
Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

NET-2017-07-1Network Architectures and Services

Verification of Autonomic Actions in
Mobile Communication Networks

Tsvetko Ivanchev TsvetkovDissertation

TECHNISCHE UNIVERSITÄT MÜNCHEN
Institut für Informatik

Lehrstuhl für Netzarchitekturen und Netzdienste

Verification of Autonomic Actions in
Mobile Communication Networks

Tsvetko Ivanchev Tsvetkov

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Uwe Baumgarten

Prüfer der Dissertation:

1. Prof. Dr.-Ing. Georg Carle

2. Prof. Dr. Rolf Stadler

KTH Royal Institute of Technology, Stockholm, Sweden

Die Dissertation wurde am 27.02.2017 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 29.06.2017 angenommen.

Cataloging-in-Publication Data

Tsvetko Ivanchev Tsvetkov
Verification of Autonomic Actions in Mobile Communication Networks
Dissertation, July 2017

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

ISBN 978-3-937201-56-6
DOI 10.2313/NET-2017-07-1
ISSN: 1868-2634 (print)
ISSN: 1868-2642 (electronic)

Network Architectures and Services NET-2017-07-1
Series Editor: Georg Carle, Technical University of Munich, Germany
c©2017 Technical University of Munich, Germany

Abstract

Mobile communication networks are highly complex systems which are comprised of
a set of various technologies and automation mechanisms. Today, when we talk about
cellular networks we usually think of networks that support the latest standard, which
are also backwards compatible to standards developed in the past. The most prominent
example is Long Term Evolution (LTE) and the supported fallback to the Global System
for Mobile Communications (GSM) or the Universal Mobile Telecommunications Sys-
tem (UMTS). Moreover, mobile networks are comprised of a high variety of Network
Elements (NEs), e.g., the LTE Radio Access Network (RAN) is typically composed of
macro as well as micro and pico cells. As a result, management and automation concepts
have been developed to deal with the configuration, optimization, and troubleshooting of
the network. One example are Self-Organizing Networks (SONs) which aim to reduce
human intervention and automatize those processes.

However, having automated entities that actively reconfigure the network raises the
question of how to assess their actions and what to do in case they negatively affect
the performance of the network. In the terms of SON, those entities are referred to as
SON functions, also called online SON, which are implemented as closed control loops
that actively monitor Performance Management (PM) / Fault Management (FM) data,
and based on their objectives change Configuration Management (CM) parameters. In
addition, there are offline SON methods which are comprised of sophisticated optimiza-
tion algorithms that require more knowledge about the network and also more time to
compute a new configuration. Usually, offline algorithms utilize simulation tools to find
the most suitable configuration setup.

Nevertheless, both online and offline approaches may face difficulties while they
optimize the network and may produce suboptimal or even configurations harming per-
formance. The reasons are manifold: they may have inaccurate information about the
network, they may not know whether there is another ongoing SON activity, or they may
simply have a very limited view on the network. For this reason, in the mobile network
area troubleshooting as well as anomaly detection and diagnosis approaches are used to
analyze the network performance and state whether configuration changes had a negative
impact on the NEs. Thereby, they may also suggest corrective actions that improve the
current network state.

Unfortunately, such approaches often neglect issues that may occur while rolling back

II Abstract

configuration changes. First and foremost, verification collisions are often underestimated.
They prevent two or more corrective actions from being simultaneously executed and,
therefore, delay the process until the network is restored to a previous stable state. Those
collisions may also result in the inability to process all corrective actions, that is, we have
an over-constrained problem that has no solution for the given conditions. Moreover, the
issue of detecting weak collisions, i.e., collisions that may turn out to be false positive,
and SON function transactions is neglected as well.

Second, dynamic changes in the network topology, e.g., such induced by energy saving
mechanisms are often neglected. They may result in incomplete cell profiles and gener-
ally complicate the process of assessing the performance impact of other configuration
changes. In the worst case scenario, they may lead to the rollback of changes that are
necessary for the flawless network operation.

In this thesis, a concept for verifying configuration and topology changes is presented.
It is realized as three step process that splits the network into areas of interest, assesses
their performance, and generates a corrective action plan. The set of corrective actions
are undo actions, which restore a cell’s configuration to a previous state, and topology
corrective actions, which either enable or disable cells. The presented concept utilizes
techniques from graph theory and constraint optimization to resolve the aforementioned
issues. For example, it makes use of a Minimum Spanning Tree (MST) clustering
technique that eliminates weak collisions. Furthermore, it utilizes Steiner trees to generate
the necessary topology corrective actions. The presented concept is evaluated in a
simulation environment and observations based on real data are made as well.

Acknowledgments

This work would not have been possible without the advice and support of many people.
Here, I would like to take the opportunity to the express my thankfulness and great
appreciation.

First of all, I would like to thank Prof. Dr. Georg Carle for giving me the opportunity to
write my dissertation under his supervision. I am deeply grateful for his support, advice,
and freedom he gave during those four years. I also would like to thank Prof. Dr. Rolf
Stadler for being my second examiner and Prof. Dr. Uwe Baumgarten for heading my
committee. With the same gratitude, I would like to thank Dr. Henning Sanneck for
enabling me to do my research at Nokia. Our numerous discussions over the years were
invaluable.

Second, I would like to thank all of my colleagues without whom I would not have
been able to make it this far. Thank you, Janne Ali-Tolppa, for the various discussions,
meetings, and suggestions you gave me. This thesis would not have become reality
without your encouragement and your support on the ideas I had. I really enjoyed working
with you. Thank you, Christian Mannweiler, for your help, support, and advice. I really
do appreciate the time you always had to review my ideas and research results. Thank
you, Christoph Frenzel, for your helpfulness and for constantly challenging my ideas. It
was amazing to work with you side-by-side, especially during the development phase of
the simulation system. I have learned a lot of things from you. Also, special thanks to
Szabolcs Nováczki and Christoph Schmelz for making my entry into the research field to
go as smooth as possible.

Last but not least, I would like to thank my parents, Marusya Monova and Ivancho
Monov, for always been there for me whenever I needed them. You have always believed
in me, and have always supported me in everything. Thank you, for your unconditional
love throughout my life.

Munich, July 2017
Tsvetko Ivanchev Tsvetkov

Contents

I Introduction and Background 1

1 Introduction 3
1.1 Automation of Mobile Networks . 3
1.2 Anomaly Detection and Configuration Restoration 4
1.3 Research Objectives . 5
1.4 Approach and Contributions . 10

1.4.1 Identification of Requirements, Issues, and Causes 10
1.4.2 The Concept of SON Verification 11
1.4.3 Implementation of the Verification Concept 13
1.4.4 Concept Evaluation . 13

1.5 Thesis Outline . 14
1.6 Publications . 17

1.6.1 Publications in the Context of this Thesis 17
1.6.2 Publications in the Context of Other SON Related Areas 19

1.7 Statement on the Author’s Contributions 19
1.8 Note on Terminology . 20
1.9 Document Structure . 21

1.9.1 Reference to Author’s Publications 21
1.9.2 Terminology and Notes . 21
1.9.3 Objectives and Tasks . 21
1.9.4 Summary and Findings . 22
1.9.5 Appendix . 22

2 Background 23
2.1 Mobile Communication Networks . 23

2.1.1 Generations of Communication Standards 23
2.1.2 Collaboration and Standardization Process 24
2.1.3 Radio Access Network . 25
2.1.4 Core Network . 27
2.1.5 Protocol Architecture . 28

2.2 Mobile Network Management . 28
2.2.1 Operation, Administration and Management Architecture 29

VI Contents

2.2.2 Network Management Data 30
2.2.3 Granularity Period . 31

2.3 Self-Organizing Networks . 31
2.3.1 SON Categories . 32
2.3.2 SON Functions . 34
2.3.3 Other Application Areas . 36

2.4 Summary . 38

II Problem Analysis and Related Work 39

3 Problem Analysis 41
3.1 Motivation . 42

3.1.1 Troubleshooting and Anomaly Detection 42
3.1.2 The Term "Verification" . 44

3.2 Challenges for a Verification Process 45
3.2.1 SON Function Transactions 45
3.2.2 Verification Collisions . 47
3.2.3 Over-Constrained Corrective Action Plan 49
3.2.4 Weak Verification Collisions 51
3.2.5 Dynamic Topology Changes 52

3.3 Factors Influencing a Verification Process 55
3.3.1 Availability of PM and CM Data 55
3.3.2 Statistical Relevance of PM Data 57
3.3.3 Network Density, Heterogeneity, and Topology 58
3.3.4 Characteristics of CM Parameter Changes 60

3.4 Summary . 63

4 Related work 67
4.1 Pre-Action Analysis . 67

4.1.1 Conflict Avoidance at Design-Time 68
4.1.2 Conflict Avoidance at Run-Time 68

4.2 Post-Action Analysis . 71
4.2.1 Degradation Detection and Diagnosis Strategies 71
4.2.2 Scope Change Assessment . 73

4.3 Post-Action Decision Making . 73
4.3.1 Troubleshooting and Self-Healing Approaches 74
4.3.2 Coordination-Based Approaches 75

4.4 Summary . 76

Contents VII

III The Concept of SON Verification 77

5 Verification Terminology and Analysis 79

5.1 The Process of SON Verification . 79

5.2 Verification Areas . 81

5.2.1 Verification Areas Based on CM Changes 81

5.2.2 Verification Areas Based on Topology Changes 82

5.3 Verification Area Assessment . 83

5.3.1 KPI Categories . 83

5.3.2 CM Verification KPIs and Profiles 84

5.3.3 Topology Verification KPIs and Profiles 84

5.4 Corrective Actions . 85

5.4.1 CM Undo Action . 85

5.4.2 Topology Corrective Action 86

5.5 Specification of the Verification Collision Problem 87

5.6 Time Windows . 87

5.6.1 Observation Window . 87

5.6.2 Correction Window . 88

5.7 Relation to Feedback Planning . 88

5.8 Similarities to Energy Saving . 89

5.9 Summary . 91

6 Verification of Configuration Changes 95

6.1 Cell Behavior Model . 96

6.2 Detecting Anomalies . 97

6.3 Cell Clustering . 98

6.4 Determining The Verification Collision Grade 103

6.5 Solving a Verification Collision Problem 106

6.6 Solving an Over-Constrained Verification Collision Problem 108

6.7 Summary . 112

7 Verification of Topology Changes 117

7.1 Cell State Model . 119

7.2 Topology Verification Graph . 120

7.3 The Steiner Tree-Based Verification Algorithm 121

7.4 Topology Correction and Steiner Point Assessment 124

7.5 Analysis of the Steiner Tree-Based Verification Approach 125

7.6 Summary . 127

VIII Contents

IV Concept Implementation and Evaluation 131

8 Evaluation Environment 133
8.1 Simulation Environment . 133

8.1.1 LTE Network Simulator and Parser 134
8.1.2 SON Functions . 141
8.1.3 SON Function Coordinator . 142

8.2 Real Data Environment . 142
8.2.1 Data Sets . 142
8.2.2 SON Functions . 144

8.3 Summary . 145

9 Concept Implementation 147
9.1 Structure of the Verification Process 147

9.1.1 Main Components . 148
9.1.2 Recorders . 151
9.1.3 Utilities . 151
9.1.4 Graphical User Interface . 153

9.2 Verification Process Usage . 154
9.2.1 Application Programming Interface 154
9.2.2 Package Structure . 154
9.2.3 Initialization and Usage . 155

9.3 Libraries and Packages . 156
9.3.1 Mathematical Libraries . 156
9.3.2 Extra Collection Types, Methods, and Conditions 158
9.3.3 Logging and Configuration . 160
9.3.4 Annotations . 161

9.4 Summary . 162

10 Evaluation Methodology and Results 165
10.1 Studying the Verification Limits of SON Functions 165

10.1.1 Simulation Study Setup . 166
10.1.2 Scenario and Results . 168

10.2 Neglecting Verification Collisions . 169
10.2.1 Simulation Study Setup . 170
10.2.2 Scenario and Results . 171

10.3 Solving of the Verification Collision Problem 175
10.3.1 Real Data Study . 175
10.3.2 Simulation Study . 179

10.4 Elimination of Weak Verification Collisions 182
10.4.1 Real Data Study . 183
10.4.2 Simulation Study . 186

Contents IX

10.5 Handling Fluctuating PM Data . 189
10.5.1 Simulation Study Setup . 190
10.5.2 Scenario and Results . 192

10.6 Topology Verification . 194
10.6.1 Simulation Study Setup . 195
10.6.2 Scenario and Results . 197

10.7 Summary . 200

V Conclusion 205

11 Conclusion and Future Directions 207
11.1 Research Problems . 207
11.2 The Concept of SON Verification . 208

11.2.1 CM Verification . 208
11.2.2 Topology Verification . 209

11.3 Results . 209
11.4 Future Directions and Work . 210

11.4.1 Evolution of Mobile Networks 210
11.4.2 Challenges for Verification Approaches 211
11.4.3 Future Work and Open Issues 211

VI Appendix 215

Acronyms 217

List of Symbols 223

List of Figures 233

List of Tables 235

List of Listings 237

List of Definitions 239

Bibliography 241

X Contents

Part I

Introduction and Background

Chapter 1

Introduction

1.1 Automation of Mobile Networks

The Self-Organizing Network (SON) concept as we know today has been developed
to deal with the complex nature of standards like Long Term Evolution (LTE) and
LTE-Advanced. Its purpose is to optimize the operation of the network, supervise the
configuration and auto-connectivity of newly deployed Network Elements (NEs), and
enable automatic fault detection and resolution [HSS11]. To be able to perform those
tasks, though, a SON-enabled network has to be managed by a set of autonomous SON
functions that are designed to perform specific network management tasks. Typically,
they are implemented as control loops which monitor Performance Management (PM)
and Fault Management (FM) data, and based on their objectives, change Configuration
Management (CM) parameters.

SON functions are typically divided into three subcategories: self-configuration, self-
optimization, and self-healing [3GP16g]. Within the first one fall functions like Physical
Cell Identity (PCI), which is responsible for the assignment of cell IDs, and Automatic
Neighbor Relation (ANR), which is accountable for the establishment of neighbor rela-
tions between cells. A representative of the second category is the Coverage and Capacity
Optimization (CCO) function which has been developed to optimize the coverage within
a cell by changing the transmission power or the antenna tilt. Another function that
falls within the self-optimization class is Mobility Load Balancing (MLB). It has been
designed to move traffic from highly loaded cells to neighbors as far as interference and
coverage allows by adjusting the Cell Individual Offset (CIO) [YKK12]. The third class,
i.e., self-healing, includes functions like Cell Outage Compensation (COC) which has
been modeled to provide sufficient coverage by changing antenna parameters in case
cells fail and induce a coverage hole.

In literature, the above-introduced functions are also referred to as online SON solu-
tions. Nonetheless, there are approaches that fall into the so-called offline SON class.
Usually, offline SON methods are supplied with PM data that has been collected for
a longer period of time and, in most cases, require detailed knowledge about the net-

4 Chapter 1. Introduction

work. Thereby, they have the advantage of being comprised of sophisticated optimization
algorithms which may provide a more accurate CM setup compared to online SON
approaches. Popular examples are offline algorithms for coverage and capacity optimiza-
tion which use a realistic LTE simulation scenario and create a set of CM changes by
considering the outcome of the simulation runs [BFZ+14].

Nowadays, a mobile network may utilize both online and offline SON algorithms. For
example, coverage changes can be made by a centralized offline algorithm whereas load
balancing between cells can be achieved by using an online function like MLB. Further-
more, a network may not necessarily use all available SON functionalities. For instance,
the LTE network presented in [TNSC14a] includes only two online SON algorithms,
namely PCI and ANR, which fall into the self-configuration category, as introduced
before.

Nonetheless, executing numerous configuration changes at the same time needs to
be done with caution. Any CM change that is suggested by a SON algorithm must be
coordinated in order to prevent runtime conflicts [BRS11, RSB13, ISJB14]. An example
is the change of the network coverage and the adjustment of cell handover parameters.
They must not happen at the same time and within the same area since the handover
performance is highly dependent on how the physical cell borders are set up.

In addition, SON algorithms must be properly timed, e.g., a handover optimization
algorithm like Mobility Robustness Optimization (MRO) must be triggered after CCO
completes its optimization process. Otherwise, the outcome it produces may be already
obsolete since the assumptions about the environment have changed.

1.2 Anomaly Detection and Configuration Restoration

Unfortunately, the increasing reliance on SON features to perform the correct optimiza-
tion tasks creates a new set of challenges. In a SON, the decision to change certain CM
parameters depends not only on the environment, but also on the decisions made by
other SON algorithms in the past. For example, the outcome of the CCO optimization
process impacts any upcoming MRO decision for the reconfigured cells. Consequently,
any inappropriate CM change deployed to the network may lead to a set of suboptimal
decisions in the future. In the worst case scenario, such changes may lead to network
performance degradation.

There are various reasons why suboptimal configuration changes can be made. On the
one hand, online SON algorithms have limited capabilities to reach the global optimum
configuration. Thereby, they have a limited view on the network as well as the ongoing
optimization processes. On the other hand, offline SON approaches are comprised of
sophisticated algorithms that utilize tools that simulate the network and model all relevant
Key Performance Indicators (KPIs). Nonetheless, such methods depend on accurate
information about the network. Should there be a relatively high mismatch between
simulation and reality, we may get a suboptimal configuration or even suggestions for

1.3. Research Objectives 5

changes that will harm performance.
For those reasons, anomaly detection and diagnosis techniques have been studied

quite extensively in the SON as well as the whole mobile network area [SN12, Nov13,
CCC+14b, GNM15]. Such approaches vary to a great extent in the algorithms they
utilize, in the prerequisite of having prior knowledge about the network, as well as the
time they require to detect anomalies and identify the root cause. Nevertheless, they have
one common task, namely to provide an accurate corrective action that will restore the
performance of the network in case they detect an anomaly like an unexpected degradation
in performance.

1.3 Research Objectives

The process of analyzing the impact of configuration changes on the network performance,
as well as rolling back those that harm performance, requires more than simply running
an anomaly detection and diagnosis algorithm. What we are actually trying to achieve is
to evaluate whether or not actions that have been made in the network are complying with
given requirements and conditions, as well as whether they are fulfilling the initial intents.
Typically, in service and system engineering this process is referred to as verification,
which has been also adopted by the Institute of Electrical and Electronics Engineers
(IEEE) as a term that describes such a process [IEE11].

Hence, we actually have a verification process that assesses the performance impact of
actions made in the network and provides a so-called corrective action in case verification
fails. The assessment itself is made by using anomaly detection algorithms, however, the
decision where and when to trigger verification, how long verification should last, as well
as which corrective actions to deploy, induces a new set of questions which result in new
challenges and issues besides those already known from anomaly detection.

The questions "where?", "when?", and "how long?" deal with the selection of the
verification scope, as well as the assessment of the entities selected for verification. That
is, the specification of the entities of interest (e.g., cells) as well as the choice of a strategy
that decides when those entities are ready to be verified. Similarly to service and system
engineering, a component that is still in a beta state or is not yet fully configured or
optimized, should not be passed through verification as it will probably fail some or even
all tests.

The question "which?" addresses not only the selection of a single corrective action,
but also the ability to identify, filter, and resolve conflicts between sets of corrective
actions. A popular example is when a cell fails verification after reconfiguring two
or more of its neighbors. This results in an uncertainty which cell reconfiguration to
blame as well as whether there is a configuration change to blame at all. Note that such
uncertainties are also known as collisions. Furthermore, dynamic changes in the network
topology are quite underestimated and often neglected during the process of verification.
For example, if we remove cells from the network we would immediately change the

6 Chapter 1. Introduction

assumptions that have been initially made and may induce an anomaly.
Generally speaking, a process that verifies network changes operates differently com-

pared to well-known SON functions. In contrast to the SON functions mentioned at
the very beginning of this chapter, a verification process does not have a predefined
absolute goal, e.g., minimize the number of unnecessary handovers. Instead, it forms
a course of actions that have high expected utility, also called an action or deployment
plan. In addition, it plans under uncertainty, either because it has incomplete information
about the world, or because its corrective actions have uncertain effects on the environ-
ment. In literature, this type of planning is typically referred to as Decision-Theoretic
Planning (DTP) [BDH99].

As we can see, there are numerous issues and questions that a verification strategy
needs to address. This thesis is devoted to this topic and discusses four different objective
categories. The very first category is dedicated to the design of a verification solution
that addresses those challenges. The second one deals with issues related to the scope of
verification, i.e., partitioning the mobile network into sets of cells that are independently
analyzed by the verification logic. The third category is devoted to the verification of
configuration changes. The fourth and last one is dedicated to the verification of dynamic
topology changes.

O1: Model and design of a verification process

The process of verification in a mobile SON is a multi-step procedure that has to address
questions and issues besides those known from anomaly detection. Nevertheless, before
going into answering those questions we have to put the focus on specifying and designing
the verification process as well as defining all the necessary properties. Hence, the first
objective category of this thesis is dedicated to those topics. In particular, it is split into
five sub-objectives, as follows:

O1.1 Investigate and study the disadvantages and weaknesses of approaches that
verify network operations.
The objective is connected with a detailed analysis of the problems and issues
experienced by current approaches, as well as the study of their weaknesses and
disadvantages. Chapters 3 and 4 contribute to this topic.

O1.2 Model and design a verification process that assesses CM changes as well as
changes made in the network topology.
This objective deals with the modeling and specification of the verification process.
Concretely, it identifies the steps and phases that are required to enable verification
in SONs as well as mobile communication networks in general. Furthermore, it
characterizes the main building blocks of a verification process. Chapters 5, 7, and 9
are devoted to this topic. Note that Chapters 5 and 7 concentrate on the formal
specification of the verification process whereas Chapter 9 on implementation
specific details.

1.3. Research Objectives 7

O1.3 Identify and specify all necessary attributes and properties of a verification
process.
Here, the main tasks are to specify the corrective action types and the resulting
action plan. Furthermore, it identifies the network entities that are verified and
outlines the relevant verification KPI types. Chapter 5 contributes to this research
objective.

O1.4 Study the relation between a verification process and concepts based on deci-
sion theory.
A verification process plans under uncertainties as well as generates a coarse of
actions that have a high expected utility. Hence, it becomes of particular interest to
study the connection between such a process and approaches that fall into the DTP
category. Chapter 5 contributes to this objective.

O1.5 Study the relation between a verification process and approaches performing
and assessing topology changes.
A verification process must also assess the impact of topology changes on the
network performance. Therefore, it is of high importance to study the relation
between such a process and approaches that are designed to perform and analyze
topology changes. Chapter 5 discusses this topic and contributes to the objective.

O2: Verification scope selection and assessment

This objective category concentrates on the questions "where?", "when?", and "how
long?", as introduced in the very beginning of this section. That is, this category deals
with the specification of the entities that are going to be verified, the trigger that starts the
verification process, as well as the definition of the state which marks an entity as ready
for verification. This category is split into the following sub-objectives:

O2.1 Fragmentation of the network and specifying the scope of verification.
This objective addresses the granularity of the verification operation, i.e., the
fragmentation of the network into sets of network entities that will be separately
assessed by a verification process. In addition, it targets the specification of the
verification scope when, on the one hand, assessing configuration changes and, on
the other hand, verifying topology changes. Chapter 5 contributes to this topic
by specifying the general fragmentation process, whereas Chapters 6 and 7 to
the selection of the scope when verifying configuration and topology changes,
respectively.

O2.2 Definition of the verification state.
The aim of this objective is to specify and define the verification states of the entities
that are analyzed by a verification process. Moreover, the difference between the
verification states will be studied when, on the one hand, CM verification is made

8 Chapter 1. Introduction

and, on the other hand, when topology verification is carried out. Chapters 6 and 7
are addressing this objective.

O2.3 Estimate the duration of the verification process.
In contrast to the previous two objectives, this one is addressing the question "how
long?", i.e., specifying when an entity is ready for verification. As mentioned
in the beginning of this section, an entity (like a cell) may fail verification if it
is not yet completely optimized. Usually, this happens when a SON function
requires multiple steps to achieve its optimization goal, that is, it will apply several
sequential configuration changes. Chapters 6 and 7 contribute to this objective.

O3: Verifying configuration changes

The third objective category is addressing the verification of network configuration
changes, also known as CM changes. In particular, it focuses on the question "which?",
as introduced at the beginning of this section, i.e., it concentrates on challenges related to
the generation of a deployment plan of corrective rollback actions, as well as the issues
that emerge because of uncertainties during the process of verification. This category is
split into the following sub-objectives:

O3.1 Define uncertainties in the terms of a verification process.
This objective is devoted to the specification of the term "uncertainty" during the
process of verifying configuration changes. Furthermore, the question when and
why uncertainties emerge, as well as the question why they are considered as
conflicts is targeted by this objective. Chapters 3 and 6 discuss this topic and
contribute to this research task.

O3.2 Study and evaluate the impact of uncertainties on the outcome of a verifica-
tion process.
The idea of this objective is to study the impact of uncertainties on the outcome
of a verification process. In particular, it is observed whether the corrective action
plan changes and whether uncertainties can result in inappropriate or suboptimal
corrective actions. Chapter 3 contributes to the objective by studying this problem
and showing why the problem emerges. Chapter 10 contributes by evaluating the
impact of such uncertainties on the overall network performance.

O3.3 Resolve and eliminate uncertainties and provide accurate corrective actions
when verifying configuration changes.
This objective focuses on how to resolve uncertainties and provide a deployment
plan with accurate corrective actions. Furthermore, it concentrates on the detection
of uncertainties which can be eliminated before generating a corrective action plan.
Chapter 6 contributes to this goal whereas Chapter 10 presents the evaluation of
the solution.

1.3. Research Objectives 9

O3.4 Estimate the severity of the CM verification problem.
This objective aims to estimate the severity of the CM verification problem. In
addition, it aims to identify the factors that influence the duration of a verification
process. Chapter 6 is devoted to this research topic.

O4: Verifying dynamic topology changes

As the name of this objective category suggests, the focus is on the verification of dynamic
topology changes, which includes the specification and generation of an appropriate
corrective action. As stated in the beginning of this section, dynamic topology changes
may lead to changes of the initial assumptions about the network. For example, small
cells can be switched off by an energy saving mechanism if they are no longer required.
Nonetheless, the disabling of a cell may induce an anomaly at the surrounding cells since
they may not expect this to happen, and may therefore fail verification. Hence, we get
another source of uncertainties during the process of verification.

Furthermore, the question of providing an appropriate corrective action arises. A
cell is disabled when the network conditions have drastically changed. For instance, if
numerous users suddenly leave the network they may cause an unusual or anomalous
change in cell KPIs. Furthermore, if at the same time configuration changes are made,
they can be wrongly blamed for inducing those anomalies.

In order to give an answer to those questions, this objective category is split into the
following sub-objectives which aim to provide a solution to those problems.

O4.1 Specify and define the uncertainties caused by topology changes.
This objective aims to specify and show the relation between topology changes and
uncertainties that emerge during the process of verification. Chapter 3 contributes
to this topic by identifying the general problem, whereas Chapter 7 by further
specifying the connection between the verification process and topology changes.

O4.2 Study and evaluate the impact of topology changes on the process of verifying
configuration changes, as well as identify the necessary conceptual changes of
a verification process.
The purpose of this objective is to study the impact of topology changes on a
process that verifies configuration changes. In particular, it is of high interest
to observe the consequences of those changes on the corrective action plan, on
the ability to resolve uncertainties (as defined by Objective O3.3), and on the
resulting network performance. Moreover, this objective targets the identification
of the conceptual changes of a verification process that are necessary to enable the
verification of topology changes. Chapters 3, 7, and 10 contribute to this objective.

10 Chapter 1. Introduction

O4.3 Enable topology verification, resolve uncertainties, and provide corrective ac-
tions.
This objective aims to provide a solution that enables the verification of topol-
ogy changes. Concretely, it focuses on resolving uncertainties (i.e., conflicts and
collisions) caused by topology changes, and the provision of topology corrective
actions. Chapters 7 and 10 contribute to this research task.

1.4 Approach and Contributions

Until now, this chapter was discussing mobile communication networks, in particular,
those being identified as SONs, as well as the need to verify ongoing network reconfigu-
rations and the ability to provide appropriate corrective actions in case verification fails.
Verification itself has been identified as a special type of anomaly detection that should
not only be concerned about the issue of whether there is an anomaly, like a degradation
in performance, but also about questions like "where to look for an anomaly?" and "how
to correct it?".

The main contribution of this thesis is the introduction of a concept for the verification
of such actions in mobile SONs, which targets the research objectives introduced in
Section 1.3. In this document, it is referred to as "The Concept of SON Verification".
The contributions of this thesis are split into four parts. The first one (cf. Section 1.4.1)
is dedicated to the analysis of the problem, that is, the identification and discussion of
the issues that emerge while verifying configuration changes. In addition, it contributes
to the research objectives by specifying the requirements that have to be met in order to
enable verification. The second one (cf. Section 1.4.2) presents the concept of SON veri-
fication which addresses the issues identified in the problem analysis part. The third one
(cf. Section 1.4.3) outlines the implementation, whereas the fourth one (cf. Section 1.4.4)
is devoted to the evaluation of the concept. In the following sections, an overview of
those topics is given. It should be noted that the outline of the thesis and the mapping of
objectives to chapters is given in Section 1.5.

1.4.1 Identification of Requirements, Issues, and Causes

The identification of the requirements that a verification strategy has to meet, needs a
detailed analysis of how today’s troubleshooting methods work in a SON as well as
why strategies that (partially) follow the steps of a verification process fail to provide an
appropriate corrective action. In particular, the focus is on the study of concepts falling
within the self-healing class (cf. Section 2.3.1), as well as such that employ anomaly
detection and diagnosis approaches. Chapters 3 and 4 are devoted to this study.

1.4. Approach and Contributions 11

1.4.2 The Concept of SON Verification

In general, the concept of SON verification consists of a strategy that verifies configu-
ration changes and a strategy that handles dynamic topology changes. In the following
sections an overview is given. It should be noted that Chapters 5, 6, and 7 are dedicated
to those topics.

1.4.2.1 Verification Process Analysis

The first topic that is covered here is the specification of the verification steps. In
particular, the split of the network into sets of cell, the assessment of those sets, and the
generation of a corrective action plan in the case of anomalous cell behavior.

The split of the network, also called network fragmentation, results into verification
areas that include the cells that are being under observation because of configuration or
topology changes. Terms and approaches from set and graph theory are used to describe
and model the network fragmentation process.

The concept of SON verification further specifies the uncertainties that have been
introduced in Section 1.3. It calls them verification collisions which result in an ambiguity
during the process of generating a corrective action plan. Furthermore, a differentiation
between necessary, weak, and soft (violable) verification collisions is made. Again, terms
and concepts from graph theory are used to model and describe those properties.

Furthermore, the verification windows are defined, that is, the observation and correc-
tion window. They address the questions when to start the verification process, when
to generate verification areas, when to trigger the algorithm that assesses their perfor-
mance, and when to deploy corrective actions. To describe those phases, approaches
from network management are utilized.

Finally, the corrective action plan is modeled by using terms known from set theory.
Thereby, its properties are defined, e.g., whether the plan is over-constrained due to a
high number of verification collisions.

1.4.2.2 Verification of Configuration Changes

The mechanism that verifies CM changes operates in three steps. Based on the CM
changes it divides the network into verification areas, assesses those by using an anomaly
detection algorithm, and generates corrective CM undo actions for the abnormally per-
forming ones. Those actions restore cells to a previous stable state.

To successfully fulfill those tasks, it has to sample the network for a certain time
period. However, if the mechanism is timed improperly, it may unnecessarily generate
undo actions and may even prevent SON functions from reaching their set goals. To
overcome this issue, for each cell a Cell Verification State Indicator (CVSI) is calculated.
It is based on the deviation from the expected performance and is updated by using
exponential smoothing. A verification area continuously reporting low CVSI values is
considered as anomalous and processed by the verification mechanism.

12 Chapter 1. Introduction

However, verification areas may overlap and share anomalous cells which results in
a verification collision. As a consequence, the verification mechanism is not able to
simultaneously deploy some undo actions since there is an uncertainty which to execute
and which to potentially omit. In such a case, it has to serialize the deployment process
and resolve the collisions. This procedure, though, can be negatively impacted if weak
collisions are processed, since they might delay the execution of the queued CM undo
actions.

In order to overcome this issue, an approach for changing the size of the verification
areas with respect to the detected collisions is developed. Concretely, it is a Minimum
Spanning Tree (MST)-based clustering approach that is able to group similarly behaving
cells together. Based on the group they have been assigned to, weak collisions are
detected and cells removed from a verification area.

After completing this step, the severity of the verification problem is measured by
using a technique based on graph coloring. It gives an estimation how many still valid
collisions have remained after the elimination of the weak ones. Its outcome is used
when generating the corrective action plan, which is modeled as a constraint optimization
problem that is based on so-called hard constraints, i.e., constraints that must not be
violated.

However, processing all planned actions may not be always possible. As stated before,
verification collisions prevent two or more generated CM undo actions to be deployed
at same time. As a result, the verification mechanism may not be able to process, i.e.,
deploy and assess, all generated CM undo actions if the time for that is limited. This
gives us an over-constrained verification problem. To overcome this issue, a method that
utilizes constraint softening is developed. It identifies the actions that can be merged
together in order to meet the time requirement.

1.4.2.3 Verification of Topology Changes

One problem that the verification strategy, as described in the previous section has, is
how it reacts to topology changes. Usually, such changes occur when cell energy saving
features are activated. However, disabling or enabling cells creates uncertainties during
the process of verification which may lead to an inaccurate corrective action plan or, even
worse, the deployment of suboptimal actions. For example, turning on a cell may cause
an anomaly at its neighbors since they did not expect a change like that to happen. In a
similar manner, we are facing this problem when we do the opposite, namely turning off
a cell. The neighbors may expect that the cell is always switched on during its operation.
Furthermore, the fact that we need to enable or disable cells typically means that the
network and service demands have drastically changed, e.g., because numerous User
Equipments (UEs) have either entered or left the network. An event like that can also
induce anomalies at already enabled cells for which CM verification cannot provide an
appropriate corrective action.

1.4. Approach and Contributions 13

In order to handle and verify topology changes, an approach is developed that is based
on Steiner trees. The Steiner tree problem is a combinatorial optimization problem that
tries to reduce the length of an MST by adding extra vertexes and edges to the initial
edge weighted graph. Those additional vertexes are referred to as Steiner points whereas
the initial nodes are called Steiner terminals. In general, Steiner points represent cells
that can be turned on or off during their operation whereas terminals describe cells that
remain always switched on. Based on whether a cell is used as a Steiner point to form the
tree, it is decided if and how to consider it while generating the corrective action plan.

1.4.3 Implementation of the Verification Concept

The design and implementation of the verification concept is another important contri-
bution. It focuses on the practical realization of the approaches, as introduced in the
previous sections. First of all, it starts by discussing the programming language of choice
as well as the packages and libraries that are required to fully implement the verification
logic. An example is the constraint optimizer that is needed when verifying CM changes.
In addition, packages and libraries that ease the development process and improve code
readability are discussed as well.

Second, the implementation structure of the verification concept is presented. Con-
cretely, the modules, the functions implementing the verification logic, and the different
type classes are introduced. An example here is the cell clustering algorithm used the
elimination of weak verification collisions.

1.4.4 Concept Evaluation

The evaluation of the verification concept is a major contribution of this thesis. It
is considered as such not only because it estimates the capabilities of the introduced
verification approach, but also because it studies the limits of the concept as well as
investigates the impact of neglecting the issues, as discussed in Sections 1.3 and 1.4.2.
It starts by analyzing the verification capabilities of already used SON features. Then, it
continues by examining the consequences of neglecting uncertainties, i.e., verification
collisions, while verifying network configuration changes.

The evaluation also covers the problem of having an over-constrained verification
problem (cf. Section 1.4.2), as well as discusses the issue of having weak collisions. It
also includes an evaluation of the strategy that defines whether the observed cells are
ready for verification. Finally, it investigates the problem of having dynamic topology
changes and evaluates the Steiner tree-based verification approach (cf. Section 1.4.2.3).

14 Chapter 1. Introduction

1.5 Thesis Outline

In this section, the outline of the thesis is presented (cf. Figure 1.1). Thereby, a short
introduction of all chapters is provided as well as the mapping of the research objec-
tives (cf. Section 1.3) to the chapters of this thesis is given.

Chapter 2: Background

This chapter provides background information about mobile communication networks,
explains the basics of mobile network management, and introduces the concept of Self-
Organizing Networks (SONs). Moreover, an overview of the generation of communica-
tion standards, the structure of the core and radio access network, and the standardization
process is given. An introduction to the network management architecture, terminology,
and SON use cases is presented as well.

Chapter 3: Problem Analysis

This chapter provides a detailed analysis of the problems that have to be solved by a
verification process. Concretely, it is split into two parts. On the one hand, it discusses the
challenges and issues that emerge during the process of detecting anomalies and rolling
back configuration changes. On the other hand, the chapter gives a detailed description
of the factors that influence this process and lead to the discussed issues.

Chapter 4: Related Work

This chapter is devoted to the work that is related to the concept of SON verification.
In particular, this chapter distinguishes between three categories: pre-action analysis,
post-action analysis, and post-action decision making. Representatives of the pre-action
analysis class prevent conflicting changes from being executed. On the contrary, post-
action analysis focuses on the assessment of already executed actions and the detection
of anomalous cell behavior. Similarly, post-action decision making is devoted to the
detection of suboptimal or degraded performance, however, is also responsible for the
provision of corrective actions.

Chapter 5: Verification Analysis and Terminology

Verification Analysis and Terminology is devoted to the concept of SON verification. It
gives an introduction to the verification terminology as well as an overview of the CM and
topology verification process. Furthermore, the chapter outlines all verification-related
terms, all verification properties, and the connection of SON verification to other areas,
e.g., feedback planning.

1.5. Thesis Outline 15

Chapter 6: Verification of Configuration Changes

This chapter presents the first main building block of the concept of SON verification,
namely the process responsible for the assessment of CM changes after they have been
deployed to the network. Furthermore, it discusses the procedure of generating a correc-
tive action plan as well as the strategy that is used to process the plan and maximize the
total network performance.

Chapter 7: Verification of Topology Changes

In this chapter, the major topic of discussion is the process of verifying dynamic topology
changes. Such changes occur when energy saving features are enabled, i.e., cells get
enabled or disabled depending on the network service requirements. Furthermore, in this
chapter a detailed description of the Steiner tree-based verification algorithm is given.

Chapter 8: Evaluation Environment

This chapter is devoted to the simulation environment and the real data set. They are used
during the evaluation of the verification concept. It describes all main building blocks
of the used simulation environment, including the network topology, the available PM
data, and the offered CM parameters. It also provides a detailed overview of the data set
generated by a real LTE network.

Chapter 9: Concept Implementation

In this chapter, the implementation of the verification process is discussed. In particular,
the main building components are introduced, and the way of how to initialize the
verification process is described. Furthermore, a description of the libraries and tools
required for the implementation of the concept is provided.

Chapter 10: Evaluation Methodology and Results

This chapter is devoted to the evaluation of the SON verification concept. For the
evaluation, the real LTE data set is considered as well as the simulation environment is
used. Note that Chapter 8 describes those two in detail. The evaluation itself studies the
concept’s capabilities to verify configuration and topology changes, i.e., define the scope
of verification, assess the made network operations, and generate a corrective action plan.

Chapter 11: Conclusion

This chapter summarizes the introduced concept, highlights the major findings gained
during the evaluation, and gives an outlook on open questions and future work.

16 Chapter 1. Introduction

 Research Objectives

O1: Model and design of a verification process

O1.1 Investigate and study the disadvantages and weaknesses

of current approaches

O1.2 Model and design a verification process

O1.3 Specify all necessary attributes and properties of a

verification process

O1.4 Study the relation between a verification process and

concepts based on decision theory

O1.5 Study the relation between a verification process and

approaches performing and assessing topology changes

Chapters 3 & 4

Chapters 5, 7 & 9

Chapter 5

Chapter 5

Chapter 5

O2: Verification scope selection and assessment

O2.1 Fragmentation of the network and specifying the scope of

verification

O2.2 Definition of the verification state

O2.3 Estimate the duration of the verification process

O3: Verifying configuration changes

O3.1 Define uncertainties in the terms of a verification process

O3.2 Study and evaluate the impact of uncertainties on the

outcome of a verification process

O3.3 Resolve and eliminate uncertainties and provide accurate

corrective actions when verifying configuration changes

O3.4 Estimate the severity of the CM verification problem

O4: Verifying dynamic topology changes

O4.1 Specify and define the uncertainties caused by topology

changes

O4.2 Study and evaluate the impact of topology changes on

a verification process as well as identify conceptual changes

O4.3 Enable topology verification, resolve uncertainties, and

provide corrective actions

Chapters 5,6 & 7

Chapters 6 & 7

Chapters 6 & 7

Chapter 3 & 6

Chapters 3 & 10

Chapters 6 & 10

Chapter 6

Chapter 3 & 7

Chapters 3, 7 & 10

Chapter 7 & 10

Figure 1.1: Thesis research objectives mapped to chapters

1.6. Publications 17

1.6 Publications

1.6.1 Publications in the Context of this Thesis

During his doctoral studies, the author has contributed to the following list of journals,
conference and workshop papers, patents, as well as demonstration sessions, and has won
the following awards:

Awards

• Best paper award at the IEEE/IFIP Network Operations and Management Sympo-
sium (NOMS 2016)

– Tsvetko Tsvetkov et al., A Minimum Spanning Tree-Based Approach for
Reducing Verification Collisions in Self-Organizing Networks [TATSC16a]

Journal Papers

• Tsvetko Tsvetkov, Janne Ali-Tolppa, Henning Sanneck, and Georg Carle. Verifica-
tion of Configuration Management Changes in Self-Organizing Networks. In IEEE
Transactions on Network and Service Management (TNSM), Volume 13, Issue 4,
Pages 885-898, Invited Paper, December 2016 [TATSC16c]

Conference and Workshop Papers

• Tsvetko Tsvetkov, Janne Ali-Tolppa, Henning Sanneck, and Georg Carle. A Steiner
Tree-Based Verification Approach for Handling Topology Changes in Self - Orga-
nizing Networks. In International Conference on Network and Service Manage-
ment (CNSM 2016), Montreal, Canada, October 2016 [TATSC16b]

• Janne Ali-Tolppa and Tsvetko Tsvetkov. Network Element Stability Aware Method
for Verifying Configuration Changes in Mobile Communication Networks. In IFIP
Autonomous Infrastructure, Management and Security (AIMS 2016), Munich,
Germany, June 2016 [ATT16a]

• Tsvetko Tsvetkov, Janne Ali-Tolppa, Henning Sanneck, and Georg Carle. A Mini-
mum Spanning Tree-Based Approach for Reducing Verification Collisions in Self-
Organizing Networks. In IEEE/IFIP Network Operations and Management Sympo-
sium (NOMS 2016), Istanbul, Turkey, April 2016, Best Paper Award [TATSC16a]

• Janne Ali-Tolppa and Tsvetko Tsvetkov. Optimistic Concurrency Control in Self-
Organizing Networks Using Automatic Coordination and Verification. In IEEE/I-
FIP Network Operations and Management Symposium (NOMS 2016), Istanbul,
Turkey, April 2016 [ATT16b]

18 Chapter 1. Introduction

• Tsvetko Tsvetkov and Janne Ali-Tolppa. An Adaptive Observation Window for
Verifying Configuration Changes in Self-Organizing Networks. In Innovations in
Clouds, Internet and Networks (ICIN 2016), Paris, France, March 2016 [TAT16]

• Tsvetko Tsvetkov, Christoph Frenzel, Henning Sanneck, and Georg Carle. A Con-
straint Optimization-Based Resolution of Verification Collisions in Self-Organizing
Networks. In IEEE Global Communications Conference (GlobeCom 2015), San
Diego, CA, USA, December 2015 [TFSC15]

• Szabolcs Nováczki, Tsvetko Tsvetkov, Henning Sanneck, and Stephen S. Mwanje.
A Scoring Method for the Verification of Configuration Changes in Self-Organizing
Networks. In International Conference on Mobile Networks and Management
(MONAMI 2015), Santander, Spain, September 2015 [NTSM15]

• Tsvetko Tsvetkov, Henning Sanneck, and Georg Carle. A Graph Coloring Ap-
proach for Scheduling Undo Actions in Self-Organizing Networks. In IFIP/IEEE
International Symposium on Integrated Network Management (IM 2015), Ottawa,
Canada, May 2015 [TSC15]

• Tsvetko Tsvetkov, Szabolcs Nováczki, Henning Sanneck, and Georg Carle. A Post-
Action Verification Approach for Automatic Configuration Parameter Changes in
Self-Organizing Networks. In International Conference on Mobile Networks and
Management (MONAMI 2014), Würzburg, Germany, September 2014 [TNSC14b]

• Tsvetko Tsvetkov, Szabolcs Nováczki, Henning Sanneck, and Georg Carle. A Con-
figuration Management Assessment Method for SON Verification. In International
Symposium on Wireless Communications Systems (ISWCS 2014), Barcelona,
Spain, August 2014 [TNSC14a]

Patents

• Tsvetko Tsvetkov, Janne Ali-Tolppa, and Henning Sanneck, Method of verifying
an operation of a mobile radio communication network, September 2016, WO
Patent, PCT/EP2015/055786 [TATS16]

• Szabolcs Nováczki, Tsvetko Tsvetkov, and Henning Sanneck, Verification of con-
figuration actions, March 2016, WO Patent, PCT/EP2014/069096 [NTS16]

• Henning Sanneck, Tsvetko Tsvetkov, and Szabolcs Nováczki. Verification in self-
organizing networks, November 2015. WO Patent, PCT/EP2014/058837 [STN15]

Demonstration Sessions

• Tsvetko Tsvetkov, Henning Sanneck, and Georg Carle. An Experimental System
for SON Verification. In 11th International Symposium on Wireless Communica-
tions Systems (ISWCS 2014), Barcelona, Spain, August 2014 [TSC14]

1.7. Statement on the Author’s Contributions 19

1.6.2 Publications in the Context of Other SON Related Areas

During his doctoral studies, the author has contributed to the following list of papers, that
have been discussed in this thesis, but are not part of the presented concept.

Conference Papers

• Stephen S. Mwanje, Janne Ali-Tolppa, and Tsvetko Tsvetkov. A Framework for
Cell-Association Auto Configuration of Network Functions in Cellular Networks.
In 7th International Conference on Mobile Networks and Management (MONAMI
2015), Santander, Spain, September 2015 [MATTS15]

• Christoph Frenzel, Tsvetko Tsvetkov, Henning Sanneck, Bernhard Bauer, and
Georg Carle. Operational Troubleshooting-enabled Coordination in Self-Organizing
Networks. In 6th International Conference on Mobile Networks and Management
(MONAMI 2014), Würzburg, Germany, September 2014 [FTS+14b]

• Christoph Frenzel, Tsvetko Tsvetkov, Henning Sanneck, Bernhard Bauer, and
Georg Carle. Detection and Resolution of Ineffective Function Behavior in Self-
Organizing Networks. In IEEE International Symposium on a World of Wireless
Mobile and Multimedia Networks (WoWMoM 2014), Sydney, Australia, June
2014 [FTS+14a]

1.7 Statement on the Author’s Contributions

This thesis is based on the journal, conference, and workshop papers in which Tsvetko
Tsvetkov, the author of this thesis, is listed as first author (cf. Section 1.6.1). It should be
noted that all except three papers, in which Tsvetko Tsvetkov is listed as first author, have
been developed, written, and evaluated by the very same person. Only minor support was
required by the co-authors. The three exceptions are:

• [TNSC14a]: the evaluation was made by Szabolcs Nováczki.

• [TSC15]: Figure 3 of the paper was supplied by Szabolcs Nováczki.

• [TATSC16b]: Figure 3 of the paper was created by Janne Ali-Tolppa.

Those parts and elements are neither considered nor used in this thesis.
Furthermore, the verification-related papers (cf. Section 1.6.1) in which Tsvetko

Tsvetkov is not listed as first author are not used in thesis. Those papers utilize parts
of the concept of SON verification that solve research problems that are out of the
scope of this thesis. For example, SON verification can improve SON coordination deci-
sions [ATT16b]. Nevertheless, the author of this thesis has contributed to those papers
with his verification concept.

20 Chapter 1. Introduction

The code of the verification process (cf. Chapter 9) has been solely written by the
author of this thesis. The components that establish the connection (cf. Section 8.1) with
the radio simulator were written together with Christoph Frenzel.

1.8 Note on Terminology

It should be noted that throughout this thesis, several terms are used as synonyms. The
following list summarizes those terms.

• Terms representing configuration changes

– CM changes, configuration adjustments, and (cell) reconfigurations.
In most cases, the term CM change is taken which is most commonly used in
the field of mobile network management [HSS11, 3GP16g].

• Terms representing corrective actions

– Undo action, undo request, CM undo action, CM undo request, and configu-
ration rollback.
Those terms represent a corrective action that returns a cell’s configuration to
a previous stable state. Note that the usage of the word "undo" appears at first
in chapters describing the concept of SON verification since it is a term used
solely by the introduced concept. In the chapters proceeding the verification
concept the term "rollback" is used.

• Terms representing SON functions

– Online SON solution, online SON algorithm, online SON approach.
Those terms originate from [BFZ+14] where they are used as synonyms for
SON functions, as given in [HSS11, Ban13].

• Terms related to the verification scope

– Rollback of the target cell of the given verification area and undo a verifica-
tion area.
The concept of SON verification often uses the expression "undo a veri-
fication area" which is the shorter version of undoing or rolling back the
configuration of the target cell (i.e., the cell of interest) of a verification area.

• Terms describing the concept of SON verification

– Verification approach, verification method, and the verification process.
It should be noted that the term "a verification process" is used in the intro-
duction section as a generic term that represents a strategy that assesses the

1.9. Document Structure 21

ongoing network reconfigurations, and provides a corrective action if verifi-
cation fails. Beginning with Chapter 5, the term "the verification process" is
used as a synonym for the concept of SON verification.

Furthermore, the following remarks on the used terminology should be made:

• Configuration changes versus topology changes.
In literature, it is often the case that a topology change is considered as configu-
ration change as well. For example, turning off a cell requires the change of cell
parameters like the transmission power. Nevertheless, to make a clear differentia-
tion between reconfigurations that do not change the topology of the network and
such that do so, the decision is made to use those two terms separately.

1.9 Document Structure

This section summarizes the main elements used in this document to introduce, for
example, an important term, or provide a listing of references on which the given chapter
is based on.

1.9.1 Reference to Author’s Publications

The chapters that are based on papers published by the author of this thesis are listed at
the beginning of a chapter. They are formated in the following way:

Published work This box list published papers on which a certain chapter is based
on and which are part of the presented concept.

It should be noted that Section 1.7 lists the author’s contribution.

1.9.2 Terminology and Notes

Important terms are introduced as definitions, as given by the example below. All
definitions can be found in Chapter 3 (Problem Analysis), and Chapters 5 to 7 which are
devoted to the concept of SON verification.

Definition 1.1 (Exemplary definition). A definition gives in most cases a formal spec-
ification of a problem or terminology that play a crucial role in the concept of SON
verification.

1.9.3 Objectives and Tasks

As shown in Section 1.3, the tasks of this thesis are defined by objective categories
and objectives. An objective category should be seen as a generic thesis task which is
comprised of a set of several other tasks that are given by the objectives. An example is
shown example below.

22 Chapter 1. Introduction

O1: First thesis objective category

Description of the objective category.

O1.1 First thesis objective.
Description of the first objective.

O1.2 Second thesis objective.
Description of the second objective.

Furthermore, there are evaluation tasks that can be found only in Chapter 10. They can
be identified as follows:

X First evaluation task

X Second evaluation task

They list the topics and tasks that are going to be discussed and evaluated in the given
case study.

1.9.4 Summary and Findings

All chapters conclude with a summary. In addition, a research objective (cf. Section 1.3)
is met by giving an answer to one or more research questions, which are highlighted as
shown below. The chapters that contribute to research objectives are explicitly listing
those answers in the summary section.

O1.1: Name of the research objective
Q: First research question that contributes to the objective
A: Answer to the first question and description of the findings.

Q: Second research question that contributes to the objective
A: Answer to the second question and description of the findings.

1.9.5 Appendix

The appendix, which can be found at the very end of this thesis, lists the used acronyms,
symbols, figures, tables, listings, definitions, and cited references. It should be kept in
mind that this thesis makes extensive use of various symbols and acronyms, which further
increases the importance of the first two lists.

Chapter 2

Background

This chapter provides an introduction to communication standard generations, the net-
work and protocol architecture, as well as the collaboration and standardization processes.
Section 2.1 is dedicated to those topics. Furthermore, relevant topics from the mobile
network management and SON area are discussed. In particular, the management ar-
chitecture, terminology, and data sets are presented, as well as an overview of the SON
categories and the structure of SON functions is given. Sections 2.2 and 2.3 discuss those
topics in detail. Finally, Section 2.4 concludes the chapter with a short summary.

2.1 Mobile Communication Networks

2.1.1 Generations of Communication Standards

The development of mobile telecommunication systems started in 1980s with the introduc-
tion of the first generation of mobile communications, also abbreviated as 1G. It consists
of analog telecommunication standards like the Nordic Mobile Telephone (NMT), which
has been widely used in the Nordic countries, Switzerland, and Eastern Europe, and
Advanced Mobile Phone System (AMPS), which was widely adopted in North America
and Australia. They were replaced by digital communication technologies, also known
as 2G standards, in the early 1990s. Today, the most popular 2G standard is the Global
System for Mobile Communications (GSM) which has been developed and standardized
by the European Telecommunications Standards Institute (ETSI). The primary objective
of GSM was to allow users to roam throughout Europe and offer services compatible to
those known from Integrated Services Digital Network (ISDN) standards [Sch03].

The 2G communication systems evolved over time. In the year 2000, the General
Packet Radio Service (GPRS) was introduced which was a packet-oriented service that
allowed higher data rates compared to what GSM could initially reach. GPRS was accom-
panied by the Enhanced Data Rates for GSM Evolution (EDGE) which was introduced
in the year 2003. It introduced a new modulation scheme and higher data rates.

The successor, namely communication systems of the third generation (3G), emerged
in the late 1990s. One of the most popular representatives is Universal Mobile Telecom-

24 Chapter 2. Background

munications System (UMTS) which has been standardized by the 3rd Generation Part-
nership Project (3GPP). It makes use of Wideband Code Division Multiple Access
(WCDMA) and provides a greater bandwidth and spectral efficiency. In addition, it
simplifies the network architecture including the Radio Access Network (RAN), the core
network, as well as the UE authentication procedure.

The fourth generation of mobile communication systems, also abbreviated as 4G,
emerged in the year 2008. The most popular representative is LTE which was developed
with the intention to meet the following requirements [STB11]:

• Reduce connection & transmission delays, and cost per bit.

• Increase user data rates and cell-edge bit rate.

• Greater flexibility of using the spectrum, and greater automation of the system.

• Simplified network architecture.

LTE itself is specified through releases. The first one is release 8 which reached a
sufficient level of maturity in December 2007 and, as a result, was considered as a new
Radio Access Technology (RAT) of the International Mobile Telecommunications (IMT)
family. In the meantime, LTE was further developed which led to release 9. It addressed
the applicability of the technology in other regions, in particular North America, as well
as introduced improved positioning methods and support for new broadcast modes. In
addition, it defined new requirements for lower power nodes, e.g., pico base stations.

The next release, also labeled as release 10, was the starting point for LTE-Advanced
[HT12]. The main improvements included carrier aggregation that increases the total
transmission bandwidth, as well as improvements in uplink and downlink Multiple-Input
and Multiple-Output (MIMO). Furthermore, support for relaying and cell interference
coordination was added.

2.1.2 Collaboration and Standardization Process

The collaborative specification model was initially introduced with the GSM system and
became de facto the development model for UMTS and LTE [STB11]. This resulted in a
world-wide collaboration scheme that includes not only the ETSI, but also development
and standardization organizations from North America, China, South Korea, and Japan.
Thereby, the 3GPP was founded in 2011 and included 380 partner companies. 3GPP
itself is divided into three technical specification groups [3GP16a]:

• Group responsible for the RAN, in particular, the definitions of the functions
requirements and interfaces.

• Group responsible for service & system aspects, i.e., the overall architecture and
service capabilities.

2.1. Mobile Communication Networks 25

• Group responsible for the core network and terminals, i.e., specifying terminal
interfaces and capabilities, as well as defining the core part of 3GPP systems.

Furthermore, each of those groups is further split into working groups, each having a
specific responsibility. Their task is to prepare, maintain and approve Technical Specifica-
tions and Technical Reports, also abbreviated as TS and TR, respectively. They are used
by the project partners, e.g., incorporate them into deliverables or standards. Each report
or specification has its unique number which identifies to which series (subcategory) it
belongs to. For instance, the 32.500 series covers SONs.

2.1.3 Radio Access Network

The Radio Access Network (RAN) is a crucial part of a mobile telecommunication system
since it implements the radio access technology and provides to UEs access to the core
network. Each communication standard (cf. Section 2.1.1) defines its own RAN. For
example, in GSM the RAN is called GSM Radio Access Network (GRAN) or GSM
EDGE Radio Access Network (GERAN) in case the network also implements EDGE
features. In UMTS, the RAN is referred to as an Universal Terrestrial Radio Access
Network (UTRAN), whereas in LTE it is called an Evolved Universal Terrestrial Radio
Access Network (EUTRAN).

Since the technology that is used in this thesis is LTE, also because of the fact that SON
features firstly appeared in LTE [HSS11], this section will concentrate on the EUTRAN.

2.1.3.1 EUTRAN Overview

Let us start with Figure 2.1 which shows the overall EUTRAN architecture according
to [LL08, HSS11, 3GP16b]. It is comprised of a set of Evolved NodeBs (eNBs) which
are connected with each other over the X2 interface and connected to the core network
over the S1 interface. In the latter case, the eNBs are connected to the serving gateway /
Mobility Management Entity (MME) of the core network.

Furthermore, the protocols that are used in the RAN are called Access Stratum proto-
cols whose tasks can be summarized as follows [STB11]:

• Radio resource management: includes all functionalities related to the mobility
control, the allocation of resources to UEs, as well as all other radio-related func-
tions.

• Evolved Packet Core (EPC) connectivity: provides the signaling towards the packet
core.

• Header compression: offers an efficient use of radio resources, e.g., by compressing
Internet Protocol (IP) packet headers.

• Positioning of UEs: specifies and provides all the required data that determines a
UE’s position.

