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1. Introduction

In recent years multi-carrier systems have been at the forefront of broadband communication sys-

tems due to their attractive properties at high data rates. OFDM with a Cyclic Prefix (CP) is a

widely implemented solution for multi-carrier systems already included in wireless communica-

tions standards such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 and 3rd

Generation Partnership Project (3GPP) Long-Term Evolution (LTE), but also for wired commu-

nications such as Asymmetric Digital Subscriber Line (ADSL) and Very-high-bit-rate digital sub-

scriber line (VDSL). Its popularity is partly due to the simple equalization enabled by the CP, the

efficient implementation using Fast Fourier Transform (FFT) and the flexibility on allocating the

time and frequency resources between sources. However, some of those advantages come at the

price of a loss in spectral efficiency due to the CP, which is extremely long in the presence of highly

frequency selective channels. Moreover, CP-OFDM systems suffer from high out-of-band emis-

sions, which also reduces the spectral efficiency and requires additional processing either in the

digital or in the analog domain that increases design and implementation complexity. In addition

to that, CP-OFDM systems have a high sensitivity to imperfect time and frequency synchroniza-

tion.

In future wireless mobile communication systems [51] not only broadband transmissions are

envisioned, but also narrowband machine type communications, for the so-called Internet of

Things (IoT), and ultra reliable low latency, also known as mission critical communications. The

range of device types considered for those systems is very wide and it covers from small form

factor low power sensors to high end high data rate hungry handhelds and vehicles moving at high

speed. Increased degrees of freedom are necessary to implement those systems, among others,

flexible choice of the subcarrier spacing and bandwidth, i.e. broader subcarriers for lower latency

and narrower subcarriers for very low rate sensor data, frequency and time multiplexing of sources

with different subcarrier spacing, robustness to the deployment on a wide range of carrier frequen-

cies, including those in the range of centimeter and millimeter wavelength. The disadvantages of

CP-OFDM become more evident when those future systems are considered.

An alternative solution to CP-OFDM are FBMC/OQAM which are a strong contender for

future mobile communication systems [12]. FBMC/OQAM systems have improved spectral effi-

ciency because they do not employ a CP and due to the improved per-subcarrier filtering employed

at the transmitter and receiver [68], which guarantees higher selectivity in the frequency domain

and a much lower out-of-band radiation compared with CP-OFDM [9]. This form of pulse shaping

limits the Inter-carrier Interference (ICI), while simultaneously attributing to more Inter-symbol

Interference (ISI) within each individual sub-carrier. Furthermore, FBMC/OQAM systems are ex-

tremely efficient in the presence of highly frequency selective channels. These advantages over

1
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CP-OFDM come at the cost of slightly higher computational complexity, however, this is not

problematic [8].

1.1 Historical Review of Multicarrier Communications

The basic idea of multicarrier systems is to divide a wide-band frequency selective transmission

channel into narrowband orthogonal subchannels1 that, although overlapping in the frequency do-

main, are simpler to equalize. The orthogonal functions used to shape each subchannel will directly

determine the flexibility of the system, its performance, the spectral occupation and the implemen-

tation complexity. Those functions will also determine the number of degrees of freedom for the

system design. We can classify the multicarrier modulation schemes, based on the length of the

shaping functions, into memoryless block transmission, when the functions have the duration of

one symbol, or overlapped block transmission systems, when the functions are longer than the

symbol period, what also means that the blocks overlap in time domain.

A basic requirement for each subchannel is that, at the receiver side, the symbols are free from

ISI and ICI. The first descriptions of multicarrier systems in accordance with those requirements

were presented in continuous time or, equivalently, with analog implementation [20, 21, 64] of

the multicarrier modulation. The system in [64] differed from the others as it used a staggered

or OQAM on each subcarrier. In those systems, the modulation functions were considered longer

than the symbol period. An analog per sub-channel equalization strategy for those systems was

later proposed in [33].

In [78] a digital efficient implementation of the orthogonal individual sub-carrier modulation,

based on the Discrete Fourier Transform (DFT) is presented. But in this case the duration of the

functions are equal to the symbol period and had a rectangular shape. This originated the system

known today as OFDM. Afterwards, in [34] it was also shown an efficient implementation based

on the DFT, but for shaping functions longer than the symbol period, what originated what we call

FBMC/OQAM.

Based on the results from [34] some authors classify the systems based on overlapped (in time)

functions as a special case of OFDM, what they call OFDM/OQAM, differing to the traditional

memoryless system, which they call OFDM/Quadrature Amplitude Modulation (QAM) [48].

After the development of the theory of multirate systems and filter banks [28,71], some authors

applied it to multicarrier systems [27]. Particularly, for the special case of modulated filter banks,

where the sub-channels shaping functions are modulated versions of a prototype filter, powerful

tools are provided to analyze and design multicarrier systems. The application of those tools con-

sists basically on the use of efficient structures with the polyphase decompositions, design of the

shaping function and evaluation (if existing) of distortions on each sub-channel. When the theory

of filter banks is applied to multicarrier systems, the name TMUX is usually employed. The math-

ematical equivalence of OFDM/OQAM and TMUX systems based on modulated filter banks was

presented on [68].

The concept of Perfect Reconstruction (PR) once introduced for filter bank systems is also

successfully applied to TMUX systems. Perfect reconstruction means that the signal at the output

of the filter bank, when compared to the signal at the input, has no amplitude distortion, no phase

distortion and no aliasing, if no operation is performed between the analysis and the synthesis

bank [28,71]. This also means that, if a prototype designed for a perfect reconstruction filter bank is

1In this work we will use the words subcarrier and subchannels interchangeably.
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employed in a TMUX system with ideal transmission channel, the resulting orthogonal multicarrier

system is ICI and ISI free [68].

One example of TMUX structure equivalent to the OFDM/OQAM is based on the filter bank

called Modified Discrete Fourier Transform (MDFT) [28]. It consists of using a DFT filter bank

together with an OQAM modulation on each sub-carrier. The MDFT TMUX can be realized effi-

ciently depending on the length of the prototype filter [42].

The choice of the TMUX prototype filter offers many possibilities. Assuming an ideal transmis-

sion channel, ISI and ICI free transmissions are accomplished, if a RRC filter is used as prototype.

But those filters have infinite impulse response and for practical implementations they have to be

truncated or windowed, resulting in a TMUX free from ICI but not free from ISI. Assuming the

non-existence of ideal transmission channel and considering small tolerable ISI and ICI, some au-

thors rely on the use of Gaussian or extended Gaussian functions [41, 48]. There exists no closed

formula leading to ICI or ISI free modulated TMUX or, equivalently, to PR modulated filter banks

with more than 2 sub-channels. Neverthless, the PR condition can still be reached if nonlinear op-

timization routines are employed [29–31]. The only exception is for the case when the polyphase

components have length 2, where the ELT can be applied and it has a closed-form [50].

Another approach for filter bank based multicarrier systems encountered in the current litera-

ture is based on the so called Exponentially Modulated Filter Banks (EMFB), which consists of

one cosine and one sine modulated filter bank at the transmitter and, for proper equalization, two

Cosine Modulated Filter Bank (CMFB) and two Sine Modulated Filter Bank (SMFB) at the re-

ceiver [38,74]. It is worth mentioning that this approach is not based on the concept of OQAM but

it has similar properties. In [73] it is claimed that the EMFB can be more efficiently realized than

the MDFT filter bank.

Under the realistic assumption that the transmission channel is not ideal, that is ISI and ICI will

occur anyway, one possibility is the design of optimal prototypes for near-perfect reconstruction

filter banks [29–31]. In any case a equalizer has to be employed at each subcarrier due to frequency

selectivity.

The TMUX equalization is still an open problem, although there are some works about this

topic [38, 76, 79]. If the equalization is performed at a higher sampling rate as the symbol rate, for

example, twice the symbol rate, it is highly dependent on the structure employed.

1.2 Overview and Contributions

FBMC systems provide on the other hand an effective alternative to CP-OFDM. FBMC systems

based on OQAM, in particular, have properties which allows to fulfill a number of the require-

ments for advanced wireless communications. Due to the lack of CP and the orthogonal or near-

orthogonal overlapping of the subcarriers, an improved spectral and energy efficiency is achieved.

The use of a pulse shaping in each subcarrier tailored to fulfill stricter frequency and time domain

requirements allows to improve the spectral containment and increase the robustness to synchro-

nization errors. Furthermore, the pulse shaping can be flexibly chosen to convey the transmission

of different categories of communications traffic.

This dissertation covers different aspects of FBMC systems based on OQAM with the objective

to bring further maturity to the combination of classical digital signal processing building blocks

and pave its way into wireless standards and future technology.

In the first part, in Chapter 2, the basic theory and fundamental operations of FBMC systems

is presented. Different structures for the realization of the system are presented. They allow to ef-
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ficiently perform the per-subcarrier filtering, modulation and combination of all subcarrier signals.

The presentation of the structures is followed by a complexity analysis and comparison. Finally,

some options for the choice of the filter employed in each subcarrier are presented.

It is important to consider in detail the complexity of the synthesis and analysis of the multi-

carrier signals. In advanced cellular systems, like 3GPP standardized systems as LTE-Advanced

and 5G, for example, the so-called carrier aggregation is utilized. Moreover, if multiple antennas

are employed one SFB and one AFB is necessary for each antenna in typical applications. In both

cases, multiple AFB and SFB need to be implemented in both mobile and base stations, scaling

the complexity linearly with the number of carriers and with the number of antennas.

In the second part, in Chapter 3, different procedures are presented for the estimation of the

propagation channel under which the system operates. In addition to the need of schemes that

differ from the ones used in CP-OFDM, FBMC systems also require appropriate subcarrier signal

models that are tailored to the channel estimation scheme chosen.

In the final part, in Chapter 4, methods to compensate and mitigate the effects of the propaga-

tion channel are presented. The channel equalization or precoding in FBMC systems also has to be

adapted to the underlying signal model. An extension from systems which involve single antenna

at the transmitter and single antenna at the receiver, to systems with multiple antennas in both sides

is also discussed in this work.

1.3 Notation and Definitions

In this work vectors are represented as bold small letters and matrices as bold capital letters. Scalar

can be either small or capital letters in roman. Where not otherwise stated, we assume in the course

of this work that all signals are complex valued.

Given a discrete-time Finite Impulse Response (FIR) filter g[k] operating in the sampling rate

1/Ts and its impulse response of degree (Lg − 1) and duration (Lg − 1)Ts

g[k] = g0δ[k] + g1δ[k − 1] + ...+ gLg−1δ[k − Lg + 1], (1.1)

its corresponding Z-domain polynomial description is G(z) = g0+g1z
−1+ ...+gLg−1z

−Lg+1. The

complex frequency variable z is related to the continuous-time frequency variable s by the relation

z = esTs , where s = σ + jω and ω = 2πf is the angular frequency in rad/s and f the technical

frequency in Hz. Given also an input sequence x[k] and its Z-transform X(z), the output sequence

y[k], and its Z-transform Y (z), is calculated by the discrete-time convolution given by2

y[k] = (g ∗ x)[k] =
Lg
∑

τ=0

gτx[k − τ ]. (1.2)

Equivalently, given the polynomials G(z) and X(z), the output polynomial Y (z) is obtained by

the product Y (z) = G(z) ·X(z).
In the course of this work we will deal with signals and filters that are defined, described

and processed in multiple sampling rates, the so-called multirate signal processing. If we now

define a new input signal x′[l], a filter g′[l] and an output signal y′[l] and describe them in a lower

sampling rate 1/MTs, we also need a new z′ = esTsM = zM . A more convenient choice is to call

z′ = zM = zM , where the subscript indicates that M delays of Ts seconds can be substituted by

2Mathematicians call the discrete convolution the Cauchy product of two sequences.



1.3 Notation and Definitions 5

one delay of MTs seconds. Then we could write Y ′(z′) = G′(z′) · X ′(z′) = Y ′(zM ) = G′(zM) ·
X ′(zM) = Y ′(zM) = G′(zM) ·X ′(zM ). For convenience, we define z for the highest sampling rate

in our system description and for lower sampling rates we include the corresponding subscript or

exponent.

If in (1.2) the input sequence x[k] has finite duration with Lx samples, then the output sequence

y[k] will have Ly = Lx+Lg−1 samples. We can now stack the filter coefficients, input and output

sequences in the vectors

g =
[

g1 g0 · · · gLg−1

]T ∈ CLg , (1.3)

x[k] =
[

x[k] x[k − 1] · · · x[Lx − 1]
]T ∈ CLx and (1.4)

y[k] =
[

y[k] y[k − 1] · · · y[Ly − 1]
]T ∈ CLy . (1.5)

In the course of this work we will frequently drop the time index k to simplify the notation as in

the definitions that follow.

We can now define the output vector by

y =

























g0 0 · · · 0

g1 g0 · · · ...
...

...
. . .

...

gLg−1 gLg−2 · · · 0
0 gLg−1 · · · g0
...

...
. . .

...

0 0 · · · gLg−1

























x = Gx, (1.6)

where the Toeplitz matrix G ∈ CLy×Lx is the usually so-called convolution matrix and given the

vector g, it can be generated by

G =

Lx
∑

i=1

Dige
T
i , (1.7)

where ei ∈ {0, 1}Lx has the i-th element equal to one and the other elements equal to zero, and

Di ∈ {0, 1}Ly×Lg is defined as

Di =





0(i−1)×Lg

ILg

0(Lx−i)×Lg



 , (1.8)

where 0(i−1)×Lg
∈ {0}(i−1)×Lg is the all zero matrix and ILg

∈ {0, 1}Lg×Lg is the identity matrix.

We can note that the dimensions Lx and Lg have independent magnitudes.

In (1.6), we have assumed that the memory of the FIR filter is empty at the beginning and at

the end of the convolution operation, i.e. it includes the precursors and postcursors (transients) in

addition to the steady-state. This is equivalent to assume that the input x[k] has a relatively short

duration and we are interested on observing the influence of the whole input sequence into the

output sequences.

For the design of some system blocks such as channel equalizers and precoders, as we will show

in Chapter 4, we are mostly interested on considering the outputs after the steady-state has been
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reached. This is particularly useful when the input sequence x[k] has a much longer duration than

the impulse response of the filter G(z). In this case, we define an observations vector yo ∈ CLo ,

which is given by

yo =











g0 g1 · · · gLg−1 0 · · · 0
0 g0 · · · gLg−2 gLg−1 · · · 0
...

...
. . .

...
...

. . .
...

0 · · · · · · 0 g0 · · · gLg−1











x′ = G′x′, (1.9)

where now the dimension of x′ ∈ CL′

x depends on the number of observations Lo, which is the

dimension of yo, and on the impulse response length Lg, i.e. L′
x = Lo +Lg − 1. Moreover, we can

also express the Toeplitz matrix G′ ∈ CLo×L′

x as a function of g as

G′ =

L′

x
∑

i=1

e′ig
TD′

i, (1.10)

where now e′i ∈ {0, 1}L′

x and D′
i ∈ {0, 1}Lg×L′

x is defined as

D′
i =

[

0Lg×(i−1) ILg
0Lg×(L′

x−i)

]

. (1.11)

We can see that matrix G′ is a transposed convolution matrix and, if and only if Lo = Lx then

G′ = GT, because L′
x = Ly.

For other processing blocks such as channel estimation, as we will show in Chapter 3, we need

to rewrite (1.9) by exchanging the roles of G′ and x′. An alternative expression for the filter output

is then

yo =











x[k] x[k − 1] · · · x[k − Lg + 1]
x[k − 1] x[k − 2] · · · x[k − Lg]

...
...

. . .
...

x[k − Lo + 1] x[k − Lo] · · · x[k − Lo − Lg + 1]











g = Xg, (1.12)

where X ∈ CLo×Lg is a Hankel matrix given by

X =

Lg
∑

i=1

D′′
i x

′e′′Ti , (1.13)

where now e′′i ∈ {0, 1}Lg and D′′
i ∈ {0, 1}Lo×L′

x is defined as

D′′
i =

[

0Lo×(i−1) ILo
0Lo×(L′

x−i)

]

. (1.14)

It is worth noting that also in both (1.9) and (1.12), we can choose the dimension Lo indepen-

dent of Lg.



2. Exponentially Modulated Filter Banks

2.1 Introduction

We begin this chapter with the introduction of the basic multirate signal processing concepts of in-

terpolation and decimation, including the sub-blocks of upsampling and downsampling. Moreover,

we show how discrete-time modulation can be incorporated to the interpolation and decimation

process by a frequency shift of the corresponding filter. After that we will show how interpolation

and decimation can be efficiently implemented using two different approaches: the first one based

on the polyphase decomposition of the interpolation filter and the second one based on the fre-

quency domain implementation of the linear convolution, where a basic building block is the FFT.

