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Abstract— Programming by Demonstration allows to transfer
skills from human demonstrators to robotic systems by obser-
vation and reproduction. One aspect that is often overlooked is
that humans show different trajectories over multiple demon-
strations for the same task. Observed movements may be more
precise in some phases and more diverse in others. It is well-
known that the variability of the execution carries important
information about the task. Therefore, we propose a Bayesian
approach to model uncertainties from training data and to
infer them in regions with sparse information. The approach is
validated in simulation, where it shows higher precision than
existing methods, and a robotic experiment with variance based
impedance adaptation.

I. INTRODUCTION

Transferring skills from humans to autonomous systems,
also known as Programming by Demonstration (PbD) [1],
[2], is becoming increasingly important as robots are more
deployed in complex and unknown environments. For the
reproduction of demonstrated trajectories, the representation
of desired motions with dynamical systems yields many
advantages, e.g., the high robustness to spatial disturbances,
the ability to generalize in areas not covered by training data
and real-time capability. The proposed methods of Dynamic
Movement Primitives (DMPs) [3] and Stable Estimator of
Dynamical Systems (SEDS) [4] provide additional conver-
gence guarantees for point-to-point and show promising
results.

However, these approaches are missing a proper handling
of the uncertainty inherent to training data shown by a human
demonstrator. In case of multiple demonstration trajectories
for the same task, the variability in the training set is a
essential piece of information which must be taken into
account during reproduction. For example, in pick and place
tasks, humans show high accuracy in the crucial parts at
the beginning and the end of the movement while the
intermediate motion varies more. Having knowledge about
the variability of training data available during reproduction
allows to take additional aspects of the task into account,
e.g., optimizing execution time or increasing safety through
higher compliance. Thus, a flexible representation of vari-
ability which precisely models this changing uncertainty is
required.

The adaptation of the control decision based on uncertainty
in the task description is also an active topic of research.
Risk-sensitive control algorithms [5] allow to weight higher-
order moments of the cost function to favor/avoid uncertain
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areas or adapt feedback gains, i.e., stiffness/damping. The
approach in [6] adapts the cooperative behavior of an agent
in a team by being less dominant if the uncertainty about
the task increases. Knowledge about the variance in training
trajectories are also utilized in uncertainty-based impedance
adaptation. Hereby the stiffness and damping parameters of
the robotic manipulator are adapted online, thus changing the
dynamic coupling of externally applied forces and positional
displacement. Varying stiffness and damping are particularly
useful in the trade off between safety (in case of collision)
and tracking performance for which various techniques have
been proposed: The approach in [7] follows a sliding window
idea, thus the variability of nearby training data serves as
uncertainty measure. Since the empirical covariance esti-
mation uses a nearest neighbor lookup table, reproduction
is only performed well close to the demonstration data.
Thus, the inferred uncertainty is imprecise in unseen areas
of the task space and also not continuous which leads to
jumping stiffness parameters. Alternatively, the work in [8]
employs Gaussian Mixture Models (GMMs) for uncertainty
estimation which are also not capable to incorporate prior
knowledge to improve generalization in unknown areas.

Therefore, this paper proposes new methods for learning
uncertainties in PbD tasks, which overcome the weaknesses
of previously mentioned techniques. They are based on Gaus-
sian Process Regression, thus coming with the advantage of
a Bayesian background. This allows to precisely control the
behavior in regions far away from training data while the
appropriate kernel choice implies smoothness of the inferred
uncertainties. As experimental validation we apply these
new methods of uncertainty modeling to the reproduction of
demonstrated motions, and further to impedance adaptation
of a robotic manipulator.

The remainder of this paper is structured as follows:
After formulating the problem in Section II, Section III re-
views fundamentals, namely Gaussian Processes and Wishart
Processes. Section IV introduces the proposed methods for
uncertainty modeling, followed by their application to PbD
in Section V.