26 Chapter 2. Background

X2 X2

X2

eNB

eNB

eNB

S1

S1 S1

S1

MME/Serving

Gateway

MME/Serving

Gateway

Figure 2.1: Structure of the EUTRAN according to [3GP16b]

• Security of the transmitted data: provides encryption methods for the data trans-
mission over the radio interface.

In addition, the functions that implement those features reside in the eNBs, i.e., the
control in the EUTRAN is realized in a distributed way.

2.1.3.2 Handover Procedures

In LTE we can distinguish between idle mobility mode and connected mobility mode.
Note that those modes are also referred to as Radio Resource Control (RRC) idle and
RRC connected [HT09]. In RRC idle, cell re-selection is made autonomously by the
UE and is based on the measurements the UE has collected. Moreover, the cell re-
selection is made according to the parameters that are broadcasted by the network which
is very similar to the approach used in WCDMA and High Speed Packet Access (HSPA)
networks. This procedure is also known as cell selection or cell camping in the Public
Land Mobile Network (PLMN). In particular, each UE receives the broadcast channels,
estimates the radio link quality and determines the most suitable cell candidate. After the
completion of this phase, the UE registers itself at the selected PLMN.

In RRC connected mode the handover is controlled solely by the network and is
based on the activity and movements of the UE itself. Concretely, the RRC connection
is controlled by the eNB which makes use of Radio Resource Management (RRM)
algorithms to perform this procedure. Those algorithms operate on layer 1 to 3 of the
eNB user plane and control plane protocol architecture (cf. Section 2.1.5). They take
into account parameters like the Allocation Retention Priority (ARP), Channel Quality
Indicator (CQI), the uplink and downlink Guaranteed Bit Rate (GBR), and the QoS Class
Identifier (QCI).

2.1. Mobile Communication Networks 27

In addition to those modes, we can distinguish between intra-RAT and inter-RAT
handover. Within the first category fall handover procedures that manage the UE mobility
within the same LTE RAT. They can be further divided into inter-frequency and intra-
frequency handover which, as the name suggests, handle the mobility between cells
operating at the same or at different frequencies. The inter-RAT handover is responsible
for the mobility between different technologies like LTE and WCDMA/HSPA.

2.1.4 Core Network

The core network in LTE, also referred to as EPC, is accountable for the control of
the UEs and the establishment of all necessary connections, e.g., to networks of older
generations. Figure 2.2 visualizes the simplified structure, including the main nodes and
interfaces.

The MME is the node which handles all the signaling between the UEs and the core
network [STB11]. In particular, it is responsible for the allocation and release of resources
based on the activity of the UEs [HSS11]. It also handles the interworking with other
legacy networks which is established over the Serving GPRS Support Node (SGSN),
as shown in the same figure. The protocols it runs are known as Non-Access Stratum
protocols. In addition, it is communicating with the Home Subscriber Server (HSS) which
holds a user’s subscription data, roaming restrictions, Quality of Service (QoS) profile,
as well as information that allows a user to connect to the Packet Data Network (PDN).

The primary function of the next node, the serving gateway, is to act as a user plane
tunnel, i.e., all packets are forwarded and routed through it. Moreover, it is a mobility
anchor for data bearers in case UEs move from one eNB to the other [STB11]. It is also
accountable for administrative tasks like the volume of data a user has sent or received
which is typically required for charging purposes.

The responsibility of the last node, the PDN gateway, include IP address allocation,
filtering of user IP packets based on their QoS profile, and policy enforcement. It is also
responsible for the QoS enforcement of GBR bearers. The PDN gateway is also the edge
router of the whole evolved packet system.

Internet

S11

S1

EUTRAN

S5/S8

Serving

Gateway

PDN

 Gateway

MME

S6a

HSS

EPC

SGi

S12

2G/3G

S1-MME

SGSN

Gb/Lu

S3

eNB

eNB

eNB

Figure 2.2: Overview of the EPC according to [3GP16b]

28 Chapter 2. Background

2.1.5 Protocol Architecture

The radio protocol architecture of the EUTRAN is divided into two protocol stacks: user
plane and control plane. In this section, a brief introduction to each of those protocol
stacks is given. It is based on [STB11, HSS11].

2.1.5.1 User Plane

The user plane protocol stack (LTE layer 2) consists of three sub-layers which implement
the following functionalities:

• Packet Data Convergence Protocol (PDCP) layer: the main functions of this layer
are header compression, retransmissions during handover (cf. Section 2.1.3.2), and
integrity protection & ciphering.

• Radio Link Control (RLC) layer: the main responsibilities of the RLC layer are
packet segmentation, reassembly, and reordering. Segmentation is required for
data transmission over the radio interface.

• Medium Access Control (MAC) layer: the main function of the MAC layer is the
multiplexing of data from two or more radio bearers. It is also able to negotiate a
QoS level for each bearer.

2.1.5.2 Control Plane

The functionalities of the LTE control plane can be split into procedures that handle cell
(re-)selection procedures when UEs are in idle mode and the RRC protocol in the case
UEs are in connected mode (cf. Section 2.1.3.2). The responsibilities of the latter one
include the RRC connection control which, as the name suggests, is covering the setup
and release of an RRC connection. Furthermore, it handles the reporting of measurements
required for the handover of UEs, the transfer of UE radio access capability information
and the broadcast of system information messages.

The cell (re-)selection procedures handle the measurement rules, e.g., when to start to
search for a new cell, the frequency or RAT evaluation, the ranking of a cell, determining
the cell access restrictions and the verification of a cell’s accessibility.

2.2 Mobile Network Management

As we saw in the previous sections, mobile communication networks are highly com-
plex systems. As a result, their maintenance and management becomes a difficult task,
mainly because of their configuration interdependencies, the number of elements they are
comprised of, as well as the necessity of being backwards compatible. The backwards
compatibility is required since a mobile network is usually comprised of communication

2.2. Mobile Network Management 29

Network Manager

Domain Manager Domain Manager

Element

Manager

Element

Manager

Element

Manager

Element

Manager

NEs NEs NEs NEs

Figure 2.3: Overview of the OAM architecture

technologies of different generations, e.g., GSM, UMTS, and LTE (cf. Sections 2.1.3
and 2.1.4).

Mobile network management is typically identified as a centralized Operation, Admin-
istration and Management (OAM) architecture [HSS11]. It makes use of optimization
and planning tools that are semi or fully automated and may, in addition to that, require
human supervision. The used management mechanisms operate based on PM and FM
data that gets exported by the network, and suggest or autonomously deploy CM changes.

In the upcoming sections, an overview to the architecture is given, and a description of
the data types that are relevant for network management is provided.

2.2.1 Operation, Administration and Management Architecture

The OAM architecture is a hierarchical system that is comprised of three management
levels. In literature, they are referred to as the Network Management (NM), the Domain
Management (DM), and the NE level [HSS11]. The controllers operating at those levels
are typically called the network, domain, and element manager. The latter one is also
abbreviated as EM. Figure 2.3 visualizes the OAM architecture.

At the bottom we have the NEs, e.g., eNBs, which are controlled by the corresponding
EMs. One level up, i.e., the DM level, we have the domain manager which manages the
EMs. The communication itself usually requires proprietary interfaces. Furthermore, the
entities that fall below the same domain manager represent a domain that is provided by
a single vendor. The communication to other domains, however, is established over open
interfaces. The manager at the topmost level, i.e., NM, manages the entities of the DM
level. The communication is made over proprietary or standardized interfaces.

There are advantages and disadvantages of where an entity, like a SON function

30 Chapter 2. Background

(cf. Section 2.3.2), is located. At the NE level it has an immediate and quick access to all
ongoing activities, as well as direct access to the most recent PM parameters. However,
at that level an entity will also have a limited view on the network, e.g., it does not have
information about the activities occurring in another domain. In order to get a wider view,
it would need to reside at the DM or even NM level. Being there, though, induces delays
until it finally manages to get the relevant data. For example, it may take up to several
minutes until it collects the necessary PM data. Hence, an entity may have a coarse view
on the ongoing activities.

2.2.2 Network Management Data

As stated above, the data that is relevant for network management tasks is split into PM,
FM, and CM. In this section, a detailed description of those data types is given. Note
that the observations below originate from [3GP01, 3GP13a, 3GP16e].

2.2.2.1 PM Data

There are three main classes of indicators that are widely used in mobile network man-
agement:

• Performance counters: such counters represents a single value that is maintained
and used by the NE, e.g., a variable that counts the fault events that have been
spotted by the NE.

• Key Performance Indicators (KPIs): a KPI is a well-known (standardized) formula
that uses one or more counters as input and computes its outcome according to the
formula definition [3GP16f]. Examples can be found in Section 8.1.1.2.

• Key Quality Indicators (KQIs): a KQI typically aggregates two or more KPIs
in order to provide a high level view on the network performance. However,
because of this property they are not suitable for the assessment of a cell’s perfor-
mance [HSS11].

2.2.2.2 FM Data

In general, FM data is represented by alarms that are generated by the NE and sent to
the OAM system. An alarm message is a predefined event which falls within one of the
following categories:

• Hardware failures: occurs when physical resources of an NE are malfunctioning.

• Software faults: appear, for instance, when a software upgrade has failed or when
database inconsistencies emerge.

• Functional failures: happens when an NE looses its functional resources which are
not due to hardware issues.

2.3. Self-Organizing Networks 31

• Capability loss: occurs when an NE is no longer able to provide its services, e.g.,
due to overload.

• Communication failures: alarms that fall within this class are generated when the
communication between two NEs or an NE and the operations system is disturbed.

2.2.2.3 CM Data

In the terms of network management, CM data can be split into two main categories:

• Passive CM: passive CM data offers information about the made changes, i.e., it
can be seen as a configuration overview report or even as a configuration logging
mechanism.

• Active CM: active CM data offers the operator or any other automated entity to
actively change parameters of the physical NE.

Passive CM data is usually fetched by sending a request, e.g., from the NM level. The
data itself contains information about the time when the object was created or deleted, as
well as a listing of the parameters that were actually changed. The real data set that is
used in this thesis (cf. Section 8.2.1.2) contains of such passive CM data reports.

Active CM data on the other side allows not only the retrieval of the current CM
parameter settings, but also enables their adjustment. Examples are the transmission
power or the antenna tilt degree of a cell. The simulation environment that is described
later in this thesis (cf. Section 8.1.1.3) offers access to such CM data.

2.2.3 Granularity Period

A granularity period is a term describing the frequency at which network performance
data is collected by a measurement job [HSS11]. At the end of a granularity period a
report is generated for the NE of interest which includes the measured types and resources.
In [3GP16e], the data collection methods are further being discussed, however, they are
beyond the scope of this thesis.

The 3GPP document also mentions that each NE has to retain the measured data until
the report has been sent to, or retrieved by the corresponding Operations Support System
(OSS) destination database. It is also possible to buffer reports at the corresponding
Element Manager (EM). However, the storage capacity and validity of the report is
implementation specific.

2.3 Self-Organizing Networks

The Self-Organizing Network (SON) concept [HSS11, RH12, HT12] as we know today
has been developed to deal with the complex nature of standards like LTE and LTE-
Advanced (cf. Section 2.1.1). It has been introduced to optimize the operation of the

32 Chapter 2. Background

network, supervise the configuration and auto-connectivity of deployed NEs, and enable
automatic fault detection and resolution. The first SON features have been used for
managing the mobile RAN [NGN08b].

In order to perform those tasks, though, such a network has to be managed by a set
of autonomous entities, called SON functions, that are designed to perform specific
network management tasks. As shown in Figure 2.4, they are implemented as closed
control loops which monitor PM and FM data, and depending on their objectives, change
CM parameters. Furthermore, a SON function’s goal is given by the operator through
a function’s configuration [3GP13b]. One example is the MRO function which tries to
minimize the call drops, radio link failures as well as unnecessary handovers by adjusting
the CIO parameter [3GP16b]. Another example is the MLB function that is designed
to move traffic from overloaded cells to neighbors as far as interference and coverage
allows [YKK12].

SON Function
SON Function

SON Function

PM / CM / FM

CM Changes

 Function
configuration

Operator

History
Database

PM / CM / FM

Figure 2.4: Overview of a SON

2.3.1 SON Categories

Usually, SONs are split into three main categories: self-configuration, self-optimization,
and self-healing. They are the major topic of discussion in this section.

2.3.1.1 Self-Configuration

Self-configuration, as the name suggests, deals with the roll-out and the auto-configuration
of NEs while minimizing at the same time human intervention. As mentioned in [SBT10a,
SBT10b, HSS11], self-configuration is a process that consists of three phases.

First and foremost, after the installation of a base station the so-called auto-connectivity
setup is triggered. It has the purpose of establishing the connection between an NE and
the DM system it has been added to. In particular, it is responsible for the basic NE
connectivity, like connecting the Dynamic Host Configuration Protocol (DHCP) server
and setting up the initial IP address. During this phase, the certificates required for the
secure communication with the remaining NEs as well as the initial configurations are
downloaded.

2.3. Self-Organizing Networks 33

Second, a transition to the auto-commissioning phase is made. During this phase, the
installed software is validated, i.e., a comparison between the current software version
and version required for the particular NE type is made. If required, the installed software
can be updated. Furthermore, the configuration data is activated by rebooting the NE.

Third, the dynamic radio configuration phase is triggered. It completes the processes
stated during the auto-commissioning phase: it adapts the NE to the current network
deployment and adjusts the radio parameters accordingly. Thereby, the PCI, the neighbor
relations, the initial antenna tilt and transmission power settings are configured. This step
is supposed to replace planning tool sets which are typically required in the presence of
legacy base stations.

2.3.1.2 Self-Optimization

Self-optimization is also seen as a step beyond self-configuration. The outcome of
the initial configuration process yields a set of parameter values which may become
suboptimal or even obsolete over time. The most common reasons for this to happen are
environmental changes, which may lead to a change of the propagation conditions, and
dynamic changes of the network service demands. In the latter case, the most common
trigger are changes in the traffic behavior as well as user movements. The objective of all
self-optimization mechanisms is to monitor the network, detect suboptimal configurations
and update them accordingly.

In general, self-optimization approaches can be further divided into such that put their
focus on the mobility of UEs, such that concentrate on optimizing the cell coverage
and the Random Access Channel (RACH), and such that actively change the network
topology. Typical representatives of the mobility optimization category are MRO and
MLB. One the main objectives of MRO is to improve the handover performance be-
tween two neighboring cells. Note that a detailed description of MRO is provided in
Section 8.1.2.1. The MLB function on the other side tries to offload a cell by distribut-
ing UEs to its neighbors. Such a distribution procedure is available for both idle and
connected mode (cf. Section 2.1.3.2). In LTE, typical KPIs that are considered by this
function are Reference Signal Received Power (RSRP) and Reference Signal Received
Quality (RSRQ). Furthermore, since release 8 it is possible to exchange load information
over the X2 interface which can be also taken into account [HT09].

A function that is optimizing the cell coverage is CCO. There are three parameters
which are controlled by this function: the antenna azimuth, the transmission power, and
the antenna tilt degree. Popular KPIs considered by CCO are the CQI and the Signal to
Interference plus Noise Ratio (SINR). Note that the CCO function is further discussed in
Sections 8.1.2.2 and 8.1.2.3.

A function that falls within the topology change category is Energy Saving Manage-
ment (ESM). Its goal is to reduce energy consumption in the network by turning off cells
that are no longer necessary while guaranteeing that network coverage as well as user
perception do not suffer. In addition, there are numerous triggers that can activate such a

34 Chapter 2. Background

function. It can be a fixed time schedule, but it can be also triggered by unusual load or
traffic data.

2.3.1.3 Self-Healing

The third category, self-healing, is responsible for fault detection and resolution [3GP16g].
In general, a self-healing process consists of two parts: a monitoring and a healing process
part. During the monitoring part, the network is actively observed and the search for
a so-called trigger for a self-healing condition is made. Concretely, the trigger can be
hardware or software faults, configuration and planning faults, and issues that emerge
due to unexpected environmental changes.

During the healing process part, the necessary performance and configuration data is
fed into a diagnosis component. It can be implemented as a simplistic rule based system
which is actively supplied with expert knowledge. It is also possible to utilize sophisti-
cated algorithms, for example, such that make use of Bayesian networks [BKKS16] or
neural-based algorithms [LRL+05].

After completing this step, the result is evaluated and a notification is sent to the
operator. A potential recovery action, like a fallback to a previous stable state or the
correction of a certain CM parameter may be suggested.

A well-known representative of the self-healing category is the COC function. As
discussed in [HSS11], the reasons for cell outage can be hardware or software failures.
As a result, there might be an unexpected loss of coverage and, therefore, any type of
service offered by the affected cell can be lost. The detection itself is based on the PM
and FM data, including all relevant UE logs. The recovery action can be a simplistic cell
restart or the change of the neighbors’ transmission power or antenna tilt.

2.3.2 SON Functions

The core functionalities of SON, as introduced in Section 2.3.1, cannot be implemented
without the use of SON functions. In this section, their structure and activity schemes are
discussed. In addition, SON management and coordination paradigms are outlined.

2.3.2.1 Structure and Phases

In general, a SON function operates in three logical phases: monitoring, algorithm, and
action phase. During the monitoring phase a SON function observes certain KPIs and
collects information about the network such as CM changes and fault occurrences. Note
that there are different scheme types (cf. Section 2.3.2.2) which define when a function is
becoming active.

After gathering the required information, the algorithm part of a SON function can get
triggered. Its purpose is to compute new CM parameters which will be applied during
the action phase. Here, it should be noted that a SON function can be stateful as well as
stateless. For example, the algorithm part of an MRO function may change the CIO only

2.3. Self-Organizing Networks 35

based on the current handover KPIs, like the handover drop rate or handover to wrong
cell rate (cf. Section 8.1.2.1), without considering past KPI values. Another example is
the CCO function which may track the impact of its changes on the network performance
and even correct them if necessary (cf. Figure 3.2, Section 3.2.1).

2.3.2.2 Activity Schemes

Within the SON area, we can distinguish between three activity schemes. The first
one is the on demand scheme which allows a SON function to become active only
when it receives an explicit triggering event. Troubleshooting approaches are known
to use such a scheme since their activity is required in the presence of critical alarms
(cf. Section 2.2.2.2). The second scheme is the timed scheme whose primary goal is
to trigger the SON function on time interval basis. For instance, an ESM function may
become active only in the late evening in order to optimize energy consumption. The
third scheme is known as a continuous scheme which requires the SON function to
actively monitor the network. Typically, representatives of the self-optimization category
use this scheme, e.g., MRO continuously observes the handover performance between
neighboring cells.

2.3.2.3 Coordination and Management

Since SON functions may perform changes to network configuration parameters during
their operation, a coordination entity is required to reject requests that would lead to
conflicts and allow those which would guarantee a flawless network operation [HSS11,
BRS11, ISJB14]. Every time a SON function decides to change a network parameter, it
contacts the SON coordinator by sending a CM change request. The latter one acknowl-
edges the change only if there has not been another conflicting function activity for the
given impact area and time. In literature, this type of coordination is usually referred
to as pre-action SON coordination and is based on rules used to avoid known conflicts
between SON functions.

In literature, there are numerous suggestions of how to categorize function con-
flicts [KAB+10, CGT+11, JFG+13, Ban13]. One popular grouping is the differentiation
between configuration, measurement, and characteristic conflicts. Configuration conflicts
occur when SON functions operate on shared CM parameters. For example, two func-
tions change the same handover parameter and are, therefore, in a conflict. Measurement
conflicts appear when the activity of one function influences the input data used by an-
other one. Characteristic conflicts usually emerge when there is a logical dependency
between the active functions.

In a SON, every function comes with two essential properties required for coordination:
the impact area and the impact time. As stated in [Ban13], a SON function instance has
to be considered by a SON coordinator for the whole time period it has an impact on the
network. This includes not only the delay required to take the measurements, run the

36 Chapter 2. Background

algorithm and compute new configuration parameters, but also the time needed to deploy
the new configurations and the time until they become visible in the PM data.

The impact area on the other side is the spatial scope within which a SON function
modifies configuration parameters or takes its measurements from. Concretely, it consists
of the function area, i.e., the set of cells that are configured by the function, the input area,
i.e., set of cells where the function takes its measurements from, the effect area, i.e., the
set of cells that are possibly affected by reconfiguration process, and the safety margin
which provides a higher degree of protection against undesired effects by extending the
effect area.

2.3.3 Other Application Areas

Besides the RAN of a mobile telecommunication system, SON concepts have been
developed for other parts of a mobile network, e.g., the core network. Also, SON
mechanisms have started to emerge in other networks, e.g., Wi-Fi networks. In the
following sections, an overview to those SON approaches is given.

2.3.3.1 SON for Core Networks

The up to now introduced SON principles are also applicable to the management of core
networks (cf. Section 2.1.4) [NGN08a, 4GA11, HSS11]. SON functionalities that have
been defined for the core network can be split into such handling the packet core and
into mechanisms responsible for the voice core. Within the packet core mechanisms
fall functions responsible for the auto-configuration of core elements, e.g., the auto-
configuration with S1 setup [3GP16c] which significantly reduces the work required to
manually configure MMEs and eNBs. Also, mechanisms that provide automatic software
updates and upgrades are falling within the same class. Typically, they regularly check
the repository server for a new software version and also provide post-condition checks
that determine whether an element is operating as intended.

In addition to auto-configuration, so-called MME pooling and signal optimization
functionalities can be utilized by the core network. The first one implements features
that select the less loaded MME from a pool of MMEs [3GP16d]. Also, it provides an
option for smart offloading of subscribes without interrupting the active session. As for
signal optimization, features like paging load reduction are provided. Usually, the load
generated by such messages increases as the number of eNBs grows. Therefore, this
SON functionality allows the selection of the most suitable paging strategy, e.g., to page
at first the eNB to which the UE was most recently connected to.

Within the pool of voice core SON mechanisms fall Voice over IP (VoIP) quality
monitoring and management features. First, such features collect data from the network
and create an end-to-end quality view of VoIP calls that are taking place. As mentioned
earlier in this chapter, performance data can be collected from the element itself or from
a centralized location. Second, a VoIP SON mechanism is attempting to improve the

2.3. Self-Organizing Networks 37

utilization of network resources, for example, by providing alternative traffic routes.
Even though there are SON mechanisms specified for the core network, there are

also such that consider the RAN, i.e., they are responsible for the functionality of both
networks at the same time. A prominent example is the configuration transfer procedure
that allows the exchange of information between two eNBs over the MME [3GP16d]. A
concrete application is the exchange of the IP addresses of the eNBs, which are required
to establish X2 links [3GP16b]. Such links are usually created by the ANR function
(cf. Section 8.2.2.2) which is responsible for the automatic establishment of neighbor
relations.

2.3.3.2 Wi-Fi SON

Another area that is utilizing SON features is Wi-Fi, also referred to as Wi-Fi SON [All17].
In general, Wi-Fi SON features aim to simplify indoor Wi-Fi networking by minimizing
human intervention [Qua16]. The idea is to ease the management of wireless routers,
smart gateways, access points, and range extenders. The hardware equipment itself may
be provided by different vendors. Similarly to mobile SON, Wi-Fi SON defines separate
key categories. They can be summarized as follows:

• Self-configuration: allows the auto-configuration and plug-and-play deployment
of Wi-Fi SON devices. This category is very much alike mobile self-configuration,
as introduced in Section 2.3.1.1.

• Self-managing: deals with the optimization of the monitored network elements. It
is the equivalent of the self-optimization area that is already known from mobile
SONs (cf. Section 2.3.1.2).

• Self-healing: it is responsible for the detection and the remedy of wireless con-
nectivity issues and bottlenecks, i.e., it has the objectives already known from the
mobile self-healing SON category (cf. Section 2.3.1.3).

• Self-defending: prevents and secures the wireless network from unauthorized
access. It should be noted that this category is not explicitly defined for mobile
SONs. Security features are usually incorporated in self-configuration mechanisms.

A common example for Wi-Fi SON is an indoor setup which is covered by several
routers. They typically support several standards, like 802.11a, b, g, n, ac, and come in
addition to that with multiple frequency support, e.g., 2.4 GHz and 5 GHz [IEE16]. Self-
configuration enables the automatic device setup, e.g., frequency choice, with minimal or
even without human intervention. Self-optimization and self-healing provide the network,
for instance, with multiple connection paths by using the available range extenders. Self-
defending is responsible for detecting suspicious behavior within the network, identifying
the root cause, and blocking the responsible entity.

38 Chapter 2. Background

Furthermore, there are SON functionalities that are responsible for the concurrent
optimization and management of Wi-Fi and mobile networks. One of the most common
examples is multi-layer LTE & Wi-Fi traffic steering [LAB+13]. It studies the ability to
steer users between Wi-Fi access points and LTE bases stations based on the dynamic
behavior of the network. The goal is to offload cellular traffic as well as to make Wi-Fi
access points an integrated piece of the network provided by an operator. Otherwise,
without the provision of such a SON capability both the mobile and the Wi-Fi network
can easily become congested which, as a result, may lead to the degradation of service
quality and user experience. The KPIs based on which steering is carried out are the
network load, the experienced QoS, and the radio link quality.

In literature, there are numerous approaches that implement as well as analyze the
impact of such steering functionalities [NPS11,BCS11,PKVB11,LLY+13]. Typically, the
suggested algorithms differ in the specific goals they are following, as well as the metrics
and criteria used during the decision making process. In general, they can implement only
a simplistic threshold comparison, e.g., if the Received Signal Strength (RSS) exceeds a
predefined limit, or make use of additional parameters like time-to-trigger or hysteresis
values.

2.4 Summary

In this chapter, an introduction to mobile communication networks is provided. First, it
starts by introducing the generations of communication standards and the most popular
representative technologies, i.e., GSM, UMTS, and LTE. The latter one is discussed in
detail since it represents the technology that is used in this thesis. Second, the chapter
presents the basics of mobile network management, including the OAM architecture and
the relevant data types, that is, PM, FM, and CM data. The process of data acquisition
from the network is provided as well. Third, the SON concept is described, in particular,
SON categorization, coordination, and management paradigms. In addition to that,
different SON application areas are discussed, in particular, SON for the RAN and core
of mobile networks as well as SON for Wi-Fi networks.

Part II

Problem Analysis and
Related Work

Chapter 3

Problem Analysis

In this chapter, the challenges and issues that emerge while verifying network operations
are discussed. First of all, Section 3.1 motivates the need for a CM assessment strategy,
which is also referred to as a verification process. In particular, it gives an overview
on troubleshooting and anomaly detection approaches as well as the problems that may
occur due to automatic CM changes. Further, the section highlights paradigms for self-
organized networking and also puts the focus on the term "verification".

Second, in Section 3.2 the problems are discussed that are faced by a verification
process. Concretely, it focuses on the issue of interrupting SON function transactions as
well as the presence of so-called verification collisions. The latter ones lead so several
other issues which are discussed throughout the section. In addition, the problems induced
by dynamic topology changes are described in detail.

Third, Section 3.3 outlines the factors that negatively impact a verification process.
More precisely, the availability of PM and CM data, the statistical relevance of PM data,
the characteristics of CM changes, as well as the properties of the network itself are pre-
sented. In the latter case, the density and heterogeneous nature of mobile communication
networks are discussed. Finally, Section 3.4 summarizes this chapter and lists the major
scientific contributions.

Published work This chapter originates from the work made in already published
papers. In [TNSC14a], the term "SON verification" is introduced and an overview
to already existing strategies is presented. In [TNSC14b], verification collisions
are introduced and the problem is researched. Paper [TSC15] further researches
the verification collision problem as well as highlights the factors that influence
a verification process. Papers [TFSC15] and [TATSC16a] describe the issues that
are induced by verification collisions. Paper [TAT16] focuses on the SON function
transaction problem whereas paper [TATSC16b] on the problems caused by dynamic
topology changes. Paper [TATSC16c] presents a summary of the problems that
emerge during CM verification as well as the factors impacting the process. It
should be noted that this chapter analyzes those topics in much more detail.

42 Chapter 3. Problem Analysis

3.1 Motivation

3.1.1 Troubleshooting and Anomaly Detection

The maintenance as well as the process of troubleshooting a mobile network has become
a complex task. The main reasons for that are the size of today’s cellular networks, their
heterogeneous nature, as well as the high variety of configuration capabilities. As a result,
problems can appear in all areas of a cellular network, nevertheless, one of the most
critical domains is the RAN [HSS11]. Active base stations are not only responsible for
the coverage within dedicated areas, but also for the UEs using their services. However,
there is also almost no redundancy which means that if the performance of a base station
suddenly decreases, users will start experiencing a drop of QoS since the reliability and
availability of the network drops as well.

In order to detect base stations that are not properly fulfilling their tasks, anomaly
detection and diagnosis techniques are most commonly used. Generally speaking, an
anomaly is understood as "something that deviates from what is standard, normal, or
expected" [Oxf05]. In most cases, though, the main focus is on detecting abnormal
behavior, for instance, whether the performance of a cell has notably degraded. Figure 3.1
shows the generic structure of an anomaly detection and diagnosis procedure. During the

Corrective

action

suggestion

Input:

network data
DiagnosisDetection

Figure 3.1: Generic overview of anomaly detection and diagnosis approaches

detection part the network is scanned for abnormal cell behavior. Thereby, the network
is typically profiled [Nov13, CCC+14b], i.e., performance indicators are analyzed and
the expected network behavior is specified. Usually, there is more than one profile, for
example, there could be one that specifies the usual weekday behavior and another that
defines how cells should perform during the weekend. Then, based on those profiles it is
determined whether the performance of the cells is considerably different from the one
that is expected. Should this be the case, the identification of the possible root cause is
triggered and potentially a corrective action is generated.

In today’s mobile networks, there are numerous reasons why anomalies actually appear.
As stated in [HSS11], there are four major sources that can lead to abnormal cell behavior:

• Hardware problems

• Software problems

• Environmental changes

• Network planning and configuration changes

3.1. Motivation 43

Within the first category fall problems related to the physical NEs. Usually, such problems
are corrected by resetting or replacing the faulty element. The second category includes
problems that occur after updating or upgrading the software of an NE. A typical
corrective action is to restore the software to a previous point that ensures the normal
operation of the NE. The third category usually includes changes that disturb the radio,
e.g., demolition or construction of buildings. An expected reaction would be to do re-
planning or trigger a coverage optimization mechanism. Within the last category fall CM
changes that have harmed network performance, which are also the most challenging
ones to detect and correct.

There are numerous reasons why it is possible to deploy suboptimal CM changes. First
of all, we have to take a closer look of how mobile networks, in particular, how SONs are
being managed and optimized. In general, we can differentiate between online and offline
optimization [BFZ+14]. An offline SON method needs to wait until all the needed PM
data is collected from the network. Then, an optimization algorithm is triggered, e.g., one
that optimizes the coverage and capacity of a cell. Finally, the suggested CM changes are
applied. In addition, one of the major advantages of such offline SON solutions are the
sophisticated optimization algorithms they utilize. Hence, they can test a high number
of CM settings and search the complete optimization space. However, those algorithms
also require detailed knowledge about the network, e.g., the user locations or the received
signal strength for all possible antenna tilt degrees. This type of information is often
difficult to collect which may result in inaccurate assumptions about the network and the
deployment of suboptimal CM settings.

Online SON solutions, also known as SON functions, determine, collect, and measure
the KPIs of interest as well as deploy CM parameter changes by themselves. Those
changes are based on past KPI and CM parameter values [GJCT04, AJLS11]. Further-
more, they are executed in a coordinated manner [RSB13], e.g., the concurrent optimiza-
tion of coverage and handover parameters of a cell is not permitted since it is considered
as a configuration conflict [Ban13].

In contrast to offline methods, online SON techniques do not require simulation models
of the network, which means that they cannot be influenced by inaccuracies of the used
models. However, they have the disadvantage of only optimizing the network locally,
that is, they change parameters based only on the information that has been gathered
around the monitored cell or base station. For example, an MRO function is usually only
interested in the handover behavior of a pair of neighboring cells.

Moreover, SON functions operate without the knowledge of other upcoming SON
activities. For instance, a CCO function does not know whether an MRO function will
become active in the future, e.g., after CCO has finished its optimization process. As a
consequence, any suboptimal decision made by one function in the present may result
in suboptimal changes made by other SON functions in the future. This is also why
online SON algorithms must avoid large CM parameter changes since they may lead to
unexpected performance drops, e.g., a low QoS level [BFZ+14].

44 Chapter 3. Problem Analysis

The corrective action for SON activities is the rollback of the configuration changes
that led to anomalous cell behavior. Strictly speaking, the corrective action should be
just one, namely a rollback of all configuration parameters that did harm the network
performance in any way. However, this is only possible if we have a sophisticated
diagnosis component which is able to provide us with that action. Unfortunately, in
a mobile communication network feeding such a component with accurate knowledge
is a challenging task. As mentioned in [SN12], such networks are manifold, generate
different types of PM data, and react in a different way to the same corrective action.
In addition, in most cases it is impossible to reuse the results from one study for the
diagnosis on a different RAT, even within the same mobile network. The speed at which
such systems evolve also plays a negative role since it makes many diagnosis results
obsolete and unusable.

Furthermore, generating just one single corrective rollback action presumes that we
know in advance the combined performance impact of each CM change combination.
Obviously, this is a complex task as a real mobile network consists of a high number
of CM parameters. For instance, the LTE network described in Section 8.2 consists
of 141 configuration parameters. As a result, we cannot test every possible parameter
combination and foresee all possible anomalies that may occur after a configuration
change as well as do not know the impact of their rollback.

In such a case, the solution is to sequentially deploy rollback actions by starting with
those that would most likely restore the network performance. Hence, we do not only
observe the impact of the initially executed CM changes on the performance, but also
assess the impact of the deployed corrective rollback actions. However, this type of
behavior gives us what we would categorize as a verification process.

Definition 3.1 (Verification process). For a set of deployed configuration actions
{δ1, . . . ,δi }, a verification process observes the impact of each action δi on the network
and assembles, if required, a set of corrective rollback actionsC⊥ that revert configuration
changes to a previous stable state. After processing ∀c⊥ ∈ C⊥, the performance of the
network is returned to a stable state.

However, finding and executing corrective actions is a challenging task as we are going
to see in Section 3.2. Furthermore, while carrying out the assessment of the corrective
actions we have to monitor CM changes that have been executed in the meantime. This
means that we are not only assessing the rollbacks but also other newly made reconfigu-
rations.

3.1.2 The Term "Verification"

The idea of evaluating whether a certain system or service complies with its requirements
and targets has been known for quite a long time. For instance, in the field of software
engineering verification is known as the process of determining whether the developed
software can fulfill all expected requirements. This is a complex process that may involve

3.2. Challenges for a Verification Process 45

the use of formal methods for proving or disproving the correctness of the implementation
and may, in addition to that, consist of extensive tests that examine the behavior of the
software at execution time.

Within the area of mobile communication networks and, in particular the SON field,
the term verification is widely being used. For example, in self-configuration the purpose
of site build verification is to detect problems that may occur during the installation
or integration process of new NEs [Eri12]. It may also include shake-down tests that
check the network’s reliability and accessibility. In the field of self-optimization, SON
functions may track their own CM changes and correct their actions if they have moved
away from achieving their objective. Even in the area of SON coordination, the decision
to acknowledge or reject a function’s request can be based on past experiences, i.e., a
SON coordinator is not only designed for conflict prevention and resolution, but also
verifies whether its decisions have a positive impact on the network performance. Such
an approach has been introduced in [ISJB14], where reinforcement learning is used to
improve the coordination between the MRO and MLB function.

As stated in the previous section, the term verification is to be seen as a superordinate
concept to anomaly detection strategies. It does not only try to determine whether there
is an anomaly in the network, but also to rollback actions that have caused anomalous
behavior and resolve the potential conflicts when rolling back configuration changes.
Thereby, it operates under uncertainty, tries to maximize the performance of the network
by restoring cell configurations while minimizing the number of rollback actions. Note
that a description of those uncertainties is provided in Section 3.2.2.

3.2 Challenges for a Verification Process

In the previous section, we saw how troubleshooting and anomaly detection are carried
out in SONs, as well as an introduction to the verification process was given. Here, we are
going to continue with this process, however, we will start by describing the challenges it
faces and the issues that may occur. Each of the following sections describes a different
challenge or problem.

3.2.1 SON Function Transactions

Today, SON functions usually require more than one step until they finally manage to
reach their goal. One example is the CCO function [HSS11, 3GP14b] whose objective is
to provide sufficient coverage and capacity in the whole network area by adjusting the
antenna tilt or the transmission power. Figure 3.2 shows the simplified flow-chart of the
algorithm.

It starts by collecting PM and CM data, continues by determining the statistical rele-
vance of the gathered PM data, and triggers an antenna configuration change for the cell
experiencing a problem. Furthermore, it observes the impact of its last deployed antenna
tilt or transmission power change, and corrects that if required. As a result, it reaches

46 Chapter 3. Problem Analysis

Wrong decision in

previous step

Statistical

confidence reached

Problem detected in

selected cell
Start

Input data:

CM, PM

data

Correct antenna

parameters

Update antenna

configuration

Yes

No

NoNo

YesYes

Figure 3.2: Simplified flow-chart of the CCO algorithm

its goal after executing a set of actions δ , which is also referred to as a SON function
transaction.

Definition 3.2 (SON function transaction). A SON function transaction ∆ = {δ1, . . . ,δi }

is a set of actions δ1, . . . ,δi executed by a function that are required for reaching its
optimization goal. An action δ corresponds to a CM change or a set of CM changes.

However, during a transaction a SON function may induce temporal performance drops
in the network. Let us give an example. Suppose that in order to achieve its objective,
a SON function needs to execute two actions (cf. Figure 3.3). The first action triggers
a change within cell 1 whereas the second one adjusts a parameter within cell 2. Now,
suppose that after executing the first action a performance drop occurs at both cells. If
we immediately rollback the first action, we will interrupt the transaction and prevent a
SON function from achieving its objective.

Furthermore, if a second function is triggered after the completion of this transaction,
it may create a set of suboptimal changes since the initial ones that were required were

Temporal

performance

degradation

Trigger function

 algorithm

Cell 1

Rollback action

Action δ1 Action δ2

Cell 2

SON function transaction

CM change CM change

CM change CM change
Trigger function

 algorithm

Figure 3.3: Example of a SON function transaction

3.2. Challenges for a Verification Process 47

actually not applied. An example is the MRO function which also relies on a proper
coverage setup.

As a result, a verification strategy must be able to identify such transactions in order to
prevent interferences with ongoing optimization processes.

3.2.2 Verification Collisions

CM changes have an impact not only on the reconfigured cell, but also on those sur-
rounding it. For instance, in the concept of SON coordination (cf. Section 2.3.2.3) the
cells that have been influenced by a SON function’s action, are added to the impact area
of the given function change. Note that the term impact area originates from the SON
coordination concept and describes which parts of the network are affected by the change.
A popular example is the CCO function whose action may affect all direct neighbors of
the cell that has been reconfigured. This means that concurrent conflicting actions should
not only be prevented on the cell whose configuration has been adjusted, but also on those
surrounding it. Figure 3.4 visualizes this statement. The two actions δi ∈ ∆i ,δ j ∈ ∆j

must not be simultaneously deployed since they are marked as conflicting and have a
potential impact on each other. On the contrary, δk ∈ ∆k is permitted.

Cell neighborsReconfigured cell

Impact of

the change
Disallowed,

conflicting change

δi δj δk

Figure 3.4: Conflict example before applying changes

However, rolling back already deployed changes is more than re-applying a set of
configuration snapshots. First of all, there has to be a reason why we are undoing changes
made in the past. The cause is typically an anomaly, e.g., a degradation in performance,
that a cell or a set of cells start to experience after the execution of certain changes.
Second, we need to know which actions we need to rollback, i.e., we need to analyze the
detected problem and find a corrective action. However, during the process of finding
the appropriate rollback actions, we may encounter uncertainties as given by following
example. Let us assume that we have 10 cells, as given in Figure 3.5. Three of those cells
(1, 2, and 3) have been reconfigured whereas another three (5, 8, and 9) have degraded.
In addition, let us assume that cell 2 is not responsible for any degradation, which we do
not know. As a result, we have three potential rollbacks actions, one being generated for
each reconfigured cell.

A simplistic solution is rolling back all changes. However, by doing so we may also
revert changes that were necessary and did not harm performance. As a result, we have

48 Chapter 3. Problem Analysis

Degraded cell

CM change causing degradation

Cell neighbors

CM change not causing degradation

1

5

2

64

10 78

9

3

Cell

Figure 3.5: Example of a verification collision

Rollback

cell 1

Assess

network

Rollback

cell 3

Assess

network

Rollback

cell 2

Assess

network

Figure 3.6: Example of a sequence of corrective rollback actions. The actions colored in black
are executed whereas those in gray are unnecessary and dismissed.

an uncertainty which rollback action to execute, which to possibly delay, or even omit.
This uncertainty is also being referred to as a verification collision which can be further
specified as follows:

Definition 3.3 (Verification collision). Let us denote the set of all cells as Σ and the set
of all corrective rollback actions as C⊥. Furthermore, let ζ be a function that returns the
initial trigger for the rollback action, i.e., the cells that led to the generation of a rollback
action c⊥ ∈ C⊥, as follows:

ζ : C⊥ → P(Σ) \ ∅, (3.1)

where P(Σ) is the power set of the cell set Σ. Two rollback actions c⊥i , c
⊥
j ∈ C

⊥ are said
to be in collision if and only if ζ (c⊥i) ∩ ζ (c

⊥
j) , ∅.

In order to resolve such collisions, we need to serialize the process of executing
corrective rollback actions. If we take the simplified scenario from above, a permissible
sequence of corrective actions would be to deploy a rollback for cell 1, and 3, as well as
dismiss the one generated for cell 2. Figure 3.6 visualizes this sequence.

To define such a sequence, we need to split the set C⊥ by assigning its elements
to disjoint and non-empty subsets, i.e., the set of all rollback actions C⊥ has to be
partitioned [Bru09]. The result is called a corrective action plan.

3.2. Challenges for a Verification Process 49

Definition 3.4 (Corrective action plan). A corrective action plan for the set of rollback ac-
tions C⊥ is a grouping of the set’s elements into non-empty subsets PC⊥ = {Ĉ⊥1 , . . . , Ĉ

⊥
i },

for which the following properties must hold:

• ∅ < PC⊥

• ⋃
Ĉ⊥∈PC⊥ Ĉ⊥ = C⊥

• if Ĉ⊥1 , Ĉ
⊥
2 ∈ P

C⊥ and Ĉ⊥1 , Ĉ
⊥
2 then Ĉ⊥1 ∩ Ĉ

⊥
2 = ∅

The number of different plans, i.e., partitions of the set C⊥, is given the Bell number Bn ,
where n is the number of elements of the set [FS09]. For instance, B7 gives us 877
possible combinations. In addition, the actions assigned to the same subset must not be
in collision with each other, which is called a collision-free corrective action plan.

Definition 3.5 (Collision-free corrective action plan). The collision-free property of a
corrective action plan PC⊥ = {Ĉ⊥1 , . . . , Ĉ

⊥
i } is expressed as follows:

• ∀c⊥i , c⊥j ∈ Ĉ⊥ : ζ (c⊥i) ∩ ζ (c
⊥
j) = ∅

If we recall the afore-mentioned example, we would have three subsets, each containing
exactly one element, i.e., ∀i : |Ĉ⊥i | = 1. In this thesis, such a plan is referred to as
a completely serialized corrective action plan. Furthermore, the plan must have the
property of being gain-aware.

Definition 3.6 (Gain-aware corrective action plan). The gain-aware property of a correc-
tive action plan PC⊥ = {Ĉ⊥1 , . . . , Ĉ

⊥
i } is expressed as follows:

• G (Ĉ⊥1) ≥ · · · ≥ G (Ĉ
⊥
i), where G returns the gain of deploying the set of actions Ĉ⊥i .

3.2.3 Over-Constrained Corrective Action Plan

In the previous section, the verification collision term was introduced and the definition
of a corrective action plan was provided. The properties of being completely serialized
and collision-free have been discussed as well. Let us continue with the latter one. The
collision-free property of a corrective action plan PC⊥ = {Ĉ⊥1 , . . . , Ĉ

⊥
i } can be expressed

as a set of constraints that must not be violated. In particular, every verification collision
is a constraint that prevents two corrective actions from being simultaneously deployed.
As we saw earlier, the more constraints we have, the more sets {Ĉ⊥1 , . . . , Ĉ

⊥
i } we get, i.e.,

the steps required to process the plan increase. This can reach up to a point where we
have to sequentially process each corrective action, as presented in Figure 3.6. The plan
contains three rollback actions and |PC⊥ | = 3, i.e., PC⊥ is completely serialized.

Unfortunately, we also have a constraint on the maximum number of sets {Ĉ⊥1 , . . . , Ĉ
⊥
i },

i.e., an upper limit for |PC⊥ |. It may originate from the time available for deploying

50 Chapter 3. Problem Analysis

rollback actions, for instance, we may be allowed to restore settings only once a day.
Another could be the environment, e.g., in a highly populated area we may have the
requirement of restoring the network performance as fast as possible. As a result, we
may not be able to process all actions, as depicted in Figure 3.7. It shows the impact on
the action plan if we add the constraint |PC⊥ | < 2. Such a plan is also referred to as an
over-constrained corrective action plan.

Definition 3.7 (Over-constrained corrective action plan). A corrective action plan PC⊥ =

{Ĉ⊥1 , . . . , Ĉ
⊥
i } is called over-constrained if and only if its size exceeds the maximum

number of allowed sets of corrective rollback actions Ĉ⊥. If we denote this limit as τ ,
|PC⊥ | > τ must hold for an over-constrained corrective action plan.

Having such an action plan means that we cannot find a partition of PC⊥ that satisfies
all given constraints, i.e., we have an over-constrained verification problem. In order
to find a solution we would need to relax the given constraints, i.e., to find a good
compromise that minimizes the total constraint violation. In the terms of a verification
process, we would need to identify soft verification collisions.

Definition 3.8 (Soft verification collision). A soft verification collisionC⊥×C⊥ is a valid
constraint, that prevents two actions c⊥i , c

⊥
j ∈ C

⊥ from being simultaneously executed,
but whose removal is necessary for minimizing the total constraint violation of putting
|PC⊥ | in the range of [1;τ].

However, violating constraints adds a new set of issues that we would need to consider.
The question that arises is which criteria to use for minimizing the impact of violating
rollback conflicts. Furthermore, removing a constraint means that we will permit the
simultaneous execution of rollback actions which was initially not allowed to happen. As
a consequence, the risk of rolling back changes that did not do any harm to the network
increases. For instance, it is possible to get an execution order as the one presented in
Figure 3.8. It depicts a permissible outcome after we remove the verification collision
between the rollbacks for cell 1 and 2 (cf. Figure 3.5). Instead of omitting the rollback
for cell 2, it is placed at the very beginning of the corrective action sequence.

Rollback

cell 1

Assess

network

Rollback

cell 2

Assess

network

Rollback

cell 3

Assess

network

Figure 3.7: Adding constraints to a corrective action plan may result in the inability of processing
all rollback actions. Due to the constraint |PC⊥ | < 2, it is impossible to process all actions.

Rollback

cell 1 and 2

Assess

network

Rollback

cell 3

Assess

network

Figure 3.8: The impact of verification collision removal. The elimination of the collision between
the corrective actions for cell 1 and 2 may lead to the execution of both actions at the same time.

3.2. Challenges for a Verification Process 51

3.2.4 Weak Verification Collisions

Let us continue with the problem of having an over-constrained corrective action plan
(cf. Definition 3.7). Being unable to process all elements ofPC⊥ = {Ĉ⊥1 , . . . , Ĉ

⊥
i }, because

i > τ , does not necessarily mean that we have lowered τ too much. Instead, we may
have been too strict when identifying verification collisions. Let us give an example by
observing the performance statistics of the cells from Figure 3.5. Let us assume that they
include the coverage degradation reports of the cells as well as how cells utilize network
resources. A prominent example for inefficient use of network resources are unnecessary
handovers, also called ping-pongs. They are repeated between two cells within a short
time, leading to reduced user throughput [NTB+07].

However, if we try to group cells based on such performance indicators, we may get
an outcome as presented in Figure 3.9(a). It shows an exemplary position of each cell in
the R2 space. For this particular example, we can group the cells into three categories:

• Category 1: Cells showing normal behavior.

• Category 2: Cells experiencing coverage degradation.

• Category 3: Cells inefficiently using network resources.

Inefficient use of network resources

C
o

v
e

ra
g

e
 d

e
g
ra

d
a

ti
o
n

0

Normal behavior Marked as degraded
Set of cells showing

similar behavior

Cell

9

3

Category 3

12

58

Category 2

4

7 10

6

Category 1

CM change

causing degradation

CM change not

causing degradation

(a) Cell performance visualized in the R2 space. The collision between cell 1 and 3 may be
removed due to the grouping of the cells.

Rollback

cell 1 and 3

Assess

network

Rollback

cell 2

Assess

network

(b) The resulting sequence of corrective actions after the elimination of the collisions. The configurations of
cell 1 and 3 are rolled back whereas the changes at cell 2 are accepted.

Figure 3.9: Correlation between cell performance, verification collisions, and corrective actions

52 Chapter 3. Problem Analysis

As shown, cells 1, 2, 5, and 8 are clearly experiencing coverage degradation whereas
cell 3 and 9 an inefficient use of resources. Hence, neither cell 1 has been assigned to
the group of cell 3 and 9, nor has cell 3 been grouped together with cell 2 and 8. In
other words, we may consider removing the verification collision between cell 1 and 3 as
well as between 2 and 3, which will give us a sequence of corrective actions as shown in
Figure 3.9(b).

Obviously, those collisions are unneeded and unnecessarily delay the process of exe-
cuting the corrective actions and, therefore, the restoration of the network performance.
In this thesis, they are referred to as weak verification collisions1.

Definition 3.9 (Weak verification collision). A weak verification collision C⊥ ×C⊥ is a
constraint that prevents two actions c⊥i , c

⊥
j ∈ C

⊥ from being simultaneously executed, but
whose removal may not lead to the rollback of changes not harming performance. That
is, there is the possibility for such a collision to be a false positive one.

3.2.5 Dynamic Topology Changes

Until now, the major topic of discussion was the assessment of configuration changes
and the provision of a set of corrective rollback actions in case they harm performance.
However, reconfigurations that lead to topology changes have been neglected so far. Such
changes may have an even more serious impact on a verification process compared to
those discussed in the previous sections.

Today, one of the most common reasons why we have dynamic topology changes in a
mobile network is energy saving [3GP10, MSES12]. Cells are activated or deactivated
based on the current demands of the network, for instance, when a large group of UEs
suddenly leaves the network some small cells can be turned off. However, disabling or
enabling cells creates uncertainties during the process of detecting anomalies as well as
assembling and executing a corrective action plan. Let us start with the example depicted
in Figure 3.10. It represents three cells, each being a neighbor of the other two. In
addition, cell 2 has been disabled and cells 1 and 3 are showing an anomalous behavior.

3

Turned off cell

Neighbor relation

Anomalous cell

1

2

Figure 3.10: The impact of topology changes on cell performance. Turning off a cell may induce
anomalies in a similar way as CM changes do.

1Weak collisions are also referred to as false positive verification collisions [TATSC16a].

3.2. Challenges for a Verification Process 53

Obviously, if we do not have any other events in the network, we would assume that
switching off cell 2 is the cause for that behavior. This assumption could be motivated by
the state of the available cell profiles. The profile itself is defined in the following way:

Definition 3.10 (Profile). The profile of a cell is a vector p = (p1, . . . ,pi), where pi
specifies the expected value or range of the ith cell KPI.

Generally speaking, the profile defines how cells should usually behave. Furthermore, it
specifies how a cell should behave with respect to its neighbors, as well as determines
the expected performance from those neighbors. It should be noted that the assessment
of the neighbor performance usually requires the analysis of mobility related KPIs like
the handover ping-pong rate or the handover success rate [3GP16f, HSS11].

To record a profile, we need a training phase during which KPI data is collected. The
gathered data is also referred to as a profile input.

Definition 3.11 (Profile input). The input of a profile is defined as a matrix Ki, j (Equa-
tion 3.2) in which the rows i correspond to the KPIs that are used for profiling, whereas
the columns j represent discrete points in time when KPIs data was exported. The total
number of columns depends on the PM granularity period and the profile record duration.

Ki, j =

*..........
,

k1,1 k1,2 · · · k1, j

k2,1 k2,2 · · · k2, j

...
...
. . .

...

ki,1 ki,2 · · · ki, j

+//////////
-

(3.2)

However, if we add or remove a neighbor of a cell, the current assumptions about the
network and the one made while recording a profile may no longer match. As a result,
we get an incomplete profile.

Definition 3.12 (Incomplete profile). A cell profile is called incomplete if and only if
|Σ|K , |Σ|l , where Σ is the set of all cells, |Σ|l the current number of cells, and |Σ|K the
number of cells that were present when the profile input was collected.

The most logical solution would be to update the current profile or specify a new one.
However, if cell 2 needs to be turned on again, we will face the same problem. In other
words, we have the question which cell state is actually the expected one. If we assume
that the initial state, i.e., when cell 2 was enabled, is the usual one, we would need to
rollback the turn off action. However, this could be an inappropriate action since cell 2
is no longer required in the network and has been, therefore, put into energy conserving
mode.

54 Chapter 3. Problem Analysis

Neighbor relation

Cell

51 2 4

3

6

Switched off cell

CM changeAnomalous cell

8 7 9

Figure 3.11: Visualization of concurrent topology and CM changes. They lead to uncertainties
about the cause of the anomalous behavior of cells.

Theoretically, we could define several profiles, e.g., for every possible topology
change. In the aforementioned example this would be a rather straight forward pro-
cedure. However, this changes for a real mobile network since it contains hundreds of
cells [BKKS16, NTSM15] which may also have a high neighborship degree. Conse-
quently, updating incomplete profiles would be a highly complex task since we would
need to do that for numerous cell combinations. In particular, if all elements of the set of
all cells Σ are allowed to change their availability, we would require |P(Σ) | − 1 profile
combinations. If we denote |Σ| =m the resulting value would be 2m − 1. Note the power
set includes the empty set ∅ which is why |P(Σ) | is decreased by 1.

Unfortunately, the fact that we can have incomplete profiles is not the only challenge
that we would need to overcome. Let us assume that we have a network consisting of
9 cells and 10 cell adjacencies, as shown in Figure 3.11. Moreover, suppose that cells
2, 4, and 7 have been reconfigured, cell 6 is disabled, and cells 3 and 8 have degraded.
Hence, for this particular network snapshot we have three rollback actions c⊥2 , c

⊥
4 , c

⊥
7 and

a verification collision between c⊥2 and c⊥4 . Note that index i of an action c⊥i represents the
ID of the cell for which it has been generated. If we assume that network configuration
changes have caused the anomalies, a permissible corrective action plan PC⊥ would be
{{c⊥2 , c

⊥
7 }, {c

⊥
4 }} or {{c⊥4 , c

⊥
7 }, {c

⊥
2 }}.

However, those assumptions may not be always valid. Besides CM changes there is
a certain event type that may induce an anomaly and which we even cannot correct by
executing a rollback action. This unusual event is caused by UE movements, that is, users
frequently entering or leaving the network. If a rather large group of UE joins or leaves, it
may induce anomalous cell behavior, like an unusually high or low load and throughput.
Hence, the anomalies at cell 3 and 8 might be caused by one or more UE groups that
have recently joined or left the network.

3.3. Factors Influencing a Verification Process 55

As a result, the above-mentioned plan PC⊥ cannot restore the network performance
even if we execute all suggested changes. In this thesis, this plan is called a weak
corrective action plan. It can be defined as follows:

Definition 3.13 (Weak corrective action plan). A corrective action plan PC⊥ =

{Ĉ⊥1 , . . . , Ĉ
⊥
i } is called weak when the set of anomalous cells remains nonempty, i.e.,

ΣA , ∅, after processing ∀Ĉ⊥i ∈ PC⊥ .

3.3 Factors Influencing a Verification Process

In this Section, the factors that influence a verification process and hinder its proper
operation are discussed. Concretely, the major topic of discussion includes the availability
of PM and CM data and the statistical relevance of PM data. They are introduced in
Sections 3.3.1 and 3.3.2, respectively.

Moreover, the heterogeneous nature of today’s networks and the characteristics of
CM parameters play an important role during verification. Sections 3.3.3 and 3.3.4 are
devoted to those topics.

3.3.1 Availability of PM and CM Data

3.3.1.1 PM Granularity Periods

A factor that influences the ability to assess the impact of CM changes is the time that
is required to get PM data from the network, which is also known as a PM granularity
period (cf. Section 2.2.3). The more frequently PM data is exported from the network, the
more often SON functions can trigger their monitoring part, observe the KPIs of interest,
and make CM changes. Figure 3.12(a) shows an exemplary function activity in such a
case. As we can see, functions may not be required to run in parallel which minimizes
the necessity of analyzing numerous CM changes at the same time.

However, if the granularity period is increased we may face a function activity like
the one depicted in Figure 3.12(b). A long granularity period increases the probability
of SON functions to become active at the same time. Hence, numerous configuration
changes can be simultaneously deployed which increases the likelihood of verification
collisions to emerge. Also, the issues that occur during the process of generating a
corrective action plan remain, e.g., an over-constrained corrective action plan or the
presence of weak collisions.

Romeikat et al. [RSB13] estimated that the lower bound of getting PM data in a OAM
system is 15 minutes which is a rather long time frame. The main reason for that is the
relative network and processing overhead of gathering the PM data and uploading it to
the corresponding database. It should be noted that the OAM architecture is presented in
Section 2.2.1.

56 Chapter 3. Problem Analysis

Set of PM reports SON function activity PM report

Timeline

(a) Short granularity periods, i.e., frequent access to PM data, may minimize the likeli-
hood of SON to run parallel.

Set of PM reports SON function activity PM report

Timeline

(b) Long granularity periods, i.e., rare access to PM data, may lead to simultaneous CM
changes which may increase the likelihood of verification collisions to emerge.

Figure 3.12: Correlation between granularity periods, verification collisions, and the activities of
SON functions

3.3.1.2 Access to CM Data

In order to observe as much as possible ongoing CM changes, a verification process
needs to have a wide view of the network. In terms of the 3GPP OAM architecture, as
introduced in Section 2.2.1, it would mean that it needs to monitor the NEs from the DM
or even the NM level.

However, being at that level induces delays until it gets relevant data from the network.
In particular, it would not be able to instantly observe the impact of CM changes, but
will have to assess a set of configuration actions that have been collected over time.
Figure 3.13 illustrates the resulting view on CM and PM data. Instead of assessing each
of the nine changes immediately after they have been executed, it will do that only twice:
for five and four changes, respectively.