We will then compare the computational complexity of the different structures and finally present

some prototype filter designs.

2.2 Basic Multirate Operations and Structures

In this section we introduce the basic processing and the building blocks of multicarrier modu-

lation based on filter banks. The generation of the multicarrier signal at the transmitter side is

performed by discrete-time modulation (a.k.a. mixing) obtained as a combination of sampling rate

increase,i.e. upsampling and filtering. The recovery of the multicarrier signals is performed by

discrete-time demodulation (a.k.a. de-mixing), filtering and sampling rate decrease, i.e. downsam-

pling.

2.2.1 Upsampling, Interpolation and Discrete-time Modulation

We call interpolation the process of converting a signal from a sampling rate into a higher one. The

process of interpolation is divided into two steps: upsampling and filtering as depicted in Fig. 2.1.

First, given an input signal x[k] with sampling period T and an upsampling factor M , we define

the upsampled signal xus[l] with a shorter sampling period Ts = T/M by inserting (M − 1) zero-

valued samples between each of the original samples of x[k]. In time domain, the upsampling is

↑ M Hm(z)x[k] xint[l]
xus[l]

Fig. 2.1. Interpolation: Upsampling and Filtering

7
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given by

xus[l] =

{

x[k], l = kM

0, otherwise.
(2.1)

Given the Z-transform of the input X(zM) =
∑+∞

k=−∞ x[k]z−k
M and (2.1), the output of the upsam-

pler (or expander) is given by

Xus(z) =

+∞
∑

l=−∞
xus[l]z

−l =

+∞
∑

k=−∞
x[k]z−kM = X(zM ). (2.2)

We can see that the Z-transform of the output is nearly the same function of z as the Z-transform of

the input signal with only a substitution of the variable z by zM , i.e. no distortion or fundamental

change in the shape of the function occurs in the process of upsampling. By evaluating X(zM)
along the unit circle, i.e. zM = ejωT , to obtain the frequency or Fourier domain representation, we

can see that, after the upsampling, the uniqueness domain1 of the frequency variable is extended

from ω ∈ [−π/T, π/T ] to ω ∈ [−πM/T, πM/T ]. We have now a discrete-time signal that has

multiple equally shaped spectral components, also called spectrum images [26, 71].

To illustrate the process described above, in the upper diagram of Fig. 2.2 we first depict the

magnitude of the frequency domain representation X(ejωT ) of a band limited complex signal x[k].
The spectra represented with dashed lines are outside the uniqueness domain given by the sampling

rate 1/T and are just periodical repetitions of the spectrum contained in the interval [−π/T, π/T ].
After upsampling, in the second graphic from the top in Fig. 2.2, we illustrate the same spectra but

for the new uniqueness domain with sampling rate 1/Ts = 4/T , i.e. an upsamplig factor of M = 4.

Now, the frequency domain representation contain redundancies (images) inside the unique-

ness domain that are generated by the insertion of the zero-valued samples in the time domain.

The images can now be filtered out, what results in a smoother time domain signal course, i.e. the

zero-valued samples will acquire non-zero values. If the input signal posses mainly lower fre-

quency components, a low-pass filter can be applied to remove the spectral repetitions and keep

the original signal properties in the high rate output signal. In the third graphic of Fig. 2.2 we

depict the magnitudes of the frequency domain representation of two filters: H0(z) in solid lines is

a low-pass and H1(z) in dashed lines is a band-pass filter. The latter is obtained by exponentially

modulating the former, i.e. H1(z) = H0(ze
−j 2π

M ) = H0(ze
−jπ

2 ). The second spectrum from the

bottom shows the output of the interpolation when xus[l] is filtered by H0(z).
As will be shown later in this work, for frequency division multiplexing it is necessary to

generate a frequency shifted version of the input signal x[k]. We can then take advantage of the

fact that, after the upsampling operation, frequency shifted spectral repetitions of the input signal

are available. We just need to substitute the low-pass interpolation filter H0(e
jωT ) by a band-pass

filter, for example H1(e
jωT ). In the last graphic of Fig. 2.2 we can see the result of filtering xus[l]

by H1(z).
In the current literature of multirate signal processing, filter banks and multicarrier modulation,

an alternative for the approach previously described is the frequency shift (exponential modulation)

of the signal after low-pass filtering. In order to derive efficient implementations of the interpola-

tion operation, as will be shown later, it appears to be more convenient to utilize the approach

presented in this section.

1We define uniqueness domain as the frequency range in which the discrete-time signal can be fully described and

manipulated by a subsequent filter.
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Fig. 2.2. Illustration of interpolation with upsampling followed by low-pass and band-pass filtering

2.2.2 Downsampling, Decimation and Discrete-time Demodulation

We call decimation the process of converting a signal from a higher sampling rate into a lower

one. As in the interpolation, it is also divided into two basic steps, but this time, first a filtering

and second a downsampling, as depicted in Fig. 2.3. Given a signal x[l] in a short sampling period

Ts = T/M , a filter Fm(z) will limit its spectrum to avoid the so-called alias effect. To better
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Fm(z) ↓ Mx[l] xdec[k]
xds[k]

Fig. 2.3. Decimation: Filtering and down-sampling

understand the necessity of first filtering the signal, we need first to look at the downsampling

operation in more detail.

In the downsampling by M every M-th sample of the input x[l] is retained and the M − 1
samples in between are not further processed, i. e. they are scrapped. In time domain the output of

the downsampling by M is given by

xds[k] = x[lM ]. (2.3)

It is then clear that information may be lost during the downsampling operation, in other words

downsampling may generate signal distortions, unlike to the upsampling, where no information

loss or distortions to the signal occurs. For every M samples of x[l], there are M possibilities

which sample to keep. As a consequence a time offset µ for the downsampling operation should be

defined. The resulting signal xds[k] = x[lM + µ] will be slightly different according to the offset

choice. As a consequence we can conclude that the downsampling operation is periodically time

variant. Without loss of generality, we make the usual assumption that the time offset is µ = 0. In

this case, the Z-transform of the resulting signal after downsampling is given by

Xds(zM ) =
1

M

M−1
∑

l=0

X(ze−j 2πl
M ). (2.4)

We can see from (2.4) that the output of the downsampling operation is the sum of frequency

shifted versions of the input signal. If the frequency response of X(z) has a broad magnitude or

it has many strong frequency components spread over the whole uniqueness domain, then, during

the downsamplig operation, parts of the spectrum will overlap and the resulting signal will have

a new frequency response. It may not be possible to recover the original signal from this new

one. The distortion caused by the addition of overlapping frequency components is called aliasing

effect [26, 71].

To avoid aliasing, it is necessary to apply a filter to limit the band of the input signal before the

downsampling operation. To illustrate the whole decimation operation and also the joint decima-

tion and demodulation (de-mixing), we depict an example in Fig. 2.4 for M = 4. In the first plot,

the input signal X(z) sampled in a high rate 4/T Hz has multiple frequency components and can

be interpreted as a frequency multiplexing of multiple signals. In this example we have four sig-

nals centralized around the frequencies 0, 2π/T , −2π/T and 4π/T rad/s, or equivalently −4π/T
rad/s. In the second plot, the frequency responses of a low-pass filter F0(z) and a band-pass filter

F1(z) = F0(ze
−j 2π

M ) = F0(ze
−jπ

2 ) are represented. The output of F0(z) is shown in the third plot,

while the output of the whole decimation process, i.e. after filtering by F0(z) and downsampling,

is represented in the fourth plot. We can see that now the uniqueness domain is reduced to the

range [−π/T, π/T ] and the periodical spectral repetitions outside of this range correspond to the

spectral component originally localized around the frequency 0. In the fifth plot we depict the re-

sulting signal when the filter F1(z) is employed before the downsampling. The same signal after

the downsampling is depicted in the sixth and last plot. One can see now that the resulting spectrum

only contains the signal that was originally centralized around 2π/T rad/s in the first plot.
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Fig. 2.4. Illustration of decimation with low-pass and band-pass filtering followed by downsampling
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The decimation process depicted in Fig. 2.4 can be interpreted as a representation of a fre-

quency demultiplexing, as will be explained later.

2.2.3 Efficient Realizations

The realization of the interpolation and decimation processes based on the block diagrams from

Figs. 2.2 and 2.4 is not efficient. In the case of the interpolation, one can see that the input of the

filter contains many zero-valued samples in a high sampling rate. The filter has to generate output

samples in the same high sampling rate, although only a fraction of the coefficients (every M-th)

are effectively being multiplied by non-zero input samples. In the case of decimation, the filter

is also operating in the higher sampling rate, although this time not necessarily with zero valued

input samples, but many of its output samples are not retained by the downsampling operation.

In the section that follows, we will present two possible implementations for both interpola-

tion and decimation. The first one is based on the polyphase decomposition of the filter and the

second on a frequency domain based filtering, i.e. FFT based fast convolution, and sampling rate

conversion.

2.2.3.1 Polyphase Structures

Let us assume that the FIR interpolation filter H0(z) has LP = KM coefficients2 and its transfer

function is given by

H0(z) =

LP−1
∑

p=0

hpz
−p. (2.5)

By definining p = µ+ κM , the type-1 polyphase decomposition of this filter is given by

H0(z) =

M−1
∑

µ=0

K−1
∑

κ=0

hµ+κMz−(µ+κM) =

M−1
∑

µ=0

z−µ

(

K−1
∑

κ=0

hµ+κMz−κM

)

=

M−1
∑

µ=0

z−µGµ(z
M ), (2.6)

where the transfer functions Gµ(z
M) =

∑K−1
κ=0 hµ+κMz−κM are the so-called polyphase compo-

nents each with K non-zero-valued coefficients. We can see that each of the M polyphase compo-

nents is constructed by taking every M-th sample of the filter in a similar fashion to what we did

in the downsampling operation with signals. The difference between the polyphase components is

then the time offset µ in which we start the downsampling of the filter. Moreover, the definition in

(2.6) suggests to arrange the polyphase components in a parallel structure, i.e. the same input signal

is filtered each polyphase component, and their outputs are added together before the upsampling

and after a delay dependent on the branch index.

In the case of modulated filters, we can incorporate the frequency shift as

Hm(z) = H0(ze
−j 2π

M
m) =

LP−1
∑

p=0

hpz
−pej

2π
M

mp (2.7)

2This is a special case of the more general filter length P = KM + s, with 0 < s < M , which implies the

polyphase components have different lengths.
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x[k]
1

G0(zM) ↑ M + xint[l]

ej
2π
M

m

G1(zM) ↑ M +

T
M

... ...
...

ej
2π
M

(M−1)m

GM−1(zM) ↑ M

T
M

Fig. 2.5. Efficient realization of interpolation with modulation based on polyphase decompositions

and the polyphase decomposition can now be defined as

Hm(z) =
M−1
∑

µ=0

K−1
∑

κ=0

hµ+κMz−(µ+κM)ej
2π
M

m(µ+κM) =
M−1
∑

µ=0

z−µ

(

K−1
∑

κ=0

hµ+κMz−κM

)

ej
2π
M

mµ

=

M−1
∑

µ=0

z−µGµ(z
M )ej

2π
M

mµ, (2.8)

where we should highlight that the same polyphase components from the non-shifted filter is em-

ployed here, in addition to the exponential modulation. Also here, a parallel structure appears to

be straightforward from (2.8), with the difference that a multiplication by an exponential is applied

before each polyphase component.

Up to now, we have just substituted the linear convolution with a single filter with KM coef-

ficients by a parallel structure with M filters each with K coefficients. A final step is still missing

to improve the efficiency of the whole interpolation operation. We need to move the upsampling

operation after each of the polyphase components. Furthermore, we observe that the Noble Iden-

tity [26, 71] for interpolation can be applied due to the definition of the polyphase components.

Then, we can rewrite (2.8) as

Hm(z) =
M−1
∑

µ=0

z−µGµ(zM)ej
2π
M

mµ, (2.9)

which is then translated to the block diagram shown in Fig. 2.5. We can observe that both frequency

translation and filtering by the polyphase components are executed in the lower sampling rate.

As a consequence, although the total number of multiplications has not effectively changed, in

the polyphase structure the multiplications are paralleled and executed in a lower sampling rate,

compared to the original interpolation procedure.

In the case of the decimation, similar steps can be performed. By first defining the decimation

filter as

F0(z) =

LP−1
∑

p=0

fpz
−p, (2.10)
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x[l] ↓ M G̃0(zM)
1

+ xdec[k]

T
M

↓ M G̃1(zM)
e−j 2π

M
m

+

......
...

T
M

↓ M G̃M−1(zM )
e−j 2π

M
(M−1)m

Fig. 2.6. Efficient realization of demodulation and decimation based on polyphase decompositions

we can analogously define the polyphase components as G̃µ(z
M) =

∑K−1
κ=0 fµ+κMz−κM . Similar

to what we did with the interpolation filter, we can incorporate the frequency shift to the definition

of the filters

Fm(z) = F0(ze
j 2π
M

m) =

LP−1
∑

p=0

fpz
−pe−j 2π

M
mp (2.11)

and to the polyphase decomposition. The main difference comes from the fact that the down-

sampling has to be moved from the right to the left. After using the Noble Identity [26, 71] for

decimation the following definition holds

Fm(z) =

M−1
∑

µ=0

e−j 2π
M

mµG̃µ(zM )z−µ, (2.12)

which is actually very similar to (2.9), but just written in a different way to represent the corre-

sponding final frequency shifted polyphase structure shown in Fig. 2.6. We can also see here that

the filters operate now in a parallel structure in the lower sampling rate as well as the multiplica-

tions by exponentials.

2.2.3.2 Frequency Domain Fast Convolution

The two steps to perform an interpolation represented by the operations in Fig. 2.1 and illustrated in

Fig. 2.2 can also be realized in the frequency domain with the help of the so-called fast convolution

algorithms OS or OA [59]. These algorithms realize a linear convolution operation based on the

use of the FFT and the cyclic convolution, i.e. a point-by-point multiplication in the frequency

domain.

Beginning with the interpolation, let us start with the second operation, i.e. we first implement

the time domain linear convolution with an OS algorithm, and keep the upsampling in the time

domain. This means that after the upsampling we take overlapping blocks of the signal, transform
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with an FFT, multiply by the DFT of the impulse response of the filter, transform with an Inverse

Fast Fourier Transform (IFFT) and serialize part of its output samples.

The sizes of the FFT/IFFT can be freely chosen above a minimum value and, typically depend

on the filter impulse response length and a time-domain overlapping factor which is a free design

parameter. Let us assume a filter of impulse response length Lp, then the FFT/IFFT size NFFT in

the OS method is given by NFFT = Nnew + Lp − 1. Nnew is the number of new input samples in

each block entering the FFT and (Lp −1) samples are repeated in each block entering the FFT and

the overlapping factor is given by the ratio γOF = (Lp − 1)/NFFT.

We can now transfer the operation upsampling by M to the frequency domain, realize it also

with the help of the FFT/IFFT and combine it with the filter multiplication in the frequency domain.

In this case, to realize the upsampling in the frequency domain, we reduce the FFT size to NFFT/M ,

repeat M-times the output samples of the FFT, i.e. include a ramification of each FFT output

into M signals, and keep the IFFT size of NFFT. The structure for the efficient interpolation and

modulation realization based on the OS algorithm is depicted in Fig. 2.7, where Hm,q is obtained

by evaluating the transfer function Hm(z) at the corresponding frequency bin, i.e.

Hm,q = Hm(z)|z=ejωq = Hm(e
jωq), where ωq =

2πMq

TNFFT

(2.13)

or by approximating it with the corresponding DFT sample of the filter impulse response Hm(z).
It is clear that for this efficient implementation both the NFFT and the filter order (Lp − 1) need to

be multiple of the upsampling factor M . Consequently, Nnew should also be a multiple of M , with

the exception of the special case when Nnew = 1 as we will see later in this sub-section, where

actually Lp should be a multiple of M .
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Fig. 2.7. Efficient interpolation and modulation realization based on OS algorithm for upsampling factor

M .

Furthermore, the operation of modulation is obtained by circularly shifting the vector with the

frequency domain samples of the interpolation filter. Let us assume the vector h0 ∈ CNFFT contains
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the H0,q samples, i.e. h0 = [H0,0, H0,1, ..., H0,NFFT−1]
T, with H0,q as defined in (2.13) for m = 0.

