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a b s t r a c t

This article addresses the formation control problem with mismatched compasses. Depending on the
sensing and communication technology, compass mismatches may arise due to biases in measurement,
drift in inertial sensing despite initial alignment, and even spatial variations in the earth’s magnetic field.
To illustrate the key concepts underlying what happens, we first consider the two agent case and show
that the agents converge to a fixed, but distorted formation exponentially fast. In contrast to the matched
compass case, the formation is not asymptotically stationary. The distance error and the angular error
between the actual final formation and the desired formation are explicitly given, as is the steady state
velocity of the formation. The case of time-varying mismatched compasses is also studied. Based on
the results, we then propose estimators to obtain the mismatched angle, which allow a compensation
algorithm to be proposed such that the desired formation shape is achieved. Finally, the extensions to the
n agent case are also considered and similar phenomena are encountered. Simulations are provided to
validate the theoretical results.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The formation control problem for multi-agent systems has
received increasing attention during the last decade due to its
broad applications in spacecraft formation flying, search and
rescue, and formation control of mobile robots (Cortes, Martinez,
& Bullo, 2006; He, Qian, Lam, Chen, Han & Kurths, 2015; Meng,
Anderson, & Hirche, 2015; Sieber, Deroo, & Hirche, 2013; Yang,
Roy, Wan, & Saberi, 2011; Zavlanos & Pappas, 2008). There are
many variations on the formation control problem, including
problems with a leader or without a leader (Ren, 2007; Shi &
Hong, 2009), problems with underlying graph structure which
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is directed or undirected (Hatano & Mesbahi, 2005; Moreau,
2005), problems in which the formation is achieved with velocity
consensus leading to a moving final formation or solutions where
the final formation is stationary (Jiang, Deghat, & Anderson,
2013; Lin, Broucke, & Francis, 2004). One particular distinction
is between securing a formation with both a prescribed shape
and a prescribed orientation, as opposed to simply aiming for
a prescribed shape. Seeking a prescribed shape with prescribed
orientation is in fact one of the easier problems. It can be solved
using a linear consensus-based algorithm, where the control input
is a combination of the neighbor-based relative position term and
a nonzero bias term representing the formation objective (Fax &
Murray, 2004; Olfati-Saber, Fax, &Murray, 2007). This is contrasted
with an approach for shape control without orientationwhich uses
gradient-based control, grounded in the theory of graph rigidity
and often derived from system structural potentials (Cao, Morse,
Yu, Anderson, & Dasgupta, 2011; Krick, Broucke, & Francis, 2009).
In the gradient-based approach, agents do need again to measure
relative positions, but only in a local coordinate basis associated
with the measuring agent, which does not have to be directionally
aligned with the coordinate bases of other agents. In contrast, the
consensus-based approach requires all agents to have knowledge
of where the common/global north is. Equivalently, coordinate
bases of the different agents have to be directionally aligned. In
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this article, the consensus-based approach is considered. For this
approach, common knowledge of where north is may sometimes
be expressed by saying that all agents require a compass. In
practice, they may acquire knowledge of north from inertial
navigation properly initialized, or landmark data, the use of which
likely requires inter-agent transmissions.

It is evident that it will often be physically unrealistic to claim
that all agents have common error-free knowledge of where north
is: biases can exist in instruments; drift can occur in inertial
navigation systems; spatial variation can occur in the earth’s
magnetic field. This article explores the consequence of postulating
the existence of errors in the direction of north, i.e. agents have
differing views of where north is. To exhibit the key ideas, which
apply to formations of any size, it is convenient to consider first
a very simple case. Hence we start from the matched compass
formation control for two agents in a two-dimensional plane,

Ȧ1 = (A2 − A1) − D, (1a)

Ȧ2 = (A1 − A2) + D, (1b)

where A1 = [x1, y1]T ∈ R2, A2 = [x2, y2]T ∈ R2 are the positions
of agents 1 and 2, and D = [dx, dy]T ∈ R2 is a given desired
relative position and known for each agent. The objective is to drive
agents 1 and 2 to form a stationary formation in the plane such that
A2 = A1 +D. It is straightforward to show that d

dt (A2 −A1 −D) =

−2(A2 − A1 − D). This implies that limt→∞(A2(t) − A1(t)) =

D, limt→∞ Ȧ1(t) = 0, and limt→∞ Ȧ2(t) = 0 exponentially
fast. Therefore, agents converge to the desired formation and the
velocities converge to zero exponentially fast.

In considering the above simple algorithm one should notice
that the algorithm is constructed based on the assumption that the
relative position measurement A2 −A1 for agent 1 and the relative
position measurement A1 − A2 for agent 2 are identical (up to the
sign). However, in real systems this assumption is unlikely to be
satisfied for reasons as noted above. As already indicated, it is the
directional error, i.e., a compass mismatch, that will concern us.
For convenience but without any loss of generality, suppose that
the global coordinates coincide with the coordinate basis of agent
1. We next seek to express the equation of motion of agent 2 in
global coordinates. Suppose Ai denotes the position of agent i, i =

1, 2 in global coordinates and 2Ai denotes its position in agent 2’s
coordinates. Suppose agent 2’s viewof north is that it isφ radians in
a clockwise direction from agent 1’s view, where φ ∈ (−π, π]. An
illustration is given in Fig. 1. We then know that a vector defining
a line segment in global coordinates, denoted by 1W = [x, y]T is
described in agent 2’s coordinate basis as 2W = R(−φ)1W, where
R−1(φ) = R(−φ) =


cosφ sinφ

− sinφ cosφ


is the rotation matrix.

Then, in each agent’s own coordinate basis, the actual
kinematics of each agent with mismatched compasses are given
by
1Ȧ1 = A2 − A1 − D, (2a)
2Ȧ2 = R(−φ)(A1 − A2) + D, (2b)

where A1 − A2 is expressed in global coordinates, 1Ȧ1 and 2Ȧ2 are
the velocity vectors of agents 1 and2 expressed in each agent’s own
coordinate basis.

A relevant work for this problem is (Oh & Ahn, 2014), where
the authors considered that there exists the orientation mismatch
of local reference frames of the agents for the formation shape
control problem. A combination algorithm aimed at coordinate
frame orientation alignment and formation control was proposed
and the assumption was imposed that the orientation of each
agent’s coordinate basis can be exchanged between neighbors.
Distance errors have been considered in the context of formation
shape control without orientation in Belabbas, Mou, Morse, and
Fig. 1. Coordinates of agents 1 and 2.

