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Abstract
Recent work has shown that the accuracy of ab initio structure prediction can be signifi-

cantly improved by integrating evolutionary information in form of intra-protein residue-resi-

due contacts. Following this seminal result, much effort is put into the improvement of

contact predictions. However, there is also a substantial need to develop structure predic-

tion protocols tailored to the type of restraints gained by contact predictions. Here, we pres-

ent a structure prediction protocol that combines evolutionary information with the

resolution-adapted structural recombination approach of Rosetta, called RASREC. Com-

pared to the classic Rosetta ab initio protocol, RASREC achieves improved sampling, bet-

ter convergence and higher robustness against incorrect distance restraints, making it the

ideal sampling strategy for the stated problem. To demonstrate the accuracy of our protocol,

we tested the approach on a diverse set of 28 globular proteins. Our method is able to

converge for 26 out of the 28 targets and improves the average TM-score of the entire

benchmark set from 0.55 to 0.72 when compared to the top ranked models obtained by the

EVFold web server using identical contact predictions. Using a smaller benchmark, we fur-

thermore show that the prediction accuracy of our method is only slightly reduced when the

contact prediction accuracy is comparatively low. This observation is of special interest for

protein sequences that only have a limited number of homologs.

Author Summary

Recently, a breakthrough has been achieved in modeling the atomic 3D structures of pro-
teins from their sequence alone without requiring any experimental work on the protein
itself. To achieve this goal, a database of evolutionary related sequences is analyzed to find
co-evolving residues, giving insight into which residues are in close proximity to each
other. These residue-residue contacts can help to drive a computer simulation with an
atomic-scale physical model of the protein structure from a random starting conformation
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to a native-like 3D conformation. Although much effort is being put into the improvement
of residue-residue contact predictions, their accuracy will always be limited. Therefore,
structure prediction protocols with a high tolerance against incorrect distance restraints
are needed. Here, we present a structure prediction protocol that combines evolutionary
information with the iterative sampling approach of the molecular modeling suite Rosetta,
called RASREC. RASREC has been shown to converge faster to near-native models and to
be more robust against incorrect distance restraints than standard prediction protocols. It
is therefore perfectly suited for restraints obtained from predicted residue-residue contacts
with limited accuracy. We show that our protocol outperforms other currently published
structure prediction methods and is able to achieve accurate structures, even if the accu-
racy of predicted contacts is low.

“This is a PLOS Computational BiologyMethods paper”

Introduction
The computational prediction of protein structures from their amino acid sequence is an ongo-
ing challenge that has occupied scientists for more than four decades. While Anfinsen’s dogma
[1] suggests that for most proteins the information contained in their amino acid sequence is
sufficient to define their three-dimensional structure, the problem still remains largely
unsolved. For some small proteins (<80 residues), current ab initio prediction methods are
successful in predicting the corresponding 3D structures with high accuracy. One such method
is the Rosetta ab initio protocol, which assembles short fragments of known proteins by a
Monte Carlo strategy [2,3]. With increasing protein size however, sampling of the large confor-
mational space becomes a major challenge [4] and combination with experimental data is
required to achieve accurate protein models [5,6].

As experimental data is not always available and may be difficult or costly to obtain,
researchers have focused on reducing the search space of possible protein conformations in
other ways, for instance by including evolutionary information found in patterns of correlated
mutations in protein sequences. The underlying assumption is that these correlated pairs indi-
cate spatial proximity in the protein structure and can therefore be used to guide ab initio pro-
tein structure prediction [7].

The idea has already been introduced in the early 1990s [8–11], however, until recently, the
accuracy of the predicted contacts was not sufficient to significantly improve structure predic-
tion methods. Pairs of correlated mutations have been calculated using ‘local’ statistical models,
e.g. mutual information scores, which are not able to separate direct from indirect contact
information. While direct contacts reflect actual contacts in the protein structure, indirect con-
tacts are false positives that arise from connections through a third residue. These transitive
(indirect) pair correlations greatly limit the accuracy of predicted residue-residue contacts [7].

Recently, a substantial increase in prediction accuracy has been achieved by using ‘global’
statistical models [12–16] that are able to reduce these effects of transitivity by treating pairs of
residues dependent on each other. Another important factor for the recent boost in prediction
accuracy is the rapid growth of available protein sequences due to advances in DNA sequenc-
ing technology [7].
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In 2011, it has been shown that the information contained in maximum-entropy derived
residue-residue contacts is sufficient to predict protein folds with explicit atomic coordinates
quite accurately (Cα-RMSDs of 2.7–4.8Å over at least two-thirds of the protein) using the
method EVFold [13]. Since then, a lot of research focused on improving the contact predictions
and new methods for residue-residue contact prediction emerge regularly [17–21]. In addition
to the initial predictions of mostly soluble proteins [13], predicted contacts from evolutionary
information have been used to predict protein-protein complexes [22–24], and the structures
of membrane proteins [25,26].

While much effort is put into the improvement of contact predictions, there is also a sub-
stantial need to investigate how this information is best exploited in structure prediction. The
accuracy of contact predictions is limited by the statistical nature of the prediction methods,
distracting sources of co-evolution (e.g. active sites and protein-protein interaction sites), and
limited numbers of homologous sequences. Due to the noisy nature of the predicted residue-
residue contacts, structure prediction protocols with a high tolerance against incorrect distance
restraints are needed.

EVFold uses the CNS molecular dynamics software suite [27,28] for structure prediction. It
starts with the fully extended amino-acid sequence and folds the protein by applying standard
distance geometry techniques and simulated annealing with bonded and non-bonded poten-
tials [13].

