I(dΘ) — and computational cost — as measured by the
number of forward calls.

SNR 1.93× 103 SNR 1.89× 103 SNR 6.9× 102

Figure 3.17: Fµ for the different SNR.

SNR 1.93× 103 SNR 1.89× 103 SNR 6.9× 102

Figure 3.18: FW for the different SNR and dΘ = 2.

based on the corresponding variance λ−1
i . While similarities are observed, the basis

vectors are not identical as compared across the three different noise levels, reflecting
the fact that each dataset is informative along different directions in the Ψ space.
However, it is clear that regions in the vicinity of (or within) the inclusions exhibit
larger posterior variability. Also one expects, the associated variances are larger as the
SNR is smaller (i.e., the noise level is higher).
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3.3 Numerical illustration

SNR 1.93 × 103 SNR 1.89 × 103 SNR 6.9 × 102

(a) λ−1
1 = 1.9575× 100 (b) λ−1

1 = 1.9825× 100 (c) λ−1
1 = 1.9996× 100

(d) λ−1
2 = 1.7933× 100 (e) λ−1

2 = 1.9671× 100 (f) λ−1
2 = 1.9996× 100

(g) λ−1
5 = 3.9404× 10−1 (h) λ−1

5 = 1.8347× 100 (i) λ−1
5 = 1.9994× 100

(j) λ−1
9 = 1.3892× 10−2 (k) λ−1

9 = 1.0948× 100 (l) λ−1
9 = 1.9993× 100

(m) λ−1
10 = 4.3619× 10−3 (n) λ−1

12 = 1.706× 10−1 (o) λ−1
13 = 1.9989× 100

Figure 3.19: Some important selected basis vectors for Cases A (large SNR), B (medium
SNR) and C (small SNR). The vectors are ordered based on decreasing variance λ−1

i .
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The aforementioned results for the largest noise case (SNR = 6.9 × 102) were
verified by employing importance sampling as discussed in Section 3.2.6. The effective
sample size (ESS, Equation (3.50)) was 0.15 (for dΘ = 13) which suggests a good
approximation to the actual posterior is provided by the VB result [128]. More impor-
tantly, as it is shown in Figures 3.20 and 3.21, the first- and second-order statistics of
the exact posterior (estimated with importance sampling) are very close to the ones
computed with the VB approximation.

(a) Mean, dΘ = 13 (b) St. dev., dΘ = 13

Figure 3.20: First- and second-order statistics of the exact posterior (SNR = 6.9×102),
as estimated with importance sampling. Subfigure (a) depicts the posterior mean of c1

in log-scale. Subfigure (b) displays the posterior standard deviation. These should be
compared with the VB approximations in Figure 3.13 and Figure 3.14.

Figure 3.21: Posterior mean and posterior quantiles (±2 standard deviations) along
the diagonal from (0, 0) to (50, 50) for VB and importance sampling (IS).

63



3.4 Summary

3.4 Summary

We introduced a novel Variational Bayesian framework for the solution of nonlinear in-
verse problems and demonstrated its capabilities in problems in elastography. The main
advantage of the proposed methodology is the ability to find a much lower-dimensional
subspace where a good approximation to the exact posterior can be obtained. The
identification of the reduced basis set is found on a fully Bayesian argumentation that
employs Variational approximations to the exact posterior. Information-theoretic cri-
teria have been proposed in order to adaptively identify the cardinality of the reduced
coordinates. The posterior approximations are obtained with a limited number of calls
to the forward solver. For the computation of the response and its derivatives (in all
problems considered fewer than 40 such calls were needed). Furthermore, with the use
of importance sampling, the (minute) bias in the posterior estimates can be corrected
and consistent statistics of the exact posterior can be estimated.

A possibility that could further reduce the computational effort is the use of forward
solvers operating on a hierarchy of resolutions. However, in these approaches location-
dependent model error needs to be considered. This will further complicate the Bayesian
variational approach. Starting with the coarsest (and less expensive) model some of the
features of the posterior can be obtained with minimal cost and these can be further
refined by a smaller number of calls to finer resolution solvers. The resolution of the
forward model could also be adaptively altered in regions where the posterior variance
appears to be larger. Obtaining efficiently, accurate and fully-Bayesian solutions is a
critical step in enabling the use of model-based techniques on a patient-specific basis
for medical diagnosis.

Another possible extension is the usage of mixtures of Gaussian densities in order
to provide better approximations to highly non-Gaussian or even multimodal posteriors
[93]. Such situations arise frequently in cases where very sparse and/or very noisy data
is available and represent the most challenging setting for associated inverse problems
[59]. Tools along the aforementioned lines, offer appealing possibilities for identifying
multiple low-dimensional subspaces and associated basis vectors which locally provide
good posterior approximations and when combined, offer an accurate global solution.
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Chapter 4

Multimodal, high-dimensional,
model-based, Bayesian inverse
problems with applications in
biomechanics

“ Say you were standing with one foot in the oven and one foot in an ice
bucket. According to the percentage people, you should be perfectly
comfortable.

”
Bobby Bragan, 1917-2010.

This chapter is based on the publication: I. M. Franck, P.S. Koutsourelakis, Multi-
modal, high-dimensional, model-based, Bayesian inverse problems with applications in
biomechanics, Journal of Computational Physics, Volume 329, 15 January 2017, Pages
91-125 [197]



4.1 Why it can be that important to capture multimodality

4.1 Why it can be that important to capture multi-
modality

Many posteriors are multimodal and highly non-Gaussian, which is another challenge
we want to address in this thesis. That is, the identification of multiple posterior
modes. In the context of elastography, multimodality can originate from anisotropic
materials [198], wrong/missing information from images/measurements [199] or the
imaging modality employed [200]. In all cases, each posterior mode can lead to dif-
ferent diagnostic conclusions. Therefore, it is very important to identify them and
correctly assess their posterior probabilities. The majority of Bayesian strategies for the
solution of computationally intensive inverse problems operate under the assumption
of a unimodal posterior or focuses on the approximation of a single mode of the pos-
terior. Some numerical inference tools, based on SMC or other tempering mechanisms
[87, 88, 89], have been developed but require a very large number of forward model
calls particularly when the dimension of unknowns increases. We finally note that the
treatment of multimodal densities in high-dimensions has attracted significant interest
in atomistic simulations in the context of free energy computations [201, 202], but in
such problems (apart from other distinguishing features) the cost per density evaluation
(i.e., one MD time-step) is smaller than in our setting.

In this chapter, we discuss a Variational Bayesian (VB) strategy that extends our
work of the previous chapter. Therein, we have shown how accurate approximations
of the true posterior can be attained by identifying a low-dimensional subspace where
posterior uncertainty is concentrated. This has led to computational schemes that re-
quire only a few tens of forward model runs in the problems investigated. Nevertheless,
the previous chapter was based on the assumption of a unimodal posterior which we
propose overcoming in this chapter by employing a mixture of multivariate Gaussians.
Mixture models have also been employed in various statistics and machine learning ap-
plications (e.g., speaker identification [91], data clustering [92]) and also in combination
with Variational Bayesian inference techniques [93, 79, 94]. We note that a different
VB strategy that also makes use of mixtures of Gaussians to solve model-based inverse
problems has been proposed in [109]. Nonetheless, all the presented problems have
inexpensive likelihoods, relatively low-dimensions and multiple data/measurements. In
contrast, the inverse problems considered here are based on a single experiment, a
single observation vector and a large number of unknown latent variables.

Within the novel Bayesian framework, which integrates a dimensionality reduction
for each mixture component, we propose an adaptive algorithm based on information-
theoretic criteria for the identification of the number of the required mixture com-
ponents (Section 4.2). Furthermore, we present the parametrization of the pro-
posed model in Section 4.2 where we also discuss a Variational-Bayesian Expectation-
Maximization [79] scheme for performing inference and learning. In Section 4.3, we
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present numerical illustrations involving a simple toy-example and an example in the
context of elastography.

4.2 Methods

This section discusses the advocated methodological framework. In Section 4.2.1, we
present a Bayesian mixture model that can identify lower-dimensional subspaces where
most of the posterior mass is concentrated as well as accounting for multiple modes.
The prior assumptions for the model parameters are summarized in Section 4.2.2. In
Section 4.2.3, we discuss a Variational Bayesian Expectation-Maximization scheme for
computing efficiently approximations to the posterior for a fixed number of mixture
components. In Section 4.2.4, we examine a scheme for determining the appropriate
number of such components. Finally, in Section 4.2.5, we discuss how to assess the
accuracy of the computed approximation as well as a way to correct for any bias if this
is deemed to be necessary.

Canonical formulations of model-based, inverse problems postulate the existence of
a forward model that typically arises from the discretization of governing equations, such
as PDEs/ODEs. The following discussions are based on the forward model discussed
in Section 3.1 with the likelihood from Equation (3.2)

p(ŷ|Ψ, τ) =
( τ

2π

)dy/2
e−

τ
2
||ŷ−y(Ψ)||2 . (4.1)

The intractability of the map y(Ψ) precludes the availability of closed-form solutions
for the posterior and necessitates the use of various sampling schemes, such as those
discussed in the introduction. This task is seriously impeded by a) the need for repeated
solutions of the discretized forward problem of which each can be quite computationally
taxing, b) the high dimensionality of the vector of unknowns Ψ which hinders the
efficient search (e.g., by sampling) of the latent parameter space and further increases
the computational burden. Within the previous chapter, we alleviate these difficulties
by proposing adequate approximations and dimensionality-reduction techniques that
are seamlessly integrated in the inference framework. Within this section, we attempt
to overcome well-known limitations that have to do with the multimodality of the
posterior and which further exacerbate these problems. Multimodality is inherently
related to the ill-posedness of inverse problems and its potential can increase when the
dimension of the vector of unknowns increases and/or the noise is amplified.

4.2.1 Bayesian mixture model

In this section and in view of the aforementioned desiderata, we propose the augmented
formulation of the Bayesian inverse problem.
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• In order to capture multiple modes of the posterior (if those are present) we
introduce the discrete, latent variable s which takes integer values between 1
and S. The latter represents the number of modes identified, each of which will
be modeled with a multivariate Gaussian. The cardinality of the model, i.e., S is
learned in a manner that is described in the sequel.

• In order to identify a lower-dimensional representation of the unknowns Ψ we
define the latent variables Θ ∈ RdΘ such that dΘ � dΨ. The premise here is
that while Ψ is high-dimensional, its posterior can be adequately represented on a
subspace of dimension dΘ that captures most of the variance. As we have argued
in Chapter 3 these latent variables can give rise to a PCA-like decomposition of
the form:

Ψ = µ+WΘ + η, (4.2)

where µ ∈ RdΨ is the mean vector and the columns of the orthogonal matrix
W ∈ RdΨ×dΘ (W TW = IdΘ

) span the aforementioned subspace with reduced
coordinates Θ. The vector η ∈ RdΨ captures the residual variance (noise) that
complements the main effects.

In view of multimodal posteriors and since each mode implies a different mean
and a different lower-dimensional subspace (Figure 4.1), we advocate in this
chapter S expansions of the form:

Ψs = µs +W sΘ + η, s = 1, 2, . . . , S. (4.3)

The notation Ψs implies the representation of Ψ within mode s. The orthogonal
matrices W s denote the potentially different subspaces associated with each of
the modes. In principle, the dimension dΘ of the reduced subspaces can also vary
with s, but we do not consider this here for simplicity of notation.

We distinguish in the following between latent variables: s, Θ, η and τ , and model
parameters: µ = {µj}Sj=1, W = {W j}Sj=1. We seek point estimates for the latter
due to their high dimension (of the order of dΨ � 1) and (approximations) of the
actual (conditional) posterior for the former. Based on the parametrization adopted,
the likelihood of Equation (3.2) takes the form:

p(ŷ|s,Θ,η, τ,µs,W s) ∝ τ dy/2e−
τ
2
||ŷ−y(µs+W sΘ+η)||2 . (4.4)

A graphical illustration of the proposed probabilistic generative model is shown in Figure
4.2.

Following the standard Bayesian formalism, one would complement the aforemen-
tioned likelihood with priors on the model parameters p(µ,W ) and the latent variables
p(Θ,η, s, τ), in order to obtain the joint posterior (given S):

p(s,Θ,η, τ,µ,W |ŷ) ∝ p(ŷ|s,Θ,η, τ,µs,W s) p(Θ,η, s, τ) p(µ,W ). (4.5)
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xx

xW i

µi

µj

W j

Ψ(1)

Ψ(2)

x

Figure 4.1: Illustration of the multimodal representation for S = 2 in 2D, i.e., when
Ψ = {Ψ(1),Ψ(2)}.

Θ ŷ s

η τ

µ1,W 1 µS,W S...

Figure 4.2: Graphical representation of the proposed generative probabilistic model.
Circles denote random variables, solid rectangles, model parameters and arrows denote
dependencies [124].

We discuss the specific form of the priors (and associated hyperparameters) in Subsec-
tion 4.2.2 as well as the inference/learning strategy we propose in 4.2.3. However, we
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note at this stage that given this posterior, one would obtain a mixture representation of
the unknown material parameters Ψ, as implied by Equation (4.3). In particular, given
values for (µ,W ) = {µj,W j}Sj=1, it directly follows that the posterior p(Ψ|µ,W , ŷ)
(given S) of Ψ is:

p(Ψ|µ,W , ŷ)

=
∑S

s=1

∫
p(Ψ, s,Θ,η, τ, |µ,W , ŷ) dΘ dη dτ

=
∑S

s=1

∫
p(Ψ|s,Θ,η, τ,µs,W s) p(s,Θ,η, τ, |µ,W , ŷ) dΘ dη dτ

=
∑S

s=1

∫
δ(Ψ− (µs +W sΘ + η)) p(s,Θ,η, τ, |µ,W , ŷ) dΘ dη dτ,

(4.6)
where the conditional posterior p(s,Θ,η, τ, |µ,W , ŷ) is found from Equation (4.5).
We discuss in Section 4.2.3 how the posterior on the latent variables is approximated
as well as the values (point estimates) for the model parameters µ,W are computed.

4.2.2 Prior specification for mixture model with dimensionality
reduction

We assume that, a priori, the precision τ of the observation noise is independent of the
remaining latent variables Θ,η, s, i.e.:

p(Θ,η, s, τ) = p(Θ,η, s) pτ (τ). (4.7)

In particular, we employ:

• a Gamma prior on τ : as in the previous chapter, cf. Equation (3.3), we employ
a (conditionally) conjugate Gamma prior pτ (τ):

pτ (τ) ≡ Gamma(a0, b0). (4.8)

We use a0 = b0 = 0 which results in a non-informative Jeffreys’ prior that is
scale-invariant.

• We assume that Θ and η are a priori, conditionally independent, i.e., p(Θ,η, s) =
p(Θ,η|s) ps(s) = pΘ(Θ|s) pη(η|s) ps(s). We discuss each of these terms below:

– We assume that each component s is, a priori, equally likely, which implies:

ps(s) =
1

S
, s ∈ [1 : S]. (4.9)

Hierarchical priors can readily be adopted (e.g., [79]), but we consider here
the simplest possible scenario. An interesting extension would involve infi-
nite models with Dirichlet Process priors [203, 204] which would enable the
number of components S to be automatically determined. In this work, a
less elegant but quite effective adaptive scheme for determining S is pro-
posed in Section 4.2.4.
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– A Gaussian prior on Θ:
The role of the latent variables Θ is to capture the most significant varia-
tions of Ψs around its mean µs as in Section 3.2.3 and 3.2.4. By signifi-
cant we mean the directions along which the largest posterior uncertainty
is observed. These represent the reduced coordinates along the subspace
spanned by the column vectors of W j. We assume therefore, cf. Equation
(3.19), that a priori, these are independent, have zero mean and follow a
multivariate Gaussian:

pΘ(Θ|s) = N (0,Λ−1
0,s), (4.10)

where Λ0,s = diag(λ0,s,i), i = 1, ..., dΘ express prior variances along each
of the latent principal directions.

– A Gaussian prior on η:

As the role of these latent variables is to capture any residual variance (that
is not accounted for by Θ), we assume that, a priori, η can be modeled
by a multivariate Gaussian that has zero mean and an isotropic covariance
(see Equation (3.20)):

pη(η|s) = N (0, λ−1
0,η,sIdΨ

). (4.11)

For the model parameters µ,W , we assume that, a priori, the parameters associ-
ated with each component j = 1, . . . , S are independent. In particular:

• Prior on each µj for j ∈ 1 : S:
In general such priors must encapsulate not only the information/beliefs available
a priori to the analyst but also reflect the physical meaning of the parameters Ψ.
We are motivated by applications in elastography where the goal is to identify
inclusions that correspond to tumors and generally have very different proper-
ties from the surrounding tissue [15, 16]. The vector Ψ represents the spatial
discretization of the material parameters, i.e., each of its entries corresponds to
the value of the material parameter at a certain point in the physical domain.
This structure is inherited by µj and for this reason we employ a hierarchical
prior that penalizes jumps between neighboring locations (on the spatial domain,
[205]) in a manner controlled by appropriately selected hyperparameters. The
model was discussed in detail in Section 3.2.3 and is now extended to each mix-
ture component, the prior and hyperprior for each mixture component j follows
with:

p(µj|Ξj) ∝ |Ξj|1/2e−
1
2
µTj L

TΞjLµj , (4.12)

p(Ξj) =

dL∏
m=1

Gamma(aξ, bξ). (4.13)
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• Prior specification on each W j for j ∈ 1 : S:
We require that each W j is orthonormal, i.e., W T

jW j = IdΘ
, where IdΘ

is the
dΘ-dimensional identity matrix. This is equivalent to employing a uniform prior
on the Stiefel manifold VdΘ

(RdΨ), as discussed in Section 3.2.3.

4.2.3 Variational approximation

We note that inference (exact or approximate) for all the model parameters described
previously would pose a formidable task particularly with regard to µ and W which are
of dimension of order dΨ � 1 in their larger dimension. For that purpose, we advocate
a hybrid approach whereby Maximum-A-Posteriori (MAP) point estimates of the high-
dimensional parameters T = (µ,W ) = {µj,W j}Sj=1 are obtained and the posterior
of the remaining (latent) variables s,Θ,η, τ is approximated. To that end, we make
use of the Variational Bayesian Expectation-Maximization scheme (VB-EM, [79] and
Section 3.2.2) which provides a lower bound F on the log of the marginal posterior of
T = (µ,W ). This can be iteratively maximized by a generalized coordinate ascent
(Figure 4.3) which alternates between finding optimal approximations q(s,Θ,η, τ) of
the exact (conditional) posterior p(s,Θ,η, τ |ŷ,T ) and optimizing with respect to T .

q(Θ,η, τ, s)

T

F(q(Θ,η, τ, s),T )

Figure 4.3: Schematic illustration of the advocated Variational Bayesian Expectation-
Maximization for mixture of Gaussians (VB-EM, [79]).

