
Technische Universität München

Fakultät für Mathematik

Lehrstuhl für Informatik mit Schwerpunkt

Wissenschaftliches Rechnen

Data-Driven Surrogate Models

for Dynamical Systems

Felix Dietrich

Vollständiger Abdruck der von der Fakultät für Mathematik der Technischen Universität
München zur Erlangung des Akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzende: Prof. Dr. Barbara Wohlmuth

Prüfer der Dissertation: 1. Prof. Dr. Hans-Joachim Bungartz

2. Prof. Dr. Gerta Köster

Die Dissertation wurde am 13.04.2017 bei der Technischen Universität München einge-
reicht und durch die Fakultät für Mathematik am 06.07.2017 angenommen.



ii



Acknowledgements

Many people all over the world have supported me during the last years, and I sincerely
thank all of you here. Prof. Dr. Hans-Joachim Bungartz, my primary thesis advisor, has
been a true inspiration mainly through his ability to lead by example. Our numerous
discussions have encouraged me to start the dissertation in the �rst place, and have also
pushed me towards university politics, an experience that I am particularly grateful for.
Prof. Dr. Gerta Köster has shown me how to gracefully join the joy of research with the
desire to create something useful. Her curiosity inspires all around her, and I have been
very lucky to be a part of her great team. There, I have had the great pleasure to work
with my colleagues, Dr. Michael Seitz, Dr. Isabella von Sivers, and Benedikt Zönnchen,
as well as many students. In the last two years of my dissertation, I have been incredibly
lucky to meet and work with Professor Yannis Kevrekidis. With a seemingly endless
number of ideas, great food, and the desire to go beyond what is known, he continuously
surprises and amazes me.

In the TopMath program, Agnieszka Baumgärtel, Dr. Carl-Friedrich Kreiner, and
Prof. Dr. Martin Brokate have been invaluable for their help and guidance, mostly with
matters beyond mathematics.

The last years have been an exciting journey�into science, and also in my personal
life. This is mostly due to Katharina, constantly providing love and happiness, and also
many interesting insights into tradition and society. Maika, Benedikt, and Christoph
have played a large role here, too, and I am honored to have them as friends. Finally, I
want to thank my parents and my brother for their love and trust in me.

iii



iv



Abstract

Processes in nature occur on a multitude of temporal and spatial scales. Mathematical
models can capture many important parts of these processes, and are hence one of the
primary tools of understanding in the natural sciences. A model usually cannot represent
the process on all scales. Granular matter, self-propelled particle systems, and multi-
agent systems are often modeled on a �ne scale, where grains, particles, or individuals
can be distinguished. The challenge in this case is to set up the model on the �ne scale
correctly, such that behavior on a coarser, macroscopic scale emerges naturally from the
individual interactions. Then, computer simulations of the model on the �ne scale can be
used to predict behavior on the macroscopic scale. After the model on the microscopic
scale is complete, the new challenge is to �nd the model on the macroscopic scale that can
reproduce the same observations. A large number of numerical methods addressing this
challenge have gained attention recently. Many methods rely on a formulaic description
of the process on the microscopic scale, and cannot cope with a description purely in the
form of a simulation software. Data-driven methods are a good approach here. Most
data-driven methods rely on the observations from the microscopic system to have enough
information to compute future values. Even if this requirement is ful�lled, the methods
su�er from the curse of dimension when many parameters are varied in the creation of
the observation data.

In this dissertation, we introduce, analyze, and apply the concept of data-driven,
dynamic surrogate models. These surrogate models capture the dynamical process on
the macroscopic scale, but are computed from observations generated through models
de�ned on the microscopic scale. We assume existence of a system on the macroscopic
scale, which is able to generate the observations. Delay embedding of these observation
values generates a di�eomorphic copy of the macroscopic system we assume to exist. We
proof that the output of the data-driven surrogate model is approximating the obser-
vations of the original system, and show how the approximation error depends on the
approximation method. We also show storage of data for the surrogate model is e�cient
if the number of intrinsic variables are less than or equal to the number of parameters
we vary when generating the data. The concept of the data-driven, dynamic surrogate
model is demonstrated in �ve applications, namely bottleneck and queuing behavior of
crowds, uncertainty quanti�cation for the evacuation of a train, car tra�c on highways,
and the �ow of granular particles in a silo. For all applications, we discuss state of
the art approaches without the surrogate model, and the bene�ts and caveats of using
a surrogate. Bene�ts include e�cient storage, fast computation of observations on the
macroscopic scale, insights into the topology of the underlying macroscopic system, and
a generic algorithm usable for many di�erent systems and scenarios.
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Zusammenfassung

Prozesse in der Natur �nden auf einer Vielzahl von zeitlichen und räumlichen Skalen
statt. Mathematische Modelle können viele wichtige Teile dieser Prozesse abbilden, und
sind somit eins der Hauptwerkzeuge der Naturwissenschaften. Ein Modell kann normaler-
weise einen Prozess nicht auf allen Skalen abbilden. Körnige Materie, sich selbständig
bewegende Partikelsysteme sowie Multiagentensysteme werden oft auf einer feinen Skala
modelliert, auf der Körner, Partikel oder Individuen unterschieden werden können. Hier-
bei liegt die Herausforderung in der korrekten Modellierung auf der feinen Skala, so dass
das Verhalten auf einer gröberen, makroskopischen Skala ohne zusätzliche Modellierung
aus den einzelnen Interaktionen auf der feineren, mikroskopischen Skala entsteht. Gelingt
dies, können Computersimulationen des Modells auf der feinen Skala zur Vorhersage des
Verhaltens auf der makroskopischen Skala genutzt werden. Die neue Herausforderung
ist dann, für die makroskopische Skala ebenfalls ein sinnvolles Modell zu �nden, welches
die Beobachtungen und Vorhersagen ebenfalls ermöglicht. Eine groÿe Zahl moderner
numerischer Methoden versucht dieser Herausforderung Herr zu werden. Methoden, die
sich nur auf eine Formeldarstellung des mikroskopischen Modells stützen, können nicht
mit einer Beschreibung umgehen, die nur über eine Simulationssoftware gegeben ist. In
diesem Fall sind datengetriebene Methoden eine gute Wahl.

Viele datengetriebene Methoden wiederum setzen voraus, dass die makroskopischen
Beobachtungen des mikroskopischen Modells genug Information enthalten, um zukünftige
Werte zu berechen. Eine weitere Schwierigkeit datengetriebener Methoden ist der Fluch
der Dimensionalität, also des exponentiellen Anstiegs des nötigen Datenvolumens beim
linearen Anstieg der Anzahl Parametern.

In dieser Dissertation wird das Konzept der dynamischen, datengetriebenen Ersatz-
modelle eingeführt, analysiert und auf mehrere Beispiele angewendet. Diese Ersatzmod-
elle erfassen den dynamischen Prozess auf der makroskopischen Skala, und werden über
Beobachtungen erstellt, die vom mikroskopischen Modell stammen. Dazu wird die Ex-
istenz eines makroskopischen Modells angenommen, welches die gleichen Beobachtungs-
daten generieren kann; dieses Modell wird aber nie explizit formal aufgestellt. Eine Ein-
bettung von Beobachtungen über mehrere Zeitschritte erzeugt eine di�eomorphe Kopie
des Zustandsraums des makroskopischen Modells. Diese Tatsache wurde im Satz von
Takens schon vor längerer Zeit formuliert, und wird hier genutzt, um die korrekte Approx-
imation des makroskopischen Systems durch das Ersatzmodell zu garantieren. Ebenso
wird der numerische Approximationsfehler sowie der Speicherverbrauch durch das Modell
analysiert. Das Ersatzmodellkonzept wird in fünf Anwendungen demonstriert, die alle
einen Prozess in der Natur beschreiben: das Verhalten an Engstellen und in Anstehsitua-
tionen von Menschen, der Quanti�zierung von Unsicherheiten bei einer Zugevakuierung,
dem Autoverkehr auf einer Schnellstraÿe, sowie granularem Fluss in einem Silo. Bei
allen Anwendungen werden die Vor- und Nachteile des Ersatzmodells im Vergleich mit
Standardansätzen beschrieben. Zu den Vorteilen gehören vor Allem e�ziente Speich-
ernutzung, schnelle Berechnung von makroskopischen Beobachtungsgröÿen, Einblicke in
die Topologie des zugrundeliegenden makroskopischen Systems, sowie ein generisch ein-
setzbarer Algorithmus für viele verschiedene Systeme und Szenarios.
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Chapter 1

Introduction

The main research question addressed in this thesis is:

How can a scale transition from microscopic to macroscopic models be
achieved through a data-driven procedure, when the macroscopic equation
is not known, but is assumed to exist?

All relevant terms are de�ned and explained in the next sections. The question is an-
swered by the de�nition and analysis of data-driven, dynamic surrogate models. Appli-
cations include crowd dynamics and car tra�c, as well as �ow of granular particles in a
silo. Expanding on the research question, the key contributions of this thesis are:

� A concise description of particle systems, integrating crowd dynamics, car tra�c,
and systems of granular matter into the framework of multiscale dynamical systems.
This bridges a gap between problems in safety engineering and the mathematical
sciences for dynamical systems and machine learning.

� The de�nition and analysis of a dynamic surrogate model on a manifold in time-
lagged observation space. With this surrogate model, it is possible to generate
observations of a microscopic system over time, on a coarser, macroscopic scale.

� Numerical analysis of the data-driven surrogate model, and application to several
scenarios involving particle systems: a bottleneck and a queuing scenario as well
as uncertainty quanti�cation of crowd dynamics, car tra�c on a highway, and the
�ow of granular particles in a silo.
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1.1 For the hurried reader

The thesis is divided into sections with mathematical topics developing the theory for
dynamic surrogate models, and sections on the applications of the theory. The start of
each section in the main chapter (3) uses a speci�c aspect of two example systems, a
spiral system and a bottleneck in crowd dynamics, to motivate the ideas and arguments
that follow. The hurried reader should consider the introduction to multiscale systems
(1.2), a short introduction to crowd dynamics and granular �ow (1.3), the introduction
to the section on scale transitions with surrogate models and its motivation (3.1), as
well as the discussion of the results (5). The end of all chapters includes a summary. A
reader interested only in the theoretical aspects of the thesis is referred to the section on
multiscale systems (1.2), the construction process of the data-driven surrogate model as
the main contribution of the thesis (3) and its analysis (3.2). Five applications of the data-
driven surrogate models are described in Chapter 4, which can be read independently
of the chapter on theory. Chapter 4 includes bottleneck and queuing scenarios in crowd
dynamics, uncertainty quanti�cation of the deboarding process at a train station, stop-
and-go waves in car tra�c on highways, and upscaling of a granular �ow system in a
silo.

1.2 Systems with multiple scales

Studying the multiscale nature of systems in science and engineering has led to many suc-
cess stories, both in theory and application. The world seems inherently multiscale�at
least to understand complex systems holistically, elements have to be grouped together
on larger and larger scales. What is a scale? An informal de�nition is possible through
consideration of spatial and temporal scales. A spatial scale is best described through
the measurement tools needed to capture it adequately, namely the size of rulers, mea-
suring rods�or scales used to measure distances in the given space, on the given scale.
Measuring the width of an atom with a ruler for architectural drawings does not make
sense, neither does looking at geography with the precision of an electron microscope.
The same holds for temporal scales: switching parts of cellular molecules often occurs on
temporal scales far below microseconds and needs very precise instruments to observe,
whereas the current day of the year could already be measured with instruments thou-
sands of years ago. All dynamic processes in nature happen on one or more temporal
and spatial scales, and scienti�c descriptions, called models, must incorporate this.

Models are the basic tools to foster understanding of systems in the natural sciences.
A model is an abstraction of reality such that key features of the system at hand can be
reproduced well, whereas others are neglected to simplify the model's description (Frigg
and Hartmann, 2012; Bungartz et al., 2014). When it comes to capturing a system
with a hierarchy of interacting scales, models with the same structure are often found
to be superior to models with only one scale. The work of Shalizi (2006) provides a
broad overview about the methods and techniques of complex systems science, including
multiscale systems.
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If a multiscale model has two scales, the scales are often called microscopic (or fast)
and macroscopic (or slow). Models with scales in between the two are sometimes called
mesoscopic models. We choose the �ow of water particles in a river as an example. This
system could be captured by a purely microscopic model of individual water molecules,
which interact with their neighbors and are subject to gravity. The same system can be
described macroscopically, through the �ow of a certain volume of water over time. A
multiscale model would take into account both scales: the water molecules are modeled
explicitly and give information about the local �ow to the macroscopic scale, where it is
integrated into the global �ow of volume. Li et al. (2004) review multiscale methodology
for complex systems, and E (2011) provides an overview of numerical multiscale methods.

There is another challenge to multiscale modeling: given a description of a system
on a certain scale, how to �nd a description on another, coarser scale? This challenge
is called homogenization (Stuart and Humphries, 1996; Givon, Kupferman, and Stuart,
2004) or upscaling (Farmer, 2002; Brandt, 2005), and is the main question addressed and
answered in this thesis.

In the example of �owing water, the challenge is to bridge spatial and temporal scales
of many magnitudes. Models of continuous �ow were formed successfully by upscaling
systems analytically, usually in the limit of an in�nite number of particles. This was in
part possible by the particles being simple molecules, with the same form and �behavior�.
This allows for strong assumptions on averages, which ultimately yield the macroscopic
dynamic (Legoll and Lelièvre, 2010).

Generally, the more complex the individual particle, the more complex the behavior
of a system with more of these particles. The overall number of particles in the system
can also matter greatly when considering homogenization. In granular �ow, the sizes of
individual particles can vary greatly, and the number of particles drops from approxi-
mately 1× 1022 molecules in a gram of water to only a few millions or even thousands
in a silo �lled with grains. In this case, the assumption of equality of particles seizes to
hold, and averaging produces results di�erent from the actual process. The complexity
of individuals can also increase when they are self-propelled, see the work of Helbing
(2001) and Carrillo, Martin, and Panferov (2013) for reviews.

In car tra�c, the individual particles are human drivers in their vehicles (Bellomo and
Dogbe, 2011). They are very complex individually, but generally all abide the rules of
tra�c. Additionally, a car has very limited degrees of freedom when driven properly on a
road. Cars are quite similar in speed and size compared to the size di�erences of rocks in
avalanches, and could hence be studied using tools from granular �ow. The complexity
of human drivers, and the fact that cars are self-propelled and not force-driven particles,
makes car tra�c an active area of research on its own.

In crowd dynamics, the number of people moving is often comparable to the number
of cars on a highway. However, pedestrians have more freedom to move than cars on
roads, and change their direction of movement much quicker. At the same time, chal-
lenges introduced by individual complexity remain. Thus, the scale transition from micro
to macro in crowd dynamics is even more challenging than for car tra�c. Another major
challenge, not only for upscaling, is the lack of a general purpose, microscopic model. This

3



is due to the intrinsic complexity of humans, with current models incorporating not only
physical but also psycho-social e�ects. Comparing recent microscopic and macroscopic
models, Duives, Daamen, and Hoogendoorn (2013) even state that �for practical applica-
tions, that need both precision and speed, the current pedestrian simulation models are
inadequate�. The multiscale nature of crowds has already been recognized in psychol-
ogy, with the advance of theories such as social identity (Turner et al., 1987; Reicher,
Spears, and Haslam, 2010). In short, and restricted to a crowd that is present physically,
the theory explains crowd behavior macroscopically through the formation of di�erent
social groups. Individuals identify with one of the social groups, and act according to
the norms of this group. The introduction of the social groups in addition to individuals
makes social identity theory e�ectively a multiscale model of crowds. The complexity
of humans results in a large number of parameters necessary to describe individuals.
The number of parameters must then be multiplied thousands of times for large crowds.
Most modeling attempts overcome this by using the same parameters for all individuals
involved. This is in sharp contrast to homogeneous, molecular particle systems, where
the repulsion and attraction potentials can be set with only a few parameters, and are
the same for all particles. Due to the large number of challenges in crowd dynamics,
many scienti�c �elds are involved in its research: from mathematics (Francescoa et al.,
2011; Degond et al., 2013), physics (Helbing and Molnár, 1995; Karamouzas, Skinner,
and Guy, 2014), biology (Smith et al., 2007; Moussaïd et al., 2012), computer science
(Richmond and Romano, 2008; Sud et al., 2008), engineering and safety science (Smith
et al., 2009; Sivers et al., 2016), to psychology and sociology (Sime, 1995; Drury and
Reicher, 2010).

Generally, observations of complex systems, followed by modeling, simulation, and
analysis, can lead to predictions performed by computers (Sacks et al., 1989). Computa-
tional challenges in the context of crowd dynamics are (faster than) real time simulations
(Richmond and Romano, 2008; Mroz, Was, and Topa, 2014), and uncertainty quanti�-
cation (Iaccarino, 2008; Smith, 2014). The concept of data-driven surrogate models
developed in this thesis helps to resolve the issue of real time simulations of macroscopic
data, and also enable real time uncertainty quanti�cation.

Finding the macroscopic equations of a system in closed form would ease the compu-
tational burden, and there are already great successes for classic physical systems with a
large number of particles. Data-driven upscaling can help pave the way to understanding,
and numerical algorithms already incorporate multiscale ideas very successfully.

The thesis combines results from manifold learning and the theory on dynamical
systems with state-of-the-art microscopic models in granular systems, such as crowd
dynamics, car tra�c, and a generic granular �ow model. The combination is a surrogate
model approach to upscaling, where the microscopic model generates the data needed to
learn the macroscopic model, e�ectively performing a scale transition through focusing
on the observables that change the slowest.

4



1.3 Modeling crowd dynamics and granular �ow

This section develops an understanding for the challenges in crowd dynamics compared
to granular �ow systems in physics. The state of the art for multiscale modeling and
analysis is highlighted.

Individual human behavior is often di�cult to understand. Why do we like certain
people or things? Why do we choose to go left, instead of right? Why do we use the
right foot to start walking, instead of the left? Often, a person cannot tell in hindsight
why exactly they acted in a particular fashion. Understanding behavior as an outsider
is even more challenging, mostly because limited or no information about the subject's
thoughts is available. The challenge: understanding the internal processes and behavior
of a system is the key to accurate predictions. How can human behavior be predicted, if
it is so di�cult to understand it on an individual level?

In physics, there is a similar problem with the prediction of motion for gases and �uids.
Individual motion of atomic particles is impossible to predict exactly, since quantum
mechanical e�ects introduce true randomness. Nevertheless, results from gas kinetics
give hope for the case where many particles interact and only the collective, aggregated
motion of the gas or �uid is of interest. In this case, the individual contributions of
the particles to the global system are only important in an averaged or homogenized
sense. In many cases, this averaging and homogenization produces systems that can be
understood and even predicted on a much larger scale. Many systems studied in physics
contain force-driven particles. Here, the motion of the particles is determined by intra-
and inter-particle forces on the atomic level (weak interaction), the electro-magnetic level
(electro-static and van der Waals forces), and even on the gravitational level (for example,
the gravity �eld of the earth). Since the motion is not determined by an inner motivation
as in humans, the motion of the particles can be determined completely by the forces
acting between them.

This consideration of interactions has led to very deep mathematical theories. The
theory of Hamiltonian systems, for example, explains and predicts motion solely by the
position and velocity of all particles in the system. The theorem of Liouville relates the
microscopic, individual and by their quantum nature also stochastic forces between par-
ticles to the deterministic motion of the probability density of their aggregated positions.
This allows to ignore individual motion and to predict the motion of the system on a
larger scale.

For an aggregation of humans�called physical crowd�similar assumptions on the
importance of interactions are made, which form the basis for research of crowd dynamics.
However, human interactions and behavior are much more complex than interactions
between atoms and molecules. Therefore, the study of systems comprised of humans and
animals does not yet have many successful theories such as the theorems of Liouville and
Hamilton. In addition, swarms of �sh, herds of sheep, or crowds of humans are systems
of self-driven particles, and are therefore more di�cult to study on an aggregated level.
Aoki (1982) and Reynolds (1987) published the �rst results on computer simulations of
self-propelled particles, and Vicsek et al. (1995), Czirók, Barabási, and Vicsek (1999),

5



and Nagai et al. (2015) worked on upscaling these systems. Herbert-Read (2016) reviews
work on collective motion in animals emerging from individual interactions, and Sumpter,
Mann, and Perna (2012) study the modeling cycle of these systems. The considerations
of humans as grains in granular �ow is a crude approximation, and is able to predict
crowd motion only in very dense situations, where persons cannot move against the
�ow. The self-propelled nature of individuals, and non-local, multiscale e�ects such as
social behavior and psychology, add complexity on the microscopic scale that is not
present in granular material. Still, many models in crowd dynamics are inspired by ideas
from granular physics such as attraction and repulsion of particles. The most prominent
examples are social force models (Helbing and Molnár, 1995; Helbing, Farkas, and Vicsek,
2000). Cristiani, Piccoli, and Tosin (2011) use a measure theoretic approach to combine
ideas from granular �ow and crowd dynamics in a multiscale model.

The mathematical theories for force-driven particles often assume that motion is
determined by the interactions of the particles alone � which is reasonable if only the
forces between them can change their paths. In contrast to that, self-propelled particles
can change their paths completely independent of others. From an outside point of view,
this independence breaks the �rst of the fundamental laws of Newtonian physics: the law
of inertia, where a particle will keep its speed and direction constant if no external forces
act on it. If we consider a self-propelled particle as seen by an observer, the particle can
change its path without external in�uence. The key in this case is that the particle can
exert a force on itself, which in turn changes its trajectory.

Many of the challenges in understanding granular �ow media are easier when the
objects of research are not self-propelled. One of these challenges is the performance of
experiments. With molecular particles, most experiments can be done in vitro��within
the glass�, meaning in a laboratory�with many di�erent experimental runs and precisely
controlled experimental settings. In contrast to that, controlled experiments with humans
are very time consuming and very costly. Even in case of a large number of experimental
test subjects, the number of experimental runs is very limited (Boltes and Seyfried, 2013).
When performing many experiments successively, extrinsic factors such as fatigue, hunger
and adjustment to the experimental settings have to be taken into account, which also
limits the number of experiments that can be run in total. Last but not least, the safety
of the test subjects has to be ensured by the experimenter. This essentially forbids
to perform experiments with high-pressure situations or �re, which on the other hand
are very important aspects of safety research. In vivo experiments��within the living�,
meaning in a natural setting�that can be precisely controlled are even rare for molecular
particles. Such experiments with humans are called ��eld experiments� or ��eld studies�
(Zinke, Ho�nger, and Künzer, 2013) and at the point of writing there is not much high-
quality data available. Br�s�ci¢, Zanlungo, and Kanda (2014) provide an example of a
valuable attempt, with trajectory data gathered over a whole year, over a small area
of a stairway. In addition to the di�culty to control external factors, many countries
have strict data privacy laws that forbid excessive video capturing of humans. This
further complicates the gathering of data in the �eld, which actually would have to be
much more excessive because of the numerous external factors. Nevertheless, qualitative
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information can be gathered even from small �eld studies, and is already being used to
validate models for psycho-social behavior (Sivers et al., 2016).

In conclusion, studying humans experimentally requires a large e�ort, and trying to
accurately predict the action a given human is performing next is often impossible, even
for the next few seconds. Nevertheless, similar to the situation in physics, predictions
are indeed possible in many scenarios for a whole crowd of people. Helbing, Keltsch, and
Molnár (1997) predict optimal paths in an urban environment using a microscopic model,
and Davidich and Köster (2013) show that real-life data is necessary for the calibration
of the models to be predictive. The same seems to be true for an average of the behavior
of many individuals over many scenarios (space average) or a longer time period (time
average). In most cases, predictions in crowd dynamics are performed via models of
human behavior.

Models for the dynamics of a crowd can be separated into classes, through the tem-
poral and spatial scales the models operate on. The coarsest separation is often referred
to as microscopic, macroscopic, and multiscale or mesoscopic models (Chraibi, 2012; Bel-
lomo and Bellouquid, 2015). The scale di�erences between microscopic and macroscopic
models are in the temporal and spatial domain, and often di�er by two or three orders
of magnitude. Table 1.1 shows the scales commonly used by the di�erent model classes
for crowd dynamics, as well as representative models for each class.

Table 1.1: Di�erent model classes and representatives in crowd dynamics.

Class Temporal scale [s] Spatial scale [m] Representative
model

Microscopic 0.1�1 0.1�1 Social forces (Hel-
bing and Molnár,
1995)

Macroscopic 1�100 1�10 Mass transport
(Hughes, 2001)

Multiscale 0.1�100 0.1�10 Measure-theoretic
(Cristiani, Piccoli,
and Tosin, 2014)

Microscopic models describe the motion of the crowd by explicitly describing the
behavior of each individual. A prominent example are social force models (Helbing and
Molnár, 1995; Helbing et al., 2001; Chraibi et al., 2011), more recent approaches focus on
the velocity of pedestrians (Dietrich and Köster, 2014), and the actual stepping process
(Seitz and Köster, 2012; Sivers and Köster, 2015). Cellular automata usually operate on a
slightly coarser spatial scale, but most automata still model each individual (Burstedde et
al., 2001; Nishinari, Fukui, and Schadschneider, 2004) and therefore are also microscopic
models. See the work of Dietrich et al. (2014) for a comparison of the two approaches.

Macroscopic models describe the crowd as a whole, where properties and features of
individuals normally cannot be distinguished. In many cases, the density of the crowd
is used as a macroscopic variable that changes over time. The evolution is then modeled

7



as a transport or transport-di�usion process (Hughes, 2001; Bellomo, Piccoli, and Tosin,
2012).

The multiscale approach combines microscopic and macroscopic models into one
model. This combination is often done by modeling individuals in�uenced by their neigh-
bors and, in addition, all other individuals, the crowd, which is also modeled explicitly as
in a macroscopic model. The motion of the macroscopic crowd is in turn also in�uenced
by the behavior on the individual level (Cristiani, Piccoli, and Tosin (2011) and Cris-
tiani, Piccoli, and Tosin (2014) discuss models in this category). A di�erent approach
is the combination of models with di�erent scales in separate regions of the scenario
(Biedermann et al., 2014) or for di�erent navigational purposes (Kneidl, Hartmann, and
Borrmann, 2013).

1.4 Summary

We discussed systems with multiple temporal and spatial scales. These systems are
ubiquitous in nature, in particular, systems comprised of many particles often exhibit
dynamics on a macroscopic scale very di�erent from the microscopic, individual behavior.
Expanding on particle systems, we discussed crowd dynamics, car tra�c, and granular
�ow. These systems are composed of individuals or grains that are complex themselves.
This inherent complexity leads to more intricate system behavior on the macroscopic
scale, which makes the system a topic of active research.

We provided examples for applications where the macroscopic dynamic of the systems
with complex particles are more important than individual behavior. This justi�ed the
search for a transition of scales from the microscopic to the macroscopic model. We
argued that approaches from traditional physics are di�cult to apply, because of core
assumptions regarding uniformity or simplicity of the particles. An orthogonal challenge
we discussed is the rapid development of the simulation software for systems with complex
particles, because methods that rely on a formulaic description cannot cope with black-
box simulator software. This led to the need for data-driven methods able to extract
macroscopic models directly from data.
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Chapter 2

Numerical analysis of dynamical

systems

The numerical analysis of dynamical systems is a rich scienti�c �eld, both in mathematics
and computer science. Easy and cheap access to computing power makes it possible to
solve complex and large systems numerically. The solutions can then be studied via
methods such as numerical bifurcation analysis (Theodoropoulos, Qian, and Kevrekidis,
2000; Gear, Kevrekidis, and Theodoropoulos, 2002; Marschler et al., 2013). Finally, the
results can be visualized.

