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Abstract

Optoacoustic (or photoacoustic) imaging can simultaneously deliver anatomical, func-
tional and molecular information with unprecedented spatio-temporal resolution and
deep-tissue imaging capabilities. To quantitatively recover maps of the local optical
absorbance using optoacoustic imaging, multiple parameters related to both light and
ultrasound propagation characteristics of the medium need accurate calibration. The
dissertation brings together diverse domains of imaging physics and multiscale image
processing to achieve improved optoacoustic imaging performance in terms of automa-
tion and accurate reconstruction, better mapping of optical and acoustic parameters
and improved resolution. Specifically, algorithms for automatic speed-of-sound calibra-
tion in cross-sectional optoacoustic tomography were investigated and efficient hybrid
focusing metrics for enhancing the focusing performance were designed. An entropy
maximization based non-negative constraint was developed, which enables accurate rep-
resentation of the optoacoustic reconstructions. Further, multi-resolution and scale-space
based signal-processing techniques were employed for optoacoustic image segmentation
to improve the accuracy of the image reconstruction routines. The image resolution was
improved with an innovative geometric pixel super-resolution method, which integrates
information from multiple optoacoustic images acquired at sub-diffraction steps into one
high-resolution image by means of an iterative registration algorithm. The developed al-
gorithms address the common goal of improving the visual image quality of optoacoustic
images, using computer vision and image analysis techniques. Extensive experimenta-
tion has been performed on target phantoms as well as on ex vivo and in vivo tissue
samples in order to validate the developed methods. In particular, the application of
these methods in two biomedical imaging case studies was demonstrated, i.e. for in vitro
fertilization and intravital imaging in oncology.

Significant improvements in optoacoustic image quantification and resolution enhance-
ment was demonstrated without introducing major alterations into the signal acquisition
hardware or inversion algorithms. Overall, the innovations introduced in this work are
expected to be instrumental in aiding the interpretation of optoacoustic images and en-
hancing its powerful features, which can help in the translation of this technology from
the laboratory to clinical practice.



Zusammenfassung

Die optoakustische (oder photoakustische) Bildgebung kann gleichzeitig anatomische,
funktionale und molekulare Informationen mit beispielloser raumlich-zeitlicher Auflésung
und tiefen Gewebe-Imaging-Fahigkeiten liefern. Zur quantitativen Wiederherstellung
von Karten der lokalen optischen Absorption mittels optoakustischer Bildgebung benétigen
mehrere Parameter, die sowohl die Licht- als auch die Ultraschallausbreitungseigen-
schaften des Mediums betreffen, eine genaue Kalibrierung. Die Dissertation vereint
vielfaltige Doménen der Bildgebungsphysik und der multiskalen Bildverarbeitung, um
eine verbesserte optoakustische Bildgebungsleistung in Bezug auf Automatisierung und
genaue Rekonstruktion, eine bessere Abbildung optischer und akustischer Parameter
und eine verbesserte Auflésung zu erzielen. Speziell wurden Algorithmen zur automatis-
chen Geschwindigkeits-Klang-Kalibrierung in der Querschnitts-Optoakustischen Tomo-
graphie untersucht und effiziente hybride Fokussierungs-Metriken zur Verbesserung der
Fokussierleistung wurden entworfen. Eine Entropie-Maximierung basierte nicht-negative
Einschrankung wurde weiterentwickelt, was eine genaue Darstellung der optoakustischen
Rekonstruktionen ermoglicht. Ferner wurden fiir die optoakustische Bildsegmentierung
Multifunktions- und skalenraumbasierte Signalverarbeitungstechniken verwendet, um
die Genauigkeit der Bildrekonstruktionsroutinen zu verbessern. Die Bildauflosung wurde
mit einem innovativen geometrischen Pixel-Super-Auflosungsverfahren verbessert, das
Informationen aus mehreren in Unterbeugungsschritten erfassten optoakustischen Bildern
in ein hochauflosendes Bild mittels eines iterativen Registrierungsalgorithmus integri-
ert. Die entwickelten Algorithmen befassen sich mit dem gemeinsamen Ziel, die visuelle
Bildqualitat von optoakustischen Bildern zu verbessern, indem sie Computerbild- und
Bildanalysetechniken verwenden. Umfangreiche Experimente wurden sowohl an Ziel-
phantomen als auch auf Ex vivo und in vivo Gewebeproben durchgefiihrt, um die en-
twickelten Methoden zu validieren. Insbesondere wurde die Anwendung dieser Methoden
in zwei biomedizinischen Imaging-Fallstudien gezeigt, d.h. fiir die In-vitro-Fertilisation
und die intravitale Bildgebung in der Onkologie. Signifikante Verbesserungen in der op-
toakustischen Bildquantifizierung und Auflosungserhohung wurden gezeigt, ohne wesentliche
Anderungen in die Signalerfassungshardware oder Inversionsalgorithmen einzufiihren.
Insgesamt werden die in dieser Arbeit eingefiihrten Innovationen dazu beitragen, die
Interpretation optoakustischer Bilder zu unterstiitzen und ihre kraftvollen Funktionen
zu verbessern, die bei der Ubersetzung dieser Technologie vom Labor bis zur klinischen
Praxis helfen kénnen.
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1 Introduction

Optoacoustic (OA) imaging is a noninvasive, nonionizing imaging technique based on
the photoacoustic effect, and has emerged as a leading new hybrid bioimaging modal-
ity. In OA imaging acoustic waves are generated by the absorption of a short pulsed
electromagnetic waves, and the produced acoustic waves are detected using acoustic
sensing elements (e.g. Piezoelectric detectors, hydrophones, micro-machined detectors
etc.). The term optoacoustic (or photoacoustic) imaging is generally used when one
uses visible or near infrared light pulses [1], while using electromagnetic waves in the
radio-frequency or microwave range is referred to as thermo-acoustic imaging. So far,
the research efforts in OA have been directed towards the development of new hardware
components and inversion methodologies allowing increase in imaging speed, depth and
resolution, as well as on investigating potential biomedical applications. The unique ca-
pabilities of the recently developed whole-body small animal scanning systems (InVision
TF-256, iThera GmbH) [2] and volumetric scanners has opened up the unexplored do-
main of post-reconstruction image analysis. The aim of the current dissertation is to use
image analytics in conjunction with imaging and inversion techniques to recover better
OA images and enable optimized workflows for biological, pre-clinical and translational
imaging.

OA imaging not only provides structural but also functional information of biological
tissues [3]. Improving upon the OA imaging (single laser wavelength) technique, Multi-
Spectral Optoacoustic Tomography (MSOT) was developed by irradiating a tissue with
pulsed light of time-shared multiple wavelengths and establishing transient photon fields
in tissue[4]. The state-of-the-art MSOT scanners are now capable of high resolution
three dimensional (3D) visualizations of molecular probes located deep in scattering liv-
ing tissues, with resolution and speed representative of ultrasound [5]. This method can
simultaneously deliver anatomical, functional and molecular information with both high
resolution and penetration capabilities.

1.1 Development of Optoacoustic imaging

History of the genesis

Shabda-brahman embodies the transcendental or the supreme sound, which is manifested
as an entity which has innate power to convey a particular sense or meaning. Though

Parts of this chapter have been adopted from the tutorial article : S. Mandal, X. L. Dean-Ben, N.
C. Burton and D. Razansky, ”Extending Biological Imaging to the Fifth Dimension: Evolution of
volumetric small animal multispectral optoacoustic tomography.,” in IEEE Pulse, vol. 6, no. 3, pp.
47-53, May-June 2015.



1 Introduction

the ancient Rigvedas had hinted at the interplay of sound and light, the modern scien-
tific discovery of photoacoustic effect came as early as 1880, when it was demonstrated
by Alexander Graham Bell through his invention of the photophone. In his famous
Boston presentation he illustrated how sound can be generated by focusing shuttered
sunlight onto a selenium cell. Despite the ancient discovery of the basic physical phe-
nomenon underlying OA imaging and tomography [1], the lack of suitable laser sources,
ultrasound detection technology, data acquisition and processing capacities had long
hindered realization of efficient imaging devices. In fact, first high-quality images from
living animals were obtained about a decade ago, which was followed by an exponential
growth of technical developments in instrumentation, algorithms and biomedical appli-
cations surrounding this fascinating field (Fig 1.1) [6]. The ability of OA to probe optical
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Figure 1.1: A historical time line of the development of optoacoustic imaging technology. (Im-
ages in the time line reprinted courtesy of AAAS, AAPM, the IEEE, Nobel Media AB, NPG,
RSNA, and the Wellcome Library for the History and Understanding of Medicine.) Reprinted
with permissions from [6]

contrast along a wide domain of penetration scales while maintaining excellent spatio-
temporal resolution representative of ultrasound imaging is unparallel among the other
optical imaging modalities [5, 7]. State-of-the-art implementations of MSOT are based on
multi-wavelength excitation of tissues to visualize specific molecules located deep within
opaque living samples, which further allows to simultaneously deliver anatomical, func-
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tional and molecular information from depths of several millimeters to centimeters in
scattering tissues (as shown in Fig 1.2). Thereby, MSOT has been widely employed for

Optical Imaging Scales
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Figure 1.2: The penetration depth and resolution of modern photonic imaging techniques. For
living tissues, the methods at the left of the graph are primarily limited by light scattering,
whereas the methods to the right are primarily limited by light attenuation in tissue, a pa-
rameter that depends on both absorption and scattering, or by ultrasound attenuation. Note
that optical projection tomography (OPT) and selective plane illumination microscopy (SPIM)
can operate deeper than the range shown in naturally transparent or chemically cleared sam-
ples. (2P/MP: two-photon/ multiphoton microscopy; DOT: diffuse optical tomography; FMT:
fluorescence molecular tomography; MFT: mesoscopic fluorescence tomography.)

pre-clinical imaging, including in models of cancer, neurodegenerative and cardiovascu-
lar diseases, functional neuroimaging, kinetic and biodistribution studies, lymph node
staging, imaging of arthritis and inflammation. The main intrinsic tissue contrast at the
visible and near-infrared wavelengths stems from the highly absorbing blood hemoglobin,
however other major tissue chromophores, such as melanin and fat also have shown to
yield spectroscopic OA contrast. Moreover, a large variety of photo-absorbing probes
are explored as contrast agents for attaining specific extrinsic contrast. Altogether, these
key advantages have prompted development of high throughput MSOT imaging systems
for in vivo whole-body small animal imaging, further providing high sensitivity and spa-
tial resolution, portability, as well as real time operation capacity.

Small animal in vivo imaging is crucial in pre-clinical research to study changes in or-
gans at the cellular and molecular level — shedding light on the frontier of biomedical
and pharmaceutical imaging research [8]. An ever growing number of scientific articles
related to small animal OA imaging attests, above all, that MSOT is emerging as a
preferred non-invasive whole body small animal imaging modality for a number of key
applications. The new realm of 5-dimensional imaging, which consists of the 3 spatial
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dimensions, the time and the spectral (optical wavelength) dimension, has revolutionized
the modern functional and molecular imaging by using the synergistic combination of
ultrasound- and light-related advantages, such as high spatio-temporal resolution and
powerful spectrally-enriched contrast [9].

The theoretical and physical basis

The photoacoustic effect refers to the induction of acoustic radiation following temper-
ature elevation caused by absorption of light radiation in matter [10]. The OA signal
can be generated by various methods, e.g. pulsed laser sources (time-domain) [11], using
modulated continuous wave sources (frequency domain) [12], or by wavelength modu-
lated diode lasers [13]. The magnitude of the acoustic wave created by light absorption
is proportional to the local light intensity, optical absorption coefficient, and thermoe-
lastic properties of the imaged tissue. The induced acoustic wave spectrum is mainly
dependent upon the spatial frequency of optical absorption variations and duration of
the light pulse. In most of the current systems used the laser pulse durations in the
nanosecond range (8 — 20ns), the spectrum of optoacoustically induced signals from bi-
ological materials is typically of ultrawideband nature with useful information present
in the ultrasonic spectrum between several hundreds of kilohertz and several tens of
megahertz [14].

For the OA signal generation we assume the conditions of heat confinement, i.e., the
thermal diffusion is insignificant during the pulse given the pulse length is short enough
(typically 10s of nanoseconds). Given such boundary condition, the spatiotemporal de-
pendence between thermoacoustically induced pressure p(7,t), absorbed energy density
H(7,t) in W/m3, and local temperature elevation T(,t) can be expressed in a form of
the OA equation [15],

Pp 1 0’T B 0H
9D _ 2V [ —Vp) = pmfls = 22 1.1
gz~ ¢ pmV (pmVp> b 5E = Cr o (1.1)

where ¢, ppm, 8, and Cr are the corresponding speed of sound, mass density, isobaric
volume expansion, and specific heat coefficients of the medium, respectively. In bio-
logical tissues the values of the parameters have very less variations, except for bones,
lungs, and other air-containing body cavities. Laser pulses with duration lower than 1
s can suitably fulfil the thermal confinement criterion and guarantee that the acoustic
sources created in the object are proportional to the absorbed optical energy [16]. By
representing the absorbed energy density as a product between its spatial and tempo-
ral components, i.e., H(7,t) = H,(7)H(t) , while assuming acoustically homogenous
medium, (1.1) takes the form of,

0? OH,
—]20 — AV = ﬁHr—t. (1.2)

ot Cr 0Ot
OA imaging is a time-resolved modality reminiscent of ultrasound imaging, i.e., time
of arrival of the (initial) pressure wave directly indicates the distance to the (acoustic)

source in the imaged object. Thus, to enable better sensing and imaging, we place the
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ultrasonic detectors in the vicinity of the imaged object (as shown in 1.3). In most
practical cases, the duration of the optical pulse is short enough to be approximated by
a delta function, i.e., H;(t) = 6(¢). This simplification leads to an analytical solution
of Eq. 1.2, providing expression for the integrated pressure wave p (7/,t) sensed by a
acoustic detector located at 7/, given via a Poisson-type integral [17],

0 H, (F)

=0 9 1) g 13

p (1) Awc?Cr Ot Jp—et R (13)
where R =| r — r’ | and, for each time point ¢, the spatial integration is performed

over a spherical shell with a radius of R = ct (see Fig. 1.3).
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Figure 1.3: Schematic representation of optoacoustic signal detection

A more detailed discussion of the image reconstruction methods and the mathematical
framework of OA inverse problem is included in Sec 2.1.

Dimensionality in Optoacoustic imaging

A large variety of approaches have been proposed for in vivo small animal OA imaging.
Naturally, a single OA waveform represents one-dimensional information along the axis
of the ultrasound detection element. Thus, two- or three-dimensional images can be
rendered by raster scanning the detector in the two remaining spatial dimensions, as
performed in acoustic or optical resolution OA microscopy [18]. Another technique
consists in scanning an optical probe beam along a Febry-Pérot interferometric film to
tomographically detect optoacoustically generated sound using an all-optical approach
[19]. An alternative method for whole-body OA tomography was reported by Brecht et
al.[20], which was able to render the three-dimensional distribution of vascular structures



1 Introduction

and blood-rich organs such as the liver, spleen, and kidney by rotating a matrix array
transducer around the imaged mouse. The real-time imaging capacity in whole-body
observations was demonstrated by a cross-sectional MSOT system based on an array of
cylindrically focused transducers [21]. This imaging geometry enabled capture of two-
dimensional slices representing an entire cross section of living mouse at video rate (see
Fig 1.4, configuration shown in Fig 1.4(a)) [22, 2].

Figure 1.4: (a) A schematic drawing of the cross-sectional MSOT system. A curved array
of wideband and cylindrically focused ultrasound transducers enables parallel data acquisition.
Optical fibers are used to homogeneously illuminate the object. (b)—(d) MSOT images of mouse
anatomy taken at 750 nm. 1: kidneys; 2: spine; 3: spleen; 4: vena cava; 5: liver; and 6:
brain. (Figure adapted in parts from [2])

The capabilities of OA imaging were extended to four-dimensional imaging (three spa-
tial dimensions + time) through the implementation of the spherical arrays of detectors
[2, 23]. Finally, the recently developed portable spherical array probe, combined with a
fast wavelength tuning laser, real-time data acquisition, graphics processing unit (GPU)-
based volumetric image rendering, and spectral unmixing, has enabled for the first time
volumetric real-time spectrally enriched (five-dimensional) OA imaging at centimeter-
scale depths [24]. This portable system allows for convenient (handheld) handling of both
preclinical experiments and clinical measurements in human subjects [25]. The utility of
the five-dimensional imaging approach can be further enhanced by tracking the kinet-
ics and biodistribution of contrast agents with unique absorption spectra [26, 27|, such
as the U.S. Food and Drug Administration (FDA) approved Indocyanine green (ICG)
dye that can be employed during in vivo studies to visualize vasculature [23], excretion
through the liver or clearing through kidney, and retention in tumors [28].

The temporal dimension

MSOT is based on the detection of acoustic signals created through the thermoelastic
expansion of tissue under the influence of light, which is subject to three orders of mag-
nitude less scattering per unit length in tissue as compared to ultrasound. Thereby, the
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Figure 1.5: Dynamic contrast enhancement in nude mice with 4T1 tumor. (a) Single-pulse
images obtained at 790 nm approximately 30 sec after ICG injection, the (b) multispectrally
resolved ICG signal is overlayed in green (right). The spectrally resolved oxyhemoglobin (red)
and deoxyhemoglobin (blue) within the tumor on days 6 (left) and 13 (right) demonstrate the
label free imaging capabilities of MSOT. Insert shows a photograph of the cryoslicing through
tumor, arrows indicate hypoxic regions of the tumor core. Reprinted with permissions from [23]

spatial resolution is significantly higher than that of diffuse optical imaging techniques
[29]. Imaging the distribution of light absorbers in three dimensions with high resolution
is, however, not the only asset of MSOT. Indeed, other imaging dimensions may provide
independent information regarding the imaged object.

Time represents a key dimension in imaging technologies, although it is often over-
shadowed by the spatial resolution performance of the modality as the latter is held
responsible for “nice-looking images.” Yet, it is the high imaging speed that may enable
artifact-free handheld imaging [30], visualization of a beating heart [31], or real-time
imaging of perfusion profiles in tumors [28] and the internal organs (e.g., the kidneys
and brain) of small animals [9]. Fast imaging performance is greatly supported by the
development of suitable algorithmic software capable of performing inversion and im-
age/signal processing in real time, which is key for the successful implementation of
four- and five-dimensional OA imaging. To this end, the use of Graphics processing
units (GPU) has enabled visualization at frame rates of tens of volumes per second.

Optical wavelengths

Multispectral (or multicolor) imaging confers molecular specificity and, thus, provides
the capability to quantitatively investigate biological conditions such as hypoxia and
nutritional gradients as well as cell viability, proliferation, and drug response potentials.
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These parameters are essential in understanding the dynamics of living tissues and dis-
ease prognosis and progression (as shown in 1.5). In multispectral imaging, different
wavelengths are used for illuminating the tissue in a time-shared fashion [26]. Fast-
tuning optical parametric oscillator (OPO)-based lasers enable an entire multispectral
scan to be performed in a subsecond time frame, where the wavelengths are chosen in a
way to best sample the absorption spectrum characteristics of the specific chromophores
and the contrast agent of interest. Spectral unmixing algorithms are then required to
isolate the contributions of the individual chromophore(s) of interest to the OA signals
representing the distribution of the total absorbed energy.

Multispectral imaging is based on tissue excitation at multiple optical wavelengths. For
a given wavelength, the absorbed optical energy corresponds to a linear combination of
the absorbed energy of all absorbing substances (chromophores) present in the sample,

h H (Y 2) = 8 () () G () (1.4)

where ¢; (1) and C; (') are the molar extinction coefficient and molar concentration
of each chromophore. Spectral unmixing consists in estimating the spatial distribution
of the concentrations of different chromophores from the OA images acquired at differ-
ent wavelengths. For example, this can be achieved by considering images at different
wavelengths, Eq. 1.4 can be expressed in a matrix form as,

Humsot = EC, (1.5)

where F is the linear operator (matrix) relating the concentrations of the chromophores
C to the optical absorption at different wavelengths H,,s.¢:- As E is generally affected
by local variations in the light fluence, accurate unmixing requires proper estimation of
the light fluence distribution at the excitation wavelengths and inversion of (1.5) going
a per-pixel (per-voxel) basis. Notably, blood offers a rich intrinsic contrast for label-free
functional biological imaging as it is possible to distinguish between oxygenated (HbO2)
and deoxygenated (Hb) hemoglobin (Fig 1.5). As an example of the five-dimensional
OA imaging capabilities, Fig 1.6 displays the perfusion of brain vasculature in mice with
ICG as a contrast agent. The wavelength dimension enables isolating contribution of the
contrast agent through fast multispectral data acquisition and the subsequent reconstruc-
tion of agent distribution in real time. Yet, one inherent challenge in spectral unmixing
is the so-called spectral coloring effect associated with the wavelength-dependent light
attenuation. The algorithms accounting for this effect are, thus, crucial to increase the
accuracy and quantitativeness of the measurements
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Figure 1.6: Five-dimensional imaging of mouse brain perfusion in vivo. (a) Layout of the
experimental set-up. (b) Single-wavelength images (maximal intensity projection along the depth
direction) acquired before and after injection of the ICG contrast agent. Results for two different
concentrations are shown. When 10 nmol of ICG was injected, the contrast agent cannot be easily
distinguished from the background blood absorption. Different structures in the mouse brain are
indicated in the figure, supraorbital veins (SV), inferior cerebral vein (iCV), superior sagital
sinus (SSS), confluence of sinuses (CS) and transverse sinus (tS). (c) Time series of images after
spectral unmixing of multiwavelength data, taken for the 10 nmol experiment, clearly reveals
the inflow of the agent in vivo and in real time. ICG, indocyanine green, (d) spectral excitation
profile of several chromophores used for linear unmixing operations for identify the molecular
constitution of tissue and presence of contrast medium. Adapted in parts with permission from

[9].

1.2 Scope and objectives

In the dissertation project, we aim is to bring together the physics of imaging and image
analysis to enhance the visual quality of OA images. To satisfy our goal, we undertook
development of multiple algorithms to engineer an entire image analysis framework.
Given the interdisciplinary nature of research, it is vital to apply to developed methods
to pre-clinical and/or translational imaging. To this effect we demonstrated the capa-
bilities of MSOT system and related methods for non-destructive imaging in assisted
reproductive technologies and oncology imaging. Overall, the dissertation harmoniously
bring together medical imaging and image analysis in unison and illustrate its appli-
cation through biomedical imaging applications, potentially opening up new vistas in
pre-clinical and translational OA imaging and image processing.
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Research aims and achievements

The primary focus of the work is to develop an information theoretic framework for
visual quality enhancement of OA images and demonstrate its applications to biological
imaging. The predefined goals are as follows:

e Development of algorithms to enhance reconstruction performance and image qual-
ity, with emphasis on speed of sound auto-calibration, and reduction of negative
values in reconstructed images.(Chapter 2)

e Using segmented priors to enhance accuracy and efficacy of OA reconstructions,
e.g. mapping of multiple speeds of sound and mapping optical fluence. (Chapter
3)

e Improving resolution of reconstructed images using 'pixel super-resolution’ method(s),
which uses information from multiple geometrically distinct acquisitions to obtain
high resolution image reconstruction. (Chapter 4)

e Demonstrating the efficacy of MSOT in biomedical imaging applications, through
multiscale imaging of in vivo dynamics and multispectral imaging in vivo and in
vitro in animal models. (Chapter 5)

We have conducted in-depth experimentation on automated speed of sound (SoS)
fitting and segmentation of cross-sectional 2D images, real time 3D visualization and
dynamic imaging based on single wavelength and multispectral data. Both phantom
studies and animal imaging were conducted to develop and validate the algorithms as
indicated.

We aimed to automate the parameter selection of OA image reconstruction to enable
unsupervised real-time imaging and visualization, and used autofocusing metrics to au-
tomatically calibrate the SoS. In an attempt to reduce erroneous reconstruction which
contains negative (spurious) values, we proposed a new entropy based non-negative im-
age reconstruction algorithm. Going further, we introduced segmented image priors to
correct for the small variations in SoS and optical fluence distribution within the tissues.
We developed methodologies for segmentation of whole body small animal images with
applications to achieve this goal. In our effort to improve image resolution, we evolved
the intrinsic geometric scanning properties of the transducer arrays to achieve ’pixel
super resolution’ and thereby recover better images using existing system setups. The
employed methods uses information from different scanning location to overcome the
limitations in resolutions caused due to size of pixels, and should not be confused with
recent literature on super resolution with aim to break the diffraction limit of light or of
acoustic waves.

Focusing on the biological applications of MSOT, we demonstrated the non-destructive
nature of MSOT through in vitro fertilization studies using a new intravital contrast
agent Brilliant Cresyl Blue (BCB). Additionally, we reported the results of the newly
developed v-MSOT system in four dimensional (4D) optoacoustic imaging of perfusion
in preclinical breast tumor model in vivo. The study investigated the blood perfusion
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and extravasation profile in heterogenic solid tumors, vital for analyzing hypoxia and
cell nutrition gradients as well as viability, proliferation and drug response potentials.
We strongly believe that the dissertation contributes significantly to theoretical devel-
opment of OA tomography, by bringing together imaging physics and image analysis. In
terms of biological imaging the roadmaps illustrated in artificial reproductive technology
and oncology are pioneering, and might prove to have far reaching impact.

1.3 Structure of the thesis

This thesis presents a set of algorithms for self-calibration of image reconstruction pa-
rameters and non-negative image reconstruction. Thereafter, it introduces the concept
of segmented priors and shows it usage for improving reconstruction image quality. Then
it discusses an algorithm to improve the image resolution without hardware additions.
Finally, it shows the application of the developed systems and algorithms to two pre-
clinical imaging protocols, viz. in vitro fertilization and oncological imaging.
Essentially, the thesis has been structured into six independent chapters highlighting
both development of algorithms and pre-clinical imaging applications. The current chap-
ter introduces the readers to the history and evolution of OA imaging, and outlines the
scopes and objectives of the thesis.

Chapter 2 focuses on the issue of image reconstruction, in particular on automated cali-
bration of reconstruction parameters and non-negative image reconstruction. We outline
seven different autofocusing matrices and evaluate their performances to find the most
suitable image, which in turn gives us a correct estimate of the speed of sound. In
the second part of the chapter (2.3) we have present an entropy maximization based
approach that employs a logarithmic regularization term for the tomographic inversion.
The method enables accurate representation of the OA reconstruction. Further, we have
experimentally validate the entropy maximization scheme on phantoms and in vivo sam-
ples.

Chapter 3 shows that multiscale segmentation algorithms and active contour models
can be employed for boundary segmentation in OA tomographic images. The seg-
mented boundary information is thereafter employed for automated fitting of multiple
SoS values, and mapping of the optical absorption coefficient by means of light fluence
normalization. The performances of the segmentation algorithms and their usefulness
in improving image reconstruction was demonstrated using phantoms and small animal
imaging experiments.

