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Summary 

The human gastrointestinal tract and its microbiome is a complex ecosystem. It is involved in several 

nutritional, physiological, immunological, and protective functions in the human body and is central to 

understand the dynamics of health and disease. Nutrition affects the intestinal microbial community, 

whereas the metabolism is strongly affected as well. Healthy nutrition can prevent diseases, whereas 

malnutrition can promote them, such as inflammation and infections, gastrointestinal diseases, as well 

as diabetes and obesity. Food additives, such as prebiotics or probiotics are of vast interest to induce 

health-promoting effects on the human gut microbiome. In order to understand how diet affects the gut 

microbiome, the comprehensive global metabolome is studied. Therefore, the aim of this thesis was to 

evaluate the impact of pre- and probiotics on the fecal metabolome by comprehensive analytical 

techniques, including ultra-high performance liquid chromatography and ultra-high resolution mass 

spectrometry. Through metabolomics analyses, the gut microbiota can be directly compared to the 

metabolic outcome in the host. For that reason, different non-targeted metabolomics methods were 

applied and results used to guide a subsequent series of targeted metabolite analyses. In order to 

unravel the complex interplay between organisms, metabolites and functional processes, additional 16S 

sequencing and shotgun proteomics complemented the analysis. Fecal samples of adults suffering from 

insulin resistance were analyzed after diets with varying amounts of resistant starch. Metabolites of 

various chemical classes were strongly affected by digestion of different prebiotics, including lipids, 

specific fatty acids, bile acids, oxylipins and several compounds of the lipid metabolism. Genomics and 

proteomics revealed microbes and a number of proteins altered through dietary starch arising as high 

abundant levels of Firmicutes and characteristic proteins of the lipid metabolism as well. In the second 

study, the impact of probiotics on infants’ gut microbiome in the first year of life was studied. 

Metabolomics revealed different metabolite profiles between breastfed and formula-fed infants 

converging over time, which was not only seen in the differently affected bile acids, but also in carboxylic 

acids and numerous fatty acids, varying in chain length and saturation degree. Several distinct 

metabolic effects were seen that made the use of formula feeding more similar to breast milk. This 

finding lead to the assumption that probiotic supplementation may help to approximate breast milk, 

which strengthened the use of probiotics. However, these results cannot yet be explained, but for the 

moment were suggestively an initial sign for the effects of probiotics. Both studies impressively 

demonstrated the impact of pre- and probiotics and emphasized mass spectrometry based fecal 

metabolomics as a powerful tool to evaluate the status of the gut microbiome, but also to discover the 

impact of diet. 
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Zusammenfassung 
 

Der menschliche Magen-Darm-Trakt und sein Mikrobiom sind ein komplexes Ökosystem, das in 

mehreren ernährungsbedingten, physiologischen, immunologischen und schützenden Funktionen im 

menschlichen Körper involviert ist. Um die Dynamik zwischen Gesundheit und Krankheit zu verstehen 

ist es von zentraler Bedeutung. Der Stoffwechsel und die Ernährung sind stark an die mikrobielle 

Darmgemeinschaft gekoppelt. Gesunde Ernährung kann Krankheiten verhindern, während 

Fehlernährung sie fördern kann, wie z.B. Entzündungen und Infektionen, Magen-Darm-Erkrankungen, 

sowie Diabetes oder Fettleibigkeit. Um eine gesunde Entwicklung des menschlichen Darmmikrobioms 

zu erreichen, ist der Verzehr von Lebensmittelzusatzstoffen, wie Präbiotika oder Probiotika von großem 

Interesse. Ziel dieser Arbeit war es daher, durch umfassende analytische Techniken, einschließlich 

Ultra-Hochleistungs-Flüssigkeitschromatographie und hochauflösender Massenspektrometrie, die 

Einflüsse von Prä- und Probiotika anhand von Metaboliten in Stuhlproben zu bewerten. Durch 

Metabolomikanalysen kann die Darmmikrobiota direkt mit der metabolischen Auswirkung im Wirt 

verglichen werden. Aus diesem Grund wurden verschiedene nicht-zielgerichtete Metabolom-Methoden 

angewendet und deren Ergebnisse dazu verwendet, nachfolgende zielgerichtete Metaboliten-Analysen 

durchzuführen, um erhaltene Ergebnisse zu validieren. Um das komplexe Zusammenspiel von 

Mikroorganismen, Metaboliten und funktionalen Prozessen zu untersuchen, wurde die Studie durch 

zusätzliche 16S-Sequenzierung und „Shotgun“ Proteomik ergänzt. Stuhlproben von Erwachsenen, die 

an Insulinresistenz leiden, wurden nach verschiedenen Diäten mit unterschiedlichen Mengen an 

resistenter Stärke (Präbiotika) untersucht. Metabolite verschiedener chemischer Klassen wurden durch 

die Verdauung verschiedener Präbiotika stark beeinflusst, darunter waren unter anderem Lipide, 

spezifische Fettsäuren, Gallensäuren, Oxylipine und mehrere Metabolite des Lipidstoffwechsels. Auf 

Grund der Einnahme von resistenter Stärke zeigten die Genomik und Proteomik Analysen ein erhöhtes 

Auftreten von Firmicuten und eine Vielzahl an Proteinen des Lipidstoffwechsels. In der zweiten Studie 

wurde der Einfluss von Probiotika auf das Darmmikrobiom der Kinder im ersten Lebensjahr untersucht. 

Metabolomikanalysen zeigten verschiedene Metabolitenprofile zwischen gestillten Kindern und denen, 

welche mit Muttermilchersatzmilch gefüttert wurden. Die Metabolitenprofile konvergierten im Laufe der 

Zeit, was sich nicht nur in den unterschiedlichen Profilen verschiedener Gallensäuren gezeigt hat, 

sondern auch in Carbonsäuren und zahlreichen Fettsäuren mit unterschiedlicher Kettenlänge und 

Sättigungsgrad. Darüber hinaus zeigten mehrere Metabolite in der Probiotika-Gruppe ein ähnliches 

Verhalten, wie in der Gruppe in der die Kinder gestillt wurden. Dieses Ergebnis führte zu der Annahme, 
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dass Probiotika ähnliche charakteristische Merkmale wie die Muttermilch aufweisen könnten, was die 

Einnahme von Probiotika bestärkt. Allerdings können diese Ergebnisse noch nicht erklärt werden, sind 

aber für den Augenblick erste Hinweise für die Auswirkungen von Probiotika. Beide Studien zeigten 

eindrucksvoll die Einflüsse von Prä- und Probiotika und dass die Massenspektrometrie basierte 

Metabolomik von Stuhlproben sich besonders dazu eignet, die Auswirkungen der Ernährung auf das 

menschliche Darmmikrobiom zu untersuchen. 
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Chapter I 

1 Introduction 

1.1 The Metabolome, Metabolomics and their key roles in biochemical processes in 

the “omics”-family 

The metabolome is the final succeeding product of the genome (Dunn et al. 2005, Lattimer and Haub 

2010) and represents the total amount of small molecules – the metabolites - in a living cell (Nicholson 

et al. 1999). The resulting scientific discipline called “Metabolomics” and the related “Metabonomics” 

term were defined by Fiehn and Nicholson (Nicholson et al. 1999, Fiehn 2002, Nicholson and Wilson 

2003) 

Alongside the other “omics” approaches, like genomics, transcriptomics and proteomics, metabolomics 

is one of the “omics”-disciplines in systems biology applied not only to investigate the metabolome. 

Metabolomics enables to complete the information received from the genome and proteome on a 

functional level, to characterize the phenotype and to study the complex function of the metabolites in 

many different regulatory processes inside or outside the cell (Villas-Boas et al. 2005). Further, 

metabolites are intermediates of biochemical processes and thus play a very important role in 

connecting different pathways in organisms (Villas-Boas et al. 2005).  

The metabolome varies in response to different influences (e.g. nutrition, medication and physiology), 

individual influences in health and disease and the involvement of the gut microbiota in the biological 

processes and thus reveals the complexity of the metabolome. Metabolomics plays a role in several 

research areas such as medical and clinical research (e.g. cancer, nutrition, obesity and diabetes), 

fundamental research and environmental interests. Therefore, metabolomics is applied to many sample 

origins, comprising different body fluids (plasma, urine), microbiome (gut microbiota, feces), cells, 

tissues or aquatic samples. To give a small abstract of the complexity of the metabolome, it may consist 

of hydrophilic compounds, carbohydrates, alcohols, ketones, amino acids, fatty acids, lipids and many 

others, but in many cases the identity of several metabolites remains unknown. This complexity makes 

it nearly impossible to study the whole metabolome simultaneously (Villas-Boas et al. 2005). In 

metabolome analyses, mostly metabolites with a molecular mass < 1000 Dalton (Da) are analyzed. In 

this context, in metabolomics another distinction is made between non-targeted and targeted analysis.  
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1.1.1 Non-targeted vs. targeted metabolome analysis – dealing with the unknown 

The aim of non-targeted or also called untargeted analyses is to get a global overview of the variety of 

metabolites and metabolite classes present in a biological system. Hereby, identification and/or 

quantification of the metabolites is not needed (Fiehn 2002). The dominating focus here is the 

characterization of the biological samples and the identification of the overall metabolite profiles in the 

given objective. Here, it is possible to combine various analytical techniques to analyze the metabolome 

(Villas-Boas et al. 2005).  

The non-targeted approach is faced with many unknown metabolites, whose identification is time-

consuming and costly (Bowen and Northen 2010). Furthermore, identification of metabolites is difficult 

and demanding, which poses many challenges of experimental and analytical nature (Peironcely et al. 

2013). Even if the modern analytical techniques allow detecting hundreds or thousands of features 

within one analysis, it’s nearly impossible to identify each detected feature. Currently available 

databases are not comprehensive and cover only a proportion of metabolites, which can be assigned 

to potential metabolites. Many metabolites in a complex matrix remain unknown, which correspond to 

either adducts, fragments, dimers or trimers or possibly new metabolites (Witting et al. 2015). Therefore, 

usually the most discriminant features obtained by statistical analyses will be selected for identification 

(Bowen and Northen 2010). In practice, not always well-known metabolites are responsible for class 

discrimination, but also the unknown ones. Therefore, different approaches for metabolite identification 

can be performed, whereas tandem mass spectrometry (Chapter 1.2.2.4) is widely used.  

Conversely, in the targeted analyses a pre-defined set of metabolites is analyzed and quantified. These 

pre-defined metabolites usually belong to one class of metabolites (Fiehn 2002) as carbohydrates, fatty 

acids or lipids and usually comprise further sample preparation. Nowadays, for this characterization of 

metabolites further termini for the individual metabolite class analysis, including lipidomics for lipids (the 

lipidome) or glycomics for glycans (the glycome) were defined (Griffiths and Wang 2009). In general, 

there is no universal metabolomics approach for both types of analyses.  

Additionally, many other periphrases of targeted and non-targeted analysis already exist, such as 

metabolite profiling and metabolic fingerprinting. Therefore, in 2007 Goodacre summarized the most 

common used analytical techniques for differently applied metabolome analysis (Goodacre 2007). 

Hereafter, an abstract of the table is summarized. For targeted metabolite analysis, high-performance 
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liquid chromatography (HPLC), gas chromatography mass spectrometry (GC-MS) and liquid 

chromatography mass spectrometry (LC-MS) are widely used, whereas for the non-targeted 

approaches, techniques with high, even ultra-high resolution and high performance, such as quadrupole 

time-of-flight mass spectrometry (Q-ToF-MS) or Fourier transform ion cyclotron resonance mass 

spectrometry (FT-ICR-MS) are used. In summary, the requirements to investigate the metabolome 

comprises the sample collection and preparation, the adequate analytical approach with appropriate 

sensitivity and selectivity (Fiehn 2002), which will further be described in detail in chapter 1.2. 

1.1.2 Lipidomics as part of systems biology 

Lipidomics became a biologically and analytically attractive technique to analyze the lipid content in a 

biological system and is able to complete the metabolome analyses. Lipids play important roles in many 

biological processes such as in energy storage, membrane lipids or as signal molecules (Witting et al. 

2014) and even play a central role in gut physiology (Gregory et al. 2013). Thus, various classes of 

lipids are present in biological samples and already were classified by the Lipid Maps consortium 

(www.lipidmaps.org) into the following main classes with several subclasses: fatty acyls (FA), 

glycerolipids (GL), glycerophospholipids (GP), sphingolipids (SP), sterol lipids (ST), prenol lipids (PR), 

saccharolipids (SL) and polyketides (PK) (Fahy et al. 2005, Fahy et al. 2009). Another category of GP 

are lysolipids, emerging through the loss of one or both acyl groups (Gregory et al. 2013).  
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Figure 1.1-1: Structural overview of the various lipid classes.   

A: saturated fatty acids differentiating in chain length in SCFA (C1:0 – C5:0), MCFA (C6:0 – C12:0) and 
LCFA (C13:0 – C22:0). B: unsaturated fatty acids (different chain length, mono-unsaturated and poly-
unsaturated fatty acids possible). C: Sterol lipids and steroid conjugates with glycine or sulfate 
conjugation. D: Various classes of Glycerophospholipids with changing head groups, R1 and R2 can 
be fatty acids (with various chain length, double bonds and branches) bound by an ether or ester bond. 

The variety and complexity of the lipids are impressive, as the combinations in lipids with different chain 

lengths, branches, side chains, double bonds, head groups, functional groups and other modifications 

are almost never-ending. To illustrate the complexity, Figure 1.1-1 shows some structural information 

of the various lipid classes (e.g. saturated/unsaturated fatty acids, STs and GPs). However, this 

complexity coincidentally poses difficulties in the analysis and differentiation of lipids with respect to 

isomeric and isobaric lipid species. The analytical technique is not only required to separate isomers, 

but also to sensitively detect and identify lipids from different classes. Therefore, a chromatographic 

separation with high performance coupled to a mass spectrometer with high resolution is one of the 

analytical approaches for lipidomics or lipid profiling applied, wherefore reversed phase (RP) columns 

using an acetonitrile (ACN) and isopropyl alcohol (IPA) gradient are commonly used (Bird et al. 2011, 
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Witting et al. 2014). In addition to lipid profiling, another method, called “shotgun lipidomics” is applied. 

Here, the crude lipid extract is analyzed by direct infusion into the MS (DI-MS) (Han and Gross 2005), 

without prior chromatographic or other separation methods. The major disadvantage of this method is 

the impossibility to separate closely related isomers (Witting et al. 2014), due to their similar 

physicochemical properties. Even if shotgun lipidomics is still at its early stage, it provides a convincing 

basis to investigate the lipidome in biological samples and shows its increasing potential to analyze 

thousands of lipid species (Han and Gross 2005).  

1.2 Methods, sample preparation and analytical techniques in Metabolomics 

Biological samples are complex by nature, with thousands of metabolites present and thus are 

characterized through their high chemical diversity. To analyze biological samples in a metabolomics 

manner, it requires not only the adequate sample collection and sample preparation, but also the 

appropriate analytical method. Current analytical techniques applied in Metabolomics are shortly 

described in the following chapters. 

1.2.1 Chromatography 

Chromatography is a powerful analytical technique and enables the separation of analytes of a complex 

mixture. It can be used for both, qualitative and quantitative analyses, wherefore typically, liquid 

chromatography (LC) and gas chromatography (GC) are used in metabolomics analyses. In LC, the 

sample is dissolved in a mobile phase. The mobile phase might be either liquid, gaseous or a 

supercritical fluid. The sample-mobile phase mix is carried over a stationary phase through either a 

pump (LC) or by overpressure (GC). Depending on their physicochemical properties, interactions 

between the analytes in the sample and the mobile/stationary phase takes place through e.g. hydrogen-

bridges, van-der-Waals-forces, dipol-dipol interactions or hydrophobic interactions. This leads to a 

separation of the analytes. Afterwards, the analytes are detected by a suitable detector, such as a mass 

spectrometry (Chapter 1.2.2), fluorescence or UV-Vis spectrometer (Chapter 1.2.3). 

One of the most commonly used methods in metabolomics is HPLC. This technique protrudes through 

its sensitivity, selectivity and its ability to separate non-volatile and thermal instable compounds (Skoog 

et al. 2013). Further, its application fields are extensive, comprising the analysis of amino acids, 

proteins, carbohydrates, steroids, lipids, pharmaceuticals and many more organic compounds. Since 
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every analyte has a different retention behavior, the choice of the stationary phase depends on the 

class of analytes that needs to be separated. In LC, nowadays most of the analyses in metabolomics 

are performed as RP chromatography (Dettmer et al. 2007), where non-polar functional groups are 

bonded on the silica surface, which acts as the stationary phase. Therefore, commonly used stationary 

phases in RP chromatography are modified silica particles with octyl (C8) or octadecyl (C18) chains 

covalently joined on the surface of silica. Usually, particle sizes from 3 µm to 10 µm see use in HPLC. 

In RP chromatography, polar mobile phases (e.g. methanol, isopropanol, ACN, water etc.) are used. In 

general, by applying a mobile phase gradient, changing the solvent composition from polar to a more 

organic rate within a run, medium polar to non-polar analytes get separated (Dettmer et al. 2007).  

In addition to the classical HPLC, another method, the ultrahigh-performance liquid chromatography 

(UHPLC) gained a very strong market and has several benefits in contrast to HPLC. It stands out 

through its high resolution, efficiency and analysis time (Novakova et al. 2006, Lenz and Wilson 2007). 

To reduce the analysis time and improve the resolution, UHPLC is usually performed at pressures up 

to 1000 bar) and columns packed with particle sizes < 2 µm (Dunn et al. 2005, Griffiths and Wang 2009) 

are used. These benefits enable the UHPLC as the suitable analytical technique for complex biological 

samples as present in metabolome analyses. 

There are several detection possibilities in chromatography, but the widely used technique in analytical 

chemistry is mass spectrometry (MS). Typically, mass spectrometers, quadrupole mass spectrometer 

(Q-MS), triple-quadrupole mass spectrometer (QQQ-MS), ion trap mass spectrometer (IT-MS) and 

quadrupole time-of-flight mass spectrometer (Chapter 1.2.2.3) are coupled to HPLC and UHPLC in 

metabolome analyses. A further possibility is the injection of the sample directly into the MS, without 

prior separation applied, as it is mainly the case in FT-ICR-MS, also known as DI-MS. Nevertheless, 

prior chromatographic separation of the analytes has four important advantages in contrast to DI-MS. 

First, it allows the separation of isomeric and isobaric compounds. Second, LC enables the analysis of 

complex mixtures and allows analyzing a broad range of metabolites without prior derivatization of the 

metabolites (Khakimov et al. 2014). Third, matrix effects and ionization suppressions are reduced due 

to prior separation of the analytes. Fourth, additional data is provided (e.g. retention time) (Lin et al. 

2010, Lei et al. 2011, Muller et al. 2013). On the downside, one major drawback of LC remains the 



                             1. Introduction 

 

  7 

moderate throughput, wherefore the analysis of hundreds or even thousands of samples, such as 

present in high cohort metabolomics studies, utilizes some time. 

1.2.2 Mass Spectrometry 

Mass spectrometry (MS) enables the analysis of complex biological samples, as it is required in 

metabolomics, wherefore it became the most used technique in metabolome research. In general, a 

mass spectrometer consists of three basic components: an ion source, a mass analyzer and a unit for 

detecting the ions. Hereto, details about the electrospray ionization (ESI) technique are given in Chapter 

1.2.2.1. Further, in the following chapters, two mass analyzers will be described in detail: FT-ICR-MS 

and the high resolution Time-of-Flight mass spectrometer (UHR-ToF-MS). Both mass analyzers are 

highly suitable for non-targeted metabolomics and metabolite identification due to their high mass 

resolving power (Gowda and Djukovic 2014). MS has the potential to detect and identify metabolites 

based on their mass-to-charge ratio (m/z); it offers high sensitivity, high accuracy and a wide dynamic 

range (Lin et al. 2010). This is displayed by highly specific chemical information, accurate masses, 

resolving power and mass resolution, as well as the detection of isotope patterns, provided through the 

MS analyses.  

Mass resolving power, mass resolution and mass accuracy, are important terms, which play notable 

roles in MS. The resolving power of an instrument is a performance parameter and usually is given as 

full width at half maximum (FWHM). The mass resolution (R) describes the ability to separate two 

closely neighbored mass signals, which gets very important dealing with complex samples. The mass 

accuracy is defined as the difference between the experimental mass and the exact calculated mass. 

The relative mass accuracy or mass error is given in parts per million (ppm), calculated as follows 

(Equation 1.2.2-1) (Gross 2011). 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑚𝑎𝑠𝑠 𝑒𝑟𝑟𝑜𝑟 [𝑝𝑝𝑚] =
𝑚/𝑧𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑒𝑙𝑙 − 𝑚/𝑧𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑

𝑚/𝑧
∙ 106 

Equation 1.2.2-1: relative mass error calculation in ppm to characterize the mass accuracy, used in mass 

spectrometry. 
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According to current state-of-the-art in mass spectrometry, the FT-ICR-MS shows the highest resolving 

power with over 1,000,000 (Ghaste et al. 2016) and a mass accuracy < 0.2 ppm (Schmitt-Kopplin et al. 

2010).  

1.2.2.1 Electrospray ionization 

The ESI technique is one of the well-known and frequently used ionization methods in metabolomics 

research. This technique is highly suitable for compounds with medium to high molecular weights, non-

volatile and easily ionizable compounds, including a wide range of polar, unpolar and ionic compounds. 

ESI is a soft ionization technique, as the ionic analytes, dissolved in a volatile solvent, get evaporated 

at atmospheric pressure (Gross 2011). With the help of nebulizer gas (nitrogen) and through 

electrostatic nebulization, the sample is transferred into an aerosol. This is performed by applying high 

voltage on the ESI needle, which results in electrophoretic charge separation of the ions. Due to the 

evaporation of the solvent droplets, which is supported by a dry gas (nitrogen), the charge density is 

increasing. In consequence, smaller droplets are built through coulomb forces. This process of solvent 

evaporation and split-up of the droplets is repeating several times and highly charged micro droplets 

arise, which get conducted into the mass analyzer. 

In ESI, two different polarities can be applied: positive (+) ESI and negative (-) ESI. Each polarity 

enables the ionization of different, but also identical compounds, which is depending on their functional 

groups and ability to be ionized. In positive ionization mode, compounds usually get protonated, with 

adduct formation (e.g. sodium or potassium) possible, and in negative mode they get deprotonated. 

1.2.2.2 Fourier transform ion cyclotron resonance mass spectrometry 

Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) is a benefitting analytical 

approach for metabolomics research. The ultra-high resolving power up to 1,000,000, the high mass 

accuracy (< 0.2 ppm) (Schmitt-Kopplin et al. 2010) and its high mass range (Marshall et al. 1998), 

enables the FT-ICR-MS as highly suitable for complex biological samples as given in metabolome 

research. The fundamental principle behind, is the motion of a charged analyte in a magnetic field. 

Classically, ICR-MS enables ions to be excited to a higher trajectory and measures the absorption of 

energy of an exited oscillator (Gross 2011).  
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The main components of an FT-ICR-MS are: ion source, optical lenses, ion traps and guides 

(quadrupole, octapole and/or multipole), a superconducting magnet and the core part, the ICR cell. 

Figure 1.2-1 schematically illustrates the principle and the setup of an FT-ICR mass spectrometer. 

 

 

Figure 1.2-1: Schematic over of principles of FT-ICR-MS.  

A: Schematic setup, including ion source, ion optics, quadrupole, octapole, ICR cell (plus superconducting 
cryomagnet). B: ICR cell 

First, ions get generated by an ion source, predominately with ESI and are perpendicularly focused by 

optical lenses into a spatial uniform magnetic field (caused by a superconducting magnet), where an 

octapole ion guide and the ICR cell are located.  

In the magnetic field, so in the ICR cell, the ions have to undergo the perpendicular Lorentz force, which 

bents the ion’s velocity into a circular path, the ion cyclotron motion (Marshall et al. 1998). According to 

the mass and the strengths of the magnetic field, the ions have different radii circulating in the ICR cell. 

The masses get resolved by increasing the radii of the circulating ions and can further be detected. This 

is conducted by applying an electric field, which forces the ions to increase their movements and allows 

the excitation to a higher trajectory (Gross 2011). After the excitation, the circulating ions can be 

detected by additional conductive parallel electrodes (detector plates). Going through the detector 

plates, the ions induce a current, which is recorded as free induction decay (FID) due to the ion cyclotron 

motion. Fourier transformation converts it into a mass signal (Marshall et al. 1998, Gross 2011).  Further 

descriptions of FT-ICR-MS with excellent and informative physical chemistry background are presented 

in (Marshall et al. 1998, Marshall 2000). 

The outstanding advantage of ultra-high resolution and high mass accuracy allows the assignment of 

molecular formulas and further the classification of the elemental and molecular composition. Further, 
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FT-ICR-MS benefits in its low detection limits in the attomole to femtomole range (Dettmer et al. 2007). 

However, the separation of isomeric and isobaric compounds remains an issue, because the sample is 

infused all at once. Even if no prior chromatographic separation is needed for the analysis and it is 

mainly used in DI mode, the difficulty with matrix effects and ion suppression are increased, which may 

cause less sensitivity (Lin et al. 2010). However, FT-ICR-MS has been established as a high throughput 

technique with high sensitivity, being the ideal method for non-targeted metabolomics, due to the 

reasons mentioned above.   

1.2.2.3 Ultra-high resolution Time-of-Flight mass spectrometry 

Time-of-Flight mass spectrometry (ToF-MS) offers with its resolving power of up to 60,000 and a mass 

accuracy < 5 ppm (Zhang et al. 2012) a further analysis technique and appropriate solution in 

metabolome research. Here, the advantage is in coupling with chromatographic systems, whereas 

mainly LC instruments are used, which is often used for non-targeted metabolomics. The fundamental 

principle of ToF-MS is simple: the separation of ions (prior generated by ESI) is conducted by the time 

of flight of the ions with different m/z. The smaller/lighter the ion, the shorter is its flight time and therefore 

it gets detected first, compared to ions with higher/heavy size.  

The main components of a ToF-system are: ion source, ion transfer and focusing funnels, quadrupole 

as mass filter, followed by a quadrupole as collision cell and the ToF mass analyzer. This is 

schematically demonstrated in Figure 1.2-2 using the example of a reflectron time-of-flight mass 

analyzer, the orthogonal hybrid quadrupole-ToF-MS (Q-ToF-MS), which was used in this thesis.  
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Figure 1.2-2: Schematic setup and principles of an orthogonal hybrid Q-ToF-MS (reflectron analysator) 
(adapted from the maXisTM user manual). 

After the ionization, the ions are transferred and focused by a funnel system and a multipole into the 

following quadrupole units. The first quadrupole serves as mass filter and allows the selection of single 

m/z or m/z ranges. The second one is the collision cell and used differently according to the selected 

analysis mode. Here, the MS experiments can be applied in full scan mode, while the collision cell 

serves as a further transfer unit, leading the ions into the ToF analyzer. Further, MS/MS experiments 

can be performed by using collision-induced dissociation (CID) with an inert gas, which can be either 

nitrogen or noble gases. More details about MS/MS experiments, also known as tandem mass 

spectrometry (MS/MS) are given in chapter 1.2.2.4.  

The last part is the ToF mass analyzer, which is composed of a pusher, a reflector and the detector. 

Separation takes place due to the different velocities of the different accelerated m/z (ions) and their 

corresponding flying time. In detail, the pusher shoves and accelerates the incoming ions from the 

collision cell orthogonally onto the reflector. Here, also the determination of the masses (m/z) takes 

place by measuring the drift time of the ions after the acceleration until their contact onto the detector 

unit. After the acceleration the potential energy of the ions is converted into kinetic energy. The reflector 

acts as a mirror for ions to which ions with different kinetic energy are focused (Gross 2011), improves 

the resolution and leads the ions back to a detector, which is converting the ion signal into an electrical 

signal. These signals are transmitted to a digitizer card and after several conversional steps, the signal 

results in a mass spectrum.  
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1.2.2.4 Tandem mass spectrometry (MS/MS) 

For tandem-MS (MS/MS) experiments, the collision cell serves as a collision chamber for prior mass 

selected ions to be fragmented by applying different collision energies, where 10 eV to 50 eV are mainly 

applied. In other words, MS/MS allows the analysis and interpretation of the product ion mass spectra, 

through the prior m/z-selected precursor ions. Therefore, a commonly applied activation method in 

tandem-MS is CID, which allows the fragmentation of ions in a gas phase. This technique is highly 

suitable for structural analysis and/or especially in metabolomics for biomarker identification or 

metabolite classification of unknown metabolites.  

In principle, the ions in a collision cell collide with the gas atoms of the inert collision gas. The collision 

causes a conversion of the ions’ translational energy into internal energy and an excited stage (de 

Hoffmann and Stroobant 2007). Through statistical allocation of the internal energy in the ion, 

dissociation of the ion occurs (Gross 2011) and fragments are formed. The interpretation of the resulted 

mass spectra of those fragments is the primary step for the structural analysis of the metabolite and for 

metabolite identification. Usually, in an MS/MS experiment it is advisable to start with low collision 

energies (e.g. 10 eV or 20 eV), where the prior m/z-selected precursor ion is still visible and then 

increases the collision energies to 30 eV, 40 eV or even higher, which enables greater fragmentation. 

This step-wise increase of the collision energy results in a higher amount of fragment ions in relation to 

the precursor ion and provides additional information for the structural analysis.  

Several MS/MS databases for the identification of compounds based on their fragmentation pattern are 

available, which are of great assistance in metabolite identification. To name but a few of the available 

MS/MS spectral databases: Metlin (Smith et al. 2005) or HMDB (Wishart et al. 2007) offer thousands 

of comprehensive MS/MS metabolite data.  As a first classification, the experimental fragmentation 

pattern can be compared with database spectra of different collision energies and ionization modes. 

For further certainty in identification, the experimental fragmentation pattern of an analyte in a complex 

sample is compared to the experimental fragmentation pattern of one single standard measured exactly 

identical. However, the identification of metabolites remains challenging; especially since many 

metabolites are not listed in the MS/MS spectral databases and not always commercially available.  
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1.2.3 UV-Vis spectroscopy 

In spectroscopy, molecules/atoms/nuclei are transferred from a low-energy ground state into a higher 

energy condition, whereby energy in the form of electromagnetic radiation or as electromagnetic waves 

is introduced. The absorbed frequency corresponds to the different energy levels of the molecule, which 

allows drawing inferences about the structure. The absorption of ultraviolet (UV) or visible (Vis) radiation 

is a two-stage process. In UV-Vis spectroscopy firstly, electronic transitions are excited, which means 

the irradiated energy is sufficient enough to lift electrons from an occupied to an unoccupied orbital. 

Secondly, wave lengths from 200 – 800 nm are consecutively shined in and the extinction of wave 

lengths is measured (Skoog et al. 2013). UV-Vis spectroscopy is especially applicable for valence 

electrons consisting of π-bonds and non-binding electron pairs. The presence of valence electrons, 

which can be excited to higher energy levels able all organic compounds to absorb radiation (Skoog et 

al. 2013). An UV-Vis detector mainly detects compounds, which display conjugated double-bond 

systems, double- and multiple bonds, as well as carbonyl groups. Therefore, UV-Vis spectroscopy is 

only applied for structural elucidation as a supplemental method to nuclear magnetic resonance (NMR) 

or MS and is usually used as a detector in chromatography. 

1.3 More about other „omics“-sciences 

The full range of the “omics”-sciences consist of four main research fields, including genomics (Chapter 

1.3.1), transcriptomics, proteomics (Chapter 1.3.2) and metabolomics. Numerous network and 

feedback loop interactions coexist between the genome, transcriptome, proteome and metabolome and 

therefore they mutually affect the specific behavior of a biological system (Goodacre 2005, Bujak et al. 

2015). The network of all those “omics”-sciences allows to get a global picture of the microbial 

community structure, the metabolic status and characterizing the personal phenotype (characteristics 

of an organism), and to unravel the dynamics and mechanisms in a given ecosystem (Perez-Cobas et 

al. 2013).  

1.3.1 Genomics – Deoxyribonucleic acid and the Genome 

Genomics is the study of an organism’s complete set of deoxyribonucleic acid (DNA - the genome). 

This allows gaining a deeper insight into the microbial community in a given biological system. 

Nowadays, this technique allows studying the DNA of several organisms at the same time and enables 
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the consideration about the relationship between microbial and human life  (Rhodes et al. 2013). 

Genomics can also be taken from specific environments, such as the gut in order to investigate the 

genome of microorganisms (=metagenomics). The genome is investigated through sequencing 

techniques, which allow the assembling and analysis of the genomes’ function and structure, while the 

exact order of the nucleobases (Adenine, Cytosine, Guanine, Thymine) in the DNA can be examined. 

The modern sequencing techniques, also called next generation sequencing, offer a wide spectrum for 

DNA-sequencing, including the 16S ribosomal ribonucleic acid (rRNA) sequencing, pyrosequencing or 

shotgun sequencing (shotgun metagenomics) (Erickson et al. 2012). The 16S rRNA sequences are 

often analyzed, because they serve as a proxy for the entire genome (Rhodes, Gligorov et al. 2013). It 

is widely used and enables the estimation of relationships among bacteria and the identification of 

unknown bacteria on the genus or species level (Sacchi et al. 2002).  

In the study of complex microbial communities and their interactions in a host (e.g. in the human gut) 

(Smirnov et al. 2016), the DNA first is directly extracted from the environment, followed by a 

metagenomics analysis, which can be performed by using either 16S rRNA sequencing or as randomly 

environmental DNA sequencing (Rhodes et al. 2013). Afterwards, the obtained sequences can be 

retrieved in several databases and assigned to a specific taxonomic rank up to the species level. 

Further, the genes of the genome first are transcribed and translated to produce proteins (Verberkmoes 

et al. 2009), where one gene can encode more than one protein, which increases the complexity of the 

proteome in an organism as follows in the next chapter. 

1.3.2 Proteomics – Proteins and the Proteome 

Proteomics is the study of the entire complement of proteins, produced in an organism (the proteome). 

The proteome is a dynamic system and reflects the gene and the environment (Horgan and Kenny 

2011). Therefore, it varies from time to time through different stresses that an organism is exposed to. 

Proteomics offers information on protein abundances, including their variations and modifications. It is 

applied to investigate for example the involvement of proteins in metabolic pathways, time and place of 

protein expression and the rates of protein production or degradation.  

A relatively new method in proteomics analyses is shotgun metaproteomics, which is applicable for 

complex and highly diverse microbial communities, just as present in the human gut (Erickson et al. 
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2012) and in one of the most complex biological sample types until now: Feces (Verberkmoes et al. 

2009). Additionally, it was demonstrated that microbial and human proteins can be differentiated and 

monitored simultaneously by applying shotgun proteomics (Young et al. 2015).  

Among the several high-throughput techniques for proteome studies, the most commonly applied 

technique is  MS, like tandem-MS (Horgan and Kenny 2011). MS based techniques allow further the 

characterization and quantification of thousands of proteins within a complex microbial community 

(Young et al. 2015). Furthermore, approaches with LC coupled to MS (e.g. 2D-LC-MS/MS) are, 

especially for shotgun metaproteomics, often applied. In proteomics analysis, thousands of ions are 

measured, whose peptide mass information afterwards need to undergo complex algorithms to search 

against protein database for identification (Horgan and Kenny 2011) (Verberkmoes et al. 2009). The 

human gut microbiota functions and metabolic activities can be characterized by applying microbial 

proteomics. This enables to reveal information about the microbiome development and their interactions 

with the human host (Xiong et al. 2015). The biological complexity, the function and the entirety of 

impacts (e.g. nutrition) on the human intestinal tract with respect to microbial communities, the genes, 

the metabolic activities and their role in the human immune system for the prevention and development 

of diseases is described in the following chapters.  

1.4 The human intestinal tract, the gut microbiota in health and disease 

The human gastrointestinal tract (GIT) and its microbiome is a complex ecosystem (Heintz-Buschart et 

al. 2016), which is central to understand the dynamics of health and disease. In numbers, more than 

100 trillion microbes (1014) are located in the GI (Lin et al. 2014), including 300 to 500 different bacterial 

species, with more than 2 million genes (Quigley 2013). Therefore, the bacterial genome is enormous 

(approximately 150–fold) in contrast to the human genome (Quigley 2013, Ursell et al. 2014). Amongst, 

the human intestine is one of the areas within the human body that is highly populated by 

microorganisms (mainly bacteria) (Rhodes et al. 2013). In mammals, four dominating bacterial phyla 

inhabit the gut: Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria (Qin et al. 2010). The 

entirety of living microorganisms in the human being, including bacteria, viruses, and fungi and their 

genetic material is referred to as the human microbiome (Lederberg 2003). In the gut or intestine, the 

gut microbiome comprises all gut inhabiting microorganisms, including their genes and genomes, as 

well as the microbiota and host metabolites (Whiteside et al. 2015). The gut microbiota (former: flora) 
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only refers to the microbial community. Up to now, feces is the most investigated material in examining 

the microbial composition and the metabolic interactions of the gut (Gerritsen et al. 2011). Additionally, 

each individual is characterized by its specific gut microbial composition, which therefore also could be 

used as an alternative way of individual fingerprinting (Quigley 2013). The intestinal microbial 

community strongly influences the metabolism and nutrition, the development of the immune system 

and prevents the colonization through pathogens (Pop et al. 2016).  

At birth, the development and the population of the gut microbiome is initiated through the maternal and 

environmental bacteria. Subsequently, the population in the gut grows and assembles through different 

extraneous influences. This is induced by nutrition, genetics (Benson et al. 2010), contact to 

humans/animals (Song et al. 2013) and further environmental contacts. Later on in life, the population 

in the gut remains relatively constant (Quigley 2013). In this context, the impact of nutrition, with respect 

to prebiotics, and probiotics or breast milk on the human gut microbiome will be reviewed in detail in 

Chapter 1.4.1. However, even if the population in the gut remains relatively constant later in life, the gut 

microbiome is very plastic and is relatively susceptible to several factors, including diet, physiology, 

drugs, probiotics and microbial metabolites (Ursell et al. 2014).  

Different gut microbes can alter metabolites throughout their host (Ursell et al. 2014), and their 

participation in various metabolic processes beneficially influence both, the host and the microbes 

(Quigley 2013). Through metabolomics analyses, the gut microbiota can be directly compared to the 

metabolic outcome in the host (Ursell et al. 2014). To discover this, several studies were designed, e.g. 

analyzing and comparing plasma samples from germ-free and conventionally raised mice. Wikoff et al. 

thereby investigated the impact of the gut microbiota on the host and found differed plasma metabolites 

between the two types of mice (Wikoff et al. 2009). Central importance of this beneficial interaction 

between the microbiota and host is the communication of bacteria inhabiting the gut and 

microorganisms with the host’s immune system (Quigley 2013), which already develops at birth 

(Nicholson et al. 2012). Additionally, several microbe-derived metabolites have been found to influence 

health through effects on gut immune system. An overview of gut bacteria and their contributing 

metabolites with respect to potential biological functions in human health and disease is presented by 

Nicholson et al. (Nicholson et al. 2012).  
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Therefore, over the last decades, several studies were investigated the impact of the gut microbiome 

and/or the host-microbe interactions on the prevention and development of diseases. Just to cite a few, 

Hullar et al. investigated the impact of the gut microbiota on cancer and presented epidemiological 

evidence for the mutual impact of gut microbes, diet and cancer risk. The potential impact on cancer 

risk from gut microbial metabolism of specific metabolites was tabular illustrated (Hullar et al. 2014). As 

obesity, insulin resistance, and diabetes and thus metabolic disorders, reached worrying levels all over 

the world, lots of research to prevent, cure or regulate those diseases was accomplished - as presented 

in chapter 2.1. Bäckhed et al. studied the regulation of the host energy metabolism and fat storage in 

colonized pre-germfree mice and thereby highlighted the importance of the gut microbiota and its 

function in obesity and insulin resistance (Backhed et al. 2004). Moreover, Caricelli et al. studied the 

role of the gut microbiota on insulin resistance and obesity, and detected an increase of Firmicutes in 

the obese mice, compared to lean ones, which could be associated with insulin resistance (Caricilli and 

Saad 2013). The impact of the gut microbiota on inflammation, obesity, insulin resistance and metabolic 

disease is explicitly and nicely presented in several reviews (Shen et al. 2013, Boulange et al. 2016, 

Saad et al. 2016).  

1.4.1 Nutritional impact on the human gut microbiome 

Nutrition is important to ingest essential nutrients. However, the choice of food is sensitive, since over- 

and undernutrition as well as the selection of poor food compositions can trigger diseases. Nutrition can 

promote and prevent diseases (McNiven et al. 2011), such as inflammation and infections, 

gastrointestinal diseases, as well as diabetes or obesity (Flint et al. 2012). The human gut microbiota 

is involved in several nutritional, physiological, immunological, and protective functions in the human 

body (Salonen and de Vos 2014). Through fermentation of indigestible compounds, such as dietary 

fiber (e.g. resistant starch), the microbial community contributes nutrients and energy to the host (Flint 

et al. 2012, Ursell et al. 2014). For instance, humans are unable to produce metabolites, such as short-

chain fatty acids (SCFA), some vitamins and also amino acids (Wong et al. 2006, Hamer et al. 2008). 

It was shown that short- and long term exposure to diets changes the microbial community composition 

(Flint et al. 2012). However, most of the microbial functions still remain unknown, but recently it was 

established that some bacteria in the human intestine are involved in food metabolism (Salonen and de 

Vos 2014). This comprises phyla of Firmicutes and Bacteroidetes, which predominantly affect the 
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nutrition and the corresponding nutritional metabolism (Ramakrishna 2013). Due to the current medical 

and nutritional interests, several studies in nutritional research in health and disease were accomplished 

in the last decades. They focused especially on the dietary modulation of the intestinal microbiota 

through prebiotics, such as dietary fiber. Also, the impact of probiotics on the human gut microbiome in 

all stages of life, ranging from infancy to childhood and adults is of vast interest. 

1.4.1.1 Impact of prebiotics and probiotics on the human gut microbiome 

Prebiotics are food additives and dietary non-digestible or slowly digestible, but partially fermented 

oligosaccharides. They are said to promote the growth, composition and activity of health-beneficial 

bacteria (e.g. bifidobacteria) in the intestine (Gibson and Roberfroid 1995, Walker et al. 2011, Thomas 

et al. 2014). Prebiotics supply the gut microbes, which further supply the host with energy and essential 

nutrients (Topping et al. 2007). It is expected, that the dietary intake in the form of prebiotics can prevent 

human diseases, such as IBD, obesity and diabetes (Holmes et al. 2012, Birt et al. 2013). Nowadays, 

numerous non-digestible carbohydrates, which serve as prebiotic food additives, are available, such as 

resistant starch (RS). RS insist up to 70 per cent predominately of amylopectin and amylose. High-

amylose containing starches are resistant  to the enzymatic digestion by amylase (Topping et al. 2007). 

Especially in the form of amylose and amylopectin, RS is qualified as a prebiotic (Topping et al. 2007). 

Already in the late ‘90s, Brown et al. demonstrated the effects of RS as prebiotic (Brown et al. 1997, 

Brown et al. 1998). They studied the potential of high-amylose starch in pigs and in mice. They found 

higher fecal concentrations and excretion of Bifidobacterium longum in fecal samples of pigs fed a 

conventional starch (Brown et al. 1997). In another study, mice were fed with high-amylose starch, 

whereas an increase of lactic acid bacteria (LAB) numbers was observed  in the fecal samples (Brown 

et al. 1998). Also, the increase of B. longum in the pigs was similar to the impact of other prebiotics 

reported in several human studies. Bifidobacteria have potential benefits on the health of mammals 

(Conway 2001). Additionally, it could be observed that bifidobacteria were enhanced in breast fed 

infants. Therefore, the supplementation of bifidobacteria in infant formula is reasonable to induce health-

promoting effects. 

The world health organization (WHO) and the food and agriculture organization of the United Nations 

(FAO) defined probiotics as “Live microorganisms which when administered in adequate amounts 

confer a health benefit on the host” (WHO and FAO 2002, Bergmann et al. 2014). Probiotics promote 
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specific changes in the gut microbiota and then are integrated into the gut ecosystem (Delzenne et al. 

2011). Several microorganisms serve as probiotics, whereas most of them are already naturally 

occurring in the human GIT, such as Lactobacillus and Bifidobacterium, including their multitude of 

species and strains (Holzapfel et al. 1998, Gerritsen et al. 2011). Also microorganisms of the genera 

Streptococcus, Enterococcus, Propionibacterium, as well as Bacillus strains, the E. coli strain Nissle 

1917 and Saccharomyces strains (e.g. S. boulardii) (Holzapfel et al. 1998, Gareau et al. 2010) can be 

used as probiotics. However, not all probiotics provide the same beneficial effects and therefore need 

to be selected carefully according to the desired impact on the gut microbiome and their clinical use 

(Mileti et al. 2009). Further, bacteria envisaged as probiotics need to fulfill some criteria. These comprise 

the nonpathogenicity, being cultivable in industrial scale and having a health enhancing impact on the 

human gut microbiome (Holzapfel et al. 1998). 

At birth, only facultative anaerobic bacteria can grow in the intestine of newborns (e.g. 

Enterobacteriaceae). After a while, anaerobic bacteria colonize the gut. Those are Bifidobacterium, 

Clostridium and Bacteroides. In the first few months, the diet of infants is either breast milk or formula. 

The diet of infants influences the bacterial composition of the gut, while breastfed infants have a 

bifidobacteria enriched gut microbiota, the gut microbiota of formula-fed ones is more diverse colonized 

(Hascoet et al. 2011). In breastfed infants, especially the wholesome bifidobacteria is stimulated to 

grow, through the in breast milk containing milk oligosaccharides. Metatransciptomic analyses already 

revealed differences in the bifidobacteria abundance between breastfed and formula-fed infants 

(Gerritsen et al. 2011). Therefore, several formulas (non-probiotic and bifidobacteria-supplemented) 

were designed to reflect the composition and impact of breast milk on the infant gut microbiome for 

bifidobacterium growth and thus the health-promoting profit. 

1.4.2 Nutritional impact on the metabolome, including metabolite classes and their diversity 

Many studies were accomplished for the analysis of urine, tissue material and plasma (Matysik et al. 

2016). From a metabolomics perspective, relatively little attention was paid to the impact of diets on the 

fecal metabolome (Chow, Panasevich et al. 2014). Digestion of pre- and probiotics are best observed 

in the gut, wherefore predominantly fecal samples are collected to study the impact of diet on the 

metabolome. Fecal material not only contains unabsorbed metabolites, but also contains bacteria, host 

metabolites and gut metabolites, which enable to link the impact of diet and gut microbiota metabolic 
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interactions (Matysik et al. 2016). This in turn allows multi-omics analysis and links the metabolism of 

host and bacteria.  

Nutritional metabolomics is able to comprehend the entire metabolome through dietary changes and to 

map metabolic regulation problems with diet (McNiven et al. 2011). The gut metabolome and the 

microbiome are strongly connected, as already changes and differences in the microbial community 

can change the metabolome (Xie et al. 2013). Hereto, the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) database (Kanehisa and Goto 2000, Kanehisa et al. 2008) offers a wide range of metabolites, 

linked to genomic and proteomic (enzyme-related) information, presenting the complexity of the 

metametabolome in relation to metabolic pathways (e.g. carbohydrate metabolism, energy metabolism 

and lipid metabolism) involved in health and disease. 

When investigating the gut metabolome, metabolomics helps tracking the interactions between 

nutritional metabolites and the human metabolism (McNiven et al. 2011). The gut metabolome is 

predominately investigated through the analysis of fecal samples. Particularly, metabolomics of feces 

can reveal valuable knowledge about health and nutrition (Deda et al. 2015) and provide a better 

understanding of the complex interactions of microbes, diets, and the host (Chow et al. 2014).  

Further, metabolome analyses allow drawing inferences from the relationship between the metabolism 

of the gut microbiota and the metabolic outcomes in the host (Aw and Fukuda 2015). These metabolites 

originating from the gut microbiome serving as nutrients for cells and tissues comprise complex 

interactions between the gut microbiome, the gut microbiota-derived metabolites and the host. Some 

of the main metabolite classes involved in the host microbiome are, among others, choline, bile acids 

and/or SCFAs, which are essential for human health. Even more compound classes and interactions 

are present in the gut microbiota, due to the variety of gut microbial genes with yet unknown function 

(Xie et al. 2013). Especially metabolite classes, such as the carbohydrates, lipids/fat, proteins and  

metabolites of the energy metabolism, play a major role in the nutritional metabolome and therefore are 

relevant for human nutrition (Gibney et al. 2005). Moreover, the differentiation between microbial or 

host-derives metabolites mainly still remains mainly indistinguishable and is a challenge in 

metabolomics analyses.  

Through bacterial fermentation processes, the major end products are SCFA, which serve as an energy 

source for the host and enable linking microbiota and the host (Cummings 1981, Xie et al. 2013). 
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Through prebiotics intake and if the dietary fiber passes the digestion in the upper intestine, it is 

fermented through bacteria into bacterial metabolites. One important metabolite class, SCFA are 

produced (Scott et al. 2011), which can be detected in fecal samples. These dietary changes influence 

the health of the host and are responsible for the changing proportion of SCFA, which are predominantly 

acetate, propionate and butyrate. Further, formate, fumarate, malonate, succinate, caproate and 

valerate are produced through bacterial fermentation after the dietary fiber intake, but occur less 

abundant (Xie et al. 2013). The production and the activity in the human gut of SCFA have numerous 

pivotal impacts on humans’ health for metabolic diseases (e.g. obesity and diabetes) and 

gastrointestinal disorders (e.g. IBD or cancer).  

Bile acids are sterols, which are classified in primary (Cholic acid, CA and Chenodeoxycholic acid, 

CDCA) and secondary bile acids (deoxycholic acid and lithocholic acid). Primary bile acids are formed 

in the liver from the conversion of cholesterol and are further conjugated by either taurine or glycine. In 

general, in the human gut, where the bile acids undergo bacterial metabolism with conversions as e.g. 

deconjugation, esterification and desulfatation, the secondary bile acids are formed, which appear very 

early in life and which were already identified in meconium. These bacterial conversions result in more 

than 20 different secondary bile acids in adult human feces (Gérard, 2014). Bile acids play an important 

role especially in the modulation of lipids, glucose and the energy metabolism. Bacteroides, 

Eubacterium, Clostridium and Escherichia coli are mainly involved in generating secondary bile acids 

(Xie et al. 2013, Aw and Fukuda 2015).  

SCFA and bile acids and further metabolite classes (e.g. lipids, fatty acids, vitamins etc.) play an 

important role in the nutritional impact on the human metabolome and microbiome and therefore in the 

dietary intake of pre- and probiotics. Hence, the role of metabolomics, including SCFA and bile acids in 

relation to insulin resistance (prebiotics) and to the development of the infant gut microbiome differing 

between formula (with and without probiotics) and breast milk will be reviewed, experimentally illustrated 

and explicitly described in chapter 2 (Effect of resistant starch on the gut microbiome) and chapter 3 

(Impact of breast feeding and bifidobacteria-supplemented formula on the infant fecal metabolite profile 

in the first year of life). 
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1.5 Data handling, processing and statistical evaluation – a metabolomics workflow 

In metabolomics, one of the challenges is the data handling due to the enormous output of spectral 

data in biological samples obtained through an appropriate analytical system.  

The obtained spectral data need to be processed, i.e. aligned, filtered (e.g. raw data filtration, mass 

defect and isotopic peaks) and normalized, followed by molecular formula calculation and metabolite 

annotation. Metabolite annotation can be carried out through several available metabolite databases 

and annotation tools, such as Metlin (Smith et al. 2005) or MassTRIX (Suhre and Schmitt-Kopplin 2008, 

Wagele et al. 2012). The MassTRIX webserver enables the metabolite annotation through HMDB 

(Wishart et al. 2007, Wishart et al. 2009, Wishart et al. 2013), KEGG (Kanehisa and Goto 2000, 

Kanehisa et al. 2008) and LipidMaps (Fahy et al. 2005, Fahy et al. 2009). It is a challenge to deal with 

the relatively small number of known metabolites in databases in contrary to the huge number of non-

assigned metabolites. Therefore, data processing is an important step, especially in non-targeted 

metabolomics analyses to obtain meaningful data matrices. Lastly, the data is scaled and then 

undergoes different statistical analyses to provide a funded base for further data interpretation and 

identification of novel metabolites. In metabolomics, multivariate tools, such as unsupervised (e.g. 

principal component analysis, PCA) or supervised (e.g. partial least squares discriminant analysis, PLS-

DA) techniques are widely used.  

1.5.1 Unsupervised and supervised methods in multivariate data analysis 

Principal component analysis (PCA) is one of the most frequently applied unsupervised methods in 

multivariate data analysis for statistical evaluation of the metabolomics data set to represent 

multidimensional data (Dettmer et al. 2007). The in a metabolomics data matrix containing information 

is compressed into principal components, while the information of the majority of the total variance 

existing in the data can be projected, mainly as first and second component.  

In PCA, the correlation between the dependent variable and the independent variables are not 

considered, while only the characteristics of the X-vector or the predictive variables are captured. The 

principle of PCA is as follow: a few linear combinations of the variables get detected and are used to 

summarize the data to project them into a scores scatter plot (Maitra and Yan 2008). Therefore, PCA 

enables getting a first hint of possible patterns in the data set. Partial least squares discriminant analysis 
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(PLS-DA) is an alternative approach to PCA. It accounts as much information for the analysis in the raw 

predictive variables and in the relationship between the predictive and target variables to maximize 

inter-class variance. Here, one variable is treated as the dependent variable and tries to reduce the 

dimension while maximizing the separation of classes (Maitra and Yan 2008). OPLS-DA is performed 

to discriminate different classes or groups involved in a study and to extract variables (loadings) (e.g. 

metabolites) responsible for the class discrimination. To conclude, PCA is first performed to get an 

overview of the metabolomics data and can be extended through an PLS-DA/OPLS-DA method to 

classify the data. The application of PCA and OPLS-DA on an experimental metabolomics data set of 

fecal samples is explicitly described and illustrated below in the following chapters 2 and 3. 
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1.6 Thesis structure  

The presented thesis is structured into two main chapters of nutritional studies, including mass 

spectrometry based metabolomics analyses to investigate the prebiotic and probiotic impacts on the 

human fecal metabolome. A general overview of the structure in this thesis is illustrated in Figure 1.6-1. 

In the first nutritional study, the impact of resistant starch on the human gut microbiome and fecal 

metabolome of participants with reduced insulin sensitivity was discussed (Chapter II). Further, shotgun 

proteomics and 16S rRNA sequencing analyses were performed. The integration of all three “omics”-

datasets finally provided insights into a global systems-level understanding of host, including microbial 

metabolism and protein expression. The main effects of the resistant starch diet on the human gut 

microbiome and on the functions that each “omics”-discipline carried out was discussed. Chapter III 

reviewed the impact of early life intervention with bifidobacteria-supplemented formula on the infant 

fecal metabolite profile with in the first year of life, in contrast to breastfed and non-interventional formula 

fed infants. It was demonstrated, that diet can influence the composition of the human fecal metabolome 

differently, wherefore the overall results discussed in this thesis are summarized in chapter IV.  

 

Figure 1.6-1: Thesis structure 
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Additional information is given in the supplement (chapter V), including MS/MS spectra of MS/MS 

experiments performed in both studies, described in chapter 2 or chapter 3, respectively. The appendix 

(chapter VI) contains specific and detailed material and methods parameter, as well as tables of the 

discussed findings of the results and discussion sections of chapter II and III.  
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Effect of resistant starch on the gut microbiome 
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Chapter II 

2 Effect of resistant starch on the gut microbiome 

2.1 Introduction 

Excessive body weight and its associated metabolic disorders, including diabetes and cardiovascular 

disease (CVD) (Chang et al. 2016), reached epidemic proportions over the last few decades. 

Identification of effective strategies for prevention and management of these chronic conditions is a 

matter of urgency. Therefore, the objective of this study was to assess the effects of diets varying in 

digestibility of carbohydrates (prebiotics) on metabolism and the gut microbiome of individuals suffering 

from insulin resistance, the antecedent of diabetes type II.  

The main function of insulin is to reduce the blood sugar level (Stryer 1995). In healthy individuals, 

insulin is released to reduce the blood sugar level. After the blood sugar level is normalized the level of 

insulin in the blood is decreased as well. Further, insulin is responsible for the uptake of glucose in the 

cells, especially of liver, muscles and fat tissue (Stryer 1995). Participants suffering from insulin 

resistance already show higher blood sugar levels (Shahidi and de Camargo 2016) and higher levels 

of insulin in the blood (hyperinsulinaemia) (Shanik et al. 2008); the cells are not capable to react to 

insulin and the blood sugar level cannot be reduced, which leads to an increased release of glucose in 

the urine. Recent evidence suggests that diet, lifestyle and drugs interact with and modify the gut 

microbiome (Turnbaugh et al. 2009, Bergeron et al. 2016, Ussar et al. 2016) in a manner that may 

influence metabolic regulation and disease susceptibility (Conlon and Bird 2014). One of the properties 

of the gut microbiome is its capacity to influence energy recovery through catabolism of poorly digestible 

nutrients, such as RS and other polysaccharides, operating as prebiotics (Conlon and Bird 2014) . 

In general, prebiotics are food additives and dietary non-digestible or slowly digestible, but partially 

fermented oligosaccharides, promoting the growth, composition and activity of health-beneficial 

bacteria in the intestine (Gibson and Roberfroid 1995, Thomas et al. 2014), such as bifidobacteria 

(Walker et al. 2011). Further, prebiotics modulate the abundance of Faecalibacterium prausnitzii 

(Miquel et al. 2013). Prebiotics serve as nourishment for the gut microbes, which anon supply the host 

with energy and essential nutrients (Topping et al. 2007). Prebiotic food additives are represented by 

numerous non-digestible carbohydrates (e.g. RS). In general, RS is resistant to pancreatic amylase 
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digestion and is not absorbed in the intestine (Fuentes-Zaragoza et al. 2011). Furthermore, several 

health-promoting and gut microbes’ beneficial applications of RS can be summarized. First, RS acts as 

substrate to influence the growth of definite microbes (e.g. lactobacilli and bifidobacteria). Second, it 

acts as dietary fiber to promote health and metabolic diseases (Fuentes-Zaragoza et al. 2011). Based 

on the nutritional characteristics, it is classified into four main types: RS 1 is a physically inaccessible 

starch, present in milled grains and seeds. RS 2 occurs in a granular form (e.g. high amylose corn) and 

cannot be digested through enzymes but is digestible very slowly in the small intestine. RS 3 is a 

retrograded starch and the most RS form, which resists enzyme digestion. The last type, RS 4 is 

chemically modified starch ((Fuentes-Zaragoza et al. 2011). 

The most common RS in food are, with up to 70 percent, predominately amylopectin and amylose. 