The fragment-based folding algorithm FRAGFOLD [29,30] was used in combination with
the contact prediction method PSICOV [17] for ab initio structure prediction [31]. The
restraints were scored with a square well function with exponential decay.

Michel and coworkers applied the ab initio structure prediction protocol of the molecular
modeling software suite Rosetta [32] with a smoothed square well restraint scoring function to
predict structures within the PconsFold pipeline [33]. A comparison between Rosetta and CNS
indicated that with similar contact predictions, models of similar quality were generated [33].
Improvements in structure prediction were mainly credited to improved residue-residue con-
tact predictions obtained with the combined prediction method PconsC [34].

The CONFOLD webserver uses the CNS suite [27,28] for a two-stage modeling approach.
Both, restraints derived from predicted contacts and secondary structure, are used and after
the initial round of model generation, unsatisfied restraints are filtered out. The method has
been shown to be especially powerful when using true contacts [35].

In this work we combine evolutionary information, obtained from predicted residue-residue
contacts, with the Resolution-Adapted Structural RECombination approach RASREC [36] (cf.
Fig 1). RASREC is an iterative sampling protocol of Rosetta that carries out restraint-guided
fragment assembly during six different resampling and refinement stages. The main idea
behind the protocol is the iterative recombination of frequently reoccurring structural features
and promising strand pairings. It has been shown previously that RASREC requires less data
and is more robust against incorrect distance restraints than the standard Rosetta prediction
protocol [5,6,36]. These properties make RASREC the ideal starting point for developing a pro-
tocol for structure prediction guided by evolutionary restraints, the latter containing a fraction
of incorrectly predicted protein-protein contacts.

For our method, evolutionary information was added to the RASREC protocol by translat-
ing the top scoring residue-residue contact pairs into sigmoidal distance restraints. This initial
RASREC prediction was furthermore followed by an additional refinement run using distance
information from both the previous run and the predicted residue-residue contacts.

To investigate the performance of our method, we carried out a benchmark on 28 globular
proteins using state-of the-art contact predictions (generated using a pseudo-likelihood
maximization approach). To test the impact of increasing numbers of false restraints, we
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additionally predicted the structures of a smaller benchmark set using less accurate residue-res-
idue contact predictions (calculated with a mean-field direct coupling analysis).

In this manuscript we report the results of the benchmark using both types of residue-resi-
due contact predictions and contrast the performance of our protocol with results obtained by
the EVFold webserver using identical contact predictions. We furthermore illustrate the contri-
bution of the optional refinement run to the final results of our method and investigate the
benefits of including predicted residue-residue contacts to the standard RASREC sampling
method in general.

Materials and Methods

Datasets
We have benchmarked our protocol on two previously published datasets, namely the 14 glob-
ular proteins from the EVFold benchmark set published in [13] and the 14 globular proteins
used as test set for developing Pconsfold [33]. The structures vary in sequence length between
58 and 247 residues and cover the three structured CATH classes i.e. mainly α, mainly β, and
mixed α/β. An overview of all targets in our benchmark set can be found in Table 1.

In case of the EVFold benchmark set, the protein sequences of the models published in [13]
(available at http://evfold.org/evfold-web/datasets.do) were used to enable a direct comparison
between EVFold and our method. For the Pconsfold dataset, the sequences deposited in the
RCSB Protein Data Bank [37] were used. FASTA sequences for all targets in our benchmark set
are available in S2 File.

Contact prediction
We used two sets of contact predictions, generated with the PLM (pseudo-likelihood maximi-
zation) and DI (direct information/ mean field approximation) scoring method, respectively.

Fig 1. Protocol pipeline.Our protocol consists of one core step (blue) and an optional refinement step (light grey). Core step: The top scoring residue pairs
of a predicted contact map are translated into distance restraints and used for structure prediction in combination with the RASREC protocol. Refinement
step: Restraints are repicked from the results of the core step and used in a second RASREC run combined with additional contact map restraints.

doi:10.1371/journal.pcbi.1004661.g001
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The PLMmethod uses a pseudo-likelihood maximization approach [19,38] for finding the
maximum entropy set of correlated interactions. This approach is one of the most accurate pre-
diction methods to date [20]. Residue contacts based on this scoring method were predicted
for the entire benchmark set using the EVFold webserver (available at http://www.evfold.org/)
with default parameters. EVFold returns, along with the predicted 3D models, a list of all-by-
all residue pairings computed with EVcouplings-PLM. Restraints based on these contact pre-
dictions will be referred to as PLM-restraints in the remainder of this manuscript.

The DI method, as published in [13], uses a less accurate mean field approximation. The
contact predictions used in [13] are provided as downloadable content on the EVFold website.
Restraints extracted from these contact predictions will be referred to as DI-restraints in the
remainder of this manuscript.

In EVFold, contact predictions are further processed by applying several filters based on res-
idue conservation, secondary structure prediction and cysteine pairings [13] before being
translated to distance constraints. In contrast, we used the predicted contacts without any

Table 1. Benchmark set. Positive predictive values (PPV) have been calculated for two restraint sets (calculated with the pseudo-likelihood maximization
approach (PLM) and direct coupling analysis (DI), respectively) by comparing the potential contacts to the actual Cβ-Cβ distances in the reference structure
with a cutoff of 8 Å.

