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1 Introduction

Observations suggest that the number of baryons in the universe is different from the

number of anti-baryons. The almost total absence of antimatter on Earth, in our solar

system and in cosmic rays indicates that the universe is baryonically asymmetric. Indeed

there are observables to make this statement more quantitative. The baryon asymmetry

in the universe may be expressed in terms of the baryon to photon ratio

η ≡
nB − nB̄

nγ
= (6.21± 0.16)× 10−10 , (1.1)

where nB, nB̄ and nγ are the number densities of baryons, anti-baryons and photons

respectively. Such a value comes from accurate measurements of the anisotropies in the
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cosmic microwave background [1]. Consistent results come from the comparison between

the abundances of the light elements (D, 3He, 4He and 7Li), with the predictions of big

bang nucleosynthesis [2]. Such baryon asymmetry could be set as an initial condition for

the universe evolution. However, it would require a high fine tuning and the initial baryon

asymmetry would be washed out during the inflationary period. This is why the scenario

of a dynamically generated baryon asymmetry is more appealing.

The dynamical generation of a baryon asymmetry in the context of quantum field

theory is called baryogenesis. One of the most attractive and field theoretically consistent

frameworks for baryogenesis is via leptogenesis [3]. In the original formulation, leptogenesis

requires a modest extension of the Standard Model (SM), namely, the addition of right-

handed neutrinos with large Majorana masses, far above the electroweak scale MW . The

right-handed (sterile) neutrinos are singlets under the SM gauge groups, whereas they are

minimally coupled to the SM particles via complex Yukawa couplings. These provide an ad-

ditional source of CP violation with respect to the one already present in the quark sector of

the SM. In the standard picture, the heavy neutrinos are produced by thermal scatterings in

the early universe and then decay out of equilibrium either in SM leptons or anti-leptons in

different amounts due to the CP violating phases. Such an asymmetry in the lepton sector

is then partially reprocessed in a baryon asymmetry by sphaleron transitions in the SM [4].

Majorana neutrino decays happen in a hot medium, namely the universe in its early

stages. Interactions with the medium modify the neutrino dynamics (thermal production

rate, mass, . . . ) and affect the thermodynamic evolution of the lepton asymmetry. The

thermal production rate of right-handed neutrinos has been studied in [5] in the relativistic

and ultra-relativistic regimes. The non-relativistic regime also turns out to be interesting

for leptogenesis since it is conceivable that the CP asymmetry is effectively generated when

the temperature of the plasma drops below the heavy-neutrino mass. In this regime the

thermal production rate for heavy Majorana neutrinos has been addressed in [6, 7].

In [8] we used an effective field theory (EFT) to describe the effective interactions

between non-relativistic Majorana neutrinos and SM particles at a finite temperature T ,

assuming the following hierarchy of scales

M ≫ T ≫ MW , (1.2)

where M is the mass scale of the Majorana neutrinos. In the temperature window (1.2)

and in an expanding universe the heavy neutrino is likely out of equilibrium, which is one

of the Sakharov conditions necessary for generating a lepton asymmetry [9]. In this paper,

we study, in the same framework and under the same assumption, the thermal corrections

to the CP asymmetry in the leptonic decays of heavy neutrinos, which is defined as

ǫI =

∑

f Γ(νR,I → ℓf +X)− Γ(νR,I → ℓ̄f +X)
∑

f Γ(νR,I → ℓf +X) + Γ(νR,I → ℓ̄f +X)
. (1.3)

The sum runs over the SM lepton flavours, νR,I stands for the I-th heavy right-handed

neutrino species, ℓf is a SM lepton with flavour f and X stands for any other SM particle

not carrying a lepton number. Another Sakharov condition necessary for baryogenesis is
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Figure 1. From left to right: tree-level, and one-loop self-energy and vertex diagrams. Double

solid lines stand for heavy right-handed neutrino propagators, solid lines for lepton propagators and

dashed lines for Higgs boson propagators. The neutrino propagator with forward arrow corresponds

to 〈0|T (ψψ̄)|0〉, whereas the neutrino propagators with forward-backward arrows correspond to

〈0|T (ψψ)|0〉 or 〈0|T (ψ̄ψ̄)|0〉, see appendix A.

the occurrence of C and CP violating processes. The quantity ǫI is a measure of the CP

asymmetry generated by the decay of the I-th heavy neutrino, and we will refer to it in

this way. Moreover, ǫI multiplied by the corresponding neutrino number density enters the

Boltzmann equations describing the thermodynamic evolution of the lepton-number asym-

metry [10, 11]. The quantity ǫI is also called unflavoured CP asymmetry because it does

not distinguish between the different lepton flavour families. If the sum over the flavours is

omitted in the numerator of (1.3), then this defines what is called the flavoured CP asym-

metry. We will discuss relevance of and compute the flavoured CP asymmetry in section 7.

The CP asymmetry is originated from the interference between the tree-level and

the one-loop self-energy and vertex diagrams shown in figure 1. The contribution from

the interference with the self-energy diagram is often called indirect contribution, while

the one from the interference with the vertex diagram is called direct contribution. The

relative importance of the indirect and direct contributions for the CP asymmetry depends

on the heavy-neutrino mass spectrum. For example, the vertex contribution is half of the

self-energy contribution in the hierarchical case, when the mass of one species of neutrinos

is much lighter than the others [12, 13]. The situation is different when two heavy neutrinos

are nearly degenerate in mass. In this case, the self-energy diagram can develop a resonant

enhancement that is related to a mixing phenomenon similar to the one found in kaon

physics, as originally proposed in [14]. An analysis from first principles has been carried

out in [15–17]. The main phenomenological outcome is that the scale of the heavy right-

handed neutrino masses can be lowered down to energy scales of O(TeV) [18]. However,

also the nearly degenerate case may comprise situations in which both the vertex and self-

energy diagrams contribute to the CP asymmetry with a similar magnitude [19], namely

when the peculiar condition for resonant leptogenesis is not met.

A thermal treatment of the lepton-number asymmetry in the resonant case, i.e., when

the mass difference of the heavy neutrinos is of the order of magnitude of their decay widths,

can be found for instance in [16], where the Boltzmann equations are superseded by the

quantum version known as Kadanoff-Baym equations. The lepton-number asymmetry has

been also considered for a generic heavy-neutrino mass spectrum, e.g., in [20–24] within

different approaches. The thermal effects considered include using thermal masses for the
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Higgs boson and leptons and taking into account thermal distributions for the Higgs boson

and leptons as decay products of the heavy Majorana neutrinos.

In this work, we aim at treating systematically thermal effects to the CP asymme-

try (1.3) in the non-relativistic regime specified by (1.2). These effects lead to corrections

in terms of series in the SM couplings and in T/M in the same way as they do for the

heavy Majorana neutrino production rate [6, 7]. We will derive such thermal corrections

for the case of two Majorana neutrinos with nearly degenerate masses, i.e., we will assume

a mass splitting much smaller than M . We will not specify, however, the relation between

the mass splitting and the widths. Hence our treatment includes, but is not limited to,

the case when the mass splitting is of the order of the widths. The CP asymmetry is

proportional to the imaginary parts of the Majorana neutrino Yukawa couplings. We note

that in the exact degenerate case the CP phases can be rotated away leading to purely real

Yukawa couplings, and, therefore, to a vanishing CP asymmetry [15]. We will discuss the

hierarchical case elsewhere [25].

Systems with two nearly degenerate heavy Majorana neutrinos are characterized by

one large scale: M . They may be treated in the non-relativistic EFT framework introduced

in [8]. There are some advantages in such an approach. First, the power counting of the

EFT allows to assess a priori the size of the different corrections to the CP asymmetry

optimizing the calculation. Moreover, the calculation, which would involve three-loop dia-

grams in a relativistic thermal field theory, can be split into a simpler two-step evaluation.

Similarly to what is done in [8] for the thermal production rate, the first step consists, by

power counting, in the evaluation of the imaginary parts of the Wilson coefficients of some

dimension five operators in the EFT. The Wilson coefficients encode the physics from the

mass scale, M . Since M ≫ T , they may be computed setting the temperature to zero. In

our case, this step consists in computing electroweak two-loop cut diagrams in vacuum. The

second step requires the computation of a simple thermal one-loop diagram in the EFT. The

disadvantage of the approach consists in being limited to temperatures for which (1.2) holds.

The paper is organized as follows. In section 2 and appendix A we review the basic

set-up of the EFT for non-relativistic Majorana neutrinos. In section 3 we re-derive the

zero temperature direct CP asymmetry from the vertex diagram and relate it to the EFT.

In section 4 we match the relevant dimension-five operators of the EFT at two loops. The

detailed calculation can be found in appendix B. The leading thermal corrections to the

direct CP asymmetry are computed in section 5 and the leading thermal corrections to the

indirect CP asymmetry in section 6. In section 7, we extend our study to the flavoured

CP asymmetry, some of whose contributions are evaluated at the end of appendix B. We

discuss general issues related to the convergence of the relativistic expansion in appendix C.

Finally, conclusions are drawn in section 8.

2 EFT for non-relativistic Majorana neutrinos

We start by specifying our model of new physics. We work within a conservative extension

of the SM that consists in adding right-handed neutrinos to the SM particle content. To

generate a non-vanishing CP asymmetry (1.3) at least two different neutrino species have
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to be added. In the following, we will consider only two heavy neutrinos and assume that

they have masses above the electroweak scale. In the case that right-handed neutrinos are

represented by Majorana fermion fields, the Lagrangian may be written as follows [3] (we

adopt some of the notation of [26]):

L = LSM +
1

2
ψ̄Ii/∂ψI −

MI

2
ψ̄IψI − FfI L̄f φ̃PRψI − F ∗

fI ψ̄IPLφ̃
†Lf , (2.1)

where ψI = νR,I + νcR,I is the Majorana field comprising the right-handed neutrino νR,I of

type I (I = 1, 2) and mass MI ; LSM is the SM Lagrangian with unbroken SU(2)L×U(1)Y
gauge symmetry (see (B.1)), φ̃ = iσ2 φ∗ embeds the SM Higgs doublet, Lf is the SM

lepton doublet of flavour f , FfI is a complex Yukawa coupling, and the right-handed and

left-handed projectors are denoted by PR = (1 + γ5)/2 and PL = (1 − γ5)/2 respectively.

We consider the nearly degenerate case where M2 −M1 ≪ M1 ∼ M2. We call neutrino of

type 2 the heaviest of the two neutrinos, and, for further use, we define 0 < ∆ ≡ M2 −M1

and M ≡ M1.

We will compute the thermal modification induced to the CP asymmetry of the Majo-

rana neutrino decays by a plasma of SM particles at a temperature T under the conditions

M ≫ T ≫ MW and M ≫ ∆. We exploit the hierarchy M ≫ T by performing the calcu-

lation in two steps. First we integrate out momentum and energy modes of order M from

the fundamental Lagrangian (2.1) and replace it by a suitable effective field theory aimed

at describing the non-relativistic dynamics of the Majorana neutrinos. The EFT is orga-

nized as an expansion in operators of increasing dimension suppressed by powers of 1/M .

The Wilson coefficients of the operators encode the high-energy modes of the fundamental

theory and can be evaluated by setting T = 0. Then we compute thermal corrections

to the Majorana neutrino leptonic widths as thermal averages weighted by the partition

function of the EFT. The EFT for non-relativistic Majorana neutrinos was introduced and

discussed in the case of one right-handed neutrino generation in [8]. The framework here

is very similar, the only difference being that we deal with two generations of neutrinos

instead of one. The EFT Lagrangian up to operators of dimension five is

LEFT = LSM + N̄I (iv · ∂ − δMI)NI +
iΓT=0

IJ

2
N̄INJ +

aIJ
MI

N̄INJφ
†φ+ . . . , (2.2)

where NI is the field describing the low-energy modes of the I-th non-relativistic Majorana

neutrino, δM1 = 0, δM2 = ∆, ΓT=0
IJ is the decay matrix at T = 0 and aIJ are the Wilson

coefficients of the dimension-five operators N̄INJφ
†φ describing the interaction of the Majo-

rana neutrinos with the Higgs doublet of the SM. These are the only operators of dimension

five that give thermal corrections to the neutrino widths and masses. The dots in (2.2)

stand for higher-order operators that contribute with subleading corrections and that are

beyond the accuracy of this work. In particular, thermal corrections induced by gauge

bosons, leptons and (heavy) quarks turn out to be subleading.1 The natural dynamical

1Subleading refers here to corrections that are parametrically suppressed by (T/M)2 with respect to those

calculated. Large differences in the size of the SM couplings may however alter the numerical relevance of

the different corrections. Further considerations can be found in the conclusions.
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scale of the EFT Lagrangian is the temperature, T . Since T is larger than the electroweak

scale, LSM is still the SM Lagrangian with unbroken SU(2)L×U(1)Y gauge symmetry.

The Lagrangian (2.2) has been obtained by integrating out the mass M = M1 from the

Lagrangian (2.1); δM2 = ∆ ≪ M is the residual mass of the neutrino of type 2. In (2.2) and

in the rest of the paper, masses are understood as on-shell masses, as it is typical of non-

relativistic EFTs, which implies that off-diagonal elements of the mass matrix vanish; more-

over, in the diagonal terms we will neglect terms that would contribute to the CP asymme-

try at order F 6 or smaller [27, 28]. Off-diagonal elements do not vanish for the absorbtive

parts iΓT=0
IJ /2. The specification T = 0 recalls that they are computed at T = 0. Finally,

the Lagrangian (2.2) has been written in a reference frame where the Majorana neutrinos

have momentum Mvµ (v2 = 1) up to a residual momentum that is much smaller than M .

In the following, we will assume that the thermal bath of SM particles is comoving with the

Majorana neutrinos. A convenient choice of the reference frame is the rest frame vµ = (1,~0).