This chapter gives a brief introduction to the broad theory of dynamical systems and
their numerical analysis, with a special focus on systems with more than one scale. In
section 2.1, we begin with de�nitions of basic terms, such as manifold and dynamical
system. We use a geometric view on dynamical systems in section 2.2 to introduce linear
and nonlinear manifold learning techniques. The most intricate part of a transition from
one scale to a coarser scale is the closure problem. It is de�ned in section 2.3, along with
a de�nition of time delay embedding. The main contribution of this thesis solves the
closure problem with the construction of a so-called dynamic surrogate model in the next
chapter. This surrogate model is a dynamical system, constructed on a parametrization
of a manifold embedded into a high-dimensional space.

2.1 Manifolds and dynamical systems

De�nitions and notation used in most parts of the thesis are detailed here. Informally
stated, we provide the mathematical description of a smooth surface that is locally �at,
which means it locally resembles d-dimensional Euclidean space. This surface is called
d-dimensional, smooth manifold. Then, we de�ne directions or velocities for each point
of the surface, which is possible due to the surfaces' smoothness. Given an initial point
and its velocity on the surface, we can traverse the surface by following the directions of
velocities, which constitutes the basic behavior of a dynamical system. The de�nitions
given next are more precise, but essentially describe the same environment. Unless
otherwise stated, the de�nitions are adapted from Perrault-Joncas and Meil  (2011)
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and Lee (2012). To understand manifolds and their resemblance to Euclidean space, it
is necessary to de�ne continuous deformations between spaces. Such a deformation is
called homeomorphism. If the deformation and its inverse is di�erentiable, it is called
di�eomorphism.

De�nition 1. A homeomorphism φ : A→ B between two topological spaces A and B
is a continuous, bijective function with a continuous inverse φ−1.

Homeomorphisms can be understood as a continuous �stretching� and �bending� of
the space A into the space B. While illustrative, this is an informal de�nition, and does
not cover all homeomorphisms. Equipped with the concept of homeomorphisms, we can
de�ne a d-dimensional manifold. Then, we will use di�erentiability to de�ne a special
type of manifolds, namely smooth manifolds.

De�nition 2. A d-dimensional manifold M is a topological Hausdor� space such that
every point has a neighborhood homeomorphic to an open subset of Rd. A coordinate

chart (U, φ) of the manifold M is an open set U ⊂ M together with a homeomorphism
φ : U → V from U to an open subset V ⊂ Rd. An atlas A is a set of charts

A = ∪α∈I{(Uα, φα)}, (2.1)

where I is an index set such that M = ∪α∈IUα. If for all α, β ∈ I the transition map
between charts,

φα ◦ φ−1
β : φα(Uα ∩ Uβ)→ Rd, (2.2)

is continuously di�erentiable any number of times, the atlas is called smooth atlas or
C∞-atlas. Finally, a smooth manifold M is a manifold with a smooth atlas.

Figure 2.1 shows how the chart (Uα, φ) relates the Euclidean space Rd with the
manifold M .

Rd

M

Uα

Vα

φ

φ−1

Uβ

Vβ

Figure 2.1: Visualization of a d-dimensional manifoldM with chart (Uα, φ). The subsets
Uα, Uβ ⊂M and Vα, Vβ ⊂ Rd are open sets.
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De�nition 3. Given two manifolds N andM of the same dimension, a Ck-di�eomorphism

φ : N → M is a homeomorphism where both φ and φ−1 are k times continuously di�er-
entiable. In this case, N and M are di�eomorphic.

In general, a manifold cannot be represented by a global coordinate chart. The
textbook example for this is the 2-sphere, since there exists no homeomorphism between
the 2-sphere and the Euclidean space R2�every atlas of the 2-sphere must contain at least
two charts. As it is often preferable to represent a manifold by one homeomorphism to
and from Euclidean space, the dimension of the Euclidean space can be chosen larger than
that of the manifold. This concept, de�ned in the following text, is called embedding,
and relates smooth manifolds by mapping between their tangent spaces. The concept
of embedding will be essential in the numerical reconstruction of state spaces described
below. The concept of a tangent space TpM at a point p on a d-dimensional manifold
M can be understood informally as being a d-dimensional linear subspace tangent to M
at p. This informal de�nition requires an ambient space, while typically, tangent spaces
are de�ned through intrinsic properties of the manifold. For the presentation here, the
informal de�nition su�ces. Isham (2002) gives a textbook treatment with several formal
de�nitions.

De�nition 4. Let M and N be two manifolds, and let H : M → N be a smooth
function between them. Then, at each point p ∈ M , the Jacobian dHp of H at p de�nes
a linear mapping between the tangent spaces TpM and TH(p)N . The map H has rank k
if dHp : TpM → TH(p)N has rank k for all p ∈M . We write rank(H) = k.

De�nition 5. Let M and N be two smooth manifolds, and let H : M → N be a smooth
injective map with rank(H) = dim(M), then H is called an immersion. If H is a
homeomorphism onto its image, then H is called an embedding of M into N .

The concept of an embedding plays a crucial role in the theorem of Takens, which
constructs an embedding of a manifold into Euclidean space through concatenation of
observations of points on the manifold (see section 2.3 for a detailed discussion). The
Strong Whitney Embedding Theorem states that any d-dimensional smooth manifold can
be embedded into R2d (Eells and Toledo, 1992; Lee, 2012). For example, the 2-sphere
can be embedded into R4. On the other hand, it is clear that the 2-sphere can also be
embedded into R3. This shows that the theorem is not sharp for all manifolds, however,
the theorem is tight in the sense that there are manifolds, such as real projective spaces,
that need all 2d dimensions for an embedding (see Perrault-Joncas and Meil  (2011)
and Perrault-Joncas and Meil  (2013)). Embedded manifolds and Whitney's Theorem
are important presets for the reconstruction of manifolds embedded in high-dimensional
spaces with numerical algorithms, which will be discussed in section 2.2.

Equipped with the de�nitions for smooth manifolds, we can now de�ne dynamical
systems.

De�nition 6. A dynamical system is a manifold M called state space, equipped with
a di�eomorphism φ : T ×M →M , where T is called time.
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If T = R, we call the system continuous and the di�eomorphism φ is called �ow. If
T = N0, the system is called discrete and φ is called map. We denote φt(x) := φ(t, x),
to clarify that a �ow can also be seen as a map acting on elements x in the state space,
pushing them forward in time by t. To introduce the concept of di�erential equations,
consider an n-dimensional manifoldM , the time T = R and the �ow φ : T×M →M . Let
f be a smooth vector �eld on M , in other words, f is a C∞-di�eomorphism from M to
M . Then, the following di�erential equation forms a dynamical system with φ0(x) = x:

d

dt
(φt(x)) = f(φt(x)). (2.3)

The �ow φt(x) is the solution to the di�erential equation. De�ning x(t) := φt(x), the
short notation for equation (2.3) is d

dtx(t) =: ẋ = f(x), and will be used throughout the
thesis. The set {x(t)|t ∈ R+, x(0) = x0 ∈ M} is called trajectory of the dynamical
system 2.3, starting in x(0) = x0. If the function f in equation 2.3 only depends on
the value φt(x) = x(t), the equation is called ordinary di�erential equation (ODE).
If f also depends on derivatives of φ with respect to x, the equation is called partial
di�erential equation (PDE).

2.2 A geometric view on dynamical systems

In this section, we focus on the question how geometric objects formed through trajec-
tories can be described. We explain and relate the concepts geometry, heat kernel and
Laplace-Beltrami operator. Building on these concepts, the idea of time-lagged embedding
is introduced in section 2.3. Time-lagged embedding allows to reconstruct a di�eomor-
phic copy of the state space of a dynamical system when only time-discrete, generic
observations of the true system states are available�such as in an experiment.

Dynamical systems can exhibit many di�erent behaviors, which is re�ected in the
shape of the trajectories over time. The trajectories can tend towards a single point
in the state space called steady state. They can return to previous points, forming a
closed orbit, or tend to such an orbit, forming a limit cycle. Figure 2.2 shows the two-
dimensional state space of a system with a steady state in the center, surrounded by a
limit cycle where all trajectories tend to if they do not start at the steady state. The
steady state in the center is unstable, as trajectories starting in its vicinity do not return,
but move away from it over time. The limit cycle in this example is stable because the
opposite is true here. All trajectories in the vicinity of the limit cycle, except for the
steady state, will end up on the limit cycle in the limit of in�nite time. The set of all
points on the limit cycle is called the attractor of the system, and the set of points that
end up on the attractor in in�nite time is called attracting set.
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Figure 2.2: Trajectories (black curves) of a dynamical system with an unstable steady
state (red cross) and a stable limit cycle (red circle). The trajectories are only shown for
t < 1.

We will return to this example system later, constructing a new dynamical system
for the new variable y(t) = ‖x(t)‖ with a data-driven surrogate model.

The geometry of a given set of points is de�ned through properties of and relations
between individual points and tangent vectors of the set. Coifman and Lafon (2006)
describe geometry generically as �a set of rules describing the relationships between data
points�. Common rules, properties, or relations are positions, angles, and lengths. We de-
�ne the intrinsic dimension of a set of points as the minimal number of variables needed
to parametrize it. If the geometric object is a manifold, its intrinsic dimension is the
dimension of the manifold�that is, the dimension of Euclidean space locally homeomor-
phic to open sets around every point of the object. As an example, �gure 2.3 shows three
sets of points with di�erent geometries. The �rst one, a line, has an intrinsic dimension
of one, because we can identify all points on it through a single number, the arclength.
The second set is a curved surface, which has an intrinsic dimension of two. The third
set of points is a two-sphere, also with an intrinsic dimension of two. As discussed in
the previous section on manifolds, the sphere is a special set of points, because it can-
not be transformed into the second set through any homeomorphism. Even though the
minimum number of dimensions for an embedding is three, its intrinsic dimension is two.
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Figure 2.3: Objects with di�erent geometries and intrinsic dimensions. Object (a) is
a line segment of intrinsic dimension one, object (b) is an intrinsically two-dimensional
surface, curved and embedded in three-dimensional space. Object (c) is a sphere, which
also has intrinsic dimension two, but cannot be deformed through any homeomorphism
into object (b).

Geometric objects can be embedded in a space with higher dimension than the shape
itself. Let the set S contain the points of the shape, then an embedding H : S → E ⊇ S
preserves the structure of S. In contrast to the intrinsic dimension of the object, we
call the dimension of the ambient or embedding space E the extrinsic dimension of the
object. Examples of embeddings are subgroups of groups, the real line in the complex
numbers, and any object with an ambient space (also see Fig. 2.4). Depending on the
application, the embedding space is considered extrinsic, without any special relation to
the shape. In this case, dimension reduction is useful to project the geometric object
onto a space with a dimension closer to the objects intrinsic dimension. In the process,
the reduction methods often ignore the ambient space entirely.

Figure 2.4: Embedding of a curved, one-dimensional object in a two-dimensional surface,
which itself is embedded in three-dimensional, Euclidean space.

A common example used to demonstrate the power of dimension reduction is the
manifold shown in �gure 2.5, in the form of a Swiss roll (Lafon and Lee, 2006). It is a
two-dimensional manifold with a hole in the middle (see �gure 2.6), that is embedded in
three dimensions (�gure 2.5). Here, we use the embedding

H(x1, x2) = [
√
x1cos(1.5πx1), 2x2 − 1,

√
x1sin(1.5πx2)] = (y1, y2, y3) (2.4)

to map the two coordinates (x1, x2) of the surface into the three-dimensional ambient
space coordinates (y1, y2, y3). The goal of dimension reduction in this example would be
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to recover the intrinsic coordinates (x1, x2) of the surface, given the three-dimensional
coordinates (y1, y2, y3).
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Figure 2.5: Embedding in three dimensions of a two-dimensional surface with a hole.
The color indicates the values of the intrinsic coordinate x1 of the surface.
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Figure 2.6: Intrinsic coordinates of the swiss-roll manifold. The colors plot show the
values of coordinates x1 (left) and x2 (right).

2.2.1 Linear decomposition

A common tool in dimension reduction is the truncated singular value decomposition.
The underlying idea of the reduction is the decomposition of a space into its relevant
linear subspaces. This decomposition is achieved through a decomposition of a rectangu-
lar matrix, composed of columns as points of the given space, into two unitary matrices
and a diagonal matrix of real values (equation 2.5), assigning each subspace a certain
importance. The method is utilized under many names from di�erent �elds of science,
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such as linear principal component analysis (PCA) by Hotelling (1936), proper orthog-
onal decomposition (POD) by Pearson (1901), and Karhunen-Loeve decomposition by
Karhunen (1946) and Loève (1946). Stewart (1993) gives a historical review, including a
citation of Golub and Reinsch (1970) as �the algorithm [for the SVD] that has been the
workhorse of the past two decades�. To de�ne the singular value decomposition, consider
a matrix A ∈ Rm×n with m ≥ n and rankA = k. Adapted from Golub and Reinsch
(1970), the singular value decomposition of A is

A = UΣV T , (2.5)

where U, V are unitary such that UTU = V TV = In, and Σ = diag(σ1, . . . , σn). The
matrix U is composed of the n orthonormalized eigenvectors of the matrix AAT , asso-
ciated with the largest n eigenvalues. The matrix V is composed analogously, but from
the matrix ATA. The diagonal matrix Σ contains σ1, . . . , σn, the non-negative square
roots of the eigenvalues of ATA. These values are called singular values of A. Assuming

σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0,

we can approximate A by a truncated version Ar = UΣrV
T of rank r ≤ k, which ignores

the columns of U and V associated with the smallest k − r singular values by setting
σi = 0 for i > r. The truncated matrix Ar is the best approximation of A in the Frobenius

norm ‖A‖ =
√∑m

i=1

∑n
j=1A

2
ij , such that

‖A−Ar‖ ≤ ‖A−B‖ (2.6)

for any matrix B with the same rank as Ar. This is the theorem of Eckart and Young,
also called Schmidt's approximation theorem (see Stewart (1993)). The truncated sin-
gular value decomposition allows to ignore the columns of U and V associated with the
smallest singular values, e�ectively reducing the dimensionality of A to its most impor-
tant components. Figure 2.7 shows the decomposition of the surface in Fig. 2.3 (b) into
two linear subspaces. The two intrinsic coordinates can be recovered successfully.

Figure 2.7: A surface decomposed into two linear subspaces. The new coordinate values
are depicted by di�erent colors.

A linear decomposition of a shape does not always produce a minimal number of
coordinates for points of the shape. Considering the Swiss roll manifold, a linear decom-
position yields a minimum of three basis vectors instead of two. In such a case, nonlinear
dimensionality reduction must be employed.
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Figure 2.8: The reconstruction of the coordinates of the Swiss roll surface with a linear
decomposition, performed through singular value decomposition. The x2 coordinate is
correctly identi�ed, but x1 is not, due to the nonlinearity of the embedding.

2.2.2 Non-linear decomposition

Many methods for nonlinear dimension reduction employ the kernel trick. Points of a
manifold are embedded in a much higher-dimensional space where the shape is linear.
Then, a linear decomposition yields the basis vectors of the space. In case a dimension
reduction is possible, many of these will be redundant, and a small set is enough to span
the reduced space (Hofmann, Schölkopf, and Smola, 2008). The kernel trick is evalu-
ating the inner product in the high-dimensional space, without explicitly constructing
the mapping into the space. The choice of the kernel is tied to the geometry of the
high-dimensional space, and thus fundamentally important for a correct reduction. Ker-
nels can be used to generate an arbitrary Riemannian geometry for the new, embedded
manifold (Berry and Sauer, 2015). One choice used commonly is the heat kernel, as it
weighs points close to each other higher than points far away. This property allows for a
nonlinear decomposition which preserves local geometry but ignores the global structure
of the shape.

The heat kernel is the solution to the heat equation, a partial di�erential equation
on Rn,

∂tu = ∆u, u ∈ C2(R× Rn,R), (2.7)

with initial conditions
u(0, x) = δ0(x), x ∈ Rn,

where ∆ :=
∑n

i=1
∂2

∂x2i
is the Laplace operator. The heat kernel has the form

K(t, x, y) =
1

(4πt)d/2
exp(−‖x− y‖2/(4t)), x, y ∈ Rd, t ∈ R+.

If the heat equation is solved on a smooth, compact, n-dimensional manifold M , the
Laplace operator ∆ in Euclidean space becomes the Laplace-Beltrami operator, which is
also denoted ∆ and de�ned through the Riemannian metric on the manifold (Coifman
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and Lafon, 2006). The heat kernel in this case is T = e−t∆, which is associated to the
integral transform of a solution u to equation 2.7, such that

Tu(x) =

∫
M
K(t, x, y)u(y)dy, x, y ∈M.

The Laplace-Beltrami operator on a manifold M contains fundamental, local proper-
ties of the geometry of the manifold, because the operator describes a di�usion process
over M (see equation 2.7). If a�possibly nonlinear�coordinate transform from M into
a lower-dimensional space preserves the di�usion properties of the operator, it preserves
the local geometry, and is therefore suited for nonlinear dimension reduction. Such a
coordinate transform is realized via di�usion maps, introduced by Coifman et al. (2005).
They provide a numerical approximation of the eigenfunctions of the Laplace-Beltrami
operator on a compact manifold.

The eigenfunctions of the Laplace-Beltrami operator are the solutions of the Helmholtz
equation

−∆ψ = λψ,

where λ are the eigenvalues and ψ are the eigenfunctions. The Laplace operator on a
compact manifold admits a discrete spectrum with a countable number of eigenfunctions
[ψ1, ψ2, . . . ]. A subset of eigenfunctions is the coordinate transform Ψt from the high- to
the low-dimensional space, and is called di�usion map for a di�usion process of length t.
The di�usion map can be written in vector form as

Ψt(x) =
[
λt1ψ1(x), λt2ψ2(x), λt3ψ3(x), . . .

]
.

Coifman and Lafon (2006) prove that the di�usion distance on the original manifold is
approximated by the distance between di�usion mapped coordinates. This allows to �nd
the intrinsic distance on the m manifold M between two points xi, xj ∈ M , given their
coordinates in the extrinsic space of M . After a time t of �heat propagation� of delta
functions δxi , δxj initialized at the points xi, xj , the di�usion distance Dt between the
two points, de�ned by the L2 distance between the propagated heat, is approximated by
the distance between points in di�usion map space:

D2
t (xi, xj) = ‖e−t∆δxi − e−t∆δxj‖2L2(M) ≈ ‖Ψt(xi)−Ψt(xj)‖22

Coifman and Lafon (2006) also provide a short numerical algorithm to approximate the
values of the eigenfunctions on given data points. In case the data is sampled uniformly,
the algorithm is reduced to the following:

1. Compute a distance matrix Dij = d(xi, xj) between all pairs of data points xi, xj .
The function d is a metric between points xi, xj on the manifold M , for example
d(xi, xj) = ‖xi − xj‖ on a normed space.

2. De�ne the weight matrix Wij = exp(−Dij/ε), for a small ε > 0 depending on the
sampling density.
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3. Compute the row sums of W by Sii =
∑

jWij in a diagonal matrix S.

4. NormalizeW to A = WS−1, so that A can be interpreted as a Markov matrix with
jump probabilities Aij .

5. The eigenvalues of A are the eigenvalues of the Laplace-Beltrami operator, and
the eigenvectors contain the values of the eigenfunctions ψk, evaluated on the data
points.

The algorithm is extended to work with non-uniformly sampled data, and to add nu-
merical stability (see Algorithm 3.1.2 in section 3.1.2). When applied to the three-
dimensional Swiss roll data from the previous section, the eigenfunctions provide a suit-
able parametrization of the surface, and an e�ective dimension reduction to the plane
(see �gure 2.9).

Figure 2.9: Coordinates of the Swiss roll surface with a nonlinear decomposition per-
formed through di�usion maps, ordered by absolute value of the di�usion map eigenval-
ues. The �rst two nontrivial eigenfunctions of the di�usion map correctly identify the
coordinates x1 and x2 of the surface, while the other eigenfunctions are harmonics of the
�rst two.

2.3 Time-delay embedding and Takens' theorem

One of the main challenges for a successful transition of scales is that the model on the
new scale is independent of the lower scale. Independence means that future states of the
system can be computed through the current state alone, without additional information,
for example, from a di�erent scale. As this challenge occurs in many di�erent disciplines,
it has many di�erent names, for example closure (Kevrekidis and Samaey, 2009), Markov
property or memory-less (Ethier and Kurtz, 1986), and also appears in statistics as
dependent or explanatory variables. Here, we call it the closure problem. Ultimately, the
problem results from the choice of the wrong observables, or state variables, for a system.

Mathematically, the dynamic on the macroscopic scale is well-de�ned for every point
in the state space of the macroscopic model. Figure 2.10 visualizes the case where the
observation is a projection from a three-dimensional state space to a two-dimensional
observation space. In three dimensions, given any point, the next step on the line is
clear�whereas in two dimensions, given only the point at the crossing, it is impossible
to de�ne the next point uniquely.
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Figure 2.10: Visualization of the closure problem. After the observed values are projected
onto a lower-dimensional space, their trajectories intersect.

A more elaborate example is the Lorenz system, known for its chaotic behavior and
the wing-shape of its attractor. The Lorenz system is also used frequently in the intro-
duction of time-lagged embedding theory, because it can be reconstructed from delays in
time of either the �rst or second coordinate. Its attractor is the limit set of the dynamical
system

ẋ1 = σ(x2 − x1),
ẋ2 = x1(ρ− x3)− x2,
ẋ3 = x1x2 − βx3,

(2.8)

where σ, ρ, and β are parameters. For σ = 10, β = 8/3, and ρ = 28, the system exhibits
chaotic behavior, shown in �gure 2.11.
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Figure 2.11: Lorenz attractor for parameters σ = 10, β = 8/3, and ρ = 28.

Figure 2.12 shows the observations of the �rst coordinate x1 over time. If we only ob-
serve the coordinate x1, and not all three coordinates, it is impossible to know the future
states of x1. In this particular example, due to the chaotic behavior of the Lorenz system,
there are uncountably many future states for any given value x1(t) on the attractor.
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Figure 2.12: The left plot shows the �rst coordinate x1 of the Lorenz system, over time.
It is impossible to predict future states given only a single observation, which is obvious
from the right plot, showing x1 and its time derivative. The position x1 = −10 is marked
as a visual guide, to see that there are many possible values d

dtx1(−10).

The closure problem can be solved when more than the current point in state space
is taken into account. This is precisely where the idea of time-lagged embedding enters
(Ruelle and Takens, 1971; Takens, 1981). Theorem 1 is adapted from Takens (1981) to
�t the notation used here, but otherwise it is left unchanged. The theorem provides an
explicit embedding H between a manifold M and the Euclidean space R2n+1, by using
time lagged versions of observations y of points x ∈M :

Theorem 1. Time-delay embedding Let M be a compact manifold of dimension m.
For pairs (f, y), f : M →M a smooth di�eomorphism and y : M → R a smooth function,
it is a generic property that the map Hf,y : M → R2m+1, de�ned by

Hf,y(x) = [y(x), y(f(x)), . . . , y(f2m(x))] (2.9)

is an embedding; by �smooth� we mean at least C2.

The conditions on the observation function y are given in the proof. Quoted from
Takens (1981):

We may, and do, assume that if x is a point with period k of f , k ≤ 2m+ 1,
all eigenvalues of Dxf

k are di�erent and di�erent from 1. Also, we assume
that no two di�erent �xed points of f are in the same level of y.

The matrix Dxf is the Jacobian matrix of the map f , such that (Dxf)ij = ∂fi
∂xj

. Takens

proved theorem 1 and two others, where

1. the map f is replaced by a �ow φt with a constant t > 0, and

2. using the 0-th to the 2m-th time derivative of the �ow.
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Takens' theorem and the resulting method of delays provide the means to construct a
space di�eomorphic to the original state space M . We call this new space delay space.
If the elements of M originate from a deterministic dynamical system with map f or
�ow φt, the space M is closed by de�nition, since being closed means a given state in M
contains enough information for the system to predict future states. The di�eomorphism
between the original spaceM and the delay space implies that the new space is also closed
under the �ow of the dynamical system. For many systems, including 2m + 1 delays in
the observation vector is enough to reconstruct a di�eomorphic copy of M . However,
there are recent results from Berry et al. (2013) on including many more delays, improving
smoothness of the new space, and also projecting onto a stable subspace of the dynamical
system. Berry et al. (2013) employ di�usion maps for nonlinear dimensionality reduction
of the embedded manifold, and show the relation to a Fourier analysis on the original
manifold M . They also show that adding more delays has a smoothing e�ect on the
dynamics, acting similar to a �lter for noisy data. We will use the modi�ed time delay
embedding from Berry et al. (2013) to construct surrogate models later. The modi�ed
version needs the following preliminaries. Let x ∈M , and de�ne a dynamical system on
M through

x(t+ 1) = f(x(t)). (2.10)

Also, let κ ∈ R+ and H(x) be a vector of T + 1 observations through a vector-valued
function y : M → Rm, m ∈ N, such that

H(x) =
[
e−Tκy(x), e−(T−1)κy(f(x)), . . . , e−κy(fT−1(x)), y(fT (x))

]
∈ R(T+1)m. (2.11)

Then, for su�ciently large T , theorem 1 states the existence of a function g : Rt+1 →
R(T+1)m, such that

H(f(x)) = g(H(x)), (2.12)

and H(x(t + 1)) = g(H(x(t)) de�nes a discrete dynamical system on the delay space
H(M) with dynamic g. The manifold H(M) is di�eomorphic to the state space manifold
M of the original system. Berry et al. (2013) show that for large T and a suitable value
κ ∈ R+ in the Lyapunov metric, the embedding H (Eq. 2.11) projects onto the most
stable Oseledets subspace. This subspace is closed under the dynamics of the original
system, which is the main motivation to construct a model on it. The choice of κ
is discussed in general in (Berry et al., 2013), and we discuss its choice for speci�c
applications in section 3.1.2. Reconsidering the Lorenz attractor, it is enough to include
two delays in time to reconstruct a di�eomorphic copy of the original system (�gure 2.13).

22



−10 0
10 −10

0
10

−10

0

10

x1(t) x1(t+dt)

x
1
(t
+
2d
t)

Figure 2.13: Di�eomorphic copy of the Lorenz attractor, constructed through points
[x1(t), x1(t+ dt), x1(t+ 2dt)].

Takens' theorem assumes the observations are generic, so that there are no symme-
tries. For the Lorenz attractor, the coordinates x1 and x2 are generic, but the coordinate
x3 has a symmetry. This causes the reconstructed manifold to only have one �wing of the
butter�y� (�gure 2.14), as one cannot discern between wings when measuring x3 only.
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Figure 2.14: A degenerate copy of the Lorenz attractor, constructed through points
[x3(t), x3(t+ dt), x3(t+ 2dt)]. Due to symmetry, the two circular regions of the attractor
are merged into one.
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From Takens (1981), we see that a time-delayed embedding creates a di�eomor-
phic copy of the state space manifold M in a higher-dimensional Euclidean space. A
time-delayed embedding is produced by a smooth, nonlinear observation function y ∈
C∞(M,Rm) of the state space M , by combining a number (T + 1) ∈ N observations
over time into a new point in a high-dimensional Euclidean space. The derivative of the
observation function y must have full rank, so that ‖Dy‖ > 0 on M .