Anderson (2012) and Sun,Mou, Anderson, andMorse (2013). Itwas
shown in Belabbas et al. (2012) that if the agents have different
understandings of either the desired distance for each pair of
agents or of the actual distance between them (perhaps due to
measurement bias), the resulting formation shape in the limit is
fixed but distorted relative to the desired shape, and generically
the actual motions converge to circular closed orbits in the two-
dimensional plane. A nongeneric situation can also arise in which
the radius of the circular orbit goes to infinity, and then the
formation simply translates at a constant velocity. This actually
always happens for a two-agent formation. The extension to the
case of the 3D tetrahedron formation shape control problem (and
indeedmore general 3D shapes)was considered in Sun et al. (2013)
and it was shown that the motion behavior is a typical helix. It
is in fact not hard to vary the conclusions of those papers and
establish that a distance error for the two agent formation above
leads the formation to take up a steady state spacing close to
the desired distance and to move with a velocity parallel to the
relative position vector at a speed proportional to the distance
mismatch. One could in fact postulate directional and distance
errors simultaneously. It would appear that the overall effect is just
the superposition of the two individual effects.

In this article, we first focus on the compass mismatch
problem for the two agent case (2) and then study the n agent
case. In particular, we show that the agents converge to a
fixed, but (relative to the desired formation) distorted formation
exponentially fast for all the cases. The shape error between
the actual final formation and the desired formation is explicitly
given. The case of time-varying mismatched compasses and the
estimation algorithms for the mismatched angle are also studied.
Based on the design of the estimators, the compensation algorithm
is proposed such that the desired formation shape is achieved. We
finally include discussions on the n agent case where n ≥ 3.

The organization of this article is as follows. In Section 2,
we study the two agent case. Both the cases of constant error
and time-varying error are considered. The estimation algorithms
and compensation algorithms are proposed in Section 3. We also
extend the results to the n agent case where n ≥ 3 in Sections 4
and 5. Concluding remarks are given in Section 6.

2. Two agent case

Let us go back to (2) and assume that φ is constant. By noting
the fact that 1Ȧ2 = R(φ)2Ȧ2, it is not hard to show that (2) can be
written as

Ȧ1 = A2 − A1 − D, (3a)
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Ȧ2 = A1 − A2 + R(φ)D, (3b)

whereA1,A2, Ȧ1, and Ȧ2 are all expressed in global coordinates.We
next focus on (3) and study both the intra-formation motion and
whole-formation motion of the closed-loop system.

Notation. ∥x∥ denotes the 2-norm of a vector x ∈ Rd. Let f and g
be two functions defined on some subset of the real numbers. One
writes f (x) = O(g(x)) as x → 0 if and only if there exist positive
real numbers M and δ such that |f (x)| ≤ M|g(x)| for |x| < δ.

2.1. Main results

We first establish the following result on how the formation of
two agents evolves when there exist compass mismatches.

Theorem 1. Consider the mismatched formation control algorithm
(2). Suppose φ ≠ 0 and is constant over time. It follows that
[Intra-formation motion]
(I) The agents converge to a fixed formation exponentially fast. In

particular, limt→∞(A2(t) − A1(t)) = cos φ

2 R(φ/2)D.
(II) The relative velocities of the agents converge to zero exponen-

tially fast, i.e., limt→∞(V2(t) − V1(t)) = 0, where V1 =

[vx,1, vy,1] ∈ R2 and V2 = [vx,2, vy,2] ∈ R2 are the velocities of
agents 1 and 2.

(III) If D ≠ 0, the final formation is distorted from the desired one.
The distance error and the angular error between the actual final
relative position and the desired one are O(φ2), as φ → 0 and
|φ|

2 , respectively. If D = 0, then rendezvous is still achieved,
i.e., limt→∞(A2(t) − A1(t)) = 0.

[Whole-formation motion]
(IV) If D ≠ 0, the absolute velocities of each agent converge

to the same nonzero constant exponentially fast. In particular,

limt→∞ V1(t) = limt→∞ V2(t) = − sin φ

2

 sin
φ

2
cos

φ

2

− cos
φ

2
sin

φ

2

D

and limt→∞ ∥V1(t)∥ = limt→∞ ∥V2(t)∥ = O(|φ|), as φ → 0.
If D = 0, the absolute velocities of each agent converge to zero
exponentially fast.

(V) If D ≠ 0, the agent positions A1(t) and A2(t) are neither
convergent nor bounded. If D = 0, limt→∞ A1(t) =

limt→∞ A2(t) =
A1(0)+A2(0)

2 , where A1(0) and A2(0) are the
initial states of agents 1 and 2.

Proof. (I) Define Q = A1 − A2 +
1
2 (I + R(φ))D. It follows from (3)

that

Q̇ = −2Q. (4)

It then follows that limt→∞(A2(t) − A1(t)) = D exponentially,
where D =

1
2 (I + R(φ))D. Straightforward calculation shows that

D =

 1 + cosφ

2
−

sinφ

2
sinφ

2
1 + cosφ

2

D = cos φ

2 R(φ/2)D. This verifies (I).

(II) Since limt→∞(A2(t) − A1(t) − D) = 0 exponentially fast, it
follows from (4) that limt→∞(Ȧ2(t) − Ȧ1(t)) = 0 exponentially
fast. Therefore, (II) is proven.
(III) Note that the desired formation is determined by D, but the
actual final formation is determined by D ≠ D. Therefore, for
the case of D ≠ 0, the final formation is distorted from the
desired one. We define the distance error between the actual final
relative position and the desired one as δD =

∥D∥ − ∥D∥
. It

is not hard to show that ∥D∥ = cos2 φ

2


 1 − tan

φ

2

tan
φ

2
1

D

 =
cos2 φ

2 sec φ

2 ∥D∥ = cos φ

2 ∥D∥. Therefore, for small |φ|, δD = (1 −

cos φ

2 )∥D∥ = 2 sin2(φ/4)∥D∥ ≈
φ2

8 ∥D∥. This shows that δD =

O(φ2), as φ → 0. In addition, by noting that D = cos φ

2 R(φ/2)D,
we know that the angular error between the actual final relative
position and the desired one is |φ|

2 . On the other hand, if D = 0, it
follows from the definition of D that rendezvous is still achieved,
i.e., limt→∞(A2(t) − A1(t)) = 0.
(IV) It follows from (2) that limt→∞ Ȧ1(t) = limt→∞ Ȧ2(t)

