
Disallowing Same-program Co-schedules to Improve
Efficiency in Quad-core Servers

Andreas de Blanche
Department of Engineering Science

University West, Sweden
andreas.de-blanche@hv.se

Thomas Lundqvist
Department of Engineering Science

University West, Sweden
thomas.lundqvist@hv.se

ABSTRACT
Programs running on different cores in a multicore server
are often forced to share resources like off-chip memory,
caches, I/O devices, etc. This resource sharing often leads
to degraded performance, a slowdown, for the programs
that share the resources. A job scheduler can improve per-
formance by co-scheduling programs that use different re-
sources on the same server. The most common approach
to solve this co-scheduling problem has been to make job-
schedulers resource aware, finding ways to characterize and
quantify a program’s resource usage. We have earlier sug-
gested a simple, program and resource agnostic, scheme as
a stepping stone to solving this problem: Avoid Terrible
Twins, i.e., avoid co-schedules that contain several instances
from the same program. This scheme showed promising re-
sults when applied to dual-core servers. In this paper, we
extend the analysis and evaluation to also cover quad-core
servers. We present a probabilistic model and empirical data
that show that execution slowdowns get worse as the number
of instances of the same program increases. Our scheduling
simulations show that if all co-schedules containing multi-
ple instances of the same program are removed, the average
slowdown is decreased from 54% to 46% and that the worst
case slowdown is decreased from 173% to 108%.

Keywords
Co-scheduling; Same Process; Scheduling; Allocation; Mul-
ticore; Slowdown; Cluster; Cloud

1. INTRODUCTION
For several years now multi-core processors have been the
standard processor architecture used in everything from mo-
bile phones to supercomputers. While multi-core processors
harness an extraordinary computational capacity, they suf-
fer from the fact that a large number of cores share all other
resources, like an off-chip memory system, caches, or I/O
devices. Many studies have identified the limited off-chip
bandwidth in conjunction with the shared off-chip memory

COSH-VisorHPC 2017 Jan 24, 2017, Stockholm, Sweden
c© 2017, All rights owned by authors. Published in the TUM library.

ISBN 978-3-00-055564-0

DOI: 10.14459/2017md1344414

system, often referred to as the memory wall [1], as the po-
tentially largest bottleneck resource.

In order to make use of the capacity of a multi-core pro-
cessor several processes have to be co-scheduled on the same
computer, i.e. several processes must simultaneously exe-
cute on different cores in the same multi-core chip. How-
ever, it is common knowledge that co-scheduling programs
that have a high degree of resource usage, will have a nega-
tive impact on the performance of said programs. Still, we
will, in most cases, increase the overall performance by co-
scheduling programs since the overall execution time for all
processes will typically be lower than if the processes were
executed sequentially, one after the other. This is not always
true, though, in [2] two co-scheduled programs experienced
a super-linear slowdown due to memory traffic contention,
i.e. the programs’ execution times were more than doubled.
Hence, co-scheduling processes, with no knowledge of how
the co-scheduling will affect the programs, can lead to severe
performance degradation.

The risk of severe performance degradation caused by im-
proper co-scheduling has led to a limited use of co-scheduling.
According to Breitbart, Weidendorfer and Trinitis [3] many
large HPC centers mostly use co-scheduling for single core
jobs and [4, 5] reports that the utilization rate of Mozilla’s,
VMWare’s, Google’s and Microsoft’s datacenters are all be-
low 50%. Hence, if programs can be co-scheduled using
all cores, with an average slowdown of less than 50% we
could capitalize on the poor utilization and either double
the throughput or halve the number of servers, which would
save both money and energy. Several studies have shown
that this is possible [6, 7].

