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Abstract

We present a fully flavour-covariant formalism for transport phenomena, by deriving Markovian master 
equations that describe the time-evolution of particle number densities in a statistical ensemble with arbi-
trary flavour content. As an application of this general formalism, we study flavour effects in a scenario 
of resonant leptogenesis (RL) and obtain the flavour-covariant evolution equations for heavy-neutrino and 
lepton number densities. This provides a complete and unified description of RL, capturing three distinct
physical phenomena: (i) the resonant mixing between the heavy-neutrino states, (ii) coherent oscillations 
between different heavy-neutrino flavours, and (iii) quantum decoherence effects in the charged-lepton sec-
tor. To illustrate the importance of this formalism, we numerically solve the flavour-covariant rate equations 
for a minimal RL model and show that the total lepton asymmetry can be enhanced by up to one order of 
magnitude, as compared to that obtained from flavour-diagonal or partially flavour off-diagonal rate equa-
tions. Thus, the viable RL model parameter space is enlarged, thereby enhancing further the prospects of 
probing a common origin of neutrino masses and the baryon asymmetry in the Universe at the LHC, as well 
as in low-energy experiments searching for lepton flavour and number violation. The key new ingredients 
in our flavour-covariant formalism are rank-4 rate tensors, which are required for the consistency of our 
flavour-mixing treatment, as shown by an explicit calculation of the relevant transition amplitudes by gen-
eralizing the optical theorem. We also provide a geometric and physical interpretation of the heavy-neutrino 
degeneracy limits in the minimal RL scenario. Finally, we comment on the consistency of various suggested 
forms for the heavy-neutrino self-energy regulator in the lepton-number conserving limit.
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1. Introduction

The observed matter–antimatter asymmetry in the Universe and the observation of non-zero 
neutrino masses and mixing (for a review, see [1]) provide two of the strongest pieces of exper-
imental evidence for physics beyond the Standard Model (SM). Leptogenesis [2] is an elegant 
framework that satisfies the basic Sakharov conditions [3], dynamically generating the observed 
matter–antimatter asymmetry. According to the standard paradigm of leptogenesis (for reviews, 
see e.g. [4–7]), there exist heavy Majorana neutrinos in minimal extensions of the SM, whose out-
of-equilibrium decays in an expanding Universe create a net excess of lepton number (L), which 
is reprocessed into the observed baryon number (B) through the equilibrated (B +L)-violating 
electroweak sphaleron interactions [8]. In addition, these heavy SM-singlet Majorana neutrinos 
Nα (with α = 1, . . . , NN ) could explain the observed smallness of the light neutrino masses 
by the seesaw mechanism [9–13]. Hence, leptogenesis can be regarded as a cosmological con-
sequence of the seesaw mechanism, thus providing an attractive link between two seemingly 
disparate pieces of evidence for new physics at or above the electroweak scale.

In the original scenario of thermal leptogenesis [2], the heavy Majorana neutrino masses 
are typically close to the Grand Unified Theory (GUT) scale, MGUT ∼ 1016 GeV, as suggested 
by natural GUT embedding of the seesaw mechanism [10–12]. In a ‘vanilla’ leptogenesis sce-
nario [14], where the heavy neutrino masses are hierarchical (mN1 � mN2 < mN3 ), the solar 
and atmospheric neutrino oscillation data impose a lower limit on mN1 � 109 GeV [15–18]. As a 
consequence, such leptogenesis models are difficult to test in foreseeable laboratory experiments. 
Moreover, these high-scale thermal leptogenesis scenarios, when embedded within supergravity 
models of inflation, could potentially lead to a conflict with the upper bound on the reheating 
temperature of the Universe, TR � 106–109 GeV, required to avoid overproduction of graviti-
nos whose late decays may otherwise spoil the success of Big Bang Nucleosynthesis [19–25]. 
In general, it is difficult to build a testable low-scale model of leptogenesis, with a hierarchical 
heavy neutrino mass spectrum [4,26].

A potentially interesting solution to the aforementioned problems may be obtained within 
the framework of resonant leptogenesis (RL) [27–29]. The key aspect of RL is that the heavy 
Majorana neutrino self-energy effects [30] on the leptonic CP-asymmetry become dominant [31,
32] and get resonantly enhanced, even up to order one [27,28], when at least two of the heavy 
neutrinos have a small mass difference comparable to their decay widths. As a consequence of 
thermal RL, the heavy Majorana neutrino mass scale can be as low as the electroweak scale [33], 
while maintaining complete agreement with the neutrino oscillation data [1].

A crucial model-building aspect of RL is the quasi-degeneracy of the heavy neutrino mass 
spectrum, which could be obtained as a natural consequence of the approximate breaking of 
some symmetry in the leptonic sector. In minimal extensions of the SM, there is no theoreti-
cally or phenomenologically compelling reason that prevents the singlet neutrino sector from 
possessing such a symmetry and, in fact, in realistic ultraviolet-complete extensions of the SM, 
such a symmetry can often be realized naturally. For instance, the RL model discussed in [27,28]
was based on a U(1)L lepton symmetry in the heavy neutrino sector, motivated by superstring-
inspired E6 GUTs [34–36]. The small mass splitting between the heavy neutrinos was generated 
by approximate breaking of this lepton symmetry via GUT- and/or Planck-scale-suppressed 
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higher-dimensional operators. The RL model discussed in [29] was based on the Froggatt–
Nielsen (FN) mechanism [37] in which two of the heavy Majorana neutrinos, having opposite 
charges under U(1)FN, naturally had a mass difference comparable to their decay widths. There 
is a vast literature on other viable constructions of RL models, e.g. within minimal extensions of 
the SM [38–43], with approximate flavour symmetries [44–49], with variations of the minimal 
type-I seesaw [17,50–54], within SO(10) GUTs [55–58], within the context of supersymmetric 
theories [59–63], and in extra-dimensional theories [64–68]. There also exist other variants of 
the RL scenario, such as radiative RL [69–72] and soft RL [73,74].

In another important variant of RL, a single lepton-flavour asymmetry is resonantly produced 
by out-of-equilibrium decays of heavy Majorana neutrinos of a particular family type [75,76]. 
This mechanism uses the fact that the sphaleron processes preserve, in addition to B − L, the 
individual quantum numbers Xi = B/3 − Li [77–81], where i = 1, 2, 3 is the SM family index 
and Li is the lepton asymmetry in the ith family. Therefore, it is important to estimate the net 
baryon number B created by sphalerons just before they freeze out. In particular, a generated 
baryon asymmetry can be protected from potentially large washout effects due to sphalerons if 
an individual lepton flavour � is out of equilibrium. We refer to such scenarios of RL as resonant 
�-genesis (RL�). In this case, the heavy Majorana neutrinos could be as light as the electroweak 
scale [33] and still have sizable couplings to other charged-lepton flavours �′ �= �. This enables 
the modeling of minimal RL� scenarios [76] with electroweak-scale heavy Majorana neutrinos 
that could be tested at the LHC [82], while being consistent with the indirect constraints from 
various low-energy experiments at the intensity frontier [83].

Flavour effects play an important role in determining the final lepton asymmetry in RL mod-
els. There are two kinds of flavour effects, which are usually ignored in vanilla leptogenesis sce-
narios, namely: (i) heavy neutrino flavour effects, assuming that the final asymmetry is produced 
dominantly by the out-of-equilibrium decay of only one (usually the lightest) heavy neutrino, 
with negligible contributions from heavier species; and (ii) charged-lepton flavour effects, as-
suming that the flavour composition of the lepton quantum states produced by (or producing) 
the heavy neutrinos can be neglected and all leptons can be treated as having the same flavour. 
Neglecting (i) can be justified in ‘vanilla’ scenarios, because the CP asymmetries due to the 
heavier Majorana neutrinos are usually suppressed in the hierarchical limit mN1 �mN2,3 . More-
over, even if a sizable asymmetry is produced by these effects, it is washed out by the processes 
involving the lightest heavy neutrino [14].1 However, for quasi-degenerate heavy neutrinos, as 
in the RL case, the flavour effects due to the neutrino Yukawa couplings do play an important 
role [75,86]. In fact, a sizable lepton asymmetry can be generated through CP-violating oscilla-
tions of sterile neutrinos [87–91], which is then communicated to the SM lepton sector through 
their Yukawa couplings.

On the other hand, the lepton flavour effects, as identified in (ii) above, are related to the 
interactions mediated by charged-lepton Yukawa couplings [92]. Depending on whether these 
interactions are in or out of thermal equilibrium at the leptogenesis scale, the predicted value for 
the baryon asymmetry could get significantly modified, as already shown by various partially 
flavour-dependent treatments [93–98].2 The lepton flavour effects can be neglected only when 
the heavy neutrino mass scale mNα � 1012 GeV, in which case all the charged-lepton Yukawa 

1 There is an exception to this case depending on the flavour structure of the neutrino Yukawa couplings, when the 
contribution from the next-to-lightest heavy neutrino decay could be dominant [84,85].

2 Similar partial flavour effects have also been considered for other variants of leptogenesis models, e.g. with type-II 
seesaw [99–101] and soft leptogenesis [102].
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interactions are out-of-equilibrium and the quantum states of all charged-lepton flavours evolve 
coherently, i.e. effectively as a single lepton flavour, between their production from Nα → LlΦ

and subsequent inverse decay LlΦ → Nα . Here, Ll = ( νlL lL )T is the SU(2)L lepton doublet 
(with flavour index l = e, μ, τ ) and Φ is the SM Higgs doublet. For 109 �mNα � 1012 GeV, the 
τ -lepton Yukawa interactions are in thermal equilibrium, and hence, the lepton quantum states 
are an incoherent mixture of τ -lepton and a coherent superposition of electron and muon. Finally, 
for mNα � 109 GeV, since the muon and electron Yukawa interactions are also in equilibrium, 
their impact on the final lepton asymmetry must be taken into account in low-scale RL models. 
Note that flavour effects also play an important role in the collision terms describing �L = 1
scatterings that involve Yukawa and gauge interactions, as well as �L = 0 and �L = 2 scatter-
ings mediated by heavy neutrinos [33].

Therefore, a flavour-covariant formalism is required, in order to consistently capture all 
the flavour effects, including flavour mixing, oscillations and (de)coherence. These intrinsically 
quantum effects can be accounted for by extending the classical Boltzmann equations for num-
ber densities of individual flavour species to a semi-classical evolution equation containing a 
matrix of number densities, analogous to the formalism presented in [103] for light neutrinos. 
Following this approach, a matrix Boltzmann equation in the lepton flavour space was obtained 
in [93,98]. Similar considerations were made in [104] to include heavy neutrino flavour effects 
in a hierarchical scenario. However, in RL scenarios, the interplay between heavy-neutrino and 
lepton flavour effects are important. With these observations, a fully flavour-covariant treatment 
of the quantum statistical evolution of all relevant number densities, including their off-diagonal 
coherences, is entirely necessary. This is the main objective of this long article.

To this end, we derive a set of general flavour-covariant transport equations for the number 
densities of any population of lepton and heavy-neutrino flavours in a quantum-statistical en-
semble. This set of transport equations are obtained from a set of master equations for number 
density matrices derived in the Markovian approximation, in which quantum ‘memory’ effects 
are ignored (see e.g. [105]). We demonstrate the necessary appearance of rank-4 tensor rates 
in flavour space that properly account for the statistical evolution of off-diagonal flavour coher-
ences. This novel formalism enables us to capture three important flavour effects pertinent to RL: 
(i) the resonant mixing of heavy neutrinos, (ii) the coherent oscillations between heavy neutrino 
flavours, and (iii) quantum (de)coherence effects in the charged-lepton sector. In addition, we 
describe the structure of generalized flavour-covariant discrete symmetry transformations C, P
and T , ensuring definite transformation properties of the transport equations and the generated 
lepton asymmetries in arbitrary flavour bases. Subsequently, we obtain a simplified version of the 
general transport equations in the heavy-neutrino mass eigenbasis, but retaining all the flavour 
effects. We further check that these rate equations reduce to the well-known Boltzmann equations 
in the flavour-diagonal limit.

To illustrate the importance of the effects captured only in this flavour-covariant treatment, 
we consider a minimal low-scale RL scenario in which the baryon asymmetry is generated from 
and protected in a single lepton flavour [75]. As a concrete example, we consider a minimal 
model of resonant τ -genesis (RLτ ) [75], involving three quasi-degenerate heavy neutrinos, at or 
above the electroweak scale, with sizable couplings to the electron and muon, while satisfying 
all the current experimental constraints. We show that the final lepton asymmetry obtained in our 
flavour-covariant formalism can be significantly enhanced (by roughly one order of magnitude), 
as compared to the partially flavour-dependent limits.

We should emphasize that our flavour-covariant formalism is rather general, and its applicabil-
ity is not limited only to the RL phenomenon. The flavour-covariant transport equations presented 
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here provide a complete description of the leptogenesis mechanism in all relevant temperature 
regimes. In addition, this formalism can be used to study other physical phenomena, in which 
flavour effects may be important, such as the evolution of multiple jet flavours in a dense QCD 
medium in the quark–gluon plasma (see e.g. [106]), the evolution of neutrino flavours in a super-
nova core collapse (see e.g. [107]), or the scenario of CPT-violation induced by the propagation 
of neutrinos in gravitational backgrounds [108]. We have also developed a flavour-covariant gen-
eralization of the helicity amplitude technique, and a generalized optical theorem in the presence 
of a non-homogeneous background ensemble, which may find applications in non-equilibrium 
Quantum Field Theory (QFT).

It is worth mentioning here that there have been a number of studies (see e.g. [109–120]), 
aspiring to go beyond the semi-classical approach to Boltzmann equations in order to under-
stand the transport phenomena from ‘first principles’ within the framework of non-equilibrium 
QFT. Such approaches are commonly based on the Schwinger–Keldysh Closed Time Path (CTP) 
formalism [121,122]. This real-time framework allows one to derive quantum field-theoretic ana-
logues of the Boltzmann equations, known as Kadanoff–Baym equations [123], obtained from 
the CTP Schwinger–Dyson equation and describing the non-equilibrium time-evolution of the 
two-point correlation functions. The Kadanoff–Baym equations are manifestly non-Markovian, 
accounting for the so-called ‘memory’ effects that depend on the history of the system. These 
equations can, in principle, account consistently for all flavour and thermal effects. However, 
one should note that in order to define particle number densities and solve the Kadanoff–Baym 
equations for their out-of-equilibrium evolution (as e.g. in the context of leptogenesis), particu-
lar approximations are often made. These specifically include quasi-particle approximation and 
gradient expansion in time derivatives [124]. Moreover, the loopwise perturbative expansion of 
non-equilibrium propagators are normally spoiled by the so-called pinch singularities [125], 
which are mathematical pathologies arising from ill-defined products of delta functions with 
identical arguments. Recently, a new formalism was developed for a perturbative non-equilibrium 
thermal field theory [126], which makes use of physically meaningful particle number densities 
that are directly derivable from the Noether charge. This approach allows the loopwise truncation 
of the resulting transport equations without the appearance of pinch singularities, while main-
taining all orders in gradients, thereby capturing more accurately the early-time non-Markovian 
regime of the non-equilibrium dynamics. An application of this approach to study the impact of 
thermal effects on the flavour-covariant RL formalism presented here lies beyond the scope of 
this article.

The rest of the paper is organized as follows: in Section 2, we review the main features of the 
flavour-diagonal Boltzmann equations. In Section 3, we derive a set of general flavour-covariant 
transport equations in the Markovian regime. In Section 4, we apply the formalism developed in 
Section 3 to a generic RL scenario and derive the relevant flavour-covariant evolution equations 
for the heavy-neutrino and lepton-doublet number densities. In Section 5, we present a geomet-
ric understanding of the degeneracy limit in minimal RL scenarios and also discuss an explicit 
model of RLτ . In Section 6, we present numerical results for three benchmark points, which il-
lustrate the impact of flavour off-diagonal effects on the final lepton asymmetry. We summarize 
our conclusions in Section 7. In Appendix A, we comment on different forms of the self-energy 
regulator used in the literature to calculate the leptonic CP-asymmetry in RL models and check 
their consistency in the L-conserving limit. In Appendix B, we develop a flavour-covariant gen-
eralization of the helicity amplitude formalism and describe the flavour-covariant quantization 
of spinorial fields in the presence of time-dependent and spatially-inhomogeneous backgrounds. 
In Appendix C, we justify the tensorial flavour structure of the transport equations introduced in 
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Section 3, by means of a generalization of the optical theorem. Finally, in Appendix D, we exhibit 
the form factors relevant for the lepton flavour violating decay rates discussed in Section 6.

2. Flavour diagonal Boltzmann equations

The time-evolution of the number density na of any particle species a can be modeled by a set 
of coupled Boltzmann equations (see e.g. [127]). Adopting the formalism described in [128,129], 
this may be written down in the generic form

dna

dt
+ 3Hna = −

∑
aX↔Y

[
nanX

naeqn
X
eq
γ (aX→ Y)− nY

nYeq
γ (Y → aX)

]
, (2.1)

where the drift terms on the left-hand side (LHS) arise from the covariant hydrodynamic deriva-
tive and include the dilution of the number density due to the expansion of the Universe, 
parametrized by the Hubble expansion rate H . The right-hand side (RHS) of (2.1) comprises 
the collision terms accounting for the interactions that change the number density na. Here, we 
have summed over all possible reactions of the form aX→ Y or Y → aX, in which the species 
a can be annihilated or created, respectively. If the species a is unstable, it can occur as a real 
intermediate state (RIS) in resonant processes of the form X→ a → Y , which must be prop-
erly taken into account in order to avoid double-counting of this contribution from the already 
considered decays and inverse decays in the Boltzmann equations [128]. At this point, it is im-
portant to note that the formalism leading to (2.1) neglects both the coherent time-oscillatory 
terms, describing particle oscillations between different flavours, and off-diagonal correlations 
in the matrix of number densities nab̄, corresponding to the annihilation of a particle species b
and the correlated creation of a particle species a. For this reason, we refer to (2.1) as a set of 
flavour-diagonal Boltzmann equations.

It is useful to summarize the notation and definitions used in (2.1). Firstly, the Hubble expan-
sion rate in the early Universe is given as a function of the temperature T by [127]

H(T )=
(

4π3

45

)1/2

g
1/2∗
T 2

MPl
, (2.2)

where MPl = 1.2 × 1019 GeV is the Planck mass and g∗(T ) is the number of relativistic degrees 
of freedom at temperature T . Throughout our discussions, all species are assumed to be in kinetic 
(but not necessarily chemical) equilibrium. In this case, the number density of a particle species 
a is given by

na(T )= ga
∫

d3p
(2π)3

1

exp [(Ea −μa)/T ] ± 1
≡ ga

∫
p

1

exp [(Ea −μa)/T ] ± 1
, (2.3)

where 
∫

p ≡ ∫
d3p/(2π)3 is a short-hand notation for the three-momentum integral, the − (+)

sign in the denominator corresponds to particles obeying Bose–Einstein (Fermi–Dirac) quan-
tum statistics, Ea(p) = (|p|2 + m2

a)
1/2 is the relativistic energy of the species a, ma being its 

rest mass, ga = ghel
a g

iso
a is the total degeneracy factor of the internal degrees of freedom, ghel

a

and giso
a being the degenerate helicity and degenerate isospin degrees of freedom respectively, 

and μa ≡ μa(T ) is the temperature-dependent chemical potential, encoding the deviation from 
local thermodynamic equilibrium. It will prove convenient in our later discussions to define an 
in-equilibrium number density naeq as the limit μa → 0 in (2.3). We note however that the true
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equilibrium number density will depend on the equilibrium chemical potential μeq
a , which may 

not be zero in general.
There are two limits of (2.3) of interest here: (i) the Maxwell–Boltzmann classical statistical 

limit (Ea(p) −μa)/T 
 1 in which we can drop the ±1 term in the denominator of (2.3), giving

na(T )= ga
∫
p

e−[Ea(p)−μa(T )]/T = gam
2
aT

2π2
K2

(
ma

T

)
eμa(T )/T , (2.4)

where Kn(x) is the nth-order modified Bessel function of the second kind; (ii) the relativistic 
limit (T 
ma, μa) in which case

na(T )= σχζ(3)

π2
gaT

3, (2.5)

where σχ = 1 (3/4) for bosons (fermions), and ζ(x) is the Riemann zeta function, with ζ(3) ≈
1.20206.

Following [29], we define the CP-conserving collision rate for a generic process X→ Y and 
its CP-conjugate Xc → Y c as

γXY ≡ γ (X→ Y)+ γ (Xc → Y c
)
, (2.6)

where we have used the shorthand superscript c to denote CP conjugation, and

γ (X→ Y)=
∫

dΠX dΠY (2π)
4δ(4)(pX − pY )e−p0

X/T
∣∣M(X→ Y)

∣∣2
≡
∫
XY

∣∣M(X→ Y)
∣∣2. (2.7)

Here, the squared matrix element |M(X→ Y)|2 is summed, but not averaged, over the internal 
degrees of freedom of the initial and final multiparticle states X and Y . We have introduced an 
abbreviated notation 

∫
XY

in (2.7) for the phase-space integrals over X and Y . The phase-space 
measure for the multiparticle state X, containing NX particles, is defined as

dΠX = 1

Nid!
NX∏
i=1

d4pi

(2π)4
2πδ

(
p2
i −m2

i

)
θ
(
p0
i

)
, (2.8)

where δ(x) and θ(x) are the usual Dirac delta and Heaviside step functions, respectively, and Nid!
is a symmetry factor in the case that the multiparticle state X contains Nid identical particles. In 
a CPT-conserving theory, the CP-conserving collision rates must obey γXY = γ YX . Analogous to 
(2.6), a CP-violating collision rate can be defined as [29]

δγ XY = γ (X→ Y)− γ (Xc → Y c
)
, (2.9)

which obeys δγ XY = −δγ YX , following CPT invariance.
The relevant Boltzmann equations for describing leptogenesis are those involving the number 

densities nNα (with α = 1, . . . , NN ) of the heavy Majorana neutrinos, nLl (with l = 1, . . . , NL) 
of the lepton-doublets and n̄Ll of their CP conjugates. When solving the coupled system of first-
order differential equations (2.1) for nNα , nLl and n̄Ll , it is convenient to introduce a new variable 
z =mN1/T . In the radiation-dominated epoch, relevant to the production of lepton asymmetry, 
z is related to the cosmic time t via the relation t = z2/2HN , where
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HN ≡H(z= 1)� 17
m2
N1

MPl
(2.10)

is the Hubble parameter (2.2) at z= 1, assuming only SM relativistic degrees of freedom. We also 
normalize the number density of species a to the number density of photons, defining ηa(z) =
na(z)/nγ (z), with nγ given by (2.5) for σχ = 1 and gγ = 2, i.e.

nγ (z)= 2T 3ζ(3)

π2
= 2m3

N1
ζ(3)

π2z3
. (2.11)

With these definitions, we write down the flavour-diagonal Boltzmann equations (2.1) in terms of 
the normalized number densities of heavy neutrinos ηNα and the normalized lepton asymmetries 
δηLl = (nLl − n̄Ll )/nγ as follows [33]:

nγHN

z

dηNα
dz

=
(

1 − ηNα

ηNeq

)∑
l

γ
Nα
LlΦ
, (2.12)

nγHN

z

dδηLl
dz

=
∑
α

(
ηNα

ηNeq
− 1

)
δγ
Nα
LlΦ

− 2

3
δηLl

∑
k

(
γ
LlΦ

LckΦ
c + γ LlΦLkΦ

)
− 2

3

∑
k

δηLk
(
γ
LkΦ

Lcl Φ
c − γ LkΦLlΦ

)
, (2.13)

where ηNeq ≈ z2K2(z)/2 is the normalized equilibrium number density of the heavy neutrinos, 
obtained using (2.11) and (2.4) with gN = 2. The various collision rates appearing in (2.12)
and (2.13) can be readily understood from the general definitions in (2.6) and (2.9); their explicit 
expressions in terms of the Yukawa couplings will be given in Section 2.2. Here we have included 
only the dominant contributions arising from the 1 → 2 decays and 2 → 1 inverse decays of the 
heavy neutrinos, proportional to the rate γ NαLlΦ , and the resonant part of the 2 ↔ 2 �L = 0 and 

�L = 2 scatterings, proportional to γ LkΦLlΦ
and γ LkΦ

Lcl Φ
c respectively. We ignore the sub-dominant 

chemical potential contributions from the right-handed (RH) charged-lepton, quark and the Higgs 
fields, as well as the �L = 1 Yukawa and gauge scattering terms [33].

Note that for the collision rate pertinent to the heavy neutrino decay in (2.12), we have 
summed over the lepton flavours, and similarly, for the charged-lepton rate equation (2.13), we 
have summed over the heavy neutrino flavours; therefore, these are still designated as flavour-
diagonal Boltzmann equations. The CP-odd collision rate δγ NαLlΦ in (2.13) can be expressed 
in terms of the flavour-dependent leptonic CP-asymmetries εlα and the CP-even collision rate 
γ
Nα
LlΦ

, as follows: δγ NαLlΦ = εlα∑k γ
Nα
LkΦ

, where εlα is defined in terms of the partial decay widths 
Γlα ≡ Γ (Nα →LlΦ) and their CP-conjugates Γ clα ≡ Γ (Nα → Lcl Φ

c):

εlα = Γlα − Γ clα∑
k(Γkα + Γ ckα)

≡ �Γlα

ΓNα
, (2.14)

where ΓNα is the total decay width of the heavy Majorana neutrino Nα. Since we are interested 
in the heavy neutrino decay for temperatures above the electroweak phase transition, where the 
SM Higgs vacuum expectation value (VEV) vanishes, only the would-be Goldstone and Higgs 
modes of the Φ-doublet contribute predominantly to the partial decay widths Γlα and the total 
decay width ΓNα in (2.14).
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Fig. 1. The two types of CP-violation due to the heavy Majorana neutrino decay N → LΦ . The notation used here will 
be explained in Section 3.

2.1. Resummed effective Yukawa couplings

The physical CP-violating observable defined in (2.14) receives contributions from two differ-
ent mechanisms (see Fig. 1): (i) ε-type CP violation due to the interference between the tree-level 
and absorptive part of the self-energy graphs in the heavy-neutrino decay, and (ii) ε′-type CP vio-
lation due to the interference between the tree-level graph and the absorptive part of the one-loop 
vertex. This terminology is in analogy with the two kinds of CP violation in the K0K0-system 
(for reviews, see [1,130]), where ε represents the indirect CP violation through K0 – K0 mixing, 
while ε′ represents the direct CP violation entirely due to the decay amplitude.

The contribution of the self-energy diagrams to the CP-asymmetry can in principle be calcu-
lated using an effective Hamiltonian approach, similar to that applied for the K0K0-system [130]. 
However, the heavy neutrinos, being unstable particles, cannot be described by the asymptotic 
(free) in- and out-states of an S-matrix theory [131]. Instead, their properties can be inferred 
from the transition matrix elements of 2 ↔ 2 scatterings of stable particles, and by identifying 
the resonant part of the 2 ↔ 2 amplitude that contains the RIS contributions only. This allows 
one to perform an effective resummation of the heavy-neutrino self-energy diagrams contributing 
to the ε-type CP-asymmetry [28,29,132].3

Neglecting the charged-lepton and light neutrino masses, the absorptive part of the heavy Ma-
jorana neutrino self-energy transitions Nβ → Nα can be written in a simple spinorial structure, 
as follows:

Σabs
αβ (/p)=Aαβ

(
p2)/pPL +A∗

αβ

(
p2)/pPR, (2.15)

where PL,R = (14 ∓ γ5)/2 are the left- and right-chiral projection operators respectively, and 
Aαβ is the absorptive transition amplitude, summed over all charged-lepton flavours running in 
the loop:

Aαβ (̂h)=
(̂h†ĥ)∗αβ

16π
= 1

16π

∑
l

ĥlαĥ
∗
lβ ≡

∑
l

Alαβ (̂h). (2.16)

Here hlα is the Yukawa coupling of the heavy neutrino Nα with the lepton-doublet Ll , and the 
caret (̂ ) denotes the fact that (2.16) was derived in a basis in which the heavy Majorana neutrino 
mass matrix is diagonal. The tree-level decay width of the heavy Majorana neutrino Nα is related 
to the diagonal transition amplitude Aαα by

3 For other effective approaches within the framework of perturbative field theory, see [31,133–138]. However, for a 
critical appraisal of the existing approaches, see Appendix A.
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Γ
(0)
Nα

= 2mNαAαα(̂h)=
mNα

8π

(̂
h†ĥ

)
αα
. (2.17)

To account for unstable-particle mixing effects between the heavy Majorana neutrinos, we 
define the one-loop resummed effective Yukawa couplings, denoted by (bold-faced Latin) hlα, 
and their CP-conjugates hclα , related to the matrix elements M(Nα → LlΦ) and M(Nα →
Lcl Φ

c) respectively. This formalism captures all dominant effects of heavy neutrino mixing and 
CP-violation, and has been shown [29] to be equivalent to an earlier proposed resummation 
method [28] based on the Lehmann–Symanzik–Zimmermann reduction formalism [139]. Work-
ing in the heavy neutrino mass eigenbasis, the resummed effective Yukawa couplings are given 
by [29,140]

ĥlα = ĥlα − i
∑
β,γ

|εαβγ |̂hlβ

× {
mα(mαAαβ +mβAβα)− iRαγ

[
mαAγβ(mαAαγ +mγAγα)

+mβAβγ (mαAγα +mγAαγ )
]}{
m2
α −m2

β + 2im2
αAββ

+ 2i Im(Rαγ )
[
m2
α|Aβγ |2 +mβmγ Re

(
A2
βγ

)]}−1
, (2.18)

where εαβγ is the usual Levi-Civita anti-symmetric tensor, m2
α ≡ m2

Nα
is a shorthand notation 

used here for brevity, and

Rαβ = m2
α

m2
α −m2

β + 2im2
αAββ

. (2.19)

All the transition amplitudes Aαβ ≡Aαβ (̂h) in (2.18) are evaluated on-shell with p2 =m2
Nα

. The 
respective CP-conjugate resummed effective Yukawa couplings ̂hclα can be obtained from (2.18)
by replacing the tree-level Yukawa couplings hlα with their complex conjugates h∗

lα .4 We will 
neglect the one-loop corrections to the proper vertices LlΦNα , whose absorptive parts are nu-
merically insignificant in RL. The partial decay widths Γαl and Γ cαl appearing in (2.14) can now 
be expressed in terms of the effective Yukawa couplings ̂hlα and ̂hclα , and the flavour-dependent 
absorptive transition amplitudes Alαβ (̂h), as follows:

Γlα =mNαAlαα(̂h), Γ clα =mNαAlαα
(̂
hc
)
. (2.20)

Note the explicit dependence of the absorptive transition amplitudes on the effective Yukawa 
couplings ̂h in (2.20). The total decay width of the heavy neutrino is thus obtained by summing 
over all lepton flavours:

ΓNα =
∑
l

(
Γlα + Γ clα

)= mNα

16π

[(̂
h† ĥ

)
αα

+ (̂
hc† ĥc

)
αα

]
. (2.21)

Replacing ĥ by the tree-level Yukawa coupling ĥ in (2.21), we can reproduce the tree-level 
decay width given by (2.17). Substituting (2.20) in (2.14), the flavour-dependent leptonic 
CP-asymmetry in RL can be written as

4 Note that hc �= h∗ in general, whereas for the tree-level Yukawa couplings, hc = h∗ by CPT-invariance of the 
Lagrangian.
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εlα = |̂hlα|2 − |̂hclα|2∑
k(|̂hkα|2 + |̂hckα|2)

= |̂hlα|2 − |̂hclα|2
(̂h†ĥ)αα + (̂hc†ĥc)αα

. (2.22)

Note that (2.22) encodes both ε- and ε′-type CP asymmetries, although we simply denote it by 
ε for brevity. The analytic results for both types of CP-asymmetry and their L-conserving limits 
for a simplified case will be discussed in Appendix A.

2.2. Analytic solutions

It is instructive to derive approximate analytic solutions of the Boltzmann equations (2.12)
and (2.29). To do this, we express (2.12) in terms of the non-equilibrium deviation parameter 
ηNα = (ηNα /ηNeq − 1), thus obtaining

dηNα
dz

= K1(z)

K2(z)

[
1 + (1 − Kαz)ηNα

]
(2.23)

where the K-factors, defined by Kα = ΓNα/ζ(3)HN , determine the depletion of the lepton asym-
metry due to inverse decays. In deriving (2.23), we have used the analytic expression for the total 
collision rate γ NαLΦ pertinent to the heavy neutrino decay

γ
Nα
LΦ ≡

∑
l

γ
Nα
LlΦ

= m3
Nα

π2z
K1(z)ΓNα . (2.24)

In the kinematic regime z > zα1 ≈ 2K−1/3
α , (2.23) has an approximate attractor solution

ηNα (z)�
1

Kαz
, (2.25)

independent of the initial conditions.
The collision rates for the �L = 0 and �L = 2 scatterings are given by [76]

γ
LkΦ
LlΦ

=
∑
α,β

(γ
Nα
LΦ + γ NβLΦ)

(1 − 2i
mNα−mNβ
ΓNα+ΓNβ )

2(̂h∗
lαĥc∗kαĥlβ ĥckβ + ĥc∗lα ĥ∗

kαĥclβ ĥkβ)

[(̂h†ĥ)αα + (̂hc†ĥc)αα + (̂h†ĥ)ββ + (̂hc†ĥc)ββ ]2
, (2.26)

γ
LkΦ

Lcl Φ
c =

∑
α,β

(γ
Nα
LΦ + γ NβLΦ)

(1 − 2i
mNα−mNβ
ΓNα+ΓNβ )

2(̂h∗
lαĥ∗

kαĥlβ ĥkβ + ĥc∗lα ĥc∗kαĥclβ ĥckβ)

[(̂h†ĥ)αα + (̂hc†ĥc)αα + (̂h†ĥ)ββ + (̂hc†ĥc)ββ ]2
, (2.27)

where we have used the narrow-width approximation (NWA) for the resummed heavy neutrino 
propagators in the pole-dominance region, i.e.