Unfortunately, the analysis of a large set of configuration changes at once increases
the likelihood for verification collisions to emerge. Hence, the problems of having an
over-constrained corrective action plan as well as weak verification collisions remain.
Concretely, we are facing the same issues as discussed in Section 3.3.1.1.

3.3. Factors Influencing a Verification Process 57

Set of PM reports SON function activity

PM reportCM report

Set of CM reports

Timeline

Database upload Database upload

Figure 3.13: The consequences of having a coarse granular view on CM data. PM data has to
be collected until access to CM data is provided. Also, numerous CM changes are assessed by a
verification process at the same time.

3.3.2 Statistical Relevance of PM Data

One of the prerequisites for being able to assess the impact of configuration changes is
the statistical relevance of PM data. Typically, we would pick several KPIs and monitor
their behavior after the reconfiguration has been carried out. Nevertheless, significant
changes in certain KPIs cannot be immediately seen. For instance, a significant change in
KPIs like the handover success rate or the handover ping-pong rate can be only observed
when enough UEs actively use the network, e.g., during peak hours of a weekday.

Therefore, we would need to accumulate the changes that have been made over a
longer time frame and assess them at once after we are in possession of such PM data.
A visualization of this process is shown in Figure 3.14(a). Instead of assessing CM
changes after each SON function activity, we would do so only three times. Af first, we
would observe two, then four, and finally three changes. As stated before, this would also
increase the chances of getting verification collisions (cf. Definition 3.3).

Furthermore, this may also result in an over-constrained corrective action plan (cf. Def-
inition 3.7). Suppose that some of the actions need to be rolled back, as shown in
Figure 3.14(b). Each set of rollback actions can be seen as a trigger for creating a cor-
rective action plan PC⊥ = {Ĉ⊥1 , . . . , Ĉ

⊥
i }. In the presented example, the size of the first

and third one would be one, i.e., it contains only one set of rollback actions Ĉ⊥i . The
size of the second one is three which unfortunately overlaps with the third corrective
action plan. As a result, we would need to reduce the size of the second one, i.e., we get
an over-constrained verification collision problem. It should be noted that this issue is
presented in Section 3.2.3.

58 Chapter 3. Problem Analysis

Timeline

Set of collected CM reports SON function activity CM change

(a) The absence of statistically relevant PM data leads to the accumulation of CM
changes. All of the accumulated changes must be assessed by a verification process.

Set of CM reports Rollback act ion CM change

Timeline

Over-constrained corrective action planCorrective action plan

(b) The accumulation of CM changes may lead to an over-constrained corrective action
plan. As a result, it cannot be processed for the given time.

Figure 3.14: The impact of absent statistically relevant PM data on a verification process

3.3.3 Network Density, Heterogeneity, and Topology

Nowadays, mobile networks are comprised of a high number of cells as well as a high
number of cell adjacencies. For instance, in [BKKS16] datasets from a real LTE mobile
network have been acquired. They contain performance, configuration, fault, and alarm
measurements for approximately 4000 cells. In [TSC15], a similarly sized LTE network
has been observed. It consists of 3028 cells as well as a high number of neighbor relations,
as the cell out-degree distribution in Figure 3.15 depicts. Another example is given in
[CCC+14a], where the observed 3G network consists of roughly 2000 cells.

The reasons for having a high number of cells and cell adjacencies are numerous.
Many of today’s networks are heterogeneous networks. They are characterized by a
mixture of different RATs, like the GSM, HSPA, and LTE (cf. Section 2.1.1). Hence,
multi-RAT neighbor relations have to be established in order to hand over UEs between
networks of different RATs. Furthermore, heterogeneous networks are multi-layer, i.e.,
in addition to macro cells, we have numerous micro and femto cells that provide hot-spot
coverage. Those cells can be placed in areas of dense traffic, for example, to cover
peak hour traffic demands. Moreover, future mobile networks may include even more
heterogeneous networks, different types of access technologies, as well as a high number
of small cells densely clustered together [Nex15, CZ15].

3.3. Factors Influencing a Verification Process 59

Figure 3.15: Cell out-degree distribution of an LTE network [TSC15]. On the x-axis the cell
out-degree bins are shown whereas on the y-axis the number of cells that fall within each bin.

However, having such networks also complicates the process of discovering suboptimal
network performance. It becomes a highly complex task due to the fact that real deploy-
ments are actually an overlay of different RATs. According to Bosneag et al. [BHO16],
the relatively large size of today’s mobile networks requires not only the monitoring
of many important performances counters, but also the consideration of different cell
configurations settings and environmental changes. It comes mainly from the numerous
scenarios and parameter combinations that can emerge and which have to be taken into
consideration.

Highly dense networks also complicate the process of diagnosing why cells are anoma-
lously performing, i.e., the generation of a corrective action. Let us consider the example
from Figure 3.16(a). It represents a graph in which any two cells have a neighbor relation
between each other. Hence, we have a complete graph [CLRS09] in which every pair of
distinct vertexes is connected by an edge, i.e., the density is 1.0 since the graph has the
maximum number of edges. Consequently, such a network topology always leads to a
verification collision if at least two cells are reconfigured and one has become anomalous,
as shown in the figure.

Nevertheless, even if we have a low graph density we can still face the same problem.
Suppose that we have a topology like the one presented in Figure 3.16(b). Despite the fact
that the graph has a density of 0.27, it consists of several areas in which every two cells
have a common neighbor relation. In terms of graph theory, such areas can be referred
to as cliques [CLRS09], i.e., a subset of vertexes in an undirected graph that induces a
complete subgraph. In other words, a verification process will face the same issues as
described before.

60 Chapter 3. Problem Analysis

Cell Neighbor relation

Anomalous cell

Reconfigured cell

(a) Verification collisions in a complete graph

Cell Neighbor relation

3 Ver tex clique 5 Ver tex clique4 Ver tex clique
Anomalous cell

Reconfigured cell

(b) Verification collisions in a graph of multiple cliques

Figure 3.16: Graph analysis of the verification collision problem

3.3.4 Characteristics of CM Parameter Changes

3.3.4.1 CM Change Granularity

In [NTSM15], a performance test of an offline CCO algorithm is made. The authors
observed the network for anomalies after the deployment of the suggested up or down tilt
changes. In total, 21 WCDMA cells were selected by the algorithm for reconfiguration.
Furthermore, the tilt changes were deployed by using shared Remote Electrical Tilt (RET)
modules, i.e., modules to which more than one antenna is connected. Having a shared
module, though, prevents the separate change of the tilt angels of the antennas. As
a consequence, the CCO algorithm had to assemble a new configuration for all cells

3.3. Factors Influencing a Verification Process 61

Cell 1

Cell 3

Cell 2

Neighbor relation

Shared
RET module

(a) Network overview

Degraded cellTilt change

1 2

3

(b) Network activities

Ri Rollback action

R1 R2

R3

Ri Rj Rollback action conflict

(c) Rollback action conflicts

Figure 3.17: Example of having one shared RET module

Cell 1

Cell 3

Cell 2

Single
RET module

Single
RET module

Single
RET module

Neighbor relation

(a) Network overview

Degraded cellTilt change

1 2

3

(b) Network activities

Ri Rollback action

R2

(c) Rollback action conflicts

Figure 3.18: Example of having three single RET modules

managed by the same RET module which resulted in 32, instead of the initially suggested
21 changes.

Although the authors did not find an anomaly after the deployment of the CCO changes,
care should be taken when in the presence of shared modules changes are rolled back.
Suppose that three cells are managed by a single module, as shown in Figure 3.17(a), and
that a tilt change is required for only one of the cells. Due to the shared module we will
have three tilt changes, as depicted in Figure 3.17(b). Should one of the cells degrade,
we will get three rollback actions, each being in collision with the other, as outlined in
Figure 3.17(c).

On the contrary, if each cell is managed by a separate single module, i.e., we have fine
granular configuration options, as given in Figure 3.18(a), we would lower the probability
of getting collisions. As shown in Figures 3.18(b) and 3.18(c), we have only one rollback
action, i.e., no collisions at all.

3.3.4.2 Impact of CM Changes

Let us start with a simplistic example where we have two active SON functions in
the network: MRO and CCO. Note that a description of those functions is given in
Section 8.1.2. If the CCO function modifies the antenna tilt, the cell border changes
physically which means that the received signal quality changes as well. Obviously,
this affects the handover capabilities of the neighbors of the reconfigured cell which

62 Chapter 3. Problem Analysis

could be monitored by the MRO function. As a result, any upcoming CIO changes
suggested by that function are influenced by tilt adjustments made in the past. In addition,
such function changes have to be properly coordinated since otherwise they may cause
configuration, measurement or logical conflicts (cf. Section 2.3.2.3). Omitting that can
potentially cause undesired network behavior [RSB13], e.g., the above-mentioned MRO
function should run after CCO has made its changes.

Similarly, a corrective rollback action is a CM change that may trigger inactive SON
functions as well as affect their outcome. For instance, reverting an antenna tilt configu-
ration is a CM change that can trigger the MRO function monitoring the same physical
area. As a consequence, we have an indirect constraint on a corrective action plan
PC⊥ = {Ĉ⊥1 , . . . , Ĉ

⊥
i } that forces us to deploy the correct rollbacks already after process-

ing the first rollback action sets Ĉ⊥i . Otherwise, we can trigger functions for which the
environment is not prepared yet.

Of course, it is possible to block SON functions in the area where a verification process
is running, e.g., by using a SON coordinator [Ban13]. However, the question that arises
here is whether this is applicable in a real network. If we consider the size of such
networks, we can quite delay necessary optimization changes for a high number of cells,
as depicted in Figure 3.19. The rollbacks for the degraded cells block any other SON
function activity within the same area.

SON function activity CM reportSet of CM reports Rollback action

Cell Neighbor relation Anomalous cell

Reconfigured cell

Rolled back cellAction plan Suppressed SON function activity

Figure 3.19: Example of blocking a SON optimization process when processing a corrective
action plan

3.4. Summary 63

3.4 Summary

In today’s mobile networks, there are several sources that can lead to abnormal cell
performance (cf. Section 3.1). The issues that are most difficult to troubleshoot are
configuration changes that have been deployed to the network while it was operating, and
harmed its performance. The reasons why there is a possibility to deploy such changes
are manifold. On the one hand, offline SON algorithms are unable to generate optimal
CM settings in case they are supplied with inaccurate knowledge about the network.
On the other hand, online SON techniques have a limited view on the ongoing network
changes and are optimizing the network only locally.

In this chapter, the major topic of discussion was the detailed analysis of the problems
that emerge while assessing the impact of already deployed configuration changes on the
network performance, as well as rolling back those harming it. A strategy like that is
referred to as a verification process (cf. Definition 3.1) whose purpose is to observe CM
changes, monitor KPIs, and generate a corrective action plan in case cells start showing
an anomalous behavior, like a degradation in performance. The corrective action itself is
a rollback to a previous stable configuration state.

Many of today’s SON troubleshooting and anomaly detection & diagnosis approaches
already follow the basic principles of a verification process. However, they experience is-
sues while providing a corrective action plan, as the following answer outlines:

O1.1: Investigate and study the disadvantages and weaknesses of approaches
that verify network operations.
Q: What are disadvantages of today’s anomaly detection & diagnosis and SON trou-
bleshooting approaches?
A: SON troubleshooting and anomaly detection & diagnosis approaches that are being
used today cannot provide one single action since they need to know in advance the
combined performance impact of the rolled back CM changes. To do so, they would
not only require a sophisticated diagnosis component, but also reusable diagnosis
results. Getting such results, however, is a complex task. The reason is the nature of
today’s mobile networks: they are manifold, generate different types of PM data and
react differently to the same corrective action. Hence, such methods have to deploy
corrective action through several iterations, i.e., they create a sequence of corrective
actions. Having a sequence of such actions, however, means that another SON opti-
mization process may interfere in the meantime and prevent the necessary corrective
actions from being deployed. Furthermore, uncertainties may occur while processing
the corrective actions.

The uncertainties that are mentioned above are referred to as verification collisions
which are addressed by the following research questions:

64 Chapter 3. Problem Analysis

O3.1: Define uncertainties in the terms of a verification process.
Q: What is a verification collision?
A: A verification collision (cf. Definition 3.3) is an uncertainty which corrective roll-
back action to execute. It occurs when two rollback actions share the same trigger, i.e.,
cells that led to the generation of the two actions.

Q: Why do verification collisions emerge?
A: The reasons why verification collisions emerge are manifold. First, the access
to PM and CM data plays an important role (cf. Section 3.3.1). A coarse-granular
view on performance and configuration data increases the likelihood of verification
collisions to appear since multiple CM changes need to be simultaneously assessed by
a verification process. Second, the availability of statistically relevant PM data is also a
factor that leads to the formation of collisions (cf. Section 3.3.2). A significant change
in KPIs is only visible when the network is monitored for a longer period of time. As a
result, ongoing CM changes cannot be immediately assessed, but have to be collected
and simultaneously verified when such data is available. Third, the heterogeneous
nature of today’s mobile networks (cf. Section 3.3.3), in particular, the resulting cell
interconnectivity increases the probability of getting verification collisions. Fourth,
the way of how CM changes are deployed today may also cause verification collisions
to emerge (cf. Section 3.3.4). In particular, due to shared reconfiguration modules one
change may actually result into multiple CM adjustments.

Unfortunately, the presence of verification collisions has a negative impact on the resulting
corrective action plan, as outlined below.

O3.2: Study and evaluate the impact of uncertainties on the outcome of a verifi-
cation process.
Q: How do verification collisions impact the corrective action plan?
A: A corrective action plan (cf. Definition 3.4) must have the property of being
collision-free (cf. Definition 3.5). However, the presence of numerous verification
collisions increases the number of sequentially processed corrective actions which may
lead to an over-constrained plan (cf. Definition 3.7). Hence, it is frequently impossible
to solve the verification problem without neglecting some verification collisions, i.e.,
marking some collisions as soft ones (cf. Definition 3.8).

Q: What are the consequences of neglecting verification collisions?
A: Neglecting verification collisions may result in the rollback of configuration
changes that were necessary and did not harm performance. Furthermore, it may
result in suboptimal changes in the future (cf. Section 3.2.1).

3.4. Summary 65

Q: Are all verification collisions justified?
A: No. There are also weak collisions (cf. Definition 3.9), which can be potentially
false positives, i.e., they may unnecessarily delay a verification process.

However, verification collisions are not the only type of uncertainties that may emerge
during the process of verification. Dynamic changes in the network topology create a
very similar problem, as discussed below.

O4.1: Specify and define the uncertainties caused by topology changes.
Q: What is a dynamic topology change and when does it occur?
A: The reason for having dynamic topology changes is energy saving. Cells whose
energy efficiency features are enabled, can be enabled or disabled depending on the
network and service demands.

Q: How are dynamic topology changes related to a process that verifies configuration
changes?
A: Strictly speaking, dynamic topology changes are configuration changes since the
enabling or disabling of a cell requires the change of CM parameters. Hence, they
require the same attention as other configuration changes since they may create the
same type of problems as presented before.

O4.2: Study and evaluate the impact of topology changes on the process of veri-
fying configuration changes, as well as identify the necessary conceptual changes
of a verification process.
Q: How do topology changes impact the process of verification?
A: Turning a cell on or off may have a negative impact on the cell profiling (cf. Defini-
tion 3.10). In particular, such an event may induce an incomplete profile (cf. Defini-
tion 3.12), which can result in the blame and rollback of necessary CM changes.

Q: Can a verification process issue an appropriate corrective action?
A: A verification process as specified by Definition 3.1 cannot generate an appropriate
corrective action in the case of dynamic topology changes. The reason is the trigger:
it is not a configuration change that leads to an anomaly but the unexpected entering
or leaving of UEs.

Q: What are consequences of dynamic topology changes on the process of verification?
A: It may deploy inappropriate or suboptimal corrective actions and even cause the
process of verification to rollback changes not harming performance. In addition, the
presence of dynamic topology changes may result in a weak corrective action plan
(cf. Definition 3.13).

66 Chapter 3. Problem Analysis

Chapter 4

Related work

This chapter is devoted to the work related to the verification concept that is presented
in this thesis. As stated in Chapter 1, a verification strategy spreads over different areas
and addresses additional questions besides those known from anomaly detection and
diagnosis. Chapter 3 gave a detailed overview of those problems and issues which have
to be solved by verification strategies.

However, a concept that is spread over several areas results in the related work to
originate from more than a single research field. Concretely, the concept presented in
this thesis has similarities with approaches from three categories: pre-action analysis,
post-action analysis, and post-action decision making. The pre-action analysis category
(cf. Section 4.1) consist of approaches that concentrate on the avoidance of potential
conflicts, and therefore also anomalies, when making changes to configuration parameters.
The post-action analysis category (cf. Section 4.2) is comprised of approaches that bring
into focus the discovery of anomalies as well as the profiling of the network behavior. The
last category, i.e., post-action decision making (cf. Section 4.3), includes methods that
focus upon the remedy of changes harming performance and the provision of corrective
actions. The topics that are described in this chapter are primarily focused on mobile
communication networks, however, also consider areas that may experience similar
problems as those introduced in Chapter 3.

4.1 Pre-Action Analysis

As the name suggests, pre-action analysis deals with the avoidance of all potential con-
flicts, anomalies, and collisions that may occur when the network is operating. In general,
it can be distinguished between approaches that implement avoidance mechanisms at
design-time, i.e., during the process when automation mechanisms are set up, and ap-
proaches that focus on the avoidance at run-time. In the latter case, strategies are used
that prevent conflicting actions from being deployed.

68 Chapter 4. Related work

4.1.1 Conflict Avoidance at Design-Time

Preventing undesired network behavior starts at designing a reconfiguration processes,
e.g., online or offline SON approaches (cf. Sections 2.3.2 and 3.1.1), in such a way that
they minimize the likelihood of conflicts while changing CM parameters. In the upcoming
sections, such design methods are outlined and their shortcomings are discussed.

4.1.1.1 Harmonization Strategies

Within the SOCRATES project [KAB+10] the idea of heading harmonization has been
introduced. It is presented as a high-level goal to avoid configuration conflicts by harmo-
nizing the SON function execution. In particular, the idea is to align the policies of the
deployed SON functions in a way they do not produce conflicting configuration changes.
Such a strategy, though, is limited by the ability to foresee conflicts and predict their
impact on the network.

4.1.1.2 Co-Design Approaches

In a similar way, SON function co-design aims to identify potential conflicts and provide a
conflict-free SON operation [HSS11, Ban13]. Concretely, it defines a triple of symptoms,
possible problems, and triggers of configuration changes. The trigger is a function which
solves a problem, like poor coverage, and changes CM parameters accordingly. As a
result, a function may trigger other effects like a high number of handover drops, which
are identified as symptoms.

There are numerous issues that are not addressed by SON function co-design. First,
it is impossible to specify all potential symptoms, that is, predict the consequences
of CM changes on the network performance. Second, the list of symptoms is usually
narrow which means that a lot of configuration changes will be associated with the same
symptom. Hence, the only possible way to prevent conflicts is to sequentialize the action
execution process which is very similar to the problem of having a completely serialized
corrective action execution plan (cf. Section 3.2.2).

4.1.2 Conflict Avoidance at Run-Time

This section is devoted to the mechanisms that implement run-time conflict avoidance.
In general, there are two classes between which we can distinguish. On the one hand,
we have approaches that coordinate the action execution at run-time, i.e., they decide
whether the requested parameter changes will result in a conflict and whether they are
going to negatively impact the performance of the network. If they do so, CM change
requests can be rejected. On the other hand, there are methods that reconfigure SON
functions in a way that they follow a common objective. By making them to operate
towards a common goal, the probability of getting run-time conflicts and collisions may
be reduced. Also, there is a third class, namely methods that dynamically adapt the

4.1. Pre-Action Analysis 69

resource allocation within the network. In the upcoming sections, those strategies are
discussed in more detail.

4.1.2.1 Adaptive Action Execution

The concept of pre-action SON coordination [BRS11, RSB13] can be seen as an alter-
native strategy to a verification strategy. As stated in Section 2.3.2.3, SON coordination
is focused on the analysis of actions before they are executed. Concretely, it makes use
of rules and policies that enable the detection of known conflicts between active SON
functions. For example, two functions changing the same CM parameter must not run
at the same time. If they do so, conflicts may occur and the performance of the network
may decrease.

Since pre-action coordination tries to prevent conflicts, rather than resolving them, it
can be seen as pessimistic approach since it hinders conflicting functions from getting
active. Furthermore, pre-action coordination is not obligated to assess the network
performance after the deployment of CM changes. In contrast, a verification process
(cf. Definition 3.1) can be categorized as a optimistic approach as it generally allows
configuration changes to be applied and only those harming performance are rolled back.

The main problem pre-action coordination is facing is the inability of predicting all
potential conflicts. It is generally difficult to foresee how configuration changes are going
to impact network performance, e.g., if they are going to induce anomalies.

The approach presented in [CAA13] goes one step further. It presents a coordination
method for autonomic configuration changes in mobile communication networks. In-
stead of relying on pre-defined rules and policies, a mathematical model is proposed
which specifies the interaction of SON functions. The authors model SON mechanisms
as control loops and describe the system as an Ordinary Differential Equation (ODE).
Furthermore, they analyze the stability of the network by using the Lyapunov stability
theorem. Should the stability of the network decrease, they enable coordination which has
the task of guaranteeing the flawless operation of the SON mechanisms. Unfortunately,
the approach does not completely solve the issues that emerge when rolling back changes.

4.1.2.2 Adaptive Configurations of SON Mechanisms

In a mobile network, the complexity of coordinating SON functions at run-time increases
with the number of active functions. In the worst case scenario, a coordinator would
need to foresee a high number of possible conflicts which will lead to the problems
harmonization and co-design approaches are already experiencing (cf. Sections 4.1.1.1
and 4.1.1.2). Furthermore, the increasing complexity of the coordination problem also
impacts a verification process as the likelihood of taking suboptimal decisions increases
as well. Consequently, a verification process would need to analyze numerous configu-
ration changes and may potentially face uncertainties while rolling back changes, e.g.,
verification collisions (cf. Definition 3.3).

70 Chapter 4. Related work

This problem has been identified in [MATTS15] where the authors propose a frame-
work for Cell Association Auto-Configuration (CAAC). The idea is to generate cell
associations which can be updated at run-time. Concretely, an association changes the
spatial scope of active SON functions by tweaking their configuration parameters. Cell
associations are generated by taking into account the current cell capabilities, information
about the network topology, manually defined policies, as well as expert knowledge.
Nevertheless, function activities that actually harm performance are not addressed.

The idea of dynamically adapting the configuration of SON mechanisms has also been
identified in [LSH16]. The authors introduce an approach that generates SON objective
models, i.e., configuration sets that change the parameters of SON functions based on
objectives as given by the human operator. Concretely, an objective defines the desired
range of the KPIs of interest, e.g., a call drop rate below 5%. A model is computed by a
simulation environment that replicates the real network and determines the impact of all
possible function parameter values on those KPIs.

Although the approach is focused on reaching certain KPI objectives, it indirectly
addresses some of the issues that are targeted by verification strategies. By setting up
SON functions to work towards the same goal, the probability of facing run-time conflicts
can be minimized. Therefore, the likelihood a SON function to induce a degradation may
be minimized as well. However, the capability of generating appropriate objective models
also depends on the accuracy of the used simulation model as well as the complexity
of the network. As stated in Section 3.1.1, an inaccurate or incomplete model may
lead to wrong assumptions about the network and, therefore, to suboptimal optimization
decisions.

4.1.2.3 Adaptive Resource Allocation

Besides the mobile network area, there is also the Wireless Local Area Networks
(WLANs) area which is commonly employing mechanisms that follow verification
paradigms, as discussed in Section 3.1.2. For instance, in [RPM05] a technique is
introduced for the assignment of frequencies for WLANs by constructing a so-called
interference graph. The suggested solution is based on graph coloring, in particular
on minimum vertex coloring. The vertexes of the graph represent the wireless access
points whereas the edges connect two access point that would interfere with each other.
In addition, a set of maximum possible colors is defined by collecting the number of
channels available to the access points.

The problem of solely relying on graph coloring is introduced later in this thesis
(cf. Section 6.4). Minimum vertex coloring is not able to solve an over-constrained
problem, that is, it is impossible to find a solution if the total number of available colors
is insufficient. As a result, a suboptimal parameter choice can be made.

4.2. Post-Action Analysis 71

4.2 Post-Action Analysis

Approaches that fall within the post-action analysis class are focused on the assessment
of already executed actions. Here, a differentiation is made between strategies that follow
anomaly detection and diagnosis paradigms, and methods that focus on the assessment
of scope changes. The discussed strategies make use of algorithms that are known from
other areas besides mobile networks. Even though some of them are applied on mobile
communication networks, they are generally applicable to various other environments
and areas.

4.2.1 Degradation Detection and Diagnosis Strategies

In [CCC+14b], an anomaly detection and diagnosis framework has been proposed. It
attempts to verify the effect of CM changes by monitoring KPIs exported by the network.
In particular, the authors perform anomaly detection and diagnosis on a group of selected
cells, i.e., the assessment is not made on the level of an individual cell. Those sets
of cells are processed in two steps. During the first step, anomalies are detected by
using topic modeling. In literature, topic modeling is known as a statistical model that
performs cluster training and formation based on a common criteria. Initially, it has
been used to determine the probability distribution of words in documents. During the
second step, diagnosis is applied. Concretely, the authors make use of Markov Logic
Networks (MLNs) which is an approach for probabilistic reasoning that uses first-order
predicate logic.

In [SN12, Nov13] an anomaly detection and diagnosis framework for mobile commu-
nication systems is proposed. The authors have developed a framework that analyses
performance indicators generated by NEs, observes them for anomalous behavior and
suggests a corrective action to the operator. Typical counters are the number of successful
circuit or packet switched calls. The suggested system consists of three main building
blocks: a profile learning, an anomaly detection and a diagnosis module. The profile
learning module analyzes historical data and learns all possible realizations of the normal
network operation. The normal network operation itself is represented by profiles which
describe the usual (faultless) behavior of KPIs. The anomaly detection module monitors
the current network performance and compares it to the profiles. Should a significant dif-
ference be detected, the diagnosis module is triggered to identify the possible cause. The
diagnosis module consist of a knowledge database fed with fault cases by the operator.
Furthermore, a performance report containing the suggested corrective action is provided
to the operator who can optionally provide feedback to the system for the purpose of
improving the diagnosis capabilities.

In [BHO16], a big data system and machine learning approach is introduced. The
presented system analyses the performance of the RAN in LTE, learns the baseline
behavior of cells along different dimensions. Concretely, it considers multiple dimensions
that are comprised of PM counters, KPIs, configurations and radio setting information.

72 Chapter 4. Related work

The baseline behavior is specified by so-called signatures that associate configuration
parameters with performance indicators. They represent performance models along the
dimensions which are selected based on expert knowledge.

The authors of [BKKS16] propose an anomaly detection algorithm whose primarily
task is to discover unusual KPI values in noisy data. It is referred to as a density based
spatial clustering algorithm. It makes use of a sliding window which is used for the
grouping of the found anomalies. The grouping itself is done per NE and a decision
is made whether the observed entity has degraded. However, an interesting fact about
this paper is the statement that false positive anomalies are not seen as a problem as
they are usually caused by badly selected input data. As stated in Section 3.2.1, false
positives may also emerge when numerous functions try to reach their optimization
goal. Furthermore, neglecting false positive anomalies increases the likelihood of having
numerous verification collisions and an over-constrained corrective action plan, as given
by Definitions 3.3, 3.4, and 3.7.

In [GNM15], an anomaly detection technique for cellular networks has been intro-
duced. It is based on the extended version of the incremental clustering algorithm
Growing Neural Gas (GNG) which partitions the input data into smaller groups that show
a similar behavior. The GNG approach itself [Fri95] has been introduced for anomaly
detection in real-time environments. The presented method is able to identify unusual
behavior in the time domain. An example is a cell remaining a whole week in a state
that represents the weekend. The presented approach, however, does not consider the
verification collision problem.

In [NG15], an anomaly detection technique for cellular networks has been introduced.
It is based on the incremental clustering algorithm GNG which partitions the input data
into smaller groups. Those groups represent sets of input data that have similar char-
acteristics. The presented method is referred to as Fixed Resolution Growing Neural
Gas (FRGNG) and targets the problems of representing the input data as well as de-
termining when to stop collecting PM data. However, the solution does not address
problems like resolving verification collisions, eliminating weak ones, as well as solving
an over-constrained verification collision problem.

The authors of [GAMK+16] introduce a methodology for the design and evaluation
of self-healing concepts in LTE. According to them, the main challenge experienced by
self-healing approaches is the difficulty in knowing the effects of each fault cause on the
PM data. They also state that it is hard to get labeled cases from real mobile networks, i.e.,
faults associated with symptoms. The main reasons are the complexity of the network as
well as the high variety of CM and PM data. In addition, they mention that even if a prob-
lem is solved, the real cause usually remains unknown and may, therefore, appear again
in the future. As a consequence, the ability to provide an appropriate corrective action
becomes challenging as well. For this reason, they propose a scheme that is comprised
of three aspects: the building of a fault model, the definition of cause-symptom relations,
and designing a diagnosis component which is fed with the collected information. The

4.3. Post-Action Decision Making 73

modeled fault causes are excessive uptilt or downtilt, cell power reduction, coverage hole,
interference and mobility. The symptoms for assessing potentially problematic cells are
the most relevant KPIs, e.g., handover success rate, RSRP, RSRQ, SINR, and throughput.
The diagnosis system is either completely rule-base or based on fuzzy logic. Nonetheless,
the ability of the system to determine the root cause depends on the accuracy of the fault
model as well as the ability to specify the relevant symptoms.

4.2.2 Scope Change Assessment

The problem of detecting anomalies while having dynamic scope changes is discussed
in [CCC+14a]. The authors propose an ensemble method, i.e., a learning algorithm that
constructs a set of classifiers which are used to classify data points and to improve the
predictive capabilities. They distinguish between neutral and non-neutral KPIs which is
very similar to the KPI categories as defined by the concept of SON verification (cf. Sec-
tion 5.3.1). Neutral KPIs (e.g., cell throughput) are used for assessing dynamic scopes
whereas non-neutral ones (e.g., handover drop rate) are considered by the degradation
detection mechanism [CLN+14] . The approach itself is based on a Hierarchical Dirichlet
Process (HDP) which utilizes stochastic gradient optimization that allows the training
process to evolve over time. Moreover, it is adapted to use both KPIs types.

The problem of addressing dynamic topology changes caused, for instance, by energy
saving mechanisms has been discovered in other areas besides mobile communication
networks. One example are Self-optimizing Wireless Mesh Networks (SWMNs). The
authors of [CSW+15] introduce a wireless backhaul approach that addresses three general
issues. As discussed in Section 3.2.5, the authors have identified that dynamic network
topology changes can impact the existing traffic. For instance, when new nodes are added
or when nodes are removed by putting them into sleep mode, they may cause unexpected
changes in the assumptions about the network. For this reason, the authors consider
additional aspects like the resilience state of the nodes, i.e., how to avoid a single point of
failure and how to reduce the overall impact of topology changes. However, the problem
that is not considered is incomplete profiling, as given by Definition 3.12.

4.3 Post-Action Decision Making

Post-action decision making is dealing with the scheduling and deployment of corrective
actions which, as the various references later describe, is a topic known from several
research areas. In this section, we can distinguish between methods following self-healing
paradigms, and such that are based on coordination principles. The presented principles
and paradigms are known from mobile communication networks and wireless mesh
networks.

74 Chapter 4. Related work

4.3.1 Troubleshooting and Self-Healing Approaches

In [FTS+14a, FTS+14b], a concept for operational troubleshooting-enabled SON coor-
dination is given. If a SON function encounters a problem and has at the same time a
high assigned priority by the SON coordinator, it may block other functions from getting
active. Thus, it can monopolize the network which can result in an unusable SON that
is trapped in a deadlock. In such a case a SON function may need assistance by another
SON function. The approach proposed by the authors is a SON troubleshooting function
that analyses whether SON functions are able to achieve their objectives. If a function
encounters a problem that hinders it from achieving its task, the troubleshooting function
may trigger another one that may provide a solution to the problem.

In [KAB+10], ideas have been developed about how undesired behavior can be de-
tected and resolved in a SON. The authors introduce a so-called Guard function whose
purpose is to detect unexpected and undesirable network performance. They define two
types of undesirable behavior: oscillations and unexpected absolute performance. Into
the first category usually fall CM parameter oscillations. The second category includes
unexpected KPI combinations such as a high RACH rate and low carried traffic. The
Guard function itself follows only the directive of the operator defined through policies,
i.e., it requires knowledge about expected anomalies. In case such a behavior is detected,
the guard function calls another function, called an alignment function, to take counter-
measures. The latter one is further split into two sub-functions: an arbitration and an
activation function. The first one is responsible for the detection and resolution of con-
flicting action execution requests. The second one is responsible for enforcing parameter
changes, undoing them in case the Guard function detects an undesired behavior, and
even suggesting SON function parameter changes. Despite the given ideas, no detailed
concepts are provided. Furthermore, the questions of how to select the verification scope
and how to address the verification collision problem remain unanswered.

The authors of [BMQS08] introduce a policy-based self-healing system for mobile
communication networks. The system itself combines three organizational structures,
namely a centralized, a distributed, and a hierarchical one, mainly to allow the choice of
the most suitable task distribution over the network. In order to determine the behavior
of an NE, the authors specify several models which are used for stability control and
dynamic policy conflict resolution. Furthermore, the introduced system makes use of
Bayesian networks to detect and also to predict whether changes in the network will
negatively impact the performance. It also uses its policies to generate an appropriate
event for a given network state. Those policies are condition-action rules which are
specified by the human operator.

The idea of rolling back changes based on the outcome of an anomaly detection process
has also been introduced. Heckerman et al. [HBR95] developed a procedure that tries to
determine not only the most likely cause for a malfunctioning device, but to assemble an
action plan for repair. This optimal troubleshooting plan is a sequence of observations
and repairs that at the same time minimizes the expected costs. The authors make use

4.3. Post-Action Decision Making 75

of decision theory as well as Bayesian networks for generating the plan. Their work
presents the concept from a theoretical point of view, thus, making it applicable to various
research areas.

In [PB98], the authors introduce the idea of modeling the scheduling of pending
actions as a constraint optimization problem. The authors propose generalizations of
non-preemptive constraint propagation techniques to preemptive ones. Furthermore, they
present the concept of generalizing those techniques to so-called mixed problems which
allow certain activities to be interrupted whereas others remain non-preemptive. The
paper gives a theoretical overview of the concept.

4.3.2 Coordination-Based Approaches

The idea of rolling back already executed configuration changes in SONs has been
introduced in [RSB13]. The authors discuss the idea of extending the default set
of coordination actions. Besides generating an Acknowledgment (ACK) or a Non-
Acknowledgment (NACK) upon a CM change request of a SON function, a SON co-
ordinator could also be allowed to undo already acknowledged requests. In particular,
SON function changes are rolled back only if another, higher prioritized and conflicting
function becomes active within the same area and at the same time. Thereby, the SON
function priorities as well as the coordination policy are taken into consideration in order
to make such a decision. The authors have recognized the risks that arise when rolling
back changes and, therefore, propose a coordination mechanism that buffers pending
configuration requests and also dynamically changes the priorities of the active SON
functions. The main target is to limit the number of rollback actions by observing the
collected requests. However, the mechanism takes into consideration only coordination
properties which, as stated in Section 4.1.2.1, are only able to prevent and resolve known
conflicts.

In a similar way, in [JFG+13] a coordination concept is introduced which besides
conflict detection and priority handling also performs conflict resolution and even learns
those being repeated over time. In addition, it is also proposed to undo actions that
the coordination framework permitted for execution. The general idea is to accelerate
the process of reaching an optimization goal by monitoring network data, and then, if
required, to ask previously active functions to rollback their decisions. Furthermore, a
possible target configuration may be suggested by the coordination entity. Unfortunately,
there are numerous issues that may emerge when following such a strategy. First, it does
not directly address degradations that are caused by the activity of the SON functions, i.e.,
the rollback should speed up the optimization process instead of returning the network to
a previous stable state. Second, the assumption that a SON function supports rollbacks,
i.e., it is able to handle undo requests, may not be always true. Some SON functions are
stateless, i.e., they do not keep track of their changes. Third, executing an undo because
the PM data is not showing the expected values leads to the same problems as the rollback
generated due to degraded cell performance. Section 3.2 discusses those in detail.

76 Chapter 4. Related work

4.4 Summary

In this chapter, the work that is related to the SON verification concept has been presented.
The process of verifying changes in the network is spread over several research areas
which results the work that is related to the concept of this thesis to originate from
more than one research field. In general, those fields can be grouped into pre-action
analysis, post-action analysis, and post-action decision making. Throughout this chapter,
representatives of each of those groups have been introduced and their disadvantages have
been discussed. Moreover, aspects from mobile networks as well as other research areas
have been presented. The analysis of those disadvantages contributes to the following
research objective:

O1.1: Investigate and study the disadvantages and weaknesses of approaches
that verify network operations.
Typically, approaches that fall within the pre-action analysis class (cf. Section 4.1) are
only able to foresee known conflicts and, therefore, prevent only a limited set of fault
cases. Moreover, they are incapable of predicting the impact of configuration changes
on PM data which further limits their capabilities to prevent undesired network states.

Representatives of the second category, i.e., post-action analysis (cf. Section 4.2),
are mainly focusing on the detection of unusual and abnormal cell behavior. As a
result, they usually do not consider the deployment of corrective actions and, therefore,
neglect the issues that emerge when rolling back configuration changes, as presented
in Section 3.2.

Strategies that perform post-action decision making (cf. Section 4.3) usually provide
a limited set of corrective actions since they either rely on the interaction of the active
SON functions or do not have enough knowledge about the network to provide a
single action, which would circumvent the problems that emerge when we start to
sequentially rollback already deployed CM changes.

Part III

The Concept of SON Verification

Chapter 5

Verification Terminology and Analysis

This chapter is devoted to the structure, properties and attributes of the process of SON
verification. It starts with Section 5.1 which gives an overview to the process itself.
Concretely, it describes the sub-processes, i.e., CM and topology verification, as well as
the phases the verification process is comprised of. The subsequent sections present the
steps of the verification process. Section 5.2 discusses the question how to define the
scope of verification, i.e., how to partition the network into areas that are analyzed by the
process. Section 5.3 specifies the assessment phase, the KPI categories as well as the KPI
types relevant on the one hand for CM verification, and on the other hand for topology
verification. Section 5.4 focuses on the corrective actions that are generated by the
process of SON verification. Section 5.5 focuses on the specification of the verification
collision problem, whereas 5.6 introduces the verification time windows.

Finally, the chapter concludes with a discussion about the similarities between SON
verification and other concepts following its principles (cf. Sections 5.7 and 5.8), as well
as a summary (cf. Section 5.9) that outlines the contributions to the research objectives
of this thesis.

Published work This chapter is based on already published work and provides
a more comprehensive and detailed description of the verification process struc-
ture and terminology. The process of SON verification is specified by journal
paper [TATSC16c] and conference paper [TATSC16b]. It should be noted that in or-
der to present the concept in a uniform way, the notation as well as the terminology
have been adapted.

5.1 The Process of SON Verification

In general, the SON verification process operates in two phases, as Figure 5.1 outlines.
At first, we have the observation phase during which PM and CM data is collected as
well as the statistical relevance of the PM data is determined. Furthermore, the type of
verification is selected. On the one hand, we have CM change verification, i.e., we assess

80 Chapter 5. Verification Terminology and Analysis

Collect CM,

PM data

Deploy first set

of corrective

actions

Observation phase Correction phase

Statistical

relevance of PM

reached?

Start

No

CM change

verification

Topology

change

verification

Determine

CM change

verification

areas

Assess

topology

verification

areas

Assess

CM change

verification

areas

Create

corrective

action plan

Yes

Yes Yes

Yes

Generate

CM undo

actions

Generate

topology

corrective

actions

Yes

Determine

topology

verification

areas

No

Areas

present?

Areas

present?

No

Abnormal

behavior?

No

Unusual

behavior?

No

No No

Verification area

 generation
Verification area

 assessment

Corrective action

generation

Figure 5.1: Overview of the verification process

the impact of configuration changes on the network performance that have been made in
the past. On the other hand, there is a so-called topology change verification whose task
is to monitor the availability of the cells, in particular, whether they have been enabled or
disabled due to UEs movements (cf. Section 3.2.5).

After selecting the verification mode, the network is partitioned into sets of cells,
called verification areas. Then, the performance of each area is assessed by triggering an
anomaly detection algorithm which identifies those that are abnormally performing.

Afterwards, a transition to the correction phase is made during which corrective actions
are generated. It the case of CM change verification, a decision is made whether to accept
or to revert some of the configuration changes back to a previous stable state. The changes
most likely being responsible for causing a degradation are combined into a CM undo
action. In the case of topology verification, the choice is made if cells should be activated
or deactivated. Finally, a corrective action plan is created and the first set of actions
is executed, which is later assessed by the verification process, i.e., the procedure is
restarted.

5.2. Verification Areas 81

5.2 Verification Areas

First of all, let us denote the set of all cells in the network as Σ. In addition, let us define
the scope of the verification process as a set of cells ΣM , where ΣM ⊆ Σ. Here, the
set ΣM consists of all cells that are monitored by the verification procedure. This set is
further divided into nonempty subsets {ΣM

′

1 , . . . , Σ
M ′
i }, which is also referred to as the

verification scope fragmentation.

Definition 5.1 (Verification scope fragmentation). If we denote the fragmentation of the
cell set ΣM as PΣ, i.e., PΣ = {ΣM

′

1 , . . . , Σ
M ′
i }, the following conditions must hold for PΣ:

• ∅ < PΣ

• ⋃
ΣM
′
∈PΣ ΣM

′

= ΣM

• for any two sets ΣM
′

1 ∈ PΣ and ΣM
′

2 ∈ PΣ : ΣM ′1 , ΣM
′

2

Furthermore, we may have a partition [Bru09] of the set ΣM , which is referred to as a
strict verification scope fragmentation (see definition below).

Definition 5.2 (Strict verification scope fragmentation). A fragmentation of the verifi-
cation scope PΣ = {ΣM

′

1 , . . . , Σ
M ′
i } is called strict if and only if the intersection of every

two cell sets ΣM
′

i , Σ
M ′
j is empty, i.e., following condition must hold:

• if ΣM
′

1 , Σ
M ′
2 ∈ PΣ and ΣM

′

1 , ΣM
′

2 then ΣM
′

1 ∩ ΣM
′

2 = ∅

Each of the cell sets {ΣM
′

1 , . . . , Σ
M ′
i } represents a verification area, which is specified

in the following way:

Definition 5.3 (Verification area). A verification area is a subset of cells ΣM
′

⊆ Σ, where
Σ is the set of all cells. Each verification area is represented as a graph GM ′ = (VM ′,EM

′

).
The vertex set VM ′ represents the cells whereas the edge set EM

′

the neighbor relations
between cells. Furthermore, GM ′ has the property of being connected, i.e., there is a path
between every pair of vertexes.

5.2.1 Verification Areas Based on CM Changes

When we verify CM changes, a verification area is set to include the reconfigured cell,
also referred to as the target cell, and a set of cells surrounding it, called the target
extension set. In particular, the target extension set consists of cells that have been
possibly impacted by the reconfiguration of the target cell. Typically, they are selected
based on the existing neighbor relations, for instance, by taking all first degree neighbors
of the reconfigured target. Note that two cells are called neighbors when they have an
active neighbor relation between each other that allows them to handover UEs. Figure 5.2

82 Chapter 5. Verification Terminology and Analysis

CM change Cell neighbors

1

5

2

64

10 78

9

3

Verification area 1 Verification area 2

Verification area 3

Figure 5.2: Verification area formation in case of CM changes. Each of the three areas is formed
by taking the reconfigured cell and its first degree neighbors.

shows an example. A verification area is formed around the cell that has been reconfigured
and includes the first degree neighbors.

Furthermore, in case of SON activities, we may define the verification area as the
impact area of the SON function that has actually made the change. As discussed in
Section 2.3.2.3, the impact area is an important property when coordinating SON actions
since it specifies the spatial scope within which a SON function modifies CM parameters
and where it takes its measurements from. This property is useful when verifying CM
changes since it provides additional contextual information.

A verification area may also be subject to the location of the cells. For instance, if a cell
is part of dense traffic or known trouble spots [Eri12], it may join a certain verification
area even if it was not initially supposed to do so.

5.2.2 Verification Areas Based on Topology Changes

When we verify topology changes the process of generating verification areas becomes
slightly different. First of all, we have to take into account the trigger that has led to the
enabling or disabling of a cell. As discussed in Section 3.2.5, the most common reason
why cells are put into sleeping mode during their operation is energy saving [3GP10].
That is, the objective is to conserve energy by switching on only those entities that are
required, i.e., cells that are needed to meet the network and service demands. Note that
in most cases those entities are small cells and not macro cells, as the deactivation of a
macro cell may induce a coverage hole. In this thesis, such small cells are referred to as
on-demand whereas the entities that remain always switched on are called static cells.

The afore-mentioned demands may change when numerous UEs enter or leave the
network. As a result, a verification area is formed around static cells as they may show
an anomalous behavior like an unusually high load or throughput. Figure 5.3 shows a

5.3. Verification Area Assessment 83

Neighbor relation

Static cell

51 2 4

Verification area

3

6

On-demand cell Anomalous cell

8 7 9

Figure 5.3: Verification area formation in case of dynamic topology changes. An area is formed
around anomalous static cells which can potentially handover users to on-demand cells.

permissible verification area selection. An area is formed around every anomalous static
cell. Compared to verification areas formed around CM changes, a topology verification
area also includes disabled on-demand cells. Those cells are required for the provision of
topology corrective actions (cf. Section 5.4.2).

5.3 Verification Area Assessment

During this phase, the performance of each verification area {ΣM
′

1 , . . . , Σ
M ′
i } is assessed.

In SON verification, an anomaly detection algorithm is used for that purpose. Thereby,
cell KPIs are analyzed and how the network should usually behave is specified. It should
be noted that the latter one is known as profiling, which is introduced in Section 3.2.5.

Once the cell performance considerably differs from all learned states of the normal
network operation, a verification area is marked as potentially anomalous and is later
considered while forming and processing the corrective action plan (cf. Definition 3.4).
In the upcoming sections, an introduction to the KPIs relevant for SON verification as
well as an overview of the different profile types is given.

5.3.1 KPI Categories

Similarly to anomaly detection in mobile networks [Nov13], or network management in
general, there are three KPI categories between which we can distinguish:

• Success, KPIs, rates and counters

• Failure KPIs, rates and counters

• Neutral KPIs, rates and counters

84 Chapter 5. Verification Terminology and Analysis

Examples that fall within the first category are the Handover Success Rate (HOSR) and
the Call Setup Success Rate (CSSR), which measure the rates of successfully established
handovers and calls, respectively. The second category typically consists of rates like the
call drop rate and the number of radio link failures. The last category includes KPIs like
the cell load and the cell throughput. As stated in [Nov13], such KPIs are not bound to
any success or fault events.

The KPIs that are selected by the verification process can fall within any of the afore-
mentioned categories. In this thesis, they are referred to as cell state KPIs, which are
further specified as follows:

Definition 5.4 (Cell state KPI). A cell state KPI k is element of R and is used by at
least one of the verification sub-processes, i.e., CM and topology verification. They are
required to define the performance state of a cell within a verification area.

5.3.2 CM Verification KPIs and Profiles

Every cell exports KPIs, however, only a certain subset of those plays a role for CM veri-
fication. They are referred to as Configuration management verification KPIs (CKPIs)1

and are defined as follows:

Definition 5.5 (CKPI). A CKPI k⊥ ∈ R is an element of a vector k⊥ = (k⊥1 , . . . ,k
⊥
n),

also called a CKPI vector. It is required to define the state of a cell σ ∈ Σ with respect to
CM verification. The collection of all CKPI vectors is denoted as K⊥ = {k⊥1 , . . . ,k

⊥
|Σ | },

where k⊥ ∈ R |Σ | and Σ is the set of all cells.

There are numerous examples of how to select those KPIs. For example, if we are
interested in the handover performance, we may consider indicators like the HOSR, the
handover ping-pong rate, or the rate of too early handover attempts. If the channel quality
needs to be assessed, we may include a KPI like the CQI.

Furthermore, the CKPI profile is denoted as p⊥ = (p⊥1 , . . . ,p
⊥
n) and is defined in the

same way as given by Definition 3.10. The collection of all CKPI profiles is identified by
the set P⊥.

5.3.3 Topology Verification KPIs and Profiles

The topology verification process distinguishes between static cells, i.e., such that are
never turned off, and on-demand cells, i.e., such that may be turned off during their
operation. Let us denote the set of all static cells as Σ̇ and the set of all on-demand cell
as Σ̊. Moreover, let Σ̇∪ Σ̊ = Σ and Σ̇∩ Σ̊ = ∅, where Σ is the set of all cells. In addition, let
us call the KPIs relevant for topology verification Topology verification KPIs (TKPIs)2

and define them in the following way:

1CKPIs have also been referred to as dedicated KPIs [TATSC16c].
2TKPIs have also been referred to as utilization KPIs [TATSC16b].

5.4. Corrective Actions 85

Definition 5.6 (TKPI). A TKPI k` is an element of a TKPI vector k` = (k`1, . . . ,k
`
n),

where k` ∈ Rn . The vector represents the state of a cell σ ∈ Σ with respect to topology
verification. In the case of a static cell, the vector is denoted as k̇` = (k̇

`

1, . . . , k̇
`

n) whereas
for on-demand cells the vector is denoted as k̊` = (k̊

`

1, . . . , k̊
`

n). The collection of all
TKPI vectors is called the TKPI vector space and is denoted as K` = {k`1, . . . ,k

`
|Σ | },

where K` ⊂ R |Σ | and Σ is the set of all cells. In addition, K̇` = {k̇`1, . . . , k̇
`

|Σ̇ | } and
K̊
`
= {k̊`1, . . . , k̊

`

|Σ̊ | } are the TKPI vector spaces of the static cells Σ̇ and on-demand
cells Σ̊, respectively.

Usually, a TKPI falls within the neutral KPI category, i.e., it is not bound to any failure
or success events. Examples are the cell load, the cell throughput, and the data traffic that
passes through a cell, i.e., KPIs that represent the utilizations state of cells.

In contrast to CM verification, only static cells have a profile. Let us denote the profile
as ṗ` = (ṗ`1, . . . , ṗ

`
n), i.e., a vector whose elements ṗ`i represent values, or intervals of

values, that define the usual range of the selected KPIs (cf. Definition 3.10). Moreover,
let us call this profile a TKPI profile and denote the collection of all such profiles as Ṗ`.
Such a profile specifies the usual behavior of the TKPIs of a vector k̇` = (k̇

`

1, . . . , k̇
`

n)

when no on-demand cell is operating.

5.4 Corrective Actions

The concept of SON verification distinguishes between two types of corrective actions.
On the one hand, there is a CM undo action whose purpose is to set a cell’s configuration
to previous stable state. It is generated by the CM verification process. Note that its
structure is further discussed in Section 5.4.1. On the other hand, a topology corrective
action can be generated by the topology verification process. It has the purpose of
switching an on-demand cell either on or off. Section 5.4.2 describes it in more detail.

5.4.1 CM Undo Action

Reconfigurations that have led to abnormal cell performance have to be rolled back. For
this purpose, CM undo actions are specified which return cell configurations to a stable
state. The set of all such actions is denoted as C⊥ whereas a single action as c⊥ ∈ C⊥.
An undo action is generated for the target cell of a verification area, as introduced in
Section 5.2. Moreover, it contains the following type of information:

• Identifier of the target cell within the verification area.

• Identifiers of the cells included in the target extension set.

• List of CM parameter values for the target cell.

The list depends on the CM parameter type as well as the origin of the CM change. On
the one hand, if we do not have any contextual information about the change, each CM

86 Chapter 5. Verification Terminology and Analysis

change that has been marked as potentially bad will be considered as a separate undo
action. Figure 5.4(a) visualizes this process. On the other hand, if we are in possession
of such information, we can combine some changes into a single undo action. As shown
in Figure 5.4(b), in the case of SON function activities, the parameter changes made by a
function is considered a single autonomic action which can be rolled back. For instance,
if CCO reconfigures the transmission power and antenna tilt degree at the same time, the
verification process may undo both if required.

Set of CM changes CM change CM changes of the same context Undo action

Observation phase Correction phase

Timeline

(a) No contextual information about CM changes

Observation phase Correction phase

Timeline

(b) With contextual information about CM changes

Figure 5.4: Permissible undo actions in the case of four CM changes

Furthermore, in the case of SON activities we may have more than one target cell for
the same undo action, i.e., we have a target set instead of a target cell. It comes from
the fact that the function area of a SON function may include more than one cell, which
means that the changes made to those cells are seen as a single autonomic configuration
change. For instance, in Figure 5.2 the undo for verification area 1 and 2 can be combined
into one single action if the changes of cell 1 and 2 have been triggered by the same SON
function. The MRO function, which optimizes the handover between neighboring cells,
is one example. It may not only change the CIO between a cell and its neighbor, but also
vice versa. As a consequence, we would need to consider both cells as targets since both
have been reconfigured by the same function.

5.4.2 Topology Corrective Action

When verifying CM changes the corrective action in case of an anomaly, e.g., a degrada-
tion in performance, is to undo the changes that have caused it. However, when we verify
dynamic changes in the network topology we need to do more than that. The simplistic
case when a cell is turned on or off by mistake can be corrected by generating an undo
action. Unfortunately, if the initial assumptions about the environment change, e.g., a
high number of UEs enters the network and causes some cells to be anomalous, we would
not be able to generate an appropriate corrective action.

For this reason, we need to extend the corrective action set by adding such that can
actively change the network topology. Hence, a verification mechanism would actively
decide whether cells have to be enabled or disabled. Such actions are referred to as

5.5. Specification of the Verification Collision Problem 87

topology corrective actions and their set is denoted as C`, where a single action is
identified by c` ∈ C`.

5.5 Specification of the Verification Collision Problem

Let us recall the verification collision problem, as given by Definition 3.3. Two corrective
actions that rollback cell configurations are said to be in collision in case they share a
common trigger. This trigger is returned by function ζ : C⊥ → P(Σ) \ ∅, where C⊥ is the
set of corrective rollback actions and Σ the set of all cells. Hence, this function is the
starting point for the verification of CM changes.

The concept of SON verification divides the network into verification areas, each being
assessed by an anomaly detection algorithm (cf. Section 5.2). An area is a set of cells that
includes the reconfigured (target) cell and a set of cells that are potentially impacted by a
configuration change. If an area is degraded then an undo action is generated for the target
cell. Thereby, the concept of SON verification further specifies the above-mentioned
function as follows:

ζ̃ : C⊥ → P(ΣA) \ ∅ (5.1)

Instead of returning the power set of all cells, the codomain is the power set of all cells
being anomalous, also denoted as ΣA. Hence, two undo actions c⊥i , c

⊥
j ∈ C

⊥ are said to be
in a verification collision if and only if the two verification areas ΣM

′

i , ΣM
′

j ⊆ Σ, for which
they have been generated, share common anomalous cells, i.e., ΣM

′

i ∩ ΣM
′

j ⊆ P(ΣA) \ ∅.

5.6 Time Windows

As shown in Figure 5.1, the verification process operates in two phases, observation and
correction. Each phase is represented as a time window which is further divided into
one or more time slots. Figure 5.5 visualizes an exemplary 3-slot observation and 2-slot
correction window.

Execute

corrective

actions

Assess

corrective

actions

Monitor PM,

CM, assess

areas

Monitor PM,

CM, assess

areas

Monitor PM,

CM, assess

areas

Observation window Correction window

Execute

corrective

actions

Assess

corrective

actions

Slot 1 Slot 2 Slot 3 Slot 1 Slot 2

Figure 5.5: An example of a 3-slot observation and 2-slot correction window

5.6.1 Observation Window

During the observation window, the anomaly detection procedure is triggered. That is, PM
data is collected, the performance impact of CM changes is assessed, and changes of the

88 Chapter 5. Verification Terminology and Analysis

network topology are observed. Moreover, the movements of UEs is closely monitored,
and PM data that reflects their behavior is observed. The activity of SON functions is
also watched, in particular, function transactions are identified (cf. Definition 3.2).

Furthermore, during the observation window verification areas are formed. As dis-
cussed in Section 5.2, they specify the sets of cells that are considered as one entity
during the undo decision making process. A comparison between the cell profiles and
the current PM reports is also made (cf. Section 5.3).

The duration of an observation window slot depends on the PM data collection fre-
quency, i.e., the PM granularity period (cf. Section 2.2.3). The total number of slots,
however, depends on the anomaly detection strategy. For instance, the CM verification
process dynamically adapts the observation window based on the reported PM data. The
strategy is presented in Section 6.2.

5.6.2 Correction Window

The second window is referred to as the correction window and is used for the deployment
of corrective actions as well as for assessing their impact on the network performance.
Furthermore, during the correction window verification collisions (cf. Definition 3.3) are
resolved, it is determined whether we have an over-constrained corrective action plan
(cf. Definition 3.7), and the search for soft verification collisions (cf. Definition 3.8)
is triggered. The identification of soft verification collisions is required in the case of
an over-constrained verification problem. In addition, the search for weak verification
collisions (cf. Definition 3.9) is triggered. The algorithms used to accomplish those tasks
are introduced in Chapters 6 and 7.

The length of a correction window slot is reliant on the time it takes until the impact
of correction actions becomes visible in the PM data. Hence, it depends in the same
way on the PM granularity and the PM data type as the observation window does. The
total number of available slots, however, is subject to the environment. For example,
in a highly populated area we might have a short correction window since bringing the
network performance to the expected range has to be carried out as fast as possible.

5.7 Relation to Feedback Planning

Typically, SON functions are implemented as closed control loops which monitor PM
and FM data, and based on their goals change the CM parameters they are responsible
for. In Section 2.3.2, a detailed overview of their structure and properties is given. Those
functions, however, do not plan in advance the parameter changes they are going to make
in the future. Exactly this property is where the main difference between well-known
SON functions and the SON verification process lies in.

A SON verification approach can be seen as another class of SON functions, namely
such forming a course of actions that have high expected utility rather than having a
predefined absolute goal. Those functions plan under uncertainty, either because they

5.8. Similarities to Energy Saving 89

Generate actionsTrigger algorithmNetwork observation

Turn on/off

cells

Unusual

change

in the network

demands?

