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ABSTRACT

Virtual machines and, to a lesser extent, operating system
level virtualization (also referred to as containers) allow for
creation of tailored execution environments. This allows
software installations to only have to target one environ-
ment, making deployment much easier for different plat-
forms. For this reason the technique is used nowadays in
most cloud systems.

In this paper we present an industrial setting in which a
simulation code should be available on both different HPC
cluster environments as well as on standalone workstations.
To make deployment easier, we propose the use of virtual-
ization and describe our prototype. Furthermore, we discuss
benefits and challenges.
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1. INTRODUCTION

The introduction of PC-based clusters in the late 1990s
has been recognized as a major step to widely enable High
Performance Computing (HPC) in industry. Clusters al-
lowed affordable parallel computing of technical applications
typically performed with typically tens or hundreds of pro-
cessors. The reduction of computation times from a few
days or overnight to the range of minutes contributed to
close integration of numerical simulations into the industrial
design environment. For designer teams distributed across
the world a reasonable environment has been provided by
installing central HPC-clusters dedicated to specific applica-
tions which can be accessed through the corporate network.
This type of operation has started at the beginning of the
2000s and successfully continues until today [4].

However, with the growing number of applications and
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users it turned out that the operation of dedicated cluster
servers is not always economical. In some cases, where the
high availability of computational resources is required and
the clusters are dedicated for a single application, the utiliza-
tion of hardware may be reduced to less than 5-10 %. Fur-
thermore, due to limitations of data transfer rates across in-
tercontinental corporate networks the dedicated servers need
to be replicated in order to provide the requested compute
capacity worldwide. This generates significant maintenance
effort related to porting applications to different hardware
platforms and operating systems. All these experiences cre-
ated an evident need to rearrange the available resources in
such a way that applications can be run on any hardware
without maintaining a dedicated environment. In addition,
the cost accounting according to usage is requested. The
concept of virtualization addressed in our paper has been
recognized as promising to fulfill the industrial needs.

2. BACKGROUND

The technology behind system virtualization is known since
the 70-ties [11], and it is used since that time e.g. by IBM for
their main frame systems up to now. However, virtualiza-
tion on cheap mass-market computer systems only became
available in the first years of the current century, when the
increased performance of x86 systems made this approach
feasible [12]. Early implementations employed workarounds
for issues with x86 such as filtering the instruction stream or
avoiding problematic instructions at all [1]. The new inter-
est triggered processor vendors to implement new execution
modes and hardware features for faster virtualization, re-
ducing overheads in every new processor implementation.
This guided the path to the huge market around cloud ser-
vices today. By being able to efficiently virtualize at the
border of hardware and software of a regular x86 system,
users can bundle their software in complete system installa-
tions including their choice of an operating system and run
these installations remotely. The costly maintenance and
administration, including transparent backup and repair of
failed components, can be outsourced to specialized hard-
ware providers. Concentrating the hardware needs of large
parts of the IT industry results in huge consolidation ben-
efits, and competition in low prices. Private clouds, which
actually are the old way for a company to run its own server
hardware, only makes sense today in limited scenarios such
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as with specific demands for the security of used data.

While there are a lot of benefits of virtualizing a full sys-
tem, it is quite resource intensive. Often it is enough to
provide an own view to a file system encapsulating a soft-
ware installation as well as being able to control resource
usage by means of regular operating system features. This
lighter way of a virtual environment for a group of processes
running on top of a given OS is called containers. An OS
provides own name-spaces for resources such as mounted
file systems, open files and network connections, or pro-
cess IDs to processes inside containers. For the mainline
Linux kernel, this is only available since a few years using
so-called CGroups'. However, there is a large number soft-
ware available for the administration of containers, with the
most known being Docker [10]. As the added functionality
for containers mostly consists of adding indirections to sys-
tem calls, they do not change the performance of HPC code
[13, 7].

The HPC community is quite conservative about virtu-
alization solutions because of its eventual overheads. The
additional latency introduced by virtualization layers (even
in hardware) can disturb the performance of carefully tuned
codes. Furthermore I/O hardware often is controlled di-
rectly from user level, bypassing the operating system for
faster communication and synchronization. The latter com-
plicates virtualization. However, the clear benefits to HPC
users, reducing the dependencies to the execution environ-
ment by bundling complete software installations, are recog-
nized by HPC computer centers. It should be clear from the
above discussion that container solutions are preferred. As
the complexity of controlling a lot of resources is not needed
in an HPC context (such as restricting network access), soft-
ware recently is developed such as Singularity? or PRoot?,
focusing mostly on a separate file system view.