1

(s −m2
Nα
)2 +m2

Nα
Γ 2
Nα

≈ π

mNαΓNα
δ
(
s −m2

Nα

)
θ(

√
s ), (2.28)

since we are only interested in the resonant part of these 2 ↔ 2 scatterings in the RL case. 
Separating the diagonal α = β RIS contributions from the off-diagonal α �= β terms in the sum, 
(2.13) can be rewritten as [33]

nγHN

z

dδηLl
dz

=
∑
α

(
ηNα

ηNeq
− 1

)
εlαγ

Nα
LΦ − 2

3
δηLl

[∑
α

Blαγ
Nα
LΦ +

∑
k

(
γ

′LlΦ
LckΦ

c + γ ′LlΦ
LkΦ

)]
− 2

3

∑
δηLk

[∑
εlαδγ

Nα
LkΦ

+ (
γ

′LkΦ
Lcl Φ

c − γ ′LkΦ
LlΦ

)]
, (2.29)
k α
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where Blα = (Γlα + Γ clα)/ΓNα is the heavy neutrino decay branching ratio, and γ ′X
Y ≡ γXY −

(γ XY )RIS denote the RIS-subtracted collision rates, which can be obtained from (2.26) and (2.27)
taking α �= β . Including only the important RIS-subtracted collision rates proportional to δηLl , 
and neglecting the terms proportional to δηLk (for k �= l) which are numerically small for the 
minimal RL� scenarios [76], we can simplify (2.29) to

dδηLl
dz

= z3K1(z)
∑
α

Kα

(
εlαηNα − 2

3
Blακlδη

L
l

)
, (2.30)

where we have introduced a flavour-dependent parameter

κl ≡
∑
k(γ

LlΦ

LckΦ
c + γ LlΦLkΦ

)+ γ LlΦ
Lcl Φ

c − γ LlΦLlΦ∑
α γ

Nα
LΦBlα

= 2
∑
α,β

(
1 − 2i

mNα −mNβ
ΓNα + ΓNβ

)−1

× (̂h∗
lαĥlβ + ĥc∗lα ĥclβ)[(̂h†ĥ)αβ + (̂hc†ĥc)αβ ] + (̂h∗

lαĥlβ − ĥc∗lα ĥclβ)
2

[(̂ĥh†)ll + (̂hcĥc†)ll][(̂h†ĥ)αα + (̂hc†ĥc)αα + (̂h†ĥ)ββ + (̂hc†ĥc)ββ ]
. (2.31)

Using the attractor solution (2.25) in the kinematic regime z > zα1 , (2.30) can be written as

dδηLl
dz

= z2K1(z)

(
εl − 2

3
zKeff
l δη

L
l

)
, (2.32)

where εl = ∑
α εlα is the total leptonic CP-asymmetry stored in a given lepton flavour l, and 

Keff
l = κl∑α KαBlα ≡ κlKl is the effective washout parameter due to 2 ↔ 2 scatterings mediated 

by heavy neutrinos. Note that if we only consider the diagonal α= β terms representing the RIS 
contributions in the sum in (2.31), κl reaches its maximum value, i.e. κl = 1 +O(ε2

l ). On the other 
hand, in the Ll-conserving limit, κl vanishes at a rate at least equal to that of εl (see Appendix A). 
In the regime z > zl2 ≈ 2(Keff

l )
−1/3, the total lepton asymmetry, dominated by ε-type mixing 

effects, can be approximated by the analytic solution to (2.32):

δηL � δηLmix = 3

2z

∑
l

εl

Keff
l

(2.33)

up to a point z = zl3 ≈ 1.25 ln(25Keff
l ), beyond which the lepton asymmetry freezes out and 

approaches a constant value δηLmix = (3/2) ∑l εl/(K
eff
l z

l
3) [76].

2.3. Observed lepton asymmetry

Having obtained the net lepton asymmetry 
∑
l δη

L
l , the next step is to convert it to the asym-

metry in the total baryon-to-photon ratio δηB ≡ (nB − n̄B)/nγ via (B +L)-violating sphaleron 
interactions. In a sphaleron transition, an SU(3)c and SU(2)L-singlet neutral object from each 
generation of the SM is created out of the vacuum [8,141–143]. The operator responsible for 
sphaleron transitions can be written as

OB+L =
3∏
εklεmnεdef

[
QdkQ

e
l Q

f
mLn

]
i
, (2.34)
i=1
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where i is the family index; d, e, f are the SU(3)c colour indices; k, l, m, n are the SU(2)L
isospin indices; and Q = ( u d )TL is the SU(2)L quark doublet. The operator OB+L is invariant 
under both gauge transformations and U(3) flavour rotations. For the case of our interest, the lat-
ter freedom can be used to make the charged lepton Yukawa matrix positive and diagonal. Above 
the electroweak phase transition, all the SM processes, including the sphaleron interactions in 
(2.34), are assumed to be in full thermal equilibrium, which leads to the following relations 
among their chemical potentials [78]:

μV = 0, μΦ = 4

21

∑
l

μLl , μeR,l = μLl −
4

21

∑
l

μLl ,

μQL = −1

9

∑
l

μLl , μuR = 5

63

∑
l

μLl , μdR = −19

63

∑
l

μLl , (2.35)

where V stands for all vector bosons, uR and dR for up and down-type SU(2)L quark singlets, 
and eR for SU(2)L lepton singlets in the SM. The total chemical potentials of the baryonic and 
leptonic doublet fields are then given by

μB = 3(2μQL +μuR +μdR)= −4

3

∑
l

μLl , μL = 2
∑
l

μLl . (2.36)

Using the relations (2.36) into (2.4), in the linear approximation of μa/T , we obtain the con-
version of the total lepton asymmetry stored in the SM lepton-doublet to the baryon asymmetry5

δηB = −2

3

∑
l

δηLl , (2.37)

assuming a rapid sphaleron transition rate Γsph 
H(z= 1). This is valid at temperatures T > Tc, 
where Tc is the critical temperature for the electroweak phase transition, given at one loop 
by [144]

T 2
c = 1

4Dc

[
M2
H − 3

8π2v2

(
2M4

W +M4
Z − 4M4

t

)− 1

8π2v4Dc

(
2M3

W +M3
Z

)2]
. (2.38)

Here, Dc ≡ (2M2
W +M2

Z + 2M2
t +M2

H )/8v
2, where v = 2−1/4G

−1/2
F = 246.2 GeV is the elec-

troweak VEV (GF being the Fermi coupling constant), MH is the zero-temperature Higgs 
boson mass, and MW, MZ, Mt are the W , Z boson masses and top-quark mass respectively, 
defined at the electroweak scale. Using the latest experimental values of the SM mass parame-
ters MW = 80.385(15) GeV, MZ = 91.1876(21) GeV [1], Mt = 173.34 ± 0.76 GeV [145], and 
MH = 125.5+0.5

−0.6 GeV [146], we obtain

Tc = 149.4+0.7
−0.8 GeV. (2.39)

For T < Tc, the so-generated baryon asymmetry (2.37) gets diluted by standard photon in-
teractions until the recombination epoch at temperature T0. Assuming that there is no source 
or mechanism for significant entropy release while the Universe is cooling down from Tc
to T0, the baryon number in a comoving volume, nB/s, is constant during this epoch. Here, 

5 Note that since we are converting the asymmetry stored in the lepton-doublet, the conversion coefficient derived here 
is different from 28/51 used elsewhere (see e.g. [76]), which corresponds to the total lepton asymmetry, including the 
RH leptons.
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s = (2π2/45)gsT 3 is the entropy density and gs is the corresponding effective number of 
relativistic degrees of freedom. Thus, the baryon-to-photon ratio, ηB = π4gs/45ζ(3)s, at the 
recombination epoch is different from its value predicted by (2.37) due to the change in gs with 
temperature. The prediction for the current baryon asymmetry is thus given by

δηB0 = gs(T0)

gs(Tc)
δηB � δηB

27.3
, (2.40)

where we have used gs(Tc) = 106.75 and gs(T0) = 3.91 [127].
The theoretical prediction (2.40) has to be compared with the observed value today, which 

remains almost unchanged from the end of recombination epoch until the present. The latter can 
be expressed in terms of directly measurable quantities, namely, the baryon density ΩBh2 and 
the primordial 4He mass fraction YP, as follows [147]:

δηB0

ΩBh2
= [

273.9 ± 0.3 + 1.95 (YP − 0.25)
]× 10−10. (2.41)

Using the recent results for the Planck temperature power spectrum data, combined with the 
WMAP polarization data at low multipoles, which give ΩBh2 = 0.02205 ± 0.00028 and YP =
0.24770 ± 0.00012 at 68% CL [148], we infer from (2.41) the observed value of the baryon-to-
photon ratio at 68% CL

δηBobs = (6.04 ± 0.08)× 10−10, (2.42)

from which we can estimate the necessary lepton asymmetry using (2.37) and (2.40), i.e.

δηLobs = −(2.47 ± 0.03)× 10−8. (2.43)

Note the sign difference between δηB and δηL [cf. (2.37)]. The numerical value of the total 
lepton asymmetry in a given leptogenesis model should be compatible with the observed value 
(2.43), thus constraining the relevant model parameter space.

3. Flavour covariant transport equations

As discussed in Section 2, the semi-classical Boltzmann equations (2.1) and, in particular 
(2.12) and (2.13), do not take into account quantum flavour effects such as the coherent oscilla-
tions between different flavours of heavy neutrinos and the quantum-statistical decoherence of 
flavour off-diagonal matrix number densities. In order to capture these effects consistently, we 
will derive a set of fully flavour-covariant transport equations for the matrix number densities 
describing the statistical content of the system. In the next section and as an application of our 
general formalism, we will consider the specific case of RL, subsequently demonstrating the 
importance of the flavour effects captured here, but missed in earlier treatments of the subject. 
Keeping this particular application in mind, we will consider a specific system of NL Dirac lep-
ton isospin doublets Ll , NN heavy Majorana neutrinos Nα , and an SU(2)L Higgs doublet Φ . 
Nevertheless, we emphasize that the analysis of this section can be easily generalized to other 
physical situations involving flavour effects, such as the evolution of jet flavours in a quark–gluon 
plasma or of neutrino flavours in a core-collapse supernova.

In a general flavour basis, the relevant part of the Lagrangian, involving the heavy Majorana 
neutrinos, is given by

−LN = hlαLlΦ̃NR,α + 1
NCR,α[MN ]αβNR,β + H.c., (3.1)
2
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where NR,α ≡ (PRN)α are the RH heavy neutrino fields and Φ̃ ≡ iσ2Φ
∗. Unless otherwise 

stated, the Einstein summation convention is implied henceforth in the summations over the lep-
ton flavour indices (lower-case Latin) l, m, . . . and the heavy-neutrino flavour indices (lower-case 
Greek) α, β, . . . . In order to familiarize the reader with the covariant convention used here and 
throughout this text, we will first discuss the flavour-covariant transformations of the field opera-
tors appearing in (3.1). In addition, we will illustrate the flavour-covariant generalizations of the 
discrete symmetry transformations C, P and T . Subsequently, we will derive general Markovian 
master equations for the matrix number densities, and use them to describe the statistical evolu-
tion of our model system due to the out-of-equilibrium decays and inverse decays of the heavy 
neutrinos.

3.1. Flavour transformations

Under the U(NL) ⊗U(NN) flavour transformations, the lepton fields transform as follows in 
their fundamental representation:

Ll → L′
l = VlmLm, Ll ≡ (Ll)† →L′ l = V lmLm, (3.2)

NR,α →N ′
R,α =UαβNR,β , N α

R ≡ (NR,α)
† →N ′

R
α =UαβNR

β, (3.3)

with the unitary transformation matrices Vlm ∈ U(NL) and Uαβ ∈ U(NN) for which the op-
eration of complex conjugation exchanges subscripts and superscripts, i.e. V lm ≡ (Vlm)∗ and 
Uαβ ≡ (Uαβ)∗. We note that the RH part of the Majorana neutrino fields NR,α transforms covari-
antly, as shown in (3.3). The left-handed (LH) part, on the other hand, transforms contravariantly 
and, as such, the Majorana fields Nα do not have definite flavour-transformation properties. The 
Lagrangian (3.1) is invariant under U(NL) ⊗U(NN), provided the heavy-neutrino Yukawa cou-
plings and the Majorana masses transform appropriately, as indicated by the relative position of 
the indices in (3.1), i.e.

hl
α → h′

l
α = VlmUαβhmβ, [MN ]αβ → [

M ′
N

]αβ =UαγUβδ[MN ]γ δ. (3.4)

In the physical mass eigenbasis, the Dirac field can be expanded in a basis of plane waves:

L̂l(x; t̃i )=
∑
s

∫
p

(
2ÊL,l(p)

)−1/2(
e−ip̂l ·xûl(p, s)̂bl(p, s,0; t̃i )

+ eip̂l ·x v̂l(p, s)d̂†
l (p, s,0; t̃i )

)
, (3.5)

where ̂bl(p, s, ̃t; ̃ti ) and d̂†
l (p, s, ̃t; ̃ti ) are respectively the interaction-picture particle annihilation 

and antiparticle creation operators evaluated at the time t̃ = 0. Hereafter, for notational conve-
nience, we will suppress the dependence of the operators on the boundary time t̃i at which the 
three pictures of quantum mechanics, viz. Schrödinger, Heisenberg and interaction (Dirac) pic-
tures, are coincident [126]. The index s = ± denotes the two helicity states with the unit spin 
vector n = ss = sp/|p| aligned parallel or anti-parallel to the three momentum p, respectively. 
Herein, we have suppressed the isospin index of the lepton doublet. Notice also that we have 
chosen the normalization of the creation and annihilation operators, such that they have mass 
dimension −3/2. This choice of normalization is made so that the bilinears of these creation 
and annihilation operators have the dimension of the number density operator, i.e. mass dimen-
sion −3. A discussion of the flavour-covariant Bogoliubov transformations relating this choice 
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of normalization to the more common and manifestly Lorentz-invariant normalization, in which 
the creation and annihilation operators have mass dimension −1, is included in Appendix B.

It is now important to note that bk(p, s, ̃t) and d†
k (p, s, ̃t) transform under the same represen-

tation of U(NL) and so also do bk(p, s, ̃t) ≡ (bk(p, s, ̃t))† and d†,k(p, s, ̃t) ≡ (d†
k (p, s, ̃t))

†.6

The equal-time anti-commutation relations for these operators are obtained by a flavour-
transformation from the mass eigenbasis of the corresponding flavour-diagonal anti-commu-
tators, i.e.{

bl(p, s, t̃ ), bm
(
p′, s′, t̃

)}= {
d†,m(p, s, t̃ ), d†

l

(
p′, s′, t̃

)}= (2π)3δ(3)(p − p′)δss′δlm. (3.6)

Note that due to the choice of normalization of the creation and annihilation operators, the anti-
commutation relations obtained here are isotropic in flavour space, which does not occur for the 
alternate choice of normalization discussed in Appendix B [cf. (B.11)].

By applying a flavour transformation (3.2) to a general basis, we obtain the covariant expan-
sion of the lepton doublet (3.5):

Ll(x)=
∑
s

∫
p

[(
2EL(p)

)−1/2]
l

i([
e−ip·x]

i

j [
u(p, s)

]
j

k
bk(p, s,0)

+ [
eip·x]

i

j [
v(p, s)

]
j

k
d

†
k (p, s,0)

)
, (3.7)

Ll(x)=
∑
s

∫
p

[(
2EL(p)

)−1/2]l
i

([
eip·x]i

j

[
ū(p, s)

]j
kb
k(p, s,0)

+ [
e−ip·x]i

j

[
v̄(p, s)

]j
kd

†,k(p, s,0)
)
, (3.8)

where the rank-2 tensors in (3.7) and (3.8) are defined by means of the flavour transformations 
(3.2) from the mass eigenbasis, i.e.[(

EL(p)
)2]

l

m ≡ VlkV mk
(
ÊL,k(p)

)2 = |p|2δlm + [
M

†
LML

]
l

m
, (3.9)

in which ML is the charged-lepton mass matrix and δlm is the usual Kronecker delta. Since 
EL(p) is Hermitian, ([EL(p)]lm)∗ = [EL(p)]lm. For the Dirac spinors, our notation is such that[

u(p, s)
]
l

m = VlkV mkûk(p, s),
[
ū(p, s)

]l
m = V lkVmk̂̄uk(s,p). (3.10)

Full details of the flavour-covariant spinor algebra are given in Appendix B.
In order to write down the flavour covariant expansion of the Majorana field, we recall that in 

the mass eigenbasis the expansion of a Majorana fermion can be obtained from a Dirac one by 
imposing the Majorana condition

d̂†,α(k,−r, t̃)= b̂α(k, r, t̃ )≡ âα(k, r, t̃). (3.11)

Since bα(k, r, ̃t) and d†,α(k, − r, ̃t) transform differently under the transformations given in (3.3), 
this condition cannot be imposed in a general flavour basis. Instead, writing the mass-eigenbasis 
operators in terms of the ones in a general basis, we obtain Uβαbβ(k, r, ̃t) =U α

γ d
†,γ (k, − r, ̃t), 

where Uαβ is the flavour transformation that connects the mass eigenbasis to the basis under 
consideration. We thus obtain the flavour-covariant Majorana condition

6 Hence, d†,k(p, s, ̃t) is an annihilation operator, i.e. d†,k(p, s, ̃t)|0〉 = bk(p, s, ̃t)|0〉 = 0.
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d†,α(k,−r, t̃)= (
U∗U†)αβbβ(k, r, t̃ )≡Gαβbβ(k, r, t̃ ), (3.12)

where Gαβ denote the elements of a unitary and symmetric matrix. It can be shown that this 
matrix G is a rank-2 contravariant tensor,7 which is equal to the identity matrix 1 in the mass 
eigenbasis. Combining the constraint (3.12) with the expansions (3.7) and (3.8), the flavour co-
variant expansion of the RH part of the Majorana neutrino field and its Dirac conjugate are given 
by

NR,α(x)=
∑
r

∫
k

[(
2EN(k)

)−1/2]
α

β([
e−ik·x

]
β

γ
PR
[
u(k, r)

]
γ

δ
aδ(k, r,0)

+ [
eik·x

]
β

γ
PR
[
v(k,−r)]

γ

δ
Gδεa

ε(k, r,0)
)
, (3.13)

NαR(x)=
∑
r

∫
k

[(
2EN(k)

)−1/2]α
β

([
eik·x

]β
γ

[
ū(k, r)

]γ
δPLa

δ(k, r,0)

+ [
e−ik·x

]β
γ

[
v̄(k,−r)]γ δPLG

δεaδ(k, r,0)
)
. (3.14)

Notice that the helicity of the v spinors is different from those of the corresponding creation and 
annihilation operators (see e.g. [149]). The rank-2 tensors in (3.13) and (3.14) can be defined 
using the flavour transformations (3.3) from the mass eigenbasis, e.g.[(

EN(k)
)2]

α

β = |k|2δαβ + [
M

†
NMN

]
α

β
. (3.15)

The anti-commutation relation for the heavy-neutrino creation and annihilation operators are 
given by{

aα(k, r, t̃ ), aβ
(
k′, r ′, t̃

)}= (2π)3δ(3)(k − k′)δrr ′δαβ. (3.16)

From (3.13) and (3.14), we see that the elements Gαβ play the role of generalized Majorana 
creation phases.8

Finally, the complex scalar field in (3.1) can be expanded as

Φ̃(x)=
∫
q

(
2EΦ(q)

)−1/2(
e−iq·x c̄(q,0)+ eiq·x c†(q,0)

)
, (3.17)

where the interaction-picture creation and annihilation operators for the scalar field satisfy the 
commutation relations[

c(q, t̃), c†(q′, t̃
)]= [

c̄(q, t̃), c̄†(q′, t̃
)]= (2π)3δ(3)(q − q′). (3.18)

In a general flavour basis, the free Hamiltonians of the lepton doublet and heavy neutrino 
fields are

7 Performing a flavour transformation U ′ on Gαβ defined in (3.12), we get

Gαβ →G′αβ = [(
U ′U

)∗(
U ′U

)†]αβ = [
U ′ ∗GU ′ †]αβ =U ′α

γ U
′β
δG
γ δ,

which is the transformation law of a rank-2 contravariant tensor.
8 With the necessary introduction of the matrix G, we may decompose the Majorana field in terms of its RH and LH 

components as Nα =NR,α +GαβNβL , having definite transformation properties. However, we see that there remains an 
ambiguity in any such decomposition, since we could equally well have written Nα =GαβNR,β +Nα .
L
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H 0
L =

∑
s

∫
p

[
EL(p)

]
m

l(
bm(p, s, t̃)bl(p, s, t̃ )+ d†

l (p, s, t̃ )d
†,m(p, s, t̃ )

)
, (3.19)

H 0
N =

∑
r

∫
k

[
EN(k)

]
β

α
a†,β(k, r, t̃ )aα(k, r, t̃), (3.20)

as can readily be verified by flavour transformations from the mass eigenbasis in which the 
Hamiltonians are flavour-diagonal.

The flavour occupancies and coherences in the evolution of our multiparticle system can be 
described in terms of flavour-covariant matrix number densities, analogous to the ones for light 
neutrino flavours introduced in [103]. For the lepton doublets, we define[

nLs1s2(p, t)
]
l

m ≡ 1

V3

〈
bm(p, s2, t̃)bl(p, s1, t̃)

〉
t
, (3.21)[

n̄Ls1s2(p, t)
]
l

m ≡ 1

V3

〈
d

†
l (p, s1, t̃)d

†,m(p, s2, t̃)
〉
t
, (3.22)

where V3 = (2π)3δ(3)(0) is the infinite coordinate three-volume of the system and the macro-
scopic time t = t̃ − t̃i is the interval of microscopic time between the specification of the initial 
conditions (t̃i ) and the observation of the system (t̃). We note in particular the relative reversed 
order of indices in the lepton and anti-lepton number densities, which guarantees that the two 
quantities transform in the same representation and thus can be combined to form a flavour-
covariant lepton asymmetry. Similarly, we define the heavy-neutrino number densities[

nNr1r2(k, t)
]
α

β ≡ 1

V3

〈
aβ(k, r2, t̃)aα(k, r1, t̃)

〉
t
, (3.23)[

n̄Nr1r2(k, t)
]
α

β ≡ 1

V3

〈
Gαγ a

γ (k, r1, t̃)Gβδaδ(k, r2, t̃)
〉
t
, (3.24)

and the scalar number densities

nΦ(q, t)≡ 1

V3

〈
c†(q, t̃)c(q, t̃ )

〉
t
, n̄Φ(q, t)≡ 1

V3

〈
c̄†(q, t̃)c̄(q, t̃)

〉
t
. (3.25)

The total number densities nX (without three-momentum argument) are obtained by integrat-
ing (3.21)–(3.25) over the corresponding three-momenta and tracing over helicity and isospin, 
i.e.

nN(t)≡
∑
r=−,+

∫
k

nNrr(k, t), nL(t)≡ Tr
iso

∑
s=−,+

∫
p

nLss(p, t),

nΦ(t)≡ Tr
iso

∫
q

nΦ(q, t), (3.26)

where we have identified explicitly that the traces are taken in isospin space. Analogous defini-
tions are assumed for the antiparticle number densities. Note that all the matrix number densities 
defined above, as well as the energy matrices (3.9) and (3.15), are Hermitian in flavour space.

3.2. Flavour covariant discrete symmetries

It is useful to derive the transformation properties of the discrete symmetries C, P , and T
in the flavour-covariant formalism. We assume that the action of these operators on the fermion 
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fields in the mass eigenbasis is the standard one (see e.g. [150]), and find its generalization 
to an arbitrary flavour basis by means of the appropriate flavour transformations discussed in 
Section 3.1. In the mass eigenbasis, the action of the unitary charge-conjugation operator UC on 
elements of the Fock space is given by [150]

b̂l(p, s, t̃)C ≡ UCb̂l(p, s, t̃ )U†
C = −id̂†,l(p, s, t̃). (3.27)

Note that the phase convention for the operators used here is in accordance with those used 
for the spinors in Appendix B. By writing the mass-eigenbasis operators in terms of those in a 
general basis, i.e. b̂l(p, s, ̃t) = Vmlbm(p, s, ̃t), ̂d†,l(p, s, ̃t) = V l

n d̂
†,n(p, s, ̃t), we find the flavour-

covariant C-transformation

bl(p, s, t̃)C = UCbl(p, s, t̃ )U†
C = −i(VV T)

lm
d†,m(p, s, t̃ )≡ −iGlmd†,m(p, s, t̃ ), (3.28)

where we have been required to introduce the matrix G for the charged leptons, analogous to G
in (3.12) for heavy neutrinos. Thus, we see that in a flavour-covariant formulation the action of C
necessarily involves the appropriate flavour rotation. We find it useful to define the generalized
C-transformation C̃, i.e.

bl(p, s, t̃)C̃ ≡ Glmbm(p, s, t̃ )C = −id†,l(p, s, t̃), (3.29)

which is a combination of the C-transformation and the appropriate flavour rotation.9 Thus we 
see that, in an arbitrary flavour basis, the particle and antiparticle operators are related by a 
C̃-transformation, which reduces to the usual charge-conjugation operation in the mass eigenba-
sis. The action of C on the fermion fields is obtained analogously, i.e.

Ll(x)
C = UCLl(x)U†

C = GlmCL̄m,T(x), (3.30)

with C = iγ 0γ 2 (in the helicity basis), whereas the action of C̃ gives the more familiar result

Ll(x)
C̃ = GlmLm(x)C = CL̄l,T(x), (3.31)

using the fact that GlmGmn = δln.
Similarly, the parity transformation, given by the unitary operator UP in Fock space, can be 

generalized straightforwardly from the mass eigenbasis, i.e.

bl(p, s, t̃)P ≡ UP bl(p, s, t̃ )U†
P = −sbl(−p,−s, t̃), (3.32)

Ll(x0,x)P ≡ UPLl(x0,x)U†
P = PLl(x0,−x), (3.33)

with P = γ 0. Under CP, the action of the heavy-neutrino interaction Lagrangian (3.1) transforms 
as

UCUP
(∫
x

hlαN
α
RΦ̃

†Ll + H.c.

)
U†
PU

†
C =

∫
x

GlmhmβGβαL̄lΦ̃NR,α + H.c., (3.34)

where we have introduced the short-hand notation 
∫
x

≡ ∫
d4x for the integration over spacetime. 

Eq. (3.34) defines the CP-transformations of the Yukawa couplings:

9 These are equivalent to the transformations considered in [151,152]. However, in our case, the appropriate flavour 
rotations are forced by the flavour-covariance of the formalism, once the canonical discrete transformations are defined 
in the mass basis.
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(
hl
α
)CP = GlmhmβGβα,

(
hl
α
)C̃P ≡ Glm

(
hm
β
)CP
Gβα = hlα. (3.35)

For a general matrix element, the relation (3.35) can be generalized to

M(X→ Y)C̃P =M
(
Xc̃ → Y c̃

)
, (3.36)

where Xc̃ ≡ XC̃P is the generalized CP-transformation of the state X, which can, for instance, 
be obtained from (3.31) and (3.33).

The action of the time-reversal transformation T is described by an anti-unitary operator AT
in the Fock space. Again, starting from the mass-eigenbasis relation

b̂l(p, s, t̃ )T ≡AT b̂l(p, s, t̃ )A†
T = b̂l(−p, s,−t̃ ), (3.37)

we find, because of the anti-linearity of AT ,

bl(p, s, t̃ )T =AT bl(p, s, t̃ )A†
T = Glmbm(−p, s,−t̃ ), (3.38)

Ll(x0,x)T =AT Ll(x0,x)A†
T = GlmT Lm(−x0,x), (3.39)

with T = iγ 1γ 3. Thus, we may introduce the generalized T -transformations T̃ as follows:

bl(p, s, t̃ )T̃ ≡ Glmbm(p, s, t̃ )T = bl(−p, s,−t̃ ), (3.40)

Ll(x0,x)T̃ ≡ GlmLm(x0,x)T = T Ll(−x0,x). (3.41)

Hence, in a general basis, incoming and outgoing states are exchanged by a T̃ operation. This 
can be seen by transforming the interaction Lagrangian (3.1) under AT from which we obtain(

hl
α
)T = GlmhmβGβα,

(
hl
α
)T̃ ≡ Glm

(
hm
β
)T
Gβα = hlα. (3.42)

Generalizing the above transformations to the matrix elements gives

M(X→ Y)T̃ =M(Y →X). (3.43)

From (3.31) and (3.41), we obtain an important equivalence relation:

Ll(x)
C̃PT̃ = GlmLm(x)CPT̃ = GlmGmnLn(x)CPT = δlnLn(x)CPT = Ll(x)CPT . (3.44)

As a consequence, we have the identity

C̃PT̃ = CPT. (3.45)

Combining the results (3.36) and (3.43), and using the CPT-invariance of the Lagrangian (3.1), 
the identity (3.45) allows us to relate the matrix elements as

M(X→ Y)C̃PT̃ =M
(
Y c̃ →Xc̃

)=M∗(X→ Y). (3.46)

The number density matrices defined in (3.21)–(3.24) have simple transformation properties 
under C̃. Since d†,l(p, s, ̃t) = ibl(p, s, ̃t)C̃ , for the lepton number densities (3.21) and (3.22), we 
have

nL(p, t)C̃ ≡ G
〈
UC ň

L
(p, t̃)U†

C

〉
t
G† = n̄L(p, t)T, (3.47)

where the transposition on the far RHS of (3.47) is on both flavour and helicity indices. Similarly, 
for the heavy neutrinos we have aα(k, r)C = −iaα(k, r), and hence, the transformation relation

nN(k, t)C̃ ≡ G
〈
UC ň

N
(k, t̃)U† 〉

G† = n̄N(k, t)T. (3.48)
C t
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Thus, n̄N(k, t)T is the C̃-conjugate of nN(k, t). For Majorana heavy neutrinos, the two 
C̃-conjugate quantities are not independent, and are related by[

n̄Nr1r2(k, t)
]
α

β =Gαμ
[
nNr2r1(k, t)

]
λ

μ
Gλβ. (3.49)

Using the C̃-transformation relations (3.47) and (3.48), we can construct the following quan-
tities with definite C̃ transformation properties:[

δnLs1s2(p, t)
]
l

m = [
nLs1s2(p, t)

]
l

m − [
n̄Ls1s2(p, t)

]
l

m
, (3.50)[

δnNr1r2(k, t)
]
α

β = [
nNr1r2(k, t)

]
α

β − [
n̄Nr1r2(k, t)

]
α

β
, (3.51)[

nNr1r2(k, t)
]
α

β = 1

2

([
nNr1r2(k, t)

]
α

β + [
n̄Nr1r2(k, t)

]
α

β)
, (3.52)

which transform under C̃ as

δnL(p, t)C̃ = −δnL(p, t)T, δnN(k, t)C̃ = −δnN(k, t)T,

nN(k, t)C̃ = +nN(k, t)T. (3.53)

Thus, the quantities δnX are C̃-“odd”, and nN is C̃-“even”, where the quotation marks refer to 
the fact that this is not meant to be in the usual sense due to the transposition involved. The 
definite C̃-properties of the above quantities can be extended to C̃P, once the total unpolarized 
number densities defined by (3.26) are considered. Note that we did not define a C̃-even quantity 
for lepton number densities (analogous to nN ), since this can be approximated by the equilibrium 
number density nLeq, i.e.

nL(t)+ n̄L(t)= 2nLeq1 +O
(
μ2
L/T

2). (3.54)

However, this is not always true for the heavy neutrinos, i.e. nN(t) �= nNeq1, since we must have a 
departure from thermal equilibrium in order to satisfy the basic Sakharov conditions [3] for the 
generation of a non-zero lepton asymmetry.

In the heavy-neutrino mass eigenbasis the transformation matrix Ĝ reduces to the identity 
matrix 1, and hence, the transformations C and C̃ are identical for the heavy neutrinos. In this 
basis, the heavy Majorana neutrino number densities (3.51) and (3.52) reduce to

n̂N(k, t)= Re
[
n̂N(k, t)

]
, δn̂N(k, t)= 2i Im

[
n̂N(k, t)

]
. (3.55)

It should be noted that both n̂N(t) and δn̂N(t) are even under the usual charge conjugation 
operation in the mass eigenbasis, as expected for Majorana fermions10:

n̂N(k, t)C̃ = n̂N(k, t)C = +n̂N(k, t), (3.56)

δn̂N(k, t)C̃ = δn̂N(k, t)C = +δn̂N(k, t). (3.57)

In addition, we note that the total lepton asymmetry δnL(t) ≡ Tr[δnL(t)] is CP-odd in any basis:

10 This is consistent with the C̃ transformations in a general basis, as given by (3.53), due to the transposition involved. 
However, under a naive T -reversal transformation Nα ↔Nβ , we have

n̂N(k, t)→ [̂
nN(k, t)

]T = n̂N(k, t), δn̂N(k, t)→ [
δn̂N(k, t)

]T = −δn̂N(k, t),

due to the fact that, in the mass eigenbasis, ̂nN is a symmetric matrix, while δn̂N is anti-symmetric.
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δnL(t)CP ≡ Tr
[
δnL(t)

]CP = Tr
[
δnL(t)

]C̃P = −Tr
[
δnL(t)

]T = −δnL(t). (3.58)

We will use these definitions to write down the flavour-covariant rate equations for RL in Sec-
tion 4.

3.3. Markovian master equation

In this section, we derive a master equation governing the time evolution of the matrix 
number densities nX(p, t) in a Markovian approximation. We will work in the interaction pic-
ture, beginning from the (picture-independent) definition of the number density in terms of the 
quantum-mechanical density operator ρ(t̃; ̃ti ):

nX(t)≡ 〈
ň
X
(t̃; t̃i )

〉
t
= Tr

{
ρ(t̃; t̃i )ňX(t̃; t̃i )

}
, (3.59)

where the trace is over the Fock space and, for notational simplicity, we leave the momentum 
dependence implicit. Here we have used the accent ( ˇ ) to distinguish the quantum-mechanical 
number density operator ňX(p, ̃t; ̃ti) from its expectation value nX(p, t), where recall that t =
t̃ − t̃i is the macroscopic time. In addition, for the purposes of this section, it is necessary to 
reintroduce the explicit dependence of the operators on the microscopic boundary time t̃i .

Differentiating (3.59) with respect to time, we have

dnX(t)

dt
= Tr

{
ρ(t̃; t̃i ) dň

X
(t̃; t̃i )
dt̃

}
+ Tr

{
dρ(t̃; t̃i )

dt̃
ň
X
(t̃; t̃i )

}
≡ I1 + I2, (3.60)

where we have used the fact that d/dt = d/dt̃ for fixed t̃i . As we work in the interaction pic-
ture, the time evolution of the quantum-mechanical operator ňX(t̃; ̃ti ) is governed by the free 
Hamiltonian HX0 given by (3.19) or (3.20) depending on whether X = L or N . Hence, we use 
the Heisenberg equation of motion to write the first term in (3.60) as

I1 = i Tr
{
ρ(t̃; t̃i )

[
HX0 , ň

X
(t̃; t̃i )

]}≡ i〈 [HX0 , ň
X
(t̃; t̃i )

]〉
t
. (3.61)

This term generates flavour oscillations in the case of a non-diagonal energy matrix. The second 
term in (3.60) involves the interaction Hamiltonian, e.g.

Hint =
∫
x

hl
αL̄lΦ̃ NR,α + H.c. (3.62)

As we shall see below, this term will generate the collision terms for the generalized Boltzmann 
equations (in addition to dispersive corrections). The starting point is the Liouville–von Neumann 
equation (see e.g. [153])

dρ(t̃; t̃i )
dt̃

= −i[Hint(t̃; t̃i ), ρ(t̃; t̃i )
]
. (3.63)

Rewriting (3.63) in the form of a Volterra integral equation of the second kind, iterating once and 
subsequently differentiating with respect to time, we obtain the integral form

dρ(t̃; t̃i )
dt̃

= −i[Hint(t̃; t̃i ), ρ(t̃i; t̃i )
]−

t̃∫
t̃i

dt̃ ′
[
Hint(t̃; t̃i ),

[
Hint

(
t̃ ′; t̃i

)
, ρ
(
t̃ ′; t̃i

)]]
. (3.64)

Inserting (3.64) into (3.60), we obtain
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I2 = −i Tr
{[
Hint(t̃; t̃i ), ρ(t̃i; t̃i )

]
ň
X
(t̃; t̃i )

}
−

t̃∫
t̃i

dt̃ ′ Tr
{[
Hint(t̃; t̃i ),

[
Hint

(
t̃ ′; t̃i

)
, ρ
(
t̃ ′; t̃i

)]]
ň
X
(t̃; t̃i )

}
. (3.65)

The first term on the RHS of (3.65) vanishes for the Hint term given by (3.62), since it involves 
the product of an odd number of fields. For the second term on the RHS of (3.65), we may use 
the cyclicity of the trace to obtain

I2 = −
t̃∫
t̃i

dt̃ ′ Tr
{
ρ
(
t̃ ′; t̃i

)[
Hint

(
t̃ ′; t̃i

)
,
[
Hint(t̃; t̃i ), ň

X
(t̃; t̃i )

]]}

≡ −
t̃∫
t̃i

dt̃ ′
〈 [
Hint

(
t̃ ′; t̃i

)
,
[
Hint(t̃; t̃i ), ňX(t̃; t̃i )

]] 〉
t̃ ′−t̃i . (3.66)

When used in (3.60), this gives an exact and self-consistent time-evolution equation, which cap-
tures the entire evolution of the system, including any non-Markovian memory effects.