If n is the dimension of the manifold M , then the number of lags T must be larger
than 2n for H(M) to be an embedding of M . In theory, the precise choice of T does not
matter, as long as it is larger than 2n. For example, Berry et al. (2013) use thousands
of delays to smooth the chaotic trajectories present in their examples, even though the
intrinsic dimension of the reconstructed state space is quite low. The stability of the
theoretical results regarding the choice of T is very important for applications, as the
intrinsic dimension n of the state space manifold is usually unknown. For the data-
driven surrogate models introduced in section 3.1.2, we also need to include the number
of parameters in the intrinsic dimension (see theorem 2 in section 3.2.2). Small and
Tse (2004) provide a short review on how to compute T in combination with the delay
between individual observations, and Huke and Broomhead (2007) describe an approach
where the time delays must not be equal for all observations. In the original form of
the theorem, the observations y(x) must be scalar and must also be generated without
observational noise and without stochastic e�ects in f . The multivariate case is described
by Deyle and Sugihara (2011), and the stochastic version by Stark et al. (1997).

Dynamical systems and the geometry of their state space are now de�ned. Time-delay
embedding of observations from a given system yields a di�eomorphic copy of its state
space. For multiscale dynamical systems, time-delay embedding yields the possibility to
observe a microscopic system on a larger scale, and use the di�eomorphic copy of the
state space to generate a model on this larger scale. The next section brie�y reviews
current methods to treat upscaling and analysis of multiscale systems.

2.4 Methods for multiscale modeling and analysis

Modeling and analysis of systems with multiple scales is a very broad �eld. Still, as far
as literature is concerned, modeling and analysis of systems with one scale far precedes
multiscale systems. Here, we focus on systems with more than one scale. We review the
state of the art, along with remarks on current challenges. We also introduce many of
the concepts later referred to in the analysis of the dynamic surrogate (section 3.2) and
its application (section 4).

There is an important di�erence between �nding a dynamical system on a coarser
scale, and reducing the dimension of a state space. Coarsening the scale of a system
might need an even higher-dimensional state space. An example is the transition from
a particle system to the probability distribution in the limit of an in�nite number of
particles with zero size. Usually, a system of ordinary di�erential equations is used as a
description of the particle system on the microscopic scale, whereas a partial di�erential
equation describes the evolution of the probability distribution on the macroscopic scale.
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In this case, the particle system has a �nite-dimensional state space, enumerated by the
particle index and spatial dimension. The probability distribution is a function, and as
such an element of an extrinsically in�nite-dimensional space. Hence, the coarser system
has an in�nite-dimensional state space, compared to the �nite-dimensional microscopic
system. The output observed from the coarse system is on a coarser scale, either spatially,
temporally, or both.

Figure 2.15: On the left, individual particles (spheres) are distinguishable, and the system
state contains discrete positions. On the right, the same state is shown on a coarser scale,
the density of the particles, using a superposition of slowly decaying exponential functions
at each particle position. The particle positions are no longer distinguishable, and the
new state is a function.

If coarsening the system is not an option, the information needed by the system
to advance in time can normally be reduced by a reduction of the dimension of the
state space. This reduction is called model order reduction, and hence results in reduced
order models. It does not change the scale of the output observed from the system.
Compared to the observations of the full model, some methods reduce the accuracy
to achieve an even greater reduction, but the scale of the observations is still the same.
Figure 2.16 demonstrates the process of model order reduction geometrically. The sphere
is approximated with less and less points, or to a lower order, but it is still resembling a
sphere, and a dynamical system acting on this sphere is de�ned at the same spatial scale.
For a similar example and a comprehensive review of the �eld including its history, see
the book from Schilders, Rommes, and van der Vorst (2008).

Figure 2.16: Illustration of model order reduction. A detailed state space (left sphere)
is approximated by less detailed versions, while important features are kept: the right
object has the same size and is still a spheroid object. The approximation might reduce
the accuracy of the solution of a system, but does not change the scale the system is
solved at.
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One of the most prominent examples of model order reduction is the method of adap-
tive mesh re�nement (Garcia et al., 1999). Adaptive mesh re�nement is a common tool
used in computational �uid dynamics, where the solution to a �ow system is represented
with di�erent accuracy at di�erent points in space. The adaptive re�nement in regions
of space where the solution needs to be more accurate is a form of model order reduction,
since without adaptive re�nement, the accuracy would have to be high over all of space.

Here, we discern methods for multiscale systems through their need for either data
or formulaic models. We call a method data-driven if it primarily functions by manip-
ulating numerical data generated by the system under study. Equation-driven methods
manipulate the formulaic description of the system, with little or no need for data. Fig-
ure 2.17 shows our classi�cation of methods and applications for multiscale systems. The
two dimensions of complexity relate equation-driven and data-driven approaches. The
equation-driven dimension shows how di�cult it would be to treat the problem primarily
with analytic tools. The data-driven dimension shows the di�culty to treat the problem
numerically. This includes complexity of implementation of the algorithm, as well as the
problem of sampling high-dimensional spaces. The sampling problem is often called curse
of dimensionality, an expression originally coined by Bellman (1957) (also see Bellman
(2003)). Essentially, the curse of dimensionality expresses the challenge that the amount
of data needed to equally sample a certain volume of space increases exponentially with
the dimension of that space. We will discuss this further in section 3.2.5, concerning the
data needed to store the surrogate model.
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Figure 2.17: Levels of complexity for data-driven and equation-driven methods. If a
method only modi�es the formulaic description of a model, it lies on the vertical axis.
Analogously, a purely data-driven method would lie on the horizontal axis. Most methods
combine both a reformulation and a numerical approach, and would be placed o� the
axis.
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Table 2.1 adapted from E et al. (2007) contains general and special purpose solvers
for multiscale problems. A special purpose solver utilizes special properties of the system
to solve it, such as scale separation. The solution does not always have to be on the
microscopic scale. A general purpose solver aims to solve the system on the microscopic
scale as accurately as possible, and is using information from other scales. We discuss
some of the methods in table 2.1 in sections 2.4.1 and 2.4.2, and for a more detailed review
refer to the book of E (2011). The complexity one faces when applying the methods is

Table 2.1: General and special purpose multiscale solvers.

General Multigrid method (Brandt, 2005; Brandt et al., 2011)
Domain decomposition (Quarteroni and Valli, 1999)
Wavelet-based (Daubechies, 1992)
Adaptive mesh re�nement (Ainsworth and Oden, 1997)
Fast multipole method (Greengard and Rokhlin, 1997)
Conjugate gradient method (Hestenes and Stiefel, 1952; Golub and Van
Loan, 1996)

Special Car-Parinello method (Car and Parrinello, 1985)
Quasi-continuum method (Tadmor, Ortiz, and Phillips, 1996)
Optimal prediction (Chorin, Kast, and Kupferman, 1998)
Heterogeneous multiscale methods (E and Engquist, 2003)
Gap-tooth scheme (Kevrekidis et al., 2003)
Adaptive mesh and algorithm re�nement (Garcia et al., 1999)

shown in �gure 2.18. The level of complexity is assessed by counting the number of steps
needed to successfully solve a problem. For example, a purely equation-driven method
could have a very low data-driven complexity, because no data is needed. However,
the method could still be very complex to apply for a speci�c problem. We assess the
complexity level of seven example problems at the beginning of chapter 4. Here, we do
not assess the methods complexity by the breadth of problems they are able to solve. This
implies that a method could be quite simple to apply, but solves very few problems�
compared to a complex method that solve many di�erent problems. Nevertheless, all
methods shown here can solve an abundance of di�erent problems successfully.
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Figure 2.18: Levels of complexity for the methods.

2.4.1 Equation-driven methods for multiscale systems

The thesis' contribution, a dynamic surrogate modeling method, is ultimately a data-
driven method for upscaling. There are also equation-driven methods available that
can homogenize a given dynamical system, and yield a new one on a coarser scale. If
feasible, this is preferable to data-driven methods, because the formal description of
the new system is available, and enables further analysis. Nevertheless, as discussed in
the last section, feasibility is often an issue�which makes data-driven methods a viable
alternative. After all, data-driven methods can readily be applied on a new, analytically
homogenized system, until it is understood enough to start with equation-driven methods.

Many properties of multiscale systems can be presented through systems with two
scales (Pavliotis and Stuart, 2008; Kuehn, 2015), so called slow-fast systems. Such a slow-
fast system of ordinary di�erential equations (ODEs) with two scales has fast variables
x and slow variables y. The fast and slow dynamics are governed by functions f and g,
respectively. The scales are separated by a small constant ε with 0 < ε � 1, called the
scale parameter, such that

εẋ = f(x, y, ε),
ẏ = g(x, y, ε).

(2.13)

If the system is described through partial di�erential equations (PDEs), the scale pa-
rameter ε often appears as coe�cient of the highest-order derivatives (E, 2011). One
example are the Navier-Stokes equations for incompressible �ows at large Reynolds num-
bers Re�which in this case serves as the scale parameter ε = 1

Re
(adapted from E, 2011,

p.4):

ρ0(∂tu+ (u · ∇)u) +∇p = 1
Re

∆u
∇ · u = 0.
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Slow-fast ODE and PDE systems similar to equations 2.13 and 2.4.1 can be treated
by singular perturbation theory (Kevorkian and Cole, 1996; Verhulst and Bakri, 2007),
with Fenichel theory as its basis.

Fenichel theory provides theorems to treat slow-fast systems (equation 2.13, see the
original work of Fenichel (Fenichel, 1972; Fenichel, 1979), and a modern treatment in
the book of Kuehn (2015)). Figure 2.19 illustrates the general setting described by the
theory. A dynamical system with a small scale parameter ε generates trajectories on a
manifoldMε. In the limit of ε = 0, the system is reduced to trajectories onM0, which
is typically easier to handle than Mε, because the fast components of the system are
removed completely.

M0

Mε

Figure 2.19: ManifoldM0 for the limit case ε = 0 (line) and approximating manifoldMε

(dashed line). Fenichel theory uncovers the properties of M0 that ensure the existence
of the approximating manifold. The theory also de�nes when the behavior of dynamical
systems on M0 is similar to the behavior on Mε, which is shown by three consecutive
time steps here (crosses).

The theorems provide the tools for geometric singular perturbation theory, and the
theoretical basis for methods relying on numerical approximations of manifolds. Essen-
tially, the theorems assure existence of manifolds Mε close to M0, and state that the
behavior of the system onMε is not very di�erent from the behavior onM0. Numerical
approximations of slow-fast systems (2.13) are thus accurate even in the vincinity ofM0.

There are also systems with more than two scales. The number of scales can be �nite,
but also countably in�nite, or even continuous. In the latter case, no di�erentiation
between scales is possible. Examples of systems with a continuum of scales are turbulent
�ow systems. These systems are often very di�cult to solve numerically, because the
whole continuum of scales interacts and there is no possibility to cut o� scales after a
certain, �nite number. Usually, a physically inspired closure relation is used to treat the
missing scales after a cuto�. An example of a closure relation is the assumption of linear
dependence of the viscous stress on the local strain in Newtonian �uids (Panton, 2013).
The closure is valid in a certain area of the system's state space, and approximates the
in�uence of the scales not treated in the system of equations.

The book of Pavliotis and Stuart (2008) treats the theory of averaging and homog-
enization for ordinary, partial, and stochastic di�erential equations, as well as Markov
chains (a special type of discrete dynamical systems). They consider linear dynamical
systems of the form

d

dt
uε = Lεuε, (2.14)

where uε is the solution, and Lε is a linear operator. Both depend on a small scale
parameter ε. Since uε can be a function, both partial and ordinary linear di�erential
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equations are treated simultaneously. The operator Lε is assumed to have one of the two
forms

Lε =
1

ε
L0 + L1 (2.15)

or

Lε =
1

ε2
L0 +

1

ε
L1 + L2. (2.16)

The �rst case is referred to as averaging or �rst-order perturbation theory, and the second
case homogenization or second-order perturbation theory.

2.4.2 Data-driven methods for multiscale systems

Data-driven methods for multiscale systems can be separated into methods for analysis
and methods for simulation. Model order reduction is traditionally an equation-driven
method, but recently received considerable attention when performed data-driven.

It is possible to reduce the dimension of the state space of a dynamical system through
a combination of equation- and data-driven techniques. The new, lower-dimensional state
space is found by a change of basis from the original space to the new space. New basis
functions allow for a more compact description of the state variables. An equation-driven
method would �nd or choose the basis functions analytically, for example, a Fourier
basis instead of the canonical basis in Euclidean space. However, for many systems, it is
advantageous to choose basis functions adapted to the problem, which is possible through
data-driven techniques. In this case, the basis functions are computed from data, and
then used to represent the states of the system.

The method of snapshots (Sirovich, 1987) is a prominent example. Given a number
of points in state space that the dynamical system visits over time (called snapshots),
a new, reduced basis for the space of solutions is computed by principal component
analysis. The dynamical system then can be solved with the principal components as a
basis for the state space (see section 2.2.1 on linear decomposition, and example 4.1.1
for an application). If the number of principal components is signi�cantly less than the
original number of dimensions of the state space, a signi�cant dimensionality reduction
is performed. If the original dynamic is given through a linear operator, it can even
be de�ned analytically on the new basis, which results in very accurate reduced order
models. The book of Schilders, Rommes, and van der Vorst (2008) reviews the subject
of model order reduction in general. Carlberg et al. (2013) discuss and advance the state
of the art of non-linear, data-driven model order reduction in �uid dynamics.

Numerous methods are used to analyze systems with multiple scales. The analysis
is performed through computation of quantities interesting for the given application.
In most cases, a computationally e�cient numerical simulation over time or space is
necessary. If the methods are able to extrapolate from given data, the simulation is also
called forecasting.

Many methods build on the basic idea of a decomposition of the state space into
principal components, and almost all of the methods employ some form of spectral de-
composition of matrices. For inherently linear systems, the theory and numerical appli-
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cations are already developed very far, see (Moore, 1981) for an assessment of principal
component analysis in linear systems for control and model reduction.

Barrault et al. (2004) describe the empirical interpolation method (EIM) for model
reduction in nonlinear systems. Peherstorfer et al. (2014) build on their results with
the Localized Discrete Empirical Interpolation Method (LDEIM). Romijn et al. (2008)
combine a known physics model as an approximation to a given process, and add a black
box model in form of neural nets to capture unknown nonlinearity. Coifman et al. (2008)
use di�usion maps with dynamical systems and the equation-free approach, and Singer
et al. (2009) use a special kernel in the di�usion map to �nd intrinsic, slow variables in
highly stochastic systems.

Through the recent availability of large data sources, and the fast generation of nu-
merical solutions to complex systems, the approximation of the Koopman operator for
dynamcial systems has risen in importance and coverage in the literature (Rowley et al.,
2009; Budi�si¢, Mohr, and Mezi¢, 2012). The Koopman operator is de�ned in the following
setting. Consider a nonlinear dynamical system

x(k + 1) = f(x(k)),

with x ∈ Rn, k ∈ N, and observation functions y : Rn → R. The Koopman operator K is
a linear functional, acting on the observables y by projecting them further in time, such
that

(Ky)(xk) = (y ◦ f) = y(xk+1). (2.17)

Budi�si¢, Mohr, and Mezi¢ (2012) introduce the operator in a setting that includes both
ODEs and PDEs, and the work of Brunton et al. (2016) combines Takens delay embed-
ding and the Koopman operator in an e�ort to predict chaotic systems over a certain
time span using a linear, forced dynamical system. The composition property of K of
the observation and the dynamic of the system is the reason for the alternative name
composition operator. The linearity of the Koopman operator makes it an interesting ob-
ject for numerical approximation as a matrix. Dynamic Mode Decomposition (Schmid,
2010) and its extensions (Williams, Kevrekidis, and Rowley, 2015) leverage this linear
structure to approximate the operator in �nite dimensions. The eigenvalues and eigen-
functions of the operator provide a decomposition into spatio-temporal features of the
dynamical system under study (Giannakis, Slawinska, and Zhao, 2015). A di�usion map
of time-delayed observations provides a non-linear and typically low-dimensional embed-
ding of dynamical data. The Koopman operator provides a complementary picture, with
an in�nite-dimensional state space, but linear dynamic and observation function.

The multigrid algorithm and its extensions to systematic upscaling (Brandt, 2005;
Brandt et al., 2011), equation-free methods (Theodoropoulos, Qian, and Kevrekidis,
2000; Kevrekidis and Samaey, 2009), and heterogeneous multiscale methods (E and
Engquist, 2003; E et al., 2007) are methods for on-demand, data-driven upscaling. The
general idea is to assume a model on the macroscopic scale exists, but only its state
space can be accessed through observation of the state of a microscopic model on a
�ner scale. To advance in the macroscopic domain, the microscopic model�most of the
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time, a simulator of the model�is queried on demand, to compute the next state of the
macroscopic model (see �gure 2.20).

microscopic

macroscopic
U F(U)

f(u)u

Figure 2.20: General concept of using a microscopic simulation to advance on the macro-
scopic scale. Starting at the macroscopic scale, the current value of U is mapped to a
microscopic state u, advanced with a microscopic simulation to f(u), and then mapped
back to the macroscopic scale. This procedure thus computes F (U), a simulation step
on the macroscopic scale.

Table 2.2: Names of the steps of systematic upscaling, equation-free methods, and het-
erogeneous multiscale method.

Method step 1 step 2 step 3

Systematic upscaling, multigrid prolongate simulate project

Equation-free methods lift simulate restrict

Heterogeneous multiscale method reconstruct simulate compress

All of the equation-driven and data-driven methods discussed above are used to gener-
ate models that exactly reproduce, or approximate, the output of a given, more complex
model. Although not explicitly stated in most cases, the newly generated models can be
thought of as surrogates for the original.

2.5 Surrogate models

The concept of a surrogate model is to replace a given model by another one, which is
cheaper to evaluate or easier to analyze (Qian et al., 2006). Actually, every model of a
process in nature can be studied instead of that process and is hence also a surrogate. A
surrogate model, however, replaces a given model, not a real process. Figure 2.21 shows
the process of numerical computation of surrogate models from observation data of an
original model.
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Figure 2.21: The concept of a surrogate model, compared to an original model. From
given input parameters, the original model generates values of state variables over time,
which are then measured to yield the relevant data for the application. From this data,
a surrogate model can be computed, which can reproduce the relevant data either also
through internal state variables, or directly. The thesis discusses the bottom-most path
input�generate�observe, and the approximation of the functions involved.

A simple example for a surrogate model is a response surface. It does not capture
dynamic information, and thus also does not need internal state variables, but yields
observations independent of time, which is enough for many scenarios. Consider the
scenario shown in �gure 2.22, where 100 pedestrians move through a bottleneck (Dietrich,
Albrecht, and Köster, 2016). The microscopic model is a dynamical system, the Gradient
Navigation Model (Dietrich and Köster, 2014). The observed value is the total evacuation
time - that means one number as an output of a complete simulation. The parameters
are mean and standard deviation of the distribution of desired speeds of all pedestrians.
Combined with the quantity of interest, the surrogate is a surface from the parameters
to the evacuation time (�gure 2.23).

Figure 2.22: Example scenario where a surrogate can help estimate the evacuation time
for given parameters. One hundred pedestrians move from the starting area on the
left through the bottleneck, and to the target on the right. Their desired speeds are
distributed randomly with a normal distribution N(v, σ) with mean speed v = 1.3ms−1

and standard deviation σ = 0.26ms−1. Resulting desired speeds are accepted if they lie
between 0.3 and 3.0, and redrawn otherwise.
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Figure 2.23: Response surface of the evacuation time through the bottleneck, given mean
and standard deviation of the pedestrians desired speed. The nine red crosses indicate
where microscopic simulations were used to estimate the evacuation time. The response
surface is a quadratic interpolation of the results.

If the original model is not known, but only the observation data is available, the
computation of surrogate models can be used to understand the dynamics and internal
structure of the original model. This is one of the main objectives of machine learning. A
response surface does not capture the dynamical system producing the observed values.
Scenarios where the observed values depend on time require dynamical systems, which
can be replaced by dynamic surrogates. Romijn et al. (2008) employ a grey-box modeling
approach for the reduction of nonlinear systems, combining a known physics model as
approximation and add a surrogate model, a neural network, to capture unknown non-
linearity. When the observed values are on a di�erent scale than the dynamical system
that produces them, constructing the dynamical surrogate model transitions these scales.

2.6 Summary

We introduced the concept of manifold, embedding, and �ow. Using these concepts, we
then de�ned the term dynamical system. Dynamical systems have trajectories, the set
of states over time given a speci�c initial state.

Trajectories can be analyzed geometrically. For this, we introduced the geometric
concepts of intrinsic and extrinsic dimension of an object. Using the example of a line,
a curved surface, and a two-sphere, we explained the intrinsic dimension of a geometric
object through parametrization. The extrinsic dimension was explained through the
introduction of embedding, or ambient, space. This space surrounds the geometric object
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under study, and is vital to methods for dimension reduction. We discerned linear and
non-linear methods for dimension reduction, and demonstrated their capabilities on the
Swiss roll manifold, a two-dimensional surface rolled up in three dimensions. Linear
methods perform poorly, as there is no linear subspace able to unfold the Swiss roll
back to its two-dimensional state. We chose di�usion maps as an example of a non-linear
method, and showed that the method can indeed reconstruct the two-dimensional nature
of the Swiss roll.

Having introduced basic concepts and methods, we showed how they can be utilized
in the more complex setting of Takens' theorem. This theorem concerns delay embedding,
and is the theoretical basis for the reconstruction of dynamical systems from observation
data. We will utilize the reconstruction through Takens' theorem in the next chapter,
when building a surrogate model.

There are already many methods to treat multiscale, and, in particular, particle sys-
tems. In this section, we classi�ed them as equation-driven or data-driven. We de�ned an
equation-driven method to mostly use the formulaic description of the system, modify-
ing equations to achieve dimension reduction or homogenization. A data-driven method
was de�ned to work primarily on the data generated by the system under study. Some
methods shown here utilize both equation-driven and data-driven aspects.

After the state of the art on multiscale methods, we focused on the concept of surro-
gate models. Data-driven surrogate models enable an e�cient way to store information
gained through microscopic models, or through multiscale methods. Capturing the dy-
namic of a process with a data-driven procedure is a challenge, which we solve as the
main contribution of the thesis, and the next section.
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Chapter 3

Dynamic, data-driven surrogate

models

3.1 Scale transition with dynamic surrogate models

Dynamic, data-driven surrogate models can be on a di�erent scale than the system
creating the data. This section describes the construction process of the surrogate model
in detail. We �rst give an informal description of the general idea. A precise mathematical
de�nition follows, where tools such as manifolds, dynamical systems, and time-lagged
embedding are employed. Figure 3.1 compares the original model generating observations
on the left with the surrogate model on the right. Starting at the top, we have to choose
a set of parameters to initialize the model. This includes the initial conditions of the
state space. The state is advanced by the functions f and g, so that time series of the
intrinsic state variables x(t) and z(t) are generated. The construction of the surrogate
model encapsulates the parameters p into the new state variables z, such that unlike f ,
g does not depend on p anymore. At each point in time, the state can be measured by
the observation functions y and ỹ, creating the observations from the original and the
surrogate model. The output of the surrogate model approximates the output of the
original when a �nite amount of data is used. In the limit of in�nite data, the output is
reproduced exactly. Both the approximation and the limit case are made precise by two
theorems in the next section (theorems 2 and 3).
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input p

original model
x(k + 1) = f(p, x(k))

numerical model
z(k + 1) = g(z(k))

output y(x(k)) output ỹ(z(k))

x(0) = x0(p) z(0) = z0(p)

observe z(k)observe x(k)

≈

Figure 3.1: General structure of the original model (left) compared to the surrogate
model (right).

The construction process of the surrogate is outlined here, while all steps are explained
in detail in the following sections. Two dynamical systems are chosen to demonstrate the
numerical procedures: a spiral system with a limit cycle, and a more applied example,
where virtual passengers leave a train.

1. Construction

(a) Choose relevant parameters.

(b) Choose relevant observables.

(c) Generate observation data from microscopic model by sampling the pa-
rameter space.

(d) Embedding of the data through time lags.

(e) Manifold learning with di�usion maps.

(f) Interpolation of the new variables, which forms the surrogate model.

2. Simulation

(a) Input the parameters.

(b) Map into the space of closed observables.

(c) Generate the state of the closed observables over time.

(d) Map into original space by observing the generated states.

Figure 3.2: Construction and simulation process of the data-driven surrogate model.
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3.1.1 Motivating examples: spiral and bottleneck scenario

We demonstrate the scale transition with surrogate models developed in this section on
two examples. For a mathematically clear presentation, we use a spiral system in two
dimensions. As a more applied example, we show the scale transition from micro to
macro in a bottleneck scenario from crowd dynamics.

Spiral system with limit cycle

Consider a slow-fast system in two dimensions, written in angular coordinates as

εα̇ = 1
ṙ = r3 − r, (3.1)

with 0 < ε � 1 and initial conditions r(0) = r0 ≥ 0, α(0) = α0 ∈ [0, 2π). This system
has an unstable steady state for r = 0, and a stable limit cycle for r = 1. The radius r
is the slow variable, the angle α is the fast variable. The scale parameter ε enters as the
inverse of the angular speed�the smaller epsilon is, the faster the system spirals around
the center at r = 0. Figure 3.3 shows the state space in Cartesian coordinates, for two
di�erent angular speeds 1

ε .

−2 −1 0 1 2
−2

−1

0

1

2

x1

x
2

−2 0 2

−2

0

2

x1

x
2

Figure 3.3: Phase diagram of the system in Cartesian coordinates, with a limit cycle and
an unstable steady state (red cross). The plots were generated with 121 equally spaced
initial conditions, and integrated until t = 1 (left plot, ε = 1) and t = 1× 10−2 (right
plot, ε = 1× 10−2).

In this chapter, we construct a data-driven surrogate model for the dynamic of the
radius in this system, and include detailed descriptions of the construction for each step.
We choose this system because all information is completely known beforehand, and
can be checked against the results from the surrogate construction process. The scale
parameter ε is chosen such that the angle is the fast variable, the radius the slow variable.
Apart from that, it does not have an e�ect on the construction of the surrogate, as the
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variables are decoupled. This removes the di�culty of �nding a suitable coarse variable
completely, even though the construction process of the surrogate model would perform
this automatically. As the one-dimensional radius is the coarsest description possible,
the surrogate model will also have one variable with a bijection to the radius.

Bottleneck scenario

We choose a bottleneck scenario with moving pedestrians as a second motivational exam-
ple for the surrogate model. In the scenario, passengers of a train leave a wagon through
its door, the bottleneck, and move past passengers waiting on the platform. Di�erent
to the limit cycle system, it is no longer possible to easily �nd a macroscopic model
that exactly reproduces the observations from the microscopic model. The scenario was
published in the context of surrogate models by the author (Dietrich, Köster, and Bun-
gartz, 2016). A train enters a train station where passengers are already waiting on the
platform. In this scenario, it is important to know the number of passengers over time,
both on and o� the train, because very dense situations or a sudden change of density
can be dangerous. We use the Gradient Navigation Model (Dietrich and Köster, 2014)
to describe and simulate the interactions between passengers and the geometry on the
�ne scale. The state x of the microscopic model contains all positions, velocities and
parameters of the passengers. The function f is the simulator openVADERE (Vadere
Crowd Simulation, 2016), with an implementation of the Gradient Navigation Model.
The observables in the bottleneck scenario are the expected number of passengers on the
train NT and on the platform NP , over time. The expectation is computed over several
runs of the scenario with the same initial parameters, but di�erent initial positions of
the pedestrians on the train and the platform. The parameters p are the initial numbers
of passengers on the train and the platform, NT (0) and NP (0). Given these values, we
distribute passengers uniformly on the two starting areas.

exit

platformtrain

Figure 3.4: Scenario setup for the evacuation of a train. Published by Dietrich, Köster,
and Bungartz (2016).