From the users’ point of view, it is convenient to be able
to develop his/her HPC code in exactly the execution en-
vironment as provided by the HPC compute center, espe-
cially as workstations or even laptops run on multi-core pro-
cessors nowadays, representing already a parallel environ-
ment. Furthermore, one can expect that there will be no
issues around software packages traditionally provided by
the compute center environment, as software dependencies
are packaged within a container. One exception here are
HPC libraries (such as MPI) able to directly talk to net-
work hardware such as Infiniband, resulting in a dependence
of the container to special hardware. If the user knows that
performance of his/her application does not depend much
on communication, s/he may decide to package a generic
MPI implementation. In this case, the container could be
embedded into a VM image and easily run also on cloud ser-
vices, bringing additional benefits such as higher availability
and scalability in exchange to spent costs for these systems.
However, people regularly check cloud systems for their fit-
ness for HPC codes, and often they fail due to the unknown
hardware and connectivity between allocated compute re-
sources [9]. Nevertheless, tailored services for HPC are cre-
ated by cloud providers® which may getting better in the
future. Since recently, cloud providers offer increased node

!Committed in 2007 by Paul Menage and Rohit Seth.
http:/ /singularity.lbl.gov
3 .
http://proot.me
“https://aws.amazon.com/de/hpc

performance by adding accelerators such as GPUs. Lower
required node counts result in lower reliance on fast com-
munication and synchronization, making such cloud systems
more attractive to HPC.

3. APPLICATION

As a good candidate for the virtualization approach we
consider a numerical program for computation of electro-
static fields based on the boundary element method (BEM)
[8]. This ABB in-house program (POLOPT) has become
very popular in dielectric design of power devices and is used
worldwide by designers of switchgears, transformers as well
as other high voltage equipment manufactured at ABB. It
is well integrated with CAD-systems, enables automatic 3D-
optimization [5] and can be efficiently used for evaluation of
electric discharges [3], see application example in Figure 1.

The parallelization of our BEM-application is based on
the de-facto message passing standard MPI [2]. According
to the implemented master-slave model, the workers (slaves)
perform the time consuming process of building the fully
populated BEM matrix independently from each other and
store the corresponding part of the matrix in local memory.
An iterative GMRES solver is executed on the master node
and performs parallel matrix vector multiplication by refer-
encing the matrix parts residing on the slaves. This sim-
ple algebraic parallelization scheme turned out to be very
efficient for up to 100-200 processors (cores). Within this
range, the efficiency is almost independent from the struc-
ture and performance of the underlying communication net-
work. This feature provides a good foundation for flexible
virtualization.

4. APPROACH
4.1 Traditional Approach

Traditionally in high performance computing the software
running the simulation (i.e. POLOPT in our case) has to be
deployed and configured on each machine or compute cluster
it is supposed to run on. This is the job of the system admin-
istrator, who has o adjust the users’ environment accordingly
such that the user can submit his or her parallel simulation
run. Up until now, this has been accomplished within ABB
using the Simulation Toolbox environment. The Simulation
Toolbox platform has become well established in power de-
vice design [5]. However, setting up a compute cluster run-
ning the Simulation Toolbox including CAD- and numerical
simulation- and optimization tools requires a non negligible
administrative and maintenance effort as well as full root
access to the server system.

4.2 Container/VM based Approach

Cloud computing has become a wide area of research within
the last ten years. With powerful server farms becoming
more and more affordable, users of high performance com-
puting (mainly database driven®®) have started to run their
code in the cloud. This approach is becoming increasingly
popular for simulation applications as well, e.g. CAD ven-
dors (e.g. Autodesk” or PTC?®) as well as CAE vendors like

®http://www.ptc.com/services/cloud /solutions
Shttp://www.ptc.com/services/cloud/solutionsapplications
"http://www.autodesk.com /360-cloud
Shttp://www.ptc.com/services/cloud/solutions
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Figure 1: An example of 3D electric field computa-
tion (colors correspond to field strength) with eval-
uation of critical spots (denoted by black numbers)
and discharge path (white trajectories) showed in
Paraview-based visualizer of the ABB in-house tool
Virtual High Voltage Lab [3].

e.g. SimScale® are offering cloud based solutions for their
code. In addition, research projects aim at providing a com-
prehensive simulation environment within a cloud based ar-
chitecture. CloudSME'® an international research project
funded by the European Union, falls into this category.

The abovementioned cloud based approaches are mainly

driven by virtualization or container based technologies. Gen-
erally speaking, if communication is an issue, a container
based approach should be preferred over a virtual machine
base approach, as communication between virtual machines
is slower than between containers. Although POLOPT’s
performance is not as communication critical as that of other
simulation programs, we decided to use a container approach
for an initial implementation. For this reason, the idea be-
hind this paper is to port and adapt our POLOPT code to
Docker technology [10]. When moving to a container based
implementation, the following advantages and disadvantages
need top be taken in to account:

e A container based approach has less hardware depen-
dency than a traditional approach, i.e. the installation
does not need to be reconfigured when hardware pa-
rameters change.

e A container based approach is "hardware agnostic”,
i.e. hardware specific features can be ignored from
the users’ point of view.

e A container based approach provides the well known
cloud advantages such as:

http://simscale.com/
http://cloudsme.eu/

— The possibility of outsourcing the computations
yielding no system administration efforts.