We now perform a set of Wigner–Weisskopf approximations [154] to obtain the leading-order 
Markovian form of (3.60). Let us define the t̃-dependent function

F (t̃; t̃i )=
[
Hint(t̃; t̃i ), ňX(t̃; t̃i )

]
. (3.67)

Inserting the Fourier transforms of Hint(t̃; ̃ti ) and F (t̃; ̃ti) with respect to t̃ ′ − t̃i and t̃ − t̃i in 
(3.66), we obtain

I2 = −
t̃∫
t̃i

dt̃ ′
∫

dω

2π

∫
dω′

2π
e−iω′(t̃ ′−t̃i ) e−iω(t̃−t̃i )

〈[
Hint

(
ω′),F (ω)]〉

t̃ ′−t̃i . (3.68)

Making the change of variables ω= ω′′ −ω′, this may be recast in the form

I2 = −
t̃∫
t̃i

dt̃ ′
∫

dω′

2π

∫
dω′′

2π
e−iω′(t̃ ′−t̃ )e−iω′′t 〈[Hint

(
ω′),F (ω′′ −ω′)]〉

t̃ ′−t̃i . (3.69)

As long as F (ω′′ − ω′) remains dynamical on inverse Fourier transformation, i.e. ω′′ �= ω′, 
the dominant contribution to the integral (3.69) occurs for t̃ ′ ∼ t̃ . We may therefore replace 
ρ(t̃ ′; ̃ti ) → ρ(t̃; ̃ti ), or 〈· · ·〉t̃ ′−t̃i → 〈· · ·〉t in (3.69). We now make the change of variables 
t ′ = t̃ ′ − t̃ and take the limit t̃i → −∞. Herein, we assume that the statistical evolution is slow 
compared to the quantum-mechanical evolution, such that the system remains out-of-equilibrium 
in spite of the quantum-mechanical boundary time being in the infinitely distant past. With 
this approximation, we replace the interaction-picture creation and annihilation operators in 
Hint(t̃; ̃ti ) and ňX(t̃; ̃ti ) by their asymptotic ‘in’ counterparts via

c
(†)
in (p)≡Z−1/2 lim

t̃i→−∞
e(−)iE(p)t̃ c(†)(p, t̃; t̃i )=Z−1/2 lim

t̃i→−∞
c(†)(p,0; t̃i ), (3.70)

where Z = 1 +O(h̄) is the wavefunction renormalization factor. Notice that in the replacement 
(3.70), we must account for the free phase evolution of the interaction-picture operators.
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The contribution I2 now takes the form

I2 � −
0∫

−∞
dt ′
∫

dω′

2π

∫
dω′′

2π
e−iω′t ′e−iω′′t 〈[Hint

(
ω′),F (ω′′ −ω′)]〉

t
. (3.71)

Performing the t ′ integration, we find

0∫
−∞

dt ′e−iω′t ′ = πδ(ω′)+ iP 1

ω′ = 1

2

+∞∫
−∞

dt ′e−iω′t ′ + iP 1

ω′ , (3.72)

where P denotes the Cauchy principal value. We are then able to write the result

I2 � −1

2

+∞∫
−∞

dt ′
〈[
Hint

(
t ′
)
,
[
Hint(t), ň

X
(t)
]]〉
t

−P
∫

dω

2π

ie−iωt

ω

〈[
Hint(ω),

[
Hint(t), ň

X
(t)
]]〉
t
, (3.73)

where objects constructed from asymptotic operators depend only on the time t and the O(h̄)
corrections from the wavefunction renormalization have been neglected. The first term in (3.73)
can be identified as the collision term CX and the second term represents the dispersive self-
energy corrections arising from vacuum contributions (Lamb shift) and thermal contributions 
(Stark shift), which we neglect in the following. A discussion of our resummation scheme in 
relation to self-energy corrections is included at the beginning of Section 4.

Restoring the implicit momentum dependence of the number densities, we finally obtain the 
leading-order master equation in the Markovian approximation11:

d

dt
nX(k, t)� i〈[HX0 , ňX(k, t)]〉t − 1

2

+∞∫
−∞

dt ′
〈[
Hint

(
t ′
)
,
[
Hint(t), ň

X
(k, t)

]]〉
t
. (3.74)

This is our central equation governing the time-evolution of the particle number densities with 
arbitrary flavour content.12 With (3.74) no longer in integro-differential form [cf. (3.64)], we are 
now free to specify the initial conditions at any finite macroscopic time t0. It remains the case 
however that the macroscopic time t0 = 0 corresponds to the microscopic time t̃ = t̃i → −∞.

We note that although a similar form of (3.74) was also used in [103] to describe the time-
evolution of active neutrinos in a thermal bath, the full flavour structure contained in (3.74) to 
describe the simultaneous time-evolution of multiple species, e.g. heavy neutrinos and SM lep-
tons as in the context of leptogenesis, was not discussed before in the literature. In order to 

11 There are two major assumptions in this approximation: (i) separation of time scales, i.e. the QFT processes governed 
by Hint occur at much smaller time scales as compared to the coarse-grained statistical evolution governed by ρ(t); and 
(ii) molecular chaos, i.e. the velocity correlations that may form between different species in the QFT processes are lost 
on time-scales relevant for the statistical evolution, so that the background can be factorized at all times.
12 This formalism is sometimes called the ‘density matrix formalism’ in the literature. In our opinion, this terminology 
is misleading, since nX(k, t) is actually a matrix of densities [103], which should be distinguished from the quantum-
statistical density matrix ρ(t). Such confusion could potentially lead to incorrect results, since there is a crucial sign 
difference in the time evolution equations for the two quantities, as can be seen by comparing (3.63) with the first term 
on the RHS of (3.74). Therefore, we avoid referring to our approach as the ‘density matrix formalism’.



P.S.B. Dev et al. / Nuclear Physics B 886 (2014) 569–664 593
elucidate these flavour effects, we will explicitly derive fully flavour-covariant transport equa-
tions for the system described by the Lagrangian (3.1) in the following subsection.

3.4. Transport equations

Using the expressions (3.19) and (3.62) for the free and interaction Hamiltonians respectively, 
we can explicitly calculate the oscillation and collision terms in (3.74). Specifically, we obtain 
the following evolution equations for the charged lepton and anti-lepton number densities, specif-
ically

d

dt

[
nLs1s2(p, t)

]
l

m = −i[EL(p), nLs1s2(p, t)]lm + [
CLs1s2(p, t)

]
l

m
, (3.75)

d

dt

[
n̄Ls1s2(p, t)

]
l

m = +i[EL(p), n̄Ls1s2(p, t)]lm + [
CLs1s2(p, t)

]
l

m
, (3.76)

where commutators carrying flavour indices are understood to be commutators in flavour space. 
The collision terms are given by[

CLs1s2(p, t)
]
l

m = −1

2

[
F · Γ + Γ † ·F]

s1s2,l

m
, (3.77)[

CLs1s2(p, t)
]
l

m = −1

2

[
F · Γ + Γ † ·F]

s1s2,l

m
, (3.78)

where we have suppressed the overall momentum dependence and introduced the compact nota-
tion

[F · Γ ]s1s2,lm ≡
∑
s,r1,r2

∫
k,q

Fs1sr1r2(p,q,k, t)lnαβΓs s2r2r1(p,q,k)nmβα, (3.79)

[
Γ † ·F]

s1s2,l

m ≡
∑
s,r1,r2

∫
k,q

Γ †
s1sr2r1

(p,q,k, t)
l
n
β
αFss2r1r2(p,q,k)nmαβ. (3.80)

It is important to emphasize that our flavour-covariant formulation requires new rank-4 tensors
in flavour space: (i) the statistical number density tensors

F(p,q,k, t)= nΦ(q, t)nL(p, t)⊗ [
1 − nN(k, t)

]
− [

1 + nΦ(q, t)][1 − nL(p, t)
]⊗ nN(k, t), (3.81)

F(p,q,k, t)= n̄Φ(q, t)n̄L(p, t)⊗ [
1 − n̄N(k, t)

]
− [

1 + n̄Φ(q, t)][1 − n̄L(p, t)
]⊗ n̄N(k, t), (3.82)

and (ii) the absorptive tensors[
Γs1s2r1r2(p,q,k)

]
l

m

α

β = hkνhiλ(2π)4
[
δ(4)(k − p− q)]j pμδ 1

2EΦ(q)

× [(
2EL(p)

)−1/2]i
j

[(
2EL(p)

)−1/2]
k

n

× [(
2EN(k)

)−1/2]
λ

μ[(
2EN(k)

)−1/2]ν
γ

× Tr
{[
u(k, r2)

]
δ

β[
ū(k, r1)

]γ
αPL

× [
u(p, s2)

] m[
ū(p, s1)

]p PR
}
, (3.83)
n l
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[
Γ s1s2r1r2(p,q,k)

]
l

m

α

β = hkνhiλ(2π)4
[
δ(4)(k − p− q)]j pμδ

× 1

2EΦ(q)

[(
2EL(p)

)−1/2]i
j

[(
2EL(p)

)−1/2]
k

n

× [(
2EN(k)

)−1/2]
λ

μ[(
2EN(k)

)−1/2]ν
γ

× Tr
{[
v(k, r2)

]
δ

β[
v̄(k, r1)

]γ
α

× PL
[
v(p, s2)

]
n

m[
v̄(p, s1)

]p
lPR

}
, (3.84)[

Γ †
s1s2r1r2

(p,q,k)
]
l

m

α

β = ([
Γs2s1r2r1(p,q,k)

]
m

l

β

α)∗
, (3.85)[

Γ †
s1s2r1r2

(p,q,k)
]
l

m

α

β = ([
Γ s2s1r2r1(p,q,k)

]
m

l

β

α)∗
. (3.86)

In (3.83) and (3.84), the rank-4 delta function of on-shell four-momenta originates from the 
integration of tensor exponentials, such as∫

x

[
e−ip·x]l

me
−iq·x[eik·x]

α

β = (2π)4[δ(4)(k − p− q)]lmαβ, (3.87)

and is defined as a linear combination of ordinary delta functions in terms of the appropriate 
flavour transformation from the mass eigenbasis, as defined in Section 3.1, i.e.[

δ(4)(k − p− q)]l β

mα
≡ V lk V k

m Uα
γU

β
γ δ
(
ÊN,γ (k)− ÊL,k(p)− ÊΦ(q)

)
× δ(3)(k − p − q). (3.88)

The absorptive tensors (3.83) and (3.84), obtained from the Markovian master equation (3.74), 
represent the contributions from decays and inverse decays of the heavy Majorana neutrinos to 
the statistical evolution of the system (see Section 4.1 and Figs. 2(a)–2(b)). As shown in Ap-
pendix C, these rank-4 objects can be interpreted in terms of the unitarity cut of the partial 
one-loop heavy-neutrino self-energies, using a generalized optical theorem (see Fig. 3). This jus-
tifies the necessity of the tensorial structure of these objects, and also the form of the 2 ↔ 2
scattering terms that will be included later in the evolution equations when directly applied to the 
RL scenario in Section 4. This formalism can be generalized to include higher order processes 
involving multiple flavour degrees of freedom, e.g. LN ↔ LeR and LN ↔ LN , by introducing 
the corresponding rate tensors of rank 6 and higher.

Proceeding analogously for the heavy neutrino number densities, we find the evolution equa-
tions

d

dt

[
nNr1r2(k, t)

]
α

β = −i[EN(k), nNr1r2(k, t)]αβ + [
CNr1r2(k, t)

]
α

β

+Gαλ
[
CNr2r1(k, t)

]
μ

λ
Gμβ, (3.89)

d

dt

[
n̄Nr1r2(k, t)

]
α

β = +i[EN(k), n̄Nr1r2(k, t)]αβ + [
CNr1r2(k, t)

]
α

β

+Gαλ
[
CNr2r1(k, t)

]
μ

λ
Gμβ, (3.90)

with the heavy-neutrino collision terms given by[
CNr1r2(k, t)

]
α

β = +1

2

[
F · Γ † + Γ ·F]

r1r2,α

β
, (3.91)[

CNr r (k, t)
] β = +1 [F · Γ † + Γ ·F] β

, (3.92)

1 2 α 2 r1r2,α
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where the tensor contraction is analogous to (3.79) and (3.80), with the role of charged-lepton 
and heavy-neutrino indices exchanged. Note the appearance of the matrix G in the transport 
equations (3.89) and (3.90), and the transposition of both flavour and helicity indices in the 
corresponding collision terms. One should however remember that (3.89) and (3.90) are not in-
dependent, because of the relation (3.48). Note also that the transport equations have an internal 
structure in isospin space, which has been suppressed here for brevity. In Section 4, when we 
derive the rate equations for the total number densities, we will explicitly trace over these degen-
erate isospin degrees of freedom.

As a final remark, we point out that the flavour-covariant formalism developed so far can also 
be applied more generally to describe quantum coherences between species with different SM 
quantum numbers, e.g. Ll and Nα . In this case, we may need to study the evolution of the number 
densities [nLN ]lα , which transforms as a rank-2 tensor in the flavour space U(NL) ⊗U∗(NN), 
corresponding to the correlated creation of Ll and the annihilation of Nα . The evolution equation 
would still have the generic form (3.75), with collision terms of the form (3.77). However, we 
will neglect these effects in our discussions, since they are not expected to play an important role 
for the RL scenarios under study.

4. Application to resonant leptogenesis

As already discussed in Section 2.1, there are two types of CP-violation possible in the out-
of-equilibrium decay of the heavy Majorana neutrino. In the limit when two (or more) heavy 
Majorana neutrinos become degenerate, the ε-type CP-violation can be resonantly enhanced 
by several orders of magnitude, as compared to the ε′-type CP-violation [27,28] (see also Ap-
pendix A). In this case, finite-order perturbation theory breaks down and it is necessary to 
perform a consistent field-theoretic resummation of the self-energy and vertex corrections, as 
shown schematically in Fig. 1. However, such resummation can only be performed in a closed 
algebraic form when working in the mass eigenbasis and at full thermodynamic equilibrium in 
a Markovian approximation. This fact is illustrated explicitly in Appendix B, where we derive 
the most general flavour-covariant propagators in a non-homogeneous background within the 
Schwinger–Keldysh CTP formalism. Therein, we show that, when out-of-equilibrium (where 
flavour-coherences must be permitted), canonical quantization necessarily leads to off-diagonal 
propagators in flavour space. As a result, the inversion of the Schwinger–Dyson equation for 
the resummed propagators contains an infinite nesting of convolution integrals, which does not 
collapse to the usual algebraic equation of resummation.

As identified in [126], the loopwise truncation of quantum transport equations is two-fold, 
i.e. the transport equations may be truncated both spectrally and statistically. The spectral trun-
cation corresponds to choosing those objects that will be counted as particulate degrees of 
freedom; in our case, we will choose to count the number densities of spectrally-free on-shell 
particles. The statistical truncation, on the other hand, corresponds to the restriction of the set 
of processes that drive the macroscopic evolution of the system. It is the latter that we will treat 
non-perturbatively in order to consistently account for the ε- and ε′-type CP-violation effects. 
Recalling the argument above, we ensure that this resummation can be performed algebraically 
by first flavour-rotating to the heavy neutrino mass eigenbasis, maintaining the Markovian ap-
proximation used in Section 3.3 and resumming only zero-temperature contributions, thereby 
neglecting thermal loop effects [155]. As we shall see later in this section (see Section 4.4), the 
omission of these thermal effects is appropriate in the classical statistical limit, as long as one 
accounts systematically for both the zero-temperature and thermal RIS contributions. Lastly, we 
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will assume that the heavy-neutrino helicity states are fully decohered and equally populated 
[29].

Hence, we proceed by replacing the tree-level neutrino Yukawa couplings by their resummed 
counterparts in the transport equations given in Section 3.4. Specifically, for the processes 
N → LΦ and Lc̃Φc̃ → N , we have hlα → hlα and, for N → Lc̃Φc̃ and LΦ → N , we have 
hlα → [hc̃]lα , corresponding to the effective one-loop-resummed matrix elements [M(N →
LΦ)] αk and [M(N → Lc̃Φc̃)]kα respectively, as defined in Appendix C. Working in the heavy-
neutrino mass eigenbasis, the resummed neutrino Yukawa couplings are given by (2.18), from 
which the covariant resummed Yukawa couplings may be obtained by the appropriate flavour 
transformation, i.e. hlα = V m

l U
α
β ĥmβ , where ̂hmβ ≡ ĥmβ in the mass eigenbasis. We empha-

size however that the resummation itself must be performed in the mass eigenbasis only. Further 
justification for the choice of this basis will be given in Section 5.1, where we show that in the 
degenerate symmetry limit of the minimal RL� model, it is important to choose the correct basis 
in order to get meaningful results.

4.1. Rate equations for decay and inverse decay

In order to obtain the rate equations from the general transport equations (3.75), (3.76), 
(3.89) and (3.90), we need to impose kinetic equilibrium. This can be ensured throughout the 
evolution of the system by assuming that the elastic scattering processes rapidly change the 
momentum distributions on time-scales much smaller than the statistical evolution time of the 
particle number densities. This approximation is valid as long as the mass splittings between 
different flavours inside thermal integrals are much smaller than the average momentum scale, 
i.e. |k| ∼ T 
 |mNα −mNβ |. In this regime, the momentum distributions governed by the elas-
tic processes are flavour singlets [156,157]. Using this approximation, we introduce an average 
mass for NN quasi-degenerate heavy neutrinos:

m2
N = 1

NN
Tr
(
M

†
NMN

)
, (4.1)

to be used within the thermal integrals. Correspondingly, we may introduce an average energy 
EN(k) = (|k|2 +m2

N)
1/2. Furthermore, to simplify the general transport equations given in Sec-

tion 3.4, we take the classical statistical limit in which (3.81) and (3.82) can be approximated 
as

F(p,q,k, t)� nΦ(q, t)nL(p, t)⊗ 1 − 1 ⊗ nN(k, t), (4.2)

F(p,q,k, t)� n̄Φ(q, t)n̄L(p, t)⊗ 1 − 1 ⊗ n̄N(k, t). (4.3)

The spinor traces appearing in (3.83) and (3.84) can be simplified if we assume the charged-
leptons to be massless, neglecting their thermal masses. In this limit, nL is the number density 
matrix for the LH lepton doublets Ll and one helicity index for the charged leptons can be 
dropped in the spinor traces, thus yielding (see also Appendix B)∑

r=−,+
Tr
{
u(k, r)ū(k, r)PLu(p,−)ū(p,−)PR

}
=

∑
r=−,+

Tr
{
v(k, r)v̄(k, r)PLv(p,+)v̄(p,+)PR

}= 2k · p, (4.4)

where − (+) corresponds to the helicity of the massless LH lepton (RH anti-lepton).
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With these approximations, the heavy-neutrino kinetic-equilibrium number density, given by 
the flavour-covariant generalization of (2.4) (with the chemical potential now being a rank-2 
tensor), can be approximated as[

nN(k, t)
]
α

β ≡
∑
r

[
nNrr(k, t)

]
α

β = gN
[
e−(EN (k)−μN(t))/T

]
α

β

� gN
[
eμN(t)/T

]
α

β
e−EN(k)/T = gN [nN(t)]αβ

nNeq
e−EN(k)/T , (4.5)

where nN(t) is the total heavy neutrino number density, as defined in (3.26), and nNeq is the 
equilibrium number density given by (2.4) setting μN = 0 and gN = 2 for the two heavy-neutrino 
helicity states. An analogous expression can be obtained for the charged lepton number density[

nL(p, t)
]
l

m � [nL(t)]lm
nLeq

e−EL(p)/T , (4.6)

where EL is the average energy of the lepton doublets, and in the massless limit, nLeq is the equi-
librium number density given by (2.5) with gL = 2 for the two isospin states. Notice that the 
factor gL is not present in (4.6), and will appear explicitly only after the trace over isospin is per-
formed [cf. (3.26)]. Finally, for the Higgs number density, we assume an equilibrium distribution 
nΦ(q, t) = e−EΦ(q)/T . Throughout the remainder of this article, we suppress the t -dependence 
of the number densities for notational convenience.

We may now integrate both sides of (3.75) and (3.76) over the phase space and sum over 
the degenerate helicity and isospin degrees of freedom. The resulting rate equations for the total 
number densities of the charged lepton and anti-lepton doublets, accounting for the decay and 
inverse decay of the heavy neutrinos, can be written in the form

d[nL]lm
dt

= −i[EL,nL]lm − 1

2nLeq

{
nL,γ (LΦ→N)

}
l

m

+ [nN ]βα
nNeq

[
γ (N → LΦ)

]
l

m

α

β
, (4.7)

d[n̄L]lm
dt

= +i[EL, n̄L]lm − 1

2nLeq

{
n̄L, γ

(
Lc̃Φc̃ →N

)}
l

m

+ [n̄N ]βα
nNeq

[
γ
(
N → Lc̃Φc̃

)]
l

m

α

β
, (4.8)

where EL is the thermally-averaged effective lepton energy matrix

EL ≡ gL

nLeq

∫
p

EL(p)e−EL(p)/T = K1(z)

K2(z)

[
M

†
LML

]1/2 + 3T 1, (4.9)

with ML(T ) being the thermal mass matrix of the lepton doublets. Note that the 3T -term on the 
RHS of (4.9) is isotropic in flavour space, commutes with the number densities, and therefore, 
does not give any contribution to the rate equations (4.7) and (4.8). The 1 → 2 and 2 → 1 colli-
sion rates appearing in (4.7) and (4.8) are derived from the rank-4 absorptive tensors (3.83) and 
(3.84). Replacing the tree-level Yukawa couplings hlα appearing in (3.83) and (3.84) with the 
resummed ones hlα , the 1 → 2 collision rates can be explicitly written as
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[
γ (N → LΦ)

]
l

m

α

β ≡
∫

NLΦ

gLgΦ(2pN · pL)hmαhlβ = m4
N

π2z

K1(z)

16π
hmαhlβ , (4.10)

[
γ
(
N →Lc̃Φc̃

)]
l

m

α

β ≡
∫

NLΦ

gLgΦ(2pN · pL)
[
hc̃
]m
α

[
hc̃
]
l

β

= m4
N

π2z

K1(z)

16π

[
hc̃
]m
α

[
hc̃
]
l

β
, (4.11)

which are the flavour-covariant generalizations of the collision rates defined in (2.7). The 2 → 1
collision rates in (4.7) and (4.8) are related to the 1 → 2 rates (4.10) and (4.11) by virtue of ̃CPT̃
(= CPT) invariance, i.e.[

γ
(
Lc̃Φc̃ →N

)]
l

m

α

β = [
γ (N → LΦ)

]
l

m

α

β
, (4.12)[

γ (LΦ→N)
]
l

m

α

β = [
γ
(
N →Lc̃Φc̃

)]
l

m

α

β
. (4.13)

The corresponding rank-2 collision rates within the anti-commutators in (4.7) and (4.8) are ob-
tained from the corresponding rank-4 tensors by contracting the heavy-neutrino flavour indices, 
e.g. [

γ (LΦ→N)
]
l

m ≡ [
γ (LΦ→N)

]
l

m

α

α
. (4.14)

In Appendix C, we present an alternative derivation of these collision rates by considering 
a flavour-covariant generalization of the optical theorem in the presence of a statistical back-
ground. Therein, the necessity of the rank-4 flavour structure of these collision rates is further 
justified. This is illustrated in Fig. 2 for the in-medium production of heavy neutrinos in a 
spatially-homogeneous statistical background of lepton and Higgs doublets. The production rates 
in the thermal plasma can be better understood from the unitarity cut of the partial one-loop 
heavy-neutrino self-energy graph, as shown in Fig. 3. Imposing kinetic equilibrium as given by 
(4.6), we obtain tree-level thermally-averaged heavy-neutrino production rates for the processes 
Lc̃Φc̃ →N and LΦ→N [cf. (C.51) and (C.52)], which are exactly the same as those obtained 
in (4.10) and (4.11), respectively.

Analogous to the charged-lepton case, we obtain the flavour-covariant rate equations for the 
total number densities of heavy neutrinos from the general transport equations (3.89) and (3.90), 
as follows:

d[nN ]αβ
dt

= −i[EN,nN ]αβ + [
CN
]
α

β +Gαλ
[
CN
]
μ

λ
Gμβ, (4.15)

d[n̄N ]αβ
dt

= +i[EN, n̄N ]αβ + [
CN
]
α

β +Gαλ
[
CN
]
μ

λ
Gμβ, (4.16)

where EN is the thermally-averaged effective heavy-neutrino energy matrix, defined analogous 
to (4.9). The thermally averaged collision terms C and C in (4.15) and (4.16) can be defined 
analogous to EN , and are explicitly given by

[
CN
]
α

β = − 1

2nNeq

{
nN,γ (N → LΦ)

}
α

β + [nL]ml
nLeq

[
γ (LΦ→N)

]
l

m

α

β
, (4.17)

[
CN
]
α

β = − 1

2nN
{
n̄N , γ

(
N →Lc̃Φc̃

)}
α

β + [n̄L]ml
nL

[
γ
(
Lc̃Φc̃ →N

)]
l

m

α

β
, (4.18)
eq eq
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Fig. 2. Feynman diagrams for 2 → 1 inverse heavy-neutrino decay, in the presence of a statistical background. The 
flavour indices are shown explicitly, while other indices are suppressed.

Fig. 3. Feynman diagrams for the self-energies of the heavy neutrinos. The cut, across which positive energy flows from 
unshaded to shaded regions, is associated with production rates in the thermal plasma, as described by the generalized 
optical theorem given in Appendix C. See also Fig. 2.

where the rank-4 collision rates are given by (4.10) and (4.11), and the corresponding rank-2 
objects appearing in (4.17) and (4.18) are obtained by contracting the charged-lepton indices, 
e.g. [

γ (N →LΦ)
]
α

β ≡ [
γ (N → LΦ)

]
l

l

α

β
. (4.19)

Using the expressions (4.10) and (4.11), we can define the flavour-covariant generalizations 
of the CP-even and CP-odd quantities in (2.6) and (2.9), which now have definite transformation 
properties under ̃CP:[

γNLΦ
]
l

m

α

β = +[γ LΦN ]
l

m

α

β =O
(
h2), (4.20)[

δγ NLΦ
]
l

m

α

β = −[δγ LΦN ]
l

m

α

β =O
(
h4). (4.21)

The corresponding rate equations for the ̃CP-“even” and -“odd” number densities [cf. (3.53)] are 
derived from (4.7), (4.8), (4.15) and (4.16):
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d[nN ]αβ
dt

= − i
2

[
EN, δnN

]
α

β + [
R̃e
(
γNLΦ

)]
α

β − 1

2nNeq

{
nN, R̃e

(
γNLΦ

)}
α

β
, (4.22)

d[δnN ]αβ
dt

= −2i
[
EN,nN

]
α

β − 2i
[
Ĩm
(
δγ NLΦ

)]
α

β − i

nNeq

{
nN, Ĩm

(
δγ NLΦ

)}
α

β

− 1

2nNeq

{
δnN, R̃e

(
γNLΦ

)}
α

β
, (4.23)

d[δnL]lm
dt

= [
δγ NLΦ

]
l

m + [nN ]βα
nNeq

[
δγ NLΦ

]
l

m

α

β + [δnN ]βα
2nNeq

[
γ NLΦ

]
l

m

α

β

− 1

4nLeq

{
δnL, γ NLΦ

}
l

m
, (4.24)

where we have kept terms only up to O(μa/T ) and O(h4), except the last term on the RHS 
of (4.24), which is the only washout term for the lepton asymmetry, and appears at O(h6). In 
(4.22) and (4.23), we have defined, for a given Hermitian matrix A = A†, its generalized real 
and imaginary parts, as follows:[

R̃e(A)
]
α

β ≡ 1

2

(
Aα

β +GαλAμλGμβ
)
, (4.25)[

Ĩm(A)
]
α

β ≡ 1

2i

(
Aα

β −GαλAμλGμβ
)
. (4.26)

Observe that in the heavy-neutrino mass eigenbasis, the definitions (4.25) and (4.26) reduce to 
the usual real and imaginary parts:[

R̃e(Â)
]
α

β = Re
(
Âα

β
)
,

[
Ĩm(Â)

]
α

β = Im
(
Âα

β
)
. (4.27)

In obtaining (4.22) and (4.23), we have used the relations

R̃e
(
nN
)= nN, i Ĩm

(
δnN

)= δnN, (4.28)

which can be derived from (3.49), (3.51) and (3.52). Observe that the commutators in (4.7)
and (4.8) cancel to leading order in O(μL/T ) by virtue of (3.54), even if the thermal masses are 
included. On the other hand, the commutators of the thermally-averaged effective heavy-neutrino 
energy matrix with the number densities in (4.22) and (4.23) are non-vanishing, and describe the 
coherent oscillations between different heavy neutrino flavours.

Note that the C̃P-“odd” inverse decay terms in (4.23) and (4.24), i.e. −2i[Ĩm(δγ NLΦ)]αβ and 
+[δγ NLΦ ]

l
m, appear with the wrong sign and do not lead to the correct equilibrium behaviour, 

since, by construction, there are no washout terms, induced by the 2 ↔ 2 scatterings, introduced 
so far. It is well known that the inclusion of these scattering terms (with the RIS contribution 
subtracted), changes the sign of these inverse decay terms and gives the correct equilibrium 
limit [29,128]. In Section 4.4 we will explicitly show this result in a flavour-covariant manner by 
including in the rate equations the RIS-subtracted collision rates for scattering in the presence 
of a statistical background, as illustrated in Fig. 4. For the moment, we take this result at face 
value, and correct the signs ‘by hand’, to be able to qualitatively discuss some important physical 
phenomena, before we include the scattering terms. Finally, we also take into account the Hubble 
expansion of the Universe and change the independent variable t in favour of z=mN/T , to write 
down the rate equations in terms of the normalized number densities, introduced in Section 2:
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HNn
γ

z

d[ηN ]αβ
dz

= −i n
γ

2

[
EN, δηN

]
α

β + [
R̃e
(
γNLΦ

)]
α

β − 1

2ηNeq

{
ηN, R̃e

(
γNLΦ

)}
α

β
, (4.29)

HNn
γ

z

d[δηN ]αβ
dz

= −2inγ
[
EN,ηN

]
α

β + 2i
[
Ĩm
(
δγ NLΦ

)]
α

β − i

ηNeq

{
ηN, Ĩm

(
δγ NLΦ

)}
α

β

− 1

2ηNeq

{
δηN, R̃e

(
γNLΦ

)}
α

β
, (4.30)

HNn
γ

z

d[δηL]lm
dz

= −[δγ NLΦ]lm + [ηN ]βα
ηNeq

[
δγ NLΦ

]
l

m

α

β + [δηN ]βα
2ηNeq

[
γ NLΦ

]
l

m

α

β

− 1

3

{
δηL, γ NLΦ

}
l

m
. (4.31)

In the last term on the RHS of (4.31), we have used ηLeq = 3/4, which follows from (2.5) and 
(2.11).

4.2. Lepton asymmetry via heavy neutrino oscillations

The rate equations (4.29)–(4.31), contain two physically distinct mechanisms for the genera-
tion of lepton asymmetry. One is the standard T = 0 ε- and ε′-type CP violation given by (2.22)
due to the mixing and decay of the heavy Majorana neutrinos. We have taken this into account 
by means of the one-loop resummed effective Yukawa couplings defined in (2.18), which appear 
in the collision rates (4.10) and (4.11). This is the only source of lepton number asymmetry in 
the flavour-diagonal Boltzmann equations (2.12) and (2.13). However, the flavour-covariant rate 
equations (4.29)–(4.31) also include a second source for the asymmetry, due to the CP-violating 
oscillations of the on-shell heavy neutrinos in the thermal bath. This originates from the se-
quence of an on-shell production of heavy neutrinos in the bath due to inverse decays, which can 
oscillate between different flavours in the bath and then decay back into charged-leptons. For-
mally, this process has the same structure as the scattering diagrams in Fig. 4. While the T = 0
QFT processes are taken into account by the resummation of the Yukawa couplings [28,29], 
the oscillation phenomenon corresponds to the thermal part of the intermediate heavy-neutrino 
propagator. Thus, our flavour-covariant approach captures the leading order effect of a complete 
thermal resummation procedure that would generalize the analysis in [29].

In this section, we will present a qualitative analysis of the heavy-neutrino oscillation phe-
nomenon in the RL scenario, and show that this mechanism contributes to the total lepton 
asymmetry at order O(h4) around z= 1. Note that, although conceptually similar, this is qualita-
tively as well as quantitatively different from the phenomenon first proposed in [87], and studied 
in [88–90] for the light sterile neutrino case, where the final lepton number asymmetry is of order 
O(h6), as also recently stressed in [158]. In order to extract the heavy-neutrino oscillation effect 
from the flavour-covariant rate equations (4.29)–(4.31), we consider a simplified case with the 
tree-level Yukawa couplings (instead of the resummed ones), thus artificially ‘switching off’ all 
T = 0 ε- and ε′-type CP violation effects. In this case, we can drop the C̃P-“odd” δγ collision 
terms in the rate equations (4.30)–(4.31), which further simplify in the mass eigenbasis to give

HNn
γ

z

d[δη̂N ]αβ
dz

⊃ −2inγ
[
ÊN, η̂N

]
αβ

− 1

2ηN
{
δη̂N ,Re

(
γ̂ NLΦ

)}
αβ
, (4.32)
eq
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Fig. 4. Feynman diagrams for �L = 0 scattering [(a), (b)] and �L = 2 scattering [(c), (d)], in the presence of a statistical 
background. The flavour indices are shown explicitly, while other indices are suppressed.