II. PROBLEM DESCRIPTION

Given1 are K demonstration trajectories of length T for
the same task. Each input data-point (temporal or spatial) is
denoted by ξk,t ∈ X ⊂ Re and the corresponding output is
denoted by yk,t ∈ Rd. It is assumed that the observed outputs

1Notation: Little bold symbols denote vectors. Capital bold symbols
denote matrices. Id denotes the d× d identity matrix. A � 0, |A| denote
positive definiteness and the determinant of the matrix A, respectively. C[A]
denotes the column-wise covariance.



are subject to randomness, specified by an input dependent
normal distribution

yk,t ∼ N
(
µ(ξk,t), Σ(ξk,t)

)
. (1)

While many regressions methods exist model the mean
function µ(ξk,t), e.g., [9], the variability of y is rarely
modeled explicitly. Therefore, we focus to model changing
variability through the input dependent covariance matrix
Σ(ξk,t). The idea is to learn a mapping from the input space
X to the set of all symmetric positive definite (PDF) matrices

Sd+ = {Σ ∈ Rd×d|Σ � 0, Σᵀ = Σ}, (2)

denoted by Σ(ξ) : X → Sd+. A difficult aspect of modeling
uncertainties is the bias-variance trade-off since fast chang-
ing outputs can either be explained by a strongly varying
mean function µ(ξk,t) or a large variance Σ. If multiple
observations are made at the same input point, an empirical
mean and variance is directly computed and used to train
the mappings µ(ξk,t), Σ(ξk,t) separately. When data-points
are not aligned, this is not possible. Therefore, smoothness
properties of the mean function are assumed and mean
and variance function are jointly trained through likelihood
optimization as discussed in more detail later. Important to
note is that the approach assumes a unimodal distribution
for y, which makes it not suitable, e.g., when navigating
around obstacles on two different paths.

We focus on three aspects for proper uncertainty modeling:
• The function Σ(ξ) is continuous over its input space X .
• Prior knowledge is properly incorporated using a

Bayesian approach, thus in regions where less training
data is given, a prior function takes over

lim
|ξ−ξk,t|→∞

Σ(ξ) = Σprior(ξ).

• Since the complexity of the movement is not known
in advance the model should grow with the number of
training points to represent arbitrary complex motions.

III. BACKGROUND

This section introduces Gaussian and Wishart Processes,
which we propose for uncertainty modeling in PbD.

A. Gaussian Processes

A Gaussian Process (GP) is a stochastic process often
considered as a distribution over functions [10]. It assigns to
any finite subset {ξ1, . . . , ξM} ⊂ Re in a continuous input
domain a joint Gaussian distribution. The GP is denoted by

g(ξ) ∼ GP (m(ξ), k(ξ, ξ′)) (3)

and fully specified by its mean and covariance function
m(ξ), k(ξ, ξ′). If no prior knowledge on the function g is
available the mean function is set to zero. A widely used
covariance function is the squared exponential kernel

kSE(ξ, ξ′) = σ2
g exp

(
−1

2
(ξ − ξ′)ᵀΩ−2(ξ − ξ′)

)
. (4)

It is also employed here, as it leads to smooth functions
g as desired. The parameters Ω, σg as well as σn, which

denotes the variance of the observation noise, are considered
hyperparameters of the GP and are concatenated in the
vector θ.

GPs are suitable for solving regression tasks by learn-
ing the latent function g(ξ) from N training data points
{ξi, yi}i=Ni=1 . Here yi = g(ξi) + εi is a noisy observation
of the latent function with εi ∼ N (0,σn). For any test point
ξ∗ the mean and variance of the output random variable
y∗ ∼ N (µ∗,σ∗) are inferred as follows

µ∗ = m(ξ∗) + kᵀΞ,ξ∗
(kΞ,Ξ + σ2

nIN )−1y, (5)

σ∗ = k(ξ∗, ξ∗)− k
ᵀ
Ξ,ξ∗

(kΞ,Ξ + σ2
nIN )−1kΞ,ξ∗ , (6)

where Ξ ∈ Re×N ,y ∈ RN concatenate all ξi, yi, respec-
tively and kΞ,Ξ, kΞ,ξ∗ denotes the matrix/vector of pairwise
kernel evaluations. For multiple output dimensions, multiple
independent GPs are employed with same input, but differing
output data sets.