Chapter 4 outlines the theory and implementation of a pixel super-resolution algorithm
in OA imaging and illustrate its effects on image resolution and contrast enhancement.
The study includes simulations and experimental measurements on phantoms and ex-
vivo murine organs.

Chapter 5 is focused solely on biological application of multiscale OA imaging and re-
ports two independent studies that were conducted. In the first study, we employ a
new contrast agent for ex vivo ovarian imaging, and demonstrates the capability of OA
for non-destructive molecular imaging of intact ovarian follicles. The study hold great

11
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potential for in vitro fertilization (IVF) and might be clinically useful as an assisted
reproductive technology. In the second application study, we explored the capabilities
of vMSOT for cancer imaging in pre-clinical models. We interpreted intrinsic tissue
properties, such as blood oxygenation gradients, along with visualization of externally
administered nanoparticle distribution in order to study vascularization, probe pene-
tration and extravasation kinetics in solid tumors. The study highlights v the clinical
potential of this technology in skin or breast diagnostics and therapy monitoring.
Finally, Chapter 6 summarizes the novel contributions made by the dissertation and
outlines the future scope of the work. All chapters of the thesis is linked with one of
more peer-reviewed (or in review) research publication(s), the relevant publications are
suitably cited and indicated in the connected chapter.

12



2 Optimization of image reconstruction and
self-calibration of parameters

Optoacoustics (OA) offers unique in-vivo imaging capabilities for preclinical research
[18]. However, achieving optimal resolution and contrast as well as associated quality
measures in OA tomographic images requires accurate representation and calibration
of the reconstruction parameters. In tomographic OA imaging, multiple parameters re-
lated to both light and ultrasound propagation characteristics of the medium need to
be adequately selected in order to accurately recover maps of local optical absorbance.
In the current chapter, we focus on two important issues that are needed to be solved
to improve OA imaging performance, viz. calibration of essential reconstruction param-
eters, and non-negative OA reconstructions.

Speed of sound (SoS) in the imaged object and surrounding medium is a key parameter
conventionally assumed to be uniform. Mismatch between the actual and predicted SoS
values may lead to image distortions but can be mitigated by manual or automatic opti-
mization based on metrics of image sharpness. Although some simple approaches based
on metrics of image sharpness may readily minimize distortions in the presence of highly
contrasting and sharp image features, they may not provide an adequate performance
for smooth signal variations as commonly present in realistic whole-body OA images of
small animals. In this chapter, we illustrate a class of new hybrid methods, which are
shown to outperform well-established autofocusing (AF) algorithms for small animal OA
imaging in vivo. Further, tomographic OA reconstructions are ideally expected to repre-
sent maps of the initial pressure rise induced by the absorption of pulsed light in tissue.
In practice, due to inaccurate modeling assumptions and a variety of unpredictable ex-
perimental factors, the images are often afflicted with negative values and erroneous pixel
intensities. We present an entropy maximization based approach that employs a loga-
rithmic regularization term for the tomographic inversion. In this way, a non-negative
constraint is intrinsically imposed on the rendered images, thereby enabling accurate
representation and quantitative imaging performance of the OA reconstructions.

Parts of this chapter has been adapted with modifications from:
S. Mandal, E. Nasonova, X. L. Dean-Ben, and D. Razansky, “Optimal self-calibration of tomo-
graphic reconstruction parameters in whole-body small animal optoacoustic imaging,” Photoacous-
tics, vol. 2, pp. 128-136, Sep. 2014.
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2.1 Optoacoustic reconstruction and instrumentation

2.1.1 Image reconstruction (inversion) methods

In Section 1.1 we have discussed the OA signal generation problem in OA imaging, in
the current section we will discuss the methods for reconstruction of optical absorption
distribution from a set of measured ultrasonic pressures. There are numerous inversion
methods used by researchers, which depend of several factors, including shape of the
transducer (or detector geometry), nature of the detector, computation time, intended
resolution of reconstruction etc. Given the most simplistic scenario, we assume using
spherically focused transducer and reduce the problem to a simple one-dimensional de-
tection of signal along a straight line [32]. The detector when scanned along other
dimensions, the reconstruction problem essentially becomes a planer (2D) or a spher-
ical (3D) triangulation problem. The solution for the same can be readily obtained
by using algorithms like the delay-and-sum algorithms etc. Similarly, reduction into a
2-D imaging problem could be done by using cylindrically shaped detection elements,
focused onto a certain plane [33]. In general, the strategy adopted for tomograpic OA
systems is to collect OA signals from as many locations (viewing angles) around the
imaged volume as possible (typically 256 in our case). Thereafter, the most widely
used image reconstruction (or inversion) method is the filtered backprojection algorithm
(FBP), which is a closed-form formulation expressed in two or three dimensions and are
analogues to the inverse-Radon transform reminiscent of X-ray computed tomography.
Several approaches to solve the backprojection formulas has been proposed for different
detection geometries and are implemented either in the spatiotemporal domain [34] or
in the Fourier domain [35]. Assuming a circular scanning geometry and exact inversion
formula for 2D imaging was introduced by [36], and later generalized using the universal
backprojection method [34]. The inversion formula calculates a 2-D integral over sum
of an infinite function series. The first-order approximation is conventionally used to re-
duce the numerical complexity of the calculation, leading to the backprojection formula
given by,

dA’ (2.1)
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The backprojection algorithms are simple, convenient and fast, thus they are widely
used. However, the accuracy of such algorithms is limited and they suffer from sub-
stantial artifacts and are more susceptible to limited view problems. The methods
suppress the slowly varying image components and accentuate the fast changes (small
details), which often gives rise to negative optical-absorption values that have no phys-
ical interpretation [37]. Additionally, the hypothesis behind backprojection algorithms
assumes an ideal description of the acoustic wave propagation and detection as well as
on specific detection geometries. Therefore, generalizing the formulation for more real-
istic OA illumination-detection models by incorporating configuration of detectors and
instrumentation-dependent factors becomes non-trivial.

To overcome the challenges of backprojection based methods and to reduce the artifacts,
the model-based methods were suggested [38, 39]. The iterative algorithms have been
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2 Optimization of image reconstruction and self-calibration of parameters

used in X-ray images for decades and solves the forward problem numerically in an it-
erative optimization algorithm. The aim of the model-based method is to minimize the
error between its corresponding acoustic signals and the measured signals [39]. In this
dissertation work, we have primarily used the numerically efficient interpolated model-
matrix inversion (IMMI) proposed by Rosenthal et. al. [15]. The IMMI algorithm
represents an exact numerical model-based reconstruction method and offers quantita-
tive results by taking into account the various experimental imperfections, preserving
the low frequency information and reducing image artifacts. The IMMI solves Eq. 1.3 in
a highly efficient semi-analytical manner by applying linear interpolation to H, () and
performing the integral analytically. This leads to a discretization of Eq. 1.3, given by
the following matrix relation:

p=Mz (2.2)

where p represents pressure fields measured at different positions (projections), z are
values of OA image on the defined grid, and M is the acoustic forward-model matrix. The
OA image is obtained by inverting Eq.2.1 by employing Moore—Penrose pseudoinverse
[40] and/or the least squares decomposition (LSQR) algorithm [41]. The pseudoinverse
of M is given by,

Mt = (MIM)~m#? (2.3)

while the reconstructed OA image is subsequently obtained via,
z=MTp (2.4)

The pseudoinverse needs to be calculated for a given system only once, and it enables
fast inversion. Thus researchers have been able to achieve near real-time reconstruction
using the method, and has opened up new possibilities in functional imaging. The LSQR,
on the other hand, is an iterative algorithm for solving linear equations . It is highly
efficiency in the case of sparse matrices, and since it only saves the nonzero elements of
the matrix, it can operate on smaller memory footprints [42].

The IMMI algorithm [15] (as used in Chapters 3,4,5 of the thesis) represents an exact
numerical model-based reconstruction method and offers quantitative results by tak-
ing into account the various experimental imperfections, preserving the low frequency
information and reducing image artifacts. In this method, the difference between the
measured pressure at a set of locations and instants(expressed in a vector form as p),
and the equivalent theoretical pressure is iteratively minimized using least square mini-
mization techniques. The optical absorption at the pixels of the ROI, expressed as vector
form F, is calculated as follows,

F = argming| Af — p||? + \2||Lf]? (2.5)

where A is the linear operator(or model matrix) mapping the optical absorption to the
acoustic pressure. We use standard Tikhonov regularization [43] to minimize the high-
frequency noise and reduce the effects on limited view in the inversion process. The
matrix L represents a high-pass filter operation. For all practical purposes we use a
Butterworth band-pass filter between 0.1-7 MHz to filter the acquired signal. Since the
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model matrix M is sparse, LSQR is an extremely efficient method for inverting Eq. 2.5
when the number of grid points is high.

There have been several other interesting and efficient inversion algorithms that has been
proposed and each presents its unique benefits [44], viz. time-reversal [45], quantitative
signal extraction method using sparse reconstruction [46], high-throughput sparsity-
based inversion [47], wavelet packet based OA reconstruction, polar coordinate based
expedited model-based reconstruction [48], curve driven acoustic inversion [49] etc. How-
ever, a detailed study of the vast domain of inversion methods is beyond the scope and
requirements of the current thesis.

2.1.2 Instrumentation

For acquisition of the data for the experimentations in Chapters 2-5. we used the cross-
sectional OA acquisition geometry [2] using a commercial small animal MSOT scanner
(Model: MSOT256-TF, iThera Medical GmbH, Munich, Germany). The scanner con-
sists of a custom-made 256-element array of cylindrically focused piezocomposite trans-
ducers with 5 MHz central frequency for simultaneous acquisition of the signals generated
with each laser pulse. The transducer array covers an angle of approximately 270° and
has a radius of curvature of 40 mm. To offer real-time (video rate) imaging capacity,
it optimizes light energy delivery that avoids the need for data averaging and offers
parallel detection of OA signals around the area of maximal light deposition. Light
excitation is provided with the output laser beam from a wavelength-tunable optical
parametric oscillator (OPO)-based laser, which is shaped to attain ring-type uniform il-
lumination on the surface of the phantoms by means of a custom-made fiber bundle.The
system houses a custom-made semiarc multielement-focused piezocomposite ultrasonic
array and ring-type illumination, delivered via a fiber bundle. The detected OA signals
are simultaneously digitized at 40 Msps, the system diagram is available in Fig. 1.4.
To facilitate in vivo measurements, the system contains an imaging chamber with inte-
grated animal holder with a water-impenetrable membrane that averts animal contact
with water, and simultaneously enable delivery of vital air and anesthesia (isoflurane in
vapor form) through a mouthpeice to the experimental animal. The temperature of the
entire water bath with which the imaging chamber is inundated is maintained at 34°C
using heating coils and stirrers to distribute heat equitably. The scanner is capable
of rendering 10 cross-sectional images per second, but for our experiments the images
were averaged 10 times in order to improve SNR performance in acquiring entire mouse
cross-sections.

We further developed a 3D real-time acquisition system with a spherical acquisition
geometry, detailed description of the same is available in section 5.2.1.

2.2 Self-calibration of speed of sound

The position and orientation of the ultrasound sensors, spatial variations of the SoS,
attenuation and other acoustic properties of the propagation medium may all signifi-
cantly affect the collected OA responses [7] and therefore must be correctly accounted
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for in the image reconstruction process. For example, cross-sectional OA systems based
on single-element [50, 33| or arrays of cylindrically-focused transducers [2, 51] are com-
monly employed due to important advantages derived from reducing the OA problem into
two dimensions. For accurate tomographic reconstructions, the location of all detection
points in the imaging plane needs to be precisely known or determined experimentally,
the latter by e.g. imaging a calibration phantom having a uniform and known SoS.
Once the acquisition geometry is properly calibrated, the correct values of the acoustic
propagation parameters must still be taken into consideration, ideally with the use of an
algorithm accounting for acoustic heterogeneities [52, 53, 54, 55, 56]. In many practical
cases, the map of SoS variations in the imaged medium is not available a-priori nor can
be extracted experimentally so representative reconstructions are obtained by consider-
ing a uniform heuristically fitted SoS [55, 57].

Dependence of SoS on the temperature of the surrounding matching medium is yet
another uncertainty that must be accounted for, e.g. by continuously monitoring the
temperature throughout duration of the experiment [58]. Indeed, even subtle tempera-
ture variations lead to substantial changes of SoS in water of 2.6 ms~!/°C [59]. Con-
sequently, if the water temperature cannot be properly controlled during a prolonged
experiment, dynamic calibration of the SoS becomes essential. In addition, local discrep-
ancies between sound propagation velocity in the water and the imaged sample, even
under assumption of uniform acoustic properties, may raise the necessity in additional
SoS calibration on a per-slice basis. Moreover, fast automatic calibration of the SoS is
of high importance in real-time imaging systems, where GPU-accelerated reconstruction
algorithms now allow for real-time OA visualization of the sample in the course of the
experiment [24]. Determining AF parameters for biological images has been a wide area
of research and diverse families of methods have been reported for digital microscopy
[60, 61, 62], shape from focus [63], cytogenetic analysis [64]. Some simple AF approaches
based on sharpness metrics [65] may perform equally well for OA, especially when high
frequency strongly contrasting image features such as high resolution subcutaneous are
present in the images. However, they may not provide an adequately robust perfor-
mance for smooth or ultrawideband signal variations as commonly present in realistic
whole-body OA images from small animals, especially when considering quantitative
model-based reconstructions that preserve low-frequency information [15].

In the dissertation work, we propose novel and efficient hybrid focusing metrics em-
ploying pre-processing to enhance the focusing performance. The proposed methods
incorporate key improvements, viz. edge detection and diffusion, making them optimal
for application in OA SoS self-calibration. Further, we investigated the performance of
a developed AF algorithms for automatic SoS calibration in cross-sectional OA tomog-
raphy vis-a-vis several benchmark (previously mentioned in literature and used in OA
reconstructions) .

2.2.1 Autofocusing algorithms

The workflow for a typical SoS calibration procedure is depicted in Fig. 2.1. OA images
corresponding to selection of different values of the SoS in a certain reasonable range
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are tomographically reconstructed from the recorded signals. Thereafter, the recon-
structed images are processed with the AF algorithm and focus measures are employed
to determine the best matching SoS. The fitted SoS, as obtained from the calibration
method, is then fed back as a parameter for the reconstruction of the dataset/frame.
The algorithms described in this section can be classified into three main groups, namely
intensity-based ( 2.2.1.1 and 2.2.1.2), gradient-based (2.2.1.3 and 2.2.1.4) and edge-based
(2.2.1.5-2.2.1.7) measures, where the last group of metrics simultaneously correspond to
the hybrid approaches suggested in this work. In order to enable comparison between the
different methods, all focus measures are readjusted so that the global minima represent
the most focused image. The focus measure is normalized to the maximum value in the
SoS range considered. Focus metrics were calculated on the interval from 1460 to 1580
m/s, corresponding to a typical range of SoS in water and soft tissues, with step size of
1 m/s, and processed with smoothing Savitzky-Golay denoising filter (with polynomial
order of 0 and window size of 5 points) [66]. The algorithms tested are presented as
follows.

Reconstructed
images at different
Speeds of Sound

Laser Excitation Ultrasound Detection

Image

Use Computed Apply
Cross-sectionalimaging Speed of Sound Autofocussing
( Preprocessing of Apply . \
Reconstructed % Autofocusing _ g::::e:f 2‘:3; d
Images Algorithms
Compute Focus Curve Fitting /
AF Blockset Measure Value > Optimization

N _4

Figure 2.1: Basic principle of the application of the autofocusing in the optoacoustic recon-
struction workflow. The AF blockset illustrates the post-reconstruction autofocusing algorithm
employed to automatically calibrate speed of sound.
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2.2.1.1 Maximum pixel intensity

The maximum pixel intensity represents the most intuitive and computationally efficient
focus measure. The method is inspired by the tendency of the user to look for the
brightest spots in the focused image as well as the largest image contrast so that it is
assumed that a given structure has the highest intensity value when it is focused. As
such, this metric is expected to perform better with high signal-to-noise-ratio (SNR)
images rich with high-contrast features, but is the most artifact-prone if noise and other
image artifacts yield these high-intensity features. The focus measure is defined as,

Fyr = —MAL (1,q) [f('rvy)] (26)

where f(z,y) is a function of two variables representing the grey level intensity in the
cross-sectional image. The negative sign is added so that the global minimum represents
the most focused image, as mentioned above.

2.2.1.2 Maximum intensity range

The maximum intensity range is a modified version of the previous method [61]. In this
case, the difference between the maximum and minimum pixel intensity is calculated,
i.e., the focus measure is defined as,

Fyrr = —{maz (g [f(z,y)] — ming ) [ f (2, )]} (2.7)

2.2.1.3 Brenner’s gradient

The Brenner’s gradient provides a quantitative measure of image sharpness. It is based
on computing the difference between the intensity values for pixels separated by two
times the pixel size. In two dimensions, it can be expressed as,

Fpg= — {Z [f (@ +2,9) = f (@) + > [f (2,y+2) — f(x,y)]Q} (2.8)
z,y

w?y

The Brenner’s gradient is a widely used metric and it has been shown to oFutperform
other methods for SoS calibration in three-dimensional OA imaging [65].

2.2.1.4 Tenenbaum'’s gradient

The Tenenbaum’s gradient uses an edge-detection-based approach (sharper edges cor-
respond to higher frequencies). The gradient is determined by a convolution between
the Sobel operator (and its transpose) with the image pixels. This focus measure is
calculated as,

Fra= — {Z Gx f eyl + [G7 # f mwf} (2.9)

x?y
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-1 0 +1
where G=| -2 0 +2
-1 0 +1

represents the Sobel operator and '*’ denotes two-dimensional convolution. While the

Tenenbaum’s gradient has been reported to be superior in microscopy [62], its perfor-
mance in OA imaging has been shown to be comparable to that of the Brenner’s gradient

[65].

2.2.1.5 Normalized sum of edge pixels (Edge+Sum)

The normalized sum of edge pixels calculates the sum of pixels corresponding to strong
edges, subsequently normalized by the total number of pixels in the image. The Sobel
approximation to the derivative is used as edge detection algorithm. This metric aims
at minimizing the influence of thin circles and ‘crossing-arcs’ artifacts typically present
in unfocused cross-sectional OA images. The method then aims at maximizing clearly
defined edges, i.e., it represents, to some extent, an opposite approach to the traditional
camera focusing. The focus measure is then expressed as,

1
Fps =+ ; e(z,y) (2.10)

being N the number of pixels in the image and
1, x,y) > threshold
e

0, otherwise

with g (x,y) = \/[G * f (.9)]* + [(GT) * f (a,y))°
The value of the threshold was determined automatically by computing the root mean
squared (RMS) estimate of noise [67].

)

2.2.1.6 Normalized variance of the image gradient magnitude using Sobel operator
(Sobel+Var)

The normalized variance of the image itself has been previously reported as focus mea-
sure in computer microscopy [60, 68] and later in OA imaging. Herein, we suggest an
additional step consisting in computing the variance of the gradient magnitude obtained
by convolution with the Sobel operator. This metric belongs to hybrid approaches being
combination of statistics-based and derivative-based algorithms, leading to an enhanced
performance in OA images having a relatively low contrast compared to natural images.
The focus measure is expressed as,

—ﬁuwwmw—m% (2.11)

Fsy =

where p is the mean value of g(x,y), as defined in earlier subsection.
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2.2.1.7 Anisotropic diffusion enhanced energy of image gradient using consistent
gradient operator (Ad-CG)

We have developed a hybrid methodology based on a combination of anisotropic diffusion
and consistent gradient (CG) operator with is customized for our current OA image
datasets. Anisotropic diffusion is an iterative scale-space approach, which enhances the
edges while smoothing the rest of the information in the image [68]. The purpose of this
pre-processing step is twofold, namely, to remove noise and intensity fluctuations on the
one hand, on the other - to reduce the ripples in focus measure as a function of the SoS.
The continuous form of the non-linear partial differential equation (PDE) as proposed
by Perona and Malik [69] for diffusing an image is given by, [70],

{ 9L = div [d(|VI|) e VI] (2.12)

I (t: 0) :f()(xvy)

where V and div are the gradient and divergence operators, respectively, C'(z) is the
diffusion coefficient, and fo(x,y) is the initial image. Eq. 2.12 is solved iteratively as
explained by [69], where the diffusion coefficients is taken as c(x) = m with &
being an edge magnitude parameter.
A Consistent Gradient (CG) operator is thereafter applied as a second step to compute
the energy of the image gradient which is translated as focus measure scores [71]. This
approach has been reported to have more stable AF performance under varying illumi-
nation conditions for microscopic imaging [72, 73]. The use of a CG operator ensures the
exactness of gradient direction in a local one-dimensional pattern irrespective of orienta-
tion, spectral composition, and sub-pixel translation. The energy of the image gradient
is defined as,
o0 o0
E= [ [ |Vf(z,y)|*dzdy. (2.13)

—00 —00

The actual focus measure including all intermediate steps can be expressed in a form:

1
Fapcg = NZonH—i—(l—w)oIv (2.14)
x7y

where N is the total number of image pixels and w is an additional factor allowing for
flexibility in assigning more weight to horizontal Iz or vertical Iy, derivative approxima-
tions defined as,

IH:CG*IAD; IV:CGT*IAD (2.15)

being I4p the OA image after anisotropic diffusion filtering, and CG is the 5x5 consistent

gradient operator expressed as,
—0.003776 —0.010199

—0.026786 —0.070844
G = —0.046548 —0.122572
—0.026786 —0.070844
—0.003776 —0.010199

0.010199 0.003776
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2.2.2 Experimental results and statistical analysis

To test the impact of reconstruction methodologies on the outcome of the calibration
procedure, back-projection and model-based inversion methods were compared, and the
results for the ex-vivo murine kidney experiment are displayed in Fig. 2.2. Even though
all images were manually thresholded to attain best visual appearance, the image qual-
ity is generally improved with the model-based approach over the back-projection re-
constructions, the latter exhibiting generally unreasonable distribution of the optical
absorption with pronounced negative value artifacts across the imaged sample. The cal-
culated focus measures as a function of the SoS are showcased in Fig.2.2a and 2.2b for
back-projection and model-based reconstruction, respectively. All focus measures are
normalized to the maximum value in the SoS range. A Savitzky-Golay denoising filter
was further applied as a valuable additional step for removing spikes from the focus
measure plots, thus avoiding ambiguity and locking up into local minima.

The focus measures are expected to have a minimum for the value of the SoS correspond-
ing to the best focused image. Indeed, most of the metrics reach the same calibration
SoS regardless of the reconstruction method. Examples of reconstructed images with
back-projection and model-based reconstruction of the ex-vivo murine kidney for sev-
eral equally spaced SoS values are displayed in Fig.2.2c and 2.2d respectively, where
the subjectively best-looking images correspond approximately to the minimum of most
focus measures. The metrics generally show sharper focusing performance with back-
projection reconstruction, probably due to higher frame-to-frame variability when the
SoS was changed. On the other hand, the focus scores were generally more consistent
for the model-based reconstructions. The focusing curves were less noisy for the Ad-CG
method, where 2 iterations were used in the anisotropic diffusion step, as determined
empirically.

The results of the in vivo mouse imaging studies are displayed in Fig. 2.3. In particu-
lar, the focus measures for the head, liver and kidney/spleen regions as a function of the
SoS are showcased in Fig. 2.3a, 2.3b and 2.3c, respectively. Representative images for
these three regions of the mouse body obtained by considering different values of the SoS
are accordingly shown in Figs. 2.3d, 2.3e and 2.3f. All images were reconstructed with
the back-projection approach. The numbers of iterations in the anisotropic diffusion pro-
cedure were heuristically chosen as 4, 12 and 18 for the liver, brain and kidney/spleen
regions, respectively. The iterations ensures that a sufficient level of smoothening is
achieved without blurring edges, thus different number of iterations were determined for
each region imaged based on observation and inherent nature of the images. Further, a
fixed edge weight w (see eq. 2.14) of 0.95 was used for all the experiments with Ad—CG
method. The choice of number of iteration is thus critical for the good performance of
the algorithm, effects of weighting is limited for the current modality but might have
greater applicability in presence of strong limited view problems.

A higher variability in the focus measures was noticed for the brain images, primarily due
to the lack of well-defined structures and edges to focus on. For example, the Tenenbaum
measure yielded a minimum at the upper limit of the SoS range, where the reconstructed
image for this particular selection (Fig.2.3d) is clearly deteriorated. The performance of
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Figure 2.2: Speed of sound calibration for an ex-vivo murine kidney. The graphs show the
normalized focus measures versus the speed of sound for 7 different focus measures using (a)
back-projection and (b) model-based reconstruction methods. For all focus measures the global
minima determines the most focused image. Panels (c¢) and (d) show the images at six different
speeds of sound reconstructed with back-projection and model-based algorithms, respectively
(values are stated in [m/s]). A zoom-in of a representative region inside the object is showcased
for a better visual evaluation of the image quality enhancement achieved with the proper value
of the speed of sound.

the metrics was better for the kidney/spleen and the liver regions given higher intrinsic
contrast and defined vascular structures found in these areas. As a first approach, the
temperature of the coupling medium (water) can be used for referencing the SoS and
using it for reconstructing the data. However, as clearly shown in Figs. 2.3d-f (first col-
umn), the resulting images obtained for this value of the SoS are not optimal. Indeed,
the average SoS in soft tissues is approximately 1540 m/s, and can have variations of up
to 10% with respect to the SoS in water [15]. A different (generally higher) SoS must
then be used for the reconstruction, and the AF algorithms provide a suitable platform
for this purpose. The manually selected values of the SoS are highlighted in the second
column of Fig. 2.3. The manual calibration values were decided based on subjective
testing using feedback from three independent volunteers experienced in reading animal
anatomy but with no prior knowledge of the SoS calibration values. SoS retrieved with
the proposed AF algorithms fits best the one selected manually using the subjective
testing. It is worth noticing that only the three last hybrid focus metrics, especially the
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2 Optimization of image reconstruction and self-calibration of parameters

Ad-CG, have the sharp peak on the entire interval, probably due to the diffusing (or
smoothing) processing of the image. This in turn minimizes the chances for secondary
local minima to appear, which may lead to misinterpretation of the results. It is to
be noted that, anisotropic diffusion is a well-known image processing technique that
successfully reduces image noise without compromising significant parts of the image
content, typically edges, lines or other details that are essential for image interpretation
and analysis [69].
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A

Normalized focus measure (FM) scores _,

(b)

1580 0 1460

=)

0
1580 1460

1460

1520 1520
Speed of Sound (m/s) Speed of Sound (m/s)

Figure 2.3: Focus measure (FM) plots for 7 different metrics in three different anatomical
regions of the mouse during in-vivo imaging of (a) brain, (b) liver, and (c) kidney/spleen. The
global minima of the focus measure score represents the calibrated speed of sound. Reconstructed
images at different speed of sound values for the respective regions are shown in (d), (e) and (f),
where the first and second column correspond, respectively, to the speed of sound in water (at
34°C) and the speed of sound manually fitted.