HNn
γ

z

d[δη̂L]lm
dz

⊃ [δη̂N ]βα
2ηNeq

[
γ̂ NLΦ

]
lmαβ

− 1

3

{
δη̂L, γ̂ NLΦ

}
lm
. (4.33)

The rate equation for ̂ηN is still given by (4.29), specialized to the mass eigenbasis. Notice that, 
in the mass eigenbasis, the flavour rotation matrices G = G = 1, and therefore, we do not need to 
distinguish between upper and lower flavour indices in (4.32) and (4.33). It is useful to perform 
a time-stepping analysis to see the infinitesimal time evolution of the total lepton asymmetry. 
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We start with an incoherent diagonal heavy-neutrino number density matrix, and a zero initial 
lepton asymmetry at some z= zin:[̂

ηN
]
αβ

= 0 for α �= β, [
δη̂N

]
αβ

= 0,
[
δη̂L

]
lm

= 0. (4.34)

Interference in the inverse decays will generate off-diagonals in ̂ηN at O(h2). However, we see 
from (4.29), (4.32) and (4.33) that only ̂ηN , and not δη̂N or δη̂L, receives these contributions. 
This is due to the fact that the processes

LΦ→
∑
α

cαN̂R,α, Lc̃Φc̃ →
∑
α

c∗αN̂ c̃R,α (4.35)

(the cα being complex coefficients in the linear combination) have to proceed at the same rate 
for C̃P-conserving inverse decays, if no initial lepton asymmetry is present, and hence, only 
Re(̂ηN) = η̂N can be generated. Therefore, after a small time interval, at z= zin + δz1 we have[̂

ηN
]
αβ

=O
(
h2) for α �= β, [

δη̂N
]
αβ

� 0,
[
δη̂L

]
lm

� 0. (4.36)

Now from (4.32), we see that heavy-neutrino oscillations will induce imaginary parts of ̂ηN , and 
hence, a non-zero δη̂N [cf. (4.32)] due to the off-diagonals of ̂ηN in (4.36). Thus, at a later time 
z= zin + δz2, the number densities will be[̂

ηN
]
αβ

=O
(
h2) for α �= β, [

δη̂N
]
αβ

=O
(
h2), [

δη̂L
]
lm

� 0. (4.37)

Finally at z= zin +δz3, interference in the O(h2) decays will create a non-zero lepton asymmetry 
of order O(h4) from the δη̂N term in (4.33):[̂

ηN
]
αβ

=O
(
h2) for α �= β, [

δη̂N
]
αβ

=O
(
h2), [

δη̂L
]
lm

=O
(
h4). (4.38)

The physical reason for this is that the ̃CP-conjugated processes∑
α

cαN̂R,α → LΦ,
∑
α

c∗αN̂ c̃R,α → Lc̃Φc̃, (4.39)

are respectively proportional to the number densities ̂ηN and ̂η
N = (̂ηN)∗, which now differ by 

O(h2) in the off-diagonal (interference) terms.
Thus, the O(h4) contribution to the total lepton asymmetry is due to a sequence of the co-

herent heavy-neutrino inverse decays, oscillations and decays. These effects get enhanced in the 
same regime as the resonant T = 0 ε-type CP violation, namely, for z≈ 1 and �mN ∼ ΓNα [28]. 
For z� 1, this effect is suppressed by the small mass of the Majorana neutrinos, and for z
 1
the inverse decays are frozen out and ineffective to create an asymmetry. Similarly, if the heavy-
neutrino mass-splitting �mN is too large compared to ΓNα , the oscillations are averaged out 
during the decay time scale, whereas if it is too small the oscillations proceed too slowly and 
δη̂N produced thereof is constantly washed out.

In Section 6.2, we will show quantitatively that, for the RLτ model under consideration there, 
the lepton asymmetry generation via the heavy-neutrino oscillation phenomenon discussed above 
is of the same order as the one due to their mixing in the vacuum, and hence, leads to an enhanced 
total lepton asymmetry (even in the charged-lepton flavour diagonal case) compared to that pre-
dicted by the flavour-diagonal Boltzmann equations discussed in Section 2.



604 P.S.B. Dev et al. / Nuclear Physics B 886 (2014) 569–664
4.3. Decoherence in the charged lepton sector

In this subsection, we will include in the rate equations the effect of the charged-lepton 
Yukawa couplings, described by the interaction Lagrangian

Ly = y lk L̄kΦeR,l + H.c., (4.40)

where eR,l ≡ lR (with l = e, μ, τ ) and the Yukawa couplings are real and diagonal in the 
charged-lepton Yukawa eigenbasis, i.e. ŷ lk = yl δ lk . The number densities of the RH leptons 
and anti-leptons, nR and n̄R respectively, can be defined analogous to nL and n̄L [cf. (3.21) and 
(3.22)]. The processes involving the charged-lepton Yukawa couplings will be responsible for the 
decoherence of the LH leptons into the mass eigenbasis. However, due to the interaction of the 
charged-leptons with the heavy-neutrinos [cf. (3.1)], non-zero off-diagonal elements are neces-
sarily induced in the charged-lepton number density matrix, which tend to recreate a coherence 
between the charged-lepton flavours. Thus, there is a competition between the coherence effect 
induced by the heavy-neutrino Yukawa couplings and the decoherence effect due to the charged-
lepton Yukawa couplings, and for reasonably large neutrino Yukawa couplings, the coherence 
effect could be significant, as we will see explicitly in Section 6.2. In particular, we will find 
that the decoherence is not complete in the temperature range relevant for the production of the 
asymmetry in the RLτ scenarios with 200 GeV �mN � 2 TeV. Hence, it is important to include 
the off-diagonal lepton number densities, and the dynamics of their decoherence effects, in the 
rate equation for the lepton asymmetry.

Let us first consider the contribution of thermal Higgs decays and inverse decays

Φ(q)↔ L(p)ēR(k), (4.41)

and then generalize it to other relevant processes. The contribution of this process to the LH 
charged-lepton transport equation (3.75) can be obtained in a similar manner as the heavy-
neutrino decays and inverse decays discussed in Section 3.4. Explicitly, we obtain

dnL

dt
⊃
∫

p,k,q

(
−1

2

{
nL(p),Γ dec(p,k,q)

}+ Γ back
dec (p,k,q)

)
. (4.42)

In the above, we have defined the charged-lepton decoherence and back-reaction rates[
Γdec(p,k,q)

]
l

m ≡A(p,k,q)yl iymj
[
n̄R(k)

] j
i
, (4.43)[

Γ back
dec (p,k,q)

]
l

m ≡A(p,k,q)yl iyminΦ(q), (4.44)

where the flavour-singlet term A(p, k, q), whose explicit form is not needed here, contains the 
relevant kinematic factors.

In the would-be mass eigenbasis for the charged-leptons in which the charged-lepton Yukawa 
coupling matrix is diagonal, the diagonal entries of (4.42) have the form

d[̂nL]ll
dt

⊃
∫

p,k,q

A(p,k,q)y2
l

(
nΦ(q)− [̂

nL(p)
]
ll

[̂
n̄
R
(k)
]
ll

)
, (4.45)

where the index l is not summed over, and we have assumed ̂̄nR(k) to be diagonal, neglecting 
higher-order phenomena involving heavy-neutrino Yukawa couplings. Since the evolution equa-

tions of ̂̄nR and nΦ contain the same term (4.45), and since the rate of the process (4.41) is 
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much larger than the Hubble rate for the relevant time period, we can safely assume that their 
fast evolution always guarantees the chemical (as well as kinetic) equilibrium for this reaction, 
i.e. μΦ = μL,l + μ̄R,l , in addition to the decoherence of ̂n̄R . Therefore, the evolution equations 
for Φ and ēR need not be considered explicitly, and instead, we can use the relevant detailed 
balance condition, or the KMS relation [159–161], to solve the rate equation. For the process 
(4.41) under consideration, the KMS relation is simply given by

nΦ = [̂
nL(p)

]
ll

[̂
n̄
R
(k)
]
ll
, (4.46)

for all l (not summed over), which implies that the diagonal contribution (4.45) identically van-
ishes, and only the off-diagonal entries of the anti-commutator in (4.42) are responsible for the 
decoherence of charged leptons to the mass eigenbasis. Note that at this stage it is inconsistent 
to assume Φ and ēR to be at equilibrium, since it violates the KMS relation (4.46), and does not 
lead to the correct approach to equilibrium.

It can be shown that the form (4.42) is valid for any flavour-dependent process involving one 
LH charged lepton, with Γ dec being the corresponding decoherence rate. Since the reactions that 
cause the decoherence in the LH charged-lepton sector are fast compared to the Hubble rate, the 
back-reaction rate Γ back

dec in (4.42) can be determined from the conditions[
Γ dec,Γ

back
dec

]= 0,
[
Γ̂ back

dec

]
ll

= [Γ̂dec]ll
[̂
nL
]
ll
. (4.47)

The first condition comes from the fact that Γ back
dec and Γ dec are simultaneously diagonal in the 

charged-lepton mass eigenbasis. The second condition is the generalized KMS relation (4.46)
involving any species in chemical and kinetic equilibrium with the LH charged leptons in the 
mass eigenbasis, whose fast evolution ensures the vanishing of the overall statistical factors that 
multiply the large diagonal rates in the rate equation (4.42).

The charged-lepton Yukawa contributions to the rate equation for anti-lepton number density 
n̄L will be analogous to that given in (4.42). To obtain the corresponding contribution to the rate 
equation for the lepton asymmetry, we use the same set of approximations as in Section 4.1, and 
in particular, the kinetic-equilibrium number density (4.6). Taking into account the expansion of 
the Universe, we finally obtain

HNn
γ

z

dδηL

dz
⊃ − 1

2ηLeq

{
δηL,γ dec

}+ δγ back
dec , (4.48)

where γ dec and δγ back
dec are the C̃P-even and -odd thermally-averaged decoherence and back-

reaction rates, respectively. Here we have ignored the sub-dominant {ηLeq, δγ dec} term, which 
depends on the asymmetry in the RH charged-lepton sector that is assumed to be small com-
pared to the asymmetry in the LH sector. The C̃P-even rate can be expressed in terms of the 
charged-lepton thermal width as γ dec = Γ T n

L
eq. In the mass eigenbasis, the thermal width is 

given by Γ̂ T = diag{ΓT,l}, and has been calculated explicitly in [144], taking into account the 
inverse Higgs decays and the relevant fermion and gauge scatterings:

ΓT,l � 3.8 × 10−3Ty2
l

[
(−1.1 + 3.0x)+ 1.0 + y2

t (0.6 − 0.1x)
]
, (4.49)

where yt is the top quark Yukawa coupling, and x =MH(T )/T = zMH(T )/mN , MH(T ) being 
the Higgs thermal mass. Note that while calculating the final rates for the processes involving 
the charged-lepton Yukawa couplings, it is important to take into account their thermal masses, 
which control the phase space suppression for the decay and inverse decay of the Higgs bo-
son [144]. Additionally, note that all the chemical potentials can be consistently neglected in the 
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calculation of the rate, as long as we satisfy the generalized KMS relations given by (4.47). After 
thermal averaging, (4.47) can be written as

[
γ dec, δγ

back
dec

]= 0,
[
δγ̂ back

dec

]
ll

= [γ̂dec]ll [̂η
L]ll
ηLeq

. (4.50)

These equations ensure that the detailed balance conditions are satisfied, without having to resort 
to following the evolution of all the SM species involved in the charged-lepton Yukawa-mediated 
processes.

4.4. Scattering terms

In this section, we will describe the flavour-covariant generalization of the subtraction of the 
so-called RIS contributions present in the �L = 2 and �L = 0 scattering terms (see Fig. 4). 
Specifically, we will show how the sign of the ̃CP-“odd” inverse decay terms in (4.23) and (4.24)
is flipped, so that the correct approach to equilibrium is restored. Moreover, we will illustrate 
that it is necessary to account for thermal corrections in the RIS contributions when considering 
off-diagonal flavour correlations.

Following [29], we first consider the case of a single scalar sneutrino Ñ , and write down the 
thermally corrected scattering amplitude T (LΦ→ Lc̃Φc̃) as

T
(
LΦ→Lc̃Φc̃

)
= T

(
LΦ→ Ñ∗) p2 −m2

Ñ
− i ImΠeq

ÑÑ
(p0,p)

(p2 −m2
Ñ
)2 + [ImΠeq

ret,ÑÑ
(p0,p)]2

T
(
Ñ∗ → Lc̃Φc̃

)
, (4.51)

where we have used on-shell renormalization scheme and have neglected thermal dispersive 
corrections. Notice that, since the Lorentz-covariance of thermally-corrected self-energies is 
broken, the absorptive parts of the time-ordered and retarded equilibrium CTP self-energies 
Im Πeq

ÑÑ
(p0, p) and Im Πeq

ret,ÑÑ
(p0, p), respectively, are functions of both p0 and p; see Ap-

pendix B [cf. (B.100)].
By virtue of the fluctuation-dissipation theorem for the equilibrium self-energies, we have the 

relation

ImΠeq
ÑÑ
(p0,p)= ε(p0)

[
1 + 2

{
θ(p0)n

Ñ
eq(p0)+ θ(−p0)n

Ñ
eq(−p0)

}]
ImΠeq

ret,ÑÑ
(p0,p),

(4.52)

where ε(p0) ≡ θ(p0) − θ(−p0) is the generalized signum function. In the pole-dominance re-
gion, using the NWA given by (2.28), we obtain∣∣TRIS

(
LΦ→ Lc̃Φc̃

)∣∣2 = π

mÑΓÑ (s)
θ(

√
s )δ

(
s −m2

Ñ

)(
1 + 4nÑeq(

√
s )
)
. (4.53)

Here, we have neglected the statistical factors internal to the thermal Breit–Wigner width

Γ
eq
Ñ
(p0,p)= 1

mÑ
Im Πeq

ret,ÑÑ
(p0,p)� ΓÑ

(
p2), (4.54)

where ΓÑ (p
2) is the T = 0 width of Ñ . An expression analogous to (4.53) can be derived for 

chiral fermions (see Appendix B).
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Generalizing the result in (4.53) to fermions, we see that the RIS contribution to the LΦ →
Lc̃Φc̃ scattering terms contains the following combination of statistical factors:

F scat = (
1 + nΦ)(1 − nL

)⊗ (
1 − 4nNeq

)⊗ (
1 − n̄L

)(
1 + n̄Φ). (4.55)

In the classical statistical limit, (4.55) becomes

F scat � −nΦnL ⊗ 1 ⊗ 1 − 1 ⊗ 1 ⊗ n̄Φ n̄L − 4
(
1 ⊗ nNeq ⊗ 1

)
. (4.56)

The first two terms in (4.56) arise from the T = 0 part of the RIS subtraction and contribute to 
the charged-lepton transport equations (3.75) and (3.76). The third term arises from the thermal 
correction to the RIS subtraction and contributes to the heavy-neutrino transport equations (3.89)
and (3.90).

4.4.1. Contributions to lepton transport equations
We begin by describing the scattering contributions to the charged-lepton transport equations. 

The contributions of �L = 2 scattering to the charged-lepton number densities can be obtained 
by a flavour-covariant generalization of the relevant part of the flavour-diagonal rate equation 
(2.29):

d[nL]lm
dt

⊃ − 1

2nLeq

([
γ ′(LΦ→Lc̃Φc̃

)]
l

n

k

k[
nL
]
n

m + [
nL
]
l

n[
γ ′(LΦ→ Lc̃Φc̃

)]
n

m

k

k)
+ [n̄L]kn

nLeq

[
γ ′(Lc̃Φc̃ → LΦ

)]
n

k

l

m
, (4.57)

d[n̄L]lm
dt

⊃ − 1

2nLeq

([
γ ′(Lc̃Φc̃ → LΦ

)]
l

n

k

k[
n̄L
]
n

m + [
n̄L
]
l

n[
γ ′(Lc̃Φc̃ → LΦ

)]
n

m

k

k)
+ [nL]kn

nLeq

[
γ ′(LΦ→Lc̃Φc̃

)]
n

k

l

m
. (4.58)

The contribution to the total lepton asymmetry is then given by

d[δηL]lm
dt

⊃ −2
[
δγ ′LΦ
Lc̃Φc̃

]
l

m − 1

4nLeq

{
δnL, γ ′LΦ

Lc̃Φc̃

}
l

m − [δnL]kn
2nLeq

[
γ ′LΦ
Lc̃Φc̃

]
n

k

l

m
, (4.59)

where, by virtue of ̃CPT̃ , we have defined the contractions[
γ LΦ
Lc̃Φc̃

]
l

m ≡ [
γ LΦ
Lc̃Φc̃

]
l

m

k

k = [
γ LΦ
Lc̃Φc̃

]
k

k

l

m
, (4.60)[

δγ LΦ
Lc̃Φc̃

]
l

m ≡ [
δγ LΦ
Lc̃Φc̃

]
l

m

k

k = [
δγ LΦ
Lc̃Φc̃

]
k

k

l

m
. (4.61)

The rank-4 scattering rates introduced here can be derived by means of the generalized optical 
theorem given in Appendix C. For consistency with the previous calculations, only their resonant 
parts must be kept and these are listed in (C.63)–(C.66). Using the NWA for the heavy neutrino 
propagator, and the same approximations as for the decay and inverse-decay terms in Section 4.1, 
we obtain the ̃CP-“even” collision rates[

γ LΦ
Lc̃Φc̃

]
l

m

n

k

=
∑
α,β

[(γ̂ NLΦ)αα + (γ̂ NLΦ)ββ ](
1 − 2i

M̂Nα−M̂Nβ
Γ̂ +Γ̂

) 2(̂h βl ĥ β
n ĥmαĥkα + [̂hc̃]lα [̂hc̃]nα [̂hc̃]mβ [̂hc̃]kβ)

[(̂h†ĥ)αα + (̂hc̃†ĥc̃)αα + (̂h†ĥ)ββ + (̂hc̃†ĥc̃)ββ ]2
, (4.62)
Nα Nβ
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which are the flavour-covariant generalizations of those given by (2.27). The RIS contribution 
is obtained by taking the diagonal α = β elements in the summation in (4.62). Similarly, the 
γ ′-terms can be obtained by taking α �= β . Using the fact that [δγ LΦ

Lc̃Φc̃
]
l

m = 0 up to O(h4) due 

to the unitarity of the scattering matrix [128], we obtain the RIS-subtracted C̃P-“odd” collision 
rates [

δγ ′LΦ
Lc̃Φc̃

]
l

m

k

k = −
∑
α

(
γ̂ NLΦ

)
αα

(̂hc̃†ĥc̃)αα [̂hc̃]lα [̂hc̃]mα − (̂h†ĥ)ααĥ αl ĥmα
[(̂h†ĥ)αα + (̂hc̃†ĥc̃)αα]2

. (4.63)

The contributions of the �L = 0 scattering to the charged-lepton transport equations are given 
by

d[nL]lm
dt

⊃ − 1

2nLeq

([
γ ′(LΦ→ LΦ)

]
l

n

k

k[
nL
]
n

m + [
nL
]
l

n[
γ ′(LΦ→ LΦ)

]
n

m

k

k)
+ [nL]kn

nLeq

[
γ ′(LΦ→ LΦ)

]
n

k

l

m
, (4.64)

d[n̄L]lm
dt

⊃ − 1

2nLeq

([
γ ′(Lc̃Φc̃ →Lc̃Φc̃

)]
l

n

k

k[
n̄L
]
n

m

+ [
n̄L
]
l

n[
γ ′(Lc̃Φc̃ → Lc̃Φc̃

)]
n

m

k

k)
+ [n̄L]kn

nLeq

[
γ ′(Lc̃Φc̃ →Lc̃Φc̃

)]
n

k

l

m
, (4.65)

and the corresponding contribution to the asymmetry is

d[δηL]lm
dt

⊃ −2
[
δγ ′LΦ
LΦ

]
l

m − 1

4nLeq

{
δnL, γ ′LΦ

LΦ

}
l

m + [δnL]kn
2nLeq

[
γ ′LΦ
LΦ

]
n

k

l

m
. (4.66)

In (4.66), using ̃CPT̃ -invariance, we have defined the contractions[
γ LΦLΦ

]
l

m ≡ [
γ LΦLΦ

]
l

m

k

k = [
γ LΦLΦ

]
k

k

l

m
, (4.67)[

δγ LΦLΦ
]
l

m ≡ [
δγ LΦLΦ

]
l

m

k

k = −[δγ LΦLΦ ]kklm. (4.68)

Using the results from (C.63)–(C.66) and the same set of approximations as in the �L = 2 case, 
we obtain the flavour-covariant generalization of the collision rate given by (2.26)[

γ LΦLΦ
]
l

m

n

k

=
∑
α,β

[(γ̂ NLΦ)αα + (γ̂ NLΦ)ββ ](
1 − 2i

M̂N,α−M̂N,β
Γ̂N,α+Γ̂N,β

) 2([̂hc̃]lαĥkα [̂hc̃]mβ ĥ β
n + ĥ βl [̂hc̃]kβ ĥmα [̂hc̃]nα)

[(̂h†ĥ)αα + (̂hc̃†ĥc̃)αα + (̂h†ĥ)ββ + (̂hc̃†ĥc̃)ββ ]2
, (4.69)

and the corresponding RIS-subtracted ̃CP-“odd” quantity[
δγ ′LΦ
LΦ

]
l

m

k

k = −
∑
α

(
γ̂ NLΦ

)
αα

(̂h†ĥ)αα [̂hc̃]lα [̂hc̃]mα − (̂hc̃†ĥc̃)ααĥ αl ĥmα
[(̂h†ĥ)αα + (̂hc̃†ĥc̃)αα]2

. (4.70)

The flavour structure of the γ -terms in (4.62) and (4.69) can be understood diagrammatically, as 
shown in Figs. 3 and 5, from the unitarity cuts of partial self-energies, obtained by virtue of a 
generalized optical theorem (see Appendix C).
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Fig. 5. Feynman diagrams for the self-energies of the lepton doublets. The cut, across which positive energy flows from 
unshaded to shaded regions, is associated with production rates in the thermal plasma, as described by the generalized 
optical theorem given in Appendix C. See also Fig. 4.

Combining (4.59) and (4.66), the total contribution of 2 ↔ 2 scattering to the total lepton 
asymmetry can be written as

d[δηL]lm
dt

⊃ −2
([
δγ ′LΦ
Lc̃Φc̃

]
l

m + [
δγ ′LΦ
LΦ

]
l

m)− 1

4nLeq

{
δnL, γ ′LΦ

Lc̃Φc̃
+ γ ′LΦ

LΦ

}
l

m

− [δnL]kn
2nLeq

([
γ ′LΦ
Lc̃Φc̃

]
n

k

l

m − [
γ ′LΦ
LΦ

]
n

k

l

m)
. (4.71)

From the results of this section, we can establish the following identities valid up to O(h4):

[
δγ ′LΦ
Lc̃Φc̃

]
l

m + [
δγ ′LΦ
LΦ

]
l

m = [
δγ NLΦ

]
l

m
, (4.72)[

γ LΦ
Lc̃Φc̃,RIS

]
l

m + [
γ LΦLΦ,RIS

]
l

m = [
γ NLΦ

]
l

m
, (4.73)[

γ LΦ
Lc̃Φc̃,RIS

]
n

k

l

m − [
γ LΦLΦ,RIS

]
n

k

l

m = 0. (4.74)

Using these identities in the scattering contribution given by (4.71), and including it in the rate 
equation (4.24) for decay and inverse decay, we obtain
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d[δηL]lm
dt

= −[δγ NLΦ]lm + [nN ]βα
nNeq

[
δγ NLΦ

]
l

m

α

β + [δnN ]βα
2nNeq

[
γ NLΦ

]
l

m

α

β

− 1

4nLeq

{
δnL, γ LΦ

Lc̃Φc̃
+ γ LΦLΦ

}
l

m − [δnL]kn
2nLeq

([
γ LΦ
Lc̃Φc̃

]
n

k

l

m − [
γ LΦLΦ

]
n

k

l

m)
.

(4.75)

Note that, thanks to the first identity (4.72), the sign of the inverse-decay term (first term in 
the RHS) is now flipped with respect to that in (4.24), as anticipated at the end of Section 4.1, 
and it guarantees the correct approach to equilibrium. The remaining identities (4.73) and (4.74)
are important to guarantee the consistency of the formalism: following [128], we have described 
processes like LΦ→N → LΦ (with an on-shell N ) statistically, i.e. as the successive statistical 
evolution of the number density nN first due to an inverse decay and then a decay process. The 
RIS-subtracted scattering term is considered in order to avoid double-counting. However, (4.73)
and (4.74) allow us to write the washout term in terms of a complete (including RIS) scattering 
rate, with no inverse decay rate at all, thus describing resonant processes like LΦ→ N → LΦ

field-theoretically. Both these descriptions lead to the same result, as shown in [76].

4.4.2. Contributions to heavy-neutrino transport equations
The �L = 0 and �L = 2 scattering contributions to the heavy-neutrino rate equations are 

given by

d[nN ]αβ
dt

⊃ [
SN
]
α

β +Gαλ
[
S̄N
]
μ

λ
Gμβ, (4.76)

d[n̄N ]αβ
dt

⊃ [
S̄N
]
α

β +Gαλ
[
SN
]
μ

λ
Gμβ, (4.77)

where, for notational simplicity, we have defined[
SN
]
α

β = 2
[
γ ′(LΦ→ LΦ)

]
α

β + [
γ ′(LΦ→ Lc̃Φc̃

)]
α

β − [
γ ′(Lc̃Φc̃ → LΦ

)]
α

β
,

(4.78)[
S̄N
]
α

β = 2
[
γ ′(Lc̃Φc̃ →Lc̃Φc̃

)]
α

β − [
γ ′(LΦ→ Lc̃Φc̃

)]
α

β + [
γ ′(Lc̃Φc̃ → LΦ

)]
α

β
,

(4.79)

and the charged-lepton indices are understood to be traced over [cf. (C.67)]. As explained in 
the beginning of this subsection, these terms arise due to the last term on the RHS of (4.56). 
Following the same procedure as in the charged-lepton case discussed above, we obtain the 
relevant contributions to the rate equations for the ̃CP-“even” and -“odd” number densities:

d[nN ]αβ
dt

⊃ 2
[
R̃e
(
γ ′LΦ
LΦ

)]
α

β
, (4.80)

d[δnN ]αβ
dt

⊃ 4i
[
Ĩm
(
δγ NLΦ

)]
α

β
. (4.81)

This contribution to δn̂N , when added to the decay and inverse decay contribution given by 
(4.23), flips the sign of the inverse decay term with respect to that given in (4.23), as expected in 
order to achieve the correct equilibrium behaviour.
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4.5. Final rate equations

Here we put together the various contributions from heavy-neutrino decays and inverse de-
cays discussed in Section 4.1, from processes involving charged-lepton Yukawa interactions 
[cf. Section 4.3], and from �L = 0 and �L = 2 scatterings via heavy neutrino exchange 
[cf. Section 4.4]. Finally, taking into account the expansion of the Universe, the following set 
of manifestly flavour-covariant rate equations is obtained for the ̃CP-“even” number density ma-
trix ηN and ̃CP-“odd” number density matrices δηN and δηL:

HNn
γ

z

d[ηN ]αβ
dz

= −i n
γ

2

[
EN, δηN

]
α

β + [
R̃e
(
γNLΦ

)]
α

β − 1

2ηNeq

{
ηN, R̃e

(
γNLΦ

)}
α

β
, (4.82)

HNn
γ

z

d[δηN ]αβ
dz

= −2inγ
[
EN,ηN

]
α

β + 2i
[
Ĩm
(
δγ NLΦ

)]
α

β − i

ηNeq

{
ηN, Ĩm

(
δγ NLΦ

)}
α

β

− 1

2ηNeq

{
δηN, R̃e

(
γNLΦ

)}
α

β
, (4.83)

HNn
γ

z

d[δηL]lm
dz

= −[δγ NLΦ]lm + [ηN ]βα
ηNeq

[
δγ NLΦ

]
l

m

α

β + [δηN ]βα
2ηNeq

[
γ NLΦ

]
l

m

α

β

− 1

3

{
δηL, γ LΦ

Lc̃Φc̃
+ γ LΦLΦ

}
l

m − 2

3

[
δηL

]
k

n([
γ LΦ
Lc̃Φc̃

]
n

k

l

m − [
γ LΦLΦ

]
n

k

l

m)
− 2

3

{
δηL, γdec

}
l

m + [
δγ back

dec

]
l

m
. (4.84)

Here, we have dropped the O(h4) RIS-subtracted contribution [cf. (4.80)] to the rate equation 
for ηN , since this is sub-dominant, compared to the other terms on the RHS of (4.82) which are 
formally of order O(h2). However, the O(h4) contribution from (4.81) must be included in the 
rate equation for δηN , since all the other terms on the RHS of (4.83) are also of the same order.

The flavour-covariant rate equations (4.82)–(4.84) are the main new results of this section. 
They provide a complete and unified description of the RL phenomenon, consistently capturing 
the following physically distinct effects in a single framework, applicable in any temperature 
regime:

(i) Resonant mixing between heavy neutrinos, described by the resummed Yukawa couplings 
in γ NLΦ and δγ NLΦ . This provides a flavour-covariant generalization of the mixing effects 
discussed earlier in [29].

(ii) Coherent oscillations between heavy neutrinos, described by the commutators in (4.82)
and (4.83), and transferred to the lepton asymmetry via the new rank-4 term [γNLΦ]

l
m
α
β

in the first line of (4.84). We should stress here that this phenomenon of coherent oscil-
lations is an O(h4) effect on the total lepton asymmetry, and so differs from the O(h6)

mechanism proposed in [87] (see Section 4.2).
(iii) Decoherence effects due to charged-lepton Yukawa couplings, described by the last line 

of (4.84). Our description of these effects goes along the lines of [93], which has been 
generalized here to an arbitrary flavour basis.

As an application, we will use the rate equations (4.82)–(4.84) in Section 6.2 for the numerical 
evaluation of the lepton asymmetry in the RLτ model under consideration there. We will also 
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derive approximate analytic solutions of these general rate equations in Section 5.3. Finally, we 
note that taking the limit in which the number densities are diagonal, i.e. [ηN ] βα = δβαηNβ and 
[δηL] ml = δml δηLm in (4.82)–(4.84), we recover the flavour-diagonal Boltzmann equations (2.12)
and (2.13).

5. Minimal resonant �-genesis model

In this section, we discuss the basic theoretical framework underlying the minimal RL� model 
in which the lepton asymmetry is dominantly generated and stored in an individual lepton 
flavour � [75]. We start with the heavy Majorana neutrino sector Lagrangian given by (3.1). Note 
that above the scale of the electroweak phase transition, only the singlet neutrinos are massive, 
whose origin must lie in some ultraviolet-complete extension of the SM. Within the minimal RL�
setup, the masses of all these heavy neutrinos Nα (α = 1, . . . , NN ) are nearly degenerate. This 
can be ensured naturally by assuming an O(NN)-symmetric heavy neutrino sector at some high 
energy scale μX , thereby imposing the universal boundary condition on the heavy-neutrino mass 
matrix: MN(μX) =mN1. The corresponding boundary values for the Yukawa coupling matrix 
elements [h(μX)] αl depend on the particular RL� model under consideration [76]. The Majorana 
neutrino mass matrix at the phenomenologically relevant low energy scale can then be written 
down as

MN =mN1 + �MN, (5.1)

where �MN is a general O(NN)-breaking perturbation matrix induced by the RG evolution of 
the heavy neutrino mass matrix MN from the high scale μX down to the scale of mN :

�MN = −mN
8π2

ln

(
μX

mN

)
Re
[
h†(μX)h(μX)

]
. (5.2)

The compatibility of the light neutrino masses generated via the seesaw mechanism with the solar 
and atmospheric neutrino oscillation data requires that, for electroweak-scale heavy neutrinos 
with mN ∼ O(100) GeV, the norm of the Yukawa coupling matrix must be much smaller than 
unity. Given (5.2), this implies that the norm of the O(NN)-breaking matrix �MN must be small 
compared to mN , i.e. ‖�MN‖/mN � 10−7. As shown in [76], a �MN of the required order can 
indeed be generated radiatively for RL� models.

A non-zero total lepton asymmetry summed over all flavours can be created, if and only if the 
CP-odd quantity [28]

�CP ≡ Im
[
Tr
(
h†hM†

NMNM†
NhTh∗MN

)]
(5.3)

does not vanish for a finite non-zero interval of RG scales. In general, the total number of all non-
trivial CP-violating phases in a model with NL weak iso-doublets and NN neutral iso-singlets 
is NCP = NL(NN − 1) [162,163]. This results in NCP CP-odd quantities, analogous to the one 
defined in (5.3), which generally mix under RG effects. However, after summing over all final 
state lepton flavours occurring in the heavy neutrino decays, only one CP-asymmetry remains, 
which is odd under the generalized CP-transformations discussed in Section 3.2. Using the defi-
nition of �CP in (5.3) and the heavy neutrino mass matrix (5.1), and taking into account the RG 
evolution, one can find the necessary and sufficient condition for the generation of a non-zero 
total CP-asymmetry in the minimal RL setup. The results of this exercise, including RG effects 
except for the charged-lepton Yukawa couplings, are summarized in Table 1 for different choices 
of NL and NN .
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Table 1
Total CP-asymmetry in the minimal RL model with NL lepton iso-doublets and NN
neutral iso-singlets, including the RG effects, except for the charged-lepton Yukawa cou-
plings. Here /0 means �CP �= 0.

�CP for 
NL

NN
1 2 3

1 0 0 0
2 0 0 /0
3 0 0 /0

Fig. 6. O(2) transformation of �hl = (̂hl1, ĥl2).

5.1. Geometry of the degeneracy limit

In this section, we provide a geometric and physical understanding of the degeneracy of the 
minimal RL� model parameter space in the O(NN)-symmetric limit �MN → 0 (where 0 is the 
null matrix). Under a general O(NN)-rotation, the heavy neutrino mass eigenstates transform as 
Nα →N ′

α =OαβNβ , and accordingly, the Yukawa coupling matrix transforms as a vector in the 
heavy-neutrino mass eigenbasis, i.e. hlα → h′ α

l = hlβ [OT] αβ . Depending on the dimensionality 
of the rotation space, we can rotate away some of the components of h, such that some elements 
of the resummed Yukawa coupling matrix ̂h, as given by (2.18), will vanish.

To illustrate this point, let us first consider a simple case with one charged-lepton flavour 
(NL = 1) and two heavy-neutrino flavours (NN = 2). In this case, the tree-level heavy-neutrino 
mass matrix MN is symmetric under O(2). Let us therefore define the tree-level Yukawa cou-
pling as a two-dimensional complex vector in the heavy neutrino mass eigenbasis {N1, N2}: �h≡ (̂hl1, ̂hl2), which can also be written in terms of two real vectors, i.e. �h= Re(�h) + i Im(�h) ≡
�a + i �b. Using the O(2)-invariance of the {N1, N2} parameter space in the degenerate limit, one 
can always rotate the vectors �a and �b, such that �b is along the N1-axis, i.e. the N2-component of 
�b vanishes, which in turn implies Im(̂hl2) = 0 (see Fig. 6).

For NN = 2, the Rαβ -dependent terms in (2.18) are absent [cf. (A.1)]. Thus, in the degenerate 
limit mNα =mNβ , the resummed Yukawa couplings given in (2.18) become

ĥl1 = ĥl1 − ĥl2A12 +A21

2A22
= 1

2

(
ĥl1 − ĥ∗

l1
ĥl2

ĥ∗
l2

)
,

ĥl2 = ĥl2 − ĥl1A21 +A12

2A11
= 1

2

(
ĥl2 − ĥ∗

l2
ĥl1

ĥ∗
l1

)
. (5.4)

Note that in the O(NN)-symmetric limit, any basis in the heavy-neutrino flavour space is a 
mass eigenbasis, and hence, the resummed Yukawa couplings can be defined consistently in any 
O(NN)-rotated basis. From (5.4), we find that in general, ĥl1,2 �= 0 for ĥl1,2 ∈ C. However, if 
both ĥl1 and ĥl2 are real, i.e. �b = �0, we can rotate �a to align with either N1 or N2 direction in 
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Fig. 7. O(3) transformation of �hl = (̂hl1, ĥl2, ĥl3).