In [8] we proposed a simple scheme that leads to improved
co-scheduling without the need for any prior knowledge of
a program’s resource usage. This approach is thus program
agnostic and does not require any characterization or mea-
surement activities to be performed since it is simply based
on avoiding the co-scheduling of twins, i.e. two instances of
the same program. This simple, Terrible Twins, scheme is
based on two observations. The first one is that the per-
formance can be improved not only by selecting the best
ways, but also by avoiding the worst ways in which pro-
grams can be co-scheduled. The second observation is that
co-schedules containing multiple instances of the same pro-
gram are over represented among co-schedules with very low
and very high resource usage. Later, in [9], the initial study
was extended with a more in-depth analysis covering vary-
ing start times and empirical data from a second processor
architecture. Both studies covered dual-core co-scheduling.

10.14459/2017md1344414

In this paper we extend the earlier work to quad-core
co-scheduling. Using a probabilistic analysis and empirical
data we show that the conclusions made for dual-core co-
scheduling are valid also for quad-core co-scheduling: We
should still avoid co-scheduling multiple instances of the
same program, i.e., avoid twins, triplets, quads, etc.

To evaluate the performance degradation of quad-core co-
scheduling we did two evaluations. First, we performed a
full-factor experiment with the serial versions of the NAS
parallel benchmark suite. That is, the software was executed
in all possible co-scheduling combinations on a quad-core
processor and the corresponding slowdown was recorded.
Then, the full-factor results were used in a second evalu-
ation that examined the cluster-wide scheduling impact.

Based on our experimental evaluation, we draw the fol-
lowing conclusions:

• Avoiding same-program co-schedules (twins, triplets
and quads) is a viable scheme for improving the per-
formance of four-way co-scheduling.

• Our results show that the average and worst-case slow-
downs are much lower when twins, triplets, and quads
are not co-scheduling.

• Schedules containing no same-program co-schedules are
better than those containing twins, which are better
than the triplets, which in turn are better than the
quads. We find that as the number of same programs
instances increases in a co-schedule, the average slow-
down also increases and performance suffers.

• Only a small part, 0.5% of our simulated schedules
contains no twins, triplets, or quads, indicating that
this program agnostic scheme can be used to reduce
the number of schedules for further optimization.

The rest of this paper is organized as follows. In Section 2 we
first give a brief background on resource aware co-scheduling.
Then, in Section 3, we revisit earlier probabilistic arguments
and extend these arguments into the quad-core realm. This
is followed, in Section 4, by a description of the hardware and
software used in the experiment. Sections 5 and 6 present
the experimental methodology and evaluation results before
concluding the article with discussions and conclusions, in
Sections 7 and 8, respectively.

2. RESOURCE AWARE CO-SCHEDULING
As stated earlier, when two or more programs are executing
on the same server at the same time they share many of the
server’s resources, such as memory or disks. If several pro-
cesses are executing on the same processor chip, they also,
most likely, will share one or more cache memories. Resource
sharing almost always degrades the performance of the co-
scheduled processes. In order to improve performance, we
must limit this degradation.

A large body of work has been done on increasing the per-
formance of co-scheduled programs in the context of operat-
ing system scheduling. For example, early research by Stone
et al. [10] proposed a cache partitioning scheme and Kim
et al. [11] found that for a set of co-scheduled benchmarks
the throughput increased by 15% when the access to the
shared resource was made more fair. Furthermore, Snavely
and Tullsen [12] suggested symbiotic co-scheduling as an ap-
proach to determine how processes should be co-scheduled

on a processor with support for simultaneous multithreading
(SMT). The idea behind symbiotic co-scheduling is to deter-
mine which processes have the most ”compatible” resource
demands and then co-schedule these processes. Eyeman and
Eeckhout [13] showed that their probabilistic symbiosis ap-
proach achieved a 19% reduction in job turnaround time for
a four thread SMT processor, without having to evaluate the
processes before execution. These results mean that there
is a great potential for methods to reduce the performance
degradation due to resource contention.