To quantify the overall efficacy of the results, tests on 10 datasets for each of the
designated regions in mice were conducted. The boxplots of the resulting values of the
SoS are shown in Fig. 2.4. The gradient-based methods, i.e. Brenner’s and Tenenbaum’s
gradients, generally performed satisfactorily, in agreement with earlier publications [74],
although secondary drifting peaks often appear, which severely offset the global minima
value. The effects of such secondary fluctuations were reduced with the filtering process
and by considering only a SoS range between 1480 and 1560 m/s. Secondary peaks
also appeared in some cases when considering the Edge4+Sum algorithm, although the
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2 Optimization of image reconstruction and self-calibration of parameters

resulting variability is lower. On the other hand, the performance of the two proposed
metrics Sobel+Var and Ad-CG are consistent (no secondary peaks appeared) and provide
variability similar to that obtained by manual selection. The worst performance in terms
of variability and fitted SoS value have been obtained by the intensity-based methods,
presumably due to the highest susceptibility to noise and artifacts.
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Figure 2.4: Boxplots indicating the speed of sound variability for 10 independent datasets for
(a) brain, (b) liver, and (c) kidney/spleen regions.. User feedback was taken for the manual
calibration and the 7 automated metrics were compared against it.

2.2.3 Effect of temperature on SoS and use of temperature priors

In most of the present OA scanning methods water is used as an interface or coupling
medium between the scanning objects and ultrasound detectors. The protocols assume
that temperature is uniform and constant throughout the experiment and the same is
ensured by heating the water till the body temperature of the animals (or other scan-
ning object). However, in practical experimental setups often the heating circuit is
turned off during scanning to prevent formation of bubbles and water currents. This
causes a temporal variation in the water temperature, which in turn changes the SoS
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2 Optimization of image reconstruction and self-calibration of parameters

producing image artifacts during reconstructions [58]. Image quality in OA tomography
is strongly conditioned by the reconstruction algorithms employed, and the SoS is an
intrinsic parameter contributing to the same. During the experiment, it is observed that
the variations in temperature of the medium (and the object) cause notable degrada-
tion of image qualities, if unaccounted for. Two tissue-mimicking agar phantoms (1.3%
agar powder by weight) were used in the experiments. To provide more uniform illu-
mination, 1.2% by volume of Intralipid was added to the solution. Inside the phantom
black polyethylene microspheres with an approximately diameter of 200 ym (Cospheric
BKPMS 180 — 210 pum) were embedded (3 in number). We applied the SoS calibration
methods to correct for the effects of variations of temperature in reconstruction image
quality, using the designated focus measures. The effects of variations in SoS caused

(a) 1480m/s (b) 1510m/s (c) 1560m/s

(d) 1520m/s (e) 1550m/s (f) 1580m/s

Figure 2.5: Phantoms with microparticles (approx. 200um) reconstructed at various speeds
of sound (a-c) given temperature = 27.5°C;corrected against varying temperature with time
(b)the calibrated speed of sound is 1505 m/s, Sub-figures(d-f) shows the divergence in SoS with
variation of temperature (temperature = 40.5°C;calibrated speed of sound is 1550 m/s after
temporal correction with varying temperature.

by the changes in the temperature of the water bath are clearly observed in Fig 2.5.
We see that the ideal SoS is 1520 m/s (Temperature = 27.5°C) and there are visible
distortion for when the image is reconstructed with an incorrect value of SoS. Further,
it is observed that given the temperature changes the SoS calibration varies, e.g. as in
Fig. 2.5b the correct SoS is 1510 m/s whereas for Fig. 2.5e the calibrated SoS is 1550
m/s for temperatures 7' = 27.5°C and 40.5°C respectively. A comprehensive experiment
was conducted with drop in temperature of approximately 20°C over a time-frame of
142 minutes. It was observed that even a change of 0.8°C caused a significant alteration
of SoS thus affecting the quality of the reconstructed image. The failure to factor for
these intra-scan variations in SoS causes image artifacts which impairs the structural in-
formation in the scans. Thus, we can infer that changes in temperature of the coupling
medium results in varying SoS which impacts the quality of the reconstructed images.
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Image analysis based SoS auto-calibration method can suitably be used for for better
image reconstruction performance by reducing the intra-scan drifts.

The temperature of the coupling medium is constantly monitored by a thermocouple
capable of tracking 0.1°C changes in the water temperature. Any changes over 0.5°C
is sampled and factors for image correction and re-calibration purposes. Ideally, a uni-
form temperature of 34°C is attempted to be maintained, for which the SoS in water is
1510m/s. Using this as a priori information, the optimization is done in a range of +25
m/s with respect to SoS in water. This drastically reduces the total search spaces from
200 SoS as earlier searched to a narrow band. The usage of GPU processing in image
reconstruction and AF further improves the time footprint of the calibration step. The
temperature of the coupling medium (water) is thus used for referencing the SoS and
reconstructing the data. Manually fitted SoS, demonstrates that considering the SoS of
the medium is not optimal, as the imaged tissue can have variations of up to 10% with
respect to the SoS in water. The computational time of back-projection for generating a
stack of 100 images at different SoS (200 x 200 pixels) are approximately 8.818 s, and for
a windowed 50 SoS is 5.321s. Thus, we have an effective gain in efficiency by introducing
the prior. A workstation with Intel i7-480 CPU operating at 3.70 GHz and with 32 GB
of RAM was used for the experimentation. The back-projection reconstruction is further
accelerated using the OpenGL platform on an AMD Raedeon GPU (Clock speed- 1100
MHz, Memory size 3072 MB, Shaders 2048).

2.2.4 Discussion

We have systemically analyzed the applicability of focusing techniques for automatic
calibration of a uniform speed of sound value in OA tomographic reconstructions. For
the particular implementation in cross-sectional whole body OA small animal imaging,
efficacy of two of the suggested methods, namely, the normalized variance of the im-
age gradient magnitude using Sobel operator and the algorithm employing anisotropic-
diffusion-enhanced energy of the image gradient using consistent gradient operator, was
found superior to the other established focus measures.

The need for AF in OA tomographic imaging stems from the fact that the average SoS
in the region covered by the measuring locations is unknown. Even if the geometrical
distribution of the tomographic detection points is accurately calibrated and the water
temperature is known, the corresponding SoS in water for such temperature generally
does not lead to the optimum results. This effect has been illustrated in this work,
where the self-calibrated SoS was generally higher than the SoS in water. This result
is consistent with the fact that the average SoS in soft tissues is slightly higher than
that in water, with variations reaching up to 10% [58]. The SoS in water can, however,
be used as an initial guess that may serve as the central SoS of the search interval and
thus ease the optimization of the focus measures [75]. On the other hand, although
representative images can be rendered with algorithms assuming a uniform SoS, more
accurate reconstructions may require considering a heterogeneous distribution, and AF
may also play a similar role in fitting the SoS of defined regions.

A good performance of the methods analyzed in this work has been demonstrated for
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images reconstructed with two different reconstruction algorithms. Indeed, whereas
back-projection reconstruction highlights the high spatial frequency components of the
image, model-based inversion generally renders more quantitative images by accurate
estimation of the low-frequency background. On the other hand, the computational
burden for back-projection reconstructions is usually significantly lower so this approach
is more convenient for fast (dynamic) calibration of the SoS during real-time opera-
tion. Essentially, the best performing metrics would not only show good performance in
phantoms or imaging of subcutaneous vasculature but also in cases of in-vivo imaging
of entire animal cross-sections. A good performance was obtained in mouse experiments
in-vivo for three representative regions corresponding to the location of the brain, liver
and kidney/spleen. However, secondary peaks in the focus measures led in some cases
to erroneous interpretations, which increase variability of the results. The best results in
terms of consistency (as compared with manual fitting) and low variability were achieved
with the hybrid approaches suggested in this work. Even though the current paper only
showcases self-calibration in the case of SoS, AF approaches may readily find broader
applicability in calibrating other parameters in OA tomographic imaging systems. For
instance, the position and orientation of ultrasound sensors is generally unknown, espe-
cially in self-developed systems, and must be calibrated in a first place. Selecting the
most focused plane in the elevation direction around certain structures may also rep-
resent a potential application in the case of cross-sectional (two-dimensional) imaging
systems. Finally, the behavior of the methods in three-dimensional OA imaging needs
to be further analyzed.

In conclusion, similarly to optical microscopy techniques, focusing techniques are ex-
pected to play a fundamental role in the calibration of OA reconstruction parameters,
particularly the SoS. The showcased performance of the suggested methods in cross-
sectional imaging systems anticipates their general applicability for preclinical and clin-
ical imaging with other geometrical configurations. Furthermore, the self-calibration
of reconstruction parameters allows one to reliably reconstruct large datasets of whole
animal imaging with minimal operator intervention — thus effectively addressing the
problems of processing larger volumes of data, especially as OA progresses towards high
throughput biological imaging applications [54].
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2.3 Non-negative reconstruction using entropy measures

We have discussed in details the generation of OA signal in details in section 1.1. Based
on our knowledge of OA signal generation, we may opine that, the optical absorption
coefficient indicates the amount of light being absorbed by the tissue per unit length,
the coefficients should take a positive value since negative values indicates light emitting
materials not naturally occurring in biological tissues. Most state of the art reconstruc-
tion methods produce negative values arising due to different factors, such as the use of
inaccurate inversion schemes, numerical errors, unknown or unpredictable experimental
artifacts, or randomly generated noise in the imaging system. The presence of negative
values in the reconstruction does not have physical relevance and ideally should be sup-
pressed in the reconstruction process [76]. OA reconstruction is a source reconstruction
problem; the standard image reconstruction involves minimizing the data-model misfit
along with a smoothness constraint, which is popularly known as 12-norm based image
reconstruction that employs a least-square QR (LSQR) based iterative inversion scheme
[41]. Recent work has shown that applying a non-negativity constraint along with the
smoothness constraint provides more accurate initial pressure rise distribution [77]. How-
ever, these methods rely on externally imposed non-negative constraint rather than on
intrinsic image content. In an earlier attempt, Lu et.al. [77] has demonstrated that al-
gorithms imposing non-negative constraints in model-based OA inversion and analyzed
state-of-the-art non-negative constrained algorithms, including fast non-negative least
squares, reflective Newton, projected quasi Newton and conjugate gradient methods,
However, most of these implementations apply an additional non-negative constraint in
the minimization. Researchers in the field of Positron Emission Tomography (PET) have
demonstrated information theoretic approaches based on entropy for accurate image re-
construction in the context of multi-modal imaging [78, 79] and similar algorithms have
been used extensively in the area of astronomical imaging [80]. Further, researchers have
performed quantitative OA imaging by using a Bayesian image reconstruction [81].

In the current work, we propose a new entropy maximization approach for non-negative
OA image reconstruction, and test its efficacy in providing enhanced reconstruction re-
sults in combination with nonlinear conjugate gradient minimization [82]. Entropy is
the measure of randomness in the signal, and maximizing the entropy indicates least
informative distribution [83]. The method relies on utilizing entropic measure (having a
log parameter, which restricts the negative values) and outperforms current non-negative
implementations in terms of actual quantification of OA tomographic data, i.e. in re-
constructing absorption parameter. The proposed method allows us to obtain a correct
absorption coefficient distribution, which could further aid the development of more ac-
curate spectral unmixing algorithms [84, 85] to improve on quantitative representation
of different chromophores within the imaged volume [76] .

Parts of the section is available as: Prakash, J.* Mandal, S.* Razansky, D. and Ntziachristos, V.,
2017. Maximum entropy based non-negative optoacoustic tomographic image reconstruction. arXiv
preprint arXiw:1707.08391.
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2.3.1 Details of the method and experiments
Mathematical methods

The propagation of the acoustic pressure wave generated due to the short-pulsed light
absorption is governed by the following inhomogeneous wave equation [86],

%p(r,t)
o2

OH (r,t)

T (2.16)
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where the instantaneous light power absorption density in W/m? is indicated by H and
I" represents the medium-dependent dimensionless Griineisen parameter. In Eq. 2.16
the tissue density is represented by p while ¢ indicates the SoS. For our experiments, a
uniform SoS of 1520 m/sec was heuristically estimated using image AF methods [87, 74].
The solution for the wave equation can then be obtained using a Green’s function by
assuming H (r,t) = H,(r)d(t), which results in [86],
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where R=ct represents the radius of the integration circle. The above solution is subse-
quently discretized into the following matrix equation [88, 83],

b= Az (2.18)

where b is the boundary pressure measurements, A is the interpolated model matrix
and z is the initial (to be reconstructed) pressure rise distribution. The above formula-
tion represents the forward model, i.e. given the initial pressure rise one can estimate
the pressure at the boundary locations detected by the transducers. Thus, the acous-
tic inverse problem involves reconstructing the initial pressure rise given the boundary
pressure data. Typically the inverse problem is solved by minimizing the data model
misfit along with a smoothness constraint given as,

Q= ||Az = b3 + All=[[3 (2.19)

where the regularization parameter is represented as A and is automatically chosen using
the L-curve method. The objective function (given in Eq. 2.19) is minimized using an
iterative LSQR based method, which has the closed form solution indicated as,

z~ 2p-rsor = Ve((BE By + Al,) ' Bo By e1) (2.20)

where By, Vi, Bo, and e; can be obtained in the Lanczos diagonalization procedure with
A and b. The obtained solution contains negative values which could be thresholded
to 0, as negative values do not have any physical relevance. Mathematically, entropy
maximization is similar to maximizing the log likelihood of the function. It is a non-
linear convex maximization problem and the equivalent minimization is described via

)

Q = [|Az — b||3 + AT log(x) (2.21)
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where —z7 log(z) indicates the entropy function [from duality maximizing —2” log(x)
indicates minimizing 7 log(z)]. The objective function given in Eq. 2.21 is minimized
using a non-linear conjugate gradient type method and the step-length for the conjugate
gradient method is computed using a line search[89]. The derivative used in the conjugate
gradient scheme is computed as,

vQ =247 (Az — b) + M1 + log(z)) (2.22)

The minimization is presented in more details in the Algorithm-1.

As mentioned earlier, the reconstructed initial pressure distribution is proportional
to the absorption coefficient distribution and the fluence (light intensity distribution).
The fluence distribution has a smooth variation in the image domain; moreover it has
a non-linear relation to the optical absorption and optical scattering, which can be
modeled using a diffusion equation [90]. Since the fluence is varying with depth, the
reconstructed initial pressure rise does not have a direct correlation to the absorption
coefficient value, hence it is necessary to model the light propagation and to correct for
the depth-dependent fluence. By assuming the Griineisen coefficient to be constant and
normalized to 1, the relation between the absorbed energy distribution H, () and optical
absorption coefficient p,(7) can be formulated as,

po(r) = Hy(r) = pa(r).@(r) (2.23)

where po(r) is the initial pressure rise distribution and ®(r) indicates the local light
fluence density in J/m?2. The light propagation is modeled using the diffusion equation,
further assuming that scattering dominates over absorption [90] (true for most biological
tissues) as,

— V.[D(r).VO(r)] + pa(r)®(r) = So(r) (2.24)

where D(r) = m is the diffusion coefficient and s, (r) indicates the reduced scat-
tering coefficient at Sosition r. So(r) indicates the light source at the boundary of the
imaging domain. Eq. 2.24 is used for fluence estimation, and the diffusion equation
is solved using the finite volume method (FVM) with known values of absorption and
scattering coefficients [91]. Further, we obtain absorption coefficient maps by canceling
out the calculated fluence distribution [92].

Application of traditional fluence correction measures often produces discrepancies
in image contrast, especially between the conductive medium (background) and tissue
(region of interest). These anomalies can be attributed to inaccurate modeling as the
same wave equation and diffusion equation are employed for performing the correction.
In reality, the light fluence in conducting medium (water) is significantly higher compared
to the light fluence in the tissue (high absorption, signal attenuates with depth). To
correct for this effect we introduce a hybrid two compartment model (Beer-Lambert Law
and diffusion Equation solution) by incorporating segmented image priors. We assign
a low attenuation (high fluence) to the background in accordance to the Beer—Lambert
law, and apply the light propagation model (as in Eq. 2.24) within the segmented tissue
sample. The entire workflow of segmentation and fluence correction (as shown in 2.6)
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Algorithm 1 Entropy Maximization Algorithm

Inputs: Obtain boundary pressure data b, Build the interpolated model matrix A, Regu-
larization Parameter A, Maximum Iteration mazx_iter, Iteration Number iter = 0, Initial
Guess zy Output: Reconstructed initial pressure rise x

1. Compute Gradient g(x) = 2A7 (Azg — b) + A(1 + log(xg)), Residue r = Azg — b, p
= -8, (I)O:pT 9; Tprev = 205 Gprev = g

2. Repeat until iter<max_iter
a) Ay =Axp,y=ATA,v=ATA,
b) Perform line search based on secant method to estimate optical o by having
minimum of p? g(x + ap) (At the end of iteration)
o =&+ ay+ ApT(1+1log(1+ -22-));

Tprev
optimal ais determined using root finding.

Gtemp = Gprev + )\(1 + log(l + af; )) + aATAp

Tp

L B = (gg;mpgtemp - ggrevgtemp)/(q) - (I)O)
® U= _gg;mpgtemp + [P
C) Gprev = Gtemp; Azx = Q*P; Tprev = ZUprev‘{‘A:U; b= _gprev+ﬁ*p; r= T‘{'O‘*Ap;
Py =plyg

3. Solution is given as == ppey

is integrated with the proposed non-negative entropy maximization algorithm to render
improved image quality. More details of the method and a discussion about its use OA
imaging is illustrated in the section 3.4.

Experimental methods

Experimental data were acquired using the commercial MSOT scanner (MSOT256-TF,
iThera Medical GmbH, Munich, Germany) [2]. To verify the quantitative reconstruc-
tion capabilities of the proposed entropy maximization scheme, a star shaped (irregular)
phantom was created. The phantom constituted of a tissue mimicking (7% by volume of
Intralipid and calculated volume of diluted India ink added) agar core having the optical
density of 0.25. Two tubular absorbers made up of India-ink with the absorption coeffi-
cient values of 2.5 OD (calibrations done with Ocean Optics USB 4000) were inserted in
the phantom. The absorber were placed at two different depths within the phantom (one
at the center and the other at the edge of the imaging domain) to test the sensitivity of
the proposed scheme in reconstructing the absorbers at different imaging distances from
the sensing arrays. Under normal operating conditions, the fluence at the center of the
imaging domain is significantly lower as compared to the edge of the imaging domain
owing to the optical attenuation of the incident irradiation. Hence, performing fluence
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Beer—Lambert law

Fluence model

Before fluence correction After fluence correction

Figure 2.6: Workflow of prior based fluence correction using non-negative image reconstruction
(a) segmentation mask generated by active contour method, (b) optical fluence field generated by
using FVM model and application of bi-compartment Beer-Lambert Law and Diffusion equation;
images reconstructed using entropy based non-negative method (c) before fluence correction and
(d) with integrated imaging prior based fluence correction.

correction becomes indispensable to assign appropriated intensity to the absorber at the
center of the imaging domain. The proposed methods were further validated on the
in-vivo mouse abdomen and brain datasets drawn from a standardized in-vivo murine
whole body imaging database (10 mice/30 anatomical datasets) previously developed by
Mandal et. al [87]. The selected images were obtained at a laser wavelength of 760 nm,
and the water (coupling medium) temperature was maintained at 34°C' for all experi-
ments. All animal experiments were conducted under supervision of trained technician
in accordance with institutional guidelines, and with approval from the Government of
Upper Bavaria.

2.3.2 Reconstruction results: Phantom and in vivo imaging

Fig. 2.7 shows reconstructions of the star phantom, which reveal the efficacy of the
proposed method vis-a-vis traditional LSQR based reconstruction in generating positive
values for both the initial pressure rise and absorption coefficient distribution. The re-
constructed initial pressure rise and absorption coefficient distribution using the 12-norm
based reconstruction is shown in Fig. 2.7(a) and 2.7(d) respectively. The reconstructed
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initial pressure rise and absorption coefficient distribution using the 12-norm based re-
construction (with non-negative constraint) is indicated in Fig. 2.7(b) and 2.7(e) re-
spectively. The reconstructed initial pressure rise and absorption coefficient distribution
using the entropy maximization based approach is represented in Fig. 2.7(c) and 2.7(f)
respectively. The non-negative based LSQR reconstruction is able to generate recon-
struction results with positive values, but is not able to correctly reconstruct the internal
volume of the star (tissue mimicking agar) phantom. Fig. 2.7 clearly demonstrates that
the maximum entropy based scheme is able to deliver better contrast than the standard
LSQR based reconstructions. The fluence correction was performed by using segmented
(boundary) priors obtained automatically using deformable active contour models [93].

- | -
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- |
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max

min
max

i
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Figure 2.7: Reconstructed OA image of star phantom using the (a) 12-norm based reconstruc-
tion, (b) 12-norm based reconstruction with thresholding, (c) entropy based reconstruction. Ab-
sorption coefficient distribution after fluence correction using (d) 12-norm based reconstruction,
(e) 12-norm based reconstruction with thresholding, (f) entropy based reconstruction. The neg-
ative values are plotted in a different colormap (a and d) for visualization and normalized col-
ormaps indicate initial pressure rise (in a.u).

The maximum entropy based scheme depends on the initial guess given to the non-
linear conjugate gradient scheme. The maximum entropy constraint involves a non-
linear logarithmic term, and logarithm of a negative value results in an imaginary
term, therefore having a positive value at the initial guess always generates positive
reconstruction distributions and thus plays an important role in intrinsically obtain-
ing non-negative reconstruction. The reconstruction results corresponding to the ini-
tial guess (A’D) is indicated in Fig. 2.8(a). The reconstruction results corresponding
to the initial guess ((|b|2/]|A[|1) * ones(V,1)) is indicated in Fig. 2.8(b). Fig. 2.8
clearly indicates that the negative values in the reconstructions arises because of ini-
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tial guess i.e. (]|b]|2/||A]|1) * ones(N,1) gives non-negative results while A’b results in
negative values. Hence, in all the reconstructions the initial guess was chosen to be
[16]12/]|A||1) * ones(N, 1) and the regularization parameter was set at 10. Note that re-
constructions in Fig. 2.8 did not involve performing additional fluence correction steps.

Figure 2.8: Reconstructed OA image of mouse brain (head scanned in vivo ) using two differ-
ent initial guesses,(a) A’b (-ve values exists at initial guess) generates negative values and (b)
([16112/]]Al|1) * ones(N, 1) (only +ve value exist at initial guess) yields non-negative image. The
negative values are plotted in a different colormap in (a) for visualization, colorbars indicates
the rise of initial pressure (in a.u).

The reconstruction results pertaining to the mouse head and mouse abdominal regions
using the standard and proposed method are shown in Fig. 2.9. The reconstruction re-
sult corresponding to 12-norm based scheme (solved using LSQR method) for the mouse
head and abdominal region is indicated in Fig. 2.9(a) and 2.9(d) respectively, and
the corresponding results for 12-norm based non-negative scheme (solved using LSQR
method with thresholding) are given by Fig. 2.9(b) and 2.9(e) respectively. The recon-
struction results using the maximum entropy maximization approach (Algorithm-1 with
the integrated hybrid fluence correction) for the same anatomical regions is shown in
Fig. 2.9(c) and Fig. 2.9(f) respectively. All the reconstructions were performed on a
200x200 pixel imaging domain which corresponds to a physical field of view of 20mm x
20mm. The regularization parameter was set to 10 in all the maximum entropy based
reconstructions. Also the optical properties was assumed to be homogeneous inside the
tissue and taken from literature [91].

2.3.3 Discussion

The reconstruction results for the star-shaped phantom and in vivo mouse scans indicate
that the proposed entropy maximization scheme renders strictly positive image values
that are comparable to the a-priori known absorption values in the phantom. Employ-
ing a segmented image prior can effectively reduce the aberrations in image contrast
by suitably mapping the light propagation pathway in two optically diverse domains
(background and tissue), and enhance the performance of (optical) fluence correction
methods [92, 93], as demonstrated in Fig 2.7(f) and 2.9(f). Moreover, when a global SoS
is attribute to the entire imaging domain, small SoS variation causes aberration at the
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R

Figure 2.9: Reconstructed OA images using the (a) 12-norm based reconstruction, (b) 12-norm
based reconstruction with thresholding, (c) entropy based reconstruction and fluence correction
(using segmented prior) of murine head region; and (d) 12-norm based reconstruction, (e) 12-norm
based reconstruction with thresholding, (f) entropy based reconstruction (using segmented prior)
for the mouse abdominal region imaged in vivo. The negative values appearing in 12-norm based
reconstruction scheme (a and d) are plotted in a different colormap (negative values marked in
pink) for visualization, colorbars indicates the initial pressure rise (in a.u). An 8 week old nude
mice (CD-1® Nude, Charles River Laboratories, Germany) used imaged at an wavelength of
760 nm (brain) and 800nm (abdomen).

edge of the surfaces of the imaged object, the same two compartment model can be used
to remove SoS mismatch if needed.

The proposed method preserved the structural integrity (star phantom) and the
anatomical structures (mouse data), and was successful in correcting the effects of vari-
ations in optical fluence. Moreover, the entropy maximization scheme performs faster
than the standard LSQR based image reconstruction. For a typical case (200 x 200 px)
the maximum entropy based scheme converges in 3 seconds versus 5 sec for the LSQR
based scheme. As part of future work, we aim to integrate the entropy maximization
with more accurate light propagation modeling, such as Monte Carlo based schemes, to
obtain better representation of the absorption coefficient with the reconstruction process
accelerated by means of graphics processing units. The proposed scheme demonstrates
superior reconstruction performance with no visible distortion of anatomical structures
associated with delivering of non-negative pixel values. Entropy maximization recon-
struction thus tends to be physically relevant and more accurate, and has the potential
to emerge as a suitable data processing tool for quantitative OA imaging.

