
A new approach discretising
the 2D poloidal plane of fusion

devices

Laura S. Mendoza

TECHNISCHE UNIVERSITÄT MÜNCHEN
Fakultät für Mathematik

Lehrstuhl für Numerische Methoden der Plasmaphysik

A new approach discretising the 2D
poloidal plane of fusion devices

Laura S. Mendoza

Vollständiger Abdruck der von der Fakultät für
Mathematik der Technische Universität München
zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzende: Prof. Dr. Caroline Lasser
Prüfer der Dissertation: 1. Prof. Dr. Eric Sonnendrücker

2. Prof. Dr. Francis Filbet
3. Prof. Dr. Philippe Helluy

Die Dissertation wurde am 28. April 2017
bei der Technischen Universität München eingereicht

und durch die Fakultät für Mathematik
am 21. Juni 2017 angenommen.

Abstract
The Gysela code is a non-linear 5D global gyrokinetic code which performs flux-
driven simulations to solve the gyrokinetic Vlasov equation coupled with the Pois-
son equation. Its 3D spatial representation is limited to circular toroidal geometry
(r, θ, φ). Currently the poloidal plane, a circular cross-section, is discretized with
a polar mesh. Due to the singularity of this mapping on its origin, the geometry is
discontinuous (with a hole in the center). Furthermore, the code is currently not
adapted to simulations on D-shaped tori.

In this work, our aim is to test different solutions to generalize Gysela’s ge-
ometry definition. The solutions presented are all in a general curvilinear case,
so that any geometry, however complex, can be simulated by mapping one or
multiple patches to the final wished geometry. We decided to study two different
approaches to solve this problem: on the one hand, using an IgA (Isogeometric
Analysis) based on Non-Uniform Rational B-Splines (NURBS), which provide an
exact representation of complex shapes, allowing us to “fill the hole” using a 5-
patch mapping; on the other hand, using a Finite Element Method on a regular
equilateral triangle mesh of hexagonal form, which can therefore also be seen as
a mesh formed of nested hexagons, based on Box-Splines. We call this mesh,
the hexagonal mesh, and is easily mapped to a circle (or a D-shaped plane) by a
stretching without any singular points.

The Semi-Lagrangian scheme, used in Gysela, consists of two steps: computing
the characteristics feet and interpolating on those points. Both steps were adapted
to the Multi-patch approach, as well as different techniques to treat the boundary
conditions in between patches. Even when using an accurate approximation of the
boundary condition for the interpolation, we could not prevent the appearance of
numerical noise around the singular points. Therefore, the lack of singularities in
the hexagonal mesh is more appealing. A Poisson FEM solver using box-splines
was needed in order to solve the Vlasov-Poisson equation in the hexagonal domain,
as well as an implementation of Nitsche’s method to treat the boundary conditions.
Finally, we also presented the different mappings of the hexagonal mesh to realistic
geometries (circle and D-shape) and showed the results of an advection equation
on the circular domain.

The Gysela code is one of many examples of why we need Semi-Lagrangian
codes adapted to complex geometries. Other examples from plasma physics (and
further goals) are the X-point, the scrape-off layer or edge plasma, 3D representa-
tion of a Tokamak and Stellarator, etc. The results presented in this work, lead us
to believe that the ideal solution could probably be a combination of the two con-
cepts presented: keeping an Isogeometric Multi-patch polar mesh for the external
crown of the poloidal cut, coupled with a mapped hexagonal mesh for the center
of the domain.

v

Zusammenfassung
Gysela ist ein 5D globaler gyrokinetischer nichtlinearer Code. Es löst das gy-

rokinetische Vlasov-Poisson-System mit hilfe des Semi-Lagrange-Verfahrens. Sein
drei dimensionale Raum wird durch eine kreisförmige toroidale Geometrie (r, θ, φ)
beschrieben. Derzeit wird die poloidale Ebene mit einem Polargitter diskretisiert.
Diese Koordinatentransformation ist im Nullpunkt singulär. So ist die Geometrie
diskontinuierlich (mit einem Loch in der Mitte).

In der vorliegenden Arbeit, ist es unser Ziel, verschiedene Lösungen zu testen,
um die Geometriedefinition von Gysela zu verallgemeinern. Alle Lösungen sind
im allgemeinen krummlinige Koordinaten. So wird jede komplexe Geometrie durch
die Abbildung eines oder mehreren Patches (Teilgebiete) definiert. Wir studieren
zwei verschiedene Ansätze. Erstens, eine auf NURBS (Non-Uniform Rational B-
Splines) und IgA (Isogeometric analysis) basiert: wir verwenden eine 5-Patch-
Domain-Zerlegung für den Poloidalschnitt. Die zweite Methode verwendet als Git-
ter regelmäßige Sechsecke mit gleicher Kantenlänge, die jeweils in sechs Dreiecken
unterteilt sind (hex-mesh) und Box-Splines (eine multivariate Verallgemeinerung
von B-Splines).

Das Semi-Lagrange-Verfahren, das Gysela verwendet, besteht aus zwei Schrit-
ten. Zuerst, werden die charakteristischen Kurven der Lösung in jedem Git-
terpunkt numerisch approximiert. Dann wird an jedem erhaltenen Punkt eine
Interpolation durchgeführt. Diese beiden Werkzeuge wurden an unsere Ansätze
angepasst. Für den Multi-patch-Ansatz, entwicklen wir auch verschiedene Tech-
niken, um die Randwertaufgabe zu behandeln. Allerdings zeigten unsere Simula-
tionen immer numerische Schwingungen um die singulären Punkte. Das hex-mesh
hat keine singulären Punkte. So entwickelten wir eine Quasi-Interpolationsmethode
auf diesem Gitter. Außerdem, wurde ein Poisson FEM-Löser mit Box-Splines
benötigt, um die Vlasov-Poisson-Gleichung zu lösen. Wir haben auch die Nitsche-
Methode angepasst, um die Randwertaufgabe zu behandeln. Schließlich präsen-
tierten wir die verschiedenen Koordinatentransformationen des Hex-meshs zu re-
alistischen Geometrien (Kreis und D-shape) und zeigen die Ergebnisse einer Ad-
vektionsgleichung auf einem Kreis.

Der Gysela code ist eines von vielen Beispielen, warum wir Semi-Lagrangian-
Codes brauchen, die an komplexe Geometrien angepasst sind. Weitere Beispiele
aus der Plasmaphysik und weitere Ziele sind unter anderem der X-Punkt, und die
Randschichten (Scrape-off Layer). Die Ergebnisse in dieser Arbeit zeigen, dass
die ideale Lösung vermutlich eine Kombination der beiden dargestellten Konzepte
ist: ein isogeometrisches Multi-patch-Polargitter für die äußere Krone des Poloid-
schnittes, ge-paart mit einem hex-mesh für die Mitte des Gebietes.

vii

Acknowledgments

During these last years, I met many incredible people that enriched this work,
as well as my life. I wish to thank you all from the bottom of my heart.

Foremost, I would like to express my infinite gratitude to my advisor, Eric
Sonnendrücker, who gave me this incredible opportunity. I deeply admire your
insightfulness and vast knowledge. I will be forever indebted for how you trusted
me all along. I’m grateful to Virginie Grandgirard, who also supervised my thesis.
The weeks I spent in Cadarache were probably some of the richest moments during
my PhD; I enjoyed greatly working next to her: her encouragement, pragmatism,
and the numerous conversations about science and life, were essential to me and
my thesis. Thanks to Ahmed, who introduced me to the IgA world.

Next, I would like to thank Francis Filbet and Philippe Helluy for the interest
they showed on my research, for participating in the jury of this thesis, and for
being referees of this manuscript. A special thanks to Philippe who gave me the
opportunity to work with him even when I still needed to finish my manuscript
and motivated me until the end. I would also like to thank Caroline Lasser for
presiding the jury of this thesis.

For the following part, I am going to try to mention everybody in chronological
order (and in the most appropriate language).

I had the pleasure to join the NMPP group almost since its beginning thus, I got
to meet many bright minds who helped me along my journey. Especially thanks
to Katharina, for her discipline and patience; Michael Kraus, for the cooking
book recommendations and for explaining to me some of the IPP politics; Jakob
an exemplar Bavarian who listened to me complain every day; Natalia, for her
strength; Yaman, for being so meticulous and down-to-earth (and fun after work
hours!). I am also grateful I got to meet Tiago, Omar, Adila… And for the most
recent members: thanks to Herbert, my barefooted, happy office mate, to Camilla,
the worst supermarket coach, and to Mustafa, my soul brother, to whom all I can
say is: I wish you had arrived sooner! Of course, this section would not be complete
without acknowledging Anneliese’s hard work and genuine kindness. I would also
like to thank some TOK members: Xin, for teaching me about her culture and for
her cheerfulness, and Martin, who organized many movie nights to perfection.

To Francis, Abigail and David, a huge thanks. I will always treasure the months
we spent together, I am honored to call you —exceptional people— my friends!
Since you left, I have missed you deeply but I feel overjoyed to have seen you
achieve so many of your goals. Thanks for Berlin, Budapest, the operas, the
barbecues and, of course, the evenings at the Waikiki bar!

ix

I also remember warmly the concerts, music discussions, bierfests, cocktails
nights, und den Deutschunterricht mit Dr.Will. You bring out the hip-hop side of
me and I love that. Thank you (and to Francis for the invitation) for the short
trip to Wales.

Pour ta partie Emmanuel, je me permets de passer au français. J’ai tellement
de choses à te remercier : les pauses café, les repas à midi, les voyages (Italie,
Slovénie, Berlin, Turquie...), mais surtout pour ton soutien dans les moments les
plus difficiles... Merci aussi pour le côté professionnel : l’article, le postdoctorat,
les conseils, les idées. J’espère qu’on pourra continuer à parler (et se prendre la
tête) autour d’une bière pendant beaucoup d’années et même, à travailler sur de
nouveaux projets� !

Merci à Jérémie, Didier, Capucine et François, d’avoir été ma famille dans cette
belle ville qui est Garching, pour votre côté engagé, intellectuel, et français� ! J’ai
beaucoup grandi grâce à vous.

Ma reconnaissance va aussi à l’équipe de l’IRFM au CEA qui a fait mes séjours
à Aix-en-Provence extrêmement agréables. Notamment François et Thomas. J’ad-
mirerai toujours le courage de Thomas dans sa vie personnelle et professionnelle.
Merci à Hugo B. pour les conversations sur le sens de la vie, les plantes, la musique.
Merci à Guillaume Latu pour sa bonne humeur et les remarques très justes sur ma
recherche. Merci aussi à Jorge, Hugo A., Timothée, Clotilde, Damien, Claudia...

J’ai eu le plaisir d’assister à, non un, ni deux, mais trois CEMRACS. Je ne pour-
rai malheureusement pas nommer tout le monde, mais surtout un grand merci à
José et Élise (mes fidèles compagnons, qui m’ont introduit à l’addiction à Friends),
Maxime, Mehdi, Matthieu, Thomas, Meriem, Guillaume, Romain, Olivier, Frédé-
rique, Marie, et Lorenzo ! Merci d’avoir rendu ces 6 semaines (x3) de travail intense
agréables et inoubliables. Un chaleureux merci à Bruno et Nordine.

Ma vie à Garching/Munich n’aurait pas été complète sans Jérémie, tellement de
choses à mentionner : les concerts, les randonnées, les voyages (Égypte, Norvège,
Turquie, Berlin, Guatemala...), les brunchs... Bref, je ne pourrai jamais tout écrire
en quelques lignes, merci d’avoir toujours été un homme exemplaire et m’avoir
accompagné dans ce que j’espère restera l’époque la plus sombre de ma vie.

Je souhaite aussi remercier les doctorants et post-doctorants de Strasbourg qui
m’ont reçu bras ouverts : Ranine, Stéphane, Amaury, Nico (sensei), Guillaume K.
(petite-pince) et Marie. Mais surtout merci à Guillaume D. (plus vieille pince du
monde) et Romain, qui écoutent mes péripéties sans se plaindre et sans me juger.

J’inclus Hussam dans la partie Strasbourg. Je suis contente d’avoir trouvé un
autre esprit torturé par le sens de la vie� ! Merci pour les cours sur les espaces de
Krylov et d’arabe à 3 h du matin et surtout... شكرا على حنانك

x

Y para terminar, quisiera agradecer a las personas más importantes de mi vida :
mi familia. A mi papá gracias por ser tan pilas, fiable, por tu paciencia y cariño y
por tener confianza en mi. A mi mamá, mi inspiración número uno, le agradezco
su apoyo, su comprensión, su amor infinito y por las incontables veces que me dio
los ánimos que me faltaban. Ana y Sese, mis dos personas favoritas en todo el
universo, no tengo palabras suficientes para agradecerles el amor, los consejos, por
hacerme reír y por hacerme sentir constantemente orgullosa de ustedes y de mi. Son
ustedes dos los que le dan sentido a mi vida. Mis compinches hasta el fin, los adoro !

Guatemala, gracias por darme la chispa ;
France, merci de m’avoir appris ce que veut dire la liberté ;

Deutschland, danke für die Weltoffenheit

xi

Contents

1 Introduction 1
Introduction to plasmas and controlled fusion 1
The Vlasov equations . 3
The Semi-Lagrangian method . 6
The GYrokinetic SEmi-LAgrangian code 8
Outline of this manuscript . 10

2 Computer Aided Design and Isogeometric Analysis 11
Coordinate transformations and meshes 11
Splines families: B-splines and NURBS 14
Box-Splines, a less known spline family 19
Interpolation using splines . 24

3 The Multi-patch Approach. 31
General concept: patch decomposition 31
Multi-patch Semi-Lagrangian method . 35
Overview of SLMP the code . 49
First Multi-patch results . 51
Solving the variable coefficient advection 59
Alternative meshes without a singular point 65

4 The hexagonal mesh 75
The BSL scheme on the hexagonal mesh 76
The Poisson finite-difference solver . 83
General algorithm . 84
Numerical results . 85
Implementation of Nitsche’s method . 97
Perspective: realistic poloidal planes . 101

5 Conclusion 109

A Box-splines 111
From type-I Box-splines to our hexagonal 111
Important properties . 112
Mass and Stiffness matrices . 113

xiii

h-refinement with Box-splines elements 125
Quasi-interpolation and pre-filters . 129

B Hexagonal mesh implementations 139
Development in SeLaLib . 139
Development in Django . 140

C Results for different quasi-interpolation pre-filters 141

xiv

List of Figures

1.1 Examples of plasmas . 1
1.2 Scheme of the D-T fusion reaction 2
1.3 The ITER tokamak . 3
1.4 Schematic view of field lines in a tokamak 3
1.5 Backward Semi-Lagrangian scheme in 2D 7
1.6 A Gysela simulation . 9

2.1 Notations on a polar coordinate transformation 12
2.2 Sketches of hexagonal lattices . 13
2.3 Examples of cubic splines . 15
2.4 Three examples of B-spline curves 16
2.5 Box-splines in 3d and 2d . 21
2.6 Support of Box-splines . 21
2.7 Non-null Box-splines on a point in the hex-mesh 29

3.1 Current and new discretization of the poloidal plane 32
3.2 Paraboloid defined by equation η2 + ξ2 − 2 34
3.3 Patch configuration of a disk using CAID 35
3.4 Tracing of characteristics: particle stays on the same patch 40
3.5 Special cases of the back-tracing of a particle for the SLM 40
3.6 Sketch of an inter-patch advection with simplified notations 41
3.7 Boundaries definitions between a two-patch domain 43
3.8 Temporary indexing to compute internal boundaries slopes 45
3.9 Semi-Lagrangian Multi-patch code structure 50
3.10 TC1: distribution function at initial and final time 52
3.11 TC1: time evolution of errors . 52
3.12 TC1: time evolution of mass and minimal value 53
3.13 TC2: distribution function at final state 54
3.14 TC2: time evolution of errors . 54
3.15 TC2: time evolution of mass and minimal value 55
3.16 Square domain discretized in four identical patches 55
3.17 TC3: distribution function at final state 56
3.18 TC3: time evolution of errors . 57
3.19 TC3: time evolution of mass and minimal value 57
3.20 TC4: time evolution of errors . 58

xv

3.21 TC4: time evolution of mass and minimal value 58
3.22 TC5: time evolution of errors . 59
3.23 TC5: time evolution of mass and minimal value 59
3.24 TC6: distribution function at final state 61
3.25 TC6: time evolution of errors . 62
3.26 TC6: time evolution of mass and minimal values 62
3.27 TC7: distribution function at final state 63
3.28 TC7: time evlolution of mass and min and max values 63
3.29 TC7: time evolution of errors . 64
3.30 TC8: distribution function at final state 64
3.31 TC8: time evlolution of mass and min and max values 65
3.32 TC8: time evolution of errors . 65
3.33 First alternative mesh: the crowned square 66
3.34 Second alternative mesh: the pinched disk 67
3.35 Sketch moving quart-annulus control points 67
3.36 TC9: distribution at final state . 68
3.37 TC9: time evolution of mass, min and max values 68
3.38 TC9: time evolution of errors . 69
3.39 TC10: distribution at final state . 69
3.40 TC10: time evolution of mass, min and max values 70
3.41 TC10: time evolution of errors . 70
3.42 TC11: L2 and L∞ errors at tmax for different ε 71
3.43 TC11: time evolution of mass, min and max values 71
3.44 Sketch of Gaussian pulse trajectory around pinched domain 72
3.45 TC11: time evolution of errors . 72

4.1 Examples of dual mesh: squared and hexagonal 75
4.2 The Semi-Lagrangian method on the hex-mesh 79
4.3 TC13: Distribution bounds over time and cells 82
4.4 TC13: time evolution of errors . 82
4.5 TC13: CPU time used . 83
4.6 TC14: Study of order of convergence 86
4.7 TC14: Study of order of convergence with Mitchell elements 87
4.8 TC14: Order of convergence with respect of number of points . . . 88
4.9 TC14: Performances study . 88
4.10 TC14: Performance study with Mitchell elements 88
4.11 TC14: Comparison of performance against classical methods 89
4.12 TC14: Order of convergence comparison with classical methods . . 90
4.13 TC15: Time evolution of the guiding-center model 92
4.14 TC15: Potential at time zero for the guiding-center simulation . . . 93
4.15 TC15: Time evolution of the relative error of mass and energy . . . 93

xvi

4.16 TC15: Relative error of L1 and L2 norms 93
4.17 TC15: Time evolution of the density’s minimum 94
4.18 TC15: Evolution of mass, energy, error norms and minimum density 95
4.19 TC15: Evolution of mass, energy, error norms and minimum density 96
4.20 TC15: Guiding-center case. Evolution of mass, energy, error norms

and minimum density . 97
4.21 The Nitsche’s method . 100
4.22 Projection of type 1 of point on the hex-mesh to circle 102
4.23 Projection of type 2 of point on the hex-mesh to circle 103
4.24 Mapped hex-mesh to a circle . 103
4.25 Mapped hex-mesh to Miller’s equilibrium 104
4.26 TC16: Distribution bounds over time and cells 105
4.27 TC16: final distribution error . 106
4.28 TC16: time evolution of errors . 106

A.1 Type-I Box-Splines: Generating vectors and sample mesh 111

C.1 TC17: Distribution bounds over time and cells 142
C.2 TC17: time evolution of errors . 142
C.3 TC18: Distribution bounds over time and cells 143
C.4 TC18: time evolution of errors . 143
C.5 TC19: Distribution bounds over time and cells 144
C.6 TC19: time evolution of errors . 144
C.7 TC20: Distribution bounds over time and cells 145
C.8 TC20: time evolution of errors . 145
C.9 TC21: Distribution bounds over time and cells 146
C.10 TC21: time evolution of errors . 146
C.11 TC22: Distribution bounds over time and cells 147
C.12 TC22: time evolution of errors . 147
C.13 TC23: Distribution bounds over time and cells 148
C.14 TC23: time evolution of errors . 148

xvii

1
Introduction

Introduction to plasmas and controlled fusion
What is plasma?

When sufficient energy is supplied to a gas, electrons are freed from their atoms and
molecular bonds are broken. The gas becomes ionized with an overall null charge.
We call this state of matter: plasma. It is actually one of the four states of matter
that are observable in everyday life, besides gases, liquids, and solids. Different
methods are used to energize a gas and get to the plasma state by knocking off
the electrons of their places. For example, by bringing a gas to extremely high
temperatures it is possible to obtain the fusion of hydrogen atoms to produce
energy. Other methods include imposing the gas to lasers, microwaves, a powerful
electric current and any other method that will subject the gas to a strong magnetic
field. In this work, we will address hot plasmas.

Figure 1.1: Some examples of plasmas: the sun, the aurora borealis in Norway, and a plasma ball

The sun and other stars are a perfect example of astrophysical plasmas. Ac-
tually, plasma is the most common state of the known matter in the universe; it
forms 99% of the visible universe [SF05, GB05]. On earth, we can find plasma

1

in natural phenomena like the aurora borealis or lightnings, but we also see it in
man-produced products such as neon lights, plasma balls, TV screens and fusion
power plants.

Thermonuclear Fusion

As the world energy consumption rises so does the greenhouse gases’ atmospheric
concentration (mainly from burning fossil fuels, the first source of energy in the
world). Therefore, it is necessary to find an alternative energy source. Fusion
energy is clean – it produces no greenhouse gases and no long living radiation –
and it has a virtually unlimited supply in the ocean.

Fusion is obtained when two (or more) lighter particles, for example two isotopes
of hydrogen: deuterium and tritium, are combined together to form an overall
heavier one. There is a mass loss during the process hence the process releases
energy in the reaction. For a Deuterium-Tritium (D-T) reaction, a Helium atom
is obtained, as well as a high-energy neutron (See Fig 1.2).

n

nn

n

nn

Deuterium

Tritium Helium

Figure 1.2: Scheme of the D-T fusion reaction

The main difficulty with fusion is to overcome the Coulomb forces. Indeed,
two positive particles will repel each other, thus avoiding the nuclear strong force
taking over and forming a new atom. To overpower the electric force, the fusing
nuclei need to be high in energy. At really high temperatures, 1.2 billion Kelvin for
the D-T reaction, the energy of the accidental collisions is high enough to obtain
fusion. At this temperature matter is in the state of plasma.

Contrary to stars, where thermonuclear fusion is achieved by balancing the ra-
diation with the gravitational forces, on earth, confinement of particles has to be
imposed in another way. As we saw previously, plasma is an ionized gas thus
responsive to magnetic fields. In the present work, we discuss this kind of confine-
ment, as opposed to other methods like inertial confinement, electrostatic confine-
ment, etc.

2

Fusion devices

We grasped the notion of plasma, fusion and the confining of plasma. Now, the
big question is: what shape should the vessel containing the plasma have? Per-
haps the simplest and most straightforward answer is the toroidal shape. When
plasma is inside a magnetic field, it starts spiraling around it, because the force is
perpendicular to both the velocity and the magnetic field. The toroidal shape will
allow, in theory, for the field lines to go on the toroidal direction without touching
the device’s wall. It is also a simple shape to build and thus, the tokamak, a
fusion reactor with toroidal shape, has become the favored geometrical shape for
fusion reactors. It is important to notice that we need to twist field lines helically
to compensate particle drifts, and thus the so-called concentric magnetic surfaces
create, as we see in Figure 1.4.

Figure 1.3: The ITER tokamak Figure 1.4: Schematic view of field lines in a tokamak

The ITER (International Thermonuclear Experimental Reactor) project is based
on this geometry. ITER (See Fig 1.3) is being built in the south of France, in
Cadarache, and is a joint project between the European Union, Japan, China,
South Korea, Russia, the United States and India. The main idea of this project
is to show that fusion reactors can actually be used for electricity production. At
the moment, the closest a fusion reactor has been to produce more energy than
what it was necessary for the experiment, is JET, a tokamak in England. The
experiment had an amplification factor of Q ∼ 0.7, whereas ITER is expected to
obtain at least Q = 10.

The Vlasov equations
As physics experiments can be long and expensive, it is important to have a way of
predicting (or simulating) future experiments. The first step to obtain an accurate
computer simulation is to have the proper mathematical model that describes the
physical system. To have a complete model of the plasma, we should know the

3

location and velocity of every single particle, as well as the electromagnetic field at
every time given. Nonetheless, simpler models can be sufficient. Generally two big
families of models are studied when studying plasma physics: Fluid and Kinetic
models. Here, we will only address the kinetic models.

The Vlasov-Maxwell models

The Vlasov equation is often studied when modeling plasmas as it describes the
evolution of the probability function, or distribution function, of charged particles
at a given point, velocity and time in a collisionless plasma. The Vlasov equation
is actually the statistical approach to describe the physical system of plasmas. It
is usually coupled to the Maxwell equations to compute the self-consistent elec-
tric and magnetic fields, E and B. Thus, the following system describes charged
particles at any phase-space point.

∂fs
∂t

+ v · ∇xfs +
q

m
(E+ v ×B) · ∇vfs = 0, (1.1)

− 1

c2
∂E

∂t
+∇×B = µ0 J, (1.2)

∂B

∂t
+∇× E = 0, (1.3)

∇ · E =
ρ

ε0
, (1.4)

∇ ·B = 0. (1.5)

Here fs is the distribution function above mentioned for a given species, either
ions or electrons. It depends on the position x, velocity v of the particle on a
given time t. We denote respectively by m and q the particles mass and charge.
In Ampere’s law (1.2), c is the speed of light. The constants µ0 and ε0 verify:
µ0 ε0c

2 = 0. The total current density J and the charge density ρ are given by:

ρ(x, t) =

∫ ∑
s

qsfs(x,v, t) dv,

J(x, t) =

∫ ∑
s

qsvfs(x,v, t) dv.

The distribution functions fs depends on six variables, which makes the system,
numerically, extremely expensive. Thus, we tend to favor the study of simpler
models that still describe a plasma correctly, for example the Vlasov-Poisson sys-
tem which is 6D but with a simplified Vlasov equation coupled to the Poisson
equation.

4

The Vlasov-Poisson system

Another reason why the Vlasov-Maxwell is so complex is the dependency between
the distribution function and the electromagnetic fields. The Vlasov-Poisson sys-
tem is a reduced model of the Vlasov-Maxwell in the non-relativistic case (v ≪ c).
It is a linearized model where the electric field E and the magnetic field B are
independent of each other. Actually, the magnetic field is often simplified by
B = (0, 0, B0)

T .
The equations (1.1) - (1.5) become

∂f

∂t
+ v · ∇xf − E · ∇vf = 0, (1.6)

∆ϕ = −ρ = −
∫
f(x,v, t), (1.7)

E = −∇ϕ. (1.8)

The Vlasov-Poisson system is often used to describe the Landau-Damping prob-
lem and many other electrostatic phenomena.

Conservation laws

All systems previously seen follow a certain number of conservation laws. It is
important to know which laws the reduced model still conserves. This is also
useful to verify codes and numerical simulations. The conservation properties
verified by the Vlasov-Poisson system are the following:

1. Maximum principle (and positivity):

0 ≤ f(x,v, t) ≤ max
x,v

(f(x,v, 0)). (1.9)

Follows from the method of characteristics (f preserved along characteristics)

2. Total momentum
d

dt

∫
vf(x,v, t)dxdv = 0. (1.10)

Follows form multiplying by v, and integrating phase-space

3. Lp norm conservation, for p ∈ N∗ such that 1 ≤ p ≤ ∞:

d

dt

(∫
Ω

(f(x,v, t))p dxdv

)
= 0. (1.11)

which includes the mass conservation.
Follows from multiplying by f p−1 and integrating phase-space

5

4. Total number of particles (or mass conservation):

d

dt

(∫
Ω

f(x,v, t) dxdv

)
= 0. (1.12)

Follows from integrating in phase-space

5. Total energy:
d

dt

(
1

2

∫
v2fdxdv +

1

2

∫
(∇ϕ)2dx

)
= 0. (1.13)

Follows from using the Poisson equation, multiplying by |v|2 and integrating
phase-space

In this work we will pay attention mainly to the positivity, Lp norms, and
energy conservation. We will use these conservation laws to validate our methods
and compare different schemes.

The Semi-Lagrangian method
When solving a Vlasov equation, one usually thinks of Lagrangian methods such
as PIC [BL85]. However, these schemes are prone to numerical noise and converge
slowly in 1/

√
N as the number of particles increases, typical of a Monte Carlo

integration. Another option to solve the Vlasov equation is Eulerian methods like
Finite Difference, Finite Element or Finite Volume methods [FS03, ZGB88, BH10].
The downside of this kind of method is that there is a numerical limit on the time
step for explicit time stepping. With the attempt of overcoming the pitfalls of these
methods, the Semi-Lagrangian method was introduced, first in numerical weather
prediction (see [Kal03] and articles cited within it). Later, it was adapted to plasma
simulations [SRBG99, CK76] and it is also used for gyrokinetics simulations of
plasma turbulence [GBB+06, KYPK15, GAB+16].

This scheme consists on fixing an Eulerian grid in phase-space and following
the trajectory of the equation characteristics in time to compute, by interpolation,
the evolution of the distribution function. The advantages of this scheme are the
possibility of taking large time steps and its stability. However, it is costly in high
dimensions (6D phase-space mesh for a 3D simulation) where PIC methods still
dominate.

Lastly, we can point out that there are different types of Semi-Lagrangian solvers
(e.g. depending on the trajectories: backwards or forwards; depending on the
degrees of freedom on which they are based: grid points, cell average, etc.). We
have chosen here to use the classical Backward Semi-Lagrangian (BSL) method,
since is the scheme used in the Gysela code.

6

The Backward Semi-Lagrangian method

Let us consider the following advection equation

∂f

∂t
+ a(x, t) · ∇f = 0. (1.14)

We can compute its characteristics by solving the ODE

dX

dt
= a(X, t). (1.15)

We call the unique solution X(t;x, s) the characteristic of (1.14) at a time t which
has as initial condition X(s) = x.

tn+1

t
tn

xi

X(tn;xi, tn+1)

Figure 1.5: Backward Semi-Lagrangian scheme (example in 2D) – back tracing in time a mesh point
xi to its characteristic foot X(tn;xi, tn+1)

To compute fn+1, the distribution function at the time tn+1, the BSL scheme
follows the characteristics back in time. For every mesh point xi, we compute
the characteristic origin X(tn;xi, tn+1). Knowing that the distribution function is
conserved along the characteristics line, we can write

fn+1(x) = fn(X(tn;xi, tn+1)). (1.16)
At the time step tn, we suppose that f is only known on the grid points. However,

generally, X(tn;xi, tn+1) /∈ {xj, ∀j = 0 . . . Ntot}, where Ntot is the total number
of mesh points. In other words, the origin of the characteristic is generally not
a mesh point. Thus, the scheme requires an interpolation step. See Figure 1.5.
The algorithm has to be accurate and efficient. Thus, the localization of the origin
of the characteristics should be as fast as possible. For this reason, we choose to
apply Semi-Lagrangian methods only on regular meshes.

Remark 1. The computation of the origin of the characteristics and the interpo-
lation step are the major sources of error in a low-dimensional Semi-Lagrangian
scheme. Regarding the interpolation, we can cite the work in [BM08], where
the authors compare different interpolation methods. The results show that the

7

cubic-spline interpolation is advised for the best compromise between efficiency
and accuracy. While treating higher dimensionality problems, typically 5 or 6D,
the interpolation step becomes too expensive. Cheng and Knorr [CK76] introduced
a solution consisting of a time-splitting approach. However, the splitting procedure
becomes another major source of error.

Now that we presented the general context, model and the main idea of the
scheme used to solve it, the next natural step is to present the code that represents
the motivation of this manuscript.

The GYrokinetic SEmi-LAgrangian code
The non-linear 5D global gyrokinetic full-f code Gysela [GAB+16, GBB+06] was
created for flux-driven simulations of Ion Temperature Gradient (ITG) in tokamak
plasmas. The code is being developed by the CEA of Cadarache, France, and
other partners including the IPP, INRIA, and the University of Strasbourg. It is
5D meaning three-dimensional in space and two-dimensional in velocity. The time
evolution of f̄ is governed by the 5D collisional gyrokinetic equation described by
Brizard and Hahm [BH07]. Here, we consider a simplified version of this model,
where we neglected the right-hand side and considered the modified magnetic field
simply as B∗ = (0, 0, B0)

T , where B0 corresponds to the magnetic field on the
magnetic axis. The model becomes,

∂f̄

∂t
+

dr

dt

∂f̄

∂r
+

dθ

dt

∂f̄

∂θ
+

dφ

dt

∂f̄

∂φ
+

dv||
dt

∂f̄

∂v||
= 0 (1.17)

where f̄(r, θ, φ, v||, µ, t) is the distribution function averaged over the cyclotron
motion and depending on the toroidal coordinates (r, θ, φ), the velocity parallel to
the magnetic field v||, the invariant magnetic momentum µ, and the time t. The
gyrokinetic equation is self-consistently coupled to the quasi-neutrality equation

− 1

n0(r)
∇⊥ ·

[
n0(r)

B0ωc

∇⊥ϕ

]
+

e

Te(r)
[ϕ− ⟨ϕ⟩] = 1

n0(r)

[
nGi(r, θ, φ)− nGieq(r, θ)

]
(1.18)

with n0 the particle density, B0 the magnetic field computed at the magnetic axis,
ωc the ion cyclotron frequency, −e and Te(r) are respectively the electron charge,
and the electron temperature. ϕ is the electric potential and ⟨ϕ⟩ its average on
the magnetic flux surface. And lastly, we define the ion guiding-center density
in Cartesian coordinates by nGi(x, t) =

∫
Jv dvGi|| dµ Jµ · f̄(x,v, t), with Jµ

the gyro-average operator and where the Jacobian in the velocity space is given

8

by Jv = 2πB∗
||/m. We define its correction term, nGieq , by taking f̄ as an equi-

librium distribution function f̄eq. For a detailed explanation on the terms and
the model, we refer the reader to the work of V. Grandgirard, Y. Sarazin et al.
[GSG+06, GS12, GAB+16].

Gysela is based on some key physical assumptions (adiabatic electrons, elec-
trostatic approximation, etc.) but the one that we will focus on is: the simplified
magnetic geometry. The magnetic surfaces are considered to be concentric and
circular (much like in Figure 1.4). The embedded closed magnetic flux surfaces
play an important role and introduce an important anisotropy [AGV+09]. For
this reason, one gets favorable numerical properties when grid points align on the
concentric magnetic flux surfaces. Furthermore, Gysela is based on the Semi-
Lagrangian method. Thus, in a poloidal cut, the space grid is simply a field-aligned
polar grid.

Figure 1.6: An example of a Gysela simulation (left) where a section around the origin was not
taken in consideration due to its singularity. On the right, a similar example of a GENE simulation

Despite the simplicity of the polar grid, the mesh presents a big disadvantage:
its singularity at the center. This means that the Jacobian of the transformation
that maps Cartesian into polar coordinates is null at the origin. In Gysela, as
some other (plasma) codes (e.g. GENE, GKW), a simple solution was found:
cutting out an internal disk out of the domain. The discretized geometry becomes
then discontinuous: an annulus in polar coordinates. Although the plasma density
near the origin is lower than in the core of the annulus, the density is not entirely
null. In fact, while back-tracing a particle, it might be that its origin falls in the
non-represented area. When this happens, the particle is “lost” in the void.