Table 2
The resummed Yukawa couplings in the degeneracy limit, without including RG effects. 
Here /0 means ĥlα �= 0 for ĥlα �= 0; /0∗ means ĥlα �= 0 for ĥlα ∈ C, but ĥlα = 0 for 
ĥlα ∈ R; and 0∗ means ̂hlα = 0 for ̂hlα ∈ C, but undetermined for ̂hlα ∈ R.

ĥ for 
NL

NN
1 2 3

1 /0 /0∗ 0∗
2 /0 /0 /0∗
3 /0 /0 /0

Fig. 6, such that either ĥl1 = 0 or ĥl2 = 0. Thus, for ĥl1,2 ∈ R, the resummed heavy neutrino 
Yukawa couplings flow to the exact O(2)-symmetric limit of the theory, i.e. ĥl1,2 = 0. However, 
as we will see below, the RG effects play an instrumental role in consistently lifting this O(2)
degeneracy.

Similarly for three heavy-neutrino flavours (NN = 3), we can define a three-dimensional 
complex vector in the {N1, N2, N3} mass eigenbasis: �h = (̂hl1, ̂hl2, ̂hl3) = �a + i �b. In this case, 
using the O(3)-invariance of the parameter space in the degenerate limit, one can always ro-
tate the vectors �a and �b in such a way that �b points in the N1-direction and �a lies on the 
(N1, N2)-plane, as shown in Fig. 7. Thus, the N3-components of both �a and �b identically van-
ish, i.e. Re(̂hl3) = 0 = Im(̂hl3). For the simple case with NL = 1, as considered above, the 
resummed Yukawa couplings flow to the O(3)-symmetric limit, i.e. ̂hlα = 0 for ̂hlα ∈ C. How-
ever, for ̂hlα ∈R, ̂hlα is undetermined (0/0 form) in the degenerate limit. One can similarly work 
out the degeneracy limits for other values of NL; the results of this analysis are summarized in 
Table 2.

In a realistic situation, the degeneracy of the heavy-neutrino parameter space in the 
O(NN)-symmetric limit �MN → 0 will be broken by RG effects. Specifically, the RG evolu-
tion from a high scale μX , at which the heavy neutrino masses are degenerate, i.e. mNα =mNβ , 
to the scale mN induces a non-zero mass-splitting given by (5.2). For instance, for the case 
(NL, NN) = (1, 3) discussed above, the inclusion of RG effects yields ĥlα �= 0 for ĥlα ∈ C

(α = 1, 2) and ̂hl3 = 0. This is consistent with the fact that ĥl3 does not run in the mass eigen-
basis, since ĥl3(μX) can be rotated to zero, as shown in Fig. 7. As a consequence, the mass 
parameter mN3 does not evolve under the action of the RG.

It is worth noting that the degeneracies encountered above are reminiscent of the singular 
degeneracies occurring in ordinary Quantum Mechanics, where one has to apply carefully degen-
erate time-independent perturbation theory in order to obtain meaningful results. For illustration, 
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let us consider a three-state system whose time-evolution is governed by the following perturbed 
Hamiltonian (see [153], p. 348):

H =H0 +�H =
⎛⎝E1 0 0

0 E1 0
0 0 E2

⎞⎠+
⎛⎝ 0 0 a

0 0 b

a∗ b∗ 0

⎞⎠ , (5.5)

where the unperturbed energy levels are E1, E1, E2 (with E2 > E1), and a, b� (E2 −E1) are 
treated as small perturbations. Since the perturbation matrix �H is off-diagonal, the first-order 
perturbation does not change the energy eigenvalues, i.e. does not remove the degeneracy be-
tween the first two energy eigenstates. At second-order, applying non-degenerate perturbation 
theory would lead to an undetermined result for the corrections to the degenerate eigenvalues, 
i.e.

�
(2)
1 = 0

0
− |a|2
E2 −E1

, �
(2)
2 = 0

0
− |b|2
E2 −E1

, �
(2)
3 = |a|2 + |b|2

E2 −E1
. (5.6)

Instead, applying degenerate perturbation theory, in a suitable O(2)-rotated basis, leads to well-
defined second-order energy shifts, thus lifting the degeneracy:

�
(2)
1 = 0, �

(2)
2 = −|a|2 + |b|2

E2 −E1
, �

(2)
3 = |a|2 + |b|2

E2 −E1
. (5.7)

Note that the first energy eigenvalue will remain unperturbed to all orders. This is in close analogy 
with the (NL, NN) = (1, 3) case discussed above, where mN3 remains invariant, irrespective of 
the RG effects.

Consequently, the resummed Yukawa couplings in the minimal RL� model are finite and 
consistently flow to the O(N)-symmetric limit of the theory. The role of RG flow in lifting the 
degeneracy of heavy neutrino masses is akin to that of degenerate time-independent perturbation 
theory in ordinary Quantum Mechanics (e.g. electric field in a linear Stark effect). Just as one 
needs to choose carefully a basis in which to apply perturbation theory, one must define the 
resummed Yukawa couplings only in the mass eigenbasis, in which the RG effects consistently 
break the degeneracies of the heavy-neutrino parameter space.

5.2. A model of resonant τ -genesis

As an explicit example of the RL� scenario, we consider an RLτ model with O(3) symmetry 
imposed on the heavy-neutrino sector at the GUT scale, μX ∼ 2 × 1016 GeV, which is explicitly 
broken to the U(1)Le+Lμ ×U(1)Lτ subgroup of lepton-flavour symmetries by a neutrino Yukawa 
coupling matrix of the following form [76]:

h =
⎛⎝ 0 ae−iπ/4 aeiπ/4

0 be−iπ/4 beiπ/4

0 0 0

⎞⎠+ δh, (5.8)

where δh vanishes in the flavour symmetric limit. In this symmetric limit, the light neutrinos 
remain massless to all orders in perturbation theory [164], while a and b are arbitrary complex 
parameters. In order to give masses to the light neutrinos, we consider the following form of δh
as a minimal departure from the flavour-symmetric limit [76]:

δh =
⎛⎝ εe 0 0
εμ 0 0
ε κ e−i(π/4−γ1) κ ei(π/4−γ2)

⎞⎠ , (5.9)

τ 1 2
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where |εl |, κ1,2 � |a|, |b|, and γ1,2 are arbitrary phases. To leading order in the symmetry-
breaking parameters �MN and δh, the tree-level light neutrino mass matrix is given by the 
seesaw formula

Mν � −v
2

2
hM−1

N hT � v2

2mN

⎛⎝ κNa
2 + ε2

e κNab+ εeεμ εeετ
κNab+ εeεμ κNb

2 + ε2
μ εμετ

εeετ εμετ ε2
τ

⎞⎠ . (5.10)

In deriving this expression, we have assumed that κ1,2
√|κN | � εl , where

κN ≡ 1

8π2
ln

(
μX

mN

)[
2κ1κ2 sin(γ1 + γ2)+ i

(
κ2

2 − κ2
1

)]
. (5.11)

The light neutrino mass matrix in (5.10) is diagonalized by the usual PMNS mixing matrix

Mν =UPMNS diag(mν1 ,mν2,mν3)U
T
PMNS, (5.12)

where the mνi ’s are the light neutrino mass eigenvalues. As we will see in Section 6.1, for the 
benchmark points considered therein, the non-unitarity of the 3 × 3 PMNS mixing matrix due to 
the light–heavy neutrino mixing [165] is very small. Hence, we can assume that UPMNS in (5.12)
is unitary, and express it in terms of the three experimentally known light neutrino mixing angles 
θij , and the yet unconstrained Dirac phase δ and Majorana phases ϕ1,2:

UPMNS =
⎛⎝ c12c13 s12c13 s13e

−iδ
−s12c23 − c12s23s13e

iδ c12c23 − s12s23s13e
iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

⎞⎠
× diag

(
eiϕ1/2, eiϕ2/2,1

)
, (5.13)

with cij ≡ cos θij , sij ≡ sin θij . Assuming a particular mass hierarchy between the light neutrino 
masses mνi ’s and for given values of the CP-phases δ, ϕ1,2, we can fully reconstruct the light 
neutrino mass matrix using (5.12). Substituting (5.12) in (5.10), we can determine the following 
model parameters appearing in the Yukawa coupling matrix (5.8):

a2 = 2mN
v2κN

(
Mν,11 − M2

ν,13

Mν,33

)
, b2 = 2mN

v2κN

(
Mν,22 − M2

ν,23

Mν,33

)
,

ε2
e = 2mN

v2

M2
ν,13

Mν,33
, ε2

μ = 2mN
v2

M2
ν,23

Mν,33
, ε2

τ = 2mN
v2
Mν,33. (5.14)

In this way, the Yukawa coupling matrix (5.8) in the RLτ model can be completely fixed in 
terms of the heavy neutrino mass scale mN and the symmetry-breaking parameters κ1,2 and γ1,2. 
Similar models can be constructed for RLe and RLμ scenarios [76].

5.3. Approximate analytic solutions

In this section, we will find some analytic solutions of the evolution equations in differ-
ent regimes. In the first part, we qualitatively study the role of the heavy-neutrino coherences, 
and the generation of lepton number asymmetry via heavy-neutrino oscillations (see also Sec-
tion 4.2). Here, we will obtain an approximate analytic solution for the rate equations with the 
ε- and ε′-type CP asymmetries artificially switched off, and also neglecting the γ ′ effects and 
charged-lepton off-diagonal number densities, for a simplified case with two heavy neutrinos. 
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Even though this is a rough approximation, this will allow us to estimate the relative magnitude 
of the different effects present in the statistical evolution of the system. In the second part, we will 
obtain a quantitatively accurate analytic solution for the case of diagonal heavy-neutrino number 
densities (hence no oscillations), but retaining the full off-diagonal number-density matrix for 
the charged leptons, thereby capturing the charged-lepton decoherence effects. In Section 6.2, 
we will show that the analytic solution presented here reproduces quite accurately the exact nu-
merical solution of the full charged-lepton rate equation (4.84) in the attractor limit.

5.3.1. Qualitative estimate of the asymmetry via oscillations
Let us find the approximate solution to the simplified set of Eqs. (4.29), (4.32) and (4.33), 

with the tree-level Yukawa couplings, instead of the resummed ones, where the ε- and ε′-type 
CP violating sources have been artificially switched off. For simplicity, we take the NN = 2
case and neglect the charged-lepton off-diagonal number densities. Promoting the vector ηN in 
Section 2.2 to a matrix in the heavy-neutrino flavour space:

η̂ηηN ≡ η̂N

ηNeq
− 1 = 1

ηNeq

(
η̂N + δη̂N

2

)
− 1, (5.15)

and combining (4.29) and (4.32), we find

dη̂ηηN

dz
= K1(z)

K2(z)

(
1 + η̂ηηN − iz

[
M̂N

ζ(3)HN
, η̂ηηN

]
− z

2

{
Re
(
K̂N

)
, η̂ηηN

})
, (5.16)

where the matrix K̂N is defined as the tree-level generalization of Kα’s appearing in (2.23):

[K̂]lmαβ = 1

ζ(3)HN

mN

8π
ĥ∗
mαĥlβ, K̂Nαβ ≡

∑
l

[K̂]llαβ = 1

ζ(3)HN

mN

8π

(̂
h†ĥ

)
αβ
. (5.17)

In the strong washout regime, i.e. for [K̂N ]αβ 
 1, the system evolves towards the attractor 
solution, obtained by setting the RHS of (5.16) to zero:

i

[
M̂N

ζ(3)HN
, η̂ηηN

]
+ 1

2

{
Re
(
K̂N

)
, η̂ηηN

}� 1
z
, (5.18)

where we have neglected η̂ηηN compared to 1. From (5.18), it is clear that all the elements of 
η̂ηηN will have the usual 1/z behaviour, as expected in the attractor limit [cf. (2.25)]. The exact 
numerical solution of the fully flavour-covariant rate equations (4.82)–(4.84) also exhibit this 
behaviour, as shown explicitly in Section 6.2 (see Fig. 8).

To compute the charged-lepton asymmetry we are interested in the value of [δη̂N ]12 =
2ηNeqi Im([̂ηN ]12) (see the discussion in Section 4.2). From (5.18), we get

Im
([̂

ηN
]

12

)� ζ(3)HN
z

Re([Γ̂ (0)N ]12)

[Γ̂ (0)N ]11 [Γ̂ (0)N ]22

�mNΓ̃N

�m2
N + Γ̃ 2

Ndet[Re(Γ̂
(0)
N )]

[Γ̂ (0)N ]11[Γ̂ (0)N ]22

, (5.19)

where we have defined �mN =mN1 −mN2 and Γ̃N = ([Γ̂ (0)N ]11 + [Γ̂ (0)N ]22)/2. Neglecting the 
charged-lepton off-diagonal coherences, the rate equation for the lepton asymmetry (4.33) takes 
the form

d[δη̂L]ll ⊃ z3K1(z)

[
−1 [

K̂L
]
ll

[
δη̂L

]
ll

+ Im
([̂

ηN
]

12

)
Im
([K̂]ll12

)]
, (5.20)
dz 3
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where the index l is not summed over and [K̂L]lm ≡∑
α[K̂]lmαα = (mN/8π)(̂hĥ†)lm/(ζ(3)HN)

[cf. (5.17)]. The attractor solution is obtained by setting the RHS of (5.20) to zero:

δη̂L ⊃ δη̂Losc � 3

2z

∑
l

1

[K̂L]ll
2 Im(̂h∗

l1ĥl2)Re[(̂h†ĥ)12]
(̂h†ĥ)11(̂h†ĥ)22

× 2(m2
N1

−m2
N2
)mNΓ̃N

(m2
N1

−m2
N2
)2 + 4m2

N Γ̃
2
Ndet[Re(̂h

†
ĥ)]

(̂h†ĥ)11 (̂h
†ĥ)22

, (5.21)

which is valid only for |�mN | �mN . Notice that in the single charged-lepton flavour limit, we 
have det(̂h

†
ĥ) = 0, from which it follows that det[Re(̂h

†
ĥ)] = Im[(̂h†ĥ)12]2 in the denominator 

of (5.21).
Comparing (5.21) with the lepton asymmetry due to mixing effects [cf. (2.33)], we see that 

the total lepton asymmetry due to heavy-neutrino oscillations around z∼ 1 is of the same sign 
and of the same order in magnitude, as compared to that obtained from the standard ε-type 
CP asymmetry due to heavy-neutrino mixing. Even though some of the approximations leading 
to this result may not be realistic in certain cases, we expect (5.21) to be qualitatively correct, 
and in Section 6.2 we will numerically verify this (see Figs. 9–11) for the RLτ model under 
consideration.

5.3.2. Analytic results for the charged lepton decoherence effect
We will now obtain the attractor analytic solution for the charged-lepton asymmetry ne-

glecting the heavy-neutrino off-diagonal number densities and performing a number of approx-
imations valid for the RLτ scenario discussed in Section 5.2. Neglecting the heavy-neutrino 
coherences and the sub-dominant γ̂LΦ

Lc̃Φc̃
− γ̂ LΦLΦ term, but retaining the full flavour structure for 

the charged leptons, the rate equation for the asymmetry (4.84) can be written in the would-be 
mass eigenbasis for charged-leptons as follows:

d

dz

[
δη̂L

]
lm

= z3K1(z)

2

(∑
α

[̂
ηN
]
αα

[
δK̂NLΦ

]
lmαα

− 1

3

{
δη̂L, K̂eff}

lm

− 2

3

{
δη̂L, K̂dec

}
lm

+ [
δK̂back

dec

]
lm

)
, (5.22)

where the various effective K-factors are defined as

K̂eff = κ
(
γ̂ LΦ
Lc̃Φc̃

+ γ̂ LΦLΦ
)
, δK̂NLΦ = κδγ̂NLΦ,

K̂dec = κγ̂ dec, δK̂back
dec = κδγ̂ back

dec , (5.23)

with κ = π2z/(ζ(3)HNm3
NK1(z)).

The CP asymmetries in the charged-lepton flavour space can be defined as

ε̂lm ≡
∑
α

[δK̂NLΦ ]lmαα
[K̂N ]αα . (5.24)

Notice that, in general, this is a tensor in the charged-lepton flavour space, even though here we 
are working in the would-be mass eigenbasis for charged leptons. In the 2 heavy-neutrino mixing 
case, it can be approximated as
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ε̂lm ≈
∑
α �=β

−i(̂h∗
mαĥlβ − ĥlαĥ∗

mβ)Re[(̂h†ĥ)αβ ]
(̂h†ĥ)αα(̂h†ĥ)ββ

(m2
Nα

−m2
Nβ
)mNαΓ

(0)
Nβ

(m2
Nα

−m2
Nβ
)2 + (mNαΓ (0)Nβ )2

. (5.25)

This expression is analogous to that of the ε-type CP-asymmetry εlα (see Appendix A) in the 
quasi-degenerate heavy neutrino limit. More precisely, for �mN � mNα , we have the relation 
ε̂ll =∑

α εlα , where εlα is given in (A.2).
Using the analytic solution for the diagonal heavy-neutrino evolution equation (2.25)

[̂ηN ]αα � 1/([K̂N ]ααz), we find the attractor solution in the strong washout regime by setting 
the RHS of (5.22) to zero, thus obtaining

1

3

{
δη̂L, K̂eff + 2K̂dec

}− δK̂back
dec � ε̂

z
, (5.26)

In the RLτ model discussed in Section 5.2, the dominant contribution to the total lepton asym-
metry comes from the τ -sector involving [δη̂L]kτ (with k = e, μ, τ ) for which the third column 
of (5.26) provides a closed set of equations. Imposing the detailed balance condition (4.50), the 
third column of (5.26) can be explicitly written as⎛⎜⎝ [δη̂L]ek[K̂eff]kτ + [K̂eff]ek[δη̂L]kτ + 2([K̂dec]ee + [K̂dec]ττ )[δη̂L]eτ

[δη̂L]μk[K̂eff]kτ + [K̂eff]μk[δη̂L]kτ + 2([K̂dec]μμ + [K̂dec]ττ )[δη̂L]μτ
[δη̂L]τk[K̂eff]kτ + [K̂eff]τk[δη̂L]kτ

⎞⎟⎠� 3

z

(
ε̂eτ
ε̂μτ
ε̂ττ

)
.

(5.27)

We can safely neglect [K̂dec]ee and [K̂dec]μμ which are much smaller compared to

[K̂dec]ττ = 3

2HNz2K1(z)
ΓT,τ , (5.28)

with ΓT,τ given by (4.49). Moreover, [δη̂L]ττ is much larger than the other entries, whereas 
[K̂eff]kτ (with k = e, μ, τ ) are much smaller than the entries [K̂eff]ee,eμ,μμ. This allows us to 
further approximate (5.27) as⎛⎜⎝ [K̂eff]ek[δη̂L]kτ + 2[K̂dec]ττ [δη̂L]eτ

[K̂eff]μk[δη̂L]kτ + 2[K̂dec]ττ [δη̂L]μτ
2 Re([K̂eff]τk[δη̂L]kτ )

⎞⎟⎠� 3

z

(
ε̂eτ
ε̂μτ
ε̂ττ

)
. (5.29)

Assuming that the imaginary part of [K̂eff]τk[δη̂L]kτ is small compared to its real part, (5.29) has 
the form of a closed linear system of equations for [δη̂L]kτ :

(
K̂eff + 2 diag

{[K̂dec]ττ , [K̂dec]ττ , 0
})( [δη̂L]eτ

[δη̂L]μτ
[δη̂L]ττ

)
� 3

2z

( 2̂εeτ
2̂εμτ
ε̂ττ

)
. (5.30)

Notice that, in the limit [K̂dec]ττ → ∞, we recover the solutions of the diagonal rate equations 
in the RLτ model, i.e.[

δη̂L
]
eτ

= [
δη̂L

]
μτ

→ 0,
[
δη̂L

]
ττ

→ [
δη̂Lmix

]
ττ

� 3

2z

ε̂ττ

[K̂eff]ττ , (5.31)

as expected [cf. (2.33)]. However, we have checked numerically that for a realistic value of the 
τ -Yukawa coupling in the RLτ model, [K̂dec]ττ has to be treated as finite, and the discrepancy 
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from the flavour-diagonal solution (2.33) can be of one order of magnitude, as shown in Sec-
tion 6.2. In this case, inverting (5.30), we finally find an approximate analytic solution for the 
τ -lepton asymmetry:

δη̂L ⊃ δη̂Lmix + δη̂Ldec � [
δη̂L

]
ττ

� 3

2z
Re
([(

K̂eff + 2[K̂dec]ττ diag(1,1,0)
)−1]

τk
(2 − δkτ )̂εkτ

)
, (5.32)

where we have only taken the real part of the solution, since the imaginary parts in the third row 
of (5.29) were assumed to be small in this derivation.

In the next section, we will show that the approximate analytic solution (5.32) reproduces 
the exact numerical solution of the rate equations remarkably well for the case with diagonal 
heavy-neutrino number densities, and provides a fairly good estimate for the total lepton number 
asymmetry predicted by the fully flavour-covariant rate equations.

6. Numerical examples

In this section, we present some numerical results for the evolution of the lepton asymmetry 
governed by the flavour-covariant rate equations given by (4.82)–(4.84). For definiteness, we 
choose to work within a minimal RLτ model presented in Section 5.2. For illustration, we take a 
set of neutrino Yukawa couplings satisfying the neutrino oscillation data for a normal hierarchy 
of light neutrino masses with the lightest neutrino mass mν1 = 0. We use the best-fit values of 
the light neutrino oscillation parameters from a recent three-neutrino global analysis [166]:

�m2
sol = 7.54 × 10−5 eV2, �m2

atm = 2.44 × 10−3 eV2,

sin2 θ12 = 0.308, sin2 θ23 = 0.425, sin2 θ13 = 0.0234. (6.1)

For definiteness, we choose the leptonic CP phases δ = 0, ϕ1 = π and ϕ2 = 0, and reconstruct the 
light neutrino mass matrix using the definition (5.12). From this, we can determine the parameters 
a, b, εe,μ,τ of the RLτ model using the relations (5.14) for a given value of the heavy neutrino 
mass scale mN , after taking into account the mass splitting between the three heavy neutrinos 
due to the RG effects given by (5.2). Note that for a given light neutrino mass matrix Mν , the 
solutions for a and b obtained using (5.14) are unique up to a sign factor, and the sign discrepancy 
could be eliminated only if the sign of Re(a) were known. There is a similar sign freedom for 
εe,μ,τ , but this is irrelevant since it applies to a whole column of the Yukawa coupling matrix δh
[cf. (5.9)] and can be rotated away. Thus, the only free parameters we have in this model, apart 
from the neutrino-sector CP phases, are κ1,2, γ1,2, sign[Re(a)] and mN . Below we present some 
benchmark values for these free parameters.

6.1. Benchmark points

We choose three benchmark scenarios with the heavy neutrino mass scales mN = 120 GeV, 
400 GeV and 5 TeV, in order to illustrate the flavourdynamics of the RL� model in different 
temperature regimes. The other free model parameters are chosen such that they satisfy all the 
relevant experimental constraints, as discussed below. The values of the free model parameters, 
viz. mN , γ1,2, κ1,2 for our benchmark scenarios are given in Table 3, along with the correspond-
ing values of the derived model parameters, viz. a, b, εe,μ,τ , with Re(a) > 0. The low-energy 
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Table 3
The numerical values of the free (mN , γ1,2, κ1,2) and derived parameters (a, b, εe,μ,τ ), with Re(a) > 0, in the RLτ
model for three chosen benchmark points.

Parameters BP1 BP2 BP3

mN 120 GeV 400 GeV 5 TeV
γ1 π/4 π/3 3π/8
γ2 0 0 π/2
κ1 4 × 10−5 2.4 × 10−5 2 × 10−4

κ2 2 × 10−4 6 × 10−5 2 × 10−5

a (7.41 − 5.54 i)× 10−4 (4.93 − 2.32 i)× 10−3 (4.67 + 4.33 i)× 10−3

b (1.19 − 0.89 i)× 10−3 (8.04 − 3.79 i)× 10−3 (7.53 + 6.97 i)× 10−3

εe 3.31 × 10−8 5.73 × 10−8 2.14 × 10−7

εμ 2.33 × 10−7 4.3 × 10−7 1.5 × 10−6

ετ 3.5 × 10−7 6.39 × 10−7 2.26 × 10−6

lepton flavour violating (LFV) and lepton number violating (LNV) observables are briefly dis-
cussed below for completeness, and their predicted values for the benchmark points are shown 
in Table 4, along with the current experimental limits.

6.1.1. LFV observables
The mixing between the light and NN heavy Majorana neutrinos induces LFV processes such 

as � → �′γ [9,167–172], � → �′�1�̄2 [171,173,174] and μ → e conversion in nuclei [175–179], 
through loops involving the heavy neutrinos. In general, the light–heavy neutrino mixing is 
parametrized in terms of an arbitrary 3 × NN matrix ξ [163], which depends on the Yukawa 
coupling matrix h and the heavy Majorana neutrino mass matrix MN . In the mass eigenbasis, 
and to leading order in ‖ξ‖, the mixing is given by13

Blα � ξlα ≡ v√
2
ĥlαM̂

−1
Nα
, (6.2)

which governs the rare LFV decay rates, as discussed below.
The branching ratio for the μ → eγ process is given by [170]

BR(μ→ eγ )= α3
ws

2
w

256π2

m4
μ

M4
W

mμ

Γμ

∣∣Gμeγ ∣∣2, (6.3)

where mμ and Γμ are respectively the mass and width of the muon, sw ≡ sin θw is the weak 
mixing parameter, and αw ≡ g2

w/(4π) is the weak coupling strength, all evaluated at the weak 
scale MZ . The form factor Gμeγ is defined in Appendix D. The other kinematically allowed rare 
decay modes of this type, namely, τ → μγ and τ → eγ , can be defined similar to (6.3), in 
terms of the mass and width of the τ -lepton. The branching ratio predictions of these rare decay 
modes for our chosen benchmark points are given in Table 4. For comparison, we also give the 
current experimental upper limits [1,184]. The MEG limit on μ → eγ branching ratio [184] is 
the most stringent one, and the model prediction for BP2 is within reach of the upgraded MEG 
sensitivity [185].

The branching ratio for the μ− → e−e+e− process is given by [174]

13 An all-order expression for the mixing in terms of ξ may be found in [140,180,181]. Some approximate seesaw 
expressions are studied in [182,183].
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BR(μ→ eee)= α4
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(6.4)

where the various form factors are defined in Appendix D. The predictions for BR(μ → eee) for 
the three benchmark points chosen here are shown in Table 4 and, for comparison, we have also 
shown the current experimental upper limit [1]. We find that the model predictions are well within 
the current limit. One can similarly define the LFV decay rates involving the τ -lepton [174]; 
however, the numerical values for these rates turn out to be several orders of magnitude smaller 
than the current experimental limits and hence we do not show them in Table 4.

The μ → e conversion rate in an atomic nucleus AZX is given by [179]

Rμ→e = 2G2
Fα

2
wm

5
μ

16π2Γcapt

∣∣∣∣4V (p)(2F̃ μeu + F̃ μed
)+ 4V (n)

(
F̃ μeu + 2F̃ μed

)+ s2
w

2e
Gμeγ D

∣∣∣∣2, (6.5)

where e = gwsw is the magnitude of the electron charge, Γcapt is the nuclear capture rate and 
V (p),(n), D are various nuclear form factors, whose numerical values for some typical nuclei of 
interest are given in Appendix D [cf. Table D.1]. The electroweak form factors F̃ μeq (q = u, d)
in (6.5) are defined as

F̃ μeq =Qqs2
wF

μe
γ +

(
I
q

3L

2
−Qqs2

w

)
F
μe
Z + 1

4
F
μeqq
Box , (6.6)

where Qq is the electric charge of the quark q in units of e (Qu = 2/3, Qd = −1/3), I q3L is the 
third component of the weak isospin (Iu3L = 1/2, I d3L = −1/2), and the individual form factors 
F
μe
γ , F

μe
Z , F

μeqq
Box are defined in Appendix D. The predictions for the μ → e conversion rate 

for the three benchmark points are given in Table 4 for certain isotopes of titanium, gold and 
lead nuclei, along with their experimental upper limits from SINDRUM-II [186–188]. It is worth 
mentioning here that the next generation experiments, such as COMET [189] and Mu2e [190]
have planned sensitivities around 10−16, which could easily test the first two benchmark points. 
The distant future proposal PRISM/PRIME [191] could probe μ → e conversion rates down to 
10−18, thus testing the third benchmark point as well.

Apart from these LFV observables, a non-zero light–heavy neutrino mixing also leads to a 
non-unitary PMNS mixing matrix, which can be parametrized as [163,180,181]

ŨPMNS = (
1 + ξ∗ξT)−1/2

UPMNS ≡
(

1 − 1

2
Ω

)
UPMNS, (6.7)

where UPMNS is the unitary matrix given by (5.13), and the non-unitarity effects are cap-
tured by the Hermitian matrix Ω , which is a function of the light–heavy neutrino mixing 
parameter ξ [cf. (6.2)]. To leading order in ‖ξ‖2, the non-unitarity parameters are given by 
Ω��′ � ∑

α B
∗
�αB�′α . For the benchmark points given in Table 3, the predictions for |Ω|eμ

are shown in Table 4, along with the current experimental limit at 90% CL from a global fit 
of neutrino oscillation data, electroweak decays, universality tests and rare charged-lepton de-
cays [165]. The predictions for other elements of Ω are much below the current experimental 
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Table 4
The model predictions for the low-energy observables for the three chosen benchmark points and their comparison with 
the current experimental limits.

Low-energy 
observables

BP1 BP2 BP3 Experimental 
Limit

BR(μ→ eγ ) 4.5 × 10−15 1.9 × 10−13 2.3 × 10−17 < 5.7 × 10−13 [184]
BR(τ → μγ ) 1.2 × 10−17 1.6 × 10−18 8.1 × 10−22 < 4.4 × 10−8 [1]
BR(τ → eγ ) 4.6 × 10−18 5.9 × 10−19 3.1 × 10−22 < 3.3 × 10−8 [1]

BR(μ→ 3e) 1.5 × 10−16 9.3 × 10−15 4.9 × 10−18 < 1.0 × 10−12 [1]

RTi
μ→e 2.4 × 10−14 2.9 × 10−13 2.3 × 10−20 < 6.1 × 10−13 [186]

RAu
μ→e 3.1 × 10−14 3.2 × 10−13 5.0 × 10−18 < 7.0 × 10−13 [187]

RPb
μ→e 2.3 × 10−14 2.2 × 10−13 4.3 × 10−18 < 4.6 × 10−11 [188]

|Ω|eμ 5.8 × 10−6 1.8 × 10−5 1.6 × 10−7 < 7.0 × 10−5 [165]

〈m〉 [eV] 3.8 × 10−3 3.8 × 10−3 3.8 × 10−3 < (0.11–0.25) [195]

limits, and hence, are not shown here. Note that an upgraded MEG limit on BR(μ → eγ ) could 
reach a sensitivity of |Ω|eμ < 10−6 which includes the first two benchmark points in Table 4. 
Since the non-unitarity parameter Ω is very small for all the benchmark points chosen here, we 
use UPMNS [cf. (5.13)] instead of ŨPMNS [cf. (6.7)] as the diagonalizing matrix in (5.12) for our 
phenomenological purposes.

6.1.2. LNV Observables
The Majorana nature of the light and heavy neutrinos in the type-I seesaw models violate 

lepton number by two units, which can manifest in the neutrinoless double beta decay (0νββ) 
process at low-energy (for a review, see e.g. [192]). In the minimal seesaw model, the 0νββ
process gets contributions from diagrams mediated by both light and heavy Majorana neutrinos, 
and the corresponding half-life is given by

1

T 0ν
1/2

=G0ν
01

∣∣M0ν
ν Aν +M0ν

N AN
∣∣2, (6.8)

where G0ν
01 is the decay phase space factor, M0ν

ν,N ’s are the nuclear matrix elements (NMEs) 
for 0νββ mediated by light and heavy neutrinos respectively, and the dimensionless parameters 
Aν,N are defined as

Aν = 1

me

∑
i

(UPMNS)
2
eimνi , AN =mp

∑
α

B2
eα

mNα
, (6.9)

where me and mp are the electron and proton masses, respectively. For all the benchmark points 
given in Table 3, the heavy neutrino contribution AN to the half-life (6.8) turns out to be negli-
gible compared to the light neutrino contribution Aν , and hence, we can ignore the second term 
on the RHS of (6.8), to rewrite it in the canonical form

1

T 0ν
1/2

=G0ν
01

∣∣M0ν
ν

∣∣2 〈m〉2

m2
e

, (6.10)

where 〈m〉 ≡ | ∑i (UPMNS)
2
eimνi | is known as the effective neutrino mass. For a normal hi-

erarchy of neutrino masses with mν = 0, and using the three-neutrino oscillation parame-
1
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ter values given in (6.1), we obtain 〈m〉 = 3.8 meV. For comparison, we note that the cur-
rent 90% CL experimental upper limits are 〈m〉 < (0.3–0.9) eV from the NEMO-3 limit on 
T 0ν

1/2(
100Mo) [193], < (0.2–0.4) eV from the GERDA+Heidelberg–Moscow+IGEX combined 

limit on T 0ν
1/2(

76Ge) [194], and < (0.12–0.25) eV from the KamLAND-Zen+EXO-200 combined 

limit on T 0ν
1/2(

136Xe) [195], where the range of limits is due to the NME uncertainties involved.14

Apart from the low-energy observables discussed above, the Majorana nature of the heavy 
neutrinos as well as their mixing with the light neutrinos could manifest simultaneously via their 
‘smoking gun’ signature of same-sign dilepton plus two jets with no missing energy [197] at the 
LHC [164,198–203]. Note that even for quasi-degenerate heavy Majorana neutrinos (as occurs 
in the RL� models discussed in Section 5), the LNV signal can be sizable when the mass splitting 
�mN ≡ |mNα −mNβ | is comparable to the average width ΓN ≡ (ΓNα +ΓNβ )/2 [204]. Within the 
minimal seesaw framework, both CMS [205] and ATLAS [206] experiments have derived limits 
on the mixing parameters |Blα|2 (for l = e, μ) between 0.01–0.1 for mN = 100–300 GeV. In-
cluding infrared enhancement effects due to t -channel processes involving photons, these limits 
can be improved (by at least a factor of 5) and extended to higher heavy neutrino masses at 

√
s =

14 TeV LHC [82]. The improved limits will encompass the first two benchmark points in Table 3.

6.2. Results for lepton flavour asymmetries

Using the parameter values given in Table 3, we numerically solve the flavour-covariant rate 
equations (4.82)–(4.84) for the evolution of the charged-lepton and heavy-neutrino number den-
sities. For definiteness, in this section we work in the basis in which the heavy-neutrino mass 
matrix as well as the charged-lepton Yukawa coupling matrix are diagonal. First, we discuss 
the results for the heavy-neutrino number densities, as shown in Fig. 8 for the three benchmark 
points given in Table 3. Here we have chosen the initial conditions with zero lepton asymmetry, 
i.e. δηLin = 0, and the heavy neutrinos in thermal equilibrium, i.e. ηNin = ηNeq1. As we will see 
below, other choices of initial conditions lead to similar results. The vertical dotted line indicates 
the critical value zc =mN/Tc, where Tc is the critical temperature [cf. (2.39)]. The number den-
sities are shown in terms of the deviation from their equilibrium values: ηNαβ = ηNαβ/ηNeq − δαβ
[cf. (5.15)]. The evolution of the diagonal elements are shown as solid lines and that of the 
off-diagonal elements as dashed lines. As discussed in Section 5.3 [cf. (5.18)], both diagonal 
and off-diagonal heavy-neutrino number densities rapidly follow the attractor solution. Numer-
ically, the value of ηN11 is several orders of magnitude larger than the other elements, whereas 
the values of ηN22 and ηN33 overlap for all the benchmark points. In all three cases, unlike ηN23, the 
off-diagonal elements ηN12 and ηN13 are larger than the diagonal elements ηN22, ηN33. Therefore, the 
effect of the off-diagonal contributions of ηNαβ to the lepton asymmetry cannot be neglected, as 
we will illustrate below.