=
1
2 (R(φ) − I)D =

 cosφ − 1
2

−
sinφ

2
sinφ

2
cosφ − 1

2

D = − sin φ

2 × sin
φ

2
cos

φ

2

− cos
φ

2
sin

φ

2

D. This further implies when D ≠ 0 that

limt→∞ ∥Ȧ1(t)∥ = limt→∞ ∥Ȧ2(t)∥ = O(|φ|), as φ → 0.
Therefore, for the case of D ≠ 0, the absolute velocities of each
agent converge to the same nonzero constant exponentially fast.
For the case of D = 0, the absolute velocities of each agent
converge to zero exponentially fast.
(V) For the case of D ≠ 0, the conclusions are obvious due to (IV).
If D = 0, the problem reduces to a standard average consensus
problem (Olfati-Saber et al., 2007). �

Remark 1. When D = 0, the considered problem is reduced to a
standard consensus problem. Our results show that the existence
of compass mismatch does not change the qualitative behavior of
reaching a consensus.

We next describe simulations which illustrate the validity of
Theorem 1. We consider the case of D ≠ 0. In particular,
D = [0, −5]T, φ = 0.2π , and the two agents start from
the desired formation. Figs. 2 and 3 show the positions and
velocities of the agents during the time interval [0, 10]. The
relative velocities converge to zero, which shows that the agents
converge to a fixed formation. However, due to the existence of
mismatched compasses, the agents keep moving with non-zero
constant absolute velocities and the final formation is distorted
from the desired one. This is in contrast to the case with matched
compasses where the agents converge to the desired stationary
formation.

2.2. Extension to time-varying mismatched compasses

Theorem 1 treats the case that φ is a constant. However, it is
quite possible that the directional error φ is varying with respect
to t . Therefore, in this subsection of the article, we consider the
case of time-varying bounded φ(t), where the formation control
algorithm becomes:
1Ȧ1 =A2 − A1 − D, (5a)
2Ȧ2 = R(−φ(t))(A1 − A2) + D. (5b)

Definition 1. Consider (5). The error between the actual final
formation and the desired one is called globally ultimately
bounded with ultimate bound β if there exists a positive constant
β , independent of initial time t0 ≥ 0, and there is T = T (β) ≥ 0,
independent of initial time t0 ≥ 0, such that ∥A2(t)−A1(t)−D∥ ≤

β , ∀t ≥ t0 + T , ∀A1(0),A2(0) ∈ R2.

We can analogously define that the relative velocity of the
agents V2(t) − V1(t) is globally ultimately bounded with ultimate
bound β . Next, the following result on the case of time-varying
mismatched compasses is established.
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(a) The dotted lines denote the trajectories of the positions of the
agents. The circles and the solid black lines denote respectively, the
positions of the agents and the formation shape at t = 0 s, t = 2 s,
t = 5 s, and t = 7.5 s.

(b) The solid black line and the dotted black line denote respectively,
the actual formation shape and desired formation shape at t = 7.5 s.

Fig. 2. Two agent case with D ≠ 0.
(a) The convergence of relative velocities of the agents. (b) The convergence of absolute velocities of the agents.

Fig. 3. Two agent case with D ≠ 0.
Theorem 2. Consider the time-varying mismatched formation con-
trol algorithm (5). Suppose that φ(t) ∈ [−ϵ, ϵ], ∀t ≥ 0, where
0 < ϵ < π is a given constant. It follows that
[Intra-formation motion]

(I) The final error between the actual final formation and the desired
one A2(t)−A1(t)−D depends on ∥D∥ and ϵ, independent of the
initial states of agents and how φ(t) is changing. In particular,
A2(t) − A1(t) − D is globally ultimately bounded with ultimate
bound ϵ

2θ ∥D∥, where 0 < θ < 1 is a constant selectable by the
designer.

(II) If D ≠ 0, the relative velocity of the agents is bounded, but does
not have to converge to zero. In particular,V2(t)−V1(t) is globally
ultimately bounded with ultimate bound ( 1

θ
+ 1)ϵ∥D∥. If D = 0,

limt→∞(V2(t) − V1(t)) = 0.

[Whole-formation motion]

(III) If D ≠ 0, the absolute velocities of the agents do not converge to
zero, but are globally ultimately bounded. If D = 0, the absolute
velocities of the agents converge to zero exponentially fast.

(IV) If D ≠ 0, the agent positions A1(t) and A2(t) are neither
convergent nor globally ultimately bounded. If D = 0,
limt→∞ A1(t) = limt→∞ A2(t) =

A1(0)+A2(0)
2 , where A1(0) and

A2(0) are the initial states of agents 1 and 2 .
Proof. (I) It is not hard to show that (5) can be written as

Ȧ1 =A2 − A1 − D, (6a)

Ȧ2 =A1 − A2 + R(φ(t))D. (6b)

Define Q(t) = A1(t) − A2(t) + D. It then follows that

Q̇ = −2Q + (I − R(φ(t)))D. (7)

Define the Lyapunov candidate V = QTQ and choose a constant
satisfying 0 < θ < 1, where θ is selectable by the designer
and describes the tradeoff between the convergence speed and the
ultimate bound. It then follows that

V̇ = − 2QTQ + Q(I − R(φ(t)))D

= − 2θ∥Q∥
2
− 2(1 − θ)∥Q∥

2

+ Q

1 − cosφ(t) − sinφ(t)

sinφ(t) 1 − cosφ(t)


D

= − 2θ∥Q∥
2
− 2(1 − θ)∥Q∥

2
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+ 2 sin
φ(t)
2

Q

sin
φ(t)
2

− cos
φ(t)
2

cos
φ(t)
2

sin
φ(t)
2

D

≤ − 2∥Q∥


θ∥Q∥ −

sin φ(t)
2

 ∥D∥


− 2(1 − θ)∥Q∥

2

≤ − 2∥Q∥


θ∥Q∥ −

|φ(t)|
2

∥D∥


− 2(1 − θ)∥Q∥

2

≤ − 2∥Q∥


θ∥Q∥ −

ϵ

2
∥D∥


− 2(1 − θ)∥Q∥

2,

where we have used the fact that


sin

φ(t)
2

− cos
φ(t)
2

cos
φ(t)
2

sin
φ(t)
2

 ≤ 1. It

thus follows that V̇ ≤ −2(1−θ)∥Q∥
2,∀∥Q∥ ≥

ϵ
2θ ∥D∥. Then, based

on Theorem 4.18 of Khalil (2002) (uniform ultimate boundedness
theorem), we know thatA2−A1−D is globally ultimately bounded
with ultimate bound ϵ

2θ ∥D∥.