B. Wishart Processes

To model uncertainties by means of covariance matrices,
we review the Wishart distribution W(V , ν), a distribution
over matrices Σ ∈ Sd+. It is constructed from the sum of ν
outer products of multivariate Gaussian random variables
with covariance V ∈ S+

Σ =

ν∑
i=1

uiu
ᵀ
i ∼ W(V , ν), with ui ∼ N (0,V ). (7)

Parameters are the scale matrix V and the degree of freedom
ν ∈ N, ν > d− 1. Its probability density function is

p(Σ|V , ν) =
|Σ|(ν−d−1)/2

2νd/2|V |ν/2Γd(ν/2)
exp

(
-1
2

Tr
(
V -1Σ

))
,

where Γd(·) is the multivariate gamma function. The Wishart
distribution is the multivariate generalization of the Chi-
square distribution for V = d = 1.

Similarly to how the Gaussian distribution is generalized
to Gaussian Processes, one can extend Wishart distributions
to Wishart Processes (WPs), which are introduced in the
following according to [11]. The WP is obtained by replacing
the Gaussian random variables ui by νd Gaussian processes,
thus ui,j(ξ) ∼ GP(0, k(ξ, ξ′)), where i = 1, . . . , ν and
j = 1, . . . , d with ui(ξ) = [ui,1(ξ), . . . ui,d(ξ)]

ᵀ

ΣWP(ξ) =

ν∑
i=1

Lui(ξ) ui(ξ)ᵀLᵀ ∼ WP(V , ν), (8)

where LLᵀ = V is the lower Cholesky decomposition. Thus
each element in the input space ξ is assigned a distribution
over a positive definite matrix. In this application case, we are
not interested in the full distribution over PDF matrices and
only consider the GP mean. Therefore, given a test input ξ∗

the inference method first evaluates the mean prediction of
the νD GPs at ξ∗ according to (5), which we denote by u∗i .
Substituting this in (8) provides the inferred PDF matrix Σ∗.



IV. MODELING UNCERTAINTIES

A. Training Wishart Processes

To model input dependent uncertainties, we learn a
mapping from the input space X (task space, time, etc)
to covariance matrices in S+. To learn such a map-
ping from training data consider the set of observations
D = {ξk,t,yk,t}

t=1,...T
k=1,...K , with ξk,t ∈ Re and yk,t ∈ Rd

concatenated in Ξ and Y , respectively. The training of
the Wishart Process is an optimization over the parameters
U ,L, Θ. The matrix U ∈ Rνd×TK concatenates the outputs
of the νd GPs which cannot be observed directly. The
lower triangular matrix L contains d(d+ 1)/2 free elements
and is initialized to L = Id. The matrix Θ denotes the
concatenation Θ = [θ1,1, . . . ,θν,d] of the hyperparameters
of the νd GPs. To avoid a mixed integer optimization
problem, we do not optimize over ν but set ν = d + 1 as
proposed in [11]. In the following, we propose the use of
two different cost functions for the optimization over those
parameters depending on the alignment of the training data.

a) Mean squared error (MSE): This method is only
applicable for aligned training data because if multiple
observations are made at the same input, the empirical
mean and variance at this point is used for training. As
cost function for learning the variance mapping, we use the
mean squared error between the empirical and the inferred
covariances at all training points. Required are training data-
points with the same input locations across the K trajectories,
thus ξt := ξ1,t = ξ2,t, . . . , = ξK,t ∀t. This assumption is
often fulfilled whenever ξ is a one dimensional (temporal)
variable and data is recorded at a uniform sampling rate.
It allows to compute a training set for the uncertainty
{ξt, Σt}Tt=1, where Σt = C[Y t] is the empirical covariance
with Y t = [y1,t,y2,t, . . . ,yK,t]. The optimization over the
MSE between the empirical covariances Σt and the inferred
matrices from the Wishart Process ΣWP(ξt) is computed as
follows

min
U ,L,Θ

JMSE = min
U ,L,Θ

T∑
t=1

1

T
‖Σt −ΣWP(ξt)‖2. (9)

For computational efficiency, elements of the Cholesky de-
composition of Σt, ΣWP are vectorized and the Euclidean
norm of the difference of these two vectors is taken. The GP
outputs U only contain νd×T elements, which simplifies the
optimization problem. This estimation is only possible if the
empirical covariances can be computed (with aligned training
data). If this is not the case a maximum likelihood cost
function must be employed as presented in the following.

b) Maximum Likelihood: Since each training point is
generated from a Gaussian distribution with varying mean
and variance as given in (1) the computation of the likelihood
requires to infer the mean and the covariance simultaneously.
For the mean prediction, the mean of d GPs are taken
µGP (ξk,t) as introduced in (5). The GPs are trained using the
data set ξk,t,yk,t by default hyperparameter optimization.