36



2 Optimization of image reconstruction and self-calibration of parameters

2.4 Conclusion

In this chapter, we have outlined the OA image reconstruction algorithms used for the
dissertation work, viz. backprojection and model-based (IMMI) methods. Thereafter,
we have developed novel multipurpose AF algorithms which can be employed not only
for self- calibration of SoS in OA reconstructions, but also to correct for SoS anoma-
lies caused by drifting temperature with time, and slice selection for image evaluation.
Further, we presented an entropy maximization based approach that employs a loga-
rithmic regularization term for non-negative tomographic OA inversion. Experimental
validation of both the algorithms was carried out on phantoms and in vivo samples
was carried out on benchmark datasets.The developed methods are instrumental in au-
tomating reconstruction procedures for large image datasets, and enabling quantitative
imaging.
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3 Improving image reconstruction using
segmentation priors

Segmentation has emerged as one of the most important tools in medical imaging and
image analysis, and has been widely used for various purposes ranging from improving
image reconstruction to target volume delineation for pathological conditions. Accurate
image segmentation is generally considered a challenging task in image processing [94].
In spite of the difficulties, segmentation represents an efficient tool to improve inversion
algorithms. For example, segmented X-ray computed tomography (XCT) priors have
been used to improve fluorescence molecular tomography (FMT) reconstructions [95];
segmented magnetic resonance (MR) images have been used as priors for attenuation
correction in positron emission tomography (PET) [96], and for improved stability and
faster convergence of optical tomography [97].

Research efforts in OA have been directed towards the development of new hardware
components and inversion methodologies allowing increasing imaging speed and resolu-
tion, as well as on investigating potential biomedical applications. Recently developed
cross-sectional tomographic OA systems enable whole-body small animal in-vivo imag-
ing, and the unique capabilities opened up the unexplored domain of post-reconstruction
image analysis for the modality[2]. Researchers have shown that manual segmentation of
images is useful to improve the quantification performance of OA reconstructions under
heterogeneous illumination conditions [46] and in presence of strong acoustic reflections
[98]. However there exists a gap in development of automated segmentation methods and
its integration with OA inversion methods, which we aim to address in this dissertation.

3.1 Motivation

Segmentation of OA images is essential for both anatomical characterization and en-
hancement of the image reconstruction performance. For instance, properly selected
focus measures applied to the different parts of the reconstructed image can be used
as a feedback mechanism to adjust the speed of sound (SoS) of the medium or other
reconstruction parameters. Image segmentation further enables identification of areas

This chapter has been adapted with minor modifications from the following published articles:

[1] S. Mandal, X. L. Dedn-Ben and D. Razansky, ”Visual Quality Enhancement in Optoacoustic
Tomography Using Active Contour Segmentation Priors,” in IEEE Transactions on Medical Imaging,
vol. 35, no. 10, pp. 2209-2217, Oct. 2016.

[2] S. Mandal, P. Viswanath, N. Yeshaswini, X. Dedn-Ben and D. Razansky, ”Multiscale edge
detection and parametric shape modeling for boundary delineation in optoacoustic images,” 2015
37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), Milan, 2015, pp. 707-710.
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corresponding to different acoustic or optical properties. Mandal et. al. [87] have
previously shown that accounting for differences of SoS and attenuation between the
imaged tissues and surrounding coupling medium (water) can improve imaging perfor-
mance. Researchers have used hybrid measurement approaches (passive ultrasound and
optoacoustics) to account for acoustic heterogeneities [53], and accurately reconstruct
OA images. However, the methods render non-uniform resolution and require addi-
tional instrumentation. Born ratio-based OA image normalization has been suggested
to correct for the heterogeneous light fluence distribution [99, 100], but the approach
is not applicable for accounting for small SoS variations. Accounting for strong acous-
tic heterogeneities can mitigate image artifacts associated with acoustic reflections and
scattering in biological tissues [101]. Additionally, identifying boundaries of regions with
different optical properties is important for estimation of the light fluence distribution,
which is essential for a quantified assessment of chromophore concentration in deep tis-
sues [92]. An automated segmentation process can thus be integrated with advanced
inversion algorithms to obtain more accurate reconstructions of the actual distribution
of chromophores. In OA imaging, the task of segmentation is oftentimes exacerbated by
the relatively low intrinsic contrast of large anatomical structures, having a much lower
haemoglobin concentration than in major blood vessels, and is further impaired by the
limited angular coverage of some commonly employed tomographic imaging configura-
tions. Yet, proper segmentation of boundaries is essential to improve the quantitative
performance and overall image quality of OA reconstructions. Even when considering
relatively homogeneous tissue samples, accurate identification of the outer boundaries is
essential for a proper assignment of acoustic and optical properties of the imaged region
of interest and the background (coupling) medium [55].

The dissertation work investigates the applicability of multiscale segmentation algo-
rithms and active contour models [102, 103] for boundary segmentation in OA tomogra-
phy (OAT). Specifically, the segmented boundary information is used to aid automated
fitting of the SoS values in the imaged sample and the surrounding water. A reconstruc-
tion mask is further used for quantified mapping of the optical absorption coefficient by
means of light fluence normalization. The performances of segmentation proposed algo-
rithms for cross-sectional OA images and the associated benefits in image reconstruction
are demonstrated in phantom and small animal imaging experiments.

3.2 Multiscale segmentation and parametric curve fitting

Segmentation is one the most challenging tasks in image processing, and the relatively
low intrinsic contrast of background structures (compared to natural images) and lim-
ited view problems of OAT increase the complexity involved. Classical experiments on
non-human primates demonstrate that complex objects are perceived by vision system
in a multiscale manner, and are tuned from course scale to finer scales [104], we use the
information as a basic assumption in our study. For the edge detection at individual
scales, the Sobel operator, which approximates the gradient of the image intensity func-
tion, or the Canny edge detector [105] which uses a feature synthesis step from fine to
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course scales, are commonly employed. Multiscale edge detection, a rich area of interest
in itself, can enhance the performance of edge detection in a fixed (original) scale. For
example, the Perona-Malik flow (anisotropic diffusion)[69] gives a successful formula-
tion of scale-space adaptive smoothing function, leading to better preservation of edges
while achieving a better noise performance. These edge detection methods have been
demonstrated to be useful for OA images and employed for calibration of reconstruction
parameters by Mandal et.al.[87]. More sophisticated techniques were proposed by Tabb
and Ahuja [106] and followed by Ma and Manjunath [107]who developed the concept of
designing a vector field for edge detection. In [106] the vector field is created by ana-
lyzing the neighborhood of a pixel, where the size and spatial scale of the neighborhood
were determined heuristically by an homogeneity parameter, and is adaptively deter-
mined on a pixel to pixel basis. The edge flow method suggested by [107] utilizes the
color and textural information of images to track changes in directions, creating a vector
flow. This method detects boundaries when there are two opposite directions of flow at
a given location in a stable state. However, it depends strongly on color information
and requires a user defined scale to be input as a control parameter. In a follow up
work by [104], a methods was demonstrated which eliminates the need of scale selec-
tion and potentially works with gray-scale images. Given the nature of OAT images,
this method indeed serves as a foundation for the edge detection algorithm introduced
herein. The suggested multiscale edge detection method and morphological image pro-
cessing is described in 3.2.1, and the processing results of OAT images are displayed in
3.2.2.

3.2.1 Segmentation algorithm
3.2.1.1 Edge-flow vector field and edge detection

The general trend in multiscale edge detection is to define a scale a-priori and then
estimate the scale locally, however, Sumengen and Manjunath [104] suggested a geomet-
rically inspired method that estimates the edges that exists both in course and fine scales,
and localize them in the fine scale. We redesigned the algorithm outlined in [107, 104] for
convenient application in OAT images. The edge flow algorithms define a vector field,
such that the vector flow is always directed towards the boundary on both its sides. The
classical edge flow model utilizes a vector propagation stage. In the current method,
similarly to [104], the relative directional differences are considered for computing gradi-
ent vector. The gradient vector strengthens the edge locations and tracks the direction
of the flow along x and y directions. The search function looks for sharp changes from
positive to negative signs of flow directions and whenever it encounters such changes,
the pixel is labeled as an edge point. The magnitude of the change is the deciding factor
behind the edge strength, which is reflected as edge intensity in the final edge map. The
vector field is generated explicitly from fine to course scales, whereas the multiscale vec-
tor conduction is implicitly from course to finer scales. Thus, the algorithm is suitable
for localizing the edges in the finer scales, which is achieved by preserving only the edges
and neighborhoods that exists in several scales (depending on the threshold employed),
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and suppressing features that disappear rapidly with increment of scales. The workflows
for the vector field generation and morphological processing are illustrated in the Algo-
rithm 2. The pseudocode further outlines the process of geometric curve fitting. In the
current implementation, the Gaussian offset (o) is also lowered for the gray-scale OAT
images. For the acquired in vivo OAT images, optimum performance was achieved with
o = 3. We analyze the images between scales s=1, and s=3, where s=1 is the starting
(finest) scale (Fig. 3.1). The interval is sampled at sub-pixel resolution [As = 0.5] for
tracing the dislocation of edges in subsequent edges, as used by Berghold [108].

Algorithm 2 Multiscale Edge Detection and Curve Fit
I(z,y) < image
81, Sp < smallest and largest scale of the image respectively
As = 0.5 be the sampling interval for each scale

s =51 > initialize book keeping
U, Upew Vi(z,y) > Gradient Vector
while s1 < s, do

s s+ As

M  max(|| 7 )
Unew < VI(z,y) at scale s
for <each pixel in image> do
if || _ﬁ(m,y) |< M/C then > C is thresholding constant
Uz,y) = Unew(%";y) .
else if abs(arctan(U(z,y), Unew(2,y))) < 7/4 then
U(z,y) = U(z,y) + Unew(z,y)
else_’ .
Ulz,y) =U(z,y)
end {if, for, while}
The final U is the edge flow vector we are interested in
U « Binarize(U)
Enhance U by performing morphological operations
for gradient magnitude image in scale s, do
if n > 2,use strel— > Opzx, disc
else > structural element(strel)
strel— > 1px,disc then

Apply Erosion operation; Close to recover edges
end for

Obtain centroids from binary edge-map

Outliers (centroid positions) removed by applying median filter

Obtain minBoundCircle and minBoundEllipse considering centroids as data points to
be enclosed

The algorithm searches the edges in finer scales and strengthen them with the edges
recovered from higher scale. The homogeneous regions have vectors of zero length, so the
detected edge segments grow in thickness (and often strength) as we move from lower
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to higher scales. Some edges do not exist in lower scale, but can still be significant.
To decide on the same and reduce noise we put a boundary condition - and when the
maximal edge strength (M) is greater than a heuristically predefined constant (C) -the
edges are retained, or else they are discarded.

Figure 3.1: Reconstructed optoacoustic image using non-negative constrained model based
inversion (a), and (b-d) edges detected at multiple scales s = 1,2, 3 respectively using diffused
edge-flow model.

3.2.1.2 Morphological edge enhancement

The primary objective of applying a edge detection is to delineate the boundary of the
imaged object and differentiate it from the background. But often in OA, the signal
originate from the impurities or inhomogenities withing coupling medium. Further,
noisy background is present in reconstructed images (lower boundary in Fig. 3.1.a) due
to limited view, and shortcomings of inversion methodologies. This noises are often
strong enough to be detected by edge detection algorithm as true edges. Thus, a non-
linear morphological processing is done on the binary edge mask obtained from the
edge detection process. We take an sub-pixel sampling approach (0.5 px), rendering the
operation is redundant beyond the second scale level. The morphological mask should
be differentially choosen at different scales. Initially, the image is eroded with a disc
structuring element to remove noisy patches, but it also thins the edges. To recover the
edges a closing operation is executed, with smaller structural element for erosion and a
bigger element (2px) for dilation.
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3.2.1.3 Parametric shape model fitting

Delineating the tissue boundaries in OAT, provides additional challenges due to illumi-
nation conditions and limited view considerations in the detection, the reconstructed
images can be affected by open edges and fuzzy boundaries. Traditional edge linking
algorithms may then fail to provide satisfactory segmentations. Thereby, we suggest a
novel curve fitting model that delimits the tissue-background boundaries in OAT im-
ages. We further characterize the goodness of fit (GoF) by several accepted evaluation
metrics. We use the GoF and use additional image filtration techniques to iteratively
improve the performance of the fit.

In section 3.2.1.1 we discussed about detection of edges, and several authors have utilized
the edge-flow vector for segmentation. In OAT images we see formation of smaller edge
clusters and open contours. Thus, getting an ideal segmentation using edge linker seem
to perform poorly. However, given the fact that our current problem requires segment-
ing the image into only two classes - image and background, we follow a simple curve
fitting approach. The proposed method first generates the centriods for edge clusters
and then try to fit on a geometric pattern (deformable ellipse) iteratively through a set
of parametric operations. A typical scenario in curve fitting is when the data is a best
fitted, but some data points lies outside the curve, as we take an interpolated spline
fitting criterion. In our approach, we modeled an inclusion criterion which enclosed all
centroids and create forms a closed curve. Theoretically, it draws a convex hull with the
centroids on a perimeter and approximate it to the nearest curve. In some datasets, we
see presence of the outlier centroids which significantly biases the curve (due to presence
of the inclusion criterion) leading to erroneous fitting. To avoid such complications,
the values of the centroid positions are filtered for squeezing out outliers through a me-
dian filter, and then analyzed for generating the shape models which match the object
boundary.

3.2.1.4 Goodness of fit

The goodness of fit is calculated using the average Dice coefficient metric (DM), which
is a measure of contour overlap utilizing the area under the fitted curve (A), manually
segmented region (M), and their intersection. DM always vary between 0 and 1, with
DM > 7 being considered a good segmentation[109]. The DM can be expressed as:

2| (ANM) |

DM =
| A+ M|

(3.1)

The mean perpendicular distances (meanPD) between A and M are also shown for
comparison in section 3.2.2.
3.2.2 Experimental studies and results

For testing and standardization of the introduced image processing framework, a database
of 30 datasets for 3 different anatomical regions in mice (10 for each region) was cre-
ated. Each individual dataset represents signals (averaged 10 times) acquired at up to 6
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Table 3.1: Efficacy of Curve Fitting (Multiscale segmentation)
Dice Coefficient Metric

Regions w/o medfilt w medfilt meanPD(mm)
Brain 0.9387 0.9440 1.4679
Liver 0.9093 0.9447 1.1819
Kidney/Spleen 0.9606 0.9571 1.5141

different positions and at 8 different wavelengths (between 690-900 nm). Since manual
segmentation of each dataset was needed for computing the performance of the algorithm
vis-a-vis ground truth, the number of datasets was scaled down. Thereby, 2 datasets
were considered from each anatomical regions, namely brain, liver and kidney/spleen,
for computing the goodness of fit parameters. The proposed algorithm demonstrated
good edge recovery performance. As shown in Fig. 3.1, the algorithm weighted the edges
that appear in multiple scales and reduced the spurious edges. The assumption made
by [107] is that if the vector direction change matches in multiple scales, then we can
infer that it corresponds to real edges. Thus, the vector directions were checked in both
finer and courser scales, in a way that when there is a match, the designated edges were
strengthened. The construction of the algorithm allows to detect the initial edge points
from the finer scales, and reinforce then as we move to the larger scales. The finer scales
are more immune to noise and the use of a non-negative constrain during the image
reconstruction process prevents unnatural movement of the vector field (potentially due
to absence of undesired negative values). Thus the edges detected in the finer scales are
very significant to recover object boundaries, and are helpful in segmentation of OAT
images. In Fig. 3.2, we show the performance of multiscale segmentation along with the
edge map recovered using Sobel operator (Fig. 3.2.b). The improvement in the edge
detection performance by considering multiple scale (as over single scale in Sobel) in
evident in the combined multiscale edge map (0 = 1 — 3). Further, a closer observation
reveals that the morphological processing have successfully eliminated the spurious edges
formed beyond the tissue boundary (Fig. 3.2.d) Finally, in Fig. 3.2(e-f) we show the
calculated centroid clusters obtained from the morphologically processed binary edge
map, and the ellipse fitting model applied to this centroids respectively.

Thereafter, we computed the goodness of fit using quantitative measures, viz. Dice
coefficient and mean probability distribution (meanPD), with ground truth (manual
segmentation) as reference. In Table 1 we show the performances of the curve fitting
using the DM (2). Theoretically, DM values above 0.7 are considered to represent a
good segmentation result, and using the proposed methodology DM values between 0.90
and 0.96 were achieved. Medial filtering was used to improve noise performance when
outlier centroids are present, and further improvement in the DM values was observed in
most regions, except for the kidney/spleen zone where the DM decreased after median
filtering, although DM values above 0.95 both with and without secondary filtering were
achieved (Fig. 3.3).The meanPD is calculated (in mm) for a total effective imaged area
of 20x20 mm, the image being produced by reconstruction of OA pressure waves.
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Figure 3.2: Reconstructed Optoacoustic image with non-negative constrain(a), edge-maps gen-
erated by Sobel operator (b), Multiscale (Edgeflow) map (c) and (proposed) Morphological pro-
cessed multiscale edge map (d) are shown. In (e) computed centroids from edge clusters are
shown in blue, and (f) illustrates the curve fitting method applied to the centroids (fitted curve
marked in red). [Scale = 3mm|]
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Figure 3.3: GoF trace and the standard deviation for the torso(kidney/spleen region) scans
of mouse. (Total dataset size = 12 (z-slices in whole body small animal tomographic scanner),
acquired from 2 different mice) in-vivo

Thus, the proposed method for delineating the boundary of OA small animals images
using a multiscale edge detection algorithm in combination with geometrical curve fitting
performs with high accuracy and low time complexity, suited for fast image segmentation.

3.3 Active contour models for segmentation

Active contour, also referred to as snakes, is a deformable model widely used in image
analysis applications given its flexibility and efficiency [102, 110]. Snakes are generally
interactive in nature and demand user input or an initial guess, followed by movement of
a curve towards the boundary of the object of interest. The mathematical formulation
behind the snakes is an energy-minimizing spline, with an associated ‘snake energy’ as a
cost function. The spline is guided by external constrain forces and influenced by image
forces which oblige it to converge towards dominant features like lines or edges.

3.3.1 Theory of active contour models

In the current study, the classical snake model is used. It involves a controlled continuity
spline representing a generalization of Tikhonov stabilization, which can be visualized
as a regularization problem [43, 89, 111]. The governing forces for curve evolution are:
(a) image forces Ejmqge that push snakes towards the edge feature and contours, (b) the
internal energy E;,; enforcing a piecewise smoothness constraint, and (c) the external
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constrained forces F,. that put the snakes closer to appropriate local minima. Thus the
total energy of the image can be expressed as,

Esnakes(s) = Eimage(s) + Eint(s) + EC(S) (32)

where s encodes the parametric snake representation. The optimum snake is then ob-
tained as
Sopt = argg min Esnakes(s) (33)

It should be noted that FEj,qg4e is purely data driven, whereas E. is defined by user
interactions. As Fjpqge is influenced by the nature of the image, it needs to be carefully
calibrated. In our case, calibration is achieved by using the energy functional as proposed
by Kass et al. i.e.,

Eimage = Wiine Eline + Wedge Eedge + Weerm Eterm (34)

where Ejyage, Eint and E,. are the energy functionals and w represents the corresponding
weights. Further, a morphological image processing sub-unit was added to the image seg-
mentation workflow to generate smoother boundaries [112]. The morphological processes
utilized a disc shaped structuring element with 2 pixel diameter. Closing operations were
carried out on the segmented (binary) image mask to plug any spurious holes or irregular
edge inundations that might be present in the mask due to limited view problems.
Deformable models and active contour segmentation is in itself a highly investigated area
in image analysis and several advanced methods viz. active contour without edges [113],
localized region based active contours [114], geodesic methods [115] etc exist. However,
we limit our current investigation to the classical model postulated by Kass et al. and
design an efficient workflow with the existing algorithm to achieve the goal of segment-
ing MSOT images and using this information as prior for mapping optical and acoustic
inhomogeneity, ultimately leading to better imaging performance.

3.3.1.1 Mathematical formulation of active contours

In our study we implemented the point snake model, proposed by Kass et al [21] which
employs an elementary representation of discrete curves, and satisfy a n-neighbor con-
nectivity. As mentioned in 3.3.1, the model consists in a controlled continuity spline
influenced by image forces as well as external constrained forces. Given that the con-
trolled continuity spline is a generalization of the Tikhonov stabilizer [43], Kass et al.
suggested to treat it as a regularization problem [111]. Geometrically, snakes are contours
embedded in an image plane (z,y) € 2 . The position of a snake can be parametri-
cally represented as v(s) = (z(s),y(s)), where x and y are the coordinate functions and
s € [0,1] is the domain. The energy functional of the contour is given by,
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1
:nake = /Esnak‘e(v(s))ds
0

- /1 Eii(v(s)) + /1 Eimage(v(s)) + /1 Ee(v(s))ds
0 0 0

where Fj,; is the internal energy (piecewise smoothness constraint), Eimage Tepresents
the image forces, and E, gives the external constrained forces (pushes snakes to desired
local minima). Eq. 3.4 in section represents a simplified version of the same formulation.
Deconstructing each component, the internal energy can be depicted as,

Eint = (a(s) |Va(s)[* +8(s) [Vas(s)[*) /2 (3.6)

with the first and second order control terms, «(s) and [3(s) respectively, controlling
the nature and behavior of the curve. Specifically, «(s) controls the tension, and S(s)
controls the rigidity in an image [103]. For discretizing the energy formulations Eq. 3.6
can be rewritten by using vector notation V; = (z;,v;) = (z(th),y(ih)) as,

Bt = 0 [Vi = Viea|? /207 + B; |Viy — 2V; — Viga|? /20 (3.7)
The corresponding Euler equations obtained can be represented in matrix format are,

Ax + fx(x,y) =0
Ay + fy(x,y) =0

Solving the equations in a matrix inversion, we obtain

x¢ = (A +9I) " yxm1 — B(zi—1,ye-1))
ve = (A 4+ yxem1 — fx(z—1,91-1))

where A and A + ~I are pentadiagonal banded matrices, and ¢ represents the time
steps. The inverse matrix is calculated using LU (lower-upper) decomposition, being the
computational complexity O(n). Thus, simplifying the formulation the image energy can
be expressed as a combination of weighted energy terms as in Eq. 3.2, given by

Eimage = Wiine Eline + Wedge Eedge + Weerm Eterm (38)

The line functional is represented by image intensity Ejne = [(z,y), and the weight
Wiine 18 determined by the pixel intensity towards which it is attracted. The edge func-
tional is given by the filtered image intensity gradient Eeqpe = —(Filt * V2I)?, where
Filt = G,. We introduce the filtering term to avoid the spline from getting struck in a
local minimum. Mandal et. al. [87] has shown the applicability of scale-space process-
ing for OA images, and an anisotropic diffusion (Modified Perona-Malik diffusion) with
Gaussian kernel can also be employed [69], it is expressed as

ol

5 = div(c(|DGy < I))VI) (3.9)
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where D is the diffusion tensor and c is the diffusion coefficient [116].

The terminal functional plays of role in finding terminations of line segments and corners
and operates on a smoothened image I’ = (Filt * I). Assuming the gradient angle
0 = tan~'(I, /I}), we can write the curvature of level contours in as

0
Eterm = E
i 62I’/8n2L
OED (3.10)
L I 20 LD+ 1 17

3
lb
(1 — )72

where n = (cosf,sinf) and n; = (—sinf, cosd) are the unit vectors along and per-
pendicular to the gradient direction [98, 117].
The basic snake model entails calibration of several parameters, has higher computa-
tional complexity, and cannot detect multiple objects in the same topology. However, it
offers a better understanding of its interaction with MSOT images and perfectly suits
the two compartment model of segmentation we are currently pursuing.

3.3.2 Experimental protocol
3.3.2.1 Tissue mimicking phantoms

Two types of tissue mimicking phantoms were developed for testing purposes. The first
phantom was built to render a light fluence attenuation representative of average soft
tissues. For this, black India ink and Intralipid were added to the agar solution in order to
attain an optical absorption coefficient i, = 0.2 cm ™! and a reduced scattering coefficient
s = 10 cm™!. Two tubular insertions of a more concentrated India ink having an
optical absorption coefficient of y1, = lem™! were embedded in the phantom at different
depths, one tubing being located close to the periphery and the other approximately at
the center of the phantom.

The second phantom was designed to mimic a small increment in the SoS. This was
achieved with a mixture of agar solution (approximately 2/3 by volume) and glycerine
(approximately 1/3 by volume), as described in [55, 110]. As glycerine is hydrophilic, it
readily dissolves in the water-based agar solution. Given the fact that the SoS in glycerine
is 1920 m/s and the SoS in agar gel is approximately 1500 m/s, the expected SoS in
the mixture is around 1640 m/s, i.e., = 10% increase. Black polyethylene microparticles
with a diameter of approximately 200um (Cospheric LLC, Santa Barbara, CA) were then
embedded in the imaging plane to assess the spatial resolution rendered. The phantoms
were made in irregular shapes so that the efficiency of segmentation algorithm can be
properly assessed. All phantoms were finally embedded in cylindrical blocks of agar with
a diameter of 24 mm for easier handling.
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3.3.2.2 Small animals imaging

The segmentation performance was evaluated with in-vivo mouse images. For this, the
animal handling protocols were scrupulously followed under supervision of trained per-
sonnel and the imaging experiments were performed in full conformity with institutional
guidelines and with approval from the Government of Upper Bavaria. The mice were
sedated with Isoflurane and immersed in water bath kept at 34°C using a specialized
mouse holder (iThera Medical GmbH, Munich, Germany). Altogether, 30 datasets were
acquired from 12 different mice for three different representative anatomical regions,
namely (a) brain, (b) liver and (c) kidney/spleen. In addition, two polyethylene tubings
containing Indocyanine green (ICG) pq = 1.9 cm™! at A\ = 800nm were inserted at dif-
ferent depths (peripheral T1 and deeply embedded T2) in a CD1 mouse post mortem in
order to quantitatively validate the suggested SoS and light fluence correction methods
in real tissues [92]. The mouse was then imaged at different positions along the torso
using 10 different wavelengths ranging between 680 and 900 nm. From the multispectral
data, the ICG distribution was spectrally unmixed from background tissue components
using a semi-automated blind unmixing algorithm termed vertex component analysis
[69].

3.3.3 Performance of segmentation methods

We imaged irregular shaped phantoms and small animals (in vivo and post mortem)
as mentioned in 3.3.2 to establish the efficacy of the the active contour segmentation
methods for OA imaging. The segmentation results for the irregular phantoms (star and
heart) are shown in Fig. 3.4. For the phantom experiments the segmentation accuracy
achieved was very high (DM ~ 9.4), and additional morphological processing for getting
a smoother boundary was not required. However, we observed slight aberration at the
surfaces of phantoms prepared with material having two significantly different SoS - such
issues can be addressed by application of multiple SoS mapping algorithms as outlined in
section 3.4.2. The DM values are computed using the a-priori shape and size information
of the imaged object, and comparing the same with the segmentation mask.