The circularly shifted version hm is given by

hm = circshift (h0, mrot(m)) =

[

0mrot×(NFFT−mrot) Imrot

INFFT−mrot
0(NFFT−mrot)×mrot

]

h0, (2.14)

where the number of frequency bin shifts mrot(m) is given by

mrot(m) = round

(

γOFNFFTm

M

)

1

γOF

= round

(

(Lp − 1)m

M

)

NFFT

(Lp − 1)
, (2.15)

where round (•) represents rounding to the nearest integer. Moreover, we can see that mrot(m) will

only be integer if NFFT is a multiple of (Lp − 1), which is always true if both are multiples of M
as stated before. As a consequence, under our assumptions (2.15) simplifies to

mrot(m) =
mNFFT

M
. (2.16)

However, for the special case when Nnew = 1, NFFT = Lp and the number of frequency bin shifts

is then given by mrot(m) = mLp/M , which is an integer provided that Lp is a multiple of M .

Similarly, one can realize the interpolation and modulation using the OA algorithm. In this case

a serial-to-parallel operation is done and a zero-padding of (Lp − 1)/M is applied before the small

FFT. Between the small FFT and the large IFFT the same processing as in OS variant is employed.

After the large IFFT a block overlapping of (Lp − 1) samples according to the corresponding

factor is performed. The structure for the efficient interpolation and modulation realization based

on the OA algorithm is depicted in Fig. 2.8. It is worth noting that the upsampling, modulation
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Fig. 2.8. Efficient interpolation and modulation realization based on OA algorithm for upsampling factor

M

and filtering operations with the discrete frequency domain samples shown in Figs. 2.7 and 2.8
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resembles a discrete frequency implementation of the steps depicted in Fig. 2.2. In addition to that,

in practical implementations it is clear that the magnitude of many of the Hm,•s will be very small

and those coefficients may not need to be implemented. In this case only the coefficients in the

surroundings of the passband and in the passband itself need to be implemented. The structures

presented here show the steps to achieve the strict equivalence to the time domain interpolation.

The decimation can be realized by performing the transposed operations of the interpolation,

but now with a downsampling by M . But now, first a large FFT of size NFFT is applied by taking

blocks of (Lp − 1) overlapping samples for OS and with serial-to-parallel of Nnew samples plus

zero-padding of (Lp − 1) samples for OA. After the multiplications by the frequency response of

the filter, the decimation is obtained by wrapping and adding the spectral components to be aliased.

This is obtained by M adders which then generate NFFT

M
signals to be converted by a small IFFT of

size NFFT

M
. Finally, only Nnew

M
outputs of the small IFFT are serialized for the OS method and a block

overlapping of (Lp − 1)/M IFFT outputs are necessary for the OA.

The structures for the efficient modulation and decimation realizations based on the OS and

OA algorithms are depicted in Figs. 2.9 and 2.10. We can observe that the OS-based decimation
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Fig. 2.9. Efficient modulation and decimation realization based on OS algorithm for downsampling factor

M

implementation in Fig. 2.9 contains the transposed or dual operations of the OA-based interpolation

in Fig. 2.8, while the OA-based decimation in Fig. 2.10 contains transposed or dual operations of

the OS-based interpolation in Fig. 2.7. Again here many of the frequency domain coefficients of

the filter may be very small and not only those coefficients may be neglected, but also a number of

additions from the spectral warping.

One particular structure of interest is the special case when Nnew = 1, especially if we con-

sider the OA algorithm for the interpolation with modulation, and OS for the decimation with

modulation. Because in OA-based interpolation only one small-FFT input is different from zero

and in OS-based decimation only one small-IFFT output is further processed, the corresponding

DFT and Inverse Discrete Fourier Transform (IDFT) matrices are simplified to a all-ones column
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Fig. 2.10. Efficient modulation and decimation realization based on OA algorithm for downsampling factor

M

vector 1 and row vector 1T. As a consequence, in both cases the small FFT and IFFT, combined

with the spectral repetition and wrapping, boil down to the trivial operations of ramification into

and addition of NFFT signals. Moreover, the upsampling operations can be moved to the right and

downsampling to the left in the corresponding structures. The resulting interpolation and decima-

tion structures are depicted in Figs. 2.11 and 2.12. Also here, for practical implementations, many

of the filter coefficients may be neglected and the inputs of the big IFFT will be zero, simplifying

its implementation, for the OA-based interpolation. For the OS-based decimation, many of the FFT

outputs may not need to be calculated and many of the additions do not need to be implemented.

Let us take a look at some interesting examples of different ovelapping factors, FFT/IFFT sizes

and new input samples Nnew, namely with Nnew = 1, Nnew = Lp − 1, Nnew = 2(Lp − 1) and

Nnew = 3(Lp − 1):

1) Nnew = 1: FFT/IFFT size is NFFT = Lp and the overlapping factor is γOF = (Lp − 1)/Lp =
1 − 1/Lp ≈ 1 or nearly 100% for typical filter lengths. If we assume Lp = KM , we obtain

NFFT = KM and mrot(m) = mK as defined in (2.16).

2) Nnew = Lp − 1: FFT/IFFT size is NFFT = 2(Lp − 1) and the overlapping factor is γOF =
Lp−1

2(Lp−1)
= 1/2 = 0.5 or exactly 50%. If we assume Lp = KM + 1, we obtain Nnew = KM ,

NFFT = 2KM and mrot(m) = m2K.

3) Nnew = 2(Lp − 1): FFT/IFFT size is NFFT = 3(Lp − 1) and the overlapping factor is γOF =
Lp−1

3(Lp−1)
= 1/3 = 0.333 or 33.33%. If we assume Lp = KM + 1, we obtain Nnew = 2KM ,

NFFT = 3KM and mrot(m) = m3K.

4) Nnew = 3(Lp − 1): FFT/IFFT size is NFFT = 4(Lp − 1) and the overlapping factor is γOF =
Lp−1

4(Lp−1)
= 1/4 = 0.25 or exactly 25%. If we assume Lp = KM + 1, we obtain Nnew = 3KM ,

NFFT = 4KM and mrot(m) = m4K.

Given the examples above, the following facts can be derived:
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Fig. 2.11. Efficient interpolation and modulation realization based on OA algorithm for upsampling factor

M and Nnew = 1

• Example 1 has the smallest FFT size NFFT = KM and only one large FFT/IFFT, but the

transform runs in the low sampling rate 1/T of the input signal.

• Example 2 has a two-times larger FFT size NFFT = 2KM and one small FFT/IFFT of size

NFFT/M = 2K, but all transforms run in the rate 1/KT , i.e. K-times smaller then the sampling

rate of the input signal for SFB and output signal for AFB.

• Example 3 has a three-times larger FFT size NFFT = 3KM and one small FFT/IFFT of size

NFFT/M = 3K, but all transforms run in the rate 1/2KT , i.e. 2K-times smaller then the

sampling rate of the input or output signal. On the downside the large FFT size is not a power

of two, as frequently desired.

• Example 4 has a four-times larger FFT size NFFT = 4KM and one small FFT/IFFT of size

NFFT/M = 4K, but all transforms run in the rate 1/3KT , i.e. 3K-times smaller then the

sampling rate of the input or output signal.

• By evaluating the total number of multiplications necessary to process or generate Nnew sam-

ples of the low rate input or output signal, one can conclude that Example 4 has the lowest

complexity and Example 1 has the highest. In other words, a higher ovelapping factor results

in a higher number of multiplications per time unit. We provide numerical examples later in

this chapter that support this assessment.

But the choice of the parameters for the fast convolution scheme depends also on the architec-

ture and the hardware properties than on the total number of multiplications per time unit. A larger

Nnew implies in a larger FFT, which then requires more memory, and also increases the processing

latency.
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Fig. 2.12. Efficient modulation and decimation realization based on OS algorithm for downsampling factor

M and Nnew = 1

It is worth noting that we have not considered here non-integer rational upsampling or down-

sampling factor M . In this case a higher flexibility on the choice of the parameters exist for a given

filter length.

2.3 Orthogonal Uniform Filter Banks

Until now we have presented multirate structures that generate either one high rate signal from

one low rate signal through interpolation, or generate one low rate signal from one high rate signal

through decimation. Moreover, we have considered the possibility of including a discrete time

frequency modulation or translation in the process and also presented efficient structures for the

implementation.

In the case of the interpolation process including discrete time modulation presented in Section

2.2.1, we can apply the same procedure to a number, for example M , of low rate narrowband

signals. If the modulation frequency chosen for each of the signals is properly chosen, i.e. different

frequency for each narrowband signal with sufficient distance between them, we can added up

the interpolated signals. The results is broadband signal that multiplexes the original signals in the

frequency domain, the so-called Frequency-Division Multiplexing (FDM)3. The resulting structure

is the so-called SFB and the resulting synthesis operation is the basic principle of MultiCarrier

(MC) modulation as we will further detail in this chapter. If the frequency modulated narrowband

3We do not differentiate here if the low rate signals are coming from a single source or from multiple sources,

i.e. the signals may originate from a single or multiple applications from one user or also from different users. In this

last case the term Frequency-Division Multiple Access (FDMA) is commonly employed.
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signals are uniformly distributed in frequency domain and they all have the same bandwidth-and

the same sampling rate 1/T , we call the system a uniform filter bank. For an interpolation factor M
in all branches and a multiplexing of M low rate signals, we denote the SFB as uniform critically

sampled and a general model of it is shown in Fig. 2.13. The output signal xSFB[l] has a sampling

x0[k] ↑ M H0(z)

x1[k] ↑ M H1(z)

...
...

↑ MxM−1[k] HM−1(z)

+ xSFB[l]

Fig. 2.13. General structure of a uniform critically sampled synthesis filter bank

rate of 1
Ts

= M
T

. Because the sub-filters in a uniform critically sampled SFB were assumed here to

be generated by a modulation or frequency translation, we call them modulated uniform critically

sampled filter banks.

It is important to mention here that the upsampling or interpolation factor can be greater than

the number of signals to be frequency multiplexed. In this case we speak of an oversampled SFB,

which allows to improve the frequency separation between the narrowband signals with consequent

increase in the overall broadband signal bandwidth. MC signals based on oversampled filter banks

are frequently called Filtered Multitone (FMT). In some aspects FMT may simplify the overall

implementation and looses some requirements, but on the other side it reduces the spectral and

energy efficiency of the systems. The focus of this work is on critically sampled filter banks.

The resulting FDM or multicarrier baseband signal can then be further processed and prepared

to be transmitted through a wireless or wired channel, or be stored in some media. Then at some

other point in time and/or space, the low rate signals need to be recovered or analysed. In this

case a frequency division demultiplexing needs to be performed with a so-called AFB, which is a

transposed SFB. We apply in parallel multiple decimation operations with a factor M to a single

broadband signal and use frequency demodulations that match to those used in the synthesis part.

A general model of the uniform critically sampled AFB is shown in Fig. 2.14. The input signal

yAFB[l] has a sampling rate of 1
Ts

= M
T

and the output signals ym[k] have a sampling rate of 1/T .

We should note here that the inverse sequence of operations can also be performed, i.e. AFB is

employed to decompose a broadband signal into narrowband signals and an SFB is then employed

to generate a broadband signal. This configuration is classically called Sub-band Coding (SBC).

Our multicarrier approach is classically known as TMUX [71].

The general structure for an MC system involving SFB at transmitter side and AFB at receiver

side is shown in Fig. 2.15. For general input signals xm[k], the channel and noise do not necessarily

allow us to perfectly recover them from the received signals ym[k]. But if the xm[k] belong to a set

of symbols known or estimated by the receiver, it is possible to find the actual transmitted symbols
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F0(z) ↓ M y0[k]

F1(z) ↓ M y1[k]

...
...

FM−1(z) ↓ M yM−1[k]

yAFB[l]

Fig. 2.14. General structure of a uniform critically sampled analysis filter bank

x0[k] ↑ M H0(z)

x1[k] ↑ M H1(z)

...
...

↑ MxM−1[k] HM−1(z)

+ Hch(z) +

η[l]

F1(z) ↓ M y1[k]

F0(z) ↓ M y0[k]

...
...

FM−1(z) ↓ M yM−1[k]

Fig. 2.15. General Multicarrier System Model based on a TMUX
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with a certain probability and reliability. The overall performance will depend on the choice of

the set of symbols, the noise power, the channel and the resulting transfer function of the filter

bank. We will concentrate here on the latter, i.e. on how to design and implement the filter banks,

such that their influence on the quality or reliability of the overall transmission is minimized. In

the later chapters we present methods that compensate the influences of the channel adapted to the

assumption that the MC structures presented in this chapter are employed.

Let us assume for the moment that the transmission channel is ideal, i.e. it does not distort the

amplitude and phase of the transmitted signal. Moreover, we assume that the noise power is zero,

such that we can only observe the influences of SFB and AFB. If the sub-filters are designed in

such a way that the received signals ym[k] are scaled and delayed versions of the input signals, i.e.

ym[k] = cTMUXxm[k + τTMUX], (2.17)

we can say that the filter bank is orthogonal, or at least biorthogonal [26], and that fulfills the PR

conditions. If on the other hand the received signal is influenced by previous or succeeding xm[k],
we say that the received symbol contains ISI, and if it is influenced by the signals from the other

subcarriers, we say that it contains ICI. In the cases where the ISI and ICI are very small we can

say that the filter bank is nearly-orthogonal or Near Perfect Reconstruction (NPR).

For real valued input signals xm[k], CMFB and SMFB [26, 50, 71] are examples of uniform

modulated filter banks with the general structure shown in Figs. 2.13 and 2.14 that can be designed

to be either PR or NPR [26, 29–31]. It should be clear at this point that the structures in Figs.

2.13, 2.14 and 2.15 are not computationally efficient, because the filters are applied in the higher

sampling rate as explained in Section 2.2.3. Moreover, we should note that CMFB and SMFB have

very efficient structures based on the same methods presented later in this work, i.e. polyphase

decompositions and frequency domain filtering.

In wireless communications, especially in multicarrier communications, it is in general as-

sumed that the inputs xm[k] are complex valued, i.e. they convey information in the amplitude and

phase. In this case, CMFB and SMFB may not be the best option to be individually employed, but

it is better to combine both into an exponentially modulated filter bank EMFB or to directly use

the class of DFT filter banks.

The issue with exponentially modulated SFB and AFB when combined with complex valued

inputs is that orthogonality, biorthogonality and PR cannot be achieved with a single step upsam-

pling and downsampling by M as in Figs. 2.13, 2.14 and 2.15. Back in [64], it has already been

identified in the context of multicarrier modulation that the complex input signals needed to be

modified to achieve full or near orthogonality between the subcarriers or subchannels. Later other

authors [43, 68] confirmed that result by utilizing filter banks theory. The solution employed is the

staggering of the real and imaginary parts of the complex inputs xm[k] by a period of T
2

. The result-

ing signal receives the name OQAM, because the real and the imaginary parts of xm[k] have such a

time offset. Moreover, it is necessary that adjacent subcarriers have alternating real and imaginary

parts staggering as explained in more detail in the following.

In Fig. 2.16 we have depicted the block diagram Om of an OQAM-staggering or mapping

operation for subcarriers with even numbered index m. The blocks labeled Re{•} and jIm{•}
represent the operation of taking the real and imaginary parts from the input samples and providing

them at the output. Then an upsampling by a factor 2 is performed and a delay of T
2

is included in

the lower branch. In Fig. 2.17 we have a similar operation for the subcarriers with odd numbered

index m, which is obtained by exchanging the blocks labeled Re{•} and jIm{•} in Fig. 2.16. We

can see that the resulting signal is an interleaved version of the real and imaginary parts of the
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input signal xm[k] and that the sampling rate has increased by a factor 2. It is important to note

PSfrag replacements
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xm[k] x̃m[n]
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Fig. 2.16. OQAM-Staggering for even subcarrier index m
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Fig. 2.17. OQAM-Staggering for odd subcarrier index m

that the use of OQAM fully guarantees the orthogonality between adjacent subcarriers and all other

subcarriers with oposite phase in the staggering. The subcarriers with the same staggering will be

decoupled by the stop-band attenuation or through a PR design.

Following the OQAM-staggering we can perform the interpolation and exponential modula-

tion in each subcarrier, but because the sampling rate is already increased by a factor of 2, now the

upsampling factor of the interpolation is M
2

. The resulting orthogonal or nearly orthogonal expo-

nentially modulated SFB is depicted in Fig. 2.18. It is clear now that M has to be even and later

we will see that preferably also a power of 2.