Benchmark set Target Fold (CATH) Model Size # Restraints PPV Distance
Restraints

PLM DI

EVFold benchmark set 2hda β 58 50 0.78 0.52

5pti few ss 63 60 0.67 0.65

1wvn α/β 73 70 0.64 0.39

1g2e α/β 81 80 0.84 0.65

1odd α 87 80 0.54 0.28

1rqm α/β 105 100 0.61 0.55

1r9h α/β 105 100 0.79 0.64

2o72 β 110 110 0.76 0.65

1bkr α 117 110 0.45 0.33

2it6 α/β 117 110 0.68 0.49

1e6k α/β 124 120 0.73 0.61

1f21 α/β 147 140 0.69 0.44

5p21 α/β 170 170 0.48 0.48

3tgi β 226 220 0.79 0.50

Pconsfold benchmark set 1jo8 β 58 50 0.80 -

1bdo β 80 80 0.51 -

1fqt β 112 110 0.85 -

2cua β 135 130 0.57 -

1vp6 β 138 130 0.66 -

1a3a α/β 148 140 0.79 -

1ihz β 149 140 0.78 -

1jwq α/β 179 180 0.65 -

1im5 α/β 180 180 0.72 -

1atz α/β 189 180 0.81 -

1chd α/β 203 200 0.81 -

1hdo α/β 206 200 0.43 -

1o1z α/β 234 230 0.71 -

1tqh α/β 247 240 0.68 -

doi:10.1371/journal.pcbi.1004661.t001
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filters to see how much information they provide by themselves. For both restraint sets, the
predicted contacts were ordered by their assigned confidence score and the L top-ranked con-
tacts with a minimum distance of 5 residues were selected (with L being the length of the pro-
tein sequence rounded down to the nearest multiple of 10). Unless mentioned otherwise,
predicted residue contacts refer to these L top-ranked contacts.

The accuracy of the contact predictions was assessed in form of the positive predictive value
(PPV) by comparing a potential contact to the actual Cβ-Cβ distance in the reference structure.
A contact was counted as a true positive if the Cβ-Cβ distance in the native structure is� 8 Å.

Structure generation with RASREC
To generate the three-dimensional structures, we used the RASREC protocol as described pre-
viously [36]. For objective benchmarking and mimicking real application cases, homologous
structures (with a PSI-BLAST [39] e-score< 0.05) were excluded in creating the fragment
library of each target.

Instead of using experimentally derived distance restraints, we used the predicted residue
contacts as source of residue-residue distance information. For this purpose, the L top scoring
contact predictions were translated into Rosetta specific Cβ-Cβ distance restraints as described
below.

To account for the fact that the predicted contacts might be noisy and might contain a vary-
ing number of incorrectly predicted contacts (i.e. false positives), the distance restraints were
scored with a shallow sigmoidal potential [23]:

fSigmoidðxÞ ¼
1

1þ e�m�ðx�x0Þ
� 0:5 with x0 ¼ 8:0 and m ¼ 1 ð1Þ

Satisfied distance restraints (Cβ-Cβ distance� 8 Å) add a bonus to the final energy term,
while unsatisfied distance restraints are ignored. This greatly reduces the influence of incor-
rectly predicted residue contacts and the structure prediction will not be misguided. Using
bounded restraints in this step instead, i.e. punishing each violated restraint with an energy
penalty, often resulted in misfolded and unconverged structures in initial test runs.

As in [36],the pool size of RASREC, specifying the number of best scoring models main-
tained during each iteration stage, was set to 500. The total number of models generated during
a RASREC run depends on how fast the different iteration stages terminate and cannot be
directly controlled. For the EVFold benchmark set, the total number of generated models per
target ranges from 13,000 to 65,000. For a detailed description of all options and parameters
used, please refer to S1 Supporting Information and the Protocol Capture in S1 Text and S1
File.

RASREC requires substantial computer resources. For the EVFold benchmark set, the aver-
age computation time was ~2600 cpu hours using 2.6 GHz AMD Opteron processors, see Fig
A in S1 Supporting Information. The computation time is dependent on several factors, which
include sequence length, fold complexity, and instructiveness of the restraints.

Optional refinement step. If the results of the first RASREC run did not converge in all
parts of the protein structure (fraction of converged residues< 90% in the 30 lowest energy
models), an optional refinement run (ReRASREC) was carried out to increase both accuracy
and convergence. For this purpose, converged substructures from the initial RASREC run were
rebuilt and non-converged regions were refined using additional contact information:

To easily re-establish the converged core of the initial RASREC run, we derived distance
restraints for the converged regions in the following way: Distances between all Cα-Cα pairs
were calculated, and those that are short-range (� 8Å) and have a standard deviation (SD)
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below 1Å in the 30 low-energy RASREC models were kept. These converged distances were
enforced during ReRASREC using the strict bounded potential as in [6]:

fBoundedðxÞ ¼

x � lb
sd

� �2

for x < lb

0 for lb � x � ub

x � ub
sd

� �2

for ub < x � ubþ 0:5 � sd

1

sd
ðx � ðubþ 0:5 � sdÞÞ þ 0:5 � sd

sd

� �2

for x > ubþ 0:5 � sd

with sd ¼ 1 ð2Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

To reflect the average distance d in the converged region, the lower bound lb was set to (d–
1) and the upper bound ub to (d+1).