In the introduction, we have distinguished between indirect and direct CP asymmetry,

the distinction being based on the leading-order processes shown in figure 1. In this paper,

we extend that distinction beyond leading order by calling contributions to the indirect CP

asymmetry, ∆ΓI,indirect, those that show the phenomenon of resonant enhancement, i.e.,

a large enhancement of the asymmetry when ∆ is of the order of the largest between the

neutrino width difference and the mixing vertices. In the framework of a strict perturbative

expansion in the Yukawa couplings, such a behaviour is induced by Feynman diagrams (like

the second of figure 1) becoming singular in the limit ∆ → 0, which signals a break down

of the expansion in that limit. The singularity is eventually removed by resumming certain

classes of diagrams, like those responsible for the width and/or the mixing of the different

neutrinos. Viceversa, we call contributions to the direct CP asymmetry, ∆ΓI,direct, those

that do not exhibit this phenomenon. Order by order in an expansion in the Yukawa

couplings, Feynman diagrams that contribute to the direct CP asymmetry are not singular

in the limit ∆ → 0. The CP asymmetry is the sum of these two kind of contributions:

∑

f

Γ(νR,I → ℓf +X)− Γ(νR,I → ℓ̄f +X) = ∆ΓI,direct +∆ΓI,indirect . (2.3)

The term ∆ΓI,direct includes all contributions to the CP asymmetry that originate from

single operators in the EFT and all contributions that come from mixing of operators in

the EFT that do not show the phenomenon of resonant enhancement. Concerning the first

class of contributions, at the accuracy of the Lagrangian (2.2) there are only dimension 3

and 5 operators that may have imaginary Wilson coefficients. Concerning the second class

of contributions, we will denote them ∆Γmixing
I,direct. At the order we are working, the only

relevant contribution of this kind affects the heavier Majorana neutrino of type 2 and will

be computed in section 5.2. Hence, ∆ΓI,direct reads

∆ΓI,direct =
(

Γℓ,T=0
II − Γℓ̄,T=0

II

)

+
(

Γℓ,T
II,direct − Γℓ̄,T

II,direct

)

+∆Γmixing
I,direct , (2.4)

with

Γℓ,T
II,direct =

2

M
Im aℓII 〈φ

†(0)φ(0)〉T , Γℓ̄,T
II,direct =

2

M
Im aℓ̄II 〈φ

†(0)φ(0)〉T , (2.5)

– 6 –
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where the subscripts ℓ and ℓ̄ isolate the leptonic and anti-leptonic contributions. The first

term in the right-hand side of (2.4), Γℓ,T=0
II −Γℓ̄,T=0

II , is the zero temperature contribution to

the direct CP asymmetry, which we will compute in section 3. The second term, Γℓ,T
II,direct−

Γℓ̄,T
II,direct, isolates the dominant thermal correction to the direct CP asymmetry, which will

be the main subject of the paper.

In equation (2.5) the thermal dependence is encoded in the Higgs thermal condensate

〈φ†(0)φ(0)〉T , which at leading order reads

〈φ†(0)φ(0)〉T =
T 2

6
. (2.6)

The relative size of the thermal correction to the direct CP asymmetry is therefore T 2/M2.

High-energy contributions induced by loops with momenta of the order of the neutrino

mass are encoded in the Wilson coefficients aℓII and aℓ̄II . Since the condensate is real, to

compute the widths we need the imaginary parts of aℓII and aℓ̄II . Their expressions, at

order F 2 in the Yukawa couplings, can be easily inferred from [8] (see also appendix B.1)

and the result reads

Im aℓII = Im aℓ̄II = −
3

16π
|FI |

2λ. (2.7)

The coupling λ is the four-Higgs coupling. We have defined |FI |
2 ≡

∑

f FfIF
∗
fI and, for

further use, FJF
∗
I ≡

∑

f FfJF
∗
fI .

A necessary condition to produce a CP asymmetry, i.e., to get a non-vanishing differ-

ence from a final state with a lepton and one with an anti-lepton, is for Im aℓII and Im aℓ̄II
to be sensitive to the phases of the Yukawa couplings FfI . At order F

2, Im aℓII and Im aℓ̄II
are not. Hence, to produce a non-vanishing direct CP asymmetry, one needs to compute

at least corrections of order F 4. In fact, corrections proportional to (F1F
∗
2 )

2 are sensitive

to the phases of the Yukawa couplings. From the optical theorem the imaginary part of a

two-loop diagram proportional to (F1F
∗
2 )

2 may be understood as the interference between

a tree-level and a one-loop amplitude developing an imaginary part.

In section 4 and appendix B, we will evaluate the diagrams contributing to Im aℓII and

Im aℓ̄II at order F 4 in the Yukawa couplings and up to first order in the SM couplings. This

will be done by computing in the fundamental theory (2.1), at T = 0, two-loop amplitudes

with two external Majorana neutrinos and two external Higgs particles and by matching

them to the corresponding a11 and a22 vertices in the EFT. Out of all diagrams, we will

select only those sensible to a CP phase, i.e., those involving the interference of Majorana

neutrinos of type 1 with Majorana neutrinos of type 2. We will compute the imaginary

parts of those diagrams. It will be convenient to use cutting rules, since cuts through

lepton propagators select neutrino decays into leptons, whereas cuts through anti-lepton

propagators select decays into anti-leptons. We restrict to cuts that separate the diagrams

into a tree-level part and a one-loop part. As we will see in the next section, in order to

contribute to the CP asymmetry the remaining one-loop part has to produce a complex

phase. Therefore the only diagrams that contribute are the ones whose one-loop part can,

in turn, be cut into two tree-level diagrams.

The term ∆ΓI,indirect in (2.3) contains all contributions that exhibit resonant enhance-

ment. We can further distinguish them in zero temperature contributions, Γℓ,T=0
II,indirect −

– 7 –
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+

+

νR,I
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φ
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φ†
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φ†

ℓ̄f

νR,J

νR,J

Figure 2. Tree-level and one-loop diagrams contributing to the direct CP asymmetry. The sub-

script I stands either for 1 or 2. The first and second raws show decays into leptons and anti-leptons

respectively.

Γℓ̄,T=0
II,indirect, and thermal contributions, Γℓ,T

II,indirect − Γℓ̄,T
II,indirect. They will be computed in

section 6. Clearly, an indirect CP asymmetry can only originate from the mixing of op-

erators in the EFT. While Γℓ,T=0
II − Γℓ̄,T=0

II and Γℓ,T
II,direct − Γℓ̄,T

II,direct depend only on the

diagonal elements ΓT=0
II and aII , contributions from the mixing will depend crucially on

the off-diagonal elements of ΓT=0
IJ and aIJ too.

3 Matching ΓT=0

II
: direct asymmetry at zero temperature

The direct CP asymmetry (2.4) depends on the Wilson coefficients ΓT=0
II and aII of (2.2).

In this section we compute the leptonic, Γℓ,T=0
II , and anti-leptonic, Γℓ̄,T=0

II , components

of ΓT=0
II . In so doing we re-derive the expression for the direct CP asymmetry at zero

temperature [3]. Considerations made here will be used in the next section to select the

parts of the Wilson coefficients Im aℓII and Im aℓ̄II relevant for the thermal corrections to

the direct CP asymmetry.

We start considering the decay of a heavy right-handed neutrino of type 1, νR,1, into

leptons. Up to one loop the amplitude has the following form (see the two upper diagrams

in figure 2 that display only direct contributions):

M(νR,1 → ℓf +X) = A

[

Ff1 +
∑

J

(F ∗
f ′1Ff ′J)FfJ B

]

, (3.1)

where A and B are functions that parameterize the amplitude at tree-level and one-loop

respectively. We obtain the total decay width into leptons by squaring the amplitude and

summing over the lepton flavours. Up to O(F 4) it reads

∑

f

Γ(νR,1 → ℓf +X) = |A|2

[

|F1|
2 +

∑

J

(

(F ∗
1FJ)

2B + (F1F
∗
J )

2B∗
)

]

– 8 –
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1) 2) 3)

Figure 3. One-loop and two-loops self-energy diagrams in the fundamental theory (2.1) contribut-

ing to the decay of a heavy Majorana neutrino into leptons. Vertical blue dashed lines are the cuts

selecting a final state made of a Higgs boson and a lepton. Circled vertices and propagators are

defined in appendix B.1.

= |A|2

{

|F1|
2 +

∑

J

(

2Re(B)Re
[

(F ∗
1FJ)

2
]

− 2 Im(B)Im
[

(F ∗
1FJ)

2
])

}

. (3.2)

We may write similar relations for the decay into anti-leptons:

M(νR,1 → ℓ̄f +X) = A

[

F ∗
f1 +

∑

J

(Ff ′1F
∗
f ′J)F

∗
fJ C

]

, (3.3)

and

∑

f

Γ(νR,1 → ℓ̄f +X) = |A|2

[

|F1|
2 +

∑

J

(

(F ∗
1FJ)

2C∗ + (F1F
∗
J )

2C
)

]

= |A|2

{

|F1|
2 +

∑

J

(

2Re(C)Re
[

(F ∗
1FJ)

2
]

+ 2 Im(C)Im
[

(F ∗
1FJ)

2
])

}

, (3.4)

where C is the analogous of B in (3.1). The CP asymmetry (1.3), due to the decay of νR,1,

is then

ǫ1 =
∑

J

(Re(B)− Re(C))Re
[

(F ∗
1FJ)

2
]

− (Im(B) + Im(C)) Im
[

(F ∗
1FJ)

2
]

|F1|2
. (3.5)

The functions A, B and C can be computed by cutting one and two-loop diagrams con-

tributing to the propagator of a neutrino of type 1:

− i

∫

d4x eip·x 〈Ω|T
(

ψµ
1 (x)ψ̄

ν
1 (0)

)

|Ω〉

∣

∣

∣

∣

pα=(M+iǫ,~0 )

, (3.6)

where |Ω〉 is the ground state of the fundamental theory and where we have chosen the rest

frame vα = (1,~0), so that the incoming momentum is pα = (M,~0 ). Diagrams with cuts

through lepton propagators contribute to A and B (see figure 3), while diagrams with cuts

through anti-lepton propagators contribute to A and C. An analogous equation to (3.5)

holds for ǫ2.
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We consider the in-vacuum diagrams in figure 3 for incoming and outgoing neu-

trinos of type 1. The cuts select the contribution to the width into leptons (for de-

tails see appendix B.1). We call Dℓ
1, Dℓ

2 and Dℓ
3 respectively the diagrams shown in

figure 3 with amputated external legs. The quantity Im
[

−i(Dℓ
1 +Dℓ

2 +Dℓ
3)
]

provides

δµν
∑

f Γ(νR,1 → ℓf + X)/2 at T = 0 in the fundamental theory (2.1), which matches

δµν Γℓ,T=0
11 /2 in the EFT (2.2). The quantities Γℓ,T=0

II and Γℓ̄,T=0
II are the leptonic and anti-

leptonic components of ΓT=0
II respectively. At leading order ΓT=0

II = Γℓ,T=0
II + Γℓ̄,T=0

II . An

explicit calculation up to order ∆/M gives

δµν
Γℓ,T=0
11

2
= Im

[

−i(Dℓ
1 +Dℓ

2 +Dℓ
3)
]

=

= δµν
M

16π

{

|F1|
2

2
−

∑2
J=1Re

[

(F ∗
1FJ)

2
]

(4π)2

[(

1−
π2

6

)

+

(

1−
π2

12
− 4 ln 2

)

∆

M

]

−

∑2
J=1 Im

[

(F ∗
1FJ)

2
]

16π

[

(−1 + 2 ln 2) + (−3 + 4 ln 2)
∆

M

]

}

. (3.7)

The sum over J comes from the flavour of the intermediate Majorana neutrino exchanged

in the two-loop diagrams, clearly
∑

J Im(F ∗
1FJ)

2 = Im(F ∗
1F2)

2. We have not considered

cuts through the intermediate neutrino, which would correspond to neutrino transitions

involving the emission of a lepton and an anti-lepton, because they do not contribute to

the CP asymmetry.

The analogous calculation for
∑

f Γ(νR,1 → ℓ̄f+X) at T = 0 in the fundamental theory,

which matches Γℓ̄,T=0
11 in the EFT, requires the calculation of the one-loop diagram with

a virtual anti-lepton and the two-loop diagrams shown in figure 3 but with cuts through

anti-lepton propagators. Up to order ∆/M , we obtain

δµν
Γℓ̄,T=0
11

2
= Im

[

−i(Dℓ̄
1 +Dℓ̄

2 +Dℓ̄
3)
]

=

= δµν
M

16π

{

|F1|
2

2
−

∑2
J=1Re

[

(F ∗
1FJ)

2
]

(4π)2

[(

1−
π2

6

)

+

(

1−
π2

12
− 4 ln 2

)

∆

M

]

+

∑2
J=1 Im

[

(F ∗
1FJ)

2
]

16π

[

(−1 + 2 ln 2) + (−3 + 4 ln 2)
∆

M

]

}

. (3.8)

The right-hand side of (3.8) differs from the right-hand side of (3.7) only for the sign of

the term proportional to Im
[

(F ∗
1FJ)

2
]

. It is precisely this term that originates the CP

asymmetry.