In this example, the macroscopic system cannot be constructed only by knowing
the current state of the macroscopic variables: the change in number of passengers on
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and o� the train depends on the initial number of passengers. Hence, more information
is needed in order to advance in time. We construct this information through time-
delay embedding theory (section 2.3). There are several possibilities to simulate the
bottleneck system at the macroscopic scale. One could use equation-driven techniques
such as homogenization and averaging to scale up the di�erential equations describing
individual behavior. This would yield a macroscopic model, possibly also a di�erential
equation, for the exit process out of the train. Another approach is taken in the natural
sciences. The microscopic simulator or a live experiment generates output data, namely
the number of persons on and o� the train over time, starting with several di�erent
initial settings. A macroscopic model is then proposed and validated using the output.
Classical surrogate models would try to approximate the output either for each time step
individually, or as a response surface. For example, such a system could yield the mean
evacuation time given the initial number of pedestrians inside and out of the train. For
dynamic properties of the system, such as the out�ow over time, an interpolation of all
output would be necessary. Both equation-driven and data-driven approaches yield a
macroscopic model, in most cases a system of equations. A data-driven surrogate model
as constructed here yields a dynamical system that can be used in simulations. However,
similar to classical surrogate models it is not present as equations, but numerical data and
interpolating or approximating functions. The data for the internal variables is generated
automatically through the construction process outlined in the next section. The result
is either more storage e�cient than classical surrogate models (see theorem 4), or more
accurate while using the same amount of storage. The following assumptions are used
for the train setting:

Assumption 1 Passengers follow the rules of the Gradient Navigation Model (Dietrich
and Köster, 2014).

Assumption 2 Desired speeds approximately obey a normal distribution with mean
1.34m/s and standard deviation 0.26m/s (Weidmann, 1992).

Assumption 3 Initially, the positions of passengers in the train and on the platform
are uniformly distributed over the starting areas. We use a �ve second starting
phase for the distribution to settle in a state where all passengers on the platform
assume their desired distances to others, and passengers in the train queue in front
of the door.

Assumption 4 Waiting passengers do not strongly react to the leaving passengers, and
only move away if inter-personal distances are too small. By this assumption, we
exclude cooperation e�ects, such as the formation of a passage way in front of the
door.

Assumption 5 Small di�erences in the initial positions of the passengers do not cause
large di�erences in behavior on the system level. This allows us to start several
simulation runs with the same initial numbers of passengers but small changes in
positions on train and platform, and then average over the results.

41



We are interested in the number of passengers over time, both on the train and on the
platform. A simulation with 40 passengers on the train and 50 passengers waiting on the
platform results in the change of passengers depicted in Figure 3.5. After 16 seconds, all
90 passengers are on the platform.
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Figure 3.5: Evolution of the passenger number on the train and on the platform. 50
persons start on the train, 40 on the platform. After 16 seconds, all passengers are on
the platform.

3.1.2 Construction of the surrogate model

In this section, we describe the algorithmic construction of the data-driven surrogate
model. The construction process is the same for all applications shown in chapter 4. The
general process is described in combination with the speci�cs necessary for the spiral
system (equation 3.1) and the bottleneck example (�gure 3.4).

1a) Choose relevant parameters The choice of parameters is one of the fundamental
problems in applications. For example, in crowd dynamics, the number of people
entering through speci�c entrances can decide whether a simulation of the crowd
accurately predicts the crowd �ow or is completely worthless�because in reality,
people will come through other entrances and thus the crowd �ow occurs in a
di�erent area. Here, we do not discuss how to choose correct parameters for what-if
scenarios. For the construction of the data-driven surrogate model, we need systems
which react continuously to the parameters chosen. Discrete or �nite parameter
spaces are possible, but not discussed here.

In the spiral example, we choose the initial positions in Cartesian coordinates as
parameters p. We sample them over a grid with 11× 11 = 121 equally distributed
points shown in �gure 3.6.
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Figure 3.6: Parameter sampling in the spiral example. Each cross is a parameter sample
in Cartesian coordinates (x1, x2), which is converted to angular coordinates (φ, r) and
simulated through equation 3.1.

In the bottleneck example, we sample the parameters p = (NT , NP ) on a grid with
5× 11 = 55 equally distributed points. To reduce the stochastic e�ects, we run ten
simulations with randomly distributed initial positions for each value p, and then
compute the average values for NT (t) and NP (t) for each individual time t over the
ten simulation runs. See section 3.2.7 for a classi�cation of stochastic e�ects.

1b) Choose relevant observables Choosing the right observables for a given system
is the fundamental problem for a successful transitioning of scales. However, for
the data-driven surrogate model discussed here, this step concerns the choice of
observables relevant to the application. A safety o�cer might be interested in
crowd density and �ow, but these variables might not hold enough information to
advance in time. This is the closure problem discussed in section 2.3. Ultimately,
the surrogate model needs intrinsic variables which hold enough information to
advance in time, which is guaranteed through time delay embedding. We call these
intrinsic variables closed observables. The observation function then reconstructs
the relevant observables from the closed observables.

The relevant observable we choose for the spiral example is the radius of the spi-
ral. We compute it by �rst observing the system in Cartesian coordinates (x1, x2)
over time, and then computing r(t) =

√
x1(t)2 + x2(t)2. The data we build the

surrogate model from is computed through the whole system (3.1), but only r is
stored and processed further. In this particular system, the angle and the radius
are independent systems. In general, the variables are not separated, and the ob-
servation function is a combination of them, such as the total number of people
in a certain area, or the current mean speed. In fact, by observing the system in
Cartesian coordinates, we already have such a combination of variables, which is
then disentangled again through the computation of the radius. If we observed
the angle instead of the radius, the surrogate model would capture the circular
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behavior with constant speed, on a circle with constant radius. The steady state at
r = 0 would enter as a bifurcation, as there is no circular behavior when measured
in Cartesian coordinates.

In the bottleneck example, we observe two numbersNT andNP counting passengers
on the train and passengers on the platform. The observer function y on the current
state x yields y(x) = (NT , NP ) ∈ N2

0. In case passengers on the train can all leave
onto the platform, NP will equal the sum of the initial values NT (0) and NP (0) at
the end of the scenario. If there are too many passengers waiting on the platform
at the beginning, not all passengers on the train will be able to leave.

1c) Generate observation data After the parameters and observation function are
chosen, the microscopic model is used to generate data. Alternatively, the data
can come from physical experiments�where all challenges with experiments apply,
such as control of variables and environmental conditions.

In the spiral example, we sample the radius for all 121 initial conditions and a time
span of T = 1× 10−3 seconds with N = 10 points in time. We do not need long
trajectories to capture the dynamic in this example, because no stochastic e�ects
play a role, the system is e�ectively one-dimensional, and smooth. In total, we
generate 121× 10 = 1210 data points (see �gure 3.7).
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Figure 3.7: Left: the observed data in the spiral example is the radius of the spiral over
time. Right: the trajectories including the angle until t = 1× 10−3, starting at the initial
conditions, with scale parameter ε = 1× 10−2.

In the bottleneck example, we run the simulation over 50 seconds, for the parameter
values in table 3.1. If there are more than 100 number of passengers on the platform
at the beginning, not all passengers can leave the train.
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Parameter Values

NT (0): Initial numbers of passengers on the train 10,20,30,40,50

NP (0): Initial numbers of passengers on the platform 0,20,40,60,80,100,120,140,160,180,200

Runs per initial value pair (NP , NT ) 10

Table 3.1: Parameters for the simulations of the bottleneck example. In total, 5 ·11 ·10 =
550 simulations were started. In the example, observations were one second apart.

1d) Time-lagged embedding of the data Time delay embedding is needed to ensure
the closure of the internal variables of the surrogate model. For a reconstruction
of a state space of dimension n, at least 2n + 1 time lags are necessary (also see
section 2.3). If more than 2n + 1 delays are used, the ambient dimension of the
reconstructed space is higher than necessary, but the intrinsic dimension is still
the same. Delay embedding also has a smoothing e�ect on the new observables.
Also, adding more delays does not harm the parametrization with di�usion maps,
as they are not a�ected by the ambient dimension of the points they act on. The
fact that the intrinsic dimension is stable, and that di�usion maps are not a�ected
by the ambient dimension, permits to choose more than the 2n + 1 delays. This
is crucial to applications where the dimension of the state space is unknown, and
has to be guessed beforehand to compute the number of necessary delays. The
available data is usually �xed, and choosing more delays cuts o� more data at the
end of the trajectories. This can be circumvented by using the last data point in
every trajectory and concatenating it 2n + 1 times to the end of the trajectory.
From a dynamical systems perspective, this introduces a steady state at the end
of each trajectory, which is not always favorable. It is not a problem in scenarios
that end in a steady state anyway, such as the bottleneck scenario, where nothing
changes after all train passengers have left the station. In the spiral example, there
are even two steady states for the radius, r = 1 and r = 0, and all trajectories tend
to one of them depending on the initial state (r0 = 0 or r0 6= 0).

The radius of the spiral already contains enough information to advance in time,
which can be seen from equation 3.1: only the radius itself is used to compute its
time derivative. We still use �ve delays in time here, to demonstrate the delay
embedding and the di�erent projections between observed space, delay space, and
di�usion map space. The delays are separated through ∆t = T

N−1 = 1× 10−3

9 . Each
�ve-dimensional delay vector in the spiral example has the form

H(r(tk)) =
[
e−4κr(tk), e

−3κr(tk + ∆t), . . . , r(tk + 4∆t)
]
, (3.2)

with tk = k∆t, k = 1, . . . , 5, and di�erent initial conditions r0 = r(0). We choose
κ = 1 to project onto the most stable Oseledets subspace (see section 2.3). This
subspace contains all information about the system, since only the one-dimensional
radius is necessary to compute future values. The parameter κ has to be chosen in
the interval [0,−σ1], where σ1 < 0 is the Lyapunov exponent associated with the
most stable Oseledets component of the system (Berry et al., 2013). In practice,
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the Lypapunov exponents are unknown and normally hard to estimate. In general,
large values (> 1) of κ are associated with strongly contracting systems, and small
numbers (� 1) with weakly contracting systems. Also, choosing κ closer to zero
projects strongly onto the most stable Oseledets subspace, which regularizes the
dynamic but also smoothes e�ects from more unstable subspaces which might be
needed to reconstruct the observation data later. Table 4.1 lists all values of κ
used in the examples throughout the thesis, and serves as a reference for similar
systems. We generated ten points in time for each trajectory, therefore �ve new
delay vectors are generated for each initial condition. In total, we use 121×5 = 605
delay vectors to form the delay space.

The bottleneck scenario has two parameters, and we observe two variables NT and
NP over time. If we assumed that the two variables already contained enough
information to compute future values, and the parameters both independently in-
�uenced the dynamic, we needed a four-dimensional state space for the surrogate
model. However, the values of NT and NP might not be the optimal choice as
state variables, or there are even more than two variables needed to �nd future
values. To make sure that enough information is present in the state space of the
surrogate, we assume that the hidden, macroscopic model operates on �ve state
variables. The number �ve is an informed, conservative guess: it is �more than
double the number of observations�, that is, 2m+ 1 = 5 = n. The dimension of the
parameter space P is two, as we vary the numbers NT (0) and NP (0) to generate
trajectories. In total, we thus need 2(dimP + n) + 1 = 2(2 + 5) + 1 = 15 time
lags in the construction. This is a very conservative assumption, and in fact, the
number of state variables needed for the surrogate is only two, a result computed
in the next step.

1e) Manifold learning with di�usion maps The delay vectors usually are elements
of a high-dimensional space, because the dimension of the delay vectors is the
product of the dimension of the individual observations and the number of delays.
The high dimension of the delay vector space is only an ambient dimension of
the actual manifold the points lie on. We �nd the intrinsic dimension, as well
as a parametrization of the manifold using di�usion maps (see section 2.2.2). To
construct the di�usion map, we compute the distance matrix

Dij = ‖Hi −Hj‖ (3.3)

between all delay vectors Hi, Hj , where ‖ · ‖ is the Euclidean norm in Rn. Then,
we construct the di�usion map with the following algorithm (Berry et al., 2013),
where the parameter ε is chosen larger than the median of all Di,j (see parameter
table 4.1).
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Di�usion map algorithm for non-uniformly sampled data:

1. Form the transition matrix Wi,j = exp(−D2
i,j/ε

2).

2. Normalize density with parameter α = 1:

(a) Form the symmetric matrix J = (W +W T )/2.

(b) Form the diagonal normalization matrix Pii =
∑

j Jij .

(c) Use P to form the kernel matrix K = P−αJP−α.

(d) Form the diagonal normalization matrix Qii =
∑

jKij and its inverse

Cholesky factors Q−1/2.

3. Solve the eigensystems Q−1/2KQ−1/2vk = λkvk for all k, then sort λk by
absolute value.

4. The di�usion map coordinates depend on Hi and can be computed
through ψk(Hi) = λkQ

−1/2vk(H
i), such that the di�usion map is

Ψ : Hi 7→ (λ2ψ2(Hi), λ3ψ3(Hi), . . . ).

The �rst eigenvector ψ1 only contains ones and is omitted. We also truncate the
map for small λk and remove all ψk that are harmonics of the previous eigenvectors.
In general, removing harmonics of previous eigenvectors is no trivial task, especially
in higher dimensions. With the idea of a surrogate model constructed on the
eigenvectors, there is a simple algorithm to remove harmonics of eigenvectors.

Note that the number of combinations in the selection step grows rapidly. But as
the simulation with the constructed model is very fast (in the order of milliseconds),
we can choose n to be between 10 and 20. An even easier�but less automated�
method to select the eigenvectors is to look at plots relating u2 and ui (see �gure 3.8,
where u3 and u4 depend on u2). If they are independent of each other, many values
of ui are stacked on individual values of u2. This procedure can of course only be
applied in cases where there are only two independent eigenvectors.

In all examples and applications discussed here, we can remove harmonics through
visual inspection (see �gure 3.8). The resulting variables zi = Ψ(Hi) are the closed
observables. In the spiral system, there is only one relevant eigenvector of the
di�usion map, ψ2. The eigenvector ψ2 parametrizes the manifold composed of the
delay vectors in the �ve-dimensional delay vector space from the previous construc-
tion step. The manifold must be a curve, because only one vector is necessary to
parametrize it.
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Algorithm to remove dependent eigenfunctions:

1. With the di�usion map algorithm described in section 3.1.2 compute the �rst
n components of the di�usion map, where n is so large that all important,
independent eigenvectors are included. As the eigenvectors are sorted by the
absolute value of the associated eigenvalues, we can use u2, u3, . . . , un. The
eigenvector u1 is trivial. The eigenvector u2 is always included in the set of
important eigenvectors.

2. Select k out of n− 1 remaining eigenvectors and construct a numerical model,
using a linear interpolation method in k + 1 dimensions.

3. Simulate a suitable number of time steps with an input parameter set not used
in the construction. Compute the error of the output to data from the original
model computed with the same input parameter set.

4. Select all sets of eigenvectors that produce a low error (the actual value depends
on the original model and scenario).

5. Sort the sets by the number of eigenvectors, and choose the set that has the
smallest number of eigenvectors.
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Figure 3.8: Eigenvectors ψ2, ψ3, and ψ4 of the di�usion map plotted against the �rst
nontrivial eigenvector ψ2. Since only ψ2 is relevant in the parametrization of the manifold,
ψ3 and ψ4 are harmonics of ψ2.

We now interpret the values of the eigenfunction ψ2 as the values of the intrinsic
variable z1 of the surrogate model. Generally, we call the variables zi closed observ-
ables. For the spiral example, we need only one closed observable, which we call
z := ψ2. Figure 3.9 shows the trajectories of the new system in di�usion map space.
In the spiral example, the radius is one-to-one with z, and thus the trajectories in
the new space show the same behavior as the radius (compare �gure 3.7). If we
plot z against its derivative in time (right plot in �gure 3.9), we see that the system
is still closed�the time derivative of z can still be computed given only z.
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Figure 3.9: Left: the closed observable z plotted for each of the 121 initial condi-
tions over time. There are only eleven distinct trajectories, and the decay over time
is not visible because the time interval is too small. Right: the function g(z) =
(z(t−∆t) + z(t+ ∆t)) /(2∆t), evaluated at all computed points z(t) for all parameters.

In the bottleneck example, two eigenvectors of the di�usion map are needed to
reproduce the observed values to an acceptable accuracy. The stochastic nature of
the system on the macroscopic scale cannot be fully eliminated in this example,
thus the eigenvectors of higher order also capture information mostly resulting from
this stochasticity.

1f) Form the surrogate model by interpolation of the new variables After the
delay manifold is parametrized with the di�usion map, we can construct the ini-
tial value map z0, the dynamic g, and the observation function ỹ for the surrogate
model. The construction problem is similar to the construction of a model from ex-
perimental data. However, because the generation was performed using time-delays
and di�usion maps, all data points are guaranteed to contain enough information to
advance in time, and have a very low dimension. Closure and low dimension enable
us to use simple interpolation and approximation procedures for surrogate models
of many di�erent data sources, as will be shown through applications in chapter 4.
We use I[·] as a generic interpolation procedure for the given arguments.

1. The coordinate transform z0 between the parameters p and the initial values
z(0) is of the form

z0(p) = I[Ψ(H(x0(p))],

where Ψ(H(x0(p))) = Ψ(y(x0(p)), . . . , y(fT−1(p, x0(p)))).

2. The dynamic g is an interpolation of the derivative of z(t):

g(z(t)) = I

[
z(t+ ∆t)− z(t)

∆t

]
,
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where the mapping z 7→ g(z) is well-de�ned through the closure guarantee of
Takens' theorem (see �2.3). Note that the interpolation of the dynamic can
also take more values over time into account to be more accurate.

3. The observer function ỹ of the closed observables is an interpolant of the
observations in the original system:

ỹ(z(t)) = ỹ(ψ(H(t))) = ỹ(ψ(y(x(t)), y(x(t+ 1)), . . . , y(x(t+ T − 1))) = I[yn]

For the closed observable z of the spiral, we choose a polynomial of degree three
to approximate the dynamic g and the observer function ỹ. The initial value map
z0 maps from (x1, x2) to the closed observable z(0) and is approximated through
a linear, two-dimensional interpolant (MATLABs griddedInterpolant function).
Figure 3.10 shows all three interpolants together with the data.
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Figure 3.10: Data and associated interpolants for the surrogate model of the radius in
the spiral example. The left plot shows the initial map from (x1, x2) to the intrinsic
variable z. The center plot shows the dynamic g of the surrogate model, mapping z to
dz
dt . The right plot shows the observer function of the surrogate model, from z back to
the radius r, visualizing the bijection of z and r present in this example.

The bottleneck example needs at least two state variables z1, z2. This can be seen in
�gure 3.11, where a two-dimensional polynomial is �tted to the data points (z1, z2).
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Figure 3.11: Evolution function ∆g(z1, z2) = (∆z1,∆z2) in the form of two functions
∆z1 = g1 − z1, ∆z2 = g2 − z2 on closed observable coordinates z1 and z2. The shape of
the two functions is quite similar, but their scale (z-axis) is di�erent.

3.1.3 Simulations with the surrogate model

After the construction steps, the numerical model can be used for simulation and analysis,
independent of the original system. With the following steps, the surrogate model can
be used in a simulation (see �gure 3.2):

2a) Choose parameters p = (p1, . . . , pP ).

2b) Compute initial states z(0) = z0(p) of the closed observables.

2c) Iterate the given observables with the constructed dynamic, such that z(t + 1) =
g(z(t)), or solve d

dtz = ∆g(z) numerically, where ∆g is a second-order approxi-
mation of the gradient. In all applications discussed in this thesis, we solve the
latter, continuous system rather than the former, discrete system. Table 4.1 lists
all approximation methods used for the examples.

2d) Observe the states z(t) with the constructed observer function ỹ to generate obser-
vations of the original system:

ỹ(z(t)) ≈ y(x(t)). (3.4)

The simulation with the numerical model is independent of the original system, because
it can generate the observed values over time without queries to the original. The in-
dependence of the two systems enables a pre-computation of the numerical model on a
high-performance system or with a large array of experiments, which is then condensed
into the numerical model that can be used on a much less powerful device, such as a
smartphone.
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In the spiral system, the dynamic of the radius can be reconstructed from the Carte-
sian initial coordinates given as parameters. Figure 3.12 shows good agreement to ana-
lytically derived trajectories of the radius, here

r(t) = exp(t)/
(
exp(2t)− 1 + 1/r2

0

)
. (3.5)

The data used to construct the surrogate model originates from simulations up to t =
1× 10−3 (see part 1.c in section 3.1.2). The simulations performed here are over a
much larger time span, which demonstrates the power of the concept of an interpolated
dynamic. By sampling the parameter space and only performing short simulation runs,
we e�ectively sample the dynamic of the underlying system, which is then interpolated.
As soon as the interpolation has converged up to a certain accuracy, we are able to
reproduce the time evolution of observations over an arbitrary time horizon. We discuss
this convergence further in section 3.2.3. Since only the radius was chosen as a relevant
observable, the angle cannot be reconstructed with the surrogate model.
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1

2

time

r

surrogate model
analytic result

Figure 3.12: Comparison of the radius generated through simulation with the surrogate
model, and analytically derived trajectories. The initial conditions are spread over a
10×10 grid of [−2, 2], di�erent from the grid used during the construction of the surrogate
model.

In the bottleneck example, the trajectories can only be reproduced to a certain accu-
racy level. This is because we only use two dimensions for the closed observables z, and
use low-order polynomials as approximation functions. Figure 3.13 shows the number
of passengers on the platform as predicted by the surrogate model, compared to three
simulation runs with the same parameters.
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Figure 3.13: A prediction (bold line) of the average number of persons on the platform
by the constructed model, compared to three simulation runs (dotted). The incorrect
starting values for the prediction results from interpolation errors: the given initial values
(NP (0), NT (0)) = (60, 35) are transformed by the di�usion map Ψ into the reduced delay-
space space Ψ(H(M)), and after the simulation recreated by observation with ỹ.

3.1.4 Summary

In this section, we described a construction process for a data-driven surrogate model
able to capture the dynamics of a given process. We de�ned a model generically as
input-output system, with input parameters mapping to initial states, a map acting on
states to advance in time, and an observation function to create the desired output of the
system. The surrogate model is also de�ned as an input-output system. Its construction
involves a numerical estimation of the state space manifold of a dynamical system. This
step is crucial for the data-driven surrogate model. We showed how to construct the state
space, and how to create the interpolation of the map from parameters to initial states,
the map to future values, and the observation function. All of the construction steps were
detailed in general, as well as with their application to two example systems.After the
construction process, we showed how to simulate the surrogate model. This simulation
is now on the scale determined by the system underlying the observation, and not the
microscopic system given at the beginning.

It is not clear that the construction process for the data-driven surrogate model
actually produces a system able to reconstruct the original observations, and that it is
worth constructing the surrogate model instead of storing all output and interpolating
it. This will be shown in the next section.
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3.2 Analysis of dynamic surrogate models

The surrogate model structure developed in the previous section can be analyzed with
respect to numerical errors, stochastic e�ects, and in�nite-dimensional observer and pa-
rameter spaces. As the de�nition of the intrinsic dynamic of the surrogate model is very
generic, it is possible to use very elaborate methods to approximate it without a need to
adapt the theorem proved on numerical errors. We elaborate on several advanced meth-
ods for the dynamic and the impact on their speci�c errors. The analyses of numerical
errors and storage have been published by Dietrich, Köster, and Bungartz (2016). The
microscopic system has the form

x0 = x0(p), (3.6)

x(t+ 1) = f(p, x(t)), (3.7)

y(t) = y(p, x(t)), (3.8)

with time t, parameters p, initial map x0, dynamic f , and observer y (also see �gure 3.1).
The surrogate model has the same form and input parameters p, and we call the intrinsic
variables z, the initial map z0, the dynamic g, and the observer ỹ. The functions f and
g are sometimes not used as a map, but as the time derivative of x and z, respectively.
That change is explicitly stated for all cases.

3.2.1 Motivating example: spiral and bottleneck revisited

The construction process for the surrogate model was stated in the previous section, along
with two motivating examples: the limit cycle system and the bottleneck scenario. Here,
we use these two examples again, to demonstrate and motivate the theoretical results
that follow. Firstly, we generate observations of the limit cycle system with varying
sampling density over space and time, where the analytic solution of the system allows
to analyze the numerical error. This error depends on all three interpolants, and we
will prove the general form of this dependence in section 3.2.3. Secondly, we use the
bottleneck scenario as an example for a stochastic term introduced on the macroscopic
scale by unresolved microscopic e�ects. The example also demonstrates the assumption
of a macroscopic model, a notion which we will make precise in the next section.

The surrogate model for the radius in the limit cycle system is given by the functions
z0 : R2 → R, g : R→ R, and ỹ : R→ R, such that

z(0) = z0(x1, x2)
d
dtz(t) = g(z(t))

y(x1(t), x2(t)) = r(t) = ỹ(φ(t)).

(3.9)

In this example, the initial map z0 is the only function of the surrogate model that
does not map from R to R. We observe the radius through y(x1, x2) =

√
x2

1 + x2
2 = r. As

this makes observations independent of the angle, it is only necessary to sample points for
a particular angle. We choose the axis x2 = 0, so that z0 is a function of one variable. A
piecewise cubic interpolation scheme is used for all functions (MATLABs interp1 with
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the pchip option). We approximate g by two schemes, forward di�erences (a �rst order
scheme) and centered di�erences (a second order scheme), so that for ∆t := t1 − t0,

gf.d.(z(ti)) =
z(ti+1)− z(ti)

∆t
+O(∆t), (3.10)

gc.d.(z(ti)) =
z(ti+1)− z(ti−1)

2∆t
+O(∆t2). (3.11)

The parameter x1 is sampled by Nx points, and the trajectories are sampled in time
by Nt points. The total error e(Nt, Nx) for a surrogate model is computed through the
average over all parameters and trajectories, e(Nt, Nx) = 1

NtNx

∑
i

∑
k[(ỹ ◦ gk ◦ z0)(xi)].

Figure 3.14 shows the total error for both di�erencing schemes, in case one of the numbers
Nx or Nt is kept constant. The order of the two di�erencing schemes is visible in the left
plot. Since we employ the same interpolation scheme for all functions, the right plot does
not show a qualitative di�erence when changing the number of samples in space Nx. The
centered di�erencing scheme still shows better quantitative performance, which will be
made precise through theorem 3.30 below. Figure 3.15 shows the two-dimensional plots,
where both Nx and Nt are varied. As expected, the total error decreases with increasing
number of samples, where a change in Nt a�ects the error more drastically than a change
in Nx.
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Figure 3.14: Mean error of the limit cycle example for di�erent numbers of samples in
time (left plot, at Nx = 91) and space (right plot, at Nt = 50), for forward and centered
di�erence approximations of the dynamic g.
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Figure 3.15: Mean error of the limit cycle example for di�erent numbers of samples in
time and space, for forward (left plot) and centered di�erence (right plot) approximations
of the dynamic g.

The analysis of the numerical error in the limit cycle system is easily possible, be-
cause an analytic solution is known and can be compared to the numerical results. In
the bottleneck scenario, where a simulation of 200 pedestrians moves them from one side
to the other, no analytic solution is known either on the microscopic or on the macro-
scopic scale. Still, we have an analytic model on the microscopic scale�in this case,
the gradient navigation model. We use it in the simulation to generate the number of
pedestrians in front and after the bottleneck, which serve as the two observations on
the macroscopic scale. In fact, the macroscopic observations are de�ned as the expected
number of pedestrians for each time step. While the positions of the pedestrians in the
scenario are uniformly distributed over the starting areas, the exact expectation is no
longer be stochastically distributed, and hence the macroscopic model�in theory�is de-
terministic. However, we can only approximate the expected values numerically by the
empirical expectation, which is a random variable. The stochastic component stem from
averaging a �nite number of simulation runs, and a�ect the numerical approximation of
the surrogate model. In section 3.2.7, we discuss several of these e�ects.

