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Given a large-scale nonlinear control system of the form

[ Ex(t) = f(x(1)) + Bu(t),
= { y(t) = Cx(t), x(0)=x0

det(E) # 0 x(t) € R"

with E € R™™, £(x(¢)) : R® —» R" and B € R"™™ C e RI*"

Simulation, design, control and optimization cannot be done efficiently!

MOR

Reduced order model (ROM) ~

[ Exx(t) = £.(x.(1)) + Bru(t),
- { yr(t) = Crx, (1), x.(0)= Xr,0

x-(t) eR", r<n

Goal:
with E, € R™" £.(x.(t)) : R" = R"and B, € R"™*™, C, € R7*" [ yvr(t) ~ Y(t)J
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Challenges of Nonlinear Model Order Reduction

Nonlinear systems can exhibit complex behaviours
« Strong nonlinearities
* Multiple equilibrium points
* Limit cycles
« Chaotic behaviours

Input-output behaviour of nonlinear systems cannot be described with transfer functions,
the state-transition matrix or the convolution integral (only possible for special cases)

Choice of the reduced order basis Expensive evaluation of f(Vx,)
* Projection basis should comprise most » Vector of nonlinearities f still has to be
dominant directions of the state-space evaluated in full dimension
« Different existing approaches: * Approximation of f by so-called hyper-
» Simulation-based methods reduction techniques:
= System-theoretic techniques - EIM, DEIM, GNAT, ECSW...
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State-of-the-Art: O '
ale-or-tne-Art. overview

Reduction of nonlinear (parametric) systems
Ex = f(x) + bu
Yy = cl'x
& Simulation-based:
= POD, TPWL

» Reduced Basis, Empirical Gramians

Reduction of bilinear systems Reduction of quadratic-bilinear systems
Ex = Ax + Nxu + bu Ex = Ax + H(x ® x) + Nxu + bu
Y = cT'x Yy = c'x
& Carleman bilinearization (approx.) & Quadratic-bilinearization (no approx.!)
Large increase of dimension: n + n? & Minor increase of dimension: 2n, 3n
~ Generalization of well-known methods: " Generalization of well-known methods:
» Balanced truncation = Krylov subspace methods
= Krylov subspace methods = Hy-optimal approaches
= Hs (pseudo)-optimal approaches 0 Reduction methods for MIMO models
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Quadratic-Bilinearization Process

SISO Quadratic-bilinear system:

E X = A X + H XXX + N Xu -+ U

T _ .
y=Le Jx Quadratic States-input
terms of x coupling
E, A NcR""
H < R™*"": Hessian tensor
b,c € R"

Objective: Bring general nonlinear systems to the quadratic-bilinear (QB) form

c Polynomialization: Convert nonlinear system into an equivalent polynomial system

e Quadratic-bilinearization: Convert the polynomial system into a QBDAE
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Quadratic-Bilinearization Process — Example

v (ic = Cv
‘D | | . . . _ .
| | o+t +1p =1 with < m_}_ﬁ

iDZGQU—l

v

A\ 4

-

Y 1 U xv .
Nonlinear ODE: v = (———e +1+z)

ic I C\ R
] i
Polynomialization step: Introduce new variable
i and its Lie derivative

1 v :
$ =g (g -w+)
i w = (ae*”)v
« vw

——(—wQeriEer’i)
C\ R R
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Quadratic-Bilinearization Process — Example

e Quadratic-bilinearization step: Convert polynomial system into a QBDAE

C\ R
w—g(—%—wz—sz———w—kz)
-~ C\ R R o
V2
D S 1
[1 0] U]:[ RC c {fu]_i_{ﬂ 0(1 0 00[ vw +[O g] v] P g] ;
0 1| |w —Re —ol W 0 —56 0 —5&] [vw 0 & [w|~~ cl~
—— =~ ™ ~ NN ~- “ 2| =
E x A X H Nl N x b
XXX

Dimension slightly

Equivalent representation :
increased

Transformation not unique

The matrix H can be seen as a tensor
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Variational Analysis of Nonlinear Systems |
[Rugh '81]

Assumption: Nonlinear system can be broken down into a series of homogeneous subsystems
that depend nonlinearly from each other (Volterra theory)
For an input of the form aw(t), we assume that the response should be of the form

x(t) = axq(t) + a®xa(t) + a’x3(t) + . ..