From (3.7) and (3.8) it follows:

Γℓ,T=0
11 − Γℓ̄,T=0

11 = −
M

64π2

[

(−1 + 2 ln 2) + (−3 + 4 ln 2)
∆

M

]

Im
[

(F ∗
1F2)

2
]

, (3.9)

ΓT=0
11 = Γℓ,T=0

11 + Γℓ̄,T=0
11 =

M

8π
|F1|

2, (3.10)

where in the last line we have neglected terms of order F 4. The direct CP asymmetry at

T = 0 for the leptonic decay of a neutrino of type 1 follows from the definition (1.3). In
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the EFT, equation (1.3) translates into the ratio of the above two quantities and reads

(including corrections of order ∆/M)

ǫT=0
1,direct =

Γℓ,T=0
11 − Γℓ̄,T=0

11

ΓT=0
11

=

[

(1− 2 ln 2) + (3− 4 ln 2)
∆

M

]

Im
[

(F ∗
1F2)

2
]

8π|F1|2
. (3.11)

Similarly we may obtain the direct CP asymmetry for the leptonic decay of a neutrino of

type 2 just by changing F1 ↔ F2 and ∆ → −∆ in the above formula:

ǫT=0
2,direct = −

[

(1− 2 ln 2)− (3− 4 ln 2)
∆

M

]

Im
[

(F ∗
1F2)

2
]

8π|F2|2
, (3.12)

where we have used Im
[

(F ∗
2F1)

2
]

= −Im
[

(F ∗
1F2)

2
]

. The result agrees with the original

result [13] and following confirmations, like the more recent [29], after accounting for the

different definition of the Yukawa couplings.2

It is useful to compare equations (3.7) and (3.8) with (3.2) and (3.4) respectively. It

follows that

|A|2 =
M

16π
, (3.13)

Re(B) = Re(C), (3.14)

Im(B) = Im(C) =
1

16π

[

(−1 + 2 ln 2) + (−3 + 4 ln 2)
∆

M

]

. (3.15)

Replacing the above expressions in (3.5) one gets back (3.11). The condition Re(B) =

Re(C) requires both Im(B) and Im
[

(F ∗
1FJ)

2
]

to be different from zero to produce a non-

vanishing CP asymmetry. The first request is at the origin of the condition stated at the

end of section 2: the relevant two-loop diagrams for the CP asymmetry are those that can

be cut with two cuts into three tree-level diagrams. This guarantees that after a first cut

through the lepton (or anti-lepton) propagator the remaining one-loop diagram (what is

called B above) develops a complex phase. The second request is fulfilled if there are at

least two Majorana neutrino generations with different complex Yukawa couplings. In fact

only J = 2 contributes to the asymmetry in (3.7) and (3.8).

4 Matching aII

In order to evaluate the leading thermal correction to the direct CP asymmetry, i.e.,

Γℓ,T
II,direct − Γℓ̄,T

II,direct, we need to compute the Wilson coefficients aII of the dimension-five

operators in (2.2). We have seen that at order F 2 in the Yukawa couplings the coefficients

aII do not contribute to the asymmetry, hence, in this section, we will give them at or-

der F 4. They also depend linearly on some SM couplings, in particular the four-Higgs

and gauge couplings. The coefficients aII are determined by matching four-point Green’s

functions with two external Majorana neutrinos and two external Higgs bosons computed

in the fundamental theory with the corresponding vertices in the EFT. In particular, we

may consider a Higgs boson with momentum qα ∼ T ≪ M scattering off a Majorana

2Our couplings are the complex conjugate of the couplings in [13] and [29].
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neutrino at rest in the reference frame vα = (1,~0). In the matching, we integrate out loop

momenta of order M , hence the momentum of the Higgs boson can eventually be set to

zero and the matching done in the vacuum. Thermal corrections do not affect the matching

but the CP asymmetry through the Higgs thermal condensate. Because the Higgs thermal

condensate is real, we just need to compute the imaginary parts of aII . This can be done

by using standard cutting rules at T = 0. Diagrams with cuts through lepton propagators

contribute to the leptonic component of aII , a
ℓ
II , while diagrams with cuts through anti-

lepton propagators contribute to the anti-leptonic component of aII , a
ℓ̄
II . Not the entire

cut diagram contributes to the asymmetry. The part of the cut diagram that contributes

to the asymmetry can be isolated using the same arguments developed in the previous

section and is proportional to Im
[

(F ∗
1F2)

2
]

.

The diagrams that enter the matching of Im aℓII and Im aℓ̄II at order F 4 and at first or-

der in the SM couplings together with details of the calculation can be found in appendix B.

The final result reads up to order ∆/M (only terms contributing to the asymmetry are

displayed):

Im aℓ11 = −Im aℓ̄11 =
Im

[

(F ∗
1F2)

2
]

(16π)2

{

6λ

[

1 + ln 2− (2− ln 2)
∆

M

]

−
3g2 + g′2

8

[

4− ln 2 + (1− 5 ln 2)
∆

M

]}

, (4.1)

Im aℓ22 = −Im aℓ̄22 = −
Im

[

(F ∗
1F2)

2
]

(16π)2

{

6λ

[

1 + ln 2 + (2− ln 2)
∆

M

]

−
3g2 + g′2

8

[

4− ln 2− (1− 5 ln 2)
∆

M

]}

, (4.2)

where λ is the four-Higgs coupling, and g and g′ are the SU(2)L and U(1)Y gauge couplings

respectively. Note the sign difference between Im aℓII and Im aℓ̄II . We remark that at this

order the result does not depend on the top-Yukawa coupling, λt.

5 Thermal corrections to the direct asymmetry

We may now proceed to calculate the thermal corrections to the widths and CP asymme-

tries of the two Majorana neutrinos, assuming that the thermal bath of SM particles is at

rest with respect to the Majorana neutrinos and the reference frame. It is convenient to

split both the neutrino width, ΓII = ΓT=0
II + ΓT

II , and the CP asymmetry, ǫI = ǫT=0
I + ǫTI ,

into a zero temperature and a thermal part.

5.1 Neutrino of type 1

We consider first neutrinos of type 1, which are assumed to be lighter than those of type 2.

The zero-temperature width at leading order has been written in (3.10). The leading

thermal correction to the width has been calculated in [6–8] and can be easily re-derived

from (2.5), (2.6) and (2.7). The expression of the width up to order F 2λ× (T/M)2 reads

Γ11 = ΓT=0
11 + ΓT

11 =
M

8π
|F1|

2

[

1− λ

(

T

M

)2
]

. (5.1)
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φ

N1 N1

φ

N2 N2

a11 a22

Figure 4. Tadpole diagrams responsible for the leading thermal corrections to the neutrino widths

and CP asymmetries in the EFT. We show in red particles belonging to the thermal bath whose

momentum is of order T .

The in-vacuum part of the direct CP asymmetry, ǫT=0
1,direct, can be read off (3.11). In

order to obtain ǫT1,direct, one has to evaluate Γℓ,T
11,direct − Γℓ̄,T

11,direct. Thermal corrections are

encoded into the Higgs thermal condensate represented by the first tadpole diagram shown

in figure 4. From (2.5), (2.6) and (4.1) it follows

Γℓ,T
11,direct − Γℓ̄,T

11,direct =
Im

[

(F ∗
1F2)

2
]

64π2

{

λ

[

1 + ln 2− (2− ln 2)
∆

M

]

−
3g2 + g′2

48

[

4− ln 2 + (1− 5 ln 2)
∆

M

]}

T 2

M
. (5.2)

From (2.4), (3.9), (5.1) and (5.2), and considering that ∆Γmixing
1,direct = 0, we obtain then the

thermal part of the CP asymmetry generated from the decay of Majorana neutrinos of

type 1 at leading order in the SM couplings, at order T 2/M2 and at order ∆/M :

ǫT1,direct =
Im

[

(F ∗
1F2)

2
]

8π|F1|2

(

T

M

)2

×

{

λ

[

2− ln 2 + (1− 3 ln 2)
∆

M

]

−
3g2 + g′2

48

[

4− ln 2 + (1− 5 ln 2)
∆

M

]}

. (5.3)

5.2 Neutrino of type 2

The in-vacuum contribution to the CP asymmetry of Majorana neutrinos of type 2 can be

read off (3.12). Thermal contributions of the type (2.5), can be computed as for neutrinos

of type 1, the relevant diagram being the second diagram of figure 4. They may be read

off (5.2) and (5.3) after the replacements F1 ↔ F2, M → M2 and ∆ → −∆.

If the neutrino of type 2 is heavier than the neutrino of type 1, there may be an

additional source of CP asymmetry coming from diagrams where, after the cut through

the lepton (or anti-lepton), the remaining one-loop subdiagram develops an imaginary

part because of the kinematically allowed transition νR,2 → νR,1+ Higgs boson. Such a

transition involves a momentum transfer of order ∆. Since ∆ ≪ M , terms coming from

momentum regions of order ∆ have been excluded from the matching and do not contribute

to aIJ . However, they do contribute in the EFT.

The leading order diagrams in the EFT are shown in figure 5.3 They may be understood

as the mixing of two dimension five operators in the EFT, hence they contribute to the

3The corresponding diagrams in the full theory are diagrams 1)-6) in figure 14.
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N2 N2N1N2 N2N1

Figure 5. Diagrams contributing in the EFT to the CP asymmetry of the Majorana neutrino of type

2 (see text). The orange dot stands for the vertex −iRe (F ∗

1
F2)/M ; the circled dot has opposite sign.

The dot with a cut selects the leptonic (or anti-leptonic) decay components: −3(F1F
∗

2
)λ/(8πM)

(or −3(F2F
∗

1
)λ/(8πM)) for incoming neutrino of type 1. Propagators on the right of the cut

are complex conjugate. Red dashed lines indicate thermal Higgs bosons, while black dashed lines

indicate Higgs bosons carrying a momentum and energy of order ∆.

+ =

iRe aIJ/M

Figure 6. On the left-hand side the diagrams in the fundamental theory that match the real part

of aIJ at order F 2 (right-hand side). Red dashed lines indicate external Higgs bosons with a soft

momentum much smaller than the mass of the Majorana neutrinos.

direct CP asymmetry (2.4) through the term ∆Γmixing
2,direct. At our accuracy, for the uncut

vertex, we just need to consider the real parts of the dimension five operators mixing

neutrinos of type 1 with neutrinos of type 2. The corresponding vertex, shown with an

orange dot in figure 5, is iRe a12/M . The real part of aIJ can be computed at order F 2

by matching the two tree-level diagrams shown in the left-hand side of figure 6 with the

corresponding vertex in the EFT. The result reads

Re aIJ = −
FIF

∗
J + F ∗

I FJ

2
. (5.4)

The contribution from the cut is −2 × 1/M × (3F ∗
I FJλ/(16π)) for the leptonic cut and

−2 × 1/M × (3F ∗
JFIλ/(16π)) for the anti-leptonic one, where I is the outgoing neutrino

and J the ingoing one.

The momentum flowing in the diagrams of figure 5 can be of order T or of order ∆.

If the momentum flowing in both loops is of order T this contributes to the asymmetry

Γℓ,T
22,direct − Γℓ̄,T

22,direct at order T
3/M2; if the momentum flowing in both loops is of order ∆

this contributes to the asymmetry at order ∆3/M2. Both contributions are beyond our

accuracy. If instead one Higgs boson carries a momentum and energy of order T and the

other a momentum and energy of order ∆, then this momentum region contributes to the

asymmetry at order T 2∆/M2, which is inside our accuracy. The color code used for the

Higgs bosons in figure 5 identifies this specific momentum region. Its contribution to the

direct asymmetry of Majorana neutrinos of type 2 is

∆Γmixing
2,direct =

Im
[

(F ∗
1F2)

2
]

16π2
λ
T 2∆

M2
. (5.5)
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Summing this to the CP asymmetry of the Majorana neutrino of type 2 obtained from the

tadpole diagram of figure 4, and discussed at the beginning of this section, we obtain that

the thermal correction to the direct CP asymmetry of the Majorana neutrino of type 2 at

leading order in the SM couplings, at order T 2/M2 and at order ∆/M is

ǫT2,direct = −
Im

[

(F ∗
1F2)

2
]

8π|F2|2

(

T

M

)2

×

{

λ

[

2− ln 2− (9− 5 ln 2)
∆

M

]

−
3g2 + g′2

48

[

4− ln 2− (9− 7 ln 2)
∆

M

]}

. (5.6)

We observe that in the exact degenerate limit (∆ → 0), the single direct CP asymme-

tries ǫ1,direct and ǫ2,direct do not vanish. However, the sum of (3.9) with (5.2), and with the

corresponding expressions for the type 2 neutrino does vanish. This sum is the CP-violating

parameter defined in [19].

6 Indirect asymmetry

The indirect CP asymmetry is made of all contributions that exhibit the phenomenon

of resonant enhancement (see section 2). It may be understood as originating from the

mixing between the different neutrino species that makes the mass eigenstates different

from the CP eigenstates [14]. This mixing is described by the EFT. In the following we

will compute the indirect CP asymmetry at leading order and its first thermal correction.

Besides the hierarchies M ≫ T ≫ MW and M ≫ ∆ we will not assume any special relation

between ∆ and the neutrino decay widths. In particular we will allow for the resonant

case ∆ ∼ Γ11,Γ22 and resum the widths in the neutrino propagators. Nevertheless we

will treat the mixing perturbatively, which amounts at requiring ∆2 + (Γ22 − Γ11)
2/4 ≫

M2 [Re(F ∗
1F2)]

2/(16π)2 (this condition can be inferred from the right-hand side of the

following equation (6.3); see also [16]).4

Mixing between the different neutrino generations in the effective Lagrangian (2.2) is

induced by the off-diagonal elements of ΓT=0
IJ ,

ΓT=0
IJ =

M

16π
(F ∗

I FJ + F ∗
JFI) , (6.1)

which can be obtained from the absorbtive part of diagram 1) in figure 3 and the corre-

sponding one with an anti-lepton in the loop [14, 15] (for I = J = 1 (6.1) gives back (3.10)),

and by the off-diagonal elements of aIJ . The imaginary part of aIJ is

Im aIJ = −
3

16π
(FJF

∗
I + FIF

∗
J )λ. (6.2)

The real part of aIJ has been computed at order F 2 in the previous section and can be

read off (5.4).

4Relaxing this condition does not pose conceptual problems. A non-perturbative mixing will affect,

however, both the direct and indirect CP asymmetries and make their analytical expressions less compact.

For the indirect asymmetry, this has been considered without resummation of the widths in [14].
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N1 N1N2N1 N1N2

Figure 7. Diagrams showing in the EFT a neutrino of type 1 decaying into a lepton after mixing

with a neutrino of type 2. The cross stands for the mixing vertex −ΓT=0

IJ
/2. The cross with a cut

selects the leptonic (or anti-leptonic) decay components: M(F ∗

I
FJ)/(16π) (or M(F ∗

J
FI)/(16π)).

Propagators on the right of the cut are complex conjugate. Because the mixing vertex is real,

circled and uncircled vertices coincide [30].