Our results for the asymmetries in the SM lepton-doublet sector for the three benchmark 
points given in Table 3 are shown in Figs. 9–11. In each figure, the horizontal dotted line shows 
the value of δηL [cf. (2.43)] required to explain the observed baryon asymmetry in the Universe. 
The conversion of the asymmetry stops for z > zc (vertical dotted line), since the sphaleron 
processes are no longer in action. As such, the observed value for δηL should be compared with 
the model prediction at z= zc . The top panels in Figs. 9–11 show the evolution of the total lepton 

14 After taking into account the updated NME uncertainties, it was found [196] that the current 136Xe limit on 〈m〉 is the 
strongest for any given NME calculation. Therefore, we have only shown the experimental limit from 136Xe in Table 4.
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Fig. 8. The deviation of the heavy-neutrino number densities ηNαβ = ηNαβ/ηNeq − δαβ from their equilibrium values for 
the three benchmark points given in Table 3. The different lines show the evolution of the diagonal (solid lines) and 
off-diagonal (dashed lines) number densities in the fully flavour-covariant formalism. The numerical values of ηN22 and 
ηN33 coincide with each other in all three cases. (For interpretation of the references to color in this figure, the reader is 
referred to the web version of this article.)

asymmetry, δηL ≡ Tr(δηL), obtained using the fully flavour-covariant rate equation (4.84), for 
three different initial conditions (thick solid lines):

(i) Zero lepton asymmetry δηLin = 0, heavy neutrinos in thermal equilibrium ηNin = ηNeq1 (thick 
black line);

(ii) Zero lepton asymmetry δηLin = 0, heavy neutrinos strongly out-of-equilibrium ηNin = 0 (thick 
grey line);
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Fig. 9. Lepton flavour asymmetries as predicted by the BP1 parameters given in Table 3. The top panel shows the 
comparison between the total asymmetry obtained using the fully flavour-covariant formalism (thick solid lines, with dif-
ferent initial conditions) with those obtained using the flavour-diagonal formalism (dashed lines). Also shown (thin solid 
line) is the analytic result discussed in Section 5.3. The bottom panel shows the diagonal (solid lines) and off-diagonal 
(dashed lines) elements of the total lepton number asymmetry matrix in the fully flavour-covariant formalism. For de-
tails, see text. (For interpretation of the references to color in this figure, the reader is referred to the web version of this
article.)

(iii) Extremely large lepton asymmetry with opposite sign compared to the observed one 
δηLin = 1; heavy neutrinos strongly out-of-equilibrium ηNin = 0 (thick yellow line).

It is clear that the final lepton asymmetry δηL(z
 1) is independent of the initial conditions, 
which is a general consequence of the RL mechanism in the strong washout regime. Even start-
ing with extremely large initial lepton asymmetry and/or with the wrong sign, this primordial 
asymmetry is rapidly washed out and the final asymmetry, with the right sign as required by 
(2.43), is set by the RL mechanism itself for z∼ 1.
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Fig. 10. Lepton flavour asymmetries as predicted by the BP2 minimal RLτ model parameters given in Table 3. The labels 
are the same as in Fig. 9. (For interpretation of the references to color in this figure, the reader is referred to the web 
version of this article.)

We may now compare the results of our fully flavour-covariant rate equations with their di-
agonal [29,33] and partially flavour-dependent limits. To this end, we show in the top panels of 
Figs. 9–11 limiting cases, where either the heavy-neutrino number density (red dashed line) or 
the charged-lepton number density (green dash-dotted line) or both (blue dotted line) are treated 
as diagonal in flavour space. For these cases, we have chosen the initial conditions δηLin = 0 and 
ηNin = ηNeq1 for concreteness. As mentioned above, the final lepton asymmetry is insensitive to the 
initial conditions in each case. We also show the analytic solution, discussed in Section 5.3, for 
the case with diagonal heavy-neutrino number densities, which agrees well with the asymptotic 
limit of the corresponding exact numerical solution.

From Figs. 9–11, we see that the final asymmetry including all flavour effects is significantly 
enhanced in the fully flavour-covariant formalism, as compared to the predictions from the par-
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Fig. 11. Lepton flavour asymmetries as predicted by the BP3 minimal RLτ model parameters given in Table 3. The labels 
are the same as in Fig. 9. (For interpretation of the references to color in this figure, the reader is referred to the web 
version of this article.)

tially flavour-dependent limits. The enhanced CP asymmetry in the flavour-covariant formalism 
can be understood as arising predominantly from two physically-distinct phenomena:

(i) Coherent oscillations between different heavy-neutrino flavours, which create an O(h4)

asymmetry in the charged-lepton sector in the RL scenario, as discussed in Sections 4.2
and 5.3. This leads to an enhancement by a factor of two over the flavour-diagonal limit in 
all the benchmark points shown in Figs. 9–11.

(ii) The evolution of flavour coherences in the charged-lepton sector, which are generated 
through the heavy-neutrino Yukawa couplings and destroyed through the charged-lepton 
Yukawa couplings, as discussed in Sections 4.3 and 5.3.

The latter charged-lepton decoherence effects give rise to the distinctive ‘plateau’ in the off-
diagonal τe and τμ elements of the lepton asymmetry matrix δηL in the RLτ model. This can 
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be seen from the bottom panels of Figs. 9–11, which show the individual charged-lepton flavour 
contributions to the total asymmetry. Since we are considering an RLτ model, the asymmetry 
produced around z= 1 is dominantly in the τ -flavour (δηLττ ), which has relatively smaller cou-
plings to the heavy neutrinos [cf. (5.8)], and hence, a smaller washout factor. On the other hand, 
the asymmetries generated in electron (δηLee) and muon (δηLμμ) flavours, with relatively larger 
couplings to the heavy neutrinos, are suppressed due to larger washout rates. In addition to the 
lepton asymmetry in the diagonal element δηLττ , the coherence effect in the charged-lepton sector 
generates an extra asymmetry in the off-diagonal number densities involving the τ -flavour, i.e. 
δηLτe and δηLτμ. These could be large compared to those involving other flavours, i.e. δηLee, δη

L
eμ

and δηLμμ, depending on the values of the input parameters. This effect is more prominent around 
z = 1, since with increasing z values, the off-diagonal lepton-flavour coherences decay, leading 
to a complete decoherence of the system to the charged-lepton Yukawa eigenbasis. This explains 
the distinctive plateau at intermediate z values in the evolution of δητe and δητμ in Figs. 9–11
(bottom panels). This additional source contributes to the total lepton asymmetry δηL, which can 
exhibit a similar feature, depending on the model parameters. In the case where the sphalerons 
freeze out within the ‘plateau’ region, which occurs for 200 GeV �mN � 2 TeV, an additional 
enhancement of a factor ∼ 5 in the final asymmetry is observed, as can be seen for BP2 in 
Fig. 10 (top panel). For BP3 with a much higher heavy-neutrino mass scale, the coherence ef-
fect is already subdued, and the system has completely decohered to the charged-lepton Yukawa 
eigenbasis, well above the critical temperature, thus giving no additional enhancement, as shown 
in Fig. 11 (top panel). On the other hand, for BP1, the neutrino Yukawa couplings are smaller 
than those in BP2 and BP3, and hence, the coherence effects are not pronounced in the total 
asymmetry, as can be seen from Fig. 9 (top panel).

The impact of the additional enhancements, discussed above, is exemplified in BP2 (see 
Fig. 10), where the total lepton asymmetry obtained in the fully flavour-covariant formalism is 
above the observed value, whereas the predictions obtained in various partially flavour-dependent 
limits all fall below the observed asymmetry. Note that the total lepton asymmetries predicted for 
all of the benchmark points exceed the observed asymmetry. Nevertheless, due to the freedom 
in the choice of the CP phases γ1,2, these benchmark points represent viable choices of model 
parameters for successful leptogenesis.

Before concluding this section, we note that there is no decoherence effect in the heavy-
neutrino sector, and hence, both diagonal and off-diagonal heavy-neutrino number densities de-
cay coherently, as shown in Fig. 8. This is due to the fact that the evolution of the heavy-neutrino 
number densities are entirely governed by the heavy-neutrino Yukawa couplings [cf. (4.82) and 
(4.83)], ignoring sub-dominant collision terms, such as �L = 1 scattering processes. In the 
heavy-neutrino mass eigenbasis, the corresponding decay rates are not diagonal, which leads 
to the occurrence of coherences in the heavy-neutrino sector.

7. Conclusions

We have presented a fully flavour-covariant formalism for transport phenomena, in which we 
have derived Markovian master equations describing the time-evolution of particle number den-
sities in a quantum-statistical ensemble with arbitrary flavour degrees of freedom. In particular, 
we have obtained a flavour-covariant generalization of the semi-classical flavour-diagonal Boltz-
mann equations.

In order to explicitly demonstrate the importance of the effects captured only in the flavour-
covariant formalism, we have discussed a particular application to the phenomenon of resonant 
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leptogenesis (RL). It is known that the RL scenario offers a unique opportunity for testing the 
connection between the origin of neutrino mass and matter–antimatter asymmetry by the ongo-
ing LHC experiments as well as by various low-energy experiments probing lepton flavour and 
number violation. For this reason, it is essential to capture all the flavour effects due to the heavy 
neutrinos as well as SM leptons in a consistent manner, in order to obtain a more accurate pre-
diction for the baryon asymmetry in this scenario. As we have shown in this paper, including all
flavour off-diagonal effects could enhance the predicted lepton asymmetry as much as one order 
of magnitude in certain RL models, as compared to predictions obtained from partially flavour-
dependent treatments. Thus, our flavour-covariant formalism allows us to access an enlarged 
parameter space of the RL models, which could be tested in ongoing and planned experiments at 
both the high energy and intensity frontiers.

The main new results of our fully flavour-covariant formalism for RL scenarios, as contained 
in the final rate equations (4.82)–(4.84), are the following:

(i) The appearance of new rank-4 tensors in flavour space in transport equations (see Sec-
tion 3.4). These are necessary to describe the time-evolution of the number density matrices 
for leptons and heavy neutrinos in a flavour-covariant manner. One can extend this formal-
ism, by introducing even higher rank rate tensors, to describe sub-dominant processes, such 
as LN ↔ LeR , involving more flavour degrees of freedom. The existence of the tensorial 
structure in the rate equations is firmly supported by an explicit calculation of the transition 
matrix elements, by virtue of a generalization of the optical theorem (see Appendix C). To 
further elucidate the consistency of our treatment, we develop a flavour-covariant gener-
alization of the helicity amplitude technique, applied to spinorial fields in the presence of 
time-dependent and spatially-inhomogeneous backgrounds (see Appendix B).

(ii) A systematic treatment of two intrinsically quantum effects, i.e. oscillations between dif-
ferent heavy neutrino flavours (see Section 4.2) and quantum decoherence between the 
charged-lepton flavours (see Section 4.3). Numerical studies for a particular RLτ model 
reveal that these flavour off-diagonal effects could enhance the total lepton asymmetry by 
up to one order of magnitude, as compared to the flavour-diagonal case (see Figs. 9–11).

(iii) The approximate analytic solutions (see Section 5.3) to the fully flavour-covariant transport 
equations, which capture the two relevant flavour effects discussed above. Taking this into 
account in the strong washout regime, the total lepton asymmetry at z� 1 may be estimated 
by the sum of the contributions from flavour mixing, oscillation and decoherence effects:

δηLtot � δηLmix + δηLosc + δηLdec, (7.1)

as given by (2.33), (5.21) and (5.32), respectively. The quantitative predictions obtained 
from the analytic solutions for all our benchmark points agree well with the exact numerical 
results obtained from the full flavour-covariant transport equations. The analytic expressions 
are presented with the aim to facilitate phenomenological studies for a given model, without 
necessarily having to solve the full flavour-covariant rate equations.

Aside from these main results specific to the flavour-covariant formalism, we have also given 
a geometric and physical understanding of the degeneracy limit in the heavy neutrino parame-
ter space (see Section 5.1) for the minimal RL scenario in which the quasi-degeneracy of the 
heavy neutrino masses at low scale can be naturally explained as a small deviation from the 
O(NN )-symmetric limit at some high scale through RG effects. We also point out that the role 
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of RG effects in lifting the degeneracies encountered here is reminiscent of the role of time-
independent perturbations in the degenerate perturbation theory of ordinary Quantum Mechanics.

We also comment on the various existing forms of the self-energy regulator used to calculate 
the ε-type CP-asymmetry and make a comparative study in a simple toy model, in order to 
demonstrate their behaviour in certain lepton number conserving limits (see Appendix A). We 
find that only the regulator given by (A.3) gives a valid and well-defined CP-asymmetry in the 
entire parameter space possessing the correct L-conserving limit, whereas the other regulators 
are not well-defined in certain regions of the parameter space.

In conclusion, our flavour-covariant formalism provides a complete and unified description of 
transport phenomena in RL models, capturing three relevant physical phenomena: (i) the reso-
nant mixing between the heavy neutrino states, (ii) coherent oscillations between different heavy 
neutrino flavours, and (iii) quantum decoherence effects in the charged-lepton sector. The for-
malism developed here is rather general and may also find applications in various other transport 
phenomena involving flavour effects.
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Appendix A. CP asymmetry in the L-conserving limit

The analytic results for the leptonic CP-asymmetries given by (2.22) simplify considerably 
in the two heavy-neutrino mixing limit (α = 1, 2). In this case, the Rαβ -dependent terms in the 
expression (2.18) for the effective Yukawa couplings can be set to zero, since they always involve 
a sum over more than two heavy neutrinos. Thus, in this limit, (2.18) reduces to

ĥlα = ĥlα − iĥlβ
mNα (mNαAαβ +mNβAβα)
m2
Nα

−m2
Nβ

+ 2im2
Nα
Aββ

(α �= β). (A.1)

Using (A.1) in (2.22) and neglecting higher-order Yukawa couplings of O(h4
lα) at the amplitude 

level, we obtain the following expression for the ε-type CP-asymmetry15:

εlα ≈
Im[̂h∗

lαĥlβ (̂h
†ĥ)αβ ] + mα

mβ
Im[̂h∗

lαĥlβ (̂h
†ĥ)βα]

(̂h†ĥ)αα(̂h†ĥ)ββ
freg, (A.2)

where α, β = 1, 2 (α �= β), and the self-energy regulator is given by [28,29]

freg =
(m2
Nα

−m2
Nβ
)mNαΓ

(0)
Nβ

(m2
Nα

−m2
Nβ
)2 + (mNαΓ (0)Nβ )2

. (A.3)

15 The Yukawa structure in (A.2) agrees with [32], but differs from that given in [49,76], which do not have the second 
term in the numerator on the RHS of (A.2). This additional term can be dropped only after taking the sum over l.
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Note that ̂h and Γ (0)Nβ are the tree-level Yukawa couplings and decay width, respectively. In the de-
generate heavy neutrino mass limit, �mN ≡ (mN1 −mN2) → 0, the would-be singular behaviour 
of the CP-asymmetry is regularized by the absorptive term (mNαΓ

(0)
Nβ
)2 in the denominator on 

the RHS of (A.3).
Based on the simplified expression (A.2), the following two necessary conditions for a reso-

nant enhancement of the leptonic CP-asymmetry may be derived [28]:

(i) �mN ∼ ΓN1,2

2
�mN1,2 , (ii)

|Im[(̂h†ĥ)2αβ ]|
(̂h†ĥ)αα(̂h†ĥ)ββ

∼ 1. (A.4)

The generic feature of these resonant conditions remains valid even in the presence of flavour 
effects [33]. The condition (i) is exactly met when the unitarity limit on the resummed heavy-
neutrino propagator gets saturated [27], i.e. when the total CP-asymmetry εl = ∑

α εlα takes 
its maximum possible value of unity. Note that the limit εl ≤ 1, similar to the Lee–Wolfenstein 
bound for the K0K0-system [207], gets saturated when the regulator in (A.2) takes its maximum 
possible value of |fmax

reg | = 1/2.
Since the exact location of the pole of the propagator determines the maximum enhancement 

of the CP asymmetry as well as its behaviour in some limiting cases, it is worth commenting 
on other analytic forms of the regulator for the resonant part of the lepton asymmetries in (A.2), 
existing in the literature [118,132,133]. In particular, their results differ by the way in which the 
singularity �mN → 0 in (A.2) is regulated once the heavy neutrino mixing effects are taken 
into account. For instance, using a perturbative quantum-mechanical approach, [133] obtained a 
regulator of the form

f I
reg = �mNΓ

(0)
Nα
/2

(�mN)2 +m2
Nα

[Re(Aαβ)]2
, (A.5)

which has a pathological behaviour for certain flavour-dependent RL scenarios, for which 
Re(Aαβ) = 0, but Re(Alαβ) �= 0. In this limit, the unitarity upper bound εl ≤ 1 is violated in the 
degenerate heavy-neutrino mass limit �mN → 0 and the individual CP asymmetries εl become 
singular.

Following a modified version of the quantum field-theoretic approach introduced in [28], 
a different regulator was obtained by [132,138]:

f II
reg =

(m2
Nα

−m2
Nβ
)mNαΓ

(0)
Nβ

(m2
Nα

−m2
Nβ
)2 + (mNαΓ (0)Nα −mNβΓ (0)Nβ )2

. (A.6)

This regulator diverges in the doubly degenerate limit �mN → 0 and �ΓN ≡ |Γ (0)N1
−Γ (0)N2

| → 0. 

In RL scenarios with small �mN , one could have Γ (0)N1
� Γ (0)N2

even though Al11 �=Al22 for a given 
lepton flavour l. For instance, such a scenario can occur naturally in approximate L-conserving 
RL models [54,58]. In these cases, using the regulator (A.6) might lead to an overestimation of 
the leptonic CP asymmetries by several orders of magnitude [76], as we will explicitly demon-
strate below for a toy model.

Finally, using an effective Kadanoff–Baym approach with a particular quasi-particle ansatz 
[118,120], derived an effective regulator of the form

f III
reg =

(m2
Nα

−m2
Nβ
)mNαΓ

(0)
Nβ

(m2 −m2 )2 + (mN Γ (0) +mN Γ (0))2
. (A.7)
Nα Nβ α Nα β Nβ
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The predictions for the CP-asymmetry for the regulators (A.6) and (A.7) are comparable so long 
as the widths ΓN1,2 are hierarchical. Although the regulator (A.7) does not have any pathological 
behaviour in the doubly degenerate limit �mN → 0, �ΓN → 0, it predicts a CP-asymmetry 4 
times smaller than that predicted by the regulator freg in (A.3). As a result, the CP-asymmetry 
ε ≤ 1/2 never gets saturated to unity, unlike the general expectations based on unitarity argu-
ments [27]. Moreover, as shown in Appendix B, there are additional subtleties in the existing 
treatment of flavour mixing within the Kadanoff–Baym approach and their resolution might be 
crucial in determining which of the two regulating expressions (A.3) and (A.7) captures properly 
the resonant dynamics.

To illustrate the different behaviours of the CP-asymmetry for the regulators in (A.3) and 
(A.6) in the L-conserving limit, let us consider a toy model with two heavy neutrinos N1,2 with 
opposite lepton numbers, i.e. L(N1) = −L(N2) = 1. The relevant Yukawa Lagrangian is given 
by [54,208]

−LY = YlLlΦ̃N1 + Y ′
l LlΦ̃N2 + 1

2

(
MN1N

C
2 +μ1N1N

C
1 +μ2e

iθN2N
C
2

)+ H.c., (A.8)

where M, μ1,2 are real parameters. The full neutrino mass matrix, in the basis {νCL,l, N1, NC2 }, is 
given by

MνN =
⎛⎜⎝ 0 v√

2
Y v√

2
Y ′

v√
2
Y T μ1 M

v√
2
Y ′ T M μ2e

iθ

⎞⎟⎠ . (A.9)

To first order in the lepton number breaking parameters Y ′
l and μ1,2, the light neutrino mass 

matrix is given by

Mν = v2

2M

(
YY ′ T + Y ′Y T − μeff

M
YY T

)
. (A.10)

Note that, although at tree-level the light neutrino mass matrix does not depend on μ1, it receives 
a one-loop contribution from the electroweak radiative corrections [164,180], which is directly 
proportional to μ1. This is taken into account by the effective μ-parameter in (A.10): μeff =
μ2 + xNf (xN)μ1, where xN =M2/M2

W and the loop function f (xN) is given by [180]

f (xN)= αw

16π

[
xH

xN − xH ln

(
xN

xH

)
+ 3xZ
xN − xZ ln(xNxZ)

]
, (A.11)

with xH =M2
H/M

2
W, xZ =M2

Z/M
2
W ≡ 1/ cos2 θw . Therefore, in order to satisfy the neutrino 

mass constraints, we require the lepton-number breaking parameters to be small, i.e. |Y ′
l | � |Yl |

and μ1,2 �M .
In the basis in which the heavy neutrino mass matrix is diagonal with real and positive eigen-

values, the Lagrangian (A.8) can be recast into the general form given by (3.1), with α = 1, 2
and the heavy neutrino masses M1,2 �M ∓μ/2. Here, we have defined μeiφ = μ1 +μ2e

iθ . To 
leading order in μ/M and Y ′, the Yukawa couplings in this mass eigenbasis are given by [54]

ĥl1 � i√
2
e−i(φ−λ)/2

[(
1 + μ2

2 −μ2
1

4Mμ

)
eiφYl − Y ′

l

]
,

ĥl2 � 1√ e−i(φ+λ)/2
[(

1 − μ2
2 −μ2

1
)
eiφYl + Y ′

l

]
, (A.12)
2 4Mμ
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Fig. A.1. The magnitude of the total ε-type CP-asymmetry in a single lepton flavour, log10(|εl |), as a function of the 
L-violating parameters μ1,2, as obtained with the regulators freg (left panel) and f II

reg (right panel).

where λ = sin θ(μ1μ2/μM). Using the tree-level Yukawa couplings given by (A.12) and the 
corresponding decay widths given by (2.17), we calculate the ε-type CP-asymmetry in a par-
ticular lepton flavour εl =∑

α εlα , with εlα given by (A.2), and compare the magnitudes of εl
obtained using the two regulators given by (A.3) and (A.6). Our results are shown in Fig. A.1, 
where the different contours show constant values of log10(|εl |) in the (μ1, μ2)-plane. Here, we 
have chosen Y ′

l = 0, Yl = 0.05, M = 100 GeV and θ = π/4 for illustration. From Fig. A.1 (left 
panel), it can be seen that for the regulator (A.3), the total ε-type CP-asymmetry goes to zero 
in the L-conserving limit μ1,2 → 0, as expected. On the other hand, for the regulator (A.6), 
the CP-asymmetry gets enhanced with smaller μ1,2 and does not vanish in the limit in which 
μ1,2 → 0, see Fig. A.1 (right panel). In addition, for μ1 � μ2, it approaches a constant value of 
O(10−5), which clearly demonstrates the pathological behaviour of (A.6).

The singular behaviour of the regulator is (A.6) is further illustrated in Fig. A.2 where we plot 
the ratio εl/κl , with κl defined by (2.31). Note that in the L-conserving limit, κl vanishes by con-
struction, since in this limit, there are no γ LΦLcΦc terms in (2.31). Now in the same L-conserving 
limit, the CP-asymmetry obtained using the regulator (A.3) also vanishes, as shown in Fig. A.1
(left panel). For the toy model under consideration, both εl and κl go to zero at the same rate, 
while keeping εl/κl constant, in the limit μ1 → μ2, as shown in Fig. A.2 (left panel). Note 
that this does not mean the final lepton number asymmetry given by (2.33) is non-zero in the 
L-conserving limit, since the expression (2.33) is valid only in the strong washout regime. In 
the weak washout regime with small κl , the final lepton number asymmetry will instead be pro-
portional to εl alone [cf. (2.32)], and therefore, vanishes as long as εl → 0. However, for the 
regulator given by (A.6), due to the fact that εl does not vanish in the μ1,2 → 0 limit, the ratio 
εl/κl blows up, as shown in Fig. A.2 (right panel).

It was argued in [138] that, due to the limitations of the perturbative approach used to derive 
(A.6), the range of validity of the analytic expression (A.2) with the regulator structure given by 
(A.6) is restricted to the parameter space in which the degree of degeneracy of heavy neutrinos 
must be much larger than the pole expansion parameter, determined by the neutrino Yukawa 
couplings. In the toy model presented above, this validity condition can be written as
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Fig. A.2. The magnitude of log10(εl/κl) in a single lepton flavour as a function of the L-violating parameters μ1,2, as 
obtained with the regulators freg (left panel) and f II

reg (right panel). The expression for κl is given in (2.31).

1

16π2

∣∣Re
[(̂
h†ĥ

)
12

]∣∣ �
∣∣∣∣M2 −M1

M1

∣∣∣∣. (A.13)

Here (M2 −M1)/M1 ∼ μ/M in the heavy neutrino mass eigenbasis, whereas from (A.12) with 
Y ′
l = 0 we obtain

Re
[(̂
h†ĥ

)
12

]= 1

2
sinλ

[
1 −

(
μ2

2 −μ2
1

4Mμ

)2]
|Yl |2. (A.14)

In the pathological limit μ1 → μ2 for the regulator given by (A.6), the LHS and RHS of the 
condition (A.13) reduce to

lim
μ1→μ2

1

16π2
Re
[(̂
h†ĥ

)
12

]= |Yl |2
32π2

sin

(
μ2

M
sin
θ

2

)
, (A.15)

lim
μ1→μ2

M2 −M1

M1
= 2μ2

M
cos

θ

2
, (A.16)

from which it is clear that for any choice of θ �= (2n +1)π/2 (with n = 0, 1, 2, . . .), the condition 
(A.13) is always satisfied, as long as |Yl |2 ≤ 1. Thus, the pathological behaviour of the regulator 
(A.6) cannot be avoided simply by imposing the validity condition (A.13).

On the other hand, for the analytic solution (A.7) obtained in the Kadanoff–Baym approach, 
the expansion for small Yukawa couplings requires an additional validity condition [118]

Re
[(̂
h†ĥ

)
12

]� ∣∣(̂h†ĥ
)

22 − (̂
h†ĥ

)
11

∣∣, (A.17)

while the condition (A.13) is somewhat relaxed, i.e. Re[(̂h†ĥ)12] � 8π(M2 −M1)/M1. For our 
toy model, the RHS of (A.17) is given by

∣∣(̂h†ĥ
)

22 − (̂
h†ĥ

)
11

∣∣= ∣∣∣∣μ2
2 −μ2

1
∣∣∣∣|Yl |2. (A.18)
2Mμ
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Fig. A.3. The magnitude of the individual ε′-type CP-asymmetries in a single lepton flavour, log10(|ε′lα |), as a function 
of the L-violating parameters μ1,2.

Comparing (A.14) and (A.18), we see that the condition (A.17) is not satisfied in the limit 
μ1 → μ2 and hence, the regulator (A.7) is also not valid in the pathological limit. These is-
sues do not arise for the regulator (A.3), which is well-defined in the entire parameter space 
shown in Fig. A.1.

For comparison with the ε-type CP-asymmetry discussed above, let us also compute the 
ε′-type CP-asymmetry due to one-loop vertex corrections. For the two heavy neutrino case, this 
is given by [32]

ε′lα = Im[(̂h∗
lαĥlβ)(̂h

†ĥ)αβ ]
(̂h†ĥ)αα(̂h†ĥ)ββ

Γ
(0)
Nβ

mNβ
f

(m2
Nβ

m2
Nα

)
, (A.19)

where f (x) = √
x[1 −(1 +x) ln(1 +1/x)] is the Fukugita–Yanagida loop function [2]. The mag-

nitude of the ε′lα contribution is shown numerically in Fig. A.3 for our toy model with the same 
parameter values as chosen for Fig. A.1. We find that, as expected, the ε′-type CP-asymmetry 
vanishes in the L-conserving limit. Moreover, the ε′-part of the transition amplitude squared 
for the N1 decay becomes equal and opposite in sign to that for the N2 decay, and thus, these 
two contributions cancel each other to give a vanishing total CP-asymmetry ε′l =

∑
α ε

′
lα , which 

goes to zero faster than the individual contributions in the limit μ1,2 → 0, similar to the ε-case 
with the regulator (A.3). We also note that the ε′-type CP violation given by Fig. A.3 is smaller 
than the ε-type CP violation given by Fig. A.1 (left panel) for all values of μ1,2. This is con-
sistent with the general expectation that the ε′-type contribution can become comparable to the 
ε-type term only in the hierarchical limit mN2 
mN1 , when it approaches the asymptotic relation ∑
l ε

′
lα = (1/2) ∑l εlα [32].

Appendix B. Flavour covariant helicity amplitude formalism

In this appendix, we describe the pertinent details of the fully flavour-covariant quantization 
of spinorial fields in the presence of time-dependent and spatially inhomogeneous backgrounds. 
Thereby, we exemplify the consistency of our treatment of flavour mixing in the transport equa-
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tions derived in Sections 3 and 4. To this end, we begin by describing the flavour-covariant 
generalization of the helicity amplitude formalism [209,210], in the context of an N -flavour 
model of Dirac fermions. After highlighting the generalized discrete symmetry transformations 
of the Dirac helicity four-spinors, we illustrate the inter-dependence of the spinorial and flavour 
structure.16 Subsequently, we derive the flavour-covariant propagators of our toy N -flavour 
model, thereby generalizing the non-homogeneous propagators described in [126]. In addition, 
we introduce the spatially inhomogeneous and time-dependent flavour-covariant statistical dis-
tribution functions relevant to a complete quantum field theoretic treatment of flavour-coherent 
and Gaussian statistical backgrounds. Finally, we highlight a consequence of this treatment that 
is anticipated to impact upon the flavour-dependent quasi-particle approximations currently em-
ployed in the literature in the application of the CTP formalism and resulting Kadanoff–Baym 
equations to transport phenomena. Specifically, we show how the time-translational invariance of 
flavour-covariant propagators is necessarily broken in the presence of flavour-coherent statistical 
backgrounds.

B.1. Flavour covariant spinor algebra

We begin by introducing the four-component Dirac spinor ψk and its Dirac conjugate ψ̄k in 
the Weyl basis

ψW, k(x)=
(
ξa, k(x)

η̄ȧk (x)

)
, ψ̄kW(x)=

(
ηa, k(x) ξ̄ k

ȧ
(x)

)
, (B.1)

where a, ̇a, . . . are the spinor indices and k, l, . . . the flavour indices. The two-component Weyl 
spinors ξa, k and η̄ȧk are operator-valued complex vectors in the flavour space V , transforming 
respectively as ( 1

2 , 0) and (0, 12 ) representations of SL(2, C) and covariant vectors of U(N ). 
The contravariant Weyl spinors ξ̄ k

ȧ
and ηa, k transform as complex vectors of U(N ) in the dual 

space V∗. Notice that the left and right spinors ξa and η̄ȧ transform in the same representation of 
U(N ).

The U(N )-symmetric Dirac Lagrangian may be written in the following form:

LD(x)= ψ̄kW(x)
(
iγ
μ

W ∂μδk
l −mkl

)
ψW,l(x), (B.2)

where the gamma matrices are defined in the Weyl basis:

γ
μ

W =
(

0 (σμ)aḃ
(σ̄ μ)ȧb 0

)
, (B.3)

with σμ ≡ (1, σ ) and σ̄ μ ≡ (1, −σ ), σ i ’s being the usual 2 × 2 Pauli matrices. The mass matrix 
m l
k transforms as a rank-2 tensor under U(N ). We may rotate to the Dirac basis, independent of 

the flavour structure, by means of the orthogonal transformation

γ μ =OTγ
μ

WO, ψk =OTψW,k, O = 1√
2

(
12 −12
12 12

)
, (B.4)

where the gamma matrices in the Dirac representation are

16 Previously, the issue of spin coherence in quantum kinetic equations has been considered using a truncated gradient 
expansion of Wigner functions [211], which we do not follow here.
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γ 0 =
(

12 02
02 −12

)
, γ i =

(
02 σ i

−σ i 02

)
, γ 5 =

(
02 12
12 02

)
, (B.5)

with 02 and 12 being the 2 × 2 null and identity matrices, respectively. The relevant flavour 
transformations for the Dirac fields and the mass matrix are

ψ ′
k(x)=Uklψl(x), ψ ′k(x)=Uklψl(x), m′

k
l =UkmUlnmmn, (B.6)

where Ukl ≡ (Ukl)∗ and UklUkm = UlkUmk = δlm. Varying the Lagrangian with respect to the 
fields, we obtain the flavour-covariant Dirac equations(

iγ μ
−→
∂μδk

l −mkl
)
ψl(x)= 0, ψ̄k(x)

(
iγ μ

←−
∂μδk

l +mkl
)= 0, (B.7)

where, in the latter, the derivative acts to the left and ψ̄k(x) = [ψk(x)]†γ 0 is the Dirac-conjugate 
spinor.