Yes

Start

Collect CM,

PM data

No

Define power

saving groups

Trigger ESM

algorithm

Generate

actions

Figure 5.6: Phases of an ESM function

have incomplete information about the world, or because their actions have uncertain
effects on the environment. In literature, this type of planning is referred to as Decision-
Theoretic Planning (DTP) [BDH99].

A common approach for overcoming uncertainties is to make the actions of the plan
depend in some way on the information gathered during execution. This particular
strategy is referred to as feedback planning [YL11]. Formally, the problem to find a plan
can be represented as

C = F (S, C̄, C̃), (5.2)

where C represents the action set, C̄ the set of actions that have been executed, C̃ the set
of actions that are still pending, and S the current network state.

In terms of SON verification, the set of actionsC corresponds to the undo and topology
corrective actions, as defined in Section 5.4. The state S is defined by the outcome of the
observation phase, as discussed in Section 5.1. It is characterized by the currently gener-
ated verification areas, the current PM reports, and the outcome of the area assessment
step.

5.8 Similarities to Energy Saving

The verification process, as introduced in Section 5.1, bears a resemblance to Energy
Saving Management (ESM) approaches [MSES12, 3GP10, MAT16]. The similarity to
such methods comes mainly from the ability to generate a topology corrective action
that switches cells on or off. Furthermore, the trigger is an untypical event caused, for
example, by UE groups that have unexpectedly entered or left the network.

However, before going into further details let us take a look at the phases of an ESM
function (cf. Figure 5.6). At first, we have a partitioning of the network into so-called

90 Chapter 5. Verification Terminology and Analysis

No action Trigger actionUnusual state detection

KPIs degraded

Accept

changes

Undo

changes
KPIs as expected

(a) CM change verification

Trigger action Trigger actionUnusual state detection

Utilization KPIs of
 neighbors too high

Utilization KPIs of
 neighbors too low

Cell

disabled

Cell

enabled

(b) ESM function

Figure 5.7: SON verification versus ESM configuration states. The configuration space consist of
both functions consists of two possible choices: undoing or accepting changes versus enabling or
disabling a cell.

power saving groups. Those groups consists of two types of cells: (1) such that are
switched on or off depending on the network and service demands, and (2) cells that are
necessary to ensure that there will be always coverage after some cells are put into power
saving mode.

Second, each power saving group is assessed by the ESM algorithm. The target here
is to search for unusual changes in the network demands. For example, some macro cells
may be over- or underloaded because numerous UEs have joined or left the network.

Third, within each power saving group a decision is made which cells to enable or
disable. Here, several constraints have to be taken into consideration. One would be to
keep the number of enabled cells minimal. Another is not to compromise user perception
and guarantee high QoS for service requests.

As we can see, there are similarities between the way the verification process operates
and the functioning of energy saving methods. Now, let us concentrate on the verification
of configuration changes and temporarily forget about the ability to actively enable and
disable cells. Similarly to ESM, we need to split the network into sets of cells, assess
each one of them, and generate the corresponding actions if required. In the case of CM
change verification, we have undo actions that try to put the network performance into
the expected range. Hence, we have a twofold decision, as outlined in Figure 5.7(a):
either to accept configuration changes that have been deployed, or to reject them and
restore past CM settings. The same twofold choice has to be made when ESM operates
(cf. Figure 5.7(b)): it either accepts the current state of a cell, or toggles its power saving
mode. As a result, the configuration space consist of only two possible values, namely to
turn a cell on or off, and not an array of values as it is usually the case for SON functions
like MRO or CCO. For instance, the CIO that the MRO function adjusts may accept any
real number that is bounded between a predefined minimum and maximum. In addition,
having such a simplistic configuration space means that each decision ESM makes for a
cell is actually an undo of the change it has made before.

5.9. Summary 91

5.9 Summary

In this chapter, the structure and properties of the concept of SON verification have been
presented. It is defined as a three step process that splits the network into sets of cells,
also called verification areas, assesses each area by using an anomaly detection algorithm,
and generates corrective actions for the areas if required. The following answers further
highlight this process and outline the research contributions.

O1.2: Model and design a verification process that assesses CM changes as well
as changes made in the network topology.
Q: Which are the steps required by the SON verification process?
A: The concept of SON verification starts by partitioning the verification scope. This
operation yields a set of verification areas, where each area is a set of cells (cf. Defi-
nition 5.1). A verification area has also the property of being a connected graph, in
which vertexes represent cells and edges neighbor relations (cf. Definition 5.3). If none
of the areas overlap, i.e., share common cells, the fragmentation of the verification
scope is referred to as strict (cf. Definition 5.2). Furthermore, there are two types of
verification areas: such being formed around the reconfigured cell, and such around
cells that can be potentially impacted by a topology change.
Then, each verification area is assessed by an anomaly detection algorithm which iden-
tifies those that are anomalously performing. In the case of CM change verification, a
test is made whether the performance of the cells of an area has degraded. In the case
of topology verification, an evaluation is made whether the utilization of the cells is
unusually high or low.
Based on the outcome of the anomaly detection process, a corrective action plan, as
given by Definition 3.4, is generated. Moreover, it meets the requirements of being
collision-free (cf. Definition 3.5) and gain-aware (cf. Definition 3.6).

Q: Which are the modes of verification?
A: The concept of SON verification supports two modes of operation. On the one
hand, there is the CM verification mode, also referred to as the CM verification pro-
cess, which assesses the impact of already deployed configuration changes on the
network performance and rolls back those harming it. On the other hand, the concept
defines a so-called topology verification mode. It serves the purpose of observing
dynamic changes in the network topology and generating corrective topology actions,
i.e., turning cells on or off in case they experience an usually high or low utilization.

Q: Do the verification modes interact with each other?
A: Yes. It is of high importance to make CM verification and topology verification
interact, i.e., they have to be informed about each others’ outcome. Otherwise, the
issues described in Section 3.2.5 may emerge.

92 Chapter 5. Verification Terminology and Analysis

Q: Which are the operational phases of the SON verification process?
A: The verification process requires two phases: observation and correction phase.
During the observation phase, PM and CM data is monitored, verification areas are
formed, and the anomaly detection algorithm is triggered. During the correction phase,
the corrective action plan is processed, i.e., all planning-related issues (like verification
collisions) are solved.

In this chapter, a contribution was also made to the research objective that investigates
the fragmentation of the verification scope. The following answer contributes to the
objective:

O2.1: Fragmentation of the network and specifying the scope of verification.
Q: How to model the fragmentation of the network during the process of verification?
A: The verification scope fragmentation is a process during which the cells of interest,
i.e., those that are being monitored by the verification mechanism, are split into sets
(cf. Definition 5.1). Each of those sets represents a verification area (cf. Definition 5.3)
and there are no two verification areas that include exactly the same cells. Furthermore,
the fragmentation result is called strict if none of the verification areas share common
cells (cf. Definition 5.2), i.e., the resulting cell sets are mutually disjoint.

In addition, the main attributes of the SON verification concept have been presented.
The answers to the following questions present those attributes in detail.

O1.3: Identify and specify all necessary attributes and properties of a verifica-
tion process.
Q: Which are the KPIs of interest for the CM verification process?
A: The KPIs of interest are called CKPIs (cf. Definition 5.5) and fall within the cell
state KPI category (cf. Definition 5.4). They define the performance state of a cell and
are used for the detection of abnormal cell performance. Also, they can be neutral,
success or failure KPIs. Furthermore, a cell’s CKPIs form a so-called CKPI vector
which is used to determine the behavior of the cell with respect to CM verification.

Q: Which KPIs are of interest for the topology verification algorithm and what do they
represent?
A: The KPIs of interest are referred to as TKPIs (cf. Definition 5.6). They represent the
state of a cell with respect to topology verification and form a so-called TKPI vector.
The collection of all such vectors is called the TKPI vector space (cf. Definition 5.6).
Furthermore, TKPIs are usually neutral KPI (cf. Section 5.3.1).

Q: Are there any other corrective action types besides those rolling back CM changes?
A: Yes. There is a second corrective action type that is referred to as a topology

5.9. Summary 93

corrective action. It enables or disables cells instead of rolling back their configuration.
The action itself is generated by the topology verification process.

Q: Which types of performance indicators are relevant for the verification process?
A: There are three classes of verification performance indicators: success, failure, and
neutral KPIs, counters and rates. They are used in the same context as in anomaly
detection.

Q: Between which cell types does the concept of SON verification differentiate?
A: In the case of CM verification, there is no differentiation between cells, i.e., all
of them are seen as entities that may require verification. However, in the case of
topology verification, there are two cell types: static and on-demand cells. Within the
first class fall cells that are never turned off during their operation (e.g., macro cells).
Representatives of the second class are small cells (e.g., femto and pico cells) that can
be enabled or disabled in case the network and service demands change.

In this chapter, also the similarities to DTP, in particular, feedback planning, have
been outlined. A comparison between strategies that dynamically change the network
topology and the concept of SON verification has been made. The answers to the
following questions highlight the resemblances.

O1.4: Study the relation between a verification process and concepts based on
decision theory.
Q: Does the verification process relate to feedback planning?
A: Yes. In contrast to well-known SON functions the verification process plans in
advance the actions its going to make. Furthermore, it does not have a predefined
absolute goal and plans under uncertainties. Uncertainties emerge due to incomplete
information about the world and the unknown effects of its actions. To overcome those
challenges, it makes the actions of the plan depend on the information gathered while
it gets processed. This is where the resemblance to feedback planning comes from.

O1.5: Study the relation between a verification process and approaches perform-
ing and assessing topology changes.
Q: Does a process that verifies configuration changes relate in any way to energy
saving strategies?
A: Yes. The main resemblance comes from the configuration space. In the case of CM
verification the outcome is either to accept the recently deployed changes or to reject
them by rolling cell configurations back to a previous stable state. The same twofold
decision is made by ESM approaches. They either turn a cell on or off, i.e., an ESM
action is an undo of the previously executed one. Furthermore, both a verification
strategy and an ESM approach operate in three phases, i.e., split the network into areas

94 Chapter 5. Verification Terminology and Analysis

(sets of cells), assess each area, and make a twofold decision. Hence, the ability to
actively correct topology changes is a task that a verification strategy has to consider.
It is a better decision maker as it has a wider view on the network, i.e., monitors other
ongoing CM changes and KPIs that can further improve the decision to enable or
disable a cell.

Chapter 6

Verification of Configuration Changes

In this chapter, the major topic of discussion is the verification of configuration changes,
also known as CM change verification. Figure 6.1 represents the steps required to
complete this type of verification. At first, we have the partitioning of the network into
verification areas. This step has already been described in Section 5.2 and will not
be further discussed here. Then, we have a description of the cell behavior model in
Section 6.1. It provides information how to use the KPIs of interest for the specification
of the state of a cell with respect to CM verification. In Section 6.2, the anomaly detection
procedure is presented. It describes the way of handling fluctuations in the PM data, i.e.,
how to prevent verification areas from being unnecessarily processed. It makes use of
the behavior model defined for each cell. Section 6.3 continues with the MST-based
clustering technique that reduces verification collisions. The presented method identifies
and eliminates potentially false positive verification collisions by changing the size of the
impacted verification areas. Concretely, it removes cells from the initial area selection.
It is followed by Section 6.4 which is dedicated to the estimation of the collision grade.
The latter one is required for the estimation of the severity of the verification collision
problem.

The next two sections, 6.5 and 6.6, discuss the corrective action part, i.e., the generation
of a plan, and present the strategy that finds a solution in case the generated plan is over-
constrained. Finally, the chapter concludes with a summary (cf. Section 6.7) and the
contributions to the research objectives.

Published work This chapter is based on already published work. Paper [TAT16]
covers the cell behavior model and the anomaly detection strategy. In [TATSC16a],
the clustering technique that is used for reducing verification collisions is described.
In [TSC15], the technique that used to estimate the collision grade is specified.
Paper [TFSC15] presents the approach for resolving collisions, generating the cor-
rective action plan and the strategy used for handling an over-constrained verification
problem. Paper [TATSC16c] presents the complete CM verification process. Note
that the notation has been adapted in order to present the concept in a uniform way.

96 Chapter 6. Verification of Configuration Changes

Observation phase Correction phase

Verification area

 generation

Verification area

 assessment

Corrective action

generation

Detecting

anomalies

Cell

clustering

Verification

collision

grade

estimation

Solving the

verification

problem

Network

partitioning

Solving over-

constrained

verification

problems

Cell behavior

model

Figure 6.1: Overview of the CM verification process

6.1 Cell Behavior Model

An important part of the CM verification procedure is how we model the behavior of each
cell in the network. In particular, we are interested in the impact of configuration changes
on the PM data. Nevertheless, to be able to evaluate that we need to represent each cell
in a certain way. Here, the behavior of a cell σ ∈ Σ is given by its CKPI anomaly level
vector, in particular, by the selected CKPI anomaly levels. Note that the term CKPI is
specified by Definition 5.5.

Definition 6.1 (CKPI anomaly level). A CKPI anomaly level a⊥ ∈ R is element of
a CKPI anomaly vector a⊥ = (a⊥1 , . . . ,a

⊥
n), where a⊥ ∈ Rn . Each a⊥i represents the

deviation of the corresponding CKPI k⊥i in k⊥ = (k⊥1 , . . . ,k
⊥
n). Furthermore, for the set

of all cells Σ, A⊥ = {a⊥1 , . . . , a
⊥
|Σ | } is called the CKPI anomaly level vector space, where

|A⊥ | = |Σ|.

The CKPI anomaly level vector of a cell is computed by function φ (cf. Equation 6.1)
which takes a cell profile p⊥ ∈ P⊥ (cf. Section 5.3.2) and a CKPI vector k⊥ ∈ K⊥ and
returns an element of A⊥.

φ : P⊥ × K⊥ → A⊥ (6.1)

We need to make an important remark here. As stated in Section 3.2.5, not every cell
has a valid profile since some can be dynamically turned on or off. As a result, we would
not be able to apply the above-mentioned function and compute the anomaly levels. How
to do that is the main topic of discussion in Chapter 7 and will not be further explained
here. In this chapter, it is assumed that all cells have a complete profile, as given by
Definitions 3.10 and 3.12.

Let us give an example for computing a⊥ = (a⊥1 , . . . ,a
⊥
n). For this purpose, assume

that k⊥ consist of the HOSR and CSSR. Here, we may compute each CKPI anomaly level
as the z-score [FPP07] of a CKPI, i.e., the distance between the given CKPI value and
the sample mean in units of the standard deviation. The samples required to compute that
value can be collected separately, e.g., during a training phase. Let us assume that during
this phase a cell reports a HOSR of {99.9%, 99.7%} and a CSSR of {99.5%, 97.4%}.

6.2. Detecting Anomalies 97

Also, suppose that the current HOSR and CSSR are 90.2% and 90.0%, respectively. This
leads to the following anomaly vector: a⊥ = (−1.15,−1.13), i.e., HOSR anomaly level
of −1.15 and CSSR anomaly level of −1.13. Since both are negative, we can state that
the current CKPI values are more than one standard deviation below the sample mean.

6.2 Detecting Anomalies

In the previous section, the cell behavior model was introduced as well as an example
for computing the cell performance state was given for two particular KPIs, HOSR and
CSSR. The example was based on the z-scores of those two indicators which indicated
that the current KPIs are more than one standard deviation away from the sample mean.
As a consequence, it was stated that the cell reporting those KPIs may be anomalous
which would result in the generation of a verification area. As stated in Definition 5.3,
the area itself would include that cell as target, as well as cells surrounding it, and will be
pushed through the CM verification process.

Nonetheless, an area may be unnecessarily processed since there might be a temporal
performance decrease induced by a SON function, as discussed in Section 3.2.1. A
function may be executing a transaction (cf. Definition 3.2), as it tries to reach its
optimization goal. This may result in fluctuations in the PM data which may lead to
wrong assumption about the performance state of a verification area.

Hence, instead of evaluating cells based on the anomaly vectors they report, a Cell
Verification State Indicator (CVSI)1 is defined. As the name suggests, it is computed for
each cell and has the purpose of making the verification approach more resistant against
PM data fluctuations. The CVSI of a cell is denoted as ϑ (a⊥), where ϑ is a function with
domain A⊥ and codomain R, i.e.:

ϑ : A⊥ × R→ R (6.2)

In this thesis, the computation of ϑ is done by applying exponential smoothing, as follows:

ϑ (a⊥,α)0 = ψ (a⊥)0 (6.3)

ϑ (a⊥,α)t = αψ (a⊥)t + (1 − α)ϑ (a⊥,α)t−1, t > 0 (6.4)

Here, α ∈ [0; 1] is the smoothing factor, also referred to as the state update factor, whereas
ϑ (a⊥,α)t is called the CVSI calculated at time t . It is a simple weighted average of the
current observation, denoted as ψ (a⊥)t , and the previous smoothed ϑ (a⊥,α)t−1. The
current observation itself is a function, as defined by Equation 6.5.

ψ : A⊥ → R (6.5)

It is an aggregation of a⊥ = (a⊥1 , . . . ,a
⊥
n) that captures the current performance state of a

1The term cell anomaly level is used as a synonym for the CVSI.

98 Chapter 6. Verification of Configuration Changes

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

V
a

lu
e

PM granularity period

Average of CKPI anomaly levels
Cell Verification State Indicator

Figure 6.2: Exemplary computation of the CVSI. The state update factor α is selected as follows:
0.2 if |ψ (a⊥) | ∈ [0; 1), 0.4 if |ψ (a⊥) | ∈ [1; 2), and 0.8 if |ψ (a⊥) | ∈ [2;∞).

cell. For example, functionψ can be the arithmetic average of a⊥1 , . . . ,a
⊥
n or the norm of

vector a⊥ [CLRS09] .
It should be noted here that we may actually have more than one state update factor.

The higher factor α is, the more impact would the observation at time t have on ϑ (a⊥,α)t .
However, there can be cases where we would like to update ϑ (a⊥,α)t differently. For
instance, if its value is indicating a severe degradation, we may select a high α whereas
in the case where a slight degradation is spotted we may choose to pick a low α . Such a
technique is used in self-regulating algorithms like the one presented in [LPCS04].

Figure 6.2 represents an exemplary computation of ϑ (a⊥,α) that follows that strategy.
It makes use of three different update factors that depend on the current observation
ψ (a⊥). The observation itself is computed as the arithmetic average of the elements of
a⊥ = (a⊥1 , . . . ,a

⊥
n). As shown, over the 30 PM granularity periods the PM fluctuations

have been smoothed which gives us a more realistic view on how a cell performs.
Finally, at time t a decision is made whether to further process a verification area. It is

based on the values of ϑ (a⊥,α)t of all cells within an area.

6.3 Cell Clustering

Let us go one step further and expand the example from the previous section. Instead
of having one cell, assume that we have a mobile network consisting of 12 cells and 18
cell adjacencies, as depicted in Figure 6.3. Now, suppose that the following changes are
detected after accessing the CM database: CM change at cells 1, 2, 6, 8, and 11. Also,
assume that cells 3, 4, 7, and 10 are marked as degraded after observing the PM database.
Based on those events, let us construct a verification area by taking the target cell as well
as its direct neighbors.

Immediately, those events lead to verification collisions. As shown in Figure 6.4(a),
we have four verification collision pairs: (1, 2), (2, 6), (6, 8), and (8, 11). Here, the
verification areas are identified by the ID of the target (reconfigured) cell. As we know

6.3. Cell Clustering 99

Cell 1

Cell 3

Cell 2

Cell 4

Cell 6

Cell 5

Cell 7

Cell 9

Cell 8

Cell 10

Cell 12

Cell 11

Neighbor relationCell bordereNB

Figure 6.3: Example of a mobile network

from Definition 3.3, such collisions are an indication for uncertainties and prevent the
simultaneous execution of corrective undo actions. A collision can be also seen as a
safety mechanism that prevents the rollback of configuration changes that do not harm
performance. However, collisions may also hold back actions without any reason if they
are not justified. They are referred to as weak collisions, as extensively described in
Section 3.2.4. In this section, the approach used to identify and eliminate such weak
verification collisions is described.

In the terms of the SON verification concept, collisions occur when verification areas
share anomalous cells (cf. Section 5.5). A verification area represents a set of cells that
are grouped due to CM changes, in particular, the reconfigured cell and those potentially
impacted by the change. However, the process of eliminating collisions leads to the
exclusion of cells from a verification area, which has to be done with caution as it may
induce unnecessary undo operations.

The starting point of eliminating a collision is the behavior of the cells. As outlined
in Section 6.1, the cell behavior model is presented as a vector a⊥ = (a⊥1 , . . . ,a

⊥
n). To be

able to exclude cells from an area, though, we need to group those that behave similarly.
For this purpose, function d is defined, as given in Equation 6.6. It calculates the distance
between two anomaly level vectors a⊥i ∈ A⊥ and a⊥j ∈ A⊥. A popular example is the
Euclidean or the Manhattan distance function [DD09].

d : Rn × Rn → R (6.6)

As a next step, we need to represent the cells as well as how they perform with
respect to each other. For this purpose, an undirected edge-weighted cell behavior graph
GΣ = (V Σ,EΣ) is formed. Formally, it is specified as follows:

Definition 6.2 (Cell behavior graph). A cell behavior graph GΣ = (V Σ,EΣ) comprises of
a set of vertexes V Σ and a set of edges V Σ ×V Σ, denoted as EΣ. Every vertex v

Σ
i ∈ V

Σ

represents a cell σi ∈ Σ in the Rn space by taking its anomaly vector a⊥i into account.
The weight of every edge (vΣi , v

Σ
j) ∈ E

Σ, denoted as w(vΣi , v
Σ
j), is computed by applying

distance function d for a⊥i ∈ A
⊥ and a⊥j ∈ A

⊥.

An exemplary composition of GΣ in the R2 space is given in Figure 6.4(b). It should
be noted that for simplicity reasons, some vertexes are completely overlapping, that is,

100 Chapter 6. Verification of Configuration Changes

1

2

3

5

6

7

8

9

10

11

12

4

Area 6 Area 8 Area 11

Degraded cellCM change

Area 2

 Area 1

Neighbor relation

(a) Verification area formation by taking the first degree neighbors of the target cell. The identifier of a
verification area equals the identifier of its target cell.

0

𝑣3,7
∑

𝑣1,2,8
∑

𝑣5,9,12
∑

𝑣6,11
∑

𝑣4,10
∑

Distance 𝑣𝑖
∑

 𝑣𝑗
∑

 𝜔(𝑣𝑖
∑
, 𝑣𝑗

∑
) Cell in 𝑣𝑖

∑
 𝐺

∑
= (𝑉

∑
, 𝐸

∑
)

Target cell in 𝑣𝑖
∑

 𝐺
∑
= (𝑉

∑
, 𝐸

∑
) Normal behavior Marked as degraded

𝐚┴ = (𝑎1
┴, 𝑎2

┴)

𝑎1
┴

𝑎2
┴ CKPI anomaly level vector

(b) Formation of the cell behavior graphGΣ = (V Σ,EΣ) in R2. Two vertexes vΣi , v
Σ
j ∈ V

Σ are overlapping
when cell i and j are represented by the same KPI anomaly level vector a⊥.

0

Cluster 1 Cluster 2

Removed edge

𝑣3,7
∑

𝑣1,2,8
∑

𝑣5,9,12
∑

𝑣6,11
∑

𝑣4,10
∑

CKPI anomaly level vector 𝐚┴ = (𝑎1
┴, 𝑎2

┴)

𝑎1
┴

𝑎2
┴

(c) Transformation of GΣ into an MST. Cell clusters formed after the removal of the edge between
nodes vΣ3,7 and v

Σ
6,11.

1

2

3

5

6

7

8

9

10

11

12

4

Area 1

Weak verification area 11

Weak verification area 2

Weak verification area 6

Weak verification area 8

(d) Formation of weak verification areas. Cells are excluded from the initial verification area selection
based on the cluster they have been assigned to.

Figure 6.4: Example of applying the MST-based clustering algorithm. It eliminates weak verifi-
cation collisions by transforming the initially selected verification areas. The transformed areas
are referred to as weak verification areas.

6.3. Cell Clustering 101

they represent cells showing exactly the same behavior. The following sets of vertexes
represent cells fulfilling this criteria: {vΣ1 , v

Σ
2 , v

Σ
8 }, {v

Σ
3 , v

Σ
7 }, {v

Σ
5 , v

Σ
9 , v

Σ
12}, {v

Σ
6 , v

Σ
11}, and

{vΣ4 , v
Σ
10}. Moreover, each such set is represented by a single vertex v

Σ
〈index 〉 whose index

is comprised of the indexes of the overlapping nodes. The distance between those nodes
is zero which means that some edges are not depicted in the figure.

The next step towards eliminating weak verification collisions is to group the vertexes
that represent similarly behaving cells. This procedure consists of two phases: (1) the
formation of a Minimum Spanning Tree (MST), and (2) the removal of edges of that tree
which leads to the formation of a forest of trees, each representing cells that behave alike.
Algorithm 1 shows this procedure in detail.

The algorithm itself requires GΣ = (V Σ,EΣ) as input. Out of this graph an MST is
generated, i.e., a connected, undirected, and acyclic graphT Σ = (Ṽ Σ, ẼΣ), where ẼΣ ⊆ EΣ

and Ṽ Σ = V Σ. Furthermore, the resulting tree minimizes
∑

v
Σ
i , v

Σ
j ∈G

Σ w(vΣi , v
Σ
j). In order

to form the MST, Kruskal’s algorithm is used, which is characterized as being a greedy
algorithm [Kru56, CLRS09]. The algorithm steps are given between lines 1 and 12. It
starts by initializing the vertex and edge set of T Σ, as well as a temporal list of edges that
contains all elements of EΣ. The latter one is sorted into increasing order (line 4) and
is processed by continuously taking edges out of it (line 5). An edge and its adjacent
vertexes are added to the tree only if they do not induce a loop (lines 6-10). The MST
itself is formed in line 12.

During the second phase (lines 13-16), the vertexes of the tree T Σ = (Ṽ Σ, ẼΣ) are split

Algorithm 1: MST-based clustering algorithm
Input: Undirected, edge weighted cell behavior graph GΣ = (V Σ,EΣ)
Result: Forest F Σ = {T̂ Σ

1 , . . . , T̂
Σ
κ }

1 ẼΣ = ∅;
2 Ṽ Σ = ∅;
3 ListEΣ ← get elements of EΣ;
4 sort ListEΣ into increasing order by weight w;
5 foreach edge (v1, v2) ∈ ListEΣ do
6 if v1 < Ṽ

Σ and v2 < Ṽ
Σ then

7 ẼΣ ← ẼΣ ∪ {(v1, v2)};
8 Ṽ Σ ← Ṽ Σ ∪ {v1};
9 Ṽ Σ ← Ṽ Σ ∪ {v2};

10 end
11 end
12 T Σ = (Ṽ Σ, ẼΣ);
13 Etemp ← ξ (T Σ) ;
14 ẼΣ ← ẼΣ \ Etemp ;
15 find connected subgraphs {T̂ Σ

1 , . . . , T̂
Σ
κ } in T Σ;

16 F Σ = {T̂ Σ
1 , . . . , T̂

Σ
κ };

102 Chapter 6. Verification of Configuration Changes

into κ groups. Furthermore, the minimum distance between vertexes of different groups
is maximized. It is achieved by forming a forest F Σ, i.e., an undirected graph whose
connected components are trees, denoted as {T̂ Σ

1 , . . . , T̂
Σ
κ }, each being disjoint with the

other. This procedure, also known as MST clustering [JN09], is carried out by removing
a certain number of edges from T Σ by starting from the longest one. For example, the
removal of the two longest edges results into a forest of three trees, i.e., a group of three
clusters.

The decision itself which one to remove is computed by an edge removal function ξ ,
as defined in Equation 6.7. The set of edges that are returned by ξ are taken out from the
tree. One way of carrying out this operation is to remove edges that exceed a predefined
threshold. Another way could be to use minimum entropy as criterion for clustering.

ξ : T Σ → P(ẼΣ) (6.7)

Finally, the resulting forest F Σ = {T̂ Σ
1 , . . . , T̂

Σ
κ } is used to exclude cells from verification

areas. Depending on how many edges were removed, one of the following three cases
may occur:

• κ = 1

• κ = |V Σ |

• κ = [2, |V Σ |)

In the first case, the forest F Σ has only one tree, i.e., we have only one cluster to which all
cells have been assigned to. Consequently, they are seen as behaving in the same manner
which impedes the removal of any collision. In the second case, the forest F Σ has |V Σ |

trees, which means that each tree consists of exactly one vertex and that no two cells are
assigned to the same cluster. As a result, all verification collisions are marked as weak
and are removed. In the third case, the number of clusters varies between two and |V Σ |.
Here, cells from a target extension set that are not assigned to the cluster of the target
cell are excluded from the given verification area. Such areas are also referred to as weak
verification areas.

Definition 6.3 (Weak verification area). A verification area is called weak when at least
one of its cells gets excluded from the initial area selection after the completion of the
cell clustering process.

On the contrary, areas whose cells are all located within the same cluster remain un-
changed. The verification collisions that have disappeared after this step are marked as
weak and are eliminated.

Figures 6.4(c) and 6.4(d) visualize the continuation of the aforementioned example.
The first one depicts an exemplary MST that may result after triggering the algorithm.
It consists of the initial five vertexes and the following four edges: (vΣ

〈1,2,8〉, v
Σ
〈5,9,12〉),

6.4. Determining The Verification Collision Grade 103

(vΣ
〈1,2,8〉, v

Σ
〈3,7〉), (v

Σ
〈6,11〉, v

Σ
〈4,10〉), and (vΣ

〈3,7〉, v
Σ
〈6,11〉). In addition, the latter edge is removed

which leads to the formation of two clusters: {vΣ
〈1,2,8〉, v

Σ
〈5,9,12〉, v

Σ
〈3,7〉} and {vΣ

〈4,10〉, v
Σ
〈6,11〉}.

The second figure gives us the end result. Four of the verification areas are converted
to weak ones: area 2, 6, 8, and 11. Verification area 1, on the contrary, remains as initially
selected. Hence, only the collision between area 1 and 2 is left over, while the remaining
ones are removed.

6.4 Determining The Verification Collision Grade

In the previous section, an approach that simplifies the verification collision problem
was introduced. It is based on an MST clustering technique that reduces the size of a
verification area in order to eliminate weak collisions. In this section, though, the main
focus is to evaluate the remaining collisions and define a term that represents the severity
of the problem that needs to be solved.

First and foremost, it should be mentioned that we are no longer interested in cells
individually, but in verification areas. As introduced in the previous section, some of
those areas can be converted to weak ones after triggering the clustering approach, which
means that some cells may have been excluded from the initial area selection. Therefore,
also to simplify the notation, the set of all verification areas is denoted as Φ, whereas a
single area as φ ∈ Φ. Note that the set includes weak ones as well as those that remained
unchanged.

Nevertheless, even after converting some areas to weak ones we may still have colli-
sions present. Hence, let us form a so-called verification collision graph which is defined
in the following way:

Definition 6.4 (Verification collision graph). A verification collision graph GΦ =

(V Φ,EΦ) is defined by a set V Φ of vertexes that represent abnormally performing verifi-
cation areas, and a set EΦ of edges, each representing a verification collision V Φ × V Φ.
That is, two vertexes inGΦ are connected with each other if and only if the corresponding
undo actions must not be simultaneously executed.

As we can see, this graph is a representation of the verification collision problem which
consequently means that we can apply techniques from graph theory to model the problem
as well as to find the end result, i.e., generate a corrective action plan and solve any issues
related to it.

The first technique that is used is minimum vertex coloring [BM82], which in its
simplest form assigns each vertex a color such that no edge connects two vertexes having
the same color. The vertexes that receive the same color can be seen as a group of objects
that are fulfilling a certain criteria. This criteria itself is defined by the edges in the graph
on which the coloring algorithm is applied.

Here, we have a verification collision graph GΦ which, after coloring its vertexes,
yields sets of nodes that represent independent sets of verification areas. Hence, the

104 Chapter 6. Verification of Configuration Changes

undo actions associated with those areas can be executed at the same time. Formally,
to perform minimum vertex coloring we need function m, as given in Equation 6.8. It
assigns each node a positive natural number that represents a color. Note that the set of
available colors is denoted as C ⊂ N0 and that |C | = |V Φ |, i.e., it is possible to assign
each node with a different color.

m : V Φ → C (6.8)

After assigning each vertex in GΦ a color, we can determine the verification collision
grade.

Definition 6.5 (Verification collision grade). The smallest number of colors required to
color GΦ, also known as the chromatic number χ (GΦ), equals the verification collision
grade of the verification collision problem.

The value of χ (GΦ) shows the number of sets of collision free CM undo operations.
Thereby, it also represents the number of correction window slots (cf. Section 5.6) that
would be required to process all actions. Furthermore, based on χ (GΦ) we can also
determine whether GΦ is collision-complete or collision-free.

Definition 6.6 (Collision-complete and collision-free verification collision graph). A
verification collision graph GΦ = (V Φ,EΦ) is called to be collision-complete if and only
ifm(vΦi) ,m(vΦj) and collision-free ifm(vΦi) =m(vΦj) for all adjacent vΦi and v

Φ
j in V Φ.

However, being collision-free or collision-complete is only an edge case property of
the collision graph. In total, we have to distinguish between the following three outcomes:

• χ (GΦ) = 1

• χ (GΦ) = |C |

• χ (GΦ) ∈ [2; |C |) for |V Φ | > 2

The first two represent the collision-free and collision-complete property, respectively.
Hence, all undo actions will either be allocated to the same time slot, or each will be
assigned to a different one. In the third case, a portion of undo actions will be added to
the same slot.

In addition, the chromatic number χ (GΦ) is also an indication whether we are dealing
with an over-constrained corrective action plan (cf. Definition 3.7). Should, for instance,
χ (GΦ) exceed the number of available correction window slots, it may not be possible to
process all undo actions in time. This is also the reason why minimum vertex coloring is
not sufficient to solve the verification collision problem.

Figure 6.5 shows an example representing the technique that has been discussed
so far. It is a continuation of the example presented in Figure 6.4, which originates
from the exemplary network of 12 cells and 18 cell adjacencies, as given in Figure 6.3.

6.4. Determining The Verification Collision Grade 105

1

2

3

5

6

7

8

9

10

11

12

4

Verification area 1

Verification area 11

Verification area 2

Verification area 6

Verification area 8

Degraded cellCM change Neighbor relation

(a) Verification area formation as computed by the MST-based clustering algorithm. The identifier of a
verification area equals the identifier of its target cell.

𝑣1
𝛷 𝑣2

𝛷 𝑣6
𝛷 𝑣8

𝛷 𝑣11
𝛷 𝐺𝛷

(b) Estimating the severity of the verification collision problem. The verification collision grade is
computed by applying minimum vertex coloring on the verification collision graph GΦ. Here, it results
in χ (GΦ) = 2.

Undo

cell 6

Undo

cell 1 Undo

cell 11

Undo

cell 8
Undo

cell 2

Undo

cell 6

Undo

cell 2 Undo

cell 11

Undo

cell 8
Undo

cell 1

First

deployment

option

Second

deployment

option

First set Second set

(c) The verification collision grade χ (GΦ) = 2 results in two permissible undo action deployments. Each
set consists of undo actions that are not in conflict with each other.

Figure 6.5: Example of estimating the verification collision grade of the verification collision
graph GΦ = (V Φ,EΦ)

In total, we have five verification areas and one collision between area 1 and 2, as
Figure 6.5(a) outlines. Note that the area identifier equals the ID of the given target cell.
As a result, we get a graph GΦ that consists of the following set of vertexes and edges:
V Φ = {vΦ1 , v

Φ
2 , v

Φ
6 , v

Φ
8 , v

Φ
11} and EΦ = {(vΦ1 , v

Φ
2)}.

Figure 6.5(b) visualizes the result after applying minimum vertex coloring. The
verification collision grade equals to 2 which means that we would need two correction
window time slots to process all undo actions. Furthermore, there are two ways of
coloring GΦ since v

Φ
6 , v

Φ
8 , and v

Φ
11 may receive either of the two colors. Hence, there

are two possible ways of deploying the undo actions. Figure 6.5(c) depicts the two
permissible undo action deployments.

106 Chapter 6. Verification of Configuration Changes

6.5 Solving a Verification Collision Problem

Let us continue with the example from Figure 6.5. It represents the verification areas
that have been formed around the reconfigured cells as well as the resulting verification
collision graph GΦ = (V Φ,EΦ), as given by Definition 6.4. As it can be noticed, the undo
actions for cell 1 and 2 cannot be executed at the same time, hence, we need to find out
which of those two requests are most likely responsible for the degradation of cell 3.

Finding a solution for this problem means that we need to solve a constraint satisfaction
problem [RvBW06]. In its general form, it is characterized by a set of constraints,
variables, and values for those variables [RN10]. In terms of the verification collision
problem, the variables represent verification areas, the values the correction window slots,
whereas the constraints the collisions. In this section, each of those sets is going to be
described.

First of all, let us define a bijective assignment function, as given in Equation 6.9, that
maps each vertex v

Φ
i ∈ V

Φ to a variable xi ∈ X , where X is the set of all variables and
|X | = |V Φ |. Furthermore, let each xi be in N+ and let it take values between 1 and τ , i.e.,
the number of available correction window slots. This is equivalent to say that an undo
action associated with a verification area is assigned to one of the slots.

ω : V Φ → X (6.9)

As a next step, let the set of all constraints be denoted as Θ. In addition, let a
constraint be a pair (x1,x2) ∈ Θ of variables x1,x2 ∈ X that disallows their equality. As a
consequence, we get the following interpretation:

∀(vΦ1 , v
Φ
2) ∈ E

Φ : x1 , x2, (6.10)

where ω (vΦ1) = x1 and ω (vΦ2) = x2. The variables associated with vertexes connected
in GΦ must not receive the same value, i.e., the set of edges EΦ can be also seen as a
set of constraints. It should be noted here that in this thesis they are referred to as hard
constraints.

Finally, the objective function is specified. However, before doing so we need to
introduce priority function ρ, as shown in Equation 6.11. The outcome should be inter-
preted as follows: the lower the value of xi , the more important it is to process the undo
action for the area associated with v

Φ
i . The priority itself may depend on factors like the

geographical location of the target cell, the number of degraded cells within a verification
area or the overall degradation level.

ρ : X → R (6.11)

The undo action deployment is then defined as a constraint optimization problem, as

6.5. Solving a Verification Collision Problem 107

follows:
max

∑
xi ∈X

ρ (xi)xi (6.12)

subject to
∀(xi ,x j) ∈ Θ (6.13)

The objective is given in Equation 6.12, which is a maximization of the sum of the
variables multiplied by the assigned priorities. Thereby, the lower ρ (xi) is, the lower the
value of the corresponding variable xi will be. In addition, the undo actions for the areas
associated with the variable receiving the value of 1 are allocated to the first correction
window slot and are, therefore, executed at first place.

Finally, the impact of those undo actions on the network performance is assessed.
Should the network still show an anomalous behavior, the whole process is triggered
again. However, with one notable difference, namely a decreased τ . The reason is that
we have already consumed one time slot after deploying the first set of undo requests,
i.e., we have one less for completing the CM verification process.

Figure 6.5 visualizes an exemplary outcome of this process. It shows the verification
collision graph GΦ = (V Φ,EΦ) as well as the outcome of the variable assignment step.
In particular, we have the following variables: x1, x2, x6, x8, and x11. In addition, there
is only one constraint, namely x1 , x2 which results from the edge (vΦ1 , v

Φ
2) ∈ E

Φ. Each
variable xi is multiplied with the outcome of ρ (xi) and the resulting weighted sum is
maximized. As shown, one permissible outcome is all variables except x2 to receive
value 1. Consequently, the undo actions for cells 1, 6, 8 and 11 are allocated to the first
correction window time slot, as Figure 6.7 outlines.

𝑣1
𝛷 𝑣2

𝛷 𝑣6
𝛷 𝑣8

𝛷 𝑣11
𝛷 𝐺𝛷

v
Φ
1 → x1 v

Φ
2 → x2 v

Φ
6 → x6 v

Φ
8 → x8 v

Φ
11 → x11

x1 , x2︸ ︷︷ ︸
max

(
ρ (x1)x1 + ρ (x2)x2 + ρ (x6)x6 + ρ (x8)x8 + ρ (x11)x11

)︸ ︷︷ ︸
x1 = 1 x2 = 2 x6 = 1 x8 = 1 x11 = 1

Figure 6.6: Variable assignment and constraint definition example. A node vΦi inGΦ is represented
by a variable xi ∈ [1;τ], where τ = 2. An edge (vΦi , v

Φ
j) adds the constraint xi , x j .

Assess undo

impact

Assess undo

impactUndo

cell 6

Undo

cell 1

Slot 1 Slot 2

Undo

cell 11

Undo

cell 8
Undo

cell 2

Figure 6.7: Correction window slot allocation. The order is defined by the variable assignment
process from the previous step.

108 Chapter 6. Verification of Configuration Changes

6.6 Solving an Over-Constrained Verification Collision Problem

Sections 6.1 to 6.5 presented the cell behavior model, described how to prevent verifi-
cation areas from being unnecessarily processed, how to eliminate weak collisions as
well as how to resolve those being considered as valid. However, providing a solution to
the verification collision problem might be a challenging task, as shown in the following
example. Suppose that our network, introduced in the very beginning of this chapter
(cf. Figure 6.3), shows an activity like the one outlined in Figure 6.8(a). Namely, cells 1,
2, 3, 6, 10 and 11 have been reconfigured and cells 2, 3, 4, and 12 have degraded. Conse-
quently, we have collisions between the following pairs of verification areas: (1,2), (1,3),
(2,3), (2,6), (3,6), and (10,11). Note that the identifier of an area equals the identifier of
the corresponding target cell. Now, assume that all collisions are valid, i.e., no collision
was eliminated after the clustering process, as described in Section 6.3. In addition,
let the number of available correction window slots τ be two. Obviously, we have an
over-constrained corrective action plan, as stated by Definition 3.7, since we cannot find
a slot allocation that satisfies all constraints. We can visualize that by applying minimum
vertex coloring of the resulting verification collision graph GΦ = (V Φ,EΦ), as depicted
in Figure 6.8(b). In total, three colors are required, that is, a verification collision grade
χ (GΦ) of 3 (cf. Definition 6.5). Hence, we would need three time slots to process all
undo actions.

As a result, we cannot use the verification collision resolving approach that has been
introduced in Section 6.5. Instead, it has to be modified in such a way that an acceptable
solution can be found by identifying the set of soft verification collisions (cf. Defini-
tion 3.8). However, softening some collisions means that valid constraints are going
to be removed in order to put the corrective action plan PC⊥ = {Ĉ⊥1 , . . . , Ĉ

⊥
i } (cf. Def-

inition 3.4) within the expected limits, i.e., |PC⊥ | ≤ τ . Hence, we have a constraint
optimization problem for which we need to minimize the total constraint violation.

First of all, to find such a solution we have to identify the vertexes in the verification
collision graph GΦ = (V Φ,EΦ) that make the problem unsolvable. Cliques from graph
theory [CLRS09] are able to provide that type of information. A clique V̄ Φ is a subset
of the vertexes of the graph GΦ (i.e., V̄ Φ

⊆ V Φ) such that every two distinct vertexes
v
Φ
i , v

Φ
j ∈ V̄

Φ are adjacent in GΦ, i.e., (vΦi , v
Φ
j) ∈ EΦ. As a result, a clique induces a

complete subgraph of GΦ which consequently means that all areas associated with the
vertexes within a clique are in collision with each other.

In addition, the focus is to find only those cliques that have a certain size, namely
such that have more than τ vertexes upon all maximal cliques. As known from graph
theory, a maximal clique is a clique that cannot be extended by adding more adjacent
vertexes [CLRS09]. Consequently, each clique having more than τ vertexes represents
an over-constrained verification collision problem (i.e., an over-constrained corrective
action plan) as the collision grade of that subgraph would exceed the total number of
available correction window slots τ .

Figure 6.9 visualizes the outcome of this particular step. The given verification colli-

6.6. Solving an Over-Constrained Verification Collision Problem 109

1

2

3

5

6

7

8

9

10

11

12

4

Area 3

Area 1

Area 6

Area 10

Area 11

Area 2

Degraded cellCM change Neighbor relation

(a) Verification area formation by taking the first degree neighbors of the target cell. The identifier of a
verification area equals the identifier of its target cell.

𝑣1
𝛷

𝑣3
𝛷 𝑣6

𝛷 𝑣10
𝛷 𝑣11

𝛷

𝐺𝛷

𝑣2
𝛷

(b) The resulting verification collision graphGΦ. Each color identifies a set of collision free undo actions.
The verification collision grade is 3, i.e., χ (GΦ) = 3. Hence, it is impossible to create a corrective action
plan the size of 2.

Figure 6.8: An example of an over-constrained verification collision problem

𝑣1
𝛷

𝑣3
𝛷 𝑣6

𝛷

𝑣2
𝛷

𝑣10
𝛷 𝑣11

𝛷

𝐺𝛷
𝑉 1

𝛷

𝑉 2
𝛷

Figure 6.9: Clique search in the verification collision graph GΦ. In total, there are two maximal
cliques exceeding the limit τ = 2: V̄ Φ

1 and V̄ Φ
2 . Both are comprised of three vertexes.

sion graph GΦ = (V Φ,EΦ) is represented by the vertex set V Φ = {vΦ1 , v
Φ
2 , v

Φ
3 , v

Φ
6 , v

Φ
10, v

Φ
11},

and the edge set EΦ = {(vΦ1 , v
Φ
2), (v

Φ
1 , v

Φ
3), (v

Φ
2 , v

Φ
3), (v

Φ
2 , v

Φ
6), (v

Φ
3 , v

Φ
6), (v

Φ
10, v

Φ
11)}. Due to the

limitation of τ = 2, the maximal cliques that we are interested in must contain at least
three vertexes. In this example, two are fulfilling this requirement: V̄ Φ

1 = {v
Φ
1 , vΦ2 , vΦ3 },

and V̄ Φ
2 = {v

Φ
2 , vΦ3 , vΦ6 }.

Now, we need to determine whether those vertexes are part of one single over-
constrained problem, or whether they are part of two or more independent problems.
Obviously, splitting the graph into cliques does not yield separate over-constrained prob-
lems since cliques may have common vertexes, e.g., as V̄ Φ

1 and V̄
Φ
2 do. As a result, we

110 Chapter 6. Verification of Configuration Changes

need to find another way of splitting the set of all nodes being part of a clique. Let
us denote the union of all found cliques as

⋃n
i=1 V̄

Φ
i . Considering the above-mentioned

example, we would get
⋃n

i=1 V̄
Φ
i = {v

Φ
1 , vΦ2 , vΦ3 , vΦ6 }, where n = 2.

Formally, we must find a partition of
⋃n

i=1 V̄
Φ
i , denoted as P (⋃n

i=1 V̄
Φ
i), that yields sets

of independent verification problems. If we unite cliques that are sharing vertexes and
consider the resulting unions as one entity, we will get such a split. In this thesis, the
union of such cliques, i.e., the block of the resulting partition, is called a clique group.
Also, the properties of a partition are valid, i.e., P is a set of sets that does not contain
the empty set, the union of all sets in P equals

⋃n
i=1 V̄

Φ
i , and the intersection of any two

sets in P is empty.

Definition 6.7 (Clique group). A clique group is a block of a partition P (⋃n
i=1 V̄

Φ
i),

where
⋃n

i=1 V̄
Φ
i is the union of all found maximal cliques V̄ Φ

i in the verification collision
graph GΦ = (V Φ,EΦ). The partition is formed by uniting cliques V̄ Φ

i that share common
vertexes. Cliques that do not share vertexes form their own clique group.

In the above-mentioned example, we will get the partitionP (⋃n
i=1 V̄

Φ
i) = {{v

Φ
1 , v

Φ
2 , v

Φ
3 , v

Φ
6 }},

i.e., the partition is a singleton set since we have exactly one clique group that unites the
elements of V̄ Φ

1 and V̄ Φ
2 .

Each clique group represents an over-constrained problem for which an acceptable
solution has to be found. The way of doing that is by removing edges from a clique
group and merging the adjacent vertexes. This process is also known as edge contrac-
tion [GY05], i.e., for every two merged vertexes, an edge eΦ ∈ EΦ is removed and its two
incident vertexes vΦi , v

Φ
j ∈ V

Φ, are merged into a new vertex v̌
Φ
k , where the edges incident

to v̌
Φ
k each correspond to an edge incident to either vΦi or vΦj . This procedure gives us

a new undirected graph ǦΦ = (V̌ Φ, ĚΦ) that does not have the edges between merged
vertexes. At the end, the number of vertexes within each clique group must not exceed τ .

In order to find those edges, each vertex v
Φ
i ∈ V

Φ, that is also being part of a clique
group, is mapped to a variable x̃i ∈ X̃ ranging between 1 and τ . Similarly to Section 6.5,
we have a function ω̃ : V Φ → X̃ that carries out this assignment. In addition, all edges
V Φ ×V Φ within a clique group are considered as constraints in the same way as given in
Equation 6.10, i.e., an edge (vΦi , v

Φ
j) leads to (x̃i , x̃ j), i.e., x̃i , x̃ j , to be added to the set

of constraints, denoted as Θ̃. In contrast to Section 6.5, those constraints are referred to
as soft constraints, which as known from constraint optimization, are those that can be
violated depending on the priority they have received [RvBW06]. The priority itself is
computed by function ρ̃, defined as follows:

ρ̃ : Θ̃→ R (6.14)

Compared to the approach introduced in the previous section, it rates a verification
collision (edge in GΦ) instead of a verification area (vertex in GΦ). In addition, the
outcome of ρ̃ should be interpreted as follows: the higher the value, the more important
it is the constraint to be satisfied, i.e., the collision to remain.

6.6. Solving an Over-Constrained Verification Collision Problem 111

Finally, the clique group size reduction is modeled as a constraint optimization problem
defined in the following manner:

max
∑

(x̃i , x̃ j)∈Θ̃

ρ̃ (x̃i , x̃ j)r (x̃i , x̃ j) (6.15)

subject to

r (x̃i , x̃ j) =



0 iff x̃i = x̃ j

1 otherwise
(6.16)

As known from constraint optimization, Equation 6.16 gives us a reification function r

that indicates whether the inequality of two variables x̃i and x̃ j is satisfied. Equation 6.15
defines the objective, i.e., the maximization of the weighted sum of all soft constraints.
At the end, the vertexes whose variables receive the same value are merged together.

Figure 6.10 visualizes an example of this procedure. Each of the four vertexes of the
clique group in Figure 6.9 is mapped to a variable x̃i . In addition, the edges within the
group identify the constraints, i.e., Θ̃ consist of x̃1 , x̃2, x̃1 , x̃3, x̃2 , x̃3, x̃2 , x̃6, and
x̃3 , x̃6. One permissible outcome could be the merge of v

Φ
2 , vΦ3 , and v

Φ
6 , since their

variables got the same value. Hence, the edges (vΦ2 , v
Φ
3), (v

Φ
2 , v

Φ
6), (v

Φ
3 , v

Φ
6) are removed

from the graph. The resulting new graph ǦΦ (cf. Figure 6.11(a)) consists of four vertexes
v̌
Φ
1 , v̌Φ

〈2,3,6〉, v̌
Φ
10, and v̌

Φ
11, as well as the edges (v̌Φ1 , v̌

Φ
〈2,3,6〉) and (v̌Φ10, v̌

Φ
11). Note that the

merged vertexes are identified by v̌
Φ
〈2,3,6〉 in ǦΦ whereas the remaining ones keep the

initial identifiers.

𝑣1
𝛷

𝑣3
𝛷 𝑣6

𝛷

𝑣2
𝛷

Clique group in 𝐺𝛷

𝑣10
𝛷 𝑣11

𝛷

Remaining vertexes and edges in 𝐺𝛷

v
Φ
1 → x̃1 v

Φ
2 → x̃2 v

Φ
3 → x̃3 v

Φ
6 → x̃6

x̃1 , x̃2 x̃1 , x̃3 x̃2 , x̃3 x̃2 , x̃6 x̃3 , x̃6︸ ︷︷ ︸
max

(
ρ̃ (x̃1, x̃2)r (x̃1, x̃2) + ρ̃ (x̃1, x̃3)r (x̃1, x̃3)+

ρ̃ (x̃2, x̃3)r (x̃2, x̃3) + ρ̃ (x̃2, x̃6)r (x̃2, x̃6) + ρ̃ (x̃3, x̃6)r (x̃3, x̃6)
)︸ ︷︷ ︸

x̃1 = 1 x̃2 = 2 x̃3 = 2 x̃6 = 2

Figure 6.10: Solving an over-constrained verification collision problem. Each vertex v
Φ
i being

part of a clique group is assigned to a variable x̃i ∈ [1;τ], where τ = 2. An edge (vΦi , v
Φ
j) within a

group represents a soft constraint x̃i , x̃ j . The outcome of the maximization process determines
the vertexes that are going to be united.

112 Chapter 6. Verification of Configuration Changes

𝑣1
𝛷 𝑣˂2,3,6>

𝛷 𝑣10
𝛷 𝑣11

𝛷 𝐺𝛷
˅ ˅ ˅ ˅ ˅

(a) Reducing the size of a clique group. The usage of soft constraints allows us to find an acceptable correction
window slot allocation. After carrying out the constraint optimization process, we get a new graph ǦΦ which
is no longer comprised of over-sized cliques.

𝑣1
𝛷 𝑣˂2,3,6>

𝛷 𝑣10
𝛷 𝑣11

𝛷 𝐺𝛷
˅ ˅ ˅ ˅ ˅

(b) Collision grade χ (ǦΦ) of the reduced verification collision graph ǦΦ is 2. Hence, it is possible to execute
the actions in two iterations.

Figure 6.11: Outcome of the edge contraction procedure

After completing those steps, there is no longer an over-constrained verification colli-
sion problem, as the verification collision grade (cf. Definition 6.5) no longer exceeds the
number of available correction window time slots. As shown in Figure 6.11(b), its value
equals to 2. As a result, we can continue with the approach introduced in Section 6.5
which finally generates the corrective action plan (cf. Definition 3.4).

6.7 Summary

This chapter presented the part of the verification process that is responsible for the as-
sessment of configuration change and the rollback of those harming network performance.
It is modeled as a three step procedure that based on the ongoing CM changes generates
verification areas, assesses them, and assembles a corrective action plan. Throughout this
chapter, the cell behavior model, the strategy used for detecting anomalies, and the gener-
ation of the plan have been discussed. The latter one consists of multiple steps: clustering
cells based on their behavior, estimating the severity of the verification collision problem,
modeling it as a constraint optimization problem, and finally solving it in order to provide
a set of undo actions. A strategy for solving an over-constrained optimization problem
has been introduced as well.

The cell behavior model and the presented detection method (cf. Sections 6.1 and 6.2)
contribute to the following three research objectives:

O2.2: Definition of the verification state.
Q: How to model the behavior of a cell?
A: The behavior of a cell is defined by its CKPI anomaly vector where each element
of the vector is called a CKPI anomaly level (cf. Definition 6.1). The latter one shows
the deviation of a CKPI from the expected value. The vector itself is computed by

6.7. Summary 113

taking the profile and the current CKPIs of a cell (cf. Equation 6.1). Furthermore, the
collection of all CKPI anomaly level vectors is referred to as the CKPI anomaly level
vector space.

O2.3: Estimate the duration of the verification process.
Q: How to handle fluctuations in the PM data and prevent function transactions from
being interrupted?
A: The ability to handle fluctuations in the PM data is realized by computing a simple
weighted average of the current observation, denoted as ψ (a⊥)t , and the previous
smoothed ϑ (a⊥,α)t−1, as given in Equation 6.4. The parameter that influences the
outcome is the state update factor α , as used in the same equation. Its selection also
affects the duration of the verification process since it can prevent verification areas
from being further assessed.

Furthermore, in this chapter graph theory concepts have been utilized to model the
verification collision problem, as introduced in Section 3.2.2. They contribute to the
following objective:

O3.1: Define uncertainties in the terms of a verification process.
Q: How to model the verification collision problem?
A: The verification collision problem is modeled by using concepts and techniques
known from graph theory. In particular, a verification collision graph (cf. Defini-
tion 6.4) is formed that shows which undo actions can and which must not be simul-
taneously executed. All further verification steps, e.g., the procedure that resolves
collisions, use this graph as baseline.

The process of generating a corrective action plan (cf. Sections 6.3 to 6.6) utilizes
concepts from graph theory and constraint optimization. In particular, a contribution to
the following research objectives is made:

O3.3: Resolve and eliminate uncertainties and provide accurate corrective ac-
tions when verifying configuration changes.
Q: How to eliminate weak verification collisions?
A: Before starting the collision resolving procedure, those being identified as weak
are eliminated. For this purpose, a cell behavior graph is formed (cf. Definition 6.2)
which is used as input by the MST-based cell clustering algorithm. The clustering
mechanism is responsible for the grouping of similarly behaving cells as well as the
exclusion of cells from the initially defined verification areas. The exclusion itself
leads to the formation of weak verification areas (cf. Definition 6.3) which enables the
elimination of weak verification collisions.

114 Chapter 6. Verification of Configuration Changes

Q: How to solve the verification collision problem and generate a corrective action
plan?
A: The verification collision problem is modeled as a constraint optimization problem,
as given in Equation 6.12. Concretely, each node in verification collision graph is rep-
resented by a variable that may accept values between 1 and the maximum number of
available correction window time slots. The verification collisions define the so-called
hard constraints which must never be violated. In addition, a priority function that
indicates the importance of an undo action to be processed is defined. After carrying
out the optimization, the assigned values to the variables determines the undo action
execution order.

Q: How to detect an over-constrained verification collision problem?
A: An over-constrained verification collision problem is detected after applying min-
imum vertex coloring on the verification collision graph (cf. Definition 6.4). It is
marked as being such if the resulting chromatic number, also called the verification
collision grade (cf. Definition 6.5), exceeds the maximum number of correction win-
dow slots. The exact location of an over-constrained verification collision problem
is determined after the search for maximal cliques in the verification collision graph.
This process leads to the formation of clique groups (cf. Definition 6.7), each repre-
senting a separate over-constrained verification problem.

Q: How to model soft verification collisions and how to find an appropriate corrective
action plan?
A: As discussed in Section 6.6, soft verification collisions are modeled as soft con-
straints in a constraint optimization problem (cf. Equation 6.15). It minimizes the
total constraint violation by assigning those undo actions to the same corrective action
window slot that have the lowest probability of rolling back unharmful changes.