To infer the covariance matrices, we employ Wishart
Processes as defined in (8), and maximize the likelihood

given by

Jlike =

T ,K∏
t,k=1

N
(
yk,t|µGP(ξk,t), ΣWP(ξk,t)

)
(10)

=

T ,K∏
t,k=1

|2πΣWP(ξk,t)|
-1
2 exp

(
−1

2
wᵀ
k,tΣWP(ξk,t)

-1wk,t

)
,

where wk,t = yk,t − µGP(ξk,t). For numerical stability the
negative log likelihood is minimized instead

min
U ,L,Θ

− log Jlike. (11)

B. Prior uncertainty

As WPs inherit they Bayesian setup from GPs, the be-
havior far away from training points can be set by injecting
prior knowledge. By setting a nonzero prior mean function
mi,j(ξ) for the GPs ui(ξ) ∼ GP the inferred covariance of
the WP is properly defined in areas without training data. For
instance, if we assume large uncertainty in areas far away
from training points, the prior is set to large values resulting
in higher inferred covariance matrices outside the training
area. The prior mean function can be set to a constant value
or to an arbitrarily complex smooth function.

C. Distinction between two uncertainty types

In PbD, one can distinguish between uncertainty due to
• missing data in regions of the input space (Type I) or
• contradiction/high variability of training data (Type II).

For specific applications, Type I uncertainty might require
a different response by the robot than Type II uncertainty.
For example Type I might cause the robot to wait at the
current locations to query for more training data and Type II
is supposed to result in low stiffness of the end-effector.

The variance provided, e.g., by GPs in (6) is independent
from the outputs y and therefore only provides a measure
for the proximity to the training points in the input space,
which corresponds to Type I uncertainty. On the other hand,
Gaussian Mixture Models (GMMs) only provide Type II
uncertainty. With the use of WPs, we propose a Bayesian
approach which is well suited to model both types simulta-
neously. It is achieved by modeling the uncertainty explicitly
rather than considering it as a error term or noise in the
mean regression. By choosing zero prior mean function and
utilizing (6) our model still contains both types separately.
In this work, we do not further distinguish and only use one
model for the joint representation of both uncertainties.

D. Approach to Learning the Cholesky Decomposition

As the Wishart Process approach requires the optimization
of a large number of parameters, we propose an alternative
method in this section, which constructs the PDF matrix
not from an outer product of vectors but from a Cholesky
decomposition. It is known that every PDF matrix Σ ∈ Sd+
can be represented by a lower triangular matrix LCD such
that Σ = LCDLCD

ᵀ which has d(d+1)/2 nonzero elements.
We therefore vectorize LCD in l ∈ L ⊂ Rd(d+1)/2. So rather



than constraining the output of the learned function X →
Rd×d to the manifold of PDF matrices, we propose to learn
X → Rd(d+1)/2. Thus, by using the Cholesky decomposition
approach, the number of optimization parameters is reduced
considerably. To stick to a Bayesian framework, we learn this
mapping using GPs. As with WPs, we distinguish between
the two different cases how training data is available:

a) Aligned input location across all trajectories: Again,
this allows to compute a training set for the uncertainty
{ξt, Σt}Tt=1. Applying Cholesky decomposition to the em-
pirical covariances Σt transforms this into {ξt, lt}Tt=1, with
l ∈ L ⊂ Rd(d+1)/2 and d(d + 1)/2 Gaussian Processes are
directly trained with likelihood optimization. Here the GP
outputs are directly observable and we only consider the
mean function of the GP since a distribution of triangular
matrices with normal distributed entries has only been stud-
ied very little [12].

b) Arbitrarily located training data: As discussed
above for this more general case, the empirical covariances
can not be determined. But analogously to the WPs, the
likelihood in (10), can still be evaluated. Therefore, the
optimization problem becomes

min
UCD,Θ

− log

T ,K∏
t,k=1

N
(
yk,t|µGP(ξk,t), ΣCD(ξk,t)