At zero temperature and at order F 4 the width of a neutrino of type 1 that decays into

a lepton after mixing with a neutrino of type 2 is given in the EFT by the sum of the cuts on

the diagrams shown in figure 7. The diagrams are amputated of the external legs and evalu-

ated at the pole of the propagator of the (incoming and outgoing) neutrino of type 1. If the

width is of the order of ∆, then it should be resummed so that the (complex) pole of the neu-

trino of type 1 is at −iΓT=0
11 /2 and the pole of the intermediate neutrino of type 2 is at ∆−

iΓT=0
22 /2. The crossed vertex in figure 7 stands for the mixing vertex−ΓT=0

IJ /2, where I iden-

tifies the outgoing and J the incoming neutrino. The cut through the vertex selects the de-

cay into a lepton or an anti-lepton. In the first case, the value of the cut is M(F ∗
I FJ)/(16π),

in the second case it is M(F ∗
JFI)/(16π). For leptonic cuts the diagrams in figure 7 give

Γℓ,T=0
11,indirect =

M

16π
F ∗
1F2

i

−∆+ i(ΓT=0
22 − ΓT=0

11 )/2

(

−
M

16π

)

F ∗
1F2 + F ∗

2F1

2
+ c.c., (6.3)

where c.c. stands for complex conjugate. For anti-leptonic cuts the diagrams in figure 7

give Γℓ̄,T=0
11,indirect, which is the same as (6.3) but with the change F ∗

1F2 ↔ F ∗
2F1 in the mixing

vertices. The indirect CP asymmetry at T = 0 for a Majorana neutrino of type 1 is then

ǫT=0
1,indirect =

Γℓ,T=0
11,indirect − Γℓ̄,T=0

11,indirect

ΓT=0
11

= −
Im

[

(F ∗
1F2)

2
]

16π|F1|2
M ∆

∆2 + (ΓT=0
22 − ΓT=0

11 )2/4
. (6.4)

Similarly one obtains the indirect CP asymmetry at T = 0 for a Majorana neutrino of type 2

ǫT=0
2,indirect =

Γℓ,T=0
22,indirect − Γℓ̄,T=0

22,indirect

ΓT=0
22

= −
Im

[

(F ∗
1F2)

2
]

16π|F2|2
M ∆

∆2 + (ΓT=0
22 − ΓT=0

11 )2/4
. (6.5)

We recall that ΓT=0
II = M |FI |

2/(8π).

The above result for the indirect asymmetry at T = 0 agrees with [15] (see also [16] and

discussion therein). It agrees with [28] by remarking that the additional term proportional

to log(M2
2 /M

2
1 ) there is a contribution of relative order F 6 to the CP asymmetry and

therefore beyond our accuracy. Whenever we can neglect the width ΓT=0
11 , equations (6.4)

and (6.5) agree with [18, 19, 31–33]. Finally, we notice that in the framework of the

Kadanoff-Baym evolution equations (see for instance [16, 34, 35]) the quantity related to
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the CP asymmetry is a modification of the above one that accounts for coherent transitions

between the Majorana neutrino mass eigenstates.

The computation done above shows that, although at T = 0 there should be in general

no advantage in using the EFT, there is some in computing the indirect CP asymmetry.

In fact, the EFT naturally separates the physics of the Majorana neutrino decay, which

goes into the widths and the mixing vertices, from the quantum-mechanical physics of the

neutrino oscillations. This separation is well depicted in the Feynman diagrams of figure 7.

It also makes more apparent the potentially resonant behaviour of the contribution.

Thermal corrections to (6.3) affect masses, widths and mixing vertices. From (2.5)

(generalized to off-diagonal elements), (2.6) and (6.2) it follows that the leading thermal

correction to the width matrix is of relative size λT 2/M2:

ΓT
IJ = −

λT 2

16πM
(FIF

∗
J + F ∗

I FJ). (6.6)

The thermal correction to the mass matrix follows from (5.4) and (2.6), and is of relative

size T 2/M2:

MT
IJ =

T 2

12M
(FIF

∗
J + F ∗

I FJ). (6.7)

The mass thermal correction (6.7) differs from the one used in [32] and taken from [36].

The reason for the difference is that the thermal correction computed in [36] refers to a

massless neutrino while the one written above refers to a neutrino in the heavy mass limit.

In the massless case the neutrino gets a thermal mass both from fermions and bosons in

the medium, whereas in the heavy-mass case, as can be immediately read off the effective

Lagrangian (2.2), fermion contributions are suppressed in T/M and only Higgs bosons

contribute.

If we restrict to the leading corrections, we may neglect the thermal correction to the

decay matrix, which is suppressed by λ, and keep only the thermal correction to the mass

matrix. This modifies the mixing vertex in figure 7 from −ΓT=0
IJ /2 to −ΓT=0

IJ /2− iMT
IJ and

the mass ∆ in the intermediate propagator to ∆+MT
22 −MT

11. If we neglect corrections of

relative order λ, cuts are not affected by thermal effects, so that

Γℓ,T
11,indirect =

[

M

16π
F ∗
1F2

i

−∆− (|F2|2 − |F1|2)T 2/(6M) + i(ΓT=0
22 − ΓT=0

11 )/2

×

(

−
M

16π
− i

T 2

6M

)

F ∗
1F2 + F ∗

2F1

2
+ c.c.

]

− Γℓ,T=0
11,indirect , (6.8)

which is valid at leading order in T/M . Similarly Γℓ̄,T
11,indirect is given by (6.8) but with

the change F ∗
1F2 ↔ F ∗

2F1 in the mixing vertices. The leading thermal correction to the

indirect CP asymmetry for a Majorana neutrino of type 1 is then

ǫT1,indirect = −
ǫT=0
1,indirect

3

(

|F2|
2 − |F1|

2
) M∆

∆2 + (ΓT=0
22 − ΓT=0

11 )2/4

T 2

M2
, (6.9)
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and analogously the thermal correction to the indirect CP asymmetry for a neutrino of

type 2 is

ǫT2,indirect = −
ǫT=0
2,indirect

3

(

|F2|
2 − |F1|

2
) M∆

∆2 + (ΓT=0
22 − ΓT=0

11 )2/4

T 2

M2
. (6.10)

Note that the indirect asymmetry vanishes for each neutrino type in the exact degenerate

limit ∆ → 0 [15, 19].

7 Flavour and CP asymmetry

In the previous sections we have computed the CP asymmetry, both direct and indirect, in

the so-called unflavoured approximation, i.e., we have computed the CP parameter, defined

in (1.3), as a sum over the different lepton flavours. This is the relevant CP asymmetry

parameter when the flavour composition of the quantum states of the leptons (anti-leptons)

in the thermal plasma has no influence on the final lepton asymmetry. If this is not the

case, then one has to define a CP asymmetry for each lepton family. The unflavoured

regime is found to be an appropriate choice at high temperatures, namely T & 1012GeV,

while the different lepton flavours are resolved at lower temperatures [37, 38]. In [39, 40]

it was shown how to estimate the temperature at which the different lepton flavours are

resolved considering the interactions induced by charged lepton Yukawa couplings in the

most general seesaw type-I Lagrangian (we have not included these interactions in the

Lagrangian (2.1); one can find them, e.g., in [41]). It is found that at T ≈ 1012GeV,

the interaction rates involving the τ -doublet are faster than the universe expansion rate.

Hence the τ -flavour is resolved by the thermal bath, while the e- and µ-flavours remain

unresolved. At temperatures of about 109GeV all three flavours are resolved from the

charged Yukawa coupling interactions. The importance of flavour effects in leptogenesis

has been investigated in the literature in many different directions, see, e.g., [42, 43].

In order to investigate how the flavour affects our approach, we start with the definition

of the CP asymmetry, ǫfI , generated by the I-th heavy neutrino decaying into leptons and

anti-leptons of flavour f :

ǫfI =
Γ(νR,I → ℓf +X)− Γ(νR,I → ℓ̄f +X)

∑

f Γ(νR,I → ℓf +X) + Γ(νR,I → ℓ̄f +X)
. (7.1)

The difference with respect to (1.3) is that we do not sum over the flavour index f in

the numerator. Following the same order adopted for the unflavoured case, we will, first,

compute the flavoured direct and indirect CP asymmetries at T = 0, and then the CP

asymmetries at finite temperature.

It is straightforward to extend the derivation of section 3 for the direct CP asymmetry

at T = 0 in the unflavoured case to the CP asymmetry in the flavoured case. In the

flavoured case one has simply to omit the sum over the flavour index f in (3.2) and (3.4),
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νR,I

φ

ℓf

νR,J

Figure 8. One-loop self-energy diagram responsible for an additional contribution to the indirect

CP asymmetry in the flavoured case. Note that only heavy-neutrino propagators with forward

arrow appear, namely 〈0|T (ψψ̄)|0〉.

obtaining for the CP asymmetry in the neutrino of type 1 decays

ǫf1 = (7.2)

=
∑

J

(Re(B)− Re(C))Re
[

(F ∗
1FJ)(F

∗
f1FfJ)

]

− (Im(B) + Im(C)) Im
[

(F ∗
1FJ)(F

∗
f1FfJ)

]

|F1|2
.

The calculation of the diagrams in figure 3 leads to the same results for the functions A,

B and C: the loop calculation is unaffected by the different treatment of the flavour. Note

that additional two-loop diagrams, similar to 2) and 3) of figure 3 but involving only lepton

(or anti-lepton) internal lines, are not allowed by the Feynman rules of (2.1). Therefore

the direct CP asymmetry at T = 0 for the neutrino of type 1 decay into leptons of flavour

f reads up to order ∆/M

ǫT=0
f1,direct =

[

(1− 2 ln 2) + (3− 4 ln 2)
∆

M

] Im
[

(F ∗
1F2)(F

∗
f1Ff2)

]

8π|F1|2
. (7.3)

The result for ǫT=0
f2,direct can be obtained from the above formula by changing F1 ↔ F2

and ∆ → −∆. The results agree in the nearly degenerate limit with the flavoured CP

asymmetry obtained in [29].

We can compute the flavoured indirect CP asymmetry at T = 0 either in the funda-

mental or in the effective theory. In the fundamental theory, besides the diagrams that

appear in the unflavoured case, one has to consider also the interference between the tree-

level diagram of figure 1 with the additional one-loop diagram shown in figure 8. This

contribution is equivalent to cutting through lepton or anti-lepton lines respectively the

two-loop diagrams a) and b) shown in figure 9. The additional diagrams give a contribution

to the CP asymmetry that is proportional to Im
[

(F1F
∗
2 )(F

∗
f1Ff2)

]

. Clearly this contribu-

tion vanishes if summed over all flavours f . For this reason it has not been considered in

the unflavoured case.

As argued in section 6, it is particularly convenient to compute the indirect CP asym-

metry in the EFT. In fact, the relevant diagrams are the same computed in the unflavoured

case, i.e., those shown in figure 7. They already comprise the two additional diagrams of

figure 9, the only difference being that now the cut through the mixing vertex selects the

decay into a specific leptonic (or anti-leptonic) flavour family. More specifically the cut
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a) b)

Figure 9. Two-loop self-energy diagrams in the fundamental theory contributing to the indirect

CP asymmetry at T = 0 in the flavoured case only. Diagram a) admits two cuts through lepton

lines, whereas diagram b) admits two cuts through anti-lepton lines.

stands for M(F ∗
fIFfJ)/(16π) (or M(F ∗

fJFfI)/(16π)), where I is the type of the outgoing

and J the type of the incoming neutrino. Hence the result for the leptonic width of a

neutrino of type 1 decaying into a lepton of flavour f can be read off (6.3) by refraining of

summing over the flavours in the leptonic cuts

Γℓ,T=0
f11,indirect =

M

16π
F ∗
f1Ff2

i

−∆+ i(ΓT=0
22 − ΓT=0

11 )/2

(

−
M

16π

)

F ∗
1F2 + F ∗

2F1

2
+ c.c. . (7.4)

For anti-leptonic cuts the diagrams in figure 7 give the anti-leptonic width, Γℓ̄,T=0
f11,indirect,

which is the same as (7.4) but with the change F ∗
f1Ff2 ↔ F ∗

f2Ff1 in the mixing vertices.

The flavoured indirect CP asymmetry at T = 0 for a Majorana neutrino of type 1 then is5

ǫT=0
f1,indirect = −

Im
[

(F ∗
1F2)(F

∗
f1Ff2)

]

16π|F1|2
M ∆

∆2 + (ΓT=0
22 − ΓT=0

11 )2/4

−
Im

[

(F1F
∗
2 )(F

∗
f1Ff2)

]

16π|F1|2
M ∆

∆2 + (ΓT=0
22 − ΓT=0

11 )2/4
. (7.5)

The first line, if summed over all flavours, gives back (6.4). The second line is specific

of the flavoured CP asymmetry and would vanish if summed over all flavours, indeed,
∑

f Im
[

(F1F
∗
2 )(F

∗
f1Ff2)

]

= Im
[

|(F1F
∗
2 )|

2
]

= 0. A similar calculation leads to the expres-

sion for the flavoured indirect CP asymmetry at T = 0 for a Majorana neutrino of type 2,

which follows from (7.5) after the changes F1 ↔ F2 and ∆ → −∆:

ǫT=0
f2,indirect = −

Im
[

(F ∗
1F2)(F

∗
f1Ff2)

]

16π|F2|2
M ∆

∆2 + (ΓT=0
22 − ΓT=0

11 )2/4

−
Im

[

(F1F
∗
2 )(F

∗
f1Ff2)

]

16π|F2|2
M ∆

∆2 + (ΓT=0
22 − ΓT=0

11 )2/4
. (7.6)

The expressions for ǫT=0
f1,indirect and ǫT=0

f2,indirect agree with those that can be found in [29] when

taking the nearly degenerate limit and resumming the widths of both types of neutrino in

the heavy-neutrino propagators.