— The possibility to generate specific usage statis-
tics,

— automatic backup,
— increased reliability, and

— better scalability.

e Customizable architecture, i.e. adjust resources ac-

cording to requirements,

e A uniform development system for all platforms, which

makes code development simple as only one version
needs to be maintained.

e A container based approach might not be as efficient if

the efficiency and performance of the code depend on
specific hardware such as e.g. an Infiniband network.

As mentioned above, POLOPT’s performance is not as de-
pendent on the underlying network performance (POLOPT
scales well even on TCP/IP based Ethernet [6]). Therefore
we have decided to not use Infiniband hardware for commu-
nication and stick with TCP/IP Ethernet, which eliminated
the abovementioned drawback of the container based ap-
proach.

S. PROTOTYPE

We want our prototype to be deployed in different use
cases. For this reason, there actually are multiple parts to
be used in the different scenarios.

Our prototype consists of the following parts:

e a container based on Debian including a POLOPT

binary to be used for running as MPI task. This is
compiled and linked with the Intel 17.0 compiler and
Intel MPI. Thus, the container includes correspond-
ing libraries. The TCP transport back-end is used for
communication.

a few adaptation scripts for our target HPC cluster
environment, able to call a given job scheduler.

a container with a HT'TP server, a web page, as well
as an Intel MPI installation with the mpirun com-
mand. The web page reachable via the HTTP server
provides a portal page to (1) request the execution of
a POLOPT solver run for given input data and (2)
provides feedback to the user on currently executing
solver runs including a progress report. For this, the
container checks for two different scenarios. Either it
runs on the login node, and has access to the adapta-
tion scripts, or it is to be run on a standalone work-
station. For the first, a CGl-script calls the adapta-
tion scripts outside of the container which generates
and submits a corresponding job script, first export-
ing the MPI installation outside of the container. For
the latter, the compute container is launched first, and
afterwards mpirun is called directly.

The scenario for the deployment on a regular HPC clus-
ter is given in Figure 2, showing the different parts of our
prototype described above. In contrast, Figure 3 presents
the scenario where a user wants to run POLOPT on his/her
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Figure 2: An HPC code using MPI tasks within containers on multiple nodes of an HPC cluster installation

with a regular job scheduler.

Depending on the HPC cluster provider, a front-end server starting and

observing jobs may either run on the login node (a) or has to be installed on the user system (b). In either
case, (small) adaption scripts to the job scheduler software used in the cluster have to be provided.

own workstation. This uses the system VM software Vir-
tualbox'' to be able to run on e.g. Windows or MacOS
hosts.

We note here the challenges which had to be solved during
development:

e We want MPI code using containers embedding the
MPIT tasks to be run on multiple nodes. For the MPI
tasks to see each other, we decided to use bridged net-
work interfaces to be able to access processes running
inside of the containers on the various nodes, see Fig. 2.

e We had to make sure that the topology of compute
nodes is passed through to the inside of our contain-
ers, as the MPI environment sees the container con-
figuration e.g. regarding available CPUs and NUMA
nodes. This is needed as MPI pins MPI tasks to logi-
cal CPUs, and any container configuration should keep
the configured fixed binding.

First measurements using Docker containers have shown
no performance loss on a single node. The sequential run

showed exactly the same performance with and without Docker,

which is important when comparing scalability, since slower
sequential implementations are likely to improve scalability.
Since this is not the case here, we ran the same relatively
small input model (approx. 7100 unknowns) on a four core
single node. In the final version of this paper, comprehensive
measurements will be provided together with exact runtime
numbers.

We expect the container based version to perform at full
speed: For the reasons mentioned in section 4.2 POLOPT
should scale well even with a TCP/IP based network as be-
ing used for our Docker based approach.

6. FIRST MEASUREMENTS

For the following first results, we run a small model with
around 7100 unknowns, using one to four cores in different
scenarios:

Uhttps://www.virtualbox.org

e direct execution.

e execution in Docker containers, with one container per
MPI task'?. Numbers shown are with containers al-
ready launched.

e execution within the system-VM VMware Worksta-
tion, using VITX. For the measurements, a guest VM
configured with 4 CPU cores is running (with 1 GB
memory).