The structural models from the first RASREC run allowed us to select additional low-ranked
predictions from the contact map: Prior to having any structural knowledge we could only
choose contact predictions with very high confidence in the attempt to avoid frustrating the
calculations with too many erroneous restraints. In the second iteration however, we were able
to use the lowest-energy models of the first RASREC run to filter out contact predictions that
clearly disagree with these models. Hence, lower-confidence predictions could be incorporated
as well. To refine the unconverged regions (residue-residue distance, SD> 1 Å in 30 low-
energy structures), we therefore chose additional residue-residue pairings from the predicted
contact map that affect these regions and do not totally disagree (i.e. are short range with an
average distance d� 8 Å) with the lowest-energy models of the first run. The restraints were
scored with a wide bounded potential with lower and upper bound set to 1.5 Å and 8 Å, respec-
tively. This wide range was chosen to allow these regions to adapt to energetically favorable
conformations. To reduce the influence of potentially incorrect restraints in this set, we fur-
thermore combined random pairs into ambiguous restraints [6]. For each model new random
pairs were generated.

Identifying unsuccessful predictions by backbone convergence. For “blind” structure
predictions it is important to discern whether the final result of a prediction method is reliable
or not. Here, we used the backbone convergence of the 30 lowest-energy models as a criterion
to decide whether a prediction is classified as successful or not. The backbone of a residue was
considered converged if the corresponding Cα-atoms in the 30 lowest-energy structures had
less than 2 Å coordinate variability. If less than half of the residues of the 30 lowest-energy
structures converged, a prediction was regarded as unsuccessful. In those cases, our protocol
was not able to find a consistent low energy state.

Model ranking. The models predicted by RASREC were ranked according to their result-
ing Rosetta Energy Units (REU). Distance restraints were included with a weight of 0.1 in this
full-atom energy function. The ensemble of the 10 lowest-energy structures is considered as
the final result of our protocol. Therefore, if not stated otherwise, the metrics used for perfor-
mance evaluation are averaged over the 10 lowest-energy structures.

Structure prediction with EVFold
The EVFold webserver offers to directly fold the protein of interest based on its predicted resi-
due-residue contacts. Structure prediction is accomplished using the CNS software [27,28]
with the protocol described in [13]. The webserver predicts structures for different amounts of
filtered restraints, starting with only a few and increasing to L in 10 steps with L being the
domain length. As output, the 3D coordinates of all 50 predicted structures are provided. We
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used the web interface to generate the models along with the predictions based on the PLM
approach. These models are referred to as EVFold-PLMmodels. Further, we used the struc-
tures published in [13] (available at http://evfold.org/evfold-web/datasets.do), which are based
on the residue-residue contact predictions with the less accurate DI approach and are referred
to as EVFold-DI models.

Model ranking. EVFold ranks its models with a score based on inherent properties and
extent of constraint satisfaction. We consider the single top-ranked structure as the final result
of EVFold, irrespective of the number of distance restraints used. In addition, results averaged
over the 10 top-ranked structures can be found in Table C in S1 Supporting Information.

Metrics used for performance evaluation
To evaluate the performance of our method, several different metrics were used: 1) Cα-RMSD
calculated over all residues present in the reference structure (RMSD), 2) Cα-RMSD calculated
over all residues in secondary structural elements in the crystal structure as assigned by Stride
[40] called RMSDSSE, and 3) TM-Score [41] over all Cα-atoms in the reference structure. The
template modeling score (TM-Score) evaluates the global fold similarity and is less sensitive to
local structural variations than the RMSD. It ranges from 0 (random similarity) to 1 (perfect
similarity) [41].

In contrast to e.g. RMSD values calculated with PyMOL [42], which excludes outliers in a
series of refinement cycles, these three metrics are easily reproducible and consider the same
residues for each model evaluated.

Results and Discussion
We have developed a protocol (Fig 1) that combines RASREC with evolutionary sequence
information in form of predicted residue-residue contacts for accurate protein structure pre-
diction. We benchmarked this protocol on a diverse set of 28 globular proteins and compared
its results with the ones from the EVFold web server, to our knowledge one of the best methods
currently available.

Models generated with ReRASREC have higher accuracies
Fig 2 shows the performance of our protocol (ReRASREC-PLM) compared to the one of the
EVFold web server (EVFold-PLM) on the basis of three different metrics. Our protocol con-
verged (fraction of converged residues> 0.5 in the 30 low-energy structures) for 26 out of the
28 targets and correctly predicted the fold for each of the converged targets (TMscore> 0.5 or
RMSD< 5Å). For the majority of the benchmark set, the final models were of high structural
accuracy resulting in an average TM-score of 0.74, an average RMSD of 4.4 Å, and an average
RMSDSSE of 3.3 Å over all 26 converged targets.

The overall performance of our protocol was significantly higher than that of EVFold-PLM
using identical contact predictions (however not necessarily identical distance restraints, see
section Structure Prediction with EVFold). With an average TM-score of 0.72 over the entire
benchmark set, ReRASREC-PLM lead to an improvement of 0.17 when compared to EVFold-
PLM, whose average TM-score was only 0.55. ReRASREC-PLM furthermore increased the
number of targets with a TM-score> 0.7 from 6 to 20. In terms of RMSD and RMSDSSE, using
our method lead to an average improvement from 7.3 Å to 4.9 Å and from 5.7 Å to 3.7 Å
respectively. Moreover, EVFold-PLM failed to predict the correct fold for 6 out of 28 targets
(TM-score< 0.5 and RMSD> 5Å) while our protocol predicted very accurate models
(TM-Score 0.62) with correct folds for all of these targets.
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Based on our backbone convergence criteria (see Materials and Methods) our protocol
failed for targets 2it6 and 3tgi. Both targets consist of long loop regions (fraction of secondary
structural content is only 0.54 and 0.37 respectively) and are therefore challenging for RASREC
as it is mainly focusing on the recombination of reoccurring structural features such as second-
ary structure elements.