5A more compact expression follows from Im
[

(F ∗

1 F2)(F
∗

f1Ff2)
]

+ Im
[

(F1F
∗

2 )(F
∗

f1Ff2)
]

=

2Re [(F ∗

1 F2)] Im
[

(F ∗

f1Ff2)
]

.
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We conclude by computing the flavoured CP asymmetries at finite temperature. Con-

cerning the direct asymmetry, we may identify two type of contributions. First, there are

contributions coming from the same diagrams considered for the unflavoured case. These

diagrams contribute also to the flavoured CP asymmetry if the final lepton (or anti-lepton)

flavour is resolved. This amounts at replacing

Im
[

(F ∗
1F2)

2
]

→ Im
[

(F ∗
1F2)(F

∗
f1Ff2)

]

, (7.7)

in the expressions of the Feynman diagrams given in the appendices B.2 and B.3.

A second type of contributions comes from diagrams involving only lepton (or anti-

lepton) lines. They would potentially give rise to a CP asymmetry that is proportional to

Im
[

(F1F
∗
2 )(F

∗
f1Ff2)

]

and that would vanish in the unflavoured case. We have examined

these diagrams in appendix B.4 and found that they do not contribute. Hence, the complete

contribution to the matching coefficients Im aℓII and Im aℓ̄II from cuts selecting a lepton or an

anti-lepton of flavour f comes only from the diagrams discussed in the previous paragraph

and can be read off equations (4.1) and (4.2) by simply performing the replacement (7.7).

As discussed in section 5.2, the Majorana neutrino of type 2, if heavier than the

Majorana neutrino of type 1, has an additional source of CP asymmetry whose ultimate

origin is the kinematically allowed transition νR,2 → νR,1+ Higgs boson. This asymmetry

is described in the EFT by the diagrams shown in figure 5. The only difference with the

unflavoured case is that we now require for the cut to select a lepton (or anti-lepton) with a

specific flavour f . Hence the cut stands for −3(F ∗
fIFfJ)λ/(8πM) (or −3(F ∗

fJFfI)λ/(8πM)

in the anti-leptonic case), where I is the type of outgoing and J the type of incoming

neutrino. Going through the same derivation as in section 5.2, we find

∆Γmixing
f2,direct =

Im
[

(F ∗
1F2)(F

∗
f1Ff2)

]

+ Im
[

(F1F
∗
2 )(F

∗
f1Ff2)

]

16π2
λ
T 2∆

M2
. (7.8)

The quantity ∆Γmixing
f2,direct is the equivalent of ∆Γmixing

2,direct in the flavoured case. It reduces to

∆Γmixing
2,direct, given in (5.5), when summed over the flavours f .

Rewriting the thermal contributions to the direct CP asymmetry given in (5.3)

and (5.6) for the flavoured case through (7.7) and adding to the CP asymmetry of the

Majorana neutrino of type 2 the contribution in (7.8) proportional to Im
[

(F1F
∗
2 )(F

∗
f1Ff2)

]

gives at order T 2/M2 and at order ∆/M

ǫTf1,direct =
Im

[

(F ∗
1F2)(F

∗
f1Ff2)

]

8π|F1|2

(

T

M

)2

×

{

λ

[

2− ln 2 + (1− 3 ln 2)
∆

M

]

−
3g2 + g′2

48

[

4− ln 2 + (1− 5 ln 2)
∆

M

]}

, (7.9)

and

ǫTf2,direct = −
Im

[

(F ∗
1F2)(F

∗
f1Ff2)

]

8π|F2|2

(

T

M

)2
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×

{

λ

[

2− ln 2− (9− 5 ln 2)
∆

M

]

−
3g2 + g′2

48

[

4− ln 2− (9− 7 ln 2)
∆

M

]}

+
Im

[

(F1F
∗
2 )(F

∗
f1Ff2)

]

2π|F2|2

(

T

M

)2

λ
∆

M
. (7.10)

Finally, the thermal corrections to the indirect CP asymmetry are easily computed in

the EFT. The analysis carried out in section 6 is valid also in the flavoured regime. The

thermal corrections to the indirect CP asymmetry have the same form as (6.9) and (6.10),

namely for the two neutrino species

ǫTf1,indirect = −
ǫT=0
f1,indirect

3

(

|F2|
2 − |F1|

2
) M∆

∆2 + (ΓT=0
22 − ΓT=0

11 )2/4

T 2

M2
, (7.11)

and

ǫTf2,indirect = −
ǫT=0
f2,indirect

3

(

|F2|
2 − |F1|

2
) M∆

∆2 + (ΓT=0
22 − ΓT=0

11 )2/4

T 2

M2
. (7.12)

Note that the first factor in the right-hand side of each asymmetry is the flavoured indirect

CP asymmetry at T = 0 computed in (7.5) and (7.6).

8 Conclusions

In the framework of an extension of the Standard Model that includes two generations of

heavy Majorana neutrinos with nearly degenerate masses M and M +∆, and coupled only

to the SM Higgs boson and lepton doublets via Yukawa interactions, see (2.1), we have

computed the leading thermal corrections to the direct and indirect CP asymmetries for

neutrino decays into leptons and anti-leptons. In order to describe a condition that occurred

in the early universe, we have assumed the SM particles to form a plasma whose temper-

ature T is larger than the electroweak scale but smaller than M . Non-vanishing complex

phases of the Yukawa couplings originate a CP asymmetry and the condition T ≪ M puts

the Majorana neutrino out of chemical equilibrium. The main original results of the paper

are equations (5.3) and (5.6) for the thermal corrections to the direct CP asymmetry, and

equations (6.9) and (6.10) for the thermal corrections to the indirect CP asymmetry. The

corresponding equations for the flavoured case are (7.9), (7.10) (7.11) and (7.12) respec-

tively. We have computed the CP asymmetries up to first order in the neutrino mass differ-

ence ∆ ≪ M . Moreover, the indirect CP asymmetry has been computed assuming that the

mixing can be treated perturbatively. Besides this the results are valid in a wide range of

parameters. In the resonant case (∆ of the order of the difference of the widths) the indirect

asymmetry may be the dominant mechanism for the production of a CP asymmetry.

Thermal corrections to the CP asymmetry arise at order F 4 in the Yukawa couplings.

Corrections to the direct CP asymmetry are further suppressed by one SM coupling. Hence

the calculation of the thermal effects to the direct CP asymmetry is a three-loop calculation

in the fundamental theory (2.1). We have performed the calculation in the effective field

theory framework introduced in [8], which is valid for T ≪ M . The three-loop thermal
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calculation of the original theory splits into the calculation of the imaginary parts of two-

loop diagrams that match the Wilson coefficients of the EFT (2.2), a calculation that can

be performed in vacuum, and the calculation of a thermal one-loop diagram in the EFT.

In its range of applicability, the EFT framework provides, therefore, a significantly simpler

method of calculation. The same formalism may prove to be a useful tool to calculate

the CP asymmetry also in other arrangements of the heavy-neutrino masses, such as a

hierarchically ordered neutrino mass spectrum, where direct and indirect CP asymmetries

are of comparable size. The EFT (2.2) is also the natural starting point for establishing

the rate equations for the time evolution of the particle densities in the regime where the

Majorana neutrinos are non-relativistic. A first study of the non-relativistic approximation

for the rate equations can be found in [44].

There are some critical issues about the results presented here that should be mentioned

and be possibly the subject of further investigations. The results rely on a strict expansion

in T/M . The range of applicability of this expansion has been investigated in [5] for

the neutrino production rate by comparing with exact results. Although the expansion

converges well, its agreement with the exact result appears to happen at relatively small

temperatures. A similar behaviour could be also for the CP asymmetry. We investigate

this issue and provide a computational scheme that may solve it in appendix C.

Another question is how the corrections in T/M compare with the yet unknown radia-

tive corrections to the CP asymmetry at zero temperature. First, we note that for the indi-

rect CP asymmetry, which is the dominant part of the asymmetry in particular for the reso-

nant case or close to it, the computed (T/M)2 corrections are not suppressed by the SM cou-

plings. Hence they are likely to be larger than or of the same size as radiative corrections for

a wide range of temperatures. Second, we observe that thermal corrections to the direct CP

asymmetry, which are suppressed in the SM couplings, are indeed of relative size λ(T/M)2

and (3g2+ g′2)(T/M)2 (cf. with (5.3) and (5.6) or (7.9) and (7.10)). These should be com-

pared with radiative corrections of possible relative size λ/π2, |λt|
2/π2 or (3g2 + g′2)/π2

(cf. with the radiative corrections to the production rate in [6]). The factor 1/π2 is typical

of radiative corrections, but absent in thermal corrections. The two are of comparable size

for T/M ∼ 1/π, which is inside the range of convergence of the expansion in T/M . Clearly

radiative corrections are a missing ingredient for a complete quantitative evaluation of the

CP asymmetry. Following the above discussion, their evaluation seems most needed when

the CP asymmetry is dominated by direct contributions and at lower temperatures.

At relative order (T/M)2 only the Higgs self-coupling, λ, and the SU(2)L×U(1)Y gauge

couplings, g and g′, enter the expression of the CP asymmetry. Higher-order operators in

the 1/M expansion have not been considered in this work. However, higher-order operators,

most importantly the dimension seven operators described in [8], may contribute to the CP

asymmetry as well. The power counting of the EFT shows that they can induce thermal

corrections that scale like gSM(T/M)4, where gSM is understood as either λ, (3g2 + g′2) or

the top Yukawa coupling |λt|
2. Even though these corrections are further suppressed in the

expansion in T/M , the particular values of the SM couplings at high energies can make

gSM(T/M)4 corrections numerically comparable with or larger than those calculated at

order (T/M)2 and presented in this work. As a reference, at a scale of 104TeV the Higgs self
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coupling is about λ ≈ 0.02, the top Yukawa coupling is about |λt|
2 ≈ 0.4 and (3g2 + g′2) ≈

1.2, whereas at a scale of 1TeV λ ≈ 0.1, |λt|
2 ≈ 0.7 and (3g2+g′2) ≈ 1.6 [45, 46]. To shape

better this issue the effect of, at least, some higher-order operators should be calculated.
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A Majorana neutrino propagators

In this section we review the expressions for the relativistic propagators of a Majorana

fermion and the corresponding non-relativistic version [8]. If ψI is a spinor describing a

relativistic Majorana particle, then

ψI = ψc
I = Cψ̄ T

I , (A.1)

where ψc
I denotes the charge-conjugate spinor and C the charge-conjugation matrix that

satisfies C† = CT = C−1 = −C and C γµT C = γµ. The relativistic propagators for a free

Majorana particle are:

〈0|T (ψα
I (x)ψ̄

β
I (y))|0〉 = i

∫

d4p

(2π)4
(/p+MI)

αβ

p2 −M2
I + iǫ

e−ip·(x−y) , (A.2)

〈0|T (ψα
I (x)ψ

β
I (y))|0〉 = −i

∫

d4p

(2π)4

[

(/p+MI)C
]αβ

p2 −M2
I + iǫ

e−ip·(x−y) , (A.3)

〈0|T (ψ̄α
I (x)ψ̄

β
I (y))|0〉 = −i

∫

d4p

(2π)4

[

C(/p+MI)
]αβ

p2 −M2
I + iǫ

e−ip·(x−y) , (A.4)

where α and β are Lorentz indices and T stands for the time-ordered product. The ex-

pression for the non-relativistic Majorana propagator in the EFT (2.2) can be obtained

by projecting (A.2)–(A.4) on the small components of the Majorana fields. Putting

pµ = Mvµ + kµ, where k2 ≪ M2, we obtain in the large M limit

〈0|T (Nα
1 (x)N̄

β
1 (y))|0〉 =

(

1 + /v

2

)αβ ∫ d4k

(2π)4
e−ik·(x−y) i

v · k + iǫ
, (A.5)

and

〈0|T (Nα
2 (x)N̄

β
2 (y))|0〉 =

(

1 + /v

2

)αβ ∫ d4k

(2π)4
e−ik·(x−y) i

v · k −∆+ iǫ
, (A.6)

where M1 = M and ∆ = M2 −M1. The other possible time-ordered combinations vanish.
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B Matching the asymmetry

In this appendix, we compute the matching coefficients in (4.1) and (4.2). They are ob-

tained by matching matrix elements calculated in the fundamental theory with matrix

elements in the EFT. The fundamental theory is (2.1). It contains the SM with unbroken

gauge group SU(2)L×U(1)Y , whose Lagrangian reads

LSM = L̄fPR i /DLf + Q̄PR i /DQ+ t̄PL i /D t−
1

4
W a

µνW
aµν −

1

4
FµνF

µν

+(Dµφ)
† (Dµφ)− λ

(

φ†φ
)2

− λt Q̄ φ̃ PRt− λ∗
t t̄PL φ̃†Q+ . . . . (B.1)

The dots stand for terms that can be neglected in our calculation, e.g., terms with right-

handed leptons or light quarks. The covariant derivative is given by

Dµ = ∂µ − igAa
µτ

a − ig′Y Bµ , (B.2)

where τa are the SU(2)L generators and Y is the hypercharge (Y = 1/2 for the Higgs

boson, Y = −1/2 for left-handed leptons). The fields Lf are the SU(2)L lepton doublets

with flavour f , QT = (t, b) is the heavy-quark SU(2)L doublet, Aa
µ are the SU(2)L gauge

fields, Bµ the U(1)Y gauge fields and W aµν , Fµν the corresponding field strength tensors,

φ is the Higgs doublet and t is the top quark field. The couplings g, g′, λ and λt are the

SU(2)L and U(1)Y gauge couplings, the four-Higgs coupling and the top Yukawa coupling

respectively. Because in the matching we integrate out only high-energy modes, we can

set to zero any low-energy scale appearing in loops. Especially, as discussed in the main

body of the paper, we can set to zero the temperature. As a consequence, loop diagrams

on the EFT side of the matching vanish in dimensional regularization because they are

scaleless. Dimensional regularization is used for loop calculations throughout the paper.

The operators in the EFT (2.2) that we need to match are

aIJ
MI

N̄INJφ
†φ. (B.3)

Hence we need to consider four-field matrix elements involving two Majorana and two Higgs

fields. The effective interaction with either leptons, quarks or gauge bosons in the plasma

is described by operators that are further suppressed in the 1/M expansion. We do not

consider such operators in this work since we calculate corrections to the CP asymmetry

of relative order T 2/M2, whereas the neglected ones induce corrections that are at least of

order T 4/M4.