This paper focuses on the placement strategies of a clus-
ter, grid or cloud scheduler. The main issue for this kind
of high level job-scheduler is to, before execution, determine
on which computer a specific task should execute. Thus, it
must determine which programs to co-schedule before the
execution starts. Relocation of running processes is not an
option in an HPC environment and even if possible, it would
be a costly task. Making a good co-scheduling decision be-
fore the execution starts is preferred over having to relo-
cate running processes due to excessive resource contention.
Current research in the co-scheduling area is focused on de-
veloping techniques aimed at online or offline characteriza-
tion of a program’s resource requirements as well as creating
taxonomies that can be used to classify programs based on
their resource needs [14, 15]. After characterization, a clus-
ter or cloud scheduler can then use this information to de-
cide which programs to co-schedule in order to minimize the
performance degradation that occur due to resource sharing.
Some of the methods [16, 17] characterize both how aggres-
sively a program uses the resource as well as how sensitive it
is to resource competition. This is done by measuring how
much pressure they put on, and how much they are slowed
down by specifically tailored micro-benchmarks. Hence, the
pressure they put on other processes is modeled separately
from how much they themselves are affected by the resource
sharing. The memory wall [1] has been identified as the
largest cause of contention in modern multi-core systems
and much research is focused on this area [18, 19, 20, 21].

2.1 The Terrible Twins Approach
Methods relying on characterization and categorization fall
short when no knowledge of a program’s resource use be-
havior can be derived. In our previous studies, [8] and [9], a
simple scheme to improve co-scheduling is suggested which
does not rely on a-priori knowledge of a program’s behavior
– it is program agnostic and requires no data collection, no
instrumentation, and no logging or learning. The main idea
of the scheme is to ”Avoid the Terrible Twins”, i.e. avoid
co-scheduling several instances of the same program on the
same computer. Two important observations are made: (1),
when scheduling jobs in a large cluster or cloud environ-
ment, one type of bad co-schedules is when all co-scheduled
programs utilize the same resource to a high degree. And
(2), co-scheduling programs that does not use any shared
resources should be considered equally bad, given that there
are other programs that could have benefited from being co-
scheduled with these programs. A program with no, or low,
resource usage will never degrade the performance of other
co-scheduled programs. For this reason, we should avoid
terrible twins.

Terrible twins, i.e., two-core co-schedules consisting of two
instances of the same program, are more likely to have a very
high or very low degree of similar resource use compared to

Figure 1: The probability density function (PDF)
of the sum of the resource need of two co-scheduled
programs.

a co-schedule consisting of two independent programs. The
simple reason behind this is that two instances of the same
process use, or do not use, the same set of resources. In our
previous study, we used a probabilistic argument to show
this. When co-scheduling two or more jobs, the combined
resource need is the sum of the individual programs’ resource
needs. For two programs P1 and P2, assuming a uniformly
distributed random resource need u1 and u2, we get the
following combined resource need U :

U =

{
ui + uj if P1 and P2 are independent

2ui if P1 and P2 are the same

This means that combining two independent programs re-
sults in a uniform sum distribution while combining two
instances of the same program results in preserving the uni-
form distribution. This is illustrated in Figure 1 where we
see that the sum of independent programs has the uniform
sum distribution (red, pyramid-shaped line) and that the
sum of two instances of the same programs has a uniform
distribution (black, flat line). Thus, we can expect a higher
concentration of same-process co-schedules in both the low
and high ends of the spectrum.

For a more in-depth explanation we refer the reader to [10]
and [11]. The next section expands upon this framework to
show that, also for quad-core co-scheduling, the co-scheduling
of several instances of the same program, would still result
in a lower or higher aggregate resource need than when com-
bining independent processes from different programs.

3. PROBABILISTIC ANALYSIS
We now do a probabilistic analysis of four-way co-scheduling.
We assume that the resource need of a randomly picked
program can be modeled as a random variable between 0%
and 100%. For simplicity, we assume a uniform distribution.
This means that when we have a program to co-schedule,
it will have an equal probability of having a resource need
somewhere between 0% and 100%. This could, for example,
represent the use of a resource like the memory bus.