Fig 2 reveals that predictions for two converged targets, namely 5p21 and 1bdo, resulted in
models with an RMSD> 10 Å. The TM-Score is however above 0.5 in both cases, i.e. 0.65 and
0.58, respectively, showing that the majority of the protein structure was predicted correctly.
The good accordance between the top-scoring models and the corresponding native structures
can furthermore be seen in Fig B in S1 Supporting Information.

ReRASREC-PLM was not only able to predict the correct fold for a larger number of targets,
but also significantly improved the accuracy within the set of targets with correctly predicted
folds. Excluding the 8 targets where either EVFold-PLM (6) or RASREC-PLM (2) had difficul-
ties, ReRASREC-PLM still increased the average TM-Score by 0.18 over EVFold-PLM from
0.60 to 0.78. In terms of RMSD and RMSDSSE, RASREC-PLM improved them from 5.6 Å to
3.9 Å and from 4.2 Å to 2.9 Å, respectively.

We also compared the accuracy of ReRASREC-PLM with two other recently published
methods (PconsFold [33] and FRAGFOLD [31]) on the subset of targets where each publica-
tion reported actual numbers on. We found that, although both methods improve upon
EVFold-PLM, ReRASREC-PLM still outperforms both (Table A in S1 Supporting
Information).

ReRASRECmodels have accurate side chains in the protein core
Fig 3 further indicates that the models generated with our protocol do not only have high accu-
racy in their backbones, but also a high rotamer recovery of core side-chain conformations. A
superposition of the lowest-energy model and the corresponding crystal structure of each tar-
get can be found in Fig B in S1 Supporting Information.

Table 2 shows that on average 84% of the converged core side chains in the RASREC models
are in the same χ1 rotamer well, and 46% have the same set of rotamer states for all χ angles as
the corresponding crystal structures. An analysis of the single top-ranked models of EVFold-
PLM and ReRASREC-PLM furthermore shows that ReRASREC-PLM predicts higher numbers

Fig 2. Comparison between ReRASREC-PLM and EVFold-PLM. In case of ReRASREC-PLM, the similarity measures are averaged over the 10 lowest-
energy models, while for EVFold-PLM the single top ranked model is evaluated. The color represents the fraction of converged residues in the 30 lowest-
energy models of ReRASREC-PLM. The gray areas indicate an improvement of ReRASREC-PLM over EVFold-PLM.

doi:10.1371/journal.pcbi.1004661.g002
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of buried side chains with native χ1 romater assignment than EVFold-PLM, see Table B in
S1 Supporting Information.

Fig 3. Superposition of top rankedmodels and corresponding crystal structures. Top-energy
ReRASREC structures (red) for 1atz (A), 1jo8 (B), 1o1z(C), and 1wvn(D) are superimposed with the
corresponding crystal structures (blue). For each target, a cartoon representation of the lowest-energy
structure (left) and a close-up showing non-polar side-chains (right) is shown.

doi:10.1371/journal.pcbi.1004661.g003

Table 2. Accuracy of sidechain χ1 rotamers in the final ReRASRECmodels. Buried and converged side chains are selected and their adopted rotamer
assignments are compared to those in the reference crystal structure. Alanine and Glycine are excluded from this analysis.

Benchmark set Target Number of side chains Fraction of recovered
rotamers

buried* converged & buried** recovered χ1 *** χ1 only% all χ angles~

EVFold benchmark set 1bkr 42 8 7 0.88 0.50

1e6k 49 20 18 0.90 0.55

1f21 53 20 19 0.95 0.45

1g2e 25 11 10 0.91 0.64

1odd 27 10 9 0.90 0.70

1r9h 36 8 7 0.88 0.63

1rqm 42 12 7 0.58 0.33

1wvn 19 14 13 0.93 0.50

2hda 16 11 6 0.55 0.27

2it6 48 7 6 0.86 0.29

2o72 27 8 7 0.88 0.38

3tgi 101 27 22 0.81 0.37

5p21 71 20 19 0.95 0.60

5pti 14 5 3 0.60 0.20

Pconsfold benchmark set 1a3a 56 19 16 0.84 0.63

1atz 72 9 8 0.89 0.33

1bdo 25 10 8 0.80 0.70

1chd 74 23 19 0.83 0.43

1fqt 44 21 19 0.90 0.52

1hdo 84 21 15 0.71 0.38

1ihz 51 7 6 0.86 0.29

1im5 68 22 19 0.86 0.32

1jo8 15 10 8 0.80 0.50

1jwq 76 17 15 0.88 0.53

1o1z 99 29 26 0.90 0.34

1tqh 106 36 32 0.89 0.53

1vp6 50 19 18 0.95 0.63

2cua 46 15 11 0.73 0.27

Average N/A N/A N/A N/A 0.84 0.46

* Side chains that are buried in the reference structure (SASA < 40Å)

** Side chains that are buried (SASA < 40Å) and converged (χ1 angle, SD < 10 degrees in 10 low-energy structures).

*** Subset of converged and buried residues that adopt the same χ1 rotamer state as in the reference structure.

% Ratio of column 2 (correct) and column 1 (converged and buried)

~ Fraction of sidechains in column 1 (converged and buried) for which all side-chain torsion angles adopt the same rotamer state as in the reference

structure.

doi:10.1371/journal.pcbi.1004661.t002
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ReRASREC is more robust against incorrect distance restraints
It has been shown previously [5,6,36] that RASREC is more robust against incorrect distance
restraints than the standard Rosetta ab initio protocol. A high tolerance against false positives
is of special interest for proteins where only a limited number of homologous sequences are
available. In those cases, the fraction of false positives in the corresponding contact predictions
is comparably high, hence making structure prediction for standard prediction methods
difficult.