3.2.2 Equivalence of the surrogate and the hidden macroscopic model

It is not obvious that the construction and simulation processes lead to a surrogate model
that is correctly approximating the data observed from the microscopic model. We proof
this here, using the theorems and tools discussed in section 2.4. The theorem stated
in this section relates the observations of the original system shown by �gure 3.1 to
the observations by the data-driven surrogate model. In the limit of in�nite data, the
observations are shown to be the same for arbitrary choice of parameters. For a �xed
value of parameters, the theorem can be proofed directly through Takens' theorem. The
crucial part of the proof concerns the treatment of the parameters, since the map of the
surrogate model does not depend on them, but still generates the same observations.
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The proof of the theorem considers three dynamical systems and their relation. The
�rst system is the original, microscopic system. We do not assume knowledge of the
model equations, but the system must be able to generate deterministic observation data
over time after the initial parameters have been set. A relaxation of the assumption of
deterministic data is discussed theoretically in section 3.2.7, and demonstrated through
applications such as crowd �ow through a bottleneck, queuing, and granular �ow (sections
4.1.1, 4.1.2, and 4.3). The second system is the hidden, macroscopic system. We assume
that this system exists, which ensures that an equation-driven homogenization from the
original to the macroscopic system would be possible�that is, if the equations of the
original system were known. Data-driven methods would usually need the observations
to be di�eomorphic to the state space of the hidden system, so that it is possible to de�ne
a map on the observations directly. Even if such a map can be de�ned, approximating
it numerically is di�cult due to the curse-of-dimension, as the dimension of a single
observation can be very high. For example, an observation of density in a grid of 100×
100 cells would already have dimension 10000. We also assume that given the same
parameters, the hidden system can generate the same observations as the original system.
We do not speci�cally assume that the macroscopic system is di�erent to the original
system, but for a numerical approximation, it is necessary that either its state variables
have a low dimension, or the dynamic and observation function are both linear. If
the original system is a system of many particles or agents, the low dimension of the
macroscopic system can result from observing quantities of the original system that
change slowly compared to the microscopic time scales. Typical observables to achieve
this are time or space averages, applications 4.1.1, 4.2, and 4.1.3 demonstrate this. The
third system is the data-driven surrogate system. It is constructed through the steps
outlined in section 3.1.2. Here, we show that the surrogate system approximates the
hidden system so that the systems generate the same observations in the limit of in�nite
data.

The following de�nitions are used in the main theorem of this section, and its proof.
The dynamical system creating the observations is de�ned at the beginning of this chap-
ter (equation 3.6�3.8), but we repeat its de�nition in equations 3.12�3.14 for an easier
comparison to the other two systems below. The original, microscopic system is a dy-
namical system with time T = N0, a compact manifold X, the state space, and a map
f : P ×X → X, parametrized through elements of a compact manifold P , the parameter
space. The states x ∈ X can be observed through an observation function y ∈ C2(X,Y ),
where Y ⊂ RdY is a compact subset of dY -dimensional Euclidean space. We require
compactness of all sets to ensure a discrete and countable basis of the di�usion opera-
tors, which removes the complexity of the extensions to non-compact manifolds (Berry
and Harlim, 2016). The observation functions y must ful�ll the genericity conditions of
Takens theorem (see section 2.3). The relations in the original system are given through

x0 = x0(p), (3.12)

x(t+ 1) = f(p, x(t)), and (3.13)

y(t) = y(p, x(t)). (3.14)
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The map f and the observation function y can both be a�ected through the parameters
p. Given microscopic system (3.12�3.14), we assume existence of a low-dimensional
system on the macroscopic scale, which can also generate the observations y(x(t)). As
we never explicitly construct this system, we refer to it as hidden system. We de�ne the
hidden system analogous to equations 3.12�3.14, with a compact state space manifold
W ⊂ RdimW , map h : P × W → W , and observation function ŷ : W → Y . The
observation function maps into the space Y of observations from the original system,
and generates the same observations as the observation function y. The relations in the
hidden system are given through

w(0) = w0(p), (3.15)

w(t+ 1) = h(p, w(t)), and (3.16)

y(t) = ŷ(p, w(t)). (3.17)

Finally, the surrogate system is de�ned with a state space Z, map g : Z → Z, and
observation function ỹ : Z → Ỹ , where Ỹ ⊂ RdY , dim Ỹ = dimY , such that

z(0) = z0(p), (3.18)

z(t+ 1) = g(z(t)), (3.19)

ỹ(t) = ỹ(z(t)). (3.20)

Unlike the maps f, h and observation functions y, ŷ from the original and the hidden
system, the map g and observation function ỹ from the surrogate do not depend on the
parameters p. This is crucial for the storage e�ciency of the numerical approximation,
since a direct approximation would need to include the dimensions of the parameter
space P . The parameters can a�ect the values of y(x(t)) over time, and if so, the
dimension of Z increases. Savings in storage occur when parameters depend on each
other, such that the e�ective dimension of P in relation to the dynamic f could be lower.
In this case, we call the parameter space P degenerate. The construction process of
the surrogate automatically projects the data to a lower dimension. A simple example
for a degenerate parameter space is a system with a dynamic f(p1, p2, x) = p2

1p2x, for
parameters (p1, p2) ∈ R2, x ∈ R. The parameter space is two-dimensional, but the
dynamic only depends on a one-dimensional image Q(p1, p2) = p2

1p2 ∈ R of the parameter
space. In this case, f could be replaced by fQ(q, x) = qx, q ∈ R, and the system would
still show the same dynamics for the parameter q = Q(p1, p2). We call P the degenerate
parameter space, and the image Q(P ) the e�ective parameter space. The map Q from
the parameter space of the original model to the e�ective parameter space is important
in the proof of Lemma 1 leading up to Theorem 2, where we show that the surrogate
model is an approximation of the hidden macroscopic model. The initial map z0 of the
surrogate model is closely tied to the map Q: z0 maps from a�possibly degenerate�
parameter space into the intrinsic space of the surrogate model. The intrinsic space is
not degenerate anymore, as any two trajectories starting from two di�erent parameter
values p, p′, but the same image Q(p) = Q(p′), are mapped onto the same trajectory
in the intrinsic space Z. This is why constructing the surrogate model factors out the
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dynamics generated by the degenerate parameter space, a statement that is made precise
in Lemma 1.

Next, we state and proof the main contribution of this section: in the limit of in�nite
data, given the same value of the initial parameters p and a �xed number of time steps
t, the observations of the surrogate system and the original system are the same.

Theorem 2. For any �xed time t ∈ T , T ⊂ N0, and �xed parameter p ∈ P , the
observations between the original system and the surrogate are equal, such that

‖(ỹ ◦ gt ◦ z0)(p)− (y ◦ f t ◦ x0)(p)‖Y = 0. (3.21)

The superscript t denotes t applications of the given function, and ‖·‖Y denotes the norm
on Y .

To proof this theorem, we �rst ensure that a di�eomorphism between the delay space
and the hidden state space exists. Then, as a corollary, we �nd that the function g exists
and maps variables in a new parametrization of delay space to future values. Finally, we
proof that the observation function ỹ exists.

Lemma 1. There exists a di�eomorphism d : Q(P )×W → Y (2(dimZ+dimP )+1) from the
product space of e�ective parameters Q(P ) with the state space manifold of the hidden
system W to the delay vector space Y of the observed values.

Proof. We form a delay embedding of the observations y(x(t)) ∈ Y into a space

Y (2(dimZ+dimP )+1) = Y × Y × · · · × Y︸ ︷︷ ︸
2(dimZ+dimP )+1 times

, (3.22)

such that we have vectors

[y(x(t)), y(x(t− 1)), . . . , y(x(t− 2(dimW + dimP ))] ∈ Y (2(dimW+dimP )+1). (3.23)

First, we consider the case Q(P ) = P , that is, the hidden model depends on the full
parameter space P with no hidden dependencies between the di�erent dimensions of
P . We consider the parameters of the map h : P × W → W in the hidden system
as additional state variables. This way, the observed values y(t) = ŷ(p, z(t)) of the
hidden system, when formed into the delay vectors (3.23), will form a di�eomorphic
copy of the original space P ×W through Takens' theorem. This implies existence of a
di�eomorphism d : P ×W → Y (2(dimW+dimP )+1).

Second, the functions h and ŷ of the hidden system might e�ectively depend on fewer
than dimP parameters q, with a functional relation to the given parameters p ∈ P , such
that q = Q(p), and dimQ(P ) < dimP . In this case, there will be a symmetry in the
observations y(x(t)), because two di�erent sets p, p′ can result in the same value q. When
searching for a di�eomorphism between P ×W and Z, the symmetry would invalidate
one of the assumptions for Takens' theorem (see �gure 2.14 for such an example with the
Lorenz attractor). However, in precisely this case, we can replace the dependence of h
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and ŷ on p with a dependence on the e�ective parameters Q(p)�since both h and ŷ are
never actually computed, and are just assumed to exist, this does not change any of the
algorithms involved. Also, as we are ultimately only interested in the generation of the
observations y(x(t)), it does not matter if they were created from P ×W or Q(P )×W .
If we replace P by Q(P ), the symmetries vanish, and Takens' theorem holds.

Corollary 1. Consider the di�eomorphism d from Lemma 1, and the parametrization

Ψ(t) = Ψ(y(x(t)), y(x(t− 1)), . . . , y(x(t− 2(dimP × dimW )))

of the observation manifold embedded in the delay space from Lemma 1, by a di�usion
map Ψ. Then, there exists a map g : Z → Z, such that

z(t+ 1) = g(z(t)), (3.24)

where z(t) = Ψ(y(x(t)) consists of (truncated) di�usion coordinates.

Proof. The construction of the space Z involves a nonlinear change of coordinates Ψ :
Y (2(dimW+dimP )+1) → Z, so that we can identify points in Y (2(dimW+dimP )+1) with
points in Z. This allows to de�ne the function g : Z → Z through

g = Ψ ◦ d ◦ h ◦ d−1 ◦Ψ−1. (3.25)

The inverse of Ψ exists on its image in Z, and maps into the subspace of Y (2(dimW+dimP )+1)

of time-delayed observations. The function h : Q(P ) ×W → W , h(q, w(t)) = w(t + 1)
exists by assumption of the hidden system.

Lemma 2. There exists an observation function ỹ : Z → Y , such that for �xed t ∈ T ,
p ∈ P ,

ỹ(gt ◦ z0(p)) = y(f t ◦ x0(p)). (3.26)

Proof. Identify z(t) = gt(z0(p)) and x(t) = f t(x0(p)). Ψ is a parametrization of the
delay manifold in the space Y (2(dimW+dimP )+1), such that

z(t) = Ψ (y(x(t)), y(x(t− 1)), . . . , y(x(t− 2(dimP × dimW ))) .

Hence, we can de�ne ỹ through

ỹ(z(t)) = [Ψ−1(z(t))]1 = y(x(t)),

where Ψ−1 is the inverse of the parametrization, which is de�ned on its image.

We can now proof theorem 2 using Lemmas 1 and 2 together with Corollary 1.

Proof. From the original system (equations 3.6�3.8), we have the sets of parameters and
observed values over time, {(p, y(x(t)))|t ∈ T, p ∈ P}. These sets can be used to form a
manifold of delay vectors embedded in a space Y 2(dimW+dimP )+1, such that

[y(x(t)), y(x(t− 1)), . . . , y(x(t− 2(dimW + dimP ))] ∈ Y (2(dimW+dimP )+1).
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Lemma 1 ensures existence of a di�eomorphism between this space and the product space
Q(P )×W . Corollary 1 states that the map g exists and correctly predicts future states in
the parametrization of the observation manifold in Y (2(dimW+dimP )+1), which is given by
a nonlinear change of coordinates Ψ. Lemma 2 then ensures existence of an observation
function ỹ, which can reconstruct the observation values ŷ(w(t)) of the hidden system
given a point z(t). By assumption, the observed values of the hidden system are the
same as the observed values of the original system.

Theorem 2 is the basis for all further arguments regarding the surrogate model, as it
assures that given exact versions of all functions involved, the construction and simulation
processes result in observations of the original system. The case where the functions ỹ,
g, and z0 are only given as numerical approximations is discussed next.

3.2.3 Numerical errors

The surrogate model yields the observations of the original in the limit of an in�nite
amount of data. In applications, this limit is not reached, and interpolation or approx-
imation methods must be employed. Here, we analyze how the errors of these methods
in�uence the approximation error of the observations. The numerical experiment de-
scribed in section 3.2.1 at the beginning of this chapter demonstrates how the total
approximation error of the observations is a�ected by the individual errors of the initial
map z0 and the surrogate dynamic g. We now formulate and proof Theorem 3, which
exactly states how the di�erent error sources of the initial map z0, the dynamic g, and
the observation function ỹ contribute to the total error. We ignore measurement errors
from observations. The problem of validation is also not considered, which would mea-
sure the deviation of the model predictions from reality. The matrix and eigensystem
computations necessary for the di�usion map can be performed very accurately and thus
their errors are neglected, too. Closed observables are based on a truncated di�usion
map, where the truncation is such that all information necessary to close the system is
kept. Hence, we can also ignore the truncation error in this case. Three main sources of
error remain:

1. Mapping from a given input to the initial state of the closed observables,

2. Iterating the dynamic, and

3. Observing the current state.

We denote interpolated versions of the di�erent functions of the surrogate model with a
capital I as a subscript, and the error between the interpolant and the actual function
by Ez0,g,ỹ, respectively, so that

1. the initial map z0 is interpolated by z0,I with maximum errorEz0 := maxp∈P (z0,I(p)−
z0(p)) ∈ Z,

2. the dynamics g is interpolated by gI with maximum error Eg := maxz∈Z(gI(z) −
g(z)) ∈ Z, and
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3. the observer ỹ is interpolated by ỹI with maximum error Eỹ := maxz∈Z(ỹI(z) −
ỹ(z)) ∈ Y .

All interpolants are constructed from discrete observations and di�usion map coordinates.
The numerical model with these interpolants approximates the observed values of the
original model. The approximation error only depends on the interpolation errors Ez0 , Eg
and Eỹ, as stated by Theorem 3 and proven below. We proof a generic distance between
two nested functions in Lemma 3 using a Taylor series expansion. This is the basis for the
approximation theorem (theorem 3) that relates the total error to the individual errors.

Lemma 3. Consider two vector spaces P and Z. Let g ∈ C2(Z,Z) and z0 ∈ C2(P,Z).
Consider the interpolants of these functions, gI ∈ C2(Z,Z) and z0,I ∈ C2(P,Z), with
interpolation errors Eg(z) = g(z)−gI(z) and Ez0(p) = z0(p)−z0,I(p), where the maximum
interpolation errors Eg and Ez0 are de�ned above. Also, let g be Lipschitz-continuous such
that for M ∈ (0, 1), supz ‖Dg(z)‖ < M . Then, for �xed p ∈ P , t ∈ N,

‖gt(z0(p))− gtI(z0,I(p))‖ ≤ C1

(
1−M t+1

1−M

)
‖Eg‖+ C2(M t‖Ez0‖) (3.27)

where the constants C1, C2 are positive and do not depend on p and t.

Proof. The Taylor-decomposition of a vector-valued C2 function f at a point x+ ε with
small ‖ε‖ is given by

f(x+ ε) = f(x) +Df(x) · ε+O(‖ε‖2). (3.28)

This approximation is the basis for the following arguments. For any z ∈ Z and t ≥ 1,

‖gtI(z)‖ = ‖gt−1
I ◦ [g(z) + Eg(z)]‖

= ‖gt−2
I ◦ [g2(z) +Dg(g(z)) · Eg(z) +O(‖Eg(z)‖2) + Eg(z)]‖

= ‖gt−2
I ◦ [g2(z) +O((M + 1)‖Eg(z)‖) +O(‖Eg(z)‖2)]‖

= ‖gt−3
I ◦ [g3(z) +O((M(M + 1) + 1)‖Eg(z)‖) +O(‖Eg(z)‖2)]‖

= . . .

= ‖gt(z) +O(

t∑
i=0

M i‖Eg(z)‖) +O(‖Eg(z)‖2)‖.

With M ∈ (0, 1), we thus have

‖gtI(z)‖ ≤ ‖gt(z) +O
(

1−M t+1

1−M
‖Eg(z)‖

)
‖ (3.29)

Similarly, for any p ∈ P ,

‖gt(z0,I(p))‖ = ‖[gt−1 ◦ g](z0(p) + Ez0(p))‖
= ‖gt−1 ◦ [g(z0(p)) +Dg(z0(p)) · Ez0(p) +O(‖Ez0(p)‖2)]‖
= ‖gt−2 ◦ [g2(z0(p)) +Dg(z0(p)) · O(M‖Ez0(p)‖) +O(‖Ez0(p)‖2)]‖
= . . .

≤ ‖gt(z0(p))‖+O(M t‖Ez0‖).
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Note that for M ∈ (0, 1), the right side converges to ‖gt(z0(p))‖ if t → ∞. Combining
the two approximations, we conclude that for any p ∈ P ,

‖gtI(z0,I(p))‖ ≤ ‖gt(z0(p)) +O
(

1−M t+1

1−M
‖Eg‖

)
+O(M t‖Ez0‖)‖

= ‖gt(z0(p))‖+ C1

(
1−M t+1

1−M

)
‖Eg‖+ C2M

t‖Eφ‖

for constants C1, C2 > 0 independent of p and t.

Lemma 3 can be used together with the general approximation theorem (2) proved
in the last section to formulate and prove the main theorem of this section.

Theorem 3. Approximation error of the surrogate model Consider the state space
X of the model in equations 3.6�3.8, the parameter space P , the initial map x0 : P → X,
the dynamic f : P × X → X, and the observer y : P × X → Y . Let the objects
z0 ∈ C2(P,Z) (initial map into closed observable space Z), g ∈ C2(Z,Z) (dynamic) and
ỹ ∈ C2(Z, Y ) (observer) be approximated by the functions z0,I ∈ C2(P,Z), gI ∈ C2(Z,Z)
and ỹI ∈ C2(Z, Y ). The errors Ez0, Eg and Eỹ are de�ned above, as points in the
images of z0, g, and ỹ. The norms of the errors are assumed to be much smaller than
one. The dynamic g must be Lipschitz-continuous with a constant M ∈ (0, 1) such that
supφ ‖Dg(φ)‖ < M . Then, for any given initial state p ∈ P and any �xed number of
iterations t ∈ N,

‖y
(
f t(x0(p))

)
− ỹI

(
gtI(z0,I(p))

)
‖ ≤ C1

(
1−M t+1

1−M

)
‖Eg‖+ C2M

t‖Ez0‖+ C3‖Eỹ‖.

(3.30)
The constants C1, C2 and C3 are positive and independent of t and p.

Proof. Theorem 3

1. Given the exact versions of the numerical objects z0,I , gI and ỹI , the output is
reproduced exactly. This is proved through theorem 2 in the previous section.

2. The interpolants of the numerical objects have small errors, so that multiplications
of the errors vanish.

3. Taylor-decomposition of the interpolants (Lemma 3) concludes the proof.

The theorem states how the total error of the surrogate model compared to the origi-
nal model depends on the individual errors of the interpolants. Reviewing the numerical
experiment at the beginning, the qualitatively similar results for a change in the number
of samples Nx in x1 can be now explained: we used the same interpolation method for all
three functions, and only changed the approximation of g between forward and centered
di�erences. This a�ects only Eg, but not Ez0 , hence a qualitative change is only visible
looking at a changing number of samples in time.
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3.2.4 Di�erent interpolation schemes

Theorem 3 stated in the previous section relates the errors of the three interpolation or
approximation functions to the total error made by the surrogate. In the statement, we
do not assume any particular form of the interpolants, but that their errors are small, so
that powers of the errors are negligible. The general form of theorem 3 allows to replace
the error norm ‖Eg‖ by the speci�c error of the method.

For low dimensional, non-periodic functions, a polynomial basis in the form of a
Taylor-decomposition, Hermite-spline interpolation, or Chebyshev polynomials can be a
�rst choice of an interpolation or approximation method. All of them have analytic forms
for the interpolation error. For periodic functions, the same holds for a Fourier basis.

More advanced methods include sparse grids (Bungartz and Griebel, 2004), (Ex-
tended) Dynamic Mode Decomposition (Schmid, 2010; Williams, Kevrekidis, and Row-
ley, 2015), the Empirical Interpolation Method (Barrault et al., 2004; Peherstorfer et al.,
2014), Discrete Empirical Interpolation (Chaturantabut and Sorensen, 2010) and out-of-
sample extension methods such as the Nyström extension (Bengio et al., 2004). A more
general approximator is given through neural networks (Lapedes and Farber, 1989). All
of these methods have been used for model order reduction, and can directly be applied
as an interpolation scheme for the dynamics g of the surrogate model. A precise error
analysis for these methods is often di�cult, but all of them provide some form of error
estimation. In the applications discussed in section 4, we mostly use linear or spline based
interpolation and approximation methods, because the state space dimension of the sur-
rogate model never exceeds three. Table 4.1 in the chapter 4 lists all of the interpolation
methods used for the applications.

3.2.5 Storage

The interpolants used by the numerical model require storage for data points or parame-
ters. Theorem 4 formulates a condition for the case that the numerical model needs much
fewer data points�in fact, a lower dimensional space�for the same accuracy compared
to the storage of all output. This is one of the main motivations to construct the new
model, instead of simply storing output and looking up the values when needed. To ful�ll
the condition of Theorem 4, the input parameters of the original system must have at
least one degenerate dimension. This means that the dynamic f of the original system
depends on a set of parameters with lower dimension than the dimension of the parame-
ter space used. See the previous section, section 3.2.2, for an introduction to degenerate
parameter spaces.

If it is not clear whether the construction of the surrogate model will save storage or
not, it is still informative to construct the model and check the condition of Theorem 4.
If the condition is ful�lled, there is a degeneracy in the parameter space. The degeneracy
might not be apparent beforehand, as changing any of the parameters can still result in a
di�erent trajectory. The limit cycle system (equation 3.1) is another example where the
reduction of needed storage capacity is signi�cant. Naively storing all observations over
time for all initial states would take a three-dimensional hyper-surface: two dimensions
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for the parameters, and one for time. The reduced model with closed observables only
needs two 1D-lines for dynamic and observer (�gure 3.10, center and right), and one
2D-surface for the translation from initial state to the new coordinate (�gure 3.10, left).
Even in this low-dimensional case, the naive storage of all observations over time for all
initial states would take up all memory of a supercomputer (Tianhe-2, state 2015). If
the same naive sampling is applied together with closed observables, the data �ts in the
memory of a smartphone (state 2015, �gure 3.16).
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Figure 3.16: Comparison of the capacity needed to store the generated data of the spiral
example, compared to the storage of the surrogate model.

In this section, we formalize the storage requirements of an interpolant, and show
the reduction of storage through the proof of Theorem 4 below. Consider a function
f ∈ Ck([0, 1]p,Rm) with k ∈ N0, p,m ∈ N. Let ε > 0 and consider an interpolant fε of
f , such that

‖fε − f‖∞ < ε. (3.31)

If f is a black box (also sometimes called oracle) and can hence only be queried at distinct
points xi ∈ [0, 1]p to yield the values f(xi), the interpolant is constructed by sampling the
space [0, 1]p with a sampling method S. This method S needs S(ε, p) sampling points in
the construction of the interpolant fε. For the full-grid sampling method, S(ε, p) increases
exponentially in p, since if N di�erent samples of one coordinate axis are considered, Np

points must be stored for the p-dimensional space. If the function f has regularity k > 0,
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the error between fε and f decreases with the order O(N−k/p). More advanced sampling
methods such as sparse grids exist (Bungartz and Griebel, 2004), where the number of
points for a comparable accuracy increases with O(N(logN)p−1), mitigating the curse of
dimensionality. For all sampling methods, decreasing p without changing the smoothness
properties of the function is a good way to reduce the number of points that need to be
stored for fε in order to achieve an accuracy smaller than ε.

We approximate the output of a discrete dynamical system (equations 3.6�3.8), to
�nd an interpolant Iε for the function

I : N× P → Y, I(t, x(0)) = y(f t(x(0))) ≈ Iε(t, x(0)). (3.32)

If P is p-dimensional, the function I has p + 1 parameters. Hence, an interpolant Iε
will need S(ε, p + 1) points for an approximation accuracy of at least ε. With closed
observables, we only need S(ε, p) points for the same accuracy, which will be shown
through Theorem 4. The reduction from p + 1 to p dimension might not seem much,
but the dimensionality reduction is for the time variable: as we construct a model, only
its intrinsic state space must be sampled and stored. The time variable might need
signi�cantly more sampling points than the intrinsic state space, and in that case, the
reduction is signi�cantly larger compared to a reduction of one coordinate in an equally-
spaced grid.

Theorem 4. Storage reduction Let P ⊂ RdimP be the parameter space, and z0 : P →
z0(P ) the initial map of the surrogate model, mapping P into the intrinsic state space.
De�ne n0 := dim(P ), and d := dim(z0(P )). Given a desired interpolation accuracy ε > 0
and a sampling method S as de�ned above, the interpolants φI , gI and ỹI need at most
O(S(ε, n0)) points if the following condition is true:

d < n0 + 1. (3.33)

In contrast to that, storing the output of the original model needs O(S(ε, n0 + 1)) points,
where the additional dimension is approximating the time variable.

Proof. De�ne m := dim(y(X)).

1. For the n0-dimensional input, we need exactly d surfaces with dimension n0 each
to store the mapping from input to the new variables.

2. We also need d surfaces with dimension d each to store the dynamic g on the space
z0(P ).

3. Finally, we need m surfaces with dimension d each to store the observer on the new
space.

4. Since storing a �nite number of surfaces does not add another dimension, the
maximum dimensionality we need to store the new model is max(d, n0).

5. To store the observed values over time, we need m surfaces (n0-dimensional) for
each iteration step n, so in total we need n0 + 1 dimensions.
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6. The exact number of hyper-surfaces including dimension for the new model is given
by d · d+m · d+ d · n0, where the underlined values stand fordimensions and the
multiplication between a number and a dimension is noted by (·). Note that the
dimension is not distributive, that is a · (b+ c) 6= a · b+ a · c. The dimensions are
additive, so a+ b = a+ b. This allows for a reformulation into

storage(new model) = (d+m) · d+ d · n0 (3.34)

7. The exact number of hyper-surfaces including dimension for the storage of all ob-
servations is given by m · n0 + 1. Reformulation yields

storage(full output) = m · n0 + 1 (3.35)

8. The theorem follows from comparing and reducing the storage formulations in items
6 and 7.

The storage e�ciency (Theorem 4) is relevant since a lot of output needs to be stored
for the numerical model to be accurate. The theorem states the conditions when it is
highly advantageous to construct closed observables instead of simply storing the output.
The di�erence can be as large as the di�erence between the memory of a smartphone
and a supercomputer (see �gure 3.16).

3.2.6 In�nite-dimensional observables and parameter spaces

If the observed values are functions, as is the case for PDEs, the observed space must be
decomposed in �nitely many basis functions. Then, the constructed observer function
must yield the coe�cients of the basis functions. See Dietrich, Köster, and Bungartz
(2016) for an example with a PDE with two parameters, as well as Dietrich, Albrecht,
and Köster (2016) and the application in section 4.1.1 for an example where the observable
is the density of particles moving through a bottleneck.

Formally, the observation function y maps from M to Y . In the case treated here,
Y is a space of functions. There are numerous methods to treat this case. Here, we
restrict Y further, to spaces with a �nite-dimensional basis. Note that for a given time
t, functions in Yt always have a �nite-dimensional basis if the parameter space P also
has a �nite-dimensional basis. This is due to the construction of the surrogate: we
always start with the same initial condition, and only vary the parameters. Since for a
given parameter set, y(x(t)) will yield one function for any t, we have dimYt ≤ dimP .
Depending on the dynamics of the microscopic system, the part of Y observed at the
beginning might not be the same after a certain time t. Since the dependence on time is
yet another dimension, to fully describe the possible observable states, we have to �nd a
basis for the family Yt of all observable functions for all times t ≥ 0.