On the basis of the discussion above and the separation between latent variables
(s,Θ,η, τ) and model parameters T , we can rewrite Equation (4.5) (for a given S) as
follows:

p(s,Θ,η, τ,T |ŷ) =
p(ŷ|s,Θ,η, τ,T ) ps(s) pΘ(Θ|s) pη(η|s) pτ (τ) pT (T )

p(ŷ)
. (4.14)
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We note that both sides of the equation above depend implicitly on S, i.e., the total
number of components in the model. This is especially important for the model evi-
dence term p(ŷ) which we discuss in Section 4.2.4. We nevertheless omit S from the
expressions in order to simplify the notation.

Furthermore, the conditional posterior of (s,Θ,η, τ) given T is:

p(s,Θ,η, τ |T , ŷ) =
p(s,Θ,η, τ,T |ŷ)

p(T |ŷ)
, (4.15)

where p(T |ŷ) is the (marginal) posterior of the model parameters T .
For an arbitrary density q(Θ,η, τ, s) and by employing Jensen’s inequality, it can

be shown that (cf. Equation (3.8)):

log p(T |ŷ) = log
∑S

s=1

∫
p(T ,Θ,η, τ, s|ŷ) dΘ dη dτ

= log
∑S

s=1

∫
q(Θ,η, τ, s)p(T ,Θ,η,τ,s|ŷ)

q(Θ,η,τ,s)
dΘ dη dτ

≥
∑S

s=1

∫
q(Θ,η, τ, s) log p(T ,Θ,η,τ,s|ŷ)

q(Θ,η,τ,s)
dΘ dη dτ

= F(q(Θ,η, τ, s),T ).

(4.16)

We note here that the variational lower bound F has a direct connection with the
Kullback-Leibler (KL) divergence between q(Θ,η, τ, s) and the (conditional) posterior
p(Θ,η, τ, s|T , ŷ). In particular, if we denote by < . >q expectations with respect to
q, then:

KL (q(Θ,η, τ, s)||p(Θ,η, τ, s|ŷ,T )) = −
〈

log p(Θ,η,τ,s|ŷ,T )
q(Θ,η,τ,s)

〉
q

= −
〈

log p(T ,Θ,η,τ,s|ŷ)
p(T |ŷ) q(Θ,η,τ,s)

〉
q

= log p(T |ŷ)−F(q(Θ,η, τ, s),T ).
(4.17)

The Kullback-Leibler divergence is by definition non-negative and becomes zero when
q(Θ,η, τ, s) ≡ p(Θ,η, τ, s|ŷ,T ). Hence, for a given T , constructing a good ap-
proximation to the conditional posterior (in the KL divergence sense) is equivalent to
maximizing the lower bound F(q(Θ,η, τ, s),T ) with respect to q(Θ,η, τ, s). Analo-
gously, maximizing F with respect to T (for a given q(Θ,η, τ, s) leads to (sub-)optimal
MAP estimates. This suggests an iterative scheme that alternates between:

• VB-Expectation step: Given the current estimate of T , find the q(Θ,η, τ, s)
that maximizes F .

• VB-Maximization step: Given the current q(Θ,η, τ, s), find T that maximizes
F .

As in standard EM schemes [135], relaxed versions of the aforementioned partial op-
timization problems can be considered that improve upon the current F rather than
finding the optimum at each iteration.
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Using Equation (4.14), the lower bound F can be expressed as:

F(q(Θ,η, τ, s),T ) =
〈

log p(ŷ|s,Θ,η,τ,T ) ps(s) pΘ(Θ|s) pη(η|s) pτ (τ) pT (T )

p(ŷ) q(Θ,η,τ,s)

〉
q

=
〈

log p(ŷ|s,Θ,η,τ,T ) ps(s) pΘ(Θ|s) pη(η|s) pτ (τ)

q(Θ,η,τ,s)

〉
q

+ log pT (T )− log p(ŷ)

= F̂(q(Θ,η, τ, s),T ) + log pT (T )− log p(ŷ).

(4.18)

We will omit the term − log p(ŷ) as it does not depend on q nor T . It is apparent that
the challenging term in F̂ involves the likelihood, i.e.:

F̂(q(Θ,η, τ, s),T ) =
〈

log p(ŷ|s,Θ,η,τ,T ) ps(s) pΘ(Θ|s) pη(η|s) pτ (τ)

q(Θ,η,τ,s)

〉
q

=
〈
dy
2

log τ − τ
2
||ŷ − y(µs +W sΘ + η)||2

〉
q

+
〈

log ps(s) pΘ(Θ|s) pη(η|s) pτ (τ)

q(Θ,η,τ,s)

〉
q
.

(4.19)

The intractability of the map y(.) precludes an analytic computation of the expectation
with respect to q, let alone the optimization with respect to this. While stochastic
approximation techniques in the context of VB inference have been suggested [206]
to carry out this task, these would require repeated forward solves (i.e., evaluations of
y(.)) which would render them impractical. For that purpose, as in Section 3.2.2, we
invoke an approximation by using a first-order Taylor series expansion of y (given s)
at µs, i.e.:

y(µs +W sΘ + η) = y(µs) +Gs (W sΘ + η) +O(||W sΘ + η||2), (4.20)

where Gs = ∂y
∂Ψ
|Ψ=µs is the gradient of the map at µs. We will discuss rigorous valida-

tion strategies of the approximation error thus introduced in Section 2.2.3. Truncating
Equation (4.20) to first-order, the term ||ŷ−y(µs +W sΘ +η)||2 in the exponent of
the likelihood becomes:

||ŷ − y(µs +W sΘ + η)||2 = ||ŷ − y(µs)−GsW sΘ−Gsη||2
= ||ŷ − y(µs)||2 − 2(ŷ − y(µs))

TGsW sΘ
+W T

sG
T
sGsW s : ΘΘT

−2ηTGT
s (ŷ − y(µs)−GsW sΘ)

+ηTGT
sGsη.

(4.21)

We introduce a second approximation in terms of the family of q’s over which we wish
to optimize by using a mean-field decomposition (see Equation (2.19)) of the form:

q(Θ,η, s, τ) ≈ q(Θ,η, s) q(τ)
= q(Θ,η|s) q(s) q(τ)
≈ q(Θ|s) q(η|s) q(s) q(τ).

(4.22)
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In the first line, τ is assumed to be a posteriori independent of the remaining latent
variables on the premise that the measurement noise precision is determined by the
experimental conditions and is not directly dependent on the latent variables. In the
the third line, we assume that Θ and η are conditionally independent given s.1 The
latter assumption is justified by the role of Θ and η in the representation of Ψ (Equation
(4.3)) expressing the main effects around the mean and the residual “noise” respectively.
As such, it is also reasonable to assume that the means of Θ and η are zero a posteriori,
i.e., < Θ >q(Θ|s)= 0 and < η >q(η|s)= 0. Furthermore, we employ an isotropic
covariance for η, i.e., < ηηT >q(η|s)= λ−1

η,sIdΨ
where λ−1

η,s represents the (unknown)
variance.

If we denote the expectations with respect to q(τ), q(Θ|s) and q(η|s) with < . >τ ,
< . >Θ|s and < . >η|s, then Equation (4.19) becomes 2:

F̂(q(Θ,η, τ, s),T )

= dy
2
< log τ >τ (< log p(ŷ|s,Θ,η, τ,T ) >q)

−<τ>τ
2

∑
s q(s) ||ŷ − y(µs)||2

+ < τ >τ

∑
s q(s) (ŷ − y(µs))

TGsW s < Θ >Θ|s (= 0 since < Θ >Θ|s= 0 )
−<τ>τ

2

∑
s q(s) W

T
sG

T
sGsW s :< ΘΘT >Θ|s

+ < τ >τ

∑
s q(s) < η >T

η|s G
T
s (ŷ − y(µs)) (= 0 since < η >η|s= 0 )

− < τ >τ

∑
s q(s) < η >T

η|s G
T
sGsW s < Θ >Θ|s (= 0 since < η >η|s= 0 )

−<τ>τ
2

∑
s q(s) G

T
sGs :< ηηT >η|s

+
∑

s q(s) log 1
S

(< log ps(s) >s)
+(a0 − 1) < log τ >τ −b0 < τ >τ (< log pτ (τ) >τ)
+
∑

s q(s) (1
2

log |Λ0,s| − 1
2
Λ0 :< ΘΘT >Θ|s) (< log pΘ(Θ|s) >q)

+
∑

s q(s) (dΨ

2
log λ0,η,s − λ0,η,s

2
I :< ηηT >η|s) (< log pη(η|s) >q)

−
∑

s q(s)
∫
q(Θ|s) log q(Θ|s) dΘ (− < log q(Θ|s) >q)

−
∑

s q(s)
∫
q(η|s) log q(η|s) dΘ (− < log q(η|s) >q)

−
∑

s q(s) log q(s) (− < log q(s) >s)
− < log q(τ) >τ . (− < log q(τ) >τ)

(4.23)
Despite the long expression, the optimization of F̂ in the VB-Expectation step can
be done analytically and we find that the optimal q (given T ) is:

qopt(Θ|s) ≡ N (0,Λ−1
s ),

qopt(η|s) ≡ N (0, λ−1
η,sIdΨ

),
qopt(τ) ≡ Gamma(a, b),

(4.24)

where:
Λs = Λ0,s+ < τ >τ W

T
sG

T
sGsW s, (4.25)

1This implies that Θ and η are actually dependent, as one would expect.
2We omit constants that do not affect the optimization.
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λη,s = λ0,η,s +
1

dΨ

< τ >τ tr(G
T
sGs), (4.26)

a = a0 + dy/2, (4.27)

b = b0 +
1

2

S∑
s=1

q(s)
(
||ŷ − y(µs)||2 +W T

sG
T
sGsW s : Λ−1

s + λ−1
η,s tr(G

T
sGs)

)
.

(4.28)
Furthermore, for the latent variable s we find that:

qopt(s) ∝ ecs , (4.29)

where:

cs =
1

2
log
|Λ0,s|
|Λs|

+
dΨ

2
log

λ0,η,s

λη,s
− < τ >τ

2
||ŷ − y(µs)||2, (4.30)

and < τ >τ=
a
b
. The normalization constant for q(s) can be readily found by imposing

the condition
∑S

s=1 q
opt(s) = 1 which yields:

qopt(s) =
ecs∑
s′ e

cs′
. (4.31)

While the optimal q′s are inter-dependent, we note in the expression above that the
posterior probability of each mixture component s, as one would expect, increases as
the mean-square error ||ŷ − y(µs)||2 gets smaller. More interestingly perhaps, qopt(s)
increases as the determinant of the posterior precision matrix Λs decreases, i.e., as the
posterior variance associated with the reduced coordinates Θ of component s increases.
The same effect is observed for the posterior residual variance λ−1

η,s. This implies that,
ceteris paribus, mixture components with larger posterior variance will have a bigger
weight in the overall posterior.

For the optimal qopt (given T ) in the equations above, the variational lower bound
F̂ takes the following form (terms independent of qopt or T are omitted - for details
see Appendix B):

F̂(qopt,T ) =
∑S

s=1 q
opt(s)

(
− <τ>τ

2
||ŷ − y(µs)||2 + 1

2
log |Λ0,s|

|Λs| + dΨ

2
log λ0,η,s

λη,s

)
−
∑S

s=1 q
opt(s) log qopt(s)

+a log(< τ >τ ),
(4.32)

and
F(qopt,T ) = F̂(qopt,T ) + log pT (T ), (4.33)
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where Z(a, b) = Γ(a)
ba

is the normalization constant of a Gamma distribution with
parameters a, b. This can be computed at each full iteration of VB-EM in order to
monitor convergence.

While it is difficult again to gain insight in the expression above due to the inter-
dependencies between the various terms, we note that the smaller the mean-square
error of ||ŷ − y(µs)||2 becomes (i.e., the better the mean µs is able to reproduce the
measurements), the more the lower bound increases. In addition we can see that the
lower bound increases as the variance of the mixture components Λ−1

s , λ−1
η,s gets larger,

meaning the more variance they capture.
For the VB-Maximization step, it can be readily established from Equation (4.23)

that the optimization of F with respect to µ (given q) involves the following set of
uncoupled optimization problems:

max
µj
Fµj = −< τ >τ

2
||ŷ − y(µj)||2 + log pµ(µj), j = 1, . . . , S. (4.34)

Since the objectives are identical for each j, we can deduce that µj should correspond
to (different or identical) local maxima of F . This implies that in the posterior approx-
imation constructed, each Gaussian in the mixture is associated with a (regularized -
due to the prior) local optimum in the least-square solution of the inverse problem.
The search for multiple local optima, and more importantly their number, is discussed
in the next section.

The determination of the optimal µj is performed using first-order derivatives of
∂Fµj
∂µj

. Since log pµ(µj) and its derivative
∂ log pµ(µj)

∂µj
are analytically unavailable, we

employ an additional layer (inner loop) of Expectation-Maximization to deal with the
hyperparameters in the prior of µj. The details were discussed in Section 3.2.4 and
Appendix A for a single mixture component which is now applied for all mixture com-
ponents j separately.

Considering the computational cost of these operations, we point out that the
updates of µj are the most demanding as they require calls to the forward model

to evaluate y(µj) and the derivatives Gj = ∂y
∂Ψj
|Ψj=µj

, details in Appendix D. For

the computation of the derivatives Gj we employ the adjoint formulations which offer
great savings when dΨ � dy [155]. As discussed in detail in Section 2.3.4, the latter
condition can be removed as long as a direct solver is used for the solution of the
forward problem. In this case, the cost of the solution of the adjoint equations is even
less than that of the forward solution.

The remaining aspect of the VB-Maximization step involves the optimization
with respect to the W (given q). As with µ, it suffices to consider only the terms in
Equation (4.23) that depend on W (which we denote by FWj

) and which again lead
to a set of S uncoupled problems:

max
W j

FWj
= −< τ >τ

2
(W T

jG
T
jGjW j) : Λ−1

j + log pW (W j), j = 1, . . . , S. (4.35)
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The first term prefers directions corresponding to the smallest eigenvectors of GT
j Gj,

where Gj = ∂y
∂Ψj
|Ψj=µj is the gradient of the map at µj. As discussed previously in

Section 4.2.2, the prior pW (W j) enforces the orthogonality of the basis vectors in W j.
To solve this constrained optimization problem, we use the iterative algorithm of [184],
which employs a Cayley transform to enforce the constraint. It makes use of first-order
derivatives of FWj

and as such does not require any additional forward model runs.

With regard to the number of columns dΘ in W j (which is equal to the dimension
of Θ), we assume that this is the same across all mixture components S. We had
developed an information-theoretic criterion in Section 3.2.5 which can also be employed
here. This allows the adaptive determination of dΘ by measuring the information gain,
here denoted by I(dΘ, j) for each mixture component j, that each new dimension in Θ
furnishes. When these fall below a threshold Imax (in our examples we use Imax = 1%),
i.e.:

I(dΘ) = max
j
I(dΘ, j) ≤ Imax, (4.36)

we assume that the number of Θ is sufficient. A detailed discussion on the estimation
of dΘ using the information gain I(dΘ, j) is given in Section 3.2.5 which is extended
to the multimodal case in Appendix C.

Following the previous discussion in Equation (4.6), we note that once the (approxi-
mate) posterior q(Θ,η, τ, s) and the optimal model parameters T have been computed,
we obtain a multimodal posterior approximation for the material parameters Ψ, which
is given by:

p(Ψ|T , ŷ) =
∑S

s=1

∫
δ(Ψ− (µs +W sΘ + η)) p(s,Θ,η|µ,W , ŷ) dΘ dη

≈
∑S

s=1

∫
δ(Ψ− (µs +W sΘ + η)) q(s,Θ,η) dΘ dη

=
∑S

s=1 q(s)
∫
δ(Ψ− (µs +W sΘ + η)) q(Θ,η|s) dΘ dη

=
∑S

s=1 q(s) qs(Ψ) = q(Ψ),
(4.37)

where each component in the last mixture is given by:

qs(Ψ) =
∫
δ(Ψ− (µs +W sΘ + η)) q(Θ,η|s) dΘ dη

≡ N (µs,Ds),
(4.38)

i.e., a multivariate Gaussian with mean µs and covariance Ds where:

Ds = W sΛ
−1
s W

T
s + λ−1

η,sIdΨ
. (4.39)

Based on Equation (4.37), one can evaluate the posterior mean and covariance of
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Ψ as follows:

< Ψ >q =<< Ψ|s >q>= 〈µs〉 =
∑S

s=1 q(s)µs,
Covq[Ψ] =< ΨΨT >q − < Ψ >q< Ψ >T

q =<< ΨΨT |s >q> − < Ψq >< Ψ >T
q

=
∑S

s=1 q(s)(Ds + µsµ
T
s )−

(∑S
s=1 q(s)µs

)(∑S
s=1 q(s)µs

)T
=
∑S

s=1 q(s)Ds +
∑S

s=1 q(s)µsµ
T
s −

(∑S
s=1 q(s)µs

)(∑S
s=1 q(s)µ

T
s

)
.

(4.40)
Posterior moments of any order or posterior probabilities can be readily computed as
well.

Note that if Λ−1
s is diagonalized, e.g., Λ−1

s = U sΛ̂
−1

s U
T
s where Λ̂

−1

s is diagonal
and U s contains the eigenvectors of Λ−1

s , then:

Ds = W sU sΛ̂
−1

s U
T
sW

T
s + λ−1

η,sIdΨ

= Ŵ sΛ̂
−1

s Ŵ
T

s + λ−1
η,sIdΨ

.
(4.41)

Each Ŵ s is also orthogonal and contains the dΘ principal directions of posterior covari-
ance of Ψs. Therefore, we see that in the VB-E step it suffices to consider an approxi-
mate posterior q(Θ|s) with a diagonal covariance, e.g., Λs = diag(λs,i), i = 1, ..., dΘ.
As a consequence the update equation for Λs (Equation (4.25)) reduces to:

λs,i = λ0,s,i+ < τ >τ w
T
s,iG

T
sGsws,i, (4.42)

where ws,i is the ith column vector of W s.
We note that in all the aforementioned expressions we assumed that the number

of components S is given and fixed. Nevertheless, if for some s, qopt(s) is zero (or
negligible), the corresponding component will have no (posterior) contribution. In
Algorithm 2 we summarize the main steps of the algorithm for a fixed S. Steps
5− 7 correspond to the aforementioned VB-Expectation and steps 2 and 4 to the VB-
Maximization step. In the next section we discuss an adaptive strategy for determining
S.

4.2.4 Finding the required number of mixture components S

A critical component of the proposed framework is the cardinality S of the model,
i.e., the number of modes in the approximation of the posterior. The mean µj of each
Gaussian component is optimal when it corresponds to a local maximum of the objective
in Equation (4.34), but suboptimal solutions can be found by using suboptimal µj.