To investigate how our protocol performs with an elevated amount of incorrectly predicted
residue contacts, we used it in combination with the contact predictions published in [13].
These predictions were generated with the less accurate mean field approach (DI–direct infor-
mation) and therefore contain an increased number of incorrectly predicted protein contacts
as compared to the restraints obtained with the PLM approach (see Table 1). With an average
PPV of 0.51, the accuracy of the DI-restraints drops by 0.17 compared to the average PPV of
the PLM-restraints.

Given these restraints with a significantly lower accuracy, our protocol was able to converge
for 12 out of 14 targets (see Fig C in S1 Supporting Information) and predicted the correct fold
for all of the converged targets with an average TM-score of 0.70 and an average RMSD of 4.0
Å (see Table 3). The results obtained with our protocol significantly outperform the top ranked
results generated with EVFold using DI-restraints: Using our protocol lead to an increase in
average TM-score of 0.17 when compared to the average TM-score of 0.47 of the correspond-
ing EVFold results. In terms of RMSD, the use of ReRASREC-DI improved the prediction
from 7.2 Å to 5.6 Å. For 6 targets, the top-ranked EVFold models furthermore displayed the
incorrect fold (TM-score< 0.5 and RMSD> 5 Å).

Table 3. Results for the EVFold benchmark set using different methods and different restraint sets. For ReRASREC, the metrics were calculated and
averaged over the 10 lowest-energy models while for EVFold, the single top ranked structure was used. For both methods, results generated with both PLM-
and DI-restraints are shown. For each double column and target, the ‘better’ performance is highlighted.

TM-score RMSD

PLM-restraints DI-restraints PLM-restraints DI-restraints

Target ReRASREC-PLM EVFold-PLM ReRASREC-DI EVFold-DI ReRASREC-PLM EVFold-PLM ReRASREC-DI EVFold-DI

1bkr 0.62 0.30 0.68 0.29 3.93 13.79 3.67 13.20

1e6k 0.89 0.71 0.87 0.63 1.62 3.34 1.78 4.76

1f21 0.76 0.70 0.59 0.51 3.34 4.21 6.87 8.16

1g2e 0.88 0.56 0.84 0.54 1.64 4.23 1.83 5.23

1odd 0.69 0.51 0.49 0.37 5.26 6.14 6.20 9.40

1r9h 0.72 0.57 0.68 0.48 2.84 4.87 5.47 7.19

1rqm 0.80 0.54 0.78 0.55 2.50 5.91 2.46 4.72

1wvn 0.87 0.54 0.82 0.28 1.87 5.87 2.09 8.21

2hda 0.77 0.42 0.72 0.40 2.08 4.91 2.47 6.59

2it6* 0.38 0.66 0.38 0.39 11.36 3.94 10.62 10.54

2o72 0.77 0.65 0.69 0.54 3.48 4.14 4.41 6.07

3tgi* 0.40 0.80 0.19 0.53 11.50 3.12 20.19 7.66

5p21 0.65 0.59 0.66 0.70 10.38 6.58 7.99 3.64

5pti 0.43 0.38 0.62 0.45 4.37 5.82 2.77 4.75

Mean 0.69 0.57 0.64 0.47 4.73 5.49 5.63 7.15

* unconverged targets

doi:10.1371/journal.pcbi.1004661.t003
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Using the less accurate DI-restraints had less of an impact on accuracy for ReRASREC than
for EVFold; the average TM-score of the EVFold benchmark set decreased by 0.05 and by 0.1
points for ReRASREC and EVFold, respectively (Table 3). While ReRASREC predicted the cor-
rect fold for all 12 converged targets with both restraint sets, EVFold increased the number of
incorrect folds from 2 to 6 when using the less accurate DI-restraints instead of PLM-
restraints.

This suggests that our protocol can predict structures with restraints of mediocre accuracy
better than the CNS protocol used by EVFold.

Successful model ranking with full-atom energy function
For realistic application cases the ranking of the predicted structural models is of great impor-
tance as it will be the single criterion for selecting the final predicted models. The models gen-
erated with our protocol were ranked with the full-atom energy function of Rosetta. All-atom
energy functions are very sensitive to correct packing of side chains due to the steep gradient of
the Lennard-Jones repulsive term. Correct packing of side chains is hard to achieve, in particu-
lar, if the backbone structure is not sufficiently accurate. Selection based on this energy func-
tion is therefore only possible if the backbone accuracy is very high.

Fig 4 shows the full-atom energies and RMSD values for each model generated during the
different stages of a single RASREC run for one exemplary target. The energy funnel at the low
RMSD area shows that the all-atom energy function is able to discriminate between correct
and incorrect structural models.

This observation is further reinforced by comparing the lowest-RMSD models to the low-
est-energy models (Table C in S1 Supporting Information): The average TM-score of the low-
est-RMSD models is with 0.77 only 0.05 higher than the one of the lowest-energy models
generated by ReRASREC with 0.72.