The applicability of active contour segmentation for in-vivo small animal datasets
reconstructed with the model-based reconstruction method is showcased in Fig. 3.5.
The optimum values of the terms in Eq.3.4 for in-vivo mouse imaging were heuristi-
cally determined by computing the segmentation with different values and assessing the
segmentation performances over multiple datasets acquired from the brain, liver and
kidney/spleen regions. These regions have image properties and morphologies that are
very distinct from each other, thus the properties of the snakes were recalibrated for
each region individually. We used 10 datasets for each of the regions and used their
averaged values to determine the mean parameters, as listed in Table. 3.2. Filter Coef.
denotes the values used for Gaussian kernel before initiation of the snakes. Iter denotes
the number of iterations applied for each region. W represents the values for energy
functions as employed for the line, edge and term measures respectively. DM gives the
value for Dice coefficients, which is a measure of segmentation accuracy.
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(d) (e)
Original Recon Segmented Mask Boundary Overlay

Figure 3.4: Active contour segmentation performance using irregular phantoms: Tissue mim-
icking Star (agar) phantom (a) and heart (agar + glycerin) phantoms (b), the corresponding
segmented masks (b and e), and the corresponding boundary overlaid images (¢ and f).

Table 3.2: Active contour segmentation parameters for in vivo imaging

Regions ggf;r # Iter WrinE WebpcE Wrermy DM

Brain 0.5 550 0.5+£0.1 0.6=+0.2 0.7 0.944
Liver 1.0 250 0.3£0.1 0.5+0.05 0.7 0.957
Kidney/Spleen 0.7 280 0.3+0.1 05%£0.1 0.7 0.953

Further, the segmentation performance was tested using both heuristically chosen ini-
tial starting contour points as well as by using geometrical shape priors for initiating the
contour evolution automatically. The experimental results also revealed that the mini-
mum number of contour points that need to be defined for curve initiation is 9, so that
this configuration has been used through the rest of the test samples. For better seg-
mentation performance, a Gaussian filtering was further applied to the original images
before initiation of the curve evolution. The filter coefficients used for different in-vivo
datasets are shown in Table 3.2. The results show high variability of the parameter sets
in the brain region, which demand more iteration steps (slower convergence) and yields
lower segmentation accuracy. The Dice metric was then used for characterizing the
segmentation accuracy vis-a-vis with user feedback. DM provides us with a statistical
measure for comparing similarity of two samples, and its cut-off limits for good segmen-
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Reconstructed Smoothened (Gaussian) Segmented Image

o IR 1 m— 5mm

Figure 3.5: Tomographic OA reconstructions of the brain (a), liver (b) and kidney/spleen (c)
regions of mice in-vivo. The original reconstructed images obtained with model-based inversion
are shown in the first column. The second column displays the smoothened images after gaussian

filtering. The segmented images using active contour(snakes) with the optimum parameters are
showcased in the third column
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tation are empirically decided by studying the ecologic association between species in
nature [118] . For this, four independent volunteers performed manual segmentation of
the reconstructed images. The current results yielded a DM> 0.9, whereas DM> 0.7 is
generally considered as good segmentation. In this way, a satisfactory performance of
active contour models for MSOT image segmentation was confirmed.

3.4 Visual quality enhancement using segmented priors

3.4.1 Fluence correction

In MSOT, the reconstructed images for each wavelength represent a map of the spatially
varying optical energy being absorbed by the tissue. Assuming a uniform Grueneisen
parameter in soft biological tissues, the absorbed energy is proportional to the product of
the absorption coefficient ju,(7") and the light intensity U(7) at a given voxel. Obtaining
accurate maps of concentration of individual chromophores implies on the one hand
spectrally or temporally unmixing the distribution of the chromophore of interest from
other substances contributing to ,ua(?), and on the other hand normalizing the OA
images with the excitation light fluence distribution. Several mathematical procedures
have been suggested for light fluence normalization [18], including optical propagation
models [119], iterative algorithms based on fixed-point methods [120, 121], frequency
decomposition of OA images, logarithmic unmixing of multispectral datasets [122], or
estimation of decay rates of photoswitchable probes [123]. Light fluence can be directly
estimated from the OA images [100], but the image need to be properly segmented to
accurately assign the optical properties to different tissues. Here, we propose a diffusion-
theory-based light propagation model that uses the segmented boundaries of the object
as a method to extract quantified information from OA images. The photon diffusion
equation [124, 90] is assumed to model the light intensity in scattering tissues,

Sy = —V.[D(7).VU(T)] + pa(7)U(T) (3.11)

where D = 1/3(,uls + 1) is the spatially dependent diffusion coefficient of the medium
and p/s is the reduced scattering coefficient, Sy being the source term. neglects transient
effects, which applies for typical pulse durations of 10 ns (or equivalently 3 m length) used
for OA excitation. We assumed a constant intensity illumination (Sp) on the boundary
enclosing the object volume, and the problem was treated as a two-dimensional problem
for simplicity. The interface between the scattering and non scattering medium can be
modeled using the Robin boundary condition [125],

U(?) +2D(P)A.NU(T) = 0,7 € 990 (3.12)

where 0f2 the boundary of the object and is the unit vector normal to the boundary
pointing outwards. The solution to Eq.3.12 is obtained numerically using a finite volume
method (FVM) solution approach based on the Deal II Framework [100, 126]. In the
given framework the elements of the mesh have a cubical base shape which is deformed
and stretched to match the shape of the imaged object. The value of the fluence is
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thereafter calculated for the nodes and interpolated over the elements using a pre-defined
interpolation function to reduce the computational complexity. As opposed to the earlier
approaches that employed a geometrical approximation of the thresholded image to
generate the FVM mesh and mapping the nodes [126], we herein used the precisely
segmented boundary to provide a more accurate basis for generating the mesh.

¥

= o

Optoacoustic Signal (a.u.)

Figure 3.6: Model-based reconstruction without optical fluence correction shows an erroneous
fluence distribution (a). The reconstructed image is segmented using active contour method (b)
and the binary segmentation mask is extracted (c). The fluence model (d) is generated using
the mask (b) as prior by application of the FVM method. Two tubular insertions of India ink
having equal OD but placed at different distances from the light sources in a turbid medium are
imaged (marked by white arrows), the fluence corrected image (f) using the proposed method
shows better visual saliency compared to uncorrected image (e).

The results of the segmentation-assisted optical fluence normalization are illustrated
in Fig.3.6. First, the OA image of the tissue mimicking phantoms with two identical
tubular insertions was obtained using the model-based method, as shown in Fig.3.6(a).
It can be readily seen that the two insertions (marked with white arrows) appear with
substantially different intensities in the image. Indeed, optical attenuation - contributed
by absorption and scattering — in the tissue mimicking phantom leads to a lower sig-
nal intensity generated for deeper-seated objects. Active contours were then used to
segment the boundary of the sample, as shown in Fig.3.6(b). Based on the segmented
mask in Fig.3.6(c), the light fluence distribution was obtained with a FVM based sim-
ulation assuming uniform light distribution on the boundary of the object and uniform
optical properties (Fig. 3.6(d)). Normalization of the OA image with the estimated light
fluence field yields the image displayed in Fig.3.6(f) (Fig.3.6(e) is the reference image
without normalization), in which the two embedded tubings show similar signal intensity
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as would be expected from absorbers comprising the same concentration of the chro-
mophores. The results of the post-mortem imaging studies are displayed in Fig.3.7. The
figure shows an example of a cross-sectional image being corrected for the light fluence
attenuation effects. The ICG tubings and the average tissues were spectrally unmixed
into two components and superimposed with different colormaps after applying the flu-
ence correction for better visualization. It clearly shows that the relative signal intensity
increases for the deep-seated tubing (T2) after light fluence normalization (Fig.3.7(b))
as compared to the non-normalized image (Fig.3.7(a)). To quantitatively evaluate the
performance of the method, two-dimensional regions of interest surrounding the tubing
locations were considered and the relative intensity values were compared before and
after light fluence normalization for the different cross-sections (Fig.3.7(d)). Uniform
optical properties were assumed within the sample according to reported average val-
ues for biological tissues [91]. The absorption coefficient was taken as j, = 0.29 cm™!,
while the light fluence distribution was estimated for two different values of the reduced
scattering coefficient, namely /s = 15¢m_1 and /s = 20 cm™! [17, 127]. In both cases,
the calculated intensity ratios were close to 1 for the normalized cross-sections, which
demonstrates that the proposed method can offer good performance with segmented im-
age priors. Thus, inspite of considering a simplified model for representing heterogeneous
tissues, an improvement in the quantitative performance of MSOT is achieved.

3.4.2 Mapping multiple speeds of sound

In a typical MSOT imaging domain, the coupling medium and the imaged object often
have different SoS, which may impair the image reconstruction quality [87, 55]. Different
approaches have been so far developed to alleviate this problem, e.g. by means of the
SoS mapping or generalized Radon transform models assuming geometrical acoustics
approximations. Accordingly, here we use the segmented image mask to fit multiple
SoS values to the different regions in the image, thus providing an alternative method
to address the issue of acoustic heterogeneities without increasing the mathematical or
hardware complexity of the imaging problem. To evaluate the performance of the pro-
posed methodology, a two compartment model is considered consisting of the coupling
medium outside the imaged object (the background) assigned with a given SoS (C}) and
the region inside the imaged sample assigned with a different SoS (C,). In this formu-
lation, the method is applicable to any reconstruction algorithm capable of accounting
for a known distribution of the SoS, e.g. the filtered back-projection (FBP) algorithm
[34], the interpolated matrix inversion method [15] or the time-reversal approach [116].
Herein, the FBP algorithm was used to automate the workflow in conjunction with
automated SoS calibration. The automated SoS calibration for the image fitted with
two values of the SoS was carried out with a normalized variance of the image gradient
magnitude using Sobel operator (Sobel+Var) and anisotropic diffusion using consistent
gradient operator (Ad-CG), as recently reported by Mandal et. al. [87, 69]. The FBP
method is based on a delay-and-sum approach and for a finite number of measuring
locations, where the optical energy deposition at a given pixel of the region of interest
(ROI) is calculated as,
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Figure 3.7: Post-mortem imaging of mice with ICG insertions p, = 1.9cm~! at A = 800nm at
two different depths (T1 and T2): The optoacoustic anatomical reference image and the unmixed
images corresponding to the ICG distributions for the uncorrected image (a) and fluence corrected
image (b) are displayed. Both images were obtained post unmixing using 10 different wavelengths.
The fluence map generated using the FVM method using the segmented prior is shown in (c),
crosshairs indicates positions of insertions. The relative contrast ratios for fluence uncorrected
and corrected images (12 anatomical slices) for two different tissue absorption properties are
plotted in (d), clearly demonstrating a significant improvement ( 1.1691) after application of
fluence correction using the proposed segmented prior based FVM method.

f(x;7y§) = Zl S(xivyi)tij) (313)

where (z;,y;) is the i measuring location and t;; = | (%, 9}) — (i, i) |/c, being c
the SoS when a uniform SoS is considered. s(x;,y;,t;;) represents the function to be
back-projected, i.e. filtered pressure. Eq. 3.13 is expressed in arbitrary units, where
the constant terms accounting for unit conversion factors are omitted for simplicity.
As mentioned earlier, we fit two SoS values (c,, ¢, ) for the background and object
respectively. In this case,in Eq. 3.13 is estimated as the time of flight (ToF) from the
center of the transducer to a given voxel is calculated as

d.
ToF =+ (d—d.) /e, (3.14)
0

where d is the distance from the detector to the voxel considered and d.. is the fraction
of d located within the tissue. We can employ the model-based algorithm for multiple
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SoS mapping, however the method is computationally expensive for SoS calibration
purposes. Thus, we choose FBP methods for automated SoS calibration and multiple SoS
fitting. The details of the SoS calibration methods and the rational for favoring the faster
(but often less accurate) FBP method has been illustrated by [87].The phantom results
are presented in Fig. 3.5. Fig.3.5(a) shows the tomographic reconstruction obtained
when a uniform value of the SoS is assumed for both the phantom and the surrounding
coupling medium. A single value of the SoS (¢ = 1535m/s) was fitted based on focusing
metrics, which visually yields a reasonable reconstruction. However, a closer observation
reveals that the difference of SoS between background and phantom has inevitably led
to degradation of image quality. Specifically, a zoom in on a selected microsphere reveals
that some microspheres in the imaged plane have not been accurately reconstructed due
to acoustic mismatch and wrong assignment of the SoS distribution. Additional artifacts
appear at the edge of the phantom, as indicated by the white arrow. Active contour
segmentation (and morphological processing as explained in ) was subsequently applied
to the tomographic reconstruction in Fig. 3.5(a), yielding the mask displayed in Fig.
3.5(b). The mask allows differentiating between the imaged object and the background
region, so that different values of the SoS can be assigned. In particular, the values
of the SoS for the sample (¢, = 1565m/s) and the background (¢, = 1515m/s) were
estimated based on autofocusing metrics. The corrected tomographic reconstruction
obtained by considering the mask in Fig. 3.5(b) and the fitted values of the SoS is
showcased in Fig. 3.5(c). The magnification of the same area as in Fig. 3.5(c) shows a
sharper reconstruction of the microsphere when compared to Fig. 3.5(a). Furthermore,
the model using multiple SoS renders a sharper appearance of the edges (marked with
a white arrow).

© Optoacoustic Signal (a.u.) =

Figure 3.8: Single speed of sound (SoS = 1535) is applied homogenously to obtain (a), the
segmentation mask (b) is extracted using active contour method and morphological processing.
Two different SoS -1525 (Cb) for background region and 1565 for inside object boundary (Co)
were fitted to obtained an improved reconstruction (c). Zoom in (region marked with red boxes)
of reconstructed microsphere(s) is included in insert and reconstructed edges are marked with
arrow (s).

The post-mortem acquisitions were used for evaluating the algorithm performance in

the case of low contrast ex-vivo images that may yield less accurate segmentation using
active contours (Fig. 3.9). Here we first reconstructed an image using the backprojection
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algorithm, whereas focusing matrices with temperature priors were used to determine
the most suitable SoS. An initial segmented mask was then obtained by segmenting the
reconstructed image, which was morphologically processed to provide a smoother mask.
Finally, the obtained mask was employed to build the two-compartment model of SoS.
The SoS of the background coupling medium (water bath) was determined using its
measured temperature (c,=1515m/s at 34°C). For computing the SoS of the object, we
reconstructed a stack of 100 images with SoS spaced 5 m/s and a fixed background SoS.
Selected autofocusing metrics were executed to determine the calibrated SoS ( ¢, = 1555
m/s). The reconstructed image obtained with the two compartment model is shown in
Fig 3.9(b). The autofocusing metrics showed good convergence in the presence of strong
absorbers in Fig. 3.9(d), and the line profiles displayed in Fig 3.9(c) indicate significant
improvements with respect to images reconstructed with a uniform SoS. Indeed, not
only are the tubings better characterized but also the internal structures are observed
to be marginally more defined, e.g. spinal region, when using the two compartment
SoS approach. Similar to the light fluence normalization measurements, segmentation of
internal areas having different values of the SoS may further improve the resolution and
contrast of the reconstructed images obtained by accounting for heterogeneous acoustic
properties of tissues.

3.5 Discussion and conclusion

In this chapter, we have outlined two independent methods for segmenting OA images
and demonstrated the applicability of the segmented priors to improve visual image
quality in quantitative OA imaging. The first method (as outlined in section 3.2) that
has been demonstrated for delineating the boundary of OA small animals images uses
a multiscale edge detection algorithm in combination with geometrical curve fitting.
The method is self-deterministic and requires minimal human intervention. The second
method ( section 3.3.1), employs active contour (snakes) models for segmentation in
cross-sectional (two-dimensional) tomographic OA imaging. Further, the we have shown
that using the active contour segmentation results as prior information during the image
reconstruction procedure can significantly improve the imaging performance.The per-
formance of active contour models has been outlined for whole-body segmentation of
mice using three representative anatomical regions.The optimum values of the param-
eters used in the segmentation procedure such as the weighting factors to estimate the
image forces or the number and location of the initial contour points were determined
heuristically. Specifically, these values were computed over multiple datasets and the
segmentation performance was subsequently evaluated. Thereby, these parameters may
need to be recalibrated for other tomographic configurations or other biological samples.
Further, it is possible to develop strategies to automate the seed point detection through
the use of parametric curve fitting models, given a computational overhead [127]. The
fitting models can further reduce dependency on human feedback, but do not influence
the final segmentation performance.

Acoustic inversion in OA tomography is commonly conditioned by the differences be-
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Figure 3.9: Post-mortem images of mice with ICG insertions (200 nmol) at two different depths
reconstructed with (a) single speed of sound (1520) and (b) multiple (differential) speeds of
sound (Background SoS Cb = 1515 and Object SoS Co = 1555 m/s). The line profiles of the
marked insertion along the direction of the arrow when reconstructed with homogenous and
heterogenneous SoS are shown in figure (c). The automated speed of sound calibration curves
(Sobel +Var and Ad-CG methods) for heterogenous SoS fitting are shown in (d).

tween the acoustic propagation properties of the imaged tissue versus the surrounding
coupling medium. Typically, a uniform non-attenuating medium comprising both the
sample and water is assumed for reconstructions, which may lead to an inadequate
imaging performance since the average acoustic properties in soft biological tissues are
generally different from water. Thereby, identifying regions with different SoS or acous-
tic attenuation or areas with strong acoustic scattering or reflections is essential for
optimizing the reconstruction performance. A two compartment model assuming an
acoustically homogeneous tissue can then be used as a second order approximation to
improve accuracy of the tomographic reconstructions. We have shown that by consid-
ering a different SoS in the sample, one can improve the spatial resolution performance
when imaging through real heterogeneous tissues. Clearly, a similar procedure can be
used to segment the imaged medium into three or more compartments in order to fur-
ther enhance the imaging performance. In a similar manner, optical propagation is very
different in a transparent coupling medium as compared to real biological tissues, where
photons undergo strong absorption and scattering. Thereby, a two compartment model
can also be used as a first order approximation to account for the significant effect of
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light fluence attenuation, and segmentation of the OA images is then again essential for
this purpose. Normalization with the light fluence distribution is needed for quantifying
the concentration of specific optical biomarkers. We have shown that a numerical model
assuming homogenous optical properties within properly segmented boundary can al-
ready be sufficiently accurate for normalization purposes both in phantom experiments
with controlled absorption and scattering, as well as in real biological samples. A more
accurate estimation of the light fluence within the sample implies detailed knowledge
of the spatial distribution of its optical properties, which is very challenging to obtain
in living organisms. It was previously shown that iterative light normalization methods
may render good performance in numerical simulations [18, 128] but can turn unstable
in experimental studies if the scattering coefficient or object boundaries are not accu-
rately estimated. Proper segmentation of the outer boundary of the sample or internal
regions having strong changes in optical properties then becomes essential for accurate
light fluence normalization in OA tomography [93].

The OA signal/image datasets can be very large given the 5D nature of this modality, au-
tomating the image formation and analysis workflow is a very challenging and important
problem. Thus, the algorithms and the workflows demonstrated herein are expected to
be helpful in automating OA image segmentation, with important significance towards
enabling quantitative imaging applications. In conclusion, OA image segmentation and
analysis is a nascent and emergent area of investigation that holds potential for advanced
applications including, but not limited to organ segmentation, diagnostic imaging [129]
and pharmacokinetic studies [130]. The demonstrated good performance of active con-
tour models for OA segmentation of real tissues, and the feasibility to account for optical
and acoustic discontinuities in the imaged region, anticipate the general applicability of
the suggested approach for enhancing the resolution and image quality of tomographic
OA reconstructions. Considering that the recently developed hand-held probes for OA
clinical translation employ the same acquisition geometry, the methods presented in
this work can further be applied in the development of diagnostic tools for translational
imaging in human subjects [131].
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4 Enhancing image resolution using pixel
super-resolution

The spatial resolution of optoacoustic (OA) imaging is limited by the properties of the
ultrasound transducer(s) used to collect the signals as well as by acoustic propagation
parameters [86]. The final resolution recovered from an OA acquisition is determined
by the system configuration and the reconstruction algorithm employed [132, 133]. The
ideal reconstruction procedure is usually based on several assumptions: (1) wide-band
detection, (2) point detector measurement, (3) impulse excitation, (4) homogeneous
speed of sound, (5) full-angle detection view and (6) continuous sampling. However,
most of these assumptions are not realistic in practical implementations. For example,
actual ultrasound sensors have a finite sensing aperture and detection bandwidth [10],
which limit the frequency content of the detected signals and hence the spatial resolution
achieved [134]. Phase aberrations caused by speed of sound (SoS) variations and signal
broadening associated to acoustic attenuation [135, 136] also degrade the spatial resolu-
tion of the images rendered by assuming a uniform acoustic medium [87, 55]. Finally, the
detection surfaces are generally finite and partially closed, so that the OA signals cannot
be collected from all directions [137, 138]. Under these circumstances, the achievable
spatial resolution is usually lower than that predicted theoretically.

Traditionally the researchers have attained improvements in spatial resolution and
overall image fidelity through hardware improvements by means of increasing the de-
tector density [139]. Reconstruction methods that account for the detection properties
of the measurement system and signal distortions (in the coupling medium) has further
enhanced the imaging performance [86, 135, 52, 45, 140]. Accurate modeling in actual
biological tissues can solve the mentioned issues, however, it is a non-trivial challenge
and advanced algorithms are computationally expensive [138, 56].

An alternative approach to improve the contrast and spatial resolution of an image is
by integrating information from several low resolution (LR) images obtained at different
imaging positions to generate a high resolution (HR) image [141, 142]. Termed super-
resolution [143, 144], this imaging method relates to a class of ‘pixel super resolution’
algorithms that are employed in digital imaging and lens-less microscopy, to overcome
resolution limitations due to pixel size. This approach does not relate to super-resolution
methods aiming at breaking the diffraction limit of light and/or ultrasound [145, 146].
To differentiate these two classes of “super resolution” methods we refer to the method

This chapter has been adapted with modifications from:
H. He, S. Mandal, A. Buehler, X. L. Dean-Ben, D. Razansky and V. Ntziachristos, ”Improving
Optoacoustic Image Quality via Geometric Pixel Super-Resolution Approach,” in IEEE Transactions
on Medical Imaging, vol. 35, no. 3, pp. 812-818, March 2016.
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employed in digital imaging as pixel super resolution (PSR) herein. PSR methods were
first introduced in digital image processing [143] and have been adapted to biomedical
imaging modalities such as x-ray CT, MRI and PET [144, 147, 148, 149, 150, 151, 152].
PSR methods have been successfully applied to MRI for resolution and image quality
enhancement without increasing the acquisition time or changing the imaging system
[149]. For example, Kennedy et al. [144] demonstrated the application of iterative PSR
algorithms in improving resolution of clinical PET imaging by multiple datasets with
spatial shifts between consecutive acquisitions. The PSR method suggested herein is
specifically implemented the scanning protocols of a small animal MSOT scanner, and
is termed OA-PSR [2].

In this chapter, we outline the basic theory behind PSR algorithm, demonstrate the
PSR implementation in OA imaging and illustrate the improvements gained in image
resolution and contrast. The study includes simulations and experimental measurements
on phantoms and ex-vivo murine organs.

4.1 Theory of pixel super-resolution

The PSR method is a promising signal processing methodology, and has been an active
area of research in computer vision and image enhancement. The recent award of the
Nobel Prize in Chemistry (2014) [153], has sparked additional interest in the domain
area of SR imaging, however our method does not address the limitations of (optical)
diffraction limit, nor uses any photo-switchable agents to attain higher resolution. The
PSR method focuses on image enhancement and overcomes the inherent resolution limits
of LR imaging systems [147, 154]. The operating principle of PSR techniques relies on
composing a high resolution image from a sequence of low resolution images acquired
from different imaging perspectives or views [155]. During the image acquisition pro-
cess motion is introduced by controlled phenomenon (e.g. rotation of satellites, panning
camera motion) or unconditionally (e.g. object motion, breathing motion for animal
imaging) [156, 157]. If we have a-priori information or are able to identify the mo-
tion(s) with subpixel accuracy, we can combine several LR images with slightly varied
information to reconstruct a SR image, the method is illustrated in Fig. 4.1. The PSR
methodologies comes with their own share of limitations and problems, the primary ones
being the blurring of images (low egde information) and sub-sampled images. However,
for OA implementations such problems are already dealt with using the algorithms for
SoS autofocusing (2.2.1) or multi-bandwidth deconvolution [158], and improved image
reconstruction (2.3). Interpolation is another problem in SR reconstruction, and inspite
of improvements in interpolation techniques the single image interpolation functions can-
not recover the losses in high frequency components and degradation causes during LR
acquisition. Thus, many researchers do not consider interpolation as a SR technique. On
the contrary SR imaging fuse information from multiple acquisitions/ datasets to achieve
a HR image, and out implementation of OA- PSR is based on the same assumptions.
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Figure 4.1: The basic premise for pixel super-resolution using a basic registration-
regularization- projection based reconstruction. The method maps several LR images onto a
HR grid.

4.1.0.1 Observational model

Formulation is a observational model that relates original HR image with the acquired
LR image is vital to implement and analyze the PSR process. The image acquisition
process is ideally modeled by the following stages: (i) geometric transformation, (i7)
blurring (i#i) down sampling and (iv) noise model. The models are well developed for
camera imaging (a scenario where PSR is amply used), however, this being the first
attempt to introduce PSR in OA we had to carefully design each component of the ob-
servational model. Further, the model for OA is one which takes consideration both the
reconstruction and post-reconstruction image parameters, making it more complex than
only the post-acquisition image parameters as in the case of camera (natural) images.
In the designed model the transformations included rotation and translations(in plane
translations in multiple directions), blurring was introduced by convolving with the im-
pulse response of the transducer arrays. The assumed noise model was additive Gaussian
in nature. Given the considerations the observational model can be mathematically ex-
pressed as,

where Y, represent the kth LR image with a native resolution of N; x Ny, X is the
HR image estimated from Yj; with a resolution of ¢/N1 x g¢Ns, q being the scaling factor.
Dy, is the decimation operation, Hj is the blurring factor represents by the transducer
impulse response, Fj, is the affine motion operator between X and corresponding LR
frame Y, and V} is the additive Gaussian noise.

4.1.0.2 PSR image reconstruction algorithm

The PSR method is generally defined as an inverse process of imaging degradation, and
we find several methods in literature to achieve it [158]. There are several ways through
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which researchers have accomplished PSR reconstruction, the most commonly used
methods used includes non-uniform interpolation approach, iterative back-projection,
adaptive filtering approach, frequency domain approach, regularized reconstruction (de-
terministic and stochastic) approach, projection onto convex sets (POCS), and hybrid
(maximum-likelihood minimization together with POCS) approaches [159, 160, 161]. For
the current work, we employed the PSR regularized reconstruction approach, where the
inversion is regularized due to the ill-posed nature of the problem [152, 162]. Accord-
ingly, the HR image is calculated by imposing an additional regularization factor Ay(X)
on the observational model (Eq. 4.1). Thus, the problem is reduced to a generalized
minimization cost function derived from the observation model and can be expressed as,

N
X:argMin{ZHYk,DkaFkX] —I—)\’y(X)} (4.2)
X k=1

where v(X) is a regularization term, A\ being a regularization weighting parameter
determined according to the trade-off between edge information and noise. The initial
guess for the HR image is taken by interpolating a specific LR image.