Inserting the assumed input and response in the QB system and comparing coefficients of o,
we obtain the variational equations:

E}'Cl = AX1 S bu
Exs = Axo + Hx; ® x1 + Nxju
E).C3 = AX3 +H(X1 X X2 + X2 & Xl) + NXQ’LL

k—1
Ex;. = Ax; + Z H(x; ® x—;) + Nxx_1u, k=4,5,6,...
i=1
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Generalized Transfer Functions (SISO) Rugh ‘811

Series of generalized transfer functions can be obtained via the growing exponential approach:

15t subsystem: A;, = A—s5E
G1 (81) = —CT(A — SlE)_lb = —CTAs_llb

2"d subsystem:

1 —1

Ga(s1,82) = _ﬁcTAlerSQ HA;'b@ A 'b+ A '"b® A 'b) —N(A;'b+ A_'D)]

H is symmetric H(u® v) = H(v® u)

Ga(s1,52)

51+82

1
—c"A! [H(A;lb ® A, 'b) — 5N(A;}b + A;;b)]

S1=89=0

| & I ———

1
Go(o,0) = —cT Ay} [H(A;lb ® A 'b) — ENAglb]
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Moments of QB-Transfer Functions

2
Taylor coefficients of the transfer function: G(s) = G(so) + dG (%) (s — s0) + 1 &7G(%) (s —s0)+..
—— ds 2! ds?
1st subsystem: Gi(s1) =—c'(A—siE)"'b=—c"A_'b A, =A —sE
0 O0A
—A s )=—A 1A = ATIEACY
[ 88 S (S) S 88 S S S
9G1 _ —c’A'EA'D
881 1 1
1
2nd subsystem: Ga(sy, s2) = —§cTA311+52 [H(As—llb ® As_zlb + As_zlb ® As_llb) — N(As_llb + As}lb)]

&3 aa—ff =—c’A;, EA;' H[A;'b® A_'b]
— _ —1 —
—cTA  HAT'EA 'b® A 'b]
1
+-c"A L EAL N[A'b+ A D]

2 S1+82 51+s2
1 T A —1 -1 —1
+ 53¢ AL, NIAEA D)
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Krylov subspaces for SISO systems

Multimoments approach [Gu 11, Breiten '12]:

span(V) = span(Vii,) U span(Vy,) Uspan(Vy)

span(V) D span,—; _j, {A; b, A, NA b,

A H(A '@ A D)}

span(W) D span;_; _x {Az, ¢, A5, NTA; c,

A;TH® (A;b® AzTe) |

G1(0;) = G1,-(04) G1(20:) = G1,r(20;)

iGrQ(O'@, O'g;) = iGQ,r(Uiu O"i)

G3(0i,04) = Ga,r(0i, 07) Ds; 0s;

* Quadratic and bilinear dynamics are treated
separately

» Higher-order moments can be matched

» 3 Krylov directions per shift

TUT

A—so = A—S()E

Hermite approach [Breiten '15]:

span(V) = Span(vlin) U Spa‘n(vqb)

span(V) D span;_; {A] "D,
Ay [HA;'"b®@A;'b) —NA,'b]}

span(W) D span;_; {A.;JTC,

1
A2_UT H(z) (Aglb @ A2_0'TC) _ iNTAZ_UTC] }

Gl(o—i) = Gl’r(o—i) G1(20'7;) = GLT(QO};)

3] 0
Ga(0;,04) = Ga (04, 0;) ng(Uuai) = ng,r(Uuai)
j j

* Quadratic and bilinear dynamics are treated
as one

* Only Oth and 1st moments can be matched

« 2 Krylov directions per shift
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Numerical Examples: SISO RC-Ladder

SISO RC-Ladder model:
D

1
| I |

1 . [ | I
) I - { j 1 |
i 0008 [
?/ |
_ _ _ _ > 0.006 |-
e | e I 0.004 |-
e— _— = _— |