Now, we would like to explore what happens when we co-
schedule programs. To do this, we simply look at the sum
of the resource needs for the programs. We need to distin-
guish between two cases: (1) When combining instances of

Figure 2: The probability density function (PDF) of
the sum of the resource need of four co-scheduled
programs where each program has a uniform re-
source need probability between 0% and 100%.
Combining independent programs leads to a more
centered PDF meaning that there is less risk for the
total resource need to be very low or very high.

the same program, the resource need of each running process
will be similar, and can be modeled as dependent random
variables. In the other case, (2), when combining instances
from different programs, the resource need will be indepen-
dent and not correlated to each other. For four randomly
picked programs, P1, P2, P3, and P4, with resource needs
u1, u2, u3, and u4, we get the combined resource need U as:

U =



u1 + u2 + u3 + u4 if all P is independent

u1 + u2 + 2u3 if P3 and P4 is same (twin)

2u1 + 2u3 if P1 and P2, is same and

P3 and P4 is same (2 twins)

u1 + 3u2 if P2, P3, and P4 is same

(triplet)

4u1 if all P is same (quad)

This means that combining independent programs will re-
sult in a uniform sum distribution while combining four
instances of the same program (the quads) will preserve the
original uniform distribution. This is illustrated in Fig-
ure 2 where we see that the sum of four independent jobs
has the uniform sum distribution (red, top-most line) and
that four instances of the same programs (quads) has a uni-
form distribution (black, bottom-most line). The middle
cases where two or three programs are the same (twins,
double twins, and triplets) are seen in-between the lowest
and highest curves. The more independent programs that
are combined, the more centered around the middle the re-
source need becomes. Twins, triplets, and quads are more
spread out and have a higher relative probability of ending
up with a lower or higher aggregate resource need.

The conclusion one can make from this is that twins,
triplets, and quads all behave similarly to what we earlier
concluded when looking only at twins. All same-program co-
schedules will have a higher possibility of a lower or higher
resource use, meaning that we should avoid these co-schedules
since, as we argued earlier, a high resource use is very of-

ten bad and as [8] showed, a low resource use might also be
bad because of a potentially missed opportunity to combine
these programs with higher resource users. Thus, avoid-
ing same-program co-schedules should improve performance
from a probabilistic point of view. In the next sections, we
verify this probabilistic reasoning using experimental data
in our full-factor evaluation.

4. EXPERIMENTAL SETUP
In this section, we give a brief overview of the hardware
and software used in the experiments. The evaluation was
carried out on a computer equipped with the Intel Ivy Bridge
i5-3470 processor. The i5-3470 has four cores and a three-
tier on-chip cache architecture with private level 1 and level
2 caches. The last level cache (level 3) is shared by all cores.
Each computer was equipped with 8 GB of RAM with a bus
speed of 5 GT/s.

The computer was running CentOs Linux version 7 and
the workload used in all experiments was the ten bench-
marks of the Numerical Aerospace Simulation (NAS) par-
allel benchmark suite (NPB) reference implementation [22]
designed at NASA (input size C). The NPB benchmark suite
is a collection of five kernels, three pseudo programs, and two
computational fluid dynamics programs.

5. FULL-FACTOR EVALUATION
The purpose of the full-factor evaluation was to measure the
actual slowdowns experienced when running the benchmark
program on different cores in the same processor. First,
to determine a baseline, the solo execution time of all ten
NAS Parallel benchmarks (NPB) were measured by execut-
ing them alone on the Intel i5-3470 quad-core computer.
Then, a full factor measurement, covering all possible co-
scheduling combinations of the ten benchmarks were per-
formed and the slowdown for all combinations were recorded.
The measurements were performed using overlapping execu-
tions where four programs were started at the same time on
different cores. The first program to finish was replaced with
another instance of the same program so that the other pro-
grams are exposed to constant co-scheduling pressure, see
Figure 3. This was repeated, until all programs performed
at least one full execution.

The impact of not varying the start times of the NPB
programs while using overlapping executions was evaluated
in [9]. The evaluation showed that using synchronized start
times gave, on average, 1.01% higher slowdown readings,
on an i5 processor, then when using varying start times,
indicating that the exact start times are of minor importance
for the accuracy of the results.