)
, (12)

where UCD ∈ RTK×d(d+1)/2 is the concatenation of all
unknown GP outputs lk,t ∈ Rd(d+1)/2, and CD labels the
Cholesky decomposition.

c) Inference: Given a test point ξ∗, each entry of l is
inferred according to the mean of the corresponding GP as
in (5). Hereby the (d + 1)d/2 inferred values l∗,j are the
entries of the lower triangular matrix LCD∗. The inferred
PDF matrix is obtained from

ΣCD = Σ(ξ∗) = LCD∗LCD
ᵀ
∗ . (13)

In the same way as prior knowledge about the uncertainty
was injected to WPs, the zero mean priors for the GPs can
be set to nonzero values in the Cholesky decomposition
approach.

E. Simulation

For demonstration purposes, we provide an example for
one input (e = 1) and two output (d = 2) dimensions. The
training data is generated from

y ∼ N (µ(ξ), Σ(ξ)) , ξ ∈ [−100, 100], (14)

µ(ξ) =

 30 sin
(
ξ
20

)
30 tanh

(
ξ
20

) ,

Σ(ξ) =

[
150 exp

(
−ξ
50

)2

0

0 ξ + 150

]
,

with T = 10 ( ξt are 10 equally spaced values in [−100, 100])
and K = 50 (50 draws for y at one ξt). We run the
Wishart Process Section IV-A and the Cholesky decom-
position Section IV-D approach for comparison. For WP

Method CD WP GMM K = 8 GMM K = 5
MSE 3.54e-13 0.0206 1.05 7.71

Time [s] 0.167 8.64 0.515 0.237

TABLE I
COMPARISON OF THE MEAN SQUARE ERROR FOR WP, CD AND GMM.

we set, as mentioned previously, ν = d + 1 = 3 and
the νd GP mean priors are all set to m(ξ) = 8. For the
CD approach, we set the priors of the diagonal elements
to one, thus m(ξ) = 1 and all others to zero. As both
proposed cost functions are applicable for this data set, we
run them for comparison as well. In order to compare with
previously existing approaches, we evaluate GMMs with
K = 5 components on the same dataset.

a) Results: The optimization using MSE and likelihood
cost function yield similar results in terms of precision and
speed. We therefore used Jlike in the further simulation as it is
more general applicable. For data at same input locations, the
CD approach requires only to optimize the hyperparameters
of the GP, therefore there was no need to employ (12). The
results for the all three methods are shown in Fig. 1 to
Fig. 3. Table I shows the mean squared error (MSE) between
inferred and empirical covariances (not the reference in (14))
and the optimization time (on a standard laptop in Matlab)
for all methods. In addition it shows the GMM for K = 8 as
it is the best of all K = 1 . . . 10, but fails in the prediction
of the mean, therefore the plot for K = 5 is shown.

b) Discussion: Table I shows that the Cholesky decom-
position approach outperforms other methods in speed and
precision, GMMs show the lowest precision. From Fig. 1
to Fig. 3 it can be observed that the inferred covariances
for WPs and CD increase in regions without training data,
while GMR provides a ”nearest neighbor” prediction. This
reflects that our approaches allow to include meaningful
prior knowledge. In addition, the GMMs suffer from the
parametric design which makes it sensitive to the choice of
the number of mixtures. Our non-parametric design allows
to model arbitrary complex mappings with (in case of
CD) a fixed number of hyperparameters. Since all three
approaches require nonconvex optimization, performance
guarantees cannot be given for any of them. Yet the small
MSE suggests that a reasonable small minimum was found.