Nonlinearity: g(z) =% + 2 —1
Input/Output: u(t) =e”

Reduction information:
n = 1000; Shifts sg gotten from IRKA

tsim,orig = 17.6 s

T'her = 12
tsim,her =0.116 s

3 P EA

multi = 18
tsirn,nlulti =0.122 s

0.014
Full-order
0.012 =/ Hermite | _|
[ Multi
POD
0.01
0.002 [~
0 I I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Time (s)
104 E \ T
£ —_ —_— Hermite
i Multi ]
100 5 POD |7
|
6L
107 E
5
5
2 107
© f
° x
4 H
1078 2
100
10_10 | | |
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Time (s)
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Numerical Examples: SISO RC-Ladder

0.02

SISO RC-Ladder model:

0.016 -

DHF Db DD |

T T T T T T T T T —]
1 [_II—I I:I— : [ ] I 0.012 B
) L I L S | N\
(] = 001 \ 7
> y
J— J— J— J— 0.008 | i
0.006 [~ Full-order | |
| | . Hermite
= = = = = — = 0.004 1= /. Multi 7
' POD |

0.002 [» | | | | ) 1 | | | |

1 1 . — 40z 00 1 2 3 4 5 6 7 8 9 10
Nonlinearity: g(z) =e** +x —1 N

Input/Output: u(t) = 1/2[cos (2mt/10) + 1] )

y(t) = v1(t) -

Reduction information: “ ! =

n =1000; Shifts sy gotten from IRKA |

gm'e rl /\ NN' W \ s HWWWWWWM

tsim,orig = 25.95s w7} ~ \ | ‘ W

T'her = 12 T'multi = 18 10-8
tsim,her = 0.468 s tsim,multi = 0.788 s e Time () ) ' : ’ !
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MIMO quadratic-bilinear systems

MIMO Quadratic-bilinear system:

m
E x =| A x + H X®X + Zijuj+Bu
j=1
y=| C X One bilinear matrix
for each input

E,A,N, € R""
H < R™*"": Hessian tensor

B c R"™™ C ¢ RP*" _

Ex=Ax + Hx®x) + Nu®x) + Bu

y=Cx
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Transfer matrices of a MIMO QB system

Generalized transfer matrices can be obtained similarly via the growing exponential approach:

1st subsystem: A, =A—sE
Gi(s1)=—-C(A -s;E)"'B=-CA_'B
2"d subsystem:

H(A;'BRA,;'B+A_'BoA,'B)-N(,® (A'B+A_'B))]

Gs(o,0) = —CA,} [HA;'B® A, 'B) — N (I,, ® A;'B)]
Transfer matrices with The quadratic term cannot
Fan(C () = (70 be simplified
dim(Ga(s1, s2)) = (p, m?) HU®V) # H(V®U)]
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Moments of QB-Transfer Matrices

1st subsystem: Gi(s1) = —C(A —s;E)"'B=-CA_'B A, =A—sE
0 OA
— ATl ()= —-ATT==AT = ATIEAT
[ 65 S (S) S 88 S S S
Gy A -1
— _CA_'EA'B
381 51 51

1 )
2"d subsystem: Ga(si,s2) = —5CALL,, [HA B2 ALB + ASIB® AT'B) - N(I,, © (A B+ A7'B))]

G
L O (0,0) =~ CA;)BA;H(A,'B o A, 'B)
1
1

—-CA;JH(AJ'EA,'BRA'B + AJ'BR AJ'EA_'B)

-1 —1IN -1
This term cannot T A BA, NI © A; ' B)
be simplified + %CAQ—;N(Im ® A;'EA,'B)

[H(U@V)#H(V@U)
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Block-Multimoments approach (MIMO)

Algorithm 1 QB Multimoment Matching (MIMO)