High-amylose containing starches are resistant to amylolytic processes through the enzymatic digestion 

by amylase (Topping et al. 2007). The prebiotic potential of high-amylose starch was already studied in 

pigs and in mice. It was found, that fecal concentrations and excretion of Bifidobacterium longum were 

higher when RS was fed, than in fecal sample of pigs fed a conventional starch (Brown et al. 1997). In 

fecal samples of mice fed with high-amylose starch an increase of LAB numbers was observed (Brown 

et al. 1998). The detected increases of B. longum in pigs are similar to the impact of other prebiotics 

reported in several human studies. Both studies revealed, that RS, especially in the form of 

amylose/amylopectin qualifies as a prebiotic (Topping et al. 2007). However, the impact of RS on the 

fecal metabolite profile (non-targeted and targeted), except SCFA, is not clearly investigated yet, which 

further reveals the relatively low number of studies conducted to investigate the impact of RS in the gut 

microbiome in a metabolomics matter, in contrast to the high number of studies dealing with bacterial 

species. Therefore, this chapter mainly focused on the metabolomics perspective of the impact of RS 

on the fecal metabolite profile.  
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2.2 Study design and objective 

The effects of resistant (amylose) vs. rapidly digested (amylopectin) starches were studied in a 

controlled, randomized, within-subjects’ crossover dietary intervention trial in 16 subjects with reduced 

insulin sensitivity. In this study, 26 women and 13 men were enrolled, with 23 participants being 

assigned to the high carbohydrate arm (HC), containing 60% of total carbon and 16 participants being 

assigned to the low carbohydrate arm (LC), containing 40% of total carbon in the diet. In general for 

both diet arms, several criteria were set for participation, including being insulin resistant with a 

homeostatic model assessment insulin resistance parameter (HOMA-IR) > 50th percentile for sex, 

overweight or obese (BMI between 27 and 35 kg/m2), Other eligibility criteria were as follows: Male 

participants were older than 20 and post-menopausal female participants older or equal to 43 years, 

having no menses for ≥3 years or ≥1 year < 3 years, and an appropriate follicle-stimulating hormone 

(FSH) plasma concentration. Additionally, participants did not take any drugs, were non-smokers and 

had no record of chronic diseases and were healthy apart from their insulin resistance (Maier et al. 

2017). Furthermore, clinical criteria for participation were fasting glucose (<126 mg/dL), fasting 

triglycerides (<500 mg/dL), blood pressure (<150/90), low density lipoprotein (LDL) and total cholesterol 

(≤ 90th percentile for age and gender) and having a stable weight with <3% change 3 months prior to 

the study. Additionally, participants avoided consuming alcohol and any other dietary supplements over 

the period of the study. Further details of the study design are given in Bergeron et al. (Bergeron et al. 

2016) and Maier et al. (Maier et al. 2017). The study protocol was approved by the Institutional Review 

Board of Children’s Hospital and Research Center of Oakland (CHORI). All participants gave written 

informed consent to take part in the study. The study protocols were approved by the Human Subjects 

Committee of both Children’s Hospital Oakland Research Institute and Lawrence Berkeley National 

Laboratory. Written informed consent was obtained from each subject (Maier et al. 2017).  

Within this thesis, the focus was on the LC diet arm, wherefore the study design is presented in Figure 

2.2-1. The first two weeks all participants consumed the same baseline diet (n= 14) and were then 

assigned to a sequence of the two experimental diets: a high resistant starch (HRS) diet containing 38 

grams of RS and a low resistant starch (LRS) diet containing 2 grams of RS. Each diet period lasted 14 

days with a 7 days home diet and 7 days baseline diet in between. Within each diet group the 

participants first consumed the diet 1 (either HRS or LRS) for 2 weeks. Afterwards, participants 

consumed diet 2 (opposite to diet 1) for another 2 weeks (Maier et al. 2017). The baseline diet and both 
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RS diets contained similar macronutrient distribution. However, the baseline diet was low in foods 

containing naturally-occurring RS. Both diets contained a type 2 resistant starch (RS2), which was a 

granular form of high amylose cornstarch. In the HRS diet, Hi-maize 260 cornstarch (42g RS/100g 

starch, National Starch and Chemical Co., Bridgewater, NJ) was used, whereas for the LRS diet Melojel 

(2g RS/100g starch, National Starch and Chemical Co., Bridgewater, NJ) was used. Participants 

assigned to the LRS diet consumed Melojel predominately in baked goods, which was mostly cooked. 

Participants assigned to the HRS diet consumed 50% of the Hi-Maize starch raw. Here the starch was 

mixed with other food in fruit purees, soups and beverages (Bergeron et al. 2016).  

Fecal samples were collected from 16 participants of the LC diet arm over three time points: day 14: 

after baseline diet; day 28: after the first diet period (DIET 1); and day 56: after the second diet period 

(DIET 2) and divided into 5 groups: G1: Baseline diet; G2: HRS diet (Day 28); G3: LRS diet (Day 28); 

G4: LRS diet (Day56) and G5: HRS diet (Day 56) as seen below (Figure 2.2-1). Fecal samples were 

collected for metabolite analysis by (-/+) FT-ICR-MS (metabolomics), 16S rRNA sequencing (genomics) 

and for protein analysis using 2D LC-MS/MS (proteomics). 

 

 

Figure 2.2-1: Study design to investigate the impact of resistant starch on the human gut microbiome. 
 

From Maier, T. V.; Lucio, M.; Lee, L. H.; VerBerkmoes, N. C.; Brislawn, C. J.; Bernhardt, J.; Lamendella, R.; 

McDermott, J. E.; Bergeron, N.; Heinzmann, S. S.; Morton, J. T.; González, A.; Ackermann, G.; Knight, R.; Riedel, 

K.; Krauss, R. M.; Schmitt-Kopplin, P.; Jansson, J. K.: Impact of Dietary Resistant Starch on the Human Gut 

Microbiome, Metaproteome, and Metabolome. mBio vol. 8 no. 5 e01343-17 (2017). Illustration modified from (Maier 

et al. 2017), Copyright (2017) Maier et al., Information about the creator and respective contributions, as well as 

the original material are available: http://mbio.asm.org/content/8/5/e01343-17.full with the original title: Crossover 

study design. Licence notice: https://creativecommons.org/licenses/by/4.0/.  
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2.3 Material and Methods 

2.3.1 Metabolomics 

2.3.1.1 Metabolite extraction 

Fecal sample collection and the metabolite extraction was performed in the Lamendella lab (contact: 

Dr. Regina Lamendella) from the Biology Department at the Juniata College in Huntingdon, 

Pennsylvania, USA. Fecal water and methanol (MeOH) extracts were prepared of the fecal samples 

and all extraction steps were performed on ice. For fecal water extraction, approximately 15 g of each 

stool sample was homogenized with 20 mL cold sterile water in a conical 50 mL Falcon tube, by using 

a hand-held homogenizer (VDI 12 Homogenizer 115V VWR #82027-184) at full speed (30,000 rpm) for 

2 x 30 s, with cooling on ice in between homogenization periods. The homogenate was split into four 

50 mL conical Falcon tubes, of which two tubes were prepared for metabolite extraction and the other 

two for proteomics (Chapter 2.3.3.1). For fecal water, the homogenate was centrifuged at 4 °C, 14,000 

x g for 10 minutes and the aqueous supernatant was decanted and stored at -80 °C, whereas the 

remaining cell pellet was used for MeOH extraction. For MeOH extraction, 1.2 mL of cold (-20 °C) MeOH 

was added to each of both tubes of the fecal water extraction and briefly mixed by vortexing. Further, 

the cells were lysed by pressure cycling at 30,000 psi with 30 cycles using the Barocycler NEP3229 

(Pressure Biosciences, Easton, MA, USA). Afterwards, the lysates were centrifuged for 10 minutes (4 

°C, 14,000 x g). Both supernatants of the MeOH extract were combined into a fresh microcentrifuge 

tube and stored at -80 °C prior to the analysis by FT-ICR-MS (Maier et al. 2017). 

2.3.1.2 Metabolomics using direct infusion FT-ICR-MS analysis 

Each MeOH extract was diluted 1:4 with ice cold MeOH. Samples were measured randomized in 

negative and positive ESI mode using an ultrahigh resolution solariX™ FT-ICR-MS (Bruker Daltonik 

GmbH) with a 12 T superconducting magnet and an Apollo II ESI source. The instrument was calibrated 

using a 5 ppm arginine solution. In both ionization modes, 500 scans for each sample were acquired in 

single MS mode within a mass range from m/z 122.9 to m/z 1000 in (-) ESI and from m/z 147.4 - m/z 

2000 in the (+) ESI mode. The MS parameters were as follows: capillary: -3600 V/3700 V (-/+), nebulizer 

pressure = 2.0 bar, dry gas = 4.0 L/min and dry temperature = 180 °C (Maier et al. 2017). Further 

parameters are listed in Table 6.1-3. A detailed list of chemicals is given in Table 6.1-1.  
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2.3.1.3 Data processing 

Ultra-high resolution mass spectra were processed using DataAnalysis 4.0 SP2 (Bruker Daltonik 

GmbH). The (-) FT-ICR-MS mass spectra were calibrated internally using a reference list of known 

masses (fatty acids) with an error below 0.075 ppm. The (+) FT-ICR-MS spectra were calibrated with 

an error below 1 ppm. All mass spectra were exported as ASCII files with a signal-to-noise ratio above 

4 and a relative intensity threshold of 0.001% of the base peak using the AutomationEngine 4.0 (Bruker 

Daltonik GmbH). ASCII files were converted to ASC files by in-house software, before all spectra were 

aligned to a data matrix with an error of 1 ppm by in-house software. Through the alignment step the 

data matrix of the (-) FT-ICR-MS mode resulted in 97 483 mass signals, whereas the data matrix of the 

(+) FT-ICR-MS mode contained 115 287 mass signals. Firstly, both aligned data matrices were filtered 

by mass signals counted < 5 times in n = 45 mass spectra and a mass defect above 0.8, which resulted 

in 14 167 mass signals for (-) ESI mode and 19 652 mass signals for (+) ESI mode. Further filtration 

steps were applied, where the mass signals were assigned to molecular formulas using Netcalc (Tziotis 

et al. 2011) (network tolerance = 0.2 ppm; NetCalc tolerance = 0.2 ppm). Additionally, the mass signals 

were searched against the KEGG (Kanehisa and Goto 2000, Kanehisa et al. 2008), Human 

Metabolome Database (HMDB) (Wishart et al. 2007) and Lipid Maps (www.lipidmaps.org) databases 

using homo sapiens (hsa) as reference organism using the MassTRIX web server (Wagele et al. 2012) 

with a maximum error of 1 ppm. The final matrices for all data analysis steps within this thesis contained 

5552 mass signals for the (-) FT-ICR-MS mode and 14 891 mass signals for the (+) FT-ICR-MS mode, 

consisting of mass signals which further could be assigned to a molecular formula and to compounds 

listed in databases (Maier et al. 2017). 

2.3.1.4 Multivariate Data Analysis: unsupervised and supervised techniques 

The data sets were evaluated through unsupervised (e.g. PCA) and supervised techniques (e.g. OPLS-

DA). The PCA was applied by using SIMCA-P 9.0 (Umetrics, Umeå, Sweden) and the OPLS-DA was 

performed by SIMCA-P 13.0.3.0 (Umetrics, Umeå, Sweden). For the PCA analysis, the dataset was 

unit variance (UV) scaled. For OPLS-DA of the metabolomics data, the dataset was UV scaled. For 

each classification model, CV-ANOVA was applied in order to verify the robustness of each model. 

Indicators, such as the p-value, the goodness-of-fit R2Y(cum) and the goodness-of prediction Q2(cum) 

were reported (Maier et al. 2017).  
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2.3.1.5 Significance testing, data handling and visualization 

The level of significance was tested by applying the post hoc Kruskal-Nemenyi test for pairwise test of 

multiple comparisons of mean rank sums in R (Computing 2014) (package: ‘PMCMR’ version 4.1) 

(Pohlert 2014) . Heatmaps were generated by Hierarchical Clustering Explorer version 3.5 (Seo and 

Shneiderman 2002) (Human-Computer Interaction Lab. University of Maryland, College Park). 

Therefore, the data was normalized (X-m/σ) and clustered by rows (Euclidean distance) (Maier et al. 

2017). Boxplots and the log2 fold change were calculated and visualized in Microsoft Office Excel 2010. 

Correlation studies were conducted by Pearson correlation in Microsoft Office Excel 2010, whereas 

correlation coefficients were reported. The significance for the correlation (p-corr) was calculated in 

Microsoft Office Excel 2010 by applying the data analysis function “Regression”.  

2.3.1.6 Lipidomics approach by UHPLC-ToF-MS for MS/ MS analysis 

Fecal samples also were analyzed by a lipidomics-MS/MS approach (Witting et al. 2014) using an 

ACQUITY-UPLC® system (Waters GmbH, Eschborn, Germany) coupled to a Bruker maXis™ UHR-

qToF-MS (Bruker Daltonik GmbH, Bremen, Germany) with an Apollo II ESI source. Extracted 

methanolic fecal samples were measured in positive and negative ionization mode. Nitrogen was used 

as dry and nebulizer gas. Following parameters were applied: End plate Offset = -500V, Capillary= - 

4500 V (positive mode)/4000 V (negative mode), Nebulizer pressure = 2.0 bar, Dry gas = 8.0 L/min, 

Dry Temperature = 200 °C. Data was acquired also in MS/MS mode (data dependent acquisition, DDA) 

using the Bruker AutoMSn mode with alternating collision energies (collision energy ramp) and set 

default parameters for the isolation windows. Further details are listed in Table 6.1-5. 

A Cortecs C18 column [150 mm x 2.1 x 1.6 µm] (Waters GmbH, Eschborn, Germany) was used for 

separation, which was performed with a gradient consisting of Eluent A (60% ACN, 40% MilliQ water, 

10 mM ammonium formiate and 0.1% formic acid) and Eluent B (90% IPA, 10% ACN, 10 mM 

ammonium formiate and 0.1% formic acid). First, an isocratic step with 32% B was initiated for 1.5 

minutes. Until the 21st minute Buffer B was increased to 97% B and held for 4 minutes. Within 0.1 

minutes the gradient was set to initial conditions for 4.9 minutes to re-equilibrate the column. The flow 

rate was 250 µL/min. Five µL of each sample was injected by partial loop. Between 0.1 and 0.3 minutes 

a 1:4 diluted Low Concentration Tune Mix (Agilent, Waldbronn, Germany) was injected in order to 
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recalibrate each chromatogram. Chromatograms of both ionization modes were processed and aligned 

automatically as an end-to-end automation by using the Genedata Expressionist® Refiner MS for MS-

based metabolomics data from the Genedata AG. The adequate UHPLC-ToF-MS data processing 

workflows of both ionization modes were designed and provided by Dr. Michael Witting from the 

research unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Germany and adjusted as 

required for data processing. 

The lipidomics-MS/MS approach was considered for metabolite classification or identification of 

significantly impacted mass signals through the baseline, HRS or LRS diet. Therefore, mass spectra 

were processed and calibrated using Data Analysis 4.1 SR 1 (Bruker Daltonik GmbH). Chromatograms 

of the standards used for the MS/MS experiment were averaged, standard-dependent and calibrated 

with an error of less than 0.5 ppm using a reference list of standards of the injected calibration standard 

mix (G1969-85000, Agilent, Waldbronn, Germany). The mass spectra and extracted ion 

chromatograms (EIC) were extracted from each standard and representative sample with an error of 

±0.01 Da (Maier et al. 2017). 

2.3.1.7 Short-chain fatty acid analysis 

For the SCFA analysis, the fecal MeOH extracts and chemical standards (i.e. propionic acid, butyric 

acid, valeric acid and isovaleric acid) were prepared and derivatized on ice as instructed in the AMP+ 

Mass Spectrometry Kit (Caymen Chemicals) product insert. AMP+ is a positively charged reagent for 

the derivatization of carboxylic acids. This resulted in a total amount of 88 µL derivatized solution per 

sample and standard, which was further diluted with 352 µL of a mixture of solvents used for the analysis 

in the ratio 99:1 A:B (5 mM CH3COONH4 + 0.1% acetic acid:ACN (Bazanella et al. 2017, Maier et al. 

2017).  

The SCFA analysis was performed on an UHPLC-ToF-MS in (+) ESI mode. Gradient separation – with 

a total runtime of 22 minutes plus 2 minutes pre-run – of 1 µL each took place on a Waters BEH C8 

column (1.7 µm, 2.1mmx150mm) with A as 5 mM CH3COONH4 and 0.1% acetic acid and B with 100% 

ACN. Starting conditions of the gradient separation were 99% A, hold for 1 minute. Within 16 minutes 

%A was decreased from 99% A to 1% A and hold for further 2 minutes, followed by an increase to 99% 

A, which was hold for further 2.8 minutes. The flow rate of the mobile phase was constantly set to 0.3 
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mL/min and column temperature was set to 40 °C. At the first 0.1 minutes of each analysis, a 1:4 diluted 

ESI-L Low Concentration Tuning Mix (Agilent, Waldbronn, Germany) was injected for calibration 

purposes. The respective MS parameters were as follows. Mass range: m/z 50 – 1200, spectra rate: 

2.0 Hz, capillary: 4500 V, end plate offset: -500 V, nebulizer gas: 2.0 bar, dry gas: 8 l L/min, dry 

temperature: 200 °C. The photodiode array detector (PDA) was operated at an UV range from 190 – 

500 nm (Bazanella et al. 2017, Maier et al. 2017). Further details are given in Table 6.1-4. 

Prior to the extraction of the mass signals, the [M+H]+ adducts of the derivatized products, including the 

AMP+ reagent (185.11 amu) were calculated as follows:  

(𝑀)𝑀𝑜𝑛𝑜𝑖𝑠𝑜𝑡𝑜𝑝𝑖𝑐 𝑚𝑎𝑠𝑠 (𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒) −  𝐻2𝑂 + 𝐴𝑀𝑃+(𝐶12𝐻13𝑁2
+) = 𝑀 − 𝐴𝑀𝑃+ 

Equation 2.3.1-1: Calculation of the monoisotopic mass of the SCFA AMP+ derivate. 

Subsequently, retention time (RT) was extracted using DataAnalysis Version 4.1 (Bruker Daltonik 

GmbH, Bremen, Germany). The peak areas were extracted using QuantAnalysis Version 2.1 (Bruker 

Daltonik GmbH, Bremen, Germany) and evaluated. The peak areas of the respective compounds were 

extracted and quantified externally by using 8 calibration points via the calculated calibration function 

(Table 2.3-1). For significance testing of the SCFA, pyruvic acid and lactic acid in the different feeding 

groups, the post hoc Kruskal-Nemenyi test (package: ‘PMCMR’ version 4.1) (Pohlert 2014) was applied 

by using R Studio Version 0.99.489 (Bazanella et al. 2017, Maier et al. 2017).  

Table 2.3-1: External calibration results of the SCFA analysis.  
 

From Maier, T. V.; Lucio, M.; Lee, L. H.; VerBerkmoes, N. C.; Brislawn, C. J.; Bernhardt, J.; Lamendella, R.; 

McDermott, J. E.; Bergeron, N.; Heinzmann, S. S.; Morton, J. T.; González, A.; Ackermann, G.; Knight, R.; Riedel, 

K.; Krauss, R. M.; Schmitt-Kopplin, P.; Jansson, J. K.: Impact of Dietary Resistant Starch on the Human Gut 

Microbiome, Metaproteome, and Metabolome. mBio vol. 8 no. 5 e01343-17 (2017). Reprinted from (Maier et al. 

2017). Copyright (2017) Maier et al. 

name m/z (derivatized) RT [min] calibration function coefficient of determination method 

Propionic acid 241,1341 4.0 y = 1,2119x - 0,5784 R² = 0,9990 UV 
Butyric acid 255,1497 4,6 y = 59940x + 16956 R² = 0,9981 MS 
Isovaleric acid 269,1654 5,3 y = 82730x + 6202,9 R² = 0,9993 MS 
Valeric acid 269,1654 5,5 y = 92248x + 4883 R² = 0,9998 MS 

 



  2. Effect of resistant starch on the gut microbiome  

 

  37 

2.3.2 Genomics analysis 

2.3.2.1 DNA extraction, library preparation, and sequencing 

DNA extraction, sequencing, library preparation, data processing and interpretation was performed in 

the Lamendella Lab (contact: Dr. Regina Lamendella) from the Biology Department at the Juniata 

College in Huntingdon, Pennsylvania, USA and in the Children’s Hospital Oakland Research Institute, 

Oakland, CA 94609, USA, as well as by Gail Ackermann, Antonio González Peña and Rob Knight from 

the University of California, San Diego, USA. DNA from fecal samples were extracted in duplicate from 

0.25 g samples using the PowerSoil DNA extraction kit (MoBio, Carlsbad, CA) according to 

manufacturer’s instructions, including an additional heat lysis step for 5 minutes at 60ºC (Maier et al. 

2017).  

PCR amplification of the DNA was performed using an F515/R806 primer to target the V4-V6 region of 

the 16S rRNA gene and barcoded with a 12-base error-correcting Golay code as previously described 

by Caporaso et al. (Caporaso et al. 2011). Sequencing was performed on the Illumina HiSeq2000 

platform as previously described (Caporaso et al. 2012). Sequence data were analyzed using the 

Quantitative Insights into Microbial Ecology (QIIME) pipeline. Sequences were quality filtered and 

clustered into operational taxonomic units (OTUs) using the closed-reference OTU picking protocol at 

97% sequencing identity (Caporaso et al. 2010, Bergeron et al. 2016). Further, the taxonomy of each 

associated OTU was calculated as previously described (Lozupone and Knight 2005). Subsequently, 

the raw OTU data table was filtered, normalized and imported into R using the ‘phyloseq’ package 

(McMurdie and Holmes 2013). Further filtering steps were applied, including retaining samples if they 

contain more than 5000 reads and retaining OTUs if they appeared more than five times in more than 

5 samples, resulting in 1107 OTUs. To control for sequencing depth, OTU counts in each sample were 

proportionally scaled to an even depth of 5000 reads per sample. Using the raw biom table, the 

‘DESeq2’ package (Love et al. 2014) was used to identify OTUs which were differentially abundant 

between groups (Maier et al. 2017).  
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2.3.3 Proteomics analysis 

2.3.3.1 Protein extraction 

Protein extraction was performed in the Lamendella lab (contact: Dr. Regina Lamendella) from the 

Biology Department at the Juniata College in Huntingdon, Pennsylvania, USA. Following the metabolite 

extraction (chapter 2.3.1.1), for protein extraction, 5 mL of PBS were added to the remaining two tubes 

of homogenized fecal material, which were briefly vortexed. Afterwards, the mixture was centrifuged at 

4000 g, for 5 minutes (4 °C) to pellet larger debris, and the supernatants were transferred into a new 

50 mL conical Falcon tubes. Another 4 mL of cold PBS were added to the cell pellet/debris and 

homogenized again (full speed for 2 x 30 s), followed by centrifugation (10 minutes at 10,000 x g, 4 °C). 

The supernatants were discarded. The cell pellet was washed with cold PBS and re-suspended in 600 

µl of cold PBS, vortexed and centrifuged at 14,000 g for 10 min. The supernatant was discarded and 

the sample was stored at -80 °C prior to proteomics analysis (Maier et al. 2017). 

2.3.3.2 Metaproteomics approach 

The metaproteomics approach, including analyses and interpretation of the proteomics data was carried 

out by Lang Ho Lee from the Department of Genome Science and Technology, University of 

Tennessee, Knoxville, Tennessee, USA and Nathan VerBerkmoes from the University of Texas, El 

Paso, Texas, USA. Further information on the metaproteomics approach is given in (Maier et al. 2017). 

2.3.4 Multi-omics statistical analyses 

2.3.4.1 Network analysis: context likelihood of relatedness (CLR) method 

Network analysis using the context likelihood of relatedness (CLR) method was performed by Dr. Jason 

McDermott from the Biological Sciences Division at the Pacific Northwest National Laboratory (PNNL) 

in Richland, Washington, USA.   

In order to provide maximum overlapping, datasets between 16S and proteome, proteome and 

metabolome, as well as metabolome and 16S, pairs of datasets were assembled by matching 

participants from each individual dataset (16S, proteomics, and metabolomics). Afterwards, the 

combined data matrix was filtered to exclude those rows (OTU, protein, or metabolite, respectively) that 
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had more than 50% of values missing. On the filtered data matrix, the CLR method was applied, in 

order to determine shared information (Faith et al. 2007, McDermott et al. 2012). Six individual networks 

were constructed by applying a Z score filter of 6.5 to each dataset. Edges from individual networks 

were combined into a single network taking interactions from within a dataset (e.g. protein to protein) 

from the networks inferred from single datasets (e.g. proteomics) and inter-dataset edges from the 

appropriate combined datasets (e.g. protein to metabolite edges from the proteomics+metabolomics 

dataset). Differential expression was calculated as the fold change between mean abundance of each 

component (16S, protein, and metabolite) between participants of the HRS diet versus the baseline 

diet. Calculations also were performed between participants consuming the LRS diet versus those, 

consuming the baseline diet. The p-value was calculated using a two-sided Student’s t test. Networks 

were represented in Cytoscape (Shannon et al. 2003) and annotations from the individual data types 

were used to highlight clusters of components enriched in particular labels as indicated in the figures 

(Maier et al. 2017). 

2.3.4.2 Supervised ordination approach for multi-omics correlation 

Multi-omics integration as supervised ordination approach was done using SIMCA-P 13.0.3.0 

(Umetrics, Umea, Sweden). In order to study the three combined datasets, two different OPLS-DA 

models were built: the baseline diet to the HRS diet, and the HRS diet to the LRS diet. For integration 

of all different omics datasets, the samples were aligned in one matrix and were UV scaled. OPLS-DA 

loading plots were constructed to simultaneously visualize features of the genome, proteome and 

metabolome impacted by baseline, LRS or HRS diet. The loadings were extracted and visualized as 

loading plots using RStudio (Computing 2014)  (Version 0.99.489). For each classification model, CV-

ANOVA was applied in order to verify the robustness of each model. Indicators, such as the p-value, 

the goodness-of-fit R2Y(cum) and the goodness-of prediction Q2(cum) were reported (Maier et al. 2017). 

2.3.5 Visualizing complex genomic and proteomic data via Voronoi Treemaps 

Voronoi Treemap visualization of genomic and proteomic data was performed by Dr. Jörg Bernhardt 

from the department for Microbial Physiology and Molecular Biology at the Institute for Microbiology at 

the Ernst Moritz Arndt University of Greifswald and were developed and adapted for biological 

applications (Bernhardt et al. 2009, Otto et al. 2010, Mehlan et al. 2013) based on the originate work of 
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Ben Shneiderman (Shneiderman 1992), followed by an improvement to Voronoi treemaps performed 

by Balzer and Deussen (Balzer and Deussen 2005). Participant specific Pearson correlations of the 

genomic data with the RS regime assigned values of 0; 0.05 and 1 for baseline; LRS and HRS diets, 

respectively was performed. The participant's correlation values were averaged and visualized by using 

the following color code: -1: dark blue; -0.5: light blue; 0: medium grey; 0.5: orange; 1: dark red). The 

treemap polygon sizes correspond to the average count of OTUs calculated over all samples (Maier et 

al. 2017).  

The proteome data was normalized vertically. Baseline, HRS and LRS diets were considered for the 

data analysis. The taxon assignments were extracted from the original proteome data table and entries 

without assignments were extracted from UniProt, if possible. Still unassigned proteins were classified 

as “unassigned” or similarly. The proteome data of each participant was calculated as z-scores, which 

simplified color coding, since z-scores are symmetric around 0 and can be transformed easily to a color 

code. Additionally, the differences from participant to participant are still comparable, since z-scoring 

was applied for each single participant. Furthermore, the proteome data were condensed to the 

microbial species level and the Voronoi treemaps were colored accordingly to species. In order to 

assign the proteins to functional classes, all proteins were analyzed separately (microbial to COG and 

human to KEGG BRITE (Kanehisa et al. 2012)). Pearson correlation was applied with the RS regime 

assigned values of 0; 0.05 and 1 for baseline; LRS and HRS diets, respectively. Correlation values were 

colored with the same color code described above for the genomic data (Maier et al. 2017). 
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2.4 Results and Discussion 

2.4.1 Metabolomics perspective of positive and negative ionization techniques 

2.4.1.1 Global fecal metabolome analysis due to different diets 

In order to get an overview how the fecal metabolome was impacted by the baseline, HRS and LRS 

diet and how they interacted with each other, the fecal metabolite profiles of all participants of all diet 

periods were analyzed through PCA. Both ionization modes were considered separately, including 

metabolomic data analyzed in (-) FT-ICR-MS (Figure 2.4-1 A) and (+) FT-ICR-MS (Figure 2.4-1 B). The 

scores scatter plot of the (-) FT-ICR-MS mode data revealed a slight separation between the HRS diet 

and the baseline diet, as well as between the HRS and LRS diet. On the contrary, the LRS diet and the 

baseline diet seemed to have a similar pattern and appeared to be mainly clustered together in the 

scores scatter plot. In the (+) FT-ICR-MS mode, the scores scatter plot revealed a slight separation 

between the baseline diet and both RS diets, whereas the HRS diet and the LRS diet did not show a 

separation at all.  

 

Figure 2.4-1: Over view of the fecal metabolome visualized in unsupervised PCA scores scatter plots. 

Comparison of different groups through PCA (UV scaling) of participants of the baseline (blue), HRS (red) and LRS 

(green) diet with respect to different amounts of dietary starch, analyzed in (-) FT-ICR-MS (A) and (+) FT-ICR-MS 

(B) mode. All participants of all of dietary stages, including both time points of the dietary starch intake are 

illustrated. 

Afterwards, the fecal samples of participants at different dietary stages and different time points were 

investigated, wherefore several interrogations were of interest: 1. The impact of varying amounts of RS. 

2. The order of RS consumption and 3. The time effect of dietary starch intake. Therefore, the 
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participants were divided into 5 main groups, namely the baseline diet (G1), the RS groups at day 28 

with HRS diet (G2) and LRS diet (G3), as well as the RS groups at day 56, consuming LRS (G4) and 

HRS (G5) diet. The baseline (G1) was compared to HRS (G2) or LRS (G3) to investigate the impact of 

varying amount of RS, after the baseline diet, where no RS was given and individuals were fed the 

same diet. Further, the HRS diet at day 28 (G2) was compared to the LRS diet at day 28 (G3) to 

investigate the impact of HRS or LRS at the same time point, as given in the models comparing G4 and 

G5 at day 56, too. There, it will be investigated if the time metabolite profile comparing the HRS and 

LRS diet differs between day 28 and day 56. Therefore, the individuals were fed again with the baseline 

diet for 7 days, followed by the second diet period at day 56 to create a comparable base between the 

starting point of the study and the second diet period. Another interrogation was, if the fecal metabolite 

profiles of the same diet at different time points were similar, wherefore the metabolite profiles between 

both HRS diets (G2 and G5), as well as both LRS diets (G3 and G4) were compared.  

To investigate this, the fecal metabolome measured either in (-) FT-ICR-MS or (+) FT-ICR-MS mode 

was investigated through PCA. The scores scatter plots of the fecal metabolome measured in (-) FT-

ICR-MS mode (Figure 2.4-2) showed a clear separation between baseline diet (G1) and HRS diet at 

day 28 (G2), but no separation could be achieved comparing samples of the baseline diet and LRS diet 

at day 28 (G3). Further, a separation between HRS (G2) and LRS (G3) at day 28, between HRS (G4) 

and HRS (G5) at day 56 as well as in the merged HRS (G2, G5) and merged LRS (G3, G4) diet groups 

could be observed in the scores scatter plots.  
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Figure 2.4-2: Unsupervised PCA scores scatter plots comparing the fecal metabolome 

Comparison of different groups through PCA (UV scaling) of participants of the baseline (blue), HRS (red) and LRS 

(green) diet with respect to different time points, analyzed in (-) FT-ICR-MS mode. Top left: Baseline versus HRS 

(Day 28). Top right: Baseline versus LRS (Day 28). Middle left: HRS (Day 28) versus LRS (Day 28). Middle right: 

HRS (Day 56) versus LRS (Day 56). Bottom: HRS versus LRS, merged time points. 

In (-) FT-ICR-MS mode, the metabolite profile through either high or low amount of RS compared to the 

baseline diet was changing extremely through the HRS diet, but relatively sparse through LRS diet, 

implying that the amount of RS played a crucial role on the response of the fecal metabolome. 

Therefore, the metabolite profile comparing the HRS and LRS diet – in both time points - was altered 

as well, whereas more significant features could be assigned to the HRS diet.  
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In general, the metabolite profile of the HRS diet at day 28 was comparable to the one of the HRS diet 

at day 56. However, it turned out that the metabolites significantly altered at day 28 of HRS diet were 

also present in the samples of the HRS diet at day 56, but showed comparably low intensity levels if 

LRS was consumed as diet 1 (day 28) followed by the HRS diet as diet 2 (day 56). This leads to the 

analysis, if the fecal metabolite profile changed between HRS at day 28 (G2) and LRS at day 56 (G4) 

of the same individuals, as well as between LRS at day 28 (G3) and HRS at day 56 (G5) of the same 

individuals. It was detected, that if HRS diet was consumed first, followed by the LRS diet, changes 

were more dominant (Figure 2.4-3 A), than when LRS diet was consumed first and followed by the HRS 

diet (Figure 2.4-3 B). Nevertheless, the significant metabolites between HRS and LRS at both time 

points were comparable, though with different intensity levels.  

 

Figure 2.4-3: Unsupervised PCA scores scatter plots comparing the fecal metabolome due to different 
order.  

Comparison of different groups through PCA (UV scaling) of participants of the HRS (red) and LRS (green) diet 
with respect to different order of low and high RS intake of the same individuals, analyzed in (-) FT-ICR-MS mode. 
A: HRS of Day 28 versus LRS (Day 56). B: LRS (Day 28) versus HRS (Day 56). 

In (+) FT-ICR-MS mode, not only baseline diet and HRS, but also baseline and LRS diet showed a 

separation in the scores scatter plot (Figure 2.4-4). Here, it was remarkable that the separation was 

driven by baseline characteristic metabolites, wherefore the comparison between HRS and LRS diets 

showed no separation at all. In (+) FT-ICR-MS mode, the separations in the scores scatter plots of the 

PCA were predominantly driven by metabolites discriminative between the baseline diet and the RS 

diets. Differences in the metabolite profiles between the HRS or LRS diets at the same time points, and 
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between day 28 and day 56 of the HRS and LRS diets were rather sparse, compared to the significant 

changes between HRS and LRS observed in the (-) FT-ICR-MS analyses. 

 

Figure 2.4-4: Unsupervised PCA scores scatter plots comparing the fecal metabolome.  

Comparison of different groups through PCA (UV scaling) of participants of the baseline (blue), HRS (red) and LRS 
(green) diet with respect to different time points, analyzed in (+) FT-ICR-MS mode. Top left: Baseline versus HRS 
(DIET 1). Top right: Baseline versus LRS (DIET 1). Bottom: HRS versus LRS, merged time points. 

There were no differences in the metabolite composition between both HRS diets at two different time 

points. Also, between both LRS diets at different time points no differences could be observed. 

Additionally, comparing the two RS groups by merging both HRS and both LRS diets, no changes could 

be observed. In 2015, Ordiz et al. investigated the impact of RS type 2 on the fecal metabolite profile 

of Malawi children suffering from intestinal inflammation (Ordiz et al. 2015). They did not see that RS 

reduced the inflammation, but they also detected different metabolite profiles between RS-rich diet and 

their habitual diet, predominantly caused by small organic metabolites increased by RS consumption. 

Also Lu et al. observed different metabolite profiles in fecal water samples of growing pigs after the 

consumption of a low or high RS diet (Lu et al. 2016). These findings agreed with our result that RS 

altered the metabolite profile differently than the baseline diet and a diet low in RS.  
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2.4.1.2 OPLS-DA for metabolite discrimination applied on different classification models 

In order to classify the discriminant mass signals responsible for the separation, OPLS-DA classification 

models were applied of the (-) FT-ICR-MS (Maier et al. 2017)and the (+) FT-ICR-MS data. The PCA 

scores scatter plots already showed a separation between the different diets, especially between the 

baseline (G1) and HRS diet (G2), but also between HRS (G2, G5) and LRS (G3, G4) diets. 

Nevertheless, in order to detect mass signals responsible for the separation, several OPLS-DA 

classification models were performed of both, the (-) FT-ICR-MS and the (+) FT-ICR-MS data, as listed 

in Table 2.4-1. Each model was validated by cross validation analysis of variance (CV-ANOVA). 

Furthermore, the p-value, the goodness-of-fit R2Y(cum) and the goodness-of prediction Q2(cum) were 

reported. In negative mode, the classification models comparing the baseline diet (G1) to the LRS diet 

(G3), and comparing both diets at different time points (e.g. HRS (day 28) vs. HRS (day 56)) were not 

valid, as they did not pass the CV-ANOVA step. Nevertheless, seven valid OPLS-DA classification 

models could be achieved: 1. Baseline (G1) versus HRS diet (G2); 2. HRS (G2) versus LRS diet (G3); 

3. HRS diet (G2, G5) versus LRS diet (G3, G4), merged time points; 4. HRS diet (G2) versus LRS diet 

(G3, G4); 5. Baseline diet (G1) versus all other diets at all time points; 6. HRS diet (G2, G5) versus all 

other diets and 7. LRS diet (G3, G4) versus all other diets.  

On the contrary, in the positive mode there were no discriminant mass signals between the HRS and 

LRS diet at the same time point or at different time points. Also, here, the models comparing the same 

diet at different time points were not valid, wherefore no big differences in the metabolite profiles could 

be assumed. However, a classification model comparing the baseline diet (G1) and the HRS diet (G2), 

as well as a model comparing the baseline diet (G1) and the LRS diet (G3) could be achieved. Based 

on those models, another OPLS-DA classification model of the baseline diet (G1) and both RS diets at 

both time points (all other) was set up, which appeared to be highly valid, proved through CV-ANOVA. 

The previously described classification models indicated that the baseline diet displayed more 

discriminative mass signals in the positive ionization mode compared to the both RS diet and between 

both RS diets. Additionally, all mass signals detected as discriminant for each OPLS-DA classification 

model were subjected to another statistical test, the post hoc Kruskal-Nemenyi test for multiple 

comparisons of mean rank sums of the baseline diet, HRS and LRS diet.  
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Table 2.4-1: OPLS-DA models to compare different diet set-ups. 

OPLS-DA models were created to compare different diet set-ups of fecal samples acquired through (-) FT-ICR-MS 
and (+) FT-ICR-MS. For (-) FT-ICR-MS OPLS-DA models: From Maier, T. V.; Lucio, M.; Lee, L. H.; VerBerkmoes, 
N. C.; Brislawn, C. J.; Bernhardt, J.; Lamendella, R.; McDermott, J. E.; Bergeron, N.; Heinzmann, S. S.; Morton, J. 
T.; González, A.; Ackermann, G.; Knight, R.; Riedel, K.; Krauss, R. M.; Schmitt-Kopplin, P.; Jansson, J. K.: Impact 
of Dietary Resistant Starch on the Human Gut Microbiome, Metaproteome, and Metabolome. mBio vol. 8 no. 5 
e01343-17 (2017). Reprinted and modified from (Maier et al. 2017). Copyright (2017) Maier et al. 

Description Model R²Y(cum) Q²(cum) p (CV-ANOVA) 

     

(-) FT-ICR-MS     

     

Baseline vs. HRS (Day 28) G1 vs. G2 0,68 0,52 0.037 

Baseline vs. LRS (Day 28) G1 vs. G3 - - n.s. 

HRS (Day 28) vs. LRS (Day 28) G2 vs. G3 0.99 0.67 < 0.001 

HRS (Day 28) vs. LRS (Day 56) G2 vs. G4 0,78 0,50 0.043 

LRS (Day 28) vs. HRS (Day 56) G3 vs. G5 - - n.s. 

HRS (Day 28) vs. HRS (Day 56) G2 vs. G5 - - n.s. 

LRS (Day 28) vs. LRS (Day 56) G3 vs. G4 - - n.s. 

HRS vs. LRS (G2, G5) vs. (G3, G4) 0,44 0,28 0.017 

LRS vs. HRS (Day 28) (G3, G4) vs. G2 0,92 0,56 0.016 

Baseline vs. all other G1 vs. all other 0,84 0,46 <0.001 

HRS vs. all other (G2,G5) vs. all other 0,43 0,32 <0.001 

LRS vs. all other (G3,G4) vs all other 0,83 0,39 0.014 

     

(+) FT-ICR-MS     

     

Baseline vs. HRS (Day 28) G1 vs G2 0.99 0.58 0.032 

Baseline vs. LRS (Day 28) G1 vs G3 0.87 0.40 0.055 

Baseline vs. all other G1 vs. all other 0.78 0.45 <0.001 

HRS (Day 28) vs. LRS (Day 56) G2 vs. G4 - - n.s. 

LRS (Day 28) vs. HRS (Day 56) G3 vs. G5 - - n.s. 

HRS (Day 28) vs. HRS (Day 56) G2 vs. G5 - - n.s. 

LRS (Day 28) vs. LRS (Day 56) G3 vs. G4 - - n.s. 

 

The OPLS-DA scores scatter plots of the discrimination between both RS diets at the same time point, 

and the merged time points of the HRS and LRS diet is displayed in Figure 2.4-5 A and B, respectively. 

Here, a trend toward separation was observed between the HRS and LRS diets (Maier et al. 2017). 
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Figure 2.4-5: OPLS-DA scores scatter plot of fecal metabolome of HRS diet vs. LRS diet.  

Comparison of different groups through OPLS-DA (UV scaling) of participants of the HRS (red) and LRS (green) 
diet with respect to different time points, analyzed in (-) FT-ICR-MS mode.  A: HRS versus LRS diet, both at day 
28. B: HRS versus LRS, merged time points. From Maier, T. V.; Lucio, M.; Lee, L. H.; VerBerkmoes, N. C.; Brislawn, 
C. J.; Bernhardt, J.; Lamendella, R.; McDermott, J. E.; Bergeron, N.; Heinzmann, S. S.; Morton, J. T.; González, 
A.; Ackermann, G.; Knight, R.; Riedel, K.; Krauss, R. M.; Schmitt-Kopplin, P.; Jansson, J. K.: Impact of Dietary 
Resistant Starch on the Human Gut Microbiome, Metaproteome, and Metabolome. mBio vol. 8 no. 5 e01343-17 
(2017). Figure A reprinted and modified from (Maier et al. 2017). Copyright (2017) Maier et al. 

Although the model comparing the HRS diets at different time points (G2 vs. G5) achieved through 

OPLS-DA analyses was not significant at all, the model comparing the baseline diet and the HRS diet 

at day 28 (G2) (Figure 2.4-6 A) revealed a few metabolites more strongly increased in HRS at day 28 

(G2), than in HRS diet at day 56 (G5) compared to the baseline diet, but not significantly different from 

the HRS diet at day 56 (G5). Plotting the discriminative metabolites between baseline and HRS diet, 

the S-plot of the OPLS-DA analyses revealed several metabolites increased in the HRS diet on day 28. 

Those were heptadecenoic acid (C17:1), heptadecanoic acid (C17:0), octadecanoic acid (C18:0), 

icosanoic acid (C20:0), hexacosanedioic acid, cholesterol sulfate and an unknown metabolite (m/z 

423.34797). In general, those metabolites showed consistently increased intensity levels through HRS 

diet intake at both time points compared to the baseline diet, but showed more diverse intensities levels 

in the respective HRS diet groups. One metabolite, namely pentadecanoic acid (C15:0, Figure 2.4-6 C) 

differed significantly between the HRS diet on day 28 and day 56 (p-value = 0.0105), being increased 

in day 28.  
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Figure 2.4-6: Differences between baseline and HRS diet at different time points  

A: OPLS-DA scores scatter plot of fecal metabolome, measured in (-) FT-ICR-MS mode of baseline diet and HRS 
diet on day 28. B: S-Plot displaying mass signals highly discriminative between baseline and HRS diet on day 28, 
impacted differently in the HRS diet at day 56, such as (C) pentadecanoic acid, (D) heptadecenoic acid, (E) 
heptadecanoic acid, (F) octadecanoic acid, (G) icosanoic acid, (H) hexacosanedioic acid and (I) cholesterol sulfate. 
Further details are given in Table 6.1-7 

Already the PCA revealed, if HRS diet was consumed first, followed by the LRS diet, changes were 

more dominant than the other way around. This was also confirmed by the OPLS-DA classification 

models comparing the impact of the order of RS (G2 vs. G4 or G3 vs. G5) consumption. Obviously, 

fatty acids were predominately altered by diet. Compared to the baseline diet, octadecanoic acid was 

highly increased through HRS consumption, whereas its related unsaturated species, including 

octadecenoic acid, octadecadienoic acid and octadecatrienoic acid were decreased. Its related 

unsaturated species, as well as a hydroxylated octadecanoic acid were high in participants consuming 

the baseline diet.  

The model comparing the HRS diet at day 28 (G2) to the LRS diet at day 56 (G4) of the same individuals 

was slightly significant, whereas the other order was not. However, even despite some small 

differences, the two HRS diets had a similar impact on the global metabolite profile, independent of the 

time point or order of dietary starch intake. Since the OPLS-DA classification models comparing the 
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HRS diets at different time points and the LRS diet at different time points were not valid, the analyses 

were continued with considering both HRS diets as one group, as well as both LRS diets as one group.  

In order to gain a first overview of the number of mass signals and metabolites discriminative for each 

diet class and for each OPLS-DA classification model, the loadings of each model-related S-plot 

ordinates were reported (w[1] and p(corr)). These values were calculated as percentages (%w and %p) 

of the highest discriminative metabolite of each group, averaged and logarithmized. Mass signals up to 

60% of %w (equal to log > 1.78) were counted as significant for each respective group, whereby double-

listing in more than on model was possible. This resulted in several mass signals significantly altered 

by the HRS diet compared to the baseline diet and the LRS diet. In Figure 2.4-7 the significant mass 

signals for each OPLS-DA classification model and each diet are illustrated. As previously mentioned, 

a great number of mass signals were changed towards the HRS diet (17.6% - 26.4% of the metabolome 

(n=5552 mass signals)) in all classification models containing the HRS diet, and relatively few were 

significantly altered between the baseline (1.2% - 1.5%) and LRS diet (0.9% - 1.2%). 

 

Figure 2.4-7: Overview of significant mass signals obtained through OPLS-DA. 

Number of significant mass signals obtained through different OPLS-DA classification models of the (-) FT-ICR-
MS mode comparing baseline (blue), HRS (red) and LRS (green) at different time points, as well as diet wise 
comparison to other groups.  
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Following this, the mass signals were assigned to metabolites using the MassTRIX webserver (Wagele 

et al. 2012), which allowed classifying the significant mass signals to compound classes (Figure 2.4-8 

A), and main pathways (Figure 2.4-8 B) of the KEGG pathway database. Only mass signals, which 

could be clearly assigned to a main compound classes or main pathways, respectively were taken into 

account for the calculations. Mass signals were excluded, if they were assigned to more than one main 

compound class, or more than one main pathway, or if the identification was unclear. Significantly 

increased mass signals in the HRS diet were predominately FAs (4.1% - 5.2%) and STs (4.7% - 7.7%). 

Through the pathway analysis, the lipid metabolism (1.8% - 2.8%), the metabolism of terpenoids and 

polyketides (1.8% - 2.2%), and the biosynthesis of other secondary metabolites (1.5% - 2.0%) could be 

detected to be affected through the consumption of a high amount of resistant starch. This analysis 

stated that RS consumption of either low or high in RS affected various compound classes differently 

and stressed the impact of RS on human metabolism.  
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Figure 2.4-8: Mass signals classified into (A) number of compound classes and (B) main pathways. 

Number of significant compound classes of the Lipid Maps database and main pathways of the KEGG pathway 
database assigned through the MassTRIX webserver, calculated based on the OPLS-DA classification models of 

the (-) FT-ICR-MS mode. 
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For the (+) FT-ICR-MS mode further classification models were applied. Here, baseline diet (G1) 

compared to the HRS diet at day 28 (G2) (Figure 2.4-9 A), and the comparison between baseline diet 

(G1) to the LRS diet (G3) (Figure 2.4-9 B) were significantly altered, which already was implied through 

the PCA. The most abundant and highly discriminative mass signals between the baseline diet and 

both RS diets, emerged as predominately metabolites of several lipid classes, especially phosphatidic 

acids (PA), which will be reviewed in detail in Chapter 2.4.1.5.1.  

 

Figure 2.4-9: OPLS-DA scores scatter plot of fecal metabolome comparing baseline and RS diets. 

Comparison of different groups through OPLS-DA (UV scaling) of participants of the baseline (blue), HRS (red) 
and LRS (green) diet, analyzed in (-) FT-ICR-MS mode.  A: Baseline versus HRS diet at day 28. B: Baseline versus 
LRS, at day 28. 

Additionally, the statistical models of the two HRS diets at different time points, as well as the LRS diet 

groups were not valid, since they did not pass the CV-ANOVA step. In contrast to the (-) FT-ICR-MS 

mode, both HRS diet groups compared to both LRS groups were not significant at all.   

2.4.1.3 Correlation studies: metabolome and the amount of resistant starch 

As next step, correlation studies between the amount of RS and all mass signals of the metabolome 

data were performed. Concerning this, metabolites which altered differently by baseline, high or low RS 

consumption or showed characteristic decreasing or increasing intensity patterns through varying 

amounts of RS were illustrated. Calculations were done with varying amounts of RS in grams (0 g : 38 

g : 2 g). Several mass signals correlated positively with the amount of RS, which is displayed for (-) FT-

ICR-MS (p-corr < 1.09E-05) in Figure 2.4-10 and for (+) FT-ICR-MS (p-corr < 9.73E-04) in Figure 2.4-11. 

For each ionization mode, the top 50 positively correlated mass signals to the HRS diet with a correlation 

value (R) ordered from high to low from R = 0.77 – 0.60 (-) or R = 0.66 – 0.48 (+) is illustrated.  
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Figure 2.4-10: Top 50 metabolites positively correlated with HRS, analyzed in (-) FT-ICR-MS. 

Heatmap of top 50 mass signals, presented as m/z and molecular formulas, which correlated positively with high 
amount of RS ranked from high to low correlation (R = 0.77 – 0.60) revealed trough Pearson correlation. Red 
labeled molecular formulas could be assigned to metabolites by database assignment. Further details are given in 
Table 6.1-8. 

Most mass signals could be assigend to molecular formulas. Additionally, database comparison 

assigned some mass signals obtained though (-) FT-ICR-MS analyses to metabolites. The correlation 

revealed several metabolites, namely hydroxy fatty acids and oxylipins positively correlated with the 

HRS diet. These comprised the oxylipin dihydroxyoctadecadienoic acid (C18H30O5) and the hydroxy 

fatty acids, such as hydroxyeicosanoic acid (C20H40O3), hydroxyeicosenoic acid (C20H38O3) and 

dihydroxyeicosanoic acid (C20H40O4). Further sulfate conjuagtes of hydroxy fatty acids correlated highly 

with the amount of RS, namely hydroxyoctadecatrienoic acid sulfate (C18H30O6S), 

dihydroxyoctadecenoic acid sulfate (C18H34O7S) and hydroxyoctadecadienoic acid sulfate (C18H32O6S), 
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whose molecular formula is labeled in red in Figure 2.4-10. Oxylipins are biosynthesized of 

polyunsaturated fatty acids (PUFAs), such as arachidonic acid and are involved in several processes 

and pathways, such as the arachidonic acid metabolism. These finding that oxylipins were correleted 

positively with RS consumption lead to further analyses in order reveal their contribution and biological 

importance in human lipid metabolism (Chapter 2.4.1.4) and to detect more oxylipin species in the fecal 

samples and evaluate the impact of RS on the oxylipin profile (Chapter 2.4.1.5.3). Additionally, mass 

signals assigned to intermediates in the tocopherol biosynthesis (α-/β-/γ-tocopherol, C29H50O2 and 

C28H48O2) were highly correlated with the amount of RS, whose molecular formula is labeled in red in 

Figure 2.4-10. On the contrary, none of the mass signals of the (+) FT-ICR-MS measurements positively 

correlated with RS could not be assigned to metabolites. The top 50 correlated mass signals are 

illustrated in Figure 2.4-11. 

 

Figure 2.4-11: Top 50 highly correlated metabolites analyzed in (+) FT-ICR-MS. 

Heatmap of the top 50 mass signals, presented as m/z and molecular formulas, which were correlated negatively 
with high amount of RS ranked from high to low correlation (R = 0.66 – 0.48) revealed trough Pearson correlation. 
Further details are given in Table 6.1-10.  
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Further information on correlation values and p-corr is given for (-) FT-ICR-MS in Table 6.1-8 and for 

(+) FT-ICR-MS in Table 6.1-10. In addition, mass signals were detected, which correlated negatively 

(p-corr < 2.89E-02) with the amount of RS. This led to several mass signals increased in the baseline 

diet and/or in the LRS diet. Further, it was observed, that mass signals being strongly increased in the 

baseline diet, showed lower intensity levels in the LRS diet and disappeared almost completely through 

the consumption of a high amount of RS. One of these mass signals was assigned as octadecadienoic 

acid (C18:2, C18H32O2).  

 

Figure 2.4-12: Top 50 metabolites negatively correlated with HRS, analyzed in (-) FT-ICR-MS. 

Heatmap of the top 50 mass signals, presented as m/z and molecular formulas, which were correlated negatively 
with high amount of RS ranked from high to low correlation (R = -0.49 to – 0.33) revealed by Pearson correlation. 
Further details are given in Table 6.1-9. 
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As previously shown, several mass signals significantly correlating with the amount of RS in both 

ionization modes were detected, where the high impact in the metabolite profile due to HRS dietary 

intake was demonstrated again. On the contrary, some mass signals even appeared to be negatively 

correlated to the amount of RS. Their level of correlation and significance was not as strong as detected 

in the positively correlated mass signals due to dietary starch intake. Most of the mass signals could be 

assigned to molecular formulas, whereas only a few metabolites could be assigned to compounds, 

which were mainly metabolites of the class of fatty acyls impacted through HRS diet. On the contrary, 

octadecadienoic acid (C18:2) was correlated negatively with the HRS diet and appeared to be increased 

in the baseline diet and suppressed through dietary starch intake in general. Metabolites observed in 

the correlation studies not only highlighted the enormous impact of HRS on the fecal metabolome, but 

also demonstrated how the differently affected metabolites were interrelated with varying amounts of 

RS.    

2.4.1.4 Lipid metabolism affected by high resistant starch 

Already in the correlation studies some metabolites of the lipid metabolism appeared to be altered by 

RS. For that reason, the lipid metabolism was considered in detail. In several studies, the lipid 

metabolism or lipid profiles of plasma and/or blood samples were detected to be impacted by dietary 

fiber, including mainly lipoproteins (e.g. VLDL, HDL, LDL, cholesterol and serum TG) and other lipid 

markers (Kabir et al. 1998, Hashizume et al. 2012) (Behall et al. 1989, Zhou et al. 2015). Additionally, 

several studies investigating the impact of dietary fiber on mammals is nicely reviewed by Lattimer and 

Haub in 2010 (Lattimer and Haub 2010). Furthermore, one study was conducted to investigate the 

impact of dietary fiber (resistant maltodextrin, RM) on fecal metabolic signatures of donor and recipient 

fecal microbiota transplanted mice, which appeared to be associated with RM-mediated improvement 

in mouse metabolic disease models (He et al. 2015). Here, they detected fecal metabolites of 

cholesterol metabolism, such as mevalonate and coprostanol significantly decreased levels in donor 

and recipient mice, which indicated an essential role of RM in cholesterol control (He et al. 2015).  

However, the impact of dietary fiber on the lipid metabolism of fecal samples, including metabolites 

involved in several pathways of the human lipid metabolism is rather unknown. Thus, the effect of RS 

on lipid metabolism should be carefully examined in human studies (Higgins et al. 2004). 
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Here, the lipid metabolism will be reviewed in detail, focusing on specific pathways of the lipid 

metabolism, including alpha-linolenic acid metabolism, linoleic acid metabolism, biosynthesis of 

unsaturated fatty acids, fatty acid biosynthesis, steroid hormone biosynthesis, steroid biosynthesis, 

arachidonic acid metabolism, glycerolipids metabolism, primary bile acid biosynthesis, secondary bile 

acid biosynthesis and sphingolipid metabolism.  

By running the MassTRIX webserver, the mass signals were not only assigned to compounds, but also 

to KEGG CIDs and specific pathway information. Therefore, the mass signals assigned to KEGG CIDs, 

including pathways information of the lipid metabolism, were selected for this analysis. This resulted in 

66 metabolites of the lipid metabolism altered through diet. These changes were visualized in a 

heatmap, as shown in Figure 2.4-13.  
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Figure 2.4-13: Metabolites of the lipid metabolism impacted through diet. 

Heatmap of 66 significant metabolites, displayed in m/z of the lipid metabolism impacted through the baseline, HRS 
or LRS diet. Pathways of the lipid metabolism, such as alpha-linolenic acid metabolism, linoleic acid metabolism, 
biosynthesis of unsaturated fatty acids, fatty acid biosynthesis, steroid hormone biosynthesis, steroid biosynthesis, 
arachidonic acid metabolism, glycerolipids metabolism, primary bile acid biosynthesis, secondary bile acid 
biosynthesis and sphingolipid metabolism. Further details are listed in Table 6.1-11. From Maier, T. V.; Lucio, M.; 
Lee, L. H.; VerBerkmoes, N. C.; Brislawn, C. J.; Bernhardt, J.; Lamendella, R.; McDermott, J. E.; Bergeron, N.; 
Heinzmann, S. S.; Morton, J. T.; González, A.; Ackermann, G.; Knight, R.; Riedel, K.; Krauss, R. M.; Schmitt-
Kopplin, P.; Jansson, J. K.: Impact of Dietary Resistant Starch on the Human Gut Microbiome, Metaproteome, and 
Metabolome. mBio vol. 8 no. 5 e01343-17 (2017). Reprinted and modified from (Maier et al. 2017). Copyright 
(2017) Maier et al. 

The mass signals significantly changed were proven by the post hoc Kruskal-Nemenyi test, which is 

listed in the appendix in Table 6.1-11. Predominately three pathways seem to be highly impacted, which 

were the steroid hormone biosynthesis, arachidonic acid metabolism and primary bile acid biosynthesis 

(Maier et al. 2017). Thirteen metabolites of the lipid metabolism were significantly decreased in both 
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RS diets compared to the baseline diet. This comprises octadecadienoic acid (C18:2), hexadecenoic 

acid (C16:1), octadecenoic acid (C18:1) (Maier et al. 2017) and ten metabolites classified as sterol 

lipids and involved in steroid hormone biosynthesis. 

Further, three fatty acids, namely decanoic acid (C10:0), dodecanoic acid (C12:0) and tetradecanoic 

acid (C14:0), all involved in the fatty acid biosynthesis, were solely increased in fecal samples of the 

LRS diet compared to the baseline and the HRS diet (Maier et al. 2017). Vastly more metabolites of the 

lipid metabolism, in fact 50, were significantly increased in the HRS diet, compared to the baseline diet 

and the LRS diet. It was noticeable that the arachidonic acid metabolism, primary bile acid metabolism, 

secondary bile acid metabolism and steroid biosynthesis primarily were highly impacted through the 

HRS diet (Maier et al. 2017). Metabolites involved in the arachidonic acid metabolism impacted through 

RS were several oxylipins, like hydroxyeicosatetraenoic acid, hydroxyoxoeicosatetraenoic acid, 

hydroxyoctadecenoic acid, dihydroxyeicosatetraenoic acid, dihydroxyhexadecanoic acid, 

dihydroxyeicosatrienoic acid, dihydroxyoctadecadienoic acid, dihydroxyoctadecadienoic acid, 

dihydroxyoctadecenoic acid, trihydroxyeicosatrienoic acid, trihydroxyeicosatetraenoic acid, 

trihydroxyoctadecadienoic acid, trihydroxyoctadecenoic acid.  

Additionally, several metabolites of the primary bile acid metabolism were found to be impacted through 

the HRS diet, such as trihydroxycholestanoic acid, tetrahydroxycholestane, dihydroxycholestenone, 

dihydroxycholestenoic acid, hydroxyoxocholestenoic acid, cholestanetriol, dihydroxycholesterol, 

trihydroxycholestanal, and hydroxycholesterol.  