Some codes inject new particles from the interior, to compensate for this loss
(and maintain mass conservation). Nevertheless, this is far from optimal. The
objective of this work is to find an alternate solution to this problem. Furthermore,
we will take advantage of this upgrade of the geometry –passing from an annulus
to circle– to present a solution more flexible to adapt to more complex geometries.

9

Outline of this manuscript
Different strategies have been implemented to avoid this singularity. We can cite
among others: the iso-parametric analysis approach done by J. Abiteboul et al.
[ALG+11] and A. Ratnani [Rat11] or N. Besse and E. Sonnendrücker’s work with
unstructured meshes [BS03]. The methods presented in these papers are partic-
ularly interesting. They avoid singularities and they are also adaptable to more
complex geometries. However, even if these two approaches are different, they
share the limitations due to the numerical complexity, the advection of the deriva-
tives and, the localization of the origin of the characteristics.

Nonetheless, one aspect typically associated with iso-parametric analysis, the
Multi-patch Approach, draws our attention. Actually, applying this concept means
the conservation of a field-aligned mesh on the external part of the geometry and
the introduction of a new grid for the core. Furthermore, using the main tools of
IgA1 and CAD2, we should also win in the process the capability of adapting the
discretization to more complex geometries. Thus, we will dedicate the following
chapter to the basic tools for introducing this approach in our context. We will
focus on the spline families used throughout in this thesis (B-Splines, NURBS and
Box-splines), and introduce the key properties of these functions, as well as how we
will use them in our work. The application of this technique, and some simulations
using the Multi-patch Approach can be found in Chapter 3.

At some point, half along this thesis, we came across the uniform hexagonal
mesh. The latter is composed of equilateral triangles and does not contain any
singularities, unlike polar meshes. Thus, this mesh combined with a coordinate
transformation is an alternative discretization of a poloidal plane. We explore this
solution in Chapter 4.

Nevertheless, before getting into the details of any of the two approaches, we
should start with the basis, presented in Chapter 2. The tools introduced therein
should be useful for both Chapters 3 and 4.

1Isogeometric analysis, see next chapter.
2Computer Aided Design, see next chapter.

10

2
Computer Aided Design and Isogeometric

Analysis

A common error encountered in numerical simulations when solving partial differ-
ential equations (PDE) is to neglect the design of the geometry. Computer Aided
(Geometric) Design (or CAD for short, resp. CAGD), introduced in 1970, is a
branch of study aiming to discretize a domain as accurately as possible without
compromising computer resources such as computation time and memory space.
It usually involves at least three main points: the construction of a specific mesh,
solving any problems of continuity, and reducing the computational costs due to
the geometrical representation. Parametric curves such as B-splines or NURBS
are common tools in CAD. Isogeometric Analysis (IgA) [HCB05, CHB09] was born
from the willing of incorporating CAD into Finite Element Analysis (FEA). Its
key concept is to consider the same basis functions used for the FEA as the ones
used for the geometry design.

There are many different approaches using this technique, they may vary on
the basis functions used, or on how to treat the boundary conditions. Never-
theless, globally they all share the same global scheme for the mesh generation:
the geometry is approximated by a coordinate transformation from an orthogonal
rectangular grid to a more complex discretization matching the physical domain.
Thus, firstly we will focus on this point and move latter to the different basis
functions that we use throughout this manuscript.

Coordinate transformations and meshes
In this section, we will introduce the general principle of a coordinate transforma-
tion –the notations, the basic notions, and an example– as well as another type of

11

mesh that has not been used before for the CAD approach (at least in the plasma
physics community).

Coordinate transformations

When a scheme is specific to a discretization of a precise geometry, it gives some
advantages, mostly, in terms of optimization. Whereas, when a scheme is based on
a Cartesian mesh coupled to a coordinate transformation, the method is globally
independent of the domain that it is being applied to. Thus, it gains a flexibility
that is imperative when developing a code implemented for different domains.

In Figure 2.1 we made a scheme of a classical coordinate transformation where
a logical domain, defined by a patch P , is mapped into a physical domain Ω.
Following the most common conventions of the Isogeometric Analysis [CHB09]
(IGA) a patch is a rectangular (or Cartesian) mesh that is mapped to a physical
domain of curvilinear coordinates. In the patch, the coordinates (η, ξ) are equally
spaced, such that: ηi+1 = ηi +

1
N1

∀i = 0 . . . N1 − 1 and ξj+1 = ξj +
1
N2

∀j =
0 . . . N2−1; N1 andN2 being respectively the number of points in η and ξ directions.
The direct coordinate transformation F :P → Ω is given by F (η, ξ) = (x, y).
Finally, let F−1 be the inverse mapping.

P

F (η, ξ)

F−1(x, y)

ξ

η

Ω

y

x

Figure 2.1: Representation of a polar coordinate transformation and its notations

The Cartesian to polar coordinates is represented above, which is by far the most
common transformation in 2D. In 3D, we can mention the spherical or cylindrical
transformations. In this manuscript, we use a polar mesh, but also other more
sophisticated grids that we discuss in Chapter 3. Nevertheless, throughout all this
chapter, as well as most of the studies being made in this domain, all transfor-
mations are based on the Cartesian grid. As we mentioned in the introduction,
we were also interested in another regular mesh is mapped to a circular domain

12

without any singularities. Namely, the hexagonal mesh, introduced in the next
section.

Hexagonal Mesh

The hexagonal mesh is obtained by tiling a regular hexagon into equilateral tri-
angles. The mesh obtained can be generated by three vectors. These unit vectors
are

r1 =

(√
3/2
1/2

)
, r2 =

(
−
√
3/2

1/2

)
, r3 =

(
0
1

)
. (2.1)

The 2D lattice sites are obtained by the productRk with the matrixR = (r1 r2)
and the vector k = (k1, k2)

T ∈ Z. To obtain the mesh exactly as in Figure 2.2,
we need to define a few extra parameters: an origin, denoted by P0 = (x0, y0), a
radius L (the distance between the origin and any external vertex) and the number
of cells Nc on any radius.

P0

P5

P6

P1

P2

P3

P4

r3
r1r2

(a) Hex-mesh with Nc = 1

k8

0
1

2
3

4
5

6

7
8

9
10

11

12

13
14

15
16

17

18

(b) Hex-mesh with Nc = 2

L

(c) Hex-mesh with Nc = 3

Figure 2.2: Three hexagonal lattices with different mesh steps, the vectors r1, r2, r3 that generate
such meshes, and its point indexation

The mesh is based on uniform hexagons of the first type,1 see [Uli87]. For local
and global indexing we will use the following convention: the point at the center
will be the point of index 0. Following the direction r1 the next point will be
indexed 1, and the indexing will follow in a counter-clockwise motion. And so
on, until all the points of the domain have been indexed (see Figure 2.2b). We
will denote Pi the point of global index i, Cartesian coordinates xi = (xi, yi) and

1The six main vertices of a first type hexagon are respectively at the angles (π/6, π/2, 5π/6,
−5π/6, −π/2, −π/6), see Figure 2.2. Whereas type two hexagons have the six main vertices at
angles (0, π/3, 2π/3, π, −2π/3, −π/3), equivalent to a regular hexagon of type one after a π/6
rotation

13

hexagonal coordinates ki = R−1(xi − x0). We notice that with these notations,
k0 = (0, 0), regardless of the values of P0, L or Nc. Likewise, k1 = (1, 0), k2 =
(1, 1), and so on. For simplicity, we suppose x0 = (0, 0) throughout the rest of
this thesis.

Besides the fact that the hexagonal mesh contains no singularities, its regular-
ity allows us to locate the characteristics origins by taking three integer values,
similarly to what is done on Cartesian grids for which only two integer values
are needed. We will see the adaptation of the Semi-Lagrangian method to the
hexagonal mesh in section 4. Nevertheless, the accuracy of the method depends
heavily on the interpolation method chosen. For example, for a Cartesian grid,
it is common to use cubic splines which have shown to give accurate results in
an efficient manner [BM08]. Using the hexagonal lattice, B-splines do not exploit
the isotropy of the mesh (for more information see [Mer79]) and are defined by
a convolution in 2D, which can’t be done for this mesh. Therefore, we need to
introduce another basis function that could exploit this geometry.

After presenting the better-known basis functions that we used, B-splines and
NURBS, we proceed to introduce the Box-splines, a more general type of splines
that can be used for this hexagonal mesh.

Splines families: B-splines and NURBS
There exists a manifold of basis functions, hence at least as many approaches for
both the domain decomposition and the solving of partial differential equations. In
this work, we decided to consider one of the most recent families of basis functions,
introduced in numerical analysis already in 1946 [Sch46], but that in recent years
has grown in importance: the spline family. We will start with the well-known
B-splines (see subsection 2), followed by the popular type of splines in the IgA
community, NURBS (see subsection 2), and finally the most general form of splines,
the Box-Splines (see subsection 2).

B-Splines

A basis spline, commonly known as B-spline, is a piecewise-polynomial curve
[DB78]. B-splines are usually preferred for polynomial interpolations to Lagrange
polynomials as they are not susceptible to Runge’s phenomenon2 and to Bezier
curves considering that the entire Bezier interpolant has to be recomputed when
moving a single control point.

2Runge’s phenomenon is equivalent to the Gibbs phenomenon in the Fourier series approx-
imation. It corresponds to the apparition of oscillations when interpolating with high order
polynomials on an equidistant set of points [Run01].

14

Definition 1: B-spline of degree d centered in j

Let U be a sequence of m+ 1 knots in [0, 1], such that

0 ≤ u0 ≤ u1 ≤ · · · ≤ um ≤ 1. (2.2)

The B-spline of degree d center in j is defined by recursion as

B0
j (u) =

{
1 if uj ≤ u < uj+1

0 otherwise
,

and Bd+1
j (u) =

u− uj
uj+d − uj

Bd
j (u) +

uj+1 − u

uj+d+1 − uj+1

Bd
j+1(u).

(2.3)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

B
0

B1
B2

B3

B4 B5

B6

3

3 3

3

3
3

3

Figure 2.3: Cubic splines with knots u = {0, 0, 1/3, 1/2, 2/3, 1, 1}

Another advantage of using B-splines is that they are well suited for the Semi-
Lagrangian method.3 This is due to the following properties.

• B-splines are positive: Bd ≥ 0, ∀d ≥ 0;

• They are piecewise polynomials of degree d;

• The support of a B-spline is compact;

• B-splines naturally form a partition of unity:
∑

j B
d
j (x), ∀d and ∀x.

3As mentioned in Remark 1 we obtain the best compromise between cost and quality by using
cubic B-spline for the interpolation step in the SL scheme.

15

Most of the properties can be visualized in Figure 2.3. As we saw in Section 1,
positivity conservation (from the maximum principle) is important in our context.
Thus, it is important to use basis functions that help to preserve this positivity.
The second property leads to smooth functions which should ensure smooth inter-
polants, while a compact support makes for efficient codes. Finally, partition of
unity play an important role when studying the conservation properties.

Furthermore, in recent years, B-splines have been introduced for the IgA ap-
proach by Manni et al. in 2011 [MPS11], but the most common basis functions in
the IgA approach are NURBS, which we will introduce in the next section.

2 4 6 8 10
−4

−3

−2

−1

0

1

2

3

4

2 4 6 8 10
−4

−3

−2

−1

0

1

2

3

4

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Figure 2.4: Three examples of B-spline curves (solid) and their control points (dashed)

From Definition 1 we can describe more complex objects. Starting with a B-
spline curve (see Figure 2.4).

Definition 2: B-spline curve of degree d

A B-spline curve C : [0, 1] → Rd of degree d is defined by

C(u) =
m−d−1∑
j=0

Bd
j (u)Pj , (2.4)

where Pj are the m−d control points and Bd
j the B-spline of degree d defined

on the m knots {ui}.

Going one dimension higher, we can define B-spline surfaces.

Definition 3: B-spline surface

A B-spline surface is defined by the tensor product of B-spline curves of degree

16

d1 and d2, such that

S(u, v) =

m−d2−1∑
j=0

l−d1−1∑
i=0

Bd2
j (v)Bd1

i (u)Pi,j ,

where Pi,j is a net of control points of size ((m− d2)× (l − d1)). Bd1
i and Bd2

j

are defined respectively on the l (resp. m) knots {ui} (resp. {vi}), following
the definition in (2.2).

Another interesting point about B-splines is that their derivatives are easy to
compute. This property is not directly used in this work, thus for more details
we refer to [DB78, PT97]. Finally, let us introduce a more general type of splines
than B-splines, NURBS. They are frequently used in IGA, and play an important
role all along the first part of this thesis.

Non-Uniform Rational B-splines

Non-uniform rational basis splines (NURBS) are a mathematical tool used to define
and represent curves and surfaces. The concept is the same used for generating
B-spline curves and surfaces, associated with the concepts of tensor products (for
surfaces) and rational Bezier curves. Using NURBS allows to have more precision
and is easier to adapt to different shapes. For example, the representation of a
circle is exact using NURBS whereas it is approximative with B-splines or Bezier
curves. In fact, all conic sections can be exactly represented with NURBS. For the
literature about NURBS we suggest [PT97].

Definition 4: NURBS curve of degree d

To define a NURBS curve, we need a set of control points {Pi}, their as-
sociated weights {wi}, the d-th degree B-splines

{
Bd

i

}
and a knot vector

U = {u0, u1, · · · , um} such that

0 ≤ u0 ≤ u1 ≤ · · · ≤ um ≤ 1.

A NURBS curve is thus defined by

C(u) =

m−d−1∑
i=0

Bd
i (u)wiPi

m−d−1∑
i=0

Bd
i (u)wi

(2.5)

17

If we wish to extend the approach from 1D to 2D, the procedure is the same as
with B-splines – using a tensor product between two 1D NURBS functions.

Definition 5: NURBS surface

Let U and V be two sequences of respectively ℓ+ 1 and m+ 1 knots in [0, 1],
such that {

0 ≤ u0 ≤ u1 ≤ · · · ≤ uℓ ≤ 1,
0 ≤ v0 ≤ v1 ≤ · · · ≤ vm ≤ 1.

(2.6)

A NURBS surface function can be written as

S(u, v) =

m−d2−1∑
j=0

ℓ−d1−1∑
i=0

Bd2
j (v)Bd1

i (u)wiPi

m−d2−1∑
j=0

ℓ−d1−1∑
i=0

Bd2
j (v)Bd1

i (u)wi

, (2.7)

where Bd1
i and Bd2

j are B-spline curves respectively of degree d1 and d2 asso-
ciated with the knots vectors U and V .

Without going into details, we want to give in this section the formulas for the
derivatives of a NURBS curve and surface. Indeed, curve and surface derivatives
are essential for some algorithms. For example, the computation of the Jacobian
matrix of a transformation calls for the derivative values of a NURBS curve. In
our context, this will be particularly useful when computing the slopes for the
boundary conditions in the Multi-patch Approach. However, the literature on this
subject is already quite rich. We can cite [DB78, PT97, CHB09] for the details
and proofs. Let us give the main points of the calculations. First, we rewrite
equation (2.4), such that

C(u) =
w(u)C(u)

w(u)
=
A(u)

w(u)
,

where A(u) is the numerator of (2.5). For the exact definition of A, its derivative,
as well as w and the global algorithm, please refer to [PT97]. Here, we just want
to point out the simplicity of these computations. After calculations, we obtain:

C ′(u) =
A′(u)− w′(u)C(u)

w(u)
.

Following the same reasoning, we can move to two dimensions. We use the
simplified definition of a NURBS surface :

18

S(u, v) =

l−d1−1∑
i=0

m−d2−1∑
j=0

Rij(u, v)Pij

where

Ri,j =
Bd1

i (u)Bd2
j (v)wi,j

l−d1−1∑
k=0

m−d2−1∑
ℓ=0

Bd1
k (u)Bd2

ℓ (v)wk,ℓ

.

Using the same technique, we used for the NURBS curve, we rewrite a NURBS
surface as follows

S(u, v) =
w(u, v)S(u, v)

w(u, v)
=
A(u, v)

w(u, v)
.

Therefore we obtain the first derivative on u (symmetrically on v) as

∂uS =
Au(u, v)− wu(u, v)S(u, v)

w(u, v)
.

Nevertheless, we should know that as useful as these last two families of splines
are, they require a Cartesian mesh to be defined in 2D. However, a big part of our
work will be done in a hexagonal mesh that is not obtained by a convolution of
two 1D vectors. Thus, we need an even more generalized form of splines.

Box-Splines, a less known spline family
Box-splines are a generalization of the well-known B-splines. They are also piece-
wise polynomials and they share some properties, such as: compact support, pos-
itiveness, symmetry and partition of unity. But, unlike B-splines, Box-splines are
defined from a generator matrix Ξ. As we mentioned in the Introduction, Chap-
ter 1, a part of our study includes working on a hexagonal mesh, thus we need
a basis that is adapted to a grid that cannot be obtained by a tensor product.
There are mainly two families of splines that take advantage of this type of grid:
hex-splines, first introduced in [VDVBU+04], and the three directional Box-splines
[DBHR93, BHS13, DL91]. For a detailed comparison between these two types of
splines we will refer to [CVDV07]. Based on the latter, we chose to use Box-splines,
as the results are more stable.

General definition

A Box-spline is a spline that is more general than a NURBS and a B-spline.
Nevertheless, despite being more flexible to different meshes, they remain less used

19

than B-splines or NURBS. This is due to their computation being slower and, in
some cases, noisy. In fact, in general, it is better to use a type of splines that is
adapted to the mesh used. However, for the hexagonal mesh, this generalization
is mandatory. The general definition is [DBHR93, CVDV06]

Definition 6: Box-Splines

Let Ξ be a d × m matrix with non-null columns in Rd. A Box-spline χΞ

associated to the matrix Ξ, is a multivariate function χΞ : Rd −→ R. If Ξ
is a square invertible matrix, i.e. when m = d and det(Ξ) ̸= 0, we define a
Box-spline with the formula below.

χΞ(x) =


1

|det(Ξ)|
if Ξ−1x ∈ [0, 1[2,

0 otherwise.
(2.8)

If Ξ∪v is a d× (m+1) matrix, composed by the m column vectors from Ξ
to which we append the vector v, we define the Box-spline χΞ∪v by recursion

χΞ∪v(x) =

∫ 1

0

χΞ(x− tv) dt. (2.9)

Remark 2. We notice that uniform B-Splines are Box-splines where the generating
matrix is Ξ = h (e1, e2), where e1 = (0, 1)T , e2 = (1, 0)T and h ∈ R+ is the step of
the uniform mesh. For a B-spline of degree d, the multiplicities of e1 and e2 are
both d+ 1. See Appendix A for the proof.

Remark 3. The Box-splines can have different degrees in each direction. Thus,
there are different definitions of the degree. We consider the definition below, which
is specific to the kind of Box-splines we use in this paper.

Definition 7: Three-directional Box-spline of degree d

Let Ξ be a 2 × 3 matrix with non-null columns in R2 such that they form
a generating set of R2. Then, the three-directional Box-spline of degree d of
generating matrix Ξ, χd

Ξ, is the Box-spline associated to Ξ, where all three
generating vectors have multiplicity d.

In Figure 2.5, the difference between the first two Box-splines, χ[r1,r2] and
χ[r1,r2,r3] lies on the generating matrix. This is obvious when viewing the sup-
port of the box-splines in Figure 2.6. We notice that only χ[r1,r2,r3] and χ2

[r1,r2,r3]

20

Figure 2.5: On the left: Box-splines χ[r1,r2], χ[r1,r2,r3] (shifted for better visualization), and χ2
[r1,r2,r3]

(also translated). On the right: 2d projections of the Box-splines onto the x plane.

Figure 2.6: Support of Box-splines χ[r1,r2], χ[r1,r2,r3] (shifted for better visualization), and χ2
[r1,r2,r3]

(also translated).

are adapted to the hexagonal mesh and have a hexagonal support. In fact, these
are the three-directional Box-splines of degree 1 and 2 in the hexagonal-mesh that
will be mentioned further in the following sections.

Box-splines on the hexagonal mesh

We will use the Box-splines exclusively on the hexagonal mesh. For example, the
first two Box-splines of Figures 2.5 and 2.6. We can use the definition of Condat
and Van De Ville [CVDV06] for the Box-splines on a hexagonal mesh,

21

χd(x, y) =
d∑

k1,k2=−d

min (d+k1,d+k2,d)∑
i=max (k1,k2,0)

(−1)k1+k2+i

(
d

i− k1

)(
d

i− k2

)(
d

i

)

×
d−1∑
j=0

(
d− 1 + j

j

)
1

(2d− 1 + j)! (d− 1− j)!

×
∣∣∣∣ 2y√3

+ k1 − k2

∣∣∣∣d−1−j (
x− k1 + k2

2
−
∣∣∣∣ y√3

+
k1 − k2

2

∣∣∣∣)2d−1+j

+

.

(2.10)

We also want to remind the optimized algorithm for d = 2.

Algorithm 1: (BoxSplineValue) Computation of Box-splines of degree 2

Data: x, y, Cartesian coordinates of the point on which we evaluate the
spline.
degree, the degree of the spline, here degree = 2.

Result: value, value of the Box-splines at given point (x, y)
Initialize u = |x|−|y|/

√
3

Initialize v = |x|+|y|/
√
3

if u ≤ 0 then u = − u v = v + u; /* Symmetry r_2 */
if u ≤ v / 2 then u =v − u; /* Symmetry r_2+r_3 */
Initialize g = u − v / 2;
if v > 2 then

value = 0
else if v < 1 then

value = 0.5 + ((5/3 − v/8)*v − 3)*v **2/4 + ((1 − v/4)*v + g **2/6 −
1)*g **2

else if u > 1 then
value = (v − 2.)**3*(g − 1.)/6.

else
value = 5/6 + ((1 + (1/3 − v/8)*v)*v/4 − 1)*v + ((1 − v/4)*v + g **2/6
− 1)*g **2

end

Mass and stiffness matrices

When solving PDE, for example even a simple Poisson equation, we come across
some weak formulations that involve the Mass matrix and/or the Stiffness matrix
(see equation (2.11)). The computation of these matrices is costly and generally
not obvious as they require many terms and derivations of the basis functions. The
computation of these matrices is well known when working in Cartesian meshes

22

or when working with B-splines. However, no previous work has been done to
compute these matrices with Box-splines. This is mainly due to the fact that
their description is too general. In this manuscript we specialize only in the three-
directional Box-splines defined in Definition 7, thus we are able to compute and
simplify the value of these matrices for the hexagonal mesh. The Mass and Stiffness
matrices general definition is

Mij =

∫
ψi ψj

Σij =

∫
∇ψi · ∇ψj

(2.11)

where ψi (respectively ψj) is the basis functions centered on the point of global
index i (resp. j). Here the basis functions are actually the Box-splines χd

R. For
more readability, we simplify this notation to χd for the following. While doing
these computations, we realized that the easiest way to simplify these equations
is by using the hexagonal coordinates4 which are, for a point of global index i,
(ki1, k

i
2) = (m,n). Respectively, for a point of global index j, we use the hexagonal

coordinates (kj1, k
j
2) = (k, l). We denote by χd

i = χd
m,n, the Box-spline of degree d,

centered on the point of index i. Using the properties in Appendix A, we obtained

Md
ij =

2L2

N2
c

√
3
χ2d
m−k,n−l(2d r3)

Σd
ij = − 2√

3

(
∂2r1χ

2d
m−k,n−l(2d r3) + ∂2r2χ

2d
m−k,n−l(2d r3)− ∂r1,r2χ

2d
m−k,n−l(2d r3)

)
.

(2.12)
We remind the reader that L/Nc is the mesh step, and r1, r2 and r3 are the vectors
generating the hexagonal mesh (see Equation (2.1)). Thus we can see that when
solving a PDE using Box-splines of degree d, we will actually also need the values
of the Box-splines with a degree 2 times higher, as well as their derivatives along
the mesh vectors.

In Tables 2.1, 2.2 and 2.3, we gathered the results for Box-splines of degree
1 and 2 (for higher degrees and a python script to compute these results see
Appendix A). To know the values of Md

ij or Σd
ij, defined for Box-splines χd

i =
χd
m,n and χd

j = χd
k,l, we should read the value at the position (c1, c2) = (2d +

(m− k)Nc/L, 2d+ (n− l)Nc/L). Notice that to find the values Md
ij and Σd

ij, the
values from the table should still be multiplied by (2L2)/(N2

c

√
3) for the Mass

4Unfortunately, this also introduces several new indexations making the equation even more
difficult to understand on a first approach, but we tried to simplify them as much as possible.
Hopefully, once the reader gets used to these notations, the lecture will become almost intuitive.

23

Mass matrix coefficients ÷ 2L2

N2
c

√
3

HHHHHHc1

c2 1 2 3

1 1
12

1
12

0

2 1
12

1
2

1
12

3 0 1
12

1
12

Stiffness matrix coefficients ÷ 2√
3

HHHHHHc1

c2 1 2 3

1 0.5 0.5 0

2 0.5 5 0.5

3 0 0.5 0.5

Table 2.1: Non-null terms of the Mass and Stiffness matrices for box-splines of degree 1

Mass matrix coefficients ÷181440
2L2

N2
c

√
3

HHHHHHc1

c2 1 2 3 4 5 6 7

1 1 17 17 1 0 0 0

2 17 868 2550 868 17 0 0

3 17 2550 18871 18871 2550 17 0

4 1 868 18871 47496 18871 868 1

5 0 17 2550 18871 18871 2550 17

6 0 0 17 868 2550 868 17

7 0 0 0 1 17 17 1

Table 2.2: Non-null terms of the Mass matrix for box-splines of degree 2

matrix, and by 2/
√
3 for the Stiffness matrix. These values are useful mainly for

the validation of the Finite-Element codes.
Finally, we have all the main properties to solve PDE such as the Poisson equa-

tion using a Finite Element or a Finite Differences approach. Nevertheless, the
Vlasov equations will be solved using the Semi-Lagrangian scheme, for which an
interpolation method is needed. This interpolation is described in the next section.

Interpolation using splines
In this section, we present the interpolation methods needed to apply the Semi-
Lagrangian scheme on the logical domains. In fact, every step of the PDE solving

24

Stiffness matrix coefficients ÷20160
2√
3

HHHHHHc1

c2 1 2 3 4 5 6 7

1 -1 -43 -43 -1 0 0 0

2 -43 108 -1218 108 -43 0 0

3 -43 -1218 8153 8153 -1218 -43 0

4 -1 108 8153 23800 8153 108 -1

5 0 -43 -1218 8153 8153 -1218 -43

6 0 0 -43 108 -1218 108 -43

7 0 0 0 -1 -43 -43 -1

Table 2.3: Non-null terms of the Stiffness matrix for box-splines of degree 2

is done on the logical domain. We use the cubic B-spline interpolation, which is
useful for any scheme based on a Cartesian mesh. Furthermore, we will present a
comparable method on the hexagonal mesh.

Cubic B-Spline interpolation

As we previously mentioned in Section 1, Remark 1, the magnitude of the error
is greatly dependent on the accuracy of the interpolation method, and it has been
shown that, for a Cartesian mesh, the cubic spline interpolation yields the most
competitive results [BM08]. Thus, let us recall the principle of the piecewise cubic
B-spline interpolation as presented in [DB78].

Firstly, let us see the theory in a 1D uniform mesh, as it is simpler to understand
and the extrapolation to 2D is natural. Given a set of point xi in [a, b] such that
xi = a + ih, i = 0, . . . , N and h = b−a

N
. The associated data f is known at the

mesh points, f(x1), . . . , f(xn). Let us define a function f̃ such that on each interval
[xi, xi+1] we have f̃ ∈ Π ≤ 3, the set of polynomials of maximum degree 3, and
f̃(xi) = f(xi). The function f̃ is an approximation of f using the cubic splines B3.
For illustration purposes, we consider a B-spline which knots are the mesh nodes.

25

This simplifies greatly the computation of the splines which formula is below.

B3
j (x) =

1

6



(
2− |x− xj|

h

)3

if h ≤ |x− xj| < 2h,

4− 6

(
x− xj
h

)2

+ 3

(
|x− xj|

h

)3

if 0 ≤ |x− xj| < h,

0 else.

(2.13)

Since the number of knots needed for the cubic splines (i.e. = N + 2) is bigger
than the number of mesh points, the boundary conditions need to be properly
defined. Several alternatives exist, for example, assigning the two extra knots to
the extremities of the interval. This deforms the shape of the splines but makes
them interpolatory. Another solution is to use the Greville abscissae rather than
the knots (which implies knowing the initial data function at these points), so that
the number of unknowns matches the number of knowns [Far14].

Whichever solution is chosen, the approximation of the function f is (or is nearly,
differing on the extremities) given by

f̃(x) =
N+1∑
j=0

cjBj(x)

where the coefficients cj are obtained by solving a linear system since we know the
values of the interpolation at the mesh nodes,

f̃(xi) =
N∑
j=0

cjBj(xi) = f(xi). (2.14)

The (N +2)× (N +2) system is Ac = f , where the matrix A contains the values
of the cubic splines, c is the vector of the cj coefficients and respectively f of the
f(xi) values. Since the only non-null values of the splines at the grid points are
Bj(xj) =

2

3
and Bj(xj+1) = Bj(xj−1) =

1

6
, the matrix A is tri-diagonal. Actually,

we get

A =
1

6


1 4 1 0 · · · 0
0 1 4 1 0 · · ·
...
0 · · · 0 1 4 1

 . (2.15)

We recall the reader that this matrix depends on the interpolation points used,
and on the boundary conditions.

26

Imposing Hermite boundary conditions

Suppose we wish to impose Hermite boundary conditions at both extremities of
our domain. We get

f ′(x0) ≃ f̃ ′(x0), f ′(xN) ≃ f̃ ′(xN). (2.16)

We have B′
i±1(xi) = ±1/(2h) and B′

j(xi) = 0. Then, Equation (2.16) becomes
f ′(x0) ≃ 1

2h
c1 −

1

2h
c−1

f ′(xN) ≃ 1

2h
cN+1 −

1

2h
cN−1.

(2.17)

We notice the introduction of two new coefficients, c−1 and cN+1. Hence, the linear
system Ac = f is actually (N + 3)× (N + 3).

Quasi-interpolation on the hexagonal mesh

We have chosen for the hexagonal mesh a local quasi-interpolation method using
Box-splines. By locality [dB90] we mean that the quasi-interpolation on a given
point depends only on the data in the neighborhood of that point. Previous work
has been done on quasi-interpolations in three-directional meshes [Sab96, Sab02],
as well as quasi-interpolations using Box-splines[LMS08]. Nevertheless, a quasi-
interpolation scheme specific to our hexagonal mesh using Box-spline has only been
studied for signal-processing applications [CVDV07]. In this section, we intend to
apply this scheme such that we can use it for the Semi-Lagrangian method.

We write the problem in the following way: let us consider an initial sample on
the grid s[k] = f(Rk), where the points Rk belong to our hexagonal mesh, and
we need to know the values f(x) where x /∈ Rk. To this aim we define a spline
surface f̃(x) =

∑
c[k]χd(x − Rk), where χd are the Box-splines of degree d of

matrix Ξ = [r1, r2, r3] and c[k] are the associated coefficients. These coefficients
are defined such that f̃(x) approximates f(x) to a certain order M = 2d or, in
other words, the approximation is exact only if f(x) is a polynomial of degree
M −1 or less [CVDV07]. This is different from the classical interpolation method,
where the reconstruction is exact on grid points for all smooth functions. The
c[k] coefficients are the Box-spline coefficients, to compute them we are no longer
able to solve a matrix-vector system because of the extra degree of freedom given
by the quasi-interpolation method. Thus, the c[k] coefficients are obtained, for a
grid point xj of hexagonal coordinates kj (i.e. such that xj = Rkj) by discrete

27

filtering [CVDVU06]. This filtering ensures the locality of the scheme, and is
written such that

c[kj] =
K−1∑
ℓ=0

s[kVj,ℓ
]p[ℓ] =

K−1∑
ℓ=0

s[kℓ + kj]p[ℓ], (2.18)

where s is the initial sample data and p[ℓ] are K pre-filters which will be defined
later on. Vj is the set of global indices of theK neighboring points of Pj, thus Vj,ℓ is
the global index of the ℓ-th point in our stencil, and kVj,ℓ

its hexagonal coordinates.
We notice that (kℓ + kj) also designates the same hexagonal coordinates. This
is due to the properties of the hexagonal mesh, and the notations we chose in
Section 2.

Box-spline coefficients

In [BU99], the authors show that a quasi-interpolation of order M is achieved
when the following proposition, in Fourier form, is satisfied.

p̂(ω) + χ̂d(ω + 2π R̂k) = δk +O(∥ω∥M), ∀k ∈ Z2 (2.19)

Based on the literature available, notably [CVDV07], we have chosen for Box-
splines of degree 1 (i.e. d = 1) the quasi-interpolation pre-filters pIIR2 which seem
to give better results within a competitive time. The pre-filter pIIR2[ℓ] of the point
of local index ℓ, for splines of degree 1, is defined by

pIIR2[ℓ] =


1775/2304, if ℓ = 0,
253/6912, if 1 ≤ ℓ ≤ 6,
1/13824, if 7 ≤ ℓ ≤ 18 and ℓ odd,
11/6912, if 7 ≤ ℓ ≤ 18 and ℓ even,
0 otherwise.

(2.20)

Here K = 19, and for Box-splines of degree 2, K = 61. For higher degrees, we
refer to the previously mentioned papers (particularly [CVDVU06]). To get the
Box-spline coefficients, we use Equation (2.18), where p[ℓ] = pIIR2[ℓ].

Optimizing the evaluation

We have all the elements for the approximation of a function f with Box-splines
of degree d

f̃(x) =
∑
k∈Z2

c[k]χd(x−Rk). (2.21)

28

Even if we limit our sum to the vector k that defines our domain, we would like to
take advantage of the fact that the splines χd are only non-zeros in a limited number
of points. Therefore we need to know the indices k such that χd(x−Rk) ̸= 0. For
this purpose we will use the strategy suggested in [CVDV07]: to start we need to
obtain the indices on the coordinate system generated by R: k̃ = [⌊u⌋ ⌊v⌋] where
(u v)T = R−1x. Thus, for example, in the case d = 1 (see Figure 2.7), we only
need four terms associated with the vertices of the encapsulating rhomboid (in
grey): Rk̃ (in blue), Rk̃+ r1 (in yellow), Rk̃+ r2 (in green) and Rk̃+ r1 + r2 (in
orange).

k8

x

Rk̃

Rk̃+ r1Rk̃+ r2

Rk̃+ r1 + r2

Figure 2.7: Representation of a point x (red) in a hex-mesh of Nc = 2. The rhomboid (grey) is
formed by the intersection of all the possible non-null box-splines of degree d = 1 at the given point

Finally, we obtain:

f̃(x) = c[k̃] χ1(x−Rk̃)

+ c[k̃+ [1, 0]] χ1(x−Rk̃− r1)

+ c[k̃+ [0, 1]] χ1(x−Rk̃− r2)

+ c[k̃+ [1, 1]] χ1(x−Rk̃− r1 − r2). (2.22)

Remark 4. The χ1 spline has a support of radius the unity, thus one of the
elements of (2.22) is null. But this formula allows us to keep a short general
formula for all points on the mesh without having to compute the indices of the
cell to which x belongs to.