We perform the matching in the reference frame vµ = (1,~0 ), where we assume both

the Majorana neutrino and the plasma to be at rest. Since we are interested in the imagi-

nary parts of the Wilson coefficients, we evaluate the imaginary parts of −iD, where D are

generic Feynman diagrams amputated of the external legs. Moreover we may choose the in-

coming and outgoing SM particles to have vanishing momentum, because their momentum

is assumed to be much smaller than M , and we do not match onto derivative operators.

(An exception are diagrams with pinch singularities where we set the momentum to zero

after the cancellation of the singularities).
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= 2π θ(p0) δ(p2 −m2)

=
−i

p2−m2−iǫ

=
i

p2−m2+iǫ

Figure 10. The relevant cutting rules for a scalar propagator at zero temperature in the convention

of [49]. The momentum direction is represented by the arrow. The blue thick dashed line stands

for the cut. Vertices on the right of the cut are circled. Circled vertices have opposite sign than

non-circled vertices.

B.1 Cutting rules

A way of computing the imaginary part of −iD, where D is a Feynman diagram, is by

means of cutting rules. Here we describe briefly the cutting rules at zero temperature and

the notation that we will use; we also illustrate them with an example. We refer to [47–49]

for some classical presentations and to [30] for a more recent one suited to include complex

masses and couplings.

At the core of the method is the cutting equation, which relates Im(−iD) with cut

diagrams of D. It reads

Im(−iD) = −Re(D) =
1

2

∑

cuts

D . (B.4)

A cut diagram consists in separating the Feynman diagram into two disconnected diagrams

by putting on shell some of its internal propagators. The cut is typically represented by a

line “cutting” through these propagators: in our case it is a blue thick dashed line. Ver-

tices on the right of the cut are circled. Circled vertices have opposite sign than uncircled

vertices. We can have three types of propagators. Propagators between two circled ver-

tices, propagators between uncircled vertices and propagators between one circled and one

uncircled vertex. This last situation occurs when the cut goes through the propagator.

The expressions for these three propagators are shown in the case of a scalar particle in

figure 10; the extension to fermions and gauge bosons is straightforward. Note that when

the cut goes through the propagator the particle is put on shell. The sum in (B.4) extends

over all possible cuts of the diagram D.

As an example, we show how to obtain the imaginary part of the Wilson coefficient of

the operator (B.3) in the case of just one neutrino generation. We call this single Wilson

coefficient a. It was first derived in [8] without using cutting rules. Cutting rules have

the advantage that they allow to disentangle the contribution coming from the decay into

a lepton, which we call Im aℓ, from the contribution coming from the decay into an anti-

lepton, which we call Im aℓ̄. The coefficient Im a is at leading order the sum of these two

contributions: Im a = Im aℓ + Im aℓ̄. It can be obtained by matching the following matrix
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1) 2)

+

=

=

3)

aℓ

aℓ̄
+

4)

Figure 11. Diagrams in the full theory contributing to the Majorana neutrino-Higgs boson

dimension-five operator. On the left-hand side are the diagrams in the full theory, whereas on

the right-hand side are the diagrams in the EFT. As in figure 6 and in the rest of the paper, red

dashed lines indicate external Higgs bosons with a soft momentum much smaller than the mass of

the Majorana neutrino. The cuts on the diagrams in the fundamental theory are explicitly shown.

element of the fundamental theory

− i

∫

d4x eip·x
∫

d4y

∫

d4z eiq·(y−z) 〈Ω|T (ψµ(x)ψ̄ν(0)φm(y)φ†
n(z))|Ω〉

∣

∣

∣

∣

pα=(M+iǫ,~0 )

, (B.5)

with the corresponding matrix element of the EFT. The field ψ identifies the only Majorana

neutrino field available in this case, µ and ν are Lorentz indices andm and n SU(2)L indices.

When computing matrix elements involving Majorana fermions, one has to consider

that the relativistic Majorana field may be contracted in more ways than if it was a Dirac

field, this reflecting the indistinguishability of the Majorana particle and anti-particle. The

different contractions give rise to the different propagators listed in (A.2)–(A.4). When

contracting the Majorana fields in (B.5) according to (A.2), one obtains at leading order

[

P̂ (−iD) P̂
]µν

= 6|F |2λ δmn

∫

d4ℓ

(2π)4

(

P̂ PL/ℓ P̂
)µν i

ℓ2 + iǫ

(

i

(Mv − ℓ)2 + iǫ

)2

, (B.6)

where we have dropped all external propagators and D is the amputated (uncut) diagram

shown in the upper raw and left-hand side of figure 11. The external heavy-neutrino prop-

agators reduce in the non-relativistic limit and in the rest frame to a matrix proportional

to P̂ = (1+ γ0)/2 (see (A.5)). We have kept the matrix P̂ on the left- and right-hand side

of (B.6), because it helps projecting out the contributions relevant in the heavy-neutrino

mass limit, e.g., P̂ PL P̂ = P̂ /2. After projection, also the matrix P̂ may be eventu-

ally dropped from the left- and right-hand side of the matching equation. The internal

loop momentum is ℓµ, Mvµ = (M,~0) is the neutrino momentum in the rest frame and

|F |2 =
∑

f F
∗
f Ff .

The diagram D admits two cuts labeled 1) and 2) and shown in the upper raw and

left-hand side of figure 11. Both cuts select a final state made of a lepton and, therefore,
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contribute to aℓ. Using (B.4) and the cutting rules we obtain for the two cuts:

[

P̂ Im(−iDℓ
1,figure 11)P̂

]µν
= 3|F |2λ (−1)2 δmn

∫

d4ℓ

(2π)4

(

P̂ PL/ℓ P̂
)µν

2πθ(ℓ0)δ(ℓ2)

×2πθ(M − ℓ0)δ((Mv − ℓ)2)
−i

(Mv − ℓ)2 − iǫ
, (B.7)

[

P̂ Im(−iDℓ
2,figure 11)P̂

]µν
= 3|F |2λ (−1) δmn

∫

d4ℓ

(2π)4

(

P̂ PL/ℓ P̂
)µν

2πθ(ℓ0)δ(ℓ2)

×2πθ(M − ℓ0)δ((Mv − ℓ)2)
i

(Mv − ℓ)2 + iǫ
. (B.8)

Both Im(−iDℓ
1,figure 11

) and Im(−iDℓ
2,figure 11

) have a pinch singularity whose origin is the soft

limit of the Higgs momentum pair. A way to regularize the singularity is to give a small

finite momentum to the Higgs pair and set it to zero after cancellation of the singularity.

The singularity cancels in the sum of the two cuts, which reads

Im(−iDℓ
1,figure 11) + Im(−iDℓ

2,figure 11) = −
3

16πM
|F |2λ δµνδmn, (B.9)

where we have used for the amputated Green function the same indices used for the un-

amputated one, a convention that we will keep in the following.

When contracting the Majorana fields in (B.5) according to (A.3) and (A.4) one obtains

at leading order a contribution encoded in the diagram shown in the lower raw and left-

hand side of figure 11. The expression for this diagram is the same as the one in (B.6) up to

an irrelevant change PL → PR (the expression is also unsensitive to the change Ff ↔ F ∗
f ).

The diagram admits two cuts labeled 3) and 4) and shown in the lower raw and left-hand

side of figure 11. Both cuts select a final state made of an anti-lepton and, therefore,

contribute to aℓ̄. The contributions from these two cuts are the same as the ones in (B.7)

and (B.8) and give eventually the same result for the sum

Im(−iDℓ̄
3,figure 11) + Im(−iDℓ̄

4,figure 11) = −
3

16πM
|F |2λ δµνδmn. (B.10)

Comparing (B.9) and (B.10) with the corresponding expressions in the EFT, which

are (Im aℓ/M) δµνδmn and (Im aℓ̄/M) δµνδmn respectively, one obtains

Im aℓ = Im aℓ̄ = −
3

16π
|F |2λ, (B.11)

Im a = Im aℓ + Im aℓ̄ = −
3

8π
|F |2λ. (B.12)

Equation (B.12) agrees with the result found in [8].

B.2 Matching diagrams with four-Higgs interaction

In order to derive (4.1), we compute in the fundamental theory the matrix element

−i

∫

d4x eip·x
∫

d4y

∫

d4z eiq·(y−z) 〈Ω|T (ψµ
1 (x)ψ̄

ν
1 (0)φm(y)φ†

n(z))|Ω〉

∣

∣

∣

∣

pα=(M+iǫ,~0 )

. (B.13)
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a) b)

Figure 12. Diagrams contributing to aℓ
II

at order F 4. One diagram is the complex conjugate of

the other.

The matrix element is similar to (B.5), but now in a theory with two types of heavy

Majorana neutrinos. External neutrinos are of type 1, whereas neutrinos of type 2 appear

only as intermediate states. The result can be extended straightforwardly to the case of

external neutrinos of type 2, leading to (4.2). The matrix element describes a 2 → 2

scattering between a heavy Majorana neutrino of type 1 at rest and a Higgs boson carrying

momentum qµ. Since the momentum qµ is much smaller than the neutrino mass and we

are not matching derivative operators, qµ can be set to zero in the matching. Here, we

compute the diagrams contributing to (B.13) that enter the matching of aℓ11 (and aℓ̄11) up

to first order in λ and are relevant for the direct CP asymmetry; in the next section, we

will compute the diagrams of order g2 and g′2. It may be useful to cast the diagrams into

three different typologies as we will do in the following. All diagrams are understood as

amputated of their external legs.

A first class of diagrams is obtained by opening-up a Higgs line in the two-loop diagrams

of figure 3. These diagrams are of order F 4. The subset contributing to aℓII is shown in

figure 12. Diagrams a) and b) are one the complex conjugate of the other; their sum is

real. By cutting the loops so to bring one lepton on shell and summing both diagrams

the result is proportional to the Yukawa coupling combination Re
[

(F ∗
1FJ)

2
]

only. The

reason is that, after the cuts, the diagrams do not contain loops anymore and cannot

develop any additional complex phase. If we consider the subset of diagrams contributing

to aℓ̄II , which are diagrams where the anti-lepton can be put on shell, we obtain through a

similar argument that the sum of diagrams is proportional again to the Yukawa coupling

combination Re
[

(F ∗
1FJ)

2
]

. It follows that the matching coefficients obtained for leptons

and anti-leptons and the corresponding leptonic and anti-leptonic widths cancel in the

difference. One-loop diagrams of order F 4 with two external Higgs bosons do not contribute

to the direct CP asymmetry.

A second class of diagrams is obtained by attaching a four-Higgs vertex to an existing

Higgs line in the two-loop diagrams of figure 3. These diagrams are of order F 4λ and are

shown with the relevant cuts in figure 13. In each raw we show a diagram and its complex

conjugate and we draw explicitly the cuts that put a lepton on shell. This amounts at se-

lecting in all the diagrams in figure 13 the decay of a heavy Majorana neutrino into a lepton.

The decay width into an anti-lepton can be computed by cutting anti-lepton lines. In gen-

eral, the sum of each couple of diagrams in figure 13 is a linear combination of the real and

the imaginary parts of (F ∗
1FJ)

2. The appearance of a term proportional to Im
[

(F ∗
1F2)

2
]

in addition to Re
[

(F ∗
1FJ)

2
]

reflects the fact that after the cut we are left with a loop that

also develops an imaginary part. For each couple of diagrams, contributions coming from
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1) 2)

3)

5) 6)

4)

Figure 13. Diagrams contributing to aℓ
II

and aℓ̄
II

at order F 4λ. The cuts through leptons are

explicitly shown and implemented according to the rules of figure 10.

the lepton and the anti-lepton cuts give the same terms proportional to Re
[

(F ∗
1FJ)

2
]

but

terms proportional to Im
[

(F ∗
1F2)

2
]

with opposite signs, since Re
[

(F ∗
1FJ)

2
]

= Re
[

(F1F
∗
J )

2
]

while Im
[

(F ∗
1F2)

2
]

= −Im
[

(F1F
∗
2 )

2
]

. So that, when calculating the CP asymmetry, terms

proportional to Re
[

(F ∗
1FJ)

2
]

cancel, and only those proportional to Im
[

(F ∗
1F2)

2
]

remain.

Hence for each diagram we only need to calculate the terms proportional to Im
[

(F ∗
1F2)

2
]

,

consistently with the discussion in section 3. Up to relative order ∆/M they are:

Im (−iDℓ
1,figure 13) + Im (−iDℓ

2,figure 13) =

=
3 Im

[

(F ∗
1F2)

2
]

(16π)2M
λ

[

ln 2− (1− ln 2)
∆

M

]

δµνδmn + . . . , (B.14)

Im (−iDℓ
3,figure 13) + Im (−iDℓ

4,figure 13) + Im (−iDℓ
5,figure 13) + Im (−iDℓ

6,figure 13) =

=
3 Im

[

(F ∗
1F2)

2
]

(16π)2M
λ

[

ln 2− (1− ln 2)
∆

M

]

δµνδmn + . . . . (B.15)

The dots stand for terms proportional to the Yukawa coupling combination Re
[

(F ∗
1FJ)

2
]

and higher-order terms in the expansion in ∆/M . The superscript ℓ reminds that we

have cut through leptons only; as we argued above, the contribution of anti-leptons has

opposite sign. We give the result in (B.15) as the sum of four diagrams to cancel a pinch

singularity that arises in the soft momentum limit of the Higgs boson. This is analogous

to the calculation carried out in section B.1.

Once the four-Higgs vertices are removed, the diagrams of figure 13 preserve the topol-

ogy of the T = 0 two-loop diagrams of figure 3. There is, finally, a third class of diagrams

where this topology is not preserved. A way to construct them is from the diagrams of fig-
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1) 2)

6)

4)

5)

7)

3)

8)

Figure 14. Diagrams contributing to aℓ
II

and aℓ̄
II

at order F 4λ. The cuts through leptons are

explicitly shown.

ure 12 (and the corresponding ones with an anti-lepton in the loop) by adding a four-Higgs

vertex to the internal Higgs line; we show the diagrams with the relevant cuts in figure 14.