The secondary bile acid metabolism was not strongly affected to a lower extend, since only one 

metabolite involved was detected to be increased in the HRS diet samples, namely 

tetrahydroxycholanoic acid. Additionally, four metabolites of the steroid biosynthesis and eight ones of 

the steroid hormone biosynthesis, which were assigned as sterol lipids were found to be increased in 

the HRS diet. Further, several fatty acids, both saturated and unsaturated ones involved in the 

biosynthesis of unsaturated fatty acids were strongly increased in the fecal samples of the participants 

consuming the HRS diet. Those were octadecanoic acid (C18:0), icosanoic acid (C20:0), docosanoic 

acid (C22:0), tetracosanoic acid (C24:0), icosenoic acid (C20:1), icosapentanoic acid (C20:5), 

docosenoic acid (C22:1), docosadienoic acid (C22:2) and tetracosenoic acid (C24:1). Dodecenedioic 

acid, a metabolite of the alpha-linolenic acid metabolism was observed in the HRS diet.  
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To date, only little metabolomics research focusing on the impact of RS on a pathway-related level was 

found, especially in humans. To date, only one research group reported the effect of dietary RS intake 

in growing pigs (Lu et al. 2016). In accordance with our results, they also detected the lipid metabolism 

to be increased in pigs consuming a HRS diet (Lu et al. 2016). To conclude, metabolites of the lipid 

metabolism significantly affected by the baseline diet and by intake of RS were detected. This included 

a great number of metabolites that were highly impacted by the HRS diet. They were involved in e.g. 

arachidonic acid metabolism, primary bile acid metabolism and steroid biosynthesis. Within this study 

novel links between a RS diet and lipid metabolism were observed. 

2.4.1.5 Different compound classes affected through baseline, HRS or LRS diet 

2.4.1.5.1 Lipid patterns changed through baseline, HRS and LRS diet 

The separation in the scores scatter plot of the PCA of the (+) FT-ICR-MS mode seems to be mainly 

driven by increased mass signals through baseline diet. Hereto, the multivariate data analyses reveal 

several mass signals significantly increased in the baseline diet, which were responsible for class 

discrimination between the baseline diet and both RS diets. Those mass signals could be assigned to 

various lipid classes, to main classes of the Lipid Maps database (Fahy et al. 2009). Lipids are important 

in intestinal biology (Gregory et al. 2013) and involved in several functional processes e.g. energy 

storage and acting as signaling molecules (Han and Gross 2005). Increased lipid abundancies are 

associated with several disorders caused by obesity (Mika and Sledzinski 2017). It is well known that 

different lipid species are altered in plasma of obese humans and that also diet has an impact on the 

plasma lipid composition of different lipid species (e.g. triacylglycerols (TAG), phospholipids and 

ceramides) (Mika and Sledzinski 2017). It was possible to study the lipid profiles through the 

investigation of the mass spectra generated through (+) FT-ICR-MS analyses. This revealed distinct 

patterns of several lipid classes predominantly increased in the fecal samples of the baseline diet, which 

means they were reduced through dietary starch intake (Table 2.4-2). Lipid classes, such as 

glycerolipids (GL), sphingolipids (SP) and glycerophospholipids (GP) were significantly changed, 

whereas mainly GP contributed to the discrimination between baseline and RS samples. However, the 

predominating lipid class significantly changed between the fecal samples of the baseline diet and 

dietary starch intake was several phosphatidic acids (PA) (Figure 2.4-14) ranging from chain length 

from C16 to C36. The majority of them was significantly decreased in both RS diets compared to the 
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baseline diet, namely PA(P-16:0), PA(O-16:0), PA(16:1), PA(P-18:0), PA(18:4), PA(18:3), PA(18:1), 

PA(20:4), PA(20:3), PA(20:2), PA(20:1), PA(20:0), PA(22:2), PA(32:0), PA(P-34:2)/PA(O-34:3), PA(P-

34:0)/PA(O-34:1), PA(P-34:1)/PA(P-34:2), PA(O-34:0), PA(34:1), PA(34:0), PA(P-36:2)/PA(O-36:3), 

PA(P-36:1)/PA(O-36:2), PA(36:2), PA(36:1) and partially their “lyso” forms. Further details for PAs 

increased by baseline diet are given in the supplement in Table 6.1-12.  

 

Figure 2.4-14: Phosphatidic acids significantly decreased through dietary starch intake. 

Boxplots of 24 phosphatidic acids significantly changed in the baseline diet (blue) compared to the HRS (red) and 
LRS (green) diet, analyzed in (+) FT-ICR-MS mode. Molecular formulas calculated by NetCalc. p-values were 
calculated with the post hoc Kruskal-Nemenyi test.  Further details are listed in Table 6.1-12. 
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Phosphatidic acids belong to the class of glycerophospholipids and play an essential role in the 

biosynthesis of triacylglycerols and phospholipids. Thus, they are key intermediates in the lipid 

metabolism and act as signaling molecules (Athenstaedt and Daum 1999). Further, they are involved 

in the production of phosphatidylcholines (PC), phosphatidylethanolamines (PE) and 

phosphatidylserines (PS) via diradylglycerols (DG) (Athenstaedt and Daum 1999), which thus might be 

a link to the increased levels of DGs, PCs, PEs and PSs, detected in the fecal samples of all participants 

consuming the baseline diet (Table 2.4-2). 

However, a few PAs showed significantly (p-value < 0.014) increased levels through either the LRS diet 

(Figure 2.4-15 A-D) or RS intake in general (Figure 2.4-16 A-I).  

 

Figure 2.4-15: Phosphatidic acids altered through LRS diet. 

Boxplots of 4 phosphatidic acids significantly increased in the LRS diet (green) compared to the baseline diet (blue) 
and the HRS (red), analyzed in (+) FT-ICR-MS mode. Molecular formulas calculated by NetCalc. p-values were 
calculated through the post hoc Kruskal-Nemenyi test. Further details are listed in Table 6.1-13. 
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Figure 2.4-16: Phosphatidic acids increased through dietary starch intake.  

Boxplots of 9 phosphatidic acids significantly increased in the HRS diet (red) compared to the baseline diet (blue) 
and the LRS (green), analyzed in (+) FT-ICR-MS mode. Molecular formulas calculated by NetCalc. p-values were 
calculated through the post hoc Kruskal-Nemenyi test. Further details are listed in Table 6.1-14 

More details on the PA significantly changed trough the LRS or both RS groups are listed for the LRS 

diet in Table 6.1-13 and for RS in general in Table 6.1-14. Though, phosphatidic acids significantly 

affected exclusively through the HRS diet could not be observed at all. A special class of PA, the cyclic 

phosphatidic acid (CPA), were the most abundant compounds detected in the baseline diet, namely 

CPA(16:0), CPA(18:2), CPA(18:1) and CPA(18:0). They were significantly decreased (p-value < 0.011) 

in both RS diets compared to the fecal samples of the baseline diet (Figure 2.4-17).  

 

Figure 2.4-17: Cyclic phosphatidic acids significantly increased in baseline diet. 

Boxplots of 4 cyclic phosphatidic acids significantly increased in the baseline diet (blue) compared to the HRS diet 
(red) and the LRS (green), analyzed in (+) FT-ICR-MS mode. Molecular formulas calculated by NetCalc. p-values 
were calculated through the post hoc Kruskal-Nemenyi test. Further details are listed in Table 6.1-15. 
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CPA can be generated from lysophosphatidylcholine (lysoPC) by the enzyme phospholipase D (PLD2) 

(Oishi-Tanaka and Glass 2010) and is an antagonist of the peroxisome proliferator-activated receptor-

gamma (PPARγ) (Tsukahara et al. 2010), a nuclear receptor, which regulates the expression of several 

genes. Further, insulin is a physiological activator of PLD2, i.e. induces higher levels of CPA (Tsukahara 

et al. 2010). CPA binds to and inhibits the nuclear hormone receptor PPARγ. PPARγ regulates several 

pathways of the carbohydrate- and lipid metabolism which are strongly associated with several human 

diseases, such as diabetes (Lehmann et al. 1995).  

Participants suffering from insulin resistance are usually treated with synthetic agonists (e.g. insulin-

sensitizer thiazolidinedione, TZD) and activators of PPARγ. Through the activation of PPARγ, the 

sensitivity of hepatocytes, muscle cells and adipose tissue for insulin is increased, which leads to 

improve insulin resistance in type 2 diabetes (Tsukahara et al. 2010). Further, the activation of the 

PPARγ-receptor leads to an increased absorption and metabolization of free fatty acids.  

Here, high levels of CPA were detected in the fecal samples of participants consuming the baseline 

diet, which does not contain RS. Since CPA inhibits the activation of PPARγ, the reduction of insulin 

resistance is decreased. Through the intake of dietary starch, the levels of CPA were decreased. 

Therefore, it can be hypothesized that RS reduces the levels of CPA, relieves the inhibition of the 

PPARγ-receptor and might increase the sensitivity for insulin of the cells.     

Distinct patterns between the two diet classes concerning glycerophosphates (PA), 

glycerophosphocholines (PC), glycerophosphoethanolamines (PE), glycerophosphoglycerols (PG) and 

glycerophosphoserines (PS) were observed (Table 2.4-2).  
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Table 2.4-2: Lipids changed due to baseline and dietary starch diets. 

Several lipid classes, such as diradylglycerols (DG), glycerophosphocholines (PC), glycerophosphoethanolamines 
(PE), glycerophosphoglycerols (PG), glycerophosphoserines (PS) and ceramides significantly impacted by the 
baseline or the RS diet, analyzed in (+) FT-ICR-MS mode. The table contains averaged experimental mass, 
compound name, monoisotopic mass, molecular formula calculated by NetCalc, arithmetic means of baseline, HRS 
and LRS, respectively, as well as p-values showing the significance according to diet comparison, calculated with 
the post hoc Kruskal-Nemenyi test. 

Class 
Mass             
(avg.) 

Compound 
name 

Monoisotopic               
mass 

molecular           
formula 

Mean             
B 

Mean          
HRS 

Mean            
LRS 

p-value           
B vs. 
HRS 

p-value               
B vs. 
LRS 

Diet 

Glycerolipids 

DG           

 593.514182 DG(34:2) 592.506675 C37H68O5 3.03E+07 1.04E+07 1.16E+07 1.20E-02 1.70E-02 B 

 619.529873 DG(36:3) 618.522325 C39H70O5 1.36E+08 5.31E+07 3.92E+07 6.20E-03 5.60E-03 B 

 621.545595 DG(36:2) 620.537975 C39H72O5 1.33E+08 4.97E+07 2.78E+07 2.62E-02 9.90E-03 B 

           

Glycerophospholipids 

PC, PE, LysoPC 

 510.391609 PC(O-18:0) 509.384525 C26H56NO6P 2.89E+07 0 0 1.40E-02 1.60E-02 B 

 620.464465 PE(P-28:0) 619.457690 C33H66NO7P 6.36E+07 1.57E+07 2.91E+07 1.90E-02 n.s. B 

 662.511832 
PE(P-31:0) 

LysoPC(28:1) 
661.504640 C36H72O7NP 6.48E+07 2.13E+07 1.28E+07 5.50E-03 1.10E-03 B 

 676.491434 
PE(31:1), 
PC(38:1) 

675.483905 C36H70NO8P 2.57E+07 2.35E+06 1.82E+06 2.10E-02 1.20E-02 B 

 686.511258 PE(P-33:2) 685.504640 C38H72NO7P 2.83E+07 1.46E+06 0 1.14E-02 5.50E-03 B 

 702.507079 
PC(30:2); 
PE(33:2) 

701.499555 C38H72NO8P 1.83E+07 7.38E+05 1.55E+06 8.50E-03 1.22E-02 B 

 706.537563 
PC(30:0); 
PE(33:0) 

705.530855 C38H76NO8P 2.58E+07 1.30E+06 0 8.00E-04 1.30E-04 B 

           

PG           

 469.256248 PG(15:1) 468.248820 C21H41O9P 1.18E+08 2.38E+07 1.01E+07 4.00E-02 6.40E-04 B 

 793.501957 PG(38:7) 792.494135 C44H73O10P 1.02E+07 5.34E+06 5.39E+06 7.70E-02 2.20E-02 B 

 565.350327 PG(22:2) 564.342719 C28H53O9P 5.61E+07 1.08E+08 1.32E+08 4.80E-02 1.60E-02 RS 

 719.522550 
PG(O-33:2) 
PG(P-33:1) 

718.514871 C39H75O9P 1.68E+06 7.00E+06 2.38E+07 n.s. 2.90E-03 RS 

 733.501478 PG(33:2) 732.494135 C39H73O10P 1.44E+06 9.40E+06 5.82E+06 4.00E-03 5.30E-02 RS 

 859.642752 PG(42:2) 858.634986 C48H91O10P 7.01E+05 3.75E+06 3.65E+06 1.30E-02 1.60E-02 RS 

 561.319223 PG(22:4) 560.311420 C28H49O9P 7.88E+07 1.22E+08 1.61E+08 n.s. 1.50E-02 RS 

           

PS           

 718.502437 PS(P-32:1) 717.494470 C38H72NO9P 6.74E+06 0 0 9.90E-04 5.00E-04 B 

           

Sphingolipids 

Ceramides           

 646.516576 CerP(36:1) 645.509692 C39H72NO6P 1.37E+07 4.20E+06 3.99E+06 2.10E-02 4.30E-02 B 

 

Glycerolipids, such as DG (DG(34:2), DG(36:3) and DG(36:2)) and SP (e.g. ceramides) were 

significantly increased in baseline diet samples. Diradylglycerols are well known for being intermediates 

in lipid synthesis (Robinson and Warne 1991). Additionally, glycerophosphocholines/ 

glycerophosphoethanolamines, such as PC(O-18:0), PE(P-28:0), PE(P-31:0) /LysoPC(28:1), 

PE(31:1)/PC(38:1), PE(P-33:2), PC(30:2)/PE(33:2) and PC(30:0)/PE(33:0) also were increased in the 

fecal samples of the participants consuming the baseline diet. Further, glycerophosphoserines, such as 

PS(P-32:1) and the sphingolipid CerP(36:1) were increased in the baseline diet. However, some lipids 

of the PGs appeared to be increased due to dietary starch intake in general compared to the baseline 

diet, namely PG(22:2), PG(O-33:2)/PG(P-33:1), PG(42:2) and PG(22:4).  
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Concerning this, Samulesson et al. investigated the impact of on the serum lipid profile of different 

carbohydrate-rich diets, including inulin, resistant starch or kojak compared to a basal diet (Samuelsson 

et al. 2016). They detected several lipids, mainly lysophosphatidylcholines and phosphatidiycholines to 

be affected by diet, but only in the inulin, kojak and basal diet, whereas only two serum lipids were 

observed to be affected by RS.  

On the contrary, within this study a great number of specific lipid species were detected in the fecal 

samples of participants consuming the baseline and the RS diet through (+) FT-ICR MS analyses, 

reflecting the changes in fecal metabolome due to diet. Most of the lipids appeared to be significantly 

increased in the baseline diet and suppressed by dietary starch intake in general. However, some PAs 

were also increased in the LRS diet and through dietary starch intake in general. Diet, especially the 

consumption of RS appeared to have an enormous impact on the fecal lipid profile, wherefore further 

future studies need to investigate the influence of RS on the fecal lipid composition.  

2.4.1.5.2 Importance and differences of fatty acids in the human fecal metabolome 

Several fatty acids were already detected to be significantly changed between the baseline, HRS or 

LRS diet (Maier et al. 2017) through the correlation studies or the pathways classification analysis. 

However, in this chapter, the overall fatty acid profile impacted through the different diets will be shown 

(Figure 2.4-18). In general, twenty-eight fatty acids, both, saturated and unsaturated were found to be 

significantly changed between fecal samples of the baseline diet and both RS samples. 
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Figure 2.4-18: Fatty acids significantly changed through diet. 

Fold change values for fatty acids significantly increased or decreased in HRS (red) or LRS diet (green), analyzed 
in (-) FT-ICR-MS mode. Left: Log2 fold change values of fatty acids significantly increased or decreased in HRS 
(red) or LRS (green) diet compared to baseline diet. Right: Log2 fold change values of fatty acids significantly 
increased or decreased in the HRS diet compared to the LRS diet. Further details are given in Table 6.1-16. From 
Maier, T. V.; Lucio, M.; Lee, L. H.; VerBerkmoes, N. C.; Brislawn, C. J.; Bernhardt, J.; Lamendella, R.; McDermott, 
J. E.; Bergeron, N.; Heinzmann, S. S.; Morton, J. T.; González, A.; Ackermann, G.; Knight, R.; Riedel, K.; Krauss, 
R. M.; Schmitt-Kopplin, P.; Jansson, J. K.: Impact of Dietary Resistant Starch on the Human Gut Microbiome, 
Metaproteome, and Metabolome. mBio vol. 8 no. 5 e01343-17 (2017). Illustration and data depiction modified from 
(Maier et al. 2017). Copyright (2017) Maier et al., Information about the creator and respective contributions, as 
well as the original material are available: http://mbio.asm.org/content/8/5/e01343-17.full with the original title: 
Classes of fatty acyls grouped according to their relative abundance following a specific diet category. Licence 
notice: https://creativecommons.org/licenses/by/4.0/. 

The saturated fatty acids, heptadecanoic acid (C17:0), octadecanoic acid (C18:0), nonadecanoic acid 

(C19:0), icosanoic acid (C20:0), docosanoic acid (C22:0), tricosanoic acid (C23:0), tetracosanoic acid 

(C24:0), pentacosanoic acid (C25:0) and hexacosanoic acid (C26:0) were significantly increased to a 

similar extend by through dietary starch intake and showed a log2 fold change > 1 for the HRS 

compared to the baseline diet, and a log2 fold change > 0.53 for the comparison of the LRS diet and 

the baseline diet.  
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On the contrary, the fecal samples of the participants consuming the HRS diet were additionally 

characterized by increased levels of unsaturated fatty acids, namely icosapentanoic acid (C20:5), 

icosenoic acid (C20:1), heneicosenoic acid (C21:1), docosatrienoic acid (C22:3), docosadienoic acid 

(C22:2), docosenoic acid (C22:1), tricosenoic acid (C23:1), tetracosenoic acid (C24:1), 

pentacosatrienoic acid (C25:3), hexacosatrienoic acid (C26:3), hexacosadienoic acid (C26:2) and 

nonacosatrienoic acid (C29:3) with log2 fold changes > 0.7. Thereof, nonacosatrienoic acid (C29:3) and 

pentacosatrienoic acid (C25:3) showed decreased levels in the LRS diet compared to the baseline diet. 

Comparing the fatty acid profiles between the HRS and LRS diet, almost all of the above mentioned 

fatty acids, except C18:0, C22:0, C24:0, C26:0 and C20:1, were strongly increased in the HRS diet 

(log2 fold change from 0.8 – 3.2 HRS compared to LRS). Interestingly, pentadecanoic acid (C15:0) was 

increased in both RS diets. However, the increase observed in the LRS diet was slightly higher, 

compared to the HRS diet. 

Additionally, octadecenoic acid (C18:1, Figure 2.4-19 C) and octadecadienoic acid (C18:2, Figure 

2.4-19 B) were two of the most abundant metabolites (mean intensity >1x1011) and significantly altered 

between the baseline diet and the two RS diets (Maier et al. 2017). Further, palmitoleic acid (C16:1, 

Figure 2.4-19 A) was increased in the baseline diet.  

 

Figure 2.4-19: Unsaturated fatty acids increased in baseline diet.  

Boxplots of 3 unsaturated fatty acids significantly increased in the baseline diet (blue) compared to the HRS diet 
(red) and the LRS (green), analyzed in (-) FT-ICR-MS mode. p-values were calculated through the Kruskal-
Nemenyi Test. Further details are listed in Table 6.1-16. 

In contrary, Sun et al. found octadecadienoic acid and octadecenoic acid to be enriched in samples of 

pigs consuming a raw potato starch diet, though in cecal samples of the pigs (Sun et al. 2016). They 

hypothesized that through raw potato starch, the significantly higher concentrations of unsaturated fatty 

acids in cecal samples may appear by a lower absorption of those fatty acids in the cecum (Sun et al. 

2016). This might be an explanation, why in this study lower concentration levels of octadecadienoic 
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acid and octadecenoic acid were detected in the fecal samples after RS consumption. By contrast, 

already in 1974, Eyssen and Parmentier investigated the impact of starch diets, compared to lactose 

diets on the intestinal microflora of germfree and conventional rats (Eyssen and Parmentier 1974). They 

were interested in the fecal fatty acid profiles, which were analyzed by gas-liquid chromatography and 

revealed fatty acids, such as octadecanoic acid (C18:0) to be increased in conventional rats fed the 

starch diet and octadecenoic acid (C18:1) and octadecadienoic acid (C18:2) to be decreased in the 

conventional rats fed the starch diet. This was in agreement with our results on the profile of the above 

mentioned fatty acids in the human fecal samples through dietary starch intake. Remarkably, three fatty 

acids, which were decanoic acid (C10:0, Figure 2.4-20 A), dodecanoic acid (C12:0, Figure 2.4-20 B) 

and tetradecanoic acid (C14:0, Figure 2.4-20 C) showed increased levels in the fecal samples of 

participants receiving the LRS diet. In order to undoubtedly identify the significant fatty acids enriched 

solely in samples of participants consuming the LRS diet, this result was confirmed by applying a 

lipidomics-MS/MS approach in (-) ESI mode (method description in chapter 2.3.1.6) including respective 

standards (extracted ion chromatograms and MS/MS spectra are illustrated in Figure 5.1-1) (Maier et 

al. 2017).  

 

Figure 2.4-20: Saturated fatty acids significantly increased in samples of LRS diet. 

Boxplots of 3 saturated fatty acids significantly increased in the LRS diet (green) compared to the baseline diet 
(blue) and HRS diet (red), analyzed in (-) FT-ICR-MS mode (top) and (-) ToF-MS (bottom) experiments. p-values 
were calculated through the post hoc Kruskal-Nemenyi Test. Further details are listed in Table 6.1-16. From Maier, 
T. V.; Lucio, M.; Lee, L. H.; VerBerkmoes, N. C.; Brislawn, C. J.; Bernhardt, J.; Lamendella, R.; McDermott, J. E.; 
Bergeron, N.; Heinzmann, S. S.; Morton, J. T.; González, A.; Ackermann, G.; Knight, R.; Riedel, K.; Krauss, R. M.; 
Schmitt-Kopplin, P.; Jansson, J. K.: Impact of Dietary Resistant Starch on the Human Gut Microbiome, 
Metaproteome, and Metabolome. mBio vol. 8 no. 5 e01343-17 (2017). Illustration of Figure B and C was modified 
from (Maier et al. 2017). Copyright (2017) Maier et al., Information about the creator and respective contributions, 
as well as the original material are available: http://mbio.asm.org/content/8/5/e01343-17.full with the original title: 
Identification of decanoic (C12:0) and tetradecanoic acid (C14:0). Licence notice: 
https://creativecommons.org/licenses/by/4.0/. 
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In order to find out where those differences originate from, the composition of both diets was considered. 

Certainly, diets were matched for protein, fat and total carbohydrate, and differed only with respect to 

the source of starch used (which was either high or low in resistant starch). It is therefore unlikely that 

the differences in decanoic acid, dodecanoic acid and tetradecanoic acid between the HRS and LRS 

diet occurred from differences in fat content between the diets. For this reason, those fatty acids 

appeared to be affected by the digestion of cornstarch low in resistant starch. 

Further, several dicarboxylic acids, such as dodecenedioic acid, octadecanedioic acid, eicosanedioic 

acid and tricosanedioic acid were detected to be significantly increased in the HRS diet, compared to 

both, the baseline and the LRS diet (Figure 2.4-21).  

 

Figure 2.4-21: Dicarboxylic acids significantly increased in the HRS diet. 

Boxplots of 4 dicarboxylic acids significantly increased in the HRS diet (red) compared to the baseline diet (blue) 
and the LRS diet (green), analyzed in (-) FT-ICR-MS mode. p-values were calculated with the Kruskal-Nemenyi 
Test. Further details are listed in Table 6.1-17. 

Through the conversion of monocarboxylic acids to their dicarboxylic acids in rat liver in vitro, Jin et al. 

wanted to investigate unsaturated dicarboxylic acids and their excretion in urine (Jin and Tserng 1990). 

They hypothesized dicarboxylic acids, especially dodecenedioic acid to be a metabolic precursor of 

octenedioic acids. In turn, octenedioic acids are derived from oleic and linoleic acids through several 

metabolic oxidation processes (Jin and Tserng 1990). However, they also concluded that the origin of 

dicarboxylic acids can be caused by multiple metabolic processes (Jin and Tserng 1990). In our study, 

increased levels of octadecadienoic acid (linoleic acid) and octadecenoic acid (oleic acid) were 

observed in the baseline diet. Accordingly, higher levels of dicarboxylic acids were detected through 

HRS consumption. Considering the results from Jin et al. in the 90’s, our result lead to assume that 

through RS consumption the metabolic conversion to several dicarboxylic acids is affected. 
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2.4.1.5.3 Oxylipins, Hydroxy Fatty Acids and Octadecanoids 

Since already the correlation studies revealed some hydroxy fatty acids and oxylipins to be altered by 

diet, the data was evaluated for other similar species in the fecal samples by considering related species 

listed in databases, such as Lipid Maps (Fahy et al. 2009), HMDB (Wishart et al. 2007, Wishart et al. 

2013) and KEGG (Kanehisa and Goto 2000). This analysis revealed further oxylipins (Figure 2.4-22 A), 

hydroxy fatty acids (Figure 2.4-23 A) and octadecanoids (Figure 2.4-23 B) and some of their sulfate 

conjugated species to be important metabolites significantly increased in the HRS diet.  

Oxylipins are bioactive fatty acids, derived from PUFAs, such as arachidonic and linoleic acid (Gouveia-

Figueira et al. 2017, Mika and Sledzinski 2017). Enzymes, such as cyclooxygenase, lipoxygenase, 

hydroxyperoxydase and cytochrome P450 are involved in the formation of oxylipins (Nørskov et al. 

2012, Gouveia-Figueira et al. 2017). Various classes of oxylipins exist, including many isomers 

(Nørskov et al. 2012). The eicosanoids represent one main class of the oxylipins and are formed from 

arachidonic acid, including prostaglandin, leukotriene and thromboxane (Noverr et al. 2003, Gabbs et 

al. 2015). Oxylipins are represented by mono-, di-, and tri-hydroxy fatty acids, as well as lipoxins, epoxy 

fatty acids or resolvins (Gabbs et al. 2015). Here, increased patterns of eicosanoids, namely 

hydroxyeicosatetraenoic acid, trihydroxyeicosatrienoic acid, dihydroxyeicosatrienoic acid, 

dihydroxyeicosatetraenoic acid, trihydroxyeicosatetraenoic acid, oxo-dihydroxy-dinor-prostenoic acid 

and trihydroxyoctadecadienoic acid were observed in the HRS diet samples. Also sulfated conjugates 

of several oxylipins were significantly increased on the HRS diet (Figure 2.4-22 B), namely 

trihydroxyoctadecadienoic acid sulfate, dihydroxyeicosatrienoic acid sulfate, dihydroxyeicosatetraenoic 

acid sulfate and hydroxyeicosatetraenoic acid sulfate. 
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Figure 2.4-22: Oxylipins and their sulfated conjugates significantly increased in the HRS diet. 

Heatmap of 7 oxylipins (A) and their respective sulfates (B), presented with molecular formulas and compound 

name, significantly increased in the HRS diet (red) compared to the baseline (blue) and LRS diet (green), analyzed 

in (-) FT-ICR-MS mode. Further details are given in (A) Table 6.1-18 and (B) Table 6.1-19. 

Oxylipins were also observed to be excreted in feces of insects (Schulze et al. 2007), but can 

predominately found in several other materials, including plasma (Strassburg et al. 2012, Gouveia-

Figueira et al. 2015) , lung tissue (Gouveia-Figueira et al. 2017), tissue (Wong et al. 2014), urine, plants 

(Fauconnier et al. 2003, Glauser et al. 2008, Gobel and Feussner 2009, Vu et al. 2012, Geng et al. 

2015) and cell cultures (Wolfer et al. 2015). Oxylipins are related to various activities. To mention a few: 

they influence insulin signaling and adipose tissue function (Grapov et al. 2012, Ingerslev et al. 2015) 

and  they are said to induce several biological effects of the PUFAs, which comprises both, pro-

inflammatory and anti-inflammatory effects (Mika and Sledzinski 2017).  

Further, they are involved in several physiological processes, such as cell proliferation, apoptosis, blood 

pressure regulation, repairing tissue or blood clotting (Wolfer et al. 2015). In 2012, Nørskov et al. 

investigated the impact of whole grain wheat and wheat aleurone on plasma samples of pigs in contrast 

to refined flour (Nørskov et al. 2012). Through performing LC-MS analyses in negative electrospray 

ionization mode, they detected several oxylipins, namely two isomers of hydroxyoctadecedienoic acid, 

to be discriminant between both diet groups. These compounds were also detected in the flour and the 
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bread the pigs consumed. They hypothesized oxylipins as potential biomarkers for whole grain 

consumption ((Nørskov et al. 2012).  

Additionally, another form of oxylipins, the mono-, di- and tri-hydroxy fatty acids (Figure 2.4-23 A), 

namely hydroxyeicosanoic acid, dihydroxydocosanoic acid, dihydroxyeicosanoic acid, 

dihydroxyhexadecanoic acid, tetrahydroxyoctadecanoic acid, hydroxyoctadecenoic acid, 

trihydroxyoctadecanoic acid and dihydroxyoctadecenoic acid were significantly increased in the fecal 

samples of participants consuming the HRS diet. Octadecanoids (Figure 2.4-23 B), such as 

trihydroxyoctadecenoic acid and dihydroxyoctadecadienoic acid react similar to the RS consumption as 

the hydroxy fatty acids. 

 

Figure 2.4-23: Hydroxy fatty acids and octadecanoids significantly increased in the HRS diet.  

A: Heatmap of 8 hydroxy fatty acids and B: Boxplots of two octadecanoids, presented with molecular formulas and 

compound name, significantly increased in the HRS diet (red) compared to the baseline (blue) and LRS diet 

(green), analyzed in (-) FT-ICR-MS mode. Further details are given in Table 6.1-18. 

Also sulfated conjugates of hydroxy fatty acids and octadecanoids were significantly increased on the 

HRS diet (Figure 2.4-24), namely dihydroxyoctadecenoic acid sulfate and hydroxyeicosanoic acid 
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sulfate. The sulfated conjugates of octadecanoids were dihydroxyoctadecadienoic acid sulfate and 

trihydroxyoctadecenoic acid sulfate.  

 

Figure 2.4-24: Sulfated hydroxy fatty acids and octadecanoids significantly increased in the HRS diet.  

Boxplots of two hydroxy fatty acid sulfate conjugates (A, B) and octadecanoids sulfates (C, D), presented with 

molecular formulas and compound name, significantly increased in the HRS diet (red) compared to the baseline 

(blue) and LRS diet (green), analyzed in (-) FT-ICR-MS mode. Further details are given in Table 6.1-19. 

It is well known, that oxylipins may either be formed from membrane-bound fatty acids, be derived from 

dietary fatty acids (Strassburg et al. 2014) or they could come directly from the consumed diet. However, 

the role of oxylipins is not clearly understood yet in mammals and humans (Fischer 1997, Shearer et 

al. 2010, Nørskov et al. 2012). Even if increased levels of several oxylipins due to HRS diet were 

detected, which were not ingredients of diet, their origin remains unclear. However, these results lead 

to the assumption that oxylipins may be characteristic for RS consumption as well. 

2.4.1.5.4 Short-chain fatty acid profile though dietary starch intake 

SCFAs are generated by the fermentation of carbohydrates in the gut by microbes. The SCFA have 

several health-promoting effects on the gut. Butyrate is known as major energy source for several 

colonocytes (Russell et al. 2013) and improves insulin sensitivity (Gao et al. 2009). Therefore, several 

studies were accomplished to investigate the impact of differently digestible carbohydrates on the 

animal and human SCFA profile in the cecum, ileum, colon or in feces (Fassler et al. 2006, Zhou et al. 

2013, Fang et al. 2014, Fouhse et al. 2015, Samuelsson et al. 2016), whereas generally significantly 

increased levels of SCFA, especially butyrate were observed through dietary starch intake.  

In order to evaluate the impact of RS on the SCFA production, the SCFA profiles were assessed from 

the baseline, HRS and LRS diet in feces, using UHPLC-(+)-ToF-MS after the AMP+ derivatization 
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method. Propionic acid, butyric acid, and valeric and isovaleric acid did not significantly changed 

through the RS intake, though a tendency of increased levels of propionic acid and butyric acid were 

observed in the fecal samples of participants consuming the HRS diet (Figure 2.4-25) (Maier et al. 

2017). 

 
Figure 2.4-25: SCFA profiles altered in participants consumed the baseline, HRS or LRS diet. 

Bar chart displaying the SCFA profile, including propionic acid, butyric acid, valeric acid and isovaleric acid detected 

in fecal samples of participants consuming the baseline (blue), the HRS diet (red) or the LRS diet (green). SCFA 

were detected as AMP+ derivatives in (+) ToF-MS mode. Further details are given in Table 6.1-20. 

In contrast to many other studies investigating the SCFA production through dietary starch intake, 

tremendously increased level of the SCFA through either high or low RS intake could not be detected, 

especially not for butyric acid. A slight increase in intensity of butyric acid and propionic acid was 

observed (Maier et al. 2017). However, the individual differences were huge. The high inter-individual 

differences may in parts explain the contrasting results on SCFA production compared to existing 

literature. Since, metabolomics analysis did not reveal significant differences in the SCFA composition 

of the fecal samples of participants consuming the HRS diet, further proteome analysis might be able 

to gain a better insight into SCFA production and several pathways through the evaluation of 

responsible proteins affected through the baseline, HRS or LRS diet. Further, proteomics analyses were 

performed to confirm several findings observed through the metabolomics analyses (e.g. the lipid 

metabolism), to extend the view on the impact of RS on the human gut microbiome and find possible 

linkages between the metabolome and the microbiome. 
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2.4.2 Impact of resistant starch on the microbiome: genome and proteome level 

RS is one of the biggest diet-derived energy sources for bacteria in the human intestine. Microbial 

fermentation of complex dietary carbohydrates has important consequences for health (Flint et al. 

2012), since dietary starch intake can modify the microbial composition (Walker et al. 2011). It was 

already shown, that RS improves insulin sensitivity, initiated through colonic bacterial fermentation 

(Robertson et al. 2005) and may be of interest to prevent the risk for diabetes (Walker et al. 2011). 

Three of the most abundant bacteria in the gut, such as Firmicutes, Bacteroidetes and Actinobacteria 

are involved in starch fermentation (Birt et al. 2013). Macfarlane et al. detected two bacteria strains, 

Bifidobacterium spp. and Clostridium butyricum, which were able to utilize high-amylose starch and 

seemed to be important in the formation of high-amylose starch (Macfarlane and Englyst 1986), as 

present in RS type II used in our study.  

2.4.2.1 Dynamics of the human microbiome in response to a resistant starch diet: genome 

level 

In order to determine the gut microbiome compositions of participants consuming the baseline, HRS or 

LRS diets respectively; fecal samples of all participants were analyzed by 16S rRNA gene sequencing. 

Additionally, since nowadays tremendous amounts of genomic data can be produced, appropriate 

evaluation and visualization tools are required. One typical way visualizing genomic data are heatmaps 

(Bernhardt et al. 2009), displaying different taxonomic ranks of the genomic data, as performed in this 

study. In order to get a first overview of bacterial composition, the genomic data was displayed in 

different taxonomic levels, including phyla, order and genus level (Figure 2.4-26 left, from top to bottom). 

Correlations between OTUs and the amount of RS were displayed as well (Figure 2.4-26 right). It was 

revealed that diet had a significant impact on the microbiome composition, irrespective of the time of 

sampling during the crossover study. Through high resistant dietary starch intake, a significant increase 

of 16S rRNA OTUs of the Firmicutes phylum was observed (Figure 2.4-26). Increased relative amounts 

of species of the genera Faecalibacterium, Roseburia and Ruminococcus were observed (Maier et al. 

2017), which were associated with butyrate production (Louis et al. 2010, Miquel et al. 2015), being an 

important metabolite for gut health. Further, they were found to be reduced in abundance in the gut 

microbiota of participants with type 2 diabetes mellitus (T2DM) compared to healthy individuals (Qin et 

al. 2012, Maier et al. 2017) 



2. Effect of resistant starch on the gut microbiome  

 

78 

 

Figure 2.4-26: Taxonomic treemap of 16S rRNA OTUs. 

Taxonomic treemaps of all participants from all experimental stages (baseline; LRS; HRS), as encoded by the cell 
sizes. Colors within the explainatory hierarchy treemaps in the top line (labels specifiy phylum, order, genus (from 
top to bottom)) specify bacteria on phylum level – Firmicutes (greenish grey); Actinobacteria (carmin red); 
Bacteroidetes (steel blue); Proteobacteria (yellow); Fusobacteria (plum); Tenericutes (antique pink); Spirochaetes 
(ocre); Cyanobacteria (green); Verrucomicrobia (pink). Cell colors of the large treemap show the correlation 
(Pearson correlation; -1 dark blue; -0.5 light blue; 0 medium grey; 0.5 orange; 1 dark red) of all participant specific 
16S rRNA OTU counts with the resistant starch regime with 0; 0.05 and 1 for baseline; LRS and HRS respectively. 
From Maier, T. V.; Lucio, M.; Lee, L. H.; VerBerkmoes, N. C.; Brislawn, C. J.; Bernhardt, J.; Lamendella, R.; 
McDermott, J. E.; Bergeron, N.; Heinzmann, S. S.; Morton, J. T.; González, A.; Ackermann, G.; Knight, R.; Riedel, 
K.; Krauss, R. M.; Schmitt-Kopplin, P.; Jansson, J. K.: Impact of Dietary Resistant Starch on the Human Gut 
Microbiome, Metaproteome, and Metabolome. mBio vol. 8 no. 5 e01343-17 (2017). Reprinted and modified from 
(Maier et al. 2017). Copyright (2017) Maier et al., original material is available: 
http://mbio.asm.org/content/8/5/e01343-17.full. 

Specific genera/species that increased and highly correlated with the HRS diet included 

Faecalibacterium prausnitzii, which is one of the most abundant bacteria in the human gut and 

previously was associated with a healthy gut status (Khan et al. 2012, Lin et al. 2014). Further 

genera/species increased in the HRS diet were unassigned Prevotellaceae, Ruminococcus, 

Eubacterium rectale, Roseburia faecis and Akkermansia muciniphila (Figure 2.4-26, right) (Maier et al. 
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2017), several of which have previously been reported to be increased in the colon following a HRS 

diet (Walker et al. 2011, Ze et al. 2012, Cockburn et al. 2015, Maier et al. 2017). 

In conclusion, RS significantly altered the fecal microbial composition, which was shown as increased 

and positively correlating species of the Firmicutes phylum following the HRS diet, which were 

predominately species of F. prausnitzii and E. rectale. On the contrary, species of the Bacteroides 

phylum were correlated negatively and decreased in fecal samples of participants consuming the HRS 

diet. Additionally, we went beyond taxonomic characterization to also investigate the functional shifts 

and dynamics according to diet, evaluating proteomic data obtained through a shotgun metaproteomics 

approach as described in the following chapter (chapter 2.4.2.2).  

2.4.2.2 Dynamics of the human microbiome in response to a resistant starch diet: proteome 

level 

Individuals harbor their specific microbiomes, whose composition depends on a variety of factors, 

including the individual diet, health and physical fitness. Therefore, the proteome data sets of all 8 

participants were clustered at the experimental stage „baseline“ by using TIGR multiple experiment 

viewer (TMEV / MEV) (Saeed et al. 2006) on species summarized protein counts. Then Voronoi 

treemaps of the participant specific microbiomes were built by using the taxonomic levels (from root via 

brunches to leafs): kingdom, phylum, class, order, family, genus, species (Figure 2.4-27). Participant‘s 

microbiomes shown below are dominated by Bacteroidetes bacteria, especially Bacteroidetes vulgatus 

and uniformis, and those shown in the middle were less dominated by B. vulgatus or uniformis, but 

showed increased levels of species of the Prevotellaceae. The bottom microbiomes show a more 

Firmicutes dominated composition with Eubacterium rectale, Ruminocuccus bromii, Faecalibacterium 

prausnitzii and Roseburia species as main constituents.  
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Figure 2.4-27: Voronoi Treemaps at experimental stage „baseline“ with their specific microbiomes. 

Participants’ microbiomes shown on top are dominated by Bacteroidetes bacteria, especially Bacteroidetes 
vulgatus and uniformis. The bottom left microbiomes show a more Firmicutes dominated composition with 
Eubacterium rectale, Ruminocuccus bromii and Roseburia species as main constituents. Voronoi treemaps of the 
participant specific microbiomes were built by using the taxonomic levels (from root via brunches to leafs): kingdom, 
phylum, class, order, family, genus, species. Cell sizes are proportionally sized according the species summarized 
protein counts. Colors specify bacteria on phylum level – Firmicutes (greenish grey); Actinobacteria (carmin red); 
Bacteroidetes (steel blue); Proteobacteria (yellow); Fusobacteria (plum); Tenericutes (antique pink); Spirochaetes 
(ocre); Cyanobacteria (green); Verrucomicrobia (pink). From Maier, T. V.; Lucio, M.; Lee, L. H.; VerBerkmoes, N. 
C.; Brislawn, C. J.; Bernhardt, J.; Lamendella, R.; McDermott, J. E.; Bergeron, N.; Heinzmann, S. S.; Morton, J. T.; 
González, A.; Ackermann, G.; Knight, R.; Riedel, K.; Krauss, R. M.; Schmitt-Kopplin, P.; Jansson, J. K.: Impact of 
Dietary Resistant Starch on the Human Gut Microbiome, Metaproteome, and Metabolome. mBio vol. 8 no. 5 
e01343-17 (2017). Illustration modified from (Maier et al. 2017). Copyright (2017) Maier et al., Information about 
the creator and respective contributions, as well as the original material are available: 
http://mbio.asm.org/content/8/5/e01343-17.full with the original title: Individual response to resistant starch. Licence 
notice: https://creativecommons.org/licenses/by/4.0/. 

This illustration emphases inter-individual differences in the gut microbiome and highlights different 

starting points of each individual in the RS dietary intervention. Next, we investigated common and 

mean changes in the individuals after RS intervention. Through high resistant dietary starch intake, a 

significant increase of species specific proteins in the Firmicutes phylum were observed (Figure 2.4-28), 

as already detected in the genome data. Here, the butyrate-producing bacterium, Eubacterium sp. (E. 

rectale, E. eligens), Subdoligranulum sp. (S. variabile), Faecalibacterium sp. (F. prausnitzii), Blautia sp., 

Coprococcus sp. (C. comes), Anaerostipes sp. and Clostridium sp. were the most abundant species 

and correlated positively with a high amount of RS. On the contrary, most species of the Bacteroidetes 

phylum were negatively correlated to the HRS diet, except species of genera Odoribacter (O. 

splanchnicus) and Parabacteroides (P. johnsonii). 
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Figure 2.4-28: Taxonomic treemap of averaged species specific summarized protein counts. 

Taxonomic treemaps from all experimental stages (baseline; LRS; HRS), as encoded by the cell sizes. Colors 
within the explanatory hierarchy treemaps in the top line (labels specifiy phylum, order, genus (from left to right)) 
specify bacteria on phylum level – Firmicutes (greenish grey); Actinobacteria (carmin red); Bacteroidetes (steel 
blue); Proteobacteria (yellow); Fusobacteria (plum); Tenericutes (antique pink); Spirochaetes (ocre); 
Cyanobacteria (green); Verrucomicrobia (pink). Cell colors of the large treemap show the correlation (Pearson 
correlation; -1 dark blue; -0.5 light blue; 0 medium grey; 0.5 orange; 1 dark red) of all participant specific z-scores 
(participant specific mean centering and standard deviation normalization) of the species summarized protein 
counts with the resistant starch regime with 0; 0.05 and 1 for baseline; LRS and HRS respectively. Z-scoring made 
sure that only changes of the bacterial amount in response to the resistant starch diet but not the different levels 
the bacteria occur in the individual gut floras were taken into account for the determination of the degree of 
correlation.  

Further, the shotgun metaproteomics approach allowed to identify thousands of host and microbial 

proteins altered through RS. The Clusters of Orthologous Groups (COG) of proteins (Figure 2.4-29) 

(Tatusov et al. 2000) represented in the protein data are classified into functional groups, including 

among other those for energy production and conversion (C), amino acid metabolism and transport (E), 

nucleotide metabolism and transport (F), carbohydrate metabolism and transport (G), lipid metabolism 

(I) and translation (J). In addition, detected proteins of the COG main class (Figure 2.4-29 left top) and 

the COG sub class (Figure 2.4-29, left middle) were assigned to the bacterial phyla. This revealed 

proteins, predominantly assigned to phyla of Firmicutes, Bacteroidetes, Actinobacteria and 

Proteobacteria, the most abundant microbes in the human gut.  
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Further, bacterial proteins were correlated (Pearson correlation; -1: dark blue; -0.5: light blue; 0: grey; 

0.5: orange; 1: dark red) with the RS regime with 0; 0.05 and 1 for baseline; LRS and HRS respectively 

(Figure 2.4-29, right).  

 

Figure 2.4-29: Treemap of averaged bacterial protein specific counts. 

Treemap from all experimental stages (baseline; LRS; HRS), as encoded by the cell sizes. Colors within the 
explanatory hierarchy treemaps in the top line (COG main class; COG sub class; bacterial phylum (from top to 
bottom)). Cell colors of the large treemap show the correlation (Pearson correlation; -1 dark blue; -0.5 light blue; 0 
medium grey; 0.5 orange; 1 dark red) of all participant specific z-scores (participant specific mean centering and 
standard deviation normalization) of the protein counts with the resistant starch regime with 0; 0.05 and 1 for 
baseline; LRS and HRS respectively. Z-scoring made sure that only changes of the protein amount in response to 
the resistant starch diet but not the different levels the proteins occur in the individual gut floras were taken into 
account for the determination of the degree of correlation. From Maier, T. V.; Lucio, M.; Lee, L. H.; VerBerkmoes, 
N. C.; Brislawn, C. J.; Bernhardt, J.; Lamendella, R.; McDermott, J. E.; Bergeron, N.; Heinzmann, S. S.; Morton, J. 
T.; González, A.; Ackermann, G.; Knight, R.; Riedel, K.; Krauss, R. M.; Schmitt-Kopplin, P.; Jansson, J. K.: Impact 
of Dietary Resistant Starch on the Human Gut Microbiome, Metaproteome, and Metabolome. mBio vol. 8 no. 5 
e01343-17 (2017). In parts reprinted and modified from (Maier et al. 2017). Copyright (2017) Maier et al., original 
material is available: http://mbio.asm.org/content/8/5/e01343-17.full. 

It turned out that a wide array of proteins was highly correlated to RS, but especially proteins of the 

GOG main classes. This included the carbohydrate metabolism and transport, as well as lipid 

metabolism, which showed highly correlated features to the HRS diet. The most abundant and highly 
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correlated proteins were the ABC-type sugar transport systems and glyceraldehyde-3-phosphate 

dehydrogenase of the carbohydrate metabolism and transport. Further, three enzymes involved in the 

lipid metabolism were increased in samples of the HRS diet, namely acyl-CoA dehydrogenase, acetyl-

CoA acetyltransferase and enoyl-CoA hydratase. We observed, that proteins involved in the butyrate 

metabolism, such as enoyl-CoA hydratase (LRS vs. Baseline: p-value < 0.0001; LRS vs. HRS: p-value 

< 0.003) and butyrate kinase (Baseline vs. HRS: p-value < 0.001; HRS vs. LRS: p-value < 0.01) 

significantly changed with diet (Maier et al. 2017). A targeted quantification of butyrate in the samples 

revealed trends for increased butyrate accumulation in the HRS diet and to a lesser extent in the LRS 

diet, although highly variable between individuals (Chapter 2.4.1.5.4) (Maier et al. 2017). Cross-feeding 

effects between gut microbial populations were previously shown to increase variability between 

individuals because butyrate producers often take longer to establish after a dietary intervention 

(Belenguer et al. 2006, Maier et al. 2017). 

Additionally, gut proteins were classified according to KEGG Digestion classes and correlated to the 

amount of RS, whereby alpha-amylase was found to be correlated negatively with the HRS diet. This 

appears, presumably because amylose-rich RS is not a substrate for α-amylase, the enzyme that 

hydrolyzes α-1,4 glycosidic linkages in starch (Rendleman 2000, Ramsay et al. 2006). Also, 

glucosidases, including beta-glucosidases (breaking complex carbohydrates into monomers) and 

alpha-glucosidases (breaking simple starches) were differently affected by HRS diet. 

2.4.3 Multi-omics data integration 

Nowadays, high-throughput technologies in genomics, proteomics and metabolomics allow to produce 

data on a massive scale (Meng et al. 2014), in which each of its omics-discipline is characterized by its 

complexity. Hereto, the human GIT and its microbiome is a complex ecosystem (Heintz-Buschart, et al. 

2016), which is central in understanding the dynamics of health and disease. The integration of different 

omics-disciplines can provide a global picture of the microbial composition on a systems-level, 

understanding the host, microbial metabolism and protein expression, as well as the metabolic status 

of the human gut. The latter is of top priority to understand the impact of diet, especially of varying 

amounts of non-digestible carbohydrates, on the gut microbiome for health and disease. 
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2.4.3.1 Supervised ordination approach for multi-omics correlation 

A supervised ordination approach (Figure 2.4-30) was applied, evaluating correlations among the 

genome, proteome and metabolome comparing baseline and the HRS diet (Figure 2.4-30 A). Also, a 

classification model was created for the comparison of the HRS diet and the LRS diet (Figure 2.4-30 

B). This method was able to discriminate metabolites, proteins and OTUs that correlated with each 

other and with the different diets, gaining a first overview of possible connections (Maier et al. 2017). 

Therefore, a 25% limit (black line, shown dashed) of the highest discriminative feature of either the 

baseline diet or the HRS diet was set to detect highly correlated and highest discriminating features 

among the different diets. The same procedure was performed comparing the HRS to the LRS diet.  

 

Figure 2.4-30: Multi-Omics integration through supervised ordination approach. 

OPLS-DA plot of all data (Features: metabolites, 5552; Proteome, 57 397; OTUs, 1107) for A: baseline (blue, 
negative x-axis) versus HRS (red, positive x-axis); p = 8.3∙10-6 (CV-ANOVA), R2Y(cum) = 0.96, Q2(cum) = 0.88. 
B: OPLS-DA plot for HRS (red, negative x-axis) versus LRS (green, positive x-axis); p = 0.026 (CV-ANOVA), 
R2Y(cum) = 0.883, Q2(cum) = 0.534. From Maier, T. V.; Lucio, M.; Lee, L. H.; VerBerkmoes, N. C.; Brislawn, C. J.; 
Bernhardt, J.; Lamendella, R.; McDermott, J. E.; Bergeron, N.; Heinzmann, S. S.; Morton, J. T.; González, A.; 
Ackermann, G.; Knight, R.; Riedel, K.; Krauss, R. M.; Schmitt-Kopplin, P.; Jansson, J. K.: Impact of Dietary 
Resistant Starch on the Human Gut Microbiome, Metaproteome, and Metabolome. mBio vol. 8 no. 5 e01343-17 
(2017). Reprinted and modified from (Maier et al. 2017). Copyright (2017) Maier et al. 

The metabolite profile was vastly changed by the HRS diet. Several features were highly correlated and 

significantly changed by the HRS diet. This included 17.83% of the total metabolome (990 metabolites) 

and 1.14% of the total proteome (649 proteins), but no OTUs significantly changed through the HRS 

diet. On the contrary, the baseline diet was characterized through 0.31% of the metabolome (17 

metabolites), 0.008% of the total proteome (5 proteins) and 0.18% of the total genome (2 OTUs).  

In general, metabolites, such as sterol lipids, fatty acyls, glycerolipids and polyketides correlated with 

ribosomal proteins (J), adenylosuccinate synthase (F), rubrerythrin (C), glyceraldehyde-3-phosphate 
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dehydrogenase (G) and fructose/tagatose bisphosphate aldolase (G) predominately in the HRS diet. In 

the baseline diet, correlations between genera of Lachnospiraceae, Bacteroidetes, ribosomal proteins, 

FAs and STs were detected. Further, the correlations between the HRS and LRS diet were investigated, 

which resulted in 0.34% of the metabolome (19 metabolites), 0.012% of the total proteome (7 proteins) 

and 0.09% of the total genome (1 OTUs) correlated through the LRS diet. In the HRS diet, only 

metabolites (1.87%) were found to be significantly changed, whereas no correlations between 

metabolites, proteins and OTUs were detected. The first OTU, detected as correlated with metabolites 

was a Roseburia sp. with some STs.  

2.4.3.2 Mass-difference network analysis 

The supervised ordination approach was complemented using a network-based CLR method (Faith et 

al. 2007) to display potential interactions of the genome, proteome and metabolome and to examine 

results across the different omics levels for an integrated systems picture (Maier et al. 2017). Differential 

expression was calculated as the fold change between mean abundance of each component (OTU, 

protein and metabolite) in the HRS participants versus baseline participants (Figure 2.4-31 A), as well 

as the LRS participants versus the baseline ones (Figure 2.4-31 B). Both were visualized in Cytoscape 

as a network. This allowed assigning various areas of the network to different metabolite compound 

classes (e.g. STs, GLs, GPs and FAs) and connected OTUs, and proteins. This result agreed with the 

supervised ordination approaches, that the discrimination in both models was mainly driven by 

metabolites. 

A F. prausnitzii A2-165 strain, assigned as a species for a specific protein, namely 

phosphotransacetylase, involved in the energy production and conversion was found to be correlated 

with the HRS diet and showed connections to a glycerophospholipid (PG(15:0/0:0)). The CLR network 

comparing HRS to the baseline diet showed more features correlated or correlated negatively with the 

HRS diet compared to baseline than for the LRS diet compared to baseline, which again demonstrates 

that the HRS diet had a larger impact on the gut microbiome (Maier et al. 2017).  

As previously described, genera of Bacteroides and Lachnospiraceae correlated negatively with RS 

and connected to unsaturated FAs and some STs (Maier et al. 2017). Thousands of metabolites were 

significantly more abundant or less abundant after the HRS diet, including sterol lipids, GPs, GLs, FAs, 
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PKs and lots of unknown metabolites, whereas only 3 more proteins (phosphoenolpyruvate 

carboxykinase (C), ribosomal protein L23 (J) and ABC-type sugar transport system (G) and 2 OTUs 

(ruminococcaceae) were revealed.  

 

Figure 2.4-31: Multi-Omics integration displayed as CLR network. 

A: CLR network displaying correlated features to the HRS diet (red) and negatively correlated to HRS diet (blue). 
B: CLR network displaying correlated features to the LRS diet (red) and negatively correlated to LRS diet (blue). 
Similarities (edges) within and between species, proteins, and metabolites (circles, squares, triangles, respectively) 
across participants and time points, including only nodes significantly higher (red) or lower (blue) in HRS or LRS 
respectively relative to baseline (p < 0.05). Areas of the network assigned to sterol lipids (red), glycerolipids (blue), 
glycerophospholipids (orange), fatty acyls (pink), polyketides (mint) and unknown metabolites (green). From Maier, 
T. V.; Lucio, M.; Lee, L. H.; VerBerkmoes, N. C.; Brislawn, C. J.; Bernhardt, J.; Lamendella, R.; McDermott, J. E.; 
Bergeron, N.; Heinzmann, S. S.; Morton, J. T.; González, A.; Ackermann, G.; Knight, R.; Riedel, K.; Krauss, R. M.; 
Schmitt-Kopplin, P.; Jansson, J. K.: Impact of Dietary Resistant Starch on the Human Gut Microbiome, 
Metaproteome, and Metabolome. mBio vol. 8 no. 5 e01343-17 (2017). Figure A was reprinted and modified from 
(Maier et al. 2017). Copyright (2017) Maier et al. Illustration of Figure B was reprinted and modified from (Maier et 
al. 2017). Copyright (2017) Maier et al., Information about the creator and respective contributions, as well as the 
original material are available: http://mbio.asm.org/content/8/5/e01343-17.full with the original title: Integrative 
association network of the microbiome under low resistant starch diet. Licence notice: 
https://creativecommons.org/licenses/by/4.0/. 

When analyzing the combined CLR data, not only features that were associated with the different diets 

were observed, but also features that correlated with each other. This systems view of the metabolite 

composition and clustering confirms results from previous analyses of the influence of dietary RS on 

some members of the Firmicutes, such as F. prausnitzii (Haenen et al. 2013), and goes beyond them 

by also identifying correlations of specific species with single metabolites and proteins. For example, F. 

prausnitzii was correlated positively with the HRS diet and 14 novel metabolites with putative 

identifications as polyketides were found that correlated with this microorganism .(Maier et al. 2017)  
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When analyzing the CLR network comparing the LRS diet to the baseline diet it was noticeable that 

comparatively fewer features correlated and a number of features were correlated negatively with the 

LRS diet. Comparing both networks, an accordance of one species specific protein of the F. prausnitzii 

A2-165, namely ribosomal protein L23, was observed to be correlated positively with the HRS diet, and 

to the LRS diet. These results also pointed towards key linkages between several members of the gut 

microbiome, metabolites and proteins produced in the gut (Maier et al. 2017). 

These findings of the multi-omics analyses were summarized to evaluate the main effects of the RS 

diet on the gut microbiome and functions that they carry out and the multitude of processes that occur 

through HRS diet. Changes in the starch degradation and metabolism were detected.  Glucosidases, 

proteins involved in sugar transport and in the glycolysis, could be observed. Proteins, such as beta-

glucosidases, involved in breaking complex carbohydrates into monomers and proteins involved in 

transport systems for import of resultant free sugars into the cells were highly increased in the HRS 

diet.  

On the contrary, alpha-glucosidases were in comparison less abundant in the HRS diet. Alpha-

glucosidases break down simple starches, but the high amylose cornstarch in the HRS diet was not a 

substrate for alpha-glucosidase activity. Human alpha-amylase was also significantly less abundant in 

the HRS diet as expected due to the decrease in readily available starch. This study also reinforced the 

importance of F. prausnitzii for metabolism of non-dietary carbohydrates in the diet, including enzymes 

for butyrate production by this organism. In contrast, members of the Bacteroides were reduced in 

abundance following the HRS diet. A notable strength of the approach used here was that proteins and 

metabolites were collected from host and microbiome simultaneously, allowing a systems-level 

approach to observe their interplay. Taken together, our results emphasize the importance of 

longitudinal, multi-omics study designs for unraveling the effects of nutrition on the microbiome and 

health (Maier et al. 2017). 
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2.5 Summary and Conclusion 

The aim of the study was to elucidate the impact of dietary starch (RS) on the human fecal metabolome 

and microbiome by applying an ultra-high resolution Fourier transform ion cyclotron resonance mass 

spectrometry based metabolomics approach, 16S rRNA sequencing and shotgun metaproteomics 

analyses in a controlled, randomized, within-subjects’ crossover dietary intervention trial. Diet can 

influence the composition of the human microbiome, yet relatively few dietary ingredients were 

systematically investigated for to their impact on the functional potential of the microbiome. However, 

the knowledge about the impact of HRS diets on the human metabolite profile is currently limited. Here, 

the fecal metabolome analyses revealed not only metabolites significantly correlated positively or 

negatively with the amount of RS, but also unveiled several pathways, especially the lipid metabolism 

to be highly impacted through the different diets. Among hundreds of unknown metabolites, several 

distinctive classes of metabolites such as fatty acids and oxylipins, changed between the baseline, HRS 

or LRS diet. Furthermore, several different lipid classes, namely glycerophosphocholines (PC), 

glycerophosphoethanolamines (PE), glycerophosphoglycerols (PG) and glycerophosphoserines (PS) 

showed distinct patterns between the two diet classes. Especially in the baseline diet, 

glycerophosphates (PA), including cyclic PAs, were significantly increased compared to both RS diet 

groups.  