The Dirac field operators in the interaction picture may be written as follows:

ψk(x)=
∑
s

∫
p

[(
2E(p)

)−1]
k

l([
e−ip·x]

l

m[
u(p, s)

] n

m
bn(p, s,0)

+ [
eip·x] m

l

[
v(p, s)

] n

m
d†
n(p, s,0)

)
, (B.8)

ψ̄k(x)=
∑
s

∫
p

[(
2E(p)

)−1]k
l

([
e−ip·x]l

m

[
v̄(p, s)

]m
n
d† n(p, s,0)

+ [
eip·x]l

m

[
ū(p, s)

]m
n
bn(p, s,0)

)
, (B.9)

where s = ± is the helicity index, denoting the two helicity states with the unit spin vector n = ss
aligned parallel and anti-parallel to the three momentum p, respectively, i.e.

s = p/|p| = (sin θ cosφ, sin θ sinφ, cos θ). (B.10)

The three momentum p is obtained by boosting from the rest frame along the direction specified 
by s. Notice that the four-component Dirac spinors u and v transform as rank-2 tensors under 
U(N ). In addition, we draw attention to the fact that bk and d†

k (bk and d†,k) transform under 
the same fundamental (anti-fundamental) representation of U(N ). The particle and anti-particle 
creation and annihilation operators satisfy the anti-commutation relations{

bk(p, s, t̃), bl
(
p′, s′, t̃

)}= {
d† l (p, s, t̃), d†

k

(
p′, s′, t̃

)}
= (2π)3[2E(p)]

k

l
δ(3)

(
p − p′)δss′ . (B.11)

where[∣∣E(p)∣∣2]
k

l = [
E(p)

]m
k

[
E(p)

]
m

l = p2δk
l + [

m†m
]
k

l
. (B.12)

The creation and annihilation operators of mass dimension −1 in (B.11) are related to the corre-
sponding ones of mass dimension − 3

2 in (3.6) by the following Bogoliubov transformations:

bk(p, s, t̃ )=
[(

2E(p)
)1/2]

k

l(
cosωbbl(p, s, t̃)+ sinωbGlmbm(p, s, t̃)

)
, (B.13)

bk(p, s, t̃ )= [(
2E(p)

)1/2]k
l

(
cosωb b

l(p, s, t̃)+ sinωb Glmbm(p, s, t̃ )
)
, (B.14)

with analogous expressions for the antiparticle creation and annihilation operators, obtained by 
the replacement b→ d† and ωb → ωd of the arbitrary Bogoliubov angles. The matrix Glm is 
defined in (3.28).
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In momentum space, the Dirac field operators take the forms

ψk(p; t̃i )=
∑
s

2π
[
δ
(
p2 −m2)]

k

l(
θ(p0)

[
u(p, s)

]
l

m
bm(p, s,0)

+ θ(−p0)
[
v(−p, s)

]
l

m
d†
m(−p, s,0)

)
, (B.15)

ψ̄k(p; t̃i )=
∑
s

2π
[
δ
(
p2 −m2)]k

l

(
θ(p0)

[
ū(p, s)

]l
mb
m(p, s,0)

+ θ(−p0)
[
v̄(−p, s)

]l
md

†m(−p, s,0)
)
, (B.16)

where the rank-2 tensor delta function [δ(p2 −m2)]kl is understood in the following sense:∫
dp02[p0] mk θ(±p0)

[
δ
(
p2 −m2)] l

m
= ±δkl . (B.17)

Finally, the Dirac equations (B.7) in momentum space read as follows:

[/p−m]klψl(p; t̃i )= 0, ψ̄k(p; t̃i )[/p+m]kl = 0, (B.18)

where

/pk
l = γ μ[pμ]kl =

( [E(p)]kl 12 −δkl σ · p
δk
l σ · p −[E(p)]kl 12

)
. (B.19)

The four-component helicity spinors may be written explicitly as[
u(p, s)

]
k

l = [/p+m]km
{[(
E(p)+m)2m]−1/2} n

m

[
u(0, s)

] l
n
, (B.20)[

v(p, s)
]
k

l = [−/p+m]km
{[(
E(p)+m)2m]−1/2} n

m

[
v(0, s)

] l
n
, (B.21)

where the rest-frame four-spinors are given by[
u(0, s)

]
k

l = [
m1/2]

k

l
eiϕ

s
u

(
us(s)

02

)
,

[
v(0, s)

]
k

l = [
m1/2]

k

l
eiϕ

−s
v

(
02

−us(−s)

)
, (B.22)

with the two-component spinors

us(s)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
√

2

(
cos θ2 e

−i φ2
sin θ2 e

i
φ
2

)
, s = +;

i
√

2

(
− sin θ2e

−i φ2
cos θ2 e

i
φ
2

)
, s = −;

(B.23)

and the corresponding phases ϕ±
u(v). We note the useful identities17

us(−s)= su−s(s), u∗
s (−s)= (−iσ 1σ 3)us(s). (B.24)

Using (B.22) and (B.24), the Dirac four spinors in (B.20) and (B.21) may be rewritten as

17 Throughout this appendix, the conventions and notation are based on [150,212] (see also [149]) with the exception 
that the azimuthal phase of the two-spinors defined in (B.23) differs. The latter will impact on the C, P and T transfor-
mations of the spinors, as we will see later in this appendix.
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[
u(p, s)

]
k

l = eiϕ
s
u√
2

( [(E(p)+m)1/2]kl us(s)
s [(E(p)−m)1/2]kl us(s)

)
, (B.25)

[
v(p, s)

]
k

l = eiϕ
−s
v√
2

( [(E(p)−m)1/2]kl u−s(s)
−s [(E(p)+m)1/2]kl u−s(s)

)
. (B.26)

With the aid of (B.20) and (B.21) we may verify that these four-spinors are solutions to the Dirac 
equations

[/p−m] lk
[
u(p, s)

]
l

m = 0, [/p+m]kl
[
v(p, s)

]
l

m = 0, (B.27)

and helicity eigenstates, satisfying

Σ · p
|p|

[
u(p, s)

]
k

l = 1

2
s
[
u(p, s)

]
k

l
,

Σ · p
|p|

[
v(p, s)

]
k

l = −1

2
s
[
v(p, s)

]
k

l
, (B.28)

where

Σ = 1

2

(
σ 0
0 σ

)
(B.29)

is the spin operator. The expressions (B.28) follow immediately from the fact that

σ · p
|p| us(±s)= ±sus(±s). (B.30)

Boosting to the frame in which the particle momentum is p, the rest-frame spin four-vector 
sμ = (0, s) transforms as[

s′μ
]
k

l =Λμν
(
βk
l
)
sν =

(
|p|[m−1]

k

l
,
[
E(p)

]
k

m[
m−1] l

m

p
|p|
)
, (B.31)

satisfying[
s′μ
]
k

m[
s′μ
] l

m
= −δkl,

[
s′μ
]
k

m[
pμ
] l

m
= 0. (B.32)

Notice that since the boost factor βkl = |p|[E−1(p)]kl depends on the mass matrix, the transfor-
mation Λμν(βkl) is, in a general basis, a rank-2 tensor in flavour space. Alternatively, we can 
consider the Lorentz-factor for this boost, which takes the form[

γ 2]
k

l = δkl + |p|2[m−2]
k

l
, (B.33)

as one may readily justify by rotating from the mass eigenbasis[
γ 2]

l

m =UlkUmkγ̂ 2
k , (B.34)

where

γ̂ 2
k = 1 + |p|2

m2
k

. (B.35)

In this case, we obtain the flavour-covariant generalization of the Einstein mass–energy relation

Ek
l = γkmm l

m . (B.36)

Thus, we see that boosting to the rest frame of a decaying flavour coherence with respect to a 
definite three-momentum, all Lorentz-covariant objects will naturally become rank-2 tensors in 
this frame.
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The Dirac-conjugate spinors can be written explicitly, analogous to (B.20) and (B.21):[
ū(p, s)

]k
l =

[
u(0, s)

]k
mγ

0{[2m(E(p)+m)]−1/2}m
n
[/p+m]nl, (B.37)[

v̄(p, s)
]k
l =

[
v(0, s)

]k
mγ

0{[2m(E(p)+m)]−1/2}m
n
[−/p+m]nl, (B.38)

thus yielding

[
ū(p, s)

]k
l =

e−iϕsu√
2

([(
E(p)+m)1/2]klu†

s (s),−s
[(
E(p)−m)1/2]klu†

s (s)
)
, (B.39)

[
v̄(p, s)

]k
l =

e−iϕ−s
v√

2

([(
E(p)−m)1/2]klu†

−s(s), s
[(
E(p)+m)1/2]klu†

−s(s)
)
. (B.40)

The matrix product of two spinors is given by

us(s)u
†
s′
(
s′)≡Ass′

(
s, s′)=A†

s′s
(
s′, s

)
. (B.41)

In the homogeneous limit s = s′, we have Ass(s, s) = (σ 0 ± σ · s) for s = ± and∑
s=s′

Ass′(s, s)= 2σ 0,
∑
s=s′

sAss′(s, s)= 2σ · s. (B.42)

The scalar product of two-spinors is

u†
s (s)us′

(
s′)≡Θss′

(
s, s′)= Tr

[
A

†
ss′
(
s, s′)]. (B.43)

Hence, in the homogeneous limit s = s′, we have Θss′(s, s) = 2δss′ .
The 16 possible contractions of the Dirac four-spinors are summarized as follows:[

ū(p, s)
]k
l

[
u
(
p′, s′

)] n

m
= [

N
(
p, s;p′, s′

)]k n

lm
exp

[−i(ϕsu − ϕs′u
)]
, (B.44)[

v̄(p, s)
]k
l

[
v
(
p′, s′

)] n

m
= −[N (−p,−s;−p′,−s′)]k n

lm
exp

[−i(ϕ−s
v − ϕ−s′

v

)]
, (B.45)[

ū(p, s)
]k
l

[
v
(
p′, s′

)] n

m
= i[N (

p, s;−p′,−s′)]k n

lm
exp

[−i(ϕsu − ϕ−s
v

)]
, (B.46)[

v̄(p, s)
]k
l

[
u
(
p′, s′

)] n

m
= i[N (−p,−s;p′, s′

)]k n

lm
exp

[−i(ϕ−s
v − ϕs′u

)]
, (B.47)

where p0 =E(p) is understood to be on-shell and we have defined[
N
(
p, s;p′, s′

)]k n

lm
= 1

2

{ [
(p0 +m)1/2]kl[(p′

0 +m)1/2] n

m

− ss′ [(p0 −m)1/2]kl[(p′
0 −m)1/2] n

m

}
Θss′

(
s, s′). (B.48)

In the homogeneous limit p = p′, we have[
N
(
p, s;p, s′)]m l

km
= 2mk

lδss′,
[
N
(
p, s;−p, s′)]m l

km
= 0. (B.49)

We then recover the familiar identities[
ū(p, s)

]m
k

[
u
(
p, s′

)] l

m
= −[v̄(p, s)]m

k

[
v
(
p, s′

)] l

m
= 2mk

lδss′, (B.50)[
ū(p, s)

]m
k

[
v
(
p, s′

)] l

m
= [
v̄(p, s)

]m
k

[
u
(
p, s′

)] l

m
= 0, (B.51)

as we would expect.
The 16 possible matrix products of the four spinors are:
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[
u(p, s)

] l
k

[
ū
(
p′, s′

)]m
n

= [
P
(
p, s;p′, s′

)] lm
k n

exp
[
i
(
ϕsu − ϕs′u

)]
,[

v(p, s)
] l
k

[
v̄
(
p′, s′

)]m
n

= −[P (−p,−s;−p,−s′)] lm
k n

exp
[
i
(
ϕ−s
v − ϕ−s′

v

)]
,[

u(p, s)
] l
k

[
v̄
(
p′, s′

)]m
n

= i[P (p, s;−p′,−s′)] lm
k n

exp
[
i
(
ϕsu − ϕs′v

)]
,[

v(p, s)
] l
k

[
ū
(
p′, s′

)]m
n

= i[P (−p,−s;p′, s′
)] lm
k n

exp
[
i
(
ϕ−s
v − ϕs′u

)]
, (B.52)

where we have introduced[
P
(
p, s;p′, s′

)] lm
k n

= 1

2

( [(p0 +m)1/2]kl[(p′
0 +m)1/2]mn −s′ [(p0 +m)1/2]kl[(p′

0 −m)1/2]mn
s [(p0 −m)1/2]kl[(p′

0 +m)1/2]mn −ss′ [(p0 −m)1/2]kl[(p′
0 −m)1/2]mn

)
⊗Ass′

(
s, s′), (B.53)

which, in the homogeneous limit p = p′, reduces to[
P
(
p, s;p, s′)] ml

k m
= 1

2

( [p0 +m]kl −s′ |p| δkl
s |p| δkl −ss′ [p0 −m]kl

)
⊗Ass′(s, s). (B.54)

In this case, we obtain the familiar helicity sums∑
s = s′

[
u(p, s)

]
k

m[
ū
(
p, s′

)]l
m = [/p+m]kl,∑

s = s′

[
v(p, s)

]
k

m[
v̄
(
p, s′

)]l
m = [/p−m]kl, (B.55)

using the summations in (B.42).

B.2. Discrete symmetry transformations

In this section, we summarize the spinor identities relevant to the C, P and T transformations. 
In particular, we justify the phases appearing in the generalized discrete symmetry transforma-
tions described in Section 3.2 for the creation and annihilation operators [cf. (3.27), (3.32) and 
(3.37)].

Under C-transformations, we have([
u(p, s)

]
k

l)C = iC exp
[
i
(
ϕsu + ϕ−s

v

)]
Gkn

[
v̄T(p, s)

] n

m
Gml, (B.56)([

v(p, s)
]
k

l)C = iC exp
[
i
(
ϕ−s
v + ϕsu

)]
Gkn

[
ūT(p, s)

] n

m
Gml, (B.57)

where C = iγ 0γ 2, and the G matrix is defined in (3.28). Under parity,([
u(p, s)

]
k

l)P = [
u(−p,−s)]

k

l = −sP exp
[−i(ϕsu − ϕ−s

u

)][
u(p, s)

]
k

l
, (B.58)([

v(p, s)
]
k

l)P = [
v(−p,−s)]

k

l = +sP exp
[−i(ϕ−s

v − ϕsv
)][
v(p, s)

]
k

l
, (B.59)

where P = γ 0. Finally, under T -transformations, we have([
u(p, s)

]
k

l)T = [
u(−p, s)

]k
l = e−2iϕsuT Gkm

[
u(p, s)

] n

m
Gnl, (B.60)([

v(p, s)
] l)T = [

v(−p, s)
]k = e−2iϕ−s

v T Gkm
[
v(p, s)

] nGnl, (B.61)

k l m
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where T = iγ 1γ 3. All of these identities may readily be verified using those in (B.24) for the two 
component spinors. Notice that in the mass eigenbasis, where the G matrices are proportional to 
the identity, we recover the expected results.

B.3. Chiral field operators

We write the chiral projection operators

Pχ = 1

2

(
14 + χγ 5 ), (B.62)

by introducing a dummy index χ = ±, such that P+ ≡ PR and P− ≡ PL, as appearing in (2.15). 
With the chiral field definitions

Pχψk(x)≡ψχ, k(x), ψ̄k(x)Pχ ≡ ψ̄kχ (x), (B.63)

the Dirac Lagrangian (B.2) takes the form

LD(x)=
∑
χ

ψ̄kχ (x)
(
iγ μ∂μψχ, k(x)−mklψ−χ, l(x)

)
. (B.64)

In terms of the Dirac four spinors (B.25) and (B.26), we get

Pχ
[
u(p, s)

]
k

l = eiϕ
s
u√
2

[
E(p,χs)

]
k

l
(
us(s)
χus(s)

)
, (B.65)

Pχ
[
v(p, s)

]
k

l = −s e
iϕ−s
v√
2

[
E(p,−χs)]

k

l
(
χu−s(s)
u−s(s)

)
, (B.66)

where we have introduced[
E(p,χs)

]
k

l = 1

2

{[
(p0 +m)1/2]

k

l + χs [(p0 −m)1/2]
k

l}
. (B.67)

From (B.65) and (B.66), we find that

Pχ
[
u(p, s)

]
k

l = sχei(ϕsu−ϕsv)Pχ
[
v(p,−s)]

k

l
. (B.68)

Hence, we can define four independent chiral four-spinors, as follows:[
ξχ (p)

]
k

l = 1√
2

[
E(p,χ)

]
k

l
eiϕ

+
u

(
u+(s)
χu+(s)

)
,

[
ηχ(p)

]
k

l = 1√
2

[
E(p,−χ)]

k

l
eiϕ

−
u

(
u−(s)
χu−(s)

)
. (B.69)

We may then expand the chiral field operators (B.63) in terms of the following chiral four-spinors:

ψχ, k(x)=
∫
p

[(
2E(p)

)−1]
k

l{[
e−ip·x]

l

m([
ξχ (p)

] n

m
bn(p,+,0)+

[
ηχ(p)

] n

m
bn(p,−,0)

)
− χ[eip·x] m

l

(
e−i(ϕ−

u −ϕ−
v )
[
ηχ(p)

] n

m
d†
n(p,+,0)

− e−i(ϕ+
u −ϕ+

v )
[
ξχ (p)

] n
d†(p,−,0))}, (B.70)
m n
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ψ̄kχ (x)=
∫
p

[(
2E(p)

)−1]k
l

{[
e−ip·x]l

m

([
ξ̄χ (p)

]m
n
bn(p,+,0)+ [

η̄χ (p)
]m
n
bn(p,−,0))

− χ[eip·x]l
m

(
ei(ϕ

−
u −ϕ−

v )
[
η̄χ (p)

]m
n
d† n(p,+,0)

− ei(ϕ+
u −ϕ+

v )
[
ξ̄χ (p)

]m
n
d† n(p,−,0))}. (B.71)

Notice that in the relativistic limit E
m, the helicity and chirality states coincide and only the 
ξχ spinors survive. Hereafter, we neglect the ϕsu(v)-dependent phases for notational convenience.

B.4. Spinor traces

We may now define the following spinor trace involving the objects defined in (B.53):

Tr
{[

P
(
p, s;p′, s′

)] lm
k n

Pχ
[
P
(
q, r;q ′, r ′

)] l′m′
k′ n′Pχ ′

}
= [

E(p,χ ′s)
]
k

l[
E
(
p′,−χs′)]m

n

[
E(q,χr)

]
k′
l′[

E
(
q ′,−χ ′r ′

)]m′
n′Θ

∗
sr ′
(
s, r′)Θ∗

rs′
(
r, s′)
(B.72)

where we have used the properties of matrix products and the cyclicity of the trace to write

Tr
{
Ass′

(
s, s′)Arr ′(r, r′)}=Θ∗

sr ′
(
s, r′)Θ∗

rs′
(
r, s′). (B.73)

Using (B.52) and (B.68), we may relate (B.72) to the 16 possible traces of the Dirac four-spinors, 
as follows:

Tr
{[
u(p, s)

]
k

l[
ū
(
p′, s′

)]m
n
Pχ
[
u(q, r)

]
k′
l′[
ū
(
q′, r ′

)]m′
n′Pχ ′

}
= ss′rr ′ Tr

{[
v(p,−s)]

k

l[
v̄
(
p′,−s′)]m

n
Pχ
[
v(q,−r)]

k′
l′[
v̄
(
q′,−r ′)]m′

n′Pχ ′
}

= −rr ′χχ ′ Tr
{[
u(p, s)

]
k

l[
ū
(
p′, s′

)]m
n
Pχ
[
v(q,−r)]

k′
l′[
v̄
(
q′,−r ′)]m′

n′Pχ ′
}

= −ss′χχ ′ Tr
{[
v(p,−s)]

k

l[
v̄
(
p′,−s′)]m

n
Pχ
[
u(q, r)

]
k′
l′[
ū
(
q′, r ′

)]m′
n′Pχ ′

}
, (B.74)

generalizing the result used in (4.4). In the homogeneous limit p= p′ and q = q ′, (B.73) is given 
by

Θ∗
sr (s, r)Θ

∗
rs(r, s)=

∣∣Θsr(s, r)∣∣2 = 2

(
1 + sr p · q

|p||q|
)
. (B.75)

and (B.72) is given by

Tr
{[

P (p, s;p, s)] ml
k m

Pχ
[
P (q, r;q, r)] m′l′

k′ m′Pχ ′
}

= 1

8

(
1 + sr p · q

|p||q|
)[
p0 +m− (

χ − χ ′)s|p| − χχ ′(p0 −m)]
k

l

× [
q0 +m+ (

χ − χ ′)r|q| − χχ ′(q0 −m)]
k′
l′
. (B.76)

Summing over the helicities s and r , we find∑
s,r

Tr
{[

P (p, s;p, s)] ml
k m

Pχ
[
P (q, r;q, r)] m′l′

k′ m′Pχ ′
}

= 1

2

([
p0 +m− χχ ′(p0 −m)]

k

l[
q0 +m− χχ ′(q0 −m)]

k′
l′ − (

χ − χ ′)2p · qδklδk′
l′).

(B.77)
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The spinor traces (B.74) can be summed similarly over s and r , e.g.∑
s,r

Tr
{[
u(p, s)

]
k

m[
ū(p, s)

]l
mPχ

[
u(q, r)

]
k′
m′[
ū(q, r)

]l′
m′Pχ ′

}
= −χχ ′∑

s,r

Tr
{[
u(p, s)

]
k

m[
ū(p, s)

]l
mPχ

[
v(q, r)

]
k′
m′[
v̄(q, r)

]l′
m′Pχ ′

}
=
{

2pkl · qk′ l′ , χ = −χ ′;
2m l

k mk′
l′ , χ = +χ ′. (B.78)

Note that in the limit when one pair of Dirac spinors is massless, (B.78) reduces to the result 
quoted in (4.4):∑

s

Tr
{[
u(p, s)

]
k

m[
ū(p, s)

]l
mPχu(q, χ)ū(q, χ)Pχ ′

}
= −χχ ′∑

s

Tr
{[
u(p, s)

]
k

m[
ū(p, s)

]l
mPχv(q,−χ)v̄(q,−χ)Pχ ′

}
=
{

2pkl · q, χ = −χ ′;
0, χ = +χ ′, (B.79)

where the massless spinors are denoted by the absence of flavour indices. In (B.79), the factor 
of 2 for χ = −χ ′ remains relative to (B.78) in spite of summing only over the helicity s, due to 
the action of the chiral projection operators Pχ and P−χ . This may be readily confirmed from the 
general expression in (B.76).

B.5. Flavour covariant free propagators

A full quantum-field theoretic description of transport phenomena in the context of flavour 
oscillations, mixing and coherences may be provided by master equations derived by [213,214]
from the CJT effective action [215] as applied to the Schwinger–Keldysh CTP formalism [121,
122]. A full treatment of such a derivation is beyond the scope of this article and will be deferred 
to a future publication. However, in order to exemplify the consistency of the flavour-covariant 
Markovian master equations derived in Section 4, we highlight below pertinent details of the 
flavour-covariant propagators that would necessarily appear in such a treatment.

In order to define the relevant free flavour-covariant non-homogeneous propagators in the 
CTP formalism, we define the bilinear ensemble expectation values (EEVs) of creation and an-
nihilation operators, generalizing those introduced for the scalar field in [126] to an N -flavour 
fermion model:〈

bl
(
p′, s′, t̃

)
bk(p, s, t̃ )

〉
t
= [(

2E(p)
)1/2]

k

m[
fss′

(
p,p′, t

)] n

m

[(
2E
(
p′))1/2]l

n,〈
d

†
k(p, s, t̃ )d

† l(p′, s′, t̃
)〉
t
= [(

2E(p)
)1/2]

k

m[
f̄ss′

(
p,p′, t

)] n

m

[(
2E
(
p′))1/2]l

n,〈
d† l(p′, s′, t̃

)
bk(p, s, t̃)

〉
t
= [(

2E(p)
)1/2]

k

m[
gss′

(
p,p′, t

)] n

m

[(
2E
(
p′))1/2]l

n,〈
d

†
k(p, s, t̃ )b

l
(
p′, s′, t̃

)〉
t
= [(

2E(p)
)1/2]

k

m[
ḡss′

(
p,p′, t

)] n

m

[(
2E
(
p′))1/2]l

n. (B.80)

The form of the energy factors appearing in (B.80) may be justified by inverting the Bogoliubov 
transformations in (B.13) and (B.14). Note that we have set the arbitrary phases ϕ±

u,v to zero.
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The statistical distribution functions f and g in (B.80) satisfy the following properties:[
fss′

(
p,p′, t

)]
k

l = ([
fs′s

(
p′,p, t

)]
l

k)∗ = ([
f̄ss′

(
p,p′, t

)]
k

l)C̃∗
, (B.81)[

gss′
(
p,p′, t

)]
k

l = ([
ḡss′

(
p,p′, t

)]
k

l)C̃∗
. (B.82)

We assume a Gaussian density operator, so that we must specify only the bilinear EEVs of 
operators. Notice that in this case only the four combinations in (B.80) are permitted by the 
associated spinorial structure. In the homogeneous limit, we have the correspondence[

fss′
(
p,p′, t

)]
k

l → (2π)3δ(3)
(
p − p′)δss′[fs(p, t)]kl, [

gss′
(
p,p′, t

)]
k

l → 0. (B.83)

The positive and negative-frequency fermionic Wightman propagators are defined as[
iS>

(
p,p′, t̃

)]
k

l = 〈
ψk(p)ψ̄

l
(
p′)〉

t
, (B.84)[

iS<
(
p,p′, t̃

)]
k

l = −〈ψ̄ l(p′)ψk(p)〉t . (B.85)

By evaluating the EEV of field operators directly, we obtain the explicit forms[
iS≷

(
p,p′, t̃

)]
k

l =
∑
s, s′

2π |2p0|1/2
[
δ
(
p2 −m2)] i

k
2π
∣∣2p′

0

∣∣1/2[δ(p′ 2 −m2)]l
m
ei(p0−p′

0)t̃

× [
P
(
p, s;p′, s′

)] jm
i n

(
θ(±p0)θ

(±p′
0

)
(2π)3δ(3)

(
p − p′)δss′δ nj

− [
f̃ss′

(
p,p′, t

)] n
j

)
, (B.86)

where we have defined the ensemble function[
f̃ss′

(
p,p′, t

)]
k

l = θ(p0)θ
(
p′

0

)[
fss′

(
p,p′, t

)]
k

l + iθ(p0)θ
(−p′

0

)[
gs,−s′

(
p,−p′, t

)]
k

l

− iθ(−p0)θ
(
p′

0

)[
ḡ−s,s′

(−p,p′, t
)]
k

l

+ θ(−p0)θ
(−p′

0

)[
f̄−s,−s′

(−p,−p′, t
)]
k

l
, (B.87)

satisfying the relation[
f̃ss′

(
p,p′, t

)]
k

l = ([
f̃s′,s

(
p′,p, t

)]
l

k)∗ = ([
f̃−s,−s′

(−p,−p′, t
)]
k

l)C̃∗
. (B.88)

At this point, we make an important observation. In the spatially-homogeneous limit p = p′, 
the ensemble function (B.87) becomes[

f̃ss′
(
p,p′, t

)]
k

l → [
f̃hom, ss′

(
p0,p

′
0,p, t

)]
k

l
(2π)3δ(3)

(
p − p′). (B.89)

In this case, the Wightman propagators (B.86) reduce to[
iS≷

(
p,p′, t̃

)]
k

l =
∑
s, s′

2π
∣∣2p0

∣∣1/2[δ(p2
0 −E2)] i

k
2π
∣∣2p′

0

∣∣1/2[δ(p′ 2
0 −E2)]l

m
ei(p0−p′

0)t̃

× [
P
(
p, s;p′, s′

)] jm
i n

(
θ(±p0)θ

(±p′
0

)
δss′δ

n
j

− [
f̃hom,ss′

(
p0,p

′
0,p, t

)] n
j

)
(2π)3δ(3)

(
p − p′), (B.90)

Rotating to the mass eigenbasis, we obtain
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[
iŜ≷

(
p,p′, t̃

)]
k

l =
∑
s, s′

2π |2p0|1/2δ
(
p2

0 − Ê2
k

)
2π
∣∣2p′

0

∣∣1/2δ(p′ 2
0 − Ê2

l

)
ei(p0−p′

0)t̃

× [
P
(
p, s;p′, s′

)] kl
k l

(
θ(±p0)θ

(±p′
0

)
δss′δl

k

− [
f̃hom, ss′

(
p0,p

′
0,p, t

)]
l

k)
(2π)3δ(3)

(
p − p′). (B.91)

If the system is out-of-equilibrium, flavour coherences cannot be neglected. As a consequence, 
the statistical distribution function [f ]kl will in general have non-zero off-diagonal entries. In 
this case, we see from (B.91) that the Wightman propagator depends explicitly on two zeroth 
component momenta p0 and p′

0, which need not be equal. In this case, the time-translational 
invariance of the flavour-covariant propagators is necessarily broken.

Assuming that f̃ is diagonal in flavour space and helicities in thermodynamic equilibrium, we 
have [

f̃hom, ss′
(
p0,p

′
0,p, t

)]
k

l → f̃eq, k
(
p0,p

′
0,p, t

)
δ lk δss′ , (B.92)

with

f̃eq, k
(
p0,p

′
0,p, t

)= θ(p0)θ
(
p′

0

)
fF
(
Ek(p)

)+ θ(−p0)θ
(−p′

0

)
f̄F
(
Ek(p)

)
, (B.93)

where fF(E) = [e(E−μ)/T +1]−1 is the Fermi–Dirac particle distribution, and f̄F(E) is the corre-
sponding anti-particle distribution with μ → −μ. In this equilibrium limit (B.92), the Wightman 
propagators (B.90) reduce to[

iSeq,≷
(
p,p′, t̃

)]
k

l = 2π |2p0|1/2
[
δ
(
p2

0 −E2)] i
k

2π
∣∣2p′

0

∣∣1/2[δ(p′ 2
0 −E2)]l

m
ei(p0−p′

0)t̃

× [
P
(
p0,p

′
0,p

)] jm
i j

[
θ(±p0)θ

(±p′
0

)
− f̃eq, j

(
p0,p

′
0,p, t

)]
(2π)3δ(3)

(
p − p′), (B.94)

where, following (B.53), we have defined[
P
(
p0,p

′
0,p

)] lm
k n

= 1

2

(
σ0[(p0 +m)1/2]kl[(p′

0 +m)1/2]mn −σ · s[(p0 +m)1/2]kl[(p′
0 −m)1/2]mn

σ · s[(p0 −m)1/2]kl[(p′
0 +m)1/2]mn −σ0[(p0 −m)1/2]kl[(p′

0 −m)1/2]mn

)
.

(B.95)

In the mass eigenbasis the factor [P (p0, p′
0, p)] jmi j in (B.94) is non-zero only for i =m and thus 

the Wightman propagator becomes proportional to δ(p0 − p′
0), i.e. time-translational invariance 

is restored. This result is valid in any basis, by virtue of flavour covariance.
Shifting the boundary time t̃i → 0, so that t̃ → t̃ − t̃i = t in (B.91), we see that the degree 

of violation of time-translational invariance is controlled by the phase ei(p0−p′
0)t . Working in the 

mass eigenbasis, we find that the violation of translational invariance is maximal when

(
p0 − p′

0

)
t ≈ �m2

kl

2|p| , (B.96)

where we have assumed |p| 
 �m2
kl and �m2

kl = m2
k − m2

l is the mass splitting. This viola-
tion of time-translational invariance is expected in the presence of flavour coherences, since the 
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non-equilibrium propagators describe correlations of coherent superpositions of states, and these 
superpositions are not eigenstates of the Hamiltonian. In the CTP formalism, these coherence 
effects will be captured in the memory integrals occurring in the collision terms of the resulting 
master equations. We anticipate that this violation of time-translational invariance due to flavour 
mixing may have significant impact on the quasi-particle resummations currently employed in 
the applications of Kadanoff–Baym equations to such phenomena [118]. A detailed discussion 
may be given elsewhere.

Before concluding Appendix B, let us consider the Schwinger–Dyson equation of the fermion 
propagators. Working in the double momentum representation discussed above, this reads as 
follows:[

S−1
ab

(
p,p′, t̃

)]
k

l = [
S0−1

ab

(
p,p′, t̃

)]
k

l + [
Σab

(
p,p′, t̃

)]
k

l
, (B.97)

where [S0
ab]kl and [Sab]kl (with a, b = 1, 2 being the CTP indices) are respectively the free and 

resummed 2 × 2 matrix CTP propagators in the doublet notation employed by [213,214], and 
[Σab]kl is the 2 × 2 CTP self-energy matrix. Eq. (B.97) can be inverted to obtain[

Sab
(
p,p′, t̃

)]
k

l = [
S0,ab(p,p′, t̃

)]
k

l

−
∫
q,q ′

[
S0,ac(p, q, t̃)

]
k

m[
Σcd

(
q, q ′, t̃

)] n

m

[
Sdb

(
q ′,p′, t̃

)] l
n
. (B.98)

Due to the violation of time-translational invariance, the resulting Feynman–Dyson series will 
contain an infinite nesting of momentum integrals, which will not collapse to the usual algebraic 
equation of resummation, i.e. for the time-ordered (1, 1) component of the equilibrium CTP 
propagator for a single flavour:

SF(p0,p)≡ S11(p0,p)= S0,1a(p0,p)
∞∑
n=0

[(
Σ(p0,p) · S0(p0,p)

)n] 1
a

= [
/p−m+ Σ̄(p0,p)

]−1[
/p−m+Σ∗(p0,p)

][
/p−m+ Σ̄∗(p0,p)

]−1
, (B.99)

where Σ(p0, p) is the time-ordered self-energy. This result can readily be verified by rotating to 
the CTP eigenbasis (or so-called Feynman basis) [216] (see also [217]). In (B.99), the function 
Σ̄(p0, p) = Re[Σret(p0, p)] + iε(p0) Im[Σret(p0, p)] and its complex conjugate Σ̄∗(p0, p), writ-
ten in terms of the retarded self-energy Σret(p0, p), are the eigenvalues of the CTP self-energy 
matrix, having no physical significance at finite temperature (see e.g. [126]). The self-energy 
function Σ̄(p0, p) (and likewise the time-ordered self-energy Σ(p0, p)) permits the following 
decomposition in terms of the Dirac gamma matrices γ μ = (γ 0, γ ) [cf. (2.15)]:

Σ̄(p0,p)= Σ̄0
L(p0,p)γ 0p0PL + Σ̄VL (p0,p)γ · pPL + Σ̄0

R(p0,p)γ 0p0PR

+ Σ̄VR (p0,p)γ · pPR + Σ̄SL (p0,p)PL + Σ̄SR(p0,p)PR, (B.100)

where we emphasize the violation of Lorentz-covariance due to thermal effects. In (B.100), the 
form factors Σ̄SL,R correspond to the scalar components of the self-energy and Σ̄0,V

L,R the chiral 
components. In the zero-temperature limit, Σ̄ coincides with the time-ordered self-energy Σ and 
(B.99) reduces to the expected form

SF(/p)= 1
, (B.101)
/p−m+Σ(/p)
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in which Lorentz-covariance is restored, since the form factors are functions only of p2 and 
Σ̄L(R)(p

2) ≡ Σ̄0
L(R)(p

2) = Σ̄VL(R)(p2).
Maintaining the thermodynamic equilibrium in (B.92) and rotating to the mass eigenbasis 

simultaneously, we can reduce the Wightman propagators (B.94) to[
iŜeq,≷

(
p,p′, t̃

)]
k

l = 2πδ
(
p2

0 − Ê2
k

)
(/p+ m̂k)

× [
θ(±p0)− θ(p0)fF

(
Êk(p)

)− θ(−p0)f̄F
(
Êk(p)

)]
× δ lk (2π)4δ(4)

(
p− p′), (B.102)

in which time-translational invariance is restored in the free propagators. If one also makes the 
Markovian approximation that energy is conserved in the interaction vertices, i.e. the interactions 
take place over an infinite time domain, time-translational invariance is restored globally and the 
Schwinger–Dyson equation (B.97) reduces to the relatively simpler form[

Ŝ−1
ab (p0,p)

]
k

l = [
Ŝ0−1

ab (p0,p)
]
k

l + [
Σ̂ab(p0,p)

]
k

l
, (B.103)

for which an exact matrix inversion both in the CTP and flavour structure is possible.
In summary, we have presented a fully flavour covariant formalism of helicity amplitudes. In 

addition, we have shown that the resummation of self-energy corrections in the case of flavour 
mixing may be performed in closed algebraic form only in a flavour-diagonal thermodynamic 
equilibrium. Thus, we justify the resummation scheme employed in the derivation of the Marko-
vian master equations of Section 4 in which the resummed Yukawa couplings are obtained at 
zero-temperature, whilst the aforementioned flavour coherence effects discussed above have been 
included at the level of the quantum statistics.

Appendix C. Generalized optical theorem

In this appendix, we justify the tensorial flavour structure of the rates introduced in Sections 3
and 4 by means of an explicit calculation of transition matrix elements. To this end, we derive 
a background-dependent analogue of the optical theorem that is able to account for off-diagonal 
flavour coherences.