A common solution for a function of space is to sample the space into grid cells of equal
size, and then use indicator functions on each grid cell to form the basis of the observed
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function space. In most applications, this choice of basis is redundant, and the number
of basis functions can be reduced by several orders of magnitude while still providing an
accurate representation of the function space Yt. Numerically, this is possible through
the method of snapshots described in section 2.4.2. In this case, the coe�cients in the
�nite basis evolve in time, and serve as observations of the system.

Examples include ocean bathymetry in the shallow water equations, structure of the
earth in earthquake simulations, �oor geometry in porous media simulations, the geom-
etry of buildings and events in crowd dynamic simulations, or the initial distribution of
the crowd. In all these examples, the input parameter is a function and hence an element
from an in�nite-dimensional space. In this case, the function space has to be decomposed
into a �nite number of basis functions. Their coe�cients are the new parameters for the
surrogate model.

3.2.7 Stochastic e�ects

Theorems 2 and 3 on convergence and numerical errors assume that the hidden macro-
scopic system is deterministic, and hence does not include stochastic e�ects in the dy-
namic and the observation function. In many applications and theoretical models, the
assumption of fully deterministic behavior is violated. Generally, stochastic e�ects model
behavior on spatial or temporal scales unknown to or unresolved by the observer. It is
still possible to construct dynamical surrogate models if stochastic e�ects are present.
If the observed values are distributed stochastically, the surrogate model can include
stochastic terms. Alternatively, the surrogate can model modes of the probability distri-
bution, such as expectation and variance, which makes it a deterministic model again.
Methods to estimate stochastic models from data are mostly found in statistics and
related disciplines. Auto-regression moving average models are a broad class for pro-
cesses with a linear dependence on a few past values (ARMA, see Brockwell and Davis
(1991)). Chaotic systems admit a di�erent type of stochasticity. Even for deterministic,
chaotic systems, any error in the initial condition increases exponentially over time, so
that solutions di�er arbitrarily after a �nite time horizon, as if they included a stochastic
component. Still, there are methods to �nd deterministic models for the most impor-
tant directions of the dynamics, such as Koopman eigenfunctions (Williams, Rowley, and
Kevrekidis, 2014; Williams, Kevrekidis, and Rowley, 2015; Williams et al., 2015; Gian-
nakis, Slawinska, and Zhao, 2015), and kernel methods (Giannakis, 2015). Between the
microscopic and the macroscopic models, there are four possibilities for stochastic and
deterministic behavior, summarized in Table 3.2.

micro-stochastic micro-deterministic

macro-stochastic (A) S-S (B) D-S

macro-deterministic (C) S-D (D) D-D

Table 3.2: Four possibilities for stochasticity in upscaling microscopic models to macro-
scopic models.
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(A) Stochastic-Stochastic

There are not many examples where processes on both the microscopic and the macro-
scopic scale are modeled with stochastic e�ects. An exception are models on intermediate
scales, that try to summarize microscopic motion into larger portions of space. One ex-
ample is the SPOT model (Bazant, 2006), with stochastic motion of granular particles
on the microscopic scale, and also stochastic motion of a larger group of particles, called
spots, on a larger scale. The spots are advanced in space and time through a Monte-Carlo
simulation, whereas a discrete element method (DEM) is used to advance the individ-
ual particles. While the particle model and also the related DEM are not intrinsically
stochastic, the individual particle properties are highly sensitive to a change in initial
conditions, and any observation of particles over a longer time period must include a form
of averaging. This also holds for the macroscopic scale, as the spot model simulations
are stochastic.

(B) Deterministic-Stochastic

A possibility to scale up a microscopic model is to summarize individual behavior into a
stochastic term on the macroscopic scale. A deterministic, microscopic model can thus
be modeled macroscopically through a deterministic drift term and a stochastic di�usion
term. Examples for this upscaling technique are stochastic cellular automata for the
evolution of pedestrians or particles. Even chaotic systems can be predicted on a larger
scale, in a statistical sense. From Araujo, Galatolo, and Paci�co (2014, p.2):

Even if the pointwise description or forecasting of the [chaotic] system is for-
bidden by the initial condition sensitivity, the statistical behavior is often rel-
atively simple and its properties are often (with a certain e�ort) predictable.

(C) Stochastic-Deterministic

In many cases, the microscopic process is modeled with a stochastic component, or is
highly sensitive to initial conditions and not predictable in a point-wise sense. Then, a
deterministic macroscopic model for the same process that is no longer sensitive to initial
conditions can help to predict observations for longer time periods, and often captures
deterministic behavior of averaged quantities. The classical example are particles driven
by Brownian motion, where evolution of the probability distribution is considered on the
macroscopic scale. In fact, this example is the principle idea of di�usion maps, where
a random walk between the points is modeled by a Markov matrix, and the eigenfunc-
tions of the di�usion map observe this process in the averaged, continuous limit (see
section 2.2.2 and (Coifman and Lafon, 2006)).

(D) Deterministic-Deterministic

If both processes on the microscopic and macroscopic scale are deterministic, equation-
driven upscaling often assumes a large gap between the scales and e�ectively ignores
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behavior on the temporally faster or spatially smaller scales. This approach is di�erent
from the introduction of a stochastic term (see part B above), as it cannot capture the
dependence of initial conditions on the macroscopic scale. In contrast, the assumption is
that the e�ects of the ignored parts of the microscopic process are unimportant for the
evolution on the macroscopic scale.

3.2.8 Summary

In this section, we analyzed the construction and simulation process of the surrogate
model, and discussed speci�c challenges occurring with parameter and observable spaces
of high dimension, stochastic e�ects, and boundary problems.

We proved that the construction process for the data-driven surrogate model produces
a system able to reconstruct the original observations in the limit of large data. For
limited data, we show how the absolute error between the output of the surrogate and
the original model is in�uenced by the errors of the three interpolants for the initial
map, the dynamic map, and the observation function. When a large parameter space
is sampled, or a very complex surrogate model is constructed, the interpolants for the
surrogate might need a lot of storage capacity. Instead of directly storing the observations
of the original model, it can be bene�cial to compute the surrogate model and store the
interpolants. We proved the process is storage e�cient in case the number of intrinsic
variables of the surrogate is less than or equal to the number of input parameters varied
in the construction.

Following the three proofs, we discussed three speci�c challenges for the construction
of data-driven surrogate models. The �rst and second challenges we discussed concern the
approximation of high-dimensional spaces, separately for parameters and observations.
For the surrogate model, high-dimensional parameter spaces pose a greater problem than
high-dimensional observation spaces, because the initial map needs as many dimensions
as there are dimensions of parameters. Similarly, a high intrinsic dimension of the state
space is also challenge. If only the extrinsic dimension of parameter or state space is
high, methods for dimension reduction can be used in addition to the usual construction
process of the surrogate model. The third challenge concerned stochastic processes and
their e�ect on the surrogate model. Stochasticity can enter the system by de�nition of
the microscopic model, or by a �nite number of microscopic simulations averaged to an
empirical expectation.
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Chapter 4

Applications: from crowd motion to

granular �ow

The dynamic, data-driven surrogate models introduced in the last chapter has a broad
range of applications. In the setting of multiscale dynamics, and speci�cally scale tran-
sitions, the surrogate models are especially well suited to address issues in granular �ow
media. We discuss the movement of crowds in bottleneck scenarios and queues, the
movement of cars on a highway, granular particles in a silo, as well as a combination of
surrogates with other methods of system analysis, particularly uncertainty quanti�cation.
The subsections are all structured in the same way:

General description of the application We introduce the scenario, the speci�c prob-
lem, parameter space, and dynamic under study.

State-of-the-art approach without dynamic surrogate models We brie�y outline
how the applications problem could be solved with conventional methods, focusing
on strengths and potential research gaps which can be closed using the dynamic
surrogate model developed here.

Alternative approach with the dynamic surrogate model Here, we show how to
address the research gaps from the state of the art using dynamic surrogate models.
This part contains descriptions of the construction process, and visualizations of
the surrogate model.

Conclusions We conclude each application with a summary and potential future direc-
tions of research.

The complexity of the applications in terms of equation- and data-driven multiscale
methods is shown in �gure 4.1. We refer to this �gure in the description of each ap-
plication below. It is easy to capture the dynamics of the limit cycle example shown
before (section 3.1.1), both in a data-driven and equation-driven way, because the solu-
tion is explicitly known. On the top-right of the �gure, with highest complexity levels,
is uncertainty quanti�cation in a train station (section 4.1.3). A formulaic description
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of the macroscopic uncertainties based on the microscopic system is challenging, as the
agent-based models for passengers are complex and often only given as an implemen-
tation in software. Data-driven uncertainty quanti�cation has to deal with the curse
of dimensionality, and stochastic e�ects if the macroscopic quantity is computed as an
average over a �nite number of di�erent scenario runs. The same holds for applications
in granular �ow, where we will demonstrate how the surrogate model can be used to
extract macroscopic observables automatically. Table 4.1 contains the parameter values
used in all applications. It provides a reference for similar applications.
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Figure 4.1: Levels of complexity for the applications. The data-driven complexity of
an example shows how much it is a�ected by the curse of dimension, and how complex
a numerical simulation of the problem is. The equation-driven complexity signalizes
if there is established theory to deal with the problem (low complexity), or not (high
complexity). Complexity levels are low if the topic is a well-known result, and are higher
if it is still under active research.
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Table 4.1: Parameters for all example applications. The method of simulation always is
Dormand-Prince 45 (scipy.integrate.ode, dopri5).

Example T ε κ d Interpolation/approximation

Spiral 60 1× 103 2× 10−7 1 scipy.interpolate.UnivariateSpline
Bottleneck 31 1× 105 5× 10−5 2 scipy.interpolate.-

SmoothBivariateSpline
Density evolution 20 1× 105 1× 10−3 3 scipy.interpolate.Rbf
Queueing 10 1× 109 1× 10−3 2 piecewise linear
Uncertainty
quanti�cation

80 1× 107 1× 10−3 3 piecewise linear

Car tra�c 5 1× 103 1× 10−4 2 piecewise linear
Granular �ow 19 1× 106 1× 10−3 1 polynomial

4.1 Crowd dynamics

Two major challenges with macroscopic models for crowd dynamic will be addressed by
the two example applications in this section.

The �rst challenge is the rapid development of microscopic models, which renders
any careful analytic homogenization of a given microscopic model invalid after a few
months, because the description of the microscopic model has changed too drastically.
In this situation, the dynamic surrogate model developed here is a helpful tool. Con-
structing surrogates for di�erent models, or with experimental data, allows to compare
their dynamical properties on a macroscopic scale. We demonstrate this by constructing
a macroscopic model for the evolution of crowd density, given only data from a sce-
nario where a crowd evacuates through a bottleneck and is simulated with a microscopic
model. As the observed values of density are a function of state, we employ model order
reduction for in�nite-dimensional observer functions (see section 2.4.2 and 3.2.6).

The second challenge is the analysis of a microscopic model through numerical sim-
ulations, given the typically high demand for computational resources. Unlike grains in
granular �ow, human beings are already complex on the individual level, not only on a
macroscopic scale. Microscopic models that incorporate some of that complexity need
a lot of computational resources. In physics, a similar challenge exists when trying to
model particles on the quantum level. At the same time, the complex microscopic models
often have more than two or three parameters, which itself demands a lot of computa-
tional power and storage when performing numerical parameter studies. We show how
to meet this challenge with an example of queuing pedestrians at the entrance of a music
festival. We analyze the scenario for bifurcations by constructing a surrogate model, and
show the relations to queuing theory.
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4.1.1 Evolution of crowd density - a surrogate for a reduced order

model

As described in section 2.4.2, model order reduction reduces the number of degrees of
freedom of a system while keeping its accuracy at an acceptable level. In computational
�uid dynamics, this technique is widely adopted. Here, we show how surrogate models
reduce the degrees of freedom even further, including system parameters, when relevant
observables of the system are on a macroscopic scale. We demonstrate the results in a
crowd dynamics context, a bottleneck scenario. The equation-driven complexity of this
application stems mainly from the formulation of the microscopic model, which is still
an unsolved problem. Also, the quantity of interest, the density, is a continuous function
of time and space, and must be discretized properly. Here, we use a reduced order model
formulation with the method of snapshots. The numerical issues associated with the
needed singular value decomposition are already very well resolved in standard software,
and hence the data-driven complexity of the example is rated relatively low.

General description of the application Bottlenecks are one of the most important
scenarios in the analysis of crowd dynamics, because they reduce the crowd �ow. Here,
we use a prototypical bottleneck, where 180 pedestrians move from their starting position
to an exit (see �gure 4.2). This scenario was explored experimentally by many di�erent
research groups, in this speci�c setup by Seyfried et al. (2010) and Liddle et al. (2011).
The study presented here was published by Dietrich, Albrecht, and Köster (2016), and
includes the construction of a surrogate model for two microscopic models for pedestrian
dynamics: the gradient navigation model (Dietrich and Köster, 2014) and the optimal
steps model (originally from Seitz and Köster (2012), we use the version detailed by Sivers
and Köster (2015)). In addition to the two models, data from a controlled experiment was
also used (Seyfried et al., 2010; Liddle et al., 2011). Here, we only present the results for
data generated with the gradient navigation model. The surrogate models constructed
for the optimal steps model has comparable dynamics, and also needs the same number
of intrinsic variables (Dietrich, Albrecht, and Köster, 2016). The experimental data
contains one run per parameter set instead of the 100 runs we perform with the simulation
models. Also, the length parameter is sampled with only three values, at a width of
1.20m, whereas the width parameter is sampled with nine values, keeping the length at
4m. This lack of data makes it di�cult to reduce noise, and hence we ignore the length
dimension and only use the width dimension as a parameter of the surrogate for the
experimental data. The reduced parameter space leads to a reduction of the intrinsic
dimension of the surrogate model for the experimental data, compared to the simulation
models.

74



S Tb

l

Figure 4.2: Scenario setup for a bottleneck, published by Dietrich, Albrecht, and Köster
(2016), and mimicking the experiments by Liddle et al. (2011). 180 pedestrians start from
region S at a density of about 2.6P/m2, and move through the bottleneck of width b and
length l towards the region T . These two parameters are varied to create the surrogate.
The crowd density at t = 10s is shown sampled on a grid with cells of 1m × 1m. The
distance from S to the bottleneck is 5m, the distance from T to the bottleneck is 7m.

We demonstrate how to

� Apply model order reduction using the method of snapshots (see section 2.4.2).

� Construct a surrogate for the time evolution of the reduced order model.

� Reconstruct density and velocity pro�les of the crowd from the states of the surro-
gate model.

State-of-the-art approach without dynamic surrogate models A conventional
approach in the �eld of crowd dynamics would be to use a macroscopic model for crowd
density and velocity, and �t its parameters such that the evolution over time is close to
the output of the microscopic model. As an example, Hughes (2001) derives macroscopic
equations from assumptions similar to �uid �ow, for highly congested areas such as the
Hajj in Mecca. The model parameters are then calibrated to �t the �ow around one
large pillar in Mecca, and compared to empirical crowd densities. In a similar fashion,
Helbing et al. (2006) formulate a macroscopic model for evacuation through a bottle-
neck. There are also equation-driven approaches available, using generalized microscopic
models to form a macroscopic description of the process. Bellomo and Bellouquid (2015)
describes such an equation-driven approach, where a mesoscopic, kinetic model describ-
ing the probability distribution of pedestrians is derived from a microscopic model, and
then the macroscopic model is derived from the kinetic model through an asymptotic
limit of the number of pedestrians. Cristiani, Piccoli, and Tosin (2014) combine mi-
croscopic and macroscopic models into a measure-theoretic framework with interacting
scales. Lachapelle and Wolfram (2011) derive a macroscopic mean �eld game for two
interacting crowds from a stochastic, microscopic model.

In �uid dynamics, there are already established models on the macroscopic scale,
mostly in the form of partial di�erential equations. Computational �uid dynamics then
constructs reduced order models for e�cient solutions of the equations. The model order
reduction approach would usually be followed by an approximation of the non-linear
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dynamics. This can be achieved through the discrete empirical interpolation method
(DEIM, see (Chaturantabut and Sorensen, 2010)).

The macroscopic models, developed through methods from the state of the art, treat
parameters and model variables di�erently. The variable is often a function of space, de-
scribing density and velocity of crowds. It is often not immediately clear that this variable
holds enough information to advance in time, and closure assumptions are necessary.

Alternative approach with the dynamic surrogate model In case of the dynamic
surrogate model developed here, choosing the correct variables for closed dynamics is
delegated to the construction algorithm. In the �rst step, we use a microscopic simulator
to generate trajectory data of the scenario (openVADERE, available at www.vadere.org).
Similar to the experiment from Seyfried et al. (2010), we vary the width and length of
the bottleneck. For each �xed set of parameters, we simulate 100 random, uniformly
distributed starting position sets for the pedestrians, and then average the number of
pedestrians in individual grid cells for each time step, to reduce stochastic e�ects on
the macroscopic scale. The length and width are varied between 0.06m and 4.0m, and
0.9m to 2.5m, respectively (see table 4.2). To test the strength of the surrogate model
approach concerning the reduction of storage space, we also introduce the height of the
bottleneck as a parameter with three samples for each tuple (w, l). While the height
parameter is arti�cial, it serves to show how the surrogate construction automatically
reduces the dimension. The height parameter increases the number of simulations of the
gradient navigation model to 3 ∗ 1800 = 5400, but it does not a�ect the microscopic
simulation results. The constructed surrogate model does not have more than three
intrinsic dimensions, two for width and height, and one for time. The lower number
of variables reduces the storage needed for all observed data from 5400 down to 1800
trajectories, which is an automatic result of the construction of the surrogate model.

Table 4.2: Parameters width and length of the bottleneck used to generate observation
data for the surrogate model. In total, we use 6 · 3 · 3 = 54 di�erent parameter sets.

width [m] length [m] height [m]

0.9, 1.0, 1.4, 1.8, 2.0, 2.5 0.06, 2.0, 4.0 1, 2, 3

Considering 54 di�erent sets of the parameters width, length, and height, and 100
simulation runs per parameter set, we perform 54 · 100 = 5400 simulations in total. The
desired speeds of individuals in the microscopic gradient navigation model is calibrated to
�t the evacuation times found in the experiment, before running the simulations necessary
for the surrogate model. This calibration is only important to assure comparable time
lengths of trajectories between experimental data and the model, and has no qualitative
e�ect on the surrogate model.

In the second step, the positions and speeds of individual pedestrians generated by
the simulations are processed to density and velocity grids covering the scenario. The
simulation data on a 40m×20m grid is averaged over 100 runs of the same scenario with
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randomly assigned initial positions on the starting region. We remove an initial transient
to the jamming phase of t0 = 10s, and sample the data at ∆t = 4s.

Then, the density and velocity grids are arranged in a matrixX, such that the column
number enumerates points over both spatial dimensions for j = 1, 2, . . . , p, and the row
number points in time for t = 1, 2, . . . , n. A singular value decomposition of the matrix
X is used to extract the principal components, which form the coordinates of a linear
subspace of the data space (see section 2.2.1 for a more detailed explanation of principal
component analysis). The singular value decomposition of the data matrix X is

X = UΣV T , (4.1)

which is split up into score values S ∈ Rn×p and principal components P ∈ Rp×p through


−x1−
−x2−

...
−xn−


︸ ︷︷ ︸

X

=

 | | |
S1 S2 · · · Sp
| | |



σ1 0

σ2

. . .

0 σp


︸ ︷︷ ︸

UΣ=S


−P1−
−P2−

...
−Pp−


︸ ︷︷ ︸
V T =PT

. (4.2)

The matrix Σ contains the singular values on its diagonal. Omitting singular values
below a threshold reduces the intrinsic dimension of the problem, with fewer scores and
principal components to consider. Here, we set the threshold to 0.5% of the maximum
singular value, resulting in 30 remaining values. Figure 4.3 shows the �rst four principal
components P1, . . . , P4, resulting from the methods of snapshots. To reconstruct the
density and velocity grids, the components Pj need to be multiplied with the score
values Sj(t) and summed over j. The reduced dimension in this example is still too high
to extract numerically the dynamic of the score values Sj(t) = (UΣ)jt of the principal
components Pj = Vj over time. We would need to �t a surface of dimension 30 for
functions fj(S(t)) = Sj(t + 1). Note that this problem can be solved, for example, by
estimating the Koopman operator on observables of the system (see section 2.4.2). The
dynamic surrogate is a lower-dimensional approach (step three) and also incorporates
the parameter dependence directly, reducing the systems dimension even further.
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a) b)

c) d)

Figure 4.3: The parts of the �rst four principal components related to the density, re-
sulting from the method of snapshots. The bottleneck is between the small, white boxes.
The components are mapped from vector form to the two-dimensional domain of the
bottleneck for visualization purposes only. High component values are white, low values
are black. A linear combination of the principal components, weighted with the score
value S(t), can be used to reconstruct the density at t. (Figure adapted from original
publication by Dietrich, Albrecht, and Köster (2016))

The third step uses the time-based score information contained in the matrix S = UΣ
to construct a surrogate model for the dynamic of the principal components over time,
such that the j-th score value Sj(t) can be recovered from the surrogate model by observ-
ing the closed observables at time t through the observation function ỹ. The construction
process is explained in detail in section 3.1.2. For this particular example, the construc-
tion uses time-lagged embedding of the values of S, that is, (S(t), S(t− 1), S(t− 2), . . . ),
to reconstruct the state space of the underlying, macroscopic dynamical system. The
ambient space of the state space can be very high if many time-lags are used, so a (in
our case, non-linear) dimension reduction is necessary, where we employ di�usion maps
(section 2.2.2). The new parametrization of the state space found through the di�usion
map is low-dimensional, hence we can approximate the dynamic on it numerically. As the
third step constructs a non-linear model, the number of variables can be much lower than
the number of the principal components. The surrogate model constructed for the OSM
and the GNM needs three variables, and two for the experimental data. The di�erence in
the number of variables is because we neglected the length parameter in the experimental
data�if enough data was available, and the length parameter has an in�uence on the
dynamics, the number of variables would increase to three, too. Figure 4.4 visualizes
the trajectories in the three-dimensional di�usion map space, for data generated by the
gradient navigation model.
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Figure 4.4: Trajectories of the closed observables in di�usion map space. The red crosses
show initial values, the red circles the steady state of the system. All trajectories end up
in the steady state, which is the point where all pedestrians have left the scenario and
the density is zero everywhere.

There are three functions that need to be approximated for the surrogate model. The
initial map φ0 maps from given parameters to the initial data of the surrogate, and is
visualized in �gure 4.5. The dynamic g acts on the state variables φ ∈ Rm, where m = 3
is the intrinsic dimension of the surrogate model. The dynamic is the right hand side of
an ordinary di�erential equation, and is approximated through centered di�erences, such
that φ̇ = g(φ) = (φ(t+∆t)−φ(t−∆t))/(2∆t). It is shown in the plots of �gure 4.6, where
the color of the plots encodes the numeric value of the derivatives. The third function,
called ỹ, maps back from the surrogate variables to the score values, which are then used
to reconstruct the density and velocity at the given time through multiplication with the
principal components. Here, the thirty most important score values are reconstructed
through ỹ. The Python package scipy.interpolate.Rbf is used as interpolant for all
three functions, with the smoothing parameter set to 1× 10−3, and a multiquadric

radial basis.
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Figure 4.5: Initial value map φ0(w, l, h) = φ(0) = (φ1(0), φ2(0), φ3(0)) from the three-
dimensional parameter space (width, length, height) to the initial value of the closed
observables φ(0) (color). The three plots show the initial values for the three coordinates
of the closed observables.
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φ1, φ2, φ3 (the coordinates of the plots) onto their time derivative. The value of the
derivative d

dtφj is coded in the color of the jth plot.

The score values can be reconstructed over time, �gure 4.7 shows results for �ve
di�erent parameter sets and the scores one and �ve. The reconstruction accuracy is
enough to generate density and velocity �elds over time, with a relative error of less than
ten percent over all time steps (see �gure 4.8 and 4.9). The error e is computed relative
to the original data, such that for density and velocity (ρ, v) at time t,

e = ‖(ρ, v)S(t)− (ρ, v)O(t)‖/max
t
‖(ρ, v)O(t)‖, (4.3)

where (ρ, v)S is the data from the surrogate model and (ρ, v)O is the original, observed
data.
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Figure 4.7: Interpolated PCA scores S1(t) and S5(t) from the original data (lines) and
simulated with the surrogate model (dashed lines with circles), for input parameters
(w, l, h) = ([0.9, 1, 1.4, 1.8, 2.0, 2.5], 4.0, 1). Only scores one and �ve are shown, whereas
all of the most important 30 are simulated.
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Figure 4.8: Reconstruction of the velocity (�rst row) and density (second row) over
time, shown for the surrogate model at parameter values (w, l, h) = (0.9, 4.0, 1), and
t = 0, 8, 20, 120 seconds.
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Figure 4.9: Relative reconstruction error over time, ‖surrogate(t) −
original(t)‖/maxt ‖original(t)‖, shown for the same parameters as in Fig. 10.

Conclusions We showed how to apply model order reduction, in particular the method
of snapshots, in combination with dynamic surrogate models. Even though the method of
snapshots is a commonly used tool in computational �uid dynamics, it is not broadly used
in crowd dynamics. The combination allows to construct a three-dimensional surrogate
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model, which is able to reconstruct the density evolution for the three parameters length,
width, and height of the bottleneck. The height parameter was introduced to demon-
strate the dimension reduction capabilities of the surrogate model approach, because the
parameter does not in�uence the underlying dynamics, which reduces the dimension of
the hidden system. The dimension of the phase space of the surrogate system is re-
duced accordingly. Even without the surrogate modeling approach, the decomposition
of the density and velocity data by the method of snapshots into linear subspaces con-
tains valuable information about the dynamics. In our example, a visualization of the
most important principal components helps to understand which parts of the scenario
have the greatest impact on the dynamics, in terms of density and velocity. Augmenting
model order reduction with the surrogate model then enables to generate trajectories for
arbitrary parameter settings inside of the sampled domain. Additionally, irrelevant or
dependent parameters are identi�ed through a lower intrinsic dimension of the surrogate
model. Here, the height parameter was introduced to demonstrate this.

4.1.2 Queuing in front of an entrance - a bifurcation study

A bifurcation is a qualitative change of system behavior caused by a continuous change
of a parameter (Guckenheimer and Holmes, 1986; Kuznetsov, 2004). Bifurcations are
present in many systems, and vital to accurate prediction, optimization, and control.
Consider a physical system with a bifurcation at a speci�c value of a parameter, the
bifurcation point, and a model for the system that adequately captures this bifurcation.
Far away from the bifurcation point, measurements of the parameter might not need to
be very accurate for an acceptable result. However, accurate predictions with the model
in the vicinity of the bifurcation point are only possible if the parameter is also measured
accurately, because small errors can lead to a large, qualitative change of behavior.