Remark 5. For the Box-splines of degree 2, in equation (2.22) there would be 16
coefficients to compute (see Figure 2.7) from which 4 would be null terms.

Finally, we have all the main components for the resolution of the Vlasov equa-
tions both on a patch based domain and a hexagonal domain. Both approaches

29

use the concept of a coordinate transformation even though the first tests will be
done on the logical domains. Firstly, we will see the most conventional approach,
the Multi-patch Approach.

30

3
The Multi-patch Approach.

As shown in the introduction, in Gysela, the current discretization of the toka-
mak’s poloidal plane is far from satisfactory. The main reason is that, to avoid
the singular point of the polar mesh, Gysela uses a polar mesh with a hole in
the middle (See Figure 3.1a).

The first idea to solve this problem was to fill the void zone with another mesh
that does not present a singularity in the center. Thus, having the global geometry
decomposed in at least two patches. We defined this geometry in Chapter 3, while
in Chapter 3 we discuss how to adapt the Semi-Lagrangian method to a Multi-
patch circular configuration and to more complex geometries as well (i.e. a D-
shape geometry). The adaptation relies on the IGA approach described in the
previous chapter. We present the final algorithm, and the tools needed to define
it. Finally, we present some results.

General concept: patch decomposition

The objective of this manuscript, described simply, is to find an alternative dis-
cretization to the current 2D poloidal cut in Gysela without a singular point at
the center and that is adaptable to more complex geometries. To meet the first
criteria and be able to provide a method that requires minimal modifications to
the code, we choose to keep the polar mesh, and introduce a second mesh (or
patch) connected to it. We called this method, the Multi-patch Approach. For
the second criteria, we decide to use the IGA approach, so that the generalization
to any geometry is automatic.

31

Domain decomposition

The first approach means a transition from a polar annulus (See Figure 3.1a) to
a domain where an internal disk with no geometrical singularities is coupled, in a
C1 fashion, to a field aligned polar mesh (See Figure 3.1b).

(a) (b)

Figure 3.1: Gysela’s current mesh for the poloidal plane and a new discretization

In Chapter 2 we mentioned that these meshes are generated from a coordinate
transformation of a Cartesian mesh to the given physical grid. The mapping to
form the external annulus is the well-known polar transformation.

Fext(η, ξ) = (η cos(ξ), η sin(ξ))

F−1
ext(x, y) = (

√
x2 + y2, arctan(y/x)).

Its associated Jacobian matrix is

J(Fext) =

(
cos(ξ) −η sin(ξ)
sin(ξ) η cos(ξ)

)
.

It is easy to notice that the determinant of the Jacobian is null at the origin. Thus,
we encounter the expected numerical errors: division by zero at the origin and,
when the mesh is fine, by numerical zeros at points close to the origin; this point
is also geometrically singular, i.e. the cells near the origin become triangular.

To solve this problem, we define a new mesh for the internal disk; this mapping
is G1 continuous with the polar annulus and contains no geometrical singular point
(See Figure 3.1b). It is important to notice that this grid is not field-aligned and
thus, in our context, we cannot discretize the whole domain with it. Nevertheless,
it is still a regular mesh, which is important when using the Semi-Lagrangian

32

scheme. Indeed, for each time step, we locate the origin of the characteristics, so
this procedure needs to be as light as possible. The internal mapping is as follows.

Fint(η, ξ) =

(
(2ξ − 1)

√
1− (2η − 1)2

2
, (2η − 1)

√
1− (2ξ − 1)2

2

)
. (3.1)

Singular points

Geometrically this mapping has no singular points. This provides the advantage
of choosing a coarser refinement at the origin of the domain.1 Nevertheless, the
four corners of the square patch P = [0, 1]2 represent, numerically, a singularity.
First of all, we introduce the function Fint,s, a simplified version of Fint, such that
Fint,s(2η − 1, 2ξ − 1) = Fint. The transformation is written in the form

Fint,s(η, ξ) =

(
ξ

√
1− η2

2
, η

√
1− ξ2

2

)
.

It contains the same number of singular points, only translated. Let us compute
the Jacobian matrix of this mapping to study the four singular points.

J(Fint,s) =


−ξη

2

(
1− η2

2

)−1/2
√
1− η2

2√
1− ξ2

2
−ξη

2

(
1− ξ2

2

)−1/2

 .

We compute its determinant

det(Jint,s) =
η2ξ2

4

(
1− η2

2

)−1/2(
1− ξ2

2

)−1/2

−
(
1− η2

2

)1/2(
1− ξ2

2

)1/2

=
η2 + ξ2 − 2

2

(
1− η2

2

)1/2(
1− ξ2

2

)1/2
.

The singular points are the points (η, ξ) such that det(Jint,s) = 0. Thus, the zeros
of the equation η2 + ξ2 − 2 = 0, which is the equation of a paraboloid as seen in
Figure 3.2. In these singular points the inverse mapping of F does not exist.

1This is an important property since, generally, turbulence is not expected to generate small
scales near the magnetic axis. Thus, at the origin of the domain, the mesh can be coarser.

33

Figure 3.2: Paraboloid defined by equation η2 + ξ2 − 2

We notice that if η = ±1 and ξ = ±1 the Jacobian’s determinant is null.
Therefore, there are four singular points, numerically, of values:

P s
1 = (−1,−1), P s

2 = (−1, 1), P s
3 = (1,−1), P s

4 = (1, 1).

The singular points of this mapping will be the four “corners” of the patch.
Nevertheless, as these four points are singular numerically and not geometrically,
we strongly believe we can handle the repercussions it may have on the results.
We can thus continue with the construction of the domain.

Modeling the domain using CAID

We are going to take advantage of the external crown symmetry to subdivide it
into four identical patches with a given rotation from the origin. As we can see in
Figure 3.3a, we obtain five patches, which have at the most one edge in common
with one another. The computation of the boundary conditions will be therefore
easier.

As we mentioned earlier, the Semi-Lagrangian method is applied in the patch
representation. However, in the code, every patch is independent of its geometrical
representation, so we need to have a notation system to index every patch, every
edge, and the relationship between each patch (neighbors, connecting edges, etc.).
Figures 3.3a and 3.3b show the notations used in the physical and logical domains.

To create this geometry we use the software CAID2. The resulting geometry is
an object containing, between other attributes, the information about the number
of patches, the connectivity between them (see below), and their respective coor-
dinate transformation and derivatives. These three elements are all we need to
define our new scheme and domain.

2Created by A. Ratnani, CAID is a “multi-platform software for Isogeometric Analysis pre-
and post-Processing. Its design goal is to provide a fast, light, user-friendly, and meshing tool.”
http://ratnani.org/caid_doc/index.html

34

1

23

4

2

0

1

3

0

1

2
3

0

1
2

3

0

12

(a) Patch subdivision of domain

0

1

2

3

4

0

1

2

3

2

3

0

1

1

2

3

0

0

1

2

3

0

1

2

3

(b) Patch representation of connectivity

Figure 3.3: Patch configuration of a disk using CAID

To symbolize the relationships between patches we use two connectivity lists.
Each list element of index i is a couple of integers. The first integer will represent
the patch number and the second, the edge number. Moreover, the couple (pi, bi)
of index i in any of the lists is associated to the couple (p′i, b

′
i) of index i in the

other list. We will denote this connectivity by (pi, bi) ≡ (p′i, b
′
i). For the previously

mentioned example we obtain the lists:

list_conn1 = [[0,0], [0,1], [0,2], [1,0],
[1,1], [2,0], [2,3], [3,0]]

list_conn2 = [[1,2], [4,3], [3,3], [2,1],
[4,0], [4,1], [3,1], [4,2]]

Multi-patch Semi-Lagrangian method
We defined a Multi-patch geometry and we set a way to describe the connectivity
between patches. Nonetheless, we still need to determine the tools needed when
adapting the Semi-Lagrangian method to such a geometry. We present the prin-
ciple using a simple model, the advection equation, which requires already most
of the tools needed for more complex models.

Solving the constant advection equation

As a first example, we study the application of the Semi-Lagrangian method to
the well-known constant coefficient advection equation on a Multi-patch domain.

35

Similar to what we did in Chapter 1. This reminder will help us transition to
the IGA approach. Firstly, we need to solve the model in Cartesian coordinates.
Indeed, we estimate the error of the numerical solution by comparing it to the
exact solution. Let x = (x, y), the model is defined by

∂f

∂t
(t, x, y) +A · ∇x f(t, x, y) = 0 x in Ω, (3.2)

with initial condition

f(0, x, y) = f0(x, y) (3.3)

where A is divergence free, i.e. ∇x · A = 0, more precisely A is the constant
advection coefficient so thatA = (a1, a2)

T . Using the method of characteristics, we
find the solution of Equation (3.2) in the physical space. To find the characteristics
we solve the following system of ODE.

∂X

∂t
= A

X(s) = x.

We should note that even if the domain is subdivided in patches, it does not change
anything to the model, nor to the solution which is X(t) = x+ a1 · t

Y (t) = y + a2 · t

Knowing the initial condition f(0; x, y) = f0(x, y), we obtain

f(t, x, y) = f0(X(t), Y (t)) = f0(x− a1 t, y − a2 t). (3.4)

This model is written in Cartesian coordinates. The solution is easy to compute
and will be useful to estimate the accuracy and approximation of the method.
However, the principle of the IGA approach is that the model is solved on the
logical space. Thus, we need to write it in a more general form.

Changing the coordinate system

We wish to write Equation (3.2) in the logical space (we note that Equation (3.3)
is automatically transferable to the logical space) which coordinate system is de-
noted by η = (η, ξ). Let us introduce the mapping from the logic to the physical
coordinates, and its inverse.

36

F (η) = x ⇔
{
x = F1(η, ξ)
y = F2(η, ξ)

and F−1(x) = η ⇔
{
η = F−1

1 (x, y)
ξ = F−1

2 (x, y)
.

Their associated Jacobian matrices are respectively

J(F) = J =


∂F1

∂η

∂F1

∂ξ

∂F2

∂η

∂F2

∂ξ

 , J(F−1) = J−1 =
1

|J|


∂F2

∂ξ
−∂F1

∂ξ

−∂F2

∂η

∂F1

∂η

 (3.5)

where |J| is the determinant of J. We suppose here that F (η) follows the Inverse
Function theorem, which states that a function is invertible if |J| ̸= 0. Thus
we can write Equation (3.5). We wish now to write the gradient of f in the
patch coordinate system using the mapping. Thus, we apply the chain rule for 2
coordinates to f , we obtain

∂f

∂x
=

∂f

∂η

∂F−1
1

∂x
+
∂f

∂ξ

∂F−1
2

∂x
∂f

∂y
=

∂f

∂η

∂F−1
1

∂y
+
∂f

∂ξ

∂F−1
2

∂y

.

Then we can rewrite the gradient of f ,

∇x f(x, y) =

(
∂xf
∂yf

)
=


∂f

∂η

∂F−1
1

∂x
+
∂f

∂ξ

∂F−1
2

∂x

∂f

∂η

∂F−1
1

∂y
+
∂f

∂ξ

∂F−1
2

∂y

 .

We obtain

∇x f = J−T ∇η f̃(η, ξ) (3.6)
with J−T = J(F−1)T and f̃(F (η, ξ)) = f(x, y). Moreover, we need to transform
the advection vector to the new domain. Let us notice that, if we define a function
ψ so that ψ = a1y − a2x we can rewrite the advection vector as a curl.

−−→
rotx ψ =

(
∂yψ
−∂xψ

)
=

(
a1
a2

)
. (3.7)

Using this notation (3.2) becomes

∂f

∂t
(x, y) +

−−→
rotx ψ · ∇x f(x, y) = 0. (3.8)

37

Furthermore,

ψ(x, y) = a1y − a2x = a1F2 − a2F1 = ψ̃(η, ξ).

Let us compute the curl of ψ̃,

−−→
rotη ψ̃ =

(
a1∂ξF2 − a2∂ξF1

−a1∂ηF2 + a2∂ηF1

)
= (J(F))−1−−→rotx ψ |J|. (3.9)

Thus,

−−→
rotx ψ =

1

|J|
J
−−→
rotη ψ̃. (3.10)

Using the results (3.6) and (3.10), we can write

∂f̃

∂t
(η, ξ) +

1

|J|
J
−−→
rotη ψ̃ · J−T ∇η f̃(η, ξ) = 0

⇐⇒ ∂f̃

∂t
(η, ξ) +

1

|J|
JJ−1 −−→rotη ψ̃ · ∇η f̃(η, ξ) = 0

⇐⇒ ∂f̃

∂t
+

1

|J|
−−→
rotη ψ̃ · ∇η f̃ = 0 (3.11)

Introducing the notation Ã =
1

|J|
−−→
rotη ψ̃, we obtain

∂f̃

∂t
+ Ã · ∇η f̃ = 0.

This equation remains conservative as the advection coefficient is divergence free,
i.e. ∇ · Ã = 0 . We summarize the results in the definition below.

Definition 8: Advection equation on general coordinates

Given a coordinate transformation F (η, ξ) = (F1(η), F2(η)) = (x, y) of Ja-
cobian |J|, the constant coefficient advection equation in general coordinates
reads

∂f̃

∂t
+ Ã · ∇η f̃ = 0 (3.12)

where Ã =
1

|J|
−−→
rotη ψ̃ , ψ̃(η, ξ) = a1F2(η)− a2F1(η), and A = (a1 a2)

T ∈ R2.

With this definition of the model in logical space, we can apply the Semi-
Lagrangian method to solve it.

38

Applying the classical Semi-Lagrangian method

Let us apply the method of characteristics to the constant advection equation
written in general coordinates:

∂f̃

∂t
(η, ξ) +

1

|J|
−−→
rotη ψ̃ · ∇η f̃ = 0. (3.13)

We denote by H(t;η, s) the model’s characteristics. Their associated curves are
the following ODE solution

∂H

∂t
=

1

|J|
−−→
rotη ψ̃ = Ã(η, ξ)

H(s) = η0

(3.14)

where

−−→
rotη ψ̃(η, ξ) =

(
a1∂ξF2 − a2∂ξF1

−a1∂ηF2 + a2∂ηF1

)
The Semi-Lagrangian method is based on two steps to update the distribution

function f̃n+1 at tn+1 from its value f̃n at time tn:

1. For each grid point ηi compute H(tn+1;ηi, tn) the value of the characteristic
at tn+1 which takes the value ηi at the previous time step tn. To compute
their value, we solve the system Equation (3.14) with a Runge-Kutta solver
of order 4. Since the advection coefficients depend on the transformation
function, this step has to be done in each patch individually and cannot be
generalized.

2. We know that the distribution function f̃ solution of equation (3.13) is so
that: f̃n+1(ηi) = f̃n(H(tn+1;ηi, tn)). Thus, we know the value of f̃n+1 by
interpolating on H(tn+1;ηi, tn) which are generally not grid points.

The difference between the classical Semi-Lagrangian scheme and the new Multi-
patch adaptation relies on the previous two points. In fact, for the first one,
when back-tracing the mesh points we might find some that go from one patch
to another. We will see this in the next session. As for the second point, the
interpolation method depends heavily on the boundary conditions. And these
boundary conditions depend themselves on the neighboring patches. We will also
present this in a following section.

39

Back-tracing particles on a Multi-patch domain

Let us start with the back-tracing of the mesh points characteristics. We have
already stated that generally the origin of the characteristic will not be a point of
the grid. Nevertheless, most often the advection is small enough so that it stays
on the original patch, as in Figure 3.4.

Figure 3.4: Tracing of characteristics: particle stays on the same patch

This is the ideal situation (the next step is a simple and straightforward in-
terpolation algorithm, see Equation (2.10)), unfortunately, there are two other
possible scenarios which require further analysis. The first one is still a common
scenario when using the Semi-Lagrangian scheme. The second one, on the other
hand, is specific to the Multi-patch Approach. The two scenarios are sketched in
Figure 3.5.

(a) SLM - particle out of domain (b) SLM - particle to neighbor patch

Figure 3.5: Special cases of the back-tracing of a particle for the SLM

Let us note Pα and Pβ two adjacent patches. At the time tn+1, we can com-
pute the characteristic Hn+1

i,α = H(tn;ηi,α, tn+1) of the point ηi on the patch Pα,
noted ηi,α (equivalent to Xn+1

i = X(tn;xi, tn+1) in the physical coordinates) by
solving a simple ODE specific to the model being solved. In general Hn+1

i,α ∈ Pα,
meaning that the foot and the origin of the characteristics will be on the same
patch, although this will not be always true. Verifying if the origin of the char-
acteristic is on the same patch as its foot is almost automatic as by definition
Pα = {(η, ξ), 0 ≤ η, ξ ≤ 1}. Supposing Hn+1

i,α ̸∈ Pα, several questions arise: is
the origin of the characteristic on another patch? Or is it out of the domain? If it
is in another patch, e.g. Pβ, how do we compute Hn

i,β, its value on that patch?
If we are working on the 5-patch decomposition (Figure 3.3b), it is easy to know

if a particle left the domain or if it went to another patch. Indeed, it is enough

40

to identify from which face the particle left the domain, and see the connectivity
associated to that face. For example, from patch P4, the particle can never leave
the domain. However, when looking for a general solution that works for any
geometry chosen, the most obvious proceeding is the following.

ηi,α
SLM−−−−−−→

1
Hn+1

i,α
F−1

−−−−−−→
2

Xn+1
i,β

F−−−−→
3

Hn+1
i,β

where Hn+1
i,α is the characteristics on the patch Pα. Transformations 1 and 3 have

already been described and do not represent a high level of difficulty. On the
other hand, the computation of F−1 is far more complicated (and even, at the
singular points, nonexistent) [ALG+11]. For this reason, we will stick to simple
compositions, where each patch boundary corresponds either to another patch
edge or to a segment of the external boundary. In those conditions, the inter-
patch advection can be done in the following fashion.

A1
A2

0

2

1

2

1 3
η1

η2

Figure 3.6: Sketch of an inter-patch advection with simplified notations

We have developed a small algorithm to handle inter-patch advections. It is
based on the assumption that for a small advection (or time step) we can suppose
that the trajectory can be simplified into a straight line. Let a configuration with
two neighboring patches P1 and P2, with connectivity (1, 3) ≡ (2, 0). For the
remaining of this section, we have omitted the point indexation since it gives no
additional information (e.g. ηi,1 becomes η1). If for a given point η1, the origin of
its characteristic Hn+1

1 is outside P1, we execute the following five steps (sketched
in Figure 3.6).

1. Compute the percentage of the given advection so that the characteristic
remains in the domain. We denote this percentage per = A1/A where A is
the advection vector and A1 is the advection done in the patch P1 and the
intermediate point is noted H

(n+1),per
1 ;

2. Find the face number of P1 on which H(n+1),per lies (e.g. face 3 in the
configuration on Figure 3.6). Get, from the connectivity lists, the associated
patch and face number (e.g. patch P2 and face 0);

41

3. Compute the equivalent point of H(n+1),per
1 on its neighboring patch, we call

this point η2;

4. Perform the remaining advection;

5. Check that if the obtained point is on the patch. If not, start over from point
1, else the final point is denoted H

(n+1)
2 .

Numerically, we added for each characteristic, the ID of the patch on which
they lie. Indeed, the interpolation has to be done on the patch associated to the
origin of the characteristic. This interpolation, which is the second main point
that differs the classic BSL to our Multi-patch Semi-Lagrangian (MPSL) method,
is a cubic spline interpolation3 with Hermite boundary conditions.

Another possibility for C0 connectivity is to add Greville points in the first
and last intervals. This solution is yet to be explored. Nonetheless, we believe the
designed MPSL method is a solution to our problem. The novelty of this method is
the way in which the boundary condition’s slopes are computed. In fact, the latter
depend on the neighboring patches (domain subdivision) and on the coordinate
transformation (IGA approach). The following sections are dedicated on the novel
aspects of the interpolation.

Interpolation boundary conditions

Since we are working on a Multi-patch structure, we need to pay special attention
to the boundary conditions. Let us define by Ω the global domain formed by
the union of the sub-domains (or patches) P0, . . . ,PNpat−1. In what follows, ∂Ω
denotes the domain’s boundary (the union of all solid edges in Figure 3.7) and ∂Pi

all boundaries of a given patch Pi,∀i = 0, . . . , Npat−1. We introduce the notation
∂Γi,j, which represents the boundary between patches Pi and Pj (dashed lines in
Figure 3.7).

Some properties follow:

• The union of all the patches boundaries is equal to the union of the external

and all the internal boundaries i.e.
Npat−1∪
i=0

∂Pi =

Npat−1∪
i,j=0

∂Γi,j ∪ ∂Ω

• The patch-to-patch boundary is symmetric, i.e. ∂Γi,j = ∂Γj,i

3The algorithm used for this interpolation is from the SeLaLib library,
http://selalib.gforge.inria.fr/

42

∂Ω

∂Γ0,1

P0 P1

Figure 3.7: Boundaries definitions between a two-patch domain

When talking of boundary conditions, we will differentiate two types: we will
refer to an “interior boundary condition” (∂Γi,j), when considering a patch-to-
patch edge, and to an “exterior boundary condition” (∂Ω), when is a domain
edge.

For the exterior boundary conditions we generally use null Dirichlet boundary
conditions or even periodic boundary conditions in special cases (e.g. external
boundaries of Test-case 1). As for the internal boundaries, we impose Hermite
boundary conditions which, written in Cartesian coordinates, give


∂f (i)

∂x
(t, x, y) =

∂f (j)

∂x
(t, x, y), ∀(x, y) ∈ ∂Γi,j, if y constant along ∂Γi,j,

∂f (i)

∂y
(t, x, y) =

∂f (j)

∂y
(t, x, y), ∀(x, y) ∈ ∂Γi,j, else;

(3.15)
where f (i) (respectively f (j)) is the distribution function on Pi (resp. Pj). The
computation of these derivatives has to be of the right order of approximation.
We detail the procedure used in the next section. Since the interpolations are
done on the logical domains, the system (3.15) should be written on the logical
coordinates. For clarity, we will explain the approximations of these slopes using
the Cartesian coordinates.

Remark 6. The type of boundary condition imposed for the interior boundaries
was not natural. We tried several different types. From Dirichlet to Neumann
passing by others that we have probably already forgotten. Unfortunately, since all
this work was done towards the beginning of the thesis, it was not documented or
the results were far from satisfactory. We do not consider any of the remaining
results interesting enough to be presented in this manuscript.

43

Derivatives approximations

To simplify this section, let F (η) = Id(η) = x. Since we only need the points
coordinates, we use the more familiar Cartesian coordinates instead of the logical
ones. However, the gradients are computed on the patches, and this simplification
is only for the reader’s ease. We will also detail the derivatives only along the first
coordinate x.

So far, the algorithms used in our method are the cubic spline interpolation and
the Runge-Kutta scheme of order 4 (to compute the origin of the characteristics).
Thus, the method we choose to apply numerically the System (3.15) needs to be
of the same order. For a long time, our code used high-order finite differences
to approximate these derivatives. However, the results showed oscillations consis-
tently around the interior boundary, and poor mass conservation. Until one day
we came across the work of N. Crouseilles, et al. [CLS07]:

Different ways have been explored to obtain the derivatives: finite differences
of different orders, cubic spline approximation ... In order to reconstruct a
smooth approximation (let us say C1 on the global domain), the cubic spline
approximation has been chosen. Indeed, we remark that even in regions where
f is smooth enough, a Finite Differences approximation remains quite different
from a cubic spline approximation given by (5). Hence, as we want to re-
construct the distribution function via a cubic spline approximation, the first
line of the linear system the matrix of which is given by (7) can introduce
some numerical errors which can be propagated in the rest of the system; in
the numerical experimentations we have driven, the final results are damaged,
especially when one observes the mass conservation. Indeed, the Finite Differ-
ences approximation leads to some variations of the mass conservation which
is an inconvenient for the long time behavior of the numerical solution. On
the contrary, the approximation of the derivatives using cubic splines enables
us to obtain a robust code with a relatively small number of discrete points.

After implementing the suggested cubic spline approximation for the slopes com-
putation, the above-mentioned problems went away. Since their problem is not
exactly equivalent to ours, the remaining of this section is dedicated to adapt their
solution to our context.

First, let us introduce some notations, as similar as possible as the ones in
[CLS07]. We suppose we are in a two-patch configuration, similar to the one on
Figure 3.7, i.e. Ω = P1

∪
P2. From here on, the numbering {i, j} is reserved for

the discretization. We intend to approximate the slopes along the x-direction on
the internal boundary ∂Γ1,2 ̸= ∅. We denote these slopes s′(x) = ∂xf

(1)(t, x, y) =
∂xf

(2)(t, x, y) with (x, y) ∈ ∂Γ1,2. Since in this context t and y are constant, we
write f (1)(t, x, y) = f (1)(x). We suppose the patch discretization is C1 continuous

44

and that the mesh step, h, is the same in both directions and patches. Thus,
to get a notation analogue to [CLS07], we will use a continuous indexing for the
points in the x-direction on both patches, see Figure 3.8. We suppose xi ∈ ∂Γ1,2,
{xi−j} ∈ P1 and {xi+j} ∈ P2, ∀j = 0, · · · , N −1. Hence, we do not need to specify
on which patch the distribution function is. Actually, f(xi+j) is in P1 if j ≤ 0 and
in P2 if j ≥ 0. Lastly, we recall Equation (2.14) which gives the approximation
of the distribution by cubic spline interpolations: f̃(xi) =

∑N
j=0 cjBj(xi) = f(xi)

with Bj the j-th cubic spline and cj the corresponding coefficient.

P1 P2

xi xi+1xi−1 · · ·· · ·

Figure 3.8: Temporary indexing to compute internal boundaries slopes

We proceed to approximate the slopes s′(xi). We start with the following two
equations adapted from (2.17) and (2.15)

s′(xi) = f ′(xi) ≃ 1

2h
ci+1 −

1

2h
ci−1 (3.16)

fi = f̃(xi) =
1

6
ci−1 +

2

3
ci +

1

6
ci+1. (3.17)

We notice (3.17) is a formula to obtain any given ci

ci =
3

2

(
fi −

1

6
ci−1 −

1

6
ci+1

)
=

3

2
fi −

1

4
ci−1 −

1

4
ci+1. (3.18)

By using (3.18) to compute ci+1 and ci−1 and injecting the results in (3.16) we
obtain

s′(xi) =
1

2h

(
3

2
fi+1 −

1

4
ci −

1

4
ci+2 −

3

2
fi−1 +

1

4
ci−2 +

1

4
ci

)
=

3

4h
(fi+1 − fi−1)−

1

8h
(ci+2 − ci−2)

=
3

4h
(fi+1 − fi−1)−

1

4
(s′(xi−1) + s′(xi+1)) . (3.19)

45

This is already an approximation of the slope. However to get a higher order
approximation, we use formula (3.19) to compute s′(xi±1) and we inject the results
back in (3.19) itself. After simplifications, the equation becomes

s′(xi) =
3

4h
(fi+1 − fi−1)−

3

16h
(fi+2 − fi−2) +

1

16
(s′(xi−2) + 2s′(xi) + s′(xi+2))

⇐⇒ 7

8
s′(xi) =

3

4h
(fi+1 − fi−1)−

3

16h
(fi+2 − fi−2) +

1

16
(s′(xi−2) + s′(xi+2))

⇐⇒ s′(xi) =
6

7h
(fi+1 − fi−1)−

3

14h
(fi+2 − fi−2) +

1

14
(s′(xi−2) + s′(xi+2))

(3.20)

We notice that we have an equation similar to (3.20), so we can apply the same
procedure as before: we use Equation (3.20) to approximate s′(xi−2) and s′(xi+2),
and we use these approximations in (3.20).

(3.21)

s′(xi) =
6

7h
(fi+1 − fi−1)−

3

14h
(fi+2 − fi−2) +

1

14

(
6

7h
(fi+3 − fi+1 + fi−1 − fi−3)

− 3

14h
(fi+4 − fi−4) +

1

14
(s′(xi−4) + 2s′(xi) + s′(xi+4))

)
⇐⇒

(
1− 2

142

)
s′(xi) =

78

98h
(fi+1 − fi−1)−

3

14h
(fi+2 − fi−2) +

3

49h
(fi+3 − fi−3)

− 3

142h
(fi+4 − fi−4) +

1

142
(s′(xi+4) + s′(xi−4)).

We will not detail the last step since it is the same procedure. We obtain the
simplified version of (3.21)

(3.22)s′(xi) =
8∑

j=−8

ω̃j

h
fi+j +

1

142αβ
(s′(xi+8) + s′(xi−8))

with β =

(
α− 2

142α

)
and α = 1− 2

142
. We won’t give the exact definition of the

coefficients ω̃j, since they are long and unnecessary. However, they are constants
independent of the function and the interpolation step. We will give an exact value
to them later on. To complete the computation, we use the five points stencil finite
differences to approximate the s′(xi±8), which yield

s′(xi+8) =
1

12h
(−fi+10 + 8fi+9 − 8fi+7 + fi+6)

s′(xi−8) =
1

12h
(−fi−6 + 8fi−7 − 8fi−9 + fi−10) .

(3.23)

46

Using (3.23) in (3.22), we get the final cubic spline approximation of the Hermite
slopes at the boundary {xi}

s′(xi) =
1

h

10∑
j=1

ωj (fi+j − fi−j) (3.24)

with the values of ωj given in Table 3.1.

ω1 8.03847585E-1
ω2 -2.15390339E-1
ω3 5.77137695E-2
ω4 -1.54647393E-2
ω5 4.14518786E-3

ω6 -1.11379781E-3
ω7 3.01146127E-4
ω8 -7.97151512E-5
ω9 1.77144780E-5
ω10 -2.21430976E-6

Table 3.1: Value of the coefficients for the cubic-spline slopes approximation

Computation of the slopes in 2D

As we mentioned before, the procedure in 2D follows the same reasoning. However,
as the computations are strenuous, we give here the first steps and the results. We
set the number of discretization points the same on both directions. Let (xi, yi)
be the point where we wish to compute the slopes. We start by the definition of
the interpolated function f̃(xi, yi) and its derivative along the x-axis

(3.25a)

fi,i = f̃(xi, yi) =
N+1∑
j=−1

N+1∑
k=−1

cj,kBj(xi)Bk(yi)

=
1

36
(ci−1,i−1 + ci−1,i+1 + ci+1,i−1 + ci+1,i+1)

+
1

9
(ci−1,i + ci,i−1 + ci,i+1 + ci+1,i) +

4

9
ci,i

(3.25b)

sx(xi, yi) = ∂xf̃(xi, yi) =
N+1∑
j=−1

N+1∑
k=−1

cj,kB
′
j(xi)Bk(yi)

=
1

12h
(ci+1,i+1 + ci+1,i−1 − ci−1,i−1 − ci−1,i+1)

− 1

3h
(ci−1,i − ci+1,i).

We proceed by injecting (3.25a) (which defines ci,i) in (3.25b).

47

sx(xi, yi) =
1

12h

(
9

4
fi+1,i+1 −

1

16
(ci,i + ci,i+2 + ci+2,i + ci+2,i+2)

− 1

4
(ci,i+1 + ci+1,i + ci+1,i+2 + ci+2,i+1)

+
9

4
fi+1,i−1 −

1

16
(ci,i−2 + ci,i + ci+2,i−2 + ci+2,i)

− 1

4
(ci,i−1 + ci+1,i−2 + ci+1,i + ci+2,i−1)

− 9

4
fi−1,i−1 +

1

16
(ci−2,i−2 + ci−2,i + ci,i−2 + ci,i)

+
1

4
(ci−2,i−1 + ci−1,i−2 + ci−1,i + ci,i−1)

− 9

4
fi−1,i+1 +

1

16
(ci−2,i + ci−2,i+2 + ci,i + ci,i+2)

+
1

4
(ci−2,i+1 + ci−1,i + ci−1,i+2 + ci,i+1)

)
− 1

3h
(ci−1,i − ci+1,i)

=
3

16h
(fi+1,i+1 + fi+1,i−1 − fi−1,i−1 − fi−1,i+1)

− 1

16
(sx(xi−1, yi−1) + sx(xi−1, yi+1) + sx(xi+1, yi−1) + sx(xi+1, yi+1))

− 1

48h
(ci+1,i+ci+1,i+2+ci+1,i−2+ci+1,i−ci−1,i−2−ci−1,i−ci−1,i−ci−1,i+2)

− 1

3h
(ci−1,i − ci+1,i).

(3.26)

And we finish replacing the original terms of (3.25b)

sx(xi, yi) =
3

16h
(fi+1,i+1 + fi+1,i−1 − fi−1,i−1 − fi−1,i+1)

− 1

16
(sx(xi−1, yi−1) + sx(xi−1, yi+1) + sx(xi+1, yi−1) + sx(xi+1, yi+1))

− 1

4× 12h
(ci+1,i + ci+1,i+2 + ci+1,i−2 + ci+1,i − ci−1,i−2 − ci−1,i − ci−1,i

− ci−1,i+2)−
1

3h

(
9

4
fi−1,i −

1

16
(ci−2,i−1 + ci−2,i+1 + ci,i−1 + ci,i+1)

− 1

4
(ci−2,i + ci−1,i−1 + ci−1,i+1 + ci,i)−

9

4
fi+1,i

+
1

16
(ci,i−1 + ci,i+1 + ci+2,i−1 + ci+2,i+1)

+
1

4
(ci,i + ci+1,i−1 + ci+1,i+1 + ci+2,i)

)
(3.27)

48

sx(xi, yi) =
3

16h
(fi+1,i+1 + fi+1,i−1 − fi−1,i−1 − fi−1,i+1)−

3

4h
(fi−1,i − fi+1,i)

− 1

16
(sx(xi−1, yi−1) + sx(xi−1, yi+1) + sx(xi+1, yi−1) + sx(xi+1, yi+1))

− 1

4
(sx(xi, yi+1) + sx(xi, yi−1) + sx(xi−1, yi) + sx(xi+1, yi)).