Comparing Wishart Processes and the Cholesky decom-
position shows that the required number of GPs for the WP
is νd which (in principle grows linearly) with the number of
output dimensions d. But since ν is chosen (in accordance
to [11]) equal to the number of output dimensions d + 1,
it increases quadratically. The approach using the Cholesky
decomposition requires d(d + 1)/2 GPs, thus half of the
WPs but also increases quadratically in d. Another advantage
of the Cholesky method is (in case of aligned data) the
exact output values for the GPs given by Σ, rather than
optimizing over those how it is done with WPs. When data
is distributed arbitrarily both require similar computational
effort for solving (12) or (11). One major advantage of
using WPs is their well founded probabilistic theoretical
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background as Wishart distributions are widely applied in
Bayesian modeling. In contrast, the construction of PDF
matrices from triangular matrices with normal distributed
entries is less common, therefore the theoretical foundation
has not been investigated in depth. However, we only use
the deterministic perspective of the GP and therefore a prob-
abilistic analysis is not inevitable. For further experiments,
we consider CD for variance prediction due to its higher
precision.

V. ROBOTIC EXPERIMENT

One possible application for the uncertainty measure in
robotics is the proper trade-off between performance and
safety for which the manipulator’s impedance is adapted.
The end-effector is governed by the impedance control law

f = K(xd − x) +D(ẋd − ẋ), (15)

where f ∈ Rd, x,xd ∈ Rd and K,D ∈ Sd+ denote
the end-effector force, the (desired) position in the task
space and the stiffness/damping matrices, respectively. The
impedance K,D is adapted online based on the uncertainty.
For the validation of the presented methods in a real-world
PbD task, we conduct an experiment which employs the
proposed uncertainty modeling for impedance adaptation.

A. Setup

As a robotic manipulator, a 2 degree of freedom (DoF) lin-
ear axis device with mounted 6 DoF JR3 force-torque sensor
was used. The controller is implemented in Matlab/Simulink
running on a Linux real-time kernel and an update rate of
1kHz. To define the task, a 50 inch monitor displays the
virtual environment and the manipulators position in real-
time. A picture of the hardware setup is shown in Fig. 4.
The experiment itself is separated in three phases:
Demonstration: A human operator provides K = 6 training
trajectories of the same task. The task is to move from a start
to a goal position through an environment which is wide open
at the start but constrained through a narrow tunnel towards

Fig. 4. 2DoF Linear axes setup with force-torque sensor and display
showing the virtual environment.

the end. The environment is constant across all trials, but it
allows different paths to be chosen from the start to the goal
point as shown in Fig. 6. The movement in x-direction is free
while in y-direction a constant velocity is predetermined.
Learning: The trajectory of the generalized motion is en-
coded using a Gaussian Processes and Dynamic Movement
Primitives (DMPs) as introduced in [6]. More importantly, a
model for the time dependent variability is learned from data
as described in Section IV. The required optimization (12)
is solved offline.
Reproduction: The robotic manipulator uses DMPs to fol-
low the demonstrated trajectory online, while the admittance
controller (15) adapts the stiffness and damping online [7],
depending on the inferred uncertainties from the CD-model.
To verify changing admittance during the task, manual
disturbances are applied during execution.

B. Dynamic Movement Primitives

The generation of trajectories imitating an observed
demonstration is achieved using DMPs which are capable



of representing complex nonlinear movements, while guar-
anteeing stable goal converging behavior [3]. They are based
on a set of differential equations: The point attractive system

τ ż = α(β(g − x)− z) + fDMP(s), τ ẋ = z, (16)

consists for goal directed movements of a linear part which
pulls the position x towards the attractor at the goal point g
and a nonlinearity fDMP(s) which encodes the trained mo-
tion. The variables α,β > 0 determine goal convergence of
the linear part while τ > 0 adapts the speed of reproduction.
The canonical system

τ ṡ = −γs, γ > 0, s(0) = s0 > 0 (17)

regulates evolution of the phase variable s and therefore the
speed of fDMP(s). This nonlinearity is learned using GP
Regression on the training data {sk,t,f

DMP
k,t }

t=1,...T
k=1,...K for K

demonstrations of length T as described in [6]. This training
data set is determined by simulating sk,t from (17) and
computing fDMP

k,t from

fDMP
k,t = τ2ẍk,t − α(β(g − xk,t)− τ ẋk,t), ∀ k, t, (18)

where the position xk,t is observed and velocity ẋk,t and
acceleration ẍk,t are computed numerically. To match the
notation introduced above, the phase variable s corresponds
to the one dimensional input ξ and the d dimensional
output fDMP corresponds to y.