Though the spatial transformation for different acquisitions can generally be accu-
rately characterized, the image transformation among reconstructed LR images may not
exactly correspond to the defined spatial transformation due to inevitable movement of
the imaging setup and target. Thereby, in order to improve the image quality in the
PSR process, the image transformation between the estimated HR frame X and the
kth LR frame Y (motion matrix F}) is accurately estimated with a method based on
optical flow registration [163]. Then, the solution of Eq. 4.2 corresponding to the HR
image X is calculated iteratively until the solution converges or a pre-defined cut-off
value (maximum) of iterations is reached.

The PSR inversion process defined in (Eq.4.2) is an ill-posed process, so that a regular-
ization term is generally required for rendering a stable solution [162]. The regularization
term compensates for ill-posedness by a priori imposing additional information on the
desirable HR image [147, 162], consequently suppressing artifacts and noise, and im-
proving the rate of convergence. Herein, we employ a bilateral total variation (BTV)
regularization term defined as:

P P
’Y(X): Z ZQ\MIHH
|=—P m=0

‘X - SiS;”XH (4.3)

where I +m > 0, S. and Sy are shift matrices to present [ and m pixels shift in
horizontal and vertical directions, respectively. P(1 < P < 3) is the shifting range
in both directions and (0 < a < 1) is the weighting coefficient. The scalar weight
« gives a spatially-decaying effect to the regularization terms summation. The BTV
regularization is based on the combination of the total variation restoration model and
the bilateral filter [147, 162], where total variation anisotropic diffusion [69] is used
for image restoration and edge enhancement, and the bilateral filter focuses on noise
reduction and edge sharpening [164]. Subsequent application of the bilateral filter several
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times leads to smoothing of the signal until reaching a steady rate. Based on this, a large
value of « is chosen for images affected by noise, which suppresses noise and smooth flat
regions in the estimated HR image at the expense of losing edge information. More
detailed information about the BTV regularization function can be found in [162, 164].
Combining eqns.4.2 and 4.3, the iterative PSR process is calculated with steepest descent
method and the final minimization function described as:

N
X=X, + {E FLH DY o sign(Yy, — Dy HpFpX )
k=1

+)\< zp: ialmlﬂll (IfS;lSy_m) esign <Ynf SiS;”Xn)>}

I=—Pm=0
(3.4)

where S and S, ™ represent the transposes of matrices Sl and S, respectively and
they have a shifting effect in the opposite directions as S% and Sy

4.2 Simulations studies for OA-PSR

4.2.1 Simulation design

Numerical simulations were performed to test the performance of the suggested PSR
method on synthetic OA data. For this, a resolution target phantom was used to define
the theoretical initial OA pressure distribution (Fig. 4.2(a)). The simulations were
executed using MATLAB (MathWorks, Inc.) k-Wave Toolbox [17, 45]. The signals at
200 points located at a distance of 25 mm from the center of the phantom and equally-
spaced along an arc of 180° were considered. A simulated Gaussian shape impulse
response with a full-width at half maximum (FWHM) of 100 ns was convolved with the
simulated OA signals to mimic the effects of the frequency response of the transducer,
which degraded the spatial resolution to 150 x 150um. The phantom was shifted linearly
with a step-size of 300 pm assuming that four LR images are to be acquired in four
translation scanning positions, i.e. (z + Ax,y), (z,y + Ay), (z — Ax,y), (z,y — Ay),
being Az = Ay = 0.3mm, for a given (fixed) z-plane.A was taken as 0.02 and « was
taken as 0.01 for the simulated LR images.

4.2.2 Simulation results

The results of the numerical simulation are depicted in Fig. 4.2. Fig. 4.2(a) shows
the optical absorption distribution used for the forward simulation, which represents a
resolution target phantom (USAF) typically used as a characterization tool in optical
imaging. Fig. 4.2(b) shows the LR OA image reconstructed by using the FBP algorithm
by considering a pixel size of 100 pm whereas Fig. 4.2(c) presents the HR image obtained
by interpolation from the reference image in Fig. 4.2(b). Fig. 4.2(d) displays the HR
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image obtained by interleaving the LR reconstructions obtained with 4 scanned slices
translated in the same plane. The HR image obtained with the PSR method from the
same 4 slices is shown in Fig. 4.2(e). From the zoomed in areas shown in Fig. 4.2(f) —
(i) and from the line profiles shown in Fig. 4.2(j), (k), we see that the proposed PSR
method significantly improves the image resolution.
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Figure 4.2: Simulation of PSR algorithm. (a) Reference USAF phantom. (b) Low resolution
(LR) reconstructed image. 4 LR images with 3pixels shifts were used to obtain a higher resolution
image using (c¢) Interpolation, (d) interleaving and (e) PSR. The figures (f-i) are the zoom-in
of the region marked in red in for panels (b-e) respectively. The line profiles in the horizontal
and vertical directions marked in panel (e) are represented in (j) and (k) respectively for the
interpolation (red), interleaving and PSR (blue) methods.
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4.3 Implementation of PSR in optoacoustic tomography

In order to test the experimental performance of the PSR method in OA tomography,
experiments were conducted using a small animal MSOT256-TF scanner (iThera Medi-
cal GmbH, Munich, Germany). The resolution of the system depended on the frequency
response and the geometrical properties of the detector array, and was estimated as
~ 150pm in the cross-sectional plane and ~ 800um in the normal direction. The MSOT
system integrate high-precision stages able to translate the scanning sample in steps of
0.1 mm. The PSR algorithm was first implemented in the translation mode by combin-
ing sets of four LR images acquired in four translation scanning positions (Fig. 4.2).
Specifically, the sample was scanned to the positions (z+ Az, y), (z,y+Ay), (x—Ax,y),
(z,y — Ay), being Az = Ay = 0.3mm, for a given (fixed) z-plane. In addition, the PSR
algorithm was also implemented in a “transaxial mode”, which combined translation
and rotation. The transaxial mode acquired three LR images for each translational po-
sition using virtual rotations ¢ + A¢, where A¢ corresponded to the angular separation
of 5 consecutive elements of the array in the transverse plane between successive ac-
quisitions. In the translation mode, the geometric transformation at different imaging
views was applied precisely and all transducer elements (256 elements) were considered
for all reconstructions. Only 200 transducer elements were used for the reconstructions
in the transaxial mode, and the virtual rotation was simulated by selecting the trans-
ducer elements considered. The schematic of the MSOT256 system and the modes of
operation for achieving OA-PSR are illustrated in the Fig. 4.3. Because the MSOT
transducer array is toroidally focused, the best quality image is generally obtained with
the sample located on the focus area of the detector. For a fair comparison, the quality
of cross-sectional reconstruction was determined by visual inspection and the best image
was chosen as the reference image for the PSR process. Signals of 200 channels in the
central area of the detector were considered for reconstruction of the reference image in
the transaxial mode.

The OA images for all scanning positions were reconstructed with a standard filtered
back-projection (FBP) algorithm [34]. Prior to reconstruction, the OA signals were
band-pass filtered with cut-off frequencies between 0.2 and 7 MHz in order to remove
low frequency off-sets and high frequency noise. A uniform speed of sound (SoS) of
1510 m/s was used for each reconstruction. Indeed, even if the SoS variations from one
medium to another can cause of distortions in the OA images, using a constant SoS value
generally allows obtaining a representative image [55]. Thereby, the values of SoS were
optimally chosen for each image by using iterative autofocusing metrics. A model-based
reconstruction method employing similar regularization as the PSR method was used
as a reference (shown in Fig. 4.6) for comparison of the proposed method vis-a-vis ad-
vanced reconstruction methodologies [15]. All LR images are mathematically registered
to the reference image for calculation of the image transformation. For comparison,
the transformation information between the reference image and each LR images were
interpolated into the reference image to obtain the so-called interleaving image. The
interleaving image corresponds to a two times up-sampled LR image with the same size
as the PSR image. For the translation or transaxial mode, the image obtained at the
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Figure 4.3: Schematic of the MSOT256 system with the detector and laser arrangement, the
sample holder is connected to mechanical stages for translation of the sample. The configuration
of the detector arrays is shown in the zoom-in, the system comprises of 256 cylindrically focused
individual detector elements. (a) Translational (X and Y directions in a single Z plane) and
(b) transaxial scanning modes. The sample is translated four positons (in X and y) in the
translational mode and detectors are virtually rotated for three configurations (r0-r2) in the
transaxial mode to acquire the data stack for super-resolution image formation.

focus area was taken as the initial guess for the HR image. The transformation matrix
was calculated between the guessed HR image and LR images obtained in other posi-
tions. In each iteration of the PSR inversion problem, the reference image was updated
with the interleaving image, and the motion between the LR images and the updated
reference image was then calculated. The PSR procedure was iteratively updated until
the difference error was less than 0.02 or after 12 interactions. A was taken as 0.02 for
all data, while a was taken as 0.01 for the simulated LR images and, was increased
to 0.05 for smoothing noise of the reconstructed PSR images in the USAF and mouse
tissue experiments. The reference images shown in section 4.3 were reconstructed with
the FBP algorithm considering the same pixel number and width as the PSR image.
In order to compare the image contrast of the resolution target phantom, the average
intensity (S) of the resolution lines were calculated, as well as the standard deviation
of background (B) signals in the spaces between the lines. The region of interest for
calculating for resolution line was established by digitally masking the image with the
known location of the target lines. The ratio of the average signal to the standard
deviation of background noise provided a contrast-to-noise ratio CN R = 20 * log(S/B).
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Table 4.1: Contrast ration CNR for optoacoustic images in translation mode

Contrast Ratio

Image type

Line1l Line?2 Line3 Line4
Native Resolution 2.1%* 1.2% 1.9%* 1.1*
Interleaving 1.8 0.5 1.7 0.6
PSR (Proposed) 3.2 3.8 2.8 1.9

* distortions present

4.3.1 Measurements of resolution (USAF) phantoms

Experiments were performed to validate the simulation results and characterize the
resolution improvement achieved with the PSR method in practical cases. We used a
printed paper (USAF resolution target, standard inkjet printer with black ink) phantom
embedded in a 1.9 cm diameter diffuse agar cylinder (6% by volume Intralipid in the
agar solution) for the measurements. The structure of the phantom is shown in Fig.
4.4(a). The image object includes several groups of elements of different size, which
can be used for resolution characterization at different levels. Four OA images of the
resolution target phantom were obtained in the translation mode and twelve OA images
were acquired in the transaxial mode.

The experimental results corresponding to the two-dimensional USAF target paper
phantom imaged in the translational mode described in Section II-C are given in Fig.
4.3. Fig. 4.4(a) displays a photograph of the printed structure. The LR OA images are
reconstructed with the FBP algorithm by considering a pixel size of 62.5 um and the
reference image (reconstructed with same pixel number and width as the PSR image)
is shown in Fig. 34.4(b). The image obtained by interleaving 4 translational scans is
shown in Fig. 4.4(c). The PSR image reconstructed from the same 4 positions is shown
in Fig. 4.4(d). Much like in the simulations, the PSR image has higher resolution and
quality as observed in the zoomed areas in Fig. 4.4(e) — (g) and in the line profiles in
Fig. 4.4(h), (i) comparing to other approaches. Specifically, line features in Fig. 4.4(e)
are seriously distorted (e.g. labels 3, 4 and 8) and discontinuities (e.g. labels 1, 6 and
7) can be observed. The line features in the interleaving image [Fig. 4.4(c)] are also
distorted and noisy. On the other hand, the lateral (e.g. labels 3 and 4) and axial (e.g.
labels 7 and 8) resolution characterization lines are more distinguishable in the PSR
image. The lateral and axial line profiles marked by the red arrows in Fig. 4.4(d) also
suggest a better resolution in the PSR image. The comparison of contrast-to-noise ratio
(CNR) achieved with the different methods is showcased in Table I. The PSR image
provides a CNR more than 50% higher than the reference image and 50% higher than
the interleaving image (Table 4.1).

Fig. 4.5 shows the results of the USAF phantom experiment imaged in the transaxial
mode by considering different numbers of LR images. The images obtained with the
interleaving and PSR methods considering 1 transaxial scanning positions (3 images)
are shown in Fig. 4.5(a) and (c). The corresponding results obtained using 3 transaxial
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Figure 4.4: (a) Reference USAF phantom printed on white paper with black ink, which was
embedded in scattering agar. (b) Reconstructed high resolution reference image. Low resolution
(LR) images were reconstructed using back projection, 4 LR images with 0.3mm shifts in linear
direction were used to obtain a higher resolution image using (c) interleaving and (d) PSR. The
figures (e-g) are the zoom-in of region marked in red in panel b for the panels (b-d) respectively.
The line profiles in the horizontal and vertical directions marked in panel (d) are represented
in (h) and (i) respectively for the high-resolution reference image (red), the interleaving image
(black) and the super-resolution image (blue).

positions (9 images) are displayed in Fig. 4.5(b) and (d). The image in Fig. 4.4(b) is also
considered as a reference. Targets in the PSR results are better resolved comparing to
the reference and interleaving images. Comparing the horizontal (labeled 1, 2, 3, and 4)
and vertical (labeled 5, 6, 7 and 8) resolution characterization lines in Fig. 4(c) and 4(d),
it is observed that increasing the number of LR images also leads to a better resolution
of the PSR images. Fig. 4.5(e) and (f) shows the relationship between the CNR (labels 4
and 6) and the number of LR slices used in PSR method. It is shown that increasing the
number of LR images for PSR reconstruction generally leads to an increase in the CNR.
However, the CNR may decrease because more noise is accumulated with the number of
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LR slices increasing in the PSR process; the same is clearly demonstrated in Fig. 4.5(e),
(f) where the CNR value is decreased when more than 9 LR images were used.
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Figure 4.5: Low resolution (LR) images were reconstructed using back projection with 0.3mm
shifts in the linear direction (translational) and 5 element shifts (rotational). Higher resolution
image reconstructed using (a) interleaving 3 images (1 transaxial position), (b) Interleaving with
9 images (3 transaxial positions), (¢) PSR with 3 images (rotation) and (d) PSR with 9 images
(rotation + translation). The plots in (e) and (f) show the relationship between the number of
slices and CNR for areas 4 and 6 respectively.

4.3.2 Ex-vivo tissue imaging

To demonstrate the applicability of the method in biological imaging, we conducted trials
using ex-vivo murine kidney samples. The samples were extracted post-mortem (non-
perfused) according to institutional regulations (with permissions from the authorities of
Upper-Bavaria region) regarding animal handling protocols and subsequently embedded
in a diffuse agar block (6% by volume Intralipid in the agar solution) for ensuring uniform
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illumination of the sample. After completion of OA imaging experiments, the sample
was isolated and frozen at —51°C for 24 hours. It was thereafter embedded in a water
soluble optimal cutting temperature compound and cryosectioned with sample thickness
of 20um at a temperature of —20°C. The RGB images of the cryosections were used as
a reference to validate the reconstruction and PSR results by correlating the location,
orientation and morphology of the blood vessels within the kidney mass.

Amplitude (a.u.)
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Figure 4.6: Reconstruction results for the ex-vivo murine kidney. (a) Reference cryoslice image.
(b) Reconstructed high-resolution reference image with the FBP method. (c) Reconstructed
high-resolution reference image with the model-based method. (d) Interleaving result with 6
images obtained in the transaxial mode. (e) PSR image. The line profile marked on (b) is shown
in (f). Zoom in of the region marked in panel (a) is provided for better visualization of the
microvasculature and image enhancement achieved by different methods.

The results for the ex-vivo kidney experiment are presented in Fig.4.6. A photograph
of a cryoslice obtained through the imaging position is shown in Fig. 4.6(a). Fig. 4.6(b)
and (c) show reference images obtained with the FBP and model-based algorithms by
considering 400 x 400 pixels with pixel width 50pm. The interleaving result [Fig. 4.6(d)]
obtained by directly registering information from different scanning views reconstructed
with FBP shows similar image fidelity to the reference image. In contrast, the PSR image
considering 6 slices reconstructed with FBP in the transaxial mode displayed in Fig.
4.6(e) demonstrates improvements on image quality. Specifically, blood vessel structures
marked with the box indicated on Fig. 4.6(a) are better resolved in the PSR image than
in the images obtained with other methods, as shown by inserts in Figs. 4.6(b)—(e). The
vascular structures [as indicated by arrows in the inserts in Figs. 4.6(b)—(e)] in the PSR
image show better structural integrity and conformity when compared to the reference
images and the interleaving image. The visual evaluation is further corroborated by
the line profile drawn over a given image segment [indicated by the dashed-line in Fig.
4.6(b)], which indicates that blood vessels are better resolved in the PSR image. In
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addition, the PSR image has significantly less streak-type artefacts as compared to the
other images, so that the background noise is reduced.

4.4 Discussion and conclusions

We developed a novel geometrical pixel super-resolution method achieved using joint
reconstruction -image processing techniques, and implemented for state of the art OA
(tomographic) imaging system. The proposed PSR method utilizes multiple LR post-
reconstruction OA images with geometrical proximity to efficiently integrate the in-
formation into a HR image. In this chapter, we illustrated the OA-PSR method and
its’ performance in enhancing the image resolution and contrast for cross-sectional OA
imaging. The OA-PSR method can easily be extended to a wide range of imaging sys-
tems by properly defining and customizing the scanning protocol for individual systems.
Thus, using our method researchers can overcome limitations of the system hardware
and reconstruction methods by simple geometrical manipulations of scan protocol and
sequences.

Using OA-PSR the we were able to improve image resolution in both the lateral and
axial directions, and the findings were validated through simulations and experiments
conducted with a USAF resolution target phantoms. The resolution characterized as
FWHM along the lateral direction of the line target was improved from 180um in the
reference image to 130um in the PSR image, and the FWHM value along the axial di-
rection was improved from 247um to 132um respectively. The small target resolution
lines (obtained for a single imaging position) were distorted and blurred in the native
resolution (reference) image, and blurred in the interleaving image retrieved by consid-
ering several positions. However, OA-PSR image (considering several positions) was free
of the distortions and blurry effect, additionally showing better CNR performance. The
image quality of larger line targets were also enhanced with the OA-PSR method, and
an improvement of CNR can be observed. Thereby, the PSR method reduced distortion
of line features and enhanced image contrast at different resolution scales.

Furthermore, we have shown that increasing the number of LR images obtained along
different imaging views improved the image quality of the OA-PSR result. Notably,
increasing the number of LR images in the super-resolution process may result in in-
tegration of reconstruction errors and noise in the resulting OA-PSR image, especially
when the image quality of the LR images is low. For the noisy images, the regularization
parameters can be further optimized to smooth the noise. However, high regularization
will lead to blurring in the resulting PSR image. Also, the number of scanning posi-
tions for a specific OA system may be controlled. Therefore, the optimum number of
low-resolution images to consider for the OA-PSR must be determined according to the
achievable image quality enhancement and the practicability in different imaging setups.
On the other hand, the experiments on an ex-vivo mouse kidney illustrate the potential
of the OA-PSR method for improving the image quality of in real biological samples,
specially for imaging of vascular structures.
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Although the improvements in image quality using OA-PSR come at an incremental
computation overhead, the method can potentially improve imaging accuracy by acquir-
ing multiple LR images and combining them algorithmically on a software platform,
instead of having a slower HR acquisition achieved through averaging the signal data
over multiple cycles (typically 10 frames). The processing time grows with the number
of LR images used in the OA-PSR process, both in terms of signal acquisition time as
well as in image reconstruction and processing. Thereby, a trade-off between OA im-
age quality and image formation speed generally exists. This is particularly significant
during ¢n vivo measurements, where the system dynamics can vary within a very short
time window. Numerically, the total time for reconstructing 4 LR images and subse-
quent processing with the OA-PSR method for 400 x 400pizel? is about 1.33 times of the
reconstructing time of the HR reference image, which has half pixel width (total pixel
resolution is doubled) of the LR image. Also, total execution time of OA-PSR processing
was five times faster than the computation time of the model-based reconstruction in
Fig. 4.6(c). The image reconstructions and super-resolution processing can be further
accelerated by paralleled computing with graphics processing units (GPU), which can
potentially improve the applicability of the OA-PSR method further.

There exists limitations in the OA-PSR implementation that should be addressed for
performance optimization. We acknowledge that the OA-PSR method is sensitive to
the noise level of the LR image. However, suitable regularization or denoising methods
can be applied for noise suppression. The noise level affects the registration accuracy
in the PSR process, which diminishes the resolution. Thereby, improvements in the
OA reconstruction and pre-processing methods can potentially lead to removing noise
and artifacts, and prevent noise signals being registered in the final HR images. Fur-
thermore, the accuracy of registration methods significantly affects the image quality of
PSR-MSOT imaging. For ex vivo experiments, fast linear motion estimation method can
be performed simultaneously with the OA-PSR, process. However, the method can be
significantly challenging in applications in vivo due to cardiac or respiratory motions. In
this case, advanced registration methods, such as nonlinear subpixel registration method
[165], may be employed for estimating the motion between different images. We are ex-
perimenting with the possibility of using the temporal (space-time superresolution) [166]
and multispectral information [167] to build new PSR algorithms as well.

Overall, the successful application of pixel super-resolution techniques in OA imaging
implies the general applicability of this methodology to increase image resolution and
quality. The demonstrated enhancement of resolution and contrast in experiments with
tissue-mimicking phantoms and actual biological tissues showcase that OA-PSR has the
potential to become an useful tool for clinical practice and biomedical research. The
method will allow delivering higher imaging resolution without significant hardware up-
grades can be achieved. As a potential follow-up work, future research should aim to
investigate the different motion correction methods for in vivo PSR-MSOT imaging, and
integrate the developed methodology with the experimental clinical OA scanners.
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MSOT is a potent technology for biomedical imaging applications, given its capability
of high resolution three dimensional (3D), real-time, spectrally resolved visualization of
molecular probes located deep in scattering living tissues. In the earlier chapters we
have focused primarily on technical developments of MSOT, in the current chapter we
illustrate two application studies of MSOT. In the first application (section 5.1), we
describe a novel use of MSOT imaging in artificial reproduction, with Brilliant cresyl
blue (BCB) as a supravital contrast agent. Inspite of the recent developments in medical
imaging, a non-destructive method that reliably predicts the developmental competence
of an oocyte inside an ovarian follicle is conspicuously lacking. Thus, we utilized the
multi-wavelength acquisition and spectrally resolved imaging capabilities of MSOT to
obtain biologically relevant information without damaging the oocytes or diminishing
their viability. The method allows us to visualize both the anatomy and contrast agents,
and gain precise folliculometric information, including volume, anatomical position and
oocyte size. The non-invasive nature of this approach enables in vitro culture of the iso-
lated oocytes. Best to our knowledge, our study is the first to employ contrast enhance-
ment in ovarian imaging, and to demonstrate the capability of MSOT for non-destructive
ovarian follicular imaging which will be of great benefit to in vitro fertilization (IVF)
studies.

More recently our group has developed a portable spherical array probe for volumet-
ric real-time multispectral optoacoustic imaging (vMSOT) at centimeter scale depths,
which has successfully provided superior imaging speed and suitability for the 3D visu-
alization of tissues, and also yielded detailed in vivo volumetric images on a mesoscopic
level [168]. The second application study (section 5.2), utilizes the vMSOT system to
conduct intravital imaging of tumor masses and internal organs of small animal, and
study perfusion profile in real time. The investigations illustrate hypoxia and nutrition
gradients as well as cell viability, proliferation and drug response potentials in solid
breast cancer tumor masses. The findings are vital in understanding the dynamics of
living tissues and disease prognosis and progression [9, 6].

Parts of this chapter has been adapted with modifications from:
[1] Dutta R*, Mandal S*, Lin HC, Kind A, Schnieke A, Razansky D., “Multispectral optoacoustic
tomography enables non-destructive imaging of mammalian ovarian follicles for artificial reproduc-
tion,” In review (Nov ’'16)
[2] V. Ermolayev, X. Dean-Ben, S. Mandal, V. Ntziachristos, and D. Razansky, “Simultaneous
visualization of tumour oxygenation, neovascularization and contrast agent perfusion by real-time
three-dimensional optoacoustic tomography,” Eur. Radiol., pp. 1-9, 2015.
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5.1 Non-destructive imaging of mammalian ovarian follicles for
artificial reproduction

Medical imaging technologies are a cornerstone of artificial reproductive technology
(ART) for the treatment of infertility in human medicine, and improvement of ani-
mal productivity in agriculture [169]. Existing diagnostic imaging technologies, such as
pelvic magnetic resonance imaging (MRI) and ultrasound, have provided valuable in-
sights into the mammalian reproductive system. However, the imaging contrast and spa-
tial resolution of these methods are far inferior to those routinely obtained with optical
microscopy. Ultrasonographic follicular imaging, the primary tool for oocyte retrieval
in IVF and embryo culture, reveals the growing follicle only as a black bubble [170].
Folliculometric information, such as follicular wall thickness, is determined by manual
or semi-automated segmentation and provides only crude information with questionable
predictive value [171]. Determination of oocyte quality is vital in assisted reproduc-
tion, but there has yet been no assessment method that does not disrupt the follicle.
Researchers and clinical practitioners need an innovative imaging method that reliably
predicts oocyte viability and developmental competence. A non-destructive method that
reliably predicts the developmental competence of an oocyte inside an ovarian follicle
would be of great benefit to in IVF studies. Our investigations illustrated a novel method
for non-destructive evaluation of oocyte quality using MSOT [4] in conjunction with BCB
[172], a relatively new red-region contrast agent. Multi-wavelength acquisition and spec-
trally resolved reconstructions provided unprecedented image contrast without damaging
oocyte viability. MSOT allows one to visualize both the anatomy and contrast agents
[173] and gain precise folliculometric information, including volume, anatomical posi-
tion, and oocyte size. The non-invasive nature of this approach enables further in vitro
culture of the isolated oocytes. We attempted for the first time contrast enhancement in
ovarian imaging and demonstrated the capability of MSOT for non-destructive ovarian
follicular imaging. BCB has previously been used effectively to identify developmentally
competent oocytes without reducing oocyte viability [172, 174, 175, 176]. BCB is re-
duced by the intracellular activity of glucose-6-phosphate dehydrogenase (G6PDH), a
pentose phosphate pathway enzyme, the activity of which gradually decreases as oocytes
reach growth phase [177]. Oocytes in mature growth phase do not reduce BCB and ex-
hibit a blue colored cytoplasm (BCB+ve). Growing oocytes have a high level of GGPDH
activity, resulting in a colorless oocyte cytoplasm (BCB—ve) [178]. But contrast en-
hancement using BCB has not so far been attempted in ovarian follicle imaging.