(3.28)

After a few iterations, we get the final 2D cubic spline approximation of the
Hermite slopes at the boundary {xi,i}, with the values of ωk,l given in Table 3.2,

s′(xi, yi) =
1

h

4∑
k=1

2∑
l=0

ωkl (fi−k,i−l − fi+k,i+l)− ωkl (fi+k,i−l − fi−k,i+l) . (3.29)

k l = 0 l = 1 l = 2

1 -0.4113475177304965 -0.0141843971631206 0.00709219858156028
2 0.1152482269503545 0.0212765957446808 -0.00443262411347518
3 -0.02836879432624115 -0.0141843971631206 0.0
4 0.00398936170212766 0.00354609929078014 0.000443262411347518

Table 3.2: Value of the coefficients ωkl for the 2D cubic-spline slopes approximation

Overview of SLMP the code
Before the development of the code, the environment of the implementation was
largely discussed. On the one hand, Gysela is an advanced and complex code,
thus is not a suitable “play ground” for a Multi-patch code. On the other hand,
SeLaLib was not prepared for such deep changes. Thus, we decided to start a code
from scratch. As of today (September 2016), the code is over 3000 lines long and
was developed in Python.

With the exception of the cubic spline interpolation code (which was written in
SeLaLib in Fortran, and is connected to our code by an f2py interface), everything
was created and tested separately and is adapted for the Multi-patch Approach.
The general structure is sketched in Figure 3.9. Let us see briefly each module of
the code.

49

characteristics

computation

derivatives

computation

Global variables

Distribution

function

SeLaLib's

cubic spline

interpolation

(f2py)

Input files

- Definition of

 variables for the

 simulation

main

- Semi-Lagrangian

 method

- Time loop

Post evaluation

- Errors computation

- Display distribution

 functions

connectivity

- Boundary

 conditions

- Patch connectivity

- Data inter-patch

 transformation

Figure 3.9: Semi-Lagrangian Multi-patch code structure

Input files: Every simulation takes a set of parameters which are defined in this
module. There are different input files for every simulation.4 The variables
to define are: the domain, the discretization in space and time, the model
to study and the associated parameters (value of advection, ...), the initial
distribution function, the type of interpolation to use, etc.

Distribution function: Multiple distribution functions are defined in this file.
They also adapt to the domain studied.

SeLaLib’s cubic spline interpolation: Needs a compiled library of SeLaLib.
Interface between SeLaLib’s code in Fortran and our python code. Uses
f2py.

Global variables: All variables for a simulation have a default value that can be
found in this module, as well as some complementary global variables needed
throughout the simulation.

Geometry files: The geometry files are not only the output files created by CAID
(in .xml format), but also the files that allow the reading, loading and trans-
lations for our code. The structures for the geometry, and the transforma-
tions are created here.

4In fact, every test-case presented below, has its own input files to facilitate the reproduction
of the results found in this manuscript.

50

Connectivity: Defines the boundary condition that CAID cannot define. Con-
tains some of the most important functions such as: get_neighbours (which
returns all the neighbors of a given patch at each face), get_face (which re-
turns the data of a patch at a given face), transform_advection (which
transforms an advection from one patch to another one).

Characteristics computation: A characteristic, in our code, is a set of coor-
dinates associated to a given patch. The script in this part computes the
inter-patch back-tracing of the characteristics.

Derivatives computation: Computes the slopes at the boundaries of each patch
of the domain using the methods described in the last section.

First Multi-patch results
Before even testing the method in a circular domain, we test it in a simple Multi-
patch domain. Studying the convergence of the error will show if the order of the
methods is conserved when binding the patches. The simplest domain that we can
think of is a 2 patch decomposition, similar to Figure 3.7. The first coordinate
transformation, F 0, is the identity, and F 1 is a translation of 1 along the x-axis.

The constant advection equation

Our first model will consist of a constant advection equation (3.2).

Test-case 1: Constant advection of sinusoidal distribution on a 2MP rectan-
gular domain

For a first test, we consider the following initial distribution

f0(x, y) = cos(2πx) sin(2πy)

which representation can be seen in Figure 3.10 (left). This test-case has the
property will be a perfect first test since it is a periodic function and the proper
definition of the internal and external boundary conditions are important to get a
correct approximation.

For the preliminary tests, we discretize with the same number of points both
in x and y directions, and for both patches. As parameters for the computation
we choose the time step ∆t = 0.05, and an advection along the x axis of 0.1, and
we implemented periodic boundary conditions between the two external faces in
x, yielding the connectivity lists

51

0. 0 0. 5 1. 0 1. 5 2. 0
x

0. 0

0. 2

0. 4

0. 6

0. 8

1. 0

y

Analytical solution of the advection equation at t= 0.05
 with f(x, y) = cos(2πx)sin(2πy)

−1. 00 −0. 75 −0. 50 −0. 25 0. 00 0. 25 0. 50 0. 75 1. 00

0. 0 0. 5 1. 0 1. 5 2. 0
x

0. 0

0. 2

0. 4

0. 6

0. 8

1. 0

y

Analytical solution of the advection equation at t= 23.0
 with f(x, y) = cos(2πx)sin(2πy)

−1. 00 −0. 75 −0. 50 −0. 25 0. 00 0. 25 0. 50 0. 75 1. 00

Figure 3.10: Test-case 1: distribution function at initial and final time

list_conn1 = [[0,1], [0,3]] list_conn2 = [[1,3], [1,1]].

The final time for the simulation is tmax = 23, thus 460 time steps are computed.
The approximated distribution function computed using the Multi-patch Semi-
Lagrangian scheme is in Figure 3.10 (right).

No oscillations or numerical artifacts visible in the computed solution, and the
limit between the two patches (at x = 1) is invisible when plotting the distribution
function. Therefore, we need to study the errors of the simulation, to see the
convergence of the method, as well as, the properties conserved.

0 5 10 15 20 25
Time

0. 0

0. 2

0. 4

0. 6

0. 8

1. 0

1. 2

1. 4

1. 6

1. 8 ×10−7 L2 and L∞ errors over time

L∞ error

L 2 error

(a) Errors computed with N = 30

28 40 60 80 100 120 150

Number of points N=N1 =N2

10-11

10-10

10-9

10-8

10-7

L∞ error

L2 error

x−5

(b) Errors computed at time tmax = 23

Figure 3.11: Test-case 1: Evolution of L2 and L∞ errors over time (left) and number of cells (right)

In Figure 3.11 we plotted the errors with L2 norm, computed using the formula
∆x2 (

∑
i|fnum(t,xi)− f(t,xi)|)1/2 with fnum the computed solution and f the ex-

act solution, and the L∞ error is computed ∆x2 (maxi|fnum(t,xi)− f(t,xi)|). We
see that both errors grow with time, which is expected when using the Semi-
Lagrangian method. Furthermore, in Figure 3.11b, we see that the method con-

52

verges for both errors with order 5, which is the order of the method used for
computing the origin of the characteristic and the slopes.

0 5 10 15 20 25
Time

−6

−5

−4

−3

−2

−1

0

1 ×10−15

Time evolution of the mass
∑
i, j

f(t, xi, yj)−
∑
i, j

f(0, xi, yj)

(a) Mass evolution over time

0 5 10 15 20 25
Time

1. 2

1. 4

1. 6

1. 8

2. 0

2. 2

2. 4

2. 6 ×10−8
Time evolution of min and max values of f(t, x, y)

(1+min)/N 2

(1−max)/N 2

(b) Minimal value evolution

Figure 3.12: Test-case 1: Time evolution of the mass and the minimal value for a simulation using
N = 40 and ∆t = 0.05

While the mass of the distribution function is correctly conserved (error of order
10−14 with only N = 40 cells per direction, see Figure 3.12a), the minimum value
conservation is less precise (see Figure 3.12b). Due to the particularity of the
distribution function and the model studied, we conclude that these preliminary
results are satisfactory and we can proceed to other test-cases and models.

Test-case 2: Constant advection of Gaussian pulse on a 2MP rectangle

Our second test-case, for the same constant advection model along the x-axis and
with the same domain discretization, is a Gaussian pulse, which initial distribution
is

f0(x, y) = exp

(
−1

2

(
(x− 0.5)2

0.042
+

(y − 0.5)2

0.042

))
. (3.30)

This function has a great gradient around the pulse, which makes it an interest-
ing test-case for the internal boundary conditions. We choose a simulation of 360
iterations, when tmax = 18 and the pulse–initially on patch P0–has gone through
the second patch P1 and is back on P0.

We notice that, in Figure 3.13b, some oscillations have appeared. In fact, the
computed solution has negative values that are not in Figure 3.13a. These oscilla-
tions appeared already at the first iteration which means that they are generated
by the interpolation method. Thus, these artifacts are not generated by the Multi-
patch Approach. We also noticed, the oscillations are not amplified when crossing
patches.

53

0. 0 0. 5 1. 0 1. 5 2. 0
x

0. 0

0. 2

0. 4

0. 6

0. 8

1. 0
y

Analytical solution of the advection equation at t= 360
 with f(x, y) = exp(− 1

2σ2
((x− xc)

2 + (y− yc)
2)),

 where xc =0.5 yc =0.5 and σ=0.04

 0. 15 0. 00 0. 15 0. 30 0. 45 0. 60 0. 75 0. 90

(a) Analytic distribution at tmax = 18

0. 0 0. 5 1. 0 1. 5 2. 0
x

0. 0

0. 2

0. 4

0. 6

0. 8

1. 0

y

Computed solution of the advection equation at t= 360
 ith f(x, y) = exp(− 1

2σ2
((x− xc)

2 + (y− yc)
2)),

 here xc =0.5 yc =0.5 and σ=0.04

−0. 15 0. 00 0. 15 0. 30 0. 45 0. 60 0. 75 0. 90

(b) Approximative distribution at tmax = 18

Figure 3.13: Test-case 2: Distribution function at time tmax = 18 with N = 100

0 2 4 6 8 10 12 14 16 18
Time

0. 0

0. 2

0. 4

0. 6

0. 8

1. 0

1. 2 ×10−5 L2 and L∞ errors over time

L∞ error

L 2 error

(a) Errors computed with N = 100

28 51 56 70 80 100

Number of points N=N1 =N2

10-6

10-5

10-4

10-3

L∞ error

L2 error

x−3

(b) Errors computed at time tmax = 18

Figure 3.14: Test-case 2: Evolution of L2 and L∞ errors over time (left) and number of cells (right)

Further proof that the Multi-patch Approach did not amplify the errors is Fig-
ure 3.14a. The critical moments of the simulations are around t = 0.5 and t = 1.5,
which represent the time when the Gaussian pulse moved from one patch to an-
other. It is impossible, with the chosen resolution, to identify these moments when
observing the L∞ error. On the other hand, the L2 error shows some low points
at those times. As the cubic-spline interpolation has the property of dissipating
the solution over time, we suppose these low peaks are due to the 5-th order ap-
proximation of the slopes at the boundaries. Thus, we get solutions that are more
accurate at those critical points. In Figure 3.14, we see that, since the interpola-
tion method is not exact for this test-case, we found its order (3) as the order of
our scheme.

The transition between patches can also be seen when studying the minimal
value of the distribution function (see Figure 3.15b). Nevertheless, the conserva-

54

0 2 4 6 8 10 12 14 16 18
Time

−0. 2

0. 0

0. 2

0. 4

0. 6

0. 8

1. 0 ×10−3

Time evolution of the mass
∑
i, j

f(t, xi, yj)−
∑
i, j

f(0, xi, yj)

(a) Mass evolution over time

0 2 4 6 8 10 12 14 16 18
Time

−0. 5

0. 0

0. 5

1. 0

1. 5

2. 0

2. 5 ×10−6
Time evolution of min and max values of f(t, x, y)

min/N 2

(1−max)/N 2

(b) Minimal value evolution

Figure 3.15: Test-case 2: Time evolution of the mass and the minimal value for a simulation using
N = 100 and ∆t = 0.05

tion of positivity is satisfactory for such a test-case. The mass conservation (see
Figure 3.15a) seems more troubled with peaks going to 10−3. However, shortly
after the pulse went through the boundaries, the mass conservation is as good as a
single patch simulation. This is probably due to the slopes approximation, which
basically act as fluxed when the distribution is non-null near the boundaries, but
averages out through time.

Test-case 3: Constant advection of Gaussian pulse on a 4MP square domain

For the third test-case, we change the domain configuration. We keep a squared
domain, where the transformation functions from the logical to the physical domain
are the identity function plus a translation. However, we increase the number
of patches to four and we organized them so that there is a point where the
four patches meet. A sketch of the configuration can be seen in Figure 3.16.
Furthermore, we set the advection vector to A = (0.1, 0.1)T .

P0 P1

P2 P3

x

y

1

2

21
Figure 3.16: Square domain discretized in four identical patches

55

The same distribution function as in Test-case 2, a Gaussian pulse, is used.
In Figure 3.17, we can see that as in Test-case 2, the numerical approximation
presents some waves around the pulse even with such a fine discretization.

−1. 0 −0. 5 0. 0 0. 5 1. 0
x

−1. 0

−0. 5

0. 0

0. 5

1. 0

y
Analytical solution of the advection equation at t= 9.95

 with f(x, y) = exp(− 1

2σ2
((x− xc)

2 + (y− yc)
2)),

 where xc = -0.35 yc = -0.1 and σ=0.04

−0. 15 0. 00 0. 15 0. 30 0. 45 0. 60 0. 75 0. 90

(a) Analytic distribution at tmax = 10

−1. 0 −0. 5 0. 0 0. 5 1. 0
x

−1. 0

−0. 5

0. 0

0. 5

1. 0

y

Computed solution of the advection equation at t= 10.0
 with f(x, y) = exp(− 1

2σ2
((x− xc)

2 + (y− yc)
2)),

 where xc = -0.35 yc = -0.1 and σ=0.04

−0. 15 0. 00 0. 15 0. 30 0. 45 0. 60 0. 75 0. 90

(b) Approximative distribution at tmax = 10

Figure 3.17: Test-case 3: Distribution function at time t = 10 with N = 100

The errors plotted in Figure 3.18a show the exact time of the critical moment
when the bulb goes through the center point of the domain. However, the errors
drop again after the transition time is over. This is due to the fact that the slope
computation is not exactly symmetrical, at the critical time. Whereas, when the
pulse is away from the boundaries the slopes are again exact (and equal to 0) and
the dissipation error takes over.

We can see the same phenomenon in the mass evolution. More interestingly
Figure 3.18b, shows that for simulations of 60 points or less, the scheme is of order
3 as expected. Even if for finer discretizations there is stagnation, this is probably
due to the approximation done at the corners of the patches.

For this test-case, we also plotted the mass conservation, Figure 3.19a, and the
minimal value of the distribution function, Figure 3.19b. While the first one has a
behavior similar to previous test-cases, the second one is almost linearly decreasing.
However, the order of magnitude of the error for the minimal value is the same or
better than the previous ones. Since the positivity is not conserved, this impacts
hardly on the mass conservation. A further study on the slopes approximation
should be done in order to conserve the mass exactly.

Test-case 4: Constant advection of pulse through singular points of 5MP disk

For this Test-case, we use the same geometry, defined in Chapter 3, as well as
the same model. However, the Gaussian pulse will go through two of the singular
points of the mesh. The objective of this Test-case is to see how the treating

56

0 2 4 6 8 10
Time

0

1

2

3

4

5

6

7 ×10−6 L2 and L∞ errors over time

L∞ error

L 2 error

(a) Errors computed with N = 100

28 50 60 70 80 100

Number of points N=N1 =N2

10-5

10-4

10-3

10-2

L∞ error

L2 error

x−3

(b) Errors computed at time tmax = 10

Figure 3.18: Test-case 3: Evolution of L2 and L∞ errors over time (left) and number of cells (right)

0 2 4 6 8 10
Time

−0. 2

0. 0

0. 2

0. 4

0. 6

0. 8

1. 0

1. 2 ×10−3

Time evolution of the mass
∑
i, j

f(t, xi, yj)−
∑
i, j

f(0, xi, yj)

(a) Mass evolution over time

0 2 4 6 8 10
Time

−0. 5

0. 0

0. 5

1. 0

1. 5

2. 0 ×10−6
Time evolution of min and max values of f(t, x, y)

min/N 2

(1−max)/N 2

(b) Minimal and maximal values evolution

Figure 3.19: Test-case 3: Time evolution of the mass and the bound values for a simulation using
N = 100 and ∆t = 0.004

of the null jacobian affects the results of the simulation. The parameters of the
simulation are tmax = 9, ∆t = 0.05, xc = (−0.65, 0), A = (0.15, 0).

In Figure 3.20a, we can see that there are 2 times when the error norms have
a significant increase. These two moments correspond to the moments when the
Gaussian pulse goes through the singular points. We also notice in Figure 3.20b,
the convergence error is completely lost, and we only have order 2 convergence.

The mass evolution also shows two peaks generated by the singularity. As
for the minimal and maximal value evolution over time, we cannot really conclude
anything. We should mention that the stress of a pulse going through this singular
point is not a common physical situation in plasmas. However, we hope that the
solution we provide should approximate the solution better.

57

0 1 2 3 4 5 6 7 8 9
Time

0. 0

0. 5

1. 0

1. 5

2. 0

2. 5 ×10−3 L2 and L∞ errors over time

L∞ error

L 2 error

(a) Errors computed with N = 100

30 40 50 60 70 80 90 100

Number of points N=N1 =N2

10-4

10-3

10-2

10-1

L∞ error

L2 error

x−2

(b) Errors computed at time tmax = 10

Figure 3.20: Test-case 4: Evolution of L2 and L∞ errors over time (left) and number of cells (right)

0 1 2 3 4 5 6 7 8 9
Time

−0. 015

−0. 010

−0. 005

0. 000

0. 005

0. 010

Time evolution of the mass
∑
i, j

f(t, xi, yj)−
∑
i, j

f(0, xi, yj)

(a) Mass evolution over time

0 1 2 3 4 5 6 7 8 9
Time

−2. 5

−2. 0

−1. 5

−1. 0

−0. 5

0. 0

0. 5

1. 0

1. 5

2. 0 ×10−5
Time evolution of min and max values of f(t, x, y)

min/N 2

(1−max)/N 2

(b) Minimal and maximal values evolution

Figure 3.21: Test-case 4: Time evolution of the mass and the bound values for a simulation using
N = 100 and ∆t = 0.05

Test-case 5: Constant advection of pulse through no singular points of 5MP
disk

To verify the impact of the singular points on the simulation we need to compare
it to an advection that does not go through any singular point.

Thus, for this Test-case, we choose a slightly shifted initial distribution and a
diagonal advection to make sure the advection is not along any of the meshes
directions. The parameters of this simulation are: tmax = 7, ∆t = 0.05, xc =
(−0.5,−0.5), A = (0.15, 0.15).

We can see that even if the mass and error norms present some bumps when
the pulse goes through the patches, the discrepancies are minor and the errors are
slower. More importantly, the convergence of the simulation respects the order
of the interpolation, thus the multiple-patch approach does not affect the global

58

0 1 2 3 4 5 6 7
Time

0. 0

0. 5

1. 0

1. 5

2. 0

2. 5

3. 0

3. 5

4. 0 ×10−5 L2 and L∞ errors over time

L∞ error

L 2 error

(a) Errors computed with N = 100

30 40 50 60 70 80 90 100

Number of points N=N1 =N2

10-5

10-4

10-3

10-2

L∞ error

L2 error

x−3

(b) Errors computed at time tmax = 7

Figure 3.22: Test-case 5: Evolution of L2 and L∞ errors over time (left) and number of cells (right)

0 1 2 3 4 5 6 7
Time

−8

−6

−4

−2

0

2

4

6 ×10−3

Time evolution of the mass
∑
i, j

f(t, xi, yj)−
∑
i, j

f(0, xi, yj)

(a) Mass evolution over time

0 1 2 3 4 5 6 7
Time

−0. 2

0. 0

0. 2

0. 4

0. 6

0. 8

1. 0

1. 2

1. 4

1. 6 ×10−6
Time evolution of min and max values of f(t, x, y)

min/N 2

(1−max)/N 2

(b) Minimal and maximal values evolution

Figure 3.23: Test-case 5: Time evolution of the mass and the bound values for a simulation using
N = 100 and ∆t = 0.05

simulation. This means that the only real problem is around the singular points.
Even if these results are not promising, we decide to study more complex models.

Solving the variable coefficient advection
equation with circular motion

We wish now to have a circular motion advection. Let us remember the general
advection equation:

∂tf(x, y) +∇ · (Af) = 0, (3.31)

59

with initial condition
f(0, x, y) = f0(x, y).

The advection vector A defined as A =

(
−2πy
2πx

)
will define a circular advection

in a counter-clockwise motion. We can notice that A is divergence free, and we
know that ∇ · (Af) = A · ∇f + f ∇ ·A, so we obtain

∂f

∂t
(x, y) +A · ∇x f(x, y) = 0. (3.32)

Solving the equation on the physical space

We will use the method of characteristics to solve the model, as we have done
previously. It yields the following system.


∂X1

∂t
= −2πy

∂X2

∂t
= 2πx

with the initial condition

 X1(s) = x0

X2(s) = y0
.

A solution is given by  X1(t) = r0 cos(2πt+ θ0)

X2(t) = r0 sin(2πt+ θ0)
(3.33)

where r0 and θ0 are the radius and angle of the initial solution (x0, y0).

Solving the equation on the patch

Following the same procedure as in the latter section, we introduce another nota-
tion for the advection coefficient. Introducing the function Ψ = −πx2 − πy2, we
can notice that (3.31) can be written as follows.

∂f

∂t
(x, y) +

−→
rotΨ · ∇x f(x, y) = 0. (3.34)

To transform the equation to general coordinates, we can follow the same steps
as before, and we obtain

∂f̃

∂t
(η, ξ) +

1

|J|
−−→
rotη Ψ̃ · ∇η f̃(η, ξ) = 0. (3.35)

60

We can notice it has the same structure as equation (3.13). Therefore, the
method for solving it will be the same. As the advection is circular, this test-case
will be particularly interesting to test over long time.

Numerical Results

Test-case 6: Circular advection of Gaussian pulse on a 4MP square domain

For the next test-case, we study the model defined in (3.32), with initial condition
a Gaussian pulse Equation (3.30) with the following parameters: σ = 0.04, and
xc = (0.65, 0). We will keep the same geometry as in Test-case 3 (i.e. a square
domain decomposed in four squared patches). We use a smaller time step than
in the previous test-cases, ∆t = 0.0005, since the advection coefficient is already
multiplied by 2π. The final tmax = 1 has been chosen as it corresponds to the time
for the pulse to go through the four inter-patch boundaries.

−1.0 −0.5 0.0 0.5 1.0
x

−1.0

−0.5

0.0

0.5

1.0

y

Analytical solution of the advection equation at t= 2000

with exp(− 0. 5(((x+1)mod(2)− 1. 5)2/0. 042 + (y− 0. 5)2/0. 042))

−0.15 0.00 0.15 0.30 0.45 0.60 0.75 0.90

(a) Analytic distribution at tmax = 1

−1.0 −0.5 0.0 0.5 1.0
x

−1.0

−0.5

0.0

0.5

1.0

y

Computed solution of the advection equation at t= 2000

with exp(− 0. 5(((x+1)mod(2)− 1. 5)2/0. 042 + (y− 0. 5)2/0. 042))

−0.15 0.00 0.15 0.30 0.45 0.60 0.75 0.90

(b) Approximative distribution at tmax = 1

Figure 3.24: Test-case 6: Distribution function at time t = 1 with N = 60

We see that even if the two solutions are close in Figure 3.24, the oscillations
created by the interpolation scatter along the domain. Since this domain is periodic
both in the vertical and horizontal directions, they scatter quickly. We suppose
that with a higher degree interpolation method, or with a distribution function
with a more constant gradient, we would not see this phenomenon.

On the one hand, for the errors plotted in Figure 3.25a, there is not much
we can conclude other that the error seems to increase linearly with respect to
time. However, this behavior is similar to what was observed in Test-case 2. In
Figure 3.25b, we see that the method is of order 3, which is what we were expecting.
On the other hand, the mass and extremum values, in Figure 3.26, seem to behave
normally.

61

0.000 0.005 0.010 0.015 0.020 0.025 0.030

Time

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025
L2 and L∞ errors over time

L∞ error

L 2 error

(a) Errors computed with N = 60

30 40 50 60 70 80

Number of points N=N1 =N2

10-5

10-4

10-3

10-2

L∞ error

L2 error

x−3

(b) Errors computed at time tmax = 1

Figure 3.25: Test-case 6: Evolution of L2 and L∞ errors over time (left) and number of cells (right)

0.000 0.005 0.010 0.015 0.020 0.025 0.030

Time

−0.0020

−0.0015

−0.0010

−0.0005

0.0000
Time evolution of the mass

∑
i, j

f(t, xi, yj)−
∑
i, j

f(0, xi, yj)

(a) Mass evolution over time

0.000 0.005 0.010 0.015 0.020 0.025 0.030

Time

−0.000005

0.000000

0.000005

0.000010

0.000015

0.000020

0.000025

0.000030

0.000035
Time evolution of min and (1.-max) value of f(t, x, y)

min

(1-max)/N1/N2

(b) Minimal value evolution

Figure 3.26: Test-case 6: Time evolution of the mass and the minimal value for a simulation using
N = 60 and ∆t = 0.0005

Test-case 7: Circular advection of Gaussian pulse on 5MP disk domain

We now use a circular domain, as defined on Chapter 3, decomposed on five
patches. The distribution function is the same as in the last domain – a Gaussian
pulse of width σ = 0.04 and centered at (xc, yc) = (0.62, 0.4) (a point on the
external crown) – which will be displaced with a circular advection with ∆t =
0.005. By the time tmax = 1.5, the Gaussian passes 6 patch interfaces. For this
test case we show the final distribution to show that the difference between the
two results is not noticeable by the naked eye.

The evolution of the mass (Figure 3.28a) and of the errors with respect to the
time (Figure 3.29a), show that the passage between patches is not completely
smooth.

In Figure 3.28b, we plotted not only the evolution of the minimal value, but

62

−1.0 −0.5 0.0 0.5 1.0
x

−1.0

−0.5

0.0

0.5

1.0
y

Analytical solution of the advection equation at t= 300

with exp(− 0. 5(((x+1)mod(2)− 1. 5)2/0. 042 + (y− 0. 5)2/0. 042))

−0.15 0.00 0.15 0.30 0.45 0.60 0.75 0.90

(a) Analytic distribution at tmax = 1.5

−1.0 −0.5 0.0 0.5 1.0
x

−1.0

−0.5

0.0

0.5

1.0

y

Computed solution of the advection equation at t= 300

with exp(− 0. 5(((x+1)mod(2)− 1. 5)2/0. 042 + (y− 0. 5)2/0. 042))

−0.15 0.00 0.15 0.30 0.45 0.60 0.75 0.90

(b) Computed distribution at tmax = 1.5

Figure 3.27: Test-case 7: Distribution function at time t = 1.5 with N = 100

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Time

−0.0005

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040
Time evolution of the mass

∑
i, j

f(t, xi, yj)−
∑
i, j

f(0, xi, yj)

(a) Mass evolution over time

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Time

−0.0000002

0.0000000

0.0000002

0.0000004

0.0000006

0.0000008

0.0000010
Time evolution of min and (1.-max) value of f(t, x, y)

min

(1-max)/N1/N2

(b) Minimal value evolution

Figure 3.28: Test-case 7: Time evolution of the mass and the min and max values, using N = 100
and ∆t = 0.005

also the maximal value, which for this test-case is less accurate than the minimal
value. Both errors are minimal.

Finally, in Figure 3.29b, we see that the whole simulation is of order 5. Never-
theless, since here the distribution was null around the singular points along the
whole simulations, this is not surprising.

Test-case 8: Circular advection of Gaussian pulse through singular points on
5MP disk domain

From Test-cases 4 and 5, we saw the difference between the simulations where the
distribution goes through the singular points and when it does not. Let us see with
this test if the singular points still play an important role. The simulation is also
based on a circular advection with ∆t = 0.0005. The initial distribution is also a

63

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Time

0.00000

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006
L2 and L∞ errors over time

L∞ error

L 2 error

(a) Errors computed with N = 100

30 40 60 80 100

Number of points N=N1 =N2

10-6

10-5

10-4

10-3

10-2

L∞ error

L2 error

x−5

(b) Errors computed at time tmax = 1.5

Figure 3.29: Test-case 7: Evolution of L2 and L∞ errors over time (left) and number of cells (right)

Gaussian pulse with σ = 0.04, xc = (0.5, 0) (which is exactly a singular point of
the mesh). We let the simulation run until tmax = 1., the equivalent of 4 patches
interfaces to be crossed, thus the pulse goes through all the singular points.

−1.0 −0.5 0.0 0.5 1.0
x

−1.0

−0.5

0.0

0.5

1.0

y

Analytical solution of the advection equation at t= 2000

with exp(− 0. 5(((x+1)mod(2)− 1. 5)2/0. 042 + (y− 0. 5)2/0. 042))

−0.15 0.00 0.15 0.30 0.45 0.60 0.75 0.90

(a) Analytic distribution at tmax = 1.5

−1.0 −0.5 0.0 0.5 1.0
x

−1.0

−0.5

0.0

0.5

1.0

y

Computed solution of the advection equation at t= 1999

with exp(− 0. 5(((x+1)mod(2)− 1. 5)2/0. 042 + (y− 0. 5)2/0. 042))

−0.15 0.00 0.15 0.30 0.45 0.60 0.75 0.90

(b) Computed distribution at tmax = 1.5

Figure 3.30: Test-case 8: Distribution function at time t = 1.5 with N = 80

On the one hand, Figure 3.31a shows some peaks around the moments of crossing
of the singular points. Incidentally, these peaks bring the mass conservation closer
to the exact value. However, this is a random phenomenon. The minimum and
maximum values, on the other hand, do not show any clear impact at the critical
moments.

The evolution of the L2 and the L∞ errors do not present any visible consequence
of the singular points. In fact, the L2 error increases apparently linearly. The
convergence rate of the global simulation went back down to 3, which is still the
minimal order we expect from our scheme.

64

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

Time

−0.012

−0.010

−0.008

−0.006

−0.004

−0.002

0.000

0.002
Time evolution of the mass

∑
i, j

f(t, xi, yj)−
∑
i, j

f(0, xi, yj)

(a) Mass evolution over time

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

Time

−0.000008

−0.000006

−0.000004

−0.000002

0.000000

0.000002

0.000004
Time evolution of min and (1.-max) value of f(t, x, y)

min

(1-max)/N1/N2

(b) Minimal value evolution

Figure 3.31: Test-case 8: Time evolution of the mass and the min and max values, using N = 80
and ∆t = 0.005

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

Time

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014

0.00016
L2 and L∞ errors over time

L∞ error

L 2 error

(a) Errors computed with N = 80

30 40 50 60 70 80

Number of points N=N1 =N2

10-5

10-4

10-3

L∞ error

L2 error

x−3

(b) Errors computed at time tmax = 1.5

Figure 3.32: Test-case 8: Evolution of L2 and L∞ errors over time (left) and number of cells (right)

Even if the singular points are not obviously affecting the results, we decide to
explore further solutions.

Alternative meshes without a singular point

As we have seen on (3), the previously described mesh has four singular points.
And this leads to some instabilities in the singular points’ neighborhood. There-
fore, we try to define other meshes without any singular points. However, all the
solutions presented in this section have one common point: an external polar mesh.
Since this is the current discretization in Gysela, the solution we choose needs
to present a polar crown.

65

First alternative: a shortcut?

Figure 3.33: First alternative mesh: the crowned square

The singular points shown before come from the transformation of a square to
a circle. Having those singularities is inevitable in such a mapping. Therefore, our
first idea is not to use any transformation at all on the internal mesh. Thus, we
keep it as a square, see Figure 3.33.

We realized that while using the former mapping, the data on the circle which
separates the polar annulus of the interior mesh, was saved and computed twice,
once for the external patches and one for the internal one. As this data is redun-
dant, we should be able to skip it and have an artificial buffer zone, where there
is no actual mesh. The problem with this first attempt was that the back-tracing
of the particles was too costly since we broke the “edge-to-edge” rule, explained in
Chapter 3. The second, and fundamentally negative aspect of this mesh, is that
the buffer zone, has its own transformation function, which is unknown and it is
not taken into account when considering only two mappings. This yielded results
distorted when the distribution function was not null on those zones.

We concluded that, unless some special development was made for the “ghost”
cells, the domain discretization needed to be continuous all along Ω.

Second alternative: tweaking the 5-patch configuration

One of the benefits of using the IGA approach, and a tool such as CAID, is the
ability of tweak and modify the meshes as precisely as necessary to obtain the
desired discretization. From this, we decided to test a mesh similar to our original
5-patch disk, but where the interior disk is “pinched” at the four singular points,
stretching it out. This way, the Jacobian on these points is not null. The mesh
resulting from this modification is on Figure 3.34.

The resulting mesh is thus continuous, with no singular points, and conserves
a perfect polar mesh in the external crown. We could consider four additional
patches as an extra exterior crown, that will be mapped with the polar mesh and
that are definitely not modified by the pinching.

66

Figure 3.34: Second alternative mesh: the pinched disk

Figure 3.35: Sketch moving quart-annulus control points

Since this geometry is not common, we had to create it. The code was imple-
mented in CAID and now it is accessible from the user interface. Let us explain
the procedure quickly: We start by creating a quarter annulus, of degree 3 and
with 4 control points in each direction (see Figure 3.35). Then we modify two
points of the internal corners of the quart-annulus. Let ε be the coefficient of
stretching. We apply this procedure to the four external patches and analogously
to the internal patch. The default value of stretching is ε = 0.5.

Test-case 9: Constant advection of Gaussian pulse on the 5MP pinched disk

Firstly, we apply on this configuration (with the default stretching coefficient ε =
0.5) a constant advection that goes through two of the critical points. Similar
to what we did in Test-case 4. Let tmax = 9, ∆t = 0.05, x = (−0.65, 0) and
A = (0.15, 0).

The distribution function still presents some oscillations around the singular
points in Figures 3.36a and 3.36b. However, the actual bulb is really close to the
analytical solution.

The minimal and maximal value evolution (Figure 3.37b) are much better as
the one on the classical (i.e. un-pinched) 5MP disk domain. This is due to the
fact that the singularity causes oscillations and thus maximal and minimal value
are not conserved as good as they are in this configuration. The mass conservation
does not present a significant difference between the two domains discretization.

67

−1.0 −0.5 0.0 0.5 1.0
x

−1.0

−0.5

0.0

0.5

1.0

y

Analytical solution of the advection equation at t= 179

with exp(− 0. 5(((x+1)mod(2)− 1. 5)2/0. 042 + (y− 0. 5)2/0. 042))

−0.15 0.00 0.15 0.30 0.45 0.60 0.75 0.90

(a) Analytic distribution at tmax = 9

−1.0 −0.5 0.0 0.5 1.0
x

−1.0

−0.5

0.0

0.5

1.0

y

Computed solution of the advection equation at t= 180

with exp(− 0. 5(((x+1)mod(2)− 1. 5)2/0. 042 + (y− 0. 5)2/0. 042))

−0.15 0.00 0.15 0.30 0.45 0.60 0.75 0.90

(b) Computed distribution at tmax = 9

Figure 3.36: Test-case 9: Distribution function at time t = 9 with N = 100

0.0 0.2 0.4 0.6 0.8 1.0

Time

−0.020

−0.015

−0.010

−0.005

0.000

0.005

0.010
Time evolution of the mass

∑
i, j

f(t, xi, yj)−
∑
i, j

f(0, xi, yj)

(a) Mass evolution over time

0.0 0.2 0.4 0.6 0.8 1.0

Time

−0.0000005

0.0000000

0.0000005

0.0000010

0.0000015

0.0000020
Time evolution of min and (1.-max) value of f(t, x, y)

min

(1-max)/N1/N2

(b) Minimal value evolution

Figure 3.37: Test-case 9: Time evolution of the mass and the minimal and maximal values, using
N = 100 and ∆t = 9

More importantly, the improvement is shown in Figure 3.38. Compared to the
classical 5MP disk, we gained an order of the convergence. And the evolution of
the error norms with respect to time, is also more precise on this configuration.
We proceed to more complex configurations.