A consistent way of carrying out this model selection task, within the advocated
Bayesian framework, is to compute or approximate the model evidence term p(ŷ) in
Equation (4.14) for various values of S. This can be followed by selecting the one that
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Algorithm 2 Algorithm for fixed S

1: while Fµ in Equation (4.34), has not converged do
2: For j = 1 : S: Optimize µj using Equation (4.34)
3: while F in Equation (4.33), has not converged do
4: For j = 1 : S: Optimize W j using Equation (4.35)
5: For s = 1 : S: Update q(Θ|s) ≡ N (0,Λ−1

s ) using Equation (4.42)
6: For s = 1 : S: Update q(η|s) ≡ N (0, λ−1

η,sIdΨ
) using Equation (4.26)

7: Update q(τ) ≡ Gamma(a, b) and q(s) using Equations (4.27, 4.28, 4.31)
8: end while
9: end while

gives the largest p(ŷ) or performing model averaging with probabilities proportional to
these terms for each values of S [54, 79]. Nevertheless computing p(ŷ) is impractical
as it requires integrating over all parameters including the high-dimensional T , i.e.,
a fully Bayesian treatment of the µ and W . In the formulation presented thus far
however, we computed point estimates by maximizing the variational bound F to the
log posterior p(T |ŷ) (Equation (4.16)).

One might be inclined to compute this F (assuming it is a good approximation of
p(T |ŷ)) for different values of S and use it to identify the optimal S. We note though
that such terms are not comparable as they depend on the number of parameters
in T which changes with S. As a result, such comparisons would be meaningless.
As a third option one could potentially employ one of the well-known approximate
validation metrics, e.g., AIC or BIC, which penalize the log posterior (p(T |ŷ) or F)
with the number of parameters, but these are known to be valid only in limiting cases,
for large datasets [79, 207].

Furthermore, we note that if two components (S = 2) with the same µ1 = µ2

(and as a result G1 = G2, and W 1 = W 2, Λ1 = Λ2) are considered, then q(s = 1) =
q(s = 2) = 1

2
. Even though a mixture of these two identical components gives rise to

a single Gaussian (Equation (4.38)), it is obvious that the second component provides
no new information regarding the posterior. This is because the posterior p(s|ŷ) (and
its approximation q(s)) accounts for the relative plausibility (as compared to the other
components) that the component s could have given rise to a Ψ (that in turn gave
rise to y(Ψ)) that matches the observations ŷ.

For this purpose, we advocate an adaptive algorithm (Algorithm 3) that proposes
new components (component birth) and removes those (component death) that do
not furnish new information.
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Algorithm 3 Adaptive algorithm for the determination of appropriate S

1: Initialize S = S0 (e.g., S0 = 1), L = 0, iter = 0. Set prior hyperparameters
a0, b0, {λ0,j, λ0,η,j}Sj=1. Initialize {µj,W j}Sj=1 randomly (as long as W j are or-
thogonal) and call Algorithm 2.

2: while L < Lmax do
3: iter ← iter + 1
4: (Component Birth) Propose ∆S new mixture components and initialize µj for
j = S + 1, . . . , S + ∆S according to Equation (4.43).

5: Call Algorithm 2
6: (Component Death) Delete any of the new components that satisfy the com-

ponent death criterion in Equation (4.44)
7: Compute q(s) of surviving components (Equation (4.31)), remove any compo-

nents with q(s) < qmin
3 and update S

8: if None of the ∆S new components remain active then
9: L← L+ 1;

10: else
11: L← 0;
12: end if
13: end while

We discuss in detail the steps above that contain new features as compared to
Algorithm 2:

• Steps 2 and 8-12:
The overall algorithm is terminated when Lmax successive attempts to add new
mixture components have failed (in all examples discussed Lmax = 3). L counts
the number of successive failed attempts to add new components and iter the
total number of component birth attempts. During each of those, ∆S new
mixture components are proposed (component birth) and optimized. Since the
µ-updates of each mixture component imply a certain number of forward model
solutions, the termination criterion could be alternatively expressed in terms of
the maximum allowable number of such forward calls.4

• Step 4 (Component Birth):
Given S mixture components, we propose the addition of ∆S new components.
Their means µjnew , for jnew = S+1, . . . , S+∆S, are initialized by perturbing the
mean of one of the pre-existing S components as follows: We pick the mixture
component jparent ∈ 1, . . . , S that has the smallest contribution in the lower

3Throughout this work we use qmin = 1× 10−3.
4See Figure 4.6 where for iter = 2, none of the ∆S = 3 mixture components survive. Here L

increases from 0 to 1.
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bound F̂ in Equation (4.33), and therefore provides the worst fit to the data.5

We initialize µjnew randomly as follows:

µjnew = µjparent +W jparentΘ + αη, (4.43)

where Θ is sampled from the posterior q(Θ|s = jparent) and η is sampled from
q(η|s = jparent). The role of α is to amplify the perturbations. The value of
α = 10 was used throughout this work. Very large α increase the possibility
of finding a new mode but increase the number of µ-updates and therefore the
number of forward model calls. The remaining model parameters for each new
component are initialized as usual and are updated according to the VB-EM
scheme discussed in Step 5.

• Step 5:
Whereas the VB-EM scheme discussed in the previous section has to be run
every time when new components are proposed (i.e., S changes), we note here
that the updates for the pre-existing components require only very few new (if
any) forward-model runs. This is because updates for pre-existing µj (Equation
(4.34)) are only required if < τ >τ changes. While < τ >τ is affected by all
components S (old and new, Equation (4.28)), it generally does not change
significantly after the first few components.

• Step 6 (Component Death):
We employ an information-theoretic criterion that measures the discrepancy
(’similarity distance’) djold,jnew between a new component jnew ∈ {S+1, . . . , S+
∆S} and an existing one jold ∈ {1, . . . , S}. If this is smaller than a prescribed
threshold dmin, for any of the existing components jold, then the component jnew
is removed as the two mixture components are too close to each other. In other
words, the component death criterion may be stated as:

if ∃jold such that djold,jnew < dmin. (4.44)

Throughout this work, we use dmin = 0.016 and define djold,jnew as follows:

djold,jnew =
KL(qjold ||qjnew)

dΨ

, (4.45)

where the KL divergence between two multivariate Gaussians qjold(Ψ) and

5If a specific mixture component has already been used as a parent in a previous unsuccessful
attempt, the next worst mixture component is used.

6Nevertheless, as shown in the numerical examples, a much lower value of dmin = 10−8 would
have yielded identical results.
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qjnew(Ψ) (Equation (4.38)) can be analytically computed as:

KL(qjold(Ψ)||qjnew(Ψ)) = 1
2

log |Djnew |+ 1
2
D−1

jnew : Djold

+1
2
(µjold − µjnew)TD−1

jnew(µjold − µjnew)

−1
2

log |Djold | −
dΨ

2
.

(4.46)

We note that such a discrepancy metric takes the whole distribution into account
and not just the locations of the modes µjold , µjnew .The denominator dΨ of the
KL divergence normalizes it with respect to the number of dimensions. Therefore,
djold,jnew is the average KL divergence over the dΨ dimensions and dmin expresses
the minimum acceptable averaged KL distance per dimension.

In Figure 4.4, we plot for illustration purposes the contour lines of the KL di-
vergence of various one-dimensional Gaussians N (µ, σ2) (as a function of their
mean µ and variance σ2) with respect to the standard Gaussian N (0, 1). We
note that other distance metrics, e.g., the Fisher information matrix, could have
equally been used.

Figure 4.4: Contour lines of the KL-divergence between N (0, 1) and N (µ, σ2) with
respect to µ, σ2. Any Gaussian with (µ, σ2) within the yellow line would be deleted
according to the criterion defined.

We can take advantage of the low-rank decomposition Ds in Equation (4.39) in
order to efficiently compute the inverse of D−1

jnew as:

D−1
s = (W sΛ

−1
s W

T
s + λ−1

η,sIdΨ
)−1

= λη,sIdΨ
− λ2

η,sW s (Λs + λη,sI)−1︸ ︷︷ ︸
diagonal

W T
s . (4.47)

Similarly, the determinants can be readily computed as:

|Ds| = |W sΛ
−1
s W

T
s + λ−1

η,sIdΨ
|

= |Λs + λη,sI| |Λ−1
s | λ−dΨ

η,s .
(4.48)
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4.2.5 Verification - Combining VB approximations with impor-
tance sampling

The framework advocated is based on two approximations: a) linearization of the
response (Equation (4.20)) and, b) the mean-field decomposition of the approximating
distribution (Equation (4.22)). This unavoidably introduces bias and the approximate
posterior will deviate from the exact. In order to assess the quality of the approximation
but also to correct for any bias in the posterior estimates, we propose using importance
sampling (IS) (Section 2.2.3). In particular, we employ the approximate conditional
posterior q as the importance sampling density and compute the effective sample size
(ESS).

The performance of IS can decay rapidly in high dimensions [79] and due to the fact
that η has a negligible effect in the inferred posterior, we propose using p(Θ, s|ŷ,T )
as the target density. According to Equation (4.15):

p(Θ, s|ŷ,T ) =
∫
p(Θ, s, τ |ŷ,T ) dτ

∝
∫
p(ŷ|s,Θ, τ,T ) pτ (τ) pΘ(Θ|s) ps(s) dτ

∝
∫
τ dy/2e−

τ
2
||ŷ−y(µs+W sΘ)||2 pτ (τ) dτ pΘ(Θ|s) ps(s)

= Γ(a0+dy/2)

(b0+
||ŷ−y(µs+W sΘ)||2

2
)a0+dy/2

pΘ(Θ|s) ps(s),
(4.49)

where the Gamma prior pτ (τ) is from Equation (4.8) and MAP estimates of µ,W are
used. In cases where non-conjugate priors for τ are employed, the IS procedure detailed
here has to be performed in the joint space (Θ, s, τ).

Given M samples (Θ(m), s(m)) drawn from the mixture of Gaussians q(Θ, s) in
Equation (4.24) and Equation (4.31), IS reduces to computing the unnormalized
weights w(m) as follows:

w(m) =
p(Θ(m), s(m)|ŷ,T )

q(Θ(m), s(m))
. (4.50)

With w(m) (asymptotically) unbiased estimates, the expectations of any integrable
function g(Ψ) with respect to the exact posterior can be computed as:

< g(Ψ) >p(Θ,s|ŷ,µ,W ) =
∑S

s=1

∫
g(µs +W sΘ) p(Θ, s|ŷ,T ) dΘ

=
∑S

s=1

∫
g(µs +W sΘ) p(Θ,s|ŷ,T )

q(Θ,s)
q(Θ, s) dΘ

=
∑M

m=1 ŵ
(m)g(µs +W sΘ

(m)),

(4.51)

where the ŵ(m) are the normalized IS weights (
∑M

m=1 ŵ
(m) = 1):

ŵ(m) =
w(m)∑M

m′=1w
(m′)

. (4.52)
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In the following examples we employ estimators such as these to compute the
asymptotically (as M →∞) exact posterior mean (i.e., g(Ψ) = Ψ), posterior variances
as well as posterior quantiles. Furthermore in order to assess the overall accuracy of the
approximation and to provide a measure of comparison with other inference strategies
(past and future), we report the (normalized) effective sample size (ESS), according to
Equation (2.11).

Finally, we note that if there are additional modes in the exact posterior that have
not been discovered by q(Θ, s), the ESS could still be misleadingly large (for large
but finite sample sizes M). This however is a general problem of Monte Carlo-based
techniques, i.e., they cannot reveal (unless M → ∞) the presence of modes in the
target density unless these modes are visited by samples.

4.3 Numerical illustration

We consider two numerical illustrations. The primary goal of the first example is to
provide insight into the adaptive search algorithm for determining S and for that reason
we analyze an one-dimensional, multimodal density. The second example pertains
to the motivating application of elastography. We demonstrate how the proposed
framework can reveal the presence of multiple modes and, when justified, can identify
low-dimensional approximations for each of these modes with a limited number of
forward calls. An overview of the most important quantities/dimensions of the following
two examples is contained in Table 4.1.

Example 1 Example 2

Dimension of observables: dy 1 5100
Dimension of latent variables: dΨ 1 2500

Dimension of reduced latent variables: dΘ 1 11
No. of forward calls < 200 < 1200

Table 4.1: Summary of the number of observables, forward calls and the dimensionality
reduction in the following two examples.

Toy Example

Our goal in this first example is solely to illustrate the features and capabilities of
the adaptive search algorithm for determining the number of mixture components S.
For that purpose we selected an one-dimensional example (in order to remove any
effects from the dimensionality reduction) that can be semi-analytically investigated
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4.3 Numerical illustration

and exhibits a multimodal posterior. We assume that the model equation is of the
form:

y(Ψ) = Ψ3 + Ψ2 −Ψ, Ψ ∈ R, (4.53)

and is depicted in Figure 4.5. Let Ψexact = 0.8 be the reference solution for which
y(Ψexact) = 0.352. With the addition of noise it is assumed that the actual measure-
ment is ŷ = 0.45. This is shown with a horizontal line in Figure 4.5, where for ŷ = 0.45
three modes for Ψ exist. The Gaussian prior on Ψ has zero mean and a variance of
λ0 = 1× 10−10.

Figure 4.5: Polynomial y = Ψ3 + Ψ2 −Ψ. It can be seen that for the measurement at
ŷ = 0.45 three possible solutions exist.

As this is an one-dimensional example, the dimensionality reduction aspects are
invalid and η (Equation (4.3)) is also unnecessary. We initialize the adaptive Algorithm
3 with S0 = 4 and propose/add ∆S = 3 components at each iteration iter. We
summarize the results produced by successive iterations in Figure 4.6. Two mixture
components are identified at initialization (out of the S0 = 4 proposed). Proposed
components at subsequent iterations that do not survive are marked with a red cross.

Table 4.2 contains the values of the normalized KL-based discrepancy metric
(Equation (4.45)) for all pairs of the 6 mixture components at iter = 2 (Figure 4.6).
As it can be seen by the values, components 4, 5 and 6 satisfy the component death
criterion (Equation (4.44)) and are therefore removed.
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initialize values

s=1

µ = 0.84

s=2

µ = −0.37
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µ = −0.37

s=1

µ = 0.84

s=2

µ = −0.37

s=3

µ = −0.37

s=4

µ = −1.74

s=5

µ = −1.74

s=1

µ = 0.84

s=2

µ = −0.37

s=3

µ = −1.74

s=4

µ = −1.74

s=5

µ = −0.37

s=6

µ = −1.74

s=1

µ = 0.84

s=2

µ = −0.37

s=3

µ = −1.74

s=4

µ = 0.84

s=5

µ = −0.37

s=6

µ = 0.84

s=1

µ = 0.84

s=2

µ = −0.37

s=3

µ = −1.74

s=4

µ = −0.37

s=5

µ = −0.37

s=6

µ = −1.74

iter

0

1

2

3

4

L

0

0

1

2

3

Figure 4.6: Evolution of Algorithm 3 for Example 1 with S0 = 4 and ∆S = 3. Green
boxes correspond to surviving mixture components, whereas the ones that are deleted
are marked with a red cross. The rows are numbered based on iter and the value
of L is reported on the right. The mean µj of each component is also reported
in each box. Mixture components connected with gray arrows stay active whereas
mixture components with blue arrows represent new initialized and updated mixture
components which are then deactivated.
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s=1 s=2 s=3 s=4 s=5 s=6

s=1 0 61.97 824 824 61.97 824
s=2 0 188.4 188.4 1.2 × 10−10 188.4
s=3 0 2.3 × 10−09 51.59 2.3 × 10−09

s=4 0 51.59 2.3 × 10−09

s=5 0 188.4

Table 4.2: Normalized KL divergence (Equation (4.45)) between each pair of mixture
components. Pairs which are very similar (see also the means in Figure 4.6) have a
very small KL divergence (shown in bold).

The three components that persist have the following posterior probabilities:

q(s = 1) = 0.24, q(s = 2) = 0.50, q(s = 3) = 0.26. (4.54)

The Gaussians (Equation (4.37)) associated with each component are:

q(Ψ|s = 1) = N (0.84, 0.00135),

q(Ψ|s = 2) = N (−0.37, 0.00590),

q(Ψ|s = 3) = N (−1.74, 0.00162).

(4.55)

The algorithm terminates after L = Lmax = 3 unsuccessful, successive proposals (at
iter = 4) and the overall cost in terms of forward calls (i.e., evaluations of y(Ψ) and
its derivative) was 200. Since forward model calls are required everytime any µj is
updated (Equation (4.34)), we plot the evolution of F (Equation (4.33)) with respect
to the total number of µ-updates (including those for components that end up being
deleted) in Figure 4.7.

To verify the results we carry out importance sampling as described in Section 2.2.3.
The effective sample size (Equation (2.11)) was ESSIS = 0.96, which is very close
to 1. In Figure 4.8, the approximate posterior (Equation (4.38)) is compared with
the exact posterior (IS), and excellent agreement is observed. One can see that not
only the locations (mean) and the variances of the mixture components are captured
correctly but also their corresponding probability weights.

For comparison purposes, and as the cost per forward model evaluation in this
problem is negligible, we also performed random-walk MCMC with a Gaussian proposal
density with standard deviation 0.35 that yielded an average acceptance ratio of 20%.
The results are depicted in Figure 4.9. The corresponding ESS was ESSMCMC = 1×
10−3, i.e., roughly 1000 times more expensive (in terms of forward model evaluations)
than the proposed strategy.
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Figure 4.7: Evolution of F (Equation (4.33)) over the number of µ-updates (which
is equal to the number of forward calls) for Example 1. Each color corresponds to a
different value of iter. The number of µ-updates associated with mixture components
that are subsequently deleted, is also included.

Figure 4.8: Exact (IS) and approximated (VB) posterior probability distribution, which
show excellent agreement.

Elastography

In the motivating problem of nonlinear elastography, we simulate a scenario of apply-
ing a quasi-static pressure (e.g., with the ultrasound wand) and using the pre- and
post-compression images to infer the material properties of the underlying tissue. We
consider a two-dimensional domain Ω0 = [0, 50] × [0, 50], shown in Figure 4.10. The
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4.3 Numerical illustration

(a) Normalized histogram. (b) Ψ over different samples
(part of it).

(c) Autocovariance.