5.1 Full-Factor Measurement Results
Figure 4 shows the slowdown distribution of all possible four-
way co-schedules for the NPB programs. The slowdown of
a four-way co-schedule is defined as the average of the four
programs’ individual slowdowns. As seen in the figure, the
slowdowns of all co-schedules range from around 0% up to
260%, and the average slowdown of all co-schedules is 53%.
Many co-scheduling combinations show low slowdowns and
there are few really high ones. To examine the slowdown
impact of the co-schedules containing multiple instances of
the same program: twins, triplets, and quads, we divided
the measurement results into different subsets.

Figure 3: The methodology used when measuring
the co-scheduling slowdown of programs P1 to P4.
When the first instance of a program finishes, it is
replaced with another instance of the same program.
This procedure is repeated until the first instance of
all programs have finished executing.

Figure 4: Histogram showing the measured slow-
down distribution of all possible four-program co-
schedules. The black line marks the average slow-
down.

In Figure 5 and Table 1 the co-schedules have been divided
into four subsets. The No-same subset consists only of co-
schedules that include no more than only one instance of
each program. The Twins subset consists of all co-schedules
that contain two instances of the same program, and a few of
these co-schedules are double twins, i.e., two same-program
pairs. In the Triplets subset, we find all co-schedules where
three instances of the same program are combined with one
other program and finally in the Quads subset, all programs
in a co-schedule are the same.

Table 1 shows the best, average, and worst slowdown for
each subset. The same subsets have also been plotted in
Figure 5 as a box-and-whiskers plot, which gives a high-
level overview of the slowdown distribution of the different
co-schedules. The ends of the whiskers (lines) represent the
best and worst slowdowns, the boxes span percentile 10 to
90 (i.e. the grey box contains 80% of all co-schedules) and
the line with a dot marks the median.

Turning to the values in Table 1 the average slowdown of
the no-same subset is between 8.39 percentage points lower
than the average of the set containing all possible sched-
ules. Furthermore, it is between 8.89 and 32.70 percentage
points lower than the subsets containing same-program co-
schedules, e.g. twins, triplets and quads. The average slow-
down is important because it is the slowdown that we, over
time would converge towards, when executing a very large

All No-Same Twins Triplets Quads
[%] [%] [%] [%] [%]

Best 3.71 6.94 5.60 3.71 6.56
Average 53.64 45.25 54.14 68.29 77.95

Worst 253.66 120.88 194.62 253.66 224.68

Table 1: Co-schedules divided in subsets. The best
values are in bold and the worst in italics.

Figure 5: The filled box represents the co-schedules
for each subset with slowdowns between the 10th
and the 90th percentile. The dot and line in each
box is the median slowdown and the end of the
whiskers show the min and max slowdowns.

number of jobs from that category. This shows that avoid-
ing same-program co-schedules clearly improves the average
co-scheduling slowdowns.

An even more drastic improvement can be seen when look-
ing at the highest slowdown values. The highest slowdown
of the no-same schedule is 121%, which is 74 percentage
points better than the subset containing twin co-schedules
and 134 percentage points better than the subset containing
triplets. The co-schedule with the overall lowest slowdown
has a performance degradation of 3.71 percent. The subset
with the highest minimum is the No-same subset which has a
slowdown of 6.94%. The difference between the lowest slow-
downs of the subsets is quite small compared to the huge dif-
ference in the maximum (worst) slowdowns. Thus, avoiding
same-program co-schedules not only improves the average
but drastically improves the worst co-scheduling slowdowns.

Although, the difference between the best and 10th per-
centile values in Figure 5 is quite small, it becomes obvious
that the median slowdown increases as the number of same-
program instances in the co-schedule increases. Worth notic-
ing is that the worst value for the No-same subset is better
than the 90th percentile of the subsets containing triplets
and quads.

In general, the average, the median, the 90th percentile,
and the worst values all increase as the number of same-
program instances in the co-schedules increases. The one
exception being the maximum value for the Triplets subset
which is higher than the maximum of the Quads subset.
However, the measurement data shows that the worst value
in the Quads subset has the second highest slowdown overall.