Test-case 10: Circular advection of Gaussian pulse on the 5MP pinched disk

This test-case is analogous to Test-case 7, we advect a Gaussian pulse through the
external patches. We set tmax = 1.5 and∆t = 0.005. As for the initial distribution,
let σ = 0.04 and xc = (0.62, 0.4). We chose to use the same stretching coefficient
ε = 0.5.

We notice that the difference between these results and the one of Test-case 7
are minimum. In fact the difference between the mass, the minimum and the

68

0.0 0.2 0.4 0.6 0.8 1.0

Time

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010
L2 and L∞ errors over time

L∞ error

L 2 error

(a) Errors computed with N = 100

30 40 50 60 70 80 90 100

Number of points N=N1 =N2

10-5

10-4

10-3

10-2

L∞ error

L2 error

x−4

(b) Errors computed at time tmax = 1.5

Figure 3.38: Test-case 9: Evolution of L2 and L∞ errors over time (left) and number of cells (right)

−1.0 −0.5 0.0 0.5 1.0
x

−1.0

−0.5

0.0

0.5

1.0

y

Analytical solution of the advection equation at t= 300

with exp(− 0. 5(((x+1)mod(2)− 1. 5)2/0. 042 + (y− 0. 5)2/0. 042))

−0.15 0.00 0.15 0.30 0.45 0.60 0.75 0.90

(a) Analytic distribution at tmax = 1.5

−1.0 −0.5 0.0 0.5 1.0
x

−1.0

−0.5

0.0

0.5

1.0
y

Computed solution of the advection equation at t= 300

with exp(− 0. 5(((x+1)mod(2)− 1. 5)2/0. 042 + (y− 0. 5)2/0. 042))

−0.15 0.00 0.15 0.30 0.45 0.60 0.75 0.90

(b) Computed distribution at tmax = 1.5

Figure 3.39: Test-case 10: Distribution function at time t = 1.5 with N = 100

maximum value and the error along time are indistinguishable in the figures. This
is not unsurprising since, with this advection, the bulb does not go through the
singular point nor the deformation. So our conclusion with this test-case is the
same as with the previously mentioned test-case.

ε = 0.1 ε = 0.5 ε = 0.7 ε = 0.8

L∞ 4.94577E-05 4.94577E-05 4.96367E-05 9.23684E-05
L2 5.05076E-05 5.35099E-05 6.88522E-05 8.83304E-05

Table 3.3: Test-case 10: L2 and L∞ errors at tmax for different ε

For information, Table 3.3 shows the impact of different stretching coefficients.
We notice that the minimum value of ε is zero, and the maximum is 1. We took

69

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Time

−0.0005

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040
Time evolution of the mass

∑
i, j

f(t, xi, yj)−
∑
i, j

f(0, xi, yj)

(a) Mass evolution over time

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Time

−0.0000002

0.0000000

0.0000002

0.0000004

0.0000006

0.0000008

0.0000010
Time evolution of min and (1.-max) value of f(t, x, y)

min

(1-max)/N1/N2

(b) Minimal value evolution

Figure 3.40: Test-case 10: Time evolution of the mass and the minimal and maximal values, using
N = 100 and ∆t = 1.5

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Time

0.00000

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008
L2 and L∞ errors over time

L∞ error

L 2 error

(a) Errors computed with N = 100

30 40 50 60 70 80 90 100

Number of points N=N1 =N2

10-6

10-5

10-4

10-3

10-2

L∞ error

L2 error

x−4

(b) Errors computed at time tmax = 1.5

Figure 3.41: Test-case 10: Evolution of L2 and L∞ errors over time (left) and number of cells
(right)

four different values through this interval, and the results are all of the same
order. There is a slight increase proportionally to ε, this is due to the fact that the
deformation of the mesh starts to affect the mesh where the pulse goes through
for this advection.

Test-case 11: Circular advection of Gaussian pulse through the critical points
of the 5MP pinched disk

Similarly to what we did with Test-cases 7 and 10, we wish to recreate Test-case 8
–a circular advection of a Gaussian that goes through the singular points of the
domain– although here the Gaussian pulse goes through the crown-disk interface
and through the critical points (singular points stretched out). However, we wish

70

to compare the results of the stretching coefficient before comparing results. In
Figure 3.42, we compare the resulting L2 and L∞ for different values of ε. The
parameters of the simulation are: tmax = 1.0, ∆t = 0.005, and we start the
Gaussian pulse of width σ = 0.004 at xc = (0.5, 0).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Stretching factor (ε)

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

0.00040

0.00045

0.00050

L∞ error

L2 error

Figure 3.42: L2 and L∞ errors at tmax = 1 and N = 50 for different ε

We notice that the best results are at the extremes of the interval. However,
when the coefficient tends to the minimum value, ε→ 0, the highest is the probably
to find a numerically null jacobian for finer meshes. Thus, for the following test-
case, we choose ε = 0.9.

0.00 0.02 0.04 0.06 0.08 0.10 0.12

Time

−0.001

0.000

0.001

0.002

0.003

0.004

0.005
Time evolution of the mass

∑
i, j

f(t, xi, yj)−
∑
i, j

f(0, xi, yj)

(a) Mass evolution over time

0.00 0.02 0.04 0.06 0.08 0.10 0.12

Time

−0.0000002

0.0000000

0.0000002

0.0000004

0.0000006

0.0000008

0.0000010

0.0000012

0.0000014
Time evolution of min and (1.-max) value of f(t, x, y)

min

(1-max)/N1/N2

(b) Minimal value evolution

Figure 3.43: Test-case 11: Time evolution of the mass and the minimal and maximal values, using
N = 100 and ∆t = 1.5

For Figures 3.43 and 3.45, we kept the same parameters except for the time step.
Here ∆t = 0.0005. Let us analyze the results: first of all, we notice that the peaks
found in the mass evolution graphic (see Figure 3.43a) have two spikes instead of
one as in all previous cases. This is probably due to the fact that we the stretched

71

geometry, the Gaussian has to go through twice as many patch interfaces than in
the standard 5-patch disk. To illustrate this, we refer to Figure 3.44.

Figure 3.44: Sketch of Gaussian pulse trajectory around pinched domain

Additionally, even though the mass and the extremum values (see Figure 3.43b)
are better conserved than on the un-pinched domain, the L2 and L∞ (Figure 3.45a)
error are not.

0.00 0.02 0.04 0.06 0.08 0.10 0.12

Time

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

0.00040

0.00045
L2 and L∞ errors over time

L∞ error

L 2 error

(a) Errors computed with N = 100

30 40 50 60 80

Number of points N=N1 =N2

10-5

10-4

10-3

10-2

L∞ error

L2 error

x−3

(b) Errors computed at time tmax = 1.5

Figure 3.45: Test-case 11: Evolution of L2 and L∞ errors over time (left) and number of cells
(right)

Nevertheless, the order of convergence is still three. We conclude that this ge-
ometry is better to avoid the singular points overall although the classical 5MP
results is a satisfactory configuration with all the tools chosen. To study self-
consistent simulations, for example a model coupled with a Poisson equation, this
would require the implementation of a Poisson solver on multiple-patches. Since
there is no problem of advection, and the Poisson equation can be solved in each
patch (taking the right boundary conditions into account) this should be straight-
forward. Unfortunately, this type of problems are not studied here. However,

72

while exploring the Multi-patch Approach, we came upon a possible alternative to
discretize the 2D poloidal plane. We explore this solution in the next Chapter.

73

74

4
The hexagonal mesh

While researching the Multi-patch Approach, we came across a discretization that
would be the inspiration to the approach presented in this chapter. We called this
grid the hexagonal mesh, or hex-mesh for short. The idea surged from the work of
B. Scott and T. Ribeiro, and was attractive to us since it presented the possibility
to map a logical mesh to a circle by a simple transformation and without any
singular points. Most of the results in this Chapter appear in [MMPS16].

A regular triangular mesh: the hexagonal mesh
There are three kinds of regular paving of the plane: using squares, equilateral
triangles or hexagons. When considering meshes, the dual mesh of a square mesh,
i.e. the mesh generated when taking the Voronoi cells of every point of the original
lattice, is a shifted square mesh and the regular triangle mesh is the dual of the
regular hexagonal mesh (See Figure 4.1).

Figure 4.1: A square mesh and its dual (left), and a hexagonal mesh, in solid blue, and its dual
mesh, the triangular tessellation, in dashed black (right).

Tiling a regular hexagon into triangles yields a mesh of equilateral triangles hav-

75

ing all the same area. Such a mesh was first introduced for numerical simulations
in [SAM68]. An application to particle methods is proposed in [CL08]. This grid
can be easily mapped to a circle by slightly stretching the edges of the hexagon.
Indeed, the lattice is actually composed of concentric hexagons, thus the transfor-
mation is a simple scaling of the hexagons points to their circumscribed circle. The
scaling coefficient is given by the ratio between the radius of circumscribed circle
and the distance from the origin to the point. This yields a nice mesh of a disk
with slightly stretched triangles of almost the same size and there is no singularity
in any point of the domain. Moreover a simple and non-singular mapping from
this mesh can be used to handle more complex settings like the surface aligned
meshes needed for tokamak simulations. Additionally, such a mesh has a struc-
ture with three privileged directions, and uniform steps in each direction, thus it
is completely straightforward to localize points within this mesh. The derivatives
along the three directions can also be nicely computed using the regular finite
difference method along the three directions. And last but not least, there is a
spline construction on this mesh, called box-spline [CVDV08]. These splines have
a hexagonal support and are invariant by translations along the three directions
of the mesh.

In this Chapter, we focus on solving a guiding-center approximation of the 2D
Vlasov Poisson system[GSR98] in such the hex-mesh. The model consists of a
system of two equations: an advection equation and a Poisson equation. The
first one is solved using the Semi-Lagrangian method. Thus, the first part is
dedicated to adapting the Semi-Lagrangian scheme to this hexagonal mesh. This
scheme consists basically of two steps: computing the characteristics origins and
interpolating at these points. The interpolation method using Box-splines was
presented in Equation (2.10); the second part, the back-tracing of the particles
is presented in Chapter 4. Test-case 13 presents a finite difference Poisson solver
adapted to the hexagonal mesh. Finally, in Test-case 13, we compare the results
of the scheme using box-splines with the ones using Hermite finite elements (see
[MMPS16]).

The BSL scheme on the hexagonal mesh

The guiding-center model

We consider here a 2D linear or non-linear advection equation, with a divergence
free advection field A, which can be written in general form

∂ρ

∂t
+A · ∇xρ(x, t) = 0 (4.1)

76

where A is divergence free (i.e. ∇ · A = 0) and the density ρ is known at the
initial time (i.e. ρ(x, 0) = ρ0(x) is known). The advection field A will either be
given and known for all times or it will depend on an electric potential computed
from the solution of a Poisson equation, i.e.

A =

(
−∂ϕ

∂y
∂ϕ
∂x

)
, with−∆ϕ = ρ.

When the advection coefficient is obtained from a Poisson equation, the model
is known as the guiding-center model. As in previous chapters, we apply the
backward Semi-Lagrangian scheme to solve both the advection in a given field and
the guiding center model.

Computing the origin of the characteristics

We consider the model Equation (4.1) on a 2D hexagonal domain, discretized
with the hexagonal mesh. The points of the lattice are denoted x = (x1, x2). The
distribution function ρ(x, t) is known on all grid points at the initial time t = 0.
Let Ax1 and Ax2 be respectively the first and second components of A. We proceed
to apply the BSL method to the Vlasov Equation (4.1): First, we need to compute
the origin of the characteristics ending at the grid points. These are defined for a
given time s ∈ R by


dX

dt
= A

X(s) = x
⇐⇒


dX1

dt
= Ax1

dX2

dt
= Ax2

X1(s) = x1, X2(s) = x2

(4.2)

The solutions (X1, X2) of Equation (4.2) are called the characteristics associated
with the Vlasov equation. Now denoting by tn = n∆t, for a given time step ∆t,
and Xn = X(tn) for any n, and setting s = tn+1. The origin, at time tn, Xn of
the characteristics ending at the grid point Xn+1 = x can then be computed by
any ODE solver, typically a Runge-Kutta solver if A is known for all times. In
the case of the guiding-center model, we use a second order scheme, which is the
implicit Adams-Moulton scheme of order two[FP15], to compute the origin of the
characteristics,

Xn+1 − Xn

∆t
=

1

2
(An+1 + An).

Where An = A(tn,Xn). The difficulty here is that A(tn+1,Xn+1), depends on
ρn+1 and is unknown, thus an approximation

∗
A of A at time tn+1 is made thanks

to previous computations:

77

∗
A = 2 A(tn,Xn+1)− A(tn−1,Xn+1).

The unknown Xn is found by solving:
Xn+1 − Xn

∆t
=

1

2
(
∗
A + An),

X(s) = x.

Remark 7. Since we need A(tn−1), the first step is done using the implicit Euler
time scheme.

Updating the distribution function

We know that the density ρ is conserved along these characteristics and therefore
we can write for any time t:

ρ(X(t), t) = ρ(X(s), s) = ρ(x, s). (4.3)

So in our case, knowing the origin Xn of the characteristics, the new value of ρ at
tn+1 is given by

ρn+1(x) = ρn+1(Xn+1) = ρn(Xn) (4.4)
where ρn is the distribution function at time step tn.

The distribution function ρn is only known on the mesh points, and the origins
of the characteristics Xn are in general not on a mesh point (see Figure 4.2).
Therefore, we need an interpolation method to compute ρn at the characteristic’s
origin, i.e. to approximate ρn(Xn) needed in the Equation (4.4) to get the new
value ρn+1(x) at the grid points, using the known data on the mesh points at its
vicinity. This interpolation method will be either: the quasi-interpolation method
using Box-splines, where the box-spline coefficients, defined in Equation (2.18),
are computed knowing s[ki] = ρn(xi) (see Equation (2.10)), or the Hermite Finite-
Element interpolation defined in [MMPS16], where the values at the nodes are
used and the derivatives or the values at the middle of the edges are computed by
finite difference from the values at the nodes.

Localizing the characteristics’ origins

One of the advantages of the hexagonal mesh is that it is a uniform mesh. Indeed,
even if the mesh is not Cartesian, localizing the characteristics’ origin is compu-
tationally very efficient, unlike the case of unstructured meshes where iterations
are generally required. The procedure is as follows. Let (X1, X2) the Cartesian
coordinates of the characteristics’ origin, obtained by solving Equation (4.2). Then

78

Figure 4.2: Semi-Lagrangian method: Tracing back characteristics.

to obtain the hexagonal coordinates (k1, k2) of the lowest point of the rhomboid
encapsulating the point, we simply need to solve the system x = Rk, where R is
the matrix whose columns are the unit vectors given in Equation (2.1), and take
the integer value. Denoting by (rij) the coefficients of the matrix R, we get

k1 =

⌊
r22X1 − r12X2

r11r22 − r12r21

⌋
=

⌊
1√
3
(X1 +X2)

⌋
,

k2 =

⌊
−r21X1 + r11X2

r11r22 − r12r21

⌋
= ⌊X1 +X2⌋ .

(4.5)

After obtaining (k1, k2), we know the rhomboid (composed by two triangular
cells) containing the characteristics’ origin. To determine the exact cell on which
the origin is located, we only need to verify if the abscissa of the point is greater
than the abscissa of the mesh point at (k1, k2) or not. In the first case the point
belongs to the cell on the right, else to the cell on the left.

Numerical Results

In this section, we will show the results obtained for the advection equation on
the hexagonal mesh. The Test-cases were chosen as close as possible as the ones
for the Multi-patch Approach (see Chapter 3). Additionally, we show the results
with different degrees of Box-splines as well as different pre-filters.

Test-case 12: Short simulation of a constant advection model to compare
pre-filters and degrees

Firstly, we want to narrow down the choice of pre-filter for the interpolation step.
We chose a simple a short simulation, similar to Test-case 2, a linear advection
of 0.1 along the x-axis of a Gaussian pulse. For the initial distribution function,

79

the pulse is centered at the origin of the a hexagonal mesh of radius L = 1.
Furthermore, the pulse’s amplitude is 1, and σ = 0.04. However, the simulation
has a short maximum time, tmax = 1, with a time step of ∆t = 0.05. For the
interpolation, we chose to compare degree 1 and 2 for all four types of pre-filters
previously mentioned (see Equation (2.10)).

Degree
Number of cells Nc Order

10 20 40 80

p F
I
R 1 6.35-02 2.18E-02 6.07E-03 1.52E-03 2

2 8.75E-03 2.46E-04 8.94E-06 4.52E-07 4

p I
I
R
2 1 2.02E-01 6.67E-02 2.44E-02 1.36E-02 1.3

2 3.27E-01 9.24E-02 2.05E-02 1.69E-03 2.53

p I
I
R
1 1 2.03E-01 5.99E-02 1.53E-02 3.84E-03 1.91

2 3.26E-01 9.43E-02 2.44E-02 6.15E-03 1.91

p i
n
t 1 1.32E-01 3.67E-02 9.24E-03 2.31E-03 2.0

2 3.25E-01 9.42E-02 2.44E-02 6.15E-03 2.0

Table 4.1: Convergence study of L∞ errors for the quasi-interpolation method on the hexagonal
meshes of sizes Nc using different pre-filters and Box-splines of degree 1 and 2

Since the scheme is based on a quasi-interpolation, the results obtained are worth
studying even for such a short time period (as it would be even with a single time
step). In Tables 4.1 and 4.2, we study the order of convergence with norm L∞ and
L2 for Box-spline quasi-interpolations using different pre-filters. Let us discuss first
Table 4.1, the L∞ convergence study. We notice that for pre-filters pint and pIIR2,
we obtained the results predicted by the literature ([CVDVU06, CVDV07]). The
pre-filter pIIR2 also behaves as predicted, we obtain results of order d − 1, where
d is the degree of the Box-splines. However the best results are found with pre-
filter pFIR. The results show a super-convergence that was not found by previous
articles. We believe this phenomenon comes from the particularity of this test-case.
Nevertheless, we show the results more in detail in the following test-case.

The L2 convergence study results are inconclusive, with the exception of the
pre-filter pFIR. Overall, after running multiple advection test-cases with (slightly)
different parameters, we concluded that pre-filters pint and pIIR1 are constantly
worse than the other two. Furthermore, with pre-filter pFIR we obtained globally
the best results, in order and precision. Thus, the next test-case uses this pre-filter.
To see the same taste-case for other pre-filters we refer the reader to Appendix C.

80

Degree
Number of cells Nc Order

10 20 40 80
p F

I
R 1 3.55-01 2.12E-01 1.23E-01 6.59E-02 1

2 5.17E-02 3.26E-03 2.71E-04 3.14E-05 3

p I
I
R
2 1 1.26E00 1.08E00 9.67E-01 1.01E-01 1.21

2 2.21E-00 1.72E-00 8.99E-01 1.58E-01 1.26

p I
I
R
1 1 1.26E-00 9.58E-01 5.70E-01 3.06E-01 0.7

2 2.21E-00 1.75E-00 1.06E-00 5.78E-01 0.7

p i
n
t 1 7.66E-01 5.40E-01 3.14E-01 1.68E-01 0.72

2 2.20E-00 1.75E-00 1.07E-00 0.58E-01 0.65

Table 4.2: Convergence study of L2 errors for the quasi-interpolation method on the hexagonal
meshes of sizes Nc using different pre-filters and Box-splines of degree 1 and 2

Test-case 13: Diagonal advection model and Box-spline quasi-interpolation
with pre-filter PFIR

We present the results found for the constant advection equation Equation (4.1).
Here, we try to recreate as close as possible Test-case 5. Thus, we set a linear
advection model on hex-mesh of radius L = 1, centered at the origin. Since the
radius of the mesh is L = 1, and the number of cells Nc corresponds to the number
of cells in a radius, the mesh step ∆x = 1/Nc is equivalent to the mesh step in the
Multi-patch Approach. Indeed, the interpolations for the MPSL scheme are done
in the logical domain of length 1 (independently of the physical domain) and with
a mesh refinement of N . Thus, to have comparable mesh steps we set Nc to N .
We advect the same distribution function as in Test-case 5: a Gaussian centered in
xc = (−0.4,−0.4) of variance σ = 0.04 and amplitude 1. The advection coefficient
is A = (0.15, 0.15), while the parameters of the simulations are tmax = 5 with
a time step ∆t = 0.05. Finally, for the quasi-interpolation scheme, we used the
pre-filter pFIR based on the results of the previous test-case, and Box-splines of
degree 1 and 2.

Let us first study the results for the bounds of the distribution function along
time (Figure 4.3a) and for different mesh refinements (Figure 4.3b). Since, these
values are conserved, we plot the results only for degree 2 Box-splines. We see that
the conservation along time of the maximum value is close to machine error, and
for the minimum we see the error constantly remains low. We should mention that,

81

0 1 2 3 4 5
Simulation time t

10-20

10-19

10-18

10-17

10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

log(|minf(x, t) |)/N 2
c

log(| 1−maxf(x, t) |)/N 2
c

(a) Distribution bounds time evolution with
Nc = 100

40 80 120 160 200
Number of cells Nc in a radius L (log)

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

log(|minf(x, tmax) |)
log(| 1−maxf(x, tmax) |)

(b) Distribution bounds refinement evolution
at tmax = 5

Figure 4.3: Test-case 13: Bounds of the distribution function over time (left) with Nc = 100 and
number of cells (right) at t = 5

when working with Box-splines, these values are often hard to obtain. Actually,
there are several studies on the stability of Box-splines [DBHR93, Kob97, KP09].
It follows that the evaluation we described in Chapter 2 preserves the maximum
principle. However, we notice in Figure 4.3b that the mesh refinement is important.

10-2 10-1 100 101

Simulation time t (log)

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

L1 error norm

L2 error norm

L∞ error norm

(a) Errors over time with Nc = 100

40 80 120 160 200
Number of cells in a radius Nc (log)

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

L1 error norm

L2 error norm

L∞ error norm

x−5

(b) Errors over mesh step at tmax = 5

Figure 4.4: Test-case 13: Evolution of L1, L2 and L∞ errors over time (left) with Nc = 100 and
over the number of cells (right) at t = 5 with degree 2 Box-splines

As in the Multi-patch Approach, we study the L2 and L∞, as well as the L1

errors. We show here the results obtained for the degree 2 Box-splines, for the
degree 1 results, see Appendix C. On the one hand, the convergence study (Fig-
ure 4.4) shows that the errors have a linear behavior along time as we expect from
a linear advection. On the other hand, we see again the super convergence of the
quasi-interpolation with the pFIR pre-filter that we observed in the last test-case.

82

30 40 50 60 70 80 90 100 110 120 130
Number of cells in a radius Nc

0

5

10

15

20

T
im

e
 i

n
 s

e
co

n
d

s

Total CPU time

Coeff CPU time

Inter CPU time

(a) CPU time used for simulations with de-
gree 1 over mesh step

40 60 80 100 120 140 160 180 200
Number of cells in a radius Nc

0

20

40

60

80

100

120

T
im

e
 i

n
 s

e
co

n
d

s

Total CPU time

Coeff CPU time

Inter CPU time

(b) CPU time used for simulations with de-
gree 2 over mesh step

Figure 4.5: Test-case 13: CPU time used for quasi-interpolations with pFIR on meshes of different
refinements

Finally, in Figure 4.5, we compare the computational costs for degree 1 and
degree 2 Box-splines. What we called “Coeff CPU time” is the time to compute
the Box-spline coefficients (directly related to the type of pre-filter used), “Inter
CPU time” is the time to perform the quasi-interpolation (independent of the type
of pre-filter chosen), and the “Total CPU time” is simply the sum of the two. We
notice that the splines of degree 2 use up to twice more of total CPU time than
degree 1. However, the proportion of the time spent in computation of coefficients
it is significantly higher (around 27% for Nc = 130 and degree= 1 versus 40% for
Nc = 200 and degree 2 splines).

Globally, we found encouraging results with the quasi-interpolation method on
advection models. We decide to explore further models on the mesh.

The Poisson finite-difference solver
When computing the origins of the characteristics for the Semi-Lagrangian scheme
applied to the Vlasov-Poisson or guiding-center models we need to compute the
solution of the Poisson equation

−∆ϕ = ρ,

ϕ being the potential and ρ the density. We impose here null Dirichlet bound-
ary conditions. In order to solve this equation, we use a simple finite difference
scheme. Since the mesh here is hexagonal, a seven-point stencil is used as shown
in Figure 2.2a. It is composed of the six vertices of a hexagon plus its center. To
compute ϕ0, the value of ϕ at the center 0, the remaining vertices of the hexagon

83

are used. This particular stencil has the property to give a fourth order scheme at
little cost [CSSZ03]. Here is the previously described scheme:

−(ϕ1 + ϕ2 + ϕ3 + ϕ4 + ϕ5 + ϕ6 − 6ϕ0) =
3h2

4
ρ0 +

h2

24
(ρ1 + ρ2 + ρ3 + ρ4 + ρ5 + ρ6).

Compared to the second order scheme on the same stencil, we notice the only
difference being the second term of the equality:

−(ϕ1 + ϕ2 + ϕ3 + ϕ4 + ϕ5 + ϕ6 − 6ϕ0) = h2ρ0.

Considering the gain of two orders of precision at such little cost, we have used
this fourth order scheme to compute ϕ.

Remark 8. One difficulty that arises here is to define an indexing that allows the
resolution of a “computational-friendly” linear system, i.e. a sparse matrix with
the non-null terms close to the diagonal to minimize filling in a Cholesky decom-
position. This is done by assigning a number following one hexagonal direction,
row after row, similarly to how one proceeds on a Cartesian mesh. Here, however,
the difference is that the rows are of variable width resulting in a banded matrix.
Therefore the matrix here is not constituted of seven diagonals which makes the
Poisson computation longer than on a Cartesian mesh. The width of the band is
directly proportional to the number of cells in the hexagonal domain.

General algorithm
Below, we summarize the full algorithm to compute the distribution function ρn+1

solution of the guiding-center model Equation (4.1).

Initialization At time t = 0, we suppose that ρ(x, 0) is given and we evaluate
it at the grid points. We denote this data ρ0h (meaning ρ discretized, at the
time tn = 0, at the initial step).

Time Loop Incrementation of a given time step ∆t, such that: tn+1 = tn +∆t.

• Solve the Poisson equation to compute advection field An;
• Compute the characteristics’ origins, Xn, using an ODE solver for

Equation (4.2), Runge-Kutta or Adams-Moulton as described above;
• Interpolate (using either Box-Splines or one of the Hermite Finite Ele-

ments) the distribution function ρn on Xn to compute ρn+1
h ;

• Update the known values: ρn = ρn+1.

84

Remark Boundary conditions will need to be used between the first and the
second step of the time loop (i.e. before the interpolation step) for charac-
teristics that leave the computational domain. In this paper we focus only
on null Dirichlet boundary conditions.

We should note that, here again, as for the Multi-patch Approach, the actual
implementation was extensively discussed. The first decision was to add this code
to the SeLaLib library –which was much more mature than it was at the beginning
of this thesis but still far away from the actual version–. Thus, all the code related
to the hexagonal mesh, the quasi-interpolation (and pre-filters) were implemented
in SeLaLib. The finite difference Poisson solver, and the guiding-center simulations
are also available therein.

However, the need for a more powerful Poisson solver motivated further develop-
ments. This time in the Django library1. Since this library was for Finite Element
solvers, the decision was obvious. In order to reduce the implementations needed,
everything that was related to the Semi-Lagrangian method stayed in SeLaLib,
and an interface between the two libraries was implemented in SeLaLib.

We refer the author to Appendix B, for a list of the implementations and their
locations.

Numerical results
In this section we present the numerical simulations we performed to test our
methods. With the aim of studying the convergence, the dissipation, and the
efficiency of the scheme presented here as well as other Hermite elements (HCT-r,
HCT-c, Z9, Z10, Ganev-Dimitrov and Mitchell) presented in [MMPS16]. We first
study the circular advection test case. To study the accuracy of the results, we
compare them to the analytical solution, which is known. Then we proceed to the
guiding-center simulation. As there is no analytical solution for this test case, we
study quantities of the system that we know should be conserved.

Test-case 14: Circular advection

We focus here on the circular advection test case. The model is defined by:

∂tf(x, y, t) + y ∂xf(x, y, t)− x ∂yf(x, y, t) = 0. (4.6)

1This library started as a Finite Element code, also known as “the future Django”. As for
today, the library has evolved to such extent that its developer decided to divide it into several
small libraries. The code mentioned here remains to be transported.

85

Since this equation is not coupled to a Poisson model, we can study in detail the
differences between the interpolation methods previously presented. Additionally,
we can find an analytical solution with the method of characteristics thanks to
which we can study the convergence of our schemes. Here, we take a Gaussian
pulse as initial distribution function:

f0(x, y) = exp

(
−1

2

(
(x− xc)

2

σ2
x

+
(y − yc)

2

σ2
y

))
, (4.7)

On a hexagonal mesh centered at the origin of radius 8, we take σx = σy =
1

2
√
2
.

Let us set here xc = 2 and yc = 2. The distance from the pulse to the limit
of the domain makes the boundary effects insignificant, thus we can take a null
Dirichlet boundary condition, meaning that we consider that there is no inflow to
the domain. To study the convergence in space we took Nc = 20, 40, 60, ..., 160.
We recall that Nc is the number of cells on the radius L. With the maximum time
of evaluation, tmax, at 6π, we chose to keep a constant CFL (here there is not an
actual CFL, but we decide to keep the ratio ∆t/∆x constant).

Figure 4.6: Test-case 14: Order of convergence with CFL = 2, with L2 norm (left) and L∞ norm
(right)

In Figure 4.6, we plotted the L2 and L∞ norms for different space discretizations.
We can see that for coarse meshes, all the methods are globally the same, with a
slightly better accuracy for elements Zienkiewicz with 10 degrees of freedom (Z10
for short, based on polynomials of degree ≤ 3) and Ganev-Dimitrov (GaDi, 15
degrees of freedom and exact for polynomials of degree ≤ 4) [Ber94, GR14]. But
as the mesh gets finer, we can quickly see that the splines converge quicker to
better results. Only the Ganev-Dimitrov elements are more accurate. The HCT-c
and HCT-r elements are also defined in [Ber94, GR14] have respectively 12 and 9
degrees of freedom, and reproduce (resp.) polynomials of degree ≤ 2 and ≤ 3.

In Figure 4.7 (left), we represent the error in L∞ norm versus the number of
cells, Nc. The figure is similar to the previous one (see Figure 4.6), but we added
the Mitchell elements (12 degrees of freedom, exact for polynomials of degree

86

Figure 4.7: Test-case 14: Order of convergence (inclusion of Mitchell elements; CFL = 0.25) of all
the methods (left) and only for schemes of order 3 (right).

≤ 4) [Mit73] for comparisons and changed the CFL to CFL = 0.25. The Ganev-
Dimitrov element (GaDi) leads again to the best result and the second is Z10.
Both have more degrees of freedom (4 times more for GaDi and 3 times more for
Z10) for a fixed number of cells Nc. Other reconstructions have the same number
of degrees of freedom. Furthermore, we notice that the P1 element (classical linear
interpolation) leads to very poor accuracy, which fully justifies the use of higher
order methods.

In Figure 4.7 (right), we selected the order 3 schemes (although we also added
Zienkiewicz 9 (Z9), which is not exactly accurate to the order three but uses poly-
nomials of degree ≤ 2), and added the third order slope for comparison. On the
one hand, we observe a super-convergence property for the splines; this may be
due to the test-case (i.e. due to its symmetry) or to the quasi-interpolation that
is, in some cases, more accurate than a classical interpolation[CVDVU06]. On the
other hand, the Mitchell elements behave favorably: MI4 is as accurate as HCT-c
and MI6, MI17 are the most accurate, before the splines take over due to this
super-convergence, whereas MI6 and MI17 remain third order. We expect higher
order convergence when the CFL goes to zero; see [HMSS15]). The Z9 method
is the least accurate, as expected. Note also that with respect to Figure 4.6, the
error is bigger for all the methods; being that the number of interpolations done
is multiplied by 8, as we go from CFL = 2 to 0.25.

All previous figures study the convergence with respect to the hexagonal step or
the number of cells Nc, thus in Figure 4.8 we wanted to use the total number of
points instead. We can see that the most noticeable difference is that, the scheme
using Ganev-Dimitrov elements is the worst at the beginning whereas in Figure 4.7
it is the best one since the beginning. This is probably due to the approximation of
the normal derivatives. Furthermore, after a given mesh refinement, the box-spline
interpolation seems to be the most accurate scheme.

In Figure 4.9, we can see that the performance converges quite quickly, for all

87

Figure 4.8: Test-case 14: Order of convergence (CFL = 0.25), with respect of number of points

Figure 4.9: Test-case 14: Comparison of performances for the circular advection test case (CFL = 2.)

the methods. It is also pretty obvious that, even if the splines are more accurate,
the cost is higher than most of the Hermite Finite Element methods.

Figure 4.10: Test-case 14: Comparison of performances for the circular advection test case (inclusion
of Mitchell elements; CFL = 0.25; on machine irmahpc2)

In Figure 4.10 (left), we represent, with respect to Nc, the number of points
treated per µ-second, also called the efficiency, on the machine irma-hpc2, whose
characteristics are: HP Proliant DL 585 G6, 4 processors AMD Opteron 6 Cores
at 2.8GHz, 128 Go RAM, 2.4 To of disk. All the algorithms are not at the same

88

level of optimization: HCT-c has not been optimized; P1, Z9 and splines have
been optimized using different strategies. We think that splines could be further
optimized. P1 which is the least costly method is also clearly the fastest method.
We obtain around 1GFlops (when the efficiency is about 30) which is a correct
value with respect to [MSM+13] for example. It is followed by the Z9 element, and
the Mitchell elements which also need the computation of the mixed derivatives.
Finally, splines and HCT-c have almost the same cost; note that previously, on
Figure 4.9, splines were slower; HCT-c were also faster, but the runs were not
done on the same computer.
We then represent on Figure 4.10 (right), the error in L∞ norm with respect
to time. If GaDi finally wins, the Mitchell elements are among the best in the
current implementation. Going higher in degrees leads to time overhead for the
computation of the derivatives, this yields that MI17 is not the most competitive,
whereas MI6, because it is less accurate, is better, as it is faster. Note as well
that Z9 behaves really well. Box-splines are not as competitive, but the situation
could change, by optimizing even further the code. We should notice that, for
the Mitchell elements, the storage of the different derivatives is multiplied by 13,
which leads to costly memory access. Whereas, for box-splines, this is not the case
(coefficients are computed when needed, making this method less costly memory-
wise, but slower).