Figure 4.9: (a): Posterior distribution obtained with random walk MCMC with 106

MCMC samples which coincides with Figure 4.8. (b): Evolution of the state Ψ per
MCMC step. (c): Normalized autocovariance which decays slowly and results in a
small ESSMCMC .

governing equations consist of the conservation of linear momentum7:

5 · (FS) = 0 in Ω0, (4.56)

where F = I +∇u is the deformation map, u is the displacement field and S is the
second Piola-Kirchhoff stress as described more in detail in Section 2.3. We assume
Dirichlet boundary conditions along the bottom boundary (Figure 4.10), i.e.:

u = 0 on x1 = [0, 50], x2 = 0, (4.57)

and the following Neumann conditions on the remaining boundaries:

FS ·N =

[
0
−100

]
, on x1 ∈ [0, 50], x2 = 50,

FS ·N = 0, on x1 = 0 and x1 = 50, x2 ∈ [0, 50].
(4.58)

A nonlinear, elastic constitutive law (stress-strain relation) is adopted of the form:

S =
∂w

∂E
, (4.59)

where E = 1
2
(F TF−I) is the Lagrangian strain tensor and w(E, ψ) (Equation (2.29))

is the strain energy density function which depends (apart from E) on the material
parameters. In this example we employ the St. Venant-Kirchhoff model [140, 208, 209]
that corresponds to the following strain energy density function w:

w =
νψ

2(1 + ν)(1− 2ν)
[tr(E)]2 +

ψ

2(1 + ν)
tr(E2). (4.60)
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x1

x2

pressure

(a) Problem configuration. (b) Reference configuration of ψ in the
log scale.

Figure 4.10: Problem and reference configuration.

The St. Venant-Kirchhoff model is an extension of the linear elastic material model
to the nonlinear regime, i.e., large deformations. In this example ν = 0.3 and the
Young modulus ψ is assumed to vary in the problem domain, i.e., ψ(x). In particular
we assume the presence of two inclusions (tumors, Figure 4.10). In the larger, elliptic
inclusion the Young modulus is ψ = 50000 (red), in the smaller, circular inclusion
ψ = 30000 (yellow/orange) and in the remaining material ψ = 10000 (blue). The
contrast ψinclusion

ψmatrix
≈ 4−5 coincides with experimental evidence on actual tissue [15, 16].

We generate synthetic data ŷ by using a 100×50 mesh and collecting the displacements
at the interior points. These are in turn contaminated by zero mean, isotropic, Gaussian
noise resulting in a signal-to-noise-ratio (SNR) of 1000. The forward solver used in the
solution of the inverse problem consists of a regular grid with 50 × 50 quadrilateral
finite elements. We assume that within each finite element, ψ is constant, resulting
in a 2500 dimensional vector of inverse-problem unknowns Ψ, dΨ = 2500. We note
that in the discretized form, the resulting algebraic equations are nonlinear (geometric
and material nonlinearities) and the state vector (forward-problem unknowns), i.e., the
displacements, are of dimension 5100. Details about the implemented software can be
found in Appendix E.

As in Chapter 3 for each mixture component we employ an adaptive learning scheme
for the reduced coordinates Θi which are added one-by-one in such a way that they
have a posteriori progressively smaller variances. For that reason we define the prior
precisions λ0,s,i such that they are gradually larger. Given λ0,s,1, which is assumed to
be the same for all mixture components s, we define the prior precisions as follows

7Dependencies on the spatial variables x ∈ Ω0 have been suppressed for simplicity.
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(Equation (3.51)):

λ0,s,i = max(λ0,s,1, λs,i−1 − λ0,s,i−1), i = 2, 3, . . . , dΘ. (4.61)

λs,i−1 corresponds to the posterior precision for the previous reduced coordinate Θi−1

of the same component s. This implies that, a priori, the next reduced coordinate will
have at least the precision of the previous one as long as it is larger than the threshold
λ0,s,1. For the prior of η we use λ0,η,s = maxi(λ0,s,i) as η represents the residual
variance which is a priori smaller than the smallest variance of the reduced coordinates
Θ. The results presented in the following were obtained for λ0,s,1 = 1 for all s and the
material parameters are plotted in log scale.

The algorithm is initialized with four components, i.e., S0 = 4, and ∆S = 3 new
components are proposed at each iteration iter (Algorithm 3). Figure 4.11 depicts the
mean µ1 identified upon convergence (iter = 0) of an active component. Furthermore,
it shows three perturbations, obtained according to Equation (4.43), which were used
as initial values for the means of the ∆S = 3 new components proposed at iter = 1.

Figure 4.12 depicts the evolution of the variational lower bound F , (Equation
(4.33)) per µ-update, i.e., per call to the forward model solver. In total the algo-
rithm performed iter = 24 iterations which entailed proposing S0 +24×∆S = 76 new
mixture components (until L = Lmax = 3 was reached). For each of the 76 mixture
components, the number of required forward calls ranged from 7 to 34. The total
number of such calls was 1200.

Upon convergence, seven (S = 7) distinct mixture components were identified,
which jointly approximate the posterior. The mean µj of each component is shown in
Figure 4.13 where the posterior responsibilities q(s) are also reported. The numbering
of the components relates to the order in which they were found by the algorithm.
We observe that all mixture components identify the bulk of the two inclusions and
most differences pertain to their boundaries (see also Figures 4.23, 4.24, 4.25). The
shape of the boundaries has been found to play a defining role in distinguishing between
malignant and benign tumors and metrics have been developed that provide a good
diagnostic signature using this information [210],[211],[212]. Apart from the seven
active components, the means of two additional mixture components (s = 8, s = 9)
which were deactivated (based on the “Component Death” criterion in Algorithm 3),
are shown.

In Table 4.3, we also report the (normalized) KL-divergence between all pairs of
these nine components. One notes that component 8 was deleted because it was too
similar to component 4 (from Equation (4.45) d4,8 = 0.33× 10−2 < dmin = 0.01) and
component 9 was too similar to component 2 (d2,9 = 0.56× 10−2 < dmin = 0.01).

With regard to the covariance of each mixture component and the identification of
the lower-dimensional subspaces, we employ the information-theoretic criterion previ-
ously discussed in order to adaptively determine the number of reduced-dimensions dΘ.
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(a) µ1 = µparent (b) µ2

(c) µ3 (d) µ4

Figure 4.11: In (a) the converged µ1 is depicted and in (b), (c) and (d) three per-
turbations (Equation (4.43)) used to initialize the means for the ∆S new proposed
components (in log scale).

s=1 s=2 s=3 s=4 s=5 s=6 s=7 s=8 s=9

s=1 0 12.05 9.87 14.33 17.10 16.96 15.02 14.82 12.50
s=2 0 16.46 15.86 21.18 19.72 16.88 16.54 0.56
s=3 0 11.06 16.43 17.23 17.06 11.45 18.16
s=4 0 12.74 12.80 16.31 0.33 16.68
s=5 0 12.62 17.99 13.73 23.47
s=6 0 11.13 13.25 20.52
s=7 0 16.72 19.51
s=8 0 18.44

Table 4.3: Normalized KL divergences (Equation (4.45)) between all pairs of the mix-
ture components. All values shown should be multiplied with ×10−2.
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Figure 4.12: Evolution of F (Equation (4.33)) over the number of µ-updates (which
is equal to the number of forward calls) for Example 2. Each color corresponds to a
different value of iter. The number of µ-updates associated with mixture components
that are subsequently deleted, is also included.

To that end, we use the relative information gains I(dΘ, j) (Equation (4.36), see also
Appendix C) which are depicted in Figure 4.14 for the three most active mixture com-
ponents. We note that I(dΘ, j) drops to relatively small values after a small number
of reduced coordinates (with dΘ = 8, it drops to 1%). In the following results we used
dΘ = 11. We discuss in Section 4.3 the behavior of the proposed scheme in cases in
which the problem is not amenable to such a dimensionality reduction.

We defer further discussions on the individual mixture components in order to
discuss the overall approximate posterior. The posterior mean and standard deviation
of the mixture of Gaussians (Equation (4.40)) are shown in Figure 4.15. As expected,
the posterior variance is largest at the boundaries of the inclusions.

Figure 4.16 depicts the posterior mean and 1%− 99% credible intervals along the
diagonal of the problem domain, i.e., from (0, 0) to (50, 50). We note that the posterior
quantiles envelop the ground truth.

For verification purposes we performed importance sampling as described in Section
2.2.3 in order to assess the overall accuracy of the approximation (a total of M = 5000
samples were generated). The effective sample size (Equation (2.11)) was ESSIS =
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q(s = 1) = 0.318 q(s = 2) = 0.156 q(s = 3) = 0.213

q(s = 4) = 0.011 q(s = 5) = 0.092 q(s = 6) = 0.160

q(s = 7) = 0.049 s = 8: deactivated s = 9: deactivated

Figure 4.13: Posterior mean µj for various mixture components in log scale and their
posterior probabilities q(s = j). The most active components are 1 and 3. Mixture
components 8, 9 are very similar to mixture components 4, 2 respectively and are there-
fore deleted/deactivated (based on “Component Death” criterion in Algorithm 3, see
also Table 4.3).

0.48 which indicates that the identified mixture of low-dimensional Gaussians provides
a very good approximation to the actual posterior. In comparison, MCMC simulations
performed using a Metropolis-adjusted Langevin scheme (MALA, [213]) exhibited very
long correlation lengths resulting in ESSMCMC < 10−3.8

8Due to the computational expense, the MALA simulation results were actually obtained on a
coarser discretization of the forward problem resulting in only 100 unknowns (in contrast to the 2500
in the target problem). The step sizes in the proposals were adapted to ensure that, on average, 60%
of the moves were accepted [51]. The resulting ESSMCMC was 10−3. While additional fine- tuning
could improve upon this, we doubt that for the actual problem which has 25 times more unknowns it
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q(s = 1) = 0.318 q(s = 3) = 0.213 q(s = 6) = 0.160

Figure 4.14: Information gain I(dΘ, j) for three mixture components (see also Appendix
C).

Mean of the mixture Standard deviation of the mixture

Figure 4.15: Approximate posterior mean and posterior standard deviation as computed
from the mixture of Gaussians in Equation (4.40) (in log scale).

µ1 µmixture µIS

Figure 4.17: Comparison of the posterior mean found with a single mixture component
(µ1, left), with that found with a mixture of Gaussians (µmixture, middle) and the
exact mean estimated with IS (µIS, right). Depictions are in log scale.

will ever reach the ESS of the proposed approximation.
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Figure 4.16: Posterior mean and credible intervals corresponding to 1% and 99%-
(dashed lines), along the diagonal from (0, 0) to (50, 50).

σ1 σmixture σIS

Figure 4.18: Comparison of the standard deviation of Ψ found with a single mixture
component (σ1, left), with that found with a mixture of Gaussians (σmixture, middle)
and the exact values estimated with IS (σIS, right). Depictions are in log scale.

In Figures 4.17 and 4.18, the approximate posterior mean and standard deviation are
compared with the (asymptotically) exact values estimated by IS. Furthermore in these
figures we plot the posterior mean and standard deviation found solely on the basis of
the most prominent mixture component, i.e., s = 1. While, visually, the differences in
the mean are not that striking (they are primarily concentrated at the boundaries of the
inclusions), we observe that the posterior variance is clearly underestimated by a single
component. In terms of the Euclidean norm (across the whole problem domain), we

obtained that ||µ1−µIS ||
||µmixture−µIS ||

= 5 where µIS is the exact mean obtained with IS and

µmixture is the approximate mean obtained from the mixture of Gaussians in Equation

(4.40). Similarly for the standard deviation, we obtained that ||σ1−σIS ||
||σmixture− bsσIS ||

=
6 where σ1,σ,σIS are the vectors of standard deviation across the whole problem
domain, obtained with a single component, the mixture and IS respectively.
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Figure 4.19 offers another view of the results along the diagonal of the problem
domain and compares the 1% and 99% credible intervals with the (asymptotically)
exact values found with IS.

Figure 4.19: Posterior mean and credible intervals along the diagonal cut from (0, 0)
to (50, 50) for mixture of Gaussians. Comparing the results with the results obtained
by importance sampling (IS), we can see that they fit well to each other.

It is interesting to contrast this with Figure 4.20 which depicts the posterior along
the same diagonal of the problem domain computed solely from each of the most
prominent components, i.e., from qs(Ψ) for s = 1, 3, 6. We note again that away from
the boundaries, strong similarities are observed, but none of the components by itself
can fully capture or envelop the ground truth (compare also with Figure 4.16).

We provide further details on the most prominent mixture components, i.e., 1, 3 and
6. Figure 4.21 depicts the posterior standard deviation of Ψ as computed by using each
of these components individually, i.e., from qs(Ψ) in Equation (4.38) for s = 1, 3, 6.
All components yield small variance for the surrounding tissue and the interior of the
inclusions while the posterior uncertainty is concentrated on the boundaries of the
inclusions.

Figure 4.22 depicts the first four columns (basis vectors) of W s for s = 1, 3 and
the corresponding posterior variances λ−1

s,i . The third column is perhaps the most in-
formative, showing the differences between these vectors. These differences are most
pronounced around the inclusions but, most importantly, reveal that the posterior vari-
ance is concentrated along different subspaces for different mixture components (see
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q(s = 1) = 0.318 q(s = 3) = 0.213 q(s = 6) = 0.160

Figure 4.20: Posterior mean and 1% − 99% credibility intervals (dashed lines) along
the diagonal cut from (0, 0) to (50, 50) for different mixture components.

q(s = 1) = 0.318 q(s = 3) = 0.213 q(s = 6) = 0.160

Figure 4.21: Standard deviation for selected mixture components in log scale.

also Figure 4.1). We note also with regard to q(η|s), i.e., the posterior of the resid-
ual noise in the representation of the unknowns, that for all mixture components, i.e.,
s = 1, . . . 7, λ−1

η,s was found approximately the same and equal to 4 × 10−3, which is
one or two orders of magnitude smaller than the variance associated with Θ and has
as a result a minimal overall influence.

In order to gain further insight we provide inference results along the boundary of
the elliptical inclusion. In particular we consider the elements along the black line in
Figure 4.23 and pay special attention to the elements marked with yellow stars from
1 to 4. We have purposely selected the black line to lie partly in the interior and
partly in the exterior of the inclusion. In Figure 4.24, we plot the posterior mean along
this black line (including credible intervals corresponding to 1% and 99%) as obtained
exclusively from one of the three most prominent components (from qs(Ψ) in Equation
(4.38) for s = 1, 3, 6) as well as by the mixture of Gaussians (Equation (4.37)). As
it can now be seen more clearly, the individual components are only partially capable
of capturing the ground truth. At times, points are misclassified in terms of whether
they belong to the inclusion or not. On the other hand, the approximation provided
by the mixture of Gaussians, averages over the individual components and leads to a
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4.3 Numerical illustration

Mixture comp. 1 Mixture comp. 3 ∆ (Mixture 1 - 3)

(a) λ−1
1 = 9.885× 10−1 (b) λ−1

1 = 9.920× 10−1

(c) λ−1
2 = 9.328× 10−1 (d) λ−1

2 = 9.785× 10−1

(e) λ−1
3 = 5.269× 10−1 (f) λ−1

3 = 9.344× 10−1

(g) λ−1
4 = 7.823× 10−2 (h) λ−1

4 = 2.822× 10−1

Figure 4.22: The first few basis vectors of W j for mixture components j = 1 and
j = 3 are shown in the first and second column. In the third column, the difference
between the basis vectors in the first two columns, is plotted. The differences are more
pronounced in the vicinity of the boundary of the inclusions.
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Figure 4.23: Posterior statistics for the elements along the black line are provided in
Figure 4.24, starting at the magenta star and proceeding anti-clockwise around the
inclusion. Posterior statistics for the elements marked by yellow stars (1 − 4) are
supplied in Figure 4.25. The background shows the ground truth in log scale.

posterior mean that is closer to the ground truth. More importantly, and especially in
the regions where transitions from the inclusions to the surrounding tissue are present,
the posterior uncertainty is larger to account for this ambiguity.

In Figure 4.25, we plot the posterior statistics for the elastic modulus of the ele-
ments 1 through 4 marked by yellow stars in Figures 4.23,4.24. The ground truth values
are indicated with red rhombuses. We note that each of the mixture components gives
rise to a Gaussian with, in general, a different mean/variance. These Gaussians reflect
the uncertainty of the material properties at these points and are synthesized in the
mixture. Interestingly, at element 4, which is further away from the boundary, all mix-
ture components give rise to Gaussians with very similar means and variances, yielding
a unimodal posterior when combined in the mixture. Three of the elements around
the larger inclusion and their probabilistic behavior is shown in as well as one element
of the surrounding tissue. One can see that some mixture components capture the
exact values whereas others do not. However, the combination of mixture components
includes the true value within its probability distribution.

Apart from the posterior probability distributions of the material parameters, we
note also that noise precision was treated as an unknown and its (approximate) posterior
was computed via Variational inference (Equation (4.24)). This is plotted in Figure
4.26.
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4.3 Numerical illustration

Mixture component 1

Mixture component 3

Mixture component 6

Mixture of Gaussians

Figure 4.24: Posterior statistics along the black line of Figure 4.23. The ground truth
is indicated by a black, dashed line. The posterior means are drawn with a green line
— and credible intervals corresponding to 1%, 99% percentiles in red - - -.
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Selected parameter 1 Selected parameter 2

Selected parameter 3 Selected parameter 4

Figure 4.25: Posterior probability densities of the log of the elastic modulus, log(Ψ), of
the elements 1 through 4 marked by yellow stars in Figure 4.23. The ground truth values
are indicated with red rhombuses. The probability densities (Gaussians) associated
with each of the 7 mixture components are multiplied by the corresponding posterior
probabilities q(s) and are shown by different colors. The combined, mixture of Gaussian
is plotted in with a blue line.

Other examples/configurations

The previous results have demonstrated the capability of the proposed method not
only to identify multiple modes but also to learn, for each mode, a different lower-
dimensional subspace where posterior uncertainty is concentrated. There are of course
problems where the posterior is either unimodal (or at least one mode is much more
prominent than the rest) or such that the posterior variance is distributed equally over
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4.3 Numerical illustration

Figure 4.26: Approximate posterior q(τ) of the noise precision τ . The ground truth is
indicated with the red rhombus.

a large number of dimensions (i.e., the posterior is not amenable to dimensionality
reduction). In the context of the elastography problems examined the former scenario
can take place when the noise in the data is relatively low. Then the data provide very
strong evidence that precludes or make the presence of multiple modes of comparable
significance unlikely.

The second scenario can appear when the available data is limited and/or very
noisy. In this case, even if the posterior consists of a single mode, it is very likely that
a large number of directions (if not all) will be characterized by large posterior variance
as the signature of the data is very weak. In the following two subsections we examine
such settings in order to demonstrate the ability of the proposed framework to adapt
and provide good approximations even though these might consist of a single mode or
they do not encompass any significant dimensionality reduction.

Example 2a: Only dimensionality reduction

We consider the same problem (i.e., the same material properties and forward model)
but instead contaminate the data with much less noise resulting in a SNR of 1 ×
104 (in contrast to 1 × 103 previously). In such a case a single mixture component
is found. Despite multiple proposals (a total of 100 were attempted) the identified
components are either deleted because they violate the KL-based similarity criterion
(Equation (4.44)) or they have negligible posterior probability q(s) � qmin = 10−3.
The Gaussian identified has a mean that is extremely close to the ground truth as it
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can be seen in Figure 4.27. The posterior variance across the problem domain is much
smaller than in the previous setting (Figure 4.27) and is, as expected, due to the low
levels of noise, concentrated along very few dimensions. Hence, the information gain
metric I(dΘ) decays extremely rapidly and we can adequately approximate the posterior
with less than 5 reduced coordinates Θ (Figure 4.27).