Further, 16S rRNA sequencing revealed consistent changes according to the three diet classes 

(Baseline, HRS and LRS). Consistent with previous reports (Walker et al. 2011), we found that the HRS 

diet induced in a shift in the composition of the gut microbiome. There was a significant increase in the 

proportion of Firmicutes to Bacteroides following the HRS, compared to the baseline and LRS diets. 

These changes included increases in relative amounts of species in the genera Faecalibacterium, 

Roseburia and Ruminococcus, which were associated with butyrate production (Louis et al. 2010, 

Miquel et al. 2015) and found to be reduced in abundance in the gut microbiota of participants with type 

2 diabetes mellitus (T2DM) compared to healthy individuals (Qin et al. 2012). To conclude, RS 

significantly altered the fecal microbial composition, which was represented by increased and positively 

correlated species of the Firmicutes phylum following the HRS diet, which were predominately species 

of F. prausnitzii and E. rectale. On the contrary, species of the Bacteroides phylum correlated negatively 

and decreased in fecal samples of participants consuming the HRS diet. Further, we went beyond 
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taxonomic characterization to also investigate the functional shifts in response to the diet. Therefore, a 

shotgun metaproteomics approach was conducted, which allowed to determine the identities of 

thousands of host and microbial proteins across the samples. This analysis revealed several proteins, 

involved in carbohydrate metabolism and transport, as well as in the lipid metabolism, especially the 

butyrate metabolism to be significantly increased in fecal samples of participants consuming the HRS 

diet.  

Additionally, we were able to examine results across the different omics levels for an integrated systems 

picture. Therefore, a supervised ordination approach was applied in order to gain an overview about 

discriminating metabolites, proteins and OTUs that were correlated with each other and with the 

different diets, followed by CLR method network-based approach to detect linkages between specific 

OTUs, proteins and metabolites. Combining all analyses, it was possible to present the main effects of 

the RS diet on the gut microbiome and functions that they carry out. 

These findings may help to understand the impacts of RS consumption. To conclude, future studies 

investigating the influence of RS on gut bacteria should consider the inclusion of tools such as 

metabolomics to understand the complexities of how this fermentable starch may influence bacterial 

and host metabolome (Chassard and Lacroix 2013) and biomarkers of bacterial activity, as well as 

focusing on bacterial community membership. There is good evidence that RS influences gut microbial 

communities involved in amylose breakdown and butyrate production, but there is a significant 

variability in responses. Advances in gut microbe profiling and metabolomics may help  to understand 

the complexity of this variation (Lockyer and Nugent 2017). 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Chapter III 

 

Impact of breast feeding and bifidobacteria-supplemented formula on the infant fecal 

metabolite profile in the first year of life 
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Autran, C., Walter, J., Bode, L., Schmitt-Kopplin, P., Haller, D.: Randomized controlled trial on 

the impact of early-life intervention with bifidobacteria on the healthy infant fecal microbiota and 
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3 Impact of breast feeding and bifidobacteria-supplemented formula on the 

infant fecal metabolite profile in the first year of life 

3.1 Introduction 

Colonization of the human intestinal tract commences during birth and is a complex process influenced 

by many factors. This comprises the gestational age at birth, maternal health and microbiota, antibiotic 

treatment, hospital hygiene, mode of delivery and type of feeding (Dominguez-Bello et al. 2010, 

Marques et al. 2010, Arrieta et al. 2014).  

The intestinal microbiota and thus the metabolite profile of fecal samples of infants fed with breast milk 

differ significantly from the formula fed ones (Chow et al. 2014). This is predominantly influenced by a 

dominating amount of bifidobacteria species in the gut microbiota of breastfed infants (Chow et al. 

2014), caused by HMOs in the breast milk (Arrieta et al. 2014). The HMOs enable the settlement and 

the survival of the bifidobacteria species in the gut. In contrast, feces of formula-fed infants harbor more 

diverse bacterial species (Chow et al. 2014), containing also E. coli, Clostridium difficile, Bacteroides 

and Lactobacilli (Harmsen et al. 2000, Penders et al. 2006).  

From a nutritional point of view, breast milk is fundamental in early life development, since it contains 

the appropriate composition of nutrients, such as macro- and micronutrients. They are essential to 

support the development of the infants’ immune system. Macronutrients are carbohydrates (e.g. lactose 

and oligosaccharides), fat (e.g. long-chain polyunsaturated fatty acids, LCPUFAs) and proteins (e.g. 

casein, α-lactalbumin, lactoferrin, secretory immunoglobulin IgA, lysozyme, and serum albumin, amino 

acids, and nucleotides) (Jenness 1979, Ballard and Morrow 2013). Micronutrients are especially 

vitamins, such as vitamin A, B1, B2, B6, B12 and D, the amount of which depends on the motherly diet 

and their body storages (Ballard and Morrow 2013). 

Formula is an alternative nutrition for infants used as sole food or as supplementary food if the breast 

milk does not suffice. It is known, that infant formula with probiotic supplementation e.g. bifidobacteria 

(Conway 2001) is beneficially influencing the gut microbiota and the infants’ health (Bergmann et al. 

2014, Tanaka et al. 2015). However, it is not much known about the effect of probiotic formula on the 

development of the infants’ intestinal gut microbiome. Therefore, it is a straightforward approach to 
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supplement infant formula with probiotic bifidobacteria in order to support infant’s health and approach 

as closely as possible the gut microbiome of breastfed infants. 

In recent years, research in the field of probiotics vastly increased. Even a greater focus sticks on 

revealing the impact of probiotics on the development of the infants’ gut microbiome in early life stages, 

in contrast to breastfed ones. Effects of probiotics on the infant gut microbiome need to be investigated 

due to the decrease of willingness for weaning, wherefore the focus should be laid on the effect of 

probiotics on the healthy, developing gut microbiome of newborns. Already at birth, the gut microbiota 

of infants develops through maternal and environmental exposure and is colonized with several 

microorganisms Further, compared to the adult gut microbiota, the infants’ microbiota is more 

impressionable to environmental exposure, such as lifestyle, birth and nutrition (Arrieta et al. 2014).  

Interestingly, several studies were published investigating the impact of diet on the infant fecal 

microbiota and health, though relatively few focused on the impact of diet and mode of delivery on the 

metabolome of the infants. Recently, Chow et al. investigated the fecal metabolite profiles of healthy, 

exclusively breast fed or formula-fed infants (without considering probiotics) before and during in vitro 

batch culture fermentation, analyzed by GC/MS and LC-MS/MS. An increase of human milk 

oligosaccharides (HMOs) and other metabolites (e.g. linoelaidate, hydroxyphenyllactate, lactate and 

taurocholenate sulfate) was detected in the batch culture of breastfed infants. On the contrary, the 

metabolite profiles of cultures from formula-fed infants were shaped of around three times the number 

of significantly increased metabolites, including tocopherols, saturated fatty acids ranging from C5:0 up 

to C24:0, unsaturated fatty acids and bile acids (Chow et al. 2014).  

Further, at birth, the infants’ initial microbiota is influenced by either vaginal delivery (VD) or cesarean 

section (CS), which anon affects the microbes’ composition in the gut (Dominguez-Bello et al. 2010). In 

general, the gut microbiota of vaginally born infants harbor bacteria such as Prevotella, Lactobacillus, 

and further bacteria from the maternal vagina and the ones present in the maternal gut (Mackie et al. 

1999, Dominguez-Bello et al. 2010). On the contrary, Proteobacteria, Propionibacterium and 

Streptococcus predominately inhabit the gut microbiota of infants born by C-section (Backhed et al. 

2015, Del Chierico et al. 2015, MacIntyre et al. 2015). Infants get used to solid food during their weaning 

period, where the infants are fed with a higher amount of carbohydrates, than those present in breast 

milk or formula. Also, the introduction of solid food alters the gut microbiota composition and plays a 



3. Impact of breast-feeding and bifidobacteria-supplemented formula  

 

94 

significant role in the development. Especially the increasing amount in general, but also type of 

carbohydrates, such as complex carbohydrates play an important role in the microbial metabolic 

processing and SCFA production (Arrieta et al. 2014). 

This aforementioned, established high-cohort study, including the metabolomics approach and the 

metabolite-OTU correlations enable not only to investigate the development of the gut microbiome over 

time with respect to the metabolic response due to the different feedings of either breastfed or formula-

fed infants, but also to consider the impact of the mode of delivery on the infant gut microbiome at early 

life stages.  

3.2 Objective and Goals 

In order to support the infant’s health equipping it with a beneficial gut microbiome, much effort has 

been undertaken to develop probiotic supplementation that increase e.g. health-promoting 

bifidobacteria in the intestinal microbiome. Relatively little research was done to investigate the impact 

of such probiotics with non-targeted meta-metabolome analyses. Therefore, a randomized, double-

blinded, placebo-controlled trial with 106 healthy newborns was designed, to investigate the impact of 

bifidobacteria-supplemented formula on the infant gut microbiome and the metabolite pattern in the first 

year of life. The goals were to investigate and evaluate the metabolite profiles of fecal samples of the 

newborns over time, the impact of bifidobacteria-supplemented formula (F+) compared to the placebo 

group (F-) and in contrast to the breastfed (B) infants. Furthermore, metabolites differing between CS 

and VD were also investigated. To achieve this, an MS based metabolomics approach using UHPLC-

ToF-MS in two different ionization modes was applied. Additionally, high-throughput 16S rRNA gene 

amplicon sequencing was performed to reveal relationships between metabolites and gut specific 

microbial species in relation to the type of feeding. Further, correlation techniques e.g. between 

metabolites and OTUs were applied. Fecal sample collection and coordination, as well as high-

throughput 16S rRNA gene amplicon sequencing was performed and processed by Monika Bazanella 

(Chair of Nutrition and Immunology, Technische Universität München). Further information on fecal 

sample collection, on high-throughput 16S rRNA gene amplicon sequencing and data processing is 

given in (Bazanella et al. 2017). 
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3.2.1 Study design 

The objective of the study was to describe the gut microbiota-mediated metabolic effects in infants after 

being fed with bifidobacteria-supplemented formula in contrast to breast feeding or the placebo formula. 

Therefore, 106 healthy infants were classified to two main groups, consisting of exclusively fed and 

mixed fed infants as shown in Figure 3.2-1. In the first group, the infants were fed exclusively with 

formula or were exclusively breastfed in the first year of life. The second main group was composed of 

infants, which were inconsistently fed with formula and/or breastfed over time. Both groups were 

differentiated into two formula-groups, receiving either the placebo or the bifidobacteria-supplemented 

formula with a mixture of four bifidobacteria species in equal shares of Bifidobacterium longum, B. 

infantis, B. breve, B. bifidum (108 cfu/g formula) (Bazanella et al. 2017).  

 

Figure 3.2-1: Study design of the InfantBio study. 

Study design to evaluate the impact of bifidobacteria-supplemented formula in contrast to the placebo and the 
breastfed group in infants. Infants were assigned to either the exclusively or mixed fed group, differentiating in 
exclusively breast fed (blue), interventional formula-fed (green, with probiotics) or placebo formula-fed (red, without 
probiotics). *A mixture of four bifidobacteria was fed in equal shares of Bifidobacterium longum, B. infantis, B. 
breve, B. bifidum (108 cfu/g formula). 

Another aspect was to investigate, if the mode of delivery (CS and VD) had influences on the metabolite 

profile in general. An overview of study population, the birth and feeding characteristics of the infants, 

which were studied in detail in the following chapters are given in Table 3.2-1.  
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Table 3.2-1: InfantBio study population characteristics.  

Infant characteristics of exclusively and mixed fed infants, including gender (male or female), mode of delivery 
(vaginal delivery or cesarean section), birth weight and birth size of month 1, 3, 5, 7, 9 and 12. Data are shown as 
mean values, including standard deviations. Percentages are shown in brackets. 

 Exclusive Feeding  Mixed Feeding 

 
Breastfed 

(B)                          
(n=9) 

 
Placebo 

formula (F-)           
(n=11) 

 
Interventional 
formula (F+) 

(n=11) 

 

Breast milk + 
Placebo formula 

(BF-)               
(n=38) 

 

Breast milk + 
Interventional 
formula (BF+) 

(n=37) 
          

Birth characteristics          

          

     Gender          

Male (%) 5 (4.7%)  6 (5.7%)  4 (3.8%)  13 (12.3%)  12 (11.3%) 

Female (%) 4 (3.7%)  5 (4.7%)  7 (6.6%)  25 (23.6%)  25 (23.6%) 

Distribution (Group)          

Male (%) 55%  55%  36%  34%  32% 

Female (%) 45%  45%  64%  66%  68% 

          

          

     Mode of delivery          

Vaginal delivery (%) 3 (2.8%)  6 (5.7%)  6 (5.7%)  21 (19.8%)  22 (20.7%) 

Cesarean section (%) 6 (5.7%)  5 (4.7%)  5 (4.7%)  17 (16.0%)  15 (14.2%) 

          

Distribution (Group)          

Vaginal delivery (%) 33%  55%  55%  55%  60% 

Cesarean section (%) 67%  45%  45%  45%  40% 
          

          

     Birth weight (g) 3515 ± 297  3246 ± 390  3327 ± 401  3175 ± 431  3421 ± 585 

Month 1 4186 ± 333  4425 ± 480  4158 ± 667  4012 ± 514  4162 ± 721 

Month 3 6116 ± 1066  6518 ± 994  6085 ± 607  5794 ± 1342  5838 ± 922 

Month 5 6933 ± 839  7427 ± 1260  7236 ± 587  7106 ± 791  6960 ± 1090 

Month 7 8095 ± 972  8505 ± 1218  8305 ± 832  8073 ± 1150  7879 ± 1163 

Month 9 8700 ± 846  8685 ± 485  9166 ± 827  8535 ± 1247  8656 ± 1294 

Month 12 9514 ± 1077  9350 ± 1196  10228 ± 905  9212 ± 1185  9093 ± 1262 
          

     Birth size (cm) 52.4 ± 1.7  50.7 ± 1.7  51.3 ± 2.9  51.0 ± 2.2  51.5 ± 2.7 

Month 1 53.3 ± 3.4  54.4 ± 1.4  54.4 ± 2.9  54.1 ± 2.7  54.6 ± 2.9 

Month 3 63.4 ± 2.7  63.0 ± 3.5  62.3 ± 3.0  61.7 ± 2.1  60.9 ± 3.1 

Month 5 68.5 ± 3.5  66.9 ± 3.5  65.2 ± 2.3  66.0 ± 2.1  65.1 ± 3.2 

Month 7 68.4 ± 4.5  80.0 ± 2.8  70.1 ± 2.8  69.6 ± 2.8  68.7 ± 3.1 

Month 9 71.3 ± 2.5  72.3 ± 2.4  74.6 ± 4.0  72.9 ± 3.4  72.0 ± 4.2 

Month 12 75.6 ± 4.1  78.2 ± 3.1  76.1 ± 4.4  75.3 ± 2.8  74.7 ± 3.5 

           

Little research was done in the meta-metabolomics field. However, it is crucial to focus on the 

investigation of the metabolite profile due to different feeding types, since the metabolite profiles give a 

broad overview of functionality of the microbiome. Metabolomics allows to analyze and to identify 

thousands of metabolites and to gain a deeper insight into the complex interactions of gut microbes, 

feeding and the host. Investigating the metabolite profile is helpful to further assess the effect of 

bifidobacteria-supplemented formula on the healthy development of the infants’ gut microbiome. 

Therefore, fecal samples of infants were collected monthly, whereas only samples every second month 

were taken into account for metabolome analysis. First, a non-targeted metabolomics approach was 

performed by UHPLC-(+)/(-)-ToF-MS, followed by a subsequent series of targeted analyses, including 

SCFA analysis and MS/MS experiments for metabolite identification. Moreover, metabolites and OTUs 

- received from 16S rRNA gene sequence analyses (performed and processed by Monika Bazanella, 
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TU München, ZIEL) were correlated to detect significant microbial-metabolite relationships in the 

formula (probiotic and non-probiotic) and/or the breastfed group.  

3.3 Materials and Methods 

3.3.1 Metabolite extraction of fecal samples  

The collected samples were extracted with MeOH (CHROMASOLV®, for HPLC, ≥99.9%, Sigma-

Aldrich) as follows: First, all samples were centrifuged (4 °C, 12.000 rpm) for 60 minutes. Accrued fecal 

water was taken and transferred into a cryogenic vial and stored at -80 °C. The following steps were 

performed on ice. Approximately 50 mg of each fecal sample were weighed into NucleoSpin® Bead 

Tubes with ceramic beads, 1 mL of ice cold MeOH was added and homogenized in a TissueLyser II 

(Qiagen) for 5 minutes at a rate of 30 Hz in order to destroy the bacterial cells and extract the 

metabolites out of the fecal sample. Afterwards, the mixture was centrifuged (4 °C, 10.000 rpm; 5 

minutes) and the supernatant was transferred into a 2 mL Eppendorf vial, stored at -80 °C until the 

analysis on a Waters ACQUITY UltraPerformance LC® system (Waters GmbH, Eschborn, Germany) 

coupled to a Bruker Daltonik (Bremen, Germany) maXis™ UHR-qToF-MS (Bazanella et al. 2017). 

3.3.2 Non-targeted UHPLC-ToF-MS metabolite analysis of fecal methanol extracts 

The MeOH extracts were measured with UHPLC-ToF-MS in positive and negative ESI mode. 

Measurements were conducted on a VisionHT C18 HL 1,5 µm (150mm x 2.0mm) (W. R. Grace & Co, 

Columbia, USA) in randomized order within ten batches. Gradient separation with a total runtime of 

15.5 minutes (flow rate: 0.4 mL/min, column temperature: 40 °C, A: 5% ACN, 0.1% formic acid, B: 100% 

ACN, 0.1% formic acid) was performed of 5 µL of each sample injected in partial loop with 99.5% A and 

0.5% B as starting condition. After 1.12 minutes B was increased to 99.5% within 5.3 minutes and hold 

for 3.6 minutes, followed by a rapid decrease to 0.5% B in 0.5 minutes and hold for 5 minutes. For 

quality control and for the after the measurement following normalization, a QC (mixture of all samples) 

was injected after each 10 samples. For the calibration of the MS data, a segment at the beginning of 

the chromatogram was added, while 1:4 diluted ESI-L Low Concentration Tuning Mix (G1969-85000, 

Agilent, Waldbronn, Germany) was injected. MS parameters are as follows: mass range: m/z 50 – 1000, 

dry gas: 8 L/min, dry temperature: 200 °C, nebulizer gas: 2 bar. During the analyses, samples were 
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kept at 4 °C in the sample manager (Bazanella et al. 2017). Further details on parameters are given in 

Table 6.2-4. 

3.3.3 Automated data processing of high throughput samples 

Data processing is challenging, because many factors and parameters must and/or need to be taken 

into account, depending on the type of data. Within this study, it was chosen to process the data for 

both ionization modes automatically as an end-to-end automation by using the Genedata 

Expressionist® Refiner MS for MS-based metabolomics data from the Genedata AG. With this method, 

thousands of samples – as in our study – can be processed. The automated processing and cleansing 

steps can be varied as needed.  In this study, the LC-MS data underwent several steps including noise 

reduction, filtering, calibration, alignment, and peak clustering, as shown in detail in Figure 3.3-1. Here, 

the processing was divided into three main steps, consisting of stage 1, which included mainly noise 

reduction and the removal of artefacts, followed by stage 2. Within this step, the previously processed 

data from stage 1 was calibrated with the tune mix (Agilent Technologies, G1969-85000) injected at the 

beginning. Further, chromatogram retention time alignment was applied. In the last step, in stage 3, 

peaks in the chromatogram and isotope patterns were detected and merged in one big data matrix. The 

processed and obtained data matrix was further loaded to Genedata Analyst™ - a software tool for the 

integration and interpretation of the experimental data – for normalization of the data. Normalization is 

crucial due to enormous analysis time shifts. Therefore, the method of choice was a batch 

normalization, which corrects the data for batch and injection order effects in long-running MS 

experiments by using a linear regression between the quality control samples within the runs.  
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Figure 3.3-1: Genedata Expressionist® Refiner MS for Mass Spectrometry Workflow. 
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3.3.4 Data filtering, metabolite annotation and classification 

For further data analysis the data matrices of the exclusively fed samples, the correlation studies and 

to investigate the monthly and feeding variances of the different groups (B, F, F- and F+) were 

processed similar. The data matrices for the correlation of metabolites and OTUs, the overall, and the 

monthly evaluation were filtered by mass defect above 0.9 and a cutoff for zero presence values was 

applied. This resulted in 710 ((-) ESI) and 2040 ((+) ESI) mass signals over time, considering month 1 

up to month 12. Next, the mass signals were searched against the KEGG (Kanehisa and Goto 2000), 

HMDB (Wishart, Tzur et al. 2007, Wishart, Knox et al. 2009) and Lipid Maps (www.lipidmaps.org) (Fahy 

et al. 2009) databases as M+H, M+Na and M+K (positive) and M-H, M+FA-H, M+H2O-H (negative) 

adducts using homo sapiens (hsa) as reference organism by the MassTRIX web server (Suhre and 

Schmitt-Kopplin 2008, Wagele, Witting et al. 2012) with a maximum error of 0.005 Da. In databases 

known metabolites were classified into compound classes by using the MassTRIX assigned compound 

IDs of the HMDB and Lipid Maps database and to related pathways using the information of KEGG 

(Bazanella et al. 2017).  

3.3.5 Fatty acid analysis, focusing on SCFA and MCFA, lactic acid and pyruvic acid 

For the analysis, the MeOH fecal extracts of the exclusively fed infants (month 1, 3, 5, 7, 9 and 12) and 

chemical standards (pyruvic acid, lactic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, 

isovaleric acid, maleic acid, fumaric acid, succinic acid, hexanoic acid, heptanoic acid, nonanoic acid, 

octanoic acid and decanoic acid) (Chapter 6.2.1) were prepared and derivatized on ice as instructed in 

the AMP+ Mass Spectrometry Kit (Caymen Chemicals) product insert.  

The fecal samples and chemical standards were prepared and measured as described in Chapter 

2.3.1.7. The extractions of the mass signals, data processing, as well as statistical analyses were 

performed similarly as described in Chapter 2.3.1.7. Quantification was performed by external 

calibration (8 calibration points) based on the extracted peak areas of each standard concentration via 

the calculated calibration function (Table 3.3-1). 

 

 

http://www.lipidmaps.org/
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Table 3.3-1: SCFA results of the external calibration. 

name m/z (derivatized) RT [min] calibration function coefficient of determination method 

Pyruvic acid 255,1134 4,1 y = 17303x + 1473,3 R² = 0,9971 MS 
Lactic acid (conc. 0 – 5 µmol/L) 257,1290 3,6 y = 19184x + 4630,4 R² = 0,9923 MS 
Lactic acid (conc. 5 – 52 µmol/L) 257,1290 3,6 y = 7336,6x + 120551 R² = 0,995 MS 
Propionic acid 241,1341 4.0 y = 1,2119x - 0,5784 R² = 0,999 UV 
Butyric acid 255,1497 4,6 y = 59940x + 16956 R² = 0,9981 MS 
Isovaleric acid 269,1654 5,3 y = 82730x + 6202,9 R² = 0,9993 MS 
Valeric acid 269,1654 5,5 y = 92248x + 4883 R² = 0,9998 MS 

 

For PCA, the data was UV scaled. Scores scatter plots and loadings plot of correlations between SCFA 

to OTUs were illustrated as PCA, performed in SIMCA-P 9.0 (Umetrics, Umeå, Sweden). Correlation 

coefficients and p-corr were calculated in Microsoft Office Excel 2010 by applying the data analysis 

function “Regression”. The EIC of mass signals, the MS/MS spectra and the MS/MS fragment mass 

lists for the comparison with several databases, as well as for in-silico platforms were created and 

extracted using Compass DataAnalysis Version 4.1 SR 1 (Bruker Daltonik GmbH, Bremen). 

3.3.6 Standard operation procedure: metabolite profiling using RP- UHPLC-MS 

Analyses were performed on a Waters ACQUITY UltraPerformance LC® system (Waters GmbH, 

Eschborn, Germany) coupled to a Bruker Daltonik (Bremen, Germany) maXis™ UHR-qToF-MS. 

Measurements were conducted on a BEH C18 (100 mm x 2.1 mm ID, 1.7 μm) (Waters, Milford, MA). 

Gradient separation with a total runtime of 10 minutes plus 5 minutes pre-run time (flow rate: 0.4 mL/min, 

column temperature: 40 °C, A: 100% MilliQ water, 0.1% formic acid, B: 100% ACN, 0.1% formic acid) 

was performed of 5 µL of each sample in partial loop with 95.0% A and 5% B as starting condition. After 

1.12 minutes B was increased to 99.5% within 5.3 minutes and hold for 3.6 minutes until the end of the 

analysis. MS parameters were as follows: capillary voltage of 4500 V ((+)ESI) / 4000 V ((-)ESI) and end 

plate offset to -500 V, mass range: m/z 100 – 1500, spectra rate: 2.0 Hz, dry gas: 10 L/min, dry 

temperature: 200 °C, nebulizer gas: 2 bar, ion energy: 3 eV (ESI+) / -3 eV (ESI-). Further details are 

given in Table 6.2-5. 

3.3.7 Tandem mass spectrometry (RP- UHPLC-(+/-)-ToF-MS/MS) 

Selected fecal metabolite extracts represented for each group and all standards (chapter 6.2.1) were 

analyzed using the standard operation procedure (SOP) method previously described in chapter 3.3.6. 

All standards were prepared as 20 ppm standard solutions in 20% ACN out of an already existing fridge-

stored 1000 ppm standard stock solution. MS parameters were as follows: capillary voltage of 4000 V 
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and end plate offset to -500 V, mass range: m/z 50 – 1500, dry gas: 10 L/min, dry temperature: 200 °C, 

nebulizer gas: 2 bar. Collision energies were 10 eV, 20 eV and 40 eV. Metabolites were identified by 

standards (fragmentation pattern and retention time). MS/MS spectra extraction and raw data 

processing was applied by using DataAnalysis Version 4.1 (Bruker Daltonik GmbH, Bremen, Germany). 

3.3.8 Visualization, software and statistical evaluation 

For PCA, the data was UV scaled and performed using SIMCA-P 9.0 (Umetrics, Umea, Sweden). For 

the heatmaps, the data was normalized by standardization. The heatmaps were created by using the 

Hierarchical Clustering Explorer 3.5 (Seo and Shneiderman 2002). Therefore, the data was normalized 

(X-m/σ) and clustered by rows (Euclidean distance). The significance was tested by applying the 

Kruskal-Nemenyi test for pairwise test of multiple comparisons of mean rank sums in R (Computing 

2014) (package: ‘PMCMR’ version 4.1) (Pohlert 2014). The Mann-Whitney (or Wilcoxon rank sum test) 

test was performed in RStudio (Version 0.99.489). Boxplots were visualized by Excel (Microsoft Office 

Professional Plus 2010) and RStudio (Version 0.99.489). Two-sided t-test (heteroscedastic) was 

performed in Excel (Microsoft Office 2010). The log2 fold change (log2 FC) was calculated of the 

arithmetic mean sums in Microsoft Office Excel 2010.  

For the correlations of metabolites and OTUs of month 1, 7 and 12, the data was UV scaled. 

Correlations were carried out through OPLS-DA in SIMCA-P 13.0.3 (Umetrics, Umeå, Sweden) and 

visualized as scores scatter plot and loadings plot of highly correlated features among the different 

datasets. The loadings of the complete dataset were extracted and visualized as loading plots using 

RStudio (Computing 2014)  (Version 0.99.489) For each classification model, CV-ANOVA was applied 

in order to verify the robustness of each model. Indicators, such as the p-value, the goodness-of-fit 

R2Y(cum) and the goodness-of prediction Q2(cum) were reported. 

The EIC of mass signals, the MS/MS spectra and the MS/MS fragment mass lists for the comparison 

with several databases, as well as for in-silico platforms were created and extracted using Compass 

DataAnalysis Version 4.1 SR 1 (Bruker Daltonik GmbH, Bremen).  
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3.4 Results and Discussion 

3.4.1 Comparison of exclusively breastfed and formula-fed, respectively and mixed fed 

infants 

In order to compare the metabolite profiles and to detect differences of the mixed feds to the two 

exclusively fed infant groups over time; a PCA of both ionization modes was performed. Additionally, 

the metabolite profiles of the mixed fed infants compared to both exclusively fed ones of month 1 and 

month 3 were considered as well.  In the scores scatter plots a characteristic pattern between the three 

groups was observed over time (Figure 3.4-1, top), as well as in the monthly view (Figure 3.4-1, bottom). 

In both ionization modes, the scores scatter plots of the PCA revealed a separation between the two 

exclusively fed groups, whereas the mixed fed were in between and overlap with both exclusively feds.  

 

Figure 3.4-1: Unsupervised PCA scores scatter plots comparing exclusively and mixed fed infants. 

Comparison of different groups through PCA (UV scaling) of infants exclusively breast fed (blue) or formula-fed 
(brown) compared to infants mixed fed (pink) over time (top), analyzed in UHPLC-(+)-ToF-MS (left) and UHPLC-(-
)-ToF-MS (right). On the bottom PCA scores scatter plots of infants exclusively breast fed (blue) or formula-fed 
(brown) compared to infants mixed fed (pink) of month 1 (left) and month 3 (right) are displayed.  

The loadings (=metabolites) responsible for the pattern in the scores scatter plot were extracted in order 

to evaluate the differences between the mixed fed infants compared to the two exclusively fed ones. 

Mostly, the metabolites showed inconsistent and different intensity levels, but no metabolites were 

found which invariably characterized the mixed fed infants compared to the two exclusively fed infants.  
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In addition, the infants’ microbiota is rather impressionable to environmental exposure, especially to 

nutrition (Arrieta et al. 2014). Since the influences on the development of the fecal metabolome and 

microbiome should as low as possible, the mixed fed infants were excluded for all following analyses in 

this chapter. Doing so, it can be ensured that metabolites, which cannot be referred to either the 

breastfed group or the formula fed group, falsify the analyses. This allowed a more precise evaluation 

of the data, since the impact of breast and/or formula feeding with or without probiotics on the infants’ 

fecal metabolome can be investigated more distinctively.   

3.4.2 Differences in the fecal metabolome of exclusively fed (breastfed vs. formula-fed) 

infants 

The focus here was laid on the metabolomics perspective of the development of the infant gut 

microbiome in relation to different feeding, as breast milk or probiotics. For a better evaluation of the 

data and the metabolite profiles, the exclusively breastfed or exclusively formula-fed will be looked at 

in detail. This perspective and the homogeneity of the groups were crucial and simplified the comparison 

between the groups to follow the progress over time, feeding differences and delivery effects. 

3.4.2.1 In the first year of life 

To get an overview of trends in the data and to evaluate the influence of feeding and the development 

of the fecal metabolome over time, an unsupervised multivariate data analysis technique (PCA) was 

performed on fecal samples including the months 1, 3, 5, 7, 9 and 12. The scores scatter plots with the 

first two generated components of the positive ionization (Figure 3.4-2 A) and the negative ionization 

mode (Figure 3.4-2 B) showed a clear separation of breastfed infants and formula-fed ones over time 

(Bazanella et al. 2017). Further, the metabolite dynamics show a convergence of feeding over time, 

which was more dominant in the (+) ESI-MS metabolite composition, than in (-) ESI-MS. 
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Figure 3.4-2: Unsupervised PCA scores plots of exclusively fed infants over time. 

Comparison of fecal samples through PCA (UV scaling), displaying component 1 and 2, of infants either exclusively 
breast fed (filled circles) or exclusively formula-fed (blank circles) in month 1 (green), month 3 (blue), month 5 
(yellow), month 7 (light blue), month 9 (purple) and month 12 (red), analyzed in (A) UHPLC-(+)-ToF-MS and (B) 
UHPLC-(-)-ToF-MS. Figure A from Bazanella, M., Maier, T. V., Clavel, T., Lagkouvardos, I., Lucio, M., Maldonado-
Gòmez, M. X., Autran, C., Walter, J., Bode, L., Schmitt-Kopplin, P., Haller, D.: Randomized controlled trial on the 
impact of early-life intervention with bifidobacteria on the healthy infant fecal microbiota and metabolome. Am J 
Clin Nutr. (2017), 106(5):1274-1286. Reprinted and adapted from (Bazanella et al. 2017) by permission of Oxford 
University Press. Copyright (2017) American Society for Nutrition. 

In order to find metabolites, which were responsible for the feeding differences and the time trend in 

both ionization modes, a PLS-DA was applied. According to their variable important projection (VIP) 

values obtained by PLS-DA, the significant features among the different feeding types and months were 

extracted. The importance of the significant features is represented by a high VIP value. With a 

combination of the highest VIP values and results of further statistical tests, such as the two-sided 

Student’s t-test, features were selected as changing significantly over time and through different 

feeding. They were visualized in a heatmap, illustrated in Figure 3.4-3. Detailed information on 

differences over time in both ionization modes are listed in Table 6.2-8 (breastfed, (+) ESI), Table 6.2-9 

(formula-fed, (+) ESI), Table 6.2-10 (breastfed, (-) ESI) and Table 6.2-11 (formula-fed, (-) ESI). The 

tables include further information on retention time, compound name, if possible, VIP score of PLS-DA 

analysis and the respective p-values, obtained with Student’s t-test (heteroscedastic)  

In total, this analysis revealed 65 features in (-) ESI-MS and 85 features in (+) ESI-MS to be significantly 

different between breastfed and formula-fed infants. Compared to the breastfed group, several 

significantly increased features for the formula-fed group ((-) ESI: n=49, (+) ESI: n= 63) were observed 

in both ionization modes. The level of significantly altered metabolites in the breastfed group was 

comparably low ((-) ESI: n=17, (+) ESI: n=22). Chow et al. achieved similar results investigating the 
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impact of breast- and formula-feeding, before and during in vitro batch culture fermentation. They 

detected less metabolites significantly higher in breastfed infants, than in formula fed ones as well 

(Chow et al. 2014). 

Further, the change of significant metabolites can be followed from month 1 to month 12, which showed 

the disappearance of these differences over time. The intensity decreased for all of them represented 

the change in feeding in detail and can be observed as well over time in the previously displayed PCA 

scores plot. Through the evaluation of the significant metabolites, many metabolites were found to be 

uniquely appeared in formula-fed infants. On the contrary, there were no metabolites, which exclusively 

appear only in breastfed infants.  

 

Figure 3.4-3: Heatmap of the most abundant and discriminating metabolites over time. 

Heatmap of most abundant and highly discriminative mass signals (top: 85 variables, bottom: 65 variables) 

between exclusively breast fed (blue) and exclusively formula-fed (brown) infants (n=223), analyzed by UHPLC-

(+)-ToF-MS (top) and UHPLC-(-)-ToF-MS (bottom). For more details on the metabolites, which are responsible for 

the discrimination, the significant metabolites for the breastfed are listed in Table 6.2-8 (UHPLC-(+)-ToF-MS) and 

Table 6.2-10 (UHPLC-(-)-ToF-MS) and the formula-fed (Table 6.2-9 (UHPLC-(+)-ToF-MS and Table 6.2-11 

(UHPLC-(-)-ToF-MS) group for both ionization modes are listed in the appendix. 

The heatmap confirmed the results, which were already seen in the scores scatter plots of the PCA in 

Figure 3.4-2, namely a decrease in differentiating features between breastfed and formula-fed infants 

from month 1 to month 12. These differences were observed more clearly in the positive, than the 

negative ionization mode. In order to identify or even to classify the significant features, MS/MS 
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experiments were performed. The obtained MS/MS spectra were manually compared against spectral 

databases, such as Metlin and HMDB. Several mass signals were identified with the respective 

chemical standard and retention time matching as well. The information about the mass signals of which 

MS/MS experiments were performed are tagged in Table 6.2-8 (breastfed, (+) ESI), Table 6.2-9 

(formula-fed, (+) ESI), Table 6.2-10 (breastfed, (-) ESI) and Table 6.2-11 (formula-fed, (-) ESI). The 

respective MS/MS spectra for both ionization modes of identified, as well as still unknown mass signals 

are shown in Chapter 5.2.1. In positive ionization mode, none of the mass signals, significantly altered 

in the breastfed or formula-fed group were identified. The respective mass spectra are illustrated in 

Figure 5.2-6 (formula-fed) and Figure 5.2-7 (breastfed). However, based on the MS/MS spectra and the 

comparison with similar fragmentation patterns listen in spectral databases, one mass signal was 

classified as prostaglandin (MS/MS spectrum in Figure 5.2-6 E).  

In negative ionization mode, several mass signals increased in the breastfed infants over time were 

identified, including bile acids (e.g. cyprinolsulfate, sulfocholic acid; MS/MS spectra in Figure 5.2-1 A 

and B) and fatty acids (e.g. eicosatetraenoic acid; MS/MS spectrum in Figure 5.2-4 B), as well as 

hydroxyphenyllactic acid (MS/MS spectrum in Figure 5.2-4 C). In the formula-fed group, mass signals 

were identified as glucuronides of vitamin E intermediates (e.g. tocotrienol glucuronide, tocopherol 

glucuronide; MS/MS spectra in Figure 3.4-11 A and B), bile acids (e.g. glycochenodeoxycholic acid; 

MS/MS spectrum in Figure 5.2-3 B), oxylipins (e.g. dihydroxyoleic acid; MS/MS spectrum in Figure 5.2-5 

A) and dicarboxylic acids, such as dodecenedioic acid (MS/MS spectrum in Figure 5.2-5 B). The 

importance of all identified metabolites is discussed in detail in the following chapters. The mass spectra 

of unidentified features increased in formula-fed infants are illustrated in Figure 5.2-8 and Figure 5.2-9. 

Additionally, core metabolites that were present in 95% of all samples, independent of feeding or age 

were of interest. Therefore, metabolites were evaluated by applying a 5% filter to exclude all mass 

signals, which appear less than 11 times in n = 224 infants. This resulted in 67 of 710 (negative) and in 

85 of 2040 (positive) mass signals, which further were filtered by constant intensity levels with a     ± 

15% standard deviation over time. After filtration, 16 mass signals in the negative ionization mode and 

15 mass signals in the positive ionization mode were detected with constant intensity levels over time 

as shown in Table 3.4-1. Molecular formula and compound annotation of the mass signals were 

assigned by running the MassTRIX webserver with an error of 0.005 Da. It was observed that 
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octadecenoic acid, hydroxyoctadecanoic acid and cholic acid were the most abundant and most 

consistent metabolites over time.  

Table 3.4-1: Core metabolites over time in all infants independent from feeding. 

Fifteen ((+) ESI) or sixteen ((-) ESI) core metabolites with constant intensity levels over time in all infants 
independent from feeding, calculated as arithmetic mean sums of month 1, 3, 5, 7, 9 and 12. Table contains 
averaged experimental mass, retention time (in minutes), compound name if possible, molecular formula from 
Genedata Refiner MS, as well as p-values showing the significance according to diet comparison, calculated with 
the two-sided heteroscedastic Student’s t-test. 

Mass 
(avg.) 

Retention 
time [min] 

Molecular 
Formula 

Annotation 
Mean 

Month 1 
Mean 

Month 3 
Mean 

Month 5 
Mean 

Month 7 
Mean 

Month 9 
Mean 

Month 12 

(+) ESI  

283.2685 6.79 C18H34O2 Octadecenoic acid 3.97E+06 3.98E+06 4.58E+06 3.31E+06 3.57E+06 2.91E+06 

425.2923 7.29 C23H40O4 no metabolite found 1.70E+05 1.86E+05 1.84E+05 1.94E+05 1.99E+05 1.96E+05 

271.2760 7.52 C16H34 no metabolite found 5.25E+04 6.07E+04 4.95E+04 5.19E+04 4.89E+04 6.55E+04 

420.3348 7.29 C20H34O8 no metabolite found 4.95E+04 5.37E+04 5.11E+04 5.42E+04 5.63E+04 6.43E+04 

284.2991 8.23 C18H34O no metabolite found 8.94E+05 1.26E+06 9.74E+05 1.38E+06 1.34E+06 1.44E+06 

790.3831 5.23 C37H49N7O9S no metabolite found 4.15E+04 4.21E+04 3.46E+04 4.28E+04 4.34E+04 3.46E+04 

465.3778 7.29 C30H50O2 no metabolite found 4.65E+03 4.33E+03 6.13E+03 5.15E+03 5.16E+03 4.44E+03 

171.1398 7.36 C9H18 no metabolite found 4.66E+04 4.80E+04 4.81E+04 4.70E+04 4.93E+04 4.81E+04 

151.0366 0.65 C6H8O3 no metabolite found 3.81E+04 4.19E+04 4.66E+04 5.13E+04 5.56E+04 5.97E+04 

251.0579 7.00 C2H8O7P2 no metabolite found 2.47E+04 2.49E+04 2.62E+04 3.46E+04 3.14E+04 3.13E+04 

387.1846 5.23 C21H26O4 no metabolite found 1.32E+05 1.34E+05 1.19E+05 1.41E+05 1.39E+05 1.34E+05 

540.4487 7.58 C35H54O3 no metabolite found 1.54E+04 1.31E+04 1.12E+04 1.12E+04 1.30E+04 1.04E+04 

496.4204 7.59 C33H50O2 no metabolite found 1.46E+04 1.13E+04 9.50E+03 1.08E+04 1.29E+04 9.95E+03 

128.0280 0.66 C2H6OS2 no metabolite found 4.69E+04 5.29E+04 6.03E+04 6.61E+04 7.13E+04 7.49E+04 

526.4330 7.28 C31H56O5 no metabolite found 7.02E+03 7.17E+03 8.28E+03 9.67E+03 9.89E+03 8.04E+03 

          

(-) ESI  

293.1783 6.81 C14H30O4S no metabolite found 2.29E+04 2.44E+04 2.59E+04 2.87E+04 2.57E+04 3.09E+04 

483.3287 5.08 C34H44O2 no metabolite found 8.04E+04 6.82E+04 7.60E+04 7.39E+04 6.31E+04 6.81E+04 

299.2621 6.76 C18H36O3 Hydroxyoctadecanoic acid 3.84E+06 3.40E+06 3.75E+06 2.93E+06 3.27E+06 2.91E+06 

297.1516 5.78 C19H22O3 no metabolite found 1.53E+04 1.20E+04 1.23E+04 1.31E+04 1.57E+04 1.81E+04 

453.2477 5.10 C26H32O8 no metabolite found 1.16E+06 1.83E+06 1.93E+06 1.83E+06 1.67E+06 1.20E+06 

337.2043 7.49 C20H26N4O no metabolite found 1.88E+04 2.56E+04 1.92E+04 1.84E+04 1.59E+04 2.43E+04 

405.2655 4.82 C24H38O5 no metabolite found 1.64E+05 2.24E+05 2.01E+05 2.62E+05 2.77E+05 2.33E+05 

481.3132 4.74 C28H44N4O4 no metabolite found 1.07E+04 1.23E+04 1.29E+04 1.89E+04 1.45E+04 1.79E+04 

399.1859 6.75 C23H28O6 no metabolite found 1.24E+05 1.04E+05 1.15E+05 1.00E+05 1.20E+05 1.17E+05 

437.2926 5.83 C21H43O7P no metabolite found 6.33E+05 6.33E+05 6.10E+05 5.95E+05 6.78E+05 8.11E+05 

431.1719 5.22 C23H28O8 no metabolite found 1.97E+04 1.79E+04 1.34E+04 1.55E+04 1.84E+04 1.70E+04 

478.2927 6.71 C23H46NO7P no metabolite found 3.82E+04 3.76E+04 3.00E+04 3.56E+04 4.48E+04 2.99E+04 

379.1581 7.39 C20H28O5S no metabolite found 8.14E+03 7.18E+03 6.55E+03 5.69E+03 7.30E+03 9.41E+03 

621.5046 6.76 C41H68O5 no metabolite found 4.29E+04 4.02E+04 4.23E+04 3.93E+04 4.38E+04 4.78E+04 

481.3111 5.97 C28H44N4O4 no metabolite found 8.89E+04 1.21E+05 1.08E+05 1.09E+05 9.01E+04 7.49E+04 

407.2818 5.16 C24H40O5 Cholic acid 6.91E+05 5.79E+05 6.31E+05 6.47E+05 6.18E+05 5.27E+05 

Through this evaluation, differences in feeding over time and several core metabolites not to be affected 

by feeding were observed. Metabolites altered by either breast milk or formula were prevalent, 

wherefore possible metabolite changes due to probiotics might get lost. Therefore, monthly analysis of 

the fecal samples was required to detect metabolites which were influenced by probiotics in the infant 

formula. This could not be achieved by investigating the development of the metabolite profile over time. 

Thus, the fecal samples of exclusively breastfed and placebo and interventional formula-fed infants, 

respectively, were evaluated month by month in the next chapter. 
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3.4.2.2 Breastfed vs. interventional formula fed (F+) vs. placebo formula-fed (F-) by the 

month  

In order to evaluate the impact of breast feeding and both formulas on the infant’s fecal metabolome, 

the data was analyzed month by month. Here, month 1, 3, 5, 7, 9 and 12 of breastfed (B), interventional 

formula fed (F+) and placebo formula fed (F-) infants were considered for the analyses. Here, the focus 

was to detect monthly predominant and discriminant metabolites in fecal samples of breastfed and 

formula-fed infants in general. These findings then will be discussed in detail in the following chapters. 

To achieve this, a PCA of each single month of the (+) ESI (Figure 3.4-4) and (-) ESI (Figure 3.4-5) 

mode was applied to get an overview of the metabolite profile by month.  

 

Figure 3.4-4: Unsupervised PCA scores plots of exclusively fed infants month by month. 

Comparison of fecal samples of exclusively fed infants month by month (month 1, 3, 5, 7, 9 and 12) through PCA 
(UV scaling), displaying component 1 and 2, differentiating in exclusively breast fed (blue), interventional formula-

fed (green, with probiotics) or placebo formula-fed (red, without probiotics), analyzed in UHPLC-(+)-ToF-MS.  
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Figure 3.4-5: Unsupervised PCA scores plots of exclusively fed infants month by month.  

Comparison of fecal samples of exclusively fed infants month by month (month 1, 3, 5, 7, 9 and 12) through PCA 
(UV scaling), displaying component 1 and 2, differentiating in exclusively breast fed (blue), interventional formula-
fed (green, with probiotics) or placebo formula-fed (red, without probiotics), analyzed in UHPLC-(-)-ToF-MS. 

As already seen in the metabolite profile over time in Figure 3.4-2, a clear separation between breastfed 

and formula-fed infants was found for month 1 to month 7 in both ionization modes, which converged 

over time. Further, in month 1 a slight separation between the two formula-fed groups was observed. 

Additionally, the fecal samples of the breastfed infants in general showed more diverse individual 

profiles until month 12, than the formula-fed ones, whose individual metabolite profiles were similar and 

more clustered up to month 9. This indicated that the impact of formula was comparable within the 

formula groups and the inter-individual changes were not as high as effected through breast milk. 

Within the overall and monthly analyses several metabolites emerged as strongly influenced by 

breastfeeding or formula-feeding. To identify the discriminating metabolites among the three groups (B, 

F+ and F-) for each month, a PLS-DA was applied. For each month, a model was created comparing 

always breastfed, interventional formula fed and the placebo formula fed infants. The obtained 
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significant mass signals given in VIP values were extracted and further evaluated as discussed in the 

following chapters. In month 1, a few mass signals were found to be increased by either interventional 

or placebo formula compared to breastfeeding, which among others showed the highest VIP values 

and will be examined in detail in chapter 3.4.3. 

3.4.2.3 Pathway analysis - affected by nutrition - KEGG metabolic pathway analysis 

The metabolism of infants is strongly influenced by nutrition, such as breastfeeding or formula. Chow 

et al. demonstrated the impact of breastfeeding and formula on the fecal metabolome of healthy infants 

through metabolic pathways classification. They illustrated not only super- and sub-pathways, including 

responsible metabolites for the discrimination of the metabolite profiles, but also that the same super-

pathways (e.g. carbohydrate metabolism, lipid metabolism or the metabolism of cofactors and vitamins) 

are affected differently by formula and breastfeeding. Thus, they revealed metabolites of the bile acid 

metabolism, for instance 7-ketolithocholic acid and taurochenodeoxycholic acid sulfate, to be 

significantly higher in formula-fed infants, or the breastfed infants, respectively (Chow et al. 2014).  

It is well known that a high amount of detected features obtained through metabolomics analyses 

remain unknown and even less are listed in databases (Bowen and Northen 2010). In order to get an 

overview of the metabolomics datasets, the mass signals were searched against the MassTRIX 

webserver with an error of 0.005 Da. Here, the data matrix showed 67%/50% ((+) ESI/(-) ESI) unknown 

features and 26%/33% annotated by MassTRIX, whereas 7%/14% are listed in the KEGG pathway 

database. Hereto, MassTRIX allowed assigning metabolites to KEGG IDs and the analogous sub-

pathway, including e.g. the primary bile acid biosynthesis or the fatty acid biosynthesis. Accordingly, 

metabolites were classified to a super-pathway, based on the metabolite annotations obtained by 

MassTRIX. Taking into account that several annotated metabolites are involved in various sub-

pathways of a super-pathway, the super-pathways were assigned and further considered for the 

pathway classification. In order to investigate the impact of exclusive breast-feeding and formula-

feeding on a pathway-related level, the VIPs – responsible for the discrimination - obtained through the 

monthly PLS-DA analysis in chapter 3.4.2.2, were taken into account. Therefore, the metabolites of 

each month with a VIP > 1 were considered to calculate the amount of assigned metabolites classified 

to a super-pathway of the KEGG pathway database (e.g. lipid metabolism, carbohydrate metabolism or 
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the metabolism of cofactors and vitamins). It was revealed that breast- and formula feeding, strongly 

affect pathways of the lipid metabolism (Figure 3.4-6). 

 

Figure 3.4-6: Significantly changed main pathways of KEGG metabolic pathways by month. 

Number of significant main pathways of the KEGG pathway database assigned through the MassTRIX webserver, 
calculated based on the monthly PLS-DA classification models of the UHPLC-(+)-ToF-MS mode (filled) and 
UHPLC-(-)-ToF-MS mode (patterned), impacted through breastfeeding and formula in general. 
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Furthermore, it was of interest to evaluate which metabolites, in particular in the lipid metabolism, were 

affected differently through formula or breastfeeding, which is discussed in the next chapter. 

3.4.2.4 Impact on the bile acid metabolism through breast- and formula feeding 

Pathway classification analysis revealed different pathways to be altered by breast milk or formula. 

Especially, the lipid metabolism appeared to be highly impacted by breast- and formula feeding. Also, 

in the PLS-DA of the negative ionization mode (Chapter 3.4.2.1), a few bile acids were observed to be 

affected by breast milk or formula. Those bile acids turned out to be involved in the primary bile acid 

biosynthesis, a sub-pathway of the lipid metabolism. In order to find if further bile acids and sterol lipid-

like compounds of the lipid metabolism were differently altered by feeding, metabolites were classified 

to their sub-pathway, they are involved in, using KEGG CIDs obtained by MassTRIX. The obtained 

KEGG CIDs allowed assigning the metabolites to their sub-pathways. Accordingly, metabolites found 

in the data matrix were matched for mass signals, which appeared to be significantly changed by breast 

milk or formula, according to the PLS-DA analyses described in chapter 3.4.2.2.. Metabolites of the 

primary bile acid biosynthesis and bile acid structure related compounds were predominantly affected 

through the different feedings, which lead to a series of targeted bile acid analysis by UHPLC-ToF-MS 

in negative ionization mode, including MS/MS identification experiments 

In general, bile acids are sterols, which are distinguished into primary (CA and CDCA) and secondary 

bile acids (deoxycholic acid and lithocholic acid). Microbes in the intestine are not only involved in the 

conversion of primary bile acids into secondary bile acids, but also influence the levels and types of bile 

acids produced and excreted in feces (Hammons et al. 1988). Primary bile acids originate from the 

conversion of cholesterol in the liver, followed by the conjugation by either taurine or glycine for the 

secretion into the bile (Gerard 2013, Aw and Fukuda 2015). The daily synthesis of bile acids in the liver 

is about 200 – 600 mg, of which almost the same amount is excreted in feces (Chiang 2013). 

Bile acids undergo bacterial metabolism in the human gut and are converted (e.g. deconjugation, 

esterification and desulfatation). Through these processes, the secondary bile acids are formed, which 

result in more than 20 different secondary bile acids in adult human feces (Gérard, 2014). These 

bacterial conversions appear very early in life, wherefore secondary bile acids were already identified 

in meconium. Species, such as Bacteroides, Eubacterium, Clostridium and Escherichia coli are mainly 
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involved generating secondary bile acids (Xie et al. 2013, Aw and Fukuda 2015). Further bacteria 

involved in the bile acid metabolism are: Bifidobacterium, Ruminococcus and Lactobacillus (Gerard 

2013).  

Bile acids are important for digestion and nutrition. It was shown that diet impacts bile acid metabolism 

in infants (Hammons et al. 1988). Further, bile acids play an important role, especially in the modulation 

of lipids, glucose and the energy metabolism (Chiang 2013), whereas their main task entail to support 

the absorption of dietary lipids and lipid-soluble nutrients (Gerard 2013). Already in the 1980s and 

1990s, several articles were published about the complexity of bile acids and the impact of nutrition on 

the bile acid metabolism, particularly infant nutrition (Hammons et al. 1988, Midtvedt and Midtvedt 1993, 

Jonsson et al. 1995). 

For targeted bile acid analysis, several representative samples of each feeding group and month were 

measured again using the SOP for RP-LC coupled to a ToF-MS (Chapter 3.3.6), were processed and 

evaluated as previously described. The mass signals of the bile acids were extracted and their patterns 

compared to previously obtained results. The bile acid patterns of both analyses were nearly identical, 

wherefore the SOP method was used for the MS/MS experiments (chapter 3.3.7) to identify affected 

bile acids due to breastfeeding or formula.  

Some pre-selected bile acids detected in the data matrix of fecal samples of both, breastfed and 

formula-fed infant were analyzed by MS/MS experiments, varying in collision energies from 10 eV to 20 

eV and 40 eV. A multitude of various isomeric bile acids exist, wherefore its identification can be difficult. 

In order to identify the bile acids more precise, a standard mixture of commercially available bile acids 

as listed in Table 3.4-2 was analyzed by the SOP method for UHPLC-ToF-MS in negative ionization 

mode (Figure 3.4-7), including MS/MS experiments of each single bile acid (Table 3.4-2) with collision 

energies of 10, 20 and 40 eV. Without prior chromatographic separation, the multitude of various 

isomeric bile acids would be indistinguishable. This method allowed identifying the bile acids not only 

by its fragmentation pattern, but also by retention time. Here, for the most part, the chromatographic 

separation was sufficient to separate isomeric bile acids as shown below in Figure 3.4-7.  
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Table 3.4-2: List of bile acid analyzed by UHPLC-(-)-ToF-MS. 

Table contains m/z [M-H], compound name, abbreviation and retention time in minutes [min]. Colors are according 
to the corresponding extracted ion chromatograms in Figure 3.4-7. 

  [M-H]-   Compound name Abbr. 
retention 

time             
[min]  

  [M-H]-   Compound name Abbr. 
retention 

time            
[min] 

     
      

  514.2844 α-Tauromuricholic acid TαMCA 3.5    448.3069 Glycochenodeoxycholic acid GCDCA 4.7 

  514.2844 β-Tauromuricholic acid TβMCA 3.6    448.3069 Glycodeoxycholic acid GDCA 4.8 

  514.2844 ω-Tauromuricholic acid TωMCA 3.7    482.2946 Taurolithocholic acid TLCA 4.8 

  498.2895 Tauroursodeoxycholic acid TUDCA 3.9    389.2697 5α-Cholanic Acid-3α-ol-6-one ketoCA 4.9 

  514.2844 Taurocholic acid TCA 3.9    389.2697 3α-Hydroxy-7 Ketolithocholic Acid 7-ketoLCA 5.0 

  464.3018 Glycohyocholic acid GHCA 4.1    389.2697 3α-Hydroxy-12 Ketolithocholic Acid 12-ketoLCA 5.1 

  407.2803 ω-Muricholic acid ωMCA 4.2    389.2697 Apocholic acid apoCA 5.2 

  448.3069 Glycohyodeoxycholic acid GHDCA 4.2    391.2854 Chenodeoxycholic acid CDCA 5.3 

  464.3018 Glycocholic acid GCA 4.2    389.2697 3-Ketolithocholic acid 3-ketoLCA 5.4 

  498.2895 Taurochenodeoxycholic acid TCDCA 4.2    391.2854 Deoxycholic acid DCA 5.4 

  407.2803 α-Muricholic acid αMCA 4.3    432.3119 Glycolithocholic acid GLCA 5.4 

  407.2803 β-Muricholic acid βMCA 4.3    375.2905 Allolithocholic acid alloLCA 5.8 

  448.3069 Glycoursodeoxycholic acid GUDCA 4.3    375.2905 Isolithocholic acid isoLCA 5.8 

  498.2895 Taurodeoxycholic acid TDCA 4.4    373.2748 Lithocholenic acid - 5.9 

  391.2854 Hyodeoxycholic acid HDCA 5.7    391.2854 Isodeoxycholic acid isoDCA 5.9 

  391.2854 Ursodeoxycholic acid UDCA 4.7    375.2905 Lithocholic acid LCA 6.1 

  407.2803 Cholic acid CA 4.7    373.2748 Dehydrolithocholic acid dehydroLCA 6.2 

                     

 

 

Figure 3.4-7: Extracted Ion Chromatogram of bile acids. 

EIC of 34 bile acids standard solution (25 ppm) analyzed by UHPLC-(-)-ToF-MS analysis of 34 bile EIC were 
extracted with an error of ± 0.01 Da, Gaussian chromatogram smoothing, width: 0.5 [s], 1 cycle. List of all 34 bile 
acids with their corresponding [M-H] mass and retention time and the according color used in the EIC 
chromatogram are listed in Table 3.4-2.  

The experimental chromatograms, the mass spectra and the retention time of the fecal bile acids in the 

samples were compared against the corresponding chromatograms and mass spectra obtained through 

the analysis of the chemical standard solutions under the same conditions. Thus, the mostly clear 

separation of isomeric bile acids allowed the conclusive identification of four bile acids to be affected by 

breast milk and/or formula, namely CA (MS/MS spectrum in Figure 5.2-2, A), CDCA (MS/MS spectrum 

in Figure 5.2-2, B), GCA (MS/MS spectrum in Figure 5.2-3, A) and GCDCA (MS/MS spectrum in Figure 

5.2-3, B) from the primary and secondary bile acids biosynthesis, as schematically illustrated in Figure 
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3.4-8. Further, two more bile acids, cyprinolsulfate (MS/MS spectrum in Figure 5.2-1, A) and sulfocholic 

acid (MS/MS spectrum in Figure 5.2-1, B) were detected as significantly associated with the breastfed 

infants over time.   

 

Figure 3.4-8: Schematic overview of the primary bile acid biosynthesis adapted from KEGG pathway 
(Kanehisa and Goto 2000). 

Bile acid patterns of cholic acid and chenodeoxycholic acid, glycochenodeoxycholic acid and glycocholic acid, as 
well as Cyprinolsulfate and sulfocholic acid altered in breastfed (blue frame) and formula-fed (brown frame) infants, 
analyzed in (-)-ToF-MS mode. A: Cholic acid; B: Chenodeoxycholic acid. C26 glycine-conjugated bile acid patterns 
of (C) glycochenodeoxycholic acid and (D) glycocholic acid. C: # p-value = 8.766E-05; * p-value = 1.715E-07; † p-
value = 2.481E-06; ‡ p-value = 2.374E-06; ○ p-value = 0.002756; ¥ p-value = 0.000983; D: # p-value = 7.258E-05; 
* p-value = 0.000201; † p-value = 5.164E-06; ‡ p-value = 0.0003769; ○ p-value = 0.05788; ¥ p-value = 0.02661. 
Sulfated bile acids in breastfed and formula-fed infants; E: Cyprinolsulfate; F: Sulfocholic acid. E: # p-value = 
6.925E-05; * p-value = 1.277E-05; † p-value = 4.94E-06; ‡ p-value = 5.44E-07; ○ p-value = 0.06994; F: * p-value 
= 0.001851; † p-value = 0.0002354; ‡ p-value = 4.504E-05; ¥ p-value = 0.001508 (Mann-Whitney-Test - R Studio 
Version 0.98.1091). P-values are always in relation to the same month of the different feedings. Further details are 
given in Table 6.2-12. 
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In addition, CA and CDCA appeared as the most abundant bile acids detected over time. CA showed 

a more or less consistent level in both groups and CDCA showed consistent patterns in the breastfed 

infants over time. In the formula-fed ones, the intensity level of CDCA was increasing up to month 12. 