Figure 4.11: Test-case 14: Comparison of performances for the circular advection test case and
comparison with classical interpolations on polar mesh; CFL = 0.25; on machine irmahpc2

Firstly, in Figure 4.11 (left), we study the performance with classical inter-
polation schemes on polar mesh (we use cubic splines and Hermite of degree
p; see e.g. [HMSS15]). The polar mesh is obtained by discretizing the annulus
Ω = {(r cos(θ), r sin(θ)), r ∈ [rmin, rmax] × [0, 2π]}, with rmin = 10−5, rmax = 8
using a grid of Nc cells in r and 2Nc cells in θ direction. In Figure 4.11 (left), we
compare again the number of points advected per µ-second. We see that in this
polar setting, the classical cubic spline method has a very good efficiency and the
current Hermite interpolation H(p) has a decreased efficiency and this gets worse

89

as the degree p increases. On the hexagonal grid, only the P1 interpolation has
a better efficiency and Z9 can approach similar efficiency to the splines in polar
geometry, while being better than the polar Hermite methods. On the other hand,
the efficiency is quite comparable for the Hermite and Mitchell methods for a given
degree p. Box-splines are still the less efficient for the moment.

Secondly, we compare the error in L∞ norm with respect to the CPU time,
see Figure 4.11 (right). Cubic splines in polar geometry outperform the other
methods. Choosing another test-case more favorable to the waste of points due
to the polar geometry could change the situation. On the other hand, the second
better method with respect to this diagnostic is MI6 , which is encouraging (it is
even better than polar splines for very low resolution and it has a more stable and
foreseeable behavior). We should again warn the reader that all these studies have
been done for a given implementation and that the situation could change if all
the methods are fully optimized.

Figure 4.12: Test-case 14: Order of convergence (inclusion of Mitchell elements) and comparison
with classical interpolation on polar mesh; CFL = 0.25

We then look Figure 4.12 where the L∞ error is plotted with respect to the num-
ber points, making again the comparison between polar and hexagonal mesh. For
low number of points, box-splines are the least accurate but the situation changes
when the number of grid points increases. Note that box-spline interpolation is
not the complete analog of cubic spline interpolation on a polar grid, as it is quasi-
interpolant. We can distinguish that MI17 is the most accurate, before box-splines
become better. On the other hand, the accuracy remains quite similar between
polar and hexagonal geometry, especially for the Hermite/Mitchell methods. Note
also that the cubic spline method is almost the same as H6 (this is often the case,
see [Ste14]).

90

Test-case 15: Guiding-center model - Diocotron instability test case

We consider here a guiding-center approximation of the 2D Vlasov-Poisson system.
This also corresponds to the reduced gyrokinetic model obtained[FY14] when all
quantities are homogeneous in the direction parallel to the magnetic field. Here
the magnetic field is set to B =

(
0 0 1

)T . Then the model reads
∂ρ

∂t
+ E⊥ · ∇xρ(x, t) = 0 (4.8a)

−∆ϕ = ∇ · E = ρ(x, t) (4.8b)

with E = (Ex, Ey) = −∇ϕ and E⊥ = (−Ey, Ex).
By neglecting the effect of boundary conditions (here, we took null Dirichlet),

the guiding-center model verifies the following properties:

1. Positivity of density ρ
0 ≤ ρ(x, y, t).

2. Mass conservation
d

dt

(∫
D

ρ dxdy

)
= 0.

3. Lp norm conservation, for 1 ≤ p ≤ ∞

d

dt
||ρ||Lp(D)= 0.

4. Energy conservation
d

dt

(∫
D

|∇ϕ|2dxdy
)

= 0.

This model is commonly used in 2D simulations to study the particle density,
as it describes highly magnetized plasmas in the poloidal plane of a tokamak. We
chose here to study the diocotron instability [CGH+14]. The initial density is given
by:

ρ0(x⊥) =

{
(1 + ε cos(ℓθ)) exp (−4(r − 6.5)2), if r− ≤

√
x2 + y2 ≤ r+.

0, otherwise.
(4.9)

Here r+ (respectively r−) is the maximum (resp. minimum) radius of an annulus
where ρ0 is not null. θ is the radian angle given by (x, y), θ = atan2(y, x). As for
the parameters values, we take ε = 0.001, r− = 5, r+ = 8, ℓ = 6, dt = 0.1 and the
hexagonal step is 14

160
with a radius of 14 and a hexagonal parameter Nc = 160. In

91

this part, we will not test the Z10 approach as it requires a special resolution of the
Poisson equation that has not been implemented. Indeed, computing the values
of the field at the center of the triangles can’t be combined with the resolution at
the vertices. Moreover to even the computational time of each method we chose
to take Nc = 80 for the Ganev Dimitrov element as it results in the computations
on a mesh with Nc = 160.

Figure 4.13: Test-case 15: Time evolution of the guiding-center model with ε = 0.1, at times = 1,
16, 38, 73 and 109

After playing with the parameters, we note that six vortices is the main mode.
In fact, if we take ℓ ̸= 6, with ε small enough, we still see the mode six appear.
With ε big enough, i.e. at least 0.1, the modes different from six can be visible for
a time but they are not stable, thus we see the fusion or the apparition of vortices
until the sixth mode takes over. For instance, as illustrated by Figure 4.13, we
can see the ninth mode turning into the sixth mode by fusion of vortices. This
instability can be explained with Figure 4.14. The influence of the geometry is
clear as the potential is not round, but already deformed as a hexagon. This
phenomenon is clearly caused by the boundary conditions (null Dirichlet) and the
shape of the geometry; If other boundary conditions were imposed, we would be
able to see results similar to what we can get in a polar mesh (where any given
mode can be captured[CGH+14]).
Remark 9. When running the guiding-center model with test-case Equation (4.9),
see Figure 4.13, no obvious differences are visible between the different interpolation

92

Figure 4.14: Test-case 15: Potential at time zero for the guiding-center simulation

methods, which makes the diagnostics all the more important to compare the results
computed.

Figure 4.15: Test-case 15: Time evolution of the relative error of mass and energy

Figure 4.16: Test-case 15: Relative error of L1 and L2 norms

After comparison of the diagnostics in Figures 4.15, 4.16, and 4.17, we see that
the various interpolation methods give close results overall. They are similar in
terms of positivity conservation, especially when comparing the Z9 elements to the
splines; the other Hermite elements have globally a worse positivity conservation.
We notice that if box-splines conserve better the mass, the Z9 approach conserves

93

Figure 4.17: Test-case 15: Time evolution of the density’s minimum

better the L1 norm. Also we note that box-splines and the HCT-c element give
very near results whichever the diagnostic considered.

In Figures 4.18, 4.19, and 4.20, we consider the same diagnostics as before,
but we include a comparison with the Mitchell elements. Note that the Ganev
Dimitrov does not have the same degrees of freedom as the other methods. We
define Ntot = 2Nc for this method and N = Nc for all the other methods. On
Figure 4.18, we consider the case where Nc = 128, ∆t = 2−3. We then refine the
mesh by 2, on Figure 4.19 and the time step by 2 on Figure 4.20, in order to see
some effects of changing time and space resolutions.

We notice that the Ganev-Dimitrov FE interpolation has good accuracy when
we use the same number of cells (e.g. N = 128 and Ntot = 256); but this is not
fair as the complexity is not the same. So, we should compare, as done previously,
using for example Ntot = N = 128 or Ntot = N = 256. In that case, we see
that the method is not more competitive as the quantities are badly conserved in
comparison to the other methods. The situation may be different if the grid is finer,
but this then becomes more difficult to solve, as the Poisson solver would take much
longer or take too much memory space, at least in the current implementation.

Concerning the mass, the box-spline method outperforms the other methods
(probably due to their property of the partition of unity). HCT-c has near same
accuracy, but it is more oscillating. Z9 is clearly less accurate. We notice that the
Mitchell elements are better than Z9 and that increasing p leads to better results.
With MI17, we are not at the same level of accuracy as the one for the box-splines,
but we approach it. Note that the results are different on Figure 4.19, probably
because the time step is too big with respect to the resolution in space. This can
affect the convergence in time: the solution is more complex and a bigger time
step leads to worse mass conservation. Furthermore, this may also explain the
fact that MI4 has better mass conservation than MI17. For energy conservation,
results are quite similar, mainly, only Z9 behaves better. Energy (as mass) is better
conserved, when the time step gets smaller. L1 norm conservation is improved
with the Mitchell elements, in particular with MI17 which is better than Z9; MI6

94

Figure 4.18: Test-case 15: Guiding-center case. Evolution of mass, energy, L1, L2, L∞ and
minimum density

is better than HCT-c and box-splines, but not than Z9.
We see that L2 norm is better conserved when increasing the degree p of the

Mitchell elements. HCT-c, Z9 and MI4 are almost at the same level: slightly
better than box-splines. Note that MI17 is almost at the level of GaDi which
requires 4 times more points (see Figure 4.18). As previously mentioned, this is
probably caused by the reconstruction of the normal derivatives. Concerning the
L∞ norm, the best results are obtained for Mitchell’s elements, in particular MI17.
Box-splines and HCT-c do not behave as well as the latter, and Z9 also behaves
well. Finally, for the minimum density, HCT-c is one of the worst method. Box-

95

Figure 4.19: Test-case 15: Guiding-center case. Evolution of mass, energy, L1, L2, L∞ and
minimum density

splines seem to behave the best. H17 or Z9 come close next, when the time step is
small enough, otherwise huge negative values appear for all the methods, except
box-splines.

After this long study, we chose to pursue our research using Box-splines since
they can be easily (even if at a high cost) increased in degree, and are as competitive
as the other methods. They also have the advantage of being adaptable to other
types of elements. However, since the Box-splines are not interpolant at the edges
of the domain, in the next section we explore a solution to treat the boundary
conditions.

96

Figure 4.20: Test-case 15: Guiding-center case. Evolution of mass, energy, L1, L2, L∞ and
minimum density

Implementation of Nitsche’s method
on a hexagonal mesh

The Nitsche’s method, well known in the Isogeometric community, deals with
non-conforming meshes. It is also popularly used to handle Dirichlet boundary
conditions in a weak form. It is often described as a combination of two other
schemes that handle boundary conditions: the penalty and the Mortar’s schemes.
The first one usually leads to an ill-conditioned problem, depending heavily on the

97

penalty operator [TW05, ZTZ05]. Whereas the second one, the Mortar’s method,
generates complex solutions as the matrix of the discrete system is no longer
positive definite [LM97, MAGS14]. Nitsche’s method, introduced in 1971 [Nit71],
has been proven to overcome these two problems [SLP12]. We want to apply it
to the Poisson model on a hexagonal mesh as an example. This will, for example,
allow us to perform the simulations of the last section, the guiding-center model,
on a circular domain. Let us recall the Poisson equation in Cartesian coordinates

−∆ϕ = ρ in Ω, (4.10)
ϕ = ϕ0 = g on Γd, (4.11)

∇ϕ · n = h on Γh. (4.12)
We imposed here Neumann and Dirichlet boundary conditions. The first step

is to write the variational formulation. We decided to use Embar’s, Dolbow’s and
Harari’s method [EDH10] to derive the variational form, but we recall that other
methods exist [FMH04, GS03]. The problem Equation (4.10) to Equation (4.12)
becomes: Find ϕ such that

a(w, ϕ) = l(w) (4.13)
with

a(w, ϕ) =

∫
Ω

∇w · ∇ϕ dΩ−
∫
Γd

w(∇ϕ · n) dΓ−
∫
Γd

ϕ(∇w · n) dΓ + α

∫
Γd

wϕ dΓ

l(w) =

∫
Ω

wf dΩ +

∫
Γh

wh dΓ−
∫
Γd

g(∇w · n) dΓ + α

∫
Γd

wg dΓ.

Where w is a test function. We can set, for example, w = Hd, a box-spline of degree
d. Before discretizing the problem, let us introduce a coordinate transformation,
F , whose Jacobian, J, determinant is noted |J|. The test function w, the electric
potential ϕ and the density ρ, can be written as w̃, ϕ̃, and ρ̃ in the new coordinate
system. Furthermore, we recall the following properties:

∇x f = J−T ∇η f

nx = J−T nη∫
dΩ =

∫
||J|| dP∫

dΓ =

∫ √
(∆x)2 + (∆y)2 dΓP =

∫
∆r dΓP ,

(4.14)

where f is any scalar function, such as w, ϕ, or ρ. Thus, the Equation (4.13)
becomes

ã(w̃, ϕ̃) = l̃(w̃) (4.15)

98

with

ã(w̃, ϕ̃) =

∫
P

(
J−T∇w̃

)
·
(
J−T∇ϕ̃

)
||J|| dP −

∫
∂Pd

w̃
((

J−T∇ϕ̃
)

·
(
J−Tnη

))
||J|| dΓP

−
∫
∂Pd

ϕ̃
((
J−T∇w̃

)
·
(
J−Tnη

))
||J|| dΓP + α

∫
∂Pd

w̃ ϕ̃ ||J|| dΓP

l̃(w̃) =

∫
Ω

w̃ f̃ ||J|| dP +

∫
∂Ph

w̃ h̃ ||J|| dΓP

−
∫
∂Pd

g̃
((
J−T∇w̃

)
·
(
J−Tnη

))
||J|| dΓP + α

∫
∂Pd

w̃ g̃ ||J|| dΓP .

Now, we use the following discretization for the solution ϕ.

ϕh(xi) =

Ne(d)∑
j=0

cjH
d
j (xi) (4.16)

where Ne(d) is the number of non-null splines Hd
j on a given element e for a given

degree d, and cj the coefficients associated to Hd
j . We recall Hd

j is the box-spline
of degree d centered in xj. For simplicity of notations, we will assume here that
only degree 1 box-splines are used. For higher degrees, the procedure remains the
same with only a few parameters changing.

Coercivity and stability parameter evaluation

In this manuscript we won’t detail the study on the coercivity of the scheme.
Instead, we focus directly on the results found in [EDH10], and adapt them directly
to our mesh. In fact, the previously cited studies show that ensuring the coercivity
of the system Equation (4.13) is equivalent to ensuring the coercivity of

a(wh, wh) ≥ (1− εC)
∥∥∇wh

∥∥2 +

(
α− 1

ε

)∥∥∇wh
∥∥2
Γd

(4.17)

where wh is the discretized w and C is a mesh dependent constant such that∥∥∇wh · n
∥∥2
Γd

≤ C
∥∥∇wh

∥∥2. (4.18)

The coercivity of Equation (4.17) is ensured when α > 1/ε with ε < 1/C.
Furthermore, the definition of C will determine our stability. Let us define the
following eigenvalue problem.

Ax = λBx (4.19)

99

where the matrices A and B are defined by

Aij =

∫
Γd

(∇Hd
i · n)(∇Hd

j · n)dΓ

Bij =

∫
Ω

∇Hd
i · ∇Hd

j dΩ.

Then, if C is equal to the maximum eigenvalue obtained from the system, the
scheme is stable. Knowing this, and using the results of [DH09] –which show
that α = 2C provides the best computational performance of the scheme–, we get
α = 2max(Λ). We need to rewrite Equation (4.19) in order to adapt it to the
hexagonal mesh. Using the relations in Equation (4.14), it yields, for the matrix
A,

Aij =

∫
Γd

((
J−T∇Hd

i

)
·
(
J−Tnη

)) ((
J−T∇Hd

j

)
·
(
J−Tnη

))
dΓ

=

∫
Γd

(
J−T∇Hd

i

)T (
J−Tnη

) (
J−T∇Hd

j

)T (
J−Tnη

)
∆r dΓP

= ∆r

∫
Γd

(∇Hd
i)

TJ−1J−Tnη(∇Hd
j)

TJ−1J−Tnη dΓP .

Following the same procedure, we get

Bij =

∫
P

(
J−T∇Hd

i

)
·
(
J−T∇Hd

j

)
|J| dP

= |J|
∫
P
(∇Hd

i)
TJ−1J−T∇Hd

j dP .

(a) before (b) after

Figure 4.21: Results of a Poisson equation before and after applying the Nitsche’s method

100

In Figure 4.21, we applied a Poisson solver on a hex-mesh of N = 32 on which
we defined a sinusoidal pavement. The results with null Dirichlet boundary condi-
tions (before implementing the Nitsche method) are completely false as expected,
whereas on the figure on the right we see that the boundary conditions are well
treated.

For numerical reasons and time constraints it is impossible for us to assemble all
the above-mentioned pieces together: the poisson solver on the hexagonal mesh and
the Nitsche’s method (Django) needs an interface for the input and output data
coming from the interpolation method and the advection equation (SeLaLib). We
strongly believe all the pieces have been presented in this work in order construct
a complete guiding-center test.

Perspective: realistic poloidal planes
We previously mentioned that it would be easy to map the hexagon to a circle,
and that it consists basically of a scaling, but we didn’t go any further into details.
In this section, we compute the mapping and notice its simplicity as well as its
pitfalls.

Transformation of one triangle

Firstly, let us suppose that we are transforming only one triangle. We can take for
example the triangle in our unit hexagon defined by the points 0, 1, and 2 (See
Figure 4.22). We denote T1 the triangle and P0, P1, and P2 its vertices. Only
the points on the edge P2P1 will be mapped, such that they are on the circle of
center P0 and radius r′ = ∥P0P2∥. Then, let P of coordinates (x, y) be a point
on that edge, we want to compute the coordinates (x′, y′) of its projected point
P′. In polar coordinates the points P and P′ have respectively the coordinates
(r cos(θ), r sin(θ)) and (r′ cos(θ′), r′ sin(θ′)). First we notice that the points actually
have the same angle, thus θ = θ′. Furthermore, we notice that the mapping is
indeed a scaling, and that the scaling factor is nothing else than k =

r′

r
.

If we suppose that we know the coordinates of P2 then the computation of
k is automatic (r =

√
x2 + y2 and r′ = yP2). But we suppose here that this

information is not known. In fact, numerically, this will usually be the case, as we
will be transforming the points not only on the external edges, but all other points
inside the lattice as well. Nevertheless, finding the radius of the circumscribed
circle, knowing only (x, y) is not a difficult task. We start by computing the slope
of P1P2: we know the slope is the same regardless of the position in the hexagon,
thus we can compute it using P1 = (

√
3/2, 1/2) and P2 = (0, 1). We get, s, the

slope, is given by

101

0

5

6

1

2

3

4

T1T2

T3

T4 T5

T6 P0

P1

P2

y

x

P

P′

Figure 4.22: Test-case 15: Left: Element and node indexation on the unit hexagon. Right: Projec-
tion of a point P on T1 into P′ in the circumcircle of the hexagon.

s =

(
1

2
− 1

)/√
3

2
=

−1√
3
.

Thus, the equation of the line passing through P1P2 is defined by

yP2 = y +
1√
3
x,

where yP2 = r′ is the unknown. We get the final formula: Given a point P ∈
{T1,T2,T4,T5}, of coordinates (x, y), we can compute the coordinates of its pro-
jection P′ of coordinates (x′, y′) into the circumscribed circle to the hexagon by
the following formula,

{
x′ = k x

y′ = k y
with k =

r′

r
=

|y|+ |x|√
3√

x2 + y2
. (4.20)

The addition of the absolute values to x and y, makes this formula applicable to
four of the six triangles of the main hexagon: T1,T2,T4, andT5. For the triangles
T3 and T6, the formula has to be changed completely as the slope of the edges are
no longer ±1/

√
3. We proceed in the same manner to obtain a formula equivalent

to Equation (4.20). For illustration we introduce Figure 4.23.
The unknown now is r′ = ∥P0P1∥ =

√
x2P1

+ y2P1
. We realize that xP1 = x,

abscissa of P. Next, we compute the equation of the line passing through P0P1.
It is given by

1√
3
x = yP2 .

102

P0

P1

P2

y

xP P′

Figure 4.23: Test-case 15: Projection of a point P on T6 into P′ in the circumcircle of the hexagon.

Therefore, we have the value of yP2 and we can compute r′. We obtain,

r′ =
√
x2 + y2P1

=
√
x2 + x2/3 = 2x/

√
3.

Thus, finally we get the formula for the mapping of P :{
x′ = k x

y′ = k y
with k =

r′

r
=

2x√
3(x2 + y2)

. (4.21)

It is important to notice that transformation is only C0 continuous. This is
caused mainly by the presence of the absolute value in Equation (4.20).

Figure 4.24: Mapped hex-mesh to a circle

We applied this transformation to a hex-mesh of Nc = 10. As a test-case,
we applied a Gaussian to the origin of the mesh and solved a diffusion model.
The results after 10 iterations are in Figure 4.24. In Figure 4.25, we applied

103

Figure 4.25: Mapped hex-mesh to Miller’s equilibrium

the mapping described in [MCG+98], which describes the equilibria of an actual
tokamak, and implemented the same test-case.

In the last example, it is noticeable that there is a problem due to the C0-
continuity (derivatives not continuous) of the transformation. It is most noticeable
at the three diagonals of the domain. However, to study the actual impact, we
study the linear advection on this mapped domain.

Linear advection on the mapped hexagonal mesh

The linear advection equation in the mapped hexagonal domain (as a circle or a
D-shape) is the same as the general curvilinear case, we recall Definition 8:

Given a coordinate transformation F (η, ξ) = (F1(η), F2(η)) = (x, y) of Jacobian
|J|, the constant coefficient advection equation in general coordinates reads

∂f̃

∂t
+ Ã · ∇η f̃ = 0 (4.22)

where Ã =
1

|J|
−−→
rotη ψ̃ , ψ̃(η, ξ) = a1F2(η) − a2F1(η), with (a1 a2) ∈ R2 giving

−−→
rotη ψ̃(η, ξ) =

(
a1∂ξF2 − a2∂ξF1

−a1∂ηF2 + a2∂ηF1

)
.

In this case, the coordinate transformation is either the hexagon −→ circle trans-
formation (given by Equations (4.20) and (4.21)), or the transformation hexagon
−→ D-shaped (given by Miller’s equilibrium). Since the second transformation
is actually a transformation hexagon −→ circle −→ D-shape, we study first the
simple circle mapping.

104

Test-case 16: Constant advection of pulse through circular mapped hex-mesh

We intend to recreate Test-cases 5 and 9. We choose the distribution function

f0(x, y) = exp

(
−1

2

(
(x− 0.5)2

0.042
+

(y − 0.5)2

0.042

))
. (4.23)

as in the previously mentioned test-cases. The studied model is a constant
advection of the pulse (Equation (4.23)), with advection coefficientA = (0.5, 0.5)T .
The simulation’s parameters are ∆t = 0.05 and tmax = 5. Based on the results of
Test-case 13, we used Box-splines of degree 2, and based on the results of Test-
case 13, we chose to use the pFIR pre-filter. We mapped a hexagon of radius
L = 1 to a circle of same radius using the coordinate transformation defined in
Equations (4.20) and (4.21). The initial distribution parameters and the advection
coefficients, give a simulation comparable to Test-cases 5 and 9. Furthermore, they
assure that the Gaussian pulse goes through the mesh’s origin, thus the results will
show if the discontinuity of the transformation derivatives plays an important role.

0 1 2 3 4 5
Simulation time t

10-17

10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

log(|minf(x, t) |)/N 2
c

log(| 1−maxf(x, t) |)/N 2
c

(a) Distribution bounds time evolution with
Nc = 100

30 50 70 90
Number of cells Nc in a radius L (log)

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

log(|minf(x, tmax) |)
log(| 1−maxf(x, tmax) |)

(b) Distribution bounds refinement evolu-
tion at tmax = 5

Figure 4.26: Test-case 16: Bounds of the distribution function over time (left) with Nc = 100 and
number of cells (right) at tmax = 5

First, let us see if the maximum principle is conserved over time and if the
conservation improves when using a finer grid. In Figure 4.26, we note that for a
refined mesh (Nc = 100) the minimum and maximum values of the distribution
functions are conserved. For coarser grids, the minimal value is pretty well con-
served, whereas the maximum value conservation improves with the refinement of
the mesh. The maximum value has a worse conservation due to the dissipation of
the distribution function through time (often seen when using the Semi-Lagrangian
method).

105

In Figure 4.27, we plotted the difference between the analytical solution and the
computed solution at time t = 3.25 (corresponding to the time when the Gaussian
pulse goes through the center of the mesh).

Figure 4.27: Test-case 16: Difference between the analytical and the computed solution of the
distribution function at the critical time step t = 5

We can see that the C0 continuity of the derivatives along the six diagonals of
the hexagon, introduces a point of high stress. This is also visible in Figure 4.28a,
where we can see an obvious difference in the error norms evolution in time. After
the Gaussian pulse passes through the origin, the error slope is not as important as
before. What suggests that there might some major issues with more complicated
models. However, we need more studies to confirm this.

0 1 2 3 4 5
Simulation time t

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

L1 error norm

L2 error norm

L∞ error norm

(a) Errors over time with Nc = 100

30 50 70 90
Number of cells in a radius Nc (log)

10-6

10-5

10-4

10-3

10-2

L1 error norm

L2 error norm

L∞ error norm

x−3

(b) Errors over mesh step at tmax = 5

Figure 4.28: Test-case 16: Evolution of L1, L2 and L∞ errors over time (left) with Nc = 100 and
over number of cells (right) at t = 5 with degree 2 Box-splines

106

Lastly, in Figure 4.28b, we see that for coarse meshes (Nc ≤ 70) the convergence
rate is 3, while for finer meshes there is saturation. Probably this can be explained
by the advection of the pulse through the origin of the domain. Nevertheless,
yet again to confirm this, we need to simulate more complex models. This is the
obvious next step in the study of this domain discretization.

107

108

5
Conclusion

We explored in this manuscript multiple approaches for the discretization of the
2D poloidal plane of fusion devices. The objective was to offer Gysela with a
solution that would represent the minimum effort to implement while still solving
the singularity problem of the polar mesh and remaining flexible to treat more
complex geometries. Gysela is not the only code in the fusion community to face
this problem. In fact, the Isogeometric analysis (IgA) was born from this kind
of need. All our solutions are based on the principle of having a logical domain
(patch) where we define our models, and a transformation that will map this space
to the physical domain where we want the solution to be.

The models explored through this manuscript are simpler versions of the Vlasov
equation eventually coupled to the Poisson equation. To solve the advective part,
the Semi-Lagrangian scheme is used. This method consists of two steps: comput-
ing the characteristics feet and interpolating on those points.

The first family of solutions, heavily inspired by IgA, was the Multiple-Patch ap-
proach: the circular domain is divided into five patches. The four external patches,
when combined, reconstruct exactly the current geometry of Gysela, whereas the
fifth, a square mapped to a disk, fills in the whole of the mesh. The main tools for
this approach are the cubic splines: used for the interpolation method, used for
the Semi-Lagrangian scheme, and for computing the slopes at patches’ boundaries.
We also presented with a naive and effective way of back-tracing the character-
istics. The MPSL (Multi-patch Semi-Lagrangian) scheme was implemented from
scratch in a Python library. We explored different configurations. At the end, two
stood out, the classical 5-patch decomposition, and a modified version where the
singular points are stretched outwards of the domain to eliminate the singularities.
Both solutions, in our opinion, deserve further exploration.

109

The second solution explored lies on a different mesh. In fact, it is based on a
hexagonal domain, that can be mapped to a circle without any singular points.
This hexagonal domain is discretized using equilateral triangles. It yields that
the back-tracing of the characteristics is practically automatic. We implemented
a quasi-interpolation scheme on this mesh using Box-splines and their associated
pre-filters. Moreover, two different Poisson solvers were implemented: a finite
difference and a finite element solver. A guiding-center model was solved in this
domain and compared to classical schemes in performance and accuracy. We im-
plemented the Nitsche method in order to treat the boundary conditions. Finally,
we implemented the coordinate transformations to map the domain to a circle or
a tokamak-like domain.

We should notice that for the hexagonal mesh solution to be applied in Gysela
it needs to be linked to an external polar mesh (so the base code of Gysela is
kept as such). Actually, this can be achieved in a C1 fashion. Although this was
never tested in this work, we strongly believe this would be the perfect solution to
our problem. In fact, doing so, the domain presents no singular points, we keep a
polar crown, and we get accurate and efficient results.

110

A
Box-splines

From type-I Box-splines to our hexagonal
Box-splines

The most common form of three directional Box-splines are the Type-I Box-
splines[CL87, DBH83, Rat11], which generating vectors are the canonical base
e1 = (1, 0)T , e2 = (0, 1)T , and their sum, e3 = (e1 + e2). Since many people in
the IgA community work with this type of Box-splines[Sab02, LMS08, MPS11],
we wish to link the type of Box-splines we use in this manuscript, with the type-I
Box-splines.

e2
e3

e1

Figure A.1: Type-I Box-Splines: Generating vectors and sample mesh

The difference between the two types is simple: it lays on a linear modification of
the geometry. Indeed, the generating matrix of the type-I Box-splines is (e1 e2 e3),
while for our type of box splines is the (r1 r2 r3) matrix. Thus, the values of the
functions differ by a constant, which comes from the definition of the Box-splines
of degree 0 (see Definition 6).

111

We know that both {e1, e2} and {r1, r2} form a base of R2. Let v = v1 e1+v2 e2,
and v′ = v1 r1 + v2 r2. Xi denotes the base formed by (e1, e2), and Ξ0 ∪ X ′

i

the base of the hexagonal mesh. For the splines, we keep the notations used in
this manuscript: B denotes the type-I Box-splines and χ the Box-splines in the
hexagonal mesh. We obtain

1

|det(Ξ0)|
BXi

(v) = χΞ0∪X′
i
(v′)

where Ξ0, is the matrix for changing variables, here

Ξ0 =

(√
3
2

−
√
3
2

1
2

1
2

)
,

which gives in particular det(Ξ0) =
√
3
2
.

An important property of the Box-splines is that they can be of different degrees
on each direction (we do not use this property for the Box-splines in the hexagonal
mesh). Let Bd1,d2,d3 and χd1,d2,d3 with (d1, d2, d3) ∈ N3, be the Box-splines of type-I
and on the hex-mesh, of degree d1 in the first direction, d2 on the second, and d3
on the third. It yields

2√
3
Bd1,d2,d3(v) = χd1,d2,d3(v′) (A.1)

This summarizes the relationship with the two types of splines. Thus, must prop-
erties proved for type-I Box-splines, are true for our hex-mesh Box-splines. In the
next section, we show the main properties of the Box-splines necessary for the
Isogeometric approach.

Important properties
Here is a list of properties that were essential to compute the results in the next
section.

∂enB(v|Xi) = B(v|Xi − {en})−B(v − en|Xi − {en}) (A.2)

∫
R2

Bn1,n2,n3(v−v0)B
m1,m2,m3(v) dv = Bn1+m1,n2+m2,n3+m3(n1e1+n2e2+n3e3+v0)

(A.3)∫
R2

B(v|Xn) f(v) dv =

∫
[0,1]n

f

(∑
v∈Xn

tiv

)
dt1 dt2...dtn (A.4)

112

(n− d)B(v|Xn) =
∑
ζ∈Xn

tζ B(v|Xn − ζ) + (1− tζ)B(v − ζ|Xn − ζ) (A.5)

where BM(v) = B(v|M) for a given matrix M and, for the first property, n =
1, 2, 3. In the third and fourth property, Equations (A.4) and (A.5), let t =
X t

n(XnX
t
n)

−1v where Xn is a matrix and tζ is the coordinate t at the ζ-th position
in Xn. We note that, all the properties are true, if and only if, all the Box-splines
on the right hand sides are defined and continuous on v.

The first two properties follow by induction from the definition of the Box-
splines. For the proof of the second property we refer the reader to Ratnani’s
thesis[Rat11]. The third property follows directly from the Box-splines definition.
Finally, for the fourth property, the proof can be found in de Boor’s book[DBHR93]
(page 17).

Mass and Stiffness matrices
The Box-splines on the hexagonal mesh are used, among other things, as basis for
the Finite Elements Methods. Thus, depending in the models, we will presented
with the resolution of the Mass and/or Stiffness matrix. This part is dedicated
to present the analytical and numerical solutions of such computations using the
properties of the previous section.

Analytical computation

The Mass and Stiffness matrices are generally defined respectively by

Mij =

∫
ψi ψj

Σij =

∫
∇ψi · ∇ψj

(A.6)

where ψi (respectively ψj) is the basis functions centered on the point of global
index i (resp. j). In our context, the basis functions are actually the Box-splines
of degree d on each direction (r1, r2 and r3) of a hexagonal mesh of refinement
h = L/Nc. While doing these computations, we realized that the easiest way to
simplify these equations is by using the hexagonal coordinates which are, for a
point of global index i, (ki1, ki2) = (m,n). Respectively, for a point of global index
j, we use the hexagonal coordinates (kj1, k

j
2) = (k, l). We denote by χd,d,d

i = χd,d,d
m,n

(resp. χd,d,d
j = χd,d,d

k,l), the Box-spline of degree d on each direction, centered on

113

the point of global index i (resp. j). We use properties (A.2) and (A.3), with
|r1|= |r2|= 1 and r1 · r2 = −1

2
. It yields for the Mass Matrix

(A.7)
Mmnkl = h2

∫
χd,d,d
m−k,n−l(v)χ

d,d,d
0,0 (v) dv

=
2h2√
3
χ2d,2d,2d
m−k,n−l(2d r3).

And for the Stiffness Matrix

Σmnkl =

∫ [(
χd−1,d,d
m−k,n−l(v)− χd−1,d,d

m−k,n−l(v − r1)
)(

χd−1,d,d
0,0 (v)− χd−1,d,d

0,0 (v − r1)
)

+
(
χd,d−1,d
m−k,n−l(v)− χd,d−1,d

m−k,n−l(v − r2)
)(

χd,d−1,d
0,0 (v)− χd,d−1,d

0,0 (v − r2)
)

− 1

2

[(
χd−1,d,d
m−k,n−l(v)− χd−1,d,d

m−k,n−l(v − r1)
)(

χd,d−1,d
0,0 (v)− χd,d−1,d

0,0 (v − r2)
)

+
(
χd,d−1,d
m−k,n−l(v)−χd,d−1,d

m−k,n−l(v− r2)
)(

χd−1,d,d
0,0 (v)−χd−1,d,d

0,0 (v− r1)
)]]

dv

=
2√
3

[
2χ2d−2,2d,2d

m−k,n−l (2d r3−r1)−χ2d−2,2d,2d
m−k+1,n−l (2d r3−2r1)−χ2d−2,2d,2d

m−k−1,n−l (2d r3)

+ 2χ2d,2d−2,2d
m−k,n−l (2d r3 − r2)− χ2d,2d−2,2d

m−k,n−l (2d r3 − 2r2)− χ2d,2d−2,2d
m−k,n−l (2d r3)

− 1

2

(
χ2d−1,2d−1,2d
m−k,n−l (2d r3 − r1)− χ2d−1,2d−1,2d

m−k,n−l (2d r3 − r1 − r2)

− χ2d−1,2d−1,2d
m−k,n−l (2d r3) + χ2d−1,2d−1,2d

m−k,n−l (2d r3 − r2)

+ χ2d−1,2d−1,2d
m−k,n−l (2d r3 − r2)− χ2d−1,2d−1,2d

m−k,n−l (2d r3 − r2 − r1)

− χ2d−1,2d−1,2d
m−k,n−l (2d r3) + χ2d−1,2d−1,2d

m−k,n−l (2d r3 − r1)
)]

= − 2√
3

(
∂r1,r1χ

2d,2d,2d
m−k,n−l(2d r3) + ∂r2,r2χ

2d,2d,2d
m−k,n−l(2d r3)− ∂r1,r2χ

2d,2d,2d
i−k,j−l (2d r3)

)
.