(II) Since ∥V2(t) − V1(t)∥ = ∥Q̇(t)∥ = ∥ − 2Q(t) + (I −

R(φ(t)))D∥ ≤ 2∥Q(t)∥ + ϵ∥D∥, it follows that V2(t) − V1(t) is
globally ultimately bounded with ultimate bound ( 1

θ
+ 1)ϵ∥D∥.

From (6) it is straightforward to obtain (III) and (IV). �

Remark 2. Instead of solving the explicit solution of (5), Lyapunov
analysis approach is used to obtain ultimate boundedness
properties for Theorem 2. Therefore, the explicit expression of
convergence time T in the form of ultimate bound β is not
straightforwardly available. However, according to the proof of
Theorem 2, the convergence time is clearly related to 1 − θ .
Therefore, there exists a tradeoff between ultimate bound and
convergence speed and this tradeoff is determined by the free
parameter θ . More specifically, large ultimate bound corresponds
to fast convergence speedwhile small ultimate bound corresponds
to slow convergence speed.

3. Estimation and compensation algorithms for two agent case

In this section, we first consider the estimation of φ. We shall
show later how the use of an estimate of φ can eliminate the
problem caused by the compass mismatch.

Since each agent in the steady state will perceive a discrepancy
in its own coordinate basis between the desired formation and the
actual formation, with an angular error of φ

2 , each agent is able to
estimateφ separately using its own available information.Without
loss of generality, we let agent 2 be responsible for the estimation
of φ. The following compensation control algorithm is proposed
1Ȧ1 = A2 − A1 − D, (8a)
2Ȧ2 = R(−φ)(A1 − A2) + D + U, (8b)

whereU ∈ R2 denotes a compensation input.We next specify how
to design the estimation of φ and use the estimated information on
φ to compensate the original mismatched algorithm such that the
desired formation is achieved.

3.1. Estimation of φ using absolute position information

In this subsection, we apply Theorem 1 to estimate φ, and
therefore consider the case that U = 0. We assume that the
absolute (as opposed to relative) position information of agent 2 is
available for agent 2 and expressed in the coordinate basis of agent
2, i.e., 2A2 = [

2x2, 2y2]T is available for agent 2.Wealso assume that
D ≠ 0 (the case ofD = 0 is no longer considered in the subsequent
exposition as rendezvous is still achieved for this case even if there
exist mismatched compasses).

We propose the following estimator for agent 2:

ż = −z −

2y2dx −
2x2dy

d2x + d2y
, φ̂ =


π

2
, ϕ > 1

arcsinϕ, ϕ ∈ [−1, 1]

−
π

2
, ϕ < −1,

(9)

where ϕ = 2

z +

2y2dx−2x2dy
d2x+d2y


. The following result concerns the

convergence of the directional error estimate φ̂(t). Note that the
hypothesis of the theorem imposes an a priori but rather large
bound on φ. We return to this assumption subsequently.

Theorem 3. Consider the mismatched formation control algorithm
(2) and the estimator (9). Suppose that φ ∈ [−

π
2 , 0) ∪ (0, π

2 ] and
D ≠ 0. It follows that limt→∞ φ̂(t) = φ exponentially fast.

Proof. Based on the (IV) of Theorem 1, we know that
limt→∞

2V2(t) = limt→∞ R(−φ)V2(t) =
1
2 (I − R(−φ))D = 1 − cosφ

2
−

sinφ

2
sinφ

2
1 − cosφ

2

D, where 2V2 = [
2vx,2,

2vy,2] is the ab-

solute velocity of agent 2 expressed in the coordinate basis of
agent 2. Further, convergence is exponential. Therefore, it follows

that limt→∞

DT


0 1
−1 0


2V2(t)

DTD =
sinφ

2 , where
DT


0 1
−1 0


2V2(t)

DTD =

2vy,2(t)dx−2vx,2(t)dy
d2x+d2y

, and again, convergence is exponential.

In addition, by defining σ = z+
2y2(t)dx−2x2(t)dy

d2x+d2y
−

sinφ

2 , it follows

from (9) that σ̇ = −σ +
2vy,2(t)dx−2vx,2(t)dy

d2x+d2y
−

sinφ

2 . It is evident that

the above equation is a linear equation in which the homogeneous
part is exponentially stable and the driving term converges to
zero exponentially fast. Therefore, it follows from the input-to-
state stability property (Khalil, 2002) that limt→∞ σ(t) = 0 or
limt→∞(z(t) +

dx 2y2(t)−dy 2x2(t)
d2x+d2y

) =
sinφ

2 exponentially fast. This

implies that limt→∞ φ̂(t) = φ exponentially fast. �

Remark 3. Estimator (9) does not require agent 2 to measure its
own velocity, but only its own position. In many cases, position is
more straightforward to obtain than velocity, and less noisy. If one
postulates that agent 2 canmeasure its own velocity, then there is a

static estimator of φ provided by φ̂ =


π

2
, ϕ > 1

arcsinϕ, ϕ ∈ [−1, 1]

−
π

2
, ϕ < −1,

where

ϕ = 2
 2vy,2(t)dx−2vx,2(t)dy

d2x+d2y


.

3.2. Estimation of φ using relative position information

In this subsection, we assume that the relative (rather than
absolute) position information of agent 2 is available for agent 2
and expressed in the coordinate basis of agent 2, i.e., 2A2 −

2A1 =

[
2x2 −

2x1, 2y2 −
2y1]T is available for agent 2.