General description of the application An example of a system with a bifurcation
is the queuing of pedestrians at the entrance of a music festival. Queuing is a behav-
ior ubiquitous in our society. Lately, crowd dynamics research has put a lot of e�ort
into developing models for this process (Kim, Galiza, and Ferreira, 2013; Kneidl, 2015;
Zönnchen and Köster, 2016). At the same time, the general concept of queuing theory
has been studied in detail for over a century (Erlang, 1909; Kendall, 1953; Kingman,
2009).In this study, we employ data driven surrogate models to study bifurcations in
queuing behavior of pedestrians. We analyze the queue at the entrance of a music fes-
tival, varying the arrival rate of pedestrians and the service rate at the control point.
Figure 4.11 shows the real event, together with a visualization of a simulation with the
optimal steps model (originally by Seitz and Köster (2012), we use the version detailed
by Sivers and Köster (2015)). The system under study is a corridor of length 90m and
width 2m. Pedestrians enter from the left side with an arrival rate of λ pedestrians
per second, and walk towards a control point on the right side. Only one pedestrian is
controlled at a time, with a service rate of µ pedestrians per second. The mean arrival
and service time are the inverse of the rates λ and µ.
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Figure 4.10: Comparison of actual video footage from an entrance to a music festival
(top image) with a simulation (center image). The scenario setup of the simulation is
shown in the bottom image. (Actual video footage from Back-to-the-Woods, Garching,
2014, �lmed in the MultikOSi project))

Pedestrians walk with a free-�ow speed of 1.34ms−1. That means a pedestrian will
stay 90m/1.34ms−1 ≈ 67s in the corridor when walking in free �ow. If the service
rate µ is greater than the arrival rate λ, up to (67λ) pedestrians can be in the corridor
without forming a congestion.According to queuing theory, the queuing system only has
one e�ective parameter

ρ = λ/µ,

a combination of the arrival rate λ and the service rate µ. When increasing observation
time of the queue system, the queue length increases to in�nity for ρ ≥ 1, and stays stable
for ρ < 1. This qualitative change of behavior is visualized in �gure 4.11, a bifurcation
diagram. We will test whether this bifurcation is present in the given scenario, using the
optimal steps model in the simulations. In terms of the complexity graph in �gure 4.1,
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this application is challenging with respect to the correct de�nition of the bifurcation
problem, resulting in a medium equation-driven complexity. Simulating the queuing
scenario, and computing the queue length as the number of pedestrians in the scenario,
is not particularly challenging. The relation of the simulation results to a real setting
is not captured by the comparison of data- and equation-driven complexity, and is a
challenge in itself.
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Figure 4.11: Bifurcation diagram for the two parameters of the system, the arrival rate
λ of pedestrians and the service rate τ at the control point. For ρ = λ/τ < 1, the queue
length is stable. For ρ > 1, the queue length increases further and further.

After the numerical analysis of the queue, we compare our results with data gathered
in a �eld study of the simulated event. We �nd that the the simulated queue lengths
correspond to the real data. We identify situations where the control points should have
been manned more intensively.

The observation data for the calibration of the arrival and service rates was gathered
through manual tagging of video data of a music festival in 2016. We �nd that interarrival
and service times are distributed exponentially. Figure 4.12 shows the observed times
between two arrivals and controls at the control point. We �nd the arrival rate λ through
the Poisson process

Pn(t) =
(λt)n

n!
exp (−λt) (4.4)

for n = 1, where Pn is the probability for time t between n arrivals. The simulation
software VADERE accepts the mean interarrival and service times as an input, which
are inverse to λ and µ. The software then uses the negative exponential distribution
P0(t) = exp (−λt) to �nd the time between arrivals, and services, analogously.
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Figure 4.12: Left: distribution of the time between two arrivals. Right: control time
for a person after the previous control is complete. We excluded data where the control
point was idle. These two distributions allow to compute the arrival and service rates λ
and µ.

State-of-the-art approach without dynamic surrogate models If queuing the-
ory could be applied directly, one would only need to measure the arrival and service
rates to compute the average queue lengths, the average time a pedestrian spends in the
queue, and the average server load, through the e�ective parameter ρ = λ/µ. However,
it is not clear yet whether queuing theory yields accurate results in crowd dynamics.
Reasons that might hinder accurate predictions through queuing theory might be �nite
size e�ects in front of the control point, such as people blocking each other, or social in-
teractions between persons waiting in the queue. These e�ects have an in�uence, because
persons entering the scenario do not directly enter the control point, and hence cannot
immediately exit the scenario again. If these additional e�ects occur in a systematic way,
the distribution of arrival times at the control point might di�er signi�cantly from the
distribution of arrival times in the scenario (see the bottom of �gure 4.10).

The standard approach without utilizing queuing theory would be a sampling of the
parameter space, computing the queue lengths for each sample, and constructing the
bifurcation diagram. A more sophisticated approach would use equation-free techniques
with projective integration, to wrap the microscopic model into an outer code that per-
forms the bifurcation analysis. This way, longer steps in time can be taken due to
continuity on the macroscopic scale. Also, e�cient bifurcation code allows to sample the
parameter space more coarsely, thus avoiding many calls to the microscopic simulator.
An example of this method for bifurcation analysis in tra�c �ow can be found in the
paper of Marschler et al. (2014).

With the methods above, all simulation results are lost as soon as the bifurcation
diagram is complete. The analysis of the parameters takes no dynamical information
into account. That means even if all parameters lead to a similar dynamical progression,
the methods in the state of the art do not make use of this information, and are not able
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to uncover hidden relations between the parameters. In the queuing scenario, only one
parameter ρ a�ects the bifurcation. The constructed surrogate model incorporates this
in addition to the dynamical information through its two-dimensional phase space, as
shown next.

Alternative approach with the dynamic surrogate model We sample the arrival
and service rates given in table 4.3. To reduce noise, we run ten simulations per param-
eter pair, and hence generate data from 9 · 9 · 10 = 810 runs in total. The number of
pedestrians in the scenario per time step is then averaged, resulting in 81 time series,
one per parameter sample. A transient phase of 70s at the beginning of the simulations
is ignored, because in this phase, pedestrians only move towards the control point, and
no queuing behavior is possible.

Table 4.3: Arrival and service rates sampled with the optimal steps model in the queuing
scenario.

arrival rate λ service rate µ

1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0

Figure 4.13 shows the time series generated through microscopic simulation, obser-
vation of the number of pedestrians present in the scenario, and averaging.
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Figure 4.13: Simulated data for the pedestrian count at the entrance of the music festival,
over time. The red box surrounds the data we use to generate the surrogate model.

Given the data visualized in �gure 4.13, we construct a data-driven surrogate model,
which is able to accurately reproduce the queue length in the red box over time, for any
given arrival and service rate in the ranges [1, 3] and [1, 5], respectively. We �nd that the
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surrogate model needs two-dimensional closed observables to predict the queue length
over time. Considering the two-dimensional parameter space, the analysis of storage dis-
cussed in section 3.2.5 suggests that the two parameters are not independent, and that
only one, e�ective parameter drives the system dynamics. This is in accordance with
queuing theory as discussed above, where the e�ective parameter can even be stated pre-
cisely, as ρ = λ/τ. Figure 4.14 shows the map from service and arrival rates (λ, µ) into the
state space of the surrogate model (φ1, φ2). This initial map contains crucial information
about bifurcations in the system, as any change in the parameters (λ, µ) corresponds
to a change in the trajectory in the intrinsic space of the surrogate model, starting at
φ0(λ, µ) = φ(0). The simulation results from the surrogate model agree reasonably well
with the original data (see �gure 4.15). The linear increase of the number of pedestrians
present in the scenario is clearly visible, and also reproduced by the surrogate model.
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Figure 4.14: Initial value map φ0(λ, µ) = (φ1(0), φ2(0)). The black surface shows φ1(0),
the red surface φ2(0).
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Figure 4.15: Number of pedestrians in the scenario, as a measure of queue length, over
time. The simulation results of the surrogate model (circles) are compared to original
observations used to create it (line). Only every �fth trajectory is shown.

Regarding bifurcations, we �nd a similarity to the predictions of queuing theory.
Figure 4.16 shows the queue lengths up to T = 166 seconds, generated through 9×9 = 81
simulations with the surrogate model (left plot), as well as the data from the optimal steps
model that was used to construct it (right plot). The results between left and right plot
agree up to maximum error of 10.7 pedestrians, and a mean error of 3.6 pedestrians, over
all initial conditions. This demonstrates the accuracy of the surrogate model compared
to the original data. Also, the bifurcation line predicted by queuing theory (black line)
is very similar to the points where the queue lengths do not di�er more than the error
of ±10 pedestrians (white line).

The prediction by the surrogate model is closer to the original data than the predic-
tions by queuing theory. This suggests the surrogate model should be used to predict
queue lengths in this setting, instead of the rather general queuing theory, which does
not include possible �nite size e�ects in front of the control point.
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Figure 4.16: The queue lengths (color coded) generated by the surrogate model (left plot),
compared to the same analysis performed on the data used to generate the surrogate
model (right plot). The black line shows the prediction of the bifurcation by queuing
theory, the white contour is the approximation of the bifurcation by the simulated data.
The contour is shown where the queue lengths minima and maxima only di�er by ±10
over the complete simulation time, that is, where the di�erences in time is smaller than
the error between the surrogate and the original data.

Conclusions We con�rmed that queuing theory is a reasonably accurate, �rst guess
on the bifurcation behavior of queuing for the given microscopic model. In situations
where high accuracy is not an issue, the theory can therefore be used to make predic-
tions regarding queue lengths. We also con�rmed that the data-driven surrogate model
could reconstruct and predict queue lengths closer to the original model than queuing
theory. This validates the surrogate model, and demonstrates that it can be a valu-
able tool for bifurcation analysis. The results make it possible to study larger and more
complex systems with the powerful tools of numerical analysis. Accurate, data-driven
surrogate models can be used to predict behavior of crowd �ow with the speed needed
for optimization and control, even in on-site situations.

4.1.3 Uncertainty quanti�cation

Uncertainty quanti�cation (UQ) reveals how uncertainties in the parameters of a system
are related to uncertainties in the systems behavior and output. We refer to (Iaccarino,
2008) for a presentation of methodology, and to (Smith, 2014; Sullivan, 2015) for an in-
depth discussion of the topic. In so-called forward uncertainty quanti�cation, parameters
are assumed to be distributed stochastically, and the e�ect of particular distributions on
relevant observables of the system, the quantities of interest, is analyzed (see �gure 4.17).
Conversely, inverse uncertainty quanti�cation tries to �nd the distribution of parameters,
given the distribution of the quantities of interest. In most applications, only discrete
samples or the �rst few moments of distributions are available. This holds for the quan-
tities of interest in forward UQ and the reconstructed parameter spaces in inverse UQ.
The reconstruction of the distribution given only this little information is also a topic
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of active research, and in most cases, only the �rst moments can be reconstructed with
enough accuracy.

model

f

p f(p) = y

Figure 4.17: Concept of forward uncertainty quanti�cation, searching for the distribution
of y. The input parameter p is stochastically distributed, and when processed by the
model f , the quantity of interest y will also have a certain distribution f(p), which is
result.

Uncertainty quanti�cation operates under assumptions on the stochastic distribution
of the parameters (forward UQ) or the quantities of interest (inverse UQ). This is di�erent
from sensitivity analysis (Saltelli, Tarantola, and Chan, 1999), which is characterizing the
response of a system to a change in parameters without assumptions on uncertainties. A
large response to small changes in a parameter might not be relevant for the quanti�cation
of uncertainty of the system, if the parameter in question is not uncertain (Iaccarino,
2008). Moderate responses to large changes might still be important, if large uncertainties
are present. Here, we demonstrate how to apply uncertainty quanti�cation combined with
surrogate models in a concrete example.

General description of the application Public transportation systems are invalu-
able for modern society. Especially important are train stations, where many passengers
move and interact in a large area. Prediction of crowd �ows, optimization of facilities,
and, ultimately, control of the system are three important goals of crowd dynamics re-
search. Given correct input parameters, modern simulation software for crowd dynamics
can accurately simulate the �ow of pedestrians in these situations. However, a great chal-
lenge are uncertainties of the system that remain until the very moment control should
be exercised. These uncertainties include the number of people present in the system,
the targets of these people, and which characteristics they possess, such as desired speeds
or disabilities.

Here, we propose an integrated approach combining uncertainty quanti�cation and
surrogate modeling into a concept we call real-time uncertainty quanti�cation (real-time
UQ). Essentially, real-time UQ enables the quanti�cation of uncertainties in real time,
even for large systems, such as a train station. Real-time UQ is impossible with current
microscopic simulation software, as it requires the evaluation of thousands or even mil-
lions of complete scenario simulations in a matter of seconds. We solve this challenge
through precomputation of a data-driven surrogate model using the microscopic simula-
tor. The surrogate model can then be queried independently by the software performing
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UQ. Figure 4.18 visualizes the train station we use to demonstrate our method. The
quantities of interest are the number passengers on a train and on the platform over
time. We assume that in the real scenario, the number of passengers initially on and
o� the train are uncertain, and the safety o�cer can only guess the number of people
to a certain degree. We model this guessing process through the stochastic distributions
of the input parameters. The task for the hypothetical safety o�cer in this case is to
estimate if and when the number of people on the platform exceeds 120. This number is
chosen because it marks the point where the density on the platform exceeds one person
per square meter, which we set as a point where safety guidelines require an evacuation
of the platform before more passengers can deboard.

Figure 4.18: Train station scenario used to demonstrate uncertainty quanti�cation with
surrogate models in a realistic context. Shown here are 100 passengers, 50 per door,
deboarding a train onto a platform where 80 passengers wait. The passengers start at
the two gray boxes in the train, move out of the train, and then to the right towards an
exit. Waiting passengers move aside when too close to a moving passenger, but remain
on the platform and do not board the train.

We discuss and answer two questions for the train station scenario, one about control,
the other about methodology:

1. Control: How many people should be allowed to remain on the platform before a
train arrives?

2. Methodology: How can uncertainty quanti�cation handle several di�erent input
probability distributions?

We discuss how current methods in uncertainty quanti�cation provide an answer to these
questions. Then, we show how to combine uncertainty quanti�cation with data-driven
surrogate models, including drawbacks and bene�ts.

State-of-the-art approach without dynamic surrogate models We assume the
equations of the microscopic model are not available, and we can only generate the macro-
scopic data by initializing the simulator with a given parameter set, and measuring its
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output over time. Data-driven methods in uncertainty quanti�cation are able to handle
this setting. Iaccarino (2008) classi�es methods for probabilistic uncertainty quanti�ca-
tion by sampling techniques and quadrature methods. Spectral methods are mentioned
as a class of equation-driven approaches, which is not discussed here.

Sampling techniques include the Monte Carlo method and Latin hypercube sampling,
which provide reasonable accuracy under very few assumptions on the data. Essentially,
they approximate the distribution of parameters by drawing random samples, and es-
timate the true probability distribution of the quantity of interest by computing a his-
togram of the results. The convergence to the true solution does not depend directly on
the dimension of the parameter space, which makes sampling methods especially e�cient
for high-dimensional spaces. Still, convergence might take a prohibitively large number
of samples. Schröder et al. (2014) use Latin hypercube sampling to perform a sensitivity
analysis of a �re hazard in a train station.

Quadrature methods are more advanced and highly accurate techniques. They can
be used for uncertainty quanti�cation, because the modes of the probability distribution
are integrals of the quantities of interest over parameter space. Stochastic collocation is a
commonly used method for the estimation of integrals of random variables. Assuming one
particular distribution for each of the parameters, the usual approach in stochastic collo-
cation computes collocation points in parameter space and de�nes associated orthogonal
polynomials. Then, microscopic simulations generate data with each collocation point as
an input. The resulting quantity of interest is assembled so that

M∑
i=0

f(ζi)wi(ζi) ≈
∫
P
f(ζ)ρ(ζ)dζ, (4.5)

where ζi are the collocation points in parameter space, f(ζ) computes the quantity of
interest given a parameter ζ, wi are quadrature weights, and ρ is the true probability
density. Extensions to multidimensional parameter spaces are possible through tensor
product approaches, or sparse grids.

All methods discussed above assume a �xed probability distribution of the parame-
ters. High-dimensional parameter spaces are di�cult to assess, because it is not yet clear
how to choose the collocation points and associated polynomials correctly.

It is not possible to change the probability distributions assumed for the parameters
after the data was sampled. If a new distribution needs to be chosen, the whole process
has to be repeated. The new collocation points might be di�erent from the previous ones,
so all microscopic simulations have to be repeated, too. Even though the standard meth-
ods characterize the in�uence of uncertainty in the given parameters on the quantities
of interest, they do not uncover possible relations between the parameters. For example,
in the queuing scenario discussed in section 4.1.2, the parameters are arrival rate λ and
service rate µ, whereas the quantity of interest�the length of the queue�can be described
through only one e�ective parameter ρ = λ/µ. An analysis of the in�uence of uncer-
tainty in λ and µ would not reveal this relation. The data-driven surrogate modeling
approach described in the next section enables to overcome these two challenges. After
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the construction of the surrogate, we will analyze three di�erent probability distributions
without querying the microscopic model, and demonstrate the accuracy of the approach.

Alternative approach with the dynamic surrogate model With the surrogate
model, we can also adapt to errors intrinsic to the dynamic, not only the input distribu-
tion. The surrogate �stores� all information gathered by previous microscopic runs. This
means we are able to use several di�erent probability distributions in the quanti�cation
of uncertainty, after the model is created. To create the surrogate model, we sample
the two input parameters in a grid of 5 × 5 points as shown in table 4.4, and run the
microscopic simulation for 200 seconds at each point.

Table 4.4: Number of passengers on train and platform, used as parameters used to
create the surrogate model, which is then analyzed in uncertainty quanti�cation.

#platform 0, 25, 50, 75, 100
#train 10, 25, 50, 75, 100

To demonstrate that the output of the surrogate model can again be processed into
new quantities of interest, we do not directly observe the number of passengers on and
o� the train, but in four sections of the scenario: two areas in the train, and two adjacent
areas on the platform. The four numbers at each point in time can be processed into the
coarser information of �number of passengers on the train� and �number of passengers on
the platform� by summing the numbers of the two respective areas. By measuring four
instead of just two areas, the safety o�cer in charge of the station could then display
a more accurate picture of the deboarding process, after a courser analysis. The choice
of these four areas also demonstrates that it is quite arbitrary which observables of the
system are chosen, as long as they are not too heavily a�ected by noise. The exact
requirements on the observations are discussed in section 2.3.

We construct the surrogate model with the generated data. The data in its original
form is a�ected quite heavily by microscopic e�ects, which manifest themselves as noise
on the macroscopic scale. To reduce this noise as required by Takens' theorem, we
perform the following preprocessing steps, and parameter choices in the construction of
the surrogate:

� Only use data points every 2.5 seconds.

� Use the number of passengers that already left the scenario as an additional observ-
able, which can be computed from the given four observables. This �fth observable
has a stabilizing e�ect on the dynamics, as well as the interpolants, as it is a
monotonically increasing function of time.

� Choose 80 delays in time to smooth the manifold in delay space. By choosing data
points only every 2.5 seconds, this accumulates the complete simulated time of 200
seconds in one data point. We append the last point in time of each trajectory
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for another 200 seconds, assuming a steady state has been reached, to be able to
reconstruct the whole trajectory over time again.

� Choose κ = 1× 10−3, which is quite large considering the large number of delays.

We compute the di�usion map with scale parameter ε = 1× 107, and use linear
interpolation to approximate the input map, the dynamic, and the output map of the
surrogate model (Python package scipy.interpolate.LinearNDInterpolator, with pa-
rameter rescaling, and a �ll value of 0). Figure 4.19 shows a comparison of simulation and
original data. The results agree reasonably well, and the steady state for each trajectory
is also reached, which was introduced by adding constant data after t = 200.
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Figure 4.19: Comparison of the simulation results of the surrogate model and the mi-
croscopic model, using linear interpolation for the functions comprising the surrogate
model. A prediction is shown for (#platform,#train) = (75, 60), a parameter set not
used in the construction. The prediction agrees well with �ve trajectories sampled at
this parameter value.

Performing data-driven uncertainty quanti�cation with the surrogate model is not
di�erent from the microscopic model, but the surrogate model generates output much
faster. This computational e�ciency allows to use less advanced methods that are usually
quicker to implement, such as Monte-Carlo sampling compared to stochastic collocation.
Table 4.5 describes the three distributions of the parameters that we use to demonstrate
uncertainty quanti�cation with surrogate models. We estimate each distribution with
1000 random samples, and generate the quantities of interest over time with the surrogate
model. For one distribution, the whole process takes about 50 seconds, utilizing all cores
on a quad core machine (Intel i7 920, 2.67GHz with hyperthreading, 8GB RAM). In
comparison, a simulation of 100 pedestrians with the gradient navigation model on the
same machine needs approximately 20 seconds for a simulated time of 200 seconds, also
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utilizing all cores. Thus, the surrogate exceeds the microscopic model by a factor of 400
in terms of computational speed.

Table 4.5: Three distributions used in uncertainty quanti�cation with the surrogate
model. We write U(a, b) for a uniform distribution between a and b, and N(a, b) for a
normal distribution with mean a and standard deviation b.

#platform #train

distribution A U(30, 70) const. 50
distribution B const. 50 U(30, 70)
distribution C N(50, 5), truncated to [5, 95] N(50, 15), truncated to [5, 95]

Figure 4.20 shows the propagation of the quantities of interest through the system over
time. The graphs show the mean, the 90%-quantile and 10%-quantile of the distribution
as it is propagated. The upper graph (blue) shows the number of passengers on the
platform, the lower graph (gray) shows the number of passengers still on the train.
The results are shown for the surrogate model in the left column, and for a separate
analysis with stochastic collocation in the right column. The uncertainty quanti�cation
with stochastic collocation was performed by Florian Künzner, we thank him for the
collaboration and his permission to show his results. Distribution A a�ects the initial
number of passengers on the platform. It does not change shape as passengers deboard
the train, only its mean increases, and then decreases as the deboarding passengers leave
the scenario. The number of passengers on the train slightly di�ers over time, due to
the di�erent number of passengers in front of the train doors. Distribution B a�ects
the initial number of passengers on the train. This number decreases for all plots, for
the second distribution, the mean and the 90%-quantile almost agree at the point where
almost no passengers are left on the train. Distribution C a�ects both the initial number
of passengers on and o� the train, with a truncated normal distribution for both initial
values around a mean of 50. We choose the standard deviation for the guess of the
number of people in the train three times higher than for the number of people on the
platform, because it is easier for a safety o�cer at the station to guess the �rst number.
In this case, after about 15 seconds, the number of passengers on the platform is higher
than the limit of 120. Figure 4.21 shows the probability density at t = 20 seconds. The
probability of more than 120 passengers is highlighted, and indicates that an evacuation
is necessary. A safety o�cer facing this situation should stop the train from entering the
station, and evacuate the platform.
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Figure 4.20: Results of uncertainty quanti�cation with the surrogate model (left column)
and stochastic collocations (right column), for three probability distributions (rows) over
the two parameters NP (0) and NT (0). For distribution C, the number of passengers on
the platform exceeds the safety limit at t = 15s, which would lead to an evacuation of
the platform.
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Figure 4.21: Probability density of the number of passengers on the platform at t = 20s,
given the parameter distribution three. The probability of the number being higher than
120 is highlighted in red for the Monte-Carlo simulation, and overlayed in yellow for the
prediction of the surrogate model.

A low number of simulation runs with the microscopic simulator is needed for the
surrogate model and stochastic collocation. It is di�cult to state in advance the minimum
number of simulations necessary to accurately predict results from a brute-force approach.
That di�culty is a cause for the results shown in �gure 4.22. A Monte-Carlo sampling
with 1000 sample points was performed for distributions 1 and 2, and a microscopic
simulation run for each sample. If we use the results as a more accurate picture for
uncertainty propagation in the system, we can evaluate how well both the surrogate model
and stochastic collocation perform in predicting the propagation of the two distributions.
The propagation of distribution B (right side of �gure 4.22) seems to be predicted quite
well through both approaches (see �gure 4.20, top row). For distribution A (left side
of �gure 4.22), the number of passengers on the platform exceeds 120 in the Monte-
Carlo simulation, but stays below 120 for predictions of both the surrogate model and
stochastic collocation.
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Figure 4.22: Results of uncertainty quanti�cation with a Monte-Carlo approach, for the
probability distributions A and B, over the two parameters NP (0) and NT (0). Distribu-
tion A exceeds the critical number of 120 passengers on the platform at t = 15, which is
di�erent from the predictions of the surrogate model and stochastic collocation.

Conclusions Uncertainty quanti�cation is a valuable tool to help understand and con-
trol the �ow of passengers in a train station. We demonstrated how the data-driven sur-
rogate can be used as an intermediate step between the original model and uncertainty
quanti�cation. We queried the microscopic simulator (5 · 5) · 5 = 125 times to generate
the observations for (5 · 5) = 25 parameter settings, and 5 random initial conditions
per setting. From the generated data, we construct the surrogate model. No additional
calls are necessary for the evaluation of arbitrary parameter distributions with support
in the range of the parameters used in the construction. This is di�erent for an approach
with stochastic collocation, where a change of the probability distribution in parameter
space always requires new simulations of the microscopic model. The distributions over
time of the quantities of interest could be reproduced accurately by the surrogate model,
compared to results from stochastic collocation.

Even though the combination of the surrogate model with uncertainty quanti�cation
is a very promising approach, there are still many open questions to answer. Approxima-
tions through the construction of the surrogate model introduce errors in the output. It
is not clear how exactly these errors in�uence the propagation of uncertainties through
the system. Theorem 3 on the numerical approximation error can only give a �rst insight
into the matter, because it assumes very small magnitudes of errors and also does not
specify the magnitude of the constants. There are also numerous improvements possible
to the modeling of the deboarding process shown here, which have to be addressed be-
fore using the scenario in simulations of a real train station. Passengers on the platform
would usually make way for deboarding passengers beforehand, speeding up the process.
Groups of passengers deboarding together, such as families or friends, usually also a�ect
the dynamics of the system. Incorporating the mean of the desired speeds of passengers
as a parameter of the surrogate model would allow safety o�cers to also include knowl-
edge about the distribution of passenger types into the real-time UQ process. A train
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with many tourists and families would be represented by an input distribution of mean
speeds around a low value, whereas in a train with commuters the mean speeds would
be distributed around a higher value.

As the construction of the surrogate model is a data-driven approach and indepen-
dent of the actual example, all changes to the underlying, microscopic model can be
used directly and without changes to the construction algorithm. There also is a ben-
e�t of the surrogate model concerning equation-driven uncertainty quanti�cation. The
functions approximating the input map, dynamic, and observer of the surrogate model
are often given explicitly, compared to closed-source or legacy simulation software. The
explicit formulation allows to use invasive, equation-driven methods on the surrogate,
even though the original model is not accessible in such a way. For the train station
example discussed here, we use piece-wise linear interpolants for all three functions. As
the formulaic description of the interpolants is known, a Galerkin approach could be
used. For applications, this equation-driven approach following the construction of the
surrogate model could mean an even greater increase in performance.

4.2 Car tra�c

General description of the application A large portion of modern society relies
heavily on transport by cars. Even though public transport systems are capable of
handling a large number of passengers and goods, cars are still prominent on highways
and in cities. One of the most studied phenomena in tra�c �ow on highways is the
occurrence of stop-and-go waves. Figure 4.23 illustrates such a stop-and-go wave for
three consecutive time steps. The gray cars are initially in a slow �stop� phase, so that
cars behind them also have to slow down. The rightmost gray car can start to accelerate,
and move into the �go� phase in the third step. The slow part of the wave has moved
forward, but slower than the rightmost gray car.

Figure 4.23: Cars on a highway, the three rows show three consecutive time steps. The
line indicates the point of highest density, where cars almost stop, and accelerate after
reaching the end of the jam. The point of highest density shifts over time, creating the
e�ect of a moving stop-and-go wave.