(A.8)

While (A.7) and (A.8) are a general definition we can still reduce them by using
the specificity of our hexagonal mesh. In [CVDV06], Condat and Van de Ville give
the analytical expression of the Box-splines of contant degree (i.e. d = d1 = d2 =
d3, our case). However they use the following directions

u1 =

[1
2

−
√
3
2

]
u2 =

[1
2√
3
2

]
u3 =

[
−1
0

]
,

which are equivalent to our generating matrix, by changing u3 into −u3 and ap-
plying a simple rotation. In fact, we notice that r1 = (u12,u11)

T , r2 = (u22,u21)
T

114

and r3 = (−u32,−u31)
T . Let v = (x1, x2)

T a vector in cartesian coordinates, and
(v1, v2) its coordinates in the (r1, r2) base. We get x1 =

√
3(v1−v2)

2
and x2 = v1+v2

2
.

It follows

(A.9)

χd(v − d r3) =
d∑

k1,k2=−d

d+min (k1,k2,0)∑
i=max (k1,k2,0)

(−1)k1+k2+i

(
d

i− k1

)(
d

i− k2

)(
d

i

)

×
d−1∑
j=0

(
d− 1 + j

j

)
1

(2d− 1 + j)! (d− 1− j)!

× |v2 − v1 + k1 − k2|d−1−j

(
v1 + v2

2
− k1 + k2

2

−
∣∣∣∣v2 − v1

2
+
k1 − k2

2

∣∣∣∣)2d−1+j

+

.

This equation allows us to get a direct result for the Mass Matrix (by taking
v = 0). For the Stiffness Matrix, we have to derive this expression. We recall
that Equation (A.9) is at least C2 for d ≥ 2, given the Box-splines’ properties. To
lighten up the notations, we define

fk1,k2(v) = |v2 − v1 + k1 − k2|
gk1,k2(v) = (v1 + v2 − k1 − k2 − |v2 − v1 + k1 − k2|)+
sgn (v) = sgn (v2 − v1 + k1 − k2).

Furthermore, since our expressions are C2, we get by continuity

sgn (v2 − v1 + k1 − k2)
2 = 1.

Thus, the partial derivative along the first direction gives

∂χd

∂r1
(v + d r3) =

d∑
k1,k2=−d

d+min (k1,k2,0)∑
i=max (k1,k2,0)

(−1)k1+k2+i

(
d

i− k1

)(
d

i− k2

)(
d

i

)

×
d−1∑
j=0

(
d− 1 + j

j

)
1

22d−1+j (2d− 1 + j)! (d− 1− j)!

×
[
−(d− 1− j) sgn (v)fk1,k2(v)d−2−jgk1,k2(v)

2d−1+j

+ (2d − 2 + j) (1 + sgn (v)) fk1,k2(v)d−1−jgk1,k2(v)
2d−2+j

]
and along the second derivative, we get

115

∂χd

∂r2
(v + d r3) =

d∑
k1,k2=−d

d+min (k1,k2,0)∑
i=max (k1,k2,0)

(−1)k1+k2+i

(
d

i− k1

)(
d

i− k2

)(
d

i

)

×
d−1∑
j=0

(
d− 1 + j

j

)
1

22d−1+j (2d− 1 + j)! (d− 1− j)!

×
[
(d− 1− j) sgn (v) fk1,k2(v)d−2−jgk1,k2(v)

2d−1+j

+ (2d − 2 + j) (1 − sgn (v)) fk1,k2(v)d−1−jgk1,k2(v)
2d−2+j

]
.

Now we can compute the compound derivatives,

∂2χd

(∂r1)2
(v + d r3) =

d∑
k1,k2=−d

d+min (k1,k2,0)∑
i=max (k1,k2,0)

(−1)k1+k2+i

(
d

i− k1

)(
d

i− k2

)(
d

i

)

×
d−1∑
j=0

(
d− 1 + j

j

)
1

22d−1+j (2d− 1 + j)! (d− 1− j)!

×
[
(d − 1 − j)(d − 2 − j) fk1,k2(v)

d−3−j gk1,k2(v)
2d−1+j − 2 (2d

− 2 + j) (d− 1 − j) (sgn (v) + 1) fk1,k2(v)
d−2−jgk1,k2(v)

2d−2+j

+ (2d− 2

+ j) (2d − 3 + j) (1 + sgn (v))2 fk1,k2(v)d−1−jgk1,k2(v)
2d−3+j

]

∂2χd

(∂r1)(∂r2)
(v + d r3) =

d∑
k1,k2=−d

d+min (k1,k2,0)∑
i=max (k1,k2,0)

(−1)k1+k2+i

(
d

i− k1

)(
d

i− k2

)(
d

i

)

×
d−1∑
j=0

(
d− 1 + j

j

)
1

22d−1+j (2d− 1 + j)! (n− 1− j)!

×
[
−(d− 1− j)(d− 2− j) sgn (v2 − v1

+ k1 − k2) fk1,k2(v)
d−3−jgk1,k2(v)

2d−1+j − (d− 1− j) (2d

−1+ j) (sgn (v)− 1) fk1,k2(v)
d−2−jgk1,k2(v)

2d−2+j +(d−1

− j) (2d−1+ j) (sgn (v) + 1) fk1,k2(v)
d−2−jgk1,k2(v)

2d−2+j

+(1− sgn (v)) (1 + sgn (v)) fk1,k2(v)d−1−jgk1,k2(v)
2d−3+j

]
116

∂2χd

(∂r1)(∂r2)
(v + d r3) =

d∑
k1,k2=−d

d+min (k1,k2,0)∑
i=max (k1,k2,0)

(−1)k1+k2+i

(
d

i− k1

)(
d

i− k2

)(
d

i

)

×
d−1∑
j=0

(
d− 1 + j

j

)
1

22d−1+j (2d− 1 + j)! (d− 1− j)!

×
[
−(d− 1− j)(d− 2

− j) sgn (v) fk1,k2(v)d−3−jgk1,k2(v)
2d−1+j

+ 2 (d− 1− j) (2d− 1 + j) fk1,k2(v)
d−2−jgk1,k2(v)

2d−2+j
]

∂2χd

(∂r2)2
(v + d r3) =

d∑
k1,k2=−d

d+min (k1,k2,0)∑
i=max (k1,k2,0)

(−1)k1+k2+i

(
d

i− k1

)(
d

i− k2

)(
d

i

)

×
d−1∑
j=0

(
d− 1 + j

j

)
1

22d−1+j (2d− 1 + j)! (d− 1− j)!

×
[
(d−1−j)(d−2−j) fk1,k2(v)d−3−jgk1,k2(v)

2d−1+j+2 (2d−2

+ j) (d− 1− j) (sgn (v)− 1) fk1,k2(v)
d−2−jgk1,k2(v)

2d−2+j +(2d

−2+j) (2d−3+j) (1−sgn (v))2 fk1,k2(v)d−1−jgk1,k2(v)
2d−3+j

]
Let Cd(j) = 1/

(
22d−1+j (2d− 1 + j)! (d− 1− j)!

)
, we can now compute the value

of the Stiffness Matrix since we get the following definition

∂2χd

∂r21
(v + d r3) +

∂2χd

∂r22
(v + d r3)−

∂2χd

∂r1∂r2
(v + d r3)

=
d∑

k1,k2=−d

d+min(k1,k2,0)∑
i=max (k1,k2,0)

(−1)k1+k2+i

(
d

i− k1

)(
d

i− k2

)(
d

i

) d−1∑
j=0

(
d− 1 + j

j

)
Cd(j)

×
(
3(d− 1− j)(d− 2− j)fk1,k2(v)

d−3−jgk1,k2(v)
2d−1+j

− 6 (2d− 2 + j) (d− 1− j) fk1,k2(v)
d−2−jgk1,k2(v)

2d−2+j

+ 4 (2d− 2 + j) (2d− 3 + j)fk1,k2(v)
d−1−jgk1,k2(v)

2d−3+j
)
.

(A.10)

By multiplying by − 2√
3
and taking v such that (v1, v2) ∈ N2, we get the value of

the Stiffness Matrix.

Python algorithms

In this section we give the python codes to compute the Mass and Stiffness Matrices
based on the results of the last section.

117

Mass Matrix

We use Equation (A.9) to compute Mmnkl

√
3/2h2 = χd,d,d

m−k,n−l(2dr3) = χd,d,d(u0 +
d, v0 + d). Since u0 and v0 are integers, we can use the function Fraction, which
gives the exact value.

def mass_matrix(u0,v0,d):
"""

Computation of \chi_{d,d,d} (u0 + d, v0 + d)
"""
u = np.copy(u0)
v = np.copy(v0)
x = u + v
sqrt3y = v - u
x = -dbs(x)
sqrt3y = abs(sqrt3y)
u = (x - sqrt3y)/2
v = (x + sqrt3y)/2

id=np.nonzero(v>0)
v[id]=-v[id]
u[id]=u[id]+v[id]

id=np.nonzero(v>u/2)
v[id]=u[id]-v[id]
u = u.astype(int)
v = v.astype(int)

val=np.zeros(u.shape, dtype=Fraction)
print(val)

for K in range(-d, int(ceil(np.max(u)))):
K0=Fraction(K)
for L in range(-n, int(ceil(np.max(v)))):

L0=Fraction(L)
for i in range(0, min(d+K, d+L)+1):

coeff=Fraction((-1)**(K+L+i)\
*binomialCoefficient(d,i-K)\
*binomialCoefficient(d,i-L)\
*binomialCoefficient(d,i))

for j in range(0,d):

118

aux=abs(v-L0-u+K0)
aux2=(u-K0+v-L0-dux)/2
aux2[np.nonzero(aux2<0)]=0
val = val + coeff \

* Fraction(binomialCoefficient(d-1+j,j),
factorial(2*d-1+j)\

* factorial(d-1-j))
* aux**(d-1-j) * aux2**(2*d-1+j)

return val

Stiffness Matrix

Now we present the core function for the computation of the Stiffness Matrix: the
algorithm for

(
∂2χn

(∂r1)2
+ ∂2χn

(∂r2)2
+ ∂2χn

(∂r1)(∂r2)

)
(u0 + n, v0 + n).

def stiffness_matrix(u0,v0,n):
"""

Computation of (\partial_{r_1, r_1} + \partial_{r_2, r_2}
- \partial_{r_1, r_2}) \chi_{d,d,d} (u_0 + d, v_0 + d)

"""
u = np.copy(u0)
v = np.copy(v0)
x = u + v
sqrt3y = v - u
x = -dbs(x)
sqrt3y = abs(sqrt3y)
u = (x - sqrt3y)/2
v = (x + sqrt3y)/2

id=np.nonzero(v>0)
v[id]=-v[id]
u[id]=u[id]+v[id]

id=np.nonzero(v>u/2)
v[id]=u[id]-v[id]
u = u.astype(int)
v = v.astype(int)

val=np.zeros(u.shape, dtype=Fraction)

for K in range(-d, int(ceil(np.max(u)))):

119

K0=Fraction(K)
for L in range(-d, int(ceil(np.max(v)))):

L0=Fraction(L)
for i in range(0, min(n+K, d+L)+1):

coeff=Fraction((-1)**(K+L+i))*binomialCoefficient(d,i-K)\
*binomialCoefficient(d,i-L)*binomialCoefficient(d,i)
for j in range(0, n):

aux=abs(v-L0-u+K0)
aux2=(u-K0+v-L0-dux)/2
aux2[np.nonzero(aux2<0)]=Fraction(0)

val = val + Fraction(binomialCoefficient(n-1+j,j),
factorial(2*n-3+j)*factorial(n-1-j))

* coeff * aux**(n-1-j) * aux2**(2*n-3+j)
if n-1-j > 0:

val = val -Fraction(3) * coeff \
* Fraction(binomialCoefficient(n-1+j,j),

factorial(2*n-2+j)*factorial(n-2-j))\
* aux**(n-2-j) * aux2**(2*n-2+j)

#end if
if n-2-j > 0:

val = val + Fraction(3) * coeff \
* Fraction(binomialCoefficient(n-1+j,j),

factorial(2*n-1+j)*factorial(n-3-j)) \
* aux**(n-3-j) * aux2**(2*n-1+j)

return val

Matrices construction

This last function uses the two algorithms previously defined to construct the
matrices (minus a coefficient, see the following tables).

def mass_stiff_matrices(n0):
"""
Computation of the coefficients which will be found in the mass
and stiffness matrices with Box-splines of degree n0.
The result is two matrices (let's call them MM and SM).

For a Box-spline centered in (k_{1,i},k_{2,i}) and another one
centered in (k_{1,j},k_{2,j}), the corresponding coefficient for
the mass matrix (resp. for the stiffness matrix) at position

120

(i,j) is the coefficient of MM (resp. SM) at position:
(2*n0 + (k_{1,i} - k_{1,j})/h, 2*n0 + (k_{2,i} - k_{2,j})/h)

"""
n = 2*n0
u = range(-n+1, n)
v = range(-n+1, n)
U, V = np.meshgrid(u,v)
U = np.array(np.round(U), dtype=Fraction)
V = np.array(np.round(V), dtype=Fraction)
print(U)
print(V)

mM = mass_matrix(U,V,n)
sM = stiffness_matrix(U,V,n)

return sp.Matrix(mM), sp.Matrix(- sM)

Results

We list in this section the results obtained for different degrees. Let us define two
Box-splines, the first one centered on the point of global index i, i.e. of hexagonal
coordinates (k1,i, k2,i), and the second one centered on the point of global index j,
or (k1,j, k2,j). Both splines are on a hexagonal mesh of step h = L/Nc, and are
of degree (d1, d2, d3) in each direction. Thus, to find the value of the Mass and
Stiffness value, we see the Table corresponding to the degree (d1, d2, d3), and the
value at (d1 + d3 +

k1,i−k1,j
h

, d2 + d3 +
k2,i−k2,j

h
). Furthermore, the results for the

Mass Matrix need to be multiplied by 2h2
√
3
and by 2√

3
for the Stiffness Matrix.

Mass matrix coefficients ÷ 2L2

N2
c

√
3

HHHHHHc1

c2 1 2 3

1 1
12

1
12

0

2 1
12

1
2

1
12

3 0 1
12

1
12

Stiffness matrix coefficients ÷ 2√
3

HHHHHHc1

c2 1 2 3

1 0.5 0.5 0

2 0.5 5 0.5

3 0 0.5 0.5

Table A.1: Non-null terms of the Mass and Stiffness matrices for box-splines of degree 1

121

Mass matrix coefficients ÷181440
2L2

N2
c

√
3

HHHHHHc1

c2 1 2 3 4 5 6 7

1 1 17 17 1 0 0 0

2 17 868 2550 868 17 0 0

3 17 2550 18871 18871 2550 17 0

4 1 868 18871 47496 18871 868 1

5 0 17 2550 18871 18871 2550 17

6 0 0 17 868 2550 868 17

7 0 0 0 1 17 17 1

Table A.2: Non-null terms of the Mass matrix for box-splines of degree 2

Stiffness matrix coefficients ÷20160
2√
3

HHHHHHc1

c2 1 2 3 4 5 6 7

1 -1 -43 -43 -1 0 0 0

2 -43 108 -1218 108 -43 0 0

3 -43 -1218 8153 8153 -1218 -43 0

4 -1 108 8153 23800 8153 108 -1

5 0 -43 -1218 8153 8153 -1218 -43

6 0 0 -43 108 -1218 108 -43

7 0 0 0 -1 -43 -43 -1

Table A.3: Non-null terms of the Stiffness matrix for box-splines of degree 2

122

M
as
s
m
at
rix

co
effi

ci
en
ts

÷
83
02
69
44
00
0

2L
2

N
2 c

√
3

H
H

H
H
H
H

c 1

c 2
1

2
3

4
5

6
7

8
9

10
11

1
1

13
7

90
2

90
2

13
7

1
0

0
0

0
0

2
13
7

63
85
0

96
25
67

21
81
77
2

96
25
67

63
85
0

13
7

0
0

0
0

3
90
2

96
25
67

28
73
12
67

12
90
47
74
4

12
90
47
74
4

28
73
12
67

96
25
67

90
2

0
0

0

4
90
2

21
81
77
2

12
90
47
74
4

10
91
37
97
64

21
38
03
46
76

10
91
37
97
64

12
90
47
74
4

21
81
77
2

90
2

0
0

5
13
7

96
25
67

12
90
47
74
4

21
38
03
46
76

78
59
59
34
36

78
59
59
34
36

21
38
03
46
76

12
90
47
74
4

96
25
67

13
7

0

6
1

63
85
0

28
73
12
67

10
91
37
97
64

78
59
59
34
36

14
74
68
99
20
4

78
59
59
34
36

10
91
37
97
64

28
73
12
67

63
85
0

1

7
0

13
7

96
25
67

12
90
47
74
4

21
38
03
46
76

78
59
59
34
36

78
59
59
34
36

21
38
03
46
76

12
90
47
74
4

96
25
67

13
7

8
0

0
90
2

21
81
77
2

12
90
47
74
4

10
91
37
97
64

21
38
03
46
76

10
91
37
97
64

12
90
47
74
4

21
81
77
2

90
2

9
0

0
0

90
2

96
25
67

28
73
12
67

12
90
47
74
4

12
90
47
74
4

28
73
12
67

96
25
67

90
2

10
0

0
0

0
13
7

63
85
0

96
25
67

21
81
77
2

96
25
67

63
85
0

13
7

11
0

0
0

0
0

1
13
7

90
2

90
2

13
7

1

Table A.4: Non-null terms of the Mass matrix for Box-splines of degree 3

123

M
as
s
m
at
rix

co
effi

ci
en
ts

÷
20
75
67
36
00

2 √
3

H
H
H
H
H
H

c 1

c 2
1

2
3

4
5

6
7

8
9

10
11

1
-1

-1
97

-1
99

3
-1
99

3
-1
97

-1
0

0
0

0
0

2
-1
97

-1
39

78
-2
67

07
0

-1
28

57
00

-2
67

07
0

-1
39

78
-1
97

0
0

0
0

3
-1
99

3
-2
67

07
0

-8
42

85
9

-1
03

98
70

7
-1
03

98
70

7
-8
42

85
9

-2
67

07
0

-1
99

3
0

0
0

4
-1
99

3
-1
28

57
00

-1
03

98
70

7
44

73
58

20
-2
82

03
91

6
44

73
58

20
-1
03

98
70

7
-1
28

57
00

-1
99

3
0

0

5
-1
97

-2
67

07
0

-1
03

98
70

7
-2
82

03
91

6
54

83
69

94
8

54
83

69
94

8
-2
82

03
91

6
-1
03

98
70

7
-2
67

07
0

-1
97

0

6
-1

-1
39

78
-8
42

85
9

44
73

58
20

54
83

69
94

8
11

47
75

20
60

54
83

69
94

8
44

73
58

20
-8
42

85
9

-1
39

78
-1

7
0

-1
97

-2
67

07
0

-1
03

98
70

7
-2
82

03
91

6
54

83
69

94
8

54
83

69
94

8
-2
82

03
91

6
-1
03

98
70

7
-2
67

07
0

-1
97

8
0

0
-1
99

3
-1
28

57
00

-1
03

98
70

7
44

73
58

20
-2
82

03
91

6
44

73
58

20
-1
03

98
70

7
-1
28

57
00

-1
99

3

9
0

0
0

-1
99

3
-2
67

07
0

-8
42

85
9

-1
03

98
70

7
-1
03

98
70

7
-8
42

85
9

-2
67

07
0

-1
99

3

10
0

0
0

0
-1
97

-1
39

78
-2
67

07
0

-1
28

57
00

-2
67

07
0

-1
39

78
-1
97

11
0

0
0

0
0

-1
-1
97

-1
99

3
-1
99

3
-1
97

-1

Table A.5: Non-null terms of the Stiffness matrix for Box-splines of degree 3

124

h-refinement with Box-splines elements
In the Finite Element method context, we refer to h-refinement for the procedure of
dividing the elements into smaller ones. It is frequently associated to p-refinements,
which refer to increasing the degree of the basis used for the definition of the FEM.

Analytical computation

The objective of this section is to find a relationship between χΞ and χΞ(2v− v1)
with v1 ∈ Z2. Therefore, we study the Fourier transform of χΞ. In fact, this
transform can be easily written by using Equation (A.4),

(A.11)

χ̂Ξ(ζ) =

∫
χΞ(v) e

−iζ·vdv

=

∫
[0,1]n

exp
(
−i ζ ·

∑
vi∈Ξ

ti vi

)
dt1...dtn

=

∫
[0,1]n

∏
vi∈Ξ

exp (−i ζ · ti vi) dt1...dtn

=
∏
vi∈Ξ

∫
[0,1]

exp (−i ti ζ · vi) dti

=
∏
vi∈Ξ

1− e−iζ·vi

i ζ · vi

.

Remark 10. We notice that this expressions show that the order of the vectors in
generating matrix is not important.

Let χΞ,2 : v 7→ χΞ(2v), it yields

(A.12)
χ̂Ξ,2(ζ) =

1

4
χ̂Ξ(

ζ

2
)

= 2n−2
∏
vi∈Ξ

1− e−i ζ
2
·vi

i ζ · vi

.

We divide Equation (A.11) by (A.12), we obtain

χ̂Ξ(ζ)

χ̂Ξ,2(ζ)
= 22−n

∏
vi∈Ξ

(
1 + e−i ζ

2
·vi

)
□

Let see the results for each type of Box-splines we have seen.

125

Type-I Box-splines of constant degree on each direction

Let us set the generating matrix Ξ = (v1,v2,v3) with multiplicity d for each vector.
We get

χ̂Ξ(ζ)

χ̂Ξ,2(ζ)
= 22−3d

(
1 + e−i ζ

2
·v1

)d (
1 + e−i ζ

2
·v2

)d (
1 + e−i ζ

2
·v3

)d
χ̂Ξ(2ζ)

χ̂Ξ,2(2ζ)
= 22−3d

(
d∑

j=0

(
d

j

)
e−i j ζ·v1

) (
d∑

k=0

(
d

k

)
e−i k ζ·v2

) (
d∑

l=0

(
d

l

)
e−i l ζ·v3

)

= 22−3d

(
d∑

j,k,l=0

(
d

j

)(
d

k

)(
d

l

)
e−i ζ·((j+l)v1+(k+l)v2)

)

= 22−3d

 2d∑
γ,λ=0

min(γ,λ,d)∑
l=max(γ,λ,d)−d

(
d

γ − l

)(
d

λ− l

)(
d

l

)
e−i ζ·(γv1+λv2)


= 22−3d

(
2d∑

γ,λ=0

d∑
l=0

(
d

γ − l

)(
d

λ− l

)(
d

l

)
e−i ζ·(γv1+λv2)

)

χ̂Ξ(ζ) = 22−3d

(
2d∑

γ,λ=0

d∑
l=0

(
d

γ − l

)(
d

λ− l

)(
d

l

)
e−i ζ

2
·(γv1+λv2)

)
χ̂Ξ,2(ζ). (A.13)

It yields
χΞ = 22−3dχΞ,2 ∗ b,

where

b =
2d∑

γ,λ=0

(
d∑

l=0

(
d

γ − l

)(
d

λ− l

)(
d

l

))
δ γv1+λv2

2

.

The coefficients δv are Dirac functions. It follows

χΞ(v) = 22−3d

2d∑
γ,λ=0

(
d∑

l=0

(
d

γ − l

)(
d

λ− l

)(
d

l

))
χΞ(2v − γv1 − λv2). (A.14)

We compute the values of uγ,λ,d =
∑d

l=0

(
d

γ−l

)(
d

λ−l

)(
d
l

)
for d = 1, . . . , 3 with the

following Equation

(A.15)uγ,λ,d+1 = 2 uγ−1,λ−1,d + uγ,λ,d + uγ,λ−1,d + uγ−1,λ,d

+ uγ−2,λ−1,d + uγ−1,λ−2,d + uγ−2,λ−2,d

126

Remark 11. We notice that, for d = 0, the only non-null value is at the origin
and is equal to 1.

Using Equation (A.15), we get the values of uγ,λ,d for d = 1, . . . , 3 presented in
the next tables.

HHHHHHγ
λ 0 1 2

0 1 1 0

1 1 2 1

2 0 1 1

HHHHHHγ
λ 0 1 2 3 4

0 1 2 1 0 0

1 2 6 6 2 0

2 1 6 10 6 1

3 0 2 6 6 2

4 0 0 1 2 1

Table A.6: Values of uγ,λ,d for d = 1 and d = 2

HHHHHHγ
λ 0 1 2 3 4 5 6

0 1 3 3 1 0 0 0

1 3 12 18 12 3 0 0

2 3 18 39 39 18 3 0

3 1 12 39 56 39 12 1

4 0 3 18 39 39 18 3

5 0 0 3 12 18 12 3

6 0 0 0 1 3 3 1

Table A.7: Values of uγ,λ,d for d = 3

Type-I Box-splines of variable degree

Let us set the generating matrix Ξ = (v1,v2,v3) with multiplicity d1 for vector
v1, d2 for vector v2 and d3 for vector v3 = v1 + v2. Using the same procedures,
we get

127

χΞ(v) = 22−d1−d2−d3

d1+d3∑
γ=0

d2+d3∑
λ=0

(
d3∑
l=0

(
d1
γ − l

)(
d2
λ− l

)(
d3
l

))
χΞ(2v − γv1 − λv2)

(A.16)

Box-spline of 2 directions matrices and with arbitrary degree

Let us set the generating matrix Ξ = (v1,v2) with multiplicity d1 for vector v1

and d2 for vector v2.

χ̂Ξ(ζ)

χ̂Ξ,2(ζ)
= 22−d1−d2

(
1 + e−i ζ

2
·v1

)d1 (
1 + e−i ζ

2
·v2

)d2 χ̂Ξ(2ζ)

χ̂Ξ,2(2ζ)

= 22−d1−d2

(
d1∑
j=0

(
d1
j

)
e−i j ζ·v1

) (
d2∑
k=0

(
d2
k

)
e−i k ζ·v2

)

= 22−d1−d2

(
d1∑
j=0

d2∑
k=0

(
d1
j

)(
d2
k

)
e−i ζ·(jv1+kv2)

)
.

It yields

χΞ(v) = 22−d1−d2

d1∑
j=0

d2∑
k=0

(
d1
j

)(
d2
k

)
χΞ(2v − jv1 − kv2). (A.17)

Type-II Box-splines of arbitrary degree

Let us set the generating matrix Ξ = (v1,v2,v3,v4) with multiplicity d1 for vector
v1, d2 for vector v2, d3 for vector v3 and d1 for the vector v4 = v1 − v2. We get

χ̂Ξ(ζ)

χ̂Ξ,2(ζ)
= 22−3d1

(
1 + e−i ζ

2
·v1

)d1 (
1 + e−i ζ

2
·v2

)d2 (
1 + e−i ζ

2
·v3

)d3
(
1 + e−i ζ

2
·v4

)d1 χ̂Ξ(2ζ)

χ̂Ξ,2(2ζ)

= 22−d1−d2−d3−d1

(
d1∑
j=0

(
d1
j

)
e−i j ζ·v1

) (
d2∑
k=0

(
d2
k

)
e−i k ζ·v2

)
(

d3∑
l=0

(
d3
l

)
e−i l ζ·v3

)(
d1∑

m=0

(
d1
m

)
e−im ζ·v4

)

128

χ̂Ξ(ζ)

χ̂Ξ,2(ζ)
= 22−2d1−d2−d3

d1∑
j=0

d2∑
k=0

d3∑
l=0

d1∑
m=0(

d1
j

)(
d2
k

)(
d3
l

)(
d1
m

)
e−i ζ·((j+l+m)v1+(k+l−m)v2)

= 22−2d1−d2−d3

2d1+d3∑
γ=0

d2+d3∑
λ=−d1

d3∑
l=0

d1∑
m=0(

d1
γ − l −m

)(
d2

λ− l +m

)(
d3
l

)(
d2
m

)
e−i ζ·(γv1+λv2).

Finally, we get

χΞ(v) = 22−2d1−d2−d3

2d1+d3∑
γ=0

d2+d3∑
λ=−d1

(
d3∑
l=0

d1∑
m=0

(
d1

γ − l −m

)(
d2

λ− l +m

)(
d3
l

)(
d1
m

))
χΞ(2v − γv1 − λv2)

(A.18)

Quasi-interpolation and pre-filters
The equation defining the pre-filters is given by Condat and Van de Ville [CVDV07]

1

p̂(ω)
= B̂Ξ(ω) +O(||ω||L)

We consider the Box-splines for the hexagonal mesh as defined in Section 2.
They are of constant degree along each direction. Let n be that degree, thus
L = n in the formula above. Furthermore, the two pre-filters IIR1 and IIR2 that
we will consider in this manuscript, are defined by their Z -transform. The latter
is defined for a discrete signal (s[k])k∈Z2 by

S(z) =
∑
k∈Z2

s[k] z−k1
1 z−k2

2 .

The Fourier transform follows from

p̂(ω) = P (ei ω1 , ei ω2),

with ωi = ω · ui.
The Z -transforms of the two pre-filters (found in the article cited above) are

129

(A.19)PIIR1(z) =
1∑K

k=0 h[k] ringk(z)

(A.20)PIIR2(z) =
1

H(z1)H(z2)H(z1 z
−1
2)

with ringk, the Z -transform of the signal (it is equal to 1 at the k-th ring and 0
elsewhere), and H(z) = h[0] +

∑n
k=1 h[k] (z

k + z−k). The h[k] coefficients are to
be computed for each pre-filter.

Pre-filter IIR 2

Let us compute equation (A.20)

H(ei ω1)H(ei ω2)H(ei (ω1−ω2)) =

(
1− e−iω·u1

i ω · r1

)n(
1− e−iω·u2

i ω · r2

)n(
1− e−iω·u3

i ω · r3

)n

+O(||ω||L).

Since r3 = r1 + r2, the equation can be simplified to

H(ei x) =

(
1− e−ix

i x

)n

+O(xn).

By expanding this equation, we get n equations for each order. The following
Python script creates the corresponding matrix and vector to this system, and
solves the system by inverting the matrix.

import numpy as np
import fractions as fr
import math
import sympy as sp

def makematrix(n):
""" Creation of the Matrix containing the RHS of the system
to compute the h[k] coefficients for the piir2 pre-filter"""

M=sp.zeros((n+1,n+1))
for i in range(0,n+1):

M[0,i]=fr.Fraction(2)
for j in range(1,n+1):
M[j,i]=(-1)**j*fr.Fraction(2*i**(2*j),math.factorial(2*j))

M[0,0]=fr.Fraction(1)
return M

130

def makelambd(n):

lambd=sp.zeros((n+1,1))
j=np.zeros(n, dtype=int, order='C')
while j[0]!=n:

increase(j, n)
s=sum(j)
if s<=n:

coeff=fr.Fraction(1)
for i in range(0,n):

coeff=coeff/fr.Fraction(math.factorial(2*j[i]+1))
lambd[s]=lambd[s]+coeff

for i in range(1,n+1):
lambd[i]=lambd[i]*fr.Fraction(1, 4**i)*(-1)**i

lambd[0]=fr.Fraction(1)

return lambd

def increase(j, n):
if sum(j) == n:

i=-1
while j[i] == 0:

i=i-1
j[i]=0
j[i-1]=j[i-1]+1

else:
j[-1]=j[-1]+1

return

def coeff_computation(n):
""" Creation and solving of the system to compute
the h[k] coefficients for the piir2 pre-filter

n: degree of the box-splines"""

M=makematrix(n)
V=makelambd(n)

return M.inv()*V

131

The function coeff_computation(n) returns the coefficients h[k] wanted. The
following table contains the results for the degree 1, 2 and 3.

Degree 1 2 3

h[0] 11
12

97
120

173863
241920

h[1] 1
24

1
10

47309
322560

h[2] − 1
240

− 209
32256

h[3] 457
967680

Table A.8: h[k] coefficients for the PIIR2 pre-filter with Box-splines of degree n = 1, 2, 3

Pre-filter IIR 1

There is no straight-forward simplification for the computation of the pre-filter IIR
1. Thus, we created a symbolic code to solve Equation (A.19). We chose ω2 = 0.
However, a verification at the end is needed, to test if the coefficients are correct
for all ω2.

from math import *
import sympy as sp
import numpy as np
from fractions import *
import matplotlib.pyplot as mpp
import cmath

def ringradiussquare(n_max):
"""
Returns 2 results:
radius is a dict which gives the 2-norm to the square of
vectors n1 r_1 + n2 r_2 with n1 and n2 integers,
such that M = n1+n2 and N = n1-n2. This value is then given by
(N**2 + 3 * M**2)/4. We take points such that this value is
less than n_max.
Rradius [sorted list] contains all radius which are in 'radius'
"""
interm=set()
radius={}
for N in range(-2*n_max, 2*n_max+1):

132

a=int(math.sqrt((4*n_max**2-N**2)/3))
mod = N % 2
for x in range(-int((a+mod)/2), int((a-mod)/2)+1):

M = mod + 2*x
r = round((N**2+3*M**2)/4)
interm = interm | set([r])
radius[N,M] = r

Rradius=sorted(list(interm))
return Rradius, radius

def ringnumber(Rradius, radius, K):
"""

Return the circle number of all points of radius s.t.
its circle number is less than K

"""
Rnumber={}
for ((N,M),r) in radius.items():

numb = Rradius.index(r)
if numb <= K:

Rnumber[N,M] = numb
return Rnumber

def make_coeff_function(Rnumber, coeff, n):
"""
Return the coefficients of the Taylor expansion of p(\omega_1, 0)

depending on h[0], ..., h[n] given in coeff.
coeff_function[i] corresponds to the coefficient of omega**i

"""
coeff_function = sp.zeros(1, n+1)
for (N,M) in Rnumber.keys():

if (N,M) == (0,0):
coeff_function[0] = coeff_function[0] + coeff[0]

elif (N,M) > (0,0):
Each point is linked with its opposite in order to have a cos

for i in range(0, n+1):
coeff_function[i] = coeff_function[i] \

+ 2*(-1)**i*(Fraction((N+M),2))**(2*i)/factorial(2*i)\
* coeff[Rnumber[N,M]]

return coeff_function

133

def make_function(Rnumber, coeff_function_modif, n_modif):
"""

Build the function of the Taylor expansion of p(\omega_1, 0)
with the coefficients coeff_function_modif
until the order n_modif

"""
global omega
omega = sp.Symbol('omega')
p = 0
for i in range(0,n_modif+1):

p = p + coeff_function_modif[i]*omega**(2*i)
return p

def makelambd_2(n):
"""

Compute the coefficients of the Taylor expansion of
B_n(\omega_1, 0) until the order n

"""
lambd=sp.zeros((n+1,1))
j=np.zeros(n, dtype=int, order='C')
while j[0]!=n:

increase(j, n)
s=sum(j)
if s<=n:

coeff=Fraction(1)
for i in range(0,n):

coeff=coeff/Fraction(factorial(2*j[i]+1))
lambd[s]=lambd[s]+coeff

for i in range(1,n+1):
lambd[i]=lambd[i]*Fraction(1, 4**i)*(-1)**i

lambd[0]=Fraction(1)

return lambd

def coeff_computation_2(n):
"""

134

Principle function which builds the functions,
and the equations and solves them.