It follows from (8a) and the fact 2Ȧ1 = R(−φ)1Ȧ1 that 2Ȧ1 =

R(−φ)(A2 − A1) − R(−φ)D. Therefore, using (8b), we know that
2Ȧ2 −

2Ȧ1 = −2(2A2 −
2A1) + R(−φ)D + D + U. It then follows

that for any estimate φ̂(t), R(−φ)D − R(−φ̂(t))D =
2Ȧ2 −

2Ȧ1
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+ 2(2A2 −
2A1) − R(−φ̂(t))D−D−U. In the light of this equation,

we propose the following estimation algorithm for φ̂(t):

ż = − k

2dx(2y2 −

2y1) − 2dy(2x2 −
2x1)

+ (d2x + d2y) sin φ̂ − (dxuy − dyux)

,

φ̂ = z − k

dx(2y2 −

2y1) − dy(2x2 −
2x1)


, (10)

where k is a positive constant and U = [ux, uy]
T. We next present

the following result regarding the convergence of φ̂(t) using the
estimator (10) for the compensation algorithm (8).

Theorem 4. Consider the estimator (10) for the compensation
algorithm (8). Suppose that |φ| < π

4 and |φ̂(0)| ≤
π
4 . It follows that

limt→∞ φ̂(t) = φ.

Proof. Denote D =


0 −1
1 0


D. It follows by an easy direct

calculation thatDT(R(−φ) − R(−φ̂(t)))D = (sin φ̂ − sinφ)∥D∥
2.

Also note that (10) can be written as

ż = −kDT

2(2A2 −

2A1) − R(−φ̂(t))D − D − U


,

φ̂(t) = z(t) − kDT(2A2 −
2A1).

It follows that ˙̂
φ = −kDT


2Ȧ2 −

2Ȧ1 + 2(2A2 −
2A1) − R(−φ̂(t))D

− D − U


= −kDT(R(−φ) − R(−φ̂(t)))D = −k(sin φ̂ −

sinφ)∥D∥
2

= −2k sin


φ̂−φ

2


cos


φ̂+φ

2


∥D∥

2. Choose a Lyapunov

function candidate as V = (φ̂−φ)2. Since |φ̂(0)| ≤
π
4 and |φ| < π

4 ,

it follows that cos


φ̂(0)+φ

2


> 0. This implies that V̇ ≤ 0 at

t = 0. We thus know that |φ̂(0+) − φ| ≤ |φ̂(0) − φ| < π
2 .

Noting that |φ̂(t) + φ| = |φ̂(t) − φ + 2φ| < |φ̂(t) − φ| +
π
2 ,

it follows that |φ̂(0+)+φ| < π and cos


φ̂(0+)+φ

2


> 0. Therefore,

V̇ ≤ 0 at t = 0+. We next use this observation to show that
|φ̂(t) − φ| < π

2 , for all t ≥ 0 using a contradiction argument.
Suppose it is not true. Then, there must exist a finite time instant
T for which |φ̂(T ) − φ| =

π
2 and |φ̂(t) − φ| < π

2 for all t ∈ [0, T ).
Based on the continuity, theremust exist a neighborhood [T−δ, T )

such that |φ̂(t) − φ| is increasing during t ∈ [T − δ, T ), where
δ > 0. However, based on the definition of T and the observation
for the case of t = 0+, we know that V̇ (t) ≤ 0, for all t ∈ [0, T ).
This shows that |φ̂(t) − φ| is non-increasing during t ∈ [0, T )
and therefore indicates a contradiction. Therefore, we know that
V̇ ≤ 0, for all t ≥ 0. Then, based on the Lasalle invariance principle,
we can conclude that limt→∞ φ̂(t) = φ. �

Remark 4. Estimator (9) is used for the case when an absolute
position measurement unit is equipped, e.g., GPS while estimator
(10) is used for the case when a relative position measurement
unit is equipped, e.g., a laser. The design of estimator (10) is similar
to a traditional estimator, where the external input to the system
whose state is being estimated is normally introduced into the
state estimator as well (later in Section 3.3). The convergence
of (10) is independent of the time function U(t). In contrast,
an adjustable constant cannot be usefully introduced for (9) in
order to separate the time scales for convergence of controller
and estimator. The reason is that estimator (9) relies on the
convergence of controller (2).

Remark 5. It is reasonable to assume in most cases the validity
of an overall bound on φ. Of the different cases giving rise to
directional error, probably only long term drift of an inertial
navigation system away from an initially correctly calibrated
value can give a sizeable error. If the compensation algorithm
suggested below is implemented before much drift has occurred,
then compensation will be successful.

3.3. Compensation algorithm

In this subsection, we show how to use the estimated informa-
tion on φ to compensate the original mismatched algorithm such
that the desired formation is achieved. Specifically, the following
compensation control algorithm is proposed

U(t) = −D + R(−φ̂(t))D, (11)

where φ̂(t) is obtained by the estimator (10).

Theorem 5. Consider the algorithm (8) with compensation in-
put (11) and the estimator (10). Suppose that |φ| < π

4 and |φ̂(0)| ≤

π
4 . Then limt→∞ φ̂(t) = φ, limt→∞(A2(t) − A1(t)) = D, and
limt→∞ V1(t) = limt→∞ V2(t) = 0.

Proof. It is not hard to show from (8) and (11) that Ȧ1 − Ȧ2 =

−2(A1 − A2 + D) + D − R(φ − φ̂)D. Noting that we have
shown from Theorem 4 that limt→∞ R(φ − φ̂(t)) = I, it then
follows from the input-to-state stability property (Khalil, 2002)
that limt→∞(A2(t) − A1(t)) = D. It is then trivial to show that
limt→∞ V1(t) = limt→∞ V2(t) = 0. �

4. n agent case

In this section, we aim to show how the analysis of the previous
section for two agents will carry over to n ≥ 3 agents.

Notation. An undirected graph G consists of a pair (V, E), where
V = {1, 2, . . . , n} is a finite, nonempty set of nodes and E ⊆ V×V
is a set of unordered pairs of nodes. An edge {j, i} ∈ E denotes
that nodes i, j can obtain each other’s information mutually. The
neighbors of node i are denoted by Ni := {j : {j, i} ∈ E}. The
adjacency matrixA = [aij] ∈ Rn×n associated with the graph G is
defined such that aij = 1 if {j, i} ∈ E and aij = 0 otherwise. It is
obvious that aij = aji, for all i, j ∈ V for the undirected graph.