Input: E, A, H, N, B, C, shift ¢, reduced order of first transfer function ¢
and of the second transfer function gs

 va,

Output: Projection matrices V, W Bl (o) = 3"‘{?1_1,1" (o), i=0,...,q1— 1
1: Vi =K, (A;'E,A'B : i i
L =Fal —T@T —:)r T linear OG1 9y = FCir (9. i=0,...,q—1
22 Wy =K, (A5, E* A, C") 0s! dst
S 1. it it
3: forz.—l.qg do ) | aiJjGQ(g,0)= aiijg,T(cr,cr), i+ 7 <2 —1
4 Vi=Kgp-it1 (AL E AN, ® (AJIE)1ASIB)) \ 05152 s} )
5. Wh =K i1 (A;TET, A;"NO(T, @ (A3,E)"'A; B)) bilinear
6: forj=1:min(qx—7+1,i) do
i -1 -1 - i—1 A — — i—1 A —
T Véj_ Ka,—i+1 (A2cr E, AQJH((AJIE)/L lAa‘lB ® (AJIE)j IA'(TIB)) quadratic
8: Wil =Ky, ir1 (A;TET, A;THO ((ASTE) A B ® (A5, E) 1A 'B))
9: end for
10: end for

11: span(V) = span(Vy) U [Jspan(V})

U |Jspan(V57)

Z-J

12: span(W) = span(Wp) U [Jspan(W5)u |J Spaﬂ(Wé’j)

1,7

span(V) = span(Vii,) U span(Vy,) Uspan(Vy)
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Krylov subspaces for MIMO systems

ASO = A — S()E
Block tensor-based approach:

span(V) D span;_; {A;}B, A;:EA;}B, e (A;ilE)mA;ilB,
Ay, [HA;'B®A.'B) - N(I,, ® AJ'B)|}
span(W) D span;_; {A%{CT, A THO(A'Be A TCT),

A;TNOI, & A;CE:CT)}

0'G, 0'Gy.,

54 (0;) = W(a@-) 1=0,...,m « Subsystem interpolation

 (m+1) + 4 moments matched

0G, .. _ * (M+1)'m + m2=m + 2m?
~(0i,04) = —(0i,04) j=1,2 columns per shift
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Krylov subspaces for MIMO systems

ASO:A—S()E
tensor-based approach:
span(V) D span,_; _ , {A7'Br,, AZTEAZ!Br,..., (A7 E)"AZ'Br),
Az, [H(AZBr; ® AZ'Br;) — N(r; ® A 'Br;)| }
span(W) D span,_, . { Az CT1, A;TH®) (A B © A3 CT1,),
8EG1 . . 6‘5G1,T . 1= 0 * sub-
dst (03)| xs = Os! (03) — “hespiit system interpolation

(G1(20:)] = |} [G1,r(203)]
(G2(0i,04)] (ri @ 1) = [Ga,r(0i,04)] (ri @ 1))

[%(;2(0@,0@)}( ®r;) = laij’r(ai,ai)]( ®r) j=1,2

* (m+1) + 4 moments
matched

* 3 columns per shift
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Numerical Examples: MIMO RC-Ladder

MIMO RC-Ladder model:
2 N —1 E | N o
Nonlinearity: g(z) =% + 2 —1 S
Inputs/Outputs: u(t) = sin(2¢t) - [1 1]7 e //
_ 109 F 1 10t SN N
y(t) = [v1(t) vw_1n]7 # q/ i
Reduction information: ) /v( \[ | v by
n =800; Shifts sy gotten from IRKA ” m M . m-w”
tsim,orig =174s 10° 10::
Tblock = 30 Ttang = 21 0% i 2 3 4 o : 2 3 4
tsim,block = 0.232 s tsim,tang = 0.109 s e e
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Numerical Examples: FitzHugh-Nagumo

v , 0%

e (@) = € o5 (2,1) + f(u(z, 1)) — wiz,t) + g
0 1) = hu(a, £) ~ yu(a, 1) + g
FOM .
Nonlinearity: f(v) =v(v—0.1)(1 —v) . Tangential
10443, —15¢

Inputs: u(t) = {5 10 i ¢ } 0.15 -

2 01
Reduction information: g
n=1500; Shifts sy gotten from IRKA

tsim,orig =518 s

T'tang = 15

tsim._ta.ng = 0.631 s

v(x,t) 05 0

x(t)
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Summary:
« Many smooth nonlinear systems can be equivalently transformed into QB systems