"""
Rradius, radius = ringradiussquare(n)
Rnumber = ringnumber(Rradius, radius, n)
lambd = makelambd_2(2*n)

Plot of the taken points
x = [N[1]/2 for N in Rnumber.keys()]
y = [N[0]*sqrt(3)/2 for N in Rnumber.keys()]
mpp.plot(x, y, 'o')

Definition of the symbolic coefficients h[i], in coeff
coeff = {}
for i in range(0,n+1):

coeff[i] = sp.Symbol("".join([' h', str(i), ' ']))

Build of the coefficients of the Taylor expansion of p(\omega_1,0)
coeff_function = make_coeff_function(Rnumber, coeff, n)
coeff_function_modif = coeff_function[:,:]

Matrix which countains the linear equations
Lineq = sp.zeros(1, n+1)

Beginning of the loop which builds the equations
for i in range(0,n+1):
Computation of the i^th coefficient in the Taylor expansion of
1/p(\omega_1, 0) taking into account of the previous equations

p = make_function(Rnumber, coeff_function_modif, i)
b = 1/p
result=sp.diff(b, omega, 2*i).subs(omega, 0)/factorial(2*i)

for the first iteration, the equation
is 1/(linear equation in h[0], ..., h[n]) = 1
if i == 0:

result = 1/result

Linear equation put into the matrix
Lineq[i] = result-lambd[i]

135

Modification of the coefficients by taking into account
the new equation
coeff_function_modif[i] = \
coeff_function_modif[i].subs(coeff[1], \

sp.solve(result-lambd[i], \
coeff[1])[0])

Computation of the results with "solve"
results_1 = sp.solve(Lineq, list(coeff.values()), dict=True)
print(' Results : ', results_1)
if results_1 == []:

print('No solution')
else:

results = sp.zeros(1,n+1)
for i in range(0,n+1):

results[i] = results_1[0][coeff[i]]

coeff_validation(n, Rnumber, results)

return results

def coeff_validation(n, Rnumber, results):
"""

Print the Taylor expansion of B_n(\omega_1,0) - 1/p(\omega_1,0)
at order 2*(n+1) with the computed coefficients to validate them

"""
B = (sp.sin(omega/2)*2/omega)**(2*n)
b = 0
for (N,M) in Rnumber.keys():

if (M,N) > (0,0):
b = b + 2 * results[Rnumber[N,M]] * sp.cos(((M+N)/2)*omega)

elif (M, N) == (0, 0):
b = b + results[0]

print((B-1/b).series(omega, 0, 2*(n+1)))
return

The results are given by coeff_computation_2(n). The script seems to work
perfectly for degrees n = 1 and n = 2, however, there is no solution for n ≥ 3.

136

Quasi-interpolation algorithm

Finally, we give the complete algorithms for quasi-interpolating a function f with
Box-splines, which relies on two further algorithms: an algorithm for computing
the quasi-interpolating coefficients (see the sections above), and an algorithm for
computing the Box-splines (see Section 2). In these algorithms PreFilter(l) are
the coefficients found by the last two scripts.
Algorithm 2: Quasi-interpolation with Box-splines
Data: Domain Ω; function f known at mesh points xi, sample(i) = f(xi).
Result: Approximate value of the function f at arbitrary points x (result)
forall the x do

Initialize result = 0;
Initialize coeffs = BoxSplineCoeff(sample, degree);
Initialize K = number of points in the vicinity of xi (depends on pre-filter);
Compute hexagonal coordinates: k̃ = [⌊u⌋ ⌊v⌋] where (u v)T = R−1x ;
for kℓ = 0 to K −1 do

/* Treat points on enveloping rhomboid of radius = degree */
Compute hexagonal coordinates of point in vicinity of x using
kℓ −→ k̂ = k̃+ kℓ ;
if k̂ ∈ Ω then

Compute global index of k̂ −→ index;
Get cartesian coordinates of point at index −→ x̂ = Rk̂;
result = result + coeffs(index) * BoxSplineValue(x̂, degree)

end
end

end

Algorithm 3: (BoxSplineCoeff) Computation of Box-spline coefficients
Data: sample values of f(xi); degree, the degree of the splines.
Result: coeffs, Box-splines coefficients at each mesh point xi

Initialize K = number of points in the vicinity of xi (depends on pre-filter);
Initialize PreFilter = array of local pre-filters. ; /* See Section (2) */
forall the ki ∈ Ω do

Initialize coeffs(i) = 0;
for ℓ = 0 to K −1 do

Compute global index of point at (ki + kℓ) −→ index;
coeffs(i) = coeffs(i) + sample(index) * PreFilter(ℓ)

end
end

137

138

B
Hexagonal mesh implementations

A big challenge during this thesis was to find the appropriate library for the im-
plementations needed. We always looked for the best compromise between the
workload and the benefits. The results, mostly for the hexagonal-mesh implemen-
tations, was somewhat confusing, so the following list should clarify any doubts.

Development in SeLaLib
The first development of the box-splines were done in SeLaLib. At the beginning,
we were looking only to test the interpolation methods using box-splines. All tools
and objects needed for the CEMRACS 2014 project were also developed in this
library. In detail, the following list details what is included.

Hex-mesh (object) An object containing all the information relative to a hex-
mesh. Functions to compute the cartesian and hexagonal coordinates. The
numbering of points, cells, edges. Transformations (hexagonal mesh to circle,
to ovals, to miller equilibriums, ...).

Box-splines (object) Computation of arbitrary degree splines. Optimized algo-
rithm for box-splines of order 2. Derivatives.

Fekete quadrature points (functionality) Tools needed to create and use the
Fekete quadrature points of arbitrary degree on an element of the hex-mesh.

Hex-pre-filters (functionality) Computation of different pre-filters for quasi-
interpolations using box-splines (implementation of G. Ferriere algorithms).

Box-splines interpolation (functionality) Functions to compute the interpo-
lation of a function on a hex-mesh.

139

Poisson solver (functionality) Finite differences solver of order 4 for the pois-
son equation. Assembly of stiffness matrix and rhs. Linear solver of system.

ODE solver (functionality) Euler and Adam solver to compute characteristics
on a hex-mesh (C. Prouveur)

Guiding-center (simulation) Simulation of a guiding center model (advection
+ poisson) on a hex-mesh. Only on logical space.

(old) Django-interface (functionality) Functions that output the files needed
by the gforge version of Django. It exports information about a hex-mesh,
box-splines, connectivity, numbering and so on.

Development in Django
The developments in this library were made in order to develop a Finite Element
elliptic solver on the hex-mesh. A second objective was the capability to treat the
boundary conditions using the Nitsche method. Finally, Django was supposed to
be used only as a external solver that would be coupled to the interpolation in
SeLaLib. The list below contains the elements available in the gforge version of
Django.

Matrix assembly (functionality) Procedure to assemble a 2D matrix of a tri-
angular mesh and in particular for a hex-mesh.

Quadrature (object) Creates quadrature rules from the files imported from Se-
LaLib

Box-splines (object) Creates basis for the hex-mesh from the files imported
from SeLaLib

Diffusion (simulation) Resolution of the diffusion on a hexagon, tested with
BC=0.

Poisson (simulation) Resolution of the poisson equation on a hexagon, tested
with BC=0

Nitsche (functionality) Added terms for treating the BC using the Nitsche
method. Added directly to each model.

140

C
Results for different quasi-interpolation

pre-filters

In this Appendix, we show the results of the Test-case 13 with different degrees
and pre-filters. We recall the details of the test-case in the following paragraph.

We present the results found for the constant advection equation Equation (4.1).
Here, we try to recreate as close as possible Test-case 5. Thus, we set a linear
advection model on hex-mesh of radius L = 1, centered at the origin. Since
the radius of the mesh is L = 1, and the number of cells Nc corresponds to
the number of cells in a radius, the mesh step ∆x = 1/Nc is equivalent to
the mesh step in the Multi-patch Approach. Indeed, the interpolations for the
MPSL scheme are done in the logical domain of length 1 (independently of the
physical domain) and with a mesh refinement of N . Thus, to have comparable
mesh steps we set Nc to N . We advect the same distribution function as in
Test-case 5: a gaussian centered in xc = (−0.4,−0.4) of variance σ = 0.04
and amplitude 1. The advection coefficient is A = (0.15, 0.15), while the pa-
rameters of the simulations are tmax = 5 with a time step ∆t = 0.05. Finally,
for the quasi-interpolation scheme, we used the pre-filter pFIR based on the
results of the previous test-case, and Box-splines of degree 1 and 2.

141

Test-case 17: Pre-filter pFIR with degree 1 Box-splines

0 1 2 3 4 5
Simulation time t

10-19

10-18

10-17

10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

log(|minf(x, t) |)/N 2
c

log(| 1−maxf(x, t) |)/N 2
c

(a) Distribution bounds time evolution with
Nc = 100

30 50 70 90 110 130
Number of cells Nc in a radius L (log)

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

log(|minf(x, tmax) |)
log(| 1−maxf(x, tmax) |)

(b) Distribution bounds refinement evolution
at tmax = 5

Figure C.1: Test-case 17: Bounds of the distribution function over time (left) with Nc = 100 and
number of cells (right) at t = 5 with degree 1 Box-splines and pFIR filter

10-2 10-1 100 101

Simulation time t (log)

10-6

10-5

10-4

10-3

10-2

10-1

100

L1 error norm

L2 error norm

L∞ error norm

(a) Errors over time with Nc = 100

30 50 70 90 110 130
Number of cells in a radius Nc (log)

10-5

10-4

10-3

10-2

10-1

100

101

L1 error norm

L2 error norm

L∞ error norm

(b) Errors over mesh step at tmax = 5

Figure C.2: Test-case 17: Evolution of L1, L2 and L∞ errors over time (left) with Nc = 100 and
over number of cells (right) at t = 5 with degree 1 Box-splines and pFIR filter

142

Test-case 18: Pre-filter pint with degree 1 Box-splines

0 1 2 3 4 5
Simulation time t

10-20

10-19

10-18

10-17

10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

log(|minf(x, t) |)/N 2
c

log(| 1−maxf(x, t) |)/N 2
c

(a) Distribution bounds time evolution with
Nc = 100

20 60 100
Number of cells Nc in a radius L (log)

10-17

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

log(|minf(x, tmax) |)
log(| 1−maxf(x, tmax) |)

(b) Distribution bounds refinement evolution
at tmax = 5

Figure C.3: Test-case 18: Bounds of the distribution function over time (left) with Nc = 100 and
number of cells (right) at t = 5 with degree 1 Box-splines and pint filter

10-2 10-1 100 101

Simulation time t (log)

10-6

10-5

10-4

10-3

10-2

10-1

100

L1 error norm

L2 error norm

L∞ error norm

(a) Errors over time with Nc = 100

30 50 70 90 110 130
Number of cells in a radius Nc (log)

10-5

10-4

10-3

10-2

10-1

100

101

L1 error norm

L2 error norm

L∞ error norm

(b) Errors over mesh step at tmax = 5

Figure C.4: Test-case 18: Evolution of L1, L2 and L∞ errors over time (left) with Nc = 100 and
over number of cells (right) at t = 5 with degree 1 Box-splines and pint filter

143

Test-case 19: Pre-filter pint with degree 2 Box-splines

0 1 2 3 4 5
Simulation time t

10-8

10-7

log(|minf(x, t) |)/N 2
c

log(| 1−maxf(x, t) |)/N 2
c

(a) Distribution bounds time evolution with
Nc = 100

40 80 120 160 200
Number of cells Nc in a radius L (log)

10-5

10-4

10-3

10-2

10-1

log(|minf(x, tmax) |)
log(| 1−maxf(x, tmax) |)

(b) Distribution bounds refinement evolution
at tmax = 5

Figure C.5: Test-case 19: Bounds of the distribution function over time (left) with Nc = 100 and
number of cells (right) at t = 5 with degree 2 Box-splines and pint filter

10-2 10-1 100 101

Simulation time t (log)

10-5

10-4

10-3

10-2

10-1

100

L1 error norm

L2 error norm

L∞ error norm

(a) Errors over time with Nc = 100

40 80 120 160 200
Number of cells in a radius Nc (log)

10-5

10-4

10-3

10-2

L1 error norm

L2 error norm

L∞ error norm

x2

(b) Errors over mesh step at tmax = 5

Figure C.6: Test-case 19: Evolution of L1, L2 and L∞ errors over time (left) with Nc = 100 and
over number of cells (right) at t = 5 with degree 2 Box-splines and pint filter

144

Test-case 20: Pre-filter piir1 with degree 1 Box-splines

0 1 2 3 4 5
Simulation time t

10-8

10-7

log(|minf(x, t) |)/N 2
c

log(| 1−maxf(x, t) |)/N 2
c

(a) Distribution bounds time evolution with
Nc = 100

20 60 100 140
Number of cells Nc in a radius L (log)

10-4

10-3

10-2

10-1

100

log(|minf(x, tmax) |)
log(| 1−maxf(x, tmax) |)

(b) Distribution bounds refinement evolution
at tmax = 5

Figure C.7: Test-case 20: Bounds of the distribution function over time (left) with Nc = 100 and
number of cells (right) at t = 5 with degree 1 Box-splines and piir1 filter

10-2 10-1 100 101

Simulation time t (log)

10-6

10-5

10-4

10-3

10-2

10-1

100

L1 error norm

L2 error norm

L∞ error norm

(a) Errors over time with Nc = 100

20 60 100 140
Number of cells in a radius Nc (log)

10-4

10-3

10-2

10-1

100

L1 error norm

L2 error norm

L∞ error norm

(b) Errors over mesh step at tmax = 5

Figure C.8: Test-case 20: Evolution of L1, L2 and L∞ errors over time (left) with Nc = 100 and
over number of cells (right) at t = 5 with degree 1 Box-splines and piir1 filter

145

Test-case 21: Pre-filter piir1 with degree 2 Box-splines

0 1 2 3 4 5
Simulation time t

10-118

10-110

10-102

10-94

10-86

10-78

10-70

10-62

10-54

10-46

10-38

10-30

10-22

10-14
log(|minf(x, t) |)/N 2

c

log(| 1−maxf(x, t) |)/N 2
c

(a) Distribution bounds time evolution with
Nc = 100

20 60 100 140
Number of cells Nc in a radius L (log)

10-4

10-3

10-2

10-1

100

log(|minf(x, tmax) |)
log(| 1−maxf(x, tmax) |)

(b) Distribution bounds refinement evolution
at tmax = 5

Figure C.9: Test-case 21: Bounds of the distribution function over time (left) with Nc = 100 and
number of cells (right) at t = 5 with degree 2 Box-splines and piir1 filter

10-2 10-1 100 101

Simulation time t (log)

10-5

10-4

10-3

10-2

10-1

100

L1 error norm

L2 error norm

L∞ error norm

(a) Errors over time with Nc = 100

40 80 120 160 200
Number of cells in a radius Nc (log)

10-5

10-4

10-3

10-2

L1 error norm

L2 error norm

L∞ error norm

x2

(b) Errors over mesh step at tmax = 5

Figure C.10: Test-case 21: Evolution of L1, L2 and L∞ errors over time (left) with Nc = 100 and
over number of cells (right) at t = 5 with degree 2 Box-splines and piir1 filter

146

Test-case 22: Pre-filter piir2 with degree 1 Box-splines

0 1 2 3 4 5
Simulation time t

10-8

10-7

log(|minf(x, t) |)/N 2
c

log(| 1−maxf(x, t) |)/N 2
c

(a) Distribution bounds time evolution with
Nc = 100

20 60 100 140
Number of cells Nc in a radius L (log)

10-4

10-3

10-2

10-1

100

log(|minf(x, tmax) |)
log(| 1−maxf(x, tmax) |)

(b) Distribution bounds refinement evolution
at tmax = 5

Figure C.11: Test-case 22: Bounds of the distribution function over time (left) with Nc = 100 and
number of cells (right) at t = 5 with degree 1 Box-splines and piir2 filter

10-2 10-1 100 101

Simulation time t (log)

10-5

10-4

10-3

10-2

10-1

100

L1 error norm

L2 error norm

L∞ error norm

(a) Errors over time with Nc = 100

20 60 100 140
Number of cells in a radius Nc (log)

10-4

10-3

10-2

10-1

100

L1 error norm

L2 error norm

L∞ error norm

(b) Errors over mesh step at tmax = 5

Figure C.12: Test-case 22: Evolution of L1, L2 and L∞ errors over time (left) with Nc = 100 and
over number of cells (right) at t = 5 with degree 1 Box-splines and piir2 filter

147

Test-case 23: Pre-filter piir2 with degree 2 Box-splines

0 1 2 3 4 5
Simulation time t

10-98

10-91

10-84

10-77

10-70

10-63

10-56

10-49

10-42

10-35

10-28

10-21

10-14

10-7

log(|minf(x, t) |)/N 2
c

log(| 1−maxf(x, t) |)/N 2
c

(a) Distribution bounds time evolution with
Nc = 100

40 80 120 160 200
Number of cells Nc in a radius L (log)

10-111

10-103

10-95

10-87

10-79

10-71

10-63

10-55

10-47

10-39

10-31

10-23

10-15

10-7

log(|minf(x, tmax) |)
log(| 1−maxf(x, tmax) |)

(b) Distribution bounds refinement evolution
at tmax = 5

Figure C.13: Test-case 23: Bounds of the distribution function over time (left) with Nc = 100 and
number of cells (right) at t = 5 with degree 2 Box-splines and piir2 filter

10-2 10-1 100 101

Simulation time t (log)

10-5

10-4

10-3

10-2

10-1

100

L1 error norm

L2 error norm

L∞ error norm

(a) Errors over time with Nc = 100

40 80 120 160 200
Number of cells in a radius Nc (log)

10-5

10-4

10-3

10-2

L1 error norm

L2 error norm

L∞ error norm

x2

(b) Errors over mesh step at tmax = 5

Figure C.14: Test-case 23: Evolution of L1, L2 and L∞ errors over time (left) with Nc = 100 and
over number of cells (right) at t = 5 with degree 2 Box-splines and piir2 filter

148

Bibliography

[AGV+09] P. Angelino, X. Garbet, L. Villard, A. Bottino, S. Jolliet, P. Ghendrih,
V. Grandgirard, B. McMillan, Y. Sarazin, G. Dif-Pradalier, et al. Role of
plasma elongation on turbulent transport in magnetically confined plasmas.
Physical review letters, 102(19):195002, 2009.

[ALG+11] J. Abiteboul, G. Latu, V. Grandgirard, A. Ratnani, E. Sonnendrücker,
and A. Strugarek. Solving the vlasov equation in complex geometries.
ESAIM: Proceedings, 32:103–117, 2011.

[Ber94] M. Bernadou. Methode d’elements finis pour les problemes de coques
minces. Masson editions, 1994.

[BH07] A. Brizard and T. Hahm. Foundations of nonlinear gyrokinetic theory.
Rev. Mod. Phys., 79(2):421–468, Apr 2007.

[BH10] J. W. Banks and J. A. F. Hittinger. A new class of nonlinear finite-
volume methods for vlasov simulation. Plasma Science, IEEE Transactions
on, 38(9):2198–2207, 2010.

[BHS13] B. D. Bojanov, H. Hakopian, and B. Sahakian. Spline functions and
multivariate interpolations, volume 248. Springer Science & Business Media,
2013.

[BL85] C. K. Birdsall and A. B. Langdon. Plasma Physics Via Computer.
McGraw-Hill, Inc., New York, NY, USA, 1985.

[BM08] N. Besse and M. Mehrenberger. Convergence of classes of high-order semi-
lagrangian schemes for the vlasov-poisson system. Mathematics of Compu-
tation, 77(61):93–123, 2008.

[BS03] N. Besse and E. Sonnendrücker. Semi-lagrangian schemes for the vlasov
equation on an unstructured mesh of phase space. Journal of Computational
Physics, 191(2):341 – 376, 2003.

[BU99] T. Blu and M. Unser. Quantitative fourier analysis of approximation tech-
niques. i. interpolators and projectors. Signal Processing, IEEE Transactions
on, 47(10):2783–2795, 1999.

149

[CGH+14] N. Crouseilles, P. Glanc, S. Hirstoaga, E. Madaule, M. Mehrenberger,
and J. Pétri. A new fully two-dimensional conservative semi-lagrangian
method: applications on polar grids, from diocotron instability to itg turbu-
lence. The European Physical Journal D, 68:1–10, 2014.

[CHB09] J. A. Cottrell, T. J. Hughes, and Y. Bazilevs. Isogeometric analysis:
toward integration of CAD and FEA. John Wiley & Sons, 2009.

[CK76] C. Cheng and G. Knorr. The integration of the vlasov equation in config-
uration space. Journal of Computational Physics, 22(3):330 – 351, 1976.

[CL87] C. Chui and M. Lai. Computation of box-splines and b-splines on triangu-
lations of nonuniform rectangular partitions. Approx. Theory Appl, 3:37–62,
1987.

[CL08] P. Chatelain and A. Leonard. Isotropic compact interpolation schemes
for particle methods. Journal of Computational Physics, 227(6):3244–3259,
2008.

[CLS07] N. Crouseilles, G. Latu, and E. Sonnendrücker. Hermite spline interpo-
lation on patches for parallelly solving the vlasov-poisson equation. Interna-
tional Journal of Applied Mathematics and Computer Science, 17(3):335–349,
2007.

[CSSZ03] E. S. Carlson, H. Sun, D. H. Smith, and J. Zhang. Third order accuracy
of the 4-point hexagonal net grid. finite difference scheme for solving the 2d
helmholtz equation. Technical report, Technical Report, 2003.

[CVDV06] L. Condat and D. Van De Ville. Three-directional box-splines: char-
acterization and efficient evaluation. IEEE Signal Process. Lett., 13(7):417–
420, 2006.

[CVDV07] L. Condat and D. Van De Ville. Quasi-interpolating spline models
for hexagonally-sampled data. IEEE, Transactions on Image Processing,
16(5):1195–1206, May 2007.

[CVDV08] L. Condat and D. Van De Ville. New optimized spline functions for
interpolation on the hexagonal lattice. In Image Processing, 2008. ICIP 2008.
15th IEEE International Conference on, pages 1256–1259. IEEE, 2008.

[CVDVU06] L. Condat, D. Van De Ville, and M. Unser. Efficient reconstruction
of hexagonally sampled data using three-directional box-splines. In ICIP,
pages 697–700. IEEE, 2006.

150

[DB78] C. De Boor. A practical guide to splines. Mathematics of Computation,
1978.

[dB90] C. de BOOR. Quasiinterpolants and approximation power of multivariate
splines. Springer, 1990.

[DBH83] C. De Boor and K. Höllig. Bivariate box splines and smooth pp functions
on a three direction mesh. Journal of Computational and Applied Mathe-
matics, 9(1):13–28, 1983.

[DBHR93] C. De Boor, K. Höllig, and S. Riemenschneider. Box Splines. Springer-
Verlag New York, Inc., New York, NY, USA, 1993.

[DH09] J. Dolbow and I. Harari. An efficient finite element method for embedded
interface problems. International journal for numerical methods in engineer-
ing, 78(2):229–252, 2009.

[DL91] M. Daehlen and T. Lyche. Box splines and applications. In Geometric
Modeling, pages 35–93. Springer, 1991.

[EDH10] A. Embar, J. Dolbow, and I. Harari. Imposing dirichlet boundary condi-
tions with nitsche’s method and spline-based finite elements. International
Journal for Numerical Methods in Engineering, 83(7):877–898, 2010.

[Far14] G. Farin. Curves and surfaces for computer-aided geometric design: a
practical guide. Elsevier, 2014.

[FMH04] S. Fernández-Méndez and A. Huerta. Imposing essential boundary con-
ditions in mesh-free methods. Computer methods in applied mechanics and
engineering, 193(12):1257–1275, 2004.

[FP15] F. Filbet and C. Prouveur. High order time discretization for back-
ward semi-lagrangian methods. https://hal.archives-ouvertes.fr/
hal-01133854, 2015.

[FS03] F. Filbet and E. Sonnendrücker. Comparison of eulerian vlasov solvers.
Computer Physics Communications, 150(3):247–266, 2003.

[FY14] F. Filbet and C. Yang. Mixed semi-lagrangian/finite difference methods
for plasma simulations, September 2014. https://hal.inria.fr/hal-01068223.

[GAB+16] V. Grandgirard, J. Abiteboul, J. Bigot, T. Cartier-Michaud, N. Crou-
seilles, G. Dif-Pradalier, C. Erhlacher, D. Esteve, X. Garbet, P. Ghendrih,
et al. A 5d gyrokinetic full-f global semi-lagrangian code for flux-driven ion
turbulence simulations. 2016.

151

https://hal.archives-ouvertes.fr/hal-01133854
https://hal.archives-ouvertes.fr/hal-01133854

[GB05] D. Gurnett and A. Bhattacharjee. Introduction to Plasma Physics: With
Space and Laboratory Applications. Cambridge University Press, 2005.

[GBB+06] V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet,
P. Ghendrih, G. Manfredi, Y. Sarazin, O. Sauter, E. Sonnendrücker, et al. A
drift-kinetic semi-lagrangian 4d code for ion turbulence simulation. Journal
of Computational Physics, 217(2):395–423, 2006.

[GR14] G. Guscaglia and V. Rua. Finite element methods for the stokes sys-
tem based on a zienkiewicz type n-simplex. Computer Methods in Applied
Mechanics and Engineering, 272:83–99, 2014.

[GS03] M. Griebel and M. A. Schweitzer. A particle-partition of unity method
part v: boundary conditions. In Geometric Analysis and Nonlinear Partial
Differential Equations, pages 519–542. Springer, 2003.

[GS12] V. Grandgirard and Y. Sarazin. Gyrokinetic simulations of magnetic fusion
plasmas. Panoramas et synthèses (submitted), 2012.

[GSG+06] V. Grandgirard, Y. Sarazin, X. Garbet, G. Dif-Pradalier, P. Ghen-
drih, N. Crouseilles, G. Latu, E. Sonnendrucker, N. Besse, and P. Bertrand.
Gysela, a full-f global gyrokinetic semi-lagrangian code for itg turbulence
simulations. In AIP Conference Proceedings, volume 871, page 100. IOP
INSTITUTE OF PHYSICS PUBLISHING LTD, 2006.

[GSR98] F. Golse and L. Saint-Raymond. L’approximation centre-guide pour
l’équation de vlasov-poisson 2d. Comptes Rendus de l’Académie des Sci-
ences - Series I - Mathematics, 327(10):865 – 870, 1998.

[HCB05] T. J. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis:
Cad, finite elements, nurbs, exact geometry and mesh refinement. Computer
methods in applied mechanics and engineering, 194(39):4135–4195, 2005.

[HMSS15] A. Hamiaz, M. Mehrenberger, H. Sellama, and E. Sonnendrücker.
The semi-lagrangian method on curvilinear grids. https://hal.
archives-ouvertes.fr/hal-01213366, October 2015.

[Kal03] E. Kalnay. Atmospheric Modeling, Data Assimilation and Predictability.
Cambridge university press, 2003.

[Kob97] L. Kobbelt. Stable evaluation of box-splines. Numerical Algorithms,
14(4):377–382, 1997.

[KP09] M. Kim and J. Peters. Fast and stable evaluation of box-splines via the
bb-form. Numerical Algorithms, 50(4):381–399, 2009.

152

https://hal.archives-ouvertes.fr/hal-01213366
https://hal.archives-ouvertes.fr/hal-01213366

[KYPK15] J.-M. Kwon, D. Yi, X. Piao, and P. Kim. Development of semi-
lagrangian gyrokinetic code for full-f turbulence simulation in general toka-
mak geometry. Journal of Computational Physics, 283:518–540, 2015.

[LM97] C. Lacour and Y. Maday. Two different approaches for matching non-
conforming grids: The mortar element method and the feti method. BIT
Numerical Mathematics, 37(3):720–738, 1997.

[LMS08] T. Lyche, C. Manni, and P. Sablonnière. Quasi-interpolation projec-
tors for box splines. Journal of Computational and Applied Mathematics,
221(2):416–429, 2008.

[MAGS14] F. Moro, P. Alotto, M. Guarnieri, and A. Stella. Domain decomposition
with the mortar cell method. International Journal of Numerical Modelling:
Electronic Networks, Devices and Fields, 27(3):461–471, 2014.

[MCG+98] R. Miller, M. Chu, J. Greene, Y. Lin-Liu, and R. Waltz. Noncircular, fi-
nite aspect ratio, local equilibrium model. Physics of Plasmas (1994-present),
5(4):973–978, 1998.

[Mer79] R. M. Mersereau. The processing of hexagonally sampled two-dimensional
signals. Proceedings of the IEEE, 67(6):930–949, 1979.

[Mit73] A. Mitchell. An introductions to the mathematics of the finite element
method. In The Mathematics of finite elements and applications, pages 37–
58. J. R. Whiteman, 1973.

[MMPS16] M. Mehrenberger, L. S. Mendoza, C. Prouveur, and E. Sonnendrücker.
Solving the guiding-center model on a regular hexagonal mesh. ESAIM:
Proceedings and Surveys, 53:149–176, 2016.

[MPS11] C. Manni, F. Pelosi, and M. L. Sampoli. Generalized b-splines as a
tool in isogeometric analysis. Computer Methods in Applied Mechanics and
Engineering, 200(5):867–881, 2011.

[MSM+13] M. Mehrenberger, C. Steiner., L. Marradi, M. Mehrenberger, N. Crou-
seilles, E. Sonnendrücker, and B. Afeyan. Vlasov on gpu (vog project).
ESAIM: PROCEEDINGS, 43:37–58, 2013.

[Nit71] J. Nitsche. Über ein variationsprinzip zur lösung von dirichlet-problemen
bei verwendung von teilräumen, die keinen randbedingungen unterworfen
sind. In Abhandlungen aus dem mathematischen Seminar der Universität
Hamburg, volume 36, pages 9–15. Springer, 1971.

153

[PT97] L. Piegl and W. Tiller. The NURBS Book (2Nd Ed.). Springer-Verlag
New York, Inc., New York, NY, USA, 1997.

[Rat11] A. Ratnani. Isogeometric analysis in plasmas physics and electromag-
netism. In Workshop on Higher Order Finite Element and Isogeometric
Methods Program and Book of Abstracts, page 64, 2011.

[Run01] C. Runge. Über empirische funktionen und die interpolation zwischen
äquidistanten ordinaten. Zeitschrift für Mathematik und Physik, 46(224-
243):20, 1901.

[Sab96] P. Sablonnière. Quasi-interpolants associated with h-splines on a three-
direction mesh. Journal of computational and applied mathematics,
66(1):433–442, 1996.

[Sab02] P. Sablonnière. H-splines and quasi-interpolants on a three directional
mesh. Springer, 2002.

[SAM68] R. Sadourny, A. Arakawa, and Y. Mintz. Integration of the nondiver-
gent barotropic vorticity equation with an icosahedral-hexagonal grid for the
sphere. Monthly Weather Review, 96(6):351–356, 2014/11/21 1968.

[Sch46] I. J. Schönberg. Contributions to the problem of approximation of equidis-
tant data by analytic functions. Quart. Appl. Math, 4(2):45–99, 1946.

[SF05] K. Scherer and A. E. Forschung. Space Weather: The Physics Behind a
Slogan. Lecture Notes in Physics. Springer, 2005.

[SLP12] J. D. Sanders, T. A. Laursen, and M. A. Puso. A nitsche embedded mesh
method. Computational Mechanics, 49(2):243–257, 2012.

[SRBG99] E. Sonnendrücker, J. Roche, P. Bertrand, and A. Ghizzo. The semi-
lagrangian method for the numerical resolution of the vlasov equation. Jour-
nal of Computational Physics, 149(2):201 – 220, 1999.

[Ste14] C. Steiner. Numerical computation of the gyroaverage operator and coupling
with the Vlasov gyrokinetic equations. PhD thesis, IRMA, December 2014.

[TW05] A. Toselli and O. Widlund. Domain decomposition methods: algorithms
and theory, volume 3. Springer, 2005.

[Uli87] R. Ulichney. Digital Halftoning. MIT Press, Cambridge, MA, 1987.

[VDVBU+04] D. Van De Ville, T. Blu, M. Unser, W. Philips, I. Lemahieu, and
R. Van de Walle. Hex-splines: a novel spline family for hexagonal lattices.
Image Processing, IEEE Transactions on, 13(6):758–772, 2004.

154

[ZGB88] S. Zaki, L. Gardner, and T. Boyd. A finite element code for the simula-
tion of one-dimensional vlasov plasmas. i. theory. Journal of Computational
Physics, 79(1):184 – 199, 1988.

[ZTZ05] O. Zeinkiewicz, R. Taylor, and J. Zhu. The finite element method: its
basis and fundamentals, 2005.

155

	Introduction
	Introduction to plasmas and controlled fusion
	The Vlasov equations
	The Semi-Lagrangian method
	The GYrokinetic SEmi-LAgrangian code
	Outline of this manuscript

	Computer Aided Design and Isogeometric Analysis
	Coordinate transformations and meshes
	Splines families: B-splines and NURBS
	Box-Splines, a less known spline family
	Interpolation using splines

	The Multi-patch Approach.
	General concept: patch decomposition
	Multi-patch Semi-Lagrangian method
	Overview of SLMP the code
	First Multi-patch results
	Solving the variable coefficient advection
	Alternative meshes without a singular point

	The hexagonal mesh
	The BSL scheme on the hexagonal mesh
	The Poisson finite-difference solver
	General algorithm
	Numerical results
	Implementation of Nitsche's method
	Perspective: realistic poloidal planes

	Conclusion
	Box-splines
	From type-I Box-splines to our hexagonal
	Important properties
	Mass and Stiffness matrices
	h-refinement with Box-splines elements
	Quasi-interpolation and pre-filters

	Hexagonal mesh implementations
	Development in SeLaLib
	Development in Django

	Results for different quasi-interpolation pre-filters