To conclude, our measurements show that as the degree
of same-program co-scheduling increases the potential slow-

All No- Twin Triplet Quad
Same

billion 351 1.6 200 140 10
schedules 100% 0.5% 57.0% 39.8% 2.8%

Min 10.1 10.9 10.1 10.7 12.1
Average 53.5 45.7 51.6 56.0 58.9

Max 172.7 107.9 157.2 164.9 172.7

Table 2: Comparison between the set of all sched-
ules and the subsets that contain no-same, twins,
triplets, or quads co-schedules. The best values are
in bold and the worst in italics. The No-same subset
clearly outperforms the other sets.

down also increases. Having no same-process co-schedules
is better than twins, which are better than triplets which
are better than quads. Hence, avoiding same-program co-
schedules (twins, triplets and quads) is a viable scheme to
identify co-schedules with a lower average and worst-case
slowdown.

6. IMPACT ON SCHEDULING
Recall that the goal of co-scheduling, in a cluster or cloud
environment, is to schedule jobs on servers in such a way
that the overall slowdown is kept as low as possible, i.e.
increasing the efficiency of the system. As explained in Sec-
tion 2, the approach of avoiding same-program co-schedules
is program agnostic and does not require any knowledge of
the program before allocating it to a server. To evaluate
its impact on the overall cluster or cloud performance we
constructed and simulated a job-scheduling scenario. The
simulated system consisted of five computers equipped with
one quad-core Intel i5-3470 each, for a total of 20 cores. As
input to the simulation we used the full-factor measurement
data presented in Section 5.

We simulated all possible ways in which 40 program in-
stances could be scheduled, and co-scheduled on the nodes.
Since there were 40 program instances and 20 cores, only half
of the instances were used in each schedule. This amounted
to a total of 351 billion different schedules, i.e. ways to
schedule a program to each core using between zero and
four instances of each benchmark program. The simulation
results are summarized in Table 2 and Figure 6.

In Table 2 we can see that only 0.5% of the schedules con-
tained no same-process co-schedules. The No-same process
co-schedule set is hardly even visible at the bottom left part
of Figure 6. While the No-same set is very small the Quads
set makes up 2.8% of all schedules and has the, by far, worst
performance of all sets shown in Table 2. Not surprisingly,
the No-same-process set has the lowest average slowdown of
all sets, 45.7%. Hence, we can conclude that removing all
same-process co-schedules (all twins, triplets and quads) will
decrease the average slowdown by 7.8 percentage points.

Turning to the average slowdown of the sets containing
twins, triplets, and quads we can see that the average slow-
down increases as the degree of the same-program co-schedules
increases. This is not surprising since we saw the same pat-
tern in Section 5 when looking at the slowdown of the in-
dividual co-schedules. However, the average slowdown for
the Twins set is 5.9 percentage points higher than the No-
same set and it is also 1.9 percentage points lower than the
set of all schedules. Hence, removing only the schedules

Figure 6: A histogram of all 351 billion evaluated schedules as well as the same subsets as in Table 2. The
black lines mark the average slowdown of each subset. The bin size is 0.1.

Figure 7: A box and whiskers plot of the same sub-
sets as in Table 2. The filled box covers the 10th to
the 90th percentile. The dot and line in each box
is the median value and the end of the whiskers the
min and max slowdowns.

containing triplets and quads (keeping No-same and Twins)
will improve the performance by two percentage points while
lowering the worst-case slowdown from 172.7 to 157.2.

Figure 7 shows the scheduling set data in a box and whiskers
plot. The ends of the whiskers (lines) represent the best
and worst slowdowns, the boxes span the 10th to the 90th
percentile and the dot marks the median value for the set.
In this plot, it becomes quite obvious that a greater num-
ber of same-process co-schedules leads to higher performance
degradation. All indicators, except the minimum slowdowns,
get worse as the number of same-program instances in a co-
schedule increases. For example, when looking at the 10th

percentile the No-same program schedule set is 2.9 percent-
age points better than the twins set, 5 percentage points
better than the Triplets set, and 6.5 percentage points bet-
ter than the Quads set.