Posterior mean (S = 1) Posterior standard deviation
(S = 1)

Information gain

Figure 4.27: Example 2a: On the left panel, the posterior mean of the material param-
eters is plotted and in the middle panel the posterior standard deviation (in log scale).
The right panel depicts the information gain as a function of dΘ.

Example 2b: Only multimodality

We consider again the same problem (i.e., the same material properties and forward
model) but instead contaminate the data with much more noise resulting in a SNR of
5×102 (in contrast to 1×103 previously) and assume that only half of the displacements
are available, i.e., dy = 2550 (in contrast to dy = 5100 before). The proposed algorithm
was employed and identified 21 active mixture components (in contrast to the 7 before).
The means µj of all these components are depicted in Figure 4.28) where the posterior
probabilities q(s) are also reported. As expected, the presence of more noise and the
reduction in the available data have led to more modes in the posterior.

Moreover, as one would expect, none of these modes is particularly amenable to
dimensionality reduction as the posterior variance is large and distributed along multiple
dimensions. In fact by employing the information gain metric (Figure 4.29) we found
that for most modes at least dΘ ≈ 750 reduced coordinates were necessary to represent
the variance accurately.

Nevertheless, the posterior mean estimated from the mixture of these 21 Gaussians
(Equation (4.40)) is very close to the ground truth, see Figure 4.30. Understandably
however, the posterior variance across the problem domain (Figure 4.30) is much larger.
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4.3 Numerical illustration

q(s = 1) = 0.00409 q(s = 2) = 0.0276 q(s = 3) = 0.0698 q(s = 4) = 0.0893

q(s = 5) = 0.0095 q(s = 6) = 0.104 q(s = 7) = 0.00777 q(s = 8) = 0.00606

q(s = 9) = 0.0247 q(s = 10) = 0.00276 q(s = 11) = 0.107 q(s = 12) = 0.0523

q(s = 13) = 0.0267 q(s = 14) = 0.0462 q(s = 15) = 0.0868 q(s = 16) = 0.101

q(s = 17) = 0.222 q(s = 18) = 0.0017 q(s = 19) = 0.0032 q(s = 20) = 0.0053 q(s = 21) = 0.0032

Figure 4.28: Example 2b: Posterior mean µj and posterior probabilities q(s = j) of
each of the S = 21 mixture components identified (in log scale).
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q(s = 6) = 0.104 q(s = 11) = 0.107 q(s = 17) = 0.222

Figure 4.29: Information gain I(dΘ, j) for the 3 (out of the 21) mixture components
with the largest posterior probability q(s).

Posterior mean (S = 21) Posterior standard deviation (S = 21)

Figure 4.30: Example 2b: On the left panel, the posterior mean of the material param-
eters is plotted and in the right panel the posterior standard deviation (in log scale).

4.4 Summary

We presented a novel Variational Bayesian framework for the solution of inverse prob-
lems with computationally-demanding forward models and high-dimensional vector of
unknowns. The strategy advocated addresses two fundamental challenges in the con-
text of such problems. Firstly, the poor performance of existing inference tools in
high-dimensions by identifying lower dimensional subspaces where most of the posterior
variance is concentrated. Secondly, it is capable of capturing multimodal posteriors by
making use of a mixture of multivariate Gaussians. Each of the Gaussians is associated
with a different mean and covariance and provides an accurate local approximation.
We verified the proposed strategy with importance sampling and as demonstrated in
the numerical examples, the bias introduced by the approximations is small and can be
very efficiently corrected, i.e., with very few forward model calls.
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4.4 Summary

In the context of the motivating application, i.e., static, nonlinear elastography, it
was shown that the computed multimodal approximation can provide a more accurate
picture to the analyst or medical practitioner from which better diagnostic decisions can
be drawn. In particular, the model proposed can better capture the spatial heterogeneity
of material parameters which is a strong indicator of malignancy in tumors [210]. This
is especially manifested in the boundaries of the inclusions (tumors) which can be better
classified as well as in quantifying their effect in the results.

The method advocated is applicable to other problems characterized by high-
dimensional vectors of unknowns, such as those involving spatially varying model pa-
rameters. It does not make use of any particular features of the forward model solver
and requires the computation of first-order derivatives which can be handled with an
adjoint formulation. While the number of forward model solutions, which is the pri-
mary metric of computational efficiency in our setting, increases with the number of
identified posterior modes and depends on the stopping criteria employed, we have
demonstrated that a few hundred forward calls are usually enough in the applications
of interest. Furthermore, our algorithm is able to handle unimodal posteriors as well as
densities which are not amenable to dimensionality reductions, e.g., due to large noise
or sparse data.

We finally note that a restriction of the uncertainty quantification strategy proposed
pertains to the forward model itself. Another source of uncertainty, which is largely
unaccounted for, is model uncertainty. Namely, the parameters which are calibrated,
are associated with a particular forward model (in our case a system of (discretized)
PDEs), but one cannot be certain about the validity of the model employed. In general,
there will be deviations between the physical reality where measurements are made, and
the idealized mathematical/computational description. A critical extension therefore,
particularly in the context of biomedical applications, is in the direction of identifying
sources of model error and being able to quantify them in the final results, compare
following chapter.
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Chapter 5

Quantification of constitutive model
error

“ Taking a model too seriously is really just another way of not taking
it seriously at all. ”

Andrew Gelman, 1965-today.

5.1 The underestimated issue of model error

In the previous chapters, an efficient Bayesian framework for high-dimensional inverse
problems to quantify parametric and observation errors was proposed and discussed.
Another source of uncertainty, which is largely unaccounted for, is model uncertainty.
In standard inverse problem formulations, the parameters which are calibrated are as-
sociated with a particular forward model, implicitly assuming that the model perfectly
describes reality. However, in many cases there are discrepancies between the physical
reality, where observations are made, and the idealized mathematical description.

As the true model is usually not known, there are several approaches that try to
deal with this issue, such as the minimum description length (MDL) [137], the Akaike
information criterion (AIC) [96], the Bayesian information criterion (BIC) [97] or the
Bayes factor [95]. They are used for model selection, by favoring simple models that
fit the data well. These criteria, however, do not quantify the model error but compare
different models which each other, disregarding the possibility that the model might be
wrong.

One of the first and widely used approaches to explicitly account for model error
is based on Kennedy and O’Hagan [46] and has been extended by many other authors
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[98, 99, 47]. In this framework, an explicit model error term δ(Ψ), e.g., described by
a Gaussian process, is added to the model output:

ŷ = y(Ψ) + δ(Ψ) + z. (5.1)

As in the previous chapters, z is the measurement error and Ψ denotes the unknown
model parameters. This model is embedded in a larger framework, such as model
calibration, i.e., parameter estimation, can be carried out. One advantage of the
previous procedure is generality and that a deep understanding of the physical model
is not required to identify its discrepancy. However, several drawbacks are noted. The
discrepancy term δ(Ψ) is an empiricism, optimized with respect to the data. Therefore,
it is tied to a particular quantity of interest and cannot be used for prediction. In
addition, it is entangled with measurement errors and has a lack of physical insight
[214].

To account for inadequate physics in the model, intrusive approaches have been
developed, embedding an additive model error term within a submodel. One of the
first approaches of this kind relates to Berliner [100], who improved one-dimensional
ice-sheet models by adding an additional term to specific submodels. Alternatively,
the calibration and validation problem can be reformulated as a kernel density esti-
mation problem [174]. However, both approaches use a very small number of la-
tent variables (less then 10 variables). Furthermore, the second approach employs
a likelihood-free formulation and embeds the model error within the model parame-
ters. The idea of embedding the model error in a submodel has been extended to
high-dimensional problems in the field of fluid dynamics. To approximate turbulence
models, such as RANS or the Spalart-Allmaras (SA) turbulence model, an additional
term is added to account for the model error introduced by the model’s approximative
nature [104, 105, 106, 101, 102, 103]. The model error is computed by comparing
the results of the approximate model with those of the ’true’ but computationally very
expensive model. The latter one obtains via direct numerical simulation (DNS). Within
the discussed examples only the model error is treated as an unknown and no further
latent or model parameters are quantified. This makes the problem a model calibration
problem where the model error plays the role of a model parameter. Another drawback
is that the results of the ’true’ model have to be known, which is not the case in many
applications.

In this thesis, we discuss a novel intrusive framework for model error estimation,
which unfolds the classical forward problem to quantify model error in a physical man-
ner. We propose to evaluate the model error within the constitutive model while
fulfilling important physical laws, e.g., the conservation of linear momentum. This
framework is based on a novel algorithm proposed by Koutsourelakis [108]. We extend
this framework with a consistent derivation of the normalization term for a flexible inte-
gration of prior information. In addition, we propose a Variational Bayesian Expectation
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Maximization algorithm to efficiently quantify the uncertainties of high-dimensional in-
verse problems. The presented methodology is based on a fully Bayesian formulation
and validated by Gibbs sampling.

The remaining part of the chapter is organized as follows: In Section 5.2 the
governing equations of solid mechanics are briefly reviewed. Furthermore, we present
how these equations are incorporated in a fully Bayesian formulation. We employ
an Expectation-Maximization scheme for efficiently estimating the model and latent
variables. Finally, in Section 5.3, we present numerical illustrations in the context of
elastography and validate the results.

5.2 Methods

Governing equations

In this section, we discuss an intrusive novel framework for model calibration and model
validation. It focuses on quantifying the model discrepancies in the constitutive equa-
tion. The framework is inspired by deterministic approaches, such as the constitutive
relation error (CRE) or the modified constitutive relation error (MCRE). CRE was origi-
nally developed for model validation in FEM simulations [215] and has been extended to
inverse problems associated with elastostatic, elastodynamic, viscoelastic or viscoplas-
tic materials [216, 217, 218, 219, 220]. For a detailed overview of CRE, MCRE and
variations thereof, we refer to [221, 222].

Within our application of elastography, the forward model is based on continuum
mechanics. In Section 2.3.2, we shortly reviewed the governing equations and showed
how to derive numerical formulations. In the following framework, the individual equa-
tions will play an important role and will therefore derived in detail. The governing
equations are described in the context of linear elastostatics:

• The conservation of linear momentum, which refers to Newton’s second law of
motion, is well-founded and generally accepted. Although discretized versions
of the PDE introduce a discretization error, this is a well-studied problem and
we refer the interested reader to [131, 144]. In this chapter, we disregard the
discretization error and focus on the model error instead. The conservation law
(Equation (2.26)) in the deformed configuration is

5 · σ̃ + ρ0b = 0 in Ω. (5.2)

• The governing equations are supplemented by boundary constraints at the Dirich-
let Γu and the Neumann ΓS boundary (compare Equations 2.28 and 2.27):

σ̃ · n = t̂ on ΓS and (5.3)
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u = ub on Γu. (5.4)

• The constitutive law describes the relation between stresses and strains. For a
linear elastic material it is:

σ̃ = D : e in Ω, (5.5)

where D is the elasticity tensor and e the Euler-Almansi strain.

For the numerical implementation the governing equations are weakly enforced
(Section 2.3.3). For economy of notation, we employ triangular finite elements, which
results in constant strains and stresses within each element.1

The weak form of the partial differential equation (Equation (5.2)) and the boundary
conditions with weighting functions v is (Equation (2.30)):∫

Ω

(5 · σ̃ + ρ0b) · v dΩ +

∫
ΓS

(t̂− σ · n) · v dΓ = 0. (5.6)

With the Gauss divergence theorem the conservation law is weakly informed by:∫
Ω

σ̃ : (5v)T dΩ =

∫
ΓS

t̂ · v dΓ +

∫
Ω

ρ0b · v dΩ. (5.7)

Discretized with dFE number of elements this can be reformulated in:

B̂
T
σ = f , (5.8)

where

• B̂ ∈ Rdf×dS is the linear gradient operator with B̂
T

=
∑dFE

e=1 L
T
eB

T
e Ve. Ve is the

volume of a single element e, Be ∈ RdSe×df the strain-displacement matrix for
an element e and Le ∈ Rdfe×df the Boolean matrix that relates local to global
displacements and stresses. dSe represents the number of the stresses or strains
per element.

• σ ∈ RdS is the discretized stress tensor in vector form and dS denotes its dimen-
sion. The entries of the stress vector relate to the constant stresses σe ∈ RdSe

in an element e over dFE elements: σ = [σ1, ...,σdFE ]T .

• f ∈ Rdf is the force vector with dimension df .

1If non-constant stress/strain elements are used, such as quadrilateral finite elements, a numerical
integration within some of the equations is required.
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The relation between stresses and strains for an element e is:

σe = Deεe, (5.9)

where

• the vector of strains ε = [ε1, ..., εdFE ]T ∈ RdS contains the strains εe of each
elements e .

• De is the local constitutive matrix and

D =


D1 0 ... 0
0 D2 ... 0
... ... ... ...
0 0 ... DdFE

 (5.10)

the global constitutive matrix.

In the following, for the displacements u = (y ∪ ub) ∈ Rdy,all we distinguish
unconstrained displacements y ∈ Rdy from displacements prescribed at the Dirichlet
boundary ub ∈ R(dy,all−dy). dy is the number of unconstrained displacements and dy,all
the total number of displacements.

The relation between strains and displacements is described by:

ε = Bu = Byy +Bbub, (5.11)

where B ∈ RdS×dy,all is the gradient operator, in this case the strain-displacement
matrix. The entries in Bb refer to the Dirichlet boundary displacements and those in
By to the unknown displacements:

B =

dFE∑
e=1

Be = By ∪Bb. (5.12)

The strain-displacement relation on element level is:

εe = By,eye +Bb,eub,e, (5.13)

where ye and ub,e are the unconstrained and constrained displacements for a specific
element e.
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Probabilistic formulation

In standard model calibration, the task is to quantify the unknown material parameters
Ψ, based on observations. In this chapter, we derive a novel Bayesian framework,
which can address the two challenges from above at the same time: model calibration
and validation. For this purpose, the governing equations are integrated in a Bayesian
fashion. Therefore, we view displacements y, stresses σ, and material parameters Ψ
as latent variables and incorporate them in the prior and likelihood.

We assume that we have measurements with white Gaussian noise available, leading
to the likelihood:

p(ŷ|y) = N (y,
1

τ
Idy). (5.14)

ŷ are the measured displacements and τ the measurement noise precision, which is
assumed to be known.

To probabilistically incorporate the governing equations and further prior knowledge,
we briefly summarize the required relations:

• The conservation law is modeled by a Gaussian with a very small variance, ef-
fectively enforcing the equilibrium of stresses.2

B̂
T
σ − f = N (0,

1

k
Idf ). (5.15)

k is the precision, treated as a constant, and will be raised iteratively during the
simulations to enforce a stronger constraint.

• The constitutive law is modeled based on the following premise. When the
constitutive law is not correct, the constitutive relation error ce for each element
e describes the discrepancy between the actual stresses, σe, and the model-
predicted stresses Deεe:

σe = Deεe + ce
= DeBeue + ce
= De(By,eye +Bb,eub,e) + ce.

(5.16)

We assume that the model error can be modeled by a Gaussian distribution:

ce = N (0,
1

ve
IdSe ). (5.17)

ve is the unknown precision of the model error for element e. Large values for ve
correspond to elements with no/very small model error and small values for ve to

2Alternatively, one could use an indicator function formulation to satisfy the conservation law
exactly. Due to numerical issues, however, this has not been pursued.
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elements with large model error. For each element e the precision of the model
error can be different, following in v ∈ RdFE×1. Reformulating it with respect to
y,σe,Ψe and with Equation (5.19) it is:

p(y,σe,Ψe|ve) ∝ exp−
ve
2
||σe−ΨeD̃e(By,eye+Bb,eub,e)||2 . (5.18)

• The relation between inferred stresses and model-predicted stresses, described by
the constitutive law, usually depends on material parameters. Assuming isotropic
linear elasticity, the elastic modulus Ψe for each element e represents a linear
scaling factor:

De = De(Ψe) = ΨeD̃e, (5.19)

where D̃e is known for a given Poisson ratio νe. The material parameters Ψ ∈
RdFE are unknown and Ψe can be different for each finite element e, e = 1 :
dFE. The vector Ψ denotes the spatial discretization of the material parameters.
We assume a smooth spatial distribution of Ψ, i.e., we expect the constitutive
properties to be locally correlated. For this purpose, we employ a hierarchical
prior that penalizes jumps between neighboring elements:

p(Ψ|H) ∝ −|H|
1
2 exp−0.5ΨT (LTΨHLΨ)Ψ, (5.20)

where LΨ is a difference operator and H = diag(hl) a diagonal matrix with
dimension dL × dL and where dL is the number of neighboring pairs.
We introduce an additional hyperprior for each parameter hl, with:

p(hl) = Gamma(ah,0, bh,0). (5.21)

Then:

log(p(Ψ|H) p(H)) ∝ 1
2

∑dL
i=1 log(hi)− 1

2
ΨT (LTΨHLΨ)Ψ

+
∑dL

i=1[(ah,0 − 1) log(hi)− bh,0hi].
(5.22)

The prior knowledge of the constitutive and conservation law, as well as of the
material parameters (compare Equations 5.17, 5.22, 5.15) is combined in a joint prior
distribution:

p(y,Ψ,σ,H|v) =
∏dFE
e=1 p(y,σe,Ψe|ve) p(Ψ|H) p(H) p(σ)

Z(v)

= π(y,Ψ,σ,H|v)
Z(v)

.
(5.23)

Z(v) =

∫
π(y,Ψ,σ,H|v) dy dΨ dH dσ (5.24)
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normalizes the unnormalized prior distribution

π(y,Ψ,σ,H|v) =

dFE∏
e=1

p(y,σe,Ψe|ve) p(Ψ|H) p(H) p(σ), (5.25)

such that the resulting probability distribution p(y,Ψ,σ,H|v) is a proper probability
distribution, satisfying

∫
p(y,Ψ,σ,H|v) dy dΨ dH dσ = 1. Of particular interest,

within the normalization constant Z(v), are the terms depending on v, since those are
required for updating v. Lastly, we introduce a hyperprior pv(v) on the model error
parameters v.

Combining likelihood (Equation (5.14)) and prior (Equation (5.23)), the posterior
density becomes:

p(y,Ψ,σ,H ,v|ŷ) ∝ p(ŷ|y)
π(y,Ψ,σ,H|v)

Z(v)
pv(v). (5.26)

Neglecting constant terms, the log-posterior follows:

log(y,Ψ,σ,H ,v|ŷ) ≈ − τ
2
||ŷ − y||2

−
∑dFE

e=1
ve
2
||σe −ΨeD̃e(By,eye +Bb,eub,e)||2

−k
2
||B̂

T
σ − f ||2

+ log (p(Ψ|H) p(H))
− log Z(v)
+ log pv(v).