It should be noted that the process of eliminating verification collisions (uncertainties),
in particular, the formation of weak verification areas, also contributes to the research
objective that targets the verification scope definition:

O2.1: Fragmentation of the network and specifying the scope of verification.
Q: Can the initially defined verification scope change when verifying CM changes?
A: Yes. During the process of eliminating weak verification collision (cf. Section 6.3)
verification areas can be transformed into weak ones. That is, cells are taken out from
an area in order to remove weak collisions (cf. Definition 3.9). The decision is based
on the outcome of the MST-based clustering algorithm.

The presented approach also estimates the severity as well as defines several properties
that further evaluate the verification collision problem. It contributes to the following
research objective:

6.7. Summary 115

O3.4: Estimate the severity of the CM verification problem.
Q: How to estimate the severity of the verification collision problem?
A: The severity of the CM verification problem depends on the severity of the verifi-
cation collision problem. The latter one is reflected by the chromatic number χ (GΦ),
also called the verification collision grade (cf. Definition 6.5), after applying minimum
vertex coloring on the verification collision graph (cf. Definition 6.4). It shows the
maximum number of correction window slots that are required to deploy the necessary
undo actions and resolve all verification collisions.

Q: When is the verification problem collision-complete and when collision-free?
A: The problem is called collision-complete in case the verification collision grade
χ (GΦ) equals the number of formed verification areas and collision-free when the
grade equals to 1 (cf. Definition 6.6). Collision-complete also means that every two
undo actions must not be simultaneously deployed whereas free that all undo actions
are allowed to be executed at the same time, i.e., allocated to the first time slot of the
correction window (cf. Section 5.6).

Q: Why is minimum vertex coloring insufficient to solve the verification collision
problem?
A: Although minimum vertex coloring is used to estimate the verification collision
grade, it cannot not be used for resolving collisions and generating a corrective action
plan. It does not specify the action execution order and cannot identify soft verification
collisions (cf. Definition 3.8).

116 Chapter 6. Verification of Configuration Changes

Chapter 7

Verification of Topology Changes

The general question that is going to be answered in this chapter is how to overcome
verification-related issues that emerge due to dynamic topology changes. Section 3.2.5
already gave a comprehensive overview of those problems. In short, switching cells
on or off may induce uncertainties while verifying configuration changes. Dynamic
topology changes may result in incomplete profiles, anomalous cell behavior, and the
rollback of necessary configuration changes. In addition, anomalies induced by the
movement of UEs cannot be eliminated by solely using the CM verification process
(cf. Section 5.1). In the presence of topology changes it may generate a weak corrective
action plan (cf. Definition 3.13), i.e., the process is not always capable of providing a
corrective action. This limitation comes from the fact that the up to now introduced
verification process is not allowed to do more than rolling back already deployed CM
changes. As a result, we need a verification strategy that actively monitors and adapts the
network topology.

Generally speaking, this issue can be represented as a Steiner tree problem [GHNP01]
which is very similar to the MST problem [CLRS09]. For a given undirected edge
weighted graph, we have to find a tree that interconnects all vertexes and, at the same
time, is of shortest length. The difference between the MST and the Steiner tree problem
is that to solve the latter one we may include extra vertexes to the graph in order to
reduce the length of the spanning tree. In literature, those new vertexes are called Steiner
points, whereas the initial nodes of the graph are referred to as Steiner terminals, or fixed
terminals.

Nevertheless, the Steiner tree algorithm itself cannot be applied in terms of the ver-
ification context without defining all of its properties. First of all, we need to map the
existing network topology to a graph which serves as input to the algorithm, i.e., we must
find an appropriate representation of the deployed cells and neighbor relations. Second,
we have to represent the issue of verifying topology changes as an optimization problem
by introducing a metric that requires minimization. This requirement comes from the
fact that the Steiner algorithm minimizes the total weight of the spanning tree based on
the edge weights in the input graph. Third, we need to specify which entities are actually

118 Chapter 7. Verification of Topology Changes

Observation phase Correction phase

Verification area

 generation

Verification area

 assessment

Corrective action

generation

Topology

verification

graph

formation

Steiner point

selection

Topology correction

and Steiner point

assessment

Network

partitioning

Cell state

model

Steiner tree-

based

verification

algorithm

Figure 7.1: Overview of the topology verification process

marked as terminals and which as Steiner points. Defining an entity as a Steiner point
does not necessarily mean that it is going to be selected to form the tree. Moreover, there
are cases where such a point is never selected by the algorithm, e.g., if is a leaf in the
input graph.

Throughout this chapter, those challenges are discussed and addressed by the so-
called topology verification process which is the second main building block of the SON
verification concept (cf. Section 5.1). Figure 7.1 shows a high-level overview of this
process. At first, we have the cell state model which addresses the issue of how to model
a cell’s behavior. Only after the specification of the cell model we can use the Steiner
tree algorithm. Section 7.1 discusses this topic as well as outlines the differences to
the model utilized by CM verification. In addition, it discusses how to overcome the
issue of having incomplete profiles. Second, in Section 7.2 the formation of the topology
verification graph, i.e., the input graph of the Steiner tree algorithm, is described. Third,
in Section 7.3 the algorithm is presented in detail. Fourth, Section 7.4 is devoted to the
generation of corrective topology actions based on the algorithm’s outcome.

In addition, in Section 7.5 the limitations of the Steiner tree-based verification al-
gorithm are analyzed. It discusses the impact of the verification area selection on the
algorithm as well as the edge cases that may emerge. Finally, Section 7.6 summarizes all
sections and lists the answers to the research questions that have been given throughout
the chapter.

Published work This chapter is based on the work made in [TATSC16b]. The
initial idea of having a topology verification process is outlined in [TATSC16c].
Compared to those papers, this chapter goes in more detail. In addition, the notation
has been adapted in order to present the concept in a uniform way.

7.1. Cell State Model 119

7.1 Cell State Model

In terms of the topology verification problem, there are two cell types: static and on-
demand cells. Within the first class fall cells that are never turned off whereas the second
one represents cells that can be enabled or disabled during their operation. Let the set of
all static cells be denoted as Σ̇ whereas the set of all on-demand cells as Σ̊. Furthermore,
let the set of all cells be denoted as Σ as well as let Σ̇ ∪ Σ̊ = Σ and Σ̇ ∩ Σ̊ = ∅.

Similarly to the cell behavior model of the CM verification process (cf. Section 6.1),
those cells are represented by the anomaly levels of the selected KPIs. It should be noted
that they are referred to as TKPIs (cf. Definition 5.6). For each TKPI k`, a TKPI anomaly
level is computed. It is denoted as a` and is characterized in the following way:

Definition 7.1 (TKPI anomaly level). A TKPI anomaly level a` is an element of a TKPI
anomaly level vector a` = (a`1, . . . ,a

`
n), where a` ∈ Rn . An element a`i represents the

deviation from the expected value of a TKPI k`i of a TKPI vector k` = (k`1, . . . ,k
`
n). In

addition, the TKPI anomaly vectors for k̇` = (k̇
`

1, . . . , k̇
`

n) and k̊` = (k̊
`

1, . . . , k̊
`

n) are
denoted as ȧ` = (ȧ`1, . . . , ȧ

`
n) and å` = (å`1, . . . , å

`
n), respectively.

Furthermore, the TKPI anomaly level vectors give us the TKPI anomaly level vector
space. It is defined as follows:

Definition 7.2 (TKPI anomaly level vector space). The collection of TKPI anomaly vec-
tors is called the TKPI anomaly level vector space, and is denoted as A` = {a`1, . . . , a

`
|Σ | },

where |A` | = |K` |, A` ⊂ R |Σ | , and Σ is the set of all cells. In addition, the TKPI anomaly
vector spaces of all static cells Σ̇ and on-demand cells Σ̊ are denoted as Ȧ` = {ȧ`1, . . . , ȧ

`

|Σ̇ |
}

and Å
`
= {å`1, . . . , å

`

|Σ̊ |
}, respectively.

In contrast to the anomaly vectors used by the CM verification process, the computation
of the TKPI anomaly level vector depends on the cell type. As stated in Section 5.3.3,
only static cells have a profile. As a result, the TKPI anomaly level ȧ` of a cell σ̇ ∈ Σ̇ can
be computed in the same way as discussed in Section 6.1. That is, there is a function φ̇
(cf. Equation 7.1) which takes a TKPI profile ṗ` ∈ Ṗ`, the current TKPI vector k̇` ∈ K̇`

and returns a TKPI anomaly level vector ȧ` ∈ Ȧ`.

φ̇ : Ṗ` × K̇` → Ȧ
` (7.1)

In addition, it is possible to have different profile types, e.g., such that specify the usual
weekday behavior and such that define the behavior of the network during the weekend.
Note that a particular example of how to implement an anomaly level function has already
been introduced in Section 6.1.

However, function φ̇ cannot be applied in the case of on-demand cells since they do
not have a profile. Section 3.2.5 highlights and discusses the reasons for that. Hence,
function φ̇ is modified in such a way that it no longer requires a profile to calculate the

120 Chapter 7. Verification of Topology Changes

anomaly level. As shown in Equation 7.2, it takes three arguments. First, it takes ν TKPI
profiles {ṗ`1, . . . , ṗ

`
ν }. Each of those profiles originates from a static neighbor of the given

on-demand cell. Here, ν marks the number of selected neighbors. Second, the function
takes the same number of TKPI vectors {k`1, . . . ,k

`
ν }, which are compared against the

selected TKPI profiles. Third, the function takes the most recent TKPI vector k̊` ∈ K̊` of
the on-demand cell.

φ̊ : {ṗ`1, . . . , ṗ
`
ν } × {k̇

`

1, . . . , k̇
`

ν } × K̊
`
→ Å

`
(7.2)

Let us give an example of function φ̊. For simplicity reasons, let us assume that the cell
load is the only TKPI which is taken into account. Hence, the resulting TKPI anomaly
vector å` ∈ Å` contains only one element, namely the deviation from the expected load.
Let us call this element the load anomaly level. The load anomaly level of an enabled
on-demand cell can be computed as the weighted sum of the load anomaly levels of its
static neighbors. The weight itself is the UE ratio, i.e., the number of UEs served by a
neighboring cell divided by the total number of UEs within the area. In order to compute
the load anomaly anomaly level of a disabled on-demand cell, techniques from regression
analysis can be utilized.

7.2 Topology Verification Graph

Similarly to the CM verification process, the process of verifying topology changes
operates on verification areas, as given in Definition 5.3. The exact strategy for selecting
those has been introduced in Section 5.2.2. However, in order to use the Steiner tree
algorithm, each verification area, that has been generated before starting the process
assessment phase (cf. Figure 7.1), is represented by a topology verification graph. The
graph itself is defined as follows:

Definition 7.3 (Topology verification graph). A topology verification graph is an undi-
rected edge weighted GT = (V T ,ET ,dT), where V T is a set of vertexes, ET a set of
edges V T × V T , and dT an edge weight function. A vertex v

T ∈ V T represents an
on-demand or a static cell, whereas an edge (vTi , v

T
j) ∈ E

T a neighbor relation between
two cells. Function dT is defined as ET → R≥0.

In particular, dT computes the edge weight by taking into account the position of the
cells represented by v

T
i and v

T
j in Rn . Thereby, it estimates the distance between TKPI

anomaly vectors of cells represented by v
T
i and v

T
j . Examples are the Euclidean or

Manhattan distance.
Figures 7.2(a) and 7.2(b) depict an example of forming GT . The first figure shows a

network that consists of four static cells (cells 1-4) and three on-demand cells (cells 5-7).
The neighbor relations are visualized by the lines connecting the cells. Initially, cells 6
and 7 are disabled whereas cell 5 is switched on. Note that all seven cells are part of the
same verification area. The second figure visualizes the respective topology verification

7.3. The Steiner Tree-Based Verification Algorithm 121

76 4

3

1

2

5

Verification area

Static

cell

Cell

neighborship

Enabled

on-demand cell

Disabled

on-demand cell

(a) Static cells (1-4), enabled on-demand cell (5) and disabled on-demand cells (6,7)

0.120.12

0.150.15

0.11

 0.3

0.5

0.11

0.7

𝑣2
𝒯

𝑣1
𝒯

𝑣3
𝒯

𝑣4
𝒯

𝑣5
𝒯

𝑣7
𝒯 𝑣6

𝒯

(b) Topology verification graph GT = (VT ,ET ,dT)

Figure 7.2: An example of forming the topology verification graph. The network is comprised of
four static cells, three on-demand cells, and nine neighbor relations.

graph GT . Each of the seven cells is represented by a vertex v
T
i , where index i equals the

cell identifier. In addition, the edge weights are computed by a function A` ×A` → [0; 1].
In the case of two enabled cells, the edge represents the TKPI anomaly level that is
experienced by the two cells. In particular, 0 and 1 are an indication for a low and high
TKPI anomaly level, respectively. Should, however, one of the cells be disabled, the edge
shows how much the TKPI anomaly level between the cells can be improved if the turned
off cell is switched on.

7.3 The Steiner Tree-Based Verification Algorithm

The Steiner tree problem itself [GHNP01] is an NP-complete problem which is why
in practice heuristics are most commonly used. A well known algorithm is the one
introduced by Kou, Markowsky and Berman [KMB81]. The algorithm itself forms an
MST out of an input graph by potentially including extra vertexes, referred to as Steiner
points. It calls twice an MST algorithm and once an algorithm that computes the shortest
path between two points. Algorithm 2 lists the pseudo-code of the topology verification
approach that is based on the Steiner tree algorithm.

122 Chapter 7. Verification of Topology Changes

At the beginning, it takes as input the topology verification graph GT = (V T ,ET ,dT),
as described in Section 7.1. Then, the Steiner points are selected (line 1). Their set is
denoted as VP , where VP ⊂ V T . The remaining vertexes VF , i.e., the complement
V T \VP , are set as fixed terminals (line 2). Initially, all on-demand cells are marked as
Steiner points whereas all static cells are defined as terminals.

It should be also noted that this selection strategy applies only if the algorithm is
triggered for the very first time, that is, we do not have any information regarding
previous states. However, an alternative strategy has to be considered if the algorithm
has already been triggered, and some on-demand cells have been turned on. In particular,
some on-demand cells may become terminals if their operation is required in the future.
Section 7.4 goes into more detail.

Before continuing, let us give an example based on the topology depicted in Figure 7.2.
The Steiner point and terminal selection is visualized in Figure 7.3(a). Note that static
cells have an ID between 1 and 4 whereas on-demand cells an ID within the range
of 5 and 7. Hence, the sets of terminals and Steiner points are selected as follows:
VF = {vF1 , v

F
2 , v

F
3 , v

F
4 } and VP = {vP5 , v

P
6 , v

P
7 }.

As a next step, an undirected distance graph DG (V
F) is formed (line 3). This new

graph consists only of the vertexes that have been marked as terminals. Moreover,
the edge wights within this graph equal the costs given by the shortest paths between
the terminals in GT . The algorithm that is particularly used here is Dijkstra’s algo-
rithm [Dij59, CLRS09]. Figure 7.3(b) visualizes the outcome after applying this step.
The graph consists of the four terminal nodes, each being connected with the other.

Next, the newly formed graph DG (V
F) is transformed to an MST which is denoted

as TDG (line 4). The MST algorithm being used here is Kruskal’s algorithm [Kru56,
CLRS09]. In the case of multiple MSTs, an arbitrary one is selected, as presented
between lines 5 and 7. Figure 7.3(c) shows the MST that has been formed out of DG (V

F).
In total, three edges have been removed: (vF1 , v

F
4), (vF1 , v

F
2), and (vF2 , v

F
3).

Afterwards, the formed MST is transformed to a graph G̃T by replacing each edge by
the corresponding shortest path from GT (line 8). Furthermore, G̃T is transformed to
an MST TG̃T (line 9). Similarly to the previous step, the MST is formed by triggering
Kruskal’s algorithm. Those two steps are summarized in Figure 7.3(d). It should be noted
that vP5 is not required for the formation of the tree.

Finally, the Steiner tree T T = (Ṽ T , ẼT) is formed by continuously removing non-
terminal leaves from TG̃T or non-terminals that remained disconnected (line 10). In
addition, the set of unnecessary Steiner points is formed by taking the complement of the
set of Steiner points VP and the set Ṽ T (line 11). In line 12, the set of required Steiner
points is formed. Figure 7.3(e) depicts the end result. The inclusion of Steiner points vP6
and v

P
7 leads to a spanning tree that is shortest in length.

7.3. The Steiner Tree-Based Verification Algorithm 123

Algorithm 2: Steiner tree-based verification algorithm

Input: Undirected, edge weighted topology verification graph GT = (V T ,ET ,dT)
Result: Steiner tree T T out of GT , a set V U ⊂ V T of unnecessary Steiner points,

and a set VR ⊂ V T of required Steiner points
1 Select Steiner points VP ⊂ V T ;
2 VF ←− V T \VP ;
3 Construct a complete undirected distance graph DG (V

F);
4 Compute a minimum spanning tree TDG of DG (V

F);
5 if Multiple TDG present then
6 Select an arbitrary minimum spanning tree;
7 end
8 Form G̃T by replacing each edge inTDG by the corresponding shortest path fromGT ;
9 Form a minimum spanning tree TG̃T from G̃T ;

10 Compute T T = (Ṽ T , ẼT) by continuously removing leaves from TG̃T that are < VF ;
11 V U ←− VP \ Ṽ T ;
12 VR ←− VP \V U ;

0.120.12

0.150.15

0.11

 0.3

0.5

0.11

0.7

𝑣2
ℱ

𝑣1
ℱ

𝑣3
ℱ

𝑣4
ℱ

𝑣5
𝒫

𝑣7
𝒫 𝑣6

𝒫

(a) Steiner point and terminal selection

0.3 0.5

0.53

0.3

0.230.23

𝑣2
ℱ 𝑣1

ℱ

𝑣3
ℱ 𝑣4

ℱ

(b) Complete terminal graph DG (VF)

0.230.23

0.3

𝑣2
ℱ 𝑣1

ℱ

𝑣3
ℱ 𝑣4

ℱ

(c) MST TDG of DG (VF)

0.120.12

0.11

0.3

0.11

𝑣2
ℱ

𝑣1
ℱ

𝑣3
ℱ

𝑣4
ℱ

𝑣5
𝒫

𝑣7
𝒫 𝑣6

𝒫

(d) The MST TG̃T

0.120.12

0.11

0.3

0.11

𝑣 2
𝒯

𝑣 1
𝒯

𝑣 3
𝒯

𝑣 4
𝒯 𝑣 7

𝒯 𝑣 6
𝒯

(e) Steiner tree TT = (ṼT , ẼT)

Figure 7.3: Example of applying the Steiner tree-based verification algorithm. The four static
cells (terminals) are colored in gray whereas the three on-demand cells (Steiner points) in white.

124 Chapter 7. Verification of Topology Changes

7.4 Topology Correction and Steiner Point Assessment

After triggering the Steiner tree algorithm, we get a Steiner tree T T out of the topology
verification graph GT . This tree has been formed by filtering out unnecessary Steiner
points and using only those that minimize its total weight. Hence, cells represented by
Steiner points that are left over are seen as a set of unnecessary on-demand cells Σ̊U ⊆ Σ̊,
whereas the remaining ones as a set of required on-demand cells Σ̊R ⊆ Σ̊. Formally,
those sets are specified as follows:

Definition 7.4 (Unnecessary and required on-demand cells). The vertexesV U that remain
unused to form the Steiner tree T T = (Ṽ T , ẼT) for a given topology verification graph
GT = (V T ,ET ,dT), i.e., V U ⊂ V T and V U ∩ Ṽ T = ∅, represent the set of unnecessary
on-demand cells Σ̊U . On the contrary, the set of Steiner points VR used to form the tree,
i.e., VR ⊂ V T and VR ⊂ Ṽ T constitute the set of required on-demand cells Σ̊R.

Figure 7.4 represents the final outcome after enabling the required and disabling the
unnecessary on-demand cells. Note that the initial network topology is presented in
Figures 7.2 and 7.3. Within the given verification area, cell 5 is disabled since the vertex
representing it is not required to form the Steiner tree. Cells 6 and 7 are needed and are,
therefore, turned on.

However, if we strictly follow the up to now outlined strategy, we may face a similar
problem as discussed in Section 6.2, namely generating unnecessary corrective actions
in the case of fluctuating PM data. For instance, if a rather large group of UEs leaves
and enters the same area, it would be undesirable to disable and shortly after that enable
nearby on-demand cells. For this reason, enabled on-demand cells are evaluated by the
Steiner point assessment function ι, as given in Equation 7.3.

ι : Σ̊R × K̊
`
→ VP ∪ ∅ (7.3)

76 4

3

1

2

5

Static

cell

Cell

neighborship

Enabled

on-demand cell

Disabled

on-demand cell

Verification area

Figure 7.4: Corrective topology actions generated by the Steiner tree-based verification algorithm.
Turning on on-demand cells 6 and 7, and turning off on-demand cell 5.

7.5. Analysis of the Steiner Tree-Based Verification Approach 125

This function permits the exclusion of an enabled on-demand cell σ̊R ∈ Σ̊R from the
Steiner point set VP . The decision itself depends on the TKPI vector k̊` ∈ K̊

`
of the

on-demand cell. For instance, if it is continuously experiencing a low load, we may set it
as a Steiner point. On the contrary, continuously reporting a high load may mean that the
cell will be required in the future, i.e., we may consider the cell as a terminal during the
next iteration (cf. line 1 of Algorithm 2).

In the same connection, the question arises how to penalize on-demand cells that are
continuously toggled due to fluctuating PM data. For example, a large UE group enters
the network for a short time frame which temporary triggers a high load on the static cells.
Consequently, the chance of turning on an on-demand cell increases. This issue is solved
by artificially extending the edge weight between vertexes that represent an on-demand
and a static cell in the topology verification graph GT , i.e., by multiplying it by a certain
factor. As a result, the likelihood of selecting those Steiner points in T T decreases.

7.5 Analysis of the Steiner Tree-Based Verification Approach

Modeling the topology verification problem, as described between Sections 7.1 and 7.4
creates a set of challenges that are not addressed by the Steiner tree algorithm. First of
all, if an on-demand cell has only one cell as neighbor, it will be added to the topology
verification graph GT as a leaf. As a result, it will be considered as a leaf by the Steiner
algorithm which means that the Steiner point representing the cell will be excluded in any
case from the end result. It is caused by the fact that adding a Steiner point as leaf results
in a spanning tree that is not minimal in length. Figure 7.5(a) visualizes this problem.
No matter what the cost between the terminal and the Steiner point is, the latter one gets
always excluded. Hence, such on-demand cells have to be either marked as terminals
from the very beginning or be evaluated separately.

Second, the Steiner tree problem does not provide an explicit strategy for selecting
Steiner trees of equal length. Figure 7.5(b) depicts such a scenario. The weight of the
spanning tree that includes the Steiner point equals the weight of the spanning tree that
consists only of the two terminal nodes. As a result, there are two possible outcomes, i.e.,
two permissible sets of topology corrective actions. Activating the on-demand cell would
be the more aggressive strategy.

Third, we may have an edge weight of zero between Steiner points. Usually, this
happens when we have two or more disabled on-demand cells in the network. Since
neither of the cells are serving UEs, nor are experiencing any workload, there is a chance
for having a cost of zero between the vertexes representing them in GT . Figure 7.5(c)
visualizes this problem in the case of two Steiner points. As it can be seen, there are three
permissible Steiner trees: two that include both Steiner points and one that is formed
by taking only one of the points. Hence, we have two valid outcomes for generating
topology corrective actions: turning only one or both on-demand cells. Similarly to the
previous problem, activating more than the minimum number of required on-demand

126 Chapter 7. Verification of Topology Changes

1

2

Terminal Steiner point

Steiner tree

(a) Steiner points as leaves

11

2

Terminal Steiner point

Steiner trees

(b) Equally weighted Steiner trees

2

4

Terminal Steiner point

1 2

0

Steiner trees

(c) Zero cost edges

Figure 7.5: Challenges when applying the Steiner tree algorithm: exclusion of Steiner points
defined as leaves, and multiple solutions due to equally weighted Steiner trees or zero cost edges.

cells is seen as an aggressive approach.
Fourth, the verification area selection plays a crucial role for the end result. Let us

consider the example shown in Figure 7.6(a). The graph consist of four terminals and two
Steiner points. Furthermore, all nodes and edges are part of the same verification area
which, as a result, means that the Steiner tree algorithm will be called only once, namely
for that particular area. As shown, the algorithm adds both Steiner points to the end result
which has the consequence of switching on all on-demand cells. On the contrary, if we
form two smaller verification areas, as shown in Figure 7.6(b), we will get two simplified
topology verification problems. Each of those problems is solved by the Steiner tree
algorithm separately, i.e., we have two input graphs for each of which the Steiner tree
algorithm is called. As the example shows, the Steiner points are considered as leaves in
the two input graphs which may lead to the first problem outlined in the beginning of this
section. Here, the on-demand cells will be disabled since the points were not required to
form the Steiner tree.

However, the selection of a larger verification area by including more network entities,
may induce another set of challenges. First, the verification problem that needs to be
solved becomes more complex due to the increased vertex number as well as the number
of edges that need to be taken into account. Second, the number of edges increases, for
which we would need to find a unified metric. The edge costs depend on the TKPIs
within the whole verification area and represent how a pair of two cells performs with

7.6. Summary 127

32

4

Terminal Steiner point Steiner tree

1

1

Verification area

1

(a) Single verification area

32

Terminal Steiner point Steiner trees

1

Verification area

1

Verification area

(b) Multiple verification areas

Figure 7.6: Impact of the verification area selection on the Steiner tree algorithm. Changing the
size of the verification area may lead to a different set of corrective actions.

respect to the remaining cells within the area. As a result, the exclusion or inclusion of
cells will lead to a change of the edge costs.

7.6 Summary

This chapter presented the process that verifies topology changes, as initially introduced
in Section 5.1. It has the purpose of generating topology corrective actions that either
enable or disable cells. The approach itself is based on the Steiner tree algorithm, as the
following research contribution outlines:

O1.2: Model and design a verification process that assesses CM changes as well
as changes made in the network topology.
Q: How to model the topology verification problem?
A: The topology verification problem is modeled as a Steiner tree problem. The
latter one is a combinatorial optimization problem that tries to reduce the length of an
MST by adding extra vertexes and edges to the initial edge weighted graph. Those
additional vertexes are referred to as Steiner points whereas the initial nodes are called
terminals. In general, Steiner points represent cells that can be turned on or off during
their operation (called on-demand cells) whereas terminals mark cells that remain
always switched on (referred to as static cells). Based on whether a cell is used as a
Steiner point to form the tree, it is decided if and how to consider it while generating
the corrective action plan.

In this chapter, also the impact of the verification area selection on the topology
verification process has been discussed. Concretely, the following research contribution
has been made:

128 Chapter 7. Verification of Topology Changes

O2.1: Fragmentation of the network and specifying the scope of verification.
Q: Does the verification area selection affect the Steiner tree-based verification algo-
rithm?
A: Yes. It is of high importance how the verification area is selected. The larger a
verification area is, the more complex it becomes to solve the Steiner tree problem.
The input graph optimized by the Steiner algorithm increases in size for which we
would need to find a unified cost metric. On the other side, the smaller a verification
area is, the more likely it becomes Steiner points to become leaves in the input graph.
Hence, they will never be selected to form the Steiner tree.

Furthermore, the issues that emerge when having incomplete profiles have been ad-
dressed. Also, the cell state has been specified in the case of topology verification. In
particular, the following research contributions have been made:

O2.2: Definition of the verification state.
Q: How to model the state of a cell while verifying topology changes?
A: The state of a cell is represented by its TKPI anomaly vector (cf. Definition 7.1).
Similarly to the CM verification process (cf. Chapter 6), each element of the vector
represents the deviation from the experted TKPI value. The anomaly vector compu-
tation is modeled as a function (cf. Equation 7.1) that takes a cell’s profile and the
current TKPI vector. Also, the collection of all TKPI anomaly level vectors is referred
to as the TKPI anomaly level vector space (cf. Definition 7.2).

Q: How to compute a TKPI anomaly level when profiles are incomplete?
A: The computation is done by function φ̊ (cf. Equation 7.2). Since an on-demand
cell does not have a valid profile, the anomaly vector computation is modeled as a
function that takes the TKPI profiles and TKPIs of its static neighbors. Furthermore,
the TKPIs an on-demand cell is generating are considered as well.

Q: How to define the relation between cells when verifying topology changes?
A: The relation between cells is represented by an undirected edge weighted topology
verification graph (cf. Definition 7.3). Vertexes represent cells whereas edges neigh-
bor relations. The weighting function is taking into account the position of the cells
represented in Rn , as given by their TKPI anomaly level vectors.

Q: Do cells change their state when using the Steiner tree-based verification algo-
rithm?
A: Yes. The Steiner tree-based verification algorithm allows on-demand cells to be
selected not only as Steiner points, but also as terminals. Marking an on-demand
cell as a Steiner point means it that may get included in the Steiner tree, whereas

7.6. Summary 129

setting it as a terminal has the consequence that it must be used while forming the
tree. Hence, on-demand cells that are going to be required in the future are defined
as terminals. The actual decision is made by the Steiner point assessment function ι
(cf. Equation 7.3).

In this chapter, a contribution to the objective that studies the verification process
duration has also been made.

O2.3: Estimate the duration of the verification process.
Q: Is the Steiner tree-based verification algorithm able to penalize on-demand cells?
A: The Steiner tree-based verification algorithm permits the penalization of on-demand
cells that get switched on or off due to fluctuating PM data. It is achieved by increasing
the weights of the edges leading to a Steiner point. Hence, the probability of selecting
it when forming the Steiner tree decreases. Nonetheless, extending the edges may
also delay the process of providing a corrective topology action as they will not be
considered by the Steiner tree algorithm.

Finally, a contribution to the remaining topology verification research objectives has
been made. The following answers further highlight the achievements:

O4.1: Specify and define the uncertainties caused by topology changes.
Q: What is the relation between the verification of topology changes and the Steiner
tree problem?
A: The verification of topology changes is modeled as a Steiner tree optimization prob-
lem. The outcome of the Steiner tree algorithm yields the set of topology corrective
actions. In particular, cells required to form the Steiner tree get or remain enabled,
whereas the unnecessary ones get disabled.

O4.2: Study and evaluate the impact of topology changes on the process of veri-
fying configuration changes, as well as identify the necessary conceptual changes
of a verification process.
Q: How to model and select cell profiles when the network topology is changing?
A: The Steiner tree-based verification approach distinguishes between on-demand
and static cells. Only static cells have a profile which specifies the expected range of
the monitored TKPIs and is required to calculate the TKPI anomaly levels (cf. Equa-
tion 7.1). On-demand cells on the other side do not have a profile and compute the
anomaly levels by considering the TKPIs and profiles of their neighbors as well as
their current TKPIs (cf. Equation 7.2).

130 Chapter 7. Verification of Topology Changes

O4.3: Enable topology verification, resolve uncertainties, and provide corrective
actions.
Q: How does the topology verification process enable the verification of topology
changes and does it prevent configuration changes of being blamed by mistake?
A: As mentioned above, the Steiner tree-based verification approach uses the outcome
of the Steiner tree algorithm to enable or disable cells, also referred to as corrective
topology actions. Furthermore, it is triggered before the CM verification process, i.e.,
cells which are turned on or off by the topology verification process are not assessed
by the process that verifies configuration changes. Thereby, the likelihood of uncer-
tainties to emerge while performing verification decreases as the topology verification
and CM verification problem are solved by two processes, each knowing the outcome
of the other.

Q: For which verification-related problems additional care must be taken?
A: By default, the Steiner algorithm will always exclude Steiner points that are added
to the initial input graph as leaves. Hence, on-demand cells having just one static cell
as neighbor are always excluded from the Steiner tree, i.e., they are turned off. As a
result, such cells must be evaluated separately. Furthermore, the algorithm does not
provide a strategy for selecting MSTs of equal length, i.e., there might be two or more
valid solutions. It also does not provide a strategy for handling zero-weight edges, in
particular, between Steiner points. Such edges result in multiple permissible topology
corrections.

Part IV

Concept Implementation and
Evaluation

Chapter 8

Evaluation Environment

In this chapter, an introduction to the simulation as well as real data environment is given.
Both systems are utilized during the evaluation of the presented verification concept. Note
that the concept was comprehensively described in Chapters 5, 6, and 7. The evaluation
on the other side can be found in Chapter 10.

Here, the properties of the simulator, the simulated network topology, the UE mobility
as well as the available SON functions are described. Section 8.1 is devoted simulation
related topics. Section 8.2, however, is dedicated to the real data set exported by an LTE
network. Concretely, the PM and CM parameters, the data export frequency, and the
active SON functions are discussed in detail.

Published work An overview of the environments described in this chapter can
be also found in [TNSC14a] (real data study) and [TATSC16c] (simulation study).
Compared to those papers, this chapter gives a more comprehensive description of
the simulation and real data environment.

8.1 Simulation Environment

The simulation environment, that is used for the evaluation of the presented verification
concept, is called the SON Simulation System (S3). It consist of five components: an
LTE radio network simulator, a simulator parser, a SON function collection, a SON
function coordinator, and the already introduced verification process (cf. Chapters 5
to 7). Figure 8.1 visualizes all components. As shown, the components can only interact
when a simulation scenario is defined. It specifies the configuration parameters, the
network topology, and all other rules and policies that must be set up. In the upcoming
sections each of those components will be introduced. It should be noted, though, that
the implementation of the verification process is presented in detail in Chapter 9 and will
be, therefore, not further discussed here.

134 Chapter 8. Evaluation Environment

S3 Components

Simulation Scenario

SON Function

Collection

MRO Function

TXP FunctionPM / CM DataCM Change

LTE Network Simulator

Action ACK/NACK

SON Function

Coordinator

RET Function

Simulator parser

Function
Configuration

Function
Configuration
Coordination

Rules

Verification

process

CM change
verification

Topology
verification

Action ACK/NACK

CM Changes

PM / CM Data

Request Buffer

Priority Handler

Function
Configuration

Verification
Configuration

Corrective action

PM / CM Data

Simulator
Configuration

Figure 8.1: Overview of the simulation environment. It consist of five components which may
interact with each other. The interaction itself is defined by the simulation scenario.

8.1.1 LTE Network Simulator and Parser

The LTE network simulator is part of the SON simulator/emulator suite [NSN09]. It
simulates only the EUTRAN (cf. Section 2.1.3), i.e., the EPC (cf. Section 2.1.4) is
omitted from the simulation test runs. In the upcoming sections, the properties of the
simulator are described.

8.1.1.1 Simulation Time

The LTE simulator performs continuous simulation by tracking the changes in the network
over time. The time itself is divided into time slices which are referred to as simulation
rounds. At the end of a simulation round all the collected PM data is exported. The data
set itself consists of 14 cell KPIs which are later described in Section 8.1.1.2. Those KPIs
can be monitored by any entity, e.g., the active SON functions or the verification process.
Hence, those entities are usually becoming active at the end of a simulation round, i.e.,
CM changes are made only after the completion of a round. Note that the complete
list of CM parameters is given in Section 8.1.1.3. Also, due to the batch-like export of
PM data, a simulation round can be seen as an equivalent to a PM granularity period
(cf. Section 2.3). Figure 8.2 visualizes an exemplary representation of the simulation
time. As presented, SON functions get active after the completion of a simulation round
and, based on their objectives, trigger CM changes.

During a simulation round, users actively use the mobile network. Section 8.1.1.4
lists the properties of all UE groups, e.g., placement, mobility model, and Constant Bit
Rate (CBR) requirement. Furthermore, topology specific details, e.g., neighbor relations
and eNB locations, are provided in Section 8.1.1.5.

8.1. Simulation Environment 135

Simulation round

SON function activity CM changes PM reports CM change

Timeline

PM report

PM data
export

PM data
export

PM data
export

PM data
export

PM data
export

Figure 8.2: Representation of the simulation time. PM data is exported only at the end of a
simulation round. Based on the PM reports, SON algorithms can get active and change CM
parameters.

8.1.1.2 PM Data

The LTE network simulator exports the following set of cell KPIs:

• KPI_THR: Average cell throughput in bits per second.

• KPI_RLF: This KPI reports the number of radio link failures per serving cell.

• KPI_CQI: This KPI represents the Channel Quality Indicator (CQI). S3 computes
it as the weighted harmonic mean of the CQI channel efficiency. The efficiency
values are listed in [3GP14a].

• KPI_PRB_UTIL: This KPI gives a cumulative distribution function of the cell load.
It provides 10 bins that correspond to the 5, 15, 25, 35, 45, 55, 65, 75, 85, 95
percentiles of the Physical Resource Block (PRB) utilization of the given cell.

• KPI_RSRP_MIN/MAX/MEAN: This KPI gives the minimum, maximum and mean val-
ues of RSRP at handover time.

• KPI_HO_ATT: The number of handover attempts that have been made at the given
cell.

• KPI_HO_DROP: The number of handover drops that have occurred at the given cell.

• KPI_HO_EARLY: This KPI counts radio link failures followed by immediate recon-
nection to the originating cell.

• KPI_HO_LATE: This KPI counts radio link failures followed by an immediate recon-
nection to a different neighboring cell.

136 Chapter 8. Evaluation Environment

• KPI_HO_PINGPONG: This KPI counts ping-pong events that occur at the given cell.

• KPI_HO_WRONGCELL: This KPI counts the handover attempts made to wrong cells.

• KPI_HOSR: The hand over success rate. It is computed by dividing the number of
successful handovers by the total number of handovers.

8.1.1.3 CM Parameters

The CM parameters that can be changed during a simulation test run are the following:

• ANT_ELE_TILT: Electrical tilt value of each cell’s antenna beam in degrees. The
value is bounded by a minimum and a maximum electrical tilt threshold value.

• TX_POWER_CHANGE: Changes the transmission power in dBm of a cell. The value is
added to the current transmission power and bounded against the minimum and
maximum limits specified before starting the simulation test run.

• ANT_BEAM_STEER: Controls the beam steering angle in degrees.

• HO_OFFSET_BIAS: Gives an additional bias to the handover offset value of a pair of
cell neighbors. The minimum and maximum bias can be changed at run time.

8.1.1.4 UE Groups

During the simulation test runs, up to five UE groups are allowed to actively use the
network. Table 8.1 shows their size, speed, movement as well as their network resource
requirements. As it can be seen, there are two UE group types. On the one hand, we have
a regular user group which is active during all test runs. It consists of 1500 UEs that are
uniformly distributed over the whole coverage area and actively use the services of the
network. Note that the coverage map is presented in Section 8.1.1.5. On the other hand,
there are four hot spot user groups which are dynamically added to or removed from
network. Those groups are much smaller in size and are required for the evaluation of the
Steiner tree-based verification approach. The latter one has been introduced in Chapter 7.

Table 8.1: Properties of the UE groups

UE Group Size Speed Movement CBR

Regular user group 1500 UEs 6 km/h Random walk 175 kbps

Hot spot user group 1 150 UEs 6 km/h Random walk 175 kbps

Hot spot user group 2 75 UEs 6 km/h Random walk 175 kbps

Hot spot user group 3 85 UEs 6 km/h Random walk 175 kbps

Hot spot user group 4 120 UEs 6 km/h Random walk 175 kbps

8.1. Simulation Environment 137

Figure 8.3: Representation of the simulated LTE network. The ID of a cell begins with the
marker "L" whereas buildings are depicted by the gray shapes. The colors visualize the coverage
provided by a cell.

8.1.1.5 Network Topology

The network that is simulated covers northern parts of Helsinki, Finland. Figure 8.3
shows the coverage map, including the position of the eNBs as well as the direction of
each cell. The direction is visualized by differently colored arrows whereas a single
coverage area is identified by the corresponding cell color. In addition, buildings are
represented by gray shapes whereas UEs are depicted as colored dots within the given
coverage area.

Besides the LTE macro cell layer (cell ID 1-32), the simulation system provides access
to nine hot spot small cells (cell ID 33-41). As visualized in Figure 8.3, they are placed
within the coverage of the following LTE macro cells: 1-4, 6, 7, 9, 10, 12, 15, 16, 18,
22, 24, 25, 27, 28, 30, and 32. Table 8.2 lists all radio parameters of the simulated LTE
network.

Based on the given network setup, two neighbor relation setups are specified. On the
one hand, there is a setup that consists only of the LTE macro cell layer, in particular,
all 32 LTE cells. The resulting neighbor relation graph is presented in Figure 8.4. On
the other hand, there is a configuration that adds to the existing LTE macro layer a
second layer that consists of all available small cells. The resulting neighbor relations are
visualized in Figure 8.5.

138 Chapter 8. Evaluation Environment

1

2
3

2
5

1
4

1
5

2
0

2
6

6

2
7

2
8

4

1
1

1
8

1
3

1
6

1
7

5
1
2

2
9

1
9

9

2
3

2
2

2
4

2
1

1
0

3
0

8

3
2

7
3
1

Figure 8.4: Overview of the neighbor relations in the setup consisting only of LTE macro cells.
The cell IDs range between 1 and 32.

8.1. Simulation Environment 139

1

2
3

2
5

1
4

1
5

2
0

2
6

6

2
7

2
8

4

1
1

1
8

1
3

1
6

1
7

5
1
2

2
9

1
9

9

2
3

2
2

2
4

2
1

1
0

3
0

8

3
2

7
3
1

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

Figure 8.5: Overview of the neighbor relations in the setup consisting of LTE macro as well as
small cells. Macro cell ID range: [1; 32], small cell ID range: [33; 41].

140 Chapter 8. Evaluation Environment

Table 8.2: Simulation environment parameter selection

Parameter Value
LT

E
ra

di
o

si
m

ul
at

or

Network frequency 2000 MHz

Channel bandwidth 20 MHz

Number of PRBs 100

Shannon gap -1.0 dBm

Thermal noise -114.447 dBm

Pathloss coefficient La 128.1 dB

Pathloss coefficient Lb 37.6 dB

Path loss model UMTS 30.03 [3GP98]

Downlink scheduler mode CBR mode

Shadowing correlation distance 50.0 m

Shadowing standard deviation 8.0 dB

RLF model SINR [dB] < RLF Threshold [dB]

RLF threshold -6.0 dB

RLF disconnection timer 0.3 s

RLF reconnection timer 1.0 s

Handover hysteresis threshold 2.0 dB

Handover ping-pong detection duration 4.0 s

Handover states detection offset 1.0 s

Handover timeout period 3.0 s

Simulated time during a round 90 min

M
ac

ro
ce

lls

Antenna height of macro cells 17-20 m

Transmission power of macro cells 46 dBm

Antenna tilt of macro cells 0.0◦ - 3.5◦

Antenna gain 14 dB

Horizontal beam angle 65◦

Vertical beam angle 9◦

Sm
al

lc
el

ls Antenna height of small cells 10 m

Horizontal beam angle 360◦

Vertical beam angle 9◦

To
po

lo
gy

Simulated area 50 km2

Total macro cells 32 cells

Total small cells 9 cells

Neighborship degree (all cells) 5.805

Neighborship degree (macro cells only) 5.688

8.1. Simulation Environment 141

8.1.2 SON Functions

As mentioned in the very beginning of this chapter, there are three SON functions that can
be utilized for optimization purposes: MRO, RET, and the Transmission Power (TXP)
function. All three functions fall within the self-optimization class (cf. Section 2.3.1).
Note that in literature the latter two functions are also referred to as CCO-RET and
CCO-TXP, respectively. Furthermore, an instance of each of those functions may run on
every LTE macro cell. In the upcoming sections, the goals and the CM parameters they
change are described.

8.1.2.1 MRO Function

MRO has the goal to guarantee proper mobility, i.e., appropriate cell re-selection in idle
mode and proper handovers in connected mode (cf. Section 2.1.3.2). In particular, it has
the following objectives [HSS11]:

• Minimization of call drops.

• Minimization of radio link failures.

• Minimization of unnecessary handovers, also called handover ping-pongs.

• Minimization of idle mode problems.

Furthermore, it tries to minimize the number of too late, too early, and handovers to
wrong cells. The function that is used in this thesis achieves its tasks by altering the CIO
parameter.

Note that the utilized MRO function implementation is responsible for the mobility
optimization only within the same RAT, i.e., LTE, and the same frequency band, i.e.,
2000 MHz.

8.1.2.2 RET Function

The RET function is a special CCO type, as defined in [HSS11, 3GP14b]. The objective
of this function is to provide sufficient coverage and capacity in the network with minimal
radio resources. In particular, it has the following goals:

• Improved coverage.

• Improved cell-edge bit-rate.

• Improved cell throughput.

The function used in this thesis achieves its tasks by changing the antenna tilt degree.
Furthermore, it monitors KPIs that reflect the performance within the coverage area.

142 Chapter 8. Evaluation Environment

8.1.2.3 TXP Function

Similarly to the RET function, the TXP function is another CCO type, as described
in [HSS11], i.e., it has the same objectives as the RET function. However, it tries to reach
its goal by solely changing the transmission power of the antenna.

8.1.3 SON Function Coordinator

The SON coordinator performs pre-action coordination by using a batch coordination
concept with dynamic priorities, as described in [RSB13]. The used coordination mech-
anism is designed for batch processing of SON function requests. In particular, every
SON function instance has an assigned bucket and dynamic priority. The bucket initially
contains a number of tokens that are decreased every time a SON function action request
is accepted and increased otherwise. In case the bucket gets empty, the priority of the
SON function is set to minimum. The priority of a SON function is increased again if its
requests start being rejected.

In the terms of the simulation system, the coordinator collects all requests during a
simulation round, determines the conflicts and sends an ACK for the requests with the
highest priority and a NACK for the others.

8.2 Real Data Environment

The data set consists of PM and CM data dumps that have been exported by an LTE
network between the 25th of November 2013 and the 17th of December 2013 [TNSC14a].
The network itself consists of 1230 eNBs. In the upcoming sections, an overview of those
data sets is given. A description of the SON functions that were active during that time
frame is provided as well.

8.2.1 Data Sets

8.2.1.1 PM Data

The exported PM data consists of the following eight KPIs:

• RRC_CONN_SETUP_SR : success rate of the elementary procedure RRC connection
setup.

• EUTRAN_ERAB_SETUP_SR_nGBR: success rate of the elementary procedure EUTRAN
Radio Access Bearer (E-RAB) setup for non GBR services.

• ERAB_DR: E-RAB drop rate. The rate of abnormally dropped bearers.

• INTER_eNB_HO_SR: inter eNB handover success rate.

• EUTRAN_RLC_PDU_RETR_R_DL: retransmission rate for RLC Protocol Data Units
(PDUs) in downlink direction.

8.2. Real Data Environment 143

• EUTRAN_RLC_PDU_RETR_R_UL: retransmission rate for RLC PDUs in uplink direc-
tion.

• EUTRAN_CELL_AVA_excBLU: shows the cell availability, excluding Blocked by User
(BLU) state.

• EUTRAN_INTER_eNB_X2_HO_ATT: number of inter eNB (X2-based) handover at-
tempts.

Those KPIs were exported hourly, except on the 30th , 31st of November 2013 and the
6th , 7th of December 2013.

8.2.1.2 CM Parameters

As in every telecommunication management database, physical or logical elements of the
network are represented by management objects. During the time frame, 12 daily CM
snapshots were taken from the network for the following dates:

• 26th - 29th of November 2013: 4 snapshots

• 2nd - 5th of December 2013: 4 snapshots

• 9th - 11th of December 2013: 3 snapshots

• 13th of December 2013: 1 snapshot

Those snapshots contained 141 configuration parameters. They were grouped in 6
managed object classes, as follows:

• Multi-RAT managed object: 12 parameters

• eNB managed object: 26 parameters

• Cell managed object: 86 parameters

• eNB adjacency managed object: 5 parameters

• eNB - cell adjacency managed object: 10 parameters

• Cell adjacency managed object: 2 parameters

In addition, the following events were visible in the data set:

• Managed object creation: Occurs when a managed object appears for the first time.
The event also occurs when an object is recreated after a remove event.

• Managed object removal: Appears when a previously created object is missing
from the snapshot of the data set.

144 Chapter 8. Evaluation Environment

• Managed object modification: when there is a visible change of one or more
parameters.

• Unknown managed object modification: when there is no visible change in any of
the dumped parameters, however, the last modification time has changed.

8.2.2 SON Functions

It is known that for the given time frame, two SON functions were deployed and were
allowed to make changes: the PCI allocation and ANR function. Both functions are
representatives of the self-configuration class (cf. Section 2.3.1).

8.2.2.1 PCI Function

A crucial parameter in today’s LTE networks is the Physical Cell Identity (PCI). It is a
low level identifier broadcasted by a cell in the System Information Block (SIB) [SBS12,
3GP12]. The value of a PCI can range between 0 and 503, and is used as a cell identifier
for UE handover procedures. To have a successful handover, the PCI allocation procedure
has to make sure that the network is PCI collision and confusion free. The first property
guarantees that there is no cell in the network that has two or more neighbors with
identical PCIs, whereas the second one ensures that there are no two neighboring cells
receiving the same PCI. If those properties are not guaranteed, cells may not be able to
properly handover UEs and, as a result, the handover performance in the network may
decrease.

There are numerous reasons why an improper PCI allocation may occur. For instance,
in cell outage management a common approach to close a coverage hole is to extend
the coverage area of the surrounding cells. However, by doing so cells that were not
assigned to be neighbors may start sharing a common coverage area [BRS+10]. As a
result, PCI collision or confusion may occur. The same can happen when NEs are added
to the network. As stated in [AFG+08], cell planning tools are typically used to predict
the coverage of a new base station and generate the neighbor cell relation lists. Such
tools, though, typically suffer from prediction errors due to imperfections of the available
environment data, e.g., information about new buildings or streets. Consequently, wrong
assumptions about the required neighbor relations can be made.

A PCI function implementation has been introduced in [BRS+10]. The solution itself
makes use of minimum vertex coloring. The vertexes of the graph represent cells whereas
edges connect cells that must not receive the same PCI. That is, for any two neighboring
cells an edge is added to the graph which fulfills the collision free requirement. In
addition, to make the assignment process confusion free, an edge is added for every two
neighboring cells of second degree. The set of colors used by the algorithm represents
the number of available PCIs.

8.3. Summary 145

8.2.2.2 ANR Function

The problem of having prediction errors about the network when using planning tools may
not only affect the PCI assignment process. We may also have missing neighbor relations
because of which handover performance may drop. For this reason, the ANR function has
been developed [3GP16b, MBE11]. Its goal is to detect and establish neighbor relations
by using active mobile terminals. As stated in [DJG+11], the ANR function mainly deals
with the management of the Neighbor Relation Table (NRT), i.e., adding or removing
neighbor relations. The NRT contains all the information a base station needs to know
about its neighbors. Initially, the NRT can be configured by the operator, however, it may
also be empty. The decision itself whether to add or remove an entry depends on the
RRC signaling between a base station and the mobiles.

8.3 Summary

This chapter presented the simulation environment, also abbreviated as S3, that is used
for the evaluation of the SON verification concept. It consist of a radio network simulator,
a parser for the simulator, a set of self-optimization functions (MRO, TXP, and RET), a
SON coordinator, and the verification mechanism. The network topology, the cell types,
and all parameter settings have been introduced as well.

Furthermore, the used real data set has been described. It originates from an LTE
network and consist of PM and CM data sets that have been exported in November and
December 2013. The SON functions that were active during that time frame, ANR and
PCI, are introduced as well. Both fall within the self-configuration class.

146 Chapter 8. Evaluation Environment

Chapter 9

Concept Implementation

In this chapter, the main topic of discussion is the implementation of the verification
process which has been introduced and discussed in detail in Chapters 5, 6, and 7. In
particular, a description of the components is given that implement the algorithms used for
both CM and topology verification. Furthermore, an extensive overview of the libraries
required to run the verification process is provided. Those are accompanied also with a
description of the components that offer visualization and export capabilities which are
mostly needed for the evaluation of the concept.

The chapter itself is divided into four parts. Section 9.1 is devoted to the verification
process implementation. Section 9.2 describes the initialization procedure of the process.
Section 9.3 introduces the external libraries that are required for the development of the
introduced concept. Section 9.4 summarizes the chapter and lists the contributions to the
research objectives, as defined in the very beginning of this thesis.

9.1 Structure of the Verification Process

The verification process is comprised of two components: one realizing CM verification
and another covering verification of topology changes. Both components are very similar
in their implementation as well as share numerous interfaces and abstract classes between
each other. The verification process is implemented in the Java programming language,
version 8 [GJS+14]. Although the development process started back in 2013, the decision
was made to use Java 8 as soon as possible. The main reason was the introduction a new
set of features that were not previously available in version 7. The most important ones
are lambda expressions, Optional types, default and static methods in interfaces, the
integration of the stream Application Programming Interface (API) into the collections
API, and functional interfaces. Those changes simplified the development and improved
the code structure and readability. Nonetheless, additional packages were used as well,
which are discussed in detail in Section 9.3.

The implementation itself can be split into a set of main components (cf. Section 9.1.1),
recorders (cf. Section 9.1.2), and set of utilities (cf. Section 9.1.3). Furthermore, the

148 Chapter 9. Concept Implementation

Observation phase Correction phase

Verification area

 generation

Verification area

 assessment

Corrective action

generation

Direct
neighbors
function

Topology verification area
 module

Configuration

CM verification area
 module

Connected
small cells
function

Configuration

Z-score
based

detection
function Configuration

Anomaly detection
module

Profiling

Z-score
based

detection
function

Incomplete
profile handler

Anomaly detection
module

Profiling

Configuration

Corrective action
module

Undo action
buffer

Configuration

MST clustering
function

CSP solver
function

Undo action
filter function

Corrective action
module

Steiner edge
factor

function

Configuration

Steiner tree
function

Topology
graph cost

function

T
o

p
o

lo
g
y
 c

h
a
n
g

e

v
e

ri
fi
c
a
ti
o

n

C
M

 c
h
a
n

g
e

v
e

ri
fi
c
a
ti
o

n

Figure 9.1: Overview of the verification process components

implementation offers Graphical User Interface (GUI) components that provide visual-
ization capabilities during an experiment, as well as an API that allows the initialization
and usage of the verification process itself. Sections 9.1.4 and 9.2.1 describe those in
detail. Note that all components are depicted in Figure 9.1.

9.1.1 Main Components

In total, there are three main components that are implementing the core of the verification
process. First of all, we have functions which provide the implementation of the core
mechanisms, e.g., the MST-based clustering approach and the method that identifies soft
collisions. Second, there are modules which initialize the functions as well as handle
their initial setup. In most cases, they make use of conf files which are read during the
initialization phase. Third, there are type classes that define verification specific objects,
e.g., verification areas and cell clusters. In the upcoming paragraphs, those components
are going to be described in detail.

9.1.1.1 Functions

The implementation of the verification process defines function subcategories:

• Verification area functions

• Anomaly detection functions

• Corrective action functions

9.1. Structure of the Verification Process 149

Within the first class fall functions that handle the fragmentation of the verification
scope (cf. Definition 5.1) as well as the formation of verification areas (cf. Definition 5.3).
They follow the directive described in Section 5.2, i.e., there are functions that implement
the area selection when facing topology changes and such that from areas in the case of
CM changes.

The second class represents functions that implement the verification assessment
phase, i.e., methods that detect anomalies as well as handle the cell profiling, as given by
Definitions 3.10 and 3.11. The latter one includes two operations. On the one hand, it
is possible to export the currently recorded KPIs to a profile. On the other hand, already
recorded profiles can be read in before even starting a test run. The outcome of a such
function is a set of potentially anomalous verification areas.

Within the third category fall functions that process anomalous verification areas and
generate undo actions, as introduced in Section 5.4. Thereby, they identify verification
collisions, eliminate weak ones, find soft collisions, and assemble a corrective action plan
that has the properties of being collision-free and gain-aware. Note that an introduction to
those terms is given in Section 5.5, whereas the solution itself is presented in Sections 6.3
to 6.6.

In addition, for the purposes of topology verification there is a function that generates
corrective actions as presented in Section 7.4.

9.1.1.2 Modules

Modules initialize verification area, anomaly detection, and corrective action functions
as well as handle their initial configuration. Usually, there is a separate module for each
function subcategory. Listing 9.1 shows a simplified code fragment that originates from
the corrective action module. Here, the module’s implementation allows the usage of
several corrective action functions which are selected over a configuration parameter. The
latter one is defined by the s3.verificator.functionType string in the corresponding
conf file. The parameter itself is loaded by ConfigFactory, the configuration library for
Java Virtual Machine (JVM) languages. Note that Section 9.3.3.4 provides more infor-
mation about this package. Furthermore, it should be noted that the @Getter annotation
is offered by the lombok package, which is discussed in more detail in Section 9.3.4.1. It
provides a getter method with protected access level, i.e., only visible within the same
package.

Furthermore, in the case of CM verification there is an additional module that buffers
the corrective action plan. The module itself is referred to as an undo action buffer
which temporarily stores undo actions that are being suppressed because of verification
collisions.

Finally, the classes implementing the CM and the topology verification process initial-
ize the modules they require.

150 Chapter 9. Concept Implementation

Listing 9.1: Code fragments of the corrective action module

public class CorrectiveActionModuleImpl {

@Getter(AccessLevel.PROTECTED)

private final CorrectiveActionFunction correctiveActionFunction;

private final String functionType =

ConfigFactory.load().getString("s3.verificator.functionType");

public CorrectiveActionModuleImpl() {

switch (functionType) {

case "MstClusteringFunction":

correctiveActionFunction = new MstClusteringFunctionImpl();

break;

case "SoftCspFunction":

correctiveActionFunction = new SoftCspFunctionImpl();

break;

default:

throw new RuntimeException("Unknown function");

}

...

}

9.1.1.3 Types

The implementation of the verification process distinguishes between there three main
type classes. First of all, we have objects that are used by both the CM and the topology
verification implementation. Among those are the anomaly level vector and the cell area.
The latter one is the parent class of those implementing verification areas (cf. Section 5.2).

Second, there are objects that are specified only for the purpose of CM verification. In
particular, we have an object that represents a verification area that is formed around a
reconfigured cell, as well as objects that represent the CVSI (cf. Section 6.2), and a cell
cluster formed after applying the MST clustering approach (cf. Section 6.3). In addition,
the outcome of the CM verification process is summarized by an undo result object that
contains the set of cells whose configuration is marked for a rollback.

Third, type classes are defined that are considered only by the implementation of
topology verification process. Concretely, we have an object that defines the verification
area that is formed based on topology changes, as well as an object that recaps the
outcome of the Steiner tree algorithm (cf. Section 7.3). In addition, an object is specified
that handles the topology verification graph edge factor, i.e., a variable that is used when
computing the weights in the topology verification graph, as given by Definition 7.3.