MSOT is capable of selectively quantifying the distribution of specific biomarkers using
multiple excitation wavelengths and delivers optical contrast at unprecedented resolu-
tion and penetration depths [6]. It has previously been applied to specific imaging
of fluorescent proteins in model organisms [4], and for tracking perfusion profiles of
contrast agents and blood oxygenation in vivo. MSOT utilizes non-ionizing radiation
(near-infrared range) [28] with safe levels of optical flux (< 15mJ/pulse on the surface
of the imaged tissue), making it attractive for non-destructive cellular imaging. Our
imaging trials were conducted in wvitro by injecting BCB into porcine ovarian follicles

78



5 Biomedical imaging applications

and imaging the intact ovarian structure ex vivo. Spectral unmixing [84] and image
analysis techniques were used on acquired MSOT images to quantify image contrast and
identify suitable follicles with competent oocytes. To investigate whether the procedure
harmed the oocytes in any way, oocyte follicles were isolated and cultured in vitro then
analyzed by real-time and reverse transcriptase PCR and DNA fragmentation analy-
sis. The obtained results support the usefulness of BCB contrast enhanced MSOT as a
simple, gentle and efficient imaging method for monitoring oocyte viability.

5.1.1 Optoacoustic imaging protocol
5.1.1.1 Characterizing the BCB as an OA contrast agent

BCB contains a primary amine on the benzenoid structure (®-NH2), a tertiary amine
(R3N) and a quaternary ammonium salt (R4N+), the chemical structure [172] is included
in Fig. 5.1). The optical and OA response of BCB was characterized using spectroscopic
measurements (Ocean optics USB4000-FL, Bandwidth: 351-1043nm) and direct OA
measurements with different concentrations of BCB diluted in Dulbecco’s phosphate-
buffered saline (DPBS). Spectroscopic measurements show the absorption peak BCB to
be at 620 nm. However, this wavelength cannot be used for direct OA measurement
because the laser is optimized in the range 680-900 nm for maximum tissue penetration.
We measured the OA spectrum by placing a fine bore polyethylene tubing (0.86mm ID
and 1.27mm OD) embedded within a diffusing agar block (for uniform illumination) and
perfusing BCB solutions at six different concentrations. The stock solutions (1 M) were
diluted to achieve the desired concentration of 13mM. The signals were acquired by an
array of 256 detectors (averaged signal over 4 acquisitions) using 20 wavelengths, and
reconstructed using model-based method (see section 1.2 for explanation). The signals
were normalized for laser power over all 20 wavelengths and the lumen of the tubing
was segmented. Thereafter the spectral signal amplitude was obtained as an average
of the integral intensity value across the segmented lumen, and plotted for different
concentrations of solution (Fig. 5.1).

5.1.1.2 MSOT imaging protocol

Porcine ovaries were brought from a slaughterhouse to the laboratory, within one hour
of collection, in a temperature-controlled box maintained at a temperature of 39°C.
Ovaries were thoroughly washed with pre-warmed (39°C') DPBS solution containing
0.1% polyvinyl alcohol, penicillin, and streptomycin solution. Then, 50 pl samples of
13 mM BCB were carefully injected into 4-6 mm follicles using a fine 29 G needle (Fig.
5.2.1). The ovary was then fixed using a polythene film inside the MSOT scanner. Imag-
ing of explanted ovaries was performed by cross-sectional OA acquisition geometry using
a commercial small animal MSOT256-TF scanner (Fig. 5.2.2). The signal averaged 10
times in order to improve SNR performance in acquiring cross sections of the entire
ovary. The acquired signals were initially band-pass filtered with cut-off frequencies
between 0.1 and 7 MHz to remove low frequency offsets and high frequency noise, and
subsequently input to a reconstruction algorithm rendering a cross-sectional distribution
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Figure 5.1: Wavelength dependent optoacoustic signal extinction curve for BCB: The optoacous-
tic signal responses are measured at several pre-injection dilution coefficients (x =13mM stock
solution of BCB/DPBS) using the MSOT (cross-sectional) imaging at varying wavelengths. The
BCB solution was perfused through a transparent fine bore polyurethane tubing (0.86mm ID
and 1.27mm OD) embedded inside a scattering agar block (7% intralipid by volume). The signal
values were determined by fitting an ROI and computing the mean image intensity across the
ROI, each for corresponding wavelengths (20WLs were recorded) and dilution coefficients. A
representative reconstructed an image (WL 690) is shown in an insert.

of the optical absorption.

The acquired images were reconstructed with the exact numerical model-based recon-
struction algorithm [137]. The model-based reconstruction method provide more quan-
titative reconstructions by taking into account the various experimental imperfection,
retaining frequency information and mitigating artifacts; thus it emerged as our choice of
reconstruction algorithm. We employed a grid of 200x200 pixels corresponding to a field
of view of 25 mm x 25 mm (125 pm pixel size), which is adapted to the actual resolution
of the system. We used a vertex component analysis (VCA) based fast blind unmixing
method [179] to map the distribution of BCB within ovarian tissue [180]. Since the
internal molecular composition of fluid inside the follicles was not spectrally evaluated,
the problem was treated mathematically as a two object problem — the tissue and the
BCB contrast. Thus, in our approach we unmixed specifically for the presence of BCB
within the ovarian follicle, given that the presence of BCB+ structure helped identify the
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competent follicles. The VCA based unmixing method was able to arbitrarily identify
two channels and display the corresponding spectrum. The spectra were then matched
with the OA spectrum of BCB experimentally measured and mapped to the correspond-
ing tissue components and the BCB channel. Detailed mathematical formulation of the
method used and its efficacy is given by [179, 180].

Laser Light
Illumination Slit

]
[

Optoacoustic signal (a.u.)

o

0
Oocytes Isolation Anatomical Spectrally resolved

Figure 5.2: Protocol for ovarian imaging: (1) BCB was injected into the ovarian follicles using a
ultrafine needle. (2) After BCB injection ovaries were imaged using MSOT. (3) Single wavelength
(690 nm) image of BCB contrast enhanced ovarian follicles are shown in anatomical reference
image, and the contrast from BCB molecules is spectrally resolved through a blind unmixing
process using 5 wavelengths (4) Following MSOT imaging oocytes were isolated by aspiration
and kept for further in vitro culture and analysis. (5) The final stage shows successful formation of
the embryo from the isolated oocytes extracted from the BCB+ MSOT scanned ovarian follicles.

5.1.2 Results of MSOT imaging trials

We probed a narrow window of BCB contrast in the near-infrared range (wavelengths
680-750nm) using a commercial MSOT system (inVision 256 TF, iThera Medical GmbH).
Stock solutions of 1M BCB were diluted in DPBS to a 13mM working concentration.
OA spectral evaluation (as illustrated in Fig. 5.1), revealed that 13mM BCB provided
satisfactory signal recovery without quenching. This concentration was used throughout
the experimentation and imaging trials. Fig. 5.2 illustrates the phases in the entire
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ovarian imaging protocol (5 phases) standardized for the study. Ovarian follicles were
first injected with BCB solution using a fine bore needle. Follicles contain fluid that
further dilutes BCB, so injection concentrations were conservatively overestimated by
10% volume (Fig. 5.2.1). The ovaries were then placed on a polyethylene sheet supplied
with DPBS solution, and placed in the imaging domain submerged in deionized water
at 34°C for MSOT imaging (Fig. 5.2.2). In Fig. 5.2.3 the single wavelength image at
690 nm (high signal intensity at this wavelength) shows the internal anatomy of the
ovary (ex wvivo). To clearly identify the locations where BCB is deposited relative to
tissue morphology, we spectrally unmixed the MSOT signals into two channels (BCB
and tissue). The BCB channel showed deposition along the walls of the follicles (Fig.
5.2.3). A VCA based blind unmixing algorithm was used to identify the distribution of
the chromophores (BCB). The individual follicles were isolated and the cumulus-oocyte
complexes (COCs) manually extracted and visually evaluated by optical microscopy.
Fig. 5.2.4 shows the microscopic images of COCs graded for validation of the results.
Further, we developed automated grading algorithms based on machine learning, but
a detailed descriptions of the developed method is beyond the scope of the current
dissertation topic [181]. In the final stage of the workflow, we attempted in vitro embryo
culture of irradiated oocytes (Fig. 5.2.5) to ascertain viability of the oocytes post-
experimentation. Ovaries were scanned before (pre-injection) and after (post-injection)
BCB was injected. We observed a clear increase of signal along the walls of the follicles
post-injection, as illustrated by Fig. 5.3a. The test was repeated over 12 ovarian samples
(=~ 100 follicles). For quantitative evaluation we selected two ovaries and calculated the
relative (normalized) signal intensity pre- and post-injection. Fig. 5.3b shows box plots
of normalized intensities of 15 regions-of-interest (ROI) chosen in each ovary along the
follicle walls for two independent ovarian samples. In both cases, mean intensity post
injection was higher than pre-injection. The pre-injection sample (Fig. 5.3 ) shows
slight imaging contrast due to the presence of residual blood. Thus, choosing suitable
ROI (around the follicles) is essential instead taking the mean intensity value of the
images, to avoid erroneous quantification from the presence of residual blood. The
spread of contrast values post-injection was higher compared to pre-injection, due to the
different levels of hormones and follicular volumes. Close observation revealed that some
ovarian follicles show no significant changes in contrast even after injection, these are
developing follicles that decolorize the BCB contrast. These BCB—ve follicles can thus
be rejected, and oocytes are not extracted from them for further development. Finally,
we generated a 3D rendering of the full ovarian mass by stacking multiple scan slices
along the Z-direction scanned at a distance of 0.lmm. The 3D scan provides suitable
anatomical landmarks and allows computation of follicular volume, an important marker
of maturity.
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Figure 5.3: Scan of (intact) ovaries ex-vivo before (red insert) and after (blue insert) injection
of BCB (diluted 100x stock solution) is shown (a). The post-injection images (normalized) of
the ovaries show an increase in relative contrast values. The box-plots of contrast values for two
ovaries, before and after the injection are shown (b). Fifteen (15) data-points in each ovary was
chosen for evaluation.

5.1.3 MSOT as an non-destructive imaging tool
5.1.3.1 Validation of MSOT imaging using histology and SPIM studies

The MSOT system used was limited to 150pm in-plane resolution, extendable to =
120pm using pixel super-resolution methods [182]. This resolution was optimal for visu-
alizing BCB contrast within follicular masses, but fell short of visualizing the COCs. To
validate our observations at higher resolution, a randomly chosen set of MSOT-analyzed
ovarian follicles (Fig. 5.4.a) were examined by histological imaging (control) and selective
plane illumination microscopy (SPIM) (insert Fig. 5.4.a, Fig. 5.4.d). A state-of-the-art
SPIM system was fabricated in-house to enable ovarian follicular imaging (Fig. 5.5). A
wide range of individual follicles were extracted from two different sets of ovaries and all
selected samples were imaged in their entirety, as their sizes matched the camera field
of view (FOV). The high contrast (signal-to-noise ratio) and image resolution achieved
by SPIM readily distinguished the different anatomical features (Fig. 5.4.d). We ana-
lyzed the most relevant morphological features using the SPIM images [183], i.e. size
of the developing cumulative COC and follicle wall thickness. The COC can be clearly
seen attached to the inner follicle wall. COCs were detectable in approximately 70%
follicles, and COC size varied between 40 ym and 110 pum (Fig. 5.4.b). Detection of
COC as small as 40 um is comparable to the resolution of histological analysis [184],
and surpasses that of ultrasound biomicroscopy [185]. Histological sections obtained
through cryoslicing (figure 4a) and H&E stained microscopic images served as controls
(Fig. 5.4.c).
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Figure 5.4: The cryosliced image of BCB+ porcine ovary (a), and the optoacoustic image of
the selected ovarian section is shown (b). The histological evaluation was done using H&E stains
(c), and validated using the SPIM imaging (d). Insert in (a) shows an isolated follicle which
was cleared and imaged using SPIM to obtain the corresponding anatomy for validation (d), the
arrow points to the attached COC. [Scalebars ~ 1 mm]

5.1.3.2 In vitro embryo culture

We examined whether oocyte viability was harmed by laser irradiation from MSOT scan-
ning or not. Nuclear maturation of each oocyte was scored by attainment of metaphase
II, as judged by the presence of condensed chromosomes in an equatorial position and
extrusion of the first polar body (Fig. 5.6). Nuclear maturation data (table 5.1) showed
no significant difference in nuclear maturation rate between MSOT-scanned and non-
scanned control oocytes. The MSOT scanner used (operating in NIR regime) provides
a narrow, but sufficient band of wavelengths to identify signals from competent BCB
(+) follicles and distinguish them from the developing follicles. This enabled suitable
oocytes to be selected for in vitro embryo culture without disrupting follicle structure.
To validate the findings, we assessed the competence of oocytes to develop further by cul-
ture in vitro. Oocytes aspirated from MSOT-scanned ovaries were parthenogenetically
activated to indicate developmental potential. Development was scored as the number
of embryos consisting of two to eight equally-sized blastomeres 48 h after activation.
No statistically significant difference was observed between MSOT-scanned BCB +ve
oocytes and control BCB+ve oocytes (table 5.1), indicating that MSOT scanning has
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Figure 5.5: Validation of imaging studies with SPIM: (a) The construction and components
of the customized SPIM system for ovarian imaging; (b) quantitative analysis of the oocyte
size versus the follicle size. Blue circles are data points taken from the SPIM images. 30 data
points were taken from SPIM results of two different samples. Histological data of porcine
ovarian follicles previously reported in literature are shown in red. R2 (adjusted coefficient of
determination) = 0.76, indicating good agreement. Follicles can be categorized according to
physical dimensions as: primary (violet) with COC ~ 60um, early antral (yellow), with COC =
80um, or Graafian follicles (green) with COC =~ 120um.

no detectable detrimental effect. As expected, nuclear maturation and parthenogenetic
activation rates were significantly higher in BCB+ve than BCB—ve oocytes, as reported
in goats [186] and heifers [187]. The low nuclear maturation rate of BCB—ve oocytes
could be due to incomplete or abnormal cytoplasmic maturation.

Table 5.1: Nuclear maturation and parthenogenetic activation

MSOT scanned Control group
BCB-ve BCB-+ve BCB+ve BCB-ve
Nuclear 85.52% 4+ 2.92 78.41% + 3.91 | 86.48% + 3.07 79.9% + 3.82
maturation (%)
Parthenogenetic | oo 510/ | 565 7057% £ 3.98 | 87.98% £ 4.91  69.03% -+ 5.26
activation(%)

5.1.3.3 Expression of stress and apoptosis-related genes in MSOT scanned porcine
COCs

Gene expression analysis of four genes chosen for their roles in cell stress and apoptosis
were conducted to determine whether irradiation from MSOT scanning is stressful to
oocytes. Differential expression of the stress-associated gene TP53 and three genes
related to apoptosis, BCL, BAK (BCL2-antagonist/killer), and CASP3 (caspase 3),
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Figure 5.6: Progression of BCB stained oocytes through different stages of maturation: (a)
Immature oocyte (b) Germinal Vesicle breakdown stage (c) appearance of first polar body and
(d) Mature oocyte with visible polar body and metaphase plate. Mitochondrial distribution of
(e) BCB+ ve oocytes showing uniform distribution with polar body and metaphase plate, (f)
a control oocyte showing uniform distribution with polar body and metaphase plate and (g)
BCB —ve oocyte arrested at germinal vesicle breakdown stage with non uniform mitochondrial
distribution. All scale bars indicate 100um.
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was analyzed by quantitative real-time RT-PCR in two pools of 50 to 60 randomly-
selected COCs from scanned and control ovaries without considering their developmental
competence (Fig. 5.7). Three replicates were conducted for each experiment. Fig. 5.7b
shows that no significant difference was detected in relative mRNA expression of TP53,
BCL, BAK and CASP 3 (p <0.05), between oocytes isolated from MSOT-scanned and
control ovaries. Studies in humans and mice have revealed a clear relationship between
in vitro culture related stress and TP53 expression in embryos [188]. BCL XL, BAK
and CASP3 are members of two important regulatory families involved in apoptosis.
BCL XL and BAK are a pro-apoptotic members of the Bcl-2 family that induce oocyte
apoptosis when cytoplasmic levels are elevated [189].
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Figure 5.7: The Reverse transcription PCR of (a) apoptosis associated and stress associated
genes in MSOT scanned oocytes (exposure 5-20 mins). The panel (b) shows the statistical
significances for tests conducted with -Actin, BCL BAK and TP53 — no significant DNA damage
due to BCB and/or MSOT scanning is observed.

5.1.3.4 DNA fragmentation assay

TUNEL analysis to detect DNA fragmentation was carried out as a further indicator
of cell stress and apoptosis, following the protocol described previously [30](Fig. 5.8a-
¢). A TUNEL score was determined as the percentage of COCs showing signs of DNA
fragmentation, as indicated by a fluorescent signal. There was no significant difference
in TUNEL score between oocytes isolated from MSOT-scanned ovaries (31.26% + 4.23)
and from control ovaries (30.11% =+ 2.97). Though it is not clear whether the BCB test
could serve as an indirect marker of oocyte apoptosis, our investigation of the probable
effect of MSOT scanning on oocyte quality revealed that it imposed no apparent stress
on the oocyte. The average exposure time for each ovary was &~ 25 min, with maximal
flux ~ 20 mJ cm 2 (per pulse) and average intensity of 200 mW c¢m 2 at the surface (at
750 nm), fulfilling the laser maximum permissible exposure (MPE) recommendations
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(ANSI Standards). DNA fragmentation observed in immature oocytes (particularly
GV and MI stages) could be a consequence of stress during maturation of the ovarian
follicle, or hypoxia resulting from compromised microcirculation and correlate with ane-
uploidy or other chromosomal abnormalities [190, 191]. We found no evidence of DNA
fragmentation in the cumulus layer in immature porcine COCs. This is consistent with a
similar finding in cattle where no TUNEL signal was obtained in cumulus cells of imma-
ture oocytes [192]. Thus, the DNA fragmentation assay and relative mRNA expression
of important apoptosis-related genes indicate that MSOT scanning does not cause stress
to the oocytes.

Figure 5.8: DNA fragmentation detection (bright-field images) by TUNEL assay (a) Porcine
oocyte with no detectable DNA fragmentation, (b) BCB +ve porcine oocyte with DNA fragmen-
tation, and (c) control oocyte with DNA fragmentation. The corresponding fluorescent channel
images of (a-c) are shown (d-f) on the same scale.
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5.1.4 Discussion and conclusion

We demonstrated a novel combination of ovarian follicle imaging with BCB as intra-vital
contrasting medium using MSOT technology. The volumetric OA scanning (planar imag-
ing plus Z-translation) provided suitable anatomical landmarks, and multi-wavelength
acquisition allowed spectral resolution of the contrast agent (BCB). The anatomic scans
using single wavelength OA images distinctly show the follicular antrum and theca in-
terna layers, allowing individual follicles to be easily identified. The segmentation and
volumetric evaluation of the follicles from anatomic data (as carried out in ultrasonic
evaluation of ovaries) can also be achieved using the MSOT data [2, 171]. Ovarian fol-
licles were validated by a state-of-the-art SPIM system specifically designed for ovarian
follicle imaging (as in Fig. 5.5). Clearly distinguishable COCs protruding into the fol-
licular antrum of several antral and Graafian follicles were measured at 40-110 ym, and
their correlation with the developmental stage of the follicles was as described by oth-
ers [184]. SPIM imaging coupled with the cryosection and histological (H&E stained)
images provided a suitable measure to determine the efficacy of the BCB contrast en-
hanced MSOT imaging protocol. The MSOT system has lower imaging resolution but
has the advantage of being non-destructive, unlike SPIM and histological analyses [183].
The high spatial resolution and high contrast offered by BCB contrast-enhanced MSOT
imaging provides quantitative anatomical information similar to that obtained by ultra-
sonic measurements commonly used in animal studies [184] and clinical practice [171].
Furthermore, the functional capability of MSOT as an imaging modality allows (pres-
ence or absence of) BCB contrast visualization without disrupting the follicle, opening
up exciting new possibilities in molecular imaging for ART. Maintaining oocyte viability
was one of the most important criteria for our study and defined the choice of BCB as
a contrast medium and MSOT as a non-ionizing imaging modality. Parthenogenetic ac-
tivation and embryo development indicated that the imaging was harmless and analysis
of DNA fragmentation and expression of important apoptosis-related genes indicated no
apparent damage to the oocytes. Our investigation provides further support for the use
of BCB as a safe labelling agent for oocyte selection, and demonstrates the applicability
of MSOT in 4n vitro embryo production. There is immense scope for improving ovarian
imaging techniques, as existing methods provide only crude information with question-
able predictive value. Oocyte quality is certainly an important factor determining the
outcome of ART procedures, but so far it has not been possible to test oocyte quality
within a follicle. We therefore anticipate that a non-destructive method that reliably
predicts the quality of the developing oocyte inside a follicle will be of great benefit. As
illustrated in the current article, an approach for functional oocyte and embryo assess-
ment by ovarian imaging with the use of an exogenous contrast agent, can indeed be a
key new technology for artificial reproduction.

Future development of the approach will open new dimensions in follicular imaging de-
livering useful anatomical, functional and molecular information without hampering the
integrity of the follicle. Possible applications include diagnosis of follicular cysts, empty
follicle syndrome, and developmental studies. The poor quality of retrieved oocytes due
to improper timing of oocyte retrieval is an important factor in the relatively low success
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rate of human IVF. in vivo visualization of oocytes in situ could help practitioners to
make informed decisions about timing oocyte retrieval.

5.2 4D imaging of perfusion in preclinical breast tumor model

Breast cancer is one of the leading causes of death in the female population worldwide.
Despite significant improvements in survival rates over the past 25 years, approximately
522,000 deaths from breast cancer was recorded worldwide in 2012 (15% of female deaths
and 6% of the total) [193]. The distressing statistics motivated us to explore the capa-
bilities of MSOT towards breast cancer detection and management.

Breast tumors are highly heterogeneous, a detailed understanding of tumor molecular
profile is thus essential for cancer management and personalized tailoring of clinical
decisions. Early diagnosis, structural and functional assessment of tumors are critical
for effective disease treatment and prognosis [194]. In the current study we investigate
solid tumors, which are heterogeneous organ-like structures nourished by a vascular net-
work. Neovasculature is often characterized by convoluted structure, enhanced branching
patterns, excessive loops and shunts [195]. Disrupted vascular network causes limited
oxygen and nutrient supply leading to metabolic and cell proliferation gradients influ-
encing drug sensitivity [196]. Optical molecular imaging technologies play a vital role in
oncology [197], and combined with highly sensitive in-vivo probes contribute to the un-
derstanding of functional and histological properties of tumors and anticancer therapies
[198, 199, 200]. Contrary to other pure optical imaging techniques, OA provided high
resolution molecular imaging at the whole-organ or whole-body scale and enables better
visualization of vascular networks, blood perfusion and microenvironment gradients in
cancer [201]. To further exploit the advantages, such as easy in-vivo handling and real-
time imaging performance, small animal MSOT systems were designed based on cross-
sectional two-dimensional (2D) imaging geometries [2, 37, 202], and three-dimensional
(3D) rendering is then achieved by stacking multiple 2D images. However, the tech-
nique restricts real time acquisition to a cross-sectional plane within the tumor or organ,
and the volumetric reconstructions obtained thereby are prone to motion problems and
out-of-plane artifacts leading to quantification errors and anisotropic resolution in the
volume of interest [51]. The limitations renders most of the commercial 2D scanners
unsuitable for real-time in-vivo measurements [158, 138], and it encouraged researchers
to explore spherical arrays with distributed elements have for 4D OA imaging (3D imag-
ing in real time) [20]. More recently, our group developed a vMSOT imaging system
based on a densely-packed spherical array of sensors [168]. The system integrates real-
time reconstruction using a graphics processing unit and allows visualization of the 3D
optical absorption distribution in real time [30]. In this work, we illustrate the capa-
bilities of vMSOT for cancer imaging in preclinical models. Specifically, 3D intravital
imaging of whole breast cancer allografts in mice was performed and compared ver-
sus the volumetric imaging performance with a standard cross-sectional MSOT system.
Intrinsic tissue properties, such as blood oxygenation gradients, along with externally
administered nanoparticle distribution were visualized in order to study vascularization,
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probe penetration and extravasation kinetics in solid tumors. Volumetric imaging in
real time enabled simultaneous assessment of perfusion kinetics in different regions of
interest within the tumor and opened the way to clinical application of this technology
in skin or breast diagnostics and therapy monitoring.

5.2.1 Experimental setup and tumor model
5.2.1.1 Experimental setup and signal acquisition

The vMSOT system employes a custom-made array of 256 piezocomposite detectors
located on a spherical aperture (Imasonic SaS, Voray, France) which simultaneously
collects OA signals from the imaged tumor. The individual elements have a central
frequency of 4 MHz and bandwidth (full width at half maximum) of 4.0 MHz. Light
excitation was provided through a fiber bundle (CeramOptics GmbH, Bonn, Germany)
inserted in the central part of the ultrasonic array (Fig. 5.9). A tunable (690-900nm)
optical parametric oscillator (OPO)-based laser (Phocus, Opotek Inc., Carlsbad, CA)
generating pulses with duration below 10ns was used as a light source. The excited OA
signals were simultaneously acquired by custom-made data acquisition system consisting
of 256 analog to digital converters (Falkenstein Mikrosysteme, Taufkirchen, Germany)
triggered by the Q-switch laser output. The vMSOT system was fixed underneath an
animal lying in supine position with a custom made holder as shown in Figs. 5.10b and
5.10c. Agar and ultrasound gel were used to ensure efficient acoustic transmission of
the OA signal. The resolution of the imaging system was evaluated as approximately
200um in all three dimensions [168]. For comparison, the mice were also imaged using
a cross-sectional 2D MSOT system designed by [2]. The system employed an array of
64 cylindrically-focused transducers (Imasonic SaS, Voray, France) to collect OA sig-
nals from a cross-section animal plane giving the in-plane resolution of 150um and the
resolution in z-axis as 800um. A 10-arm fiber bundle provided illumination through
the lateral sides of the array. For imaging, the mouse is covered with a transparent
polyethylene membrane and fixed in the custom-built frame to place it into a water tank
providing acoustic coupling and avoiding direct animal contact with water. The animal
was anesthetized using an inhalation anesthesia (see also in-vivo imaging experiments),
which was applied through the tubes and a mask integrated in the frame.