The corresponding orthogonal or nearly orthogonal exponentially modulated AFB is shown

in Fig. 2.19, The filtered signals at the AFB are downsampled by the block ↓ M
2

that lowers the

rate by a factor M
2

. The block O′
m represent the OQAM de-staggering. In Fig. 2.20 we show the

OQAM de-staggering operation for subcarriers with even index m and Fig. 2.21 for odd index m,

respectively.

It is clear now that the AFB subfilters Fm(z) have to be matched to the SFB subfilters Hm(z).
Moreover, in order to avoid any phase distortion in the subcarrier signals, the subfilters are designed

to be strictly linear phase. Both Hm(z) and Fm(z) are obtained my exponentially modulating the

same prototype filter, which is denoted as HP(z) and is also strictly linear phase. The subfilters

Hm(z) and Fm(z) are calculated as follows [43]

Hm(z) = Fm(z) = HP(zW
m
M )dm, m = 0, 1, . . . ,M − 1, (2.18)
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x0[k] O0 ↑ M
2

H0(z)

x1[k] O1 ↑ M
2

H1(z)

...
...

...

↑ M
2

OM−1xM−1[k] HM−1(z)

+ xSFB[l]

Fig. 2.18. Exponentially Modulated SFB

F0(z) ↓ M
2

O′
0 y0[k]

F1(z) ↓ M
2

O′
1 y1[k]

...
...

FM−1(z) ↓ M
2

O′
M−1 yM−1[k]

yAFB[l]

Fig. 2.19. Basics of Exponentially Modulated AFBPSfrag replacements
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Fig. 2.20. OQAM de-staggering for even subcarrier index m

where

HP(z) = H0(z) =

LP−1
∑

p=0

hpz
−p,

Hm(z) = Fm(z) =

LP−1
∑

p=0

hm,pz
−l =

LP−1
∑

p=0

hP,pW
−m(p−LP−1

2 )
M z−p,

where hm,p = hP,pW
−m(p−LP−1

2 )
M , (2.19)
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Fig. 2.21. OQAM de-staggering for odd subcarrier index m

with WM = e−j 2π
M and d = e−j 2π

M
P−1
2 = W

LP−1

2

M . The phase rotation factor d is has to be included

in the exponential modulation in order to achieve strictly linear phase in the subfilters. We can, for

example, assume here, without loss of generality, that the length of the prototype is LP = KM or

LP = KM + 1, where K is the time overlapping factor and determines not only the complexity of

the filter bank, but also its memory.

We should note that, the structures presented in Figs. 2.18 and 2.19 are not efficient in terms of

computational complexity, because either signal samples that are filtered at a high rate are thrown

away or signals with samples equal to zero are filtered at a high rate just as discussed in Section

2.2.3.

2.4 Efficient Structures

The SFB and AFB shown in Figs. 2.18 and 2.19 can also be efficiently realized following a similar

procedure as shown in Section 2.2.3 for single channel interpolation and decimation. We will also

show here two families of efficient structures: First those based on a time domain filtering that uses

the polyphase decompositions and second those based on frequency domain filtering using OA and

OS.

2.4.1 Polyphase Decomposition based Structures

As we did for a single channel in Section 2.2.3, we start here by decomposing the the prototype

filter in its polyphase components as a first step. We define Gµ

(

zM
2

)

, µ = 0, ...,M − 1, as the

µ-th type-1 polyphase component [26, 28, 71] of HP(z) and is given by the relation

HP(z) =

K−1
∑

κ=0

M−1
∑

µ=0

hP[κM + µ]z−(κM+µ) =

M−1
∑

µ=0

Gµ(z
M)z−µ, (2.20)

with Gµ(zM) =
∑K−1

κ=0 hP[κM + µ]z−κ
M and, by assuming without loss of generality that the pro-

totype has LP = KM coefficients, each polyphase component has K non-zero coefficients.

By plugging (2.20) into (2.18), the subfilters are then given by

Hm(z) = Fm(z) =

M−1
∑

µ=0

Gµ(z
MWMm

M )z−µW−mµ
M dm =

M−1
∑

µ=0

Gµ(z
M )z−µW−mµ

M dm. (2.21)



2.4 Efficient Structures 27

We can now define the following vectors

h(z) =
[

H0(z) H1(z) · · · HM−1(z)
]T

, (2.22)

f(z) =
[

F0(z) F1(z) · · · FM−1(z)
]T

, (2.23)

a(z) =
[

1 z−1 · · · z−(M−1)
]T

, (2.24)

x̃(z) =
[

X̃0(z
M ) X̃1(z

M ) · · · X̃M−1(z
M )
]T

, (2.25)

ỹ(z) =
[

Ỹ0(z
M) Ỹ1(z

M ) · · · ỸM−1(z
M )
]T

. (2.26)

Furthermore, we have then the following input-output relations for the SFB and AFB

XSFB(z) = fT(z)x̃(z), (2.27)

ỹ(z) = h(z)YAFB(z), (2.28)

where the following relations holds

h(z) = DWH
MG(zM )a(z), (2.29)

fT(z) = aT(z)G(zM )WMD, (2.30)

with the definitions D = diag (1, d, ..., dM−1), G(zM ) = diag (G0(z
M), G1(z

M ), ..., GM−1(z
M)).

Moreover, WM and WH
M are the M size unitary DFT and IDFT matrix. The DFT or IDFT can be

efficiently implemented using FFT algorithms [26, 59], which are very efficient especially if M is

a power of 2.

Eqs. (2.29) and (2.30) can be further developed if we apply the Noble identities, which then

allows us to move the upsampling by M
2

to the output of the polyphase components and before

the delay chain described by a(z). We can now combined the input of the SFB with the OQAM-

staggering to come up with the efficient structure shown in Fig. 2.22 [28]. We should note that
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Fig. 2.22. Efficient structure of the SFB based on the polyphase decomposition of type 1

Gµ

(

z2M
2

)

is the µ-th type-1 polyphase component of the prototype upsampled by a factor of 2 and
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the parallel samples at the outputs of the polyphase components are transformed to a serial signal

by means of a block overlapping parallel to serial conversion with 50% overlapping.

The prototype filter HP(z) can be designed such that PR conditions [26,28,71] are fulfilled. In

this case, the constraints on the polyphase componens for PR are given by [43, 68]

Gµ

(

z2M
2

)

GM−1−µ

(

z2M
2

)

+Gµ+M
2

(

z2M
2

)

GM
2
−1−µ

(

z2M
2

)

=
2

M
z
−2(K−1)
M
2

, (2.31)

where now µ = 0, ..., M
4
− 1, i.e. there are in total M

4
constraints. It is worth noting that because of

the symmetry of the prototype impulse response the following equality holds

GM−1−µ

(

z2M
2

)

= z
−2(K−1)
M
2

Gµ

(

z−2
M
2

)

= G̃µ

(

z2M
2

)

, (2.32)

where the right hand side is called the causal para-conjugate of the transfer function Gµ

(

z2M
2

)

.

It is worth noting that although the prototype has a symmetrical impulse response, which is

necessary to achieve PR, one multiplier per prototype filter coefficient has to be realized in the

polyphase network presented above. This was a particularity of this polyphase components based

filter bank structure until now. In the next paragraphs we will show that this will not be necessary

later with a new proposed architecture.

Regarding Fig. 2.22, (2.31) and (2.32), it can be concluded that M/2 pairs of polyphase com-

ponents are power complementary [28, 71]. The components Gµ(z
2) and Gµ+M

2

(

z2M
2

)

as well

as their para-conjugates GM−1−µ(z
2) and GM

2
−1−µ

(

z2M
2

)

possess this property and thus can be

grouped as shown in Fig. 2.23, where we define the vectors of transfer functions

gµ

(

z2M
2

)

=





Gµ

(

z2M
2

)

Gµ+M
2

(

z2M
2

)



 , gM−1−µ

(

z2M
2

)

=





GM−1−µ

(

z2M
2

)

GM
2
−1−µ

(

z2M
2

)



 , (2.33)

for µ = 0, ...,M/4− 1. (2.34)

We can see in Fig. 2.23 that it is necessary to reorganize the IDFT outputs. Moreover, for

each polyphase component pair the outputs are added at the lower sampling rate. The delay that is

necessary for the output of the polyphase component with highest index in each pair is transfered to

the lower sampling rate and then to the front of the filter block. Finally, the outputs of the polyphase

components pairs in Fig. 2.23 are serialized, different to Fig.2.22 where instead of being directly

serialized the outputs of the two power complementary polyphase components are added at the

higher rate, resulting in a block overlap and add procedure.

Now, the power complementary polyphase components pairs can be either implemented in

a direct form as two separate transfer functions or they can be jointly implemented using, for

example, a non-recursive lattice structure [44, 71]. A lattice structure provides several advantages

like, for example, robustness to coefficient quantization, a modular and scalable structure, facilitate

PR fulfilling design, etc. The lattice structure is composed of consecutive Givens rotationsRµ,i, i =

0, · · · , K − 1, and delay sections Λ
(

z2M
2

)

with

Rk,i =

[

cosΘµ,i sinΘµ,i

− sinΘµ,i cosΘµ,i

]

, Λ
(

z2M
2

)

=

[

1 0
0 z−2

M
2

]

=

[

1 0
0 z−1

M

]

, (2.35)
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Fig. 2.23. Efficient SFB implementation with polyphase components of type 1 reordered and grouped in
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and

gT
µ

(

z2M
2

)

=
[

cosΘµ,K−1 sinΘµ,K−1

]

Λ
(

z2M
2

)

Rµ,K−2...Λ
(

z2M
2

)

Rµ,0, (2.36)

gT
M−1−µ

(

z2M
2

)

=
[

sinΘµ,K−1 cosΘµ,K−1

]

Λ
(

z2M
2

)

Rµ,K−2...Λ
(

z2M
2

)

Rµ,0, (2.37)

where µ = 0, ...,M/4− 1.

The lattice structure for each gµ

(

z2M
2

)

is shown in Fig. 2.24. The rotation angles Θµ,i’s can

be found from the coefficients of the polyphase pairs in gµ

(

z2M
2

)

by a successive polynomial

degree reduction [71]. In Fig. 2.25 shows the lattice structure for the pair gM−1−µ

(

z2M
2

)

, that has

many similarities to the one in Fig. 2.24, like the same Θµ,i’s, for example. The reason for those

similarities lie in the fact that the two transfer functions in gM−1−µ

(

z2M
2

)

are para-conjugate of the

ones in gµ

(

z2M
2

)

. Another important detail is that the last rotor in both cases has only one branch,

to generate the single output.

Now, if a full rotor is implemented in the last lattice stage, we would obtain a lattice structure

with two inputs and two outputs. This 2 × 2 lattice structure is depicted in Fig. 2.26, where 4
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different transfer functions are obtained and described by the transfer function matrix

Gµ

(

z2M
2

)

=





Gµ

(

z2M
2

)

GM
2
+µ

(

z2M
2

)

GM
2
−1−µ

(

z2M
2

)

−GM−1−µ

(

z2M
2

)



 , µ = 0, ...,M/4− 1. (2.38)

Here two pairs of power complementary polyphase components are implemented in one non-

recursive 2 × 2 lattice. The 2 × 2 lattice structure is one of the best known implementation of

an orthogonal filter. This structure will be an important building block of the new structure we will

present in the next section.

By considering again the structures in Figs. 2.24 and 2.25 we can conclude that they contain

more coefficient multiplications than if the two polyphase components are implemented separately

in a direct form each. However, the full rotors can be modified in order to have only two multipliers

each and, in addition to that, two multipliers for each polyphase component pair output. This low

complexity lattice structure is presented in Fig. 2.27 for the 2×1 lattice, were κµ =
∏K−1

i=0 cosΘk,i.
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Fig. 2.27. Efficient 2× 1 lattice structure with two-multiplier rotors

Now the lattice rotors with only two multipliers reduce the complexity almost to the same as the

direct form.

We could say that the state-of-the-art structure for exponentially modulated SFBs based on the

prototype polyphase decomposition of type 1 is the one in Fig. 2.23, with the polyphase compo-

nents pairs either implemented in direct form or as 2× 1 lattices as in Fig. 2.27.

Furthermore, the same simplification of the rotors can be applied to the 2 × 2 lattice, resulting

in the structure shown in Fig. 2.28. Although derived in a different way and following a parallel

development to the filter banks theory, the lapped transforms [50] have a fast implementation that

is also based on the lattice structures. Actually, we will see in the next section that our proposed ar-

chitecture corresponds to the exponential modulated filter bank in terms of complexity and efficient

realization, as the fast lapped transform corresponds to CMFB and SMFB.

One alternative to the lattice structure of Fig. 2.26 that also reduces the complexity, and has

similar advantages, is achieved with the so called lifting steps [25,60], or ladder structure, and it is

presented in Fig. 2.29, where each rotor is now substituted by 3 multipliers.

We have shown until now state-of-the-art structures of the SFB and only for the prototype

polyphase decomposition of type 1. Similar structures can be derived based on polyphase decom-

positions of type 2 shown in Fig. 2.30, where the multipliers before the DFT are redefined to

d′ = dWM = W
LP+1

2

M , and for polyphase decompositions of type 3, as shown in Fig. 2.31. Fi-
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nally, for the AFB there are equivalent corresponding structures for all three types of polyphase

decompositions and for the pairs of polyphase components as direct form, low complexity lattice

or lifting steps available.



2.4 Efficient Structures 33

PSfrag replacements

T/M

T/M

M
2

M
2

M
2G0

(

z2M
2

)

G1

(

z2M
2

)

GM−1

(

z2M
2

)

O0

O1

OM−1

x0[k]

x1[k]

xM−1[k]

1

d

dM−1

xSFB[l]

DFT
(FFT)

Fig. 2.31. Efficient structure of the SFB based on the polyphase decomposition of type 3

The new structures that we propose in this work are depicted in Figs. 2.32, 2.33, 2.34, for the

SFB based on polyphase decompositions of type 1, 2 and 3, and in Figs. 2.35, 2.36, 2.37, for the

AFB also based on polyphase decompositions of type 1, 2 and 3. Where for the structures based

on type 2 decomposition we use the definition

G′
µ

(

z2M
2

)

=





GM−1−µ

(

z2M
2

)

GM
2
−1−µ

(

z2M
2

)

GM
2
+µ

(

z2M
2

)

−Gµ

(

z2M
2

)



 , µ = 0, ...,M/4− 1. (2.39)

The new structures are based on the further development of the polyphase networks from

Figs. 2.23 for the corresponding FB and decomposition type. As mentioned in the former sec-

tion, because the prototype filter has a symmetric impulse response, there are pairs of polyphase

components that have the same coefficients but in a reverse order. In other words they are pairs

of para-conjugate filters. As shown in Fig. 2.28 and 2.29 and in Eqs. (2.38) and Eqs. (2.39), the

2 × 2 lattice or lifting structures provide four of the polyphase components. Now only M/4 such

structures are necessary where each of them has 2(K + 1) multipliers for the case of lattice and

3K for the case of lifting steps.

But there are two other important issues that the new structures solve. They are related on how

to connect the DFTs and IDFTs to the polyphase filters and to the polyphase matrix contents itself.

We will focus here on the SFBs. First, the negative sign in one of the transfer functions in the

matrix in (2.38) that is obtained automatically from the lattice structure. This is solved with the

periodic sign inversion for even time instants represented by the multiplier −1m+1. It can be shown

that the impulse responses in the second row are applied in a time interleaving fashion and by this

alternation of the samples sign, only the impulse response with the inversed sign is reverted to its

original value.

The second issue is that the DFT or IDFT provide M outputs, but now only M/2 inputs exist

in the new polyphase network. It can be demonstrated that because of the special characteristics

of the signals at the input of the DFT or IDFT, the outputs actually show many redundancies.

In other words, as it will be shown below, the outputs of the IDFT have the following properties

YM
2
−n−1 = ±Y ∗

n and YM−n−1 = ±Y ∗
M
2
+n

for 0 < n < M
4
− 1. As a consequence, half of the
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outputs are positive or negative complex conjugated versions of the other half. With this in mind,

one can see that all the necessary signals are generated by half of the DFT or IDFT outputs. We

just need to take the positive or negative complex conjugate signal and from one of the outputs

of each polyphase sets. Since all coefficients of the polyphase components are real valued, this is

equivalent to take the positive or negative complex conjugate of the two input signals. This means

that half of the outputs of the DFT or IDFT do not need to be calculated, reducing even more the

total computational complexity.