* QB systems can be described by generalized transfer functions
« Systems theory and Krylov subspaces for SISO QB systems
« Systems theory for MIMO QB systems

* Krylov subspaces were extended to MIMO case

Conclusions:

« Transfer matrices make Krylov subspace methods more complicated in MIMO case
« Tangential directions: good option

« Choice of shifts and tangential directions plays an important role
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Outlook

Next steps:

« Optimal choice of shifts
= Comparison with T-QB-IRKA
= Shifts gotten from T-QB-IRKA

« Stability preserving methods

» Other benchmark models
= Nonlinear heat transfer
» Electrostatic beam
= Navier-Stokes equation

Thank you for your attention!
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Projective Model Order Reduction

: : . W L e
Assumption: State trajectory x(¢) does not transit all

T,  _
regions of the state-space equally often, but mainly Whe=
stays in a subspace of lower dimension

Approximation in the subspace V = span(EV)

x =V x, +e, VeR" ‘F
EV r

Procedure:
1. Replace x by its approximation

2. Reduce the number of equations (via projection with II = EV(W7TEV) " 'W7)
3. Petrov-Galerkin condition

E, f.(x;) B.
Wl E V x, = W f(Vx,) + W' B u
Yr — C V x,
C.

Maria Cruz Varona | MOR of MIMO QB Systems 25
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Tensors

Definition:

Matricizations:

/////

/////
i Al el A
_________________
/////

e [

B S et

i

Three-dimensional figure

Maria Cruz Varona | MOR of MIMO QB Systems

/////
/////
/////
/////
/////
/////

1-mode: layers are put
side by side

2-mode: transposed
layers are put side by
side

3-mode: fibers on the
depth are put side by
side

26
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Matricization example

I T
1 2 3 10 11 12 I
%(:,:,l) =14 5 6 H(:,:,Q) = |13 14 15 '"*E'"E*'";'"':
78 9 16 17 18 RERmAmE
1 2 3 | 1-mode: layers
HY = (4 5 6 are put side by
7 8 9 EERRNI side
147 ' 2-mode:
H® 2 5 8 | —— 1 transposed
3 6 9 B side by side
1 3-mode: fibers
H®) = 10 B ] on the depth
7777777777777 side by side

Maria Cruz Varona | MOR of MIMO QB Systems 27
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Kronecker product

Definition:

_a,llB algB
CL21B GQQB

amlB CLmQB

Most used:
- 5 -
L2

XXX = L3X1

Maria Cruz Varona | MOR of MIMO QB Systems

alnB
aan

Ay B

u®x

Uiy
U2T1
u3zrq

UmLn

28
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Polynomialization Process

Algorithm 2.1 : Polynomialization procedure [20]

Data : X = [y, d9,. ..y, the list of symbolic expressions of the ODEs
Result : Y., the set of new variables; Y..,,. the set of expressions of the new

variables; X, the list of symbolic expressions of the polynomial ODEs.

1 begin

2 Initialize Yyar < {}, Yezpr < {}:

3 while there is in X at least one non-polynomial function of X or any of the variables
in Y yar do

4 Pick from X a nonlinear function g(x) that is not a polynomial tunction of x :

5 Define a new state variable v = g(x);

6 Add v into Y4, and g(x) into Y egp,;

7 Compute the symbolic expression of © = %5{:

8 Add the symbolic expression of © to X

9 In X, replace the occurrences of expressions in Y egzpr by corresponding variables

in Y y,ur:

Maria Cruz Varona | MOR of MIMO QB Systems
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o ™ (Typical diode I-V characteristic curve) [20]:
v=e" =1 =ae™ = av

o o1 [20]:

1 1 ‘
v = =1 "l_,r'F = —-—— _,UZ

z+k (z+ k)2

o 2% (Going from a monomial to quadratic expressions) [20]:

[at ’ a—1 —1
M =T = v = ar = a1 = v
1 1 1 102

o
m=z == —27?= v}

o In(z) [20]:
v = 111(:1?) = “L‘;l = ’1?_1 = 9
m=al=vh=—z2=_v]

o tan~!(kz) (Can represent a saturation curve):