(5.27)

Bayesian inference

Traditional approaches derive a posterior of the form p(Ψ|ŷ). Compared to this, our
posterior contains additional inference parameters y, σ, H and v: p(y,Ψ,σ,H ,v|ŷ).
We also stress the fact that the classical forward model does not exist anymore. In-
stead, the new framework enables the quantification of the model inadequacy and
the additional variables play the role of auxiliary variables. The absence of a forward
model is particularly beneficial for solving high-dimensional problems, leading to re-
duced computational costs and higher efficiency. To explore the posterior and to make
inferences about the unobserved parameters, Gibbs sampling [223] may be employed,
or, for computational efficiency, Variational Bayes.

Since it is, in general, not possible to derive an explicit expression for Z(v), an
efficient and accurate VB scheme cannot be established. For this purpose, we employ,
as discussed in the previous chapters, a hybrid, iterative scheme, based on Expectation-
Maximization. While using the complete posterior distribution for inference on the pa-
rameters Υ = {y,Ψ,σ,H}, for v point estimates are derived. Maximum-a-Posteriori
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(MAP) point estimates for v, however, require the marginal posterior p(v|ŷ) given by:

p(v|ŷ) =

∫
p(y,Ψ,σ,H ,v|ŷ) dy dΨ dσ dH , (5.28)

which is analytically intractable due to the coupling of the parameters y,Ψ,σ,H .
The proposed iterative Expectation-Maximization scheme provides a remedy and is
described in the following. Introducing the joint density q(y,Ψ,σ,H ,v), a lower
bound on the log-marginal posterior can be constructed:

log p(v|ŷ) = log

∫
p(v,Υ|ŷ) dΥ ≥ < log (

p(v,Υ|ŷ)

q(Υ)
) >q(Υ)

= < log p(ŷ|Υ) + log (
p(Υ|v)

q(Υ)
) >q(Υ) + log pv(v) = F(q(Υ),v).

(5.29)

Neglecting constant terms, this becomes:

F(q(Υ),v) =< log(p(ŷ|y) p(y,Ψ,σ,H|v) pv(v)) >q − < log q(Υ) >q

= − τ
2
< ||ŷ − y||2 >q

−
∑dFE

e=1 <
ve
2
||σe −ΨeD̃e(By,eye +Bb,eub,e)||2 >q

−k
2
< ||B̂

T
σ − f ||2 >q

+ < log(p(Ψ|H) p(H)) >q

− log Z(v) + log pv(v)− < log q(Υ) >q .
(5.30)

The optimization of the lower bound with respect to its free parameters results in an
iterative Expectation-Maximization scheme:

• VB-Expectation: Given (v(t−1)), find:

q(t)(Υ) = arg max
q
F(q(Υ),v(t−1)), (5.31)

• VB-Maximization: Given q(t)(Υ), find:

v(t) = arg max
v
F(q(t)(Υ),v), (5.32)

representing a generalized coordinate ascent algorithm with respect to F (Figure 5.1).
For q(y,Ψ,σ,H), we adopt a structured mean-field approximation (see Equation
(2.19)) of the form:

q(y,Ψ,σ,H) = q(y) q(Ψ) q(σ) q(H). (5.33)
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q(Υ)

v

F(q(Υ,v))

Figure 5.1: Schematic depiction of the Expectation-Maximization scheme for Varia-
tional Bayes.

5.2.1 Update equations for q(y), q(Ψ), q(σ), q(H) and v

Based on the likelihood, priors and the adopted mean-field assumption, we can infer
that the optimal approximate posteriors will be:

qopt(y) ≡ N (µy,Λ
−1
y ),

qopt(σ) ≡ N (µ̄σ, Λ̄
−1
σ ),

qopt(Ψ) ≡ N (µ̄Ψ, Λ̄
−1
Ψ ),

qopt(H) ≡
∏dL

l=1Gamma(ah,l, bh,l).

(5.34)

E-step - Variational Bayes

The update equation for the E-step - Variational Bayes can be readily established:

• For q(Ψ) = N (µ̄Ψ, Λ̄
−1
Ψ )

ΛΨ,e = ve < (By,eye +Bb,eub,e)
TD̃

T

e D̃e(By,eye +Bb,eub,e) >q

= ve(D̃
T

e D̃e : ((By,eµy,e +Bb,eub,e)(By,eµy,e +Bb,eub,e)
T )

+ve(D̃
T

e D̃e : (By,eΣy,eB
T
y,e)),

(5.35)

ΛΨ,eµΨ,e = ve < (By,eye +Bb,eub,e)
TD̃

T

e σe) >q

= ve(By,eµy,e +Bb,eub,e)
TD̃

T

e µ̄σ,e.
(5.36)
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Including the smoothing prior (compare Equation (5.20)), the updated variance
and mean are:

Λ̄Ψ = ΛΨ +LTΨ <H >q LΨ, (5.37)

and
µ̄Ψ = Λ̄

−1
Ψ (ΛΨµΨ). (5.38)

• For q(H) =
∏dL

l=1Gamma(ah,l, bh,l)
The hyperparameters hl, conditional on the other parameters, follow a Gamma
distribution Gamma(ah,l, bh,l) with

ah,l = ah,0 +
1

2
, (5.39)

bh,l = bh,0 + 1
2
< (Ψl,1 −Ψl,2)2 >q

= bh,0 + 1
2
(< Ψ2

l,1 >q −2 < Ψl,1Ψl,2 >q + < Ψ2
l,2 >q)

= bh,0 + 1
2
(µ̄2

Ψl,1
− 2µ̄Ψl,1µ̄Ψl,2 + µ̄2

Ψl,2
)

+1
2
(Σ̄Ψ,l,11 − 2Σ̄Ψ,l,12 + Σ̄Ψ,l,22).

(5.40)

• For q(σ) = N (µ̄σ, Λ̄
−1
σ )

On an element level, the constitutive relation is expressed by:

Λσ,e = veIdSe , (5.41)

Λσ,eµσ,e = ve < ΨeD̃eεe >= veµ̄Ψ,eD̃e(By,eµy,e +Bb,eub,e). (5.42)

Including the conservation law constraint equation, we obtain:

Λ̄σ = kB̂B̂
T

+ Λσ, (5.43)

µ̄σ = Σ̄σ(kB̂f + Λσµσ). (5.44)

• For q(y) = N (µy,Λ
−1
y )

Λy =
∑dFE

e=1 ve < L
T
y,eB

T
y,eD̃eΨeΨeD̃eBy,eLy,e >q +τIdy

=
∑dFE

e=1 ve(L
T
y,eB

T
y,eD̃eD̃eBy,eLy,e(µ̄

2
Ψ,e + Σ̄Ψ,e) + τIdy ,

(5.45)

µy = Λ−1
y [
∑dFE

e=1 ve < L
T
y,eB

T
y,eD̃eΨe(σe −ΨeD̃eBb,eub,e) >q +τ ŷ].

(5.46)
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Incorporating qopt into the previous lower bound expression (Equation (5.30)) and ne-
glecting constant terms, the lower bound F takes the following form:

F(qopt(Υ),v) =< log(p(ŷ|y) p(y,Ψ,σ,H|v) p(v)) >q

− < log(qopt(y) qopt(Ψ) qopt(H) qopt(σ)) >q

= − τ
2
||ŷ − µy||2 − τ

2
tr(Σy)

−
∑dFE

e=1 <
ve
2
||σe −ΨeD̃e(By,eye +Bb,eub,e)||2 >q − logZ(v)

−k
2
(||B̂

T
µ̄σ − f ||2 + tr(B̂B̂

T
Σ̄σ))

−
∑dL

j=1 ah,j log bh,j + dL log(Γ(ah,j)) + log pv(v)

−1
2

log |Λy| − 1
2

log |ΛΨ| −
∑dL

j=1 ah,j log bh,j − 1
2

log |Λσ|.
(5.47)

M-step

Within the VB-Maximization step, we want to derive point estimates for v. Therefore,
we examine the terms in F that depend on v:

Fv =< log π(u,Ψ,σ,H|v) >q + log pv(v)− logZ(v)

∝ −
∑dFE

e=1
ve
2
< ||σe −ΨeD̃e(By,eye +Bb,eub,e)||2 >q

+ log pv(v)− logZ(v).

(5.48)

With the derivative
∂Fv
∂ve

= −1
2
< ||σe −ΨeD̃eBeLeu||2 >q +∂ log pv(v)

∂ve
− ∂ log Z(v)

∂ve

= −1
2
Ξe + ∂ log pv(v)

∂ve
− ∂ log Z(v)

∂ve
,

(5.49)

the model error ve can be obtained via gradient ascent:

ve = ve + α
∂Fv
∂ve

. (5.50)

The expectation Ξe can be computed from the E-step:

Ξe =< ||σe −Deεe||2 >q

=< ||(σe −ΨeD̃e(By,eye +Bb,eub,e))||2 >q

= (µ̄Tσ,eµ̄σ,e + tr(Σ̄σ,e))− 2µ̄Tσ,eµΨ,eD̃e(By,eµy,e +Bb,eub,e)

+(µ̄Ψ,eµ̄Ψ,e + Σ̄Ψ,e)D̃
T

e D̃e : [(By,eµy,e +Bb,eub,e)(By,eµy,e +Bb,eub,e)
T

+(BeΣu,eB
T
e )].

(5.51)
The partition function Z(v) =

∫
π(Υ|v) dΥ (Equation (5.24)) which normalizes

π(Υ|v) is not readily deducible. However, one can reformulate with p(Υ|v), from
Equation (5.23):

logZ(v) = logZ(v)
∫
p(Υ|v) dΥ

=
∫

logZ(v) p(Υ|v) dΥ
=
∫

log π(Υ|v) p(Υ|v) dΥ−
∫

log p(Υ|v) p(Υ|v) dΥ.
(5.52)
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And its derivative with respect to ve is:

∂ log Z(v)
∂ve

=
∫

(∂ log π(Υ|v)
∂ve

p(Υ|v) + log π(Υ|v) ∂p(Υ|v)
∂ve

) dΥ

−
∫

(∂ log p(Υ|v)
∂ve

p(Υ|v) + log p(Υ|v) ∂p(Υ|v)
∂ve

) dΥ

=
∫ ∂ log π(Υ|v)

∂ve
p(Υ|v) dΥ

=< ∂ log π(Υ|v)
∂ve

>p(Υ|v) .

(5.53)

Of particular interest is the expression ∂ log Z(v)
∂ve

=< ∂ log π(Υ|v)
∂ve

>p(Υ|v), since it is
required for Equation (5.49). This integral can be estimated by sampling (Section
2.2.3). For our purpose, we employ Gibbs sampling with respect to the distribution
p(Υ|v). The generated samples are denoted by an additional subscript z. To derive
∂ log Z(v)

∂ve
we iteratively sample Ψz,σz,yz,Hz for Nz times, where the superscript ii

denotes the specific sample, ii = 1 : Nz:

• For p(Ψz |v,σz,yz) = N (µ̄Ψ,z, Λ̄
−1
Ψ,z).

The update Equations 5.35 -5.38 with σz,yz instead of σ,y can be used:

ΛΨ,z,e = ve(D̃e(Bb,eub,e +By,ey
(ii)
z,e ))TD̃e(By,ey

(ii)
z,e +Bb,eub,e), (5.54)

and

ΛΨ,z,eµΨ,z,e = ve(By,ey
(ii)
z,e +Bb,eub,e)

TD̃
T

e σ
(ii)
z,e . (5.55)

Including the smoothing prior, the updated covariance and mean is:

Λ̄Ψ,z = ΛΨ,z + (LTΨH
(ii)
z LΨ), (5.56)

and

µ̄Ψ,z = Λ̄
−1
Ψ,z(ΛΨ,zµΨ,z). (5.57)

Ψ(ii)
z is sampled from N (µ̄Ψ,z, Λ̄

−1
Ψ,z).

• For p(Hz |Ψz) =
∏dL

l=1 Gamma(ah,l,z, bh,l,z)
The hyperparameters hl, conditional on the other parameters follow a Gamma
distribution Gamma(ah,l, bh,l) with

ah,l,z = ah,0 +
1

2
, (5.58)

bh,l,z = bh,0 +
1

2
(Ψ

(ii)
z,l,1 −Ψ

(ii)
z,l,2)2. (5.59)

H(ii)
z is sampled from

∏dL
l=1Gamma(ah,l,z, bh,l,z).

121



5.2 Methods

• For p(σz |v,Ψz,yz) = N (µ̄σ,z, Λ̄
−1
σ,z)

The update Equations 5.41- 5.44 with Ψz,i,yz,i can be used:

Λσ,z,e = veIdSe , (5.60)

Λσ,z,eµσ,z,e = veΨ
(ii)
z,e D̃e(By,ey

(ii)
z,e +Bb,eub,e). (5.61)

Including the conservation law:

Λ̄σ,z = kB̂B̂
T

+ Λσ,z, (5.62)

µ̄σ,z = Λ̄
−1
σ,z(kB̂f + Λσ,zµσ,z). (5.63)

σ
(ii)
z,e is sampled from N (µ̄σ,z, Λ̄

−1
σ,z).

• For p(yz |σz,Ψz) = N (µy,z,Λ
−1
y,z)

The update equations are the ones from Equations 5.45, 5.46 but without the
contributions from the likelihood, i.e., without the terms dependent on τ :

Λy,z =

dFE∑
e=1

veΨ
(ii)
z,e Ψ(ii)

z,eL
T
y,eB

T
y,eD̃

T
D̃By,eLy,e, (5.64)

µy,z = Λ−1
y,z[

dFE∑
e=1

veΨ
(ii)
z,eL

T
y,eB

T
y,eD̃

T
(σ(ii)

z,e −Ψ(ii)
z,e D̃Bb,eub,e)]. (5.65)

y
(ii)
z is sampled from N (µy,z,Λ

−1
y,z).

Finally, we can write for the partition function derivative:

∂ log Z(v)
∂ve

=< ∂ log π(Υ|v)
∂ve

>p(Υ|v)

= −1
2
< ||σz,e −Dz,e(Bb,eub,e +By,eyz,e)||2 >p(Υ|v)

= −1
2

1
Nz

∑Nz
ii=1 ||σ

(ii)
z,e −D(ii)

z,e (By,ey
(ii)
z,e +Bb,eub,e)||2

= −1
2

1
Nz

∑Nz
ii=1 ||σ

(ii)
z,e −Ψ

(ii)
z,e D̃e(By,ey

(ii)
z,e +Bb,eub,e)||2,

(5.66)

with Nz denoting the number of Gibbs samples that are used to calculate <
∂ log π(Υ|v)

∂ve
>p(Υ|v).

Algorithm 4 summarizes the fundamental steps of the resulting VB-EM algorithm.
Steps 3− 8 correspond to the aforementioned VB-Expectation and 9− 16 to the VB-
Maximization step. Currently, no specific convergence criteria are used in step 3 and
9, which is acceptable as long as the overall algorithm (convergence criterion in step
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2) ensures convergence. For a convergence criterion in step 2 the lower bound F from
Equation (5.47) cannot be used as − logZ(v) is not known. Therefore, we use

F̂ = F + logZ(v), (5.67)

to study convergence.3

Algorithm 4 Algorithm for EM-based model error derivation

1: Initialize latent and model parameters, iter = 0
2: while F̂ has not converged do
3: for i = 1 : N do
4: update q(σ) using Equation (5.43), Equation (5.44)
5: update q(H) using Equation (5.39), Equation (5.40)
6: update q(Ψ) using Equation (5.37), Equation (5.38)
7: update q(y) using Equation (5.45), Equation (5.46)
8: end for
9: for ii = 1 : Nz do

10: sample σ
(ii)
z using Equation (5.60) - Equation (5.63)

11: sample H(ii)
z using Equation (5.58)- Equation (5.59)

12: sample Ψ(ii)
z using Equation (5.54) - Equation (5.57)

13: sample y
(ii)
z using Equation (5.64) - Equation (5.65)

14: end for
15: update ∀ve : ∂ log Z(v)

∂ve
based on σz,Ψz,Hz,yz and using Equation (5.66)

16: update v using Equation (5.50)
17: iter ← iter + 1
18: end while

5.2.2 Verification - Gibbs sampling

For validation purposes we derived and implemented the Expectation-Maximization
algorithm using Gibbs sampling, instead of Variational Bayes. The resulting iterative
optimization scheme is very similar. Only minor adjustments in the update equations
are required. More information can be found in Appendix F.

5.3 Numerical illustration

In this section, we discuss examples from elastography and demonstrate the advan-
tages and disadvantages of the proposed VB-EM algorithm for model calibration and

3It is not guaranteed that F̂ monotonically converges, as F does, however, this is not a requirement
for a convergence study.
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validation. The examples are based on the application of elastography, with the goal
of estimating unknown material parameters based on displacement measurements. Be-
sides the model parameters Ψ and possible hyper parameters, also the stresses σ,
displacements y and the precision of the model error v is of interest. We consider
two set of examples from elastography. Example 1 provides insight into the charac-
teristics of the algorithm. Furthermore, it is used for validation purposes and it is,
for comparison reasons, also solved with Gibbs sampling. Example 2 shows that the
algorithm can easily be applied to larger systems. An overview of the most important
quantities/dimensions of the two examples is given in Table 5.1.

Example 1 Example 2

Dimension of the observables ŷ 840 5100
Dimension of the latent variables y 840 5100
Dimension of the latent variables Ψ 800 5000
Dimension of the latent variables σ 2400 15000

Dimension of the model parameters v 800 5000

Table 5.1: Summary of the dimensionalities of the observables, most important latent
variables and model parameters for both discussed examples.

We assume an isotropic linear elastic material with a known Poisson ratio of ν =
0.45 for all dFE finite elements under the assumption of plane stress. The resulting
dimension of the stresses and strains for a single triangular finite element is dSe = 3.
The constitutive matrix for a single element e under plane stress is:

De(Ψe) = Ψe
1

(1− ν2)

1 ν 0
ν 1 0
0 0 1−ν

2

 ,
which results in a constant D̃ for all elements (De = ΨeD̃e):

D̃e = D̃ =
1

(1− ν2)

1 ν 0
ν 1 0
0 0 1−ν

2

 .
Example 1 for VB-EM

We consider a two-dimensional domain Ω0 = [0, L]× [0, L] with L = 20 and 40×20 =
800 triangular finite elements. With a constant ψ within an element it results in a
800 dimensional vector Ψ, dΨ = 800. With dSe = 3 constant stresses and strains
within each element the vector of unknown stresses has the dimension dS = 2400. We
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assume Dirichlet boundary conditions in the normal components of the bottom and left
boundary as well as Neumann conditions on the remaining boundaries (Figure 5.2)

u2 = 0 on x1 = [0, L], x2 = 0, (5.68)

u1 = 0 on x1 = 0, x2 = [0, L], (5.69)

and the following Neumann conditions on the remaining boundaries:

t̂ =

[
0
1

]
, on x1 ∈ [0, L], x2 = L,

t̂ =

[
1
0

]
, on x1 = L, x2 ∈ [0, L],

t̂1 = 0, on x1 ∈ [0, L], x2 = 0,
t̂2 = 0, on x1 = 0, x2 ∈ [0, L].