Nevertheless, the most notable differences are found when
looking at the maximum slowdown. The No-same set has a
maximum slowdown of 107.9% and it increases to 157.2%,
164.9%, and 172.7% for the other three sets. Hence, re-
moving all same-process co-schedules (Twins, Triplets and
Quads) will decrease the worst case slowdown by at least 50
percentage points.

7. CONCLUSION
In this paper we extend the dual-core based Terrible Twins
scheme [8] with a probabilistic analysis and experimental
measurements that cover quad-core co-scheduling. The re-
sults from the analysis and evaluation reestablish the dual-
core findings also for quad-core co-scheduling. Thus, it is
possible to decrease the performance degradation caused by
resource contention without any knowledge of a program’s
resource usage profiles and without performing any measure-
ments or instrumentation whatsoever.

A full factor experiment with the serial versions of the
NAS parallel benchmark suite was performed where all pos-
sible quad-core co-schedules were executed and the slow-
downs recorded. As predicted by the probabilistic model,
the co-scheduling sets that contain several instances of the
same program were overrepresented among the co-schedules
with the lowest and highest slowdowns, i.e., their 10th and
90th percentiles were lower and higher than those of the no-
same process co-schedule set. And as determined in [8] both
extremely low-, and high-slowdown co-schedules have a neg-
ative impact on the overall job-scheduling slowdowns of a
cluster or cloud system.

To evaluate if same-process co-schedules (twins, triplets
and quads) have a negative impact on job-scheduling per-
formance we simulated a job-scheduling scenario based on
the slowdown measurements obtained during the full fac-
tor experiments. Our scheduling simulations show that the
average slowdown is decreased from 54% to 46% and that
the worst case slowdown is decreased from 173% to 108%
if all co-schedules containing several instances of the same
program are removed. Furthermore, we found that only
a small part, 0.5% of our simulated schedules contains no
twins, triplets, or quads, indicating that this program ag-
nostic scheme can be used to reduce the number of schedules
to consider as basis for further optimization.

In conclusion, we find that the program and resource ag-
nostic approach of avoiding same-program co-schedules (twins,
triplets and quads) is a viable scheme for improving the per-
formance of quad-core co-scheduling. Further studies are
motivated to examine if the scheme can be extended and
generalized to cover any number of cores. Also, if it can be
applied to programs with parallel threads and to evaluate
other workloads and scheduling scenarios as well.

8. REFERENCES
[1] W. A. Wulf and S. A. McKee. Hitting the Memory

Wall: Implications of the Obvious In SIGARCH
Computer Architecture News - Volume 23, pages
20–24, New york, NY, USA, 1995.

[2] E. Koukis and N. Koziris. Memory and network
bandwidth aware scheduling of multiprogrammed
workloads on clusters of smps. In International
Conference on Parallel and Distributed Systems -
Volume 1, pages 345–354, Washington, DC, USA,
2006. IEEE Computer Society.

[3] J. Breitbart, J. Weidendorfer, and C.R. Trinitis.
Automatic Co-scheduling based on Main Memory
Bandwidth Usage. In Proceedings of the 20th
Workshop on Job Scheduling Strategies for Parallel
Processing, Chicago, US, 2016.

[4] R. McMillian. Data center servers suck - but nobody
knows how much. In Wired magazine, www.wired.com/
2012/10/data-center-servers, October, 2012.

[5] H. Yang, A. Breslow, J. Mars, and L. Tang.
Bubble-flux: Precise Online QoS Management for
Increased Utilization in Warehouse Scale Computers.
In SIGARCH Computer Architecture News, June,
ACM, New York, NY, USA, 2013.

[6] L. Tang, J. Mars, N. Vachharajani, R. Hundt, and
M. L. Soffa. The impact of memory subsystem
resource sharing on datacenter applications. In ISCA
’11: Proceeding of the 38th annual international
symposium on Computer architecture, ISCA ’11, pages
283–294, New York, NY, USA, 2011. ACM.