Additionally, the glycine-conjugated bile acids (GCDCA and GCA) were increased in the formula-fed 

infants over time, whereas the sulfated bile acids (cyprinolsulfate and sulfocholic acid) were erratically 

increased and widely spread in breastfed infants over time, while the pattern in the formula-fed ones 

was comparably low and rather consistent.  

Cyprinolsulfate is an intermediate of the bile acid biosynthesis and has not yet been associated to 

infants fed with breast milk. It is known that the intestinal microflora is involved in the excretion of bile 

salts into feces. Through the sulfation, the solubility of bile acids increases. This ensures the decreased 

absorption in the intestine and promotes the excretion into feces (Eyssen et al. 1985, Alnouti 2009). In 

addition, sulfation is deemed to be an important step in detoxification of bile acids, whereas sulfated 

bile acids are less toxic than the unsulfated ones (Alnouti 2009). Concerning this, our results hinted that 

through breastfeeding the sulfation of bile acids is more stimulated, than through formula-feeding. This 

further lead to the assumption that breastfeeding had more impact of the detoxification of bile acids, 

than formula had and therefore showed higher levels in the fecal samples.   

Other sulfated bile acids were already studied. In 1994, for example Wahlen et al. investigated the 

developmental pattern of urinary bile acid excretion in infants fed with different formula compared to 

breastfed ones. They observed that sulfated bile acids and the glycine-conjugates were not significantly 

different in the urine samples of all feeding groups (breast milk, cow’s milk formula and soy formula) 

(Wahlen and Strandvik 1994).  

Moreover, 5β-cholanic acid-7α-ol-3-one (also known as 3-Lithocholic acid) and 7-Ketolithocholic acid 

or 5α-Cholanic acid-3α-ol-6-one was partially significantly higher in formula fed infants, as presented in 

Figure 3.4-9. 7-Ketolithocholic acid or 5α-Cholanic acid-3α-ol-6-one could not be assigned clearly and 

even the experimental MS/MS spectra did not give any indication of one of these compounds. Currently, 

7-ketolithocholic acid is predicted to be a major intermediate in the conversion of CDCA to UDCA in the 

intestine (Cao et al. 2011).    
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Figure 3.4-9: C24 bile acids changed over time in exclusively fed infants. 

Bile acid profiles of C24 bile acids significantly increased in formula-fed infants over time, analyzed in (-)-ToF-MS 
mode. A: 3-Ketolithocholic acid; # p-value = 0.002784; ‡ p-value = 0.0007055; ¥ p-value = 0.02361; and B: 7-
Ketolithocholic acid / 5α-Cholanic acid-3α-ol-6-one; B: * p-value = 0.02549; † p-value = 2.794E-05; ‡ p-value = 
6.738E-06; ¥ p-value = 0.02787 (Mann-Whitney-Test). P-values are always in relation to the same month of the 
different feedings. Further details are listed in Table 6.2-13. 
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of age, most of the fecal bile acids were deconjugated and that the bile acid pattern changes over time, 

but after 24 months the children had an almost adult bile acid pattern. Hammons et al. previously 

reported the analysis of CA and CDCA via GC-MS in solely breastfed and non-probiotic formula-fed 

infants and detected a lower concentration of CA in the breastfed infants than in the formula-fed ones 

up to the first 5 months. CDCA concentrations were not different in these two groups (Hammons et al. 

1988). On the contrary, the relative level of the primary bile acid CA mostly remained mostly consistent 

over time and did not change due to different feeding. In contrast, the primary bile acid CDCA increased 
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In order to find differences in the levels of some of the identified bile acids in the fecal samples of the 

placebo formula-fed and the interventional formula-fed infants compared to the breastfed ones, the bile 

acids were evaluated by month including all three feeding groups, B, F- and F+. Subsequently, 

comparing the intensity levels between B vs. F-, B vs. F+ and F+ vs. F- of the corresponding infants, 

differences in CDCA, GCA, GCDCA and cyprinolsulfate were observed (Figure 3.4-10).  

In month 1, CDCA (Figure 3.4-10 A) was significantly different between F- and F+ (p-value = 0.015) 

and showed increased intensity levels in the F+ group, which were comparable to the breastfed infants. 

In the following month the difference between the F+ and F- group disappeared. On the contrary, GCA 

(Figure 3.4-10 B) and GCDCA (Figure 3.4-10 C) were not significantly altered between the F- and the 

F+ group in month 1, but showed different intensity levels compared to the breastfed infants over time. 

It was remarkable that in month 1 the intensity levels of CDCA, GCA and GCDCA in the probiotics 

formula group leads to an approximation towards the breastfed infants, which pattern was not prevalent 

any more up to month 7 and almost disappeared. This finding leads to the assumption that probiotics 

may help to approximate breast milk.  

Thereof, GCA (B vs. F-: p-value = 0.00034; B vs. F+: p-value = 0.014) and GCDCA (B vs F-: p-value = 

6.7E-05, B vs. F+: p-value = 0.06) showed different significant changes compared to the breastfed 

group. On the contrary, the F- group was characterized by higher intensity levels than the F+ group 

compared to the breastfed infants. The difference in the level of significance between B vs. F- and B 

vs. F+ of GCA was also detected in month 3. Additionally, GCDCA was different between B. vs. F- and 

B vs. F+ up to month 5, as well. After month 7, the differences in the significance between B. vs. F- and 

B vs. F+ disappear, but the significance of the bile acids between the fecal samples of breastfed and 

formula-fed infants were still present up to month 12. Further details are given in Table 6.2-13. 
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Figure 3.4-10: Differences in the bile acid profile between B, F- and F+ in month 1, 3 and 5.  

Boxplots of bile acid profiles of CDCA, GCA and GCDCA significantly increased in formula-fed infants and 
cyprinolsulfate significantly increased in breast fed infants up to month 5, analyzed in (-)-ToF-MS mode               A: 
Chenodeoxycholic acid: F+ vs. F-: *p-value = 0.015. B: Glycocholic acid: Month 1: B vs. F- : #p-value = 0.00034; 
B vs. F+: *p-value = 0.014. Month 3: B vs. F- : #p-value = 0.00035. Month 5: B vs. F- : #p-value = 3.00E-04; B vs. 
F+: *p-value = 6.30E-04. C: Glycochenodeoxycholic acid: Month 1: B vs. F-: #p-value = 6.7e-05. Month 3: B vs. F-
: #p-value = 6.9e-06; B vs. F+: *p-value = 4.70E-04. Month 5: B vs. F-: #p-value = 5.2e-05; B vs. F+: *p-value = 
0.0021. D: Cyprinolsulfate: Month 1: B vs. F-: #p-value = 0.00059; B vs. F+: *p-value = 0.02578. Month 3: B vs. F-
: #p-value = 0.0030; B vs. F+: *p-value = 0.0015. Month 5: #p-value = 2.90E-04; B vs. F+: *p-value = 4.71E-03 
(post hoc Kruskal-Nemenyi test). Further details are lusted in Table 6.2-13. 

The finding that secondary bile acids could be ambiguously neither detected nor identified in any of the 

three feeding groups was in contrast with previously publishes studies. Hammons et al. detected a 
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et al. 1988). However, diet was observed to affect the bile acid metabolism in infants, widely differing 

between breastfed infants and formula-fed infants in sulfated and glycine-conjugated bile acids.  

3.4.2.5 Intermediates of the tocopherol metabolism increased in formula fed infants 

The statistical evaluation of the metabolite profiles of formula- and breastfed infants, revealed two highly 

significant mass signals, namely m/z 585.3432 and m/z 591.3879. In order to identify both, MS/MS 

experiments were performed. Through MS/MS experiments, similar fragmentation patterns were 

observed in both mass signals, with a characteristic loss of 176.03, which is distinctive for the loss of 

glucuronide fragments as shown in Figure 3.4-11. Therefore, the MS/MS spectra, as the unconjugated 

form were compared with the Metlin MS/MS database, which classified the two metabolites as γ-

tocotrienol and γ-tocopherol.  

 

Figure 3.4-11: Vitamin E metabolite patterns in breastfed and formula-fed infants. 

Experimental (-)-TOF-MS/MS spectra at 40 eV of A: γ-Tocotrienol glucuronide; B: γ-Tocopherol glucuronide and 
boxplots of the (C) γ-tocotrienol glucuronide and (D) γ-tocopherol glucuronide significantly increased in formula-
fed infants over time.  C: Month 1: # p-value = 9.78E-08; Month 3: * p-value = 6.14E-08; Month 5: † p-value = 
6.32E-07; Month 7: ‡ p-value = 2.65E-06; Month 9: ○ p-value = 0.000554; D: Month 1: # p-value = 2.19E-05; Month 
3: * p-value = 1.99E-07; Month 5: † p-value = 3.68E-08; Month 7: ‡ p-value = 6.56E-07; Month 9: ○ p-value = 
9.30E-07; Month 12: ¥ p-value = 0.004312 (Mann-Whitney-Test). p-values are always in relation to the same month 
of the different feedings. Further details are listed in Table 6.2-14. 
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Differentiation between the β- and γ-tocopherol or tocotrienols respectively, having the same 

monoisotopic mass was enabled by different fragmentation patterns. Also Chow et al. detected higher 

levels (18.36-fold) of γ-tocopherol, an intermediate of the tocopherol metabolism, in exclusively formula-

fed infants compared to breastfed infants. Assuming, that all vitamin E intermediates are glucuronidated 

and then excreted into feces, the monoisotopic masses of metabolites involved in the biosynthesis of 

tocopherol/tocotrienol were calculated as [M-H]- adducts and fictively conjugated with glucuronide. In 

this way, α-tocopherol glucuronide, α-tocotrienol glucuronide and δ-tocopherol glucuronide were also 

detected as significantly increased in the fecal samples of formula-fed infants.  

 

Figure 3.4-12: Over time patterns of intermediates of the biosynthesis of tocopherols. 

Boxplots of potential metabolites involved in the biosynthesis of tocopherol differentiating between breastfed and 
formula-fed infants of month 1 (green), month 3 (blue), month 5 (yellow), month 7 (light blue), month 9 (purple) and 
month 12 (red). Significance was tested through the Mann-Whitney test; symbols #, *, †, ‡, °, ¥: p-value < 0.05. 
Further details are listed in Table 6.2-14. 
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either breast milk or formula. In this study, the amount of vitamin E was 1.3 mg/100mL in each formula 

fed to the infants, whether it was pre-formula, follow-up or supplementary formula. As γ-tocotrienol and 

γ-tocopherol were distinctively classified through MS/MS experiments, their patterns in the formula-fed 

infants over time will be reviewed for possible relationships between the amount of formula the infants 

were fed and the intensity of tocotrienol and tocopherol detected in the fecal samples of the formula 

and the breastfed infants. Considering all months together, Pearson correlation (alpha = 0.05) revealed 

a significantly positive relationship between the amount of formula fed and the intensity of tocotrienol 

(r(221) = 0.64, p-corr < 0.001) and tocopherol (r(221) = 0.52, p-corr < 0.001) detected in the fecal 

samples of formula-fed infants. Evaluating the correlations on a monthly view, a significant positive 

relationship between the amount of formula and the two metabolites was observed up to month 5. The 

positive relationship between the amount of formula and tocotrienol was further decreasing up to month 

12, whereas for tocopherol the correlations are still present up to month 9, as shown in Table 3.4-3. 

The different correlation pattern leads to study the impact of tocotrienol on the tocopherol pattern and 

vice versa by applying the Pearson correlation, too. 

Table 3.4-3: Correlations between tocopherol and tocotrienol and the amount of formula fed.  

Correlations between the amount of formula and the metabolites, as well as the correlations among the different 
metabolites were obtained through Pearson correlation, recording the correlation coefficient (r), and the degrees 
of freedom (df), as well as p-corr values calculated through regression analysis.  

 
Name [M-H]- r p-corr df 

R
e
la

ti
o

n
s
h
ip

 b
e
tw

e
e
n
 t

h
e
 a

m
o

u
n
t 
o
f 

fo
rm

u
la

 a
n
d
 t
h
e
 i
n
te

n
s
it
y
 l
e
v
e
ls

 

      

γ-tocotrienol glucuronide 

585.3419 
C34H50O8 

   
 

Month 1 0.79 3.32E-09 36  
Month 3 0.71 7.75E-08 40  
Month 5 0.65 3.94E-06 38  
Month 7 0.51 5.60E-04 30  
Month 9 0.53 0.0016 30  
Month 12 0.47 0.0105 27   

 
   

γ-tocopherol glucuronide  
   

 
Month 1 

591.3879 
C34H56O8 

0.56 2.30E-04 36  
Month 3 0.55 1.41E-04 40  
Month 5 0.49 1.10E-03 38  
Month 7 0.61 1.64E-05 30  
Month 9 0.55 0.00094 30  
Month 12 0.33 0.08 27   

 
   

C
o
rr

e
la

ti
o

n
s
 

b
e
tw

e
e
n
 

to
c
o
tr

ie
n
o
l 
  
 

a
n
d
 t

o
c
o
p
h
e
ro

l 

 

       
Month 1 

 
0.80 1.29E-09 36  

Month 3 
 

0.77 1.98E-09 40  
Month 5 

 
0.70 3.84E-07 38  

Month 7 
 

0.75 1.52E-08 30  
Month 9 

 
0.68 1.95E-05 30  

Month 12 
 

0.26 0.17 27 

It could be assumed that up to month 5, tocotrienol and tocopherol correlated predominantly positively 

with the amount of formula fed. After month 5 the predominating factor seems to be the coexistence of 
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the two vitamin intermediates and their significant positive relationship, as well as their dependency on 

one another, since the positive correlation persists up to month 9.  

To further investigate, why formula-fed infants display higher intensities of tocotrienol and tocopherol 

compared to the relatively low amount in breastfed infant,  the study of Haug et al in 1987 possibly 

provides some more insights (Haug et al. 1987). They analyzed the vitamin E content (α-, β- and γ-

tocopherol) in breast milk samples of mothers of preterm and full-term infants. They observed that not 

only the vitamin E content of preterm and full-term breast milk showed similar concentration patterns, 

but also stage of lactation (colostrum, transitional and mature) of the breast milk samples played an 

important role on the vitamin E concentrations. Further, they showed that with the duration of lactation 

the concentration of vitamin E decreases.  

Further studies confirm this finding (Kobayashi et al., Syvaoja et al and Boersma et al. (Kobayashi et 

al. 1975, Syvaoja et al. 1985, Boersma et al. 1991). The same result was obtained by Martysiak-

Zurowska et al. (Martysiak-Zurowska et al. 2013), who analyzed α- and γ-tocopherol in breast milk 

samples of different stages of lactation (day 2, day 14, day 30 and day 90). They found concentration 

levels of γ-tocopherol in the breast milk samples from 0.022 mg/100mL – 0.060 mg/100mL and 0.207 

mg/100mL – 0.999 mg/mL for α-tocopherol, depending on the stage of lactation. Compared to the 

vitamin E content in the formula within this study (1.3 mg/100 mL), the concentration levels are much 

higher than those detected in breast milk in previously performed studies. As previously postulated by 

Chow et al., this indicated either levels in the diet that are too excessive or that the tocopherols cannot 

be absorbed completely and are excreted into feces (Chow et al. 2014). It can be assumed that the 

amount of vitamin E in breast milk samples received by the infants is usually sufficient as the 

concentration levels in the breastfed infant were 1.65 – 7.65-fold lower than in the formula-fed infants 

(Table 6.2-14) and the formula-fed infants need to excrete this excess with feces. 

3.4.2.6 Fatty acids and derivatives altered in breastfed and formula-fed infants 

The fecal samples of the exclusively fed infants, which previously were evaluated by month revealed 

several mass signals assigned as FAs to be altered between breastfed and formula-fed infants over 

time. All detected FAs, including the saturated, medium-chain fatty acids (MCFAs) dodecanoic acid 
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(C12:0, Figure 3.4-13 A) and LCFA tetradecanoic acid (C14:0, Figure 3.4-13 B, MS/MS spectrum in 

Figure 5.2-4 A), were significantly increased in the breastfed infants (Bazanella et al. 2017). C12:0 and 

C14:0 were significantly increased in the breastfed infants up to month 5 (Figure 3.4-13 A, B). On the 

contrary, Chow et al. detected dodecanoic acid and tetradecanoic acid to be significantly higher in 

formula-fed infants (Chow et al. 2014). 

 

Figure 3.4-13: Saturated fatty acids increased in breast fed infants up to month 5. 

Boxplots of saturated fatty acids significantly increased in breast fed infants (blue) in month 1 (green), month 3 
(blue) and month 5 (yellow). Significance was tested by post hoc Kruskal-Nemenyi test; A: Dodecanoic acid, B: 
Tetradecanoic acid, A: Month 1 ‡ p-value = 2.00E-03 (B vs. F-) and p-value = 1.40E-03 (B vs. F+); Month 3 ‡ p-
value = 9.20E-04 (B vs. F-) and p-value = 1.92E-03 (B vs. F+); Month 5 ‡ p-value = 1.20E-02 (B vs. F-). B: Month 
1 ‡ p-value = 2.95E-02 (B vs. F-) and p-value = 9.40E-03 (B vs. F+); Month 3 ‡ p-value = 5.60E-03 (B vs. F+); 
Month 5 ‡ p-value = 7.00E-03 (B vs. F-) and p-value = 2.90E-02 (B vs. F+). Further details are listed in Table 6.2-15 

The unsaturated LCFA hexadecenoic acid (C16:1, Figure 3.4-14 A), and LCPUFAs, such as 

eicosatetraenoic acid (ETA, C20:4, Figure 3.4-14 B, MS/MS spectrum in Figure 5.2-4 B) and 

icosapentaenoic acid (EPA, C20:5, Figure 3.4-14 C) were significantly higher in breastfed infants. 

Further details are given in Table 6.2-15. The experimental MS/MS spectra were compared manually 

against the METLIN database within an error of 0.05 Da (Smith et al. 2005). Further, experimental (-)-

ToF-MS/MS spectra were compared against mass spectra acquired by Walker et al. (Walker et al. 

2014).  

It was revealed that C16:1, C20:4 and C20:5 were significantly higher up to month 7.  On the contrary, 

in month 7 only C20:4 appeared to be significantly higher by breastfeeding. Eicosatetraenoic acid 

(C20:4) was another ingredient in the different formula feds; however, the intensity of eicosatetraenoic 

acid was higher in the breastfed infants than in those fed with formula. It was observed that in month 1 

until month 5 the intensity level of hexadecenoic acid in the probiotics formula group leads to an 
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approximation towards the breastfed infants, which pattern was not prevalent any more in month 7 and 

almost disappeared.  

Additionally, it was remarkable that inter-individual differences in the breastfed group were much higher 

than in both formula groups. Concerning this, it is well known, that the fatty acids in human milk are 

strongly influenced by maternal diet, which has consequences to the fecal metabolome of infants. 

Especially, LCPUFAs are said to be strongly related to maternal diet (Ballard and Morrow 2013). The 

high inter-individual changes in the breastfed might imply this message by Ballard et al.. However, the 

metabolic processes for biosynthesis, metabolism of the variety of fatty acids and their excretion are 

multiple, whereas about their presence in the fecal samples of breastfed and formula-fed infants no 

distinct conclusions can be drawn. 
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Figure 3.4-14: Unsaturated long-chain fatty acids significantly increased in breastfed infants.  

Boxplots of monounsaturated fatty acids, such as (A) hexadecenoic acid and long-chain polyunsaturated fatty 
acids, such as (B) eicosatetraenoic acid and (C) icosapentaenoic acid significantly increased in breast fed infants 
(blue) compared to interventional formula-fed (green) and placebo formula-fed infants (red) in month 1 (green), 
month 3 (blue), month 5 (yellow) and month 7 (light blue). A: Month 1 ‡ p-value = 1.50E-03 (B vs. F-) and p-value 
= 5.28E-02 (B vs. F+); Month 3 ‡ p-value = 1.30E-03 (B vs. F-); Month 5 ‡ p-value = 1.20E-02 (B vs. F-) and * p-
value = 2.30E-02 (F- vs. F+). B: Month 1 ‡ p-value = 5.10E-02 (B vs. F-) and p-value = 2.10E-02 (B vs. F+); Month 
3 ‡ p-value = 3.10E-03 (B vs. F+); Month 5 ‡ p-value = 9.60E-03 (B vs. F-) and p-value = 2.66E-02 (B vs. F+); 
Month 7 ‡ p-value = 2.30E-02 (B vs. F-) and p-value = 2.30E-02 (B vs. F+). C: Month 1 ‡ p-value = 5.90E-03 (B 
vs. F-) and p-value = 3.08E-02 (B vs. F+); Month 3 ‡ p-value = 8.90E-03 (B vs. F-) and p-value = 2.70E-03 (B vs. 
F+); Month 5 ‡ p-value = 1.30E-02 (B vs. F-). Level of significance was tested by post hoc Kruskal-Nemenyi test. 
Further details are listed in Table 6.2-15. 
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spectrum in Figure 5.2-5 A) were significantly increased in the formula-fed infants. It was noteworthy 

that in 99% of the breastfed infants, dodecanedioic acid was not present at all in the first year of life. 

Dodecanedioic acid and dihydroxyoleic acid were not significantly changed between infants fed with 

placebo formula or interventional formula, but also responded differently in the two formulas as seen in 

varying intensity levels of the respective feeding group. However, probiotics in formula did not bring the 

patterns of dodecenedioic acid and dihydroxyoleic acid closer to the breastfed one, as seen in fatty acid 

profiles of hexadecenoic acid and LCPUFA. 

 

Figure 3.4-15: Dodecenedioic acid (A) and dihydroxyoleic acid (B) increased in formula-fed infants. 

Boxplots of dodecenedioic acid (A) and dihydroxyoleic acid (B) significantly increased in breast fed infants (blue) 
compared to placebo formula-fed (red) and interventional formula-fed (green) in month 1 (green), month 3 (blue), 
month 5 (yellow), month 7 (light blue), month 9 (purple) and month 12 (red). A: Month 1 # p-value = 7.00E-03 (B 
vs. F-); Month 3 # p-value = 1.30E-02 (B vs. F-) and * p-value = 2.00E-03 (B vs. F+); Month 5 # p-value = 3.10E-
04 (B vs. F-) and * p-value = 6.96E-03 (B vs. F+); Month 7 # p-value = 2.90E-04 ( B vs. F-) and * p-value = 1.42E-
02 (B vs. F+); Month 9 # p-value = 3.50E-04 (B vs. F-). B: Month 1 # p-value = 1.30E-03 (B vs. F-) and * p-value = 
6.50E-05 (B vs. F+); Month 3 # p-value = 1.20E-05 (B vs. F-) and * p-value = 4.10E-05 (B vs. F+); Month 5 # p-
value = 7.20E-04 (B vs. F-) and * p-value = 1.79E-03 (B vs. F+); Month 7 # p-value = 4.07E-02 ( B vs. F-) and * p-
value = 8.30E-04 (B vs. F+); Month 9 # p-value = 7.00E-03 (B vs. F-); Month 12 # p-value = 1.70E-02 (B vs. F-). 
Significance was tested with the post hoc Kruskal-Nemenyi test; further details are listed in Table 6.2-16. 

Further, hydroxyphenyllactic acid (Figure 3.4-16, MS/MS spectrum in Figure 5.2-4 C) was increased in 

the fecal samples of breastfed infants over time. Although the fecal hydroxyphenyllactic acid was not 

significantly changed between infants fed with the placebo formula or the interventional formula, here, 

either, different intensity levels were observed between the two formula-fed infants (Figure 3.4-16). 
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Figure 3.4-16: Hydroxyphenyllactic acid increased in breastfed infants over time. 

Boxplots of hydroxyphenyllactic acid significantly increased in breast fed infants (blue) compared to placebo 
formula-fed (red) and interventional formula-fed (green) in month 1 (green), month 3 (blue), month 5 (yellow), month 
7 (light blue), month 9 (purple) and month 12 (red). Month 3 # p-value = 5.80E-05 (B vs. F-) and * p-value = 5.40E-
03 (B vs. F+); Month 5 # p-value = 2.10E-04 (B vs. F-) and * p-value = 2.42E-02 (B vs. F+); Month 7 # p-value = 
2.50E-03 ( B vs. F-) and * p-value = 2.26E-02 (B vs. F+); Month 12 # p-value = 1.70E-03 (B vs. F+). Significance 
was tested with the post hoc Kruskal-Nemenyi test; further details are listed in Table 6.2-16. 

Hydroxyphenyllactic acid belongs to the class of phenylpropanoic acids and is a tyrosine metabolite 

that derives from microbial breakdown of undigested proteins. (Chow et al. 2014). Beloborodova et al. 

detected that phenyllactic and p-hydroxyphenyllactic acids are produced by bifidobacteria and 

lactobacilli in vitro (Beloborodova et al. 2012). Breast milk is a source of bifidobacteria and lactobacilli 

species, which are known to be transferred to the infants by breastfeeding (Martin et al. 2003, Martin et 

al. 2012, Soto et al. 2014). Including the findings from Beloborodova et al., higher levels of 

hydroxyphenyllactic acid in breastfed infants were reasonable. Concerning this, in the formula-fed 

infants the intensity of hydroxyphenyllactic acid was comparatively small, even though the interventional 

formula was substituted with bifidobacteria strains. Although hydroxyphenyllactic acid did not show 

differences between probiotic formula and the placebo one in month 1, the differences developed over 

time and got more dominant in the following months. It was observed, that the patterns of 

hydroxyphenyllactic acid in the probiotics group showed a little approximation towards the breastfed 

group until month 9. Breastfeeding is supposed to improve infants’ health and lowers the development 

of several diseases, such as otitis media, necrotizing enterocolitis, inflammatory bowel disease, 

diabetes or allergic diseases (Soto et al. 2014). Our results indicated similar effects of breast milk and 

probiotic formula and strengthened the use of probiotics to improve infants’ health.  
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3.4.2.7 Impact of different feeding types on the SCFA profile (breastfed vs. formula-fed) 

In humans, 95% of synthesized SCFAs are absorbed in the colon, whereas 5% are secreted in feces 

(den Besten et al. 2013). Further, they contribute to de novo production of lipids by serving as energy 

substrate or signaling molecules. The production of SCFA strongly correlates with and is influenced by 

food intake and dietary changes in the human gut microbiome. SCFA are microbial fermentation 

products derived from dietary substrates, especially from carbohydrates obtained from breast milk and 

formula. Therefore, the SCFA profiles, and the concentration levels of lactic acid and pyruvic acid in 

feces were further assessed from the exclusively breastfed and exclusively formula-fed cohorts using 

UHPLC-ToF-MS, illustrated as EIC view in Figure 3.4-17.  

 

Figure 3.4-17: Extracted ion chromatogram of SCFA, lactic and pyruvic acid. 

Extracted ion chromatogram with an error of ± 0.05 Da of pyruvic acid, lactic acid (yellow), propionic acid (black), 
butyric acid (purple) and isobutyric acid (green), as well as valeric (orange) and isovaleric acid (blue), analyzed in 
UHPLC-(+)-ToF-MS. 

In order to assess the impact of different feedings on the fatty acid profile, especially the SCFA profile 

of infants over time, propionic acid, butyric and isobutyric acid, and valeric and isovaleric acid were 

analyzed. Further, the MCFA hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid and decanoic 

acid were derivatized. The carboxylic acids of the carbohydrate metabolism, such as lactic acid, pyruvic 

acid, fumaric acid, maleic acid, and succinic acid were considered as well. The MCFA C6:0 up to C10:0 

did not show to be affected by feeding, neither were maleic, fumaric and succinic acid. Evaluating the 

total fecal SCFA concentrations, slight differences among breastfed and the two formula-fed infants 

were observed, mainly because of higher concentration levels of butyric and propionic acid in the 

formula-fed infants, which accounted for 90% of the total SCFA profile. Fecal samples of formula-fed 

infants showed 2.5-fold increased total SCFA concentration levels in average over time. For further 

analyses, pyruvic acid, lactic acid, propionic acid, butyric acid, isovaleric acid and valeric acid were 

considered. With respect to the SCFA and carboxylic acid production, the individual response of each 
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infant was observed to be immense and their concentrations were marked by wide variations. Table 

3.4-4 lists the concentrations of each fatty and carboxylic acid by month as mean value and individual 

range concentration.  

Table 3.4-4: Mean and individual range of SCFA, pyruvic and lactic acid concentrations (in µmol/L)  

Arithmetic mean sums of lactic and pyruvic acid, as well as total SCFA concentration, including propionic acid, 
butyric acid, valeric acid and isovaleric acid changed in breastfed (blue) and both formula-fed groups (F+/F-), 
differentiating in the concentration levels by month and fatty acid. The mean value, as well as the individual range 

is displayed of month 1, 3, 5, 7, 9, and 12 of each fatty acid, separated in feeding. 

  
Breast-fed infants 

 
Formula-fed infants (F-) 

 
Formula-fed infants (F+)           

  
Mean Individual range 

 
Mean Individual range 

 
Mean Individual range 

                    

Pyruvic acid 
         

      Month 1 
 

4.0 0.0 - 17.0 
 

0.5 0.0 - 2.7 
 

0.9 0.0 - 3.3 

      Month 3 
 

1.4 0.0 - 3.8 
 

0.3 0.0 - 1.8 
 

0.3 0.0 - 2.4 

      Month 5 
 

5.8 0.0 - 19.0 
 

< 0.1 0.0 - 0.4 
 

0.5 0.0 - 5.2 

      Month 7 
 

3.4 0.0 - 14.2 
 

0.1 0.0 - 0.6 
 

0.0 0 

      Month 9 
 

0.5 0.0 - 2.4 
 

0.0 0 
 

< 0.1 0.0 - 0.2 

      Month 12 
 

0.1 0.0 - 0.7 
 

0.0 0 
 

0.3 0.0 - 2.3           

Lactic acid 
         

      Month 1 
 

31.4 0.0 - 101.4 
 

2.1 0.0 - 15.3 
 

1.9 0.0 - 11.4 

      Month 3 
 

9.4 0.0 - 60.1 
 

7.0 0.0 - 40.8 
 

0.9 0.0 - 5.2 

      Month 5 
 

52.0 0.0 - 192.1 
 

0.5 0.0 - 3.2 
 

3.3 0.0 - 13.3 

      Month 7 
 

20.5 0.0 - 133.5 
 

1.0 0.0 - 6.9 
 

0.4 0.0 - 4.0 

      Month 9 
 

5.0 0.0 - 37.5 
 

0.2 0.0 - 2.0 
 

0.1 0.0 -1.4 

      Month 12 
 

0.7 0.0 - 3.8 
 

4.3 0.0 - 41.5 
 

0.1 0.0 - 0.5 

 
         

 
Total SCFA 

         

      Month 1 
 

1.5 0.0 - 11.8 
 

6.9 0.0 - 35.4 
 

5.5 0.0 - 44.7 

      Month 3 
 

2.8 0.0 - 23.4 
 

5.4 0.0 - 26.4 
 

4.4 0.0 - 44.5 

      Month 5 
 

2.9 0.0 - 30.8 
 

8.2 0.0 - 35.7 
 

6.2 0.0 - 25.0 

      Month 7 
 

3.3 0.0 - 21.8 
 

6.5 0.0 - 50.1 
 

6.8 0.0 - 41.5 

      Month 9 
 

3.8 0.0 - 24.5 
 

8.2 0.0 - 29.2 
 

5.5 0.0 - 49.1 

      Month 12 
 

6.9 0.0 - 25.5 
 

8.3 0.0 - 54.1 
 

10.1 0.0 - 52.4           

Propionic acid 
         

      Month 1 
 

4.7 0.0 - 8.5 
 

22.7 0.0 - 35.4 
 

18.7 7.8 - 44.8 

      Month 3 
 

10.1 0.0 - 23.4 
 

14.5 0.0 - 26.4 
 

13.4 0.0 - 44.5 

      Month 5 
 

10.3 3.2 - 30.8 
 

20.9 0.0 - 35.7 
 

18.1 11.7 - 25.0 

      Month 7 
 

11.3 0.0 - 21.8 
 

17.5 0.0 - 50.2 
 

19.4 0.0 - 41.5 

      Month 9 
 

11.8 0.0 - 24.5 
 

18.8 0.0 - 29.2 
 

15.0 0.0 - 49.1 

      Month 12 
 

17.2 11.8 - 25.5 
 

17.4 0.0 - 54.1 
 

22.0 8.2 - 52.4           

Butyric acid 
         

      Month 1 
 

1.1 0.0 - 11.8 
 

4.3 0.0 - 11.8 
 

2.9 0.0 - 12.3 

      Month 3 
 

1.0 0.0 - 7.5 
 

6.5 0.0 - 14.3 
 

3.5 0.0 - 7.6 

      Month 5 
 

1.2 0.0 - 9.9 
 

10.9 0.0 - 25.8 
 

6.0 0.7 - 12.5 

      Month 7 
 

1.8 0.0 - 10.9 
 

7.9 0.0 - 15.9 
 

6.8 0.0 - 17.5 

      Month 9 
 

3.0 0.0 - 7.5 
 

11.9 0.0 - 27.0 
 

5.9 0.0 - 19.1 

      Month 12 
 

9.3 1.5 - 20.5 
 

14.0 0.0 - 28.3 
 

15.9 2.9 - 31.0 

          

Isovaleric 
acid 

         

      Month 1 
 

< 0.1 0.0 - 8.7E-5 
 

0.4 0.0 - 1.4 
 

0.4 0.0 - 1.0 

      Month 3 
 

0.2 0.0 - 1.4 
 

0.5 0.0 - 1.7 
 

0.6 0.0 - 1.5 

      Month 5 
 

< 0.1 0.0 - 0.8 
 

0.8 0.0 - 2.5 
 

0.7 0.04 - 1.3 

      Month 7 
 

0.2 0.0 - 0.7 
 

0.6 0.0 - 1.9 
 

0.8 0.0 - 2.3 

      Month 9 
 

0.5 0.0 - 2.2 
 

1.8 0.0 - 3.1 
 

0.8 0.0 - 2.9 

      Month 12 
 

1.1 0.1 - 3.1 
 

1.6 0.0 - 4.1 
 

1.9 0.3 - 6.1           

Valeric acid 
         

      Month 1 
 

0.0 0 
 

0.1 0.0 - 0.4 
 

0.0 0 

      Month 3 
 

0.1 0.0 - 1.0 
 

0.1 0.0 - 0.5 
 

< 0.1 0.0 - 0.2 

      Month 5 
 

< 0.1 0.0 - 0.2 
 

0.3 0.0 - 1.1 
 

0.2 0.0 - 0.8 

      Month 7 
 

< 0.1 0.0 - 0.2 
 

0.1 0.0 - 0.3 
 

0.2 0.0 - 0.7 

      Month 9 
 

0.0 0.0 - 0.04 
 

0.4 0.0 - 1.7 
 

0.1 0.0 - 0.4 

      Month 12 
 

0.2 0.0 - 0.7 
 

0.5 0.0 - 3.0 
 

0.4 0.0 - 1.1 
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Even if the infants’ individual concentration levels were present, the overall evaluation revealed 

significant changes in SCFA, pyruvic acid and lactic acid concentration levels among breastfed and 

formula-fed infants. The four most abundant SCFA, lactic and pyruvic acid are listed above and most 

significant changes were calculated on the basis of the entirety of all detected fatty acids. Herewith, the 

predominating carboxylic acid in breastfed infants was lactic acid (23.7%), followed by the SCFA 

propionic acid (22.7%), butyric acid (15.9%), pyruvic acid (7.4%), isovaleric acid (2.6%) and finally 

valeric acid (0.5%). In contrast, the fecal samples of the formula-fed infants (F+/F-) were dominated by 

propionic acid (31.0%/26.1%) and butyric acid (26.0%/28.8%), followed by isovaleric acid (4,7%/4.2%), 

lactic acid (1.6%/1.9%), valeric acid (0.9%/1.3%) and pyruvic acid (0.7%/0.3%). Even though the fatty 

acid profiles were not different between the bifidobacteria supplemented and placebo group, it was 

demonstrated that formula-feeding compared to breast-feeding generally leads to significantly higher 

concentrations of propionic, butyric, valeric and isovaleric acid. In contrast, pyruvic and lactic acid were 

detected at significantly higher concentrations in breastfed infants than in formula-fed ones (Bazanella 

et al. 2017) as illustrated in Figure 3.4-18. 

 
Figure 3.4-18: Pyruvic acid, lactic acid and SCFA impacted through diet. 

Impact of breast milk (blue), bifidobacteria-supplemented formula (green) or the placebo group (red) on the fatty 
acid profile of infants over time, analyzed in UHPLC-(+)-ToF-MS. Colors are encoded by month from light to dark 
color, where the light color represents month 1 and as darker the color up to month 12. p-value:  0 ‘***’ 0.001 ‘**’ 
0.01 ‘*’ 0.05 as listed in detail in Table 3.4-5. From Bazanella, M., Maier, T. V., Clavel, T., Lagkouvardos, I., Lucio, 
M., Maldonado-Gòmez, M. X., Autran, C., Walter, J., Bode, L., Schmitt-Kopplin, P., Haller, D.: Randomized 
controlled trial on the impact of early-life intervention with bifidobacteria on the healthy infant fecal microbiota and 
metabolome. Am J Clin Nutr. (2017), 106(5):1274-1286. Reprinted and adapted from (Bazanella et al. 2017) by 
permission of Oxford University Press. Copyright (2017) American Society for Nutrition. 
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Their significance was calculated with the post hoc Kruskal-Nemenyi test (Table 3.4-5), considering the 

fatty acid mean values of each feeding group (all months included). 

Table 3.4-5: Pyruvic acid, lactic acid and SCFA significantly changed through diet. 

Results of the significance between pyruvic acid, lactic acid and SCFA obtained with post hoc Kruskal-Nemenyi 
test calculated of arithmetic mean values of each group (all month included).   

Pyruvic acid  B F+  Butyric acid  B F+ 
 F+ 2.00E-06 -   F+ 2.00E-06 - 
 F- 7.00E-07 0,96   F- 1.60E-09 0,41 
         

Lactic acid  B F+  Isovaleric acid  B F+ 
 F+ 1.30E-05 -   F+ 1.80E-07 - 
 F- 7.50E-06 0,98   F- 6.80E-07 0.98 
         

Propionic acid  B F+  Valeric acid  B F+ 
 F+ 1.70E-04 -   F+ 3.70E-03 - 
 F- 3.00E-06 0,64   F- 1.10E-05 0.33 

In general, the SCFA profile in infants is distinguished from the profile in fecal samples of adults. The 

earliest feces (meconium) of infants contain only low SCFA concentrations, which are increasing after 

some days due to the colonization of microbes in the microbiota (Edwards and Parrett 2002). 

Previously, it was reported that the dominating fatty acids in adults are acetic, propionic and n-butyric 

acid (57:22:21) (Szylit and Andrieux 1993), whereas in the breastfed infants acetic acid and lactic acid 

are the predominating ones and the levels of propionic and butyric acid are rather low (Edwards et al. 

1994). In contrast, fecal samples of formula-fed infants are characterized by acetic acid, propionic acid 

and higher concentration levels of butyric acid compared to breastfed ones. 

In breastfed infants, the SCFA patterns of propionic acid and butyric acid were detected to increase 

constantly from month 1 up to month 12, whereas in the formula groups, propionic acid showed the 

highest and most constant concentration levels over time. Additionally, in the formula-fed infants, butyric 

acid concentration levels were increased over time and generally ~ a 5-fold higher concentration level 

than in breastfed infants. Butyric acid preferably serves as energy substrate for the colonocytes in the 

intestine and is beside acetic and propionic acid one of the most abundant representing SCFA in the 

colon. Further, butyric acid is discussed to be essential for the health of the colon in adults (Edwards 

and Parrett 2002), the suppression of inflammations and cancer (Hamer et al. 2008). Furthermore, in 

the late 1980, Bullen et al. among others investigated the impact of formula and breast feeding on the 

fecal flora of infants over a period of 6 weeks and also detected higher concentration levels of both, 

valeric and isovaleric acid, in fecal samples of infants fed with formula (Bullen et al. 1977), which was 

in accordance with our over time results for breast- or formula-feeding. 



3. Impact of breast-feeding and bifidobacteria-supplemented formula  

 

134 

Reports from previous studies also suggested lactic acid to be the dominant carboxylic acid in feces 

from breastfed infants (Ogawa et al. 1992), while formula-fed infants have higher abundances of 

propionic and butyric acids (Edwards et al. 1994). Hereto, adult feces usually contains no lactic acid 

(Edwards and Parrett 2002). It was suggested that lactic acid plays a fundamental and controlling role 

in the colonization of the intestine. Also, lactic acid (23.7%) was observed as the predominate fatty acid 

in breastfed infants, reaching its maximum at month 5, and again decreasing until month 12. The 

formula-fed infants presented with a 13-fold lower concentration and abundancy of lactic acid on 

average (1.6 – 1.9%) in all months.  

Breast milk is a source of bifidobacteria and lactic acid-producing bacteria (LAB), such as lactobacillus, 

lactococcus,  or streptococcus, which produce the major end product lactic acid from the fermentation 

of carbohydrates involving the glycogenesis, gluconeogenesis or pyruvate metabolism (Pokusaeva et 

al. 2011, Chow et al. 2014), which potentially explains the high amount of lactic acid in breastfed infants 

through breast feeding. In contrast to the formula-fed infants, pyruvic acid concentration levels were 

also significantly increased in the breastfed ones, but showed – as lactic acid - inconstant concentration 

levels over time. In general, it was noticeable that the over time pattern was identical to the lactic acid 

one, whose relation to each other was confirmed by monthly correlations of the pyruvic and lactic acid 

concentration levels in the breastfed infants (Month 1: r(11) = 0.54, p-corr = 0.055; Month 3: r(12) = 

0.41, p-corr = 0.1; Month 5: r(11) = 0.82, p-corr = 0.00055; Month 7: r(12) = 0.85, p-corr = 8.35941E-

05).  

Already in 1942, Stotz et al. revealed the relation between pyruvic acid and lactic acid in blood samples 

of humans, pigeons, and rats, which can serve as a measure for excitement, exercise, and different 

degrees of fasting. It was claimed, that a deviation of those relationship to be evidence of a more 

fundamental disturbance in pyruvate metabolism (Stotz and Bessey 1942). A deviation of the 

relationship between pyruvic and lactic acid could not be observed in the fecal samples of infants fed 

with breast milk. Moreover, pyruvic acid is an immediate precursor of lactic acid and both are 

intermediate compounds in the metabolism of carbohydrates, proteins, and fat, wherefore their 

presence – although in less concentrations than lactic acid - in fecal samples of breast fed infants, due 

to the microbial composition of breast milk and the colonization in the infants’ gut, is reasonable. 
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In order to see relationships between the abundance of SCFA and the microbial species in the fecal 

microbiome, SCFA and OTUs were correlated, which revealed several correlations of SCFA, pyruvic 

and lactic acid and the OTUs. First, the abundance matrix was filtered, excluding OTUs with an 

abundance of n ≤ 3 (10%). The data matrices of the SCFA and the OTUs of month 1, month 7 and 

month 12, respectively were merged and analyzed by PCA (scores scatter plots in Figure 3.4-19 A) and 

their corresponding loading plots (Figure 3.4-19 B) in order to visualize the relationship between the 

variables of the metabolites (yellow) and OTUs (grey) including their distribution among the three 

feeding groups along a two dimensional space. Here - as previously shown in Figure 3.4-18 - lactic and 

pyruvic acid were the significantly different metabolites in the breastfed infants, whereas propionic, 

butyric, valeric and isovaleric acid could be associated with the formula-fed infants as they are 

significantly changed compared to the breastfed infants.  

 

Figure 3.4-19: Correlation between SCFA and OTUs of month 1, month 7 and month 12.  

Correlations between SCFA (yellow), lactic acid (yellow), pyruvic acid (yellow) and OTUs (grey). A: Scores scatter 
plot of PCA analysis (UV scaling). B: PCA loading plot with the variables responsible for the profile in the scores 
scatter plot in A; LA = lactic acid, PYA = pyruvic acid, IVA = isovaleric acid, PA = propionic acid, BA = butyric acid, 
VA = valeric acid.   
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Further, this analysis revealed a relationship between lactic acid and the genera of Bifidobacterium sp., 

Streptococcus sp. in month 1 and Lactobacillus sp. in month 7, which are all known to be the major 

producer of lactic acid from the fermentation of carbohydrates (Chow et al. 2014). Anon, pyruvic acid is 

not only highly correlated to lactic acid, but also shows correlations with Bifidobacterium sp. in month 1 

and lactobacillus sp. in month 7, as well. In month 1, butyric acid was predominately correlated to 

Clostridium (sensu stricto), Clostridium (sensu stricto 1) and Lachnospira sp. in month 7. Valeric acid 

was observed to be highly correlated with Flavonifractor in month 7, Ruminococcus2 sp. and 

Ruminococcus sp. in month 12. In addition, propionic acid was related to Ruminococcaceae sp. in 

month 12. Further details are given in Table 3.4-6.  

Table 3.4-6: Correlation between SCFA and OTUs of month 1, 7 and 12 in the different feeding groups. 

Correlations between the SCFA and OTUs of month 1, 7 and 12 were obtained through Pearson correlation, 
recording the correlation coefficient (r), and the degrees of freedom (df), as well as p-corr values calculated through 

regression analysis. 

Name OTU ID r p-corr df 

Pyruvic acid [AMP+]      

 Month 1 Bifidobacterium sp. OTU 2 0.45 7.00E-03 32 

 Month 7 Lactobacillus sp. OTU 62 0.70 1.81E-06 34 

       

Lactic acid [AMP+]      

 

Month 1 
Bifidobacterium sp. OTU 2 0.53 1.00E-03 32 

 Streptococcus sp. OTU 48 0.60 2.00E-04 32 

 Month 7 Lactobacillus sp. OTU 62 0.90 1.29E-13 34 

       

Propionic acid [AMP+]      

 Month 12 Ruminococcaceae sp. OTU 127 0.54 3.00E-03 26 

 
      

Butyric acid [AMP+]      

 

Month 1 
Clostridium (sensu stricto) OTU 416 0.61 < 0.05 32 

 Clostridium (sensu stricto) 1 OTU 182 0.52 1.60E-03 32 

 Month 7 Lachnospira sp. OTU 36 0.45 5.00E-03 34 

       

Valeric acid [AMP+]      

 Month 7 Flavonifractor OTU 29 0.46 4.70E-03 34 

 

Month 12 
Ruminococcus2 sp. OTU 448 0.83 4.29E-08 26 

 Ruminococcus sp. OTU 43 0.65 2.00E-04 26 

 

In consequence of different SCFA, lactic and pyruvic acid profiles, it could be concluded that the 

colonization of microbes and the relationship with metabolic activity of the infant gut microbiome of 

breastfed infants differ markedly from the one of formula-fed infants, irrespective of whether or not the 

infants are fed with or without probiotics. In addition to the distinct pattern of fatty acids between 

breastfed and formula-fed infants, the individual variance was co-dominant.  
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3.4.3 Differences in non-probiotic fed and probiotic fed infants 

One of the main goals of this study was to reveal marked differences in the fecal metabolome between 

the infants, consuming the interventional formula or the placebo formula, which might be indicators for 

similar effects between breast milk and probiotic formula. Therefore, in this chapter the focus was to 

evaluate and to find differences of the two formula-fed groups, including the breastfed group. The 

breastfed group was considered as well to be able to compare the two formula diets to breastfeeding 

and to find possible similarities between the breastfed and interventional formula-fed group. This may 

lead to an approximation of the fecal metabolome due to probiotics towards the breastfed infants. 

Nevertheless, mass signals similarly impacted through the interventional formula and breast milk or the 

placebo formula and breast milk were taken into account as well. 

Already the previously performed month by month PLS-DA (Chapter 3.4.2.2) revealed some mass 

signals to be affected by either interventional formula or placebo formula. In order to detect further mass 

signals to be affected by the two formulas differently, both groups were evaluated by month taking the 

matrix of each month separately of the PCA plots in Figure 3.4-4 and Figure 3.4-5 respectively. Several 

mass signals were observed to be altered differently in the placebo or the probiotics group. For 

identification (+) TOF MS/MS experiments of all F+ and F- discriminating metabolites were performed, 

whereas only one could be identified. This comprised one mass signal, which was increased in the 

placebo formula group (F-) and was detected in both ionization modes. Namely the mass signal at 

retention time 6.1 minutes with m/z 440.2844 in (+) ESI mode and m/z 438.2606 in (-) ESI mode. 

Through the annotation and following MS/MS experiments, it could be constrained to a 

lysophosphatidylethanolamines (LysoPE) 15:0/0:0 (Bazanella et al. 2017), a glycerophospholipid 

derived from phosphatidyethanolamindes through partial hydrolysis of one fatty acid group (Gregory et 

al. 2013). The experimental MS/MS spectrum is shown in Figure 3.4-20 and was compared manually 

against the METLIN database with an error of 0.01 Da. The function of LysoPE (15:0/0:0) in the human 

gut microbiome of infants and the role in exclusively formula fed without probiotics in comparison to 

probiotic formula fed infants remains unclear.   

However, it was observed that the intensity level in the F+ group was more similar to the breastfed one 

than the F- group. LysoPE 15:0/0:0 (Bazanella et al. 2017) was only significantly changed in month 1 

and in no other months between F+ and F- up to month 12.  
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Figure 3.4-20: Lysophosphatidylethanolamine LysoPE(15:0) significantly increased in F- infants. 

Boxplot of (A) Lysophosphatidylethanolamine LysoPE(15:0) significantly increased (B vs. F-: p-value = 0.00033, 
F- vs. F+: p-value = 0.09) in infants fed with the placebo formula (red) compared to breast fed (blue) and 
interventional formula-fed (green) infants, analyzed in (+) ToF-MS. B: The experimental (+) TOF MS/MS spectra 
of m/z 440.2844, collision energy 20 eV. 

Another two unknown metabolites could be observed, whereas the mass signal m/z 644.4008 was 

significantly increased in month 1 and month 3 in the F- group, as well as m/z 445.3707 in month 1 

(Figure 3.4-21 A/B/C). The mass signal with m/z 445.3707 showed an increase over time in both 

formula-fed groups, but was not significantly different anymore between those two groups after month 

1. Again, it was remarkable that the intensity levels of all three mass signals in the probiotics group 

were similar to the breastfed group, whereas the intensities in the placebo group were rather high. 

The mass signal m/z 510.3339 was discriminative for the F+ group (Figure 3.4-21 D, MS/MS spectra in 

Figure 5.2-10). Also, m/z 537.3863 showed increased intensities in the F+ group, even if the changes 

are not significant. However, this two mass signals, changed in the F+ group showed similar 

fragmentation patterns (MS/MS spectra in Figure 5.2-10), assuming they are structure-related 

compounds.  
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Figure 3.4-21: Mass signals at early life significantly changed through placebo or interventional formula.  

Boxplots of mass signals significantly increased in placebo formula-fed (A, B, C, red) infants or interventional fed 
ones (D, E, green) compared to breast fed infants (blue), analyzed in UHPLC-(+)-ToF-MS mode. A/B: m/z 644.4008 
significantly increased in F- fed infants (# p-value < 0.027) in month 1 and 3. C: m/z 445.3707 significantly increased 
in F- fed infants (# p-value < 0.05). D: m/z 510.3339 significantly increased in F+ fed infants (* p-value < 0.042) 
and E: m/z 537.3863 (*p-value < 0.022). Significance was tested through the post hoc Kruskal-Nemenyi test; further 
details are listed in Table 6.2-18. 

Further mass signals differing between the probiotics group and the placebo group were observed in 

the negative ionization mode. This comprises LysoPE (15:0/0:0), which already was identified in the 

positive ionization mode and increased in infants fed with the placebo formula. Further unknown 

metabolites with m/z 516.3156, m/z 573.3827 were significantly changed in the F- group. One mass 

signal with m/z 541.3335 was increased in the F+ group. All significant metabolites for either the F+ or 

the F- group were only increased in month 1 – except m/z 644.4008 ((+) ESI). All shown metabolites 

revealed a clear distinction between the two formula-fed groups, and as time passed, those metabolites 

decrease in the groups or level with the breastfed and/or probiotics group. Additionally, it could be 

observed that some of those metabolites showed similar patterns in the breastfed and the interventional 

formula-fed group. This observation could lead to assume that the probiotic formula had the same 

impact on specific fecal metabolites as breast milk.  
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Figure 3.4-22: Mass signals at month 1 significantly changed through placebo or interventional formula. 

Boxplots of mass signals significantly increased in placebo formula-fed (A, B, C, red) infants or interventional fed 
ones (D, green) compared to breast fed infants (blue), analyzed in UHPLC-(-)-ToF-MS mode. A: m/z 438.2606 
significantly increased in F- fed infants (# p-value < 0.005) in month 1. B: m/z 516.3154 significantly increased in 
F- fed infants (# p-value < 0.029). C: m/z 573.3827 significantly increased in F- fed infants (# p-value < 0.024) and 
D: m/z 541.3335 significantly increased in F+ fed infants (*p-value < 0.061). Significance was tested through the 
post hoc Kruskal-Nemenyi test; further details are listed in Table 6.2-18. 

Unfortunately, it was not possible to identify the other unknown metabolites or to compare the 

experimental MS/MS spectra with any database. All mass spectra were compared against METLIN, 

HMDB and in-silico MS/MS platforms (e.g. MetFrag (Ruttkies et al. 2016)), but did not provide sufficient 

information for classification or either identification. The applicable experimental MS/MS spectra are 

displayed in the supplement in chapter 5.2.1.4.  

Several changes significantly differed in the F+ and the F- groups were also observed later on in life. 

This included the mass signals with m/z 378.2958 (month 5) significantly increased in the interventional 

group (Figure 3.4-23 C). On the contrary, mass signals with m/z 403.2689 (month 9) and m/z 298.1122 

(month 12) were significantly increased in the placebo group (Figure 3.4-23 A, B), but their identity 

remains unclear.  
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Figure 3.4-23: Mass signals significantly changed through placebo or interventional formula later in life. 

Boxplots of mass signals significantly increased in placebo formula-fed (A, B, red) infants or interventional fed ones 
(C, green) compared to breast fed infants (blue), analyzed in UHPLC-(-)-ToF-MS mode. A: m/z 403.2689 
significantly increased in F- fed infants (# p-value < 0.038) in month 1. B: m/z 298.1122 significantly increased in 
F- fed infants (# p-value < 0.032). C: m/z 378.2958 significantly increased in F+ fed infants (# p-value < 0.033). 
Significance was tested through the post hoc Kruskal-Nemenyi test; further details are listed in Table 6.2-18. 

To conclude, in the first year of life, differences in the fecal samples of infants either fed with the placebo 

formula or the interventional formula could be observed, displaying a few mass signals, which were 

significantly altered through different formula. It was remarkable that the intensity levels of almost all 

mass signals in the probiotics formula group leads to an approximation towards the breastfed infants. 

All those mass signals emerged as very important, wherefore not only the identification of those 

metabolites has top priority, but also further research and long-time studies are needed to evaluate the 

possible health promoting effect of probiotics on the development of the infant’s fecal metabolome. 
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3.4.4 Correlation studies between OTUs and fecal metabolites of breast- and formula-fed 

infants  

In order to determine microbiome-metabolome characteristics of breastfeeding and formula-feeding, 

metabolite and microbiota data were combined to search for correlations of metabolites and OTUs at 

an early (month 1), mid (month 7) and late (month 12) time point. For the correlation, metabolites of the 

positive or negative ionization mode, respectively and the 16S data of the exclusively fed infants of 

month 1, 7 and 12 separately were merged and analyzed by OPLS-DA. In order to extrapolate the mass 

signals and correlated OTUs of month 1, 7 and 12 respectively, which are responsible for the 

discrimination of the investigated groups (B, F+ and F-), the loadings of each month of the OPLS-DA 

analysis were extracted. The loadings plots are illustrated in Figure 3.4-24 for UHPLC-(+)-ToF-MS 

mode (top) and UHPLC-(-)-ToF-MS mode (bottom). Further, CV-ANOVA was applied in order to verify 

the robustness of each model. Indicators, such as the p-value, the goodness-of-fit R2Y(cum) and the 

goodness-of prediction Q2(cum) were reported (Bazanella et al. 2017) and read as shown in Table 

3.4-7.  

Table 3.4-7: Orthogonal signal corrected OPLS/O2PLS-DA results from different model comparison. 

Mode Models R2Y(cum) Q2(cum) p-value (CV-ANOVA) 

(+) ESI 

Month 1 0.94 0.48 6.72·10-7 

Month 7 0.53 0.38 1.84·10-8 

Month 12 0.4 0.18 0.0194 

(-) ESI 

Month 1 0.94 0.53 1.28*10-9 

Month 7 0.54 0.42 1.43*10-9 

Month 12 0.34 0.21 0.003 

In order to reveal if both of the formula fed groups of month 12 can be separated, an additional 

orthogonal component was added to the model. It was possible to confirm that no further separation 

among the Y-axis could be obtained.  
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Figure 3.4-24: Correlation studies between metabolites and OTUs at month 1, 7, and 12 

Correlations between metabolites and OTUs of month 1, 7 and 12, analyzed in UHPLC-(+)-ToF-MS (top) and 
UHPLC-(-)-ToF-MS (bottom), obtained through OPLS-DA analyzed and illustrated as loadings plot of all 
metabolites (yellow) and OTUs (grey) (circles=metabolites, triangle=OTU) Top: month 1, R2(cum)=0.94, 
Q2(cum)=0.48; p=6.72*10-7 (CV-ANOVA); month 7, R2(cum)=0.53, Q2(cum)=0.38; p=1.84*10-8 (CV-ANOVA) and 
month 12, R2(cum)=0.47, Q2(cum)=0.106; p=0.305 (CV-ANOVA, orthogonal component). Bottom: month 1, 
R2(cum)= 0,94, Q2(cum)=0.53; p=1.28*10-9 (CV-ANOVA); month 7, R2(cum)=0.54, Q2(cum)=0.42; p=1.43*10-9 
(CV-ANOVA) and month 12, R2(cum)=0.34, Q2(cum)=0.21; p=0.003 (CV-ANOVA, orthogonal component)  

Relatively less information about specific metabolites, which differ in fecal samples of healthy breast 

fed or formula fed infants – except bile acids and SCFA – is available. Therefore, the non-targeted 

metabolomics approach enabled to evaluate a broader range of discriminating metabolites, containing 

known and unknown features and their correlated OTUs in fecal samples of the exclusively breast milk, 

interventional and placebo group.  

Moreover, through correlation experiments of all metabolites and OTUs, 6 OTUs were detected, which 

are involved in the separation of the different feeding groups and contribute in the feeding-specific 

shaping of the fecal ecosystem at month 1 (Bazanella et al. 2017). Furthermore, the correlation revealed 

a relation between F+ specific metabolites and two species (OTU 4, Bifidobacterium bifidum; OTU 142, 
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Lactococcus sp.) in month 1. In contrast, some F- specific metabolites were related with Bacteroides 

sp. (OTU 10, OTU 18) (Bazanella et al. 2017).  