Let us assume the SFB structure based on type 1 polyphase decompositions. Given the IDFT

input samples Xm and the phase rotations dm = e−j 2π
M

KM−1
2

m, we can now prove that the IDFT

output samples Yn contain redundancies, if the input samples are purely real or purely imaginary,

i.e. are OQAM-like. We will show that YM
2
−n−1 = ±Y ∗

n for 0 < n < M
4
− 1 and, similarly, it can

be shown that YM−n−1 = ±Y ∗
M
2
+n

. First, we need to find an expression for Yn to help our proof as

follows

Yn =
1√
M

M−1
∑

m=0

Xme
−j 2π

M
KM−1

2
mej

2π
M

mn

=
1√
M

M−1
∑

m=0

Xme
−jπKmej

2π
M

m(n+ 1
2
). (2.40)
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Fig. 2.37. New efficient AFB implementation based on the polyphase decomposition of type 3 organized

as orthogonal 2×2 transfer functions

Then we take the complex conjugate of (2.40) and further develop the expression as follows

Y ∗
n =

1√
M

M−1
∑

m=0

X∗
me

jπKme−j 2π
M

m(n+ 1
2
)

=
1√
M

M
2
−1
∑

ℓ=0

(X∗
2ℓe

j2πKℓe−j 2π
M

2ℓ(n+ 1
2
) +X∗

2ℓ+1e
jπK(2ℓ+1)e−j 2π

M
(2ℓ+1)(n+ 1

2
))

=
1√
M

M
2
−1
∑

ℓ=0

(

X∗
2ℓ +X∗

2ℓ+1e
jπKe−j 2π

M
(n+ 1

2
)
)

e−j 4π
M

ℓ(n+ 1
2
), (2.41)

where we decomposed the expression into the even and odd input contributions, and used ej2πKℓ =
1. Now, we use (2.40) to derive an expression for YM

2
−n−1 as follows

YM
2
−n−1 =

1√
M

M−1
∑

m=0

Xme
−jπKmej

2π
M

m(M
2
−n−1+ 1

2
)

=
1√
M

M−1
∑

m=0

Xme
jπKmejπme−j 2π

M
m(n+ 1

2
), because e−jπKm = ejπKm

=
1√
M

M
2
−1
∑

ℓ=0

(

X2ℓ −X2ℓ+1e
jπKe−j 2π

M
(n+ 1

2
)
)

e−j 4π
M

ℓ(n+ 1
2
) (2.42)
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Finally, we can see that if X2ℓ is purely real and X2ℓ+1 is purely imaginary, then (2.42) is equal to

(2.41), i.e. YM
2
−n−1 = Y ∗

n , and if on the contrary X2ℓ is purely imaginary and X2ℓ+1 is purely real,

then (2.42) is equal to minus (2.41), i.e. YM
2
−n−1 = −Y ∗

n .

Because the AFB is the transposed of the SFB, the corresponding identities exist in reversed

order and the corresponding solutions can be seen in the structures proposed.

As we mentioned before, structures with similar complexity to the efficient lattice were devel-

oped for CMFBs and SMFBs and received the name fast extended lapped transforms [50]. They

were originally not derived as an extension of the polyphase decomposition of the prototype, but

it is worth mention that they can be derived in similar way as shown here. In [73] the authors

propose an efficient structure for exponentially MFBs that is based on a combination of CMFBs

and SMFBs, then they just assume that those can be implemented as a fast lapped transform. In

the case of exponentially MFBs combined with OQAM staggering, to the best of our knowledge,

there is no equivalent structures, specially for those based on the DFT/IDFT.

2.4.2 Frequency Spread/Fast Convolution based Structures

In Section 2.2.3.2 we have presented an efficient structure to combine interpolation and modula-

tion based on frequency domain filtering and the so-called fast convolution methods OA and OS.

An SFB can be also efficiently realized using the same structures and by taking advantage of com-

monalities between different subchannels. If we take, for example, the structure in Fig. 2.8, it can

be observed that the frequency multiplexing of the different subchannels can be performed before

the IFFT of size NFFT by adding the frequency bins of each subchannel. As already mentioned,

most of the filter coefficients in frequency domain will have very low magnitude - or even zero

magnitude - allowing to have much less multiplications per subchannel than the general structure

shown in Fig. 2.8. The protoype filter can be either designed to have zero magnitude in some fre-

quency bins or have its stop-band behavior modified by forcing to zero the frequency bins in this

region on implementation phase. Fig. 2.38 shows a pictorial representation of two subchannel fil-

ters, which could correspond to subcarriers m− 1 and m. Both continuous and sampled frequency

representation are depicted for each of the subchannel filters. For the prototype filter represented,

seven frequency bins have magnitude different from zero and the rest is equal to zero.

One particular structure that became very popular recently is the commonly called Frequency

Spread-FBMC implementation. This structure was introduced in [15, 16] based on the original

work of [52] and it was inspired by the original frequency sampling filter design from Martin-

Bellanger [13, 52]. The FS-FBMC structure can be derived by implementing interpolation and

modulation as shown in Fig. 2.11. In this case the OA method is chosen for the SFB and it uses

Nnew = 1, such that, for a prototype of length Lp = KM , we have NFFT = KM . But now, in

the SFB the small FFT before the upsampling in the frequency domain has size 2K because the

upsampling factor is now M/2, due to the combination with OQAM. Only one element of the FFT

input signal block is different from zero and only the first column of the DFT matrix needs to be

implemented. The DFT can then substituted by a repetition of 2K times the input different from

zero. We then just add the bins of the different subchannels after multiplying each of them by the

corresponding frequency domain filter coefficient. Because each subchannel typically overlapps

only with the adjacent ones, each frequency bin is only added to one frequency bin, i.e. simple

two element adders are necessary. Finally, the IFFT of size NFFT = KM is applied and a block

overlapping is performed, where the last (K − 1/2)M samples of each block are added to the

first (K − 1/2)M samples of the subsequent block and the blocks are serialized. In Fig. 2.39 a
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representation of the SFB using the FS-FBMC structure is shown. We have assumed here that

only 2K − 1 frequency domain filter coefficients are different from zero, that the prototype has

a symmetric frequency response and that H0 = 1. Moreover, the frequency domain filtering and

combination of different subcarriers can be described by the matrix H = [h0 · · ·hM−1] ∈ CKM×M ,

where the hm are defined as in (2.14).

In the case of the AFB based on the FS-FBMC structure, the OS method is employed as shown

in Fig. 2.12. The resulting AFB structure is a transposed of the SFB and is shown in Fig. 2.40,

where the input signal is segmented into overlapping blocks of size KM , where the first (K −
1/2)M samples of a new block are a repetition of the last (K − 1/2)M samples of the previous

block. An FFT of size NFFT = KM is applied to the blocks and after it, the frequency bins are

multiplied by the corresponding frequency domain filter coefficient. The frequency bins are then

combined, phase corrected and OQAM de-staggered. It is worth noting, that in the AFB case, the

small IDFT of size 2K is reduced to a sum of the different frequency bins. In Fig. 2.40 we have

also assumed that 2K − 1 frequency domain coefficients are different from zero.

The FS-FBMC structure is a special case for the more general FB structure based on fast

convolution algorithms OA and OS. It is important also to see the differences and later compare

the complexity between different cases of FC based FBs. Based on the combined modulation with

interpolation and decimation structures shown in Figs. 2.7, 2.8, 2.9 and 2.10, we can also derive

the general SFB and AFB structures or just take some specific examples. We will assume here the

case where Nnew = 3KM , i.e. an overlapping factor of 25%. In this case we assume a prototype

length of Lp = KM + 1 and an FFT of size NFFT = 4KM . In Fig.2.41, we show the resulting

SFB structure based on the OS method. For each of the M subcarriers, we first need to collect the

OQAM symbols in overlapping blocks of length 8K, where the first 2K symbols of each block

are a repetition of the last 2K symbols of the previous block, and it is necessary to employ one

FFT of size 8K. Then the frequency bins are multiplied by the corresponding frequency domain

filter coefficients and the frequency bins of different subcarriers are added, represented here by the

matrix HA. Again here the adders have only two inputs. Then the IFFT of size NFFT = 4KM is
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applied to combine the signals of all subcarriers and only 3KM samples of the output block are

serialized, i.e. KM or 1/4 of the output samples do not need to be calculated. It is worth noting,

that we assume here that a maximum of 8K frequency domain filter coefficients are different from

zero. Moreover, the frequency domain filtering and combination of different subcarriers can be

described by the matrix HA ∈ C4KM×8KM .

The corresponding SFB structure based on the OA algorithm from Fig. 2.8 is similar to

Fig. 2.41, but with the difference that the input OQAM symbols are just taken in blocks of size

6K in a simple serial-to-parallel operation, with the remaining 2K FFT inputs set to zero, as in

Fig. 2.8, and the blocks at the output of the IFFT overlap have KM samples that overlap.

In Fig. 2.42 we have depicted the corresponding AFB structure based on the OA algorithm

from Fig. 2.10. The input signal is segmented in blocks of length 3KM , which are zero padded

and transformed with the FFT of size NFFT = 4KM . Then the frequency bins are multiplied by

the frequency domain filter coefficients for each subchannel, represented here by the matrix HT
A.

Then the IFFT of size 8K is applied and the blocks are overlapped by 2K samples and added to

finally be serialized.

Now one can straightforwardly derive similar structures to the Figs. 2.41 and 2.42 for the case

where Nnew = KM and an overlap of 50% is desired. In this case NFFT = 2KM and the prototype

filter can be assumed again to have length Lp = KM + 1. For the SFB, the downsampling factors

before the small FFT of size 4K are then 2K and the upsampling factor after the large IFFT are

KM . For the AFB, the downsampling factor before the large FFT are KM and the upsampling

factors after the small FFT of size 4K are 2K.
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The implementation based on frequency domain filtering presents some advantages compared

to the one based on the polyphase decompositions. First, some of the existing algorithms for chan-

nel estimation, channel equalization and MIMO processing utilized in CP-OFDM in a subcarrier

symbol level can be reused here in the individual frequency bins instead. Second, the main building

block is the FFT, which has many available and efficient implementations in ASICS, ASIPS and

DSPs. Finaly, in exeptional cases, different filters may be employed in different subcarriers, for

example, if subcarriers have different bandwidth or different overlap behavior is desired.

2.4.3 OQAM De-staggering Combined with Linear Equalizer

In some applications of exponentially modulated, for example, wired and wireless communica-

tions, an additional filter, an equalizer or a precoder, has to be included before the OQAM de-

staggering for each subchannel in the AFB or after the staggering in the SFB. One good example

is the channel equalization in multicarrier modulation schemes [33, 77], where one multitap filter

is included before the OQAM demapping for each subcarrier in the AFB in order to compensate

for the frequency selectivity of the channel. In Fig. 2.43 we have a new definition for the block

O′
m in the odd subcarrier m that already includes the FIR equalizer. An equivalent scheme can be

drawn for the even subchannels and a corresponding one for the SFB. We will concentrate here on

the structure for odd m and only for the AFB.

In addition to the new polyphase network for AFB and SFB structures, we also can improve

the subchannel processing, by making use of the real and imaginary staggering. Since there are
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Fig. 2.41. Frequency domain SFB realization based on OS algorithm for Nnew = 3KM (25 % overlap).

operations involving real and imaginary part removal and downsampling, we can make use of

some multirate processing identities to reduce the complexity [26, 28, 71].

If the subchannel filter is a single complex coefficient wm, it can be jointly implemented with

the OQAM de-staggering with the structure shown in Fig. 2.44, where wm = w
(R)
m + jw

(I)
m . It is

worth noting that the multipliers ds in the AFB structures shown before can always be incorporated

into the subchannel equalizer.

However, the subchannel equalizers will be multitap in general, so we can decompose the

into their polyphase components also. For each subchannel m we decompose the equalizer in two

components as follows

Wm

(

zM
2

)

= V0,m

(

z2M
2

)

+ V1,m

(

z2M
2

)

z−1
M
2

(2.43)

with V0,m(zM) = V
(R)
0,m(zM) + jV

(I)
0,m(zM), where V

(R)
0,m(zM ) and V

(I)
0,m(zM) contain the real and

imaginary parts of the coefficients of V0,m(zM ).

Now we are able to jointly realize the subchannel equalizers and the OQAM de-staggering as

shown in Fig. 2.45 This new proposed subchannel filtering structure reduces to the half the number

of multiplications per output sample.

As mentioned before it is trivial to show the corresponding structures for even m and for

precoders in the SFB.
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2.4.4 Complexity Analysis and Comparison

Complexity analysis of the different structures and comparison for different parametrization. (Also

compare the complexity by considering quantization of the prototype filter coefficients.)

We will analyse the complexity in terms of number of real multiplications and additions to be

executed during one OQAM period of T/2 in the steady state, where 1/T is the complex QAM

symbol rate. Moreover, we assume that each multiplication between two complex numbers cor-

responds to four real-valued multiplications and two real valued additions. Each complex valued

addition corresponds to two real valued additions. We further assume that the multicarrier mod-
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ulation is the only baseband signal processing at the transmit side or, in other words, there is no

channel dependent transmit processing, e.g. linear precoders.
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The total number of real multiplications and additions for an M-point (I)DFT using an FFT

Split-Radix algorithm are given by

CFFT(M) = M(log2(M)− 3) + 4 and (2.44)

AFFT(M) = 3M(log2(M)− 1) + 4, (2.45)

respectively. In realizations of the FFT where many of its inputs or outputs are equal to zero or

not further utilized, a so-called pruned FFT can be utilized. By comparing the different structures

presented in this chapter, a pruned FFT may be utilized, for example, if a small number of the

subcarriers are occupied. This typically occurs when multiple mobile stations are allocated a small

amount of frequency resources at the same time. Either receiver or transmitter of the mobile station

could then reduce the complexity of the FFT to reduce the energy consumption. The total number

of real multiplications and additions for an M-point pruned FFT with L zero-valued inputs or

non-utilized outputs are given by

CFFT(M) = M(log2(L)− 3) + 4 and (2.46)

AFFT(M) = 3M(log2(L)− 1) + 4. (2.47)

Our benchmark is a conventional CP-OFDM MC system with a CP length LCP and a CP-length

ratio relative to the block length of RCP = LCP/M . At the transmitter side of a CP-OFDM system,

the total number of real operations depends only from CFFT and AFFT.

COFDM,Tx =
(1 +RCP)CFFT

2
(2.48)

AOFDM,Tx =
(1 +RCP)AFFT

2
, (2.49)

where the factor (1 + RCP) comes from the fact that for the period of one QAM symbol, the MC

blocks has to be generated and the CP has to be attached. Because the CP depends on the same MC

block it has to be attached to and this can only happen after all the MC modulation operations have

been performed, the QAM symbol period in a CP-OFDM system is extended by a factor (1+RCP)
compared to OQAM FBMC systems that have no CP, or, if FBMC and CP-OFDM have the same

symbol period, in CP-OFDM the MC modulation need to be processed faster by the same factor.

The factor 1/2 is necessary because our reference is half a symbol period T/2, but in CP-OFDM

the operations are executed in the symbol period T . If we consider Mf subcarriers are occupied, the

rest has zero or no data symbols, and a complex-valued single-tap channel equalizer per subcarrier

is employed, the complexity at the receiver side is given by

COFDM,Rx =
(1 +RCP)(CFFT + 4Mf)

2
(2.50)

AOFDM,Rx =
(1 +RCP)(AFFT + 2Mf)

2
. (2.51)

For the FBMC system, we have multiple options for the efficient structures as shown in the

previous sub-sections. We will analyse here the complexity of the polyphase components based

structure with the frequency domain filtering, including the FS-FBMC structure.

For the time-domain filtering, both SFB and AFB structures are composed by the filtering

through polyphase components, by an FFT/IFFT, by the phase rotations and, at the receiver, by the
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linear equalizers. We will consider first a comparison between the different possibilities to realize

the polyphase components. We will then take the one with the lowest complexity to compare with

the frequency domain filtering.