_ k
m = tan 1(k’l‘) = 'Ufl = m
hv_/

v
k 2k3x

) = —Qkxvg

_ o= T
T2l 2T (ka2 1)

Maria Cruz Varona | MOR of MIMO QB Systems
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Polynomialization Process

/
1 v 0= (1) o= L _ = 3
:Ul — 1+U2 > ’Ul == (1—|—’U2) 102 — (1_|_,02)2 UQU]_ — _U]_/UQ
.1
L 1+e®
l Vg = e —— Uy = VT = VU
Ir = U1
L _ _ Equivalent
1:13 ’Ué representation
Xpol = |V1| = | —VU102
V9 U1V2

Maria Cruz Varona | MOR of MIMO QB Systems 31
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Quadratic-Bilinearization Process

Algorithm 2.2 : Quadratic-bilinearization procedure [20]

Data : X = [&1,&9,...2,], the list of symbolic expressions of the ODEs
Result : Y. the set of new variables: Y., the set of expressions of the new

variables; X, the list of symbolic expressions of the polynomial ODEs.

1 begin

2 Initialize Y yor < {}, Yezpr < {}:

3 while there is in X at least one nonlinear or non-quadratic term of x or any of the

variables in Y ;. do
4 Pick a monomial m(x) from X that has degree greater than 2;
5 Find a decomposition of m(x), i.c., find g(x) and h(x) that satisfy
m(x) = g(x) x h(x);

6 Define a new state variable v = g(x);

7 Add v into Y4 and g(x) into Y ,p,:

8 Compute the symbolic expression of © = ggx:

9 Add the symbolic expression of © to X;
10 for all monomials m(x) do
11 if m(x) is linear or quadratic in terms of x or any of the variables in Y ,qr

then

12 L Replace m(x) as a linear or quadratic term;
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EX,(t) = Ax(t) + bu(t) (2.68)
Exo(t) = Axa(t) + H(x1(£) @ X1 (t)) + Nxi (£)u(t) (2.69)

As the first subsystem is linear, its time response can be easily calculated by means of
o . -1 . .
the transition matrix ®(t) = elETAD a5 represented in the following:

o — 00— e

00 B 00
x1(8) = / eETANE- 1Lyt —o)do= [ ®(0)E'b-u(t — o) do
' $(a) £1(0)

= _/_OC f1(o) - u(t — o) do (2.70)

This result can be worked on in order to be inserted on the equation for the second
subsystem. Equation (2.71) shows the Kronecker product that is necessary.

x1(t) ® x1(8) :/ifl(o) ult — o) dm;c_/_zfl(a).u(t— o) do

:/_oc- /_oc f1(a1) @ £1(02) - u(t — o1)u(t — a2) dordoy (2.71)

Now, rearranging (2.69) and knowing that x,(¢) does not depend on x, (), one gets a
system which can be interpreted as linear on the input u*(t) = [u(t) 1]7, as rewritten
in the following:

Ex2(t) = Axa(t) + H(x1(¢) ® x1(t)) + Nx1(t)u(t) =

Exo(t) = Axo(t) + [NX1(t) H(x1(t) s:cm(t))] {u(f)] (2.72)
o 0l
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Hence, it is possible to proceed with it the same way as done with the first subsystem,
that is, calculating its time response by means of transition matrix and the results of
Equation (2.71).

xg(t):/ ETAV BB (o) u'(t - o) do

®(0)

= /_O:G'I’(U)E_l [H(x1(t) @ x1(t)) + Nx1 (H)u(t — 0)] do

_ /_C:tIl(J)E_l [H (/_O; /_O; £1(01) @ £1(02) - ult — o1)ult — o2) dc:rldarg>
AN (/OC £1(01) - u(t — o1) dol) u(t — 0)] do

— o0

- /_oo., /_00., /_oo_, ®(0)E~"H(f1(01) ® £1(02)) - u(t — o1)u(t — 02) dordoado

N /_z /_Z ®(0)ETINF (1) - ult — o1)u(t — o) doydo (2.73)
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Finally, one can define the second order kernel [32, §§3.4] as

fa(oq, 02) :®(02)E_1Nf1(a1)+/_00 ®(o)E~H(f1(01) @ f1(02))do  (2.74)

Such as the time response of the second order subsystem can be written as represented
in Equation (2.75) [32, §3.4].