In month 7, a relation between Bifidobacterium sp. (OTU 1) and specific metabolites was detected in 

month 7. On the contrary, through formula feeding, a correlation with Flavonifractor sp. (OTU 29) 

showed up. Also, in month 12, several correlations among metabolites and OTUs were observed in the 

formula-fed infants, including Flavonifractor sp. (OTU 29) and Coprobacillus sp. (OTU 125). Further 

details are given in Table 3.4-8. The most important mass signals and correlated OTUs for each month 

and within each feeding group (B, F, F+ and F+) were illustrated in Figure 3.4-25 and listed by rank 

from high to low importance for month 1 in Table 6.2-19, for month 7 in Table 6.2-20 and for month 12 

in Table 6.2-21. 

 

Figure 3.4-25: Correlation studies between metabolites and OTUs at month 1, 7, and 12. 

Correlations between metabolites and OTUs of month 1, 7 and 12, analyzed in UHPLC-(+)-ToF-MS, obtained 

through OPLS-DA analyzed and illustrated as scores plot (top) and loadings plot of main discriminating and 

correlating features (circles=metabolites, triangle=OTU; bottom) of month 1, R2(cum)=0.94, Q2(cum)=0.48; 

p=6.72*10-7 (CV-ANOVA); month 7, R2(cum)=0.53, Q2(cum)=0.38; p=1.84*10-8 (CV-ANOVA) and month 12, 

R2(cum)=0.47, Q2(cum)=0.106; p=0.305 (CV-ANOVA, orthogonal component). Further details are listed in Table 

6.2-19 (month 1), Table 6.2-20 (month 7) and Table 6.2-21 (month 12). From Bazanella, M., Maier, T. V., Clavel, 

T., Lagkouvardos, I., Lucio, M., Maldonado-Gòmez, M. X., Autran, C., Walter, J., Bode, L., Schmitt-Kopplin, P., 

Haller, D.: Randomized controlled trial on the impact of early-life intervention with bifidobacteria on the healthy 

infant fecal microbiota and metabolome. Am J Clin Nutr. (2017), 106(5):1274-1286. Reprinted and adapted from 

(Bazanella et al. 2017) by permission of Oxford University Press. Copyright (2017) American Society for Nutrition. 
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Table 3.4-8: Correlation between feeding cohort specific metabolites and OTUs. 

Correlations between the feeding cohort specific metabolites and OTUs of month 1, 7 and 12 were obtained through 
Pearson correlation, recording the correlation coefficient (r), and the degrees of freedom (df), as well as p-corr 
values calculated through regression analysis. Table contains m/z of mass signals obtained through UHPLC-(+)-
ToF-MS analysis, compound name, if possible and month, the correlation was observed at. From Bazanella, M., 
Maier, T. V., Clavel, T., Lagkouvardos, I., Lucio, M., Maldonado-Gòmez, M. X., Autran, C., Walter, J., Bode, L., 
Schmitt-Kopplin, P., Haller, D.: Randomized controlled trial on the impact of early-life intervention with bifidobacteria 
on the healthy infant fecal microbiota and metabolome. Am J Clin Nutr. (2017), 106(5):1274-1286. Reprinted and 
adapted from (Bazanella et al. 2017) by permission of Oxford University Press. Copyright (2017) American Society 

for Nutrition. 

Feed m/z retention time 
[min] 

Compound Month OTU ID r p-corr df 

          

F- 440.2844 6.12 LysoPE(15:0/0:0) Month 1 Bacteroides sp.  OTU 10 0.75 7.21E-08 36 

F- 616.3490 6.36 no metabolite found Month 1 Bacteroides sp.  OTU 18 0.57 2.14E-04 36 

F+ 813.5680 4.79 no metabolite found Month 1 Bifidobacterium 
sp.   

OTU 4 0.49 2.00E-03 36 

F+ 417.3345 6.72 no metabolite found Month 1 Lactococcus sp OTU 142 0.45 4.16E-03 36           

B 206.0830 3.62 no metabolite found Month 7 Bifidobacterium 
sp.  

OTU 1 0.52 3.94E-04 40 

B 261.1469 2.80 no metabolite found Month 7 Bifidobacterium 

sp.  

OTU 1 0.54 1.89E-04 40 

F 417.3371 9.53 no metabolite found Month 7 Flavonifractor sp.  OTU 29 0.42 5.60E-03 40 

F 407.2455 3.05 no metabolite found Month 7 Flavonifractor sp.  OTU 29 0.54 1.78E-04 40 

                    

F 427.3608 7.53 no metabolite found Month 12 Flavonifractor sp. OTU 29 0.64 2.90E-04 25 

F 303.1916 3.16 no metabolite found Month 12 Flavonifractor sp. OTU 29 0.58 1.37E-03 25 

F 447.3480 7.64 no metabolite found Month 12 Coprobacillus sp. OTU 125 0.54 3.58E-03 25 

Through correlations of metabolites of the negative ionization mode and OTUs, also no correlations up 

to the top 50 highest ranked metabolites and OTUs affected through breastfeeding were observed in 

month 1. The most important mass signals and correlated OTUs for each month and within each feeding 

group (B, F, F+ and F+) were illustrated in Figure 3.4-26. 
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Figure 3.4-26: Correlation studies between metabolites and OTUs at month 1, 7, and 12. 

Correlations between metabolites and OTUs of month 1, 7 and 12, analyzed in UHPLC-(-)-ToF-MS, obtained 

through OPLS-DA, analyzed and illustrated scores plot (top) and loadings plot of main discriminating and 

correlating features (circles=metabolites, triangle=OTU; bottom) of month 1, R2(cum)= 0,94, Q2(cum)=0.53; 

p=1.28*10-9 (CV-ANOVA); month 7, R2(cum)=0.54, Q2(cum)=0.42; p=1.43*10-9 (CV-ANOVA) and month 12, 

R2(cum)=0.34, Q2(cum)=0.21; p=0.003 (CV-ANOVA, orthogonal component). Further details are listed in Table 

6.2-22 (month 1), Table 6.2-23 (month 7), and Table 6.2-24 (month 12). 

 

On the contrary, a correlation between F+ specific metabolites, especially the unknown m/z 541.3335 

and Bifidobacterium sp. (OTU 4) could be revealed. In the placebo formula group, a relationship 

between metabolites of the F- metabolites and Bacteroides sp. (OTU 10), especially with m/z 438.2606, 

which was already correlated to OTU 10 evaluating the data of the positive ionization. Through (+) ToF 

MS/MS experiments and the comparison of the experimental MS/MS spectra with the METLIN 

database, it was previously classified as LysoPE (15:0/0:0). LysoPE (15:0) recently was detected by 

Faith et al., who claimed metabolite-microbial community interactions among 

lysophosphatidylethanolamine (LysoPE15) and Bacteroides species in cecum samples. They observed 

increased concentrations of LysoPE15 if B. ovatus or B. vulgatus are present and reach its highest 

concentration levels if both species are present (Faith et al. 2014). Main correlated features are listed 

by rank from high to low importance for month 1 in Table 6.2-22, for month 7 in Table 6.2-23 and for 

month 12 in Table 6.2-24. 
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In month 7, flavonifractor sp. (OTU 29) showed up as correlated to traumatic acid in the formula-fed 

group, whereas no correlation was observed between metabolites and OTUs impacted through 

breastfeeding. Here, in month 12 also a correlation of enterococcus sp. (OTU 14) and metabolites 

significant for the breastfed infants was detected. In the formula-fed group flavonifractor sp. (OTU 29) 

and the bile acid 6-lithocholic acid were highly correlated. Further details are listed in Table 3.4-9.  

Table 3.4-9: Correlation between feeding cohort specific metabolites and OTUs. 

Correlations between the feeding cohort specific metabolites and OTUs of month 1, 7 and 12 were obtained through 
Pearson correlation, recording the correlation coefficient (r), and the degrees of freedom (df), as well as p-corr 
values calculated through regression analysis. Table contains m/z of mass signals obtained through UHPLC-(-)-
ToF-MS analysis, compound name, if possible and month, the correlation was observed at. 

Feed m/z 
retention time 

[min] 
Compound Month OTU ID r p-corr df 

          

F- 438.2606 6.10 no metabolite found Month 1 Bacteroides sp. OTU 10 36 8.39E-05 0.59 

F+ 541.3335 5.47 no metabolite found Month 1 
Bifidobacterium 

sp. 
OTU 4 36 4.00E-03 0.45 

          

F 227.1281 5.16 Traumatic acid Month 7 Flavonifractor sp. OTU 29 40 4.00E-03 0.43 

F 435.2754 5.46 no metabolite found Month 7 Flavonifractor sp. OTU 29 40 2.41E-05 0.60 
          

B 583.2704 4.87 no metabolite found Month 12 Enterococcus sp. OTU 14 26 3.21E-05 0.70 

B 546.1973 0.93 no metabolite found Month 12 Enterococcus sp. OTU 14 26 4.55E-03 0.52 

F 389.2686 5.89 6-Lithocholic acid Month 12 Flavonifractor sp. OTU 29 26 4.00E-03 0.61 

F 389.2685 6.74 no metabolite found Month 12 Flavonifractor sp. OTU 29 26 9.58E-05 0.67 

As in month 1 no correlations among highly significant metabolites impacted through breastfeeding and 

OTUs were observed. It encourages the assumption that the metabolites are a major driver for the 

discrimination of breast- from formula-fed groups. It was already observed that the differences between 

breast and formula groups were maintained until the end of intervention at 1 year, but it’s remarkable 

that the correlations of metabolites and OTUs were highly present in the formula-fed group, and the 

OTUs play an important part in contributing to the discrimination of F+ and F-, as seen in month 1. On 

the contrary, considering the highly significant discriminative features impacted through breastfeeding 

in month1, 7 and 12, it appeared predominantly driven by metabolites, rather than through OTUs, even 

if the metabolites are gaining lesser influence on the discrimination of those two groups in later life. 

Abdulkadir et al. evaluated the use of probiotics in preterm infants and their impact on the microbiome 

and metabolome (Abdulkadir et al. 2016). They concluded that metabolite profiles are different between 

probiotic and control groups. This result strengthens our results on the discrimination of breast fed and 

formula fed infants over time. 
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3.4.5 Delivery effects on the infant fecal metabolome 

It is already known, that the infant microbiota is impacted by the mode of delivery (Gronlund et al. 1999, 

Mackie et al. 1999, Penders et al. 2006, Dominguez-Bello et al. 2010). During vaginal birth, the neonate 

is mainly exposed to maternal bacteria through the birth canal, and the birth canal is occupied by a 

characteristic set of bacteria (Dominguez-Bello et al. 2010), which pass over and forms the infants 

microbiota. Further, after birth the GIT of infants get colonized immediately through environmental and 

skin exposure of the mother (Biasucci et al. 2008). The GIT shows distinct patterns of the microbial 

composition in infants born by C-section or by vaginal birth.  

Knight et al. showed that the infants gut microbiota born by C-section is similar to the mother’s skin 

microbiota. The infants born vaginally showed similar patterns to the mother’s vaginal microbiota 

(Dominguez-Bello et al. 2010). It was observed, that the bacterial composition in infants born by C-

section was less diverse, than those born vaginally with predominating groups of Bifidobacteria species 

(Biasucci et al. 2008). Those altered microbial compositions in either infant born by C-section or by 

vaginal birth may also result to a differently impacted fecal metabolome. Hereof, relatively few studies 

were available evaluating the possible relationship between the mode of delivery and the metabolome 

(Fanos et al. 2012).  

However, in 2009, Hyde et al. detected a modified metabolomics profiles in liver samples of piglets due 

to the mode of delivery, mentioning higher levels of oxaloacetate, aspartate, α-ketoglutarate and 

glutamate and lower levels of glucose and succinate in the cesarean born piglets (Hyde et al. 2009). 

Also Diaz et al. observed distinct urinary NMR metabolite signatures significantly (p<0.05) changed 

through the different mode of delivery, such as trigonelline and indoxyl sulfate (in vaginal delivery) or 

acetone and dimethylamine (in cesarean section) (Diaz et al. 2016). Nevertheless, studies investigating 

the mode of delivery into relation to the metabolome, especially considering human individuals and the 

fecal metabolome are rare.   

In order to evaluate the impact of the mode of delivery on the metabolite profile, the fecal samples of 

either VD or CS were analyzed by month, without considering the type of feeding. In order to detect 

only mass signals significant for the different modes of delivery, mass signals impacted though feeding 

were eliminated. Through the application of the Mann-Whitney test (p-value > 0.01) and log2 fold 

change calculations, five metabolites were detected as significantly impacted by the mode of delivery 
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(Bazanella et al. 2017) in month 1, but which could not persist in the following months, namely 

metabolites with the nominal mass 344 (positive ionization mode) and 328, 280, 890 and 288 (negative 

ionization mode).   

 

Figure 3.4-27: Differences in the metabolite profile due to cesarean or vaginal delivery in month 1. 

Log2 fold change values for metabolites increased or decreased through vaginal delivery (yellow) or cesarean 
section (blue), analyzed in HPLC-(+)-ToF-MS (top) and UHPLC-(-)-ToF-MS (bottom) mode. 

The mass signals were assigned to metabolites listed in databases but did not reveal useful information. 

Nevertheless, this study showed that the fecal metabolome was impacted by the mode of delivery in 

early life stages, even if no further information was given on the origin and the classification of the 

metabolites. In respect thereof, MS/MS experiments may be helpful to characterize the metabolome or 

possibly identify those metabolites impacted by mode of delivery in early life stages. This may further 

lead to a better understanding of the impact of the mode of delivery, in relation to health-promoting 

effects and the developing microbiota and their corresponding metabolome.  

 

-4 -2 0 2 4 6 8

m/z 288.1123

m/z 890.2705

m/z 280.1149

m/z 328.2379

m/z 344.2823

LOG2 fold change Vaginal Delivery (VD) vs. Cesarean Section (CS)

Cesarean Section

Vaginal DeliveryVD

CS

UHPLC-(+)-ToF-MS

UHPLC-(-)-ToF-MS



3. Impact of breast-feeding and bifidobacteria-supplemented formula  

 

150 

3.5 Summary and Conclusion 

The aim of the study was to elucidate the impact of breast feeding and two different formulas, one 

without, the other with bifidobacteria-supplementation (probiotics) on the fecal metabolome of healthy 

infants by applying ultra-high performance liquid chromatography-mass spectrometry based 

metabolomics approach, in a double-blinded, randomized and placebo controlled intervention trial. 

Additional 16S rRNA sequencing complemented the analysis in order to investigate the complex 

interplay between organisms and metabolites. 

Probiotic supplementation of infant formula became popular, aiming at beneficially influencing the gut 

microbiome and infant well-being. However, only little is known about the effects of probiotic-

supplemented formula on the development of the intestinal ecosystem. Therefore, during the first year 

of life, infants were fed a bifidobacteria-supplemented (intervention) or non-supplemented (placebo) 

formula, either from birth on or after weaning. The infants were divided into two main groups, including 

exclusively fed infants and mixed fed infants, whereas analyses were performed concentrating on the 

exclusively fed infants. This allowed a more precise evaluation of the impact of breast feeding and 

formula feeding with or without probiotics on the infants’ gut microbiome. Monthly fecal samples up to 

one year of age were collected, in order to evaluate the overall fecal metabolite and microbiota profile 

impacted through breast feeding, interventional formula and the placebo formula.  

The metabolite profile showed a clear separation between breastfed infants and formula-fed ones in 

early life stages, which converged over time. The monthly evaluation of the data revealed slightly 

differences in the metabolite profiles between the interventional and placebo formula group in month 1, 

which identity remains unclear. However, one metabolite discriminative between both formula and 

increased in the placebo formula-fed infants could be identified as a lysophosphatidylethanolamines 

(LysoPE) 15:0/0:0. It was remarkable that several metabolites of the probiotics formula group leads to 

an approximation towards the breastfed infants. This finding leads to the assumption that probiotic 

supplementation may help to approximate breast milk and strengthened the use of probiotics. However, 

the occurrence of these similar effects remains still unknown and for the moment was suggestively an 

initial sign for the effects of probiotics. To investigate the impact of probiotics in contrast to breast milk, 

further research is strongly needed. 
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Additionally, the metabolomics approach revealed that through breast- and formula feeding, pathways 

of the lipid metabolism showed to be highly impacted, especially metabolites of the primary bile acid 

biosynthesis. The glycine-conjugated bile acids (GCDCA and GCA) were increased in the formula-fed 

infants over time. Several bile acids were affected differently in the two formula groups. While some bile 

acids in the probiotics group lead to an approximation towards the breastfed infants, they were 

increased in the non-probiotic group. Further, the sulfated bile acids (cyprinolsulfate and sulfocholic 

acid) were erratically increased and widely spread in breastfed infants over time, whereat the pattern in 

the formula-fed ones was quite lower and rather consistent. The fecal samples of the infants fed with 

formula showed increased levels of intermediates of the vitamin E biosynthesis, which were not only 

correlated with each other, but also highly correlated with the amount of formula the infants were fed 

with.  

It was observed that different fatty acid classes, such as saturated, unsaturated and hydroxylated fatty 

acids were significantly different between the breast fed infants and the formula-fed ones. Further, 

SCFA were analyzed which revealed increased levels of lactic acid and pyruvic acid in the breast fed 

infants, whereas propionic acid, butyric acid, valeric acid and isovaleric acid were significantly different 

in the formula-fed infants. However, SCFA profiles were not different between the interventional and 

the placebo formula fed infants. The correlation between SCFA and OTUs revealed positive correlations 

between lactic acid and species of the Bifidobacterium, Streptococcus and Lactobacillus, all LAB 

bacteria in the gut. Moreover, the correlation of all metabolites and OTUs revealed 6 OTUs being 

involved in the feeding-specific shaping of the fecal ecosystem at month 1. Both, metabolomic and the 

16S data revealed that the differences in bacterial and metabolite profiles between interventional and 

placebo groups disappeared over time. Further, the fecal samples of the infants were evaluated to 

detect differences in the metabolite profile due to cesarean section or vaginal delivery, which revealed 

some metabolites to be discriminating between both modes of delivery. In conclusion, this placebo-

controlled intervention study clearly showed that bifidobacteria-supplemented formula modulates the 

infant fecal metabolome and microbiome at very early stages in life, with no detectable long-term 

consequences for gut microbiome assembly or function. The impact of sequentially changing bacterial 

and metabolite profiles on human health remained completely unclear and requires additional studies. 
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Chapter IV 

4 Thesis summary and concluding remarks 
 

The presented thesis illustrates two mass spectrometry based metabolomics studies to evaluate the 

nutritional impact of prebiotics (chapter II) and probiotics (chapter III) on the human gut microbiome and 

its related effects on host and gut metabolism. Non-targeted metabolite analyses were performed in 

negative and positive ionization mode and results were used to guide a subsequent series of targeted 

metabolite analyses. Additional 16S rRNA sequencing and shotgun proteomics complemented the 

analysis in order to investigate the complex interplay between organisms, metabolites and functional 

processes in the adult and infant gut microbiome. 

Dietary starch affected the adult fecal metabolome differently, while the time point of starch consumption 

is negligible. Characteristic differences in the fecal metabolome between differently digestible 

carbohydrates (resistant starch type 2) were observed in a controlled, randomized, within-subjects’ 

crossover dietary intervention trial of participants suffering from insulin resistance. Diet with high 

resistant starch affected the fecal metabolome immensely. Thereto, the ultra-high resolution FT-ICR-

MS based metabolomics approach was highly suitable for investigating the function of the gut 

microbiome and host metabolism and helped to evaluate the effect of different diets. Additionally, it 

made a comprehensive overview of metabolites from different chemical classes and pathways 

available. Specific fatty acids, bile acids, oxylipins and several compounds of the lipid metabolism were 

strongly affected by digestion of different prebiotics, compared to the non-dietary starch diet. These 

also include finding novel links between a RS diet and lipid metabolism by the host and microbiome. 

Especially lipids, namely phosphatidic acids showed differently altered patterns by the consumption of 

carbohydrates varying in the amount of dietary starch. However, cyclic phosphatidic acids showed 

decreased intensity levels through dietary starch intake.  

The high amount of resistant starch altered the fecal microbial composition arising with a high 

abundance of Firmicutes, especially Faecalibacterium prausnitzii and Eubacterium rectale, whereas the 

abundance of Bacteroides was low. The applied shotgun proteomics approach allowed classifying 

thousands of host and microbial proteins impacted by resistant starch and confirmed several results 

already observed through the metabolomics analyses, such as the impact of RS on the lipid metabolism. 
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Understanding the complexity arising in the human gut, including its microbial composition, host and/or 

microbial metabolism, protein expression, as well as the metabolic status is of top priority to understand 

the impact of diet, especially of varying amounts of non-digestible carbohydrates. Therefore, the applied 

multi-omics integration enabled to gain a deeper insight into main effects of the resistant starch diet on 

the gut microbiome and functions that they carry out. These results emphasize the importance of further 

multi-omics study designs, to clarify the effects of nutrition on the microbiome and health. 

Long-term effects of probiotic baby food on gut physiology are widely unknown, wherefore research is 

still needed. Additionally, long-term effects of probiotics on the gut microbiota need to be investigated 

due to the decrease of willingness for weaning. The focus should be laid on the effect of probiotics on 

the healthy, developing gut microbiota of newborns. Thus, the second part of the thesis discussed the 

impact of diet on the infant gut microbiome. This study wanted to investigate the impact of probiotics on 

the gut microbiota and fecal metabolome within the first year of life. By means of metabolomics, detailed 

information of the fecal metabolome and differences within feeding types was achieved.  

Metabolite profiles were clearly distinct between breast- and formula-fed infants, and they converged 

overtime. The metabolite profiles were altered differently through breastfeeding and formula, 

independent of type of formula. However, in the probiotics group several metabolites occurred that 

showed similar patterns as the breastfed infants. Several distinct metabolic effects were seen that made 

the use of probiotic formula feeding more similar to breast milk. Probiotic supplementation may help to 

approximate breast milk. However, these similar effects cannot yet be explained and their occurrence 

remains still unknown and these results were suggestively initial signs for the effects of probiotics. 

Accordingly, the overall metabolite pattern was still more similar between the two formulas than between 

probiotics supplementation and breast milk. Therefore, further research is needed in order to optimize 

probiotics in terms of selection of strains, route of administration and dose.  

Pathways analysis revealed the lipid metabolism, especially the bile acid biosynthesis to be differently 

impacted by breast- and formula-feeding. While breastfeeding seemed to influence sulfated bile acids, 

formula revealed high levels of glycine conjugated bile acids. Further metabolites altered by 

breastfeeding were identified as carboxylic acids and numerous fatty acids, varying in chain length and 

saturation degree. On the contrary, fecal sample of the formula-fed infants were dominated by several 

metabolites of the tocopherol biosynthesis, carboxylic acids and oxylipins.  
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Generally, formula-feeding lead to significantly higher proportions of propionic, butyric, valeric and 

isovaleric acid, whereas the fecal samples of breastfed infants were dominated by pyruvic and lactic 

acid. Correlations studies revealed lactic acid and pyruvic acid to be highly associated with species, 

such as Bifidobacterium sp., Streptococcus sp. and/or Lactobacillus sp. Additional correlation studies 

of the whole metabolomics and microbiome set revealed several relationships between metabolites and 

OTUs over time involved in the feeding-specific groups, which were shaping the fecal ecosystem and 

therefore contribute to the separation of the feeding groups. Of particular interest was the relation 

between F+ specific metabolites and two species, namely Bifidobacterium bifidum and Lactococcus 

sp., in contrast to the correlation of F- specific metabolites and Bacteroides spp. Breastfed specific 

metabolites seem not to be set into relation with characteristic species. Nevertheless, metabolites were 

the driving force behind the class discrimination of breastfed and formula-fed infants over time. In 

conclusion, the study demonstrated that the infant microbiome and metabolome can be altered by 

bifidobacteria-supplemented formula in early life. These results support the assumption that probiotics 

partially alter the infant microbiome and metabolome towards a similar impact owing to breastfeeding. 

Accordingly, consideration should also be which metabolic effects are of interest through probiotic 

supplementation to approximate breast milk, e.g. the bile acid metabolism to improve fat digestion, 

customize SCFA profile or to improve protein digestion to enable the settlement of phenyl lactate- or p-

cresol sulfate-producer. Depending on this, specific strains should be selected for supplementation. 

It was demonstrated that fecal samples were highly suitable to evaluate the impact of diet on the human 

gut microbiome. Many mass signals were observed to be altered with diet as well, whose identity 

remains still unknown. Dealing with the unknown and identifying metabolites was difficult and 

demanding and is still a major drawback in metabolomics, which poses many challenges of 

experimental and analytical nature. This harbors several difficulties in data evaluation and 

interpretation. Nevertheless, fecal non-targeted metabolomics came out as a powerful discipline to 

discover the impact of diet on the human microbiome. A series of targeted analyses revealed in both 

studies, that especially the metabolite classes of fatty acids, carboxylic acids and steroids, such as bile 

acids were affected by diet, as well as metabolites of the lipid metabolism. In both studies a 

comprehensive overview of metabolites from different chemical classes and pathways were detected 

to be highly impacted by pre- and probiotics. 
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Chapter V 

5 Supplementary data 

5.1 Dietary study 

5.1.1 MS/MS identification experiments 

 

Figure 5.1-1: Identification of (A) decanoic acid, (B) dodecanoic acid, and (C) tetradecanoic acid.  

Extracted ion chromatograms (EICs) (top) and MS/MS spectra (bottom) acquired in (-)-ToF-MS mode of decanoic 
acid (20 eV), dodecanoic acid (40 eV) and tetradecanoic acid (40 eV) of samples (green) and respective standards 
(black). From Maier, T. V.; Lucio, M.; Lee, L. H.; VerBerkmoes, N. C.; Brislawn, C. J.; Bernhardt, J.; Lamendella, 
R.; McDermott, J. E.; Bergeron, N.; Heinzmann, S. S.; Morton, J. T.; González, A.; Ackermann, G.; Knight, R.; 
Riedel, K.; Krauss, R. M.; Schmitt-Kopplin, P.; Jansson, J. K.: Impact of Dietary Resistant Starch on the Human 
Gut Microbiome, Metaproteome, and Metabolome. mBio vol. 8 no. 5 e01343-17 (2017). Illustration of Figure B and 
C was modified from (Maier et al. 2017). Copyright (2017) Maier et al., Information about the creator and respective 
contributions, as well as the original material are available: http://mbio.asm.org/content/8/5/e01343-17.full with the 
original title: Identification of decanoic (C12:0) and tetradecanoic acid (C14:0). Licence notice: 
https://creativecommons.org/licenses/by/4.0/. 
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Figure 5.1-2: Fatty acids in the human fecal metabolome significantly increased in the baseline diet. 

Experimental (-)-ToF-MS/MS spectra of (A) hexadecenoic acid (C16:1), (B) octadecadienoic acid (C18:2) and (C) 
octadecenoic acid (C18:1) increased in the fecal samples of the baseline diet. A: Hexadecenoic acid (C16:1) m/z 
253.2172, at retention time 5.5 minutes. B: Octadecadienoic acid (C18:2) (m/z 279.2328) at retention time 6.05 
minutes. C: Octadecenoic acid (C18:1) (m/z 281.2485) at retention time 7.58 minutes. Analyses were performed 
by UHPLC-ToF-MS 
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5.2 InfantBio-study 

5.2.1 MS/MS identification experiments 

Identification of the metabolites was carried out through (+) and (-) TOF-MS/MS experiments as 

described in chapter 3.3.7. Experimental MS/MS spectra were compared manually with METLIN 

database (Smith et al. 2005) and mostly against the experimental MS/MS spectra obtained from 

standards, measured under the same conditions. 

5.2.1.1 Bile acids 

 

Figure 5.2-1: Experimental (-)-ToF-MS/MS spectra of bile acid sulfate conjugates. 

Experimental (-)-ToF-MS/MS spectra of (A) cyprinolsulfate and (B) Sulfocholic acid increased in breastfed infants. 
A: Cyprinolsulfate (m/z 531.2910) at retention time 4.71 minutes. B: Sulfocholic acid (m/z 487.2290) at retention 
time 4.48 minutes. Analyses were performed by UHPLC-ToF-MS.   

 

Figure 5.2-2: Experimental (-)-ToF-MS/MS spectra of primary bile acids. 

Experimental (-)-ToF-MS/MS spectra of (A) cholic acid and (B) chenodeoxycholic acid, identified in breast fed and 
formula-fed infants. A: Cholic acid (m/z 407.2818) at retention time 5.15 minutes. B: Chenodeoxycholic acid (m/z 
391.2852) at retention time 5.85 minutes. Analyses were performed by UHPLC-ToF-MS. 
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Figure 5.2-3: Experimental (-) ToF-MS/MS spectra of bile acid glycine conjugates. 

Experimental (-)-ToF-MS/MS spectra of (A) glycocholic acid and (B) glycochenodeoxycholic acid, acid increased 
in formula-fed infants. A: Glycocholic acid (m/z 464.3007) at retention time 4.69 minutes. B: Glycochenodeoxycholic 
acid (m/z 448.3070) at retention time 5.22 minutes. Analyses were performed by UHPLC-ToF-MS. 

5.2.1.2 Fatty acids altered in either breastfed or formula-fed infants 

 

Figure 5.2-4: Experimental (-)-ToF-MS/MS spectra of metabolites increased in breastfed infants.  

A: Tetradecanoic acid (m/z 227.2007) at retention time 7.22 minutes. B: Eicosatetraenoic acid (m/z 303.2316) at 
retention time 7.25 minutes. C: Hydroxyphenyllactic acid (m/z 181.0504) at retention time 2.81 minutes. Analyses 
were performed by UHPLC-ToF-MS.  
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Figure 5.2-5: Experimental (-)-ToF-MS/MS spectra of fatty acids increased in formula-fed infants.  

A: Dihydroxyoleic acid (m/z 313.2336) at retention time 5.64 minutes. B: Dodecenedioic acid (m/z 227.1280) at 

retention time 5.16 minutes. Analyses were performed by UHPLC-ToF-MS.  

5.2.1.3 Unknowns, but highly significant affected by either breast milk or formula  

Through the statistical evaluation several metabolites were detected impacted through either 

breastfeeding or formula and were significantly changed in those two groups over time. MS/MS 

experiments were applied in (+) ESI (Chapter 5.2.1.3.1) and (-) ESI (Chapter 5.2.1.3.2) mode and 

different collision energies in order to identify or even classify these important metabolites, responsible 

for the discrimination. However, the performed MS/MS experiments did not provide sufficient 

information about the identity or the classification of the metabolites. 
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5.2.1.3.1 (+) ToF-MS 

 

 

 

Figure 5.2-6: Experimental (+) ToF-MS/MS spectra of unknown features increased in formula-fed infants.  

A: m/z 303.1917, RT 3.16 min. B: m/z 365.1387, RT 1.20 min. C: m/z 377.2284, RT 3.10 min. D: 383.1470, RT 
1.21 min. E: m/z 389.2282, RT 3.04 min. F: m/z 407.2455, RT 3.05. G: m/z 439.3188, RT 8.51 min. Analyses were 

performed by UHPLC-ToF-MS. 
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Figure 5.2-7: Experimental (+) ToF-MS/MS spectra of unknown features increased in breastfed infants.  

A: m/z 552.3342, RT 4.99 min, collision energy 20 eV. B: m/z 552.3342, RT 4.99 min, collision energy 40 eV. 
Analyses were performed by UHPLC-ToF-MS. 

5.2.1.3.2 (-) ToF-MS 

 

Figure 5.2-8: Experimental (-)-ToF-MS/MS spectra of unknown features increased in formula-fed infants.  

A: m/z 381.1330, RT 1.23 min, collision energy 10 eV (top), 20 eV (middle), 40 eV (bottom). B: m/z 405.2237, RT 
3.11 min, collision energy 10 eV (top), 20 eV (middle), 40 eV (bottom). Analyses were performed by UHPLC-ToF-
MS. 
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Figure 5.2-9: Experimental (-)-ToF-MS/MS spectra of unknown features increased in formula-fed infants.  

A: m/z 381.1330, RT 1.23 min, collision energy 10 eV (top), 20 eV (middle), 40 eV (bottom). B: m/z 405.2237, RT 
3.11 min, collision energy 10 eV (top), 20 eV (middle), 40 eV (bottom). Analyses were performed by UHPLC-ToF-
MS. 

5.2.1.4 Differences in F+ and F-, MS/MS spectra of discriminating features 

 

Figure 5.2-10: Experimental (+) ToF-MS/MS spectra of unknown features increased in F+.  

A: m/z 510.3339, RT 4.49 min, collision energy 20 eV. B: m/z 537.3863, RT 4.14 min, collision energy 20 eV. 
Analyses were performed by UHPLC-ToF-MS. 
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Chapter VI 

6 Appendix 

6.1 Tables of the dietary study 

6.1.1 Chemicals and other consumable material 

Table 6.1-1: Chemicals 

Name Manufacturer Details 

MilliQ water - 
Merck Millipore Integral water purification system (18 
MΩ,TOC < 5 ppb) 

methanol Sigma-Aldrich, St.Louis, USA CHROMASOLV® for LC-MS, ≥99.9% 

acetonitrile Sigma-Aldrich, St.Louis, USA CHROMASOLV® for LC-MS, ≥99.9% 

isopropanol Sigma-Aldrich, St.Louis, USA CHROMASOLV® for LC-MS, ≥99.9% 

formic acid Fluka for mass spectrometry 

L-Arginine Sigma-Aldrich, St.Louis, USA >98% 

ammonium acetate Biosolve BV, Valkenswaard, Netherlands ULC/MS 

ammonium formiate Sigma-Aldrich, St.Louis, USA 10 M in Water 

acetic acid Biosolve BV, Valkenswaard, Netherlands - 

propionic acid Sigma-Aldrich, St.Louis, USA ≥99.5% 

butyric acid Sigma-Aldrich, St.Louis, USA ≥99% 

valeric acid Sigma-Aldrich, St.Louis, USA ≥99% 

isovaleric acid Sigma-Aldrich, St.Louis, USA 99% 

decanoic acid Sigma-Aldrich, St.Louis, USA ≥99.5% 

dodecanoic acid Sigma-Aldrich, St.Louis, USA ≥98% 

ESI Tune Mix Agilent G1969-85000 

 

Table 6.1-2: Columns 

Name Manufacturer Details 

BEH C8 Waters GmbH, Eschborn, Germany 1.7 µm, 2.1mmx150mm 

Cortecs C18 column Waters GmbH, Eschborn, Germany 1.6 µm, 2.1mmx150mm 

 

6.1.2 Instrument Setup 

6.1.2.1 FT-ICR-MS 

 

Table 6.1-3: FT-ICR-MS: solariX™ Bruker Daltonik GmbH. 

Parameter (-) FT-ICR-MS (+) FT-ICR-MS 

Mass range in Da 122.9 – 1000.0 147.4 – 2000.0 

Acquired scans 500 500 

Capillary [V] 3600 3700 

Drying Gas Flow rate [L/min] 4.0 4.0 

Dry Gas Temperature [°C] 180.0 180.0 

Ion Accumulation Time [s] 0.300 0.100 

Nebulizer Gas Flow Rate [bar] 2.0 2.0 

Spray Shield [V] 500 500 

Flow rate [µL/min] 2.0 2.2 bar 
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6.1.2.2 UHPLC-ToF-MS conditions 

 

For SCFA analyses and the lipidomics approach a Waters ACQUITY-UPLC® system (Waters GmbH, 

Eschborn, Germany) was used, including following devices: binary solvent manager, sample manager, 

column manager and a PDA detector, coupled to an Bruker UHR-qToF-MS (maXis™, Bruker Daltonik 

GmbH, Bremen, Germany). The used parameters are given in Table 6.1-4 (SCFA) and Table 6.1-5 

(Lipidomics). 

Table 6.1-4: SCFA Analysis 

Parameter (+) ToF-MS 

LC 

Run time [min] 22 

Flow rate [mL/min] 0.3 

Injection volume [µL] 1 

Injection Partial loop 

Column temperature [°C] 40 

ToF-MS 

Mass range in Da 50.0 – 1200 

Spectrum rate in Hz 1 

Ion cooler RF 50 Vpp 

Ion cooler transfer time 75 µs 

Threshold Signal to Noise 500 

Quadrupole [eV] 3 

Capillary [V] 4500 

End plate offset [V] -500 

Nebulizer Gas Flow Rate [bar] 2.0 

Drying Gas Flow rate [L/min] 8.0 

Dry Gas Temperature [°C] 200 

 

Table 6.1-5: Lipidomics Approach 

Parameter (-) ToF-MS (+) ToF-MS 

LC 

Run time [min] 30 30 

Flow rate [mL/min] 0.25 0.25 

Injection volume [µL] 5 5 

Injection partial loop Partial loop 

Column temperature [°C] 40 40 

ToF-MS 

Mass range in Da 100 - 1500 100 - 1500 

Spectrum rate in Hz 2  2 

Ion cooler RF 50 Vpp 50 Vpp 

Ion cooler transfer time 75 µs 75 µs 

Threshold Signal to Noise 500 500 

Quadrupole [eV] 3 3 

Capillary [V] 4000 V −4500 V 

End plate offset [V] -500  -500 

Nebulizer Gas Flow Rate [bar] 2.0 2.0 

Drying Gas Flow rate [L/min] 8.0 8.0 

Dry Gas Temperature [°C] 200 200 

MS/MS DDA DDA 
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6.1.2.3 Other Instruments 

 

Table 6.1-6: Other Instruments 

Parameter Manufacturer Details 

refrigerated Centrifuge Eppendorf 5804R 

ultrasonic bath Bandelin Sonorex RK100H 

Vortex Scientific Industry Vortex Genie 2 

 

6.1.3 OPLS-DA for metabolite discrimination applied on different classification models 

 

Table 6.1-7: Mass signals differed between the HRS diet at day 28 and day 56. 

Mass signals differed between HRS diets at different time points, including averaged experimental mass, 
compound name, monoisotopic mass, molecular formula, obtained with NetCalc, arithmetic mean of the compared 
feeding groups and p-values of the respective group comparisons, obtained with post hoc Kruskal-Nemenyi test.  

Mass             
(avg.) 

Compound 
name 

Monoisotopic       
mass 

molecular           
formula 

Mean B 
Mean 
HRS 

(day 28) 

Mean 
HRS 

(day 56) 

p-value           
B vs. 
HRS 

(day 28) 

p-value               
B vs. 
HRS 

(day 56) 

p-value           
HRS 

(day 28) 
vs. HRS 
(day 56) 

241.217282 
Pentadecanoic 

acid 
242.224032 C15H30O2 2.99E+08 1.39E+09 3.45E+08 3.30E-03 n.s. 1.05E-02 

267.232910 
Heptadecenoic 

acid 
268.239682 C17H32O2 2.16E+08 4.76E+09 3.11E+08 2.20E-02 n.s. n.s. 

269.248611 
Heptadecanoic 

acid 
270.255332 C17H34O2 4.02E+08 2.50E+09 7.42E+08 1.30E-02 n.s. n.s. 

283.264254 
Octadecanoic 

acid 
284.270982 C18H36O2 7.47E+09 2.48E+10 1.32E+10 n.s. n.s. n.s. 

311.295572 Icosanoic acid 312.302282 C20H40O2 3.28E+08 1.90E+09 6.20E+08 1.10E-02 2.00E-02 n.s. 

425.363670 
Hexacosanedioic 

acid 
426.370362 C26H50O4 2.08E+08 2.05E+09 7.02E+08 4.90E-02 n.s. n.s. 

465.304411 
Cholesterol 

sulfate 
466.311132 C27H46O4S 3.98E+09 8.11E+09 3.87E+09 n.s. n.s. n.s. 
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6.1.4 Correlation studies: impact of the amount of RS on the metabolite profile. 

 

Table 6.1-8: Top 50 metabolites highly correlated with resistant starch. 

List of top 50 highest correlated metabolites with the amount of resistant starch, analyzed in (-) FT-ICR-MS; ranked 
from high to low correlation (R = 0.77 – 0.60) with degrees of freedom df(43). Table contains averaged experimental 
mass, compound name, monoisotopic mass, molecular formula, obtained with NetCalc, arithmetic mean of the 
compared feeding groups and correlation coefficients obtained through Pearson correlation with their respective p-
values, obtained with regression analysis.  

Mass             
(avg.) 

Compound name 
Monoisotopic       

mass 
molecular           
formula 

Mean B 
Mean 
HRS 

Mean 
LRS 

Pearson R p-corr 

395.210936 no metabolite found 396.217626 C18H36O7S 2.36E+05 3.23E+06 1.97E+05 0.77132683 5.63E-10 

359.280290 no metabolite found 360.287026 C20H40O5 2.86E+06 1.20E+07 2.94E+06 0.73250929 1.07E-08 

665.214868 no classification possible 666.222144 - 1.41E+05 3.66E+06 0.00E+00 0.7013282 8.05E-08 

385.295946 no classification possible 386.302676 C22H42O5 2.31E+06 1.07E+07 3.21E+06 0.69973083 8.87E-08 

343.155095 no classification possible 344.162374 C20H24O5 3.03E+06 1.08E+07 2.84E+06 0.69810954 9.78E-08 

377.200329 no metabolite found 378.207610 C18H34O6S 2.17E+06 1.19E+07 4.11E+06 0.69579389 1.12E-07 

463.328061 no metabolite found 464.335337 C24H48O8 2.71E+06 1.42E+07 2.92E+06 0.69125046 1.47E-07 

325.274834 Hydroxyeicosenoic acid 326.282110 C20H38O3 3.01E+07 7.70E+07 3.02E+07 0.68034232 2.73E-07 

361.202017 no classification possible 362.209293 C21H30O5 5.61E+06 2.07E+07 2.11E+06 0.66984831 2.73E-07 

549.293855 no metabolite found 550.301131 - 1.45E+05 3.18E+06 2.95E+05 0.66842993 4.85E-07 

401.342490 Hydroxycholesterol 402.349766 C27H46O2 1.86E+07 7.74E+07 1.87E+07 0.6539574 5.23E-07 

498.343695 no metabolite found 499.350971 C27H49O7N 1.05E+06 1.01E+07 2.59E+06 0.65263132 1.11E-06 

477.358547 no classification possible 478.365823 C29H50O5 6.50E+07 2.09E+08 7.63E+07 0.65174755 1.18E-06 

329.306040 no metabolite found 330.313316 C20H42O3 1.48E+06 7.16E+06 1.84E+06 0.6510479 1.24E-06 

429.373840 α-Tocopherol 430.381116 C29H50O2 4.27E+07 2.05E+08 3.81E+07 0.65036125 1.28E-06 

325.202045 Dihydroxyoctadecadienoic acid 326.209321 C18H30O5 1.17E+07 3.82E+07 1.62E+07 0.64718015 1.33E-06 

357.170742 no classification possible 358.178018 C21H26O5 3.65E+06 4.66E+07 3.71E+06 0.64359006 1.55E-06 

549.289308 no metabolite found 550.296584 C30H46O7S 2.11E+07 5.54E+07 2.22E+07 0.64321989 1.85E-06 

379.215949 no metabolite found 380.223225 C18H36O6S 3.67E+05 4.07E+06 9.88E+05 0.64153437 1.89E-06 

345.170755 Gibberellin 346.178031 C20H26O5 7.73E+06 2.47E+07 5.71E+06 0.64107917 2.05E-06 

477.361934 no metabolite found 478.369210 C26H54O5S 3.18E+06 1.39E+07 4.17E+06 0.63904662 2.09E-06 

315.217633 no metabolite found 316.224909 C17H32O5 3.45E+06 9.47E+06 3.90E+06 0.63878174 2.31E-06 

339.254060 no classification possible 340.261336 C20H36O4 9.71E+06 2.91E+07 1.02E+07 0.63826894 2.34E-06 

327.290414 Hydroxyeicosanoic acid 328.297690 C20H40O3 7.28E+07 1.84E+08 6.84E+07 0.63555912 2.39E-06 

373.169051 Hydroxyoctadecatrienoic acid sulfate 374.176327 C18H30O6S 2.27E+06 1.00E+07 3.97E+06 0.63340471 3.01E-06 

609.546564 DG(25:0) 610.553840 C38H74O5 1.26E+05 2.03E+06 0.00E+00 0.63216567 3.19E-06 

270.171091 no metabolite found 271.178367 C14H25O4N 1.37E+05 3.24E+06 7.35E+05 0.63200944 3.22E-06 

171.012123 no classification possible 172.019399 C7H8O3S 7.95E+05 7.71E+06 4.67E+06 0.63024247 3.49E-06 

343.285361 Dihydroxyeicosanoic acid 344.292637 C20H40O4 9.50E+06 2.82E+07 9.37E+06 0.6288236 3.73E-06 

497.340179 no metabolite found 498.347455 C28H51O5P 5.02E+06 3.05E+07 8.99E+06 0.62624877 4.20E-06 

321.134348 no classification possible 322.141624 C17H22O6 1.71E+06 3.40E+07 7.76E+06 0.62246539 4.99E-06 

321.170768 no classification possible 322.178044 C18H26O5 2.49E+06 8.89E+06 4.61E+06 0.62148717 5.21E-06 

415.358186 β-/γ-Tocopherol 416.365462 C28H48O2 5.36E+07 2.53E+08 6.47E+07 0.61926492 5.76E-06 

393.195260 Dihydroxyoctadecenoic acid sulfate 394.202536 C18H34O7S 3.62E+06 3.19E+07 1.07E+07 0.6179283 6.11E-06 

443.389428 no metabolite found 444.396704 C30H52O2 1.66E+05 3.09E+06 4.28E+05 0.61770636 6.17E-06 

512.359318 no metabolite found 513.366594 C28H51O7N 3.16E+05 3.40E+06 5.58E+05 0.61719973 6.31E-06 

323.150036 no classification possible 324.157312 C17H24O6 4.31E+05 2.13E+07 4.84E+06 0.61572926 6.73E-06 

503.410819 no metabolite found 504.418095 C32H56O4 2.27E+06 1.32E+07 3.19E+06 0.61522577 6.89E-06 

331.045908 no classification possible 332.053184 C16H12O8 1.55E+06 6.03E+06 1.62E+06 0.61274598 7.68E-06 

403.194720 no classification possible 404.201996 C23H32O4S 2.20E+05 1.63E+07 7.60E+05 0.61066595 8.40E-06 

566.351959 no metabolite found 567.359235 C31H53O6NS 6.15E+05 3.98E+06 1.50E+06 0.60893158 9.06E-06 

329.175769 no metabolite found 330.183045 C20H26O4 3.36E+07 1.45E+08 1.16E+07 0.60885327 9.09E-06 

375.184691 Hydroxyoctadecadienoic acid sulfate 376.191967 C18H32O6S 5.72E+06 2.83E+07 1.07E+07 0.60871325 9.14E-06 

398.291202 no metabolite found 399.298478 C22H41O5N 2.71E+05 2.56E+06 6.81E+05 0.60743195 9.66E-06 

307.122035 no metabolite found 308.129311 C13H24O6S 1.43E+06 1.02E+07 1.88E+06 0.60575575 1.04E-05 

489.394901 no metabolite found 490.402177 C31H54O4 1.77E+06 7.63E+06 2.23E+06 0.60559898 1.04E-05 

363.163490 no metabolite found 364.170766 C20H28O4S 4.54E+05 2.20E+06 0.00E+00 0.60554261 1.05E-05 

402.192252 no metabolite found 403.199528 C22H29O6N 1.64E+05 4.12E+06 4.78E+05 0.60544948 1.05E-05 

342.171045 no classification possible 343.178321 C20H25O4N 1.39E+05 2.49E+06 8.18E+05 0.60508416 1.07E-05 

351.184702 no metabolite found 352.191978 C16H32O6S 2.16E+06 1.56E+07 4.53E+06 0.60462505 1.09E-05 
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Table 6.1-9: Top 50 metabolites negatively correlated with resistant starch. 

List of top 50 highest correlated metabolites with the amount of resistant starch, analyzed in (-) FT-ICR-MS; ranked 
from high to low correlation (R = -0.49 – -0.33) with degrees of freedom df(43). Table contains averaged 
experimental mass, compound name, monoisotopic mass, molecular formula, obtained with NetCalc, arithmetic 
mean of the compared feeding groups and correlation coefficients obtained through Pearson correlation with their 

respective p-values, obtained with regression analysis.  

Mass             
(avg.) 

Compound name 
Monoisotopic       
mass 

molecular           
formula 

Mean B Mean HRS Mean LRS Pearson R p-corr 

294.280188 no metabolite found 295.287464 C19H37ON 2.74E+06 2.35E+05 1.81E+06 -0.48973931 6.32E-04 

333.228560 no classification possible 334.235836 C17H34O6 1.07E+07 1.09E+06 3.67E+06 -0.48680938 6.76E-04 

547.421947 no metabolite found 548.429223 C30H60O8 4.36E+06 6.02E+05 7.16E+06 -0.46710337 1.24E-03 

335.244092 no metabolite found 336.251368 C17H36O6 2.96E+06 0.00E+00 1.09E+06 -0.46598275 1.23E-03 

245.165930 no classification possible 246.173206 C15H22ON2 6.33E+06 7.38E+05 8.18E+06 -0.46102219 1.45E-03 

321.228558 no metabolite found 322.235834 C16H34O6 3.26E+07 1.28E+06 1.08E+07 -0.44904872 1.93E-03 

205.196176 no classification possible 206.203452 C15H26 2.40E+06 6.53E+05 1.31E+06 -0.44617556 2.09E-03 

319.212813 no classification possible 320.220089 C16H32O6 1.30E+08 2.17E+07 4.33E+07 -0.44546042 2.11E-03 

615.484571 no metabolite found 616.491847 C35H68O8 9.07E+06 1.04E+06 1.78E+06 -0.43557107 2.70E-03 

243.150237 no classification possible 244.157513 C15H20ON2 1.27E+06 0.00E+00 2.15E+06 -0.43360576 2.96E-03 

281.196990 no metabolite found 282.204266 C13H30O6 3.80E+06 1.08E+06 1.62E+06 -0.41776084 4.20E-03 

317.197055 Prenol Lipids [PR] 318.204331 C16H30O6 5.33E+07 1.47E+07 2.73E+07 -0.41189929 4.85E-03 

364.252655 no metabolite found 365.259931 C18H39O4NS 1.41E+07 1.23E+06 9.74E+06 -0.39247556 7.61E-03 

350.237027 Sphingolipids [SP] 351.244303 C17H37O4NS 2.50E+07 2.84E+06 1.75E+07 -0.38866253 8.28E-03 

257.093140 no metabolite found 258.100416 C14H14O3N2 7.23E+05 0.00E+00 1.66E+06 -0.38500087 9.15E-03 

260.104083 no classification possible 261.111359 C13H15O3N3 1.19E+06 4.06E+05 2.38E+06 -0.38466223 9.23E-03 

573.437651 no classification possible 574.444927 C32H62O8 1.01E+07 1.59E+06 3.58E+06 -0.38213039 9.41E-03 

583.440368 no metabolite found 584.447644 C34H64O5S 3.56E+06 0.00E+00 1.29E+06 -0.37985271 9.92E-03 

259.243088 Sterol Lipids [ST] 260.250364 C19H32 3.90E+07 1.92E+07 2.93E+07 -0.37510598 1.10E-02 

323.244127 no metabolite found 324.251403 C16H36O6 1.77E+06 0.00E+00 5.16E+05 -0.37434371 1.11E-02 

323.226068 no metabolite found 324.233344 C16H36O4S 3.98E+06 0.00E+00 8.97E+05 -0.37345317 1.13E-02 

535.421842 no metabolite found 536.429118 C29H60O8 1.67E+06 5.00E+05 2.82E+06 -0.37238793 1.19E-02 

341.248641 Fatty Acyls [FA] 342.255917 C23H34O2 1.93E+06 2.21E+05 2.49E+06 -0.37070542 1.22E-02 

233.227455 no classification possible 234.234731 C17H30 5.67E+07 1.16E+07 4.98E+07 -0.37042369 1.22E-02 

601.468910 Fatty Acyls [FA] 602.476186 C34H66O8 1.94E+08 4.22E+07 5.12E+07 -0.37028382 1.20E-02 

279.186875 no classification possible 280.194151 C19H24N2 2.37E+06 5.18E+05 1.37E+06 -0.36940342 1.24E-02 

288.196927 no classification possible 289.204203 C18H27O2N 1.06E+06 0.00E+00 6.24E+05 -0.36893456 1.25E-02 

599.453243 no metabolite found 600.460519 C34H64O8 7.46E+07 1.65E+07 3.07E+07 -0.36497438 1.35E-02 

549.437635 no metabolite found 550.444911 C30H62O8 9.65E+06 5.10E+06 1.45E+07 -0.36423447 1.41E-02 

271.206745 Sterol Lipid 272.214021 C19H28O1 3.82E+06 6.96E+05 1.49E+06 -0.36392954 1.38E-02 

424.260615 no metabolite found 425.267891 C25H35O3N3 1.25E+06 3.39E+05 2.61E+06 -0.36357053 1.43E-02 

310.275266 Sphingolipids [SP] 311.282542 C19H37O2N 7.45E+06 2.76E+06 5.72E+06 -0.36270886 1.43E-02 

290.212534 no classification possible 291.219810 C18H29O2N 6.44E+05 1.67E+05 1.64E+06 -0.36249078 1.47E-02 

295.212910 no metabolite found 296.220186 - 2.86E+06 0.00E+00 1.10E+06 -0.36248338 1.42E-02 

336.202765 no metabolite found 337.210041 C15H31O7N 2.62E+06 1.21E+05 5.26E+05 -0.3610839 1.45E-02 

261.258726 no classification possible 262.266002 C19H34 6.96E+07 1.06E+07 8.40E+06 -0.36047574 1.46E-02 

268.264593 no classification possible 269.271869 C17H35O1N 1.24E+06 3.10E+05 1.82E+06 -0.35741567 1.61E-02 

273.222341 no classification possible 274.229617 C19H30O 9.67E+06 2.03E+06 1.84E+06 -0.35535737 1.62E-02 

273.258721 no classification possible 274.265997 C20H34 1.69E+06 1.38E+05 0.00E+00 -0.35175663 1.73E-02 

583.458206 no metabolite found 584.465482 C34H64O7 2.34E+07 4.57E+06 7.33E+06 -0.35151916 1.76E-02 

279.217756 no metabolite found 280.225032 - 2.76E+07 1.49E+07 1.87E+07 -0.34623722 1.96E-02 

329.284994 no classification possible 330.292270 C23H38O 2.48E+07 1.79E+06 2.09E+07 -0.34512162 2.02E-02 

585.456025 no metabolite found 586.463301 C34H66O5S 2.66E+06 0.00E+00 5.38E+05 -0.34309745 2.07E-02 

305.284971 no classification possible 306.292247 C21H38O 4.27E+06 4.33E+05 1.47E+05 -0.33880207 2.22E-02 

263.238046 no classification possible 264.245322 C18H32O 1.20E+07 2.61E+06 5.82E+06 -0.33815254 2.28E-02 

243.029918 no classification possible 244.037194 C13H8O5 1.01E+07 2.17E+06 1.66E+07 -0.33588389 2.43E-02 

277.202333 no metabolite found 278.209609 C14H30O5 3.46E+06 7.91E+05 1.96E+06 -0.33557151 2.40E-02 

279.232882 Octadecadienoic acid (C18:2) 280.240158 C18H32O2 6.49E+10 3.56E+10 4.39E+10 -0.33433519 2.45E-02 

279.211700 no metabolite found 280.218976 C21H28 1.43E+07 7.83E+06 9.46E+06 -0.33146917 2.58E-02 

179.180510 no classification possible 180.187786 C13H24 3.04E+06 5.40E+05 2.28E+06 -0.32578466 2.89E-02 
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Table 6.1-10: Top 50 metabolites highly correlated with resistant starch analyzed in (+) FT-ICR-MS. 

List of top 50 highest correlated metabolites with the amount of resistant starch, analyzed in (+) FT-ICR-MS; ranked 
from high to low correlation (R = 0.66 – 0.48) with degrees of freedom df(42). Table contains averaged experimental 
mass, compound name, monoisotopic mass, molecular formula, obtained with NetCalc, arithmetic mean of the 
compared feeding groups and correlation coefficients obtained through Pearson correlation with their respective p-

values, obtained with regression analysis.  

Mass             
(avg.) 

Compound name 
Monoisotopic       
mass 

molecular           
formula 

Mean B 
Mean 
HRS 

Mean 
LRS 

Pearson R p-corr 

388.320679 no metabolite found 387.313403 C25H41O2N 5.99E+05 3.79E+06 3.67E+05 0.65783914 1.22E-06 

291.135282 no metabolite found 290.128006 C13H23O5P 1.04E+05 1.41E+06 9.52E+04 0.61356018 9.48E-06 

466.404316 no metabolite found 465.397040 C32H51ON 9.08E+05 1.34E+07 0.00E+00 0.59002116 2.50E-05 

448.378438 no metabolite found 447.371162 C28H49O3N 4.47E+06 1.55E+07 5.83E+06 0.57055207 5.26E-05 

480.383479 no metabolite found 479.376203 C32H49O2N 5.19E+06 6.37E+07 0.00E+00 0.56970331 5.43E-05 

434.398975 no metabolite found 433.391699 C28H51O2N 0.00E+00 5.80E+06 1.14E+06 0.56259152 7.04E-05 

572.467894 no metabolite found 571.460618 C36H61O4N 2.27E+06 8.74E+06 1.41E+06 0.56183382 7.24E-05 

462.372928 no metabolite found 461.365652 C32H47ON 1.06E+06 1.57E+07 0.00E+00 0.55822314 8.24E-05 

464.388615 no metabolite found 463.381339 C32H49ON 4.21E+07 5.53E+08 8.90E+06 0.55784291 8.35E-05 

482.399006 no metabolite found 481.391730 C32H51O2N 5.46E+05 6.75E+06 0.00E+00 0.55493596 9.25E-05 

498.393944 no metabolite found 497.386668 C32H51O3N 0.00E+00 9.48E+06 0.00E+00 0.5515672 1.04E-04 

465.391837 no metabolite found 464.384561 C25H48O2N6 1.22E+07 1.61E+08 2.25E+06 0.54901667 1.14E-04 

440.248773 no metabolite found 439.241497 C19H37O10N 2.52E+06 1.70E+07 5.25E+06 0.5486816 1.15E-04 

897.607577 no metabolite found 896.600301 C47H85O10N4P 1.58E+06 8.56E+06 2.58E+06 0.54085388 1.50E-04 

406.316029 no metabolite found 405.308753 C21H43O6N 1.06E+06 8.17E+06 5.03E+06 0.5350666 1.83E-04 

467.407077 no metabolite found 466.399801 C25H50O2N6 0.00E+00 3.86E+06 0.00E+00 0.53333561 1.93E-04 

890.587971 no metabolite found 889.580695 C46H80O8N7P 5.44E+05 3.89E+06 0.00E+00 0.53326831 1.94E-04 

454.404154 no metabolite found 453.396878 C31H51ON 2.35E+06 2.33E+07 4.29E+05 0.53316549 1.94E-04 

308.206628 no metabolite found 307.199352 C14H29O6N 0.00E+00 7.50E+05 0.00E+00 0.53235023 2.00E-04 

538.252882 no metabolite found 537.245606 C20H43O13NS 0.00E+00 2.78E+07 6.63E+05 0.5315267 2.05E-04 

481.386650 no metabolite found 480.379374 C25H48O3N6 1.33E+06 1.80E+07 0.00E+00 0.52741493 2.34E-04 

408.201278 no metabolite found 407.194002 C21H29O7N 0.00E+00 7.55E+06 1.10E+06 0.52435974 2.59E-04 

443.183287 no metabolite found 442.176011 C21H31O8P 4.03E+05 4.11E+06 1.28E+06 0.52210447 2.78E-04 

631.397332 no metabolite found 630.390056 C33H59O9P 0.00E+00 5.88E+06 1.19E+06 0.51936626 3.03E-04 

468.420206 no metabolite found 467.412930 C32H53ON 6.38E+05 1.13E+07 3.17E+05 0.51788048 3.18E-04 

328.263172 no metabolite found 327.255896 C22H33ON 1.52E+06 2.42E+07 3.67E+05 0.51388547 3.60E-04 

458.202243 no metabolite found 457.194967 C21H31O10N 2.07E+06 6.23E+06 2.71E+06 0.51018534 4.03E-04 

403.305175 no metabolite found 402.297899 C22H42O6 4.74E+05 5.91E+06 3.24E+06 0.50689457 4.46E-04 

342.150456 no metabolite found 341.143180 C11H23O9N3 0.00E+00 2.13E+06 2.73E+05 0.50653697 4.51E-04 

701.527401 no metabolite found 700.520125 C43H73O5P 7.98E+05 1.71E+07 8.31E+06 0.50548864 4.65E-04 

503.422896 no metabolite found 502.415620 C29H59O4P 4.89E+05 3.46E+07 5.73E+06 0.50496877 4.73E-04 

440.388758 no metabolite found 439.381482 C30H49O1N 9.27E+06 5.84E+07 3.47E+06 0.50366207 4.92E-04 

522.415111 no metabolite found 521.407835 C31H55O5N 1.16E+07 2.44E+07 1.17E+07 0.50125046 5.28E-04 

363.120038 no metabolite found 362.112762 C15H23O8P 2.41E+05 6.49E+06 2.35E+06 0.49866966 5.71E-04 

585.500560 no metabolite found 584.493284 C35H69O4P 5.07E+05 5.89E+06 0.00E+00 0.49617119 6.14E-04 

179.084849 no metabolite found 178.077573 C6H14O2N2S 0.00E+00 9.80E+05 0.00E+00 0.49415831 6.51E-04 

507.423375 no metabolite found 506.416099 C32H58O2S 1.54E+06 4.69E+06 0.00E+00 0.49355726 6.63E-04 

383.125522 no metabolite found 382.118246 C18H23O7P 2.44E+05 4.14E+06 5.93E+05 0.4933104 6.68E-04 

441.391574 no metabolite found 440.384298 C23H48O2N6 2.77E+06 2.01E+07 5.87E+05 0.49199175 6.94E-04 

565.400934 no metabolite found 564.393658 C28H52O2N8S 4.23E+05 5.75E+06 0.00E+00 0.49003064 7.34E-04 

511.454608 no metabolite found 510.447332 C32H62O2S 0.00E+00 2.44E+06 3.08E+05 0.4895417 7.45E-04 

438.300342 no metabolite found 437.293066 C28H39O3N 0.00E+00 3.50E+07 2.94E+06 0.48889718 7.59E-04 

351.213761 no metabolite found 350.206485 C16H26O3N6 1.73E+06 1.20E+07 4.74E+06 0.48544596 8.37E-04 

537.250005 no metabolite found 536.242729 C32H32O4N4 2.30E+06 8.75E+07 7.65E+06 0.48501901 8.48E-04 

775.325407 no metabolite found 774.318131 C31H55O18N2P 3.46E+05 3.17E+06 1.69E+06 0.4836444 8.81E-04 

747.569267 no metabolite found 746.561991 C45H79O6P 5.15E+06 2.37E+07 1.38E+07 0.48204707 9.22E-04 

371.161905 no metabolite found 370.154629 C18H27O6P 2.93E+06 8.88E+06 1.43E+06 0.48166558 9.32E-04 

449.353958 no metabolite found 448.346682 C29H48OiCl 7.76E+06 5.20E+07 1.95E+07 0.48156999 9.34E-04 

439.303313 no metabolite found 438.296037 C21H38O4N6 1.28E+06 1.23E+07 0.00E+00 0.48079739 9.55E-04 

806.593854 no metabolite found 805.586578 C51H75O3N5 6.67E+06 2.03E+07 7.30E+06 0.48013356 9.73E-04 
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6.1.5 Lipid metabolism affected by high resistant starch 

 

Table 6.1-11: Metabolites of the lipid metabolism altered through baseline, HRS or LRS diet. 