The setup consists of a single system with an Intel Core
i5-3450 quad-core processor (Ivy Bridge) with 3.1 GHz nom-
inal clock rate, 6 MB L3 cache, and 8 GB main memory.
This processor has support for hardware virtualization (In-
tel VIX with EPT). The operating system used on the host
(and for the container scenario) is Ubuntu 16.04.01. As
container solution, Docker 1.12.5 is used. As system-VM,
VMware Workstation 12 Player with guest OS Debian 8.6
is used. POLOPT was compiled with the Intel compiler
(ifort/icc 17.0.0) and Intel MPI 2017 was used.

Fig. 4 shows the absolute runtimes for the abovemen-
tioned scenarios. Results are averaged over 10 runs, re-
spectively. To better understand scalability issues, Fig. 5
presents speedup numbers.

As can be seen, runtimes are quite similar. The VM so-
lution is a little bit slower due to virtualization overhead.
However, the speedup using the container approach is slightly
worse than for both the native and system-VM approach.
Further investigation of this phenomenon will be subject to
future work.

7. DISCUSSION

Implementing the approach described above, we antici-
pate our simulation code to show the same performance with
and without a container. Networking should not be a big
concern, as POLOPT scales well on both Infiniband and

12 Another possibility is to have one container for all MPI
tasks running on a compute node. This may be better for
communication and is under investigation.



Ethernet. In general, simulation software which is not heav-
ily reliant on a high performance network should suffer little
slowdown in a virtualized environment. We do not expect a
present job scheduling system to have specific extensions to
run containers; instead, we provide adaptation scripts which
allow to initialize the containers when a job is started and
cleaning up afterwards.

In the case of using a cloud environment, there are both
advantages and disadvantages. Most important is data se-
curity as CAD models and other data required by the simu-
lation might be important business secrets. Data can be
encrypted for transport on public networks but needs to
be decrypted when running the actual computation. While
newer processors have ISA extensions to limit access from
OS- to user-level (e.g. enrypted data in DDR memory), such
hardware deployed in a cloud does not naturally improve the
consumer’s confidence in the cloud provider.

Further, the customer has limited control over hardware,
updates and monitoring of resources. Performance might
be less predictable. If the simulation code depends heavily
on inter-node communication, a high performance network
is required. Also, for large amount of input/output data, a
high performance parallel file system is desirable.

Using a cloud environment for simulation codes offers sev-
eral advantages. Model data can be shared and versioned
among engineers using a storage cloud. We hope to see
higher flexibility and scalability as the same code (inside a
container) can be be run on an engineer’s laptop computer as
well as a high performance cluster. The hardware on which
the container starts can be chosen based on the simulation
code and input data. For example, accelerator-aware codes
can be launched on compute nodes with GPUs. Larger in-
put models which require more main memory would start
several containers on several nodes.

In a best case scenario, an industrial company does not
need to buy and manage dedicated hardware. Flexible pay-
ment models, as offered by cloud hosting providers, also re-
duce costs. Better utilization of hardware capacity, better
hosting and reduced energy consumption make this scenario
also more environmentally friendly.

Deployment of new software and software updates is sim-
plified. The workload of a system administrator is also re-
duced, as libraries and other prerequisites need not be in-
stalled on the system. Instead, they come packaged inside

Virtual Machine

Control Container| | MPI Task Container

HTTP . MPI MPI
-

e e e e e s Ll
VM-internal Guest 0S
Network
Host OS
Host HW

Figure 3: On a standalone workstation, the same
container images as in the HPC cluster scenario can
be used. Running them inside a VM allows inde-
pendence from the OS of the workstation.
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Figure 4: Absolute runtimes of a small POLOPT
model in various scenarios, running on 1 up to 4
cores (MPI only).
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Figure 5: Speedups of a small POLOPT model in
various scenarios, running on 1 up to 4 cores (MPI
only).

the container. This also reduces time and effort of end-users
(engineers). They need less knowledge about accessing the
compute cluster or the job scheduling system. Instead, they
find a lean and clear web front-end, which shows number and
progress of running jobs. Optionally, costs per job could be
displayed to the end-user as well, in order to make the ac-
counting more transparent.

8. CONCLUSIONS AND OUTLOOK

In this paper, we propose to enable the benefits of virtual-
ization for industrial HPC codes. That is, simulation codes
are deployed within containers and available for execution
in different runtime environments such as HPC clusters and
workstations. First measurements, using a relevant simula-
tion code within ABB, show that packaging industrial codes
in this way provides the end-user with reliable and fast com-
putational resources even at peak times.

For future work, we will extend our measurements both to
multiple nodes and other applications. For the latter, it is
especially important to also look into more communication
intensive applications.

If an industrial use case can risk to use cloud computing,
we can assume that all execution environments use system
VMs. In this case, approaches such as library-OSes which
link applications and required OS functionality become in-
teresting, as this can improve efficiency (no context switches
between guest OS and guest user level). We will look into



such novel approaches in the future.
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