We suppose that n agents are denoted by 1, 2, . . . , n in a
2-dimensional plane. We assume that there is an underlying
connected graph with agents corresponding to vertices, and edges
corresponding to specified desired relative positions, which must
be consistent with a realizable formation. The classical formation
control algorithm for each agent is given by: Ȧi =


j∈Ni

(Aj −Ai +

Dij), i ∈ V, where Ai = [xi, yi]T ∈ R2, ∀i ∈ V , Dij = [dx,ij, dy,ij]T ∈

R2, ∀i, j ∈ V are given constants defining the specified relative
positions and known for each agent,Ni, i ∈ V denotes the neighbor
set of agent i. It is obvious that Dii = 0, and Dij = −Dji, ∀i, j ∈ V ,
and we assume that the graph is connected, the neighbor sets
Ni together with Dij are properly defined in order that the above
algorithm will ensure convergence to a well-defined and unique
formation with the desired specified relative positions. Now the
full set D1j, j = 2, . . . , n, may not appear in the list of desired
relative positions. Nevertheless, the values that all these relative
positions will assume in a correct formation are easily computable
from the data. Conversely, given all the specified desired relative
positions, any other relative position is computable from them.
Accordingly, an equivalent objective to the original one is to ensure
that asymptotically as t → ∞ one has A1(t) − A2(t) = D12,
A1(t) − A3(t) = D13, . . ., and A1(t) − An(t) = D1n. We define
D = [DT

12,D
T
13, . . . ,D

T
1n]

T. Due to the existence of mismatched
compasses, and expressing measured multi-agent distances using



238 Z. Meng et al. / Automatica 69 (2016) 232–241
the coordinate basis associated with agent 1 (without loss of
generality), the actual formation control algorithm becomes:

1Ȧ1 =


j∈N1

(Aj − A1 + D1j), (12a)

2Ȧ2 =


j∈N2

(R(−φ2)(Aj − A2) + D2j), (12b)

...

nȦn =


j∈Nn

(R(−φn)(Aj − An) + Dnj), (12c)

where φ2, φ3, . . . , φn ∈ (−π, π] denote the angular mismatch
between the coordinate axes of agent 1 and agent i, ∀i =

2, 3, . . . , n, R(−φi) =


cosφi sinφi

− sinφi cosφi


, ∀i = 2, 3, . . . , n.

It is not hard to show that (12) can be written as

Ȧ1 =


j∈N1

(Aj − A1 + D1j), (13a)

Ȧ2 =


j∈N2

(Aj − A2 + R(φ2)D2j), (13b)

...

Ȧn =


j∈Nn

(Aj − An + R(φn)Dnj). (13c)

We next establish the following result for the case of n agents with
a general connected graph.

Theorem 6. Consider the mismatched formation control algorithm
(12). Suppose that φ2, φ3, . . . , φn ≠ 0 with all φ constant for all
time. It follows that
[Intra-formation motion]

(I) The agents converge to a fixed formation exponentially fast.
(II) The relative velocity of each agent pair converges to zero

exponentially fast, i.e., limt→∞(Vi(t) − Vj(t)) = 0, for all
i, j ∈ V .

(III) If D ≠ 0, the final formation is distorted from the desired
one and the final formation distortion is O(maxj=2,3,...,n |φj|), as
φ2, φ3, . . . , φn → 0. If D = 0, limt→∞(Ai(t) − Aj(t)) = 0, for
all i, j ∈ V .

[Whole-formation motion]

(IV) If D ≠ 0, the absolute velocity of each agent converges to
the same nonzero constant exponentially fast. In particular,
limt→∞ ∥Vi(t)∥ = O(maxj=2,3,...,n |φj|), as φ2, φ3, . . . , φn →

0, for all i ∈ V .
(V) If D ≠ 0, the agent position Ai(t), ∀i ∈ V is neither

convergent nor bounded. If D = 0, limt→∞ A1(t) = · · · =

limt→∞ An(t) =
A1(0)+···+An(0)

n , whereA1(0),A2(0), . . . ,An(0)
are the initial states of agents 1, 2, . . . , n.

Proof. Using the relations that Aj − Ak = (Aj − A1) + (A1 − Ak)
and Dkj = D1j − D1k, ∀j, k ∈ V , (12) can be written as

Ȧ1 =


j∈N1

(Aj − A1 + D1j),

...

Ȧn = Nn(A1 − An) − NnR(φn)D1n +


j∈Nn

(Aj − A1 + R(φn)D1j),

where Ni denotes the cardinality of set Ni, i ∈ V .
Therefore, the intra-formation motion can be written in the

compact formas: Q̇ = −PQ,whereQ =


A1 − A2
A1 − A3

.

.

.
A1 − An

−P−1W


D12
D13
.
.
.

D1n

,

P =


N2 0 . . . 0

0 N3

.

.

.

.

.

.
. . . 0

0 . . . 0 Nn

 ⊗ I +


a12 a13 . . .
a12 a13 . . .

.

.

.
a12 a13 . . .

 ⊗ I −


0 a23 a24 . . .
a32 0 a34 . . .

.

.

.
. . .

.

.

.
an2 an3 . . . 0

⊗I,W =


N2R(φ2) 0 . . . 0

0 N3R(φ3)
.
.
.

.

.

.
. . . 0

0 . . . 0 NnR(φn)

+


a12 a13 . . .
a12 a13 . . .

.

.

.
a12 a13 . . .

 ⊗ I −


0 a23R(φ2) a24R(φ2) . . .

a32R(φ3) 0 a34R(φ3) . . .

.

.

.
. . .

.

.

.
an2R(φn) an3R(φn) . . . 0

, and

aij denotes (i, j)th entry of the adjacency matrixA. Based on the
transformation and Lemma 1 given in Peng and Yang (2009), it
is not hard to show that −P is a Hurwitz stable matrix when the
underlying graph is connected. Therefore, limt→∞ Q(t) = 0.

(II) It follows from (I) that limt→∞(Ȧ1(t) − Ȧj(t)) = 0, for all
j = 2, 3, . . . , n.

(III) For the case of D ≠ 0, we know that the actual final formation

is determined by limt→∞


A1(t) − A2(t)
A1(t) − A3(t)

.

.