List of significantly changed metabolites of the lipid metabolism through baseline, HRS or LRS diet, analyzed in (-) FT-ICR-MS; Table contains averaged experimental mass, 
compound name, monoisotopic mass, molecular formula, obtained with NetCalc, arithmetic mean of the compared feeding groups and their respective p-values, obtained with 
post hoc Kruskal-Nemenyi test and their corresponding sub-pathway. From Maier, T. V.; Lucio, M.; Lee, L. H.; VerBerkmoes, N. C.; Brislawn, C. J.; Bernhardt, J.; Lamendella, 
R.; McDermott, J. E.; Bergeron, N.; Heinzmann, S. S.; Morton, J. T.; González, A.; Ackermann, G.; Knight, R.; Riedel, K.; Krauss, R. M.; Schmitt-Kopplin, P.; Jansson, J. K.: 
Impact of Dietary Resistant Starch on the Human Gut Microbiome, Metaproteome, and Metabolome. mBio vol. 8 no. 5 e01343-17 (2017). Data from Figure 2.4-13, reprinted and 
modified figure from (Maier et al. 2017). Copyright (2017) Maier et al. 

Mass             
(avg.) 

Compound name 
Monoisotopi
c       mass 

molecular           
formula 

Mean B Mean HRS Mean LRS 
p-value           

B vs. HRS 
p-value               

B vs. LRS 
p-value           

HRS vs. LRS 
Pathway 

279.232882 Octadecadienoic acid (C18:2) 280.240158 C18H32O2 6.49E+10 3.56E+10 4.39E+10 3.10E-02 n.s. n.s. 
Linoleic acid metabolism; Biosynthesis of unsaturated fatty 

acids 

253.217286 Hexadecenoic acid (C16:1) 254.224562 C16H30O2 7.31E+08 3.07E+08 3.62E+08 4.30E-03 n.s. n.s. Fatty acid biosynthesis 

281.248559 Octadecenoic acid (C18:1) 282.255835 C18H34O2 9.91E+10 6.25E+10 5.31E+10 1.54E-02 1.10E-03 n.s. 
Fatty acid biosynthesis; Biosynthesis of unsaturated fatty 

acids 

313.217220 no classification possible 314.224496 C21H30O2 1.15E+07 4.40E+06 7.05E+06 1.10E-02 2.70E-02 n.s. Steroid hormone biosynthesis 

289.217307 no classification possible 290.224583 C19H30O2 1.72E+07 7.34E+06 1.01E+07 1.53E-02 1.50E-03 n.s. Steroid hormone biosynthesis 

285.149598 no classification possible 286.156874 C18H22O3 3.79E+06 2.21E+06 1.30E+06 n.s. 4.40E-03 n.s. Steroid hormone biosynthesis 

349.238435 no classification possible 350.245711 C21H34O4 1.07E+07 1.32E+07 6.67E+06 n.s. n.s. 2.00E-02 Steroid hormone biosynthesis 

331.227864 no classification possible 332.235140 C21H32O3 1.77E+07 8.64E+06 6.61E+06 1.88E-02 9.70E-03 n.s. Steroid hormone biosynthesis 

319.264204 no classification possible 320.271480 C21H36O2 7.46E+07 2.97E+07 4.12E+06 3.00E-02 2.90E-06 4.70E-02 Steroid hormone biosynthesis 

333.243485 no classification possible 334.250761 C21H34O3 3.43E+07 1.83E+07 1.29E+07 n.s. 3.70E-03 n.s. Steroid hormone biosynthesis 

315.232938 no classification possible 316.240214 C21H32O2 4.03E+07 1.26E+07 7.39E+06 2.35E-02 2.20E-04 n.s. Steroid hormone biosynthesis 

291.232903 no classification possible 292.240179 C19H32O2 4.55E+07 1.59E+07 6.82E+06 6.30E-03 3.40E-05 n.s. Steroid hormone biosynthesis 

317.248548 no classification possible 318.255824 C21H34O2 1.28E+08 2.98E+07 4.70E+06 2.60E-02 4.00E-06 n.s. Steroid hormone biosynthesis 

171.139046 Decanoic acid (C10:0) 172.146322 C10H20O2 5.84E+05 6.27E+05 1.47E+07 n.s. 3.40E-04 8.20E-04 Fatty acid biosynthesis 

199.170355 Dodecanoic acid (C12:0) 200.177631 C12H24O2 4.16E+07 4.88E+07 2.00E+09 n.s. 6.40E-05 2.00E-03 Fatty acid biosynthesis 

227.201651 Tetradecanoic acid (C14:0) 228.208927 C14H28O2 9.44E+07 1.87E+08 1.80E+09 n.s. 9.20E-05 n.s. Fatty acid biosynthesis 

285.185993 no classification possible 286.193269 C19H26O2 6.79E+07 3.70E+07 1.27E+07 n.s. 6.40E-04 8.48E-03 Steroid hormone biosynthesis 

345.207151 no classification possible 346.214427 C21H30O4 2.44E+07 6.08E+07 5.77E+06 n.s. 1.10E-02 5.30E-06 Steroid hormone biosynthesis 

301.217257 Icosapentanoic acid (C20:5) 302.224533 C20H30O2 3.66E+07 9.74E+07 3.01E+07 n.s. n.s. 2.00E-02 Biosynthesis of unsaturated fatty acids 

315.196593 15-Deoxy-delta-12,14-PGJ2 316.203869 C20H28O3 1.19E+07 2.14E+07 7.63E+06 n.s. n.s. 8.60E-03 Arachidonic acid metabolism 

319.227841 Hydroxyeicosatetraenoic acid 320.235117 C20H32O3 2.49E+07 7.63E+07 3.64E+07 1.70E-04 n.s. 3.78E-02 Arachidonic acid metabolism 

333.207132 Hydroxyoxoicosatetraenoic acid 334.214408 C20H30O4 1.13E+07 2.25E+07 1.21E+07 1.20E-02 n.s. n.s. Arachidonic acid metabolism 

281.087789 no classification possible 282.095065 C10H18O9 3.70E+06 1.11E+07 5.92E+06 1.00E-03 n.s. 4.20E-02 Glycerolipid metabolism 

353.233346 Trihydroxyeicosatrienoic acid 354.240622 C20H34O5 1.16E+07 5.77E+07 3.09E+07 2.20E-04 n.s. n.s. Arachidonic acid metabolism 

449.327277 Trihydroxycholestanoic acid 450.334553 C27H46O5 1.08E+08 2.47E+08 1.25E+08 8.70E-03 n.s. n.s. Primary bile acid biosynthesis 

309.207131 Hydroxyoctadecenoic acid 310.214407 C18H30O4 1.95E+07 8.62E+07 2.42E+07 5.00E-03 n.s. 2.20E-02 alpha-Linolenic acid metabolism 

335.222782 Dihydroxyeicosatetraenoic acid 336.230058 C20H32O4 9.07E+06 3.47E+07 1.59E+07 3.90E-05 n.s. 2.50E-02 Arachidonic acid metabolism 

287.222731 Dihydroxyhexadecanoic acid 288.230007 C16H32O4 1.68E+07 1.91E+08 2.27E+07 5.20E-03 n.s. n.s. Cutin, suberine and wax biosynthesis 
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337.238417 Dihydroxyeicosatrienoic acid 338.245693 C20H34O4 1.69E+07 1.02E+08 2.57E+07 7.20E-04 n.s. 4.30E-02 Arachidonic acid metabolism 

325.202045 Dihydroxyoctadecadienoic acid 326.209321 C18H30O5 1.17E+07 3.82E+07 1.62E+07 3.00E-04 n.s. 1.36E-02 Arachidonic acid metabolism 

351.217674 Trihydroxyeicosatetraenoic acid 352.224950 C20H32O5 6.85E+06 2.35E+07 1.26E+07 1.10E-04 n.s. 4.18E-02 Arachidonic acid metabolism 

327.217677 Trihydroxyoctadecadienoic acid 328.224953 C18H32O5 2.56E+07 1.02E+08 3.04E+07 6.60E-04 n.s. 1.18E-02 Arachidonic acid metabolism 

329.233297 Trihydroxyoctadecenoic acid 330.240573 C18H34O5 5.81E+07 1.90E+08 5.35E+07 n.s. n.s. 1.10E-02 Linoleic acid metabolism 

311.222782 Dihydroxyoctadecadienoic acid 312.230058 C18H32O4 7.47E+07 2.63E+08 6.36E+07 9.10E-03 n.s. 1.10E-03 Linoleic acid metabolism 

313.238436 Dihydroxyoctadecenoic acid 314.245712 C18H34O4 2.09E+08 1.04E+09 1.97E+08 4.05E-03 n.s. 5.90E-04 Linoleic acid metabolism 

337.311207 Docosenoic acid (C22:1) 338.318483 C22H42O2 1.40E+08 3.07E+08 1.33E+08 6.30E-03 n.s. n.s. Biosynthesis of unsaturated fatty acids 

227.128851 Dodecenedioic acid 228.136127 C12H20O4 5.99E+06 5.53E+07 1.10E+07 5.10E-04 n.s. n.s. alpha-Linolenic acid metabolism 

367.212654 6-Keto-PGE1 368.219930 C20H32O6 9.60E+06 2.53E+07 1.85E+07 9.40E-03 n.s. n.s. Arachidonic acid metabolism 

369.228264 6-Keto-PGF1alpha 370.235540 C20H34O6 7.68E+06 2.49E+07 1.62E+07 5.20E-04 n.s. n.s. Arachidonic acid metabolism 

463.233622 no classification possible 464.240898 C25H36O8 2.49E+05 2.68E+06 1.31E+06 6.60E-03 n.s. n.s. Steroid hormone biosynthesis 

464.338369 no metabolite found 465.345645 
C27H47O5N

1 
1.61E+06 7.18E+06 2.90E+06 6.20E-04 n.s. 4.31E-02 Sphingolipid metabolism 

435.348004 Tetrahydroxycholestane 436.355280 C27H48O4 3.08E+07 6.37E+07 2.90E+07 1.20E-02 n.s. 1.90E-02 Primary bile acid biosynthesis 

488.323154 Carboprost Tromethamine 489.330430 
C25H47O8N

1 
9.04E+05 5.03E+06 7.54E+05 4.20E-03 n.s. 6.00E-03 Sphingolipid metabolism 

363.217693 Urocortisone 364.224969 C21H32O5 2.71E+06 6.44E+06 3.59E+06 2.60E-03 n.s. 3.62E-02 Steroid hormone biosynthesis 

423.275237 Tetrahydroxycholanoic acid 424.282513 C24H40O6 1.37E+07 2.43E+07 1.91E+07 8.30E-03 n.s. n.s. Secondary bile acid biosynthesis 

365.233330 Urocortisol 366.240606 C21H34O5 5.73E+06 9.76E+06 6.48E+06 1.50E-02 n.s. n.s. Steroid hormone biosynthesis 

367.248997 no classification possible 368.256273 C21H36O5 5.85E+06 1.08E+07 4.45E+06 1.41E-02 n.s. 4.20E-03 Steroid hormone biosynthesis 

403.358165 no classification possible 404.365441 C27H48O2 1.19E+07 5.19E+07 4.77E+06 n.s. 2.91E-02 2.60E-03 Primary bile acid biosynthesis 

441.337447 no classification possible 442.344723 C29H46O3 5.38E+06 1.40E+07 8.16E+06 4.40E-02 n.s. n.s. Steroid biosynthesis 

283.264254 Stearic acid (C18:0) 284.271530 C18H36O2 7.47E+09 1.78E+10 1.44E+10 3.40E-02 n.s. n.s. 
Fatty acid biosynthesis; Biosynthesis of unsaturated fatty 

acids 

309.279850 Icosenoic acid (C20:1) 310.287126 C20H38O2 1.15E+09 1.87E+09 1.23E+09 4.00E-02 n.s. n.s. Biosynthesis of unsaturated fatty acids 

339.326858 Docosanoic acid (C22:0) 340.334134 C22H44O2 2.00E+08 4.04E+08 3.64E+08 4.60E-03 n.s. n.s. Biosynthesis of unsaturated fatty acids 

367.358125 Tetracosanoic acid (C24:0) 368.365401 C24H48O2 6.11E+07 1.95E+08 1.34E+08 5.40E-03 n.s. n.s. Biosynthesis of unsaturated fatty acids 

415.321803 Dihydroxycholestenone 416.329079 C27H44O3 2.85E+07 5.59E+07 2.79E+07 3.60E-02 n.s. n.s. Steroid biosynthesis; Primary bile acid biosynthesis 

431.316698 Dihydroxycholestenoic acid 432.323974 C27H44O4 4.08E+07 9.38E+07 5.81E+07 6.70E-03 n.s. n.s. Primary bile acid biosynthesis 

429.300966 Hydroxyoxocholestenoic acid 430.308242 C27H42O4 8.45E+06 2.20E+07 1.67E+07 2.50E-03 n.s. n.s. Primary bile acid biosynthesis 

361.202017 no classification possible 362.209293 C21H30O5 5.61E+06 2.07E+07 2.11E+06 9.60E-03 n.s. 5.90E-06 Steroid hormone biosynthesis 

365.342500 Tetracosenoic acid (C24:1) 366.349776 C24H46O2 1.19E+08 3.08E+08 1.25E+08 3.60E-02 n.s. n.s. Biosynthesis of unsaturated fatty acids 

311.295572 Icosanoic acid (C20:0) 312.302848 C20H40O2 3.28E+08 1.13E+09 6.01E+08 2.00E-03 n.s. n.s. Biosynthesis of unsaturated fatty acids 

335.295544 Docosadienoic acid (C22:2) 336.302820 C22H40O2 4.11E+07 1.96E+08 6.15E+07 2.10E-02 n.s. n.s. Biosynthesis of unsaturated fatty acids 

419.353093 Cholestanetriol 420.360369 C27H48O3 1.65E+07 3.73E+07 1.41E+07 6.50E-03 n.s. 2.70E-03 Primary bile acid biosynthesis 

417.337420 Dihydroxycholesterol 418.344696 C27H46O3 6.18E+07 1.26E+08 7.23E+07 1.10E-02 n.s. n.s. Primary bile acid biosynthesis; Steroid hormone biosynthesis 

433.332347 Trihydroxycholestanal 434.339623 C27H46O4 6.37E+07 1.27E+08 6.35E+07 2.40E-02 n.s. 3.00E-02 Primary bile acid biosynthesis 

399.326818 Hydroxycholestenone 400.334094 C27H44O2 3.14E+06 7.20E+06 3.75E+06 7.00E-03 n.s. n.s. Steroid biosynthesis;Primary bile acid biosynthesis 

401.342490 Hydroxycholesterol 402.349766 C27H46O2 1.86E+07 7.74E+07 1.87E+07 5.20E-04 n.s. 5.45E-03 Primary bile acid biosynthesis; Steroid hormone biosynthesis 

413.342482 no classification possible 414.349758 C28H46O2 1.87E+06 5.47E+06 2.32E+06 3.70E-03 n.s. n.s. Steroid biosynthesis 
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6.1.6 Metabolite classes impacted through baseline, HRS and LRS diet 

6.1.6.1 Phosphatidic acids impacted through diet 

Table 6.1-12: Phosphatidic acid altered in baseline diet.  

List of significantly changed phosphatidic acids (PA) through baseline diet, analyzed in (+) FT-ICR-MS; Table 
contains averaged experimental mass, compound name, monoisotopic mass, molecular formula, obtained with 
NetCalc, arithmetic mean of the compared feeding groups and their respective p-values, obtained with post hoc 
Kruskal-Nemenyi test. 

Mass             
(avg.) 

Compound 
name 

Monoisotopic       
mass 

molecular           
formula 

Mean B 
Mean 
HRS 

Mean 
LRS 

p-value           
B vs. HRS 

p-value               
B vs. LRS 

p-value           
HRS 
vs. 

LRS 

395.255942 
LysoPA(P-16:0)    

PA(P-16:0) 
394.248426 C19H39O6P 4.28E+09 1.68E+09 9.13E+08 1.98E-02 4.60E-04 n.s. 

397.271028 
PA(O-16:0)  
LysoPA(O-

16:0) 
396.264076 C19H41O6P 9.10E+08 2.78E+08 1.95E+08 6.70E-03 1.60E-03 n.s. 

409.235058 PA(16:1) 408.227690 C19H37O7P 6.30E+08 1.41E+08 2.54E+07 3.30E-02 6.80E-05 n.s. 

423.287066 
DHAP(18:0e)      
PA(P-18:0) 

422.279726 C21H43O6P 3.29E+08 7.94E+07 3.02E+07 1.68E-02 3.50E-04 n.s. 

431.219655 PA(18:4) 430.212040 C21H35O7P 8.33E+07 2.08E+06 3.08E+06 8.70E-03 6.40E-03 n.s. 

433.234707 PA(18:3) 432.227690 C21H37O7P 5.82E+08 6.71E+07 8.96E+06 2.54E-03 3.20E-04 n.s. 

437.266379 
PA(18:1) 

LysoPA(18:1) 
DHAP(18:0) 

436.258990 C21H41O7P 3.93E+08 7.44E+07 1.86E+07 4.70E-02 6.50E-05 n.s. 

459.250989 
PA(20:4), 

LysoPA(20:4) 
458.243340 C23H39O7P 4.36E+08 6.62E+07 3.57E+07 8.50E-03 1.70E-03 n.s. 

461.266473 PA(20:3) 460.258990 C23H41O7P 9.14E+08 1.17E+08 2.95E+07 1.14E-02 2.90E-04 n.s. 

463.282064 PA(20:2) 462.274640 C23H43O7P 8.08E+08 1.25E+08 2.94E+07 4.60E-03 2.00E-04 n.s. 

481.292582 PA(20:0) 480.285205 C23H45O8P 4.10E+07 1.70E+07 1.46E+07 3.10E-02 2.70E-02 n.s. 

491.402369 PA(22:2) 490.305940 C25H47O7P 8.87E+06 0.00E+00 0.00E+00 3.30E-02 3.70E-02 n.s. 

649.489351 PA(32:0) 623.444051 C36H64O6P 6.75E+07 3.11E+06 1.26E+06 3.10E-03 3.30E-03 n.s. 

657.485838 
PA(P-34:2)         
PA(O-34:3) 

656.478091 C37H69O7P 7.01E+09 3.70E+09 2.67E+09 3.90E-02 1.10E-02 n.s. 

659.501346 
PA(P-34:0)            
PA(O-34:1) 

658.493941 C37H71O7P 5.60E+09 3.28E+09 1.64E+09 3.20E-02 1.70E-02 n.s. 

661.525607 
PA(P-34:1)               
PA(O-34:2) 

660.509391 C37H73O7P 4.71E+08 5.83E+07 2.79E+07 6.70E-03 1.00E-03 n.s. 

663.541240 PA(O-34:0) 662.525041 C37H75O7P 1.08E+08 2.02E+07 7.43E+06 1.12E-02 4.30E-04 n.s. 

675.504917 PA(34:1) 674.488656 C37H71O8P 9.69E+07 9.20E+06 1.88E+07 1.20E-03 3.50E-03 n.s. 

677.520665 PA(34:0) 676.504306 C37H73O8P 2.42E+08 2.32E+07 5.01E+07 1.30E-03 2.10E-03 n.s. 

685.525222 
PA(P-36:2)           
PA(O-36:3) 

684.509391 C39H73O7P 6.87E+08 5.18E+07 1.49E+07 7.40E-04 9.80E-04 n.s. 

687.541354 
PA(P-36:1)                
PA(O-36:2) 

686.525041 C39H75O7P 1.14E+08 1.38E+07 3.13E+06 2.80E-03 1.80E-04 n.s. 

701.520931 PA(36:2) 700.504306 C39H73O8P 2.54E+08 1.83E+07 3.30E+06 8.50E-04 2.50E-04 n.s. 

703.536355 PA(36:1) 702.519956 C39H75O8P 5.46E+08 2.52E+07 1.14E+06 8.90E-04 1.30E-04 n.s. 

 

Table 6.1-13: Phosphatidic acids altered through LRS diet. 

List of significantly changed phosphatidic acids (PA) through LRS diet, analyzed in (+) FT-ICR-MS; Table contains 
averaged experimental mass, compound name, monoisotopic mass, molecular formula, obtained with NetCalc, 
arithmetic mean of the compared feeding groups and their respective p-values, obtained with post hoc Kruskal-
Nemenyi test. 

Mass             
(avg.) 

Compound 
name 

Monoisotopic       
mass 

molecular           
formula 

Mean B 
Mean 
HRS 

Mean 
LRS 

p-value           
B vs. 
HRS 

p-value               
B vs. 
LRS 

p-value           
HRS vs. 

LRS 

439.282129 
PA(18:0)   
LPA(18:0) 

 C21H43O7P 2.84E+08 6.17E+07 1.52E+09 1.36E-02 n.s. 6.60E-04 

495.344785 PA(22:0)  C25H51O7P 2.70E+07 5.67E+07 1.37E+09 n.s. 5.50E-07 2.80E-03 

735.496474 PA(39:6)  C42H71O8P 1.32E+07 1.74E+07 4.02E+07 n.s. 9.40E-03 n.s. 

759.590345 PA(40:1)  C43H83O8P 3.49E+06 8.00E+06 8.06E+07 n.s. 4.20E-03 n.s. 
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Table 6.1-14: Phosphatidic acids altered through dietary starch intake. 

List of significantly changed phosphatidic acids (PA) through dietary starch intake, analyzed in (+) FT-ICR-MS; 
Table contains averaged experimental mass, compound name, monoisotopic mass, molecular formula, obtained 
with NetCalc, arithmetic mean of the compared feeding groups and their respective p-values, obtained with post 
hoc Kruskal-Nemenyi test. 

Mass             
(avg.) 

Compound 
name 

Monoisotopic       
mass 

molecular           
formula 

Mean B 
Mean 
HRS 

Mean 
LRS 

p-value           
B vs. 
HRS 

p-value               
B vs. 
LRS 

p-value           
HRS vs. 

LRS 

629.417711 PA(31:3)  C34H61O8P 3.20E+07 8.08E+07 9.90E+07 6.40E-03 7.80E-03 n.s. 

681.449484 PA(35:5)  C38H65O8P 4.50E+06 1.36E+07 1.87E+07 4.63E-02 3.60E-03 n.s. 

683.501696 
PA(P-36:3) 
PA(O-36:4) 

 C39H71O7P 8.77E+06 4.13E+07 5.72E+07 6.96E-03 3.40E-04 n.s. 

685.480582 PA(35:3)  C38H69O8P 1.33E+07 2.09E+07 5.40E+07 n.s. 1.60E-04 n.s. 

749.511478 PA(40:6)  C43H73O8P 3.06E+06 1.11E+07 9.86E+06 3.30E-03 4.45E-02 n.s. 

761.548446 PA(P-42:6)  C45H77O7P 7.40E+06 1.65E+07 1.38E+07 1.70E-02 n.s. n.s. 

777.543152 PA(42:6)  C45H77O8P 2.99E+06 1.53E+07 1.19E+07 4.90E-04 1.03E-02 n.s. 

779.558759 PA(42:5)  C45H79O8P 8.14E+06 2.93E+07 2.90E+07 1.90E-02 3.40E-02 n.s. 

781.574725 PA(42:4)  C45H81O8P 6.39E+06 1.81E+07 1.89E+07 3.60E-02 4.00E-02 n.s. 

 

Table 6.1-15: Cyclic phosphatidic acids altered in baseline diet. 

List of significantly changed cyclic phosphatidic acids (PA) through baseline diet, analyzed in (+) FT-ICR-MS; Table 
contains averaged experimental mass, compound name, monoisotopic mass, molecular formula, obtained with 
NetCalc, arithmetic mean of the compared feeding groups and their respective p-values, obtained with post hoc 

Kruskal-Nemenyi test. 

Mass             
(avg.) 

Compound 
name 

Monoisotopic       
mass 

molecular           
formula 

Mean B 
Mean 
HRS 

Mean 
LRS 

p-value           
B vs. HRS 

p-value               
B vs. LRS 

p-value           
HRS vs. 

LRS 

393.240023 CPA(16:0) 392.232776 C19H37O6P 6.75E+09 2.03E+09 1.74E+09 9.99E-03 8.40E-04 n.s. 

417.239696 CPA(18:2) 416.232776 C21H37O6P 1.79E+10 2.30E+09 1.30E+08 4.15E-03 9.10E-04 n.s. 

419.255352 CPA(18:1) 418.248426 C21H39O6P 5.61E+10 8.06E+09 5.77E+08 1.09E-02 5.30E-04 n.s. 

421.271372 CPA(18:0) 420.264076 C21H41O6P 4.84E+09 8.24E+08 5.84E+07 2.24E-03 6.80E-04 n.s. 
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Table 6.1-16: Fatty acids altered through the baseline, HRS or LRS diet. 

List of significantly changed fatty acids through baseline diet, HRS or LRS diet, analyzed in (-) FT-ICR-MS; Table contains averaged experimental mass, compound name, 
monoisotopic mass, molecular formula, obtained with NetCalc, arithmetic mean of the compared feeding groups and their log2 fold change values, plus the respective p-values, 
obtained with post hoc Kruskal-Nemenyi test. From Maier, T. V.; Lucio, M.; Lee, L. H.; VerBerkmoes, N. C.; Brislawn, C. J.; Bernhardt, J.; Lamendella, R.; McDermott, J. E.; 
Bergeron, N.; Heinzmann, S. S.; Morton, J. T.; González, A.; Ackermann, G.; Knight, R.; Riedel, K.; Krauss, R. M.; Schmitt-Kopplin, P.; Jansson, J. K.: Impact of Dietary Resistant 
Starch on the Human Gut Microbiome, Metaproteome, and Metabolome. mBio vol. 8 no. 5 e01343-17 (2017).  Data from Figure 2.4-18 and Figure 2.4-20, whose illustration and 
data depiction was modified from (Maier et al. 2017). Copyright (2017) Maier et al. 

Mass             
(avg.) 

Compound name 
Monoisotopic       
mass 

molecular           
formula 

Mean B 
Mean 
HRS 

Mean 
LRS 

log2 fc                
HRS to B 

log2 fc         
LRS to B 

log2 fc               
HRS vs 
LRS 

p-value        
B vs. HRS 

p-value          
B. vs LRS 

p-value        
HRS vs. 
LRS 

253.217286 Hexadecenoic acid (C16:1) 254.224562 C16H30O2 7.31E+08 3.07E+08 3.62E+08 -1.25 -1.01 -0.24 4.30E-03 n.s. n.s. 

279.232882 Octadecadienoic acid (C18:2) 280.240158 C18H32O2 6.49E+10 3.56E+10 4.39E+10 -0.87 -0.56 -0.3 3.10E-02 n.s. n.s. 

281.248559 Octadecenoic acid (C18:1) 282.255835 C18H34O2 9.91E+10 6.25E+10 5.31E+10 -0.66 -0.9 0.23 1.54E-02 1.10E-03 n.s. 

269.248611 Heptadecanoic acid (C17:0) 270.255887 C17H34O2 4.02E+08 1.45E+09 8.18E+08 1.85 1.02 0.82 4.00E-02 n.s. n.s. 

283.264254 Octadecanoic acid (C18:0) 284.271530 C18H36O2 7.47E+09 1.78E+10 1.44E+10 1.26 0.94 0.31 3.40E-02 n.s. n.s. 

297.279855 Nonadecanoic acid (C19:0) 298.287131 C19H38O2 4.52E+07 1.14E+08 6.53E+07 1.33 0.53 0.8 2.30E-02 n.s. n.s. 

311.295572 Icosanoic acid (C20:0) 312.302848 C20H40O2 3.28E+08 1.13E+09 6.01E+08 1.79 0.87 0.91 2.00E-03 n.s. n.s. 

339.326858 Docosanoic acid (C22:0) 340.334134 C22H44O2 2.00E+08 4.04E+08 3.64E+08 1.01 0.86 0.15 4.60E-03 n.s. n.s. 

353.342498 Tricosanoic acid (C23:0) 354.349774 C23H46O2 2.70E+07 9.57E+07 4.55E+07 1.83 0.76 1.07 1.80E-03 n.s. n.s. 

367.358125 Tetracosanoic acid (C24:0) 368.365401 C24H48O2 6.11E+07 1.95E+08 1.34E+08 1.68 1.13 0.54 5.40E-03 n.s. n.s. 

381.373818 Pentacosanoic acid (C25:0) 382.381094 C25H50O2 5.97E+06 1.96E+07 1.05E+07 1.72 0.82 0.9 2.80E-03 n.s. n.s. 

395.389437 Hexacosanoic acid (C26:0) 396.396713 C26H52O2 8.29E+06 2.32E+07 1.71E+07 1.49 1.04 0.44 8.90E-03 n.s. n.s. 

301.217257 Icosapentanoic acid (C20:5) 302.224533 C20H30O2 3.66E+07 9.74E+07 3.01E+07 1.41 -0.29 1.7 n.s. n.s. 2.00E-02 

309.279850 Icosenoic acid (C20:1) 310.287126 C20H38O2 1.15E+09 1.87E+09 1.23E+09 0.7 0.09 0.6 4.00E-02 n.s. n.s. 

323.295503 Heneicosenoic acid (C21:1) 324.302779 C21H40O2 1.04E+07 2.35E+07 1.07E+07 1.18 0.05 1.14 4.50E-03 n.s. 1.29E-02 

333.279906 Docosatrienoic acid (C22:3) 334.287182 C22H38O2 7.25E+07 2.02E+08 8.37E+07 1.48 0.21 1.27 6.70E-03 n.s. n.s. 

335.295544 Docosadienoic acid (C22:2) 336.302820 C22H40O2 4.11E+07 1.96E+08 6.15E+07 2.25 0.58 1.67 2.10E-02 n.s. n.s. 

337.311207 Docosenoic acid (C22:1) 338.318483 C22H42O2 1.40E+08 3.07E+08 1.33E+08 1.13 -0.08 1.21 6.30E-03 n.s. n.s. 

351.326838 Tricosenoic acid (C23:1) 352.334114 C23H44O2 2.97E+07 4.82E+07 2.37E+07 0.7 -0.33 1.02 4.40E-02 n.s. n.s. 

365.342500 Tetracosenoic acid (C24:1) 366.349776 C24H46O2 1.19E+08 3.08E+08 1.25E+08 1.38 0.07 1.3 3.60E-02 n.s. n.s. 

375.326727 Pentacosatrienoic acid (C25:3) 376.334003 C25H44O2 1.04E+07 4.68E+07 6.18E+06 2.17 -0.75 2.92 n.s. n.s. 1.70E-03 

389.342510 Hexacosatrienoic acid (C26:3) 390.349786 C26H46O2 1.94E+06 5.33E+06 2.66E+06 1.46 0.46 1 2.20E-03 n.s. n.s. 

391.358288 Hexacosadienoic acid (C26:2) 392.365564 C26H48O2 2.65E+06 6.22E+06 3.15E+06 1.23 0.25 0.98 2.00E-02 n.s. n.s. 

431.389434 Nonacosatrienoic acid (C29:3) 432.396710 C29H52O2 3.12E+06 1.13E+07 1.24E+06 1.86 -1.34 3.2 n.s. n.s. 1.90E-03 

241.217282 Pentadecanoic acid (C15:0) 242.224558 C15H30O2 2.99E+08 7.63E+08 9.51E+08 1.35 1.67 -0.32 n.s. n.s. n.s. 

171.139046 Decanoic acid (C10:0) 172.146322 C10H20O2 5.84E+05 6.27E+05 1.47E+07 0.1 4.66 -4.55 n.s. 3.40E-04 8.20E-04 

199.170355 Dodecanoic acid (C12:0) 200.177631 C12H24O2 4.16E+07 4.88E+07 2.00E+09 0.23 5.59 -5.36 n.s. 6.40E-05 2.00E-03 

227.201651 Tetradecanoic acid (C14:0) 228.208927 C14H28O2 9.44E+07 1.87E+08 1.80E+09 0.99 4.25 -3.27 n.s. 9.20E-05 n.s. 
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Table 6.1-17: Dicarboxylic acids significantly increased in HRS diet samples. 

List of significantly changed dicarboxylic acid through HRS diet, analyzed in (-) FT-ICR-MS; Table contains averaged experimental mass, compound name, monoisotopic mass, 
molecular formula, obtained with NetCalc, arithmetic mean of the compared feeding groups and their respective p-values, obtained with post hoc Kruskal-Nemenyi test. 

Mass             
(avg.) 

Compound name 
Monoisotopic       

mass 
molecular           
formula 

Mean B Mean HRS Mean LRS 
p-value             

B vs. HRS 
p-value          

B. vs LRS 
p-value        

HRS vs. LRS 

227.128851 Dodecenedioic acid 228.136127 C12H20O4 5.99E+06 5.53E+07 1.10E+07 5.10E-04 n.s. n.s. 
297.207236 Heptadecenedioic acid 298.214512 C17H30O4 3.17E+06 7.90E+06 3.67E+06 4.80E-03 n.s. 2.05E-02 
341.269716 Eicosanedioic acid 342.276992 C20H38O4 1.98E+07 5.75E+07 1.88E+07 4.40E-03 n.s. 2.80E-03 
383.316672 Tricosanedioic acid 384.323948 C23H44O4 1.06E+07 3.89E+07 1.15E+07 3.70E-03 n.s. 1.04E-02 

 

Table 6.1-18: Oxylipins, Hydroxy Fatty acids and Octadecanoids significantly increased in HRS diet samples.  

List of significantly changed oxylipins through HRS diet, analyzed in (-) FT-ICR-MS; Table contains averaged experimental mass, compound name, monoisotopic mass, molecular 
formula, obtained with NetCalc, arithmetic mean of the compared feeding groups and their respective p-values, obtained with post hoc Kruskal-Nemenyi test. 

Mass             
(avg.) 

Compound name Class 
Monoisotopic 
mass 

molecular           
formula 

Mean B Mean HRS Mean LRS 
p-value                     
B vs. HRS 

p-value                      
B. vs LRS 

p-value                      
HRS vs. LRS 

319.227841 Hydroxyeicosatetraenoic acid Eicosanoids 320.235117 C20H32O3 2.49E+07 7.63E+07 3.64E+07 1.70E-04 n.s. 3.78E-02 

353.233346 Trihydroxyeicosatrienoic acid Eicosanoids 354.240622 C20H34O5 1.16E+07 5.77E+07 3.09E+07 2.20E-04 n.s. n.s. 

337.238417 Dihydroxyeicosatrienoic acid Eicosanoids 338.245693 C20H34O4 1.69E+07 1.02E+08 2.57E+07 7.20E-04 n.s. 4.30E-02 

335.222782 Dihydroxyeicosatetraenoic acid Eicosanoids 336.230058 C20H32O4 9.07E+06 3.47E+07 1.59E+07 3.90E-05 n.s. 2.50E-02 

351.217674 Trihydroxyeicosatetraenoic acid Eicosanoids 352.22495 C20H32O5 6.85E+06 2.35E+07 1.26E+07 1.10E-04 n.s. 4.18E-02 

325.202045 Oxo-dihydroxy-dinor-prostenoic acid Eicosanoids 326.209321 C18H30O5 1.17E+07 3.82E+07 1.62E+07 3.00E-04 n.s. 1.36E-02 

327.217677 Trihydroxyoctadecadienoic acid Eicosanoids 328.224953 C18H32O5 2.56E+07 1.02E+08 3.04E+07 6.60E-04 n.s. 1.18E-02 

327.290414 Hydroxyeicosanoic acid 
Hydroxy fatty 

acids 
328.29769 C20H40O3 7.28E+07 1.84E+08 6.84E+07 3.20E-03 n.s. 6.90E-03 

371.316711 Dihydroxydocosanoic acid 
Hydroxy fatty 

acids 
372.323987 C22H44O4 4.45E+06 1.01E+07 4.56E+06 5.40E-03 n.s. 1.50E-02 

347.24397 Tetrahydroxyoctadecanoic acid 
Hydroxy fatty 

acids 
348.251246 C18H36O6 4.32E+06 9.88E+06 5.06E+06 4.40E-02 n.s. 4.90E-02 

287.222731 Dihydroxyhexadecanoic acid 
Hydroxy fatty 

acids 
288.230007 C16H32O4 1.68E+07 1.91E+08 2.27E+07 5.20E-03 n.s. n.s. 

309.207131 Hydroxyoctadecenoic acid 
Hydroxy fatty 

acids 
310.214407 C18H30O4 1.95E+07 8.62E+07 2.42E+07 5.00E-03 n.s. 2.20E-02 

343.285361 Dihydroxyeicosanoic acid 
Hydroxy fatty 

acids 
344.292637 C20H40O4 9.50E+06 2.82E+07 9.37E+06 1.10E-03 n.s. 3.60E-03 

331.249001 Trihydroxyoctadecanoic acid 
Hydroxy fatty 

acids 
332.256277 C18H36O5 1.18E+07 6.42E+07 1.50E+07 4.00E-03 n.s. 2.10E-02 

313.238436 Dihydroxyoctadecenoic acid 
Hydroxy fatty 

acids 
314.245712 C18H34O4 2.09E+08 1.04E+09 1.97E+08 4.05E-03 n.s. 5.90E-04 

329.233297 Trihydroxyoctadecenoic acid Octadecanoids 330.240573 C18H34O5 5.81E+07 1.90E+08 5.35E+07 n.s. n.s. 1.10E-02 

311.222782 Dihydroxyoctadecadienoic acid Octadecanoids 312.230058 C18H32O4 7.47E+07 2.63E+08 6.36E+07 9.10E-03 n.s. 1.10E-03 
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Table 6.1-19: Sulfated Oxylipins, Hydroxy Fatty acids and Octadecanoids significantly increased in HRS diet samples. 

List of significantly changed sulfated oxylipins through HRS diet, analyzed in (-) FT-ICR-MS; Table contains averaged experimental mass, compound name, monoisotopic mass, 
molecular formula, obtained with NetCalc, arithmetic mean of the compared feeding groups and their respective p-values, obtained with post hoc Kruskal-Nemenyi test. 

Mass             
(avg.) 

Compound name Class 
Monoisotopic       
mass 

molecular           
formula 

Mean B Mean HRS Mean LRS 
p-value               
B vs. HRS 

p-value             
B. vs LRS 

p-value        
HRS vs. LRS 

399.184697 Hydroxyeicosatetraenoic acid sulfate Eicosanoids 400.191973 C20H32O6S 1.47E+07 4.39E+07 3.69E+07 5.00E-03 4.40E-02 n.s. 

417.195273 Dihydroxyeicosatrienoic acid sulfate Eicosanoids 418.202549 C20H34O7S 2.84E+06 8.11E+06 4.69E+06 4.10E-03 n.s. n.s. 

415.179638 Dihydroxyeicosatetraenoic acid sulfate Eicosanoids 416.186914 C20H32O7S 4.62E+06 1.55E+07 1.31E+07 5.90E-03 n.s. n.s. 

407.174533 Trihydroxyoctadecadienoic acid sulfate Eicosanoids 408.181809 C18H32O8S 4.99E+05 4.35E+06 1.90E+06 3.70E-04 n.s. n.s. 

407.24727 Hydroxyeicosanoic acid sulfate 
Hydroxy fatty 

acids 
408.254546 C20H40O6S 1.86E+06 4.24E+06 1.70E+06 n.s. n.s. 3.10E-02 

393.195292 Dihydroxyoctadecenoic acid sulfate 
Hydroxy fatty 

acids 
394.202568 C18H34O7S 3.62E+06 3.19E+07 1.07E+07 5.90E-05 n.s. n.s. 

409.190153 Trihydroxyoctadecenoic acid sulfate Octadecanoids 410.197429 C18H34O8S 1.18E+06 1.19E+07 5.11E+06 9.10E-05 n.s. n.s. 

391.179638 Dihydroxyoctadecadienoic acid sulfate Octadecanoids 392.186914 C18H32O7S1 3.33E+06 1.29E+07 7.39E+06 1.20E-03 n.s. n.s. 
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Table 6.1-20: SCFA profile in baseline, HRS and LRS diet samples.  

List of SCFA, analyzed in UHPLC-(+)-ToF-MS; Table contains averaged experimental mass as AMP+ derivate, 
compound name, arithmetic mean of the compared feeding groups, including standard deviation and their 
respective p-values, obtained with post hoc Kruskal-Nemenyi test. 

Mass             
(avg.) 
AMP+ 

Compound 
name 

Mean B Mean HRS Mean LRS 
p-value        
B vs. HRS 

p-value          
B. vs LRS 

p-value        
HRS vs. 
LRS 

269.1654 Isovaleric acid 0.47 ± 0.27 0.40 ± 0.34 0.58 ± 0.42 n.s. n.s. n.s. 

269.1654 Valeric acid 0.61 ± 0.54 0.66 ± 0.47 0.64 ± 0.40 n.s. n.s. n.s. 

255.1496 Butyric acid 3.65 ± 1.99 5.39 ± 3.83 4.78 ± 2.70 n.s. n.s. n.s. 

241.1341 Propionic acid 2.66 ± 1.09 3.65 ± 2.93 2.69 ± 0.70 n.s. n.s. n.s. 

6.2 Tables of the InfantBio Study 

6.2.1 Chemicals and other consumable material 

 

Table 6.2-1: Chemicals 

Name Manufacturer Details 

MilliQ water 
Merck Millipore Integral water 
purification system 

18 MΩ,TOC < 5 ppb 

Methanol Sigma-Aldrich, St.Louis, USA CHROMASOLV® for LC-MS, ≥99.9% 

Acetonitril Sigma-Aldrich, St.Louis, USA CHROMASOLV® for LC-MS, ≥99.9% 

Isopropanol Sigma-Aldrich, St.Louis, USA CHROMASOLV® for LC-MS, ≥99.9% 

Formic acid Sigma-Aldrich, St.Louis, USA Eluent additive for LC-MS 

Ammoniumacetate 
Biosolve BV, Valkenswaard, 
Netherlands 

ULC/MS 

Propionic acid Sigma-Aldrich, St.Louis, USA ≥99.5% 

Butyric acid Sigma-Aldrich, St.Louis, USA ≥99% 

Valeric acid Sigma-Aldrich, St.Louis, USA ≥99% 

Isovaleric acid Sigma-Aldrich, St.Louis, USA 99% 

Lactic acid Sigma-Aldrich, St.Louis, USA >99% 

Pyruvic acid Sigma-Aldrich, St.Louis, USA >99% 

Hexanoic acid Sigma-Aldrich, St.Louis, USA ≥99% 

Heptanoic acid Sigma-Aldrich, St.Louis, USA 96% 

Octanoic acid Sigma-Aldrich, St.Louis, USA ≥99.5% 

Nonanoic acid Sigma-Aldrich, St.Louis, USA ≥97% 

Tetradecanoic acid Sigma-Aldrich, St.Louis, USA ≥99.5% 

Arachidonic acid Sigma-Aldrich, St.Louis, USA >95% 

Decanoic acid Fluka >99% 

Succinic acid Sigma-Aldrich, St.Louis, USA ≥99.0% 

Maleic acid Sigma-Aldrich, St.Louis, USA ≥99.0% 

Fumaric acid Sigma-Aldrich, St.Louis, USA ≥99.0% 

ESI Tune Mix Agilent, Waldbronn, Germany G1969-85000 

α-Tauromuricholic acid, sodium salt Steraloids Inc. Newport, USA C1893-000 

β-Tauromuricholic acid, sodium salt Steraloids Inc. Newport, USA C1899-000 

ω-Tauromuricholic acid, sodium salt Steraloids Inc. Newport, USA C1889-000 

Tauroursodeoxycholic acid, sodium salt Calbiochem, San Diego, USA 580549-1GM 

Taurocholic acid Steraloids Inc. Newport, USA C1965-000 

Glycohyocholic acid, sodium salt Steraloids Inc. Newport, USA C1860-000 

ω-Muricholic acid Steraloids Inc. Newport, USA C1888-000 

Glycohyodeoxycholic acid Abcam sc-396740 

Glycocholic acid Steraloids Inc. Newport, USA C1925-000 

Taurochenodeoxycholic acid, sodium 
salt 

Sigma-Aldrich, St.Louis, USA T6260-100MG 

α-Muricholic acid Steraloids Inc. Newport, USA C1890-000 

β-Muricholic acid Steraloids Inc. Newport, USA C1895-000 

Glycoursodeoxycholic acid Sigma-Aldrich, St.Louis, USA 06863-1G 
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Taurodeoxycholic acid Steraloids Inc. Newport, USA C1160-000 

Hyodeoxycholic acid Sigma-Aldrich, St.Louis, USA H3878-5G 

Ursodeoxycholic acid Sigma-Aldrich, St.Louis, USA U5127-1G 

Cholic acid Sigma-Aldrich, St.Louis, USA C1129-25G 

Glycochenodeoxycholic acid, sodium 
salt 

Sigma-Aldrich, St.Louis, USA G0759-100MG 

Glycodeoxycholic acid, sodium salt Calbiochem 361311-5GM 

Taurolithocholic acid, sodium salt Sigma-Aldrich, St.Louis, USA T7515-1G 

5α-Cholanic Acid-3α-ol-6-one Steraloids Inc. Newport, USA C0720-000 

3α-Hydroxy-7 Ketolithocholic Acid Steraloids Inc. Newport, USA C1600-000 

3α-Hydroxy-12 Ketolithocholic Acid Steraloids Inc. Newport, USA C1650-000 

Apocholic acid Steraloids Inc. Newport, USA C2500-000 

Chenodeoxycholic acid Sigma-Aldrich, St.Louis, USA C9377-100MG 

6-Ketolithocholic acid Steraloids Inc. Newport, USA C1706-000 

Deoxycholic acid Sigma-Aldrich, St.Louis, USA D2510-10G 

Glycolithocholic acid, sodium salt 
Santa Cruz Biotechnology, Inc., 
Heidelberg, Germany 

sc-396741 

Allolithocholic acid Steraloids Inc. Newport, USA C0700-000 

Isolithocholic acid Steraloids Inc. Newport, USA C1475-000 

Lithocholenic acid Steraloids Inc. Newport, USA C2700-000 

Isodeoxycholic acid Steraloids Inc. Newport, USA C1170-000 

Lithocholic acid Sigma-Aldrich, St.Louis, USA L6250-10G 

Dehydrolithocholic acid Steraloids Inc. Newport, USA C1750-000 

 

Table 6.2-2: Consumable material 

Name Manufacturer Details 

NucleoSpin® Bead Tubes with ceramic beads Macherey Nagel, Düren, Germany - 

AMP+ Mass Spectrometry Kit Caymen Chemicals, Ann Arbor, MI, USA - 

 

Table 6.2-3: Columns 

Name Manufacturer Details 

VisionHT C18 HL W. R. Grace & Co, Columbia, USA 1.5 µm 2.0 mm x 150 mm 

BEH C8 Waters GmbH, Eschborn, Germany 1.7 µm, 2.1 mm x 150 mm 

BEH C18 Waters GmbH, Eschborn, Germany 1.7 µm, 2.1 mm x 150 mm 

 

6.2.2 Instrument Setup 

6.2.2.1 UHPLC-ToF-MS conditions 

 

For non-targeted metabolomics analyses and SCFA analyses a Waters ACQUITY UPLC® system 

(Waters GmbH, Eschborn, Germany) was used, including following devices: binary solvent manager 

(BSM), sample manager (SM), column manager (CM) and PDA detector, coupled to an Bruker UHR-

qToF-MS (maXis™, Bruker Daltonik GmbH, Bremen, Germany). The used parameters are given in 

Table 6.2-4 (non-targeted metabolomics), Table 6.2-5 (SOP) and Table 6.2-6 (SCFA). 
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Table 6.2-4: Non-targeted metabolomics analyses of fecal samples 

Parameter (+) ToF-MS (-) ToF-MS 

LC 

Run time [min] 15.5 15.5 

Flow rate [mL/min] 0.4 0.4 

Injection volume [µL] 5 5 

Injection Partial loop Partial loop 

Column temperature [°C] 40 40 

ToF-MS 

Mass range in Da 50 – 1000 50 – 1100 

Spectrum rate in Hz 1 1 

Ion cooler RF 50 Vpp 50 Vpp 

Ion cooler transfer time 75.0 µs 75.0 µs 

Threshold Signal to Noise 500 500 

Quadrupole [eV] 3.0 -3.0 

Capillary [V] 4500 4000 

End plate offset [V] -500 -500 

Nebulizer Gas Flow Rate [bar] 2 2 

Drying Gas Flow rate [L/min] 8 8 

Dry Gas Temperature [°C] 200 200 

 

Table 6.2-5: SOP: Metabolite Profiling using RP- UHPLC-MS. 

Parameter (-) ToF-MS 

LC 

Run time [min] 10 

Flow rate [mL/min] 0.4 

Injection volume [µL] 5 

Injection Partial loop 

Column temperature [°C] 40 

ToF-MS 

Mass range in Da 100.0 – 1500 

Spectrum rate in Hz 2  

Ion cooler RF 75 Vpp 

Ion cooler transfer time 75 µs 

Threshold Signal to Noise 500 

Quadrupole [eV] 3 

Capillary [V] 4000 

End plate offset [V] -500  

Nebulizer Gas Flow Rate [bar] 2.0 

Drying Gas Flow rate [L/min] 10.0 

Dry Gas Temperature [°C] 200 
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Table 6.2-6: SCFA Analysis 

Parameter  

LC 

Run time [min] 22 

Flow rate [mL/min] 0.3 

Injection volume [µL] 1 

Injection Partial loop 

Column temperature [°C] 40 

(+) ToF-MS 

Mass range in Da 50.0 – 1200 

Spectrum rate in Hz 1  

Ion cooler RF 50 Vpp 

Ion cooler transfer time 75 µs 

Threshold Signal to Noise 500 

Quadrupole [eV] 3 

Capillary [V] 4500 

End plate offset [V] -500  

Nebulizer Gas Flow Rate [bar] 2.0 

Drying Gas Flow rate [L/min] 8.0 

Dry Gas Temperature [°C] 200 

 

6.2.2.2 Other Instruments 

 

Table 6.2-7: Other Instruments 

Parameter Manufacturer Details 

refrigerated Centrifuge Eppendorf 5804R 

ultrasonic bath Bandelin Sonorex RK100H 

Vortex Scientific Industry Vortex Genie 2 

10 mL Hamilton Glass Syringe Hamilton - 
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6.2.3 Extrapolated metabolites for the discrimination of feeding and over time 
 

Table 6.2-8: Significant features for all exclusively breastfed infants changed over time. 

Significant mass signals significantly changed in breast fed infants over time, including month 1, 3, 5, 7, 9 and 12, 
analyzed in UHPLC-(+)-ToF-MS; ordered with increased p-value of month 1. Mass signals were obtained through 
PLS-DA analysis of all month (based on Figure 3.4-3 (VIP score >0.8). P-values were calculated with the two-sided 
Student’s t-test (heteroscedastic). Table contains averaged experimental mass, retention time (in minutes), 
compound name, if possible, VIP score of PLS-DA analysis and respective p-values, obtained with Student’s t-test 
comparing breast fed versus formula-fed infants of month 1, 3, 5, 7, 9 and 12. 

m/z [M+H] RT Compound VIP score Month 1 Month 3 Month 5 Month 7 Month 9 Month 12 MS/MS 

552.3367 5.00 Unknown 1.60835 5.09E-07 4.48E-07 3.45E-05 1.26E-05 3.58E-02 5.78E-02 x 

694.2353 0.67 Unknown 1.33307 6.64E-05 3.64E-03 1.98E-02 1.24E-01 n.s. 5.43E-01  

548.2551 4.48 Unknown 1.87395 7.68E-05 1.90E-03 1.10E-02 1.09E-01 n.s. n.s.  

721.2123 0.68 Unknown 1.71306 1.54E-04 6.79E-04 4.10E-02 n.s. n.s. n.s.  

775.2620 0.66 Unknown 1.41775 3.95E-04 3.23E-03 1.77E-01 n.s. n.s. n.s.  

512.1849 0.73 Unknown 1.34731 6.91E-04 1.16E-03 8.15E-02 5.88E-02 6.84E-01 8.83E-01  

462.3440 5.60 Unknown 1.33924 7.25E-04 4.39E-06 6.23E-05 3.09E-05 3.76E-02 6.24E-02  

343.1241 0.78 Unknown 1.33311 1.05E-03 1.43E-03 2.20E-02 9.77E-02 4.45E-01 5.48E-01  

617.2619 8.15 Unknown 1.67109 1.15E-03 8.12E-05 3.56E-05 1.11E-02 2.92E-01 3.03E-01  

419.2287 4.53 Unknown 1.32836 1.27E-03 3.00E-03 1.83E-02 6.27E-02 2.30E-01 8.94E-01  

497.1767 4.50 Unknown 1.51583 1.48E-03 6.94E-04 1.92E-02 4.28E-06 6.07E-02 8.96E-02  

375.2921 4.84 Unknown 1.57092 2.78E-03 5.55E-05 1.51E-04 6.76E-06 8.49E-02 5.41E-02  

357.2828 4.84 Unknown 1.60186 4.84E-03 3.19E-05 1.89E-04 1.54E-05 1.01E-01 3.96E-02  

412.3070 5.84 Unknown 1.30506 5.40E-03 1.99E-03 6.20E-03 5.80E-01 1.37E-01 1.33E-01  

945.4938 4.85 Unknown 1.63415 6.89E-03 1.68E-03 9.30E-04 1.66E-04 1.30E-01 8.81E-02  

201.1863 6.70 Dodecanoic acid 1.22607 1.06E-02 1.69E-04 1.88E-01 6.31E-01 1.26E-01 5.43E-01  

453.2159 4.41 Unknown 1.71581 1.77E-02 1.34E-03 1.38E-03 1.78E-05 7.09E-02 6.72E-02  

299.1412 8.15 Unknown 1.88622 1.83E-02 7.84E-05 5.91E-05 9.03E-04 9.33E-02 2.00E-01  

 

Table 6.2-9: Significant features for all exclusively formula-fed infants changed over time. 