We begin by writing the scattering operator S in terms of the transition operator T as S =
1 + iT . Subsequently, using the unitarity of the scattering operator S†S = SS† = 1, one can 
easily show that

2 Im T = T †T . (C.1)

In the usual derivation of the optical theorem, we would now proceed by multiplying (C.1) from 
the right and left by a given initial Fock state and insert a complete set of final states between the 
transition operators on the RHS of (C.1). For our purposes, the completeness of the Fock space 
can be written in the short-hand notation

1 =
∑
A

∣∣A{{α},{l},{l̄},...}〉〈A{{α},{l},{l̄},...}|, (C.2)

where the sum over A runs over all possible multi-particle states, e.g. Higgs, heavy-neutrinos 
and charged-leptons in our case, and also contains the helicity summations, isospin traces and 
momentum integrals. Writing explicitly, (C.2) has the form
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1 =
∞∑

f ′,g′,h′,i′,j ′=0

1

f ′!g′!h′!i′!j ′!

[
f ′∧
f=0

∑
rf

∫
kf

∣∣kf , rf ,Nαf 〉〈kf , rf ,Nαf |
⊗

g′∧
g=0

∑
sg,Ig

∫
pg

∣∣pg, sg, Ig,Llg 〉〈pg, sg, Ig,Llg |
⊗

h′∧
h=0

∑
s̄h,Īh

∫
p̄h

|p̄h, s̄h, Īh, L̄l̄h〉
〈
p̄h, s̄h, Īh, L̄l̄h

∣∣
⊗

i′⊗
i=0

∑
Ji

∫
qi

∣∣qi , Ji,Φ†〉〈qi , Ji,Φ†
∣∣⊗ j ′⊗

j=0

∑
J̄j

∫
q̄j

|q̄j , J̄j ,Φ〉〈q̄j , J̄j ,Φ|
]
, (C.3)

where f ′!g′!h′!i′!j ′! are the symmetry factors arising from the integration over all three-
momenta, {r}, {s}, {s̄} are the heavy-neutrino, charged-lepton and anti-lepton helicities, and 
{I }, {Ī }, {J }, {J̄ } are the lepton and Higgs isospin indices. Hereafter, the dimension −3/2
charged-lepton, anti-lepton, Higgs and anti-Higgs states |p, s, Ll〉, |p̄, ̄s, L̄l̄〉, |q, Φ†〉 and |q̄, Φ〉
without isospin indices are understood to be vectors of SU(2) isospin. The heavy-neutrino states 
|k, r, Nα〉 are isospin singlets. In (C.3), the wedge product 

∧
denotes the anti-symmetrized ten-

sor product, e.g.

2∧
j=1

|pj 〉〈pj | ≡ |p1〉〈p1| ∧ |p2〉〈p2| =
(|p1〉 ∧ |p2〉

)(〈p1| ∧ 〈p2|
)
, (C.4)

with the Slater determinant

|p1〉 ∧ |p2〉 ∧ · · · ∧ |pn〉 ≡ 1√
n!εi1i2···in |pi1〉|pi2〉 · · · |pin〉. (C.5)

The zeroth term in each of the summations over g, h, i and j in (C.3) is understood to be the 
outer product of vacuum states, e.g.∣∣p0,N

α0
〉〈

p0,Nα0

∣∣≡ V3|0〉〈0|, (C.6)

in which V3 = (2π)3δ(3)(0) is the coordinate space three-volume. We note that the leptonic and 
anti-leptonic ket-states transform under different representations of U(NL). In (C.3), the set of 
internal flavour indices {{α}, {l}, {l̄}} is contracted and the completeness of the Fock space is a 
singlet under the combined heavy-neutrino and lepton flavour rotations U(NN) ⊗ U(NL). For 
this reason, the usual derivation of the optical theorem, as outlined above, cannot account for 
transition amplitudes that are off-diagonal in both heavy-neutrino and lepton flavour indices. 
In order to incorporate these off-diagonal flavour coherences, we must take into account the 
contribution of the background ensemble, which we assume to be described by a factorizable 
density operator ρ = ρN ⊗ ρL ⊗ ρΦ , where coherences between different particle species have 
been neglected. Note that the density operator itself is also a singlet under U(NN) ⊗ U(NL). 
Throughout this section, we suppress the time-dependence of the density operator ρ ≡ ρ(t) for 
notational convenience.

In the presence of a background ensemble, we proceed by taking the EEV of the unitarity 
relation in (C.1), yielding
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2〈Im T 〉 = 2 Tr[ρ Im T ] = Tr
[
ρT †T

]
. (C.7)

Inserting the completeness of the Fock space in (C.2) and using the cyclicity of the trace opera-
tion, we obtain

2
∑
B

〈B|ρ ImT |B〉 = 2
∑
A,B

〈B|A〉〈A|ρ ImT |B〉

=
∑

A,B,C,D

〈B|A〉〈A|T |C〉〈C|ρ|D〉〈D|T †|B〉, (C.8)

where we have suppressed the flavour indices on the sets of states A to D for the time-being. 
We now isolate from the summations over A and B two sets of final states Fαr (k) ⊂ A and 
F
β

r ′ (k
′) ⊂ B , each containing at least one heavy neutrino with flavours α, β , three-momenta k, 

k′ and helicities r , r ′, i.e.

|A〉 ⊃ ∣∣Fαr (k)〉= ∣∣k, r,Nα 〉∧ ∣∣A′〉, |B〉 ⊃ ∣∣Fβ
r ′
(
k′)〉= ∣∣k′, r ′,Nβ

〉∧ ∣∣B ′〉. (C.9)

The sets of states A′ and B ′ consist of all other possible multi-particle heavy-neutrino, lepton, 
anti-lepton and Higgs spectator states.18 Using the orthonormality of the Fock states, we have〈

Fr ′,β
(
k′)∣∣Fαr (k)〉= 〈

B ′∣∣∧ 〈k′, r ′,Nβ
∣∣k, r,Nα 〉∧ ∣∣A′〉

= (2π)3δβαδrr ′ δ(3)
(
k − k′)δA′B ′ . (C.10)

Consequently, we obtain from (C.8) the following equality:

2
〈
Im T aβ

(
k′, r ′

)
aα(k, r)

〉= 2
∑
A′

〈
A′∣∣∧ 〈k, r,Nα|ρ Im T

∣∣k′, r ′,Nβ
〉∧ ∣∣A′〉

=
∑
A′,C,D

〈
A′∣∣∧ 〈k, r,Nα|T |C〉〈C|ρ|D〉

× 〈D|T †
∣∣k′, r ′,Nβ

〉∧ ∣∣A′〉. (C.11)

The creation and annihilation operators appearing in this appendix are understood to be asymp-
totic ‘in’ operators, see (3.70).

By inspection, we see that the LHS of (C.11) defines the total in-medium heavy-neutrino 
production rate[

Γrr ′
({X} →N;k,k′)]

α

β ≡ 2
〈
Im T aβ

(
k′, r ′

)
aα(k, r)

〉
, (C.12)

in which {X} represents the set of all possible initial states and at least one heavy-neutrino appears 
in the final state. All internal degrees of freedom in the set of initial states {X} are summed over, 
except for isospin, i.e. the general rate[

Γ{r}{s}
({X} → {Y })]{k}{l}{α}{β}

(C.13)

is a tensor in isospin space. We may convince ourselves that (C.12) necessarily gives the produc-
tion rate (and not the decay rate), since in the zero-temperature limit, where ρ = |0〉〈0|, the EEV 

18 These spectator states should not be confused with the SM spectator processes which could enhance the washout of 
the lepton asymmetry in thermal leptogenesis [218].
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on the RHS of (C.12) is identically zero. Similarly, the total in-medium LΦ production rate is 
given by[

Γs1s′1
({X} →LΦ;p1,p′

1,q1,q′
1

)]
k

l ≡ 2
〈
Im T bl

(
p′

1, s
′
1

)
bk(p1, s1)c

†(q′
1

)
c(q1)

〉
, (C.14)

in which at least one lepton and one Higgs appears in the final state. In order to study specific 
contributions to the total heavy-neutrino and LΦ production rates, defined in (C.12) and (C.14), 
we must isolate particular initial states and truncate the transition operator to a given order in 
perturbation theory.

Truncating the transition operator to first order in the interaction Hamiltonian density, T →
T 0 = ∫

x
Hint(x), we find from (C.12) that only states in {X} that contain at least one lepton 

and one Higgs will contribute to the heavy-neutrino production rate. Isolating the initial states 
|p′, s′, Ll; q′, Φ†〉 ∧ |C′〉 ⊂ |C〉 and |p, s, Lk; q, Φ†〉 ∧ |D′〉 ⊂ |D〉, we obtain from (C.11) and 
(C.12) the tree-level heavy-neutrino production rate[

Γ 0
rr ′
(
LΦ→N;k,k′)]

α

β

=
∑
s,s′,A′

∫
p,q,p′,q′

〈
A′∣∣∧ 〈p′, s′,Ll;q′,Φ†

∣∣ρ∣∣p, s,Lk;q,Φ†〉∧ ∣∣A′〉
× 〈k, r,Nα|T 0

∣∣p′, s′,Ll;q′,Φ†〉〈p, s,Lk;q,Φ†
∣∣T 0†

∣∣k′, r ′,Nβ
〉
. (C.15)

In (C.15), the spectator states A′ do not contribute to the transition matrix elements
〈k, r, Nα|T 0|p′, s′, Ll; q′, Φ†〉 and 〈p, s, Lk; q, Φ†| T 0 †|k′, r ′, Nβ〉 at first order in perturbation 
theory. The ρ-dependent term in (C.15) is∑

A′

〈
A′∣∣∧ 〈p′, s′,Ll;q′,Φ†

∣∣ρ∣∣p, s,Lk;q,Φ†〉∧ ∣∣A′〉
= Tr

[
ρbk(p, s)bl

(
p′, s′

)
c†(q)c

(
q′)]= [

nLs′s
(
p′,p

)]
l

k
nΦ
(
q′,q

)
, (C.16)

where we have taken the leptonic and Higgs ensembles to be spatially inhomogeneous in general, 
depending explicitly on two three-momenta. The time-dependence of the distribution functions 
nX(p, p′) is assumed implicitly. In the spatially-homogeneous limit, the lepton and Higgs distri-
bution functions satisfy the correspondence[

nLss′
(
p,p′)]

k

l → [
nLs (p)

]
k

l
(2π)3δss′δ

(3)(p − p′), (C.17)

nΦ
(
q,q′)→ nΦ(q)(2π)3δ(3)

(
q − q′). (C.18)

The general inhomogeneous distribution functions nX(p, p′) are related to the number densities 
defined in Section 3.1 by a Wigner transformation [219] and integration over all coordinate space:

nX(p)= 1

V3

∫
d3x

∫
d3qeiq·xnX

(
p + q

2
,p − q

2

)
= 1

V3
nX(p,p). (C.19)

The Wick contraction of field operators may be performed using the following set of flavour-
covariant field-particle duality relations:

〈0|Φ̃†(x)c†(p)|0〉 = (
2EΦ(p)

)−1/2
e−iEΦ(p)x0eip·x, (C.20)

〈0|c(p)Φ̃(x)|0〉 = (
2EΦ(p)

)−1/2
eiEΦ(p)x0e−ip·x, (C.21)

〈0|Φ̃(x)c̄†(p)|0〉 = (
2EΦ(p)

)−1/2
e−iEΦ(p)x0eip·x, (C.22)
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〈0|c̄(p)Φ̃†(x)|0〉 = (
2EΦ(p)

)−1/2
eiEΦ(p)x0e−ip·x, (C.23)

〈0|Lk(x)bl(p, s)|0〉 = [(
2EL(p)

)−1/2]
k

m[
e−iEL(p)x0

] n

m
eip·x[u(p, s)] l

n
, (C.24)

〈0|d†l (p, s)Lk(x)|0〉 = [(
2EL(p)

)−1/2]
k

m[
eiEL(p)x0

] n

m
e−ip·x[v(p, s)] l

n
, (C.25)

〈0|bl(p, s)L̄k(x)|0〉 = [(
2EL(p)

)−1/2]k
m

[
eiEL(p)x0

]m
n
e−ip·x[ū(p, s)]n

l
, (C.26)

〈0|L̄k(x)d†
l (p, s)|0〉 = [(

2EL(p)
)−1/2]k

m

[
e−iEL(p)x0

]m
n
eip·x[v̄(p, s)]n

l
, (C.27)

〈0|NR,α(x)aβ(k, r)|0〉 = [(
2EN(k)

)−1/2] γ
α

[
e−iEN (p)x0

] δ
γ
eip·xPR

[
u(k, r)

] β
δ
, (C.28)

〈0|aβ(k, r)NR,α(x)|0〉 = [(
2EN(k)

)−1/2] γ
α

[
eiEN(p)x0

] δ
γ
e−ip·xPR

[
v(k, r)

] ε
δ
Gεβ, (C.29)

〈0|aβ(k, r)NαR(x)|0〉 = [(
2EN(k)

)−1/2]α
γ

[
eiEN(p)x0

]γ
δ
e−ip·x[ū(k, r)]δ

β
PL, (C.30)

〈0|NαR(x)aβ(k, r)|0〉 = [(
2EN(k)

)−1/2]α
γ

[
e−iEN (p)x0

]γ
δ
eip·x[v̄(k, r)]δ

ε
PLG

εβ, (C.31)

where the creation and annihilation operators have the mass dimension −3/2 and satisfy the 
commutator algebra given in Section 3.1. We emphasize that the operators appearing in this 
appendix are understood to be asymptotic ‘in’ operators.

In the case of the tree-level heavy-neutrino production rate, we obtain the Hermitian conjugate 
pair of transition matrix elements[

T 0
r ′s
(
LΦ→N;k′,p,q

)]
k

β ≡ 〈
p, s,Lk;q,Φ†

∣∣T 0 †
∣∣k′, r ′,Nβ

〉
= [

M0(LΦ→N)
] γ
i

× [(
2EL(p)

)−1/2]i
j

[(
2EN

(
k′))−1/2] δ

γ

(
2EΦ(q)

)−1/2

× (2π)4[δ(4)(k′ − p− q)]jmδε
× [
ū(p, s)

]m
k
PR
[
u
(
k′, r ′

)] β
ε
, (C.32)[

T 0
rs′
(
LΦ→N;k,p′,q′)]l

α ≡ 〈k, r,Nα|T 0
∣∣p′, s′,Ll;q′,Φ†〉

= [
M0(LΦ→N)

]i′
γ ′
[(

2EL
(
p′))−1/2] j ′

i′

× [(
2EN(k)

)−1/2]γ ′
δ′
(
2EΦ

(
q′))−1/2

× (2π)4[δ(4)(k − p′ − q ′)]
j ′
m′δ′

ε′

× [
ū(k, r)

]ε′
α

PL
[
u
(
p′, s′

)] l

m′ . (C.33)

The Dirac spinors u and v of the heavy-neutrinos and leptons are distinguished by the character-
set of their indices: lower-case Greek characters are for heavy-neutrinos and lower-case Latin for 
leptons. For a detailed discussion of the flavour structure of the Dirac spinors, see Appendix B.

Finally, we may recast (C.15) in the following form:[
Γ 0
rr ′
(
LΦ→N;k,k′)]

α

β =
∑
s,s′

∫
p,q,p′,q′

[
Γ 0
rr ′ss′

(
LΦ→N;k,k′,p,p′,q,q′)]

k

l

α

β

× [
nLs′s

(
p′,p

)]
l

k
nΦ
(
q′,q

)
, (C.34)

where we have defined the spatially-inhomogeneous rank-4 tensor rate
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[
Γ 0
rr ′ss′

(
LΦ→N;k,k′,p,p′,q,q′)]

k

l

α

β

= [
T 0
rs′
(
LΦ→N;k,p′,q′)]l

α

[
T 0
r ′s
(
LΦ→N;k′,p,q

)]
k

β
, (C.35)

carrying two pairs of helicity indices, two heavy-neutrino flavour indices, two lepton flavour 
indices and three pairs of three-momenta.

For the tree-level �L = 0 scattering (LΦ → LΦ), we need the transition operator up to 
second order in the interaction Hamiltonian density, T → T 1 = i

2!
∫
x,x′ T[Hint(x)Hint(x

′)] in 
which T is the time-ordering operator. Ignoring the disconnected contributions, we obtain the 
tree-level in-medium scattering rate[

Γ 0
s1s

′
1

(
LΦ→ LΦ;p1,p′

1,q1,q′
1

)]
k

k′

=
∑
s2, s

′
2

∫
p2, q2, p′

2, q′
2

[
Γ 0
s1s

′
1s2s

′
2

(
LΦ→ LΦ;p1,p′

1,p2,p′
2,q1,q′

1,q2,q′
2

)]
l

l′
k

k′

× [
nL
s′2s2
(
p′

2,p2
)] l
l′ n

Φ
(
q′

2,q2
)
, (C.36)

where the rank-4 scattering rate is[
Γ 0
s1s

′
1s2s

′
2

(
LΦ→ LΦ;p1,p′

1,p2,p′
2,q1,q′

1,q2,q′
2

)]
l

l′
k

k′

= [
T 0
s2s

′
1

(
LΦ→ LΦ;p2,p′

1,q2,q′
1

)]k′
l

[
T 0
s1s

′
2

(
LΦ→ LΦ;p1,p′

2,q1,q′
2

)]
k

l′
. (C.37)

The Hermitian conjugate pair of scattering transition matrix elements are[
T 0
s1s

′
2

(
LΦ→ LΦ;p1,p′

2,q1,q′
2

)]
k

l′

= 〈
p1, s1,Lk;q1,Φ

†
∣∣T 1 †

∣∣p′
2, s

′
2,L

l′ ;q′
2,Φ

†〉
= −i

∫
k1, k

′
1

[(
2EL(p1)

)−1/2]i
j

[(
2EL

(
p′

2

))−1/2] b
a

(
2EΦ(q1)

)−1/2(2EΦ(q′
2

))−1/2

× (2π)4[δ(4)(k1 − p1 − q1)
]j
mγ

ε
(2π)4

[
δ(4)

(
k′1 − p′

2 − q ′
2

)]
b

cδ

σ

× [
ū(p1, s1)

]m
k

[
i�0

F, N

(
k1, k

′
1

)] σ
ε

[
u
(
p′

2, s
′
2

)] l′
c

× [
M0(LΦ→N)

]a
δ

[
M0(N → LΦ)

] γ
i
, (C.38)[

T 0
s2s

′
1

(
LΦ→ LΦ;p2,p′

1,q2,q′
1

)]k′
l

= 〈
p2, s2,Ll;q2,Φ

†
∣∣T 1

∣∣p′
1, s

′
1,L

k′ ;q′
1,Φ

†〉
= +i

∫
k2, k

′
2

[(
2EL(p′

1)
)−1/2] j ′

i′
[(

2EL
(
p2
))−1/2]a′

b′
(
2EΦ(q2)

)−1/2(2EΦ(q′
1

))−1/2

× (2π)4[δ(4)(k′2 − p′
1 − q ′

1

)]
j ′
m′γ ′

ε′(2π)
4[δ(4)(k2 − p2 − q2

)]b′
c′δ′
σ ′

× [
ū(p2, s2)

]c′
l

[
i�0

F, N

(
k′2, k2

)]ε′
σ ′
[
u
(
p′

1, s
′
1

)] k′
m′

× [
M0(N → LΦ)

]i′
′
[
M0(LΦ→N)

] δ′
′ , (C.39)
γ a
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where �0
F,N is the free non-homogeneous heavy-neutrino Feynman propagator[
i�0

F, N

(
k, k′

)]
α

β = Tr
{
ρNT

[
NR, α(k)N

β
R

(
k′
)]}
. (C.40)

The structure of these flavour-covariant non-homogeneous free propagators in the case of Dirac 
fermions is illustrated in Appendix B. Notice that, by means of the Gaussian moment theorem 
(Wick’s theorem), the heavy-neutrino spectator states contribute the thermal part of the Feynman 
propagator.

C.1. Decays

Imposing kinetic equilibrium as described in Section 4.1, the tree-level heavy-neutrino pro-
duction rate (C.34) becomes[

Γ 0
r (LΦ→N;k)

]
α

β =
∑
s

[nLs ]l k
nLeq

∫
p,q

e−(|p|+|q|)/T [Γ 0
rs(LΦ→N;k,p,q)

]
k

l

α

β
, (C.41)

where, following (C.35), we have defined[
Γ 0
rs(LΦ→N;k,p,q)

]
k

l

α

β

= [
T 0
rs(LΦ→N;k,p,q)

]l
α

[
T 0
rs(LΦ→N;k,p,q)

]
k

β
. (C.42)

In this case, the transition amplitudes given in (C.32) and (C.33) simplify to[
T 0
rs(LΦ→N;k,p,q)

]
k

β

≡ 〈
p, s,Lk;q,Φ†

∣∣T 0 †
∣∣k, r,Nβ 〉

= [
M0(LΦ→N)

]
k

β(
2|p|)−1/2(2EN(k))−1/2(2|q|)−1/2

× (2π)4δ(4)(k − p− q)ū(p, s)PRu(k, r), (C.43)[
T 0
rs(LΦ→N;k,p,q)

]l
α

≡ 〈k, r,Nα|T 0
∣∣p, s,Ll;q,Φ†〉

= [
M0(LΦ→N)

]l
α

(
2|p|)−1/2(2EN(k))−1/2(2|q|)−1/2

× (2π)4δ(4)(p+ q − k)ū(k, r)PLu(p, s), (C.44)

in which the tree-level matrix elements are[
M0(LΦ→N)

] α
k

= hkα,[
M0(LΦ→N)

]k
α = ([

M0(LΦ→N)
] α
k

)∗ = hkα. (C.45)

The one-loop resummation effects due to heavy-neutrino mixing can be included by promoting 
the tree-level Yukawa couplings to the one-loop resummed ones, as discussed in Section 2.1. 
Specifically, in Section 4, we have used[

M(N → LΦ)
]
k

α = hkα, (C.46)

corresponding to the process N → LΦ . For its T̃ -conjugate process LΦ→N , we have by CPT
invariance (see Section 3.2),
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[
M(LΦ→N)

]k
α = ([

M(N → LΦ)
]
k

α)T̃ = [
hc̃
]k
α, (C.47)

where we recall that c̃ ≡ C̃P denotes the generalized-CP conjugate. The matrix element for the 
process N → Lc̃Φc̃ is obtained from (C.46) by the generalized CP transformation[

M
(
N →Lc̃Φc̃

)]k
α = ([

M(N → LΦ)
]
k

α)c̃ = [
M(LΦ→N)

]k
α = [

hc̃
]k
α. (C.48)

The T̃ -transformed process Lc̃Φc̃ → N can be obtained from (C.47) via the generalized CP
transformation[

M
(
Lc̃Φc̃ →N

)] α
k

= ([
M(LΦ→N)

]k
α

)c̃ = [
M(N → LΦ)

]
k

α = h α
k . (C.49)

As in Section 4.1, we assume that the charged-leptons are massless, and hence, only one of 
their helicity states are populated, which for concreteness, we choose to be s = − (+) for lep-
tons (anti-leptons) in (C.42). Summing over the heavy-neutrino helicities, tracing over lepton 
and Higgs isospins, and performing the momentum integrals, we derive the tree-level thermally-
averaged rates for the processes N →LΦ and LΦ→N , as follows:[

γ (LΦ→N)
] l β
k α

= 1

V4

∑
r,IJ

∫
k,p,q

e−(|p|+|q|)/T [Γ 0
r,−(LΦ→N;k,p,q)

] l β
k α

, (C.50)

where we have divided through by the coordinate-space four-volume V4 = (2π)4δ(4)(0) in order 
to remove the factor arising from the product of identical energy–momentum conserving delta 
functions from the two transition matrix elements in (C.42). After performing the summations 
over the heavy-neutrino helicities and the traces over lepton and Higgs isospin, we find from 
(C.50) the heavy-neutrino decay and inverse decay rates[

γ (N → LΦ)
] l β
k α

= [
γ
(
Lc̃Φc̃ →N

)] l β
k α

=
∫

NLΦ

gLgΦ(2pN · pL)hβk hlα, (C.51)

[
γ (LΦ→N)

] l β
k α

= [
γ
(
N → Lc̃Φc̃

)] l β
k α

=
∫

NLΦ

gLgΦ(2pN · pL)
[
hc̃
]
k

β[
hc̃
]l
α, (C.52)

where we recall that gL = gΦ = 2 count the degenerate isospin degrees of freedom of the lepton 
and Higgs doublets. In addition, we have used the notation defined in (2.7) for the thermally-
weighted phase-space integrals. We note that a relabeling of indices k↔ l and α↔ β has been 
performed in (C.52) relative to the T̃ -transform of (C.51), that is[

γ (N → LΦ)
] l β
k α

= ([
γ (LΦ→N)

] k α
l β

)T̃
. (C.53)

The decay rates in (C.51) and (C.52), derived using the generalized optical theorem are exactly 
the same as those given in (4.10) and (4.11).

C.2. Scatterings

We may write the homogeneous limit of the heavy-neutrino Feynman propagator in a general 
basis by rotating (C.40) to the mass eigenbasis, i.e.[

i�0
F,N

(
k, k′

)]
α

β = Uρα
[
i�̂0

F,N

(
k, k′

)]
ρ
δ σρ U

β
σ

→Uρ
[
i�̂0 (k)

]
(2π)4δ(4)

(
k − k′)U β. (C.54)
α F,N ρ ρ
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Imposing kinetic equilibrium, the in-medium LΦ→ LΦ scattering rate (C.36) can then be writ-
ten [

Γ 0
s1
(LΦ→ LΦ;p1,q1)

]
k

k′ =
∑
s2

[nLs2] ll′
nLeq

∫
p2, q2

e−(|p2|+|q2|)/T

× [
Γ 0
s1s2
(LΦ→ LΦ;p1,p2,q1,q2)

]
l

l′
k

k′
, (C.55)

using which we can define the thermally-averaged scattering rate as[
γ (LΦ→ LΦ)

]
l

l′
k

k′

= 1

V4

∑
I1I2J1J2

∫
p1,2,q1,2

e−(|p2|+|q2|)/T [Γ 0−−(LΦ→ LΦ;p1,p2,q1,q2)
]
l

l′
k

k′
, (C.56)

in which I1,2, J1,2 are respectively the lepton and Higgs isospin indices, and the flavour indices 
have been reordered. The rank-4 tensor rate is defined following (C.37):[

Γ 0
s1s2
(LΦ→ LΦ;p1,p2,q1,q2)

]
l

l′
k

k′

= [
T 0
s2s1
(LΦ→ LΦ;p2,p1,q2,q1)

]k′
l

[
T 0
s1s2
(LΦ→ LΦ;p1,p2,q1,q2)

]
k

l′
. (C.57)

Here, the transition amplitudes are still defined in a general basis from (C.38) and (C.39):[
T 0
s1s2
(LΦ→LΦ;p1,p2,q1,q2)

]
k

l′

= 〈
p1, s1,Lk;q1,Φ

†
∣∣T 1 †

∣∣p2, s2,L
l′ ;q2,Φ

†〉
= −i

∫
k

[(
2EL(p1)

)−1/2]i
j

[(
2EL(p2)

)−1/2] b
a

(
2EΦ(q1)

)−1/2(2EΦ(q2)
)−1/2

× (2π)4[δ(4)(k − p1 − q1)
]j
mγ

ε
(2π)4

[
δ(4)(k − p2 − q2)

]
b

cδ

σ

× [
ū(p1, s1)

]m
k
Uρε

[
i�̂0

F, N (k)
]
ρ
U σ
ρ

[
u(p2, s2)

] l′
c

[
M0(N → LΦ)

] γ
i

× [
M0(LΦ→N)

]a
δ
, (C.58)[

T 0
s2s1
(LΦ→LΦ;p2,p1,q2,q1)

]k′
l

= 〈
p2, s2,Ll;q2,Φ

†
∣∣T 1

∣∣p1, s1,L
k′ ;q1,Φ

†〉
= +i

∫
k′

[(
2EL(p1)

)−1/2] j ′
i′
[(

2EL(p2)
)−1/2]a′

b′
(
2EΦ(q2)

)−1/2(2EΦ(q1)
)−1/2

× (2π)4[δ(4)(k′ − p1 − q1
)]
j ′
m′γ ′

ε′(2π)
4[δ(4)(k′ − p2 − q2

)]b′
c′δ′
σ ′

× [
ū(p2, s2)

]c′
l
U

ε′
ρ′

[
i�̂0

F, N

(
k′
)]ρ′
U
ρ′
σ ′
[
u(p1, s1)

] k′
m′

[
M0(N → LΦ)

]i′
γ ′

× [
M0(LΦ→N)

] δ′
a′ . (C.59)

Rotating the matrix elements and four-momentum delta functions to the heavy-neutrino mass 
eigenbasis, and working in the massless limit for the charged-leptons and Higgs, we obtain
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[
T̂ 0
s1s2
(LΦ→LΦ;p1,p2,q1,q2)

]
k

l′

= −i(2|p1|
)−1/2(2|p2|

)−1/2(2|q1|
)−1/2(2|q2|

)−1/2

× (2π)4δ(4)(p1 + q1 − p2 − q2)ū(p1, s1)
[
i�̂0

F, N (k)
]
α
u(p2, s2)

× [
M̂0(N → LΦ)

] α
k

[
M̂0(LΦ→N)

]l′
α, (C.60)[

T̂ 0
s2s1
(LΦ→LΦ;p2,p1,q2,q1)

]k′
l

= +i(2|p2|
)−1/2(2|p1|

)−1/2(2|q2|
)−1/2(2|q1|

)−1/2

× (2π)4δ(4)(p2 + q2 − p1 − q1)ū(p2, s2)
[
i�̂0

F, N (k)
]β
u(p1, s1)

× [
M̂0(N → LΦ)

]k′
β

[
M̂0(LΦ→N)

]
l

β
, (C.61)

where the four-momentum k = p1 + q1 = p2 + q2. Finally, we substitute for the resummed 
Yukawas and propagators and extract the resonant part of the amplitude by writing[

i�̂F,N (k)
]
α

� PR(/k +mα)PL
[
i�̂F,N (k)

]
res,α = PR/k

[
i�̂F,N (k)

]
res,α. (C.62)

After performing the helicity summations via appropriate Fierz rearrangement, we obtain the 
following set of �L = 0 and �L = 2 thermally-averaged scattering rates:[

γ̂ (LΦ→ LΦ)
]
k

l

m

n =
∫

L1Φ1L2Φ2

gL1gΦ1gL2gΦ2(2pL2 · pN)(2pN · pL1)

× ([
i�̂F,N (pN)

]
α

[
i�̂F,N (pN)

]β)
res

× [̂
hc̃
]
k

β [̂
hc̃
]l
αĥ α
m ĥnβ, (C.63)[

γ̂
(
Lc̃Φc̃ →Lc̃Φc̃

)]
k

l

m

n =
∫

L1Φ1L2Φ2

gL1gΦ1gL2gΦ2(2pL2 · pN)(2pN · pL1)

× ([
i�̂F,N (pN)

]
α

[
i�̂F,N (pN)

]β)
res

× ĥ α
k ĥlβ

[̂
hc̃
]
m

β [̂
hc̃
]n
α, (C.64)[

γ̂
(
LΦ→ Lc̃Φc̃

)]
k

l

m

n =
∫

L1Φ1L2Φ2

gL1gΦ1gL2gΦ2(2pL2 · pN)(2pN · pL1)

× ([
i�̂F,N (pN)

]
α

[
i�̂F,N (pN)

]β)
res

× [̂
hc̃
]
k

β [̂
hc̃
]l
α

[̂
hc̃
]
m

β [̂
hc̃
]n
α, (C.65)[

γ̂
(
Lc̃Φc̃ →LΦ

)]
k

l

m

n =
∫

L1Φ1L2Φ2

gL1gΦ1gL2gΦ2(2pL2 · pN)(2pN · pL1)

× ([
i�̂F,N (pN)

]
α

[
i�̂F,N (pN)

]β)
resĥ

α
k ĥlβ ĥ α

m ĥnβ, (C.66)

in which the indices for the T̃ -transformed processes have been relabeled, as in (C.53). Tracing 
over lepton flavour indices, the scattering rates relevant to the heavy neutrino transport equations 
are, for instance,
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[
γ̂ (LΦ→ LΦ)

]
α

β =
∫

L1Φ1L2Φ2

gL1gΦ1gL2gΦ2(2pL2 · pN)(2pN · pL1)

× ([
i�̂F,N (pN)

]
α

[
i�̂F,N (pN)

]β)
res

[̂
hc̃
]
k

β [̂
hc̃
]k
αĥ αl ĥlβ , (C.67)

in which the heavy-neutrino flavour indices α and β are not summed over. These rates have been 
used in Section 4.4, along with the NWA for the resonant part of the Feynman propagators, to 
derive the flavour-covariant rate equations for scattering.

Appendix D. Form factors for LFV decay rates

For completeness, we list below various form factors appearing in the expressions (6.3), (6.4)
and (6.5), which follow from the results given in [174,178]:

Gμeγ =
∑
α

BeαB
∗
μαGγ (xNα ), (D.1)

Fμeγ =
∑
α

BeαB
∗
μαFγ (xNα ), (D.2)

F
μe
Z =

∑
α

BeαB
∗
μα

[
FZ(xNα )+ 2GZ(xNα ,0)

]
, (D.3)

F
μeuu
Box =

∑
α

BeαB
∗
μα

[
HBox(xNα ,0)−HBox(0,0)

]
, (D.4)

F
μedd
Box = −

∑
α

BeαB
∗
μα

[
FBox(xNα ,0)− FBox(0,0)

]
, (D.5)

F
μeee
Box = 2

∑
α

BeαB
∗
μα

[
FBox(xNα ,0)− FBox(0,0)

]
, (D.6)

where Blα denote the elements of the light–heavy neutrino mixing matrix [cf. (6.2)], and 
xNα ≡ (mNα/MW)2. In (D.3) and (D.6), we have ignored the O(‖ξ‖4) terms, which is a good 
approximation, since ‖ξ‖4 � 1 for all the benchmark points in our case (see Section 6.1).

The loop functions appearing in (D.1)–(D.6) are given by

Gγ (x)= −x(2x
2 + 5x − 1)

4(1 − x)3 − 3x3

2(1 − x)4 lnx, (D.7)

Fγ (x)= x(7x2 − x − 12)

12(1 − x)3 − x2(x2 − 10x + 12)

6(1 − x)4 lnx, (D.8)

FZ(x)= − 5x

2(1 − x) − 5x2

2(1 − x)2 lnx, (D.9)

GZ(x,0)= − x

2(1 − x) lnx, (D.10)

HBox(x,0)= 4

1 − x + 4x

(1 − x)2 lnx, (D.11)

FBox(x,0)= 1

1 − x + x

(1 − x)2 lnx, (D.12)

with the limiting values HBox(0, 0) = 4 and FBox(0, 0) = 1.
The nuclear form factors D, V (p), V (n) and the capture rate Γcapt appearing in (6.5) are sum-

marized in Table D.1 for various nuclei relevant to μ → e conversion searches.
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Table D.1
The nuclear form factors and capture rates for various nuclei of interest. The numbers were taken from [179] (see 
also [220,221]).

Nucleus (A
Z
X) V (p) V (n) D Γcapt (106 sec−1)

48
22Ti 0.0396 0.0468 0.0864 2.59
197

79Au 0.0974 0.146 0.189 13.07
208

82Pb 0.0834 0.128 0.161 13.45
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