5.2.1.2 Signal and image processing

The acquired signals (256 channels) were first deconvolved with the transducer impulse
response and filtered with cut-off frequencies between 200 kHz and 7 MHz. Image recon-
struction for the vMSOT setup utilized a parallel implementation of a back-projection
algorithm [34], whereas a two-dimensional model-based algorithm [15] was employed
for cross-sectional 2D-MSOT. The reconstructed images represented the spatial distri-
bution of the optical absorption at the particular excitation wavelength. In order to
determine the distribution of specific tissue contrast, the images acquired at several dif-
ferent wavelengths were cross-correlated and spectrally unmixed by least-square fitting
to the chromophore absorption spectra on a per-pixel basis [196]. For simplicity, optical
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Figure 5.9: Archietecture of the vMSOT imaging sensor: The ultrasound transducer array
consists of 256 elements disposed on a spherical surface covering an angle of 90°. (a) 3D scheme
of the array with individual element positions schematically shown as dots. (b) Actual picture
of the system. (c) Projection of the transducer with the shape of the individual piezo elements.

absorption was assumed to be caused solely by oxygenated, deoxygenated hemoglobin
and externally administered agents.

5.2.1.3 Cancer model and contrast agent application

The animal handling procedures and experimentation were conducted in agreement with
Helmholtz Zentrum Miinchen and Government of Upper Bavaria guidelines, and com-
plied with German federal and international laws and regulations. 5 female 8-week old
Hsd:Athymic Nude-Foxnlnu/nu mice (Harlan Winkelmann, Germany) bearing tumor
allografts were imaged. The mutant nude mice represented a suitable allograft host,
since defects in immune system enabled effective and reliable tumor propagation. Also,
the lack of hair and melanin skin pigmentation was appropriate for OA imaging. The
tumors were grown upon subcutaneous injection of 1 million (mio.) 4T1 murine breast
cancer cells into the back of the mouse approximately 10 days before the imaging experi-
ment so that the allografts reached a diameter of approximately 0.8 cm. Tumor-carrying
mice were injected in the tail vein (i.v.) with 100 nmol of liposomes carrying indocyanine
green (Lipo-ICG), which is characterized by long persistence (Fig. 5.11) in the vascular
system (custom made). Additionally, [203] has used the 2D-MSOT to confirm Lipo-
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Figure 5.10: Experimental setup. (a) Sketch of the vMSOT imaging sensor comprising of a
spherical matrix ultrasound detection array, (b) sketch of the experimental setup. Experimental
animals bearing tumor allografts were positioned on the animal holder.(c) Photograph of the
setup during the experiment. The syringe was connected with the catheter for intravenous lipo-
ICG injection during the imaging experiment. (Courtesy: Eur. Rad 2016)

ICG as a potent OA agent and resolved tissue accumulation in tumor-bearing animals.
The studies signify opening up new vistas in pharmacology studies and nanoparticle
investigation for oncological imaging applications.

5.2.1.4 In-vivo imaging experiments

In-vivo imaging experiments were performed with nude mice tumor allografts using
either inhalation anesthesia (2-3 vol. % isofluran at apx. 0.9 L/min oxygen flow) or in-
jection anesthesia (100 mg/kg body weight (BW) Ketamine and 5 mg/kg BW Xylazine).
The experimental animals were anesthetized and positioned on the custom designed ani-
mal holder (Fig. 5.10b and Fig. 5.10c). The imaging experiment was started 10 seconds
before animals received 100 nmol lipo-ICG through i.v. catheter (Fig. 5.10c) in or-
der to keep the animal position and therefore imaged area exactly the same during the
whole imaging set and the entrance of the contrast agent in particular. The tumor area
was imaged before and after the lipo-ICG injection using 800nm excitation wavelength
(maximum absorption for lipo-ICG) for total time of 120 seconds at 10 frames per sec-
ond. Afterwards, without changing the animal position, the same area was imaged at
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Figure 5.11: The structure of Lipo-ICG, (a) UV-Vis absorption spectra on day of preparation,
and (b) maximum absorbance over 5 days of LipoICG (solid lines) and free ICG (dotted lines) at
75 pm (black lines), 50 ym (red lines) and 25 um (green lines) ICG. Adopted with modifications
from [203]

wavelengths 700, 720, 740, 760, 780, 800, 820, 840 and 860 nm. The animals were then
imaged for lipo-ICG epi-fluorescent profile of the tumor and surrounding area using high
resolution LucaEMR EMCCD camera (Andor Technology, Belfast, UK) and immedi-
ately afterwards brought to the 2D-MSOT equipment. Approximately 20 mm long area
containing s.c. tumor with diameter of 8-10 mm was imaged with 2D-MSOT using the
same excitation wavelength set as was applied at vMSOT imaging, which created an
image stack of approximately 180-200 planes (dependent on the region of interest size,
0.1um each plane). Typical 2D-MSOT imaging experiment took about 12-15 minutes
time. Part of the experimental group (n=2) was imaged initially with 2D-MSOT in one
optical plane through the tumor during the lipo-ICG injection with the same time setup.
Subsequently, the tumor area was imaged using multispectral image stack acquisition
and further with epi-fluorescence imaging and vMSOT as indicated above. All the mice
were sacrificed with overdose Ketamine and Xylazine and frozen immediately after the
imaging experiment for further signal validation and anatomical analysis.

5.2.1.5 Validation

The results of in-vivo imaging were validated using a multispectral epi-illumination
cryoslicing imaging system [197]. Tumor areas were sliced and imaged with 150pm steps
in either a transversal or dorsal plane. The 20um thick cryo-slices in representative
planes were taken for subsequent histological analyses and epi-fluorescence thin-section
imaging (TSI). Hematoxylin-eosin staining of cryo sections was further performed (7)
with the stained sections imaged using light microscope (Leica Microsystems, Wetzlar,
Germany). Selected cryo-slices were also embedded with Vectashield Mounting Medium
with DAPI (Vector Laboratories, Burlingame, CA USA) and imaged with a fluores-
cent microscope (Leica Microsystems, Wetzlar, Germany). The resulting images were
combined using Microsoft Image Composite Editor (http://research.microsoft.com/en-
us/um/redmond/groups/ivm/ice/) and GNU Image Manipulation Program (http://www.gimp.org/).
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5.2.2 Results and validation

We successfully conducted the experiments designed, and the results were reported by
[28]. We compared the vMSOT in-vivo performance versus the standard cross-sectional
2D-MSOT and epi-fluorescence imaging (Fig. 5.12). The animals bearing 4T1 breast
tumor allografts (n=4) were imaged continuously during lipo-ICG injection at 20fps. The
representative volumetric images, retrieved by the vMSOT system were characterized by
nearly isotropic resolution of 200um [168] in all three axes clearly revealing the lipo-ICG
distribution in vascular network inside and around the tumor (Fig. 5.12a). In order to
achieve an equivalent 3D image of the tumor area, multiple cross-sectional images (x-z
plane) were acquired with the 2D-MSOT system, which took several minutes. The 2D
images were combined in extra rendering step to yield a volumetric representation (Fig.
5.12b). While high-resolution 2D images were achievable with 2D-MSOT, the resulting
3D images were strongly affected by out-of-plane artifacts and rendering inaccuracies,
which lead to anisotropic resolution along the z-axis [51]. Presence of artifacts and lower
out-of-plane resolution hinders the visualization of vasculature in y-z and especially x-y
plane, where the tumor was difficult to distinguish from surrounding tissue (Fig. 5.12b),
in contrast to the corresponding image by vMSOT (Fig. 5.12a). The epi-fluorescence
image of the tumor area did not provide details of the contrast distribution in the
context of vascular network, but merely confirmed lipo-ICG presence in the tumor and
the surrounding skin for all animals studied (Fig. 5.12¢), which agreed with the expected
pattern considering short time between agent application and imaging.

For further studying the perfusion kinetics with high temporal resolution, lipo-ICG
entrance and perfusion in the tumor was monitored in real time using single wave-
length illumination at 800 nm, i.e. lipo-ICG peak absorption and isosbestic point for
hemoglobin. The imaging was started 10 seconds prior to agent injection initially detect-
ing the background signal corresponding to intrinsic blood contrast (leftmost images in
Fig. 5.13). Upon agent application one could observe temporal and spatial development
of lipo-ICG signal in and around the tumor. Fig. 5.13 presents the time course of the
volumetric projections in the x-y, x-z and y-z planes, which clearly demonstrated strong
signal enhancement versus intrinsic blood contrast shortly after the agent application.
In-vivo imaging by vMSOT revealed more details in all 3 dimensions than similar dy-
namic imaging with the 2D-MSOT system, which could be acquired only in one optical
plane (Fig. 5.13b).

We analyzed the temporal distribution of lipo-ICG signal in different ROIs. The ROIs
were selected based on 3D movies showing dynamic anatomical, vascular and perfusion
properties.The study illustrates the heterogeneity of perfusion kinetics inside the tumor
and contrast agent uptake after intravenous injection.In order to remove motion arte-
facts associated to breathing, a second order Butterworth low-pass filter was applied to
the temporal profiles of the signals in each ROI, which were subsequently normalized to
the maximum value. The analysis of multiple ROIs revealed three reproducible groups
of temporal distribution profiles, the representative curves of which are displayed in
Fig. 5.14. Group 1 demonstrated fast lipo-ICG increase shortly after injection and fast
subsequent reduction to a plateau at approximately 1.5-fold enhancement from the pre-
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Figure 5.12: Performance of volumetric versus cross-sectional tumor imaging. (a) Maximum
intensity projections of the reconstructions attained by the vMSOT system in different focal
planes show high detail and isotropic resolution. (b) Corresponding images of the same area ob-
tained by the cross-sectional 2D-MSOT imaging system suffer from rendering artifacts especially
in z-direction. (we have to change the axis in the figure) Note that the x-y and y-z projections
were rendered after processing the original multiple images acquired in the x-z plane. (¢) Epi-
fluorescence imaging of the same tumor. Dotted lines depict the tumor shapes in appropriate
projections. Scale bar: 5 mm.

injection background signal level. Group 2 exhibited slower kinetics with significantly
delayed peak signal enhancement at approximately 25 seconds post agent application
and plateau level comparable to the peak values. Group 3 also showed delayed peak
signal enhancement; however, the signal got slowly reduced to nearly the background
level afterwards. The three lipo-ICG temporal profiles detected by real time vMSOT
likely reflect perfusion in various vasculature types: healthy major blood vessels (Group
1), leaky vessels with slower perfusion kinetics (Group 2) and smaller blood vessels with
lower throughput capacity (Group 3). The resulting 3D lipo-ICG distribution map was
also summarized in 360° view.

Immediately after the real-time imaging at 800 nm, we acquired multispectral image
sequences to accurately verify contrast agent location based on its unique spectral signa-
ture. Since the temporal distribution of lipo-ICG was highly dynamic, we standardized
the multispectral imaging to be finished approximately 30 minutes upon the agent ap-
plication. The main intrinsic contrast components contributing to the tissue absorption
included oxygenated (HbO2) and deoxygenated (Hb) hemoblobin. They were visualized
using the spectral unmixing procedure (Fig. 5.15) and also co-registered yielding the 3D
map of in-vivo vasculature and blood oxygenation profiles in and around the tumor (Fig.
5.15a, b). Spectral unmixing also rendered the 3D map of lipo-ICG spatial distribution
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Seconds after experimental start (lipo-ICG i.v. injection point: 10 seconds)

Figure 5.13: Comparison of real time imaging by vMSOT and 2D MSOT systems. (a) Maximal
intensity projection (MIP) views in three dimensions showing the 800nm signal distribution at
5, 15, 24 and 40 seconds after start of the acquisition. Lipo-ICG application was done 10
seconds after imaging start. Note blood intrinsic contrast at 5 seconds vs. development of
lipo-ICG signal at 15, 24 and 40 seconds (b) Imaging of tumor area at the same time points
(5, 15, 24 and 40 seconds) during lipo-ICG application obtained by 2D MSOT. The tumor was
manually segmented in these images. Scale bar: 5 mm. Color scales represent the corresponding
chromophore concentrations in arbitrary units.

at given time point (Fig. 5.15d). Some Hb-rich areas readily recognized in the 3D map
likely corresponded to the blood infiltrating the tumor mass due to leaky vessels, an
observation that correlated well with the areas of diffuse lipo-ICG accumulation (Fig.
5.15¢, f). In general, the specific lipo-ICG distribution profile rendered by the unmixing
at 30 minutes upon application (Fig. 5.15d) correlated to both the HbO2 and Hb profiles
showing that it was located in the blood vessels, but also started to extravasate into the
tumor mass.

Lipo-ICG distribution and histological properties of tumors were imaged and analyzed
post-mortem on the cryo-sections and validated against in-vivo OA maps (Fig. 5.15¢).
Both in-vivo and ezx-vivo profiles in the sample tumor contained majority of the lipo-ICG
fluorescence in the tumor periphery, which can be explained by the short time between
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Figure 5.14: 3D view and analysis of lipo-ICG signal temporal distribution reveal 3 major
groups of perfusion profiles in different tumors (a) and (b). Left panels: 3D images acquired
30 seconds after lipo-ICG application. The numbered squares show regions of interest (ROIs)
representative for the major perfusion profile groups. Right panels: quantification graphs for
the 3 groups of lipo-ICG temporal profiles. Lipo-ICG profiles likely reflect the perfusion rates
in various types of vasculature: healthy major blood vessel (Group 1), leaky tumor vessel with
poor perfusion kinetics (Group 2) and smaller blood vessel with increased resistance (Group 3).
Color scale shows the intensity of the optoacoustic signal in arbitrary units.

lipo-ICG application and imaging. Since the animals were sacrificed and frozen immedi-
ately after the imaging experiment, frozen samples reflected the time point of imaging.
vMSOT revealed most informative and detailed in-vivo lipo-ICG profile in the vascula-
ture context in 3D (Fig. 5.15¢,d) and in 2D (Fig. 5.15f). Hematoxylin-eosine staining
confirmed the tumor shape and demonstrated histological properties of this region (Fig.
5.15e). The ex-vivo fluorescence profiles validated in-vivo data showing the areas of
major lipo-ICG accumulation similar to the vMSOT-rendered profile (Fig 5.15d). It
has to be noted that ez-vivo methods deliver the appropriate part of signal distribution
for particular slice and time point. On the other hand, vMSOT allowed detection of
lipo-ICG in the context of intrinsic blood contrast delivering more detailed information
and longitudinal signal tracking along tumor vessel population in 3D. Overall, fluores-
cent (Fig. 5.15g) and histological validation with DAPT (Fig. 5.15h) of vMSOT data
revealed good correlation between in-vivo and ex-vivo lipo-ICG profiles.
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Figure 5.15: Imaging of in-vivo distribution of the intrinsic tissue chromophores and extrinsi-
cally administered contrast agent in the tumor 10 minutes post lipo-ICG injection. Spectrally-
unmixed distribution of oxygenated (HbO2) and deoxygenated hemoglobin (Hb) are shown in (a)
and (b), respectively. (c) The blood oxygenation profiles are represented by superimposition of
the HbO2 and Hb maps. (d) Distribution of the lipo-ICG agent unmixed from the multispectral
data. (a-d) Arrows point to major blood vessels. Asterisks define predominantly Hb-rich areas
formed in part due to blood infiltration into the tumor mass through leaky vessels. Color scales
represent the corresponding chromophore concentrations in arbitrary units. (e) Hematoxylin-
eosin staining for tumor cryo-section. (f) A single 2D cross-section from the volumetric data
acquired in-vivo by the vMSOT system from a tumor allograft after performing unmixing for
the presence of lipo-ICG. (g) Fluorescence microscopy of lipo-ICG fluorescence. (h) Fluorescence
microscopy of the same section stained with DAPT (cell nucleus marker used as a tissue control).
Arrows (e, f, g): major blood vessels. Scale bar: 1 mm.

5.2.3 Discussion and conclusion

The study of tumor perfusion dynamics and hypoxia profiles is highly relevant for efficient
therapy monitoring and development of new theranostic approaches, in both preclinical
research and clinical practice. Indeed, hypoxic profiles influence metastatic potential
and response to conventional irradiation and chemotherapy. We have further observed
that inadequate perfusion withing tumor masses amplify pressure differences between
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arterioles and venules, and increase the drug resistance [195]. Poor perfusion is one of
the major factors leading to heterogeneous distribution of hypoxia regions within tumors
[91]. In the present work, a new vMSOT method was applied for real-time 3D imaging
and analysis of perfusion and blood oxygenation in a breast tumor mouse model in-vivo.
The design configuration of vMSOT system (Fig. 5.9 and 5.10) offers key advantages
over previously developed small-animal OA imaging systems [202, 204, 205]. As opposed
to the approach of stacking the 2D images, vMSOT achieves a real-time deep-tissue
imaging performance in three dimensions (10 volumes per second) using a tomographic
configuration. The isotropic resolution of vMSOT (approximately 200um in all three
dimensions) enables imaging with superior accuracy and ability to analyze data in 3D.
The anisotropic resolution of 2D-MSOT (800um along the z direction vs. 150um along
the cross-section in the center of the image) strongly deteriorates the three-dimensional
image quality. Thus, the study successfully demonstrate the vMSOT possesses novel
qualities for studying tumor kinetics in 3D not achievable with other OA systems.

We imaged subcutaneous breast tumors with the use of lipo-ICG, a nanoparticle agent
carrying a clinically-approved fluorescent and absorbing probe. Lipo-ICG was selected
due to its favorable blood kinetics - it appears in the blood stream within seconds and
retains for several hours. The enhanced retention enables efficient comparison between
different imaging methods at various time scales upon single application of the probe
[4]. vMSOT imaging during lipo-ICG injection yielded a time-lapse series of 3D images
with great detail in all three (4 time) dimensions, which was not previously reported
(Fig. 5.13). Rapid development of the lipo-ICG absorption signal within the first 30
seconds upon probe intravenous application was detected, initially in the major blood
vessels and then in the rest of the tumor (Fig. 5.13). We quantitatively evaluated of
multiple ROIs (in all tumors studied revealed the differential temporal development of
the lipo-ICG signal as a perfusion marker (Fig. 5.14). It was noticed that the signal
kinetics could be divided into three major classes based on their throughput. The first
group (Fig. 5.14, Group 1) possibly represents major blood vessels outside the tumor,
and has a fast appearance and disappearance of a sharp signal peak. The second group
(Fig. 5.14, Group 2) shows a slower signal development and lipo-ICG arrest in the in-
vestigated area, it can be attributed as an example of perfusion dynamics expected in
leaky tumor neovasculature. The third group (Fig. 5.14, Group 3) demonstrated slow
signal enhancement and relaxation as compared to the first group, but no lipo-ICG re-
tention, which possibly attributes it to smaller blood vessels. The vMSOT performance
is enhanced by its capability for in-vivo assessment of high quality 3D maps of blood
oxygenation in and around the tumors. Major vascular tracts constituting relatively
large arteries and veins were efficiently resolved based on their oxygenation profiles. The
areas outside larger blood vessels, predominantly containing deoxygenated hemoglobin
components, have indicated presence of hypoxic regions mostly inside the tumor (Fig.
5.15a and 5.15b). The specific lipo-ICG map showed localization of the probe coinciding
(Fig. 5.15c¢) with both the HbO2 and Hb profiles, so that at a given time point the
great majority of the contrast agent was mainly in the blood vessels, but also started to
extravasate into the tumor mass.

In conclusion, the newly developed vMSOT system enables use to study the pathophysi-
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ological processes within microenvironment gradients of solid tumors by providing supe-
rior volumetric imaging performance with sustained competitive resolution and imaging
depth suitable for investigations in preclinical cancer models. The approach is real-time
(upto 100 fps) and suitable for 3D visualization of tumors, further it yields detailed high-
resolution volumetric images in a living animal. The existing in-vivo imaging methods,
such as dynamic contrast-enhanced CT [204], MRI [206] or ultrasound [207], lack the
versatile contrast detection of vMSOT, have lower resolution and or do not possess the
real-time 3D image rendering capacity. On the other hand, the limitations of vMSOT
include the intrinsically restricted imaging penetration depth, which narrows the poten-
tial application portfolio. However, the possibility of using the vMSOT system in an
handheld mode opens up the space for human vascular imaging [9]. Thus, we are opti-
mistic that the technical advances and the clinical applications are readily translatable
into a clinical setting.
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6 Summary and future directions

6.1 Summary and contributions

The thesis consistes of two major components- development of algorithms and biomedical
imaging applications. The Chapters 2-3 systemically illustrates and evaluates novel
algorithms for visual quality enhancement of optoacoustic imaging ranging from image
reconstruction and parameter optimization (Chapter 2), image analysis based quality
enhancement methods (Chapter 3), to resolution improvement (Chapter 4). Chapter
5 demonstrates the applicability of the developed imaging protocols to pre-clinical and
biomedical imaging.

The contributions of the thesis, as outlined earlier, can herein be summarized as follows:

e Development of algorithms for self-calibration of optoacoustic reconstruction pa-
rameters including but not limited to speed of sound estimation, and non-negative
image reconstructions.

e Development of segmentation algorithms for optoacoustic imaging, and the appli-
cation of segmented image prior(s) to improve visual image quality, viz. multiple
speeds-of-sound mapping and optical fluence correction.

e Improving the resolution of OA images using ’pixel super-resolution’ approach.

e Establishing multispectral optoacoustic tomography as an non-destruction imaging
modality, with potential usage as an assisted reproductive technology.

e Investigation of the capabilities of dynamic (real-time), three-dimensional multi-
spectral optoacoustics using v-MSOT, towards imaging of solid tumors in small
animal models n vivo.

We have conducted in-depth experimentation for automated SoS fitting and segmen-
tation of cross-sectional 2D images. Both phantom studies and animal imaging were
conducted to develop and validate the algorithms developed. We conducted a separate
study on segmentation of whole body small animal images with applications towards
SoS mapping and optical fluence correction. In another independent study, we were able
to use the intrinsic geometrical information and scanning capabilities of cross-sectional
MSOT system(s) to achieve ‘pixel super resolution,‘ and thus increase the resolution of
the existing scanner, without hardware updates. The employed method uses information
from different scanning location to overcome the limitations in resolutions caused due
to size of pixels, and should not be confused with recent literature on super resolution
with aim to break the diffraction limit of light or of acoustic waves.
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We demonstrated MSOT as an effective tool for non-destructive evaluation of porcine
ovarian follicle and explored the applicability of OA imaging pertaining to in vitro fer-
tilization. We corroborated the findings and supplemented the studies with microscopic
data (histopathology and SPIM imaging) and DNA defragmentation studies. Further,
we have performed intravital imaging of whole breast cancer allografts in mice and
compared the volumetric imaging performance with a standard cross-sectional MSOT
system. The use of vMSOT enabled visualization of intrinsic contrast properties includ-
ing blood oxygenation gradients along with spatial distribution of modified blood pool
contrast agents to study vascularization, contrast agent penetration and extravasation
in solid tumors. This study has been conducted in collaboration with biologists.

To the best of our knowledge, this is the first dissertation work which successfully brings
together imaging physics, image reconstruction and image analysis methods for improv-
ing the quality and quantitativeness of OA imaging. The congregation of the diverse yet
linked domains open up the door for achieving superior image quality and remarkable
resolution, and push the boundaries of the present algorithms with minimal upgradation
of hardware components. Additionally, the presented results on non-destructive nature
of MSOT imaging establishes the claim of the method to be safe and opens new vis-
tas in explorations in developmental and reproductive biology. Finally, we were able to
demonstrate the unique capability of the vMSOT for imaging tumor microvasculature
in five dimensions for the first time- obtaining there (spatial) dimensional temporal and
spectral resolved visualization of solid tumors.

6.2 Future directions

The last couple of decades have seen rapid development of biomedical OA imaging with
the evolution of state-of-the-art small animal imaging scanners and experimental clin-
ical hand-held platforms. The technology has graduated from the from engineering
laboratories to commercial products for pre-clinical imaging, and further into biomedi-
cal/translationalimaging platforms. So far the focus of development in OA imaging was
largely focused on hardware improvement and solving the inverse problems. However,
this dissertation introduces the applicability of image analysis to the current state-of-the-
earth OA imaging instrumentation. The imaging physics - image analysis corroboration
as illustrated in this thesis has lead to the development of new methods for quantitative
inversion and parameter self-calibration, resolution enhancement, and accurate mapping
of fluence and acoustic heterogeneities. This opens up the possibility of plethora of new
developments, some of the suggestions are enlisted as following.

e Development of machine learning (ML) based algorithms for parameter estimation
and image enhancement. ML based algorithms can be vastly be useful for improved
reconstruction, identification and segmentation of organs and vascular structures.

e Use of multimodal priors (Ultrasound, MR, Xray CT) to improve the reconstruc-
tion performance and artifact reduction. More recently, there has been develop-

104



6 Summary and future directions

ment of hybrid optoacoustic- ultrasound (OPUS) systems, which has already made
significant inroad in this direction [208, 209].

e Advanced methods in image segmentation including graph-cut and level-set based
methods can be used to obtain more accurate boundary delineation even in images
with limited view artifacts. Further, the present two compartment model can be
extended to multi-compartment to improve quantitative imaging performance.

e We have used a FVM based model for fluence correction, there exist several other
accurate models for correcting optical attenuations, viz. J-Eddington approxima-
tion [210] and Monte-Carlo based methods which can be further investigated.

The applications of the OA imaging technology for in wvitro fertilization techniques,
and in oncological imaging further sheds light on the possibility of the following studies:

e Imaging of animals (and possibly of humans) in vivo using endoscopic or intra-
urethal probes to study the ovaries, and conduct selection and intervention salvage
of mature oocyctes. This can potentially revolutionize the field of artificial repro-
duction.

e Automated detection of tumor malignancy using ML algorithms from the perfusion
dynamics, and vascular changes.

e Study treatment response on tumor masses by tracking deposition of targeted agent
and hypoxia profiles.

Technologically, we have already been able to demonstrate the rendering of spectrally-
resolved volumetric data in real time. State-of-the-art MSOT systems are able to accu-
rately recover optical contrast at never-seen-before depths and speeds, and hence offer
promise in a range of biomedical applications both in the research and clinics. Given
the advancement of hardware capabilities we are now able to exploit the data processing
limits using high-speed GPUs and to import the realm of advanced inversion models,
post-processing and machine learning to the modality. Parallel to the technical develop-
ments, innovations have taken place in areas of biomarker design and detection — leading
to newer applications. The five-dimensional imaging capability thus enables researchers
to visualize diverse endogenous chromophores and administered contrast agents. Cur-
rently, MSOT is being widely used in areas of research including in-vivo cell tracking,
molecular imaging studies, targeted molecular imaging, as well as functional imaging of
the brain and heart. In spite of the vast progress, future work needs to be directed to-
wards imaging at greater depths with enhanced accuracy and contrast, and development
of image analysis and machine learning methods to suitably annotate the acquired data
and enable clinical decision making using OA images.
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