Fig 4. RMSDs and all-atom scores of each structure generated during a single RASREC run. All
structures generated during the initial RASREC run of target 1e6k are shown. A simple structural refinement
was carried out for each model to convert the centroid models (the first four RASREC stages use the Rosetta
low-resolution energy) into full atommodels with packed side chains.

doi:10.1371/journal.pcbi.1004661.g004
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In contrast, EVFold ranks its models based on inherent geometrical properties and con-
straint satisfaction. Choosing the lowest-RMSD models instead of the top ranked ones
increases the average TM-score from 0.55 to 0.62 and improves the RMSD from 7.3 Å to 5.2 Å.

Investigating these results more closely, one can observe that the top ranked structures of
EVFold-PLM adapt the incorrect fold (RMSD> 5 Å and TM-score< 0.5) for two targets,
namely 1bkr and 1o1z, although models with correct topologies were generated as well. For
those two targets, the ranking of EVFold-PLM therefore fails. For ReRASREC-PLM using the
full-atom score function, no such discrepancy was observed.

Gain in accuracy due to high quality structural models
In this section, we analyze the accuracy of the models generated by EVFold-PLM and ReRAS-
REC-PLM irrespective of their ranking schemes. Therefore, we have compared the most accu-
rate models (average of the 10 lowest-RMSD models) of ReRASREC to the single lowest-
RMSD models generated by the EVFold web server within its 50 reported models. As shown in
Fig 5, the ReRASREC models with lowest RMSD outperform the lowest-RMSD models of
EVFold for each converged target. Overall, the ReRASREC models show an increase in TM-
score of 0.15 when compared to the average TM-score of 0.62 of the single most accurate
EVFold models.

We have shown in the previous section that the difference in accuracy between the lowest-
energy and lowest-RMSD models of ReRASREC-PLM is small. The lowest energy models of
ReRASREC-PLM are therefore more accurate than any models obtained with the EVFold web-
server (see Fig D in S1 Supporting Information). On average, the lowest-energy models of
ReRASREC-PLM lead to an increase in TM-score of 0.1 when compared to the TM-score of
0.62 of the single lowest-RMSDmodels of EVFold-PLM. This shows that our method generates
models of higher structural quality than EVFold-PLM.

Refinement run leads to small improvements in model accuracy
If the backbone of the first RASREC run did not converge within 2 Å for over 90 percent of the
residues, a refinement run (see Materials and Methods) was carried out. To see to what extent

Fig 5. Comparison of ReRASREC’s lowest-RMSDmodels to the lowest-RMSDmodels generated with EVFold. The single most accurate EVFold
structure (lowest RMSD) has been selected among all 50 provided models and is compared to the average of the 10 models of a RASREC refinement run
with lowest RMSD.The color represents the fraction of converged residues in the 30 lowest energy models of ReRASREC-PLM. Gray shaded areas indicate
an improvement of ReRASREC-PLM over EVFold-PLM.

doi:10.1371/journal.pcbi.1004661.g005
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the refinement run contributes to the final performance of our protocol, we compared the
results of the initial RASREC run to the results obtained after the refinement run (ReRASREC).

Fig 6A and 6B show that the accuracy of the top ten scoring models after the refinement run
did not significantly improve. However, Fig 6C indicates that the pairwise RMSD between all
models in the ensemble of the 10 lowest-energy structures decreased by up to 1.4 Å after apply-
ing the refinement run, indicating better convergence. On average, the pairwise RMSD
decreased by 0.5 Å. In addition, Fig 6D plots the average RMSD of the 10 lowest-energy mod-
els against their pairwise RMSD for both RASREC and ReRASREC. In both cases, a similar cor-
relation between RMSD and pairwise RMSD can be observed. This shows that the refinement
run does not lead to an artificial over-convergence but that the relation between both, as
explored by RASREC individually, is kept.

This comparison shows that while the models have high accuracies after the initial RASREC
run, the refinement run improves the overall prediction by increasing the precision and con-
vergence of the final models.

Convergence predicts accuracy
Fig 6D shows that there is a reasonable correlation between the pairwise RMSD and the overall
performance of each target (pearson correlation coefficient of 0.83 and 0.73 for RASREC and
ReRASREC respectively), meaning that low pairwise RMSD values correlate with low RMSD
values and vice versa. The same trend can be observed when relating the backbone convergence
(as defined previously) of a prediction to its performance, see Fig E in S1 Supporting Informa-
tion: High backbone convergence corresponds to low RMSD values with a pearson correlation
coefficient of -0.77. These strong correlations indicate that the accuracy of our final models can
be predicted by their convergence. Highly converged structures (low pairwise RMSD) indicate
an accurate prediction while a highly diverse ensemble suggests that the prediction is incorrect.
This observation further reinforces our choice deeming predictions with a convergence lower
than 50% as unsuccessful.

Increase in prediction accuracy due to residue-residue contact
information
To identify to what extent the RASREC protocol benefits from residue-residue contact infor-
mation, we have compared RASREC runs without evolutionary information to RASREC runs
including them in form of distance restraints for the 14 proteins of the EVFold benchmark set.
For this test, we considered the results after a single RASREC run without the optional refine-
ment step. As shown in Fig 7, without the use of evolutionary contact information, RASREC
only predicted the fold of 3 out of 14 proteins correctly (TM Score> 0.5 or RMSD< 5Å) with
an average TM-score of 0.41. However, if restraints derived from predicted residue-residue
contacts were included, RASREC improved the coordinate accuracy for all targets of the bench-
mark set significantly, yielding an average TM-score over all 14 targets of 0.69. This shows that
the additional data provided by the predicted residue-residue contacts enables RASREC to pre-
dict models in a near-native conformation, which would not be possible otherwise.