.
A1(t) − An(t)

 = P−1WD. However,

the desired formation is determined by D. The final formation
distortion1 is defined and given by δD :=

P−1WD − D
 . It then

follows that

δD =
P−1ΩD

 ≤ c1∥Ω1∥∥D∥

≤ c1 ×


2(n − 1) × 2

× max
j=2,3,...,n


Nj +

n
k=2

ajk

sin φj

2

sin φj

2

+ cos φj

2

∥D∥

≤ c1 ×


2(n − 1) × 2 × 4n × max

j=2,3,...,n

sin φj

2

∥D∥

≤ 4c1n

2(n − 1)∥D∥ max

j=2,3,...,n
|φj|,

whereΩ andΩ1 are given in (18) and (19), respectively (see Box I).
c1 =

P−1
 is a positive constant and we have used the facts

that R(φj) − I = −2 sin φj
2

 sin
φj

2
cos

φj

2

− cos
φj

2
sin

φj

2

, j ∈ {2, 3, . . . , n} for

the first inequality, ∥A∥2 ≤
√
m∥A∥∞ =

√
mmax1≤i≤m

l
j=1 |aij|

for a matrix Rm×l, | sinα| ≤ 1 and | cosα| ≤ 1, ∀α ∈ R for
the second inequality. Therefore, δD = O(maxj=2,3,...,n |φj|), as
φ2, φ3, . . . , φn → 0. In addition, it is trivial to prove the case of
D = 0.

1 Of course,we could choose to define the distortion using all interagent distances
and not just those occurring in the tree. The bound will be (n − 1)

√
n times the

bound computed here.
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8)

9)
Ω =


N2(R(φ2) − I) a23(I − R(φ2)) a24(I − R(φ2)) . . .

a32(I − R(φ3)) N3(R(φ3) − I) a34(I − R(φ3)) . . .

...
. . .

...

an2(I − R(φn)) an3(I − R(φn)) . . . Nn(R(φn) − I)

 (1

Ω1 = 2



−N2 sin
φ2

2

 sin
φ2

2
cos

φ2

2

− cos
φ2

2
sin

φ2

2

 a23 sin
φ2

2

 sin
φ2

2
cos

φ2

2

− cos
φ2

2
sin

φ2

2

 . . . . . .

a32 sin
φ3

2

 sin
φ3

2
cos

φ3

2

− cos
φ3

2
sin

φ3

2

 −N3 sin
φ3

2

 sin
φ3

2
cos

φ3

2

− cos
φ3

2
sin

φ3

2

 . . . . . .

...
. . .

...

an2 sin
φn

2

 sin
φn

2
cos

φn

2

− cos
φn

2
sin

φn

2

 an3 sin
φn

2

 sin
φn

2
cos

φn

2

− cos
φn

2
sin

φn

2

 . . . −Nn sin
φn

2

 sin
φn

2
cos

φn

2

− cos
φn

2
sin

φn

2





(1

Box I.
(IV) For the case of D ≠ 0, it follows from (13) that

Ȧ1(t) =


j∈N1

(Aj − A1 + D1j) =

−a12 −a13 . . . −a1n



×


A1(t) − A2(t)
A1(t) − A3(t)

...
A1(t) − An(t)

+

a12 a13 . . . a1n


D.

Therefore, limt→∞ Ȧ1(t) =

−a12 −a13 . . . −a1n


× P−1

(W − P)D =

−I . . . −I


P−1ΩD. This shows that

lim
t→∞

∥Ȧ1(t)∥ ≤ c2∥D∥ max
j=2,3,...,n

|φj|,

where c2 is a positive constant.
Therefore, the absolute velocities obey limt→∞ ∥Ȧ1(t)∥ =

· · · = limt→∞ ∥Ȧn(t)∥ = O(maxj=2,3,...,n |φj|), asφ2, φ3, . . . , φn →

0. In addition, it is trivial to prove the claim for the case of D = 0.
Based on (IV), (V) is obvious. �

Remark 6. Theorem 6 shows that the formation distortion and
steady velocity of the formation can be bounded using the
maximum of all the mismatch angles. In addition, this fact holds
for arbitrarily large but finite network size and for an arbitrary
connected graph.

5. Estimation and compensation algorithms for n agent case

Without loss of generality, we let agent 2, 3, . . . , n be
responsible for the estimation of φ2, φ3, . . . , φn, respectively. The
following compensation control algorithm is proposed
1Ȧ1 =


j∈N1

(Aj − A1 + D1j), (14a)

2Ȧ2 =


j∈N2

(R(−φ2)(Aj − A2) + D2j) + U2, (14b)

...
nȦn =


j∈Nn

(R(−φn)(Aj − An) + Dnj) + Un, (14c)

where U2,U3, . . . ,Un ∈ R2 denote compensation inputs. We next
specify how to design the estimations of φ2, φ3, . . . , φn and use
the estimated information on φ2, φ3, . . . , φn to compensate the
original mismatched algorithm such that the desired formation is
achieved.

5.1. Estimations using relative position information

In this subsection, we assume that each agent has access to the
relative position information respect to all the other agents and
the relative position information is expressed in its own coordinate
basis, i.e., 2A2 −

2A1, 2A2 −
2A3, . . ., 2A2 −

2An, is available for agent 2;
3A3 −

3A1, 3A3 −
3A2, . . ., 3A3 −

3An, is available for agent 3; and the
like, where kAp−

kAq = [
kxp−kxq, kyp−kyq]T, for all k = 2, 3, . . . , n

and p ≠ q ∈ V .

Remark 7. Due to the structure of the proposed estimator below,
each agent needs to know the relative position information respect
to all the other agents. Therefore, the estimation problem is solved
for the n agents with a complete graph in this subsection. The
solution for a general connected graph is an open problem and
deserves further investigation.

Motivated by (10), we propose the following estimation
algorithm for obtaining φ̂2(t), φ̂3(t), . . . , φ̂n(t):

żi = −ki

N1d̂x,i(iyi − iy1) − N1d̂y,i(ixi − ix1)

+


j∈Ni

(d̂y,i(ixj − ixi) − d̂x,i(iyj − iyi) + d̂y,idx,ij − d̂x,idy,ij)

+


j∈N1

(d̂x,i(iyj − iyi) − d̂y,i(ixj − ixi))

+ (d̂2x,i + d̂2y,i) sin φ̂i − (d̂x,iuy,i − d̂y,iux,i)


,

φ̂i = zi − ki

d̂x,i(iyi − iy1) − d̂y,i(ixi − ix1)


,

i = 2, 3 . . . , n, (15)
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where ki is a positive constant, Ui = [ux,i, uy,i]
T, Di = (N1Di1

−


j∈N1
Dij),Di = [d̂x,i, d̂y,i]T, ∀i = 2, 3, . . . , n. We next present

the following result regarding the convergence of φ̂2(t), φ̂3(t),
. . . , φ̂n(t) using the estimator (15) for the compensation algorithm
(14).