(5.70)

Figure 5.2: Configuration and reference. The blue and surrounding material is linear
elastic with Ψ = 1, as well as the yellow inclusion with Ψ = 0.2. The green inclusion
is based on a different material model, with its constitutive matrix given in Equation
(5.71).

Synthetic data is obtained for a linear elastic material with Ψ = 1 in the surrounding
tissue. The left bottom inclusion is also based on the linear elastic material model with
Ψ = 0.2. The second inclusion (top right) is based on a different constitutive model
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(anisotropic). The employed constitutive matrix D̃M,e is:

D̃M,e = 6.2

 0.5 −0.5 0.5
−0.5 2 0.5
0.5 0.5 2

 . (5.71)

Artificial measurements are generated with a SNR = 104.
For solving the inverse problem, we assume that the material is linear, isotropic

elastic with unknown elastic moduli. Similar to the material parameters Ψ (Equation
(5.20)), we employ a smoothing prior for v:

pv(v) ∝ exp−0.5vT (LTΨHvLΨ)v, (5.72)

where LΨ is a difference operator and Hv = hvIdL a diagonal matrix. It accounts
for the assumption that model errors are expected to be spatially correlated. In this
example we employ hv = 0.1.4 We choose N = 20 and Nz = 200 for the numbers of
iterations.5 Nz is increased when the overall algorithm converges, to ensure that the
convergence criteria is not be fulfilled based on a too strongly approximated gradient
< ∂ log π(Υ|v)

∂ve
>p(Υ|v).

Figure 5.3: Point estimates of the precision v of the model error (colorbar in log-scale).

In Figure 5.3, the converged point estimates of the precision v of the model error is
shown. We can see that the algorithm clearly identifies a significant model error. v is
in this region two to four orders of magnitude smaller than in the rest of the problem.

4For the presented problem this seems to be an acceptable value, which is not too strict but still
has a visible smoothing influence. A more sophisticated alternative, a hierarchical prior on hv, is an
alternative but has for the sake of simplicity not been employed.

5N refers to the number of iterations within a VB-E-step and Nz to the Gibbs iterations within a
VB-M step (Algorithm 4). The larger number of Nz compared to N is chosen to derive an accurate
expectation whereas for VB less iterations are necessary.
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Despite the model inadequacy, the algorithm correctly identifies the material pa-
rameters Ψ, see Figure 5.46.

Mean of Ψ Ψ in Cut A-A’

Figure 5.4: Left panel: Posterior mean of Ψ. Right panel: Mean and posterior quantiles
(±3σ) of Ψ along the diagonal cut from (0, 0) to (20, 20).

Figure 5.5: Evolution of F̂ over the number of iter-updates.

In Figure 5.6, the computed posterior characteristics of the stresses are shown. In
particular, it is visible that the stresses in the whole domain are captured correctly. In
addition, larger confidence intervals are visible in the region of the model error. This

6In the right figure the x-axis ranges from 1 to 40, as the diagonal cut goes through 40 triangular
elements.
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stress σ11 stress σ22 stress σ12

mean

standard deviation

reference (ground truth)

diagonal cut

Figure 5.6: Comparison of the stresses’ spatial distribution of the posterior mean and
standard deviation with the ground truth. In the bottom row, the diagonal cuts from
(0, 0) to (20, 20) of the posterior mean and credibility intervals are shown. The first
column refers to σ11, the middle column to σ22 and the right column to σ12 stresses.
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shows that the algorithm can correlate the identified model error to resulting larger
uncertainties in the stresses.

Figure 5.5 depicts the evolution of the lower bound F̂ , from Equation (5.67). With
regard to the required number of iterations to converge, we observe that the expectation
−∂ log Z(v)

∂ve
(Equation (5.66)) can accurately be approximated by 3

2ve
. This relates to

the derivative of the normalization term of − log p(y,σe,Ψe|ve) from Equation (5.18)
with respect to ve. This approximation massively decreases the number of required
iterations, and therefore, we use this approximation in the following. For more details
we refer to Appendix G.

Example 2 for VB-EM

In the second example the problem is depicted in Figure 5.7. The domain is
Ω0 = [0, L] × [0, L] with L = 50 and discretized with 100 × 50 finite elements re-
sulting in the dimensions dΨ = 5000 and dS = 15000. The same boundary conditions
(Equation (5.68)- 5.70) and prior pv(v) (Equation (5.72)) from the previous example
are employed. In this example, hv = 10 and a SNR = 108 is used.7 In Figure 5.8, the

Figure 5.7: Configuration and reference. The black and surrounding material is linear
elastic with Ψ = 1 and the yellow inclusion with Ψ = 0.2. The green inclusion is based
on a different material model, its constitutive matrix is given in Equation (5.71).

converged point estimate of the precision of the model error v is shown. Also in this

7In contrast to the previous example, the model error is expressed with respect to the strains.
Equation (5.16) is reformulated as: (By,eyz,e + Bb,eub,e) = D−1

e σe + ce. The update equations
need minor changes.
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example, the algorithm clearly identifies the inclusion of the model error.

Figure 5.8: Point estimates of the precision v of the model error (colorbar in log-scale).

Also the derived material parameters Ψ (Figure 5.9) as well as the stresses (Figure
5.10) capture the truth correctly. Increased variances of the stresses are recognized in
the region of the model error.

A'

A
Mean of Ψ Ψ in Cut A-A’

Figure 5.9: Posterior mean of Ψ and mean with posterior quantiles (±3σ) along the
diagonal cut from (0, 0) to (50, 50).

We also solved the same problem without quantifying model error. It can be seen
that if v is not included, the material parameters and the stresses are not correctly
identified, compare Figure 5.11 and Figure 5.12. This shows that the quantification
of model error is important, as it could otherwise lead to erroneous conclusions and
wrong interpretations. For example, one might think that there is a second inclusion
with specific material parameters, e.g., in this example Ψ ≈ 16.
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stress σ11 stress σ22 stress σ12

mean

standard deviation

reference (ground truth)

diagonal cut

Figure 5.10: Comparison of the stresses’ spatial distribution of the posterior mean and
standard deviation with the ground truth. In the bottom row the diagonal cuts from
(0, 0) to (50, 50) of the posterior mean and credibility intervals are shown. The first
column refers to σ11, the middle column to σ22 and on the right to σ12 stresses.
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The omitted model error influences the overall domain. Also in regions where there
is no model error incorrect material parameters and stresses are determined. Without
a quantification of the model error, the quantified variances in the stresses are close to
zero.

Mean of Ψ Ψ in Cut A-A’

Figure 5.11: Left: Posterior mean of Ψ. Right: Posterior statistics of Ψ along the
diagonal cut from (0, 0) to (50, 50), derived without a quantification of model error.

We want to stress that this example has very small measurement noise (SNR =
108). In examples with larger measurement noise, the fluctuations in the mean of the
material parameters and stresses are smaller. This is balanced by the smoothing prior of
Ψ. However, also in examples with larger noise levels, an accurate quantification of the
latent variables without quantifying the model error was not possible for the discussed
examples. However, if a system can correctly be described without quantifying model
error, it will prefer to do so and only quantify model error if it is necessary.

Example 1 for Gibbs-EM

For validation purposes we performed Gibbs sampling (Section 5.2.2) in order to assess
the overall accuracy of the approximation for the first and smaller example (Figure 5.2).
In Figure 5.13, the converged point estimate of the precision of the model error v is
shown. As beforehand with VB, the algorithm could correctly identify the inclusion of
model error. However, comparing the derived point estimates with those obtained with
VB (Figure 5.3), differences are visible: The precision of the model error obtained with
VB is, in the region without model error, two orders of magnitude smaller than that
obtained with Gibbs sampling. By looking at the individual terms, we could observe
that this discrepancy correlates to differences in the expectations of Ξe, derived by
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Quantification of constitutive model error

stress σ11 stress σ22 stress σ12

mean

standard deviation

reference (ground truth)

diagonal cut

Figure 5.12: Comparison of the stresses’ spatial distribution of the posterior mean and
standard deviation with the ground truth. In the bottom row the diagonal cuts from
(0, 0) to (50, 50) of the posterior mean and credibility intervals are shown. The first
column refers to σ11, the middle column to σ22 and on the right to σ12 stresses. The
results are derived without a quantification of model error. 133



5.3 Numerical illustration

Figure 5.13: Point estimates of the precision v of the model error.

Mean of Ψ Ψ in Cut A-A’

Figure 5.14: Posterior mean of Ψ and mean with posterior quantiles (±3σ) along the
diagonal cut from (0, 0) to (20, 20), obtained with Gibbs sampling in the E-step.

VB (Equation (5.51)) compared to Gibbs sampling (Equation (F.13)). Even though
in both cases the difference between the stresses and the model predicted stresses
should be negligible for elements without model error, in the calculations with VB the
variances Σ̄σ,e, Σ̄Ψ,e,Σu,e produce a disagreement. Although in the calculation with
Gibbs sampling the samples also vary and show some variations, the latent variables are
also correlated (Figure 5.16). This results in a smaller Ξe, compared to VB. For VB,
this correlation is neglected by the mean-field-approximation, assuming independent
latent variables.

In Figure 5.16, for some selected elements e the posterior distribution and the corre-
lation of the stresses with the material parameter is shown. Elements belonging to the

134



Quantification of constitutive model error

stress σ11 stress σ22 stress σ12

mean

standard deviation

reference (ground truth)

diagonal cut

Figure 5.15: Comparison of the stresses’ spatial distribution of the posterior mean and
standard deviation with the ground truth. In the bottom row the diagonal cuts from
(0, 0) to (20, 20) of the posterior mean and credibility intervals are shown. The first
column refers to σ11, the middle column to σ22 and on the right to σ12 stresses. These
results are obtained with Gibbs sampling for the E-step.

135



5.3 Numerical illustration

stress σ11 stress σ22 stress σ12

e = 5, surrounding material

e = 85, inclusion with different material parameter

e = 510, model error

e = 589, model error

e = 700, surrounding material

Figure 5.16: Two-dimensional plot of the posterior samples for specified elements e.
In the first column the correlation of the stresses σ11,e to Ψe is shown. The same for
the stresses σ22,e and σ12,e in column two and three.
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Quantification of constitutive model error

surrounding tissue show some correlation between the stresses and the material param-
eter for a single element (e.g., e = [5, 700]). This correlation increases for elements in
the inclusion with a different true material parameters (e = 85). In contrast to that, for
elements where there is model error this correlation is not visible (e = [510, 589]). For
elements with model error, VB and Gibbs sampling identify the same point estimates
for ve (see Figure 5.3 and Figure 5.13). This can be explained by the fact that without
any correlation within the latent variables VB can correctly approximate the posterior.
Since the model error is correctly recognized, the latent variables such as stresses, dis-
placements and material parameters have higher variances and less correlation within
each other in those elements. In contrast to that, for elements with no model error
and a stronger correlation within the latent variables, VB does not correctly identify
the precision of the model error ve, as discussed in the previous paragraph.

In Figure 5.14, the posterior mean and the posterior statistics of Ψ, along the
diagonal cut from (0, 0) to (20, 20), are shown. Comparing these statistics with the
ones obtained with VB (Figure 5.4), differences in the variances are visible. As there
is also a measurement error with a resulting SNR = 104, we also expect variations
for elements without model error as shown in Figure 5.14. Finally, in Figure 5.15, the
derived posterior statistics of the stresses are shown. Besides minor fluctuations they
coincide to the results obtained with VB (Figure 5.6).

5.4 Summary

Most Bayesian strategies are deficient in quantifying model inadequacy. Therefore,
in most studies it is implicitly assumed that the model is perfect. In this chapter,
we introduced an effective quantification of model fidelity with an intrusive Bayesian
framework to quantify constitutive model error. Based on recent work [108], we opened
the classical black-box forward problem to assess the model fidelity in a physical context.
In addition, we added a consistent normalization term, which allows for more flexible
prior assumptions. We combined various model equations as well as further a priori
information in a joint prior. Moreover, a Variational Bayesian Expectation Maximization
scheme was used for computational efficiency.

For the employed examples from elastography, we showed that the material param-
eters, as well as model inadequacies, could be quantified. This is particularly important
as the material parameters for an assumed material model are used for non-invasive
medical diagnosis. Thus, identified model inadequacies are helpful for three reasons:
Firstly, for knowing that the inferred material parameters are not trustworthy and there-
fore should not be used for diagnosis. Secondly, identified model inadequacy can be
used as an indicator for a suspicious tissue. As biological tissues can also be identified by
their material model (compare Chapter 1 and specifically the degree of nonlinearity of
cancerous tissue), an identified model error, referring to an underlying different model,
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5.4 Summary

can be used as an indicator for a distrustful and maybe cancerous tissue. Thirdly,
deciding when an alternative model, with a different constitutive relation, needs to be
used.

The algorithm infers, apart from model parameters and model fidelity, additional
latent variables, e.g., stresses. Although the number of (auxiliary) variables increases,
compared to a classical black-box forward problem, it has a computational advantage.
Namely, that no forward problem needs to be solved, which is usually computationally
expensive. For future work, we propose to exploit this advantage in more detail and
to push the computational cost to new lower limits: As no forward model needs to be
solved, advanced, element-wise or block-wise solution strategies can be exploited.

For validation purposes, we also employed Gibbs sampling. It was shown that,
although the overall results coincide (e.g., mean values of the latent variables), differ-
ences were observed in the credibility intervals. This can be attributed to the mean-
field-assumption, which assumes that stresses, displacements and material parameters
are independent. Therefore, an interesting extension of the current work would be to
effectively quantify (local) correlations, e.g., by a band covariance matrix to attenuate
the mean field assumption.

Another possible extension of the developed framework is to expand it to nonlinear
material models. However, as the stress-strain relation is dependent on the strains more
advanced schemes become necessary. For example, inspired by existing approaches for
nonlinear finite element methods (Section 2.3.3), iterative models may be employed.
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Chapter 6

Discussion, Summary and Outlook

“ There are no routine statistical questions, only questionable statistical
routines.

”
Sir David R. Cox, 1924-today.

Summary

This thesis has successfully developed, implemented and verified a novel Bayesian
framework for large-scale nonlinear inverse problems. It has shown how limitations
of current algorithms, i.e., computationally-demanding forward models, the ’curse of
dimensionality’, capturing multimodality and quantifying model error can be addressed.
We have developed a novel Variational Bayesian (VB) framework and utilizing its con-
ceptual advantages (e.g., solving a computationally tractable optimization problem), we
demonstrated its ability to efficiently perform variational inference to provide approx-
imate inference. A novel dimensionality reduction method has been developed based
on a fully Bayesian formulation. The method identifies lower dimensional subspaces
where most of the posterior variance is concentrated. In order to adaptively identify
the cardinality of the reduced coordinates an information-theoretic criterion has been
proposed. The posterior approximations have been obtained with a limited number of
calls to the computationally expensive forward solver (in the considered examples fewer
than 35 forward calls for 2500 material parameters).

In addition, we have successfully extended the Variational Bayesian algorithm and
the novel dimensionality reduction to multimodal distributions by using a mixture of
Gaussians. More specifically, each of the mixture components can identify different
lower-dimensional substructures. This can be compared with existing frameworks that



also use VB with a mixture of Gaussians. Those frameworks are limited to very low-
dimensional examples with up to three latent variables and require data from multiple
experiments [93, 79, 94]. Recently, this approach has been extended to a problem
with six latent variables, as many as two mixture components and data from a single
experiment [109]. In contrast, we have shown that the developed framework with
the novel dimensionality reduction can be used to effectively and accurately quantify
multimodal posteriors for high-dimensional problems. This has been demonstrated on
examples with 2500 unknown latent material parameters and with data based on a single
experiment. The algorithms have been verified by importance sampling, which showed
that the approximations are trustworthy and the bias introduced by the approximations
is small and can efficiently be corrected (i.e., with very few forward model calls).

The quantification of constitutive model inadequacy has also been investigated in
this thesis. By opening the classical black-box forward problem, model fidelity can
be assessed in a physical context. Our approach is based on recent work [108] that
develops an intrusive algorithm by embedding the quantification of the model error in
a selected, phenomenological submodel. However, we included a consistent normal-
ization term within the framework, which allows for more flexible prior assumptions.
In addition, in comparison to the work in [100] that was limited to five latent vari-
ables, we solved high-dimensional problems with more than 25000 unknowns. Intrusive
approaches avoid several drawbacks of non-intrusive methods [46, 98], such as en-
tanglement with measurement noise, possible violations of physical constraints and
missing predictive capabilities [34]. The developed framework can also incorporate a
VB approximation, which has been compared, in this thesis, to outcomes of empiri-
cal methods. The comparison identified an important correlation between the latent
variables that is neglected by the structured mean-field approximation. This directs to
potential future research, which we will discuss presently, in the outlook.

Finally, we have shown that uncertainty quantification can also successfully be ap-
plied for large-scale engineering applications. The framework developed in this thesis is
generally applicable but in this thesis has been specifically applied to static, nonlinear
elastography. For this application, the importance of statistical inference was shown. A
lack of knowledge regarding the underlying uncertainties results in inaccurate informa-
tion and overconfident conclusions. This is particularly misleading when the posterior
distribution is not unimodal and sharply peaked, e.g., a multimodal probability distri-
bution. The analyst or medical practitioner can use this information to draw a precise,
patient-specific and non-invasive diagnosis. The importance of probabilistic elastogra-
phy is particularly manifested in the boundaries of the inclusions (tumors) [210, 211].
The inclusions and their specific effect on the diagnostic results can be better classified
with statistical inference.
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Outlook

By solving some of the main issues of statistical inference for high-dimensional problems,
we have opened up some additional interesting investigations, questions and ideas.
These may serve as possible and prosperous directions of future work with the potential
to impact multiple applications:

• The examples in this thesis are based on nonlinear (quasi-)static elastography.
An interesting next step would be to include viscoelastic materials. It has been
found that pathological changes, e.g., in cancerous breast tumors also affect the
viscous properties, in particular the attenuation of the tissue [224]. To solve a
linear viscoelastic elastography problem, the forward problem can be formulated
with Fourier transformations in the frequency domain for steady-state (time-
harmonic) vibrations [225]. Then the derived probabilistic methods do not need to
be adjusted. However, as soon as nonlinear viscoelastic material models are used,
or a non-harmonic deformation is applied, the system becomes more complex and
additional adjustments are required [226].

• Within this thesis, the measurement noise is assumed to be white Gaussian noise.
This is a valid assumption based on the central limit theorem, as long as the num-
ber of different sources of measurement errors is large enough [85]. Measurement
errors can have several origins, e.g., experimental errors such as human error, mis-
takes in the data entries, or fault in the design of the experiment. However, in
strain-based elastography the (ultrasound) images are registered to derive the
deformation map. This may introduce not only significant but also systematic
errors that do not coincide with the assumption of Gaussian measurement noise.
Salt-and-pepper noises are common in images as well [170]. The issue of incor-
rectly identified measurement errors can be resolved by extending the research in
the thesis as follows:

– Adjustments of the prior assumptions, e.g., block prior probabilities for salt-
and-pepper-noise [227].