Significant mass signals significantly changed formula-fed infants over time, including month 1, 3, 5, 7, 9 and 12, 
analyzed in UHPLC-(+)-ToF-MS; ordered with increased p-value of month 1. Mass signals were obtained through 
PLS-DA analysis of all month (based on Figure 3.4-3 (VIP score >0.8). P-values were calculated with the two-sided 
Student’s t-test (heteroscedastic). Table contains averaged experimental mass, retention time (in minutes), 
compound name, if possible, VIP score of PLS-DA analysis and respective p-values, obtained with Student’s t-test 

comparing breast fed versus formula-fed infants of month 1, 3, 5, 7, 9 and 12. 

m/z [M+H] RT Compound VIP score Month 1 Month 3 Month 5 Month 7 Month 9 Month 12 MS/MS 

407.2455 3.05 Unknown 1.602 1.77E-14 3.58E-15 1.38E-07 2.23E-05 4.55E-03 5.75E-01 x 

386.7162 2.59 Unknown 1.524 3.42E-14 2.14E-09 3.83E-09 5.30E-07 3.80E-05 2.76E-01  
377.2296 3.10 Unknown 1.575 2.43E-13 2.00E-10 1.76E-09 6.00E-06 2.26E-03 2.72E-03 x 

401.3094 9.56 Unknown 1.396 4.10E-13 7.27E-11 3.14E-11 4.86E-08 1.27E-05 4.94E-03  
427.3610 9.56 Unknown 1.550 5.02E-13 2.36E-09 2.39E-08 2.35E-06 1.36E-04 7.65E-03  
365.1393 1.20 Unknown 1.645 3.09E-12 4.62E-09 3.35E-05 1.61E-03 5.81E-02 n.s. x 

421.2190 3.12 Unknown 1.589 3.38E-12 1.54E-06 6.05E-04 7.87E-04 2.41E-02 3.96E-01  
383.1527 1.21 Unknown 1.662 6.97E-12 8.87E-09 9.75E-06 1.28E-03 3.49E-03 3.85E-01 x 

417.3371 9.53 Unknown 1.493 1.26E-11 2.10E-07 3.41E-09 1.98E-05 1.97E-05 4.51E-01  
434.2285 0.76 Unknown 1.831 2.07E-11 1.47E-08 3.09E-06 4.18E-04 1.34E-02 5.45E-01  

323.1967 3.04 Unknown 1.697 4.53E-11 1.74E-09 5.68E-06 2.52E-04 3.03E-02 1.69E-01  
371.2214 3.04 Unknown 1.645 4.61E-11 7.02E-09 2.42E-05 4.70E-04 3.49E-02 8.69E-01  
569.3009 2.99 Unknown 1.846 1.46E-10 4.55E-06 3.58E-03 4.16E-02 1.06E-01 1.30E-01  
389.2328 3.04 Prostaglandine 1.659 3.99E-10 6.07E-09 6.20E-06 4.15E-04 1.86E-02 5.76E-01 x 

303.1916 3.16 Unknown 1.567 4.14E-10 1.63E-08 3.69E-08 2.59E-04 4.83E-04 1.03E-02 x 

521.2789 2.66 Unknown 1.439 8.43E-08 5.05E-05 2.03E-05 1.27E-04 2.73E-03 6.11E-01  
281.0847 0.67 Unknown 1.475 1.02E-07 9.79E-05 4.71E-01 1.17E-01 3.29E-01 4.10E-01  
262.0715 0.71 Unknown 1.403 1.37E-07 1.72E-04 1.82E-03 5.68E-02 5.55E-01 4.23E-01  
289.0718 0.67 Unknown 2.363 1.56E-07 2.22E-03 n.s. n.s. n.s. n.s.  
551.2835 2.98 Unknown 2.337 1.84E-07 3.67E-05 3.32E-01 n.s. n.s. n.s.  
413.3421 8.68 Unknown 1.249 1.85E-07 9.66E-06 1.20E-06 1.75E-03 4.49E-02 1.83E-03  
176.1051 0.75 Unknown 1.444 2.02E-07 3.59E-02 4.81E-02 9.64E-01 7.49E-01 5.42E-01  
326.3105 7.32 Unknown 1.772 2.39E-07 6.63E-07 8.62E-06 6.43E-02 3.94E-02 9.52E-01  
806.4407 6.90 Unknown 1.563 2.50E-07 1.24E-05 1.02E-03 3.43E-02 1.04E-02 5.06E-01  
309.1655 0.71 Unknown 1.341 2.73E-07 1.90E-04 2.79E-02 1.60E-01 2.59E-01 3.55E-01  
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248.1178 0.79 Unknown 1.306 8.21E-07 3.03E-04 4.30E-03 7.75E-02 1.18E-02 3.91E-01  

813.4731 3.03 Unknown 1.388 1.15E-06 3.29E-05 2.74E-04 1.53E-02 1.13E-01 3.29E-01  
255.0908 0.69 Unknown 1.423 1.24E-06 1.12E-03 6.05E-01 3.91E-01 1.41E-01 6.92E-02  
493.1950 0.69 Unknown 2.087 1.84E-06 5.80E-04 3.32E-01 n.s. n.s. n.s.  
471.2374 0.70 Unknown 1.405 1.86E-06 9.01E-04 4.55E-02 4.22E-01 1.47E-01 4.70E-01  
553.2563 2.75 Unknown 2.133 2.05E-06 1.00E-03 n.s. n.s. n.s. 5.47E-01  
459.1820 3.13 Unknown 1.594 2.14E-06 2.41E-06 2.56E-03 7.85E-03 7.07E-02 8.93E-01  
229.1367 0.76 Unknown 1.754 4.24E-06 1.10E-01 4.27E-01 7.00E-01 5.39E-01 8.48E-02  
572.2815 2.98 Unknown 2.066 5.49E-06 1.94E-04 n.s. n.s. n.s. 3.43E-01  
683.3371 2.60 Unknown 2.142 2.19E-05 9.83E-04 2.07E-01 n.s. n.s. 3.43E-01  
246.1745 3.07 Unknown 1.352 4.60E-05 3.25E-05 9.99E-03 7.48E-02 3.45E-02 2.45E-01  
778.3754 6.12 Unknown 1.582 4.77E-05 2.22E-02 1.31E-03 9.51E-02 9.68E-02 3.07E-01  
764.4230 6.32 Unknown 1.475 1.09E-04 2.37E-02 9.00E-03 3.24E-01 3.29E-01 7.48E-01  
254.2498 5.53 Unknown 1.534 1.12E-04 1.42E-05 1.79E-03 8.46E-03 3.73E-02 9.25E-02  
408.2057 3.04 Unknown 1.380 1.39E-04 5.83E-08 3.37E-05 1.48E-03 5.20E-02 5.89E-01  
762.4100 6.29 Unknown 1.466 3.32E-04 2.54E-05 5.85E-03 1.25E-01 1.39E-01 7.01E-01  
545.2040 1.20 Unknown 1.990 6.16E-04 1.21E-03 n.s. n.s. n.s. n.s.  
273.2597 7.50 Unknown 1.391 1.33E-03 1.26E-05 6.73E-05 2.49E-05 1.87E-03 1.83E-01  
469.4921 4.49 Unknown 1.695 2.81E-03 1.09E-03 2.87E-02 5.77E-03 4.09E-01 8.57E-01  
418.3462 7.62 Unknown 1.237 5.47E-03 3.47E-04 5.06E-10 9.12E-09 8.89E-07 3.55E-02  

427.2113 2.97 Unknown 1.391 7.40E-03 5.41E-03 1.33E-05 9.10E-04 8.51E-01 2.45E-01  
427.3608 7.53 Unknown 1.435 8.14E-03 9.65E-06 5.78E-05 1.80E-06 1.68E-03 1.70E-03  
445.3714 7.53 Unknown 1.378 1.04E-02 2.42E-06 1.15E-04 6.49E-06 3.52E-03 4.23E-03  
539.2329 2.88 Unknown 1.268 4.47E-02 2.13E-01 3.60E-07 4.57E-04 3.14E-03 6.42E-01  
338.3570 4.52 Unknown 1.670 5.99E-02 4.40E-05 1.50E-03 3.98E-02 1.02E-02 1.92E-01  
431.3554 6.93 Unknown 1.698 6.25E-02 2.93E-06 1.24E-07 2.15E-07 1.15E-04 1.42E-03  
417.3345 6.72 Unknown 1.585 1.60E-01 4.80E-08 6.05E-08 7.23E-08 3.50E-07 6.62E-03  
447.3480 7.64 Unknown 1.410 1.77E-01 1.89E-02 3.04E-04 1.23E-05 2.08E-03 7.66E-03  
405.2998 6.97 Unknown 1.313 4.42E-01 4.52E-04 5.09E-06 1.15E-03 1.58E-01 1.29E-02  
547.4245 7.62 Unknown 1.385 4.81E-01 4.13E-02 1.60E-06 7.49E-06 2.84E-03 1.78E-02  
348.2912 6.87 Unknown 1.281 7.57E-01 1.90E-08 3.64E-06 6.27E-02 2.23E-01 2.85E-01  
429.3763 10.27 Unknown 1.316 8.72E-01 1.85E-02 2.21E-03 6.94E-03 1.67E-02 1.63E-01  
459.3516 7.62 Unknown 1.467 n.s. 2.60E-02 1.86E-03 2.07E-04 3.36E-03 9.40E-02  

 

Table 6.2-10: Significant features for all exclusively breastfed infants changed over time. 

Significant mass signals significantly changed breast fed infants over time, including month 1, 3, 5, 7, 9 and 12, 
analyzed in UHPLC-(-)-ToF-MS; ordered with increased p-value of month 1. Mass signals were obtained through 
PLS-DA analysis of all month (based on Figure 3.4-3 (VIP score >0.8). P-values were calculated with the two-sided 
Student’s t-test (heteroscedastic). Table contains averaged experimental mass, retention time (in minutes), 
compound name, if possible, VIP score of PLS-DA analysis and respective p-values, obtained with Student’s t-test 
comparing breast fed versus formula-fed infants of month 1, 3, 5, 7, 9 and 12. 

m/z [M-H] RT Compound VIP score Month 1 Month 3 Month 5 Month 7 Month 9 Month 12 MS/MS 

550.3184 5.02 
Glycerophospho- 

lipid 
1.098 5.30E-06 1.13E-07 3.04E-08 3.39E-01 1.43E-01 6.21E-02  

353.1488 7.28 Unknown 1.193 4.61E-04 2.69E-04 8.96E-02 6.08E-02 2.42E-01 5.80E-01  

998.3454 0.86 Unknown 1.148 4.64E-04 4.75E-04 2.44E-02 2.37E-02 3.43E-01 3.63E-01  

167.0204 0.92 Unknown 1.155 3.46E-03 8.98E-03 4.58E-03 1.74E-02 2.76E-01 6.45E-01  

553.3342 5.04 Unknown 1.165 4.63E-03 2.41E-03 1.33E-02 5.04E-02 7.49E-01 1.84E-01  

531.2992 4.71 Cyprinolsulfate 1.008 9.55E-03 4.04E-04 9.26E-04 9.82E-06 5.70E-02 3.33E-01 x 

303.2316 7.25 Eicosatetraenoic acid 1.097 1.08E-02 5.36E-04 1.17E-03 1.38E-03 3.14E-01 7.42E-01 x 

943.487 4.87 Unknown 1.128 2.13E-02 6.65E-03 1.89E-03 3.42E-03 1.19E-01 2.93E-01  

247.5432 3.10 Unknown 1.182 2.66E-02 2.58E-03 7.35E-03 7.02E-05 3.44E-02 6.82E-02  

161.0452 0.94 Unknown 1.165 2.76E-02 1.37E-02 1.80E-02 4.87E-03 2.14E-01 2.71E-01  

181.0504 2.81 
OH-phenyllactic 

acid 
1.036 3.96E-02 6.55E-05 3.31E-04 1.04E-04 1.45E-01 1.12E-01 x 

507.1503 0.87 Unknown 1.126 4.09E-02 7.84E-01 4.59E-02 1.20E-01 8.80E-01 5.13E-02  

199.1702 6.69 Dodecanoic acid 0.91 8.54E-02 5.24E-02 4.88E-01 9.50E-01 3.03E-01 2.89E-01  

469.2812 4.16 Unknown 1.165 9.03E-02 5.50E-01 9.32E-01 2.13E-01 1.09E-01 8.01E-02  

517.289 4.36 Unknown 1.243 9.24E-02 3.49E-04 1.17E-03 4.31E-01 3.26E-02 9.56E-01  

305.2006 4.09 Unknown 1.162 6.75E-01 2.89E-02 2.19E-04 5.86E-05 9.34E-02 1.97E-01  

487.2391 4.48 Sulfocholic acid 1.06 7.81E-01 2.85E-03 1.38E-03 2.89E-04 1.56E-01 4.99E-02 x 
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Table 6.2-11: Significant features for all exclusively formula-fed infants changed over time 

Significant mass signals significantly changed formula-fed infants over time, including month 1, 3, 5, 7, 9 and 12, 
analyzed in UHPLC-(-)-ToF-MS; ordered with increased p-value of month 1. Mass signals were obtained through 
PLS-DA analysis of all month (based on Figure 3.4-3 (VIP score >0.8). P-values were calculated with the two-sided 
Student’s t-test (heteroscedastic). Table contains averaged experimental mass, retention time (in minutes), 
compound name, if possible, VIP score of PLS-DA analysis and respective p-values, obtained with Student’s t-test 
comparing breast fed versus formula-fed infants of month 1, 3, 5, 7, 9 and 12. 

m/z [M-H] RT Compound VIP score Month 1 Month 3 Month 5 Month 7 Month 9 Month 12 MS/MS 

312.0938 1.83 Unknown 1.274 4.84E-16 4.09E-11 7.69E-07 3.71E-06 1.36E-03 5.01E-02  

405.2261 3.11 Sterol Lipid 1.381 1.90E-12 2.67E-12 5.68E-07 3.25E-05 4.93E-03 6.32E-01 x 

381.1331 1.28 Unknown 1.328 3.70E-12 7.54E-09 1.28E-05 2.18E-03 1.24E-02 1.84E-01 x 

833.4319 3.10 Unknown 1.288 1.47E-11 6.24E-10 8.82E-06 2.79E-04 2.57E-02 n.s.  

315.1869 3.09 Unknown 1.337 2.06E-11 7.67E-11 3.22E-06 2.86E-04 8.10E-01 5.11E-01  

567.2789 3.05 Fatty Acyl 1.465 1.46E-09 8.56E-06 3.49E-03 3.36E-02 7.95E-02 1.72E-01 x 

811.4568 3.10 Unknown 1.362 2.41E-09 3.90E-08 5.82E-05 5.39E-04 7.19E-02 5.22E-01  

973.4722 3.07 Unknown 1.733 4.80E-09 6.01E-06 n.s. n.s. n.s. n.s.  

389.1916 2.84 Unknown 1.317 1.10E-08 9.75E-03 1.15E-03 7.30E-04 4.14E-03 1.79E-01  

804.3975 6.87 Unknown 1.192 4.01E-08 1.04E-06 2.19E-03 5.67E-03 1.00E-02 3.19E-02  

519.2658 2.72 Unknown 1.178 4.34E-08 1.78E-05 1.37E-05 1.44E-04 8.74E-03 3.81E-02 x 

469.2039 0.82 Unknown 1.178 4.66E-08 5.55E-04 2.12E-01 3.11E-01 1.64E-01 2.91E-01  

585.3419 7.37 
Tocotrienol 
glucuronide 

1.189 6.56E-08 1.91E-07 8.06E-07 2.40E-03 2.44E-03 5.71E-02 x 

375.1179 0.81 Unknown 1.505 1.15E-07 2.46E-05 1.50E-02 2.36E-02 6.93E-02 4.26E-01  

313.2365 5.64 Dihydroxyoleic acid 1.105 1.21E-07 3.68E-05 3.60E-04 3.45E-03 4.07E-03 1.20E-02 x 

465.2845 6.57 Cholesterol sulfate 1.128 1.32E-07 4.41E-03 5.39E-02 4.71E-01 2.50E-01 5.55E-01  

607.3824 6.90 Sterol Lipid 1.092 3.58E-07 9.32E-06 1.38E-03 1.08E-01 4.17E-02 4.54E-01  

471.3311 7.46 Unknown 1.154 9.14E-07 6.44E-07 8.22E-05 1.68E-01 6.10E-01 8.45E-01  

681.3175 2.68 Unknown 1.145 2.47E-06 1.66E-02 n.s. n.s. n.s. n.s.  

776.3722 6.12 Unknown 1.274 7.83E-06 1.05E-03 1.35E-03 7.79E-02 4.18E-02 1.04E-01  

776.404 6.12 Unknown 1.27 9.52E-06 1.20E-03 1.55E-03 8.23E-02 5.06E-02 9.21E-02  

577.3719 8.10 Unknown 1.081 1.27E-05 4.31E-05 1.95E-05 2.28E-05 1.81E-06 1.25E-03  

804.5673 6.82 

Glycerophospho 

-lipid 1.153 1.64E-05 4.81E-03 3.19E-01 2.90E-01 1.05E-01 7.56E-01  

521.2616 5.37 Unknown 1.175 2.39E-05 5.40E-07 1.23E-06 2.53E-07 2.86E-04 3.46E-03  

242.012 2.64 Unknown 1.493 5.39E-05 5.95E-03 3.31E-01 n.s. n.s. 8.56E-01  

543.185 1.27 Unknown 1.373 6.65E-05 1.16E-03 n.s. n.s. n.s. 3.29E-01  

591.3879 8.31 
Tocopherol 
glucuronide 1.146 7.03E-05 9.50E-05 1.92E-05 1.30E-05 6.15E-07 2.77E-05 x 

762.3968 6.31 Unknown 1.191 7.60E-05 1.16E-04 1.06E-02 4.62E-02 2.08E-01 1.88E-01  

760.3877 6.28 Unknown 1.211 1.17E-04 7.02E-06 8.64E-03 5.54E-02 1.11E-01 3.97E-02  

505.2635 6.48 Unknown 0.972 2.15E-04 5.73E-02 2.76E-02 3.19E-02 1.99E-01 8.23E-02  

427.1782 4.99 Unknown 1.09 2.95E-04 1.22E-05 7.96E-05 2.33E-05 3.81E-04 2.35E-02  

557.454 9.09 Unknown 1.173 3.05E-04 4.85E-05 2.53E-05 4.21E-04 1.65E-04 6.69E-01  

425.1905 3.01 Unknown 1.201 3.59E-04 3.95E-05 2.25E-01 9.08E-02 1.04E-01 3.44E-01  

527.3046 5.76 Unknown 1.098 4.79E-04 3.65E-06 7.56E-05 2.05E-05 7.00E-05 2.63E-02  

497.2926 7.45 Unknown 1.071 6.25E-04 3.95E-07 4.07E-07 2.38E-06 2.31E-07 2.66E-02  

377.0847 0.87 Unknown 1.182 7.56E-04 3.50E-03 8.31E-01 3.15E-01 2.40E-01 1.93E-02  

448.307 5.22 
Glycochenodeoxy- 

cholic Acid 0.961 1.00E-03 2.86E-02 1.79E-03 6.55E-06 3.13E-01 5.46E-02 x 

380.3132 7.54 Fatty Acyl 1.112 1.33E-03 4.71E-01 3.08E-03 7.85E-02 2.45E-02 1.08E-04  

599.3565 7.45 Unknown 1.103 1.51E-03 1.89E-02 9.00E-08 2.87E-04 9.00E-04 5.30E-01  

343.2617 6.29 Unknown 1.294 2.24E-03 1.12E-03 n.s. n.s. n.s. 2.59E-02  

401.2204 4.76 Unknown 1.293 4.36E-03 1.47E-03 2.23E-02 1.66E-01 8.40E-02 1.69E-01  

227.1281 5.16 Dodecenedioic acid 0.839 1.96E-02 2.62E-04 3.00E-05 6.77E-05 9.91E-05 3.70E-01 x 

607.3835 7.42 Unknown 1.505 2.90E-02 2.10E-06 3.21E-05 1.92E-03 1.52E-03 3.60E-01  

489.2659 8.15 Unknown 1.146 3.16E-02 1.85E-02 7.79E-06 5.11E-06 1.50E-04 3.05E-01  

389.2685 6.74 Unknown 1.299 5.83E-02 1.10E-03 9.46E-07 6.97E-06 2.60E-04 2.28E-04  

513.3154 5.33 Unknown 1.095 1.89E-01 1.83E-06 8.62E-07 2.96E-08 2.65E-04 4.47E-02  

511.2943 5.25 Unknown 1.128 2.47E-01 4.88E-04 3.84E-01 1.31E-09 4.83E-04 1.73E-02  

511.3101 7.67 Unknown 1.059 7.88E-01 3.14E-03 1.22E-03 1.55E-03 1.26E-04 2.65E-04  
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6.2.4 Impact on the bile acid metabolism through breast- and formula-feeding 

 

Table 6.2-12: Bile acids altered through breast- and formula-feeding over time 

Bile acids altered in breast fed and formula-fed infants over time, including month 1, 3, 5, 7, 9 and 12, analyzed in 
UHPLC-(-)-ToF-MS; Table contains averaged experimental mass, compound name, monoisotopic mass, retention 
time (in minutes), molecular formula and respective p-values, obtained with Mann-Whitney test. 

Mass 
(avg.) 

Compound 
name 

Monoisotopic 
mass 

retention time 
[min] 

molecular 
formula 

Month Mean B Mean F *p-value 

407.2818 Cholic acid 408.2876 5.15 C24H40O5 

Month 1 6.89E+05 6.94E+05 n.s 

Month 3 6.55E+05 5.09E+05 n.s 

Month 5 6.68E+05 6.00E+05 n.s 

Month 7 6.76E+05 6.21E+05 n.s 

Month 9 5.46E+05 6.50E+05 n.s 

Month 12 7.50E+05 4.56E+05 n.s 
     

    

391.2852 
Chenodeoxycholic 

acid 
392.2927 5.85 C24H40O4 

Month 1 1.16E+05 8.66E+04 n.s. 

Month 3 1.32E+05 8.74E+04 n.s. 

Month 5 1.38E+05 1.02E+05 n.s. 

Month 7 9.84E+04 1.27E+05 n.s. 

Month 9 1.04E+05 2.62E+05 n.s. 

Month 12 9.38E+04 5.09E+05 n.s. 
     

    

464.3007 Glycocholic acid 465.3090 4.69 C26H43NO6 

Month 1 2.90E+04 5.77E+04 7.26E-05 

Month 3 5.60E+03 5.50E+04 2.01E-04 

Month 5 4.57E+03 8.12E+03 5.16E-06 

Month 7 3.64E+03 8.14E+03 3.77E-04 

Month 9 2.16E+04 2.22E+04 n.s. 

Month 12 5.36E+03 6.08E+04 2.66E-02 
     

    

448.3070 
Glycochenodeoxycholic 

acid 
449.3141 5.22 C26H43NO5 

Month 1 5.87E+03 2.39E+04 8.77E-05 

Month 3 2.93E+03 6.44E+04 1.72E-07 

Month 5 3.30E+03 1.41E+04 2.48E-06 

Month 7 1.44E+03 1.28E+04 2.37E-06 

Month 9 1.05E+04 1.86E+04 2.76E-03 

Month 12 2.61E+03 3.67E+04 9.83E-04 
     

    

531.2992 Cyprinolsulfate 532.3069 4.71 C27H48O8S 

Month 1 8.55E+04 1.92E+04 6.93E-05 

Month 3 1.16E+05 3.45E+04 1.28E-05 

Month 5 1.33E+05 3.65E+04 4.94E-06 

Month 7 8.99E+04 2.43E+04 5.44E-07 

Month 9 6.51E+04 2.10E+04 n.s 

Month 12 8.78E+04 2.79E+04 n.s 
     

    

487.2391 Sulfocholic acid 488.2444 4.48 C24H40O8S 

Month 1 1.75E+05 1.91E+05 n.s. 

Month 3 3.63E+05 1.59E+05 1.85E-03 

Month 5 4.52E+05 1.77E+05 2.35E-04 

Month 7 3.81E+05 1.18E+05 4.50E-05 

Month 9 2.68E+05 1.19E+05 n.s. 

Month 12 3.56E+05 1.08E+05 1.51E-03 
     

    

389.2686 6-Ketolithocholic Acid 390.2770 5.89 C24H38O4 

Month 1 2.67E+02 4.17E+03 2.78E-03 

Month 3 1.93E+03 4.39E+03 n.s. 

Month 5 7.51E+03 7.13E+03 n.s. 

Month 7 9.15E+02 1.54E+04 7.06E-04 

Month 9 3.93E+03 3.97E+04 n.s. 

Month 12 2.50E+03 3.69E+04 2.36E-02 
     

    

389.2682 
5α-Cholanic acid- 

3α-ol-6-one 
7-Ketolithocholic Acid 

390.2770 5.45 C24H38O4 

Month 1 2.24E+04 1.63E+04 n.s. 

Month 3 2.11E+04 2.91E+04 2.55E-02 

Month 5 7.57E+03 2.65E+04 2.79E-05 

Month 7 9.67E+03 3.36E+04 6.74E-06 

Month 9 2.36E+04 7.08E+04 n.s. 

Month 12 2.49E+04 1.17E+05 2.79E-02 
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Table 6.2-13: Bile acids differently altered through interventional formula and placebo formula.  

Bile acids differently altered through interventional and placebo formula-fed infants, including month 1, 3, 5, 7, 9 and 12, analyzed in UHPLC-(-)-ToF-MS; Table contains averaged 
experimental mass, compound name, arithmetic mean of compared groups and respective p-values, obtained with post hoc Kruskal-Nemenyi test. 

Mass             
(avg.) 

Compound                         
name 

Monoisotopic       
mass 

retention 
time          
[min] 

molecular           
formula 

Month Mean B Mean F- Mean F- 
p-value B 

vs. F- 
p-value B 

vs. F+ 

p-value 
F- vs. 

F+ 

391.2852 Chenodeoxycholic acid 392.2927 5.85 C24H40O4 

Month 1 1.16E+05 5.37E+04 1.17E+05 n.s. n.s. 0.015 

Month 3 1.32E+05 1.00E+05 7.47E+04 n.s. n.s. n.s. 

Month 5 1.38E+05 9.11E+04 1.13E+05 n.s. n.s. n.s. 

Month 7 9.84E+04 1.37E+05 1.18E+05 n.s. n.s. n.s. 

Month 9 1.04E+05 1.80E+05 3.44E+05 n.s. n.s. n.s. 

Month 12 9.38E+04 4.79E+05 5.34E+05 n.s. n.s. n.s. 
            

464.3007 Glycocholic acid 465.3090 4.69 C26H43NO6 

Month 1 2.90E+04 9.74E+04 2.16E+04 3.40E-04 0.014 n.s 

Month 3 5.60E+03 1.00E+05 9.78E+03 3.50E-04 n.s. n.s 

Month 5 4.57E+03 8.08E+03 8.16E+03 3.00E-04 6.30E-04 n.s 

Month 7 3.64E+03 7.16E+03 9.12E+03 1.10E-02 8.60E-03 n.s 

Month 9 2.16E+04 1.73E+04 2.72E+04 n.s. n.s. n.s 

Month 12 5.36E+03 1.17E+05 1.40E+04 n.s. n.s. n.s 
            

448.3070 
Glycochenodeoxycholic                             

acid 
449.3141 5.22 C26H43NO5 

Month 1 5.87E+03 3.11E+04 1.73E+04 6.70E-05 n.s. n.s. 

Month 3 2.93E+03 1.05E+05 2.39E+04 6.90E-06 4.70E-04 n.s. 

Month 5 3.30E+03 1.65E+04 1.18E+04 5.20E-05 2.10E-03 n.s. 

Month 7 1.44E+03 1.30E+04 1.26E+04 4.80E-04 7.60E-04 n.s. 

Month 9 1.05E+04 1.80E+04 1.91E+04 1.40E-02 0.037 n.s. 

Month 12 2.61E+03 6.63E+04 1.20E+04 n.s. n.s. n.s. 
            

531.2992 Cyprinolsulfate 532.3069 4.71 C27H48O8S 

Month 1 8.55E+04 1.42E+04 2.37E+04 5.90E-04 2.58E-02 n.s. 

Month 3 1.16E+05 3.17E+04 3.74E+04 3.00E-03 1.50E-03 n.s. 

Month 5 1.33E+05 2.72E+04 4.58E+04 2.90E-04 4.71E-03 n.s. 

Month 7 8.99E+04 2.41E+04 2.45E+04 3.30E-04 6.70E-04 n.s. 

Month 9 6.51E+04 1.89E+04 2.32E+04 n.s. n.s. n.s. 

Month 12 8.78E+04 2.87E+04 2.71E+04 n.s. n.s. n.s. 
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6.2.5 Intermediates of the tocopherol metabolism increased in formula fed infants 

 

Table 6.2-14: Metabolites of the tocopherol metabolism altered in formula-fed infants. 

Metabolites of the tocopherol metabolism significantly changed in formula-fed infants, including month 1, 3, 5, 7, 9 
and 12, analyzed in UHPLC-(-)-ToF-MS; Table contains averaged experimental mass, compound name, 
monoisotopic mass, retention time (in minutes), molecular formula and respective p-values, obtained with post hoc 
Kruskal-Nemenyi test. 

Mass 
(avg.) 

Compound 
name 

Monoisotopic 
mass 

retention time 
[min] 

molecular 
formula 

Month Mean B Mean F *p-value 

585.3419 γ-tocotrienol glucuronide 586.3506 7.37 C34H50O8 

Month 1 5.16E+02 1.03E+05 9.78E-08 

Month 3 1.36E+03 1.17E+05 6.14E-08 

Month 5 4.15E+03 7.02E+04 6.32E-07 

Month 7 4.06E+03 4.71E+04 2.65E-06 

Month 9 3.13E+03 3.51E+04 0.000554 

Month 12 4.99E+03 1.57E+04 0.1381 
         

591.3879 γ-tocopherol glucuronide 592.3975 8.31 C34H56O8 

Month 1 7.85E+03 5.08E+04 2.19E-05 

Month 3 8.25E+03 5.88E+04 1.99E-07 

Month 5 6.74E+03 3.99E+04 3.68E-08 

Month 7 5.63E+03 5.24E+04 6.56E-07 

Month 9 8.21E+03 4.72E+04 9.30E-07 

Month 12 6.84E+03 3.20E+04 0.004312 
         

605.4029 α-tocopherol glucuronide 606.4132 8.48 C35H58O8 

Month 1 1.44E+04 1.02E+04 5.34E-01 

Month 3 3.10E+03 1.35E+04 1.55E-02 

Month 5 2.44E+03 4.38E+03 1.32E-01 

Month 7 2.39E+03 6.07E+03 1.15E-02 

Month 9 6.46E+02 6.01E+03 8.26E-04 

Month 12 7.44E+02 5.31E+03 2.06E-02 
         

599.3565 α-tocotrienol glucuronide 600.3662 7.45 C35H52O8 

Month 1 67.80 2.41E+04 6.49E-06 

Month 3 2.99 4.56E+04 9.11E-08 

Month 5 0 4.54E+03 5.87E-08 

Month 7 11.00 2.97E+03 1.50E-04 

Month 9 0 2.18E+03 5.41E-03 

Month 12 1.15E+04 4.23E+03 0.79 
         

577.3719 δ-tocopherol glucuronide 578.3819 8.10 C33H54O8 

Month 1 0 6.45E+03 4.37E-07 

Month 3 0 1.19E+04 4.85E-09 

Month 5 489.68 6.46E+03 5.61E-06 

Month 7 0 7.88E+03 5.40E-07 

Month 9 0 5.69E+03 6.98E-05 

Month 12 165.81 5.86E+03 6.98E-05 
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6.2.6 Fatty acids altered in breastfed and formula-fed infants 
 

Table 6.2-15: Fatty acids altered between F+ and F- vs. breastfed 

Fatty acids differently altered through breast feeding and  formula, including month 1, 3, 5, 7, 9 and 12, analyzed in UHPLC-(-/+)-ToF-MS; Table contains averaged experimental 
mass, ionization mode, compound name, monoisotopic mass, retention time (in minutes), molecular formula, arithmetic mean of comrade groups and respective p-values, 
obtained with Mann-Whitney Test. 

 

Mass 
(avg.) 

ESI Compound name 
Monoisotopic 

mass 
retention 
time [min] 

molecular 
formula 

Month Mean B Mean F- Mean F+ 
p-value     
B vs. F- 

p-value    
B vs. F+ 

p-value      
F- vs. F+ 

201.1863 (+) Dodecanoic acid 200.1776 6.70 C12H24O2 

Month 1 3.64E+04 3.73E+02 4.17E+02 2.00E-03 1.40E-03 n.s. 

Month 3 1.23E+04 1.64E+03 4.16E+02 9.20E-04 1.92E-03 n.s. 

Month 5 1.86E+04 0.00E+00 1.43E+04 1.20E-02 n.s. n.s. 

Month 7 5.70E+03 9.86E+02 7.12E+03 n.s. n.s. n.s. 

Month 9 7.60E+03 0.00E+00 8.53E+02 n.s. n.s. n.s. 

Month 12 3.81E+03 2.85E+03 1.94E+03 n.s. n.s. n.s. 
             

227.2007 (-) Tetradecanoic acid 228.2089 7.22 C14H28O2 

Month 1 5.49E+04 1.99E+02 0.00E+00 2.95E-02 9.40E-03 n.s. 

Month 3 1.55E+04 1.77E+04 0.00E+00 n.s. 5.60E-03 n.s. 

Month 5 6.99E+04 3.78E+02 1.27E+04 7.00E-03 2.90E-02 n.s. 

Month 7 8.29E+03 2.13E+03 5.55E+03 n.s. n.s. n.s. 

Month 9 2.16E+04 3.90E+03 5.41E+03 n.s. n.s. n.s. 

Month 12 2.93E+04 2.95E+04 1.86E+04 n.s. n.s. n.s. 
             

255.2351 (+) Hexadecenoic acid 254.2246 6.20 C16H30O2 

Month 1 2.28E+05 1.33E+04 2.03E+04 1.50E-03 5.28E-02 n.s. 

Month 3 1.25E+05 1.06E+04 3.16E+04 1.30E-03 n.s. n.s. 

Month 5 7.88E+04 1.89E+04 7.32E+04 1.20E-02 n.s. 2.30E-02 

Month 7 6.68E+04 2.84E+04 3.65E+04 n.s. n.s. n.s. 

Month 9 3.51E+05 4.03E+04 2.85E+04 n.s. 4.20E-02 n.s. 

Month 12 6.62E+04 6.06E+04 7.01E+04 n.s. n.s. n.s. 
             

303.2316 (-) Eicosatetraenoic acid 304.2402 7.25 C20H32O2 

Month 1 1.50E+05 6.34E+04 5.90E+04 5.10E-02 2.10E-02 n.s. 

Month 3 7.39E+04 4.07E+04 2.88E+04 n.s. 3.10E-03 n.s. 

Month 5 8.40E+04 3.85E+04 4.06E+04 9.60E-03 2.66E-02 n.s. 

Month 7 6.59E+04 2.15E+04 2.17E+04 2.30E-02 2.30E-02 n.s. 

Month 9 8.38E+04 3.64E+04 2.01E+04 n.s. n.s. n.s. 

Month 12 1.62E+04 1.51E+04 1.54E+04 n.s. n.s. n.s. 
             

301.2182 (-) Icosapentaenoic acid 302.2246 6.97 C20H30O2 

Month 1 4.82E+04 7.55E+03 8.20E+03 5.90E-03 3.08E-02 n.s. 

Month 3 1.14E+04 6.23E+03 2.87E+03 8.90E-03 2.70E-03 n.s. 

Month 5 1.23E+04 2.49E+03 4.51E+03 1.30E-02 n.s. n.s. 

Month 7 9.06E+03 1.89E+03 1.73E+03 n.s. n.s. n.s. 

Month 9 1.74E+04 2.71E+03 4.40E+02 n.s. n.s. n.s. 

Month 12 1.68E+03 1.52E+02 6.40E+02 n.s. n.s. n.s. 
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Table 6.2-16: Metabolites, altered between F+ and F- vs. breastfed. 

Metabolites altered through interventional and placebo formula-fed infants, compared to breast-fed infants, including month 1, 3, 5, 7, 9 and 12, analyzed in UHPLC-(-)-ToF-MS; 
Table contains averaged experimental mass, compound name, monoisotopic mass, arithmetic mean of compared groups and respective p-values, obtained with post hoc Kruskal-
Nemenyi test. 

Mass 
(avg.) 

ESI Compound name 
Monoisotopic 

mass 
retention 
time [min] 

molecular 
formula 

Month Mean B Mean F- Mean F+ 
p-value     
B vs. F- 

p-value    
B vs. F+ 

p-value      
F- vs. F+ 

181.0504 (-) Hydroxyphenyl-lactic acid 182.0579 2.81 C9H10O4 

Month 1 1.57E+05 7.30E+04 5.01E+04 n.s. n.s. n.s. 

Month 3 2.90E+05 2.93E+04 6.58E+04 5.80E-05 5.40E-03 n.s. 

Month 5 2.90E+05 5.27E+04 8.04E+04 2.10E-04 2.42E-02 n.s. 

Month 7 3.29E+05 2.73E+04 3.99E+04 2.50E-03 2.26E-02 n.s. 

Month 9 1.56E+05 3.22E+04 4.32E+04 n.s. n.s. n.s. 

Month 12 1.71E+05 6.11E+04 1.31E+04 n.s. 1.70E-03 n.s. 
             

227.128 (-) Dodecenedioic acid 228.1362 5.16 C12H20O4 

Month 1 0.00E+00 1.26E+04 3.94E+03 7.00E-03 n.s. n.s. 

Month 3 0.00E+00 8.70E+03 1.13E+04 1.30E-02 2.00E-03 n.s. 

Month 5 0.00E+00 2.02E+04 1.94E+04 3.10E-04 6.96E-03 n.s. 

Month 7 6.52E+02 1.87E+04 1.02E+04 2.90E-04 1.42E-02 n.s. 

Month 9 0.00E+00 2.54E+04 1.34E+04 3.50E-04 n.s. n.s. 

Month 12 8.06E+03 3.06E+04 1.60E+04 n.s. n.s. n.s. 
             

313.2365 (-) Dihydroxyoleic acid 314.2457 5.64 C18H34O4 

Month 1 5.28E+03 3.09E+04 3.25E+04 1.30E-03 6.50E-05 n.s. 

Month 3 1.21E+03 2.51E+04 1.67E+04 1.20E-05 4.10E-05 n.s. 

Month 5 3.00E+03 1.86E+04 1.77E+04 7.20E-04 1.79E-03 n.s. 

Month 7 8.42E+03 1.92E+04 3.18E+04 4.07E-02 8.30E-04 n.s. 

Month 9 9.12E+03 2.78E+04 2.23E+04 7.00E-03 n.s. n.s. 

Month 12 1.60E+04 6.61E+04 3.17E+04 1.70E-02 n.s. n.s. 
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6.2.7 Impact of different feeding types on the SCFA profile (breastfed vs. formula-fed) 

 

Table 6.2-17: SCFA, pyruvic acid and lactic acid altered through either breastfeeding or formula feeding; 
*Mann-Whitney Test, ° post hoc Kruskal-Nemenyi test. 

SCFA, lactic acid and pyruvic acid altered through, breast feeding, interventional and placebo formula-fed infants, 
including month 1, 3, 5, 7, 9 and 12, analyzed as AMP+ derivatives in HPLC-(+)-ToF-MS; Table contains averaged 
experimental mass, compound name, retention time (in minutes), arithmetic mean of compared groups and 
respective p-values, obtained with post hoc Kruskal-Nemenyi test. 

Mass 
(avg.) 

Compound 
name 

retention 
time 
[min] 

Month 
Mean 

B 
Mean 

F 
*p-value               
B vs. F 

Mean 
F- 

Mean 
F+ 

°p-value               
B vs. F- 

°p-value      
B vs. F+ 

°p-value         
F- vs. F+ 

255.1134 Pyruvic acid 4.10 

Month 1 4.03 0.67 n.s. 0.46 0.87 n.s. n.s. n.s. 

Month 3 1.41 0.27 1.03E-02 0.29 0.26 n.s. n.s. n.s. 

Month 5 5.78 0.26 3.07E-04 0.04 0.47 3.00E-02 1.80E-02 n.s. 

Month 7 3.43 0.05 3.53E-05 0.10 0.00 2.17E-02 1.20E-03 n.s. 

Month 9 0.52 0.01 3.42E-03 0.00 0.02 n.s. n.s. n.s. 

Month 12 0.13 0.13 n.s. 0.00 0.26 n.s. n.s. n.s. 

            

257.129 Lactic acid 3.60 

Month 1 31.40 1.97 8.13E-03 2.09 1.86 4.10E-02 n.s. n.s. 

Month 3 9.38 3.99 n.s. 7.06 0.92 n.s. n.s. n.s. 

Month 5 52.02 1.88 1.05E-03 0.49 3.27 2.40E-03 n.s. n.s. 

Month 7 20.55 0.70 1.38E-04 0.97 0.43 2.04E-02 8.30E-04 n.s. 

Month 9 4.95 0.20 n.s. 0.27 0.14 n.s. n.s. n.s. 

Month 12 0.71 2.13 n.s. 4.33 0.12 n.s. n.s. n.s. 

            

241.1341 Propionic acid 4.00 

Month 1 4.71 20.57 1.30E-05 22.66 18.68 1.80E-04 1.60E-03 n.s. 

Month 3 10.08 13.93 n.s. 14.50 13.36 n.s. n.s. n.s. 

Month 5 10.34 19.48 1.54E-03 20.87 18.09 7.80E-03 n.s. n.s. 

Month 7 11.38 18.41 n.s. 17.47 19.36 n.s. n.s. n.s. 

Month 9 11.77 16.84 n.s. 18.81 15.04 n.s. n.s. n.s. 

Month 12 17.22 19.85 n.s. 17.45 22.04 n.s. n.s. n.s. 

            

255.1497 Butyric acid 4.60 

Month 1 1.11 3.58 5.39E-04 4.26 2.97 9.90E-03 1.04E-02 n.s. 

Month 3 1.00 5.04 4.04E-03 6.53 3.54 1.30E-01 n.s. n.s. 

Month 5 1.21 8.49 8.29E-05 11.00 5.99 4.50E-04 1.15E-02 n.s. 

Month 7 1.75 7.33 2.08E-03 7.89 6.77 1.50E-02 4.50E-02 n.s. 

Month 9 2.95 8.76 n.s. 11.89 5.91 3.80E-02 n.s. n.s. 

Month 12 9.26 14.99 n.s. 13.98 15.90 n.s. n.s. n.s. 

            

269.1654 Isovaleric acid 5.30 

Month 1 0.00 0.40 1.30E-04 0.43 0.37 3.10E-03 1.18E-02 n.s. 

Month 3 0.17 0.51 1.25E-02 0.48 0.55 n.s. n.s. n.s. 

Month 5 0.07 0.76 2.49E-05 0.85 0.68 1.00E-03 1.30E-03 n.s. 

Month 7 0.16 0.73 1.97E-03 0.61 0.85 n.s. 2.10E-02 n.s. 

Month 9 0.52 1.28 n.s. 1.77 0.83 n.s. n.s. n.s. 

Month 12 1.07 1.75 n.s. 1.59 1.89 n.s. n.s. n.s. 

            

269.1654 Valeric acid 5.50 

Month 1 0.00 0.04 n.s. 0.09 0.00 n.s. n.s. n.s. 

Month 3 0.08 0.06 n.s. 0.09 0.03 n.s. n.s. n.s. 

Month 5 0.03 0.25 1.39E-02 0.34 0.17 2.50E-02 n.s. n.s. 

Month 7 0.02 0.11 2.48E-03 0.08 0.15 4.70E-02 n.s. n.s. 

Month 9 0.01 0.23 6.22E-03 0.40 0.08 1.30E-02 n.s. n.s. 

Month 12 0.15 0.43 n.s. 0.53 0.34 n.s. n.s. n.s. 
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6.2.8 Differences in exclusively non-probiotic fed and probiotic fed infants 

 

Table 6.2-18: Differences in exclusively non-probiotic fed and probiotic fed infants. 

Mass signals altered in differently in interventional and placebo formula-fed infants, in UHPLC-(-/+)-ToF-MS; Table 
contains averaged experimental mass, ionization mode, monoisotopic mass, retention time (in minutes), arithmetic 
mean of compared groups and respective p-values, obtained with post hoc Kruskal-Nemenyi test. 

Mass 
(avg.) 

ESI Monoisotopic mass retention time [min] Month Mean B Mean F- Mean F+ 
°p-value      
B vs. F- 

°p-value        
B vs. F+ 

°p-value        
F- vs. F+ 

440.2844 (+) 439.2771 6.12 Month 1 1.99E+04 1.60E+05 3.92E+04 3.30E-04 n.s. n.s. 

644.4008 (+) 643.3935 7.16 Month 1 7.34E+03 7.51E+04 1.37E+04 1.70E-04 n.s. n.s. 

644.4008 (+) 643.3935 7.16 Month 3 1.58E+04 7.84E+04 1.19E+04 9.00E-04 n.s. 2.70E-02 

445.3707 (+) 444.3634 10.71 Month 1 1.11E+04 4.04E+04 1.09E+04 3.50E-03 n.s. 4.20E-02 

510.3339 (+) 509.3266 4.49 Month 1 2.99E+03 1.96E+02 7.88E+03 n.s. n.s. 4.20E-02 

537.3863 (+) 536.3790 4.14 Month 1 2.62E+03 4.64E+03 2.64E+04 n.s. 2.20E-02 n.s. 

           

438.2606 (-) 437.2533 6.1 Month 1 0.00E+00 1.23E+05 2.94E+04 2.30E-03 n.s. n.s. 

516.3154 (-) 515.3081 7.13 Month 1 4.73E+03 1.37E+04 2.24E+03 n.s. n.s. 2.90E-02 

573.3827 (-) 572.3754 7.86 Month 1 0.00E+00 4.60E+03 1.32E+03 2.10E-05 2.40E-02 n.s. 

541.3335 (-) 540.3262 5.47 Month 1 2.84E+03 3.08E+03 4.37E+04 n.s. 3.40E-02 6.10E-02 

403.2689 (-) 402.2616 4.47 Month 9 3.00E+03 1.61E+04 6.37E+03 1.00E-03 n.s. 3.80E-02 

298.1122 (-) 297.1049 0.85 Month 12 4.71E+03 1.08E+04 3.78E+03 n.s. n.s. 3.20E-02 

378.2958 (-) 377.2885 7.21 Month 5 9.87E+02 2.36E+03 2.65E+04 9.00E-04 n.s. 3.30E-02 

 

6.2.9 Correlations between OTUs and Metabolites 
 

Table 6.2-19: Feeding Cohort Specific Metabolites and Correlation to OTUs of Month 1.  

Correlated metabolites and OTUs of Breastfed (B), Interventional formula (F+) and placebo formula fed (F-) Infants, 
analyzed in UHPLC-(+)-ToF-MS Ranked from High to Low Importance (Order) by Significance on OPLS-DA 
loadings plot. m/z = mass-to-charge ratio of positive electrospray ionization. Molecular formula and classification 
assigned using the MassTRIX webserver with an error of 0.05 Da, assignment by LipidMaps and HMBD. From 
Bazanella, M., Maier, T. V., Clavel, T., Lagkouvardos, I., Lucio, M., Maldonado-Gòmez, M. X., Autran, C., Walter, 
J., Bode, L., Schmitt-Kopplin, P., Haller, D.: Randomized controlled trial on the impact of early-life intervention with 
bifidobacteria on the healthy infant fecal microbiota and metabolome. Am J Clin Nutr. (2017), 106(5):1274-1286. 
Reprinted and adapted from (Bazanella et al. 2017) by permission of Oxford University Press. Copyright (2017) 
American Society for Nutrition. 

 ID Feed Order m/z or taxonomy RT [min] MS/MS Lipid Maps classification HMBD classification 

M
O

N
T

H
 1

 

Cluster_4611 B 1 552.3367 5.00 x   

Cluster_1816 B 2 621.7142 0.67    

Cluster_5216 B 3 621.2105 0.68    

Cluster_0644 B 4 256.0822 0.75    

Cluster_5825 B 5 694.2353 0.67    

Cluster_3214 B 6 376.2631 5.40   Benzopyrans 

Cluster_5970 B 7 713.2216 0.68    

Cluster_5136 B 8 613.1922 0.66    

Cluster_2992 B 9 341.2931 6.67    

Cluster_2002 B 10 721.2123 0.68    

Cluster_3467 F 1 407.2455 3.05 x   

Cluster_3230 F 2 377.2296 3.10 x  Lipids 

Cluster_0971 F 3 386.7162 2.59    

Cluster_3644 F 4 427.3610 9.56   Lipids 

Cluster_3593 F 5 421.2190 3.12    

Cluster_3745 F- 1 440.2844 6.12    

OTU_10 F- 2 Bacteroides sp,     

Cluster_3789 F- 3 445.3707 10.71  Sterol Lipids [ST] Prenol Lipids 

Cluster_5412 F- 4 644.4008 7.16    

OTU_18 F- 5 Bacteroides sp,     

Cluster_5175 F- 6 616.3490 6.36    

Cluster_6345 F- 7 764.4230 6.32    

Cluster_0385 F+ 1 510.3340 4.49    

Cluster_4506 F+ 2 537.3864 4.14    

OTU_4 F+ 3 Bifidobacterium sp.     

Cluster_6749 F+ 4 813.5680 4.79  Glycerophospholipids [GP]  

OTU_142 F+ 6 Lactococcus sp,     

Cluster_3067 F+ 7 353.2507 4.88    

Cluster_2260 F+ 8 144.0825 3.03    

Cluster_3573 F+ 9 417.3345 6.72    
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Table 6.2-20: Feeding Cohort Specific Metabolites and Correlation to OTUs of Month 7.  

Correlated metabolites and OTUs of Breastfed (B) and Formula-fed (F) Infants, analyzed in UHPLC-(+)-ToF-MS, 
Ranked from High to Low Importance (Order) by Significance on OPLS-DA loadings plot. m/z = mass-to-charge 
ratio of positive electrospray ionization. Molecular formula and classification assigned using the MassTRIX 
webserver with an error of 0.05 Da, assignment by LipidMaps and HMBD. From Bazanella, M., Maier, T. V., Clavel, 
T., Lagkouvardos, I., Lucio, M., Maldonado-Gòmez, M. X., Autran, C., Walter, J., Bode, L., Schmitt-Kopplin, P., 
Haller, D.: Randomized controlled trial on the impact of early-life intervention with bifidobacteria on the healthy 
infant fecal microbiota and metabolome. Am J Clin Nutr. (2017), 106(5):1274-1286. Reprinted and adapted from 
(Bazanella et al. 2017) by permission of Oxford University Press. Copyright (2017) American Society for Nutrition. 

 ID Feed Order m/z or taxonomy RT [min] MS/MS Lipid Maps classification HMBD classification 

M
O

N
T

H
 7

 

Cluster_4141 B 1 491.3308 6.43    

Cluster_4188 B 2 497.1767 4.50    

Cluster_3864 B 3 453.2159 4.41    

Cluster_4611 B 4 552.3367 5.00 x   

Cluster_3207 B 5 375.2921 4.84  Sterol Lipids [ST] Steroids and Steroid Derivatives 

Cluster_3088 B 6 357.2828 4.84   Fatty Acids and Conjugates 

Cluster_4029 B 7 473.2537 4.84  Sterol Lipids [ST] Steroids and Steroid Derivatives 

Cluster_3946 B 8 462.3440 5.60  Sphingolipids [SP] Sphingolipids 

Cluster_2277 B 9 162.1070 0.75    

Cluster_3159 B 10 368.3898 10.04    

Cluster_2614 B 11 279.1036 1.81  Polyketides  

Cluster_0566 B 12 209.6185 3.70    

Cluster_2524 B 13 261.1469 2.80  primary amine  

Cluster_2352 B 14 206.0830 3.62    

OTU_1 B 15 Bifidobacterium sp.     

Cluster_3580 F 1 418.3462 7.62    

Cluster_3425 F 2 401.3094 9.56  Sterol Lipids [ST] Prenol Lipids 

Cluster_3573 F 3 417.3345 6.72    

Cluster_0971 F 4 386.7162 2.59    

Cluster_3493 F 5 410.3203 8.24    

Cluster_3683 F 6 431.3554 6.93  Sterol Lipids [ST] Prenol Lipids 

Cluster_3644 F 7 427.3610 9.56   Lipids 

Cluster_3230 F 8 377.2296 3.10 x  Lipids 

Cluster_4577 F 9 547.4245 7.62    

Cluster_3803 F 10 447.3480 7.64    

Cluster_3781 F 11 445.3714 7.53  Sterol Lipids [ST]  

Cluster_2580 F 12 273.2597 7.50    

Cluster_3467 F 13 407.2455 3.05 x   

Cluster_3575 F 14 417.3371 9.53    

OTU_29 F 15 Flavonifractor sp.     

Cluster_3613 F 16 423.3296 8.51    
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Table 6.2-21: Feeding Cohort Specific Metabolites and Correlation to OTUs of Month 12.  

Correlated metabolites and OTUs of Breastfed (B) and Formula-fed (F) Infants, analyzed in UHPLC-(+)-ToF-MS, 
Ranked from High to Low Importance (Order) by Significance on OPLS-DA loadings plot. m/z = mass-to-charge 
ratio of positive electrospray ionization. Molecular formula and classification assigned using the MassTRIX 
webserver with an error of 0.05 Da, assignment by LipidMaps and HMBD. From Bazanella, M., Maier, T. V., Clavel, 
T., Lagkouvardos, I., Lucio, M., Maldonado-Gòmez, M. X., Autran, C., Walter, J., Bode, L., Schmitt-Kopplin, P., 
Haller, D.: Randomized controlled trial on the impact of early-life intervention with bifidobacteria on the healthy 
infant fecal microbiota and metabolome. Am J Clin Nutr. (2017), 106(5):1274-1286. Reprinted and adapted from 
(Bazanella et al. 2017) by permission of Oxford University Press. Copyright (2017) American Society for Nutrition. 

 
ID Feed Order m/z or taxonomy RT [min] MS/MS Lipid Maps classification HMBD classification 

M
O

N
T

H
 1

2
 

Cluster_2524 B 1 261.1469 2.80 
 

primary amine Amino Acids and Derivatives 

Cluster_4871 B 2 583.2605 5.10 
   

Cluster_2250 B 3 118.0880 0.81 
   

Cluster_2352 B 4 206.0830 3.62 
   

Cluster_3088 B 5 357.2828 4.84 
  

Fatty Acids and Conjugates 

Cluster_4611 B 6 552.3367 5.00 x 
  

OTU_29 F 1 Flavonifractor sp, 
    

Cluster_3642 F 2 427.3608 7.53 
  

Lipids 

Cluster_3613 F 3 423.3296 8.51 
  

Fatty Acid Esters 

Cluster_3914 F 4 458.3999 10.11 
 

Sterol Lipids [ST] 
 

Cluster_4445 F 5 531.4156 10.11 
   

Cluster_3580 F 6 418.3462 7.62 
   

Cluster_3644 F 7 427.3610 9.56 
   

Cluster_3425 F 8 401.3094 9.56 
 

Sterol Lipids [ST] 
 

Cluster_2771 F 9 303.1916 3.16 x 
  

Cluster_3803 F 10 447.3480 7.64 
   

OTU_125 F 11 Coprobacillus sp. 
    

 

Table 6.2-22: Feeding Cohort Specific Metabolites and Correlation to OTUs of Month 1. 

Correlated metabolites and OTUs of Breastfed (B), Interventional formula (F+) and placebo formula fed (F-) Infants, 
analyzed in UHPLC-(-)-ToF-MS Ranked from High to Low Importance (Order) by Significance on OPLS-DA 
loadings plot. m/z = mass-to-charge ratio of positive electrospray ionization. Molecular formula and classification 
assigned using the MassTRIX webserver with an error of 0.05 Da, assignment by LipidMaps and HMBD. 

 ID Feed Order m/z or taxonomy RT [min] MS/MS Lipid Maps classification HMBD classification 

M
O

N
T

H
 1

 

Cluster_1704 B 1 550.3184 5.02  GP  

Cluster_3175 B 2 854.2985 0.90  GP  

Cluster_3680 B 3 998.3454 0.86    

Cluster_3376 B 4 909.2396 0.87    

Cluster_3094 B 5 837.2976 0.88    

Cluster_0020 B 6 727.3631 0.82    

Cluster_3645 B 7 982.2628 0.82    

Cluster_2619 B 8 726.2212 0.86    

Cluster_3167 B 9 852.2956 0.87    

Cluster_2468 B 10 695.2238 0.88  PK  

Cluster_0435 F 1 312.0938 1.83    

Cluster_0843 F 2 405.2260 3.11 x ST  

Cluster_0714 F 3 381.1331 1.28 x  Piperidines 

Cluster_0449 F 4 315.1869 3.09    

Cluster_1814 F 5 567.2789 3.05 x FA Eicosanoids 

Cluster_3076 F 6 833.4319 3.10    

Cluster_2973 F 7 811.4568 3.10    

Cluster_3613 F 8 973.4721 3.07    

Cluster_1937 F 9 585.3419 7.37 
γ-Tocotrienol                       
glucuronide 

GP  

Cluster_0760 F 10 389.1916 2.84    

Cluster_1505 F- 1 516.3155 7.13    

OTU_10 F- 2 Bacteroides sp.     

Cluster_1850 F- 3 573.3827 7.86    

Cluster_2750 F- 4 762.3968 6.31    

Cluster_1026 F- 5 438.2606 6.10    

Cluster_1655 F+ 1 541.3335 5.47    

Cluster_2982 F+ 2 811.5762 4.82    

Cluster_1105 F+ 3 451.2645 4.85    

Cluster_0841 F+ 5 405.2655 4.82  ST 
Steroids and Steroid                

Derivatives 

OTU_4 F+ 6 Bifidobacterium sp.     
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Table 6.2-23: Feeding Cohort Specific Metabolites and Correlation to OTUs of Month 7. 

Correlated metabolites and OTUs of Breastfed (B) and Formula-fed (F) Infants, analyzed in UHPLC-(-)-ToF-MS, 
Ranked from High to Low Importance (Order) by Significance on OPLS-DA loadings plot. m/z = mass-to-charge 
ratio of positive electrospray ionization. Molecular formula and classification assigned using the MassTRIX 
webserver with an error of 0.05 Da, assignment by LipidMaps and HMBD. 

 ID Feed Order m/z or taxonomy RT [min] MS/MS Lipid Maps classification HMBD classification 

M
O

N
T

H
 7

 

Cluster_1596 B 1 531.2992 4.71 Cyprinolsulfate ST 
Steroids and Steroid              

Derivatives 

Cluster_0761 B 2 389.0971 3.70   Betalains 

Cluster_0072 B 3 305.2006 4.09    

Cluster_0030 B 4 247.5431 3.10    

Cluster_1327 B 5 487.2391 4.48 7-Sulfocholic acid ST  

Cluster_0179 B 6 181.0504 2.81 
Hydroxyphenyllactic 

acid 
  

Cluster_0017 B 7 389.241 3.50    

Cluster_0064 B 8 297.1253 4.43    

Cluster_2174 B 9 627.3722 4.78    

Cluster_1671 B 10 544.2574 4.88    

Cluster_0448 F 1 315.2531 5.96    

OTU_29 F 2 Flavonifractor sp.     

Cluster_0237 F 3 227.1281 5.16 Traumatic acid FA 
Fatty Acids and                    

Conjugates 

Cluster_1010 F 4 435.2754 5.46  PR  

Cluster_1523 F 5 519.2658 2.72 x   

Cluster_1651 F 6 541.3191 7.25    

Cluster_2020 F 7 599.3565 7.45    

Cluster_3076 F 8 833.4319 3.10    

Cluster_2973 F 9 811.4568 3.10    

Cluster_0760 F 10 389.1916 2.84    

 

Table 6.2-24: Feeding Cohort Specific Metabolites and Correlation to OTUs of Month 12.  

Correlated metabolites and OTUs of Breastfed (B) and Formula-fed (F) Infants, analyzed in UHPLC-(-)-ToF-MS, 
Ranked from High to Low Importance (Order) by Significance on OPLS-DA loadings plot. m/z = mass-to-charge 
ratio of positive electrospray ionization. Molecular formula and classification assigned using the MassTRIX 
webserver with an error of 0.05 Da, assignment by LipidMaps and HMBD. 

 ID Feed Order m/z or taxonomy RT [min] MS/MS Lipid Maps classification HMBD classification 

M
O

N
T

H
 1

2
 

Cluster_0926 B 1 421.0659 0.87    

Cluster_2156 B 2 624.3362 4.74  ST  

Cluster_1182 B 3 464.1811 4.48    

Cluster_1704 B 4 550.3184 5.02  GP  

Cluster_1671 B 5 544.2574 4.88    

Cluster_1327 B 6 487.2391 4.48 7-Sulfocholic acid ST  

Cluster_1222 B 7 469.2812 4.16    

Cluster_0209 B 8 204.0662 3.69    

Cluster_1677 B 9 546.1973 0.93   Trisaccharides 

Cluster_1914 B 10 583.2704 4.87    

OTU_14 B 11 Enterococcus sp.     

OTU_29 F 1 Flavonifractor sp.     

Cluster_0765 F 2 389.2686 5.89 6-Lithocholic acid ST 
Steroids and Steroid                                               

Derivatives 

Cluster_1973 F 3 591.3878 8.31 
γ-Tocopherol 
glucuronide 

ST  

Cluster_0766 F 4 389.2685 6.74  ST 
Steroids and Steroid                   

Derivatives 

Cluster_0827 F 5 403.2689 4.47    

Cluster_1154 F 6 459.3463 7.61  ST  

Cluster_0776 F 7 391.2852 5.85 
Chenodeoxycholic 

acid 
ST 

Steroids and Steroid                
Derivatives 

Cluster_1475 F 8 511.3101 7.67    

Cluster_0764 F 9 389.2682 5.45 

5α-Cholanic acid-                             
3α-ol-6-one                                  

7-Ketolithocholic 
Acid 

ST 
Steroids and Steroid                    

Derivatives 
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