At the SFB we need Mf complex-valued multiplications for the phase rotations, CFFT(M) real-

valued multiplications for the IFFT and Cpoly for the polyphase network, which we will explain

further bellow. The number of real multiplications is then given by

CPC−SFB = 4Mf + CFFT(M) + Cpoly, (2.52)

and the corresponding number of real-valued additions is

APC−SFB = 2Mf +AFFT(M) +Apoly (2.53)

In the AFB we have the similar operations as in the SFB, but in the inverse order. Moreover,

we consider the use of a multi-tap linear equalizer in each subcarrier and that the phase rotations

can be incorporated into the equalizer. The total number of real-valued multiplications in the AFB

is

CPC−AFB = Cpoly + CFFT(M) + 2LeqMf, (2.54)

where Leq is the length of the equalizer. We have assumed here the realization of a multi-tap

equalizer as in Fig. 2.45. The corresponding number of real-valued additions is

APC−AFB = Apoly +AFFT(M) + (2Leq − 1)Mf, (2.55)

In both SFB and AFB structures based on polyphase components we have first the well known

structure shown, for example, in Fig. 2.23, where the M polyphase components can be realized

individually using a direct form, or can be grouped into M/2 power complementary pairs and

implemented as lattice or ladder (lifting steps) structures. In addition to that, to further reduce

complexity, we can also realize SFB and AFB using the newer structures shown in Figs. 2.32,

2.33, 2.34, Figs. 2.35, 2.36 and 2.37, where the polyphase components are grouped into M/4 two-

input two-output filters. We should further emphasize here that all polyphase components have

real-valued coefficients that multiply complex valued signals. In this case each multiplier consists

of two real-valued multiplications and each adder consists of two additions.

The total number of real-valued multiplications for the polyphase filtering step for the structure

in Fig. 2.23 by considering the three different possibilities for the realization of the polyphase

components pairs is given by:

• Direct form: Cpoly = 2KM and Apoly = (2K − 1)M
• Low complexity lattice (Fig. 2.27): Cpoly = (2K + 1)M and Apoly = (2K − 1)M

• Ladder or lifting steps (Fig. 2.29): Cpoly = (3K − 1)M and Apoly = (3K − 1)M
For the SFB structures in Figs. 2.32, 2.33 and 2.34, and AFB structures in Figs. 2.35, 2.36

and 2.37, we can realize the polyphase components with the lattice and ladder (lifting steps),

because for the direct form we would need to implement four transfer functions for each of the M/4
modules resulting in the same complexity as presented above. The resulting number of operations

for this new polyphase network are the following:

• Low complexity lattice (Fig. 2.28): Cpoly = (K + 1)M , Apoly = KM
• Lifting steps (Fig. 2.29): Cpoly = 3KM/2, Apoly = 3KM/2
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Now we will analyse the complexity of the structures based on frequency domain filtering

shown in Figs. 2.39, 2.40, 2.41 and 2.42. It is important to note that for frequency domain filtering

the length of the prototype will not be directly expressed in the complexity, but rather how many

non-zero frequency domain filter coefficients are implemented.

The Mf complex-valued multiplications for the phase rotations can be incorporated in the fre-

quency domain filters in both SFB and AFB. We can further assume that the channel equalization

in the AFB is also performed in the frequency domain and no further multiplication or addition is

necessary, because the equalizer coefficients can also be pre-multiplied by the frequency domain

filter coefficients and phase rotations.

The SFB of FS-FBMC contains 2K − 1 complex valued multiplications for each of the Mf

subcarriers for the combined frequency domain coefficients and phase rotations. But because this

operation is preceded by an OQAM staggering, those multipliers can be simplified in a similar way

as shown in Fig. 2.44. The total number of real valued multiplications for the SFB of the FS-FMBC

implementation is given by

CFS−SFB = (4K − 2)Mf + CFFT(KM), (2.56)

and the corresponding total number of real-valued additions

AFS−SFB = (3K − 1)Mf +AFFT(KM) + (K − 1/2)M (2.57)

For the AFB of the FS-FBMC structure including the merge of frequency domain filtering,

phase rotations and equalizers, and including the (2K − 1) complex valued additions to combine

the frequency bins in each subcarrier, we get the following number of real-valued multiplications

CFS−AFB = CFFT(KM) + (4K − 2)Mf, (2.58)

and number of real-valued additions

AFS−AFB = AFFT(KM) + (4K − 2)Mf. (2.59)

In the case of the more general structure for Frequency Domain FBMC/OQAM (FD-FBMC),

exemplified for the case Nnew = 3KM in Figs. 2.41 and 2.42, we have to take into account the

small and the large (I)FFTs, but also that both operate in a lower rate than the twice the symbol

rate. In this case we will not combine the phase rotations with the frequency domain filtering, but

we still assume that in the AFB the equalizers are implemented in the frequency domain and, as

such, is combined with the filter coefficients. We also assume that the phase rotations can still be

combined with the OQAM staggering and destaggering.

By assuming a small (I)FFT size of 2NFFT/M , a large (I)FFT size of NFFT and the OS based

FD-FBMC SFB implementation has the following number of real-valued multiplications

CFD−SFB = 2Mf +
MfCFFT(2NFFT/M) + (8NFFTMf/M) + CFFT(NFFT)

(2Nnew/M)
, (2.60)

and the corresponding real-valued number of additions is as follows

AFD−SFB = Mf +
MfAFFT(2NFFT/M) + (16NFFTMf/M) + 2NFFT +AFFT(NFFT)

(2Nnew/M)
, (2.61)
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where the factor M/2Nnew indicates that the operations are executed in a rate 2Nnew/M times lower

than T/2.

For the OA based FD-FBMC AFB implementation the number of real-valued multiplications

is given by

CFD−AFB =
MfCFFT(2NFFT/M) + (8NFFTMf/M) + CFFT(NFFT)

2Nnew/M
+ 2Mf, (2.62)

and the corresponding real-valued number of additions is as follows

AFD−AFB =
MfAFFT(2NFFT/M) + (16NFFTMf/M) +AFFT(NFFT)

2Nnew/M
+Mf. (2.63)

For example, for the SFB structure in Fig. 2.41, where Nnew = 3KM and NFFT = 4KM , the

number of real-valued multiplications is given by

CFD−SFB = 2Mf +
MfCFFT(8K) + (32KMf) + CFFT(4KM)

6K
(2.64)

Now we will perform a numerical comparison of the different FBMC structures. For the numer-

ical examples we will consider the SFB or AFB complexity as the total number of real operations

per OQAM symbol, which is the sum of the number of real multiplications and real additions di-

vided by Mf. We will also assume a pruned (I)FFT realization for the cases where many of their

inputs or outputs are not utilized. We will consider the different structures presented previously in

this chapter and vary the three main paramenters that have a stronger influence in the complexity,

namely, K, M and Mf.

We will start comparing the different time-domain filtering structures, where the main dif-

ference between them is the structure employed to realize the polyphase components. We will

consider only the complexity of the SFB in this first comparison, to emphasize the effect of the

different polyphase components structures, i.e. the complexity of the equalizer is not considered,

because it has the same complexity for all of them.

In Fig. 2.46 we show the number of real operations as a function of K, the length of polyphase

components. We considered a total number of subcarriers of M = 4096, out of which Mf =
3300 are occupied, what corresponds to 80% of subcarrier occupation. We can observe that the

complexity linearly increases with K, as verified by the complexity equations. For the applications

in mobile communications, the lower values of K from 2 to 4 are of higher interest. In this range,

there is no significant difference on the complexity of the various polyphase implementations. But

the difference between the different structures increases with K.

Now we consider Fig. 2.47, where the total number of subcarriers M is varied between 128

and 8192, but the relation Mf/M ≈ 0.8 is kept constant and K = 4. The corresponding values

of M and Mf are shown in Table 2.1 The complexity linearly increases with log2(M), but the

relative number of operations between different polyphase components structures remain constant

independent of M .

In Fig. 2.48 we have varied the number of occupied subcarriers Mf for constant K = 4 and

M = 4096. The relative subcarrier occupation is varied between 8% and 80%, what corresponds to

Mf = 330, 660, ..., 3300. We can observe that the complexity exponentially reduces and the relative

complexity between the different polyphase components structures also reduces as Mf increases.



2.4 Efficient Structures 49

2 3 4 5 6 7 8
50

60

70

80

90

100

110

K

# 
of

 r
ea

l o
pe

ra
tio

ns
/O

Q
A

M
 s

ym
bo

l

 

 

Direct

Lattice 2x1

Ladder 2x1

Lattice 2x2

Ladder 2x2

Fig. 2.46. Complexity of the SFB with different polyphase components realizations, M = 4096 and Mf =

3300.
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Fig. 2.47. Complexity of the SFB with different polyphase components realizations, K = 4 and Mf/M ≈
0.8.

Table 2.1. Values employed in the numerical evaluation of Fig. 2.47

log2(M) 7 8 9 10 11 12 13

M 128 256 512 1024 2048 4096 8192

Mf 96 204 408 828 1644 3300 6600

As expected, in the numerical examples shown in Figs. 2.46, 2.47 and 2.48, the polyphase

components implementations with two inputs and two outputs using ladder and lattice structures

have the lowest complexity with a slightly advantage for the lattice based implementation.
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Fig. 2.48. Complexity of the SFB with different polyphase components realizations, K = 4 and M = 4096.

We continue the numerical complexity analysis by comparing the polyphase decomposition

based structure with the frequency domain filtering based structures. For the polyphase decomposi-

tion based structure we will only consider the one with the lowest complexity, as concluded above,

i.e. the 2 lattice. For the frequency domain filtering with consider the frequency spread approach,

i.e. Nnew = 1, and with the overlapping of 25% and 50%, i.e. Nnew = KM and Nnew = 3KM . As

a benchmark we have also considered the complexity of CP-OFDM with RCP = 1/8, although it

is worth noting that compared to the FBMC system a lower spectral efficiency is achieved due to

the CP and to the poor spectral containment. We will show separate numerical results for the SFB

and AFB, and for the latter, we assume an equalizer length Leq = 4 for the FBMC with polyphase

components based structure and that the equalizer is realized in frequency domain and merged

with the filter coefficients for the frequency domain filtering structures. This last consideration is

equivalent to have 2N/M frequency domain equalizer coefficients that can be designed and very

efficiently implemented in frequency domain.

In Fig. 2.49 we show the numerical complexity results as a function of K for the SFB with

M = 4096 and Mf = 3300. The smaller plot is a zoom at the region with low values of K, which

are of more interest for wireless communications applications. We can observe that the complexity

of all FBMC structures linearly increases with K and there is no significant difference between the

lattice and the frequency domain - for 25% and 50% overlap - based structures. The lattice based

structure has a slightly lower complexity, up to 15% less operations, than the frequency domain

filtering structures. On the other hand the frequency spread approach - less than 1% overlap -

possesses a significant higher complexity than all the other structures even for lower values of K.

Although not shown in the plot, one can see by comparing the equations that only for K = 1,

which is a special case, the frequency spread structure has a similar complexity to the the lattice

based one. But still in this case the lattice based has a slightly lower complexity.

For the AFB, we have the complexity numerical results for the different FBMC structure in

Fig. 2.50, where we can see a similar general relation between the different structures and also a

similar individual behavior as a function of K.
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Fig. 2.49. Complexity of SFB for different FBMC structures and CP-OFDM Tx with RCP = 1/8, M =

4096 and Mf = 3300.
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Fig. 2.50. Complexity of AFB for different FBMC structures and CP-OFDM Rx with RCP = 1/8, M =

4096, Mf = 3300 and Leq = 4.

In Fig. 2.51, we show the number of operations of the different structures as a function of

log2(M) for K = 4 and a constant relation Mf/M ≈ 0.8 with the values shown in Table 2.1. We

can observe a small advantage, from 7% up to 36% less operations, for the lattice based structure

for smaller values of M , while the frequency spread approach has a significant higher complexity

for all the values.
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Fig. 2.51. Complexity of SFB for different FBMC structures and CP-OFDM Tx with RCP = 1/8, K = 4

and Mf/M ≈ 0.8.

A very similar behavior as the one observed for the SFB can be observed for the AFB in

Fig. 2.52 for the complexity as a function of log2(M), with the main difference that the small

advantage of the lattice structure is slightly reduced, from 0% up to 34% less operations.
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Fig. 2.52. Complexity of AFB for different FBMC structures and CP-OFDM Rx with RCP = 1/8, K = 4,

Mf/M ≈ 0.8 and Leq = 4.

In Fig. 2.53 we have the SFB complexity of the different structures as a function of Mf, for

K = 4 and M = 4096, where again the values Mf = 330, 660, ..., 3300 were employed. We can
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observe here again that the complexity exponentially reduces with the subcarrier occupation. Again

the frequency spread structure is significantly higher than all the other structures. For very low sub-

carrier occupancy, there is no significant difference between the other FBMC structures, whereas

for higher subcarrier occupancy we can see a small advantage for the lattice based structure.
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Fig. 2.53. Complexity of SFB for different FBMC structures and CP-OFDM Tx with RCP = 1/8, K = 4

and M = 4096.

For the AFB complexity, we show in Fig. 2.54 a similar performance to the SFB shown before

with the main difference that the lattice structure does not show any further advantage and, apart

from the frequency sampling approach, all the other FBMC structures show similar complexity.

From the complexity analysis presented in this section we can conclude that FS is the least at-

tractive option for the realization of FBMC systems, while other frequency domain filtering based

structures have a much more competitive complexity compared to polyphase network based struc-

tures. We did not considered here a more detailed comparison with CP-OFDM, especially the more

significant case when a different subcarrier bandwidth is employed in each system. More specif-

ically, in FBMC we can take broader subcarriers to reduce latency and Peak-to-Average Power

Ratio (PAPR), at the cost of higher equalizer complexity. In [8] we have shown a detailed compar-

ison between the complexity of FBMC and CP-OFDM including turbo coding and decoding, and

also different subcarrier bandwidth. The systems are assumed to have the same throughput.

2.5 Prototype Filter Designs

In this section we will give an overview of a few well known prototype design methods found

in the multicarrier and filter banks literature. We will show how their design works, discuss their

advantages and drawbacks depending on which structure is employed to realized the filter banks.

It is important to note that, in wireless communications, the prototype filter does not necessar-

ily needs to fulfill the PR constraints, because noise, interference, quantization, synchronization

errors, among other effects will already increase the noise floor and mask most of the imperfec-

tion of an NPR prototype filter. Nevertheless, some PR designs may be useful if specific structures
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Fig. 2.54. Complexity of AFB for different FBMC structures and CP-OFDM Rx with RCP = 1/8, K = 4,

M = 4096 and Leq = 4.

are envisioned, some examples are the polyphase structures based on lattice modules with their

inherent advantages as described in the previous sections.

2.5.1 RRC Filter

The RRC Filter is one of the most known classical filter described in communications theory and

has been employed in a number of practical systems [61]. Nevertheless, the RRC as a prototype fil-

ter for FBMC is frequently neglected in the literature, although it is one of the most straightforward

solutions and simple to design.

The RRC, as its name states, is the square root of the frequency response of the Raised Cosine

(RC) filter, which is a Nyquist filter, i.e. an ISI-free filter. An RC filter allows to limit the bandwidth

of a signal composed by a sequence of symbols and, when properly designed, do not superpose

subsequent symbols due to the time-domain zero crossings at the symbol period. By splitting the

RC in two, we obtain two RRC filter which are employed in Tx and Rx. Because Rx filter is

the matched filter of the transmitter filter, it maximizes the Signal-to-Noise Ratio (SNR) in the

presence of noise.

In practice, the RC or RRC filters cannot be implemented in an exact way when a linear phase

behavior is desired. In the case of digital implementations it is possible to design and implement

both RC and RRC filters as IIR filters with exact amplitude behavior, but the phase of the individual

filters will not be exact linear and ISI will occur. In the case of an FIR filter, as used in FBMC

systems, an approximation of the RRC is obtained by truncating the impulse response.

When employed in FBMC, the RRC in SFB convolves with the RRC in the AFB resulting in

an RC subcarrier transfer function. The bandwidth of the RRC is equal to the QAM symbol rate,

i.e. equal to subcarrier spacing. Here we assume that given the total number of subcarriers M and

the time-overlap factor K, the RRC is truncated to the length LP = KM + 1.
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The symbol period and the roll-off factor ρ will determine the shape of the RRC filter. A smaller

ρ implies in a stronger concentration in frequency but a longer impulse response is necessary to

get a better approximation of the original infinite length RRC filter, because the impulse response

slowly decays. On the other hand, a larger ρ implies in less frequency domain concentration but

faster impulse response decay. For FBMC applications the typical roll-off is ρ = 1, which means

that the transition band approximately ends in the frequency point where the middle of the adjacent

subcarrier is located and, it can be shown, that the main lobe is similar to the main lobe of the

Dirichlet kernel used to filter the subcarriers in conventional OFDM. But the sidelobes of the RRC

filter decay much faster and have much lower amplitude than the Dirichlet kernel.