Xa(t) = /0:0 fo:o fa(o1,02)u(t — o1)u(t — o2) doydos (2.75)

This procedure can be done with virtually all remaining subsystems of higher order, but
in this thesis, only the first two subsystems are of great importance.
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Projective Model Order Reduction

Ex = Ax + H(x ® x) + Nxu + bu

y:ch

A%
;. ' x ~ VX,

W 1 e
Wle = W?'. | EVx, = AVx, + H(Vx, ® Vx,) + NVx,u + bu +¢
yr = cl Vx,
E,.x, = A, x, + H.(x, ® x,,) + N, x,.u + b,u
Q T
f y?" — Cfr‘ X?"
T E, = WI'EV
EV A, = WTAV
H,=W'H(V®V)
N, = WINV
b, = W'b
C, = VTe

Maria Cruz Varona | MOR of MIMO QB Systems 38



Chair of Automatic Control
Department of Mechanical Engineering

Tech

nical University of Munich

TUT

Multimoments approach (SISO)

Algorithm 1 QB Multimoment Matching (SISO)

[Breiten '12]

Input: E, A, H, N, b, c, shift o, reduced order of first transfer function ¢,

and of the second transfer function g

Output: Projection matrices V, W

10:
11:

12:

1
2
3
4
5:
6
7
8
9

ame

(o) = L1 o)
aSi - asi ? IR

d'Gy _ 9Gy, -

3521 (20) = 35% (20), 1=0,...,q1 -1

ot o gi+i G
i od ’ = ;g ri\“» ) ; j S 2 -1

@Sﬁsg 2(0,9) Dst s 2r(0:0) vty 92
guadratic

span(V) = span(Vii,) U span(Vy,) Uspan(Vy)

.V, =K, (A;'E,A;'b) :
A linear
: Wi =Ky, (A, EV A5 €
:fori=1:¢2 do
Vi =Kopoiri(Ag B Az NVI(,0) o
Wi = Ky, —ir1 (A, TET, ASTNTW (,0)
for j =1:min(¢g2 —i+1,7) do
Vil = Ky i1 (ASE, ASTH(V (5 6) @ V(5 5)))
Wil =Koy ir1(A;TET, AZTHE (V) (2,0) @ Wi (5, 7))
end for
end for
span(V) = span(V1) UJspan(V5) U Uspan(V3)
i ]
span(W) = span(W1) U Jspan(W3) U | span(W57)
; i
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Hermite approach (SISO)

Theorem: Two-sided rational interpolation

[Breiten '15]
Let E, = WTEV be nonsingular, A, = WAV, H, =W H(V& V), N, = W/'NV,
b, = W'b, ¢l =c!'V with V, W e R"*" having full rank such that

span(V) O span,_y_{A;'b, A;L[H(A;'b®A;'b)— NA;'b)} |
1
span(W) D span,_; _{A; e, AJTH® (A D@ Al c) - SNTA o)}
g J
with o; ¢ {A(A,E), A(A,.E,}.
Then:
4 )
Gl(O'@') = Gl’r,«(O'@') Gl(ZO'T;) = GLT(QO'%')
B G,  0Ga,
GQ(Jza O-z) - GZ,T(O-’M Uz) 6Sj (0-7,; O-'L) - 8Sj (O'za Uz)
\§ J
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Krylov subspaces for MIMO systems

Pseudolinear approach: As, = A -5k
span(V) D span {A'B,A_'EA'B}

span(W) D span { A,  C", A ETA; ) C"}

Gi(o) = Gi1.(0) G1(20) = G1.+(20) Go(o,0) = Go(0,0)
0G ~ 0Gy, 0Gq _ 0Gy, 0Go ~ 0Ga,
as (O‘) — 88 (J) 88 (20) - 88 (20-) 883 (O', O') — 883 (0-7 O-)

* 2m columns per shift
P V and W do not have any

: : . Stability issues
nonlinear information!

« 7 moments matched
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