– Quantifying the uncertainties in the (ultrasound) image itself [228].

– Quantifying the uncertainties within the image registration process [110,
111, 114, 112, 113].

– Reduction of the measurement errors by circumventing an image registration
and by using the images directly as measurements [229].

• In the previous chapter the quantification of model inadequacy in an intrusive
framework was been developed. This can be used as a foundation for various
future research directions:
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– By quantifying the model error with Variational Bayes, we have observed
that the outcome using the mean-field approximation of independent latent
variables is ambitious. An interesting extension of the current work would be
to effectively quantify local correlations, e.g., by a band covariance matrix
to attenuate the mean field assumption.

– The big advantage of not solving a forward problem should be exploited in
more detail. An advanced, element-wise, local solution strategy decreases
the scaling of computational cost with regard to the number of elements.
This results in an effective algorithm for high-dimensional inverse problems.

– The two main approaches in the thesis could be combined. This would
lead to a model error quantification as well as a dimensionality reduction
for each group of latent variables (displacements, stresses and material
parameters). Their lower-dimensional subspaces could be identified by the
proposed, incremental, iterative algorithm.

• On a medium-term, it is also essential to verify and validate the presented meth-
ods with experimental data and clinical studies. For a verification, the specifi-
cation and quality of the novel elastography approaches need to be evaluated.
Although several aspects of clinically relevant problems are already captured in
the investigated numerical methods, working with real data may add additional
difficulties for which adjustments might be necessary. The measurement errors
may be non-Gaussian and have strong outliers or systematic behavior. Alter-
natively, the assumed boundary conditions may be incorrect. Besides verifying
the methods, validation is also of interest. To validate possible applications, it
is important to adapt results for the applicant such that the information of the
outcome is in accordance with the application. For instance, when showing the
results of elastography, ambiguous results should be avoided.

The presented suggestions are only a few of many potential, future research op-
portunities that are directed to the field of Bayesian inference and its application in
elastography. An even more important extension of this thesis are the many practical
applications of the developed framework (see introduction). The results of this the-
sis hopefully broaden the scientific field and encourage further research on Bayesian
variational inference applications.

On a final note, the application of elastography is also a good example to show that
not only the way of answering but also of posing (engineering) questions is important.
In my opinion, questions and answers are often posed too simply. Instead of asking
and answering questions as a dichotomist, for which only two possible answers, namely
’yes’ and ’no’ exist, more specific questions are advisable. In real life, a measure of
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uncertainty reflects a finer nuanciated attitude of life and its complexities. Not only the
way of how to solve problems, but particularly the way of how to pose a question needs
to be adjusted in my mind. Instead of asking ’Do I have cancer?’ when ultrasound
images are taken, it should be ’What is the probability for me having cancer?’. Although
the question itself barely changes, it describes a different attitude. A patient can react
to the second question in a significantly more nuanced form. If the answer is ’the
percentage of not having cancer is 90%’, the patient has room for deciding if he or she
wants actions to follow the 90% or the 10% regime. Possible actions when focusing
on the 10% regime could be further investigations, such as a biopsy, more medical
examinations or a therapy which otherwise would be missed. Such an involvement of
the patient in the decision making process would not be possible when the answer is
simply ’yes, you are healthy and you have no cancer’. In this context, elastography
with uncertainty quantification helps to give more accurate uncertain answers.
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Appendix A

Expectation-maximization for the
µ-prior

Due to the analytical unavailability of log pµ(µ) and its derivatives ∂ log pµ(µ)

∂µ
we employ

an Expectation-Maximization scheme which we describe in here for completeness [187,
135]. Proceeding as in Equation (3.8), i.e., by making use of Jensen’s inequality and
an arbitrary distribution q(Ξ) we can bound log pµ(µ) as follows:

log pµ(µ) = log
∫
p(µ|Ξ) p(Ξ) dΞ

= log
∫ p(µ|Ξ)p(Ξ)

q(Ξ)
q(Ξ) dΞ

≥
∫
q(Ξ) log p(µ|Ξ)p(Ξ)

q(Ξ)
dΞ

=< log p(µ|Ξ) >q(Ξ) + < log p(Ξ)
q(Ξ)

>q(Ξ) .

(A.1)

The inequality above becomes an equality only when q(Ξ) ≡ p(Ξ|µ), i.e., it is the
actual posterior on Ξ given µ. The latter can be readily established from Equations
(3.21) and (3.23) based on which p(Ξ|µ) =

∏dL
m=1 Gamma(aξm , bξm) where:

aξm = aξ +
1

2
, bξm = bξ +

1

2
(µkm − µlm)2. (A.2)

This suggests a two-step procedure for computing log pµ(µ) and ∂ log pµ(µ)

∂µ
for each µ:

(E-step) Find p(Ξ|µ) =
∏dL

m=1Gamma(aξm , bξm) from Equation (A.2).

(M-step) Find log pµ(µ) and ∂ log pµ(µ)

∂µ
from Equation (A.1) for q(Ξ) ≡ p(Ξ|µ)

as follows:

log pµ(µ) =< log p(µ|Ξ) >q(Ξ)= −1
2
µTLT < Ξ > Lµ

∂ log pµ(µ)

∂µ
= ∂

∂µ
< log p(µ|Ξ) >q(Ξ)

=< ∂
∂µ

log p(µ|Ξ) >q(Ξ)

= −LT < Ξ > Lµ,

(A.3)



where < Ξ >=< diag(ξm) >q(Ξ)= diag(
aξm
bξm

).

146



Appendix B

Variational lower bound for MoG

The lower bound from Equation (4.23) combined with the optimal probability distribu-
tions qopt, Equation (4.24), is:

F̂(qopt(Θ,η, τ, s),T ) = dy
2
< log τ >τ (< log p(ŷ|s,Θ,η, τ,T ) >q)

−<τ>τ
2

∑
s q

opt(s)||ŷ − y(µs)||2
−<τ>τ

2

∑
s q

opt(s)W T
sG

T
sGsW s :< ΘΘT >Θ|s

−<τ>τ
2

∑
s q

opt(s)GT
sGs :< ηηT >η|s

+
∑

s q
opt(s) log 1

S
(< log ps(s) >q)

+(a0 − 1) < log τ >τ−b0 < τ >τ (< log pτ (τ) >τ)
+
∑

s q
opt(s)(1

2
log |Λ0,s|−1

2
Λ0 :< ΘΘT >Θ|s) (< log pΘ(Θ|s) >q)

+
∑

s q
opt(s)(dΨ

2
log λ0,η,s−λ0,η,s

2
I :< ηηT >η|s) (< log pη(η|s) >q)

−
∑

s q
opt(s)1

2
log |Λs| (− < log qopt(Θ|s) >q)

−
∑

s q
opt(s)dΨ

2
log λη,s (− < log qopt(η|s) >q)

−
∑

s q
opt(s) log qopt(s) (− < log qopt(s) >s)

−(a− 1) < log τ >τ+b < τ >τ + logZ(a, b), (− < log qopt(τ) >τ)
(B.1)

where Z(a, b) = Γ(a)
ba

is the normalization constant of a Gamma distribution with
parameters a, b.

Certain terms become constants and can be neglected. By reformulating, we can
derive (see also Equation (4.27), Equation (4.25), Equation (4.26)):

((a0 − 1) +
dy
2
− (a− 1)) < log τ >τ = (a0 +

dy
2
− a) < log τ >τ= 0, (B.2)

−1
2

∑
s q

opt(s)((< τ >τ W
T
sG

T
sGsW s + Λ0) :< ΘΘT >Θ|s)

= −1
2

∑
s q

opt(s)Λs : Λ−1
s

= −dΨ

2
,

(B.3)



−1
2

∑
s q

opt(s)(< τ >τ G
T
sGs :< ηηT >η|s +λ0,η,sI :< ηηT >η|s)

= −1
2

∑
s q

opt(s)λη,sλ
−1
η,sdΨ,

= −dΨ

2
.

(B.4)

−b0 < τ >τ +b < τ >τ + logZ(a, b)

= −b0 < τ >τ +ba
b

+ log(Γ(a)
ba

)
= −b0 < τ >τ +a+ log(Γ(a))− a log(b)
= −b0 < τ >τ +a+ log(Γ(a))− a log( a

<τ>τ
)

= −b0 < τ >τ +a+ log(Γ(a))− a log(a) + a log(< τ >τ )
∝ a log(< τ >τ ),

(B.5)

as a from Equation (4.27) is constant, b0 = 0 and < τ >τ=
a
b
.

Therefore, Equation (B.1) becomes (neglecting constant terms and including Equa-
tion (4.28)):

F̂(qopt(Θ,η, τ, s),T ) =
∑

s q
opt(s)[−<τ>τ

2
||ŷ − y(µs)||2

+1
2

log |Λ0,s|
|Λs| + dΨ

2
log λ0,η,s

λη,s
− log qopt(s)]

+a log(< τ >τ ).

(B.6)
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Appendix C

Determination of required number
of basis vectors - Adaptive learning
for MoG

An important question is how many basis vectors inW j ∈ RdΨ×dΘ should be considered
for a mixture component j. We use an information-theoretic criterion Section 3.2.5
that measures the information gain of the approximated posterior to the prior beliefs.
Specifically, if pdΘ

(Θ|s) (Equation (4.10)) and qdΘ
(Θ|s) (Equation (4.24)) denote the

dΘ−dimensional prior and posterior for a given s = j, we define the quantity I(dΘ, s)
as follows:

I(dΘ, s) =
KL(pdΘ

(Θ|s)||qdΘ
(Θ|s))−KL(pdΘ−1(Θ|s)||qdΘ−1(Θ|s))

KL(pdΘ
(Θ|s)||qdΘ

(Θ|s))
, (C.1)

which measures the (relative) information gain from dΘ−1 to dΘ reduced coordinates.
When the information gain falls below a threshold Imax, we assume that the information
gain is marginal and the addition of reduced coordinates can be terminated. For all
mixture components we consider the same dΘ, chosen from the mixture component
that requires the largest dΘ. Therefore, dΘ is determined when the information gain
with respect to all mixture components falls below the threshold Imax, (in our examples
we use Imax = 1%):

max(I(dΘ, s = 1), I(dΘ, s = 2), ..., I(dΘ, s = S)) ≤ Imax. (C.2)

The KL divergence between the two Gaussians, pdΘ
(Θ|s) = N (0,Λ−1

0,s) and

qdΘ
(Θ|s) = N (0,Λ−1

s ), where Λ−1
0,s and Λ−1

s are diagonal, Equation (4.42), is given
by:

KL(pdΘ
(Θ|s)||qdΘ

(Θ|s)) =
1

2

dΘ∑
i=1

(− log(
λs,i
λ0,s,i

) +
λs,i
λ0,s,i

− 1), (C.3)



and (Equation (C.1)) becomes:

I(dΘ, s) =

∑dΘ

i=1(− log(
λs,i
λ0,s,i

) +
λs,i
λ0,s,i
− 1)−

∑dΘ−1
i=1 (− log(

λs,i
λ0,s,i

) +
λs,i
λ0,s,i
− 1)∑dΘ

i=1(− log(
λs,i
λ0,s,i

) +
λs,i
λ0,s,i
− 1)

.

(C.4)
Naturally, one could consider different values of dΘ for each mixture component which
could lead to additional savings.

150



Appendix D

Computational cost

formulary /costs costs

µ-update
Fµ(µ) : ∆yT∆y pµ(µ)

2dy -

Deriving µ: GTG ()−1() GT∆y GTGµ
2dyd

2
Ψ 2/3d3

Ψ 2dydΨ 2d2
Ψ 2dyd

2
Ψ + 2/3d3

Ψ

Forward call with derv.: Xd3
y Xd3

y

W-update
FW (W ) : W TGTGW : Λ−1

2d2
ΨdΘ + 2dΨdΘ + 2dΘ -

∂FW/∂W : GTGW : Λ−1

- -
Cayley-update: 4dΨd

2
Θ +O(d3

Θ) -

q-update Neglectible -

Table D.1: It is dΘ � dΨ. The major costs within each sup-iteration is listed in
the right column, if the order of dimensions is of power three. We do not consider
contributions from dΘ as it is much smaller than the other dimensions. Costs are only
listed if they arise within each sub-iteration. The cost for ∂FW/∂W occur either just
once and does not need to be recalculated within the next update, or the product of the
matrices have already been derived when calculating FW (W ). The computational cost
for the forward call including the derivation of the derivatives depend on the application
(e.g., if a linear or nonlinear system (which then may be solved iteratively) is included).
Therefore, the cost are indicated with an estimate of Xd3

y, where X is a factor which
depends on the specific system.
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Appendix E

Numerical implementation

The numerical implementation of the main solver has been build in C++, based on
the ’boost’-library [230].

The finite element simulations for the forward simulations y(Ψ) and the derivatives
∂y
∂Ψ

are conducted with the freely available finite element software for biomechanics
’FEBio’ [231] (release version 1.6.1). The C++ software has been developed by the
Musculoskeletal Research Laboratory at the University of Utah (USA) and is a nonlinear
finite element solver, specified for biomechanics and biophysics. Different material
models are available, such as in solid mechanics: Neo-Hookean, Mooney-Rivlin, Odgen
or the Veronda-Westmann model. Graduate students of the Continuum Mechanics
group at the TUM extended FEBio with regard to derivatives ∂y

∂Ψ
for the purpose of

this thesis accordingly.
The FEBio code is used as a black box which interacts iteratively with the main

solver. The strict separation between the new developed and implemented methods
and the applications underlies the fast possible adaption for other requests.
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Appendix F

Verification with Gibbs sampling

E-step - Gibbs Sampling

To derive expectations with regard to the posterior we carry out Gibbs sampling with
respect to each of the components of Υ, i.e., y,Ψ,σ,H . This requires conditional
distributions of the parameters, using the other conditionally sampled parameters of
Υ(i), where the superscript i denotes the specific sample, i = 1 : N :

• For p(y |σ,Ψ) = N (µy,Λ
−1
y )

Λy =
∑dFE

e=1 veΨ
(i)
e Ψ

(i)
e L

T
y,eB

T
y,eD̃

T
D̃By,eLy,e + τIdy , (F.1)

µy = Λ−1
y [
∑dFE

e=1 veΨ
(i)
e L

T
y,eB

T
y,eD̃

T
(σ

(i)
e −Ψ

(i)
e D̃Bb,eub,e) + τ ŷ]. (F.2)

y(i) can then be sampled from N (µy,Λ
−1
y ).

• For p(Ψ |v,σ,y,H) = N (µ̄Ψ, Λ̄
−1
Ψ )

For the material parameters the conditional probability distributions follow with:

ΛΨ,e = ve(By,ey
(i)
e +Bb,eub,e)

TD̃
T

e D̃e(By,ey
(i)
e +Bb,eub,e), (F.3)

and
ΛΨ,eµΨ,e = ve(By,ey

(i)
e +Bb,eub,e)D̃

T

e σ
(i)
e . (F.4)

Including a smoothing prior, compare Equation (5.20), the variance and mean
result in:

Λ̄Ψ = ΛΨ + (LTΨH
(i)LΨ), (F.5)

and

µ̄Ψ = Λ̄
−1
Ψ (ΛΨµΨ). (F.6)

Ψ(i) is sampled from N (µ̄Ψ, Λ̄
−1
Ψ ).



• For p(H |Ψ) =
∏dL

l=1Gamma(ah,l, bh,l)
When including a smoothing prior the hyperparameters hl, conditional on the
other parameters, follow a Gamma distribution Gamma(ah,l, bh,l) with

ah,l = ah,0 +
1

2
, (F.7)

bh,l = bh,0 +
1

2
(Ψ

(i)
l,1 −Ψ

(i)
l,2)2. (F.8)

h
(i)
l is sampled from Gamma(ah,l, bh,l) for all l which results in H(i).

• For p(σ |V ,Ψ,y) = N (µ̄σ, Λ̄
−1
σ )

Λσ,e = veIdSe , (F.9)

Λσ,eµσ,e = veΨ
(i)
e D̃e(By,ey

(i)
e +Bb,eub,e). (F.10)

Including the prior information of the equilibrium constrain the updated condi-
tional distributions follow with:

Λ̄σ = kB̂B̂
T

+ Λσ, (F.11)

µ̄σ = Λ̄
−1
σ (kB̂f + Λσµσ). (F.12)

Then σ(i) is sampled from N (µ̄σ, Λ̄
−1
σ ).

M-step - Deriving v

The update equations follow Section 5.2.1, only for Equation (5.51) the required ex-
pectation is derived by: where Ξe, the expectation, can be derived from the Gibbs
samples by

Ξe =< ||σe −ΨeD̃e(By,eye +Bb,eub,e)||2 >q

= 1
N

∑N
i=1 ||σ

(i)
e −Ψ

(i)
e D̃e(By,ey

(i)
e +Bb,eub,e)||2.

(F.13)
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Appendix G

Approximation of normalization
constant

In Figure G.1, for two exemplary finite elements the evolution of the derivaties
−∂ log Z(v)

∂ve
(Equation (5.66)) over the number of iterations is shown. One of the

selected elements, e = 85, has no and the other element has model error, e = 549. In
the figure, it is exemplarily shown that the evolution of −∂ log Z(v)

∂ve
coincides with 3

2ve
.

Element 85 Element 549

Figure G.1: Evolution of−∂ log Z(v)
∂ve

in comparison with 3
2ve

, for the elements 85 (without
model error) and 549 (with model error).

In Figure G.2, in addition to the expected values, we show −1
2
||σ(ii)

z,e −
Ψ

(ii)
z,e D̃e(Bb,eub,e + By,ey

(ii)
z,e )||2 over the number of samples. Furthermore, the er-

godic mean of the samples (in red), the derived expectation (in blue) as well as the
estimated normalization constant of 3

2ve
is shown.



Element 85 Element 549

Figure G.2: Development of −∂ logZ(v)
∂ve

over the number of iteration for the elements

85 and 549. This is compared to 3
2ve

, which coincides.

We also run examples where v is not derived as discussed but with the assumption
of −∂ logZ(v)

∂ve
= 3

2ve
. In the resulting outcome, we could not observe any differences.

However, since we were not able to prove this relation mathematically, we recommend
to start with 3

2ve
at the beginning. Then, at the end of the simulations Gibbs sampling

should be employed to ensure convergence to the correct result. This has, besides
the advantage that Gibbs-sampling for −∂ logZ(v)

∂ve
is not required, also the advantage

that under the assumption of −∂ logZ(v)
∂ve

= 3
2ve

the perfect step-size for updating ve is
available. This accelerates in addition the overall simulation.
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