By assuming T is the QAM symbol period used in each subcarrier, i.e. subcarrier distance of

1/T , the frequency response is given by

HP(f) =















1, |f | ≤ 1−ρ
2T

cos
(

πT
2ρ

(

|f | − 1−ρ
2T

)

)

, 1−ρ
2T

< |f | ≤ 1+ρ
2T

0, otherwise

(2.65)

and the continuous time impulse response of the RRC prototype filter would be given by

hP(t) =



















































1√
T

(

1− ρ+ 4
ρ

π

)

, t = 0

ρ√
2T

[(

1 +
2

π

)

sin

(

π

4ρ

)

+

(

1− 2

π

)

cos

(

π

4ρ

)]

, t = ± T

4ρ

1√
T

sin

[

π
t

T
(1− ρ)

]

+ 4ρ
t

T
cos

[

π
t

T
(1 + ρ)

]

π
t

T

[

1−
(

4ρ
t

T

)2
] , otherwise

(2.66)

For a given total number of subcarriers M , we need to sample the RRC filter with a period

Ts =
T
M

. We then substitute t = lTs to obtain the discrete time coefficients with

hP,l =








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
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)

sin
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4ρ
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+

(

1− 2

π

)
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(
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4ρ
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[

π
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(1− ρ)
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+ 4ρ
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M
cos

[

π
l
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(1 + ρ)

]

π
l
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[

1−
(

4ρ
l

M

)2
] , otherwise

(2.67)

Finally, we truncate the discrete time filter to the interval −KM
2

≤ l ≤ KM
2

. We can see that K and

M will determine how good will be the approximation of the infinite length RRC.

Now the convolution of RRC in SFB and AFB are not exactly RC, so that a residual ISI is left,

i.e. the PR conditions are not strictly fulfilled. The practical RRC is then an NPR prototype filter.

After obtaining the FIR RRC filter one can decide which SFB and AFB structure to be em-

ployed. But depending on the structure choice it may be convenient to sample or resample the
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impulse response. For example, it may be convenient to have a length KM , in that case the sam-

pling interval has to be shifted by Ts/2 compared to the one we employed above.

For the case of a time-domain filtering based structure, the decomposition of the impulse re-

sponse into the polyphase components is straightforward as shown earlier in this chapter. For a

frequency domain filtering structure, there are two possibilities: The first is to transform the im-

pulse response with a DFT of size NFFT and then set (NFFT +1− 2NFFT/M) of the NFFT frequency

domain coefficients, which are already very small, to zero to reduce the complexity. The second is

to use the analytical expression for the frequency response of the RRC filter and evaluate for the

specific frequencies that are sampled, i.e. we define Hq = H(f)|f=fq
, where fq = qM

TNFFT
are the

sampled frequencies. The resulting frequency domain coefficients are given by

Hq = H(fq) =















1, q = 0

cos
(

πT
2ρ

(

qM
TNFFT

− 1−ρ
2T

))

, 1 ≤ q ≤ 2NFFT

M
− 1

0, otherwise

(2.68)

In order to exemplify the RRC prototype and to compare the time and frequency properties

achieved when using different structures, in Fig. 2.55 we have plotted the impulse response after the

time domain sampling and after the frequency domain sampling with the zero-valued coefficients.

We show the numerical examples for NFFT = 2KM and for NFFT = 4KM , whereby M = 16
and K = 4. We have not shown here the results for NFFT = KM , i.e. the frequency spread

approach, because our prototype length is LP = KM + 1 and the combination would not fulfill

the requirements for strictly linear convolution. We can see that the impulse responses are visually
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Fig. 2.55. Impulse responses of the RRC prototype filter for K = 4, M = 16, ρ = 1 and different frequency

truncation.

very similar. It is important to mention that the impulse responses after the frequency domain

sampling with zeroing of coefficients is not strictly limited to the length LP, but actually it is now

NFFT. But the coefficients with index higher than LP − 1 have negligible amplitude for the chosen
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parameters and, for this reason, not shown in Fig. 2.55. Moreover, strictly speaking the filter is not

anymore linear phase and for the deployment of the frequency domain structure, depending on the

requirements of the system and the parameters available, those imperfections need to be carefully

considered during design phase.

In Fig. 2.56 we have depicted the corresponding frequency domain magnitude responses. We

can also see here that any visual deviation is very small and can be neglected for the parameters

chosen.
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Fig. 2.56. Frequency response of the RRC prototype filter for K = 4, M = 16, ρ = 1 and different

frequency truncation.

We finally evaluate the frequency domain behavior by generating the PSD when Mf = 204
subcarriers out of M = 256 are occupied. The PSD are depicted in Fig. 2.57, where we have

again used K = 4. When looking at the out-of-band emissions, we can now see a more evident

gap between the different configurations, although they are of only a few dBs for a power density

below -55dB/Hz.

From the examples shown, we can conclude that the RRC filter is a viable candidate for both

time and frequency domain filtering structures.

2.5.2 Frequency Sampling based Filter Design according to Martin-Bellanger

We will describe here the prototype design based on the frequency sampling approach that was

proposed in [13] and inspired on the scheme initially presented in [52]. The idea is to generate an

NPR prototype that has a very high stop-band attenuation and it is designed based on the same

principles as the Lerner filters [49, 52] initially designed with analog lumped components. This

prototype has been very frequently considered in recent years and is frequently called “PHYDYAS

filter” due to its intensive use in the PHYDYAS EU FP7 project [1].

It is assumed that the frequency response of the prototype filter can be uniformly sampled as

shown in Fig. 2.38. The design is based on directly finding the discrete samples of the frequency

response and then converting the frequency response to the time domain to obtain the impulse
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Fig. 2.57. PSD of the RRC prototype filter for K = 4, M = 256, Mf = 204, ρ = 1 and different frequency

truncation.

response with the help of the IDFT. If a frequency sampling structure as presented in Section

2.2.3.2 is employed, then the frequency samples are directly utilized in the filter bank structure.

The prototype filter impulse response of length Lp = KM is obtained by applying an IDFT to

the frequency samples Hq

hP,l =
1

KM

KM−1
∑

q=0

Hqe
j 2πkl
KM , for 0 ≤ l ≤ KM − 1. (2.69)

But some constraints are imposed to the Hq. The first is that K(M − 2) + 1 of the KM samples

of Hq are equal to zero as illustrated in Fig. 2.38, i.e. only 2K − 1 need to be calculated. The

second constraint is that the frequency samples are symmetric about the center of the passband.

The third constraint is that the sum of the frequency samples is equal to zero, in order to get a high

stopband attenuation. The effect of this constraint is that the side lobes of the continuous frequency

representation of the discrete frequency coefficients that are added together, approximately cancel

each other, and the further is the frequency from the passband, the stronger is the cancellation. It

is worth noting that setting the sum of the frequency coefficients to zero is equivalent to set to zero

the first coefficient of the prototype filter impulse response. The fourth and last constraint was the

major contribution of [52], and it sets the condition under which the Hq allow the cascade SFB and

AFB to satisfy the Nyquist criteria, i.e. it guarantees a symmetric transitions band of the resulting

transfer function. Finally, without loss of generality, it is assumed that H0 = 1.

We can now mathematically summarize the constraints as follows



















Hq = 0, for K ≤ q ≤ KM −K,

HKM−q = Hq, for 1 ≤ q ≤ K − 1,

H0 + 2
∑K−1

q=1 Hq = 0,

H2
q +H2

K−q = 1, for 1 ≤ q ≤ K − 1,

(2.70)
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Given the values of K and M , one has to solve this system of partially non-linear equations to ob-

tain the Hq. There are K−1 unknowns, one linear equation and ⌈(K−1)/2⌉ non-linear equations.

It can be observed that the system of equations does not depend on the total number of subcarriers

M . This means that for a given K, the Hq can be used for any M and the range of K of interest

for wireless applications is very limited.

With the symmetry assumption, the IDFT in (2.69) can be re-written as

hP,l =
1

KM

(

H0 + 2

K−1
∑

q=1

Hq cos

(

2πql

KM

)

)

, for 0 ≤ l ≤ KM − 1 (2.71)

In [13] the numerical values of Hq were given for K = 3 and K = 4, and the filters obtained

for the latter value was made well known in [16] from where it got the nickname “PHYDYAS

filter”. The values came originally from [52], where further values for K = 6 and K = 8 are

given.

If we take K = 3, we only have to solve the following system of equations

H1 +H2 = −1

2
, (2.72)

H2
1 +H2

2 = 1, (2.73)

where we just need to substitute the value of H1 or H2 in the second equation and find the roots

of the polynomial of 2nd degree, which then results in H1 = −0.91143783 and H2 = 0.41143783.

By taking K = 4, we end-up with another system of equations

H1 +H2 +H3 = −1

2
, (2.74)

H2
1 +H2

3 = 1, (2.75)

2H2
2 = 1, (2.76)

where H2 =
√
2/2 is straightforward and together with the second equation can be pluged-in

the first one, and again the roots of polynomial of 2nd degree need to be find, which results in

H1 = −0.97195983 and H3 = −0.23514695.

In Table I of [52], it is possible find the Hq values for K = 3, 4, 6 and 8. For K ≥ 5 there is no

close form solution and in [52] a problem formulation is presented, where a numerical optimization

is used to calculate the Hq.

We can further extend constraints in (2.70) for the case of the more general frequency domain

structure based on OA and OS, and where Nnew > 1, as follows



























Hq = 0, for NFFT

M
≤ q ≤ NFFT − NFFT

M
,

HNFFT−q = Hq, for 1 ≤ q ≤ NFFT

M
− 1,

H0 + 2
∑

NFFT
M

−1

q=1 Hq = 0,

H2
q +H2

NFFT
M

−q
= 1, for 1 ≤ q ≤ NFFT

M
− 1,

(2.77)

where we have now NFFT

M
− 1 unknowns and have to solve a system of equations with one linear

equation and ⌈
(

NFFT

M
− 1
)

/2⌉ non-linear equations.
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The impulse response of the prototype is given by

hP,l =
1

NFFT



H0 + 2

NFFT
M

−1
∑

q=1

Hq cos

(

2πql

NFFT

)



 , for 0 ≤ l ≤ Lp − 1. (2.78)

To compare and exemplify the implementation of the design based on frequency sampling we

have depicted in Fig. 2.58 the impulse responses for the different structures, K = 4 and M = 16
And in Fig. 2.59 we have the corresponding subcarrier frequency responses for the time-domain
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Fig. 2.58. Impulse responses of the frequency sampling based prototype filter for K = 4, M = 16 and

different frequency truncation.

and the different frequency domain implementations.

The PSD for K = 4, M = 256 and Mf = 204 is shown in Fig. 2.60.

2.5.3 ELT and LS optimized

For the specific cases when the prototype filter has a lengths of LP = M or LP = 2M , i.e.

K = 1 and K = 2, there exists closed form expressions for the filter coefficients hP,l that filfill

the PR conditions and are known ELT [50]. Those closed form expressions are obtained from the

assumption that the polyphase components can be realized with a lattice structure as explained

earlier in this chapter. The theory of Lapped transforms is closely related to the real valued CMFB

and SMFB.

For K = 1 the ELT prototype is given by

hP,l = ± sin

(

π

M

(

l +
1

2

))

, l = 0, · · · ,M − 1. (2.79)

and for K = 2 is given by

hP,l = ∓
√
2

4
± 1

2
cos

(

π

M

(

l +
1

2

))

, l = 0, · · · , 2M − 1. (2.80)
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Fig. 2.59. Frequency response of the frequency sampling based prototype filter for K = 4, M = 16 and

different frequency truncation.
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Fig. 2.60. PSD of the frequency sampling based prototype filter for K = 4, M = 256, Mf = 204 and

different frequency truncation.

In Fig. 2.61 we have plotted the impulse responses for the ELT when assuming both time-

domain and frequency domain filtering structures with truncation of the frequency domain coef-

ficients to reduce the complexity. The corresponding subcarrier frequency domain responses are

depicted in Fig. 2.62. The PSD of a multicarrier signal with K = 2, M = 256, Mf = 204 and for

different frequency truncation factors is shown in Fig. 2.63.
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Fig. 2.61. Impulse responses of the ELT prototype filter for K = 2, M = 16 and different frequency

truncation.
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Fig. 2.62. Frequency response of the ELT prototype filter for K = 2, M = 16 and different frequency

truncation.

For the cases where K > 2 there is no closed form solution to directly obtain the prototype

coefficients. One possibility is to obtain the prototype by numerical optimization methods [29–

31, 65, 72]. Given a certain design criteria for the optimization of HP (z), e.g. minimization of

the stop-band in a least squares sense, the M
4

equations in (2.31) can be employed in a constrained

optimization method. It is worth noting that the constraints are non-linear relations on the prototype
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Fig. 2.63. PSD of the ELT prototype filter for K = 2, M = 256, Mf = 204 and different frequency

truncation.

filter coefficients. The typical objective function will usually also be a non-linear function of the

prototype coefficients.

There exits other different optimization criteria in the literature. For example, minimization

of the maximum stop-band ripples, i.e. minimax criteria, or the so-called peak-constrained [30],

where a number of stop-band ripples are optimized in the minimax sense and the rest is mini-

mized in the LS sense. The minimax strategy results in constant stop-band amplitude, which is not

desired in FBMC applications. A continually decreasing stop-band is preferable in order to maxi-

mize interference rejection from external sources and minimize noise leakage into subcarriers with

stronger fading. Subcarriers which are separated far apart would then become uncoupled. So LS or

Peak-constrained objectives seem to be more appropriate, although we will only further consider

here the LS optimized prototypes.

In Fig. 2.64 we have plotted the impulse responses for the LS optimized when assuming both

time-domain and frequency domain filtering structures with truncation of the frequency domain

coefficients to reduce the complexity. We have depicted in Fig. 2.65 the subcarrier frequency re-

sponses.

2.5.4 EGF and IOTA Filters

The prototypes presented so far, namely, RRC, Lapped and Frequency sampling based, have very

good spectral properties, i.e. a good stop band attenuation or good spectral localization. The price

to be paid is a long impulse response, i.e. a bad time localization. There is a class of prototype

design that strives to find an optimum or a configurable trade-off between time and frequency

localization. The IOTA filter belongs to this class of time-frequency localized prototypes and was

initially proposed in [48]. It was later shown in [63], [3] and [67] that the IOTA belongs to a more

general class of time-frequency localized filters called EGF.
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Fig. 2.64. Impulse responses of the optimum LS prototype filter for K = 4, M = 16 and different frequency

truncation.

Normalized frequency (× π / T
s
 rad/sample)

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

M
ag

ni
tu

de
 (

dB
)

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

LS TD
LS FD N

FFT
=2KM

LS FD N
FFT

=4KM

LS FS

Fig. 2.65. Frequency response of the optimum LS prototype filter for K = 4, M = 16 and different

frequency truncation.

In EGF based FBMC it is assumed that the OQAM symbols are transmitted in a symbol period

of τ0 and that the subcarrier spacing is nu0. In order to fulfill the requirements for orthogonality and

allow at least an NPR behavior, it is assumed that the product τ0ν0 =
1
2

needs to remain constant.
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Fig. 2.66. PSD of the optimum LS prototype filter for K = 4, M = 256, Mf = 204 and different frequency

truncation.

The design of the EGFs starts with the definition of a basic Gaussian function in the time

domain as follows

gα(t) = (2α)
1
4 e−απt2 . (2.81)

The parameter α determines how fast the function decays, in this case, in the time-domain. It is

worth noting that the Fourier transform of a Gaussian function is also Gaussian. The Gaussian

cannot guarantee a NPR behavior if directly employed in FBMC systems, i.e. there would be

strong ICI and ISI.