The results for the cuts through leptons read

Im (−iDℓ
1,figure 14) + Im (−iDℓ

2,figure 14) =

=
3 Im

[

(F ∗
1F2)

2
]

(16π)2M
λ

(

1−
∆

M

)

δµνδmn + . . . , (B.16)

Im (−iDℓ
3,figure 14) + Im (−iDℓ

4,figure 14) =

=
3 Im

[

(F ∗
1F2)

2
]

(16π)2M
λ

(

1−
∆

M

)

δµνδmn + . . . , (B.17)

Im (−iDℓ
5,figure 14) + Im (−iDℓ

6,figure 14) = 0 . (B.18)

Some remarks, which will be of use also in the following to simplify the calculation,

are in order. First, in the Feynman diagrams, integrals over momentum regions where

the intermediate neutrino is on shell do no contribute to the matching. Such momentum

regions are either kinematically forbidden, if the intermediate neutrino is heavier than the
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a) b) c)

d) e) f)

Figure 15. If the incoming and outgoing Majorana neutrinos are conventionally chosen to be of

type 1, then the displayed diagrams contribute to aℓ
11

at order F 4 and at first order in the gauge

couplings. The diagrams contribute also to aℓ̄
11

if cut through the anti-lepton. Only diagrams

proportional to (F ∗

1
F2)

2 are displayed.

initial one, or they are reproduced in the EFT, if the intermediate neutrino is lighter than

the initial one (see diagrams in figure 5 and the related discussion in section 5.2). In the last

case, the momentum is necessarily of order ∆. Modes with energy or momentum of order

∆ ≪ M are still dynamical in the effective theory and should not be integrated out with the

mass scale (if they are, then they would need to be subtracted by computing suitable loops

in the effective theory). Second, also momentum regions where three massless particles

happen to be on-shell and enter the same vertex do not contribute to the matching, because

the available phase space vanishes in dimensional regularization. These general remarks

apply in the present case to the diagrams 5) and 6) of figure 14. After the cuts through

the lepton propagators shown in the diagrams have been implemented, the remaining one-

loop diagrams may develop an imaginary part only if two of the particles in the loop can

be put on shell. If the neutrino is put on shell, then the one-loop integral is either over

a kinematically forbidden momentum region or over a momentum region which is much

smaller than M , according to the first remark above. If the light particles are put on shell,

then, for we can neglect the momentum of the external Higgs boson, we have a situation

equivalent to a vertex with three on-shell massless particles and the second remark above

applies. The result is that diagrams 5) and 6) of figure 14 do not contribute to the CP

asymmetry at the scale M , which is the result (B.18).

B.3 Matching diagrams with gauge interactions

At order F 4 and at first order in the SM couplings, besides the Feynman diagrams with

four-Higgs vertices computed in the previous section, also diagrams with a gauge boson

can contribute. We will compute them here.

By cutting this kind of diagrams we distinguish two different type of processes: pro-

cesses with a gauge boson in the final state or processes without a gauge boson in the

final state. These being two distinct physical processes, we can compute them in different
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c)a) b)

Figure 16. Diagrams as in figure 15. In diagram c), the particles in the small loop coupled to a

Higgs boson are a top-quark and a heavy-quark doublet.

1) 2) 3)

Figure 17. Cuts on diagram a) of figure 16. The first cut does not contain any loop. The other

two cut diagrams do contain a remaining loop that however does not develop an imaginary part.

gauges. It is advantageous to adopt the Coulomb gauge in the first type of processes and

the Landau gauge in the second one. The advantages are twofold. First, with this choice

of gauge we can neglect, for the purpose of matching the dimension-five operators (B.3) in

the EFT, all diagrams with a gauge boson attached to an external Higgs boson leg. The

reason is that the coupling of the gauge boson with the Higgs boson is proportional to the

momentum of the latter (see (B.1) and (B.2)). If it depends on the external momentum,

then the diagram will contribute to the matching of a higher-dimensional operator in the

EFT, for the dimension-five operators do not contain derivatives. If it depends on the

internal momentum then its contraction with the gauge boson propagator vanishes both

in Landau gauge, if the gauge boson is uncut, and in Coulomb gauge, if the gauge boson

is cut. In the latter case, only transverse gauge bosons can be cut. Second, the physical

Coulomb gauge does not generate spurious singularities when the gauge boson is cut.

With the above choice of gauges, it is convenient to divide the remaining diagrams

contributing to the matching of the dimension-five operators into the four sets shown in

figures 15, 16, 18 and 19 for the leptonic contribution. After closer inspection, diagram c)

in figure 15 turns out not to contribute to the CP asymmetry. The diagram may be

cut through the lepton propagator in two ways leaving in each case an uncut one-loop

subdiagram. The only cuts for these subdiagrams that are relevant for the matching (see

discussion at the end of section B.2) give rise to two identical but opposite contributions

(they differ only in the number of circled vertices), which cancel. We have checked the

cancellation also by explicit calculation.

We consider now the three diagrams in figure 16. It turns out that these diagrams

cannot introduce an additional complex phase, i.e., they do not develop an imaginary part

of the loop amplitude, the quantity that we called Im(B) in section 3. In order to prove this

statement, let us pick up diagram a) in figure 16 and consider all possible cuts that put a

lepton on shell. These are shown in figure 17. The first cut does not contain any loop, hence
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Figure 18. Diagram as in figure 15.

c)

a)

d)

b)

Figure 19. Four diagrams that would be resonant without the gauge boson. Only diagrams

proportional to (F ∗

1
F2)

2 are displayed.

it does not generate any additional complex phase besides the Yukawa couplings. In the

second and third cut, in order to generate a complex phase, the remaining loop diagrams

would need to develop an imaginary part. However, this is not the case since the (on-shell)

incoming and outgoing particles in the loop and the particles in the loop itself are massless,

a situation already discussed at the end of section B.2. Therefore, also in this case, the

diagram and its complex conjugate contribute with a term proportional to Re
[

(F ∗
1F2)

2
]

,

which cancels eventually against the anti-leptonic width in the CP asymmetry. The same

argument applies to both diagrams b) and c) in figure 16 (as well as to diagrams with

loops inserted in the external Higgs legs that we have not displayed). As an important

consequence, there are not thermal corrections to the CP asymmetry of order T 2/M2 that

are proportional to the top-Yukawa coupling, λt.

The diagram in figure 18 does not contribute as well to the CP asymmetry. Indeed,

once it has been cut in a way that the lepton and Higgs boson are on shell, what is left is

a subdiagram with a vanishing imaginary part in Landau gauge. This has been shown by

direct computation in [8].6

We compute now the part of aℓ11 relevant for the CP asymmetry coming from the

diagrams of figure 15 that have not been already excluded on the basis of the previous ar-

guments. We organize the calculation as follows: first, we compute the cuts that go through

the lepton but not the gauge boson, i.e., the gauge boson contributes only as a virtual par-

ticle in the loop, then we compute the cuts that go through both the lepton and the gauge

boson. In figure 20, we show the cuts in the first case, whereas in figure 21 and 22 we show

6See figure 4, diagram 5), and eq. (A.8) there.
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1)

3) 4)

2)

Figure 20. On each raw we show the diagrams a) and b) of figure 15 together with their complex

conjugates. Higgs bosons and leptons are cut.

them in the second one. On each raw we draw a diagram and its complex conjugate. As

argued before, cuts that do not leave a loop uncut do not generate any additional complex

phase and therefore do not contribute to the CP asymmetry. These cuts are not displayed.

We start with computing the cuts shown in figure 20. In Landau gauge, the result is

Im (−iDℓ
1,figure 20) + Im (−iDℓ

2,figure 20) = 0 , (B.19)

Im (−iDℓ
3,figure 20) + Im (−iDℓ

4,figure 20) =

= −
Im

[

(F ∗
1F2)

2
]

(16π)2M

3g2 + g′2

8

[

ln 2− (1− ln 2)
∆

M

]

δµνδmn + . . . , (B.20)

where the superscript ℓ refers to having cut a lepton line. The dots stand for higher-order

terms in the ∆/M expansion and for terms that do not contribute to the CP asymmetry.

We compute now cuts through gauge bosons. As argued at the beginning of this

section, we can use for this kind of cuts a different gauge, namely the Coulomb gauge. The

result for the cuts shown in figure 21 reads

Im (−iDℓ
1,figure 21) + Im (−iDℓ

2,figure 21) =

= −
Im

[

(F ∗
1F2)

2
]

(16π)2M

3g2 + g′2

8

(

−1 +
∆

M

)

δµνδmn + . . . , (B.21)

Im (−iDℓ
3,figure 21) + Im (−iDℓ

4,figure 21) =

= −
Im

[

(F ∗
1F2)

2
]

(16π)2M

3g2+g′2

4

[

(1−ln 2)+(2−3 ln 2)
∆

M

]

δµνδmn+. . . . (B.22)

Two more diagrams that contribute to the part of aℓ11 that matters for the CP asym-
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1)

3) 4)

2)

Figure 21. On each raw we show the diagrams d) and e) of figure 15 together with their complex

conjugates. Gauge bosons and leptons are cut.

1) 2)

Figure 22. Diagram f) of figure 15 together with its complex conjugate. Gauge bosons and leptons

are cut.

metry with the relevant cuts are shown in figure 22. They give

Im (−iDℓ
1,figure 22) + Im (−iDℓ

2,figure 22) = −
Im

[

(F ∗
1F2)

2
]

(16π)2M

3g2 + g′2

8

(

1−
∆

M

)

δµνδmn + . . . .

(B.23)

Finally, we consider the diagrams shown in figure 19. Removing the gauge boson, these

diagrams could become resonant and contribute to the indirect CP asymmetry discussed in

section 6. Indeed their contribution is accounted for by the diagrams in the EFT shown in

figure 7. With the gauge bosons included these diagrams cannot become resonant when the

gauge boson carries away an energy of order M and, according to the definition adopted

in this paper, they contribute to the direct CP asymmetry. Clearly they do contribute to

the Wilson coefficients Im aℓII and Im aℓ̄II .

As before, we start considering cuts through leptons and Higgs bosons. Only diagrams

a) and b) of figure 19 may be cut in this way and contribute to the CP asymmetry. The

diagrams and the relevant cuts are shown in figure 23. The result in Landau gauge reads

Im (−iDℓ
1,figure 23) + Im (−iDℓ

2,figure 23) = 0 , (B.24)

Im (−iDℓ
3,figure 23) + Im (−iDℓ

4,figure 23) =
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3)

1)

4)

2)

Figure 23. On each raw we show the diagrams a) and b) of figure 19 together with their complex

conjugates. Higgs bosons and leptons are cut.

3)

1)

4)

2)

Figure 24. On each raw we show the diagrams c) and d) of figure 19 together with their complex

conjugates. Gauge bosons and leptons are cut.

= −
Im

[

(F ∗
1F2)

2
]

(16π)2M

3g2 + g′2

4

(

1−
∆

M

)

δµνδmn + . . . . (B.25)

On the other hand, only diagrams c) and d) of figure 19 may be cut through a lepton

and a gauge boson. The diagrams and the relevant cuts are shown in figure 24. The result

in Coulomb gauge reads

Im (−iDℓ
1,figure 24) + Im (−iDℓ

2,figure 24) =

= −
Im

[

(F ∗
1F2)

2
]

(16π)2M

3g2 + g′2

4

(

−1 +
∆

M

)

δµνδmn + . . . , (B.26)

Im (−iDℓ
3,figure 24) + Im (−iDℓ

4,figure 24) =

= −
Im

[

(F ∗
1F2)

2
]

(16π)2M

3g2 + g′2

4

(

1−
∆

M

)

δµνδmn + . . . . (B.27)
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Summing up all diagrams (B.14)–(B.27), and comparing with the expression of the

matrix element (B.13) in the EFT, which is (Im aℓ11/M)δµνδmn for the leptonic contribution

and (Im aℓ̄11/M)δµνδmn for the anti-leptonic one, we obtain (4.1). The expression for the

Wilson coefficient involving the Majorana neutrino of type 2 can be inferred from the above

results after the substitutions F1 ↔ F2, M → M2 and ∆ → −∆ in (B.14)–(B.27) or just

in (4.1). The result, in terms of the lightest neutrino mass, M , has been written in (4.2).

That the above substitutions work follows from the fact that the real transition from a

heavier neutrino of type 2 to a lighter neutrino of type 1, which is a decay channel absent

in the case of neutrinos of type 1, is a process accounted for by the EFT (see section 5.2),

and, therefore, it does not contribute to the matching. In fact, the energy emitted in such

a transition is of order ∆; this is, in the nearly degenerate case considered in this work,

much smaller than M .

B.4 Matching the flavoured asymmetry

There are diagrams contributing to the matching coefficients Im aℓII and Im aℓ̄II that are

relevant only for the flavoured CP asymmetry. These are diagrams involving only lepton

(or anti-lepton) propagators. They could contribute to the CP asymmetry with terms

proportional to Im
[

(F1F
∗
2 )(F

∗
f1Ff2)

]

. Clearly such terms vanish in the unflavoured case.

Here we examine these diagrams and find that they do not contribute.

We may divide these diagrams into two classes: diagrams that involve the four-Higgs

coupling, shown in figure 25, and diagrams involving gauge couplings, shown in figures 27

and 28. Let us consider diagram a) of figure 25. If we cut the lepton in the loop on

the right, then the cut gives rise to the Feynman subdiagram shown in figure 26. This is

proportional to (ℓµ is the momentum of the lepton)

δ(ℓ2)/ℓ PR

/ℓ +MJ

ℓ2 −M2
J + iǫ

PL = PL δ(ℓ2)ℓ2
1

ℓ2 −M2
J + iǫ

= 0, (B.28)

and therefore vanishes.7 If we cut the lepton in the loop on the left, then we need the

imaginary part of the remaining (uncut) loop on the right. The imaginary part of the

loop on the right may be computed by considering all its possible cuts. Those include

cuts through the lepton, which vanish according to the above argument, cuts through the

Higgs-boson propagator, which vanish because they involve three massless on-shell particles

entering the same vertex, and cuts through the Majorana-neutrino propagator, which are

either kinematically forbidden or involve momenta of order ∆ that are accounted for by

the EFT (for more details see the discussion at the end of section B.2).