Theorem 7. Consider the estimator (15) for the compensation
algorithm (14). Suppose that |φi| < π

4 and |φ̂i(0)| ≤
π
4 , for all i =

2, 3, . . . , n. It follows that limt→∞ φ̂i(t) = φi, for all i = 2, 3, . . . , n.

Proof. It follows from (12a) and the fact 2Ȧ1 = R(−φ2)
1Ȧ1 that

2Ȧ1 =


j∈N1

(R(−φ2)(Aj − A1) + R(−φ2)D1j).

Therefore, using (12b) and the facts that Aj − A1 = (Aj − A2) +

(A2 − A1) and D1j = D2j − D21, ∀j ∈ V \ {1}, we know that

2Ȧ2 −
2Ȧ1 = − N1(

2A2 −
2A1) + R(−φ2)


N1D21 −


j∈N1

D2j


+


j∈N2

(2Aj −
2A2 + D2j) −


j∈N1

(2Aj −
2A2) + U2. (16)

Similarly, it follows that

3Ȧ3 −
3Ȧ1 = − N1(

3A3 −
3A1) + R(−φ3)


N1D31 −


j∈N1

D3j


+


j∈N3

(3Aj −
3A3 + D3j) −


j∈N1

(3Aj −
3A3) + U3,

...

nȦn −
nȦ1 = − N1(

nAn −
nA1) + R(−φn)


N1Dn1 −


j∈N1

Dnj


+


j∈Nn

(nAj −
nAn + Dnj) −


j∈N1

(nAj −
nAn) + Un.

Without loss of generality, we next only focus on the analysis of φ̂2.
DenoteD2 =


0 −1
1 0

D2, whereD2 = (N1D21 −


j∈N1
D2j). For

the case of i = 2, estimator (15) can be written as

ż2 = − k2DT
2


N1(

2A2 −
2A1) − R(−φ̂2)D2

−


j∈N2

(2Aj −
2A2 + D2j) +


j∈N1

(2Aj −
2A2) − U2


,

φ̂2 = z2 − k2DT
2(

2A2 −
2A1).

It then follows from direct calculation and (16) that

˙̂
φ2 = − k2DT

2


2Ȧ2 −

2Ȧ1 + N1(
2A2 −

2A1) − R(−φ̂2)D2

−


j∈N2

(2Aj −
2A2 + D2j) +


j∈N1

(2Aj −
2A2) − U2


= − k2DT

2


R(−φ2(t))D2 − R(−φ̂2(t))D2


.

It follows from the fact DT
2(R(−φ2) − R(−φ̂2))D2 = (sin φ̂2 −

sinφ2)∥D2∥
2 that

˙̂
φ2 = − k2DT

2(R(−φ2) − R(−φ̂2))D2

= − k2(sin φ̂2 − sinφ2)∥D2∥
2

= − 2k2 sin


φ̂2 − φ2

2


cos


φ̂2 + φ2

2


∥D2∥

2.
We thus know from the same analysis as in Theorem 4 that
limt→∞ φ̂2(t) = φ2. Similarly, it is not hard to show that
limt→∞ φ̂j(t) = φj, for all j = 3, 4, . . . , n. �

5.2. Compensation algorithm

In this subsection, we show how to use the estimated informa-
tion on φ2, φ3, . . . , φn to compensate the original mismatched al-
gorithm such that the desired formation is achieved. Specifically,
the following compensation control algorithm is proposed for all
i = 2, 3, . . . , n,

Ui =


j∈Ni

(−Dij + R(−φ̂i)Dij), (17)

where φ̂i(t) is obtained by the estimator (15).
We next show that A1(t) − Ai(t), i = 2, 3, . . . , n, converges

to the desired formation using compensation input (17) and the
estimator (15).

Theorem 8. Consider the algorithm (14) with compensation in-
put (17) and the estimator (15). Suppose that |φi| < π

4 and |φ̂i(0)| ≤

π
4 , for all i = 2, 3, . . . , n. Then limt→∞ φ̂i(t) = φi, limt→∞(A1(t) −

Ai(t)) = D1i, for all i = 2, 3, . . . , n, and limt→∞ Vi(t) = 0, for all
i ∈ V .

Proof. It is not hard to show from (14) and (17) that for all i =

2, 3, . . . , n,

Ȧi − Ȧ1 = −


j∈N1

(Aj − A1 + D1j) +


j∈Ni

(Aj − Ai

+ R(φi)Dij) + R(φi)


j∈Ni

(−Dij + R(−φ̂i)Dij)


.

It then follows that for all i = 2, 3, . . . , n, Ȧi − Ȧ1 = −


j∈N1
(Aj −

A1 + D1j) +


j∈Ni
(Aj − Ai + R(φi − φ̂i)Dij). Noting that we have

shown from Theorem 7 that limt→∞ R(φi − φ̂i(t)) = I, for all
i = 2, 3, . . . , n, it then follows from the input-to-state stability
property (Khalil, 2002) that limt→∞(A1(t) − Ai(t)) = D1i, for all
i = 2, 3, . . . , n. It is then trivial to show that limt→∞ Vi(t) = 0, for
all i ∈ V . �

6. Concluding remarks

This article studied the formation control problem with
mismatched compasses. Such a mismatch is a consequence of the
fact that it is not physically realistic to claim that all agents have
common error-free knowledge of where north is. We examined
the consequences of the mismatched compasses on a standard
formation control algorithm. The two agent case was first studied
and we showed that the agents converge to a fixed, but distorted,
formation exponentially fast. Unlike the matched compass case,
the formation is not asymptotically stationary. The shape error
between the actual final formation and the desired formation
was explicitly established. We then studied the case of time-
varying mismatched compasses and the estimation problem for
the mismatch angle. Based on this analysis, the compensation
algorithm was proposed such that the desired formation shape is
achieved exponentially fast. The exponential property provides a
measure of robustness to noise. The extensions to the n agent case
where n ≥ 3 were followed. Simulations are provided to validate
the theoretical results in the absence of noise.
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The results of this article raise a number of open issues,
including considering other agent models, such as second order
agents or unicycle and considering the effect of bias in distances
simultaneously with mismatch in the direction of north. One
could also seek to obtain an extension of the algorithms to cope
with compensation where the initial angular misalignment was
arbitrarily large.
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