9.1. Structure of the Verification Process 151

9.1.2 Recorders

As the name suggests, recorders handle the import of data exported by the network. In
general, there are three types of recorders: one accountable for storing the anomaly
vectors, one responsible for the cell profiles and another for the network data itself, i.e.,
PM and CM exports. The following three sections are devoted to those components.

9.1.2.1 Profile Recorder

The profile recorder is responsible for storing the cell profiles by considering the exported
cell KPIs. In particular, it allows the user to specify when exactly the network training
phase begins, when it ends, as well as where to save the cell profile data. The latter one
is represented in json format. The library that handles the import, parsing, and export
of json files is gson, also known as a Java serialization and deserialization library that
converts Java Objects into the json format and back. An overview of this library is given
in Section 9.3.3.1.

9.1.2.2 Anomaly Level Vector Recorder

The anomaly level recorder keeps track on the current CKPI / TKPI anomaly level vectors
that are computed by the anomaly detection function. Note that the latter one is discussed
in Section 9.1.1.1. It stores those vectors in a map as well as exports them in csv format
for evaluation purposes.

9.1.2.3 Network Data Recorder

The network data recorder is responsible for buffering PM and CM data that are exported
by the network. In the terms of the simulation environment, it gets triggered after
completion of a simulation round. It should be kept in mind that the term simulation
round is extensively discussed in Section 8.1.1.1. Furthermore, the recorder handles the
export of those items, i.e., for evaluation purposes it saves them as csv files.

9.1.3 Utilities

The implementation of the verification process defines two utility types. On the one hand,
there are such that provide extra mathematical functions and operations. On the other
hand, there are utilities that offer functionalities for interpreting the network topology.
Sections 9.1.3.1 and 9.1.3.2 are devoted to those topics.

9.1.3.1 Mathematical Utilities

Here, we can further distinguish between two utility types. The first one offers imple-
mentations of the core algorithms used by the verification process, that is:

• Minimum graph coloring by using backtracking [Wei15].

152 Chapter 9. Concept Implementation

• The Steiner tree algorithm by Kou, Markowsky and Berman [KMB81].

• Class that posts and solves a Constraint Satisfaction Problem (CSP).

• Policies and ratings that further specify a CSP.

• Class handling the exponential smoothing of input data.

The reason why the code is refactored like that is to improve both extensibility and
maintainability. Moreover, some of those classes are instantiated by multiple verification
components. The most obvious example is the class implementing exponential smoothing
capabilities which is required by both the CM and topology verification process.

The second type provides static methods that can be called by any class being part of
the verification process. In particular, we have:

• Static methods that perform mathematical operations on the input data.

• Static methods that transform and manipulate JGraphT objects.

The JGraphT library itself is explained in Section 9.3.1.1, however, it is worth mentioning
why there is a need to further define methods that manipulate graph objects. The library
offers various graph optimization algorithms as well as operations for accessing and
changing the properties of graphs. Nonetheless, there are use cases that are not covered
by the library, e.g., for the visualization of the Steiner tree-based verification approach
the export of dot files is required. Those files are fed into Graphviz [EGK+04] which is
a collection of utilities that renders graphs based on the DOT language syntax. Note that
the latter one is a plain text graph description language, as described in [GKN15].

Another use case is the need to transform one collection type into another. Let us give
an example by listing the following method:

Listing 9.2: Getting node cost table out of the topology verification graph

Table<T, T, Double> getSteinerCostTable(final WeightedGraph<T,

DefaultWeightedEdge> topVerifGraph){

...

}

The topology verification graph is used as input by the getSteinerCostTable() method.
It returns a guava table (cf. Section 9.3.2.1) that stores the costs between every pair of
<T> objects, based on which the Steiner tree alogirthm forms the MST. Note that the
algorithm itself is described in detail in Section 7.3 whereas the topology verification
graph is given by Definition 7.3. Furthermore, it should be noticed that <T> is a generic
type which in the terminology of the verification process corresponds to a cell.

9.1. Structure of the Verification Process 153

9.1.3.2 Network Utilities

The methods provided by Java classes implementing network utilities can be grouped in
the following way:

• Static methods that provide access to macro and small cells.

• Static methods that return neighbor relations between cells.

Both classes include constructs that simplify the access to network entities and resources.
For example, returning the set of all small cells out of all network cells, or to the test
whether a cell object is actually a small or a macro cell. Another example is the computa-
tion of neighbor relations only between macro cells. Such a method is particularly useful
for the scenarios that do not utilize the Steiner tree-based verification approach.

9.1.4 GUI

The GUI developed to visualize the test run results is implemented by using JavaFX
and FXML [Bie14]. JavaFX is a software platform that allows the creation of desktop
applications that run on various devices. According to [Ora16], it is expected to become
the standard GUI library for Java. FXML on the other side is an XML-based language
that allows the separation of content representation and the application logic itself. Hence,
there is a high flexibility degree when it comes to change the way of how the verification
outcome is visualized.

Nevertheless, JavaFX was not the initial choice for developing the GUI elements. The
very first choice was the Java Web Toolkit (JWt), which did not manage to provide the
set of features that were required over time. Moreover, it has proven to be unstable in
some cases as well as not well documented.

9.1.4.1 JavaFX and FXML Components

The implementation provides two pairs of JavaFX and FXML components, i.e., two
different views. On the one hand, there is a pair that represents the data exported by
the CM verification process. That is, the CKPIs as well as the CKPI anomaly levels, as
introduced in Section 6.1. On the other hand, there is a view that enables the visualization
of equivalent performance data generated by the topology verification process.

9.1.4.2 Plot Definitions

In order to visualize the performance of the network while an experiment is running, a
custom line chart class is provided. It specifies not only the chart type, but also the data
series type, the labeling, as well as how to handle nonexistent data points. The latter one
is needed in the case of cells that do not possess a valid or up-to-date profile, as given by
Definition 3.10.

154 Chapter 9. Concept Implementation

9.2 Verification Process Usage

9.2.1 API

The API of the verification process provides access to the main building blocks of the
implementation. In general, we can distinguish between three constructs that are offered
to the user of the system:

• Classes allowing the access to the CM and the topology verification process.

• Classes representing types that should be also visible to classes outside the verifi-
cation process implementation.

• Classes allowing the access to recorders.

The first category offers methods like the verification of a set of cells or reset all network
states kept by the verification process. Within the second category fall objects that
represent the performance state of the network, e.g., CKPI / TKPI anomaly level vectors.
The third category is comprised of recorders that allow the export of those objects. As
discussed in Section 9.1.2, they are required for evaluation and visualization purposes.

9.2.2 Package Structure

The package structure of the verification process implementation can represented as
shown below. The are three main folders, namely api, gui, and internal. As a com-
monly used package structure, api and gui collect classes that offer the functionalities
introduced in Sections 9.1.4 and 9.2.1. External components wishing to use the verifica-
tion process should call the classes located in those two packages.

|-- api

|-- gui

| |-- cm_verification

| ‘-- topology_verification

‘-- internal

|-- functions

|-- impl_cm_verification

| |-- functions

| |-- modules

| |-- types

| ‘-- CmVerificationImpl.java

|-- impl_topology_verification

| |-- functions

| |-- modules

| |-- types

| ‘-- TopologyVerificationImpl.java

9.2. Verification Process Usage 155

|-- modules

|-- recorders

|-- types

‘-- util

The internal package contains the implementation of both the CM and the topology
verification process. As the listing shows, each implementation has its own functions,
modules, and types (cf. Section 9.1.1). Furthermore, there are such being generic which
are located one directory level up. Typically, they are either abstract classes that act as
parent classes of verification process components, or interfaces that define a common
function, module, or type structure.

It should be noted, though, that this does not apply for the util package. As stated in
Section 9.1.3, utilities are accessible by every verification process class which is also the
reason why they have been put into this directory.

9.2.3 Initialization and Usage

Listing 9.3 shows a simplified initialization process of the simulation environment S3, as
described in Section 8.1. At first, the initialization of the connector to the LTE network
simulator is triggered. Then, in the run() method the CM verification function, the SON
functions (cf. Section 8.1.2) as well as the GUI elements are initialized. Note that the
simulation system sees the verification process as a SON function that performs changes
to CM parameters.

Listing 9.3: Simplified initialization of the CM verification process

public class S3 {

private final SimConnector simConn = new SimConnector();

...

public void run(){

final CmVerificationFunction verifFunction = new

CmVerificationFunction();

initDesiredFunctions();

initGui();

while (true) {

simConn.readDataFromSim(); //blocks until PM data is exported

final Set<Cell> degrCells = verifFunction.trigger();

simConn.undoCells(degrCells); //rollback degraded cells

triggerSonFunctions(Sets.difference(simmCon.getCells(),

degrCells)); //run MRO, RET, and TXP for remaining cells

}

}

}

156 Chapter 9. Concept Implementation

Afterwards, a while loop is called in which changes are verified that have been made
during the previous simulation round. Those causing a degradation in performance are
rolled back. Finally, the cells not being affected by an anomaly are passed to the method
that triggers the MRO, RET, and TXP function.

9.3 Libraries and Packages

The implementation of the verification process requires a set of packages and libraries
which provide additional functionalities and, in most cases, simplify the development of
the components. In this section, those packages will be the major topic of discussion.
First, the mathematical libraries are discussed in Section 9.3.1. Then, in Section 9.3.2, an
overview to the additionally used collection types and methods is given. It is followed by
Section 9.3.3 which is devoted to the tools used to provide logging capabilities. Finally,
Section 9.3.4 presents the packages that extend the current set of Java annotations.

9.3.1 Mathematical Libraries

9.3.1.1 JGraphT

Both the CM and the topology verification process are heavily based on graph theory
approaches. The Java language, however, does not provide mathematical graph theory
objects and algorithms which is the main reason why an external library is considered.
The library itself is called JGraphT [NC16] and is known to be focusing on data structures
and algorithms. It should not be confused with JGraph [JGr16] which is a library that is
devoted to GUI-based editing and rendering.

Concretely, all graphs mentioned in Chapters 5, 6, and 7 are implemented by using
the objects provided by the JGraphT library. For example, the Euclidean graph formed
during the MST clustering procedure (cf. Section 6.3) is a weighted graph whose nodes
are cells, as indicated in Listing 9.4.

Listing 9.4: Code snippet that demonstrates the usage of JGraphT while performing cell clustering

...

final WeightedGraph<Cell, DefaultWeightedEdge> euclideanGraph =

getEuclideanGraph(recorder,

allCells, pmReader.getMostRecentGranPeriod());

final MinimumSpanningTree<Cell, DefaultWeightedEdge>

euclideanMinSpanningTree = new KruskalMinimumSpanningTree<Cell,

DefaultWeightedEdge>(

euclideanGraph);

final Set<Cluster> clustersOfTree = getClusters(euclideanGraph,

euclideanMinSpanningTree);

...

9.3. Libraries and Packages 157

As the listing shows, the JGraphT library implements Kurskal’s MST algorithm [Kru56,
CLRS09] which is called numerous times by the verification process implementation.
In particular, it is needed by the clustering procedure as mentioned above, as well as by
the Steiner tree algorithm (cf. Section 7.3). The latter one also makes use of Dijkstra’s
algorithm [Dij59,CLRS09] which is provided by the very same library. It should be noted,
though, that JGraphT does not provide an implementation of the Steiner tree algorithm by
Kou, Markowsky and Berman [KMB81]. The algorithm itself is required when verifying
topology changes.

9.3.1.2 Choco Solver

Choco is a free and open source Java library that is dedicated to constraint program-
ming [PFL15]. It is required by the CM verification process when generating a corrective
action plan which has to be collision-free and gain-aware as given by Definitions 3.5
and 3.6. In particular, the approaches described in Section 6.5 and 6.6 make use of the
Choco solver. Listing 9.5 shows the code snippet that implements the posting of the
verification collision constraint.

Listing 9.5: Code snippet that shows the posting of hard constraints while generating the corrective
action plan

private final Map<IntVar, Set<IntVar>> hardVarMap = new HashMap<>();

private final Solver solver = new Solver();

...

private void postHardConstraints() {

for (final IntVar var1 : hardVarMap.keySet()) {

final Set<IntVar> variables = hardVarMap.get(var1);

verify(!variables.isEmpty());

for (final IntVar var2 : variables) {

final Constraint verifCollision =

IntConstraintFactory.arithm(var1, "!=", var2);

solver.post(verifCollision);

}

}

}

First of all, the solver and the hardVarMap map are initialized. The purpose of the latter
one is to buffer the verification collisions, i.e., a mapping of a cell to all cells that are in
collision with it. Note that the cells are of IntVar type which may accept integer values
between 1 and the maximum number of correction window slots, as presented in detail
in Section 6.5.

The postHardConstraints() method shows the actual implementation of defining a
collision and passing it to the solver. It goes between every pair of variables and requires

158 Chapter 9. Concept Implementation

them to be unequal, i.e., the undo actions for cells associated with those variables must
not be allocated to the same correction window time slot.

9.3.1.3 Apache Commons Math

The Apache commons mathematics library offers self-contained and lightweight mathe-
matics and statistics components for addressing problems that cannot be solved by solely
using the Java language [Fou16]. During the development process, the library has proven
itself in being stable and well documented.

The most common methods that are used by the verification process implementation
are those that normalize an array of values, as well as methods provided by the FastMath

class. According to its developers, FastMath is a faster and more accurate alternative
to the methods offered by well-known classes like Math and SctrictMath. This applies
especially for large scale computations.

9.3.2 Extra Collection Types, Methods, and Conditions

9.3.2.1 Google Guava

Guava is an open-source collection of common libraries that have been developed by
Google [Goo15]. It provides a variety of new collection types, caching capabilities, new
string processing mechanisms, as well as utilities that, for example, add preconditions to
methods or verify their outcome. Of course, the implementation of the verification process
does not require all of them, but only a portion. Hence, in the upcoming paragraphs an
overview to this subset of Guava features will be given.

First and foremost, the verification code extensively uses Tables, as previously shown
in Listing 9.2. They are defined as Table<R, C, V>, where R specifies the row type,
C the column type, and V the value type. There are several table implementations that
are provided by Guava, however, the hash-based table is the one that is used in the
verification process code. A Guava hash-based table can be seen as a nested hash map,
i.e., HashMap<R, HashMap<C, V>>, that provides several useful methods like getting the
set of all table cells or the entries associated with a given row.

Second, the verification code makes quite often use of immutable collections. Let us
consider the following constructor (cf. Listing 9.6) which highlights the necessity of such
collections. As stated in Section 5.2, a verification area consist of the reconfigured cell,
also known as the target cell, and a set of cells surrounding that cell, which is commonly
referred to as the target extension set. When initializing verification areas, the advantage
of immutable collections becomes obvious. Similarly to targetCell, the elements of
extensionSet must be unchangeable, i.e., even if we have a reference to the object we
must not be able to remove or add any set items. Otherwise, undesired modifications may
occur which may alter the outcome of the verification process.

9.3. Libraries and Packages 159

Listing 9.6: Code snippet that demonstrates the usage of immutable collections

...

private final Cell targetCell;

private final Set<Cell> extensionSet;

public VerificationArea(final Cell targetCell, final Set<Cell>

extensionSet) {

this.targetCell = targetCell;

this.extensionSet = ImmutableSet.copyOf(extensionSet);

}

...

Theoretically, unmodifiable methods provided Java Collections can be used here. How-
ever, according to the Guava developers those methods are unwieldy and inefficient. In
addition, they are not really unchangeable since collections are immutable only if no one
is holding a reference to the object.

Third, Guava’s conditional failures are used in various places in the verification process
code. Let us recall the example shown in Listing 9.5, which demonstrates how verification
collisions are defined as constraints and how they are passed to the Choco solver. In
particular, let us put the focus on the verify() method. In general, it accepts a boolean

expression and throws a VerifyException if the expression is false. In addition, custom
messages can be defined.

In a similar manner, Guava’s preconditions are called at several places in the verifica-
tion code. Concretely, it is quite often the case that checkArgument() is called at the very
beginning of methods, e.g., such performing mathematical computations. The method it-
self takes the same arguments as verify() does, but throws a IllegalArgumentException
if the passed expression is not true.

As it can be seen, those two methods are very much alike and even resemble assert

methods in Java. However, there are differences between asserts and Guava’s conditional
failures. First of all, asserts are not turned on by default. In order to enable them, the
user has to add the -ea argument when starting the JVM. Second, asserts have been
developed to support the development process by providing sanity checks until the code
gets finished. They are not supposed to consistently check, for example, if a KPI is
currently zero. In addition, enabling assertions means that such checks are activated for
all classes, i.e., also those provided by extra libraries. As a result, if we get an assertion
error it may be a time consuming task until we finally identify the source of the exception.

9.3.2.2 Apache Commons Lang

The implementation of the verification process depends on Apache commons lang [Fou16].
The library itself is most notably known for its String manipulation methods, several
helper utilities, as well as numerical methods. The verification process makes use of the

160 Chapter 9. Concept Implementation

ArrayUtils class which provides convenient methods for manipulating arrays. It should
be noted, though, that arrays are used in the verification code only for mathematical
computations. For example, methods provided by StatUtils often require primitive data
types as arguments. As a result, the verification code frequently uses the toPrimitive()

method offered by the array utilities.

9.3.3 Logging and Configuration

9.3.3.1 Google Gson

Gson is an open-source Java library that converts Java objects into their json format. It is
currently being developed by Google [Goo16]. The goals of the library is to provide con-
venient and simple toJson() and fromJson() methods, to allow custom representations
for objects as well as offer support for arbitrarily complex objects.

The implementation of the verification process requires a parser for json files while
updating or storing cell profiles (cf. Definition 3.10). Such files are imported at the
beginning of a test run.

9.3.3.2 Apache Commons IO/CSV

The Apache commons IO library provides a set of utilities that extend the IO function-
alities provided by the Java language [Fou16]. The verification process implementation
makes extensive use of file manipulation utilities, e.g., when initializing a test run scenario.
Furthermore, it uses the Apache commons CSV library which implements useful methods
for handling csv files. Such files usually contain statistics that have been collected during
a test run and are used later for evaluation purposes.

9.3.3.3 Apache Log4j

Apache Log4j is a logging and tracing library for the Java language [Fou15]. The
implementation of the verification process makes use of this library at several places.
Furthermore, it defines different logging levels, e.g., such listing only error logs and
traces. The logs are exported to files or in the terminal.

9.3.3.4 Configuration Library

As mentioned in Section 9.1.1.2, the configuration of the verification process is handled by
the configuration library for JVM languages [Lig16], developed by Lightbend (formerly
Typesafe). The library itself stores the configuration parameters in the following files:

• application.conf

• application.json

• application.properties

9.3. Libraries and Packages 161

• reference.conf

The order of the listing also defines the priority when reading in a configuration. Hence,
default configurations are specified in the application.conf whereas custom changes
can be defined in the remaining configuration files. Specifying a custom parameter
overwrites the default one. If we recall the example from Listing 9.1, we would get the
following conf file:

Listing 9.7: Overview of the default verification process configuration file

s3.verificator{

...

Corrective action configuration

functionType="MstClusteringFunction"

MST clustering configuration

factorEdgeRemoval=1.5

...

}

9.3.4 Annotations

9.3.4.1 Lombok

Over the last years, the Java programming language has been criticized for the volume of
repeated code that gets generated in most development projects [Kim16]. In most cases
such code originates from getter and setter methods, that provide access to class variables,
constructors, toString(), equals(), as well as hashCode() methods. Especially the
latter two increase the chances of bugs in the code. For example, every time we add
new class variables we would need to update the equals() and hashCode() methods
appropriately.

The Lombok library is designed to overcome such issues by providing a set of annota-
tions that ease the generation and update of such methods [vdHEZ+16]. Hence, Lombok
simplifies the development process and improves code readability. Let us give an example
that demonstrates that ability. Listing 9.8 shows parts of the VerificationArea class
that makes use of Lombok annotations. At the very beginning, we can see the @Getter

annotation which generates a getter method for every class variable. It is followed by
@EqualsAndHashCode which, as the name suggests, automatically provides an equals()

and hashCode() method. Note that in this particular example the variables, based on
which those methods are generated, are explicitly defined by the (of = {...}) statement.
Of course, it is also possible to omit this specification which will result in the inclusion
of all listed class variables.

162 Chapter 9. Concept Implementation

Finally, we have the @ToString annotation that provides a toString() method. Now,
if we update the VerificationArea class we are not obligated to update those methods
since they are automatically regenerated by Lombok.

Listing 9.8: Code snippet that shows the usage of lombok annotations in the verification area class

@Getter

@EqualsAndHashCode(of = { "baseCell", "extensionSet" })

@ToString

public class VerificationArea {

private final Cell baseCell;

private final Set<Cell> extensionSet;

...

}

9.4 Summary

This chapter is devoted to the implementation of the concept of SON verification and
the challenges that emerged during the development process. It discusses the structure
of the verification code, including the main components, the different recorders, and the
provided utilities. An overview of the GUI, and the offered API is presented as well. A
major topic of discussion are the used external libraries and packages without which the
implementation of the verification concept would not have been possible. The following
contributions highlight their importance:

O1.2: Model and design a verification process that assesses CM changes as well
as changes made in the network topology.
Q: How is the implementation of the verification process being structured?
A: The implementation of the verification process, i.e., CM and topology verification,
is split into four parts: a set of main components, a set of recorders, a set of utilities,
and elements that implement the GUI.
The main components provide the core features of the verification process and are
further divided into functions, modules, and type classes. Functions implement the
verification area selection, the anomaly detection, and the corrective action procedure.
Modules initialize those functions as well as handle their configuration. Type classes
define the objects that are used by both the CM and the topology verification process.
Recorders handle the import of CM and PM data, as well as the storage of profiles and
all anomaly level vectors.
Utilities implement the mathematical functions and operations, as well as offer func-
tionalities for interpreting the network topology, e.g., providing access to neighbor
relations.
The GUI elements are responsible for the visualization of the results of a test run.

9.4. Summary 163

Q: Which is the program language of choice?
A: The programming language of choice is Java, version 8. Although the development
started back in 2013, the decision was made to use version 8 as soon as possible.
The reason is the introduction of new features like lambda expressions, optional data
types, default and static methods in interfaces, integration of the stream API into the
collections API, and functional interfaces. Those features simplified the development
process.

Q: Which libraries are used for mathematical computations?
A: In total, three additional open source libraries are required by the verification
process implementation: JGraphT, Choco, and Apache Commons Math.
JGraphT provides graph data structures and algorithms, e.g., Kruskal’s algorithm.
Due to the fact that the verification concept is heavily based on graph theory, most
verification components require this library.
Choco is a Java library that is dedicated to constraint programming. It is required
to implement the verification collision solver as well the corrective plan generation
phase.
Apache Commons Math provides self-contained and lightweight mathematics and
statistics components that are not offered by the Java language. The library is called
numerous times within the verification code.

Q: Were all necessary algorithms provided by those libraries?
A: No. Although those libraries are powerful in providing access to numerous al-
gorithms and features, the implementation of additional algorithms is required. For
instance, they do not provide an algorithm that solves the Steiner tree problem. Another
example is the MST clustering approach. Algorithms implementing the formation of
an MST are offered, however, the clustering feature is not.

Q: Which additional packages / libraries are used besides the afore-mentioned ones
and why are they required?
A: The reason why additional packages are used is twofold: simplification of the
development process and usage of features not available in Java 8. The list begins with
Google Guava which provides a variety of new collection types, new string processing
mechanisms, as well as mechanisms that allow the usage of code preconditions and
verification (cf. Section 9.3.2.1). Furthermore, Google’s Gson library is used to
manipulate json files, mainly for cell profiling purposes (cf. Section 9.3.3.1).
The list also includes the other Apache Commons packages. In particular, IO/CSV
(cf. Section 9.3.3.2), lang (cf. Section 9.3.2.2), as well as Apache log4j (cf. Sec-
tion 9.3.3.3). They are used for file manipulation, array object manipulation, and
logging purposes, respectively.

164 Chapter 9. Concept Implementation

In addition, the configuration library for JVM languages is utilized (cf. Section 9.3.3.4)
as well as the lombok package is used (cf. Section 9.3.4.1). The first one handles
the configuration of the verification process whereas the second one simplifies the
development process by providing additional Java annotations.

Chapter 10

Evaluation Methodology and Results

The evaluation presented in this chapter is split into two parts. On the one hand, the
process of CM verification, as described in Chapter 6, is evaluated. It starts by estimating
the verification limits of SON functions and showing the need for an external verification
process (cf. Section 10.1). Then, the verification collision problem is studied, in particular,
the consequences of neglecting collisions are observed (cf. Section 10.2). It is followed
by an evaluation of the collision resolving strategy (cf. Section 10.3) as well as the
ability to eliminate weak collisions (cf. Section 10.4). It should be noted that those two
evaluations are based on both the real data and the simulation environment. The CM
verification study concludes with the evaluation of the ability to handle fluctuating PM
data (cf. Section 10.5).

On the other hand, the capabilities of the topology verification process, as introduced
in Chapter 7, are evaluated. It studies the impact of topology changes on the verification
process as well as the ability to provide an accurate corrective action. Section 10.6 is
devoted to this topic.

Finally, the chapter concludes with a summary and an overview of the contributions to
the research objectives, as introduced in Section 1.3.

Published work This chapter is based on already published papers. The complete
list includes the following conference and journal papers: [TNSC14b], [TSC15],
[TFSC15], [TATSC16a], [TAT16], [TATSC16b], as well as [TATSC16c]. Note that
the figures have been reformatted in order to present the results in a uniform way. In
contrast to the papers, the case studies in this chapter are explained in more detail.

10.1 Studying the Verification Limits of SON Functions

The very first topic that is discussed in the evaluation section is the estimation of the SON
functions’ limits to verify their own CM changes. As stated in Section 3.2.1, a function
may require several steps until it finally manages to reach its optimization goal. In
particular, an example with the CCO function was given. The function tries to determine

166 Chapter 10. Evaluation Methodology and Results

whether in the previous step it has optimally changed the antenna tilt or the transmission
power. Should this be not the case, it may correct its decision by deploying a new CM
change or rolling back the previous one. However, in the very same section it is also
mentioned that a function is only able to partially perform verification on its own. It is
mainly caused by the fact that functions have a limited view on the network, i.e., they
are usually not interested in the changes made by other functions. Furthermore, SON
functions monitor only the KPIs they are interested in, e.g., the CCO function observes
only PM indicators that reflect the coverage and capacity of a cell.

Hence, several questions arise regarding the verification capabilities of SON functions.
For instance, a function may wrongly assume that its change has caused a degradation in
the network. Instead, the anomaly could have been induced by another function that has
been recently active within the same area. Furthermore, those capabilities are becoming
even more questionable in the case of SON functions that monitor a shared set of KPIs
but change different CM parameters. In such a case, adjustments made by one of the
functions may result in wrong statements about changes made by the others.

In this section, those issues will be the major topic of discussion, which are split into
the following subtopics:

X Study the ability of SON functions to handle degradations in performance.

X Observe the capability of SON functions to verify their CM changes in a coordi-
nated SON.

X Monitor the network behavior when a SON verification logic, that has a wider view
on the network, is allowed to asses the functions’ changes.

X Compare the setup that uses a verification logic with a setup that relies only on the
verification capabilities of the deployed SON functions.

The study itself is carried out by using the simulation environment, as described in
Section 8.1. In addition, it is split into two parts: Section 10.1.1 is devoted to the
parameter choices whereas Section 10.1.2 describes the scenario and results.

10.1.1 Simulation Study Setup

10.1.1.1 Active SON Functions

The functions that are active during the test runs are MRO, RET, and TXP, as described
in Section 8.1.2. The latter two are fitting perfectly well for performing the evaluation
since they monitor the same set of KPIs, have the same objective, but modify different
CM parameters. Hence, if TXP changes the transmission power in such a way that it
negatively impacts the KPIs monitored by the RET function, the latter one may try to
correct its past actions although it was not supposed to do so.

10.1. Studying the Verification Limits of SON Functions 167

10.1.1.2 Verification Area Selection

The verification area that is formed around the reconfigured cell is identical to the impact
area of the CM change, as defined by the SON coordination logic (cf. Section 8.1.3). The
impact area itself is described in Section 2.3.2.3 and is discussed in [BRS11, Ban13].

10.1.1.3 CKPIs and Profiling

The CKPI vector k⊥ = (k⊥1 , . . . ,k
⊥
n) consist of the following two performance indicators:

• Handover Success Rate (HOSR)

• Channel Quality Indicator (CQI)

It should be noted that the CQI is computed as the weighted harmonic mean of the CQI
channel efficiency (cf. Section 8.1.1.2).

An element p⊥i of a CKPI profile vector p⊥ = (p⊥1 , . . . ,p
⊥
n) (cf. Section 5.3.2) is

a sequence of t CKPI samples. They are recorded while the network is operating as
expected. Let us denote those samples as k⊥i,1,k

⊥
i,2, · · · ,k

⊥
i,t , where i ∈ [1;n]. Those

samples are collected during a so-called training phase, lasting 70 simulation rounds, i.e.,
t = 70. Note that the term simulation round is introduced in Section 8.1.1.1.

However, to determine the behavior of a cell we need the current CKPIs (cf. Sec-
tion 6.1). Let us denote the current sample of the ith CKPI as k⊥i,c . All collected samples,
i.e., k⊥i,1,k

⊥
i,2, · · · ,k

⊥
i,t ,k

⊥
i,c , are standardized by computing the z-score [FPP07] of each

data point. The z-score of k⊥i,c is the anomaly level of the ith CKPI, also denoted as a⊥i .
Each CKPI anomaly level is element of a CKPI anomaly vector a⊥ = (a⊥1 , . . . ,a

⊥
n) which

gives us the cell state (cf. Definition 6.1).
Furthermore, the current observation (cf. Equation 6.5) is computed as the arithmetic

average of the CKPI anomaly levels. The state update factor α is set to 1 (cf. Equation 6.4),
i.e., past values are not taken into account when updating the cell anomaly level.

10.1.1.4 Compared Strategies

In total, two configurations are compared with each other during this study. The first one
makes use of a pre-action SON coordinator (cf. Section 8.1.3) that manages CM change
requests. The initial coordination priority is set as follows:

• PriorityRET > PriorityTXP > PriorityMRO

In addition, stateful SON functions verify their changes on their own, i.e., the verification
process is disabled for this setup.

The second configuration involves the CM verification process which monitors the
activity of the functions and generates undo actions if they cause an undesired network
behavior. In order to make a fair comparison, the verification process has to request
permission from the SON coordinator before deploying an undo action, i.e., from the
coordinator’s perspective it is seen as a SON function.

168 Chapter 10. Evaluation Methodology and Results

10.1.2 Scenario and Results

The experiment consist of 5 test runs, each lasting 18 simulation rounds. Each test run
starts with the initial network setup. In addition, in simulation round 5 of every test run,
the TXP function makes a decision to decrease the transmission power of two neighboring
cells accompanied by a change of the step size (the transmission power delta).

Figure 10.1 visualizes the average cell anomaly level of the two cells and their direct
neighbors. Note that the results include the 95% confidence intervals that are computed
around the sample mean of 5 test runs. As shown, up to simulation round 5 the average
cell anomaly level is almost at zero, i.e., the cells perform as expected. Figures 10.2(a)
and 10.2(b), which represent the raw CQI and HOSR used to form the CKPI anomaly
vector, evidence this observation. However, this immediately changes as soon as TXP
makes the decision to change the transmission power. As the figures emphasize, the z-
score-based cell anomaly level no longer takes values near zero. Thereby, the performance
of all neighboring cells degrades which can be seen in the figures depicting the CQI and
HOSR.

The question that arises here is how do the two configurations manage to compensate
the TXP decision and optimize the network. On the one hand, the configuration that
utilizes the CM verification process manages to immediately put the cells’ performance
within the expected range, i.e., anomaly level of zero (cf. Figure 10.1). On the other
hand, the configuration that relies only on the functions’ verification capabilities partially
compensates the event. As presented, the average anomaly level slowly returns to the
expected range, however, never reaches zero. The reason for that is the dynamic coordina-
tion mechanism which starts to reject a function’s requests if has been frequently allowed
to run, while another, higher prioritized function tries to make a change at the same time
and within the same area. As a result, TXP is providing appropriate corrective actions,

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A
v
e
ra

g
e
 c

e
ll

a
n
o
m

a
ly

 l
e
v
e
l

Simulation round

CM verification process
Self-employed verification of SON functions

Figure 10.1: Studying the verification limits of SON functions: average cell anomaly level. The
higher, the better. A value near zero indicates that the cells are performing as expected.

10.2. Neglecting Verification Collisions 169

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

V
a

lu
e

Simulation round

CM verification process
Self-employed verification of SON functions

(a) The CQI KPI

 95.5

 96

 96.5

 97

 97.5

 98

 98.5

 99

 99.5

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

P
e

rc
e

n
ta

g
e

Simulation round

CM verification process
Self-employed verification of SON functions

(b) The HOSR KPI

Figure 10.2: Studying the verification limits of SON functions: raw KPI values

but is blocked by the coordinator. Moreover, the RET function is allowed to optimize the
network, but its actions are not able to compensate the event. Those observations can be
also seen in Figures 10.2(a) and 10.2(b).

10.2 Neglecting Verification Collisions

In this thesis, a lot of focus is put on the verification collision problem, as given by
Definition 3.3. Basically, it is an uncertainty which prevents two undo actions from
being simultaneously executed. The problem itself originates from the process of rolling
back changes and the uncertainties that emerge when restoring older configurations.
Section 3.2.2 is devoted to those particular issues.

The concept of SON verification addresses the verification collision problem. In
particular, it provides solutions that eliminate weak collisions, resolve valid ones, as

170 Chapter 10. Evaluation Methodology and Results

well as find those that can be potentially violated. Sections 6.3 to 6.6 are devoted to
those particular topics. However, before evaluating those methods, we first have to
observe the consequences of neglecting verification collisions or, in general, uncertainties
when rolling back configuration changes. Therefore, this section will be devoted to the
following topics:

X The study of the verification collision problem in a coordinated SON.

X The comparison of the verification process with an approach that neglects the
verification collision problem.

X Estimating the impact of neglecting verification collisions on the network perfor-
mance.

X Estimating the limits of the compared approaches.

The study itself is simulation-based. The environment itself is described in Section 8.1.
In the upcoming sections, the setup of the scenario is described (cf. Section 10.2.1), and
the results of the study are outlined (cf. Section 10.2.2). Table 10.1 summarizes the
selection of all relevant parameters.

10.2.1 Simulation Study Setup

10.2.1.1 Active SON Functions

In order to increase the likelihood of getting simultaneous CM change requests, the
decision is made to use all available SON functions, i.e., MRO, RET, and TXP. An
overview of those functions is given in Section 8.1.2.

10.2.1.2 Verification Area Selection

The verification area is formed by taking the reconfigured cell and its first degree neigh-
bors. The impact area of the SON functions is set to be identical to the verification
area.

10.2.1.3 CKPIs and Profiling

The CKPI vector k⊥ = (k⊥1 , . . . ,k
⊥
n) consists of two elements:

• Handover Success Rate (HOSR)

• Channel Quality Indicator (CQI)

The profiling procedure is identical to the one described in Section 10.1.1.3. The current
observation and the cell anomaly level are computed as explained in the very same section.
The cell anomaly level is considered as degraded in case it falls in the range (∞;−2.0].

10.2. Neglecting Verification Collisions 171

Table 10.1: Study of neglecting verification collisions: parameter selection
Component Parameter Value

SON function collection Set of SON functions MRO, TXP, RET

SON coordinator

Initial priority setup CM verification > RET > TXP > MRO

Tokens 10 for each bucket

Token change for Acks -2 tokens

Token change for Nacks +1 token

Verification process

Training rounds 70

Cell level degradation range (∞;−2.0]
Cell level weights 0.5 for CQI and HOSR

10.2.1.4 Compared Strategies

In this study, two configurations are compared against each other. Both configurations
utilize a SON coordinator and the CM verification process, i.e., the SON functions request
permission from the coordinator before they change CM parameters. Deployed changes
are later verified. Those configurations, however, differ in the way they handle undo
action requests being in a verification conflict. The first one solely relies on the SON
coordinator to resolve the conflicts. In particular, it makes use of the batch coordination
concept with dynamic priorities, as defined in [RSB13]. Each SON function has an
assigned bucket and dynamic priority. The bucket itself contains a number of tokens that
are reduced every time a request is accepted and increased if it is rejected. In case of an
empty bucket, the priority is set to the minimum value.

The second configuration makes use of the collision resolving approach as provided
by the CM verification process. In addition, the coordinator considers the outcome of
the collision resolving, i.e., it may deploy undo actions although their impact areas are
overlapping.

10.2.2 Scenario and Results

10.2.2.1 Verifying a SON Optimization Process

The coverage of the system can be reduced and the its performance may degrade if
the environment changes from the assumptions that were made when the network was
planned and set up [HSS11]. Usually, such significant differences occur when buildings
get demolished, base stations get inserted or removed, or when seasons change. As a
result, inappropriate configuration decisions can get deployed which need to be assessed
and eventually corrected by the verification process. To recreate such a scenario, the
following 12 cells are selected: 1-3, 4-6, 16-18, and 22-24. The network coverage map
and topology are depicted in Figure 8.3 and 8.4, respectively. Four of those cells, namely
cells 2, 6, 16, and 24, are set up by using obsolete information about the environment.

172 Chapter 10. Evaluation Methodology and Results

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A
v
e
ra

g
e
 c

e
ll

a
n
o
m

a
ly

 l
e
v
e
l

Simulation round

Collisions handled by verification process
Collisions handled by the SON coordinator

Figure 10.3: Study of neglecting verification collisions: average cell anomaly level. The higher,
the better. A value near zero indicates that the cells are performing as expected.

The experiment itself consist of 5 consecutive test runs, each lasting 18 rounds which
gives us a simulated time of 27 hours. In simulation round 2 of every test run, obsolete
transmission power and antenna tilt settings are applied. Then, the cell anomaly level is
measured. Finally, the 95 % confidence interval is computed around the sample mean
measured during those 5 test runs.

The results of this experiment are outlined in Figure 10.3. It shows the average cell
anomaly level of all 12 cells. As the results outline, the configuration that makes use
of the collision resolving approach (provided by the verification process) requires two
simulation rounds to return the cell anomaly level to the expected range, i.e., near zero.
The other configuration, that is, the one that is relying only on the SON coordinator to
resolve the collisions, is not able to achieve such a result. Figures 10.4(a) and 10.4(b),
which represent the HOSR and CQI, further evidence this observation.

The cause of having such a difference in the cell anomaly level comes from how the
two configurations handle verification collisions. The one that solely relies on the SON
coordinator suppresses undo actions quite often due to overlapping verification areas.
Furthermore, the dynamic coordination mechanism prevents the network to completely
return the cell anomaly level as reported before round 2. The observations show that the
SON coordinator shows a similar behavior, as discussed during the previous case study.
It starts to reject the requests of a SON function if it has been frequently executed. As a
result, RET as well as TXP are interrupted and cannot complete the optimization of the
coverage of the affected cells.

10.2.2.2 Estimating the Limits

The study continues with the estimation of the limits of the compared approaches. In
particular, the focus is put on studying the correlation between the number of undo actions

10.2. Neglecting Verification Collisions 173

 97.6

 97.8

 98

 98.2

 98.4

 98.6

 98.8

 99

 99.2

 99.4

 99.6

 0 2 4 6 8 10 12 14 16 18

V
a

lu
e

Simulation round

Collisions handled by verification process
Collisions handled by the SON coordinator

(a) The HOSR KPI

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

V
a

lu
e

Simulation round

Collisions handled by verification process
Collisions handled by the SON coordinator

(b) The CQI KPI

Figure 10.4: Study of neglecting verification collisions: raw KPI values

and the cell anomaly level as the number of degraded cells changes. The degradation
itself is done by deploying a cell configuration that is unusual for the used network setup:
a transmission power of 42 dBm and an antenna tilt of 3 degrees. Moreover, the number
of degraded cells ranges between 2 and 20.

Each experiment consist of 9 test runs, each lasting 5 simulation rounds. When starting
a new experiment, the total number of to be degraded cells is set. Then, the cells are
randomly selected, where each cell can be chosen with equal likelihood. It is followed
by inducing the degradation itself. At the end of the test run, the number of deployed
undo actions is counted and the cell anomaly level is measured. The outcome of each
experiment is measured by taking the arithmetic average of cell anomaly level and the
number of executed undo actions over the 9 test runs. In addition, the 95% confidence
intervals are computed.

The results of this study are visualized in Figure 10.5(a), which represents the cell

174 Chapter 10. Evaluation Methodology and Results

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
v
e
ra

g
e
 c

e
ll

a
n
o
m

a
ly

 l
e
v
e
l

Number of degraded cells

Collisions handled by verification process
Collisions handled by the SON coordinator

(a) Average cell anomaly level. The higher, the better. A value near zero indicates that the
cells are performing as expected.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
x
e
c
u
te

d
 u

n
d
o
 a

c
ti
o
n
s

Number of degraded cells

Collisions handled by verification process
Collisions handled by the SON coordinator

(b) Number of executed undo actions

Figure 10.5: Study of neglecting verification collisions: estimating the limits of the compared
strategies

anomaly level for all 19 experiments. As shown, for a low number of degraded cells, i.e.,
up to six cells, the differences between the two configurations are minor. Nevertheless,
this changes when at least seven cells (out of 32) degrade. As we increase the number
of degraded cells, verification collisions simply start to occur more often. This can be
seen in Figure 10.5(b) which shows the average number of executed undo actions for

10.3. Solving of the Verification Collision Problem 175

each experiment. The configuration that relies only on the SON coordinator suppresses
undo actions more often as the number of degraded cells increases. On the contrary, the
configuration that makes use of the collision resolving strategy of the verification process
provides a better cell anomaly level and lets more undo actions through. However, for
a high number of degraded cells (20 out of 32) none of the configurations manages to
completely restore the network performance, i.e., put the cell anomaly level near zero.

10.3 Solving of the Verification Collision Problem

The main topic of discussion in this section is the verification collision problem (cf. Defini-
tion 3.3), the generation of the corrective action plan (cf. Definition 3.4), the identification
of an over-constrained plan (cf. Definition 3.7), and the search for soft verification colli-
sions (cf. Definition 3.8). Thereby, the focus is on evaluating the approaches introduced
in Sections 6.5 and 6.6.

The evaluation itself is split into two parts, described in Section 10.3.1 and 10.3.2,
respectively. The first one is based on the real data set that is introduced in Section 8.2. It
focuses on identifying verification collisions and analyzing their impact on the LTE
network from which the data set originates. The second part is carried out on the
simulation system that is described in Section 8.1. It is devoted to the analysis of the
network performance after starting to process the blocks of the corrective action plan.

It should be noted that each study starts with a short motivation accompanied by the
topics that are going to be discussed. Moreover, each study specifies the properties of the
CM verification process, i.e., the selection of verification areas, the choice of CKPIs, the
profiling procedure, and the choice of all functions required by the collision resolving
procedure. Finally, each study concludes with the description of the scenario and the
results.

10.3.1 Real Data Study

The motivation behind the real data study is to analyze the verification collision problem
in a real network. In particular, the following topics are discussed:

X Analysis of the verification area selection.

X Detecting configuration changes that lead to anomalous KPI values.

X Generating a corrective action plan for the given setup and verification process
parameters.

X Identifying soft verification collisions and readapting the corrective action plan
that is generated by the CM verification process.

176 Chapter 10. Evaluation Methodology and Results

Cell Cell neighbors

Reconfigured

neighbor relation

Reconfigured

neighbor relation

Verification area Verification area

Figure 10.6: Neighbor relation changes and intersection of verification areas

10.3.1.1 Verification Area Selection

CM changes that have a high probability of causing verification collisions are reconfigu-
rations of the neighbor relations, i.e., adding or removing cell neighborships. It is caused
by the fact that the configuration of a neighbor relation always involves two cells. As
a consequence, a verification area should at least include the cells of the reconfigured
adjacency (cf. Figure 10.6). The reason for that comes from the consequences of improp-
erly changing neighbor relations. On the one hand, PCI collisions may occur, i.e., two
cells having the same PCI can become neighbors which may lead to reduced handover
performance. Note that a detailed description of the PCI and the function assigning it
is given in Section 8.2.2.1. On the other hand, PCI confusions, where a cell has two
neighbors with the same PCI. In the same way, they can lead to a drop in performance.
Figure 10.7 depicts a PCI confusion that leads to a verification collision. Initially, cell 1
has only one neighbor, namely cell 3. After adding the two new neighbor relations, cell 1
becomes a neighbor of two cells sharing the same PCI.

Therefore, in this study a verification area is set to comprise of the cells of the recon-
figured adjacency. Furthermore, this decision is strengthened by the fact that during the
three week observation period, 400 new cells have been added by the operator.

Cell Cell neighbors

1

3

2 3

Added neighborship Confused cell

Verification area

Verification area

Figure 10.7: Correlation between the PCI confusion and verification problem

10.3. Solving of the Verification Collision Problem 177

10.3.1.2 CKPIs and Profiling

The CKPI vector k⊥ = (k⊥1 , . . . ,k
⊥
n) is comprised of the following performance indicator:

• EUTRAN_RLC_PDU_RETR_R_UL: retransmission rate for RLC PDUs in uplink direc-
tion.

The profile that is used to detect anomalies is created by computing the z-score of PM
data exported for that particular KPI. The exact way of recording the profiles resembles
the example that has been presented in Section 6.1. In addition, a change is considered
as anomalous if the z-score of the CKPI stays above 2.0 for at least two consecutive PM
granularity periods, that is, two hours.

10.3.1.3 Scenario and Results

At first, let us observe the number of changes that have been made between the 25th

of November 2013 and the 17th of December 2013, i.e., the observation time frame.
Figure 10.8 outlines the number of adjacency managed objects that have been added for
the given time interval. As it can be seen, numerous modifications took place on five out
of seven days: the 28th of November, as well as the 4th , 5th , 10th , and 11th of December.

 0

 200

 400

 600

 800

 1000

 1200

2013-11-28 2013-11-29 2013-12-03 2013-12-04 2013-12-05 2013-12-10 2013-12-11

N
u
m

b
e
r

o
f
c
h
a
n
g
e
s

Dates

Added adjacency objects

Figure 10.8: Number of added cell adjacency objects

As a next step, the focus is on detecting CM changes followed by abnormal CKPI
values. Figure 10.9(a) visualizes the outcome of this observation. It shows the number
of anomalous objects and time slots, each with the length of one hour, that are required
if we attempt to undo the changes. The worst performance outcome is reported on the
28th of November: 62 anomalous objects for which the verification process requires 10
correction window time slots.

The need of 10 slots, though, means that we have ten sets of undo actions which in
the worst case scenario have to be sequentially deployed. Even if we manage to quickly
process those sets and deploy the suggested changes, we would still depend on the PM

178 Chapter 10. Evaluation Methodology and Results

 0

 10

 20

 30

 40

 50

 60

 70

2013-11-28 2013-12-03 2013-12-04 2013-12-10 2013-12-11

T
o
ta

l
n
u
m

b
e
r

Dates

Time slots required
Anomalous adjacency objects

(a) Anomalous objects and number of correction window time slots required for the deploy-
ment of all undo actions

 0

 10

 20

 30

 40

 50

 60

 70

2013-11-28 2013-12-03 2013-12-04 2013-12-10 2013-12-11

T
o
ta

l
n
u
m

b
e
r

Dates

Slot 1

Slot 2

Slot 3

Slot 4

Slot 5

(b) Undo action distribution for a correction window of five slots

Figure 10.9: Results of the real data verification collision study

granularity. As stated in Section 3.3.2, the visibility of the changes’ impact on the PM
data is a major factor that has be taken into consideration. The LTE network that is
evaluated here has a PM granularity of one hour which means that the only way of
making the impact of the undo actions visible is to deploy each set immediately after PM
data gets exported.

Therefore, the decision is made to halve the maximum number of required time slots
and observe the impact on the corrective action plan. As a consequence, we get an over-
constrained verification collision problem: for the 28th of November, the 4th and the
11th of December. The resulting undo action distribution is visualized in Figure 10.9(b).
As depicted, we get a new corrective action plan that allocates most of the undo actions
to the first two slots.

10.3. Solving of the Verification Collision Problem 179

10.3.2 Simulation Study

The idea of the simulation study is to evaluate the parts of the collision resolving pro-
cedure that were not discussed in real data study. Hence, it primarily focuses on the
following subjects:

X Resolving verification collisions by varying the number of degraded cells.

X Observing the impact of an over-constrained corrective action plan on the overall
network performance.

X Monitoring the number of executed undo actions as well as the cell anomaly level
after processing the blocks of the corrective action plan.

X Study the interaction with other SON functions.

X Comparing the approach with other collision resolving strategies.

10.3.2.1 Active SON Function

One of the major differences between the simulation and the real data study is the
presence of SON functions that are performing changes while the corrective action plan
gets processed. In particular, the RET and TXP functions are allowed to adapt the
antenna tilt and transmission power, as described in Section 8.1.2. As a result, we may
have function actions that interfere with the verification process.

10.3.2.2 Verification Area Selection

A verification area is formed by selecting the reconfigured cell as well as all of its first
degree neighbors. The motivation for selecting the area in such a way is given by the
CM change type. Performing changes to the physical cell borders affects not only the
reconfigured cell, but also cells that have a direct neighborship with the reconfigured one.

10.3.2.3 CKPIs and Profiling

The CKPIs vector k⊥ = (k⊥1 , . . . ,k
⊥
n) consists of the following indicators:

• Handover Success Rate (HOSR)

• Channel Quality Indicator (CQI)

The profiling procedure is identical to the one described in Section 10.1.1.3. That is,
the CKPI anomaly level is computed as the z-score of the current CKPI value. The
used profile is recorded before carrying out the experiments, in particular, a phase of 70
simulation rounds during which the network performs as expected.

180 Chapter 10. Evaluation Methodology and Results

10.3.2.4 Cell and Verification Area Assessment

Because of the nature of the z-score, a data point is considered as an outlier when the
z-score value is either below −2.0 or above 2.0. In other words, it is two standard
deviations away from the expected mean. However, due to the fact that only success KPI
are selected as CKPIs, the HOSR and CQI are considered as degraded when their z-score
falls in the range (−∞;−2.0]. Note that the success KPI terminology is introduced in
Section 5.3.1.

Furthermore, the current observationψ (cf. Equation 6.5) is computed as the arithmetic
average of all anomaly level vector elements, i.e., the average of the HOSR and CQI
z-score. In addition, the state update factor α (cf. Section 6.2) is set to 1. As a result, the
cell anomaly level ϑ is the arithmetic average of the CKPI anomaly levels.

A verification area is considered as anomalous when the average cell anomaly level
falls below −2.0.

10.3.2.5 Priority Functions

Functions ρ (Equation 6.11) and ρ̃ (Equation 6.14) compute the priority by taking the
average cell anomaly level of the considered cells.

10.3.2.6 Compared Strategies

The idea of this study is to observe the network performance when we start deploying
undo actions. Moreover, it is of high interest to monitor the cell anomaly level, as well
as how it correlates with the number of executed undo actions. However, the issue of
grouping actions based on constraints, and finding the appropriate deployment order can
be also represented as a scheduling problem. Approaches that are widely used to solve
such scheduling problems are based on graph coloring [Lei79, Mar04]. The actions are
represented in a graph and are assigned to different groups depending on the color they
receive. Graph coloring approaches are also of particular interest since they are constraint
satisfaction approaches that typically do not perform any type of constraint softening.

Therefore, a minimum vertex coloring approach is used for comparison. It schedules
the undo actions based on the color frequency, i.e., the actions assigned to the largest
group are deployed at first. Processing the groups based on their size creates also a
potential for rolling back changes that did not harm network performance.

10.3.2.7 Scenario and Results

In total, 9 consecutive experiments are carried out. Each experiment is comprised of 13
test runs. Every test run lasts 4 simulation rounds, during which cells (ranging between
4 and 12) are selected for degradation. The exact number of cells is chosen before
starting an experiment. The selection is made by adding all cell identifiers to a list,
permuting the list, where all permutations occur with equal likelihood, and selecting the

10.3. Solving of the Verification Collision Problem 181

first n items. The degradation is carried out by deploying an untypical configuration for
the given network scenario: an antenna tilt of 3 degrees and a transmission power of
42 dBm. Furthermore, the number of available time slots τ is set to 2 due to the size
of the simulated network (cf. Section 8.1.1.5). The RET and TXP functions run in the
background as well.

The measurement itself is carried out as follows. During the first simulation round of
a test run degradations are induced. During the second and third round, the corrective
action plan is processed and the suggested undo actions are deployed. The result itself is
computed by taking the arithmetic average of the cell anomaly levels of all 32 cells at the
end of the fourth simulation round.

Figure 10.10(a) outlines the results. Note that the results show the 95 % confidence

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

4 5 6 7 8 9 10 11 12

A
v
e
ra

g
e
 c

e
ll

a
n
o
m

a
ly

 l
e
v
e
l

Number of degraded cells

CM verification process
Minimum graph coloring approach

(a) Average cell anomaly level. The higher, the better. A value near zero indicates that the
cells are performing as expected.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

4 5 6 7 8 9 10 11 12

E
x
e
c
u
te

d
 C

M
 u

n
d
o
 a

c
ti
o
n
s

Number of degraded cells

CM verification process
Minimum graph coloring method

(b) Number of excuted undo actions

Figure 10.10: Results of the verification collision simulation study

182 Chapter 10. Evaluation Methodology and Results

intervals that are computed around the sample mean for each experiment. During all
experiments, the collision resolving method of the CM verification process is able to
provide a better cell anomaly level compared the minimum graph coloring approach. In
the case of 4, 5 and 6 degraded cells, there is almost no difference in the cell anomaly
level. The minimum graph coloring approach performs slightly worse due to ongoing
SON function changes. Due to its strategy of deploying the largest set of undo actions at
first, it forces necessary changes to be rolled back.

Moreover, we see that in case of 9 or more degraded cells, the performance of the
minimum graph coloring rapidly drops. It is caused by the selected maximum of two
time slots, which becomes the limiting factor. This trend can be seen in Figure 10.10(b)
which gives us the actual number of deployed undo actions. The observations show
that verification collisions start to appear more frequently as we increase the number of
degraded cells, which also leads to a decrease of executed undo actions.

Another reason for this decrease is the activity of the SON functions in the regions
where undo actions have been delayed due to collisions. At the time they saw the degra-
dation, RET and TXP became active and triggered CM changes that required verification.
Those changes were rolled back by both configurations, which caused the cell anomaly
level not to return to a value near zero. Despite those activities, the CM verification
process manages to approximately halve the cell anomaly level compared to the graph
coloring approach.

10.4 Elimination of Weak Verification Collisions

In this section, the main topic of discussion are verification collisions (cf. Definition 3.3),
in particular, the identification and elimination of such being weak, as given by Defini-
tion 3.9. The approach that is designed to overcome those issues is the MST clustering
approach, as presented in Section 6.3. Hence, it will be used during the evaluation
process.

Similarly to the previous section, the evaluation is split into two parts. On the one hand,
there is a study that is based on the real data set that has been introduced in Section 8.2.
Section 10.4.1 is devoted to this particular study. It focuses on the identification of
weak collisions in a real network as well as the change of the corrective action plan
after eliminating them. On the other hand, we have a simulation study that utilizes the
simulation environment that has been introduced in Section 8.1. Section 10.4.2 describes
this part of the evaluation, which is primarily focused on studying the impact of removing
weak collisions on the network performance.

Each study starts with a motivation as well as a detailed overview of the topics of
discussion. Moreover, it lists the parameter selection, e.g., the verification area selection,
and concludes with the description of the scenario and the results achieved during the
experiments.

10.4. Elimination of Weak Verification Collisions 183

10.4.1 Real Data Study

The idea of the real data study is to identify and observe the problem of having weak
verification collisions. In particular, the following topics are of high interest:

X Identification of weak collisions in the real data set.

X Analysis of the corrective action plan that is generated for the given setup.

X Analysis of the corrective action plan after eliminating the weak verification colli-
sions.

It should noted that the terms weak verification collision and weak collisions are used as
synonyms.

10.4.1.1 Verification Area Selection

The selection of verification areas is made in the same way as described in the verification
collision study, i.e., an area is comprised of the cells of the reconfigured adjacency.
Section 10.3.1.1 outlines the selection process.

10.4.1.2 CKPIs and Profiling

The profiling procedure resembles the one used during the verification collision study, as
described in Section 10.3.1.2. That is, it is based on the z-score of the PM data. However,
the vector of CKPIs k⊥ = (k⊥1 , . . . ,k

⊥
n) is comprised of the following two performance

indicators:

• EUTRAN_RLC_PDU_RETR_R_DL: retransmission rate for RLC PDUs in downlink di-
rection.

• EUTRAN_RLC_PDU_RETR_R_UL: retransmission rate for RLC PDUs in uplink direc-
tion.

In contrast to the verification collision study, the retransmission rate for RLC PDUs in
downlink direction is added to k⊥. Furthermore, a change is considered as anomalous if
the z-score of at least one of those KPIs stays above the threshold of 1.8 for two hours,
i.e., two PM granularity periods.

10.4.1.3 Distance Function

The distance function d (cf. Equation 6.6) used to compute the edge weights in the cell
behavior graph GΣ = (V Σ,EΣ) (cf. Definition 6.2) is given in Equation 10.1. For two
anomaly vectors a⊥ = (a⊥1 ,a

⊥
2 , . . . ,a

⊥
n) ∈ Rn and a⊥′ = (a⊥1

′,a⊥2
′, . . . ,a⊥n

′) ∈ Rn the
Pythagorean formula is applied.

d (a⊥, a⊥′) = d (a⊥′, a⊥) =

√√ n∑
k=1

(a⊥k
′
− a⊥k)

2 (10.1)

184 Chapter 10. Evaluation Methodology and Results

As a result, the tree T Σ formed by the cell clustering procedure (cf. Algorithm 1, Sec-
tion 6.3) is an Euclidean MST, i.e., the weight of every edge w(vΣi , v

Σ
j) equals the Eu-

clidean distance between v
Σ
i ∈ V

Σ and v
Σ
j ∈ V

Σ.

10.4.1.4 Edge Removal Function

The edge removal function ξ (cf. Equation 6.7), based on which the forest F Σ in Algo-
rithm 1 (Section 6.3) is formed, is selected as follows:

• The edges of T Σ whose weight exceeds the 99th percentile of all edge weights are
removed.