C. Stiffness Adaptation

For modifying the stiffness based on the variability in the
data, our proposed method is now applied to the training data
set {sk,t,f

DMP
k,t }

t=1,...T
k=1,...K which guides the DMP. Therefore,

we obtain the same scenario as in the simulation with 1D
input and 2D output. Since the training data is sampled at a
constant rate the input is aligned. For every input s which is
generated during run-time, the CD method infers a positive
definite matrix which reflects the variability at this part of the
task during the demonstration. This is now used for stiffness
adaptation as following:
• Since high variability indicates sufficient freedom in the

environment, we allow the manipulator to deviate fur-
ther from the mean of demonstrations which is encoded
in a lower stiffness. This allows for higher safety level in
the presence of humans in case of unintended collision.
It also allows the robot to be actively guided by an
expert during specific phases of the task.

• On the other side, low variability in the demonstration
here indicates tight spatial constraints. Therefore, high
precision in tracking the demonstrations is required. To
ensure this also in the presence of external perturbation,
the stiffness is increased.

While our method for deriving the covariance matrices dif-
fers from [7], the subsequent computation of the stiffness and
damping matricesK,D is the same. First, the eigenvalue de-
composition Σ = QΛQᵀ of the positive definite covariance
matrix is performed where Q contains the Eigenvectors and
Λ is the matrix with the Eigenvalues λi, i ∈ [1, 2, ..., d] on

α, β, τ γ σ σ̄ k [N/m] k̄ [N/m]
1 0.7 3.5e-4 1.2e-3 50 1000

TABLE II
PARAMETERS USED IN THE EXPERIMENT.

its diagonal. By taking the square-root of these Eigenvalues
the variances in direction of the Eigenvectors are obtained
σi =

√
λi. The stiffness matrix is then constructed as

K = QΓQᵀ with

Γi,j =

{
γ(σi) i = j
0 i 6= j

, (19)

where

γ(σi) =


k σ̄ ≤ σi
k̄ − (k̄ − k)σi−σ

σ̄−σ σ ≤ σi ≤ σ̄
k̄ σi ≤ σ̄

. (20)

The sensitivity to variance and bounds for the stiffness are
determined by the parameters σ̄,σ, k̄, k. The damping matrix
is similarly determined as D = QΓ̃Qᵀ with Γ̃i,j =

√
Γi,j .

All parameters chosen for the experiment are shown in
Table II. A diagram of the entire learning and control scheme
is shown in Fig. 5.
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Fig. 5. The overall design of the framework

D. Results
The experimental environment with the recorded training

trajectories and reproduction is shown in Fig. 6. Due to
the constraints of the virtual environment, the variability of
demonstrations is large at the beginning and decreases to a
minimum towards the end. This is also captured by the CD
model shown in Fig. 7. Since the movement speed in y is
constant across all trajectories, the respective stretch of the
ellipses in y direction is minimal, thus leading to constant
high stiffness in that direction. Since the x direction is more
relevant, Fig. 8 shows the changing stiffness and the effect
of manual perturbations. It illustrates, that in regions where
demonstrations are less variable, the stiffness increases and
thus the positional displacement with comparable perturba-
tion force decreases.

E. Discussion
The results show proper modeling of variability, here as a

function of time, and that the proposed methods are appli-
cable on real-world training data. The stiffness adaptation is
a relevant application especially in human-robot interaction
tasks. Even though the application here uses a time-based
approach, our methods are equivalently applicable for input
spaces with multiple dimension, e.g., joint space.
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during reproduction with two manual perturbations at t1 ≈ 2s and t2 ≈ 8s.

VI. CONCLUSION

In this paper, we propose two methods for modeling
uncertainties in Programming by Demonstration tasks. It
focuses on modeling changing variability of trajectories over
multiple demonstrations in a Bayesian setting. Therefore,
it allows to inject prior knowledge about uncertainties to
which the model returns in areas without training data. As
both methods are based on nonparametric Gaussian Process
modeling, the flexibility of the model is not fixed by a finite
parameter set, but can be arbitrarily complex. We show in
simulation the superiority in terms of precision compared
to widely used GMMs. In an experiment, we apply our
methods to impedance adaptation of a manipulator based on
the inferred uncertainties. It shows successful reproduction
of the task learned from multiple human demonstrations.
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