[7] S. Zhuravlev, S. Blagodurov, and A. Fedorova.
Addressing shared resource contention in multicore
processors via scheduling. In ASPLOS on
Architectural support for programming languages and
operating systems, pages 129–142, New York, NY,
USA, 2010. ACM.

[8] A. de Blanche and T. Lundqvist. Terrible Twins: A
Simple Scheme to Avoid Bad Co-Schedules. 1st COSH
Workshop on Co-Scheduling of HPC Applications,
HiPEAC, Prague, January, 2016.

[9] A. de Blanche and T. Lundqvist. Initial Formulation
of why Disallowing Same Program Co-schedules
Improves Performance. In Co-Scheduling of HPC
Applications, book chapter, ed. Trinitis, C. and
Weidendorfer, J., Advances in Parallel Computing -
Volume 28, IOS Press, 2017.

[10] H. S. Stone, J. Turek, and J. L. Wolf. Optimal
partitioning of cache memory. In In IEEE
Transactions on Computers. 14, 9, Sep, 1992.

[11] S. Kim, D. Chandra, and Y. Solihin. Fair Cache
Sharing and Partitioning in a Chip Multiprocessor
Architecture. In Proceedings of the 13th International
Conference on Parallel Architectures and Compilation
Techniques, PACT ’04, 2004.

[12] A. Snavely and D.M. Tullsen Symbiotic jobscheduling
for a simultaneous multithreaded processor. In
Proceedings of the ninth international conference on
Architectural support for programming languages and
operating systems (ASPLOS IX). ACM, New York,
NY, USA, 234-244, December 2000.

[13] S. Eyerman and L. Eeckhout. Probabilistic Modeling
for Job Symbiosis Scheduling on SMT Processors. In
ACM Transactions on Architecture and Code
Optimizations (TACO), Vol 9, No 2, June 2012

[14] Y. Xie and G. Loh. Dynamic classification of program
memory behaviors in CMPs. In 2nd Workshop on
Chip Multiprocessor Memory Systems and
Interconnects, 2008.

[15] A-H. Haritatos, K. Nikas, G. Goumas, and N. Koziris.
A resource-centric Application Classification
Approach. 1st COSH Workshop on Co-Scheduling of
HPC Applications, HiPEAC, Prague, Jan, 2016.

[16] A. de Blanche and T. Lundqvist. Addressing
characterization methods for memory contention
aware co-scheduling. The Journal of Supercomputing,
71(4):1451–1483, 2015.

[17] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L.
Soffa. Bubble-up: Increasing utilization in modern
warehouse scale computers via sensible co-locations. In
MICRO ’11: Proceedings of The 44th Annual
IEEE/ACM International Symposium on
Microarchitecture, New York, NY, USA, 2011. ACM.

[18] J. Weidendorfer and J. Breitbart. Detailed
Characterization of HPC Applications for
Co-Scheduling. 1st COSH Workshop on Co-Scheduling
of HPC Applications, HiPEAC, Prague, Jan, 2016.

[19] A. Fedorova, S. Blagodurov, and S. Zhuravlev.
Managing contention for shared resources on multicore
processors. Commun. ACM, 53(2):49–57, Feb. 2010.

[20] A. de Blanche and S. Mankefors-Christiernin. Method
for experimental measurement of an applications
memory bus usage. In International Conference on
Parallel and Distributed Processing Techniques and
Applications. CRSEA, July 2010.

[21] A. de Blanche and T. Lundqvist. A methodology for
estimating co-scheduling slowdowns due to memory
bus contention on multicore nodes. In International
Conference on Parallel and Distributed Computing
and Networks, February 2014.

[22] NASA. NAS parallel benchmarks, 2013. NASA
Advanced Supercomputing Division Publications.

	Introduction
	Resource aware co-scheduling
	The Terrible Twins Approach

	PROBABILISTIC ANALYSIS
	Experimental setup
	Full-Factor Evaluation
	Full-Factor Measurement Results

	IMPACT ON SCHEDULING
	Conclusion
	References