10.4.1.5 Scenario and Results

To begin with, let us recall the results presented in Figure 10.8. It shows the number of
adjacency object modification that have been made in the LTE network. In particular,
numerous changes are made on the 28th of November, as well as on the 4th , 5th , 10th ,
and 11th of December 2013.

As a second step, the presence of anomalous objects is studied. Figure 10.11 depicts
the number of such objects as well as the number of time slots that are required if an
attempt is made to rollback the changes. Compared to the results from Section 10.3.1.3,
there is a slight increase in the number of anomalous objects. It is caused by the inclusion
of the second KPI in k⊥.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

2013-11-28 2013-12-03 2013-12-04 2013-12-10 2013-12-11

T
o
ta

l
n
u
m

b
e
r

Dates

Time slots required
Anomalous adjacency objects

Figure 10.11: Distribution of the anomalous adjacency objects in the real data set

Next, the corrective action plan generated for this given parameter setup is observed.
Figure 10.12 visualizes the distribution of the undo actions for the 28th of November and
the 4th of December 2013. The x-axis represents the time slots whereas the y-axis the
number of undo actions that are allocated to each slot. As shown, the initial processing of
the plan for the 28th of November requires 18 time slots, whereas for the 4th of December
9 time slots.

10.4. Elimination of Weak Verification Collisions 185

 0

 10

 20

 30

 40

 50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

N
u
m

b
e
r

o
f
u
n
d
o
 a

c
ti
o
n
s

Correction window slots

Undo actions per slot

(a) Corrective action plan for the 28th of November

 0

 10

 20

 30

 40

 50

1 2 3 4 5 6 7 8 9

N
u
m

b
e
r

o
f
u
n
d
o
 a

c
ti
o
n
s

Correction window slots

Undo actions per slot

(b) Corrective action plan for the 4th of December

Figure 10.12: Undo action distribution before the elimination of weak verification collisions

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 2

N
u
m

b
e
r

o
f
u
n
d
o
 a

c
ti
o
n
s

Correction window slots

Undo actions per slot for 2013-11-28
Undo actions per slot for 2013-12-04

Figure 10.13: Undo action distribution after the elimination of weak verification collisions. The
corrective action plan for the 28th of November consist of one block whereas the plan for the 4th

of December of two blocks.

186 Chapter 10. Evaluation Methodology and Results

Hence, the question that arises is how the distribution of undo actions changes after
applying the approach that eliminates weak collisions. Figure 10.13 depicts the resulting
corrective action plan. For the 28th of November the verification process requires only
two correction window time slots, whereas for the 4th of December just one time slot,
which is a significant decrease compared to the initial slot allocation (cf. Figure 10.12).

10.4.2 Simulation Study

The purpose of the simulation study is to observe how the network performance behaves
when, on the one hand, weak collisions are eliminated and, on the other hand, such
collisions are left over. As we saw in the real data study most undo actions got assigned
to the first time slot which is the reason why it is of high interest to monitor the network
behavior after deploying those actions. Furthermore, it is of particular interest to observe
the network performance when the number of degraded cells varies, and to identify cases
where the cell clustering approach does not manage to fulfill its tasks. In summary, the
topics discussed in this sections are:

X The elimination of weak collisions, resolving the valid ones, and studying the cell
anomaly level when the number of degraded cells changes.

X The comparison between CM verification setups that do not utilize the collision
elimination and such that use the cell clustering approach.

X The analysis of the cell anomaly level and the number of deployed undo actions.

X Observing the interaction with active SON functions.

X Exploring the limits of the MST-based clustering approach.

10.4.2.1 Active SON Functions

In total, three SON functions are active during the experiments: the MRO, RET, and
TXP function. They are required to make reconfigurations while the verification of CM
changes is running. As a result, they may interfere with the verification process which
may potentially lead to the rollback of changes not harming performance. Moreover, those
functions have different optimization goals: the MRO function optimizes the handover
of UEs between neighboring cells, whereas RET and TXP adjust the coverage. Thereby,
they are inducing changes that may fall within different cluster groups.

It should be noted that the function execution is coordinated, i.e., no two functions
adjust the configuration of a cell at the same time.

10.4.2.2 Verification Area Selection

During the simulation study two types of cell changes are deployed. On the one hand,
adjustments to the physical cell borders are made. Therefore, to analyze the impact

10.4. Elimination of Weak Verification Collisions 187

of such changes, all direct neighbors of the reconfigured (target) cell are added to its
verification area.

On the other hand, asymmetrical changes to the CIO are carried out, i.e., a reconfigu-
ration of the offset between the target and the source cell1, but not vice versa. Also, if a
cell is selected for reconfiguration, the handover performance to all neighbors is assessed,
i.e., the offset to all neighbors can be changed at the same time. Hence, the verification
area is selected in the same way as described above.

10.4.2.3 CKPIs and Profiling

The CKPI vector k⊥ = (k⊥1 , . . . ,k
⊥
n) consist of three indicators (cf. Section 8.1.1.2):

• Handover Success Rate (HOSR)

• Channel Quality Indicator (CQI)

• Handover ping-pong rate

The first two fall within the success, whereas the last one is a representative of the failure
KPI class (cf. Section 5.3.1).

The profiling is done in the same way as introduced in Section 10.1.1.3. That is, the
CKPI anomaly level is based on the z-score of the current CKPI values. The training
phase is set to 70 simulation rounds.

A verification area is marked as potentially anomalous, i.e., assessed by the verification
process, when at least one CKPI anomaly level of at least one cell falls in the range
(−∞;−2.0] for success KPIs and [2.0;∞) for failure KPIs.

10.4.2.4 Distance Function

Distance function d (cf. Equation 6.6), which is required for the formation of the cell
behavior graph GΣ (cf. Definition 6.2), is based on the Euclidean distance. A description
is provided in Section 10.4.1.3.

10.4.2.5 Edge Removal Function

The edge removal function (cf. Equation 6.7) is used to form forest F Σ (cf. Algorithm 1
in Section 6.3). Furthermore, there are two implementations of the function:

• Removing all edges from T Σ whose weight exceeds 1.50 the average edge weight.

• Removing all edges from T Σ whose weight exceeds 1.75 the average edge weight.

1The terms target cell and source cell come from the handover procedure in LTE. A handover target cell
should not be confused with the target cell of a verification area.

188 Chapter 10. Evaluation Methodology and Results

10.4.2.6 Compared Strategies

In this experiment, two strategies are compared with each other. On the one hand, there is
a configuration that utilizes the collision resolving approach, as described in Sections 6.5
and 6.6. On the other hand, a configuration is defined that makes use of the MST-based
clustering approach, as introduced in Section 6.3. It resolves collisions in the very same
way as the first one does. The difference, however, is that it eliminates weak collisions
before entering the constraint optimization phase.

10.4.2.7 Scenario and Results

Each experiment is set to last 9 test runs, where each test run is set to last 5 simulation
rounds. Before starting a test run, cells are selected for degradation. The selection is
made by adding all cell identifiers to a list, permuting the list, where all permutations
occur with equal likelihood, and selecting the first n items. The degradation itself is
carried out by deploying two untypical configurations. On the one hand, the coverage of
half of the selected cells is changed by setting their transmission power to 40 dBm. On
the other hand, the handover capabilities of the other half is manipulated by changing
their CIO to −5.0.

Furthermore, the total number of experiments is 11. They differ in the number of cells
marked for degradation, i.e., the selection of n. The lowest number of degraded cells is 6
whereas the highest is 16. Also, during the experiments all SON functions are allowed to
optimize the network by changing CM parameters of interest.

The results are computed in the following way. The negative CKPI anomaly level is
taken in the case of failure KPIs, and left as it is for success KPIs. Then, the overall
network performance is estimated by averaging all CKPI anomaly levels reported by
all cells after processing the first correction window time slot. In addition, the 95%
confidence interval around the sample mean is calculated.

The results of this study are shown in Figure 10.14(a). As the observations indicate,
the elimination of weak collisions manages to significantly improve the network perfor-
mance already after deploying the first set of undo actions. Moreover, the performance
improves when we lower the threshold to 1.5 times the average edge weight. The reason
why this configuration outperforms the remaining ones originates from the number of
collisions that got eliminated before starting to process undo actions. Figure 10.14(b)
gives more information about this fact. It shows the number of undo actions remaining
in collision after processing the first correction window slot. Similarly to the real data
study (cf. Section 10.4.1.5), most actions get allocated to the first slot after removing the
weak collisions. Hence, there are less entering the verification process afterwards. Re-
markably, the configuration that is not utilizing the cell clustering approach gets the worst
result, which is mainly due to the high number of collisions that prevent the simultaneous
deployment of necessary undo actions.

Finally, some remarks about the limits of the clustering approach should be made. The

10.5. Handling Fluctuating PM Data 189

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

6 7 8 9 10 11 12 13 14 15 16

A
v
e
ra

g
e
 C

K
P

I
a
n
o
m

a
ly

 l
e
v
e
l

Number of degraded cells

Threshold 1.50 the average edge weight
Threshold 1.75 the average edge weight

No elimination of weak verification collisions

(a) Average CKPI anomaly level after processing the first correction window time slot. The
higher, the better. A value near zero indicates that the CKPIs are performing as expected.

 0

 5

 10

 15

 20

 25

6 7 8 9 10 11 12 13 14 15 16

R
e
m

a
in

in
g
 c

o
lli

s
io

n
s

Number of degraded cells

Edge removal function with threshold 1.50
Edge removal function with threshold 1.75

No elimination of weak verification collisions

(b) Number of remaining collisions after processing the first correction window time slot

Figure 10.14: Results of the simulation study of eliminating weak verification collisions

edge removal function ξ has to be used with caution since the deletion of too many edges
from the tree T Σ may lead us to the point where we have no verification collisions at all.
Consequently, the verification process will start undoing too many changes, including
such that did not harm network performance. During the simulation study, this effect
occurred when a threshold below 1.5 times the average edge weight was selected.

10.5 Handling Fluctuating PM Data

The idea of this case study is not only to observe whether the network performance has
degraded, but mainly to study the problem of having fluctuating PM data. Also, it is of
particular interest to monitor the behavior of the CM verification process when it analyzes
such PM data. It should be noted that issue itself is discussed in Section 3.2.1.

190 Chapter 10. Evaluation Methodology and Results

The study is carried out only by using the simulation environment (cf. Section 8.1).
The main reason for not considering the real data set is the fact that the LTE network
was not optimized by SON functions that could lead to significant fluctuations in the PM
data.

The topics that are discussed in this section can be summarized as follows:

X The ability of the verification process to dynamically adapt the observation window
based on cell PM data.

X The study of the impact of neglecting PM fluctuations on the ability of the verifica-
tion process to provide corrective actions.

X The analysis of the CKPI anomaly level after deploying the suggested corrective
actions.

X The analysis of the impact of PM fluctuations on the SON functions that optimize
the network.

10.5.1 Simulation Study Setup

10.5.1.1 Active SON Functions

The SON functions that are active during the experiments are MRO, RET, and TXP,
as described in Section 10.4.2.1. The function selection is motivated by the scenario
setup. At first, obsolete coverage settings are deployed which are corrected by the
SON functions. Their activity may result in PM fluctuations as they try to reach their
optimization goal. Then, the CM verification process is triggered to assess changes and
rollback those leading to a degradation.

10.5.1.2 Verification Area Selection

The formation of the verification areas is identical to the strategy outlined in Sec-
tion 10.4.2.2, i.e., it is comprised of the reconfigured cell and its direct neighbors.

10.5.1.3 CKPIs and Profiling

The CKPI vector k⊥ = (k⊥1 , . . . ,k
⊥
n) is comprised of the following three performance

indicators:

• Handover Success Rate (HOSR)

• Channel Quality Indicator (CQI)

• Handover ping-pong rate

The profiling procedure is identical the one presented in Section 10.1.1.3. That is, the
CKPI anomaly level is computed as the z-score of the current CKPI value. The total
number of simulation rounds required to generate the profiles is 70.

10.5. Handling Fluctuating PM Data 191

10.5.1.4 Observation Window

At first, the negative CKPI anomaly level is taken for failure KPIs (i.e., the handover
ping-pong rate), and left as it is for success KPIs (i.e., HOSR and CQI). Second, the
observationψ (a⊥)t from Equation 6.5 at time t is computed as follows:

ψ (a⊥) :=
1
n

n∑
i=1

a⊥i (10.2)

The state update factor α , required to estimate the cell anomaly level (i.e., the CVSI)
ϑ (a⊥,α) from Equation 6.4, is selected at time t as follows:

• α = 0.2 if |ψ (a⊥)t | ∈ [0; 1), i.e., the observation is up to one standard deviation
away from the expected performance.

• α = 0.4 if |ψ (a⊥)t | ∈ [1; 2), i.e., the observation is between one and two standard
deviations away from the expected performance.

• α = 0.8 if |ψ (a⊥)t | ∈ [2;∞), i.e., the observation is more than two standard
deviations away from the expected performance.

Hence, the more unusual the current observation is, the higher the impact on the overall
cell anomaly level. The selection of different update factors that depend on the current
network state is motivated by the approach used in [LPCS04]. The authors make use of a
similar technique to propagate data packets in a sensor network.

Based on those estimations, a verification area ΣM
′

(cf. Definition 5.3) is considered
as being anomalous at time t , if and only if the following condition is met:

1
|ΣM ′ |

∑
σ ∈ΣM′

ϑσt ∈ (∞;−2.0] (10.3)

10.5.1.5 Compared Strategies

For this study, two configurations are defined. On the one hand, we have the CM
verification process that has all features enabled (cf. Sections 6.1 to 6.6). That is,
verification areas are assessed by utilizing exponential smoothing, weak verification
collisions are eliminated by the MST-based clustering approach, valid collisions are
resolved by the constraint optimization-based technique.

On the other hand, we have the same setup for which the CVSI feature is disabled.
The CVSI feature is turned off by setting the state update factor α to 1. As a result,
this configuration should be more aggressive, i.e., it should mark verification areas as
anomalous more often.

192 Chapter 10. Evaluation Methodology and Results

10.5.2 Scenario and Results

In today’s mobile networks it is not uncommon for cells to be supplied with obsolete cov-
erage settings. Typically, it happens when the initial assumptions about the environment
significantly change [HSS11]. A significant change can be the result of the construction
or demolition of buildings, the insertion of new base stations, and seasonal changes. As
a result, the coverage can be reduced compared to what it is possible to achieve with
optimal settings.

To replicate such a situation, obsolete configurations are applied to nine cells. The
antenna tilt of four cells is set to 0.0 degrees, the tilt of another two cells is set to 1.0,
the degree of another two cells is set to -4.0, and the tilt of the remaining cell is 3.0.
The transmission power is not changed, i.e., it is set to the maximum of 46 dBm. Those
settings are applied before starting a test run. In total, seven test runs are carried out. The
duration of a single test run is 12 simulation rounds. During a test run the SON functions
are allowed to optimize the network.

Furthermore, the function activity is managed by the SON coordinator. The coverage
optimization functions have a higher priority than the MRO function. Hence, MRO is
suppressed if RET or TXP wish to make a change. All SON functions, however, can be
interrupted by the verification process if it decides to execute an undo action, i.e., the
verification process is assigned with the highest priority.

The first observations of this study show that the optimization functions put their
highest focus on two cells: 2 and 6. The verification areas formed around those cells
include five and six cells, respectively. As shown in Figure 8.4, the two areas are located
very close to each other and, therefore, share cells. Hence, it creates the potential for
verification collisions.

Figures 10.15(a) and 10.15(b) show the average CKPI anomaly level of the two areas.
The anomaly level changes frequently which was caused by fluctuating PM data. As
expected, the SON functions were immediately activated and tried out different CM
settings in order to reach their optimization goal. Concretely, the RET function started
to adjust the antenna tilt, which was in most cases followed by a CIO change. The CIO
change was triggered by MRO. Those changes also induced temporal performance drops
which forced the verification process, that utilizes the second configuration (disabled
CVSI feature), to interrupt the ongoing optimization. As a result, the functions were
required to reapply their changes which caused the average CKPI anomaly level of both
areas to fluctuate and never reach zero.

On the contrary, the configuration that utilizes the CVSI feature manages to provide
better results. At the end of simulation round 12, the CKPI anomaly levels return to the
expected range, i.e., a value near zero. Figure 10.15(c) visualizes why we are able to get
such results. After simulation round 4, the CVSI of both areas does not fall below the
threshold. Hence, they are not further assessed by the verification process and are let to
be optimized by the SON functions.

10.5. Handling Fluctuating PM Data 193

-1.75

-1.5

-1.25

-1

-0.75

-0.5

-0.25

 0

 0.25

 0.5

 0.75

 1

 1 2 3 4 5 6 7 8 9 10 11 12

A
v
e
ra

g
e
 C

K
P

I
a
n
o
m

a
ly

 l
e
v
e
l

Simulation round

CVSI-enabled
CVSI-disabled

(a) Average CKPI anomaly level of the verification area of target cell 2. The higher, the better.
A value near zero indicates that the KPIs are performing as expected.

-2.75

-2.5

-2.25

-2

-1.75

-1.5

-1.25

-1

-0.75

-0.5

-0.25

 0

 1 2 3 4 5 6 7 8 9 10 11 12

A
v
e
ra

g
e
 C

K
P

I
a
n
o
m

a
ly

 l
e
v
e
l

Simulation round

CVSI-enabled
CVSI-disabled

(b) Average CKPI anomaly level of the verification area of target cell 6. The higher, the better.
A value near zero indicates that the KPIs are performing as expected.

-2.25

-2

-1.75

-1.5

-1.25

-1

-0.75

-0.5

-0.25

 0

 0.25

 0.5

 1 2 3 4 5 6 7 8 9 10 11 12

A
v
e
ra

g
e
 C

V
S

I

Simulation round

Verification area with target cell 2
Verification area with target cell 6

(c) Average CVSI of the verification areas. The higher, the better.

Figure 10.15: Results of the simulation study of handling fluctuating PM data

194 Chapter 10. Evaluation Methodology and Results

10.6 Topology Verification

The last part of the evaluation chapter is dedicated to the verification of concurrent
CM and topology changes. Generally speaking, turning cells on or off may induce
anomalies which may lead to incorrect corrective actions while verifying configuration
changes. Furthermore, adding or removing a cell may generally lead to incomplete
profiles (cf. Definition 3.12) that can further cause significant anomalies in the behavior
of already enabled cells. Note that Section 3.2.5 discusses those problems in detail.

For this reason, the verification process is split into two parts, as introduced in Sec-
tion 5.1. On the one hand, we have the CM verification process which was up to now the
major topic of discussion in this chapter. On the other hand, there is the topology change
verification process which is described in detail in Chapter 7. It is based on Steiner trees,
i.e., MSTs whose costs can be reduced by adding extra vertexes to the initial input graph.
Those nodes are referred to as Steiner points which represent on-demand cells.

The Steiner tree-based verification approach also makes use of helper functions that
influence the algorithm’s outcome. In particular, we have the edge weighting function
that is required to form the topology verification graph (cf. Definition 7.3), and the
Steiner point assessment function (cf. Equation 7.3) which converts an on-demand cell
to a Steiner terminal, i.e., a vertex that is always used for the formation of the Steiner
tree. Furthermore, the approach permits the penalization of cells that are frequently being
turned on and off. Hence, the topics discussed in this section can be summarized as
follows:

X Study and evaluate the distance function used to form the topology verification
graph.

X Observe the impact of the Steiner point assessment function on the outcome of the
topology verification process.

X Evaluate the cell penalization capabilities of the topology verification process.

X Compare the Steiner tree-based verification approach with another state-of-the-art
verification strategy.

X Study the limits of the Steiner tree-based verification approach.

The study itself is carried out by using the simulation environment, as described in
Section 8.1. Further, it is split into two parts. Section 10.6.1 lists the setup, i.e., the active
SON functions, the verification area selection, the KPI selection, the profiling, as well
as the functions used by the topology verification algorithm. Section 10.6.2 presents the
results of the study.

10.6. Topology Verification 195

10.6.1 Simulation Study Setup

10.6.1.1 Active SON Functions

The SON function that is active during the experiments is RET, as introduced in Sec-
tion 8.1.2. Furthermore, a basic cell ESM feature is activated. It turns on a cell when its
load is above a threshold and off otherwise.

10.6.1.2 Verification Area Selection

There are two types of verification areas that are generated during the experiments. On the
one hand, there are areas which are formed around the cell that has been reconfigured, i.e.,
the antenna tilt degree has been adjusted. Such areas are comprised of the reconfigured
small cell and its first degree neighbors. The motivation for selecting them in such a way
is outlined in Section 10.3.2.2.

On the other hand, we have areas that are defined by the topology verification process.
Verification areas of this type are formed in two steps. First, around every small cell a
sub-area is formed that includes the cell itself and its first degree neighbors. Second, all
sub-areas that share common cells are united into one single verification area. As a result,
we get a connected graph as required by Definition 5.3.

10.6.1.3 CKPIs and Profiling

The CKPI vector k⊥ = (k⊥1 , . . . ,k
⊥
n) used by the CM verification process includes the

following performance indicators:

• Channel Quality Indicator (CQI)

• Handover Success Rate (HOSR)

• Handover ping-pong rate

The profiling procedure and the cell anomaly level selection is identical to the one
introduced in Section 10.4.2.3.

10.6.1.4 TKPIs and Profiling

The TKPI vector k` = (k`1, . . . ,k
`
n) required by the topology verification process is

comprised of the following performance indicator:

• Cell load based on the PRB utilization

The profile generation and anomaly level computation are identical to the procedure
described in Section 10.1.1.3. An element ṗ`i , where i ∈ [1,n], of a TKPI profile vector
ṗ` = (ṗ`1, . . . , ṗ

`
n) is a sequence of t observations which are collected while the network

is operating as expected. The outcome of function φ̇ (cf. Equation 7.1) is calculated by

196 Chapter 10. Evaluation Methodology and Results

taking the sequence of observations of ṗ`i , as well as the current k̇
`

i , and computing the
z-score of all values. The z-score of the current TKPI gives us its anomaly level.

It should be noted, though, that only static cells have a profile. The reasons have been
discussed in detail in Section 3.2.5. As a result, function φ̊ (cf. Equation 7.2) computes
the TKPI anomaly levels of on-demand cells by taking the weighted sum of the anomaly
levels of its direct static neighbors. That is, the outcome is the weighted sum of the load
anomaly levels. The weight itself is computed by taking the served UE ratio, i.e., the
number of UEs served by a direct neighbor divided by the total number of UEs served
within the verification area.

10.6.1.5 Edge Weighting Function

In order to prevent edge weights ∈ (−∞, 0], all load anomaly level values are put within
the interval of [1; 2]. The weight of an edge in the topology verification graph GT

(cf. Definition 7.3) is computed by summing up the load anomaly level of the cells
represented by adjacent vertexes. In addition, if one of the cells is an on-demand cell,
only a portion of the edge weight is taken by multiplying it with a Steiner edge factor.

10.6.1.6 Steiner Point Assessment Function

The Steiner point assessment function ι (cf. Equation 7.3) is based on exponential smooth-
ing of the TKPIs, in particular, the cell load. In case the smoothed cell load value falls
below a Steiner threshold of 15%, an on-demand cell is considered as a Steiner point,
otherwise as a terminal. The update factor ranges between 0.1 and 1.0.

10.6.1.7 Steiner Point Penalization

If an on-demand cell gets enabled and shortly after that disabled, the Steiner edge factors
of all edges, leading to the vertex repressing it, are increased by using a step size of 0.1.
Over time, this factor gets decreased by the same step size until it reaches the initial value.
In addition, on-demand cells that have become terminals are rewarded by immediately
setting the Steiner edge factor to the initial value.

10.6.1.8 Compared Strategies

In total, two configurations are compared against each other. At first, we have only CM
verification, as presented in Chapter 6. This setup represents the default verification
strategy. It monitors the activity of all SON functions, including features optimizing the
energy consumption, and rolls back the changes harming performance.

Second, we have the Steiner tree-based verification, as introduced in Chapter 7. For
this setup, cells that are verified by the Steiner tree-based verification algorithm are not
processed by the CM verification process.

10.6. Topology Verification 197

10.6.2 Scenario and Results

The experiments are carried out by using the cell deployment that has been introduced in
Figure 8.5 (cf. Section 8.1.1.5). In total, there are 32 LTE macro and 9 small cells which
are assessed by the verification process after the completion of a simulation round.

10.6.2.1 Edge Weighting Function

The evaluation starts by estimating how function dT impacts the Steiner tree T T . In
particular, we are interested in how the factor used to multiply the weight between an
on-demand and another cell affects the outcome. In order to induce an unusually high
load at the macro cells, a user group that consists of 150 UEs is added to one particular
part in the network. The area itself is covered by on-demand cells 33, 34, and 35.

The experiment itself starts by selecting a Steiner edge factor of 1.0, which is decreased
by 0.1 after every fifth simulation round. Note that all cell states are reset as soon as the
factor gets decreased. Figure 10.16(a) shows the results, in particular, the percentage
of on-demand cells that get enabled for the given Steiner edge factor. As shown, for a
factor between 1.0 and 0.8, none of the on-demand cells are switched on, i.e., no Steiner
points are added to the graph. After decreasing its value to 0.7, the first on-demand cells
are allowed to be switched on. When selecting a factor of 0.6, approximately 33% of all
on-demand are enabled. A factor of 0.5 allows roughly 60% of those cells to be added to
the Steiner tree, whereas a factor of 0.4 and lower permits all on-demand cells to become
active.

The question that arises here is how the load anomaly level changes when selecting
a different Steiner edge factor. Figure 10.16(b) shows the average load anomaly level
of all on-demand cells and all of their static neighbors. As presented, for a Steiner edge
factor of 0.6 or less, the z-score-based anomaly level ranges within approximately the
same interval. Note that all figures represent 95% confidence intervals that are computed
around the sample mean of a certain number of consecutive test runs. Here, the total
number of test runs is 10.

10.6.2.2 Steiner Point Assessment Function

Next, we are going to test function ι, which basically converts a Steiner point to a terminal
and vice versa. Since it is based on exponential smoothing, we will evaluate the parameter
used to update the current value. The experiment starts with an update factor of 1.0 which
is gradually decreased by 0.1. In contrast to the previous setup, the evaluation window
is set to 10 rounds. The setup is identical as before, however, after the fifth round the
UE group is removed from the network. Afterwards, the simulation rounds are counted
during which no longer necessary on-demand cells stay switched on.

Figure 10.17 gives us the results of this observation after 10 test runs. For a factor
of 1.0, the on-demand cells are almost immediately disabled after removing the UE group.
It is indicated by the low percentage of simulation rounds during which cells remain

198 Chapter 10. Evaluation Methodology and Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

R
a

ti
o

 v
a

lu
e

Simulation rounds

Enabled cells ratio
Steiner edge factor

(a) Correlation between the Steiner edge factor and number of enabled cells

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Z
-s

c
o

re
 v

a
lu

e

Simulation rounds

Cell load anomaly level

(b) Impact on the cell load anomaly level

Figure 10.16: Evaluation of the edge weighting function

 0

 0.2

 0.4

 0.6

 0.8

 1

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

S
im

u
la

ti
o

n
 r

o
u

n
d

 r
a

ti
o

Smoothing factor

Inactive time of enabled on-demand cells

Figure 10.17: Evaluation of the Steiner point assessment function

10.6. Topology Verification 199

turned on. However, as we start decreasing the update factor, more on-demand cells stay
switched on. This trend can be seen for any factor in the interval between 0.3 and 0.9.
For a factor of 0.2 none of the cells are switched off, even though the UE group has
disappeared.

10.6.2.3 Steiner Tree-Based Verification

To compare the two configurations, the RET function is allowed to optimize the antenna
tilt of 16 of the 32 macro (static) cells. Those cells have at least one small (on-demand)
cell as neighbor. In addition, in order to trigger the wake up or sleep mechanism of the
small cells, four UE groups are added. As described in Section 8.1.1.4, the groups consist
of 150, 75, 85, and 120 users. Thereby, simultaneous CM and topology changes should
emerge.

In total, 7 test runs, each lasting 20 simulation rounds, are carried out. Moreover,
after every fifth round a new UE group is randomly selected. The selection is made by
adding all UE groups to a list, permuting the list, where all permutations occur with
equal likelihood, and selecting the first item. Every time a new UE group is selected, the
average load anomaly level of each of the 16 macro cells is measured. Hence, we have
28 samples for each of those cells. It should be noted that the Steiner edge update factor
is set to 0.6 whereas the smoothing update factor to 0.5. The selection is motivated by
the observations made in Sections 10.6.2.1 and 10.6.2.2.

Figure 10.18 visualizes the results. As outlined, the Steiner tree-based verification
approach manages to improve the anomaly level of all 16 cells, i.e., putting it near zero
which is the expected state. Especially the anomaly level of cells 6, 9, 10, 18, and 24
is significantly changed. On the contrary, using only CM verification leads to a worse
anomaly level, which is caused also by the undo of RET changes. Those changes were
blamed although they did not do any harm.

-2

 0

 2

 4

 6

 8

2 3 6 7 9 10 12 15 16 18 22 24 25 27 28 30

A
v
e
ra

g
e
 T

K
P

I
a
n
o
m

a
ly

 l
e
v
e
l

Cell ID

Disabled Steiner tree-based verification
Enabled Steiner tree-based verification

Figure 10.18: Evaluation of the Steiner tree-based verification approach

200 Chapter 10. Evaluation Methodology and Results

Finally, a statement about the limits of the Steiner tree-based verification approach
should be made. First of all, the TKPI vector has to be set properly. The approach is able
to solve topology-related issues only if KPIs that reflect the utilization state of a cell are
taken into consideration. Second, the outcome also depends on the network topology. For
instance, in Figure 10.18 some cells are more than two standard deviations away from
the expected mean even though the topology verification process was triggered. Those
macro cells are overloaded due to the limited number of neighboring small cells which
simply could not take over more traffic. Hence, care should be taken while planning the
network and deploying on-demand cells. Third, the introduced approach depends on its
helper functions, which was also the reason why they got much attention in this section.
Setting them up inappropriately may result in suboptimal corrective actions.

10.7 Summary

This chapter provides an extensive evaluation of the verification concept that is presented
in Chapters 5-7 and whose implementation is discussed in Chapter 9. The evaluation itself
is split in two parts: one that evaluates the concept’s CM verification capabilities and
another that is dedicated to the study of the ability to verify dynamic topology changes.

In summary, the first part of the evaluation has shown that in most cases SON functions
are not able to verify their own actions. It was also shown that neglecting verification
collisions leads to performance degradation and that resolving them considerably im-
proves network performance. Furthermore, it is also shown that the elimination of weak
collisions substantially improves the corrective action decision process. The importance
of handling fluctuating PM data is highlighted as well.

A detailed summary of those results is provided by the answers to the questions
(contributing to O3.2 and O3.3) listed below.

O3.2: Study and evaluate the impact of uncertainties on the outcome of a verifi-
cation process.
Q: What is the impact of neglecting verification collisions?
A: In Section 10.2, a detailed analysis is made of the impact of neglecting verifica-
tion collisions on the network performance. That is, rolling back changes without
resolving the uncertainties that emerge during the process of verification, as given by
Definition 3.3. The evaluation itself is a comparison between two configurations, both
utilizing the CM verification process (cf. Chapter 6) and a SON coordinator. They
differentiate in the way of how they handle verification collisions: the first relies only
on the SON coordinator to resolve known (pre-defined) conflicts, as presented in Sec-
tion 2.3.2.3, whereas the second one makes use of the verification collision resolving
approach, as introduced in this thesis. The results show that for a high number of
degraded cells (cf. Section 10.2.2) the CM verification process manages to improve
the cell anomaly level by up to 50%.

10.7. Summary 201

Q: Does the presence of fluctuating PM data result into verification collisions?
A: Yes. Fluctuating PM data may result into unnecessary undo actions and, therefore,
into verification collisions. As outlined in Section 10.5, those unnecessary actions
may also interrupt a SON optimization process and prevent cells from reaching their
performance optimum. Although a SON function may induce a temporal performance
decrease, its changes must not be immediately undone.

Q: Can verification collisions emerge in a mobile networks not fully implementing
SON features?
A: Yes. Verification collisions may emerge when verifying any types of configuration
changes, including such that are manually made or computed by offline algorithms.
The observations on the real data set made in Sections 10.3.1 and 10.4.1 confirm
this fact. Although a relatively small verification area was selected, numerous col-
lisions emerged during the process of verification. The results are presented in Sec-
tions 10.3.1.3 and 10.4.1.5.

Q: How do weak verification collisions reflect on the verification process’ outcome?
A: Section 10.4.1 is dedicated to the elimination of weak collisions in the real data set
whereas Section 10.4.2 in the study of the effects after their removal. The latter one
was carried out in the simulation environment. Both studies confirm that the presence
of weak collisions increases the size of the corrective action plan (cf. Definition 3.4).
As a result, the likelihood of getting an over-constrained plan (cf. Definition 3.7)
increases, i.e., it is impossible to process all undo actions in time. Thereby, the cell
anomaly level never reaches zero, that is, the performance of the network never falls
within the expected ranges.

Q: Are the verification capabilities of SON functions limited?
A: Yes. The observations made in Section 10.1 confirm this statement. SON functions
do not have a wide view on the network and are only interested in reaching their
own objective. A sub-optimal decision made by one function results in sub-optimal
decisions taken by the other active SON functions. Furthermore, if such actions result
in a degradation, the network is either not able to completely return to the expected
performance state, or requires a lot of time to do so. In particular, the required time
was approximately 20 hours for the given setup (cf. Section 10.1.1).

O3.3: Resolve and eliminate uncertainties and provide accurate corrective ac-
tions when verifying configuration changes.
Q: How much does the performance improve when weak collisions get eliminated?
A: As the results from the real data study in Section 10.4.1.5 show, the elimination

202 Chapter 10. Evaluation Methodology and Results

of weak collisions considerably changes the corrective action plan. Most of the undo
actions get allocated to the first correction window slots. Furthermore, the number of
plan blocks decreases significantly. The simulation study (cf. Section 10.4.2.7) shows
that the removal of such collisions improves the cell anomaly level by up to 50%.

Q: Can the MST-based clustering approach that is used for the elimination of weak
verification collisions fail?
A: Yes. In particular, the approach highly depends on the edge removal function as
defined in Equation 6.7. As the results in Section 10.4.2.7 show, the removal of edges
in the verification collision graph improves the network performance only up to a
certain point. Removing an edge means that a collision is no longer considered as
valid, i.e., the likelihood of rolling back changes not harming performance increases.

Q: Does the verification concept benefit from the usage of soft constraints?
A: Yes. The usage of soft constraints to identify soft verification collisions (cf. Def-
inition 3.8) allows us to find a solution to an over-constrained verification collision
problem. Concretely, the real data evaluation (cf. Section 10.3.1.3) demonstrates the
ability of the verification concept to allocate all undo actions to the available correction
window slots. The simulation-based evaluation (cf. Section 10.3.2.7) shows that the
cell anomaly level significantly improves when we make use of soft collisions that
allow the generation of a collision-free (cf. Definition 3.5) and gain-aware (cf. Defini-
tion 3.6) corrective action plan.

Q: How does fluctuating PM data impact the corrective action decision process?
A: The results from Section 10.5.2 show that SON functions may induce temporal
performance drops which lead to fluctuating PM data. As a result, verification areas
are assumed to have degraded and are unnecessarily being processed by the verifica-
tion mechanism. Furthermore, if the latter one generates undo actions for those areas,
ongoing SON optimization processes get interrupted and the affected network areas
never reach their performance optimum.

Q: How much do SON functions benefit from the introduced verification concept?
A: There is a twofold answer to this question. First, the experiments made in Sec-
tion 10.5 show that the SON verification process prevents the interruption of a SON
optimization process. As a result, functions reach their performance goal.
Second, the results from Section 10.1 clearly show the limited ability of functions to
verify their actions in a SON environment on their own. Having an external entity,
that performs this operation, which also has a wider view on the network, leads to an
anomaly level near zero.

10.7. Summary 203

The second part of the evaluation is dedicated to the topology verification process.
In particular, the focus is put on the Steiner point assessment and cell penalization
capabilities. Furthermore, the ability to generate corrective topology actions is evaluated.
In summary, the results have shown that it is of high importance to handle topology
changes in a different way compared to other CM changes. They also show that in the
case of dynamic topology changes undo actions are insufficient to provide an acceptable
network performance level. The answers listed below (contributing to O4.2 and O4.3)
give a more detailed overview of the results.

O4.2: Study and evaluate the impact of topology changes on the process of veri-
fying configuration changes, as well as identify the necessary conceptual changes
of a verification process.
Q: Do dynamic topology changes impact a verification process?
A: Yes. As the experiments from Section 10.6 show, dynamic topology changes lead
to anomalies in the TKPIs. Thereby, CM changes that are occurring within the same
area are rolled back, even though they did not harm performance. In other words, we
get a weak corrective action plan (cf. Definition 3.13).

O4.3: Enable topology verification, resolve uncertainties, and provide corrective
actions.
Q: What is the benefit of the introduced Steiner tree-based verification approach?
A: The Steiner tree-based verification approach implements the missing component of
a strategy that verifies ongoing network changes. In particular, it allows the verifica-
tion of dynamic topology changes and the generation of a topology corrective action
if required. The results from Section 10.6.2 clearly show that the Steiner tree-based
approach improves the overall cell anomaly level.

Q: What care should be taken in order to enable topology verification?
A: The Steiner tree-based verification approach cannot meet the topology verification
requirements without understanding the effects of the edge weighting function (cf. Sec-
tion 10.6.2.1), as well as the Steiner point assessment function (cf. Section 10.6.2.2).

Q: What are the limits of the Steiner tree-based verification approach?
A: The main limitation comes from the network topology. As shown in Section 10.6.2.3,
the Steiner tree-based verification approach is able to significantly improve the overall
anomaly level. Nevertheless, if the network is not able to handle all of the generated
traffic, e.g., due to a low number of small cells, we will never get an anomaly level
near zero.

204 Chapter 10. Evaluation Methodology and Results

Part V

Conclusion

Chapter 11

Conclusion and Future Directions

This chapter concludes as well as summarizes the key findings of this thesis. Concretely,
Sections 11.1 and 11.2 highlight the research problems and the developed verification
concept, i.e., the CM and the topology verification process. Section 11.3 contributes to
the summary by outlining the research results whereas Section 11.4 by discussing future
research directions and the future development of the SON verification concept. In the
latter case, a new communication handling mechanism is proposed and extensive study
of the utilized algorithms in future deployments is suggested.

Published work Future research directions of the concept of SON verification have
been published. In particular, the proposed communication handling mechanism
can be found in [TAT16].

11.1 Research Problems

Today, mobile communication networks have become complex systems that require
automation mechanisms for configuration, optimization, and troubleshooting. Imple-
menting those systems as SONs is one possible way of achieving a high level of au-
tomation. Nonetheless, automation does not immediately guarantee a flawless network
operation. There are many reasons why automated reconfiguration processes may change
CM parameters that are suboptimal or even harm performance. For example, online
SON algorithms have a limited view on the network. Some of them may optimize the
network only locally, e.g., only the handover parameters between two cells. Offline SON
algorithms are usually comprised of sophisticated algorithms, but utilize simulation tools
which may produce suboptimal results if the used model is inaccurate.

For this reason, troubleshooting as well as anomaly detection and diagnosis approaches
have been developed and used in the area of mobile network management. Unfortunately,
they are not always able to provide appropriate corrective actions, as it is extensively
discussed throughout this thesis. First and foremost, the ability to generate the most
appropriate corrective action depends on whether the used approach is supplied with

208 Chapter 11. Conclusion and Future Directions

accurate diagnosis knowledge. Finding it is a challenging task because networks are
manifold, i.e., they generate different types of PM data, and even react in a different way
to the same corrective action. In most cases it is even impossible to reuse the results from
one observation for the diagnosis on a different RAT, even within the same network.

Second, dynamic topology changes as well as potentially resulting incomplete profiles
may complicate the process of finding corrective actions. As stated in Section 3.2.5, a
profile specifies how a cell should usually behave, e.g., during peak hours. However,
frequently switching cells on or off may invalidate the initially made assumptions about
the network.

Nonetheless, even if we neglect the issue of dynamic topology changes, we still
may face so-called verification collisions. As given by Definition 3.3, a collision is an
uncertainty which configuration change to rollback. It may result in the serialization of
the corrective action deployment process, i.e., we have to deploy corrective actions one
after the other. Hence, the presence of numerous collisions may further lead to a delay
while restoring configurations and even to the inability to completely restore network
performance.

Besides those issues, there is also the problem of having an over-constrained corrective
action plan. It emerges when the time to process the corrective action plan is not suffi-
cient (cf. Definition 3.7). Furthermore, there are also weak collisions (cf. Definition 3.9)
which could additionally impair the process of restoring a cell’s configuration .

11.2 The Concept of SON Verification

In this thesis, the concept of SON verification has been presented. It aims to verify
configuration changes that have been made in the network by assessing their impact on
network performance. Those that harm performance are marked for further analysis and
are eventually rolled back. This process has been also introduced as CM verification.
Furthermore, the concept of SON verification is also able to verify dynamic topology
changes, e.g., those emerging when the network is optimized by energy saving algorithms.
The corrective action here is to enable or disable cells depending on their ability to
improve the stability of the network.

11.2.1 CM Verification

CM verification is split into three phases. First, the scope of verification is fragmented
by splitting the network into so-called verification areas. They represent cells that are of
particular interest due to CM changes. Elements from graph and set theory have been
utilized to describe this process.

During the second phase, the performance of the verification areas is assessed. To
achieve that, a cell behavior model is proposed that represents each cell in the Rn space
by taking its CKPIs into account (cf. Definition 5.5). Furthermore, a strategy that is
based on exponential smoothing is applied to limit the impact of fluctuating PM data on

11.3. Results 209

the outcome of the verification process. Then, each area that is marked as degraded is
processed by the developed MST clustering technique. It has the purpose of eliminating
weak verification collisions by changing the initially defined verification areas. The
problem of resolving the remaining collisions is modeled as a constraint optimization
problem that makes use of so-called hard constraints. The outcome is a corrective action
plan, in particular, a partition of the set of all undo corrective actions. Those having the
highest chance of restoring the network performance are allocated to the first block of the
partition. Moreover, the optimization also makes use of so-called soft constraints in case
the given verification problem is over-constrained, e.g., due to time limitations. They
allow to find a solution, i.e., a corrective action plan, that minimizes the total constraint
violation and, at the same time, guarantees the collision-free and gain-aware property of
the plan (cf. Definitions 3.5 and 3.6).

11.2.2 Topology Verification

Similarly to CM verification, the process responsible for verifying topology changes is
also divided into three phases. During the first phase, verification areas are generated. In
contrast to CM verification, those areas are formed around cells where topology changes
take place. For example, areas comprised of small cells are of particular interest since they
are only activated when numerous users enter the network. In order to detect such areas,
the behavior of the cells is modeled by using their TKPIs (cf. Definition 5.6). Similarly
to CM verification, the behavior is defined in the Rn space. However, in contrast to CM
verification, the behavior of cells not having a profile is defined by the behavior of their
direct neighbors.

The problem itself of finding the appropriate corrective actions is represented as a
Steiner tree problem, i.e., finding an MST by potentially including an extra set of nodes,
also known as Steiner points. Those Steiner points represent on-demand cells (cells that
can be disabled) whereas the initial vertexes of the graph represent static cells (cells
that are always switched on). An on-demand cell is turned on only if the corresponding
Steiner point is selected to form the tree. The presented approach is also accompanied by
functionalities that penalize cells that are switched on or off due to fluctuating PM data.

11.3 Results

The evaluation of the developed verification concept studies several aspects. First of all,
the ability to verify CM changes and assemble a corrective action plan is studied. The
evaluation itself is devoted to the study of the limits of SON functions to verify their own
activity, and the observation of the impact of neglecting verification collisions. It is shown
that SON functions have a limited ability to verify their operation and are, therefore, not
always able to find an appropriate corrective action. The usage of CM verification,
however, manages to provide a suitable set of actions and stabilize the performance of
the network.

210 Chapter 11. Conclusion and Future Directions

The evaluation also considers the ability of the concept to resolve verification collisions,
detect such being weak, as well as handle an over-constrained verification collision
problem. Those observations are made by using not only the simulation environment,
but also a data set that was generated by a real LTE network. The results show that
verification collisions can occur in a mobile network and that the provided solution is
able to generate a corrective action plan that restores cells to a previous stable state.

In addition, during the evaluation a closer look is taken at the capabilities of handling
fluctuating PM data. The results show that the presence of such data can lead to unnec-
essary processing of verification areas and, in the worst case, the interruption of a SON
optimization process.

In this thesis, the topology verification process is evaluated as well. It is shown that it
manages to provide the necessary corrective actions, even when CM changes are made at
the same time by other SON functions.

11.4 Future Directions and Work

The evolution of the presented verification concept depends on the direction mobile
communication systems are going to take. In particular, it becomes of high interest to
follow the development of systems utilizing self-organizing paradigms. Hence, let us
observe the trends of such systems before going into details about the future directions
of the presented concept.

11.4.1 Evolution of Mobile Networks

In future standards, like the fifth generation of mobile communications, also abbreviated
as 5G, advanced techniques will not only apply to physical NEs, but will enable operators
to balance load in a multi RAT environment, and further develop traffic steering and
dynamic spectrum allocation [Eri14]. Furthermore, a wider variety of use cases are going
to emerge [Nex15]. For example, future mobile networks will provide broadband access
in dense areas, allow high user mobility, as well as be able to handle extreme real-time
communications. Also some base stations will start having a range similarly to commonly
used Wi-Fi routers [CZ15].

Network management automation is also going to experience changes induced by
5G technologies [MDM+16], i.e., the SON concept as it is today will be much further
developed. First and foremost, a mobile network has to provide interoperability with
legacy SON, in particular, with legacy SON functions which typically reconfigure NEs
based on static rules. Due to this property, legacy functions may induce conflicting
configuration changes as well as increase the likelihood of anomalous cell behavior.
In contrast to 4G systems, SON coordination and management will only be able to
partially provide a solution due to the complexity and the flexibility requirements of
future standards.

11.4. Future Directions and Work 211

Second, there will be a redefinition of SON use cases. For example, current handover
optimization functions (like MRO) will not be applicable since future mobile networks
will be highly heterogeneous and dense. Furthermore, most of the traffic load is going
to be carried by small cells which leads to frequent handover procedures and complex
configurations.

Third, future SON functions, also referred to as cognitive functions, will incorporate
sophisticated machine learning algorithms and will cover a much wider variety of use
cases. Such functions, however, would also need to operate with legacy SON functions
since an immediate full transition is unlikely to happen.

11.4.2 Challenges for Verification Approaches

In Chapter 4, approaches that are related to the concept of SON verification has been
presented. In total, three categories have been identified: pre-action analysis, post-action
analysis, and post-action decision making. Within the first category fall approaches
that focus on the avoidance of potential conflicts which may induce undesired network
behavior. The introduced methods can be triggered at design- or at run-time. Design-
time approaches, like harmonization and co-design (cf. Sections 4.1.1.1 and 4.1.1.2),
will continue experiencing the same problems and will even be further limited in their
conflict prediction capabilities. The main cause is going to be the wide variety of con-
figuration parameters and increased complexity of the network. Run-time methods, e.g.,
such being responsible for dynamic action execution and configuration management (cf.
Sections 4.1.2.1 and 4.1.2.2), are going to experience scalability issues in future setups.
The same applies for adaptive resource allocation (cf. Section 4.1.2.3). In addition, the
complexity and the flexibility requirements may have a negative impact on them as well.

Representatives of the second category, post-action analysis (cf. Section 4.2), will
mainly experience difficulties in determining corrective actions when numerous automatic
reconfiguration entities are active, e.g., the aforementioned SON/cognitive functions. As
discussed in Section 11.4.1, the number of such functions will increase and new SON use
cases will emerge. As a result, the capabilities of predicting the combined performance
impact of each CM change combination, as introduced in Section 3.1.1, will become
even more challenging.

Approaches falling within the third category, post-action decision making (cf. Sec-
tion 4.3), will face the same issues as those experienced by post-action analysis methods.
However, since they also actively perform changes, they will need to provide interoper-
ability with legacy SON which, as mentioned in Section 11.4.1, reconfigure the network
based on static rules.

11.4.3 Future Work and Open Issues

As we saw in the previous sections, there are numerous factors that are going to impact
strategies that follow verification principles. In order to meet the new requirements, the

212 Chapter 11. Conclusion and Future Directions

concept of SON verification would require research in three areas. First, the communica-
tion with the active SON/cognitive functions, which is closely connected with the scope
of verification. Second, the study of the utilized algorithms will be of high importance.
Third, the application of the SON verification concept in other areas is of high interest,
e.g., Wi-Fi networks.

11.4.3.1 Communication Handling

Verification areas, as given by Definition 5.3, will get larger and include more entities
requiring assessment, which creates a potential for more area overlaps and verification
collisions (cf. Definition 3.3). Therefore, the scope of the verification process will no
longer solely include verification areas, but form so-called verification collision do-
mains [TAT16]. A collision domain is a section of the mobile network where verification
collisions have taken place, i.e., areas being in a verification collision are part of such a
domain. Areas that are not participating in collisions form their own collision domain.

Furthermore, a verification mechanism will extend its capabilities, besides assessing
verification areas and generating corrective undo or topology actions. The verification
process needs a much more active interaction with SON/cognitive functions. Concretely,
to involve functions into the corrective action decision making process, it would need to
reliably negotiate all required verification parameters with all involved entities.

Figure 11.1 shows a potential design change [TATS16]. The communication flow is
realized as a three-way handshake. Before executing a corrective action, the verification
process contacts the functions of each collision domain over a verification interface by

Verification process

Cognitive

function

PM / FMCM

Verification

interface

Cognitive

function

Cognitive

function

Cognitive

function

Verification

interface

Verification

interface

Verification

interface

PM / FMCM PM / FMCM PM / FMCM

Anomalous cellCM change Verification collision domainVerification area

C
o
rr

e
ct

iv
e
 a

ct
io

n

P
M

 /
 C

M

C
o
rr

e
ct

iv
e
 a

ct
io

n

P
M

 /
 C

M

Initiation-message Verification-accept/decline message Verification-start/release message

Figure 11.1: Verification collision domains and three-way handshake communication

11.4. Future Directions and Work 213

sending an initiation message. It serves the purpose of notifying the functions within
the verification areas about the spatial scope of the verification process. There are,
however, two cases between which we would need to differentiate. The first one is when
the verification mechanism notifies functions that are operating in a collision domain
comprised of more than one verification area. Should this be the case, it will need to
include not only the list of impacted cells and the change type, but also a parameter that
specifies the time required for resolving the collisions.

Upon reception of such a message, each function will respond with either a verification-
accept or with a verification-decline message. By sending an accept message, the replying
function is declaring its decision not to interfere as corrective actions are getting executed
within the collision domain. However, a function may also decline the planned corrective
action if it needs additional steps to achieve its goal. Thereby, a function will be obligated
to inform the verification process about the parameters it is optimizing as well as the
estimated time for achieving its objective.

After receiving all replies, the verification process would send either a verification-
start or a verification-release message to the functions within each collision domain. In
case all functions have reported that they are willing to freeze their operation for the
suggested time, a start message is sent, which will be later followed by the first set of
corrective actions. However, if a function has reported that it is on the way of achieving
its objective, the verification process will be obligated to notify the remaining functions
within the same domain about the expected verification time.

Implementing those functionalities and studying the behavior of network is of high
interest for future deployments.

11.4.3.2 Study of Algorithms

The second research area is the adaptation of the utilized algorithms. As introduced in
Chapters 5, 6, and 7, the concept of SON verification makes use of numerous algorithms,
in most cases such known from graph theory. For example, the topology verification
process uses the Steiner tree algorithm to find the most appropriate corrective actions.
However, it also utilizes several helper functions, as summarized in Section 10.6.1.
They are crucial for the topology verification process as they affect its outcome. Hence,
it becomes of particular interest to study the changes in those functions, e.g., adding
prediction capabilities in the edge weighting function dT (cf. Section 7.2).

Furthermore, it is of high importance to observe the behavior of the CM verification
process in a much denser environment. Due to the fact that potentially more entities will
require verification, the likelihood of verification collisions to emerge increases. Thus,
one future research topic is the study of ability of the MST-based clustering algorithm to
eliminate weak collisions, especially when a communication flow like the one presented
in the previous section is implemented. Another would be the incorporation of new
performance metrics into the priority rating functions ρ and ρ̃ required to resolve valid
collisions. They are used by the constraint optimizer, as presented in Sections 6.5 and 6.6.

214 Chapter 11. Conclusion and Future Directions

11.4.3.3 Other Application Areas

One of the most promising application areas is Wi-Fi SON (cf. Section 2.3.3.2). The
concept of SON verification clearly fulfills the requirements for being a member of Wi-Fi
SON. In its current state, it fits into the self-healing category since it is responsible
for the assessment of configuration changes on the network performance and rolling
back those harming it. This particular sequence is identified as CM verification. Also,
the presented concept can be assigned to the self-managing category as it implements
a topology verification process that switches elements on or off. The decision itself is
based on the used utility function, which in the case of topology verification, is set to
prevent overload from undertaking the performance of the network.

However, to fully operate in a Wi-Fi environment several questions need to be an-
swered. First and foremost, the KPIs of interest as well as the profiling procedure have
to be selected. In the latter case, research on the incomplete profile issue (cf. Defini-
tion 3.12) is necessary. The likelihood of such profiles to emerge must be determined
as well as the entities that can be potentially affected need to be specified. Second, to
enable CM verification it is crucial how we select function ζ from Definition 3.3, i.e., the
condition for generating a rollback action. Third, it is of high importance to study the
possibility of an over-constrained corrective action plan (cf. Definition 3.7) to emerge, in
particular, how the upper time slot limit τ impacts the outcome of the CM verification
process. Fourth, it is important to specify the edge removal function ξ used by the MST
clustering technique (cf. Section 6.3). Wrong corrective actions can be executed if too
many edges are removed from the cell behavior graph (cf. Definition 6.2). Fifth, to
enable topology verification, function dT that is used to compute the Steiner tree must
be specified. In other words, the metric that is considered while forming the Steiner tree
requires specification.

Beyond those research questions, it is of interest to apply the Steiner tree-based ap-
proach to solve other problems besides those already introduced in Chapter 7. It is
not uncommon for troubleshooting approaches to incorporate several other features that
improve the overall decision making process. For instance, in [BCL+09] a method for
detecting the so-called rate anomaly problem in Wi-Fi networks is proposed. The prob-
lem is that stations with lower signal quality transmit at lower rates and, at the same
time, consume a significant majority of airtime. Thereby, the throughput of stations
transmitting at higher rates is significantly reduced. The authors suggest the inclusion of
energy consumption metrics into their utility function to improve the outcome of their
algorithm.

In the terms of the Steiner tree-based method, such an extension would be added to
edge weighting function dT , as described in Section 7.2. Concretely, energy consumption
measurements and metrics that estimate the resilience state of the network can be included.
In the latter case, the algorithm may form a second Steiner tree, whose Steiner points
represent backup network elements that are required to operate only in the case of faults
and disruption of the normal operation.

Part VI

Appendix

Acronyms

3GPP 3rd Generation Partnership Project

ACK Acknowledgment

AMPS Advanced Mobile Phone System

ANR Automatic Neighbor Relation

API Application Programming Interface

ARP Allocation Retention Priority

BLU Blocked by User

CAAC Cell Association Auto-Configuration

CBR Constant Bit Rate

CCO Coverage and Capacity Optimization

CIO Cell Individual Offset

CKPI Configuration management verification KPI

CM Configuration Management

COC Cell Outage Compensation

CQI Channel Quality Indicator

CSP Constraint Satisfaction Problem

CSSR Call Setup Success Rate

CSV Comma Separated Value

CVSI Cell Verification State Indicator

DHCP Dynamic Host Configuration Protocol

DM Domain Management

218 Acronyms

DTP Decision-Theoretic Planning

E-RAB EUTRAN Radio Access Bearer

EDGE Enhanced Data Rates for GSM Evolution

EM Element Manager

eNB Evolved NodeB

EPC Evolved Packet Core

ESM Energy Saving Management

ETSI European Telecommunications Standards Institute

EUTRAN Evolved Universal Terrestrial Radio Access Network

FM Fault Management

FRGNG Fixed Resolution Growing Neural Gas

GBR Guaranteed Bit Rate

GERAN GSM EDGE Radio Access Network

GRAN GSM Radio Access Network

GNG Growing Neural Gas

GPRS General Packet Radio Service

GSM Global System for Mobile Communications

GUI Graphical User Interface

HSS Home Subscriber Server

NMT Nordic Mobile Telephone

HDP Hierarchical Dirichlet Process

HOSR Handover Success Rate

HSPA High Speed Packet Access

IEEE Institute of Electrical and Electronics Engineers

IMT International Mobile Telecommunications

IO Input-Output

Acronyms 219

IP Internet Protocol

ISDN Integrated Services Digital Network

JVM Java Virtual Machine

JWt Java Web Toolkit

KPI Key Performance Indicator

KQI Key Quality Indicator

LTE Long Term Evolution

MAC Medium Access Control

MIMO Multiple-Input and Multiple-Output

MLB Mobility Load Balancing

MLN Markov Logic Network

MME Mobility Management Entity

MRO Mobility Robustness Optimization

MST Minimum Spanning Tree

NACK Non-Acknowledgment

NE Network Element

NM Network Management

NRT Neighbor Relation Table

OAM Operation, Administration and Management

ODE Ordinary Differential Equation

OSS Operations Support System

PCI Physical Cell Identity

PDCP Packet Data Convergence Protocol

PDN Packet Data Network

PDU Protocol Data Unit

PLMN Public Land Mobile Network

220 Acronyms

PM Performance Management

PRB Physical Resource Block

QCI QoS Class Identifier

QoS Quality of Service

RACH Random Access Channel

RAN Radio Access Network

RAT Radio Access Technology

RET Remote Electrical Tilt

RLC Radio Link Control

RLF Radio Link Failure

RRC Radio Resource Control

RRM Radio Resource Management

RSRP Reference Signal Received Power

RSRQ Reference Signal Received Quality

RSS Received Signal Strength

S3 SON Simulation System

SGSN Serving GPRS Support Node

SIB System Information Block

SINR Signal to Interference plus Noise Ratio

SON Self-Organizing Network

SWMN Self-optimizing Wireless Mesh Network

TKPI Topology verification KPI

TS Technical Specification

TR Technical Report

TXP Transmission Power

UE User Equipment

Acronyms 221

UMTS Universal Mobile Telecommunications System

UTRAN Universal Terrestrial Radio Access Network

VoIP Voice over IP

WCDMA Wideband Code Division Multiple Access

WLAN Wireless Local Area Network

222 Acronyms

List of Symbols

Actions

c⊥ A corrective undo (rollback) action. It restores a cell’s configuration
to a previous stable state and is the outcome of a process that verifies
configuration changes (cf. Section 5.4.1).