The same arguments may be applied to all remaining diagrams shown in figures 25, 27

and 28. In particular, for many of them the argument based on the identity (B.28) is

crucial. The identity (B.28) is relevant only for the flavoured case.

7The corresponding Feynman subdiagram of 1) in figure 14 involves a neutrino propagator of the

type (A.3) and an anti-lepton on the left. Hence it is proportional to

δ(ℓ2)/ℓ PR

/ℓ +MJ

ℓ2 −M2
J + iǫ

PR = PL δ(ℓ2)/ℓMJ

1

ℓ2 −M2
J + iǫ

6= 0.
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a)

e) f)

d)c)

b)

Figure 25. Diagrams contributing to the matching coefficients (4.1) and (4.2) involving the four-

Higgs coupling. Diagrams a)-d) may be inferred from the diagrams of figure 14 by changing an

anti-lepton line in a lepton line. The topologies of diagrams e) and f) are relevant only for the

flavoured case. We display only diagrams that admit leptonic cuts.

Figure 26. The blue dashed line on the right is the cut, the red central dashed line is an external

Higgs boson whose momentum can be set to zero and the black dashed line on the left may identify

a Higgs boson in a loop or an external one.

C The T/M expansion

In the paper, we have computed the thermal corrections to the neutrino CP asymmetry as

an expansion in the SM couplings and in T/M . The production rate for heavy Majorana

neutrinos has been computed in a similar fashion in [6–8]. Up to the order to which it is

known, the expansion in T/M is well behaved, i.e., for reasonably small values of T/M it

converges.

– 39 –



J
H
E
P
0
3
(
2
0
1
6
)
1
9
1

c)

a)

d)

b)

Figure 27. Diagrams contributing to the matching coefficients (4.1) and (4.2) involving gauge

couplings. The diagrams may be inferred from the diagrams of figure 19 by changing an anti-lepton

line in a lepton line. We display only diagrams that admit leptonic cuts.

a)

e)

c) d)

f)

b)

Figure 28. Diagrams contributing to the matching coefficients (4.1) and (4.2) involving gauge

couplings. The topologies of these diagrams are relevant only for the flavoured case. We display

only diagrams that admit leptonic cuts.
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Figure 29. The black line shows the difference between the exact neutrino production rate up to

order λ (top-Yukawa and gauge couplings set to zero) and the neutrino production rate at leading

order in T/M divided by the neutrino production rate at next-to-leading order in T/M . The red

line is as above but with the leading-order neutrino production rate multiplied by (1 + nB(M/2)−

nF (M/2)). The neutrino is taken at rest. The one-loop running four-Higgs coupling, λ, is taken

λ(107 GeV) ≈ 0.02 (λ(125 GeV) ≈ 0.126) [45].

Despite the above fact, it has been remarked in [5] that, when comparing the production

rate for heavy Majorana neutrinos in the T/M expansion with the exact result, which is

known at leading order in the SM couplings, the two results overlap only at very small values

of T/M , i.e., values around 1/10 or smaller. In the same work, it has been also noticed

that for values of T/M larger than 1/10 not only the discrepancy between the exact and

the approximate result appears larger than the last known term in the expansion, but also

of opposite sign. The situation is well illustrated by the black curve in figure 29. It shows

the difference between the exact neutrino production rate at order λ (top-Yukawa and

gauge couplings are set to zero) taken from [5] and the neutrino production rate at leading

order in T/M divided by the neutrino production rate at next-to-leading order in T/M .

At next-to-leading order in T/M the production rate depends only on the SM coupling λ.

The same behaviour may potentially show up also for the CP asymmetry, although

in this case the exact result is unknown. For this reason, in the rest of the appendix we

will clarify the origin of this behaviour and devise a strategy to improve the expansion in

T/M in such a way that it overlaps with the exact result for reasonably small, not only

very small, values of T/M . We will say that the expansion overlaps with the exact result

if the discrepancy between the exact and the approximate result is not larger than the last

known term in the expansion.

The problem is rather general. In the form we have it here, it happens when dealing

with a double expansion where one of the expansion parameters is much smaller than

the other one. In our case λ is much smaller than T/M for a relatively wide range of

temperatures. Under this circumstance, exponentially suppressed terms of the type e−M/T
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may become numerically as large as next-to-leading order terms of the type λ (T/M)2. In

fact e−M/T is larger than or very close to λ (T/M)2 for T/M & 1/8. One should recall that

exponentially suppressed terms vanish in any analytic expansion.

The solution of the problem consists in keeping exponentially suppressed terms in the

not-so-small parameter at leading order in the small-parameter expansion. In our case, this

amounts at keeping terms of the type e−M/T in the computation of the neutrino observables

at zeroth-order in the SM couplings. Let us illustrate how this works in the case of the

neutrino production rate. The relevant diagram is the self-energy diagram 1) of figure 3,

which, in the following, we will call Π. The neutrino production rate is proportional

to the retarded self energy, ΠR. In turn, the retarded self energy may be written as

ΠR = Π11+Π12, where Π11 is the self energy when the initial and final neutrinos are on the

physical branch of the Keldysh contour, and Π12 is the self energy when the initial neutrino

is on the physical branch whereas the final neutrino is on the complex branch of the Keldysh

contour [49, 50]. The “12” component of a heavy-particle propagator vanishes exponentially

in the heavy-mass limit [51]. For this reason we did not need to consider Π12 in [8]. But we

need to consider it here if we want to keep exponentially suppressed terms. Cutting Π11

and keeping the thermal distributions of the lepton and Higgs boson gives for a neutrino

at rest Π11 = [T = 0 result]× (1 + nB(M/2))(1− nF (M/2)), where nB(E) = 1/(eE/T − 1)

and nF (E) = 1/(eE/T + 1) are the Bose and Fermi distributions respectively. Cutting

Π12 gives Π12 = [T = 0 result]× nB(M/2)nF (M/2). Summing the two contributions gives

ΠR = [T = 0 result] × (1 + nB(M/2) − nF (M/2)). Hence, we can improve the neutrino

production rate at leading order in the SM coupling by multiplying the T = 0 result by

1 + nB(M/2)− nF (M/2) ≈ 1 + 2 e−M/T + . . . , (C.1)

which amounts at keeping (at least) terms of the type e−M/T in the expansion of the Bose

and Fermi distributions for M ≫ T .

In figure 29 the red curve shows the difference between the exact neutrino production

rate at order λ (top-Yukawa and gauge couplings set to zero) and the neutrino production

rate at leading order in T/M multiplied by (1 + nB(M/2) − nF (M/2)) divided by the

neutrino production rate at next-to-leading order in T/M . The grey band shows the region

where the discrepancy between the exact production rate and the next-to-leading order one

is not larger than the next-to-leading order one. We see that now the curve is in the grey

band for T/M . 1/2. Moreover, higher-order corrections in T/M do not change the sign

of the next-to-leading order correction. The result is consistent with our understanding of

the problem and in fact provides a simple way to solve it.

This computational scheme could be also implemented in the case of the CP asymme-

try. For the direct CP asymmetry, the leading-order diagrams are in this case given by the

two-loop diagrams shown in figure 3. Because we are cutting them and taking the imagi-

nary parts of the remaining one-loop subdiagrams, exponentially suppressed contributions

can be computed straightforwardly taking into account the combinatorics of all possible

physical and unphysical degrees of freedom contributing to Π11 and Π12 at two loops. A

computation along this line is in [22]. For the indirect CP asymmetry, the computation
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may be done in the EFT, whose parameters are the thermal decay widths and masses. The

exponential improvement of the widths has been discussed in the previous paragraphs.

Finally, we comment about the neutrino momentum k. Strictly speaking the non-

relativistic expansion is an expansion in T/M and k/M and is as good as these two pa-

rameters are small. If k is chosen to be equal to T or smaller, as we did in figure 29, then

T/M is the relevant expansion parameter. But if k = 2T , k = 3T , . . . then this is k/M .

In particular, one has to expect (naively) the exact result to overlap with the result of the

perturbative series at temperature 2, 3, . . . times smaller than one would have for k ≤ T .

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[28] A. Anisimov, A. Broncano and M. Plümacher, The CP-asymmetry in resonant leptogenesis,

Nucl. Phys. B 737 (2006) 176 [hep-ph/0511248] [INSPIRE].

[29] C.S. Fong, E. Nardi and A. Riotto, Leptogenesis in the universe,

Adv. High Energy Phys. 2012 (2012) 158303 [arXiv:1301.3062] [INSPIRE].

[30] A. Denner and J.-N. Lang, The complex-mass scheme and unitarity in perturbative quantum

field theory, Eur. Phys. J. C 75 (2015) 377 [arXiv:1406.6280] [INSPIRE].

[31] A. Pilaftsis, Resonant CP-violation induced by particle mixing in transition amplitudes,

Nucl. Phys. B 504 (1997) 61 [hep-ph/9702393] [INSPIRE].

[32] A. Pilaftsis, CP violation and baryogenesis due to heavy Majorana neutrinos,

Phys. Rev. D 56 (1997) 5431 [hep-ph/9707235] [INSPIRE].

– 44 –

http://dx.doi.org/10.1016/0370-2693(96)00817-9
http://arxiv.org/abs/hep-ph/9605319
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9605319
http://dx.doi.org/10.1016/S0370-2693(96)01337-8
http://arxiv.org/abs/hep-ph/9607310
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9607310
http://dx.doi.org/10.1016/S0370-2693(97)01548-7
http://arxiv.org/abs/hep-ph/9710460
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9710460
http://dx.doi.org/10.1016/j.aop.2012.10.007
http://arxiv.org/abs/1112.6428
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.6428
http://dx.doi.org/10.1016/j.nuclphysb.2012.03.009
http://arxiv.org/abs/1112.5954
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.5954
http://dx.doi.org/10.1016/j.nuclphysb.2004.05.029
http://arxiv.org/abs/hep-ph/0309342
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0309342
http://dx.doi.org/10.1142/S0217751X99000932
http://arxiv.org/abs/hep-ph/9812256
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9812256
http://dx.doi.org/10.1103/PhysRevD.57.93
http://arxiv.org/abs/hep-ph/9704366
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9704366
http://dx.doi.org/10.1016/j.nuclphysb.2004.02.019
http://arxiv.org/abs/hep-ph/0310123
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0310123
http://dx.doi.org/10.1103/PhysRevD.81.085028
http://arxiv.org/abs/1002.0331
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.0331
http://dx.doi.org/10.1016/j.aop.2011.02.002
http://arxiv.org/abs/1012.5821
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.5821
http://dx.doi.org/10.1088/1475-7516/2012/07/014
http://arxiv.org/abs/1111.1231
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.1231
http://dx.doi.org/10.1088/1126-6708/2006/06/053
http://arxiv.org/abs/hep-ph/0605209
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0605209
http://dx.doi.org/10.1016/0550-3213(96)00280-5
http://arxiv.org/abs/hep-ph/9601390
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9601390
http://dx.doi.org/10.1016/j.nuclphysb.2006.01.003
http://arxiv.org/abs/hep-ph/0511248
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0511248
http://dx.doi.org/10.1155/2012/158303
http://arxiv.org/abs/1301.3062
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.3062
http://dx.doi.org/10.1140/epjc/s10052-015-3579-2
http://arxiv.org/abs/1406.6280
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.6280
http://dx.doi.org/10.1016/S0550-3213(97)00469-0
http://arxiv.org/abs/hep-ph/9702393
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9702393
http://dx.doi.org/10.1103/PhysRevD.56.5431
http://arxiv.org/abs/hep-ph/9707235
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9707235


J
H
E
P
0
3
(
2
0
1
6
)
1
9
1

[33] P.S. Bhupal Dev, P. Millington, A. Pilaftsis and D. Teresi, Flavour covariant transport

equations: an application to resonant leptogenesis, Nucl. Phys. B 886 (2014) 569

[arXiv:1404.1003] [INSPIRE].

[34] T. Frossard, M. Garny, A. Hohenegger, A. Kartavtsev and D. Mitrouskas, Systematic

approach to thermal leptogenesis, Phys. Rev. D 87 (2013) 085009 [arXiv:1211.2140]

[INSPIRE].

[35] B. Garbrecht, F. Gautier and J. Klaric, Strong washout approximation to resonant

leptogenesis, JCAP 09 (2014) 033 [arXiv:1406.4190] [INSPIRE].

[36] H.A. Weldon, Effective fermion masses of order gT in high temperature gauge theories with

exact chiral invariance, Phys. Rev. D 26 (1982) 2789 [INSPIRE].

[37] E. Nardi, Y. Nir, J. Racker and E. Roulet, On Higgs and sphaleron effects during the

leptogenesis era, JHEP 01 (2006) 068 [hep-ph/0512052] [INSPIRE].

[38] E. Nardi, Y. Nir, E. Roulet and J. Racker, The importance of flavor in leptogenesis,

JHEP 01 (2006) 164 [hep-ph/0601084] [INSPIRE].

[39] B.A. Campbell, S. Davidson, J.R. Ellis and K.A. Olive, On the baryon, lepton flavor and

right-handed electron asymmetries of the universe, Phys. Lett. B 297 (1992) 118

[hep-ph/9302221] [INSPIRE].

[40] J.M. Cline, K. Kainulainen and K.A. Olive, Protecting the primordial baryon asymmetry

from erasure by sphalerons, Phys. Rev. D 49 (1994) 6394 [hep-ph/9401208] [INSPIRE].

[41] S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105

[arXiv:0802.2962] [INSPIRE].

[42] S. Blanchet and P. Di Bari, Flavor effects on leptogenesis predictions, JCAP 03 (2007) 018

[hep-ph/0607330] [INSPIRE].

[43] A. De Simone and A. Riotto, On the impact of flavour oscillations in leptogenesis,

JCAP 02 (2007) 005 [hep-ph/0611357] [INSPIRE].
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