In the example we study here, N cars drive on a ring of arclength L, where individual
driving behavior is governed by the optimal velocity model (Bando et al., 1995), with a
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numerical model implemented in MATLAB (2015b). If xn is the position of car n, and
τ is its inertia, car n moves according to

τ ẍn + ẋn = V (∆xn), n = 1, . . . , N. (4.6)

Here, ∆xn = xn+1 − xn is the distance to the car in front of car n, and V is the velocity
function

V (∆xn) = v0(tanh(∆xn − h) + tanh(h)) (4.7)

shown in �gure 4.24. The maximal velocity reached in the limit of in�nite time is
v0(1 + tanh(h)). The parameter h is the in�ection point of V , and describes the desired
safety distance between two cars. All physical units are removed through nondimension-
alization, such that a car with velocity ẋ = 1 always takes L units of time to move around
the circle of length L once.
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Figure 4.24: Velocity function V of the optimal velocity model used here, including the
in�ection point h and the maximum 1 + tanh(h).

Initially, the cars are distributed uniformly, with a gap of size (1− d)/L, d ∈ [0.8, 1],
in front of the �rst car. Over time, the gap closes, and the cars move around the ring
road with only small changes of the headway xn+1 − xn between the two cars n+ 1 and
n. Figure 4.25 shows the headway distribution for N = 60 cars over the whole ring, for
two values of the safety distance h, and for two time steps each.
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Figure 4.25: Headway distributions for car n at position xn to the car n + 1 in front.
The time evolution of two distributions are shown, for desired safety distance h = 1.15
and h = 1.2, and with a time di�erence of 6s. Both distributions move to the left over
time and keep their shape, but have di�erent maxima for di�erent h.

Here, we show how to construct a surrogate model for stop-and-go behavior of cars on
a highway. The system can be reduced to a single point, rotating on a circle with a certain
constant speed and radius. This special case allows to �nd a formulaic description of the
state space and the dynamic of the surrogate model. To make the formulaic description
clear, we do not introduce speci�c equation-driven or data-driven challenges here. The
data-driven complexity of this application is very low, as we use a simple ODE model to
produce the data for the cars, without any additional e�ects or di�erences between cars.
The goal of this section is an equation-driven method, the formulaic description of the
surrogate model, that is inspired by the numerical results.

State-of-the-art approach without dynamic surrogate models Similar to the bi-
furcation application on queues, stop-and-go behavior depending on the safety distance
h and velocity v0 can be studied through an equation-free bifurcation analysis (Marschler
et al., 2014). Again, this would avoid many calls to the microscopic simulator, but all
simulation results are lost as soon as the bifurcation diagram is ready. When the bifur-
cation diagram is constructed with an adaptive method, new parameter sets for a new
simulation have to be chosen based on previous results. The choice is usually based only
on the available diagram data, and the last solution that was computed. One example
is numerical arc-length continuation (Brindley, Kaas-Petersen, and Spence, 1989), which
continues the bifurcation path from known points. Only the previous solution and pa-
rameter value on the path are taken into account, not the whole dynamical information
leading to the diagram. That means even if all parameters lead to a similar dynami-
cal progression, the methods do not make use of this information. We refer to (Orosz,
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Wilson, and Krauskopf, 2004; Marschler et al., 2014) for an application of a numerical
continuation of bifurcation curves in the optimal velocity model.

Another possibility for a bifurcation analysis of the microscopic model is to homog-
enize it with equation-driven methods. In the optimal velocity model, the equations on
the microscopic scale are explicitly available and not very complex, so homogenization
is a straight-forward approach (see (Helbing, 2001) for a review of tra�c modeling).
Equation-driven methods are preferable in case the microscopic model or phenomenon
needs to be understood more thoroughly, and we will show how the surrogate model can
be used to extract information from data that can then inform a formulaic description
on the macroscopic scale.

Alternative approach with the dynamic surrogate model We consider three
parameters of the system: the velocity v0, the desired safety distance h, and the initial
distribution parameter d (see table 4.6). The range of the parameters h and v0 is chosen
around the bifurcations found by Marschler et al. (2014).

Table 4.6: Nondimensionalized parameter values, sampled to generate the surrogate
model for stop-and-go behavior in car tra�c. The values are in the same range as the
bifurcation analysis by Marschler et al. (2014).

parameter values

v0 0.88, 0.885, 0.89, 0.895, 0.9
h 1.15, 1.175, 1.2, 1.225, 1.25
d 0.8, 0.85, 0.9, 0.95, 1.0

We generate trajectories up to t = 1× 105, and store observations of the car den-
sity over the whole ring. We omit all but the last 1× 103 seconds, to avoid transition
e�ects towards the dynamic steady state. Depending on the parameters, this dynamic
steady state is either a homogeneous spatial pro�le with constant headway, or stop-and-
go behavior with varying di�erences in headways (see Fig.4.25). The dynamic of the
resulting surrogate model is the same as a point moving on a circle, with constant speed
and radius. Figure 4.26 visualizes the time derivative given the �rst two di�usion map
coordinates, for all data points used to create the surrogate model.
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Figure 4.26: Dynamic g = (g1, g2) in the intrinsic coordinates (z1, z2). The black lines
show dz1

dt = g1(φ1, φ2), the red lines dz2
dt = g2(z1, z2).

The shape of the trajectories in di�usion map space shown in �gure 4.26 suggests the
hidden model describes rotations on a circle. The state space of the surrogate model is
connected to the hidden model by a di�eomorphism (see section 3.2.2), and by transi-
tivity, we can choose any state space di�eomorphic to the state space of the surrogate
model, to obtain yet another surrogate model of the hidden one. Here, we choose a state
space that allows rotations of angle α on a circle of radius r, where the radius depends on
the parameters of the original model. This choice simpli�es the surrogate model greatly,
as only the initial map and the observer have to be computed numerically. The angle α
and radius r are related to the di�usion map coordinates z1, z2 by

α = ∠ (z1, 0, z2) , (4.8)

r = lim
t→∞

1

t

∫ t

0
‖(φ1(t), φ2(t))‖dt. (4.9)

The norm ‖(z1(t), z2(t))‖ is almost constant over time, so we replace it with the average
over the whole trajectory. For di�erent initial conditions (z1(0), z2(0)), the radii are
di�erent, but the angles are the same. The dynamic of the surrogate model on the new
state variables α and r can be described by rotations on a circle,

α̇ = ω(h, d, v0), α(0) = 0, (4.10)

ṙ = 0, r(0) = r0(h, d, v0), (4.11)

(4.12)

where ω is the constant angular speed, and r0 is the constant radius. The functions ω
and r0 map from the system parameters safety distance h, initial distribution d, and

104



speed v0, to angular speed and radius (see �gure 4.27). We compute the angular speed
ω as the mean of angular speeds d

dtα on the circle in di�usion map space, by

ω = limt→∞
1
t

∫ t
0
d
dtα

≈ 1
T

∑T
i=1 (α(ti))− α(ti−1))) ,

(4.13)

where the trajectories α(ti), ti = 0, . . . , tT = T are available through the computation of
the closed observables (z1, z2) of the surrogate model. The functions ω0(h, d, v0) = ω and
r0(h, d, v0) = r0 are shown in �gure 4.27. The function values do not change when varying
d > 0 and keeping h, v0 constant. After the values of the closed observables (z1, z2) are
known, they can be transformed back to the density of cars by the observation function
shown in �gure 4.28.
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Figure 4.27: The map from the system parameters (h, v0, d) to the radius r (color, left
plot) and angular speed ω (color, right plot). The results ω and r are the parame-
ters for the circular dynamical system forming the surrogate model (equation 4.10 and
�gure 4.26).
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Figure 4.28: Piecewise linear approximation of the observer function ỹ, mapping from
(α, r) to the headway of cars on the circular road.

The initial map (�gure 4.27), the formulaic description of the surrogate model in
equation 4.10, and the observer function (�gure 4.28), allow to generate the trajectories
of the closed observables (z1, z2) and then measure the headway of cars on the road
over time. Given the angle and the radius, the observer measures the headway as a real
number, and not as a distribution function. It is still possible to create the distribution
h(t, x) at time t over the entire road of length [0, L] through

h(t, x) = ỹ(α(t) + 2πx/L, r(t)), x ∈ [0, L], t ∈ R+. (4.14)

Two headway distributions generated with the surrogate model are compared to the orig-
inal data in �gure 4.29. They agree with a relative error tolerable for many applications
in car tra�c, where the exact number of cars is often not important. The approximation
quality of the surrogate model allows to generate accurate observations very quickly, and
also to analyze the model for bifurcations.
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Figure 4.29: Comparison of observations between the original and the surrogate model,
for two times t0 and t1 = t0 + 20.

Conclusions The stop-and-go behavior of cars on a ring road can be transformed
into a much simpler surrogate model with only one point moving around a circle with
constant speed and radius. The three system parameters initial density, speed, and
safety distance all map to the radius and angular speed, and the rotating point can
be mapped back to the headway distributions on the ring road. In this application,
we demonstrated how to use a di�eomorphic phase space with a given equation for the
dynamic, instead of numerical approximations. The initial map and the observation
function are still numerical approximations, and it is not as easy to replace them with
a formulaic description, because the exact headway distribution has to be known for
all initial parameters. This shows that the intrinsic dynamic of a system can be quite
simple, even though the observed values are complex�in the case of road tra�c, the
observation is a function from space to headways between cars. Compared to state of the
art approaches, the surrogate model is able to uncover the topology of the state space
on the macroscopic scale, namely, a ring. The bifurcation analysis is now completely
decoupled from the dynamics, and can be performed purely on the initial map.

4.3 Granular �ow

The term granular �ow is very generic, and describes the movement of granular particles�
which can be, for example, grains of sand, rocks, blood, or molecules. Granular particles
are not self-propelled and thus only driven by external forces, which sets them apart from
systems with cars, robots, animals, or humans. Di�erences between individual grains
typically make an equation-driven treatment of granular systems challenging. Currently,
data-driven and equation-driven methods are successfully applied in combination. One
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example is running microscopic simulations to compute parameters of equations given on
the macroscopic scale. Farmer (2002) reviews these methods in the context of porous me-
dia, where both the microscopic and macroscopic system is given as a partial di�erential
equation, and the microscopic system is solved numerically to inform the parameters of
the macroscopic PDE. Brandt and Ilyin (2003) discuss the same issue, but with Monte-
Carlo simulations on both scales. In general, �nding suitable variables for a model on the
coarse scale is challenging, because their dynamic has to be independent of the �ne scale.
In this application, we demonstrate that the construction process of the surrogate model
can automatically extract these suitable variables, given only the positions of grains on
the �ne scale.

General description of the application The particles follow a spring-force model
in three dimensions (see (Luding, 2006); the simulation Software was implemented by
Christoph Waldleitner (Waldleitner, 2015)). We consider a box-shaped silo with a small
opening at the bottom, and dimensions (length,width, height) = 4 × 0.7 × 20 (see �g-
ure 4.30). The small width of the silo forces the grains into an e�ectively two-dimensional
system with a thin third dimension. This facilitates a two-dimensional visualization as
in �gure 4.31, and still shows nontrivial dynamics.

Figure 4.30: Simulation of granular particles in a silo. The colors indicate di�erent initial
heights. The simulator and the visualization for this granular �ow was implemented by
Christoph Waldleitner (Waldleitner, 2015).
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Figure 4.31: Positions of initially 5000 grains in the silo at times t = 0, 20, 40. The colors
indicate initial positions in the silo for di�erent heights x2(0).

The dynamics of individual grains is not important in most applications. Primarily,
the focus lies on continuous, macroscopic descriptions of the �ow and its velocity. Here,
we de�ne the macroscopic observable of interest to be the position of large clusters of
grains over time. This observable is interesting for a coarser grained view of the system.
It can be used to coarse grain a particle system over many spatial and temporal scales,
when the coarse graining is applied iteratively on coarser and coarser levels. A cluster is
a set of grains with an initial height in a certain range. Figure 4.32 shows an assignment
of grains to a cluster at t = 0.

+std

−std
com

Figure 4.32: Assignment of individual grains to a cluster. All gray grains belong to the
cluster in the center, the white grains above and below to two di�erent clusters. The
center of mass in the vertical direction is marked com, with one standard deviation (±std)
in both directions.

The initial position of the clusters we consider for the construction of the surrogate
model are shown as red rectangles in �gure 4.33. First, we show how the macroscopic
system would be found with conventional methods. Then, we construct a surrogate
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model and compare the accuracy of its output to a naive interpolation of the complete
set of observation data.

−4−2 0 2 4
0

5

10

15

20

x1

x
2

Figure 4.33: Position of the clusters spread over the silo. We construct a surrogate model
for the dynamics of grains in each cluster.

State-of-the-art approach without dynamic surrogate models The generality of
granular �ow makes it an active �eld of research over many disciplines, both theoretical
and applied. We provide references to reviews, and then focus on recent methods that
can be used to �nd the dynamics of each cluster, as outlined in the last section. Similar
to crowd �ow, there are equation-driven and data-driven methods available. To choose
any of the methods, it is important to clarify on which scale the results should be, and
on which scale the model for the granular �ow is available. Rao and Nott (2008) and
Tejchman (2013) introduce the topic of granular �ow. The work of Müller (2001) reviews
computational approaches, and Bell, Yu, and Mucha (2005) discuss the issue from the
perspective of computer graphics. Trujillo and Sigalotti (2014) focus on theoretical ap-
proaches, including thermodynamic considerations. Luding (2008) describes the discrete
element method, which is widely used to simulate granular matter. Methods for porous
media often employ a combination of data-driven methods on the microscopic scale,
and equation-driven methods on the macroscopic scale. The spot model (Bazant, 2006)
is a computational approach to upscaling in granular �ow. Equation-free, data-driven
approaches are also available (Moon, Sundaresan, and Kevrekidis, 2007).

In all methods cited above, �nding good observables of the macroscopic process is cru-
cial. With the surrogate model, we will not assume any speci�c macroscopic observable,
but use all positions of individual grains as observables to compute closed observables.
In this challenging setting, the construction generates slowly changing, intrinsic variables
for the surrogate model. The variables allow to observe both the vertical position of the
center of mass in a cluster, and the standard deviation of the vertical positions of grains,
over time.
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Alternative approach with the dynamic surrogate model The data-driven con-
struction of the surrogate model allows to generate models for individual slices of the
silo. We assume no knowledge about the correct observables on the macroscopic scale,
and observe the vertical position of all grains in a slice at once. This allows the con-
struction process of the surrogate model to automatically determine �optimal� intrinsic
variables. With these variables, all functions of the vertical positions of all grains can be
measured. We choose the center of mass in a cluster, as well as the standard deviation
in the vertical direction over all grains in the cluster, which allows to quantify the cluster
shape and position over time. Here, we demonstrate that knowing the center of mass and
the standard deviation is not enough to advance these two quantities in time. However,
when constructing the surrogate model, time lags of the positions of all grains in a cluster
are considered. Together with the di�usion map, this generates intrinsic variables that
hold enough information to advance in time, and still allow to observe the center of mass
and standard deviation of the vertical positions of grains in a cluster. The initial mean
height of the grains in a cluster is the system parameter we vary, so we can generate the
evolution of all grains over time when simulating all clusters.

To generate data, we simulate all grains in the silo microscopically. In an initial phase
of 15 seconds, the grains settle from their initial positions in a rectangular grid to their
positions in the �owing phase. After this initial phase, we capture the positions of 50
randomly chosen grains in each cluster, for 50 consecutive time steps of 2 seconds each. As
grains can move with di�erent speeds relative to the center of mass in a cluster, the shape
of the cluster changes. We compute a surrogate model for the vertical movement of all
grains relative to the starting position of each cluster. The relative movement, in contrast
to an absolute movement in the silo, is chosen to demonstrate that the construction of
the surrogate can di�erentiate the clusters based on the dynamics on the grains. If the
absolute movement were considered, a di�erentiation would be possible directly by the
vertical position. An observation yj(tk) of the vertical position of particle j at time tk
relative to the starting position of the cluster is computed from all vertical positions
v1,...,50(tk) = (v1(tk), v2(tk), . . . , v50(tk)) in the silo through

yj(tk) = yj(v1,...,50(tk)) = vj(tk)−
1

50

50∑
m=1

vm(0), j ∈ {1, . . . , 50}. (4.15)

Finding a model for the values yj poses a challenge to methods of the state of the
art, because all trajectories start at approximately the same vertical position zero (see
�gure 4.34). If only the position relative to the cluster is known, and not the cluster
number or past positions, it is impossible to compute future positions, as all positions
are equal at t = 0 and only change afterwards.
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Figure 4.34: Part of the data used to construct the surrogate model. Ten particle tra-
jectories per cluster are shown, whereas 50 particles in each of the 16 clusters were used
in the construction of the surrogate model.

After delay embedding and construction of the di�usion map, the �rst two di�usion
eigenfunctions are independent, while the other computed eigenfunctions are harmonics
of the �rst two. The existence of two independent eigenfunctions implies the intrinsic
dimension of the surrogate model is two, which indicates the relative particle positions
are not enough to predict future values. There are at least two reasons for this. First,
all positions are relative to the cluster. If, at the beginning of the simulation, only the
relative positions are known and not the cluster position in the silo, it is not possible
to predict future values. Second, a more abstract reason is that Hamiltonian systems
are de�ned on the position and the velocity of particles. Figures 4.35 and 4.36 show
simulation results obtained from the surrogate model, compared to the observations from
the original, microscopic model. For the values after 60 seconds, the surrogate model is
used to predict future values. The cluster positions are approximated with a low error,
whereas the standard deviation has a larger relative error. This is due to the higher order
computations necessary to evaluate the standard deviation in comparison to the mean.
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Figure 4.35: Simulation results of the surrogate model, compared to original data. We
do not measure all particle positions, but the mean position of the center of mass over
all particles in a cluster. A forecast of the mean value is possible for about 25 seconds,
before the accuracy decreases at t > 80. A prediction of a trajectory for a parameter not
in the original data is correctly interpolated through the surrogate (dashed line).
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Figure 4.36: Simulation results of the surrogate model, compared to original data, for the
standard deviation in the horizontal direction from the center of mass in a cluster. We
only show one trajectory out of 16, as the standard deviation varies too much between
clusters. The standard deviation is not approximated very accurately, and the forecast
is also incorrect, due to the high noise level in the data.

Figure 4.37 shows a standard approach to surrogate modeling, as a comparison to
the dynamic surrogate model. A response surface is computed for all data points, with
the time treated as an additional parameter. The interpolation method is the same as
for the surrogate model functions, a piecewise linear function, and we also extrapolate
the data linearly. Di�erent to the dynamic surrogate (�gure 4.35), the response surface
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can reproduce the observation data in the given range of values exactly. This is not
surprising for a piecewise linear interpolation method. Comparing prediction quality,
the surrogate is able to capture the decrease to the height value of four more accurately
than the response surface. This is because the dynamic surrogate is interpolating, and
extrapolating, the intrinsic dynamic of the hidden model, while the response surface only
considers the dynamic of the last two observations in the linear extrapolation.

0 10 20 30 40 50 60 70 80 90 100
2

4

6

8

10

12

time [s]

ce
n
te
r
of

m
as
s

original data
extrapolated original data

Figure 4.37: Evolution of the center of mass for all clusters, shown as black dots. The
system parameter is the initial position of the observed cluster, varied from 4.0 to 11.5.
A linear extrapolation from the original data is shown as black lines, by extending the
data surface further in time. The prediction results after 60s are not as accurate as with
the surrogate model, because the intrinsic dynamic of the process is not approximated.

Conclusions Granular �ow is a very diverse �eld with many di�erent goals and appli-
cations. We focused on a silo example, and showed how the dynamic surrogate approach
can automatically identify suitable observables, given only the vertical positions of all
grains in small clusters. The surrogate model can accurately approximate macroscopic
observations, such as the average vertical position of grains in a cluster, and is also able
to predict future values through the approximation of the dynamic intrinsic to the pro-
cess. The surrogate performs better than a direct extrapolation from the macroscopic
data, which would be used conventionally in equation-free methods. The presence of
high-frequency changes in the center of mass in a cluster due to individual grains poses a
severe challenge to the current construction process of the surrogate model, as discussed
in the section on stochastic e�ects (section 3.2.7). Here, we used averaging over sev-
eral simulation runs to smooth out these high frequencies. Another way to resolve the
underlying macroscopic dynamic would be to combine more grains into one cluster.
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4.4 Summary of the chapter on applications

We demonstrated the construction process, bene�ts, and possible caveats of the data-
driven surrogate model on �ve example applications: crowd dynamics with queuing at
the entrance of a music festival and density evolution through a bottleneck, car tra�c
with stop-and-go waves on a highway, the �ow of granular particles in a silo, and �nally,
uncertainty quanti�cation in a train station. We brie�y outlined how the challenge of
each example would be solved with conventional methods, and then detailed how to
address potential research gaps using the newly introduced concept of dynamic, data-
driven surrogate models. We concluded each of the �ve applications with a summary
and potential future directions of research.

The queuing process at the entrance of the music festival could be reduced to a two-
dimensional surrogate model. It was possible to observe the queue length over time,
for the in�ow and service times at the control point as parameters. We showed how the
surrogate model enables to �nd critical bifurcation points where the queue length exceeds
the system capacity, and discussed how the analysis of these critical points can help crowd
control. The crowd density in front of the bottleneck was used as an example where the
observations are functions. We reduced the dimension of the observation space through
an additional linear subspace decomposition with the method of snapshots, and then
showed how to construct a non-linear, data-driven surrogate model for the coe�cients
of the linear decomposition. Considering stop-and-go waves in car tra�c, we showed
how to automatically reduce a non-linear system of ordinary di�erential equations to
a linear, circular system by constructing a surrogate model. The points on the circle
comprised the intrinsic variables of the surrogate model, and could be measured to obtain
the car density on the highway, showing stop-and-go behavior. The example of grains
in a silo demonstrated the construction of a surrogate model in granular �ow, where
domain decomposition is commonly used to simulate a large number of particles. We
constructed a surrogate model for several parts of the silo, and then linked the parts
through the construction of a dynamic map depending on surrounding clusters of the
current cluster. As a last application, we employed a data-driven surrogate model for
uncertainty quanti�cation of the deboarding process of a train. The number of passengers
deboarding the train and the number of waiting passengers on the platform were used
as parameters for the system. We showed that by using the surrogate model, many
di�erent probability distributions can be tested very quickly. This showed that real-time
prediction and control of uncertainty, even for complex systems, is possible with the
data-driven surrogate model.
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Chapter 5

Summary, future directions, and

conclusion

This �nal chapter is divided into a summary, possible future directions, and a concluding
section. Section 5.1 is the summary of the thesis, with a short review of each of the three
main chapters. Section 5.2 contains future research directions, expanding on the concept
of data-driven surrogate models. The last section concludes the thesis.

5.1 Summary

How can a scale transition from microscopic to macroscopic models be achieved through
a data-driven procedure, when the macroscopic equation is not known, but is assumed
to exist? To answer this question, we combined results from dynamical system theory
and manifold learning with simulations of state-of-the-art microscopic models from crowd
dynamics, car tra�c, and granular �ow. The combination resulted in a surrogate model
approach to upscaling, where the microscopic model generates the data needed to learn
the macroscopic model, performing a scale transition through focusing on observables
that change the slowest. Chapter 2 contains a concise description of the framework of
multiscale dynamical systems, integrating crowd dynamics, car tra�c, and systems of
granular matter. This bridges a gap between problems in safety engineering and the
mathematical sciences for dynamical systems and machine learning. In Chapter 3, we
de�ned the concept of a dynamic, data-driven surrogate model on a manifold in time-
delay embedded observation space. With this surrogate model, it is possible to generate
observations of a microscopic system over time on a macroscopic scale. We provided
details on the algorithmic construction and simulation process. We also proved three
theorems, regarding approximation in the limit of in�nite data, approximation quality
with �nite data, and storage e�ciency. Five applications of the surrogate model concept
were discussed in Chapter 4. We constructed surrogate models for a bottleneck scenario,
queuing, and uncertainty quanti�cation of crowd dynamics, for car tra�c on a highway,
and for the �ow of granular particles in a silo. For all examples, we discussed bene�ts and
caveats of using the data-driven surrogate model compared to state of the art approaches.
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5.2 Future directions

The construction of a dynamic and data-driven surrogate model o�ers many possibilities
for future work. The models constructed through time-delay embedding and di�usion
maps typically have a low intrinsic dimension, but a nonlinear dynamic. In the Koop-
man operator framework, this view is reversed, o�ering linear dynamics in an in�nite
dimensional system. There is a third option related to these two views of dynamical
systems. It is to �nd low-dimensional systems with a linear dynamic, that can be ob-
served through an observation function independent of time, to yield observations of the
original system. The trivial example of a linear system is the linear advance of time itself,
d
dt t = 1. For any original system, the observation function that transforms time back to
the original system is the solution of the original system. A more advanced example is
the Cole-Hopf transform between the nonlinear, viscous Burgers equation and the lin-
ear di�usion equation. In both examples, �nding the transformation function between
the linear and the nonlinear system is very informative about the dynamical behavior.
Finding the transformation with a data-driven procedure would enable to simplify and
categorize nonlinear systems without the need for explicit formulaic descriptions.

The surrogate modeling idea can also be used to construct systems with more than
one scale. In network optimization, �ne scale simulations informing surrogate models on
the edges of a network would allow a macroscopic view on the network, because behavior
on individual edges can be simulated very e�ciently while still capturing microscopic
features. A graph combining several surrogate models is closely related to the idea of
systematic upscaling, which additionally incorporates models on several scales. Both
spatially distributed processes and hierarchical structures could be approximated by the
dynamic surrogate models. Adaptive methods can utilize the dynamic information stored
in the surrogate to sample more e�ciently. Using the surrogate as the macroscopic model
in equation-free computations would allow the storage of intermediate results and to re-
run the system on the macroscopic scale for o�ine analysis. The surrogate model could
even aid real-time uncertainty quanti�cation, where the output for many di�erent input
distributions of multiple parameters can be tested real-time and on-site. This is very
challenging with a computationally slow simulation model.

To unlock the full potential of surrogate models with closed observables, the concept
must be integrated in simulation frameworks able to run scenarios. This is not only
a serious software challenge, but also many problems that the thesis has treated sepa-
rately may occur simultaneously. When enough experimental data is available, one could
also construct numerical models directly from the observations, and in this way extract
macroscopic dynamics from experiments.
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5.3 Conclusion

Models of dynamical processes are ubiquitous in science and engineering. Many of these
processes show di�erent behavior on di�erent temporal and spatial scales, which leads to
several models for each scale, and to models incorporating several scales. Given any model
of a process, being able to transition between the scales is important to build models
on coarser and coarser scales. We introduced a surrogate model, based on time-delay
embedding and observation of states on a macroscopic scale. The model variables are
closed under the �ow; hence the surrogate can be used without the original microscopic
model.

The construction and simulation process for the dynamic surrogate model are de-
scribed in detail. Numerical approximation error, storage capacity improvements, treat-
ment of in�nite-dimensional observables and parameter spaces, interpolation schemes,
systems with more than two scales, as well as stochastic e�ects are discussed with regard
to the surrogate modeling approach.

Five applications show the diverse use-cases of the dynamic surrogate modeling ap-
proach. Uncertainty quanti�cation can now be split into a construction phase, where the
numerical model on the scale of interest is constructed with the �ne scale simulator, and
an analysis phase, where the high performance of the numerical model can be used to
perform quanti�cation of uncertainties without running the original simulator.

Generally, the dynamic surrogate modeling approach allows to separate the dynamic
process from observations. The separation provides advantages for mathematical mod-
eling and simulation in general, because it untangles the information needed to advance
in time from the information needed as an output of the process, the observations. The
thought that a given, complex observation might be generated by a simple system is in-
triguing, and might even hold for chaotic systems. This untangling is possible for a wide
range of systems with multiple scales, by the numerical construction of the surrogate
model discussed in the thesis.
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