To investigate to what extend the RASREC protocol uses the available contact information,
we compared the fraction of satisfied restraints (PPV), i.e. Cβ-Cβ distance� 8 Å, in the top-
scoring models of our protocol and the native structure (Fig F in S1 Supporting Information).
On average, the fraction of satisfied restraints in the top-scoring models after the initial RAS-
REC run (0.72) is very similar to the one of the native models (0.69). Overall, the RASREC
models satisfy 88% of all restraints that are satisfied in the native structures, see Table D in S1
Supporting Information. RASREC furthermore correctly violates 63% of the incorrect distance
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restraints. The good correspondence between the PPVs on the native structure and the RAS-
REC models, as well as the large fraction of satisfied “correct” restraints shows that RASREC is

Fig 6. Comparison between initial RASREC results (RASREC-PLM) and refinement results (ReRASREC-PLM). A) RMSD and B) TM-scores of the 10
lowest-energy models of RASREC-PLM and ReRASREC-PLM C) Averaged pairwise RMSD of 10 lowest-energy models in ReRASREC-PLM and
RASREC-PLM D) Average RMSD plotted against the average pairwise RMSD of the 10 lowest-energy models for both RASREC-PLM and
ReRASREC-PLM.

doi:10.1371/journal.pcbi.1004661.g006
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able to efficiently use the provided contact information. However, ignoring a larger amount of
incorrect distance restraints might improve the prediction even further.

Comparing the PPVs, calculated for the restraints used by EVFold, on the top-ranked
EVFold models and the native structures suggests that EVFold does not use the provided con-
tact information as well as RASREC, see Fig F in S1 Supporting Information.

Conclusions
In this study, we demonstrated that RASREC combined with evolutionary information is a
powerful tool to predict the structures of globular proteins with high accuracy. Tested on a
benchmark set of 28 globular proteins, we showed that our protocol is able to outperform latest
state-of-the-art methods by predicting structures to higher accuracies for the majority of the
benchmark set.

We further showed that the combination of improved sampling and high error tolerance of
RASREC enables structure prediction in cases where the accuracy of predicted contacts is com-
paratively low, e.g. dropping below 50 percent. Robustness against erroneous distance
restraints is of special interest for proteins for which only a limited amount of homologous
sequences are known. The accuracy of residue-residue contact prediction is highly dependent
on the number of available sequences in the multiple sequence alignment. For multiple
sequence alignments with a small number of sequences, the accuracy is in general too low to
significantly improve structure prediction using standard prediction protocols. We find that
our protocol is able to more efficiently use the sparse information contained in contact predic-
tions with low accuracy, due to the error robustness and iterative sampling strategy of the
underlying RASREC algorithm. Our protocol should therefore be able to predict accurate mod-
els in cases where other currently published methods would most likely fail to predict the cor-
rect fold.

In addition, we have shown that integrating evolutionary information into the RASREC
protocol is essential for accurate protein structure prediction for 9 out of 12 proteins in the
EVFold benchmark set. Even adding contact predictions with accuracies as low as 45% can be
sufficient to predict high resolution models that would not be possible using RASREC alone.

Fig 7. Comparison between RASREC runs without using contact information (RASREC) and RASREC runs using contacts predicted with the PLM
approach (RASREC-PLM). For both methods, a single RASREC run without the optional refinement was carried out and the ensemble of the 10 lowest-
energy models was considered as the final result. The color represents the fraction of converged residues in the 30 lowest energy models of RASREC-PLM.

doi:10.1371/journal.pcbi.1004661.g007
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The optional refinement run improves the prediction by increasing the precision of the final
models. Future work focusing on this step might further increase accuracy and convergence of
the final models.

Overall, we have shown how evolutionary information can be efficiently used for predicting
accurate protein structures. The rapid growth of sequence information and the current
advances in statistical sequence analysis have made protein structure prediction using evolu-
tionary information highly relevant. Finding a way to reliably and efficiently use the distance
information contained in multiple sequence alignments will be a first step to fill the increasing
gap between the large number of known protein sequences and the significantly smaller num-
ber of known protein structures.
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REC run. Fig B, Lowest-Energy ReRASREC-PLM Structures. Fig C, Comparison of ReRAS-
REC-DI and EVFold-DI. Fig D, Comparison of top ranked ReRASREC models and lowest
RMSD EVFold models, Fig E, Analysis of prediction performance and convergence. Fig F,
Fraction of satisfied restraints in native structures and top-ranked models. Table A, TM-scores
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Restraint classification performance of RASREC. Method A, Contact Prediction and Restraint
File Generation. Method B, Structure Prediciton with the RASREC protocol. Method C,
Refinement with Rasrec.
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S1 Text. Protocol capture. This protocol capture describes the steps necessary to reproduce
the results presented in the manuscript “Combining evolutionary information and an iterative
sampling strategy for accurate protein structure prediction”. Exemplary input files and scripts
to carry out the steps outlined in this protocol capture as well as exemplary output files are pro-
vided in S1 File. For simplification, we only describe structure prediction using our protocol
for target 1wvn in this protocol capture. The supplementary materials are also included with
Rosetta under the directory “Rosetta/demos/protocol_capture/2015/ rasrec_evolutionary_res-
traints”
(PDF)

S1 File. Files for protocol capture. Input files for target 1wvn and scripts to carry out the steps
outlined in the protocol capture in S1 Text as well as exemplary output files are provided in
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