PC⊥ = {Ĉ⊥1 , . . . , Ĉ
⊥
i } A partition of the set of all corrective undo (rollback) actions C⊥,

also referred to as a corrective action plan (cf. Definition 3.4).

C⊥ Represents the set of all corrective undo (rollback) actions c⊥ that
are generated by a verification process (cf. Section 5.4.1).

δi Represents an action which is either a single CM change or a set of
CM changes. An action is executed by a SON function.

∆ = {δ1, . . . ,δi } A SON function transaction as given by Definition 3.2, i.e., a se-
quence of actions δi that are required to a reach the function’s
objective.

G (Ĉ⊥i) Gain of executing a block (step) Ĉ⊥i of a corrective action plan
PC⊥ = {Ĉ⊥1 , . . . , Ĉ

⊥
i } (cf. Definition 3.4). The gain is required for

the specification of the gain-aware property (cf. Definition 3.6).

c` A topology corrective action. It either enables or disables a cell. It
is generated by the topology verification process (cf. Section 5.4.2).

C` Set of all topology corrective actions that are generated by the
topology verification process (cf. Section 5.4.2).

Counters

τ Upper limit of the number of blocks of a corrective action plan
PC⊥ = {Ĉ⊥1 , . . . , Ĉ

⊥
i } (cf. Definition 3.4).

α An update factor used for the computation of the Cell Verification
State Indicator (CVSI) (cf. Equation 6.4), also referred to as the cell
anomaly level.

224 List of Symbols

κ Number of cell clusters that emerge after triggering the MST cluster-
ing approach during the process of CM verification (cf. Section 6.3).

ν Represents the number of neighbors that are considered by an on-
demand cell for the computation of its TKPI anomaly level.

t An index that represents a time interval, for example, a granularity
period (cf. Section 2.2.3).

Functions

φ : P⊥ × K⊥ → A⊥ CKPI anomaly level function (cf. Section 6.1). It is used by the CM
verification process.

ψ : A⊥ → R Vector aggregation function. It is used during the anomaly detection
phase of the CM verification process (cf. Section 5.3).

ρ̃ : Θ̃→ R Priority function that rates a soft constraint during the process of
solving an over-constrained verification collision problem (cf. Sec-
tion 6.6).

r : Θ̃→ {0, 1} Reification function that takes a soft constraint and returns 0 or 1.
It is used during the process of identifying soft verification colli-
sions (cf. Section 6.6).

ω̃ : V Φ → X̃ Variable assignment function. It is used during the process of find-
ing and eliminating soft verification collisions (cf. Section 6.6).

ω : V Φ → X Variable assignment function. It is used during the process of re-
solving verification collisions (cf. Section 6.5).

ρ : X → R Priority function that rates a variable that represents an undo action
(cf. Section 6.5).

ϑ : A⊥ × R→ R The Cell Verification State Indicator (CVSI) (cf. Equation 6.4), also
referred to as the cell anomaly level.

m : V Φ → C A function that assigns each vertex of a verification collision graph
GΦ = (V Φ,EΦ) a color from the set C.

d : Rn × Rn → R Distance function for forming the MST during the cell clustering
procedure (cf. Section 6.3).

ξ : T Σ → P(ẼΣ) Edge removal function. It is required by the MST clustering proce-
dure, as defined in Section 6.3.

ζ : C⊥ → P(Σ) \ ∅ Function that identifies the origin, i.e., cells that triggered the gen-
eration of a rollback action.

List of Symbols 225

ζ̃ : C⊥ → P(ΣA) \ ∅ A function that returns the anomalous cells that triggered the gener-
ation of an undo action.

φ̇ : Ṗ` × K̇` → Ȧ
` TKPI anomaly level function. It is used to specify the cell behavior

during topology verification (cf. Section 7.1).

ι : Σ̊R × K̊
`
→ VP ∪ ∅ Steiner point conversion function. It is used during topology

verification and has the purpose of converting a Steiner point to a
terminal node (cf. Section 7.4).

Graphs

χ (GΦ) The verification collision grade (cf. Definition 6.5), i.e., the Chro-
matic number of the verification graph GΦ = (V Φ,EΦ) (cf. Defini-
tion 6.4).

V̄
Φ Represents a clique formed within the verification graph GΦ =

(V Φ,EΦ) (cf. Section 6.6) during the process of finding soft verifi-
cation collisions.⋃n

i=1 V̄
Φ
i The union of all cliques found during the process of solving an

over-constrained verification collision problem.

ǦΦ = (V̌ Φ, ĚΦ) Verification collision graph that is formed after the elimination of
soft verification collisions (cf. Section 6.6).

V̌ Φ Set of vertexes for reduced verification graph ǦΦ.

w(eΣ) Weight of an edge EΣ in cell behavior graph GΣ = (V Σ,EΣ), where
eΣ ∈ EΣ (cf. Definition 6.2).

F Σ Represents a forest, i.e., undirected graph whose connected compo-
nents are trees. Each tree represents a cell cluster that got formed
after triggering the MST clustering procedure (cf. Section 6.3).

GΣ = (V Σ,EΣ) Cell behavior graph (cf. Definition 6.2) formed during the process
of CM verification.

T Σ = (Ṽ Σ, ẼΣ) An MST formed out of the cell behavior graph GΣ during the weak
collision elimination procedure (cf. Section 6.3).

T̂ Σ Tree formed after removing edges from T Σ. It appears during the
MST clustering procedure (cf. Section 6.3).

DG (V
F) Complete graph of Steiner terminal vertexes. It is formed by the

topology verification process (cf. Section 7.3).

226 List of Symbols

GT = (V T ,ET ,dT) Steiner input graph (cf. Definition 7.3) formed by the topology
verification process.

VP Set of all steiner points. It is formed by the process of topology
verification (cf. Section 7.3).

V U Set of unnecessary Steiner points. It is formed by the process of
topology verification (cf. Section 7.3).

VR Set of required Steiner points. It is formed by the process of topol-
ogy verification (cf. Section 7.3).

VF Set of terminal vertexes in the Steiner tree. It is formed by the
process of topology verification (cf. Section 7.3).

T T = (Ṽ T , ẼT) Steiner tree that is formed by the topology verification process, as
given by Algorithm 2.

C Set of colors required to determine the verification collision grade,
as given by Definition 6.5.

GΦ = (V Φ,EΦ) Verification collision graph, where the vertex set V Φ represents
verification areas and the set EΦ verification collisions (cf. Defini-
tion 6.4).

KPI Types, Anomaly Levels, and Profiles

k⊥ Represents a CKPI, as given by Definition 5.5. It is element of a
CKPI vector k⊥ = (k⊥1 , . . . ,k

⊥
n). It is utilized by CM verification.

k` Represents a TKPI, as given by Definition 5.6. It is element of a
TKPI vector k` = (k`1, . . . ,k

`
n) of a cell. It is utilized by topology

verification.

k̇
`

Represents a TKPI of a static cell, as given by Definition 5.6. It is
element of a TKPI vector k̇` = (k̇

`

1, . . . , k̇
`

n).

k̊
`

Represents a TKPI of an on-demand cell, as given by Definition 5.6.
It is element of a TKPI vector k̊` = (k̊

`

1, . . . , k̊
`

n).

a⊥ An anomaly level of a CKPI (cf. Definition 6.1). It is element of a
CKPI anomaly level vector a⊥ = (a⊥1 , . . . ,a

⊥
n).

p⊥ The profile of a CKPI (cf. Section 5.3.2). It is element of a CKPI
profile vector p⊥ = (p⊥1 , . . . ,p

⊥
n).

ṗ` The profile of a TKPI (cf. Section 5.3.3). It is element of a TKPI
profile vector ṗ` = (ṗ`1, . . . , ṗ

`
n). Such profiles are defined for static

cells only.

List of Symbols 227

a` A TKPI anomaly level of a cell. It is element of a TKPI anomaly
level vector a` = (a`1, . . . ,a

`
n), as given by Definition 7.1.

ȧ` An anomaly level of TKPI of a static cell (cf. Definition 7.1). It is
element of a TKPI anomaly level vector å` = (å`1, . . . , å

`
n).

å` An anomaly level of TKPI of an on-demand cell (cf. Definition 7.1).
It is element of a TKPI anomaly level vector å` = (å`1, . . . , å

`
n).

Common Mathematical Symbols

Bn Bell number, i.e., the number of partitions of a set of size n.

∅ The empty set.

N+ Set of positive natural numbers excluding 0.

N0 Set of positive natural numbers including 0.

N Set of natural numbers.

PS ,P (S) Partition of a set S .

P(S) Power set of a set S .

Rn Real coordinate space of n dimensions.

R Set of real numbers.

R≥0 Set of positive real numbers including 0.

Constraint Optimization

Θ The set of all hard constraints, i.e., constraints that must not be
violated. They are used during the process of generating a corrective
action plan (cf. Section 6.5).

Θ̃ The set of all soft constraints, i.e., constraints that can be violated
under certain circumstances. They are used during the process of
solving an over-constrained verification collision problem (cf. Sec-
tion 6.6).

x̃ A variable which represents an edge eΦ ∈ EΦ of the verification
collision graph GΦ = (V Φ,EΦ). Such a variable is used during
the process of solving an over-constrained verification collision
problem (cf. Section 6.6).

X̃ The set of all variables x̃ . They are used during the process of
solving an over-constrained verification collision problem (cf. Sec-
tion 6.6).

228 List of Symbols

x A variable which represents a vertex v
Φ ∈ V Φ of the verification

collision graph GΦ = (V Φ,EΦ). Variables are required during the
verification collision resolving process (cf. Section 6.5).

X The set of all verification variables x . Variables are required during
the verification collision resolving process (cf. Section 6.5).

Cell Sets and Areas

ΣM The set of all cells that are monitored by the verification process. It
is formed as the union of all cells of all verification areas (cf. Sec-
tion 5.2).

ΣA Set of all anomalous cells in the network. Note that ΣA ⊆ Σ, where
Σ is the set of all cells.

Σ Set of all cells in the network. It includes both static and on-demand
cells (cf. Section 5.2.2).

Σ̇ Set of all static cells, i.e., cells that are never turned off during
their operation. Such cells are required by the Steiner tree-based
verification algorithm (cf. Chapter 7).

Σ̊ Set of all on-demand cells, i.e., cells that can be switched on or
off during their operation. Such cells are required by the Steiner
tree-based verification algorithm (cf. Chapter 7).

ΣM
′

Set of cells that represent a verification area (cf. Section 5.2). Note
that ΣM

′

⊆ ΣM , where ΣM is the set of all cells monitored by the
verification process.

φ Represents a verification area (cf. Definition 5.3), i.e., a set of cells
that are assessed by the verification process.

Φ Set of all verification areas that are formed by the verification pro-
cess.

Cell Types

σA An anomalous cell detected by the verification algorithm. Note that
the set of all anomalous cells is denoted as ΣA.

σ Cell in the network. Note that the set of all cells is denoted as Σ.

σ̇ A static cell. Such a cell is required by the Steiner tree-based
verification algorithm (cf. Chapter 7).

List of Symbols 229

σ̊ An on-demand cell. Such a cell is required by the Steiner tree-based
verification algorithm (cf. Chapter 7).

Vectors and Vector Spaces

k⊥ = (k⊥1 , . . . ,k
⊥
n) A vector of CKPIs, as given by Definition 5.5. CKPIs are relevant

for the CM verification process (cf. Chapter 6).

K⊥ = {k⊥1 , . . . ,k
⊥
|Σ | } The CKPI vector space, as given by Definition 5.5. It is relevant for

the CM verification process (cf. Chapter 6).

k` = (k`1, . . . ,k
`
n) A vector of TKPIs, as given by Definition 5.6. The vector is relevant

for the topology verification process (cf. Chapter 7).

K` = {k`1, . . . ,k
`
|Σ | } The TKPI vector space, as given by Definition 5.6. It is relevant for

the topology verification process (cf. Chapter 7). Note that it is fur-
ther divided into the TKPI vector space of all static and on-demand
cells, denoted as K̇` = {k̇`1, . . . , k̇

`

|Σ̇ | } and K̊
`
= {k̊`1, . . . , k̊

`

|Σ̊ | }, re-
spectively.

a⊥ = (a⊥1 , . . . ,a
⊥
n) A CKPI anomaly level vector (cf. Definition 6.1). It is required to

define the state of a cell with respect to CM verification.

A⊥ = {a⊥1 , . . . , a
⊥
|Σ | } The CKPI anomaly level vector space, as given by Definition 6.1.

It is relevant for the CM verification process.

p⊥ = (p⊥1 , . . . ,p
⊥
n) A profile vector that defines the expected behavior of the CKPIs of

a cell (cf. Section 5.3.2).

P⊥ Profile vector space for the given CKPI profile vectors, as intro-
duced in Section 5.3.2.

ṗ` = (ṗ`1, . . . , ṗ
`
n) A profile vector that defines the expected behavior of the TKPIs of

a static cell (cf. Section 5.3.3).

Ṗ
` Profile vector space for the given TKPI profile vectors (cf. Sec-

tion 5.3.3).

a` = (a`1, . . . ,a
`
n) A TKPI anomaly level vector. The elements represent TKPIs

anomaly levels (cf. Definition 7.1) which are required to define
the state of a cell with respect to topology verification. It should
be noted that the anomaly level vectors of static and on-demand
cells are denoted as ȧ` = (ȧ`1, . . . , ȧ

`
n) and å` = (å`1, . . . , å

`
n), respec-

tively.

A` = {a`1, . . . , a
`
|Σ | } The TKPI anomaly level vector space (cf. Definition 7.2). Note that

the anomaly level vector space of static and on-demand cells are
denoted as Ȧ` = {ȧ`1, . . . , ȧ

`

|Σ̇ |
} and Å

`
= {å`1, . . . , å

`

|Σ̊ |
}, respectively.

230 List of Symbols

List of Figures

1.1 Thesis research objectives mapped to chapters 16

2.1 Structure of the EUTRAN . 26
2.2 Overview of the EPC . 27
2.3 Overview of the OAM architecture . 29
2.4 Overview of a SON . 32

3.1 Generic overview of anomaly detection and diagnosis approaches . . . 42
3.2 Simplified flow-chart of the CCO algorithm 46
3.3 Example of a SON function transaction 46
3.4 Conflict example before applying changes 47
3.5 Example of a verification collision . 48
3.6 Example of a sequence of corrective rollback actions 48
3.7 The impact of adding constraints to a corrective action plan 50
3.8 The impact of verification collision removal 50
3.9 Correlation between cell performance, verification collisions, and correc-

tive actions . 51
3.10 The impact of topology changes on cell performance 52
3.11 Visualization of concurrent topology and CM changes 54
3.12 Correlation between granularity periods, verification collisions, and the

activities of SON functions . 56
3.13 The consequences of having a coarse granular view on CM data 57
3.14 The impact of absent statistically relevant PM data on a verification process 58
3.15 Cell out-degree distribution of an LTE network 59
3.16 Graph analysis of the verification collision problem 60
3.17 Example of having one shared RET module 61
3.18 Example of having three single RET modules 61
3.19 Example of blocking a SON optimization process when processing a

corrective action plan . 62

5.1 Overview of the verification process 80
5.2 Verification area formation in case of CM changes 82
5.3 Verification area formation in case of dynamic topology changes 83

232 List of Figures

5.4 Permissible undo actions in the case of four CM changes 86
5.5 An example of a 3-slot observation and 2-slot correction window 87
5.6 Phases of an ESM function . 89
5.7 SON verification versus ESM configuration states 90

6.1 Overview of the CM verification process 96
6.2 Exemplary computation of the Cell Verification State Indicator 98
6.3 Example of a mobile network . 99
6.4 Example of applying the MST-based clustering algorithm 100
6.5 Example of estimating the verification collision grade 105
6.6 Variable assignment and constraint definition example 107
6.7 Correction window slot allocation . 107
6.8 An example of an over-constrained verification collision problem 109
6.9 Clique search in the verification collision graph 109
6.10 Solving an over-constrained verification collision problem 111
6.11 Outcome of the edge contraction procedure 112

7.1 Overview of the topology verification process 118
7.2 An example of forming the topology verification graph 121
7.3 Example of applying the Steiner tree-based verification algorithm . . . 123
7.4 Corrective topology actions generated by the Steiner tree-based verifica-

tion algorithm . 124
7.5 Challenges when applying the Steiner tree algorithm 126
7.6 Impact of the verification area selection on the Steiner tree algorithm . . 127

8.1 Overview of the simulation environment 134
8.2 Representation of the simulation time 135
8.3 Representation of the simulated LTE macro network 137
8.4 Overview of the neighbor relations in the setup consisting only of LTE

macro cells . 138
8.5 Overview of the neighbor relations in the setup consisting of LTE macro

as well as small cells . 139

9.1 Overview of the verification process components 148

10.1 Studying the verification limits of SON functions: average cell anomaly
level . 168

10.2 Studying the verification limits of SON functions: raw KPI values . . . 169
10.3 Study of neglecting verification collisions: average cell anomaly level . 172
10.4 Study of neglecting verification collisions: raw KPI values 173
10.5 Study of neglecting verification collisions: estimating the limits of the

compared strategies . 174
10.6 Neighbor relation changes and intersection of verification areas 176

List of Figures 233

10.7 Correlation between the PCI confusion and verification problem 176
10.8 Number of added cell adjacency objects 177
10.9 Results of the real data verification collision study 178
10.10Results of the verification collision simulation study 181
10.11Distribution of the anomalous adjacency objects in the real data set . . . 184
10.12Undo action distribution before the elimination of weak collisions . . . 185
10.13Undo action distribution after the elimination of weak collisions 185
10.14Results of the simulation study of eliminating weak collisions 189
10.15Results of the simulation study of handling fluctuating PM data 193
10.16Evaluation of the edge weighting function 198
10.17Evaluation of the Steiner point assessment function 198
10.18Evaluation of the Steiner tree-based verification approach 199

11.1 Verification collision domains and three-way handshake communication 212

234 List of Figures

List of Tables

8.1 Properties of the UE groups . 136
8.2 Simulation environment parameter selection 140

10.1 Study of neglecting verification collisions: parameter selection 171

236 List of Tables

List of Listings

9.1 Code fragments of the corrective action module 150
9.2 Getting node cost table out of the topology verification graph 152
9.3 Simplified initialization of the CM verification process 155
9.4 Code snippet that demonstrates the usage of JGraphT while performing

cell clustering . 156
9.5 Code snippet that shows the posting of hard constraints while generating

the corrective action plan . 157
9.6 Code snippet that demonstrates the usage of immutable collections . . . 159
9.7 Overview of the default verification process configuration file 161
9.8 Code snippet that shows the usage of lombok annotations in the verifica-

tion area class . 162

238 List of Listings

List of Definitions

1.1 Definition: Exemplary definition . 21

3.1 Definition: Verification process . 44
3.2 Definition: SON function transaction 46
3.3 Definition: Verification collision . 48
3.4 Definition: Corrective action plan . 49
3.5 Definition: Collision-free corrective action plan 49
3.6 Definition: Gain-aware corrective action plan 49
3.7 Definition: Over-constrained corrective action plan 50
3.8 Definition: Soft verification collision 50
3.9 Definition: Weak verification collision 52
3.10 Definition: Profile . 53
3.11 Definition: Profile input . 53
3.12 Definition: Incomplete profile . 53
3.13 Definition: Weak corrective action plan 55

5.1 Definition: Verification scope fragmentation 81
5.2 Definition: Strict verification scope fragmentation 81
5.3 Definition: Verification area . 81
5.4 Definition: Cell state KPI . 84
5.5 Definition: CKPI . 84
5.6 Definition: TKPI . 85

6.1 Definition: CKPI anomaly level . 96
6.2 Definition: Cell behavior graph . 99
6.3 Definition: Weak verification area . 102
6.4 Definition: Verification collision graph 103
6.5 Definition: Verification collision grade 104
6.6 Definition: Collision-complete and collision-free verification collision

graph . 104
6.7 Definition: Clique group . 110

7.1 Definition: TKPI anomaly level . 119
7.2 Definition: TKPI anomaly level vector space 119

240 List of Definitions

7.3 Definition: Topology verification graph 120
7.4 Definition: Unnecessary and required on-demand cells 124

Bibliography

[3GP98] 3GPP. Universal Mobile Telecommunications System (UMTS); Selection
procedures for the choice of radio transmission technologies of the UMTS
(UMTS 30.03 version 3.2.0). Technical report tr 101 112 v3.2.0, 3rd
Generation Partnership Project (3GPP), April 1998.

[3GP01] 3GPP. Telecommunication management; Configuration Management
(CM); Part 1: Concept and requirements. Technical specification 32.106-1
v4, 3rd Generation Partnership Project (3GPP), March 2001.

[3GP10] 3GPP. Telecommunication management; Study on Energy Savings Man-
agement (ESM). Technical specification 32.826 v10.0.0, 3rd Generation
Partnership Project (3GPP), April 2010.

[3GP12] 3GPP. Evolved Universal Terrestrial Radio Access (E-UTRA); Radio
Resource Control (RRC); Protocol specification. Technical specification
36.331 v10, 3rd Generation Partnership Project (3GPP), March 2012.

[3GP13a] 3GPP. Telecommunication management; Fault Management; Part 1: 3G
fault management requirements. Technical specification 32.111-1 v12.0.0,
3rd Generation Partnership Project (3GPP), June 2013.

[3GP13b] 3GPP. Telecommunication management; Self-Organizing Networks (SON)
Policy Network Resource Model (NRM) Integration Reference Point (IRP);
Information Service (IS). Technical specification 32.522 v11.7.0, 3rd
Generation Partnership Project (3GPP), September 2013.

[3GP14a] 3GPP. Evolved Universal Terrestrial Radio Access (E-UTRA); Physical
layer procedures. Technical specification 36.213 v12.1.0, 3rd Generation
Partnership Project (3GPP), March 2014.

[3GP14b] 3GPP. Telecommunication management; Study on Network Manage-
ment (NM) centralized Coverage and Capacity Optimization (CCO) Self-
Organizing Networks (SON) function. Technical specification 32.836
v12.0.0, 3rd Generation Partnership Project (3GPP), September 2014.

[3GP16a] 3GPP. 3GPP Specifications Groups and TSG Structure. http://www.3gpp.
org/specifications-groups, 2016. Visited: October 2016.

http://www.3gpp.org/specifications-groups
http://www.3gpp.org/specifications-groups

242 Bibliography

[3GP16b] 3GPP. Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved
Universal Terrestrial Radio Access Network (E-UTRAN); Overall descrip-
tion; Stage 2. Technical specification 36.300 v13.2, 3rd Generation Part-
nership Project (3GPP), January 2016.

[3GP16c] 3GPP. Technical Specification Group Radio Access Network; Evolved
Universal Terrestrial Radio Access Network (E-UTRAN); S1 Application
Protocol (S1AP). Technical specification 36.413 v14.0.0, 3rd Generation
Partnership Project (3GPP), September 2016.

[3GP16d] 3GPP. Technical Specification Group Services and System Aspects; Gen-
eral Packet Radio Service (GPRS) enhancements for Evolved Universal
Terrestrial Radio Access Network (E-UTRAN) access. Technical specifica-
tion 23.401 v14.2.0, 3rd Generation Partnership Project (3GPP), December
2016.

[3GP16e] 3GPP. Technical Specification Group Services and System Aspects;
Telecommunication management;Performance Management (PM);. Tech-
nical specification 32.401 v13.1.0, 3rd Generation Partnership Project
(3GPP), June 2016.

[3GP16f] 3GPP. Telecommunication management; Key Performance Indicators
(KPI) for Evolved Universal Terrestrial Radio Access Network (E-
UTRAN): Definitions. Technical specification 32.450 v13, 3rd Generation
Partnership Project (3GPP), January 2016.

[3GP16g] 3GPP. Telecommunication Management; Self-Organizing Networks
(SON); Self-healing Concepts and Requirements. Technical specification
32.541 v13, 3rd Generation Partnership Project (3GPP), January 2016.

[4GA11] 4GAmericas. Self-Optimizing Networks: Benefits of SON in LTE, July
2011. White paper.

[AFG+08] Mehdi Amirijoo, Pål Frenger, Fredrik Gunnarsson, Harald Kallin, Johan
Moe, and Kristina Zetterberg. Neighbor Cell Relation List and Physical
Cell Identity Self-Organization in LTE. In ICC Workshops - 2008 IEEE
International Conference on Communications Workshops, pages 37–41,
Beijing, PRC, May 2008.

[AJLS11] Mehdi Amirijoo, Ljupco Jorguseski, Remco Litjens, and Lars Christoph
Schmelz. Cell Outage Compensation in LTE Networks: Algorithms and
Performance Assessment. In IEEE Vehicular Technology Conference (VTC
Spring 2011), pages 1–5, Budapest, Hungary, May 2011.

[All17] Wi-Fi Alliance. Wi-Fi Alliance publishes 7 for ’17 Wi-Fi predictions.
https://wi-fi.org/news-events/newsroom/

https://wi-fi.org/news-events/newsroom/wi-fi-alliance-publishes-7-for-17-wi-fi-predictions
https://wi-fi.org/news-events/newsroom/wi-fi-alliance-publishes-7-for-17-wi-fi-predictions
https://wi-fi.org/news-events/newsroom/wi-fi-alliance-publishes-7-for-17-wi-fi-predictions

Bibliography 243

wi-fi-alliance-publishes-7-for-17-wi-fi-predictions,
January 2017. Visited: January 2017.

[ATT16a] Janne Ali-Tolppa and Tsvetko Tsvetkov. Network Element Stability Aware
Method for Verifying Configuration Changes in Mobile Communication
Networks. In IFIP Autonomous Infrastructure, Management and Security
(AIMS 2016), Munich, Germany, June 2016.

[ATT16b] Janne Ali-Tolppa and Tsvetko Tsvetkov. Optimistic Concurrency Control
in Self-Organizing Networks Using Automatic Coordination and Verifi-
cation. In IEEE/IFIP Network Operations and Management Symposium
(NOMS 2016), Istanbul, Turkey, April 2016.

[Ban13] Tobias Bandh. Coordination of Autonomic Function Execution in Self-
Organizing Networks. Phd thesis, Technische Universität München, April
2013. ISBN 3-937201-34-3.

[BCL+09] Paramvir Bahl, Ranveer Chandra, Patrick P. C. Lee, Vishal Misra, Jitendra
Padhye, Dan Rubenstein, and Yan Yu. Opportunistic Use of Client Re-
peaters to Improve Performance of WLANs. IEEE/ACM Transactions on
Networking, 17(4):1160–1171, August 2009.

[BCS11] Sueng Jae Bae, Min Young Chung, and Jungmin So. Handover triggering
mechanism based on IEEE 802.21 in heterogeneous networks with LTE
and WLAN. In The International Conference on Information Networking
(ICOIN 2011), pages 399–403, January 2011.

[BDH99] Craig Boutilier, Thomas Dean, and Steve Hanks. Decision-Theoretic Plan-
ning: Structural Assumptions and Computational Leverage. Journal of
Artificial Intelligence Research, 11:1–94, 1999.

[BFZ+14] Sascha Berger, Albrecht Fehske, Paolo Zanier, Ingo Viering, and Gerhard
Fettweis. Comparing Online and Offline SON Solutions for Concurrent
Capacity and Coverage Optimization. In Proceedings of the Vehicular
Technology Conference (VTC Fall 2014), Vancouver, Canada, September
2014.

[BHO16] Anne-Marie Bosneag, Sidath Handurukande, and James O’Sullivan. Au-
tomatic Discovery of Sub-Optimal Radio Performance in LTE RAN Net-
works. In IEEE/IFIP Network Operations and Management Symposium
(NOMS 2016), Istanbul, Turkey, April 2016.

[Bie14] Adam Bien. Structuring Complex JavaFX 8 Applications for Productivity,
October 2014.

https://wi-fi.org/news-events/newsroom/wi-fi-alliance-publishes-7-for-17-wi-fi-predictions
https://wi-fi.org/news-events/newsroom/wi-fi-alliance-publishes-7-for-17-wi-fi-predictions
https://wi-fi.org/news-events/newsroom/wi-fi-alliance-publishes-7-for-17-wi-fi-predictions

244 Bibliography

[BKKS16] Levente Bodrog, Márton Kajó, Szilárd Kocsis, and Benedek Schultz. A
Robust Algorithm for Anomaly Detection in Mobile Networks. In IEEE
International Symposium on Personal, Indoor and Mobile Radio Commu-
nications (PIMRC 2016), Valencia, Spain, September 2016.

[BM82] John Adrian Bondy and U. S. R. Murty. Graph Theory With Applications.
Elsevier Science Ltd, fifth printing edition, 1982. ISBN: 0-444-19451-7.

[BMQS08] Javier Baliosian, Katarina Matusikova, Karl Quinn, and Rolf Stadler.
Policy-based Self-healing for Radio Access Networks. In IEEE/IFIP Net-
work Operations and Management Symposium (NOMS 2008), Salvador,
Brazil, April 2008.

[BRS+10] Tobias Bandh, Raphael Romeikat, Henning Sanneck, Lars Christoph
Schmelz, Bernhard Bauer, and Georg Carle. Optimized Network Configu-
ration Parameter Assignment Based on Graph Coloring. In Proceedings
of IEEE/IFIP Network Operations and Management Symposium (NOMS
2010), Osaka, Japan, April 2010.

[BRS11] Tobias Bandh, Raphael Romeikat, and Henning Sanneck. Policy-Based
Coordination and Management of SON Functions. In IFIP/IEEE Interna-
tional Symposium on Integrated Network Management (IM 2011), pages
827–840, Dublin, Ireland, May 2011.

[Bru09] Richard A. Brualdi. Introductory Combinatorics. Pearson Prentice Hall,
fifth edition, 2009. ISBN 978-0-13-602040-0.

[CAA13] Richard Combes, Zwi Altman, and Eitan Altman. Coordination of Auto-
nomic Functionalities in Communications Networks. In 11th International
Symposium on Modeling & Optimization in Mobile, Ad Hoc & Wireless
Networks (WiOpt 2013), Tsukuba, Japan, May 2013.

[CCC+14a] Gabriela Ciocarlie, Chih-Chieh Cheng, Christopher Connolly, Ulf
Lindqvist, et al. Managing Scope Changes for Cellular Network-level
Anomaly Detection. In International Workshop on Self-Organizing Net-
works (IWSON 2014), Barcelona, Spain, August 2014.

[CCC+14b] Gabriela Ciocarlie, Christopher Connolly, Chih-Chieh Cheng, Ulf
Lindqvist, et al. Anomaly Detection and Diagnosis for Automatic Radio
Network Verification. In 6th International Conference on Mobile Networks
and Management (MONAMI 2014), Würzburg, Germany, September 2014.

[CGT+11] Marinos Charalambides, Alex Galis, Daphne Tuncer, Stuart Clayman,
Stylianos Georgoulas, et al. Deliverable D3.4 Cooperation Strategies and
Incentives. Technical report, UniverSelf Project, July 2011.

Bibliography 245

[CLN+14] Gabriela Ciocarlie, Ulf Lindqvist, Kenneth Nitz, Szabolcs Nováczki, and
Henning Sanneck. On the Feasibility of Deploying Cell Anomaly Detection
in Operational Cellular Networks. In IEEE/IFIP Network Operations and
Management Symposium (NOMS 2014), Krakow, Poland, May 2014.

[CLRS09] Thomas H. Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford
Stein. Introduction To Algorithms. MIT Press, third edition, 2009. ISBN
978-0-262-03384-8.

[CSW+15] D. Chen, J. Schuler, P. Wainio, J. Salmelin, Pekka Wainio, and Juha
Salmelin. 5G Self-Optimizing Wireless Mesh Backhaul. In IEEE Confer-
ence on Computer Communications Workshops (INFOCOM WORKSHOPS
2015), pages 23–24, April 2015.

[CZ15] Shanzhi Chen and Jian Zhao. The Requirements, Challenges, and Technolo-
gies for 5G of Terrestrial Mobile Telecommunication. Communications
Magazine, January 2015.

[DD09] Michel Marie Deza and Elena Deza. Encyclopedia of Distances. Springer
Science & Business Media, 2009. ISBN: 978-3-642-00234-2.

[Dij59] Edsger W. Dijkstra. A Note on Two Problems in Connexion with Graphs.
Numerische Mathematik, 1(1):269–271, December 1959.

[DJG+11] Anders Dahlén, Arne Johansson, Fredrik Gunnarsson, Johan Moe, Thomas
Rimhagen, and Harald Kallin. Evaluations of LTE Automatic Neighbor
Relations. In IEEE Vehicular Technology Conference (VTC Spring 2011),
pages 1–5, May 2011.

[EGK+04] John Ellson, Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North,
and Gordon Woodhull. Graphviz and Dynagraph - Static and Dynamic
Graph Drawing Tools, pages 127–148. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2004.

[Eri12] Ericsson. Transparent Network-Performance Verification For LTE Rollouts.
White Paper, 284 23-3179 Uen, September 2012.

[Eri14] Ericsson. 5G: what is it? White paper, October 2014.

[Fou15] Apache Software Foundation. Apache Log4j 2, version 2.6, May 2015.

[Fou16] Apache Software Foundation. Apache Commons. https://commons.

apache.org/, 2016. Visited: June 2016.

[FPP07] David Freedman, Robert Pisani, and Roger Purves. Statistics. International
student edition. W.W. Norton & Company, 2007.

https://commons.apache.org/
https://commons.apache.org/

246 Bibliography

[Fri95] Bernd Fritzke. A Growing Neural Gas Network Learns Topologies. In
Advances in Neural Information Processing Systems, pages 625–632. MIT
Press, 1995.

[FS09] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cam-
bridge University Press, June 2009. ISBN: 978-0-521-89806-5.

[FTS+14a] Christoph Frenzel, Tsvetko Tsvetkov, Henning Sanneck, Bernhard Bauer,
and Georg Carle. Detection and Resolution of Ineffective Function Behav-
ior in Self-Organizing Networks. In IEEE International Symposium on
a World of Wireless Mobile and Multimedia Networks (WoWMoM 2014),
Sydney, Australia, June 2014.

[FTS+14b] Christoph Frenzel, Tsvetko Tsvetkov, Henning Sanneck, Bernhard Bauer,
and Georg Carle. Operational Troubleshooting-enabled Coordination in
Self-Organizing Networks. In 6th International Conference on Mobile Net-
works and Management (MONAMI 2014), Würzburg, Germany, September
2014.

[GAMK+16] Ana Gómez-Andrades, Pablo Muñoz, Emil J. Khatib, Isabel de la Ban-
dera Cascales, Inmaculada Serrano, and Raquel Barco. Methodology for
the Design and Evaluation of Self-Healing LTE Networks. IEEE Transac-
tions on Vehicular Technology, 65(8):6468–6486, August 2016.

[GHNP01] Clemens Gröpl, Stefan Hougardy, Till Nierhoff, and Hans Jürgen Prömel.
Lower Bounds for Approximation Algorithms for the Steiner Tree Problem.
In Lecture Notes in Computer Science, pages 217–228, 2001.

[GJCT04] Alexander Gerdenitsch, Stefan Jakl, Yee Yang Chong, and Martin Toeltsch.
A Rule-Based Algorithm for Common Pilot Channel and Antenna Tilt
Optimization in UMTS FDD Networks. Etri Journal, 26(5):437–442,
October 2004.

[GJS+14] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley.
The Java Language Specification, Java SE 8 Edition. Addison-Wesley
Professional, first edition, May 2014. ISBN: 978-0-13-390069-9.

[GKN15] Emden R. Gansner, Eleftherios Koutsofios, and Stephen North. Drawing
graphs with dot, January 2015.

[GNM15] Borislava Gajic, Szabolcs Nováczki, and Stephen S. Mwanje. An Improved
Anomaly Detection in Mobile Networks by Using Incremental Time-aware
Clustering. In IFIP/IEEE Workshop on Cognitive Network and Service
Management (CogMan 2015), Ottawa, Canada, May 2015.

Bibliography 247

[Goo15] Google. Google Guava Library. https://github.com/google/guava,
2015. Visited: December 2015.

[Goo16] Google. Google Gson Library. https://github.com/google/gson, 2016.
Visited: January 2016.

[GY05] Jonathan L. Gross and Jay Yellen. Graph Theory and Its Applications.
Textbooks in Mathematics. Taylor & Francis, second edition, September
2005. ISBN: 978-1-584-88505-4.

[HBR95] David Heckerman, John S. Breese, and Koos Rommelse. Decision-
Theoretic Troubleshooting. Communications of the ACM, 38:49–57, March
1995.

[HSS11] Seppo Hämäläinen, Henning Sanneck, and Cinzia Sartori, editors. LTE
Self-Organising Networks (SON): Network Management Automation for
Operational Efficiency. John Wiley & Sons, Chichester, UK, December
2011. ISBN: 978-1-119-97067-5.

[HT09] Harri Holma and Antti Toskala. LTE for UMTS - OFDMA and SC-FDMA
Based Radio Access. Wiley Publishing, Chichester, UK, 2009. ISBN:
978-0-470-99401-6.

[HT12] Harri Holma and Antti Toskala. LTE Advanced: 3GPP Solution for IMT-
Advanced. Wiley Publishing, Chichester, UK, 2012. ISBN 978-1-119-
97405-5.

[IEE11] IEEE Computer Society. IEEE Guide - Adoption of the Project Manage-
ment Institute (PMI R©) Standard. A Guide to the Project Management
Body of Knowledge (PMBOK R©Guide) - Fourth Edition, November 2011.
ISBN: 978-0-7381-6817-3.

[IEE16] IEEE Standards Association. IEEE Standard for Information technology–
Telecommunications and information exchange between systems Local and
metropolitan area networks–Specific requirements - Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.
IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012), pages 1–3534,
December 2016.

[ISJB14] Ovidiu Iacoboaiea, Berna Sayrac, Sana Ben Jemaa, and Pascal Bianchi.
SON Coordination for Parameter Conflict Resolution: A Reinforcement
Learning Framework. In IEEE Wireless Communications and Networking
Conference (WCNC 2014), April 2014.

[JFG+13] Sana Ben Jemaa, Christoph Frenzel, Dario Götz, Beatriz González, Sören
Hahn, et al. D5.1 Integrated SON Management Requirements and Basic
Concepts. Technical report, SEMAFOUR Project, December 2013.

https://github.com/google/guava
https://github.com/google/gson

248 Bibliography

[JGr16] JGraph Ltd. JGraphX (JGraph 6) User Manual, Version 3.6.0.0, September
2016.

[JN09] Prasanta K. Jana and Azad Naik. An Efficient Minimum Spanning Tree
based Clustering Algorithm. In International Conference on Methods and
Models in Computer Science, pages 1–5, Delhi, India, December 2009.

[KAB+10] Thomas Kürner, Mehdi Amirijoo, Irina Balan, Hans van den Berg, Andreas
Eisenblätter, et al. Final Report on Self-Organisation and its Implications
in Wireless Access Networks. Deliverable d5.9, Self-Optimisation and
self-ConfiguRATion in wirelEss networkS (SOCRATES), January 2010.

[Kim16] Michael Kimberlin. Reducing Boilerplate Code with Project Lombok.
http://jnb.ociweb.com/jnb/jnbJan2010.html, 2016. Visited: Septem-
ber 2016.

[KMB81] Lawrence T. Kou, George Markowsky, and Leonard Berman. A Fast
Algorithm for Steiner Trees. Acta Informatica, 15(2):141–145, June 1981.

[Kru56] Joseph B. Kruskal. On the Shortest Spanning Subtree of a Graph and the
Traveling Salesman Problem. Proceedings of the American Mathematical
Society, 7(1):48–50, 1956.

[LAB+13] Daniela Laselva, Zwi Altman, Irina Balan, Andreas Bergström, Relja
Djapic, et al. D4.1 SON Functions for Multi-Layer LTE and Multi-RAT
Networks. Technical report, SEMAFOUR Project, November 2013.

[Lei79] Frank Thomson Leighton. A Graph Coloring Algorithm for Large Schedul-
ing Problems. Journal of Research of the National Bureau of Standards,
84(6):489–506, November 1979.

[Lig16] Lightbend. Configuration Library for JVM Languages. https://github.
com/typesafehub/config, 2016. Visited: September 2016.

[LL08] Pierre Lescuyer and Thierry Lucidarme. Evolved Packet System (EPS):
The LTE and SAE Evolution of 3G UMTS. Wiley Publishing, February
2008. ISBN: 978-0-470-05976-0.

[LLY+13] Kyunghan Lee, Joohyun Lee, Yung Yi, Injong Rhee, and Song Chong.
Mobile Data Offloading: How Much Can WiFi Deliver? IEEE/ACM
Transactions on Networking, 21(2):536–550, April 2013.

[LPCS04] Philip Levis, Neil Patel, David Culler, and Scott Shenker. Trickle: A Self-
Regulating Algorithm for Code Propagation and Maintenance in Wireless
Sensor Networks. In The First USENIX/ACM Symposium on Networked
Systems Design and Implementation (NSDI), pages 15–28, 2004.

http://jnb.ociweb.com/jnb/jnbJan2010.html
https://github.com/typesafehub/config
https://github.com/typesafehub/config

Bibliography 249

[LRL+05] Jaana Laiho, Kimmo Raivio, Pasi Lehtimäki, Kimmo Hätönen, and Olli
Simula. Advanced Analysis Methods for3G Cellular Networks. IEEE
Transactions on Wireless Communications, 4(3):930–942, May 2005.

[LSH16] Simon Lohmüller, Lars Christoph Schmelz, and Sören Hahn. Adaptive
SON Management Using KPI Measurements. In IEEE/IFIP Network
Operations and Management Symposium (NOMS 2016), pages 625–631,
Istanbul, Turkey, April 2016.

[Mar04] Dániel Marx. Graph coloring problems and their applications in scheduling.
Periodica Polytechnica Ser. El. Eng., 48:11–16, 2004.

[MAT16] Stephen S. Mwanje and Janne Ali-Tolppa. Fluid Capacity for Energy
Saving Management in Multi-Layer Ultra-Dense 4G/5G Cellular Networks.
In International Conference on Network and Service Management (CNSM
2016), Montreal, Canada, November 2016.

[MATTS15] Stephen S. Mwanje, Janne Ali-Tolppa, Tsvetko Tsvetkov, and Henning
Sanneck. A Framework for Cell-Association Auto Configuration of Net-
work Functions in Cellular Networks. In 7th International Conference on
Mobile Networks and Management (MONAMI 2015), Santander, Spain,
September 2015.

[MBE11] Christian M. Mueller, Hajo Bakker, and Lutz Ewe. Evaluation of the
Automatic Neighbor Relation Function in a Dense Urban Scenario. In IEEE
Vehicular Technology Conference (VTC Spring), pages 1–5, Yokohama,
Japan, May 2011.

[MDM+16] Stephen S. Mwanje, Guillaume Decarreau, Christian Mannweiler, et al.
Network Management Automation in 5G: Challenges and Opportunities.
In IEEE International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC 2016), Valencia, Spain, September 2016.

[MSES12] Gilbert Micallef, Louai Saker, Salah E. Elayoubi, and Hans-Otto Scheck.
Realistic Energy Saving Potential of Sleep Mode for Existing and Future
Mobile Networks. Journal of Communication, 7(10):740–748, October
2012.

[NC16] Barak Naveh and Contributors. JGraphT: a free Java graph library. http:
//jgrapht.org/, 2016. Visited: September 2016.

[Nex15] Next Generation Mobile Networks Alliance. A Deliverable by the NGMN
Alliance: NGMN 5G White Paper, February 2015. Final deliverable,
version 1.0.

http://jgrapht.org/
http://jgrapht.org/

250 Bibliography

[NG15] Szabolcs Nováczki and Borislava Gajic. Engineering Applications of Neu-
ral Networks: 16th International Conference, EANN 2015, chapter Fixed-
Resolution Growing Neural Gas for Clustering the Mobile Networks Data,
pages 181–191. Springer International Publishing, September 2015.

[NGN08a] NGNM Alliance. A Deliverable by the NGMN Alliance NGMN Use Cases
related to Self Organising Network, Overall Description, December 2008.
Version 2.02.

[NGN08b] NGNM Alliance. Next Generation Mobile Networks Recommendation on
SON and O&M Requirements, December 2008. Version 1.23.

[Nov13] Szabolcs Nováczki. An Improved Anomaly Detection and Diagnosis
Framework for Mobile Network Operators. In 9th International Con-
ference on Design of Reliable Communication Networks (DRCN 2013),
March 2013.

[NPS11] M. Danish Nisar, Volker Pauli, and Eiko Seidel. Multi-RAT Traffic Steering
– Why, when, and how could it be beneficial?, December 2011. White
paper.

[NSN09] NSN. Self-Organizing Network (SON): Introducing the Nokia Siemens
Networks SON Suite - an efficient, future-proof platform for SON. White
Paper, October 2009.

[NTB+07] Gabor Nemeth, Peter Tarjan, Gergely Biczok, Ferenc Kubinszky, and An-
dras Veres. Measuring High-Speed TCP Performance During Mobile Han-
dovers. In IEEE Conference on Local Computer Networks (LCN 2007),
pages 599–612, October 2007.

[NTS16] Szabolcs Nováczki, Tsvetko Tsvetkov, and Henning Sanneck. Scoring
method and system for robust verification of configuration actions, WO
patent application, PCT/EP2014/069096, 2016.

[NTSM15] Szabolcs Nováczki, Tsvetko Tsvetkov, Henning Sanneck, and Stephen
Mwanje. A Scoring Method for the Verification of Configuration Changes
in Self-Organizing Networks. In 7th International Conference on Mobile
Networks and Management (MONAMI 2015), Santander, Spain, September
2015.

[Ora16] Oracle. JavaFX Frequently Asked Questions. http://www.oracle.com/

technetwork/java/javafx/overview/faq-1446554.html, 2016. Vis-
ited: September 2016.

[Oxf05] The Oxford Dictionary of English. Revised Edition, Oxford University
Press, 2005.

http://www.oracle.com/technetwork/java/javafx/overview/faq-1446554.html
http://www.oracle.com/technetwork/java/javafx/overview/faq-1446554.html

Bibliography 251

[PB98] Claude Le Pape and Philippe Baptiste. Resource Constraints for Preemptive
Job-shop Scheduling. Constraints, 3(4):263 – 287, October 1998.

[PFL15] Charles Prud’homme, Jean-Guillaume Fages, and Xavier Lorca. Choco
Documentation. TASC, INRIA Rennes, LINA CNRS UMR 6241,
COSLING S.A.S., 2015.

[PKVB11] Kandaraj Piamrat, Adlen Ksentini, César Viho, and Jean-Marie Bonnin.
QoE-aware Vertical Handover in Wireless Heterogeneous Networks. In
7th International Wireless Communications and Mobile Computing Con-
ference (IWCMC 2011), pages 95–100, Istanbul, Turkey, July 2011.

[Qua16] Qualcomm. Qualcomm Wi-Fi SON. https://www.qualcomm.com/

products/features/wi-fi-son, January 2016. Visited: December 2016.

[RH12] Juan Ramiro and Khalid Hamied. Self-Organizing Networks (SON): Self-
Planning, Self-Optimization and Self-Healing for GSM, UMTS and LTE.
Wiley Publishing, 1st edition, 2012. ISBN: 978-0-470-97352-3.

[RN10] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. Prentice Hall, third edition, February 2010. ISBN: 978-
0136042594.

[RPM05] J. Riihijarvi, M. Petrova, and P. Mahonen. Frequency allocation for
WLANs using graph colouring techniques. In Wireless On-demand Net-
work Systems and Services, 2005 (WONS 2005), pages 216–222, St. Moritz,
Switzerland, January 2005.

[RSB13] Raphael Romeikat, Henning Sanneck, and Tobias Bandh. Efficient , Dy-
namic Coordination of Request Batches in C-SON Systems. In IEEE Veh.
Technol. Conf. (VTC Spring 2013), Dresden, Germany, June 2013.

[RvBW06] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook
of Constraint Programming. Elsevier Science, October 2006. ISBN:
9780444527264.

[SBS12] Péter Szilágyi, Tobias Bandh, and Henning Sanneck. Physical Cell ID
Allocation in Multi-layer, Multi-vendor LTE Networks. In 4th Interna-
tional Conference on Mobile Networks and Management (MONAMI 2012),
Hamburg, Germany, September 2012.

[SBT10a] Henning Sanneck, Yves Bouwen, and Eddy Troch. Context Based Config-
uration Management of Plug & Play LTE Base Stations. In IEEE Network
Operations and Management Symposium (NOMS 2010), pages 946–949,
April 2010.

https://www.qualcomm.com/products/features/wi-fi-son
https://www.qualcomm.com/products/features/wi-fi-son

252 Bibliography

[SBT10b] Henning Sanneck, Yves Bouwen, and Eddy Troch. Dynamic Radio Config-
uration of Self-Organizing Base Stations. In 7th International Symposium
on Wireless Communication Systems (ISWCS 2010), September 2010.

[Sch03] Jochen H. Schiller. Mobile Communications. Addison-Wesley, second
edition, 2003. ISBN: 0-321-12381-6.

[SN12] Péter Szilágyi and Szabolcs Nováczki. An Automatic Detection and Diag-
nosis Framework for Mobile Communication Systems. IEEE Transactions
on Network and Service Management (TNSM), 9(2):184–197, June 2012.

[STB11] Stefania Sesia, Issam Toufik, and Matthew Baker, editors. LTE - The UMTS
Long Term Evolution: From Theory to Practice. Wiley, second edition,
July 2011. ISBN: 978-0-470-66025-6.

[STN15] Henning Sanneck, Tsvetko Tsvetkov, and Szabolcs Nováczki. Ver-
ification in Self-Organizing Networks, WO patent application, PC-
T/EP2014/058837, 2015.

[TAT16] Tsvetko Tsvetkov and Janne Ali-Tolppa. An Adaptive Observation Window
for Verifying Configuration Changes in Self-Organizing Networks. In
Innovations in Clouds, Internet and Networks (ICIN 2016), Paris, France,
March 2016.

[TATS16] Tsvetko Tsvetkov, Janne Ali-Tolppa, and Henning Sanneck. Method of
verifying an operation of a mobile radio communication network, WO
patent application, PCT/EP2015/055786, 2016.

[TATSC16a] Tsvetko Tsvetkov, Janne Ali-Tolppa, Henning Sanneck, and Georg Carle.
A Minimum Spanning Tree-Based Approach for Reducing Verification
Collisions in Self-Organizing Networks. In IEEE/IFIP Network Operations
and Management Symposium (NOMS 2016), Istanbul, Turkey, April 2016.

[TATSC16b] Tsvetko Tsvetkov, Janne Ali-Tolppa, Henning Sanneck, and Georg Carle. A
Steiner Tree-Based Verification Approach for Handling Topology Changes
in Self-Organizing Networks. In International Conference on Network and
Service Management (CNSM 2016), Montreal, Canada, October 2016.

[TATSC16c] Tsvetko Tsvetkov, Janne Ali-Tolppa, Henning Sanneck, and Georg Carle.
Verification of Configuration Management Changes in Self-Organizing Net-
works. IEEE Transactions on Network and Service Management (TNSM),
13(4):885–898, December 2016. DOI: 10.1109/TNSM.2016.2589459.

[TFSC15] Tsvetko Tsvetkov, Christoph Frenzel, Henning Sanneck, and Georg Carle.
A Constraint Optimization-Based Resolution of Verification Collisions in

Bibliography 253

Self-Organizing Networks. In IEEE Global Communications Conference
(GlobeCom 2015), San Diego, CA, USA, December 2015.

[TNSC14a] Tsvetko Tsvetkov, Szabolcs Nováczki, Henning Sanneck, and Georg Carle.
A Configuration Management Assessment Method for SON Verification.
In 11th International Symposium on Wireless Communications Systems
(ISWCS 2014), Barcelona, Spain, August 2014.

[TNSC14b] Tsvetko Tsvetkov, Szabolcs Nováczki, Henning Sanneck, and Georg Carle.
A Post-Action Verification Approach for Automatic Configuration Parame-
ter Changes in Self-Organizing Networks. In 6th International Conference
on Mobile Networks and Management (MONAMI 2014), Würzburg, Ger-
many, September 2014.

[TSC14] Tsvetko Tsvetkov, Henning Sanneck, and Georg Carle. An Experimental
System for SON Verification. In 11th International Symposium on Wireless
Communications Systems (ISWCS 2014), Barcelona, Spain, August 2014.
Demonstration session.

[TSC15] Tsvetko Tsvetkov, Henning Sanneck, and Georg Carle. A Graph Coloring
Approach for Scheduling Undo Actions in Self-Organizing Networks. In
IFIP/IEEE International Symposium on Integrated Network Management
(IM 2015), Ottawa, Canada, May 2015.

[vdHEZ+16] Jappe van der Hel, Philipp Eichhorn, Reinier Zwitserloot, Robbert Jan
Grootjans, and Sander Koning. Project Lombok. https://projectlombok.
org/, 2016. Visited: September 2016.

[Wei15] Eric W. Weisstein. Minimum Vertex Coloring From MathWorld
- A Wolfram Web Resource. http://mathworld.wolfram.com/

MinimumVertexColoring.html, 2015. Visited: February 2015.

[YKK12] Toshiaki Yamamoto, Toshihiko Komine, and Satoshi Konishi. Mobility
Load Balancing Scheme based on Cell Reselection. In International Con-
ference on Wireless and Mobile Communications (ICWMC 2012), Venice,
Italy, June 2012.

[YL11] Dmitry S. Yershov and Steven M. LaValle. Simplicial Dijkstra and A*
Algorithms for Optimal Feedback Planning. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 3862–3867, Septem-
ber 2011.

https://projectlombok.org/
https://projectlombok.org/
http://mathworld.wolfram.com/MinimumVertexColoring.html
http://mathworld.wolfram.com/MinimumVertexColoring.html

ISBN 978-3-937201-56-6

9 783937 201566

ISBN 978-3-937201-56-6
DOI 10.2313/NET-2017-07-1

ISSN 1868-2642 (electronic)
ISSN 1868-2634 (print)

1

	I Introduction and Background
	Introduction
	Automation of Mobile Networks
	Anomaly Detection and Configuration Restoration
	Research Objectives
	Approach and Contributions
	Identification of Requirements, Issues, and Causes
	The Concept of SON Verification
	Implementation of the Verification Concept
	Concept Evaluation

	Thesis Outline
	Publications
	Publications in the Context of this Thesis
	Publications in the Context of Other SON Related Areas

	Statement on the Author’s Contributions
	Note on Terminology
	Document Structure
	Reference to Author's Publications
	Terminology and Notes
	Objectives and Tasks
	Summary and Findings
	Appendix

	Background
	Mobile Communication Networks
	Generations of Communication Standards
	Collaboration and Standardization Process
	Radio Access Network
	Core Network
	Protocol Architecture

	Mobile Network Management
	Operation, Administration and Management Architecture
	Network Management Data
	Granularity Period

	Self-Organizing Networks
	SON Categories
	SON Functions
	Other Application Areas

	Summary

	II Problem Analysis and Related Work
	Problem Analysis
	Motivation
	Troubleshooting and Anomaly Detection
	The Term "Verification"

	Challenges for a Verification Process
	SON Function Transactions
	Verification Collisions
	Over-Constrained Corrective Action Plan
	Weak Verification Collisions
	Dynamic Topology Changes

	Factors Influencing a Verification Process
	Availability of PM and CM Data
	Statistical Relevance of PM Data
	Network Density, Heterogeneity, and Topology
	Characteristics of CM Parameter Changes

	Summary

	Related work
	Pre-Action Analysis
	Conflict Avoidance at Design-Time
	Conflict Avoidance at Run-Time

	Post-Action Analysis
	Degradation Detection and Diagnosis Strategies
	Scope Change Assessment

	Post-Action Decision Making
	Troubleshooting and Self-Healing Approaches
	Coordination-Based Approaches

	Summary

	III The Concept of SON Verification
	Verification Terminology and Analysis
	The Process of SON Verification
	Verification Areas
	Verification Areas Based on CM Changes
	Verification Areas Based on Topology Changes

	Verification Area Assessment
	KPI Categories
	CM Verification KPIs and Profiles
	Topology Verification KPIs and Profiles

	Corrective Actions
	CM Undo Action
	Topology Corrective Action

	Specification of the Verification Collision Problem
	Time Windows
	Observation Window
	Correction Window

	Relation to Feedback Planning
	Similarities to Energy Saving
	Summary

	Verification of Configuration Changes
	Cell Behavior Model
	Detecting Anomalies
	Cell Clustering
	Determining The Verification Collision Grade
	Solving a Verification Collision Problem
	Solving an Over-Constrained Verification Collision Problem
	Summary

	Verification of Topology Changes
	Cell State Model
	Topology Verification Graph
	The Steiner Tree-Based Verification Algorithm
	Topology Correction and Steiner Point Assessment
	Analysis of the Steiner Tree-Based Verification Approach
	Summary

	IV Concept Implementation and Evaluation
	Evaluation Environment
	Simulation Environment
	LTE Network Simulator and Parser
	SON Functions
	SON Function Coordinator

	Real Data Environment
	Data Sets
	SON Functions

	Summary

	Concept Implementation
	Structure of the Verification Process
	Main Components
	Recorders
	Utilities
	Graphical User Interface

	Verification Process Usage
	Application Programming Interface
	Package Structure
	Initialization and Usage

	Libraries and Packages
	Mathematical Libraries
	Extra Collection Types, Methods, and Conditions
	Logging and Configuration
	Annotations

	Summary

	Evaluation Methodology and Results
	Studying the Verification Limits of SON Functions
	Simulation Study Setup
	Scenario and Results

	Neglecting Verification Collisions
	Simulation Study Setup
	Scenario and Results

	Solving of the Verification Collision Problem
	Real Data Study
	Simulation Study

	Elimination of Weak Verification Collisions
	Real Data Study
	Simulation Study

	Handling Fluctuating PM Data
	Simulation Study Setup
	Scenario and Results

	Topology Verification
	Simulation Study Setup
	Scenario and Results

	Summary

	V Conclusion
	Conclusion and Future Directions
	Research Problems
	The Concept of SON Verification
	CM Verification
	Topology Verification

	Results
	Future Directions and Work
	Evolution of Mobile Networks
	Challenges for Verification Approaches
	Future Work and Open Issues

	VI Appendix
	Acronyms
	List of Symbols
	List of Figures
	List of Tables
	List of Listings
	List of Definitions
	Bibliography