In [48, 63, 67] the authors proposed to apply an orthogonalization operation to the basic Gaus-

sian function, which is defined as

Oτ0 {gα(t)} =
gα(t)

√

τ0
∑∞

k=−∞ |gα(t− kτ0)|2
. (2.82)

After that a Fourier transform is applied, followed by another similar orthogonalization procedure

in the frequency domain function and, finally, by an inverse Fourier transform. The prototype is

the given by

hP(t) = F−1 {Oν0 {F {Oτ0 {gα(t)}}}} . (2.83)

In [63, 67] the authors have shown that a closed form expression for the prototype can be

obtained for the parameter 0.528ν2
0 ≤ α ≤ 1/(0.528ν2

0). This closed form solution and its approx-
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imation are given by

hP(t) =
1

2

( ∞
∑

k=0

dk,α,ν0

[

gα

(

t+
k

ν0

)

+ gα

(

t− k

ν0

)]

) ∞
∑

l=0

dl,1/α,τ0 cos

(

2πl
t

τ0

)

, (2.84)

≈ 1

2

(

K
∑

k=0

dk,α,ν0

[

gα

(

t +
k

ν0

)

+ gα

(

t− k

ν0

)]

)

K
∑

l=0

dl,1/α,τ0 cos

(

2πl
t

τ0

)

, (2.85)

where the coefficients dk and its approximation are given by

dk,α,ν0 =
∞
∑

l=0

ak,le
−
(

απ

2ν2
0

)

l
, 0 ≤ k ≤ ∞, (2.86)

≈
jk
∑

j=0

bk,je
−
(

απ

2ν2
0

)

(2j+k)
, 0 ≤ k ≤ K, (2.87)

The values for the constants bk,j are given in Table V of [68] and will not be reproduced here.

We can then further sample hP(t) at a period given by t = n 1
Mν0

. The resulting discrete time

approximation of the EGF is then given by

hP,n =
1

2

(

K
∑

k=0

dk,α,ν0

[

gα

(

n
1

Mν0
+

k

ν0

)

+ gα

(

n
1

Mν0
− k

ν0

)]

)

K
∑

l=0

dl,1/α,τ0 cos

(

ln
4π

M

)

,

(2.88)

and, finally, we truncate the impulse response length by taking −KM/2 ≤ n ≤ KM/2. The IOTA

filter is a special case of the EGF when α = 1 and τ0 = ν0 = 1√
2
. Comparing to our conventional

FBMC systems, the IOTA based system has an OQAM symbol period which is 1/
√
2 shorter and

a subcarrier spacing which is
√
2 further apart.

In Fig. 2.67, we depict the impulse response of the IOTA function when a time domain structure

is assumed and the corresponding one when frequency domain filtering structures are assumed. The

corresponding subcarrier frequency response for the IOTA functions is shown in Fig. 2.68.

In Fig. 2.69 we show the PSD when employing the IOTA prototype for the time and frequency

domain realization structures.

2.5.5 Prototype Filters Comparison and Discussion

We can now perform an overall numerical comparison among the various prototype filters just pre-

sented. Our analysis is based on the assumption that for each filter the impulse response is provided

as a start point, independent of which design method was employed, which also corresponds to the

assumption that a time domain filtering polyphase decompositions based structure.

We will first show here a comparison of the impulse responses, the subcarrier frequency re-

sponses and the PSD for a selection of parameters. Then we further discuss the overall properties

of each filter and qualitatively compare them.

In Fig. 2.70, we show the impulse responses for K = 4 (K = 2 for ELT), M = 16, ρ = 1
and α = 1. The subcarrier frequency responses are compared in Fig. 2.71 also K = 4 (K = 2 for

ELT), M = 16, ρ = 1 and α = 1. Finally, we have the PSD in Fig. 2.72 for K = 4 (K = 2 for

ELT), M = 256, Mf = 204 ρ = 1 and α = 1.
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Fig. 2.67. Impulse responses of the IOTA prototype filter for K = 4, M = 16, α = 1 and different

frequency truncation.
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Fig. 2.68. Frequency response of the IOTA prototype filter for K = 4, M = 16, α = 1 and different

frequency truncation.

From the numerical comparisons in Figs. 2.70, 2.71 and 2.72, we can observe the classical

trade-off between time domain and frequency concentration. Moreover, the impulse responses of

the filters have different decays, what reflects on a very diverse stop-band behavior.

We can also characterize the filters according toPR or NPR properties, design methodology,

number of parameters and the flexibility to chose their length and frequency behavior. We can then

summarize the different filters considered as follows:
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Fig. 2.69. PSD of the IOTA prototype filter for K = 4, M = 256, Mf = 204, α = 1 and different frequency

truncation.
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Fig. 2.70. Impulse responses of the different prototype filters for K = 4 (K = 2 for ELT), M = 16, ρ = 1,

α = 1.

• RRC has a simple design with few parameters and a closed form. Moreover, it has a flexible

choice of the filter length and roll-off factor. It is of NPR class and presents a low flexibility on

the choice of the stop-band attenuation, which will depend on the length and roll-off factor.

• Frequency sampling according to Martin-Bellanger provides a high stop-band attenuation, has

a simple design with closed form and few parameters. It is of NPR class and presents low

flexibility on the choice of filter length (K < 5) and on the frequency behavior.
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Fig. 2.71. Frequency responses of the different prototype filters for K = 4 (K = 2 for ELT), M = 16,

ρ = 1, α = 1.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−150

−100

−50

0

P
S

D
 (

dB
/H

z)

Normalized frequency (´  π / T
s
 rad/sample)

 

 

RRC

PR ELT K=2

Freq. Samp.

EGF/IOTA

PR LS

Fig. 2.72. PSD of the different prototype filters for K = 4 (K = 2 for ELT), M = 256, Mf = 204 ρ = 1

and α = 1.

• Extended Lapped has a simple design with closed form and few parameters. If is of PR class

but has low flexibility on the choice of filter length (K = 2), on the choice of the filter length

and on the frequency behavior.

• Optimized prototype (LS, Minimax, Peak-constrained, etc.) fulfills PR constraints and is flex-

ible on the choice of parameters, filter length and frequency behavior. On the downside, it has

no closed form and has a more complicated design involving numerical optimization.
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• EGF and IOTA fulfills PR constraints. It has flexible choice of filter length, but the length will

not influence much time and frequency behavior, because it optimizes the trade-off between

time and frequency concentration. It has no closed form, a complicated design, no flexibility

on the choice of frequency behavior.

From the analysis and comparison of the different filters the following points have to be con-

sidered when choosing a specific prototype for a given application:

• Filters from PR class can be realized in any structure without loosing their original time and

frequency domain characteristics.

• Filters from NPR class may not keep the original time and frequency characteristics.

• Depending on the application and scenario an improve concentration in time or in frequency

may be desired. For example, in wireless communications an improved frequency concentra-

tion is favored if frequency synchronization is an issue. When short chunks of data are transmit-

ted or quick switches between different directions of a Time-Division Duplex (TDD) system,

shorter filter with quicker decay is desired.

• If multiple subcarrier bandwidths have to be supported, a high flexibility is desired on the

choice of the filter length as well as the frequency behavior.



3. Channel Estimation

3.1 Introduction

In wireless systems, channel estimation is not a trivial but a very important and critical task. Chan-

nel estimation in OFDM already poses a number of challenges and has a direct influence on the

overall performance of the system. The CP provides some help to simplify channel estimation in

OFDM-based wireless links. In FBMC, channel estimation is even more challenging than OFDM

due to the lack of a CP—or any guard interval—and the longer subcarrier pulse shaping employed.

A symbol sample observed at the output of a receiver’s subcarrier with index m in a certain time

sampling with index n is a function of the proceeding and subsequent symbols in that same sub-

carrier, and of the symbols transmitted in the adjacent subcarriers, i.e. the received samples contain

ISI and ICI. In CP-OFDM, the received symbols transmitted in different time and frequency re-

sources are assumed to be decoupled, if the CP is long enough—longer than the channel impulse

response—and the system is well synchronized in time and frequency.

In most of the literature on channel estimation schemes for FBMC, a low frequency selectivity

is assumed. In that case the overlapping in time and frequency of adjacent symbols can be ne-

glected. The book chapter in [46] provides a review of a number of channel estimation methods

for FBMC including in part the methods presented in this chapter. The approach presented in this

chapter assumes a high frequency selectivity.

In this chapter, we will introduce and employ for the channel estimation two different subcarrier

models, which we call narrowband and broadband. The narrowband subchannel model can be

considered the FBMC-equivalent of the frequently used subcarrier model for CP-OFDM. In the

case of FBMC, a narrowband model is typically useful when a small number of subcarriers are

occupied or employed, or even only one single carrier is of interest for the receiver. This scenario is

especially envisioned when a large subcarrier spacing—or subchannel bandwidth—is considered,

for example, to reduce the sensitivity to phase noise and carrier frequency offset and/or to reduce

the latency for mission critical applications. When a large number of subcarriers are occupied,

the channel estimation based on the broadband subcarrier model results in less parameters to be

estimated and, consequently, is more spectrally efficient.

After presenting the two models, we will describe different methodologies to perform channel

estimation. We will present estimators that do not require knowledge of the noise variance and

also no knowledge of the covariance matrix of the channel. In addition, we present methods that

consider the knowledge of one or both covariances. We will also show the performance loss when

more spectrally efficient estimation is performed, i.e. when a small number of training or reference

symbols are employed relative to the number of observations, taking into account the spreading of

the symbols in time due to the long pulse shaping.

71
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3.2 Subcarrier System Models

The subcarrier or subchannel model of the FBMC/OQAM system is depicted in Fig. 3.1, where

the fact that there is no significant interference coming from subcarriers further apart than the

immediate adjacent ones is explored, because the prototypes are designed to have sufficient stop-

band attenuation for the frequencies corresponding to those subcarriers.
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Fig. 3.1. Subcarrier model for the FBMC/OQAM system.

The overall composed impulse responses h̃m,ℓ[n] are obtained by first convolving the AFB

subfilter with the SFB subfilter and with the channel and then sub-sampling by M
2

, i.e.

h̃m,ℓ

[

n
M

2

]

= hm[l] ∗ hℓ[l] ∗ hch[l], for ℓ = m− 1, m,m+ 1, (3.1)

where ∗ stands for discrete-time linear convolution [26, 59]. The resulting impulse response has

Lh̃ = ⌈2LP+Lch−2
M/2

⌉ coefficients, where Lch is the number of coefficients of the impulse response of

the frequency selective propagation channel.

3.2.1 Narrowband CIR Model

The narrowband subchannel model considers that one channel impulse response is observed in

a per-subcarrier basis. This model is analogous to the approach followed for the conventional

CP-OFDM, in which case the impulse response reduces to a single coefficient and is a common

approach in practical implementations of multicarrier systems, for example, LTE and Long-Term

Evolution-Advanced (LTE-A).

Let us assume that a per-subcarrier equalizer (linear MMSE [77] or decision feedback [10,75])

should be employed and that a per-subcarrier channel estimator is sufficient for the purpose of

designing the equalizer. We will initially make no differentiation between training or reference

symbols and the data symbols contained not only in the subcarrier under observation but also in

their two neighbors. Later we will define the input sequences more exactly and separate between

training and data carrying ones.

To perform the per-subcarrier channel estimation, we will model the multipath channel viewed

at each subcarrier as a narrowband channel with a short impulse response and represent it at the

sampling rate of the OQAM symbols, namely twice the QAM symbol rate, that is 2/T . This ap-

proach is sometimes called structured channel estimation [7, 11].

We define now the impulse responses

hm,ℓ[l] = hm[l] ∗ hℓ[l], (3.2)
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which have (2LP − 1) coefficients and are the convolutions of AFB subfilters hm[l] with SFB

subfilters hℓ[l], with ℓ = m − 1, m,m + 1. Then we sub-sample hm,ℓ[l] by M
2

, i.e. we take only

every l = nM
2

sample of the composed filter, what results in a total of Lh =
⌈

2LP−1
M/2

⌉

coefficients1.

Moreover, we define a narrowband subchannel impulse response hch,m[n] with Lch,m coefficients,

which we would like to estimate. We can then redraw the subcarrier model in Fig. 3.1 to the

one shown in Fig. 3.2. It is worth noting that the order of hch,m[n] is not necessarily the same
PSfrag replacements
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Fig. 3.2. Subcarrier model of Fig. 3.1 reformulated for narrowband channel estimation.

for all subcarriers because the frequency selectivity may vary on different portions of the overall

spectrum. Moreover, Lch,m cannot be obtained by just dividing Lch by M
2

, although the two values

are somehow dependent on each other 2, i.e. a larger Lch implies in a larger Lch,m and vice versa.

Based on the diagram in Fig. 3.2, we can express ym[n] the output of the AFB in m-th subcarrier

in the OQAM rate of 2/T , i.e. before the OQAM destaggering, as

ym[n] = (hm,m[n] ∗ xm[n] + hm,m−1[n] ∗ xm−1[n] + hm,m+1[n] ∗ xm+1[n]) ∗ hch,m[n] + ηm[n],
(3.3)

where ηm[n
M
2
] = hm[l] ∗ η[l].

We can then arrange the signal received at subcarrier m in an observations vector

ym[n] =
[

ym[n] ym[n− 1] · · · ym[n− Lo + 1]
]T ∈ C

Lo, (3.4)

which is then defined as

ym[n] = (Xm[n]Hm,m +Xm−1[n]Hm,m−1 +Xm+1[n]Hm,m+1)hch,m + Γmη[l], (3.5)

where hch,m ∈ CLch,m contains the coefficients of the mth sub-channel impulse response.

The Toeplitz matrices Hm,ℓ ∈ CLh′×Lch,m contain the composed subfilter impulse responses,

with the new overall subchannel impulse response including the narrowband channel having Lh′ =
Lh + Lch,m − 1 coefficients, and can be calculated as3

Hm,ℓ =

Lh′
∑

i=1

eih
T
m,ℓDi, (3.6)

1In the common case of LP = KM we get Lh = 4K and for LP = KM + 1 we get Lh = 4K + 1
2The exact physical and mathematical relation betweenLch,m andLch has not been deeply studied in the framework

of this work and remains as a topic for future research.
3The definition of the matrices Hm,ℓ results in a transposed of the so-called convolution matrix.
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where hm,ℓ ∈ CLh contains the coefficients of the impulse response hm,ℓ[n], vector ei ∈ {0, 1}Lh′

has the i-th element equal to one and the other elements equal to zero, and matrix Di ∈
{0, 1}Lh×Lch,m is defined as

Di =
[

0Lh×(i−1) ILh
0Lh×(Lh′−i)

]

, (3.7)

where 0(i−1)×Lh
∈ {0}(i−1)×Lh is the all zero matrix and ILh

∈ {0, 1}Lh×Lh is the identity matrix.

The Hankel matrices Xℓ[n] ∈ CLo×Lh′ are obtained from the input sequences in each subcarrier

Xℓ[n] =

Lh′
∑

j=1

DjOℓx
R
ℓ [n]e

T
j , (3.8)

where xR
ℓ [n] ∈ RLx is a purely real version of xℓ[n] ∈ CLx , which contain Lx = Lh′ + Lo − 1

samples of the input sequence of symbols xℓ[n] in subcarrier ℓ, and vector ei ∈ {0, 1}Lh′ has the

i-th element equal to one and the other elements equal to zero.

Matrix Dj ∈ {0, 1}Lo×Lx is defined as

Dj =
[

0Lo×(j−1) ILo
0Lo×(Lh′−j)

]

(3.9)

and selects the part of xR
ℓ [n] that appear in each column of Xℓ[n] and Oℓ = diag([..., 1, j, 1, j, ...])

represents the alternation between purely real and purely imaginary symbols of the OQAM stag-

gering.

Matrix Γm is defined as

Γm =



















hm,0 hm,1 . . . hm,LP−1 0T
Lo

M
2

0T
M
2

hm,0 hm,1 . . . hm,LP−1 0T
(Lo−1)M

2

0T
M hm,0 hm,1 . . . hm,LP−1 0T

(Lo−2)M
2

...
...

...
. . .

0T
(Lo−1)M

2

hm,0 hm,1 . . . hm,LP−1 0T
M
2



















∈ CLo×(LP+⌈M
2
Lo⌉) (3.10)

and is obtained by taking each M
2

-th row of the convolution matrix constructed with the analysis

filter impulse response hm[l]. This is the reason why the vector η[l] ∈ C(LP+⌈M
2
Lo⌉), which contains

Additive White Gaussian Noise (AWGN) samples with zero mean and variance σ2
η , is defined at

the high sampling rate M/T . Furthermore, we denote the vector with the filtered noise samples

ηm[n] = Γmη[l].
We can now define the matrix

Sm[n] = Su,m[n] +Um[n] (3.11)

= Xm[n]Hm,m +Xm−1[n]Hm,m−1 +Xm+1[n]Hm,m+1, (3.12)

where Su,m[n] = Xm[n]Hm,m and Um[n] = Xm−1[n]Hm,m−1 + Xm+1[n]Hm,m+1. Resulting in

the following compact sub-carrier model for the narrowband sub-channel estimation

ym[n] = Su,m[n]hch,m +Um[n]hch,m + ηm[n] (3.13)

= Sm[n]hch,m + ηm[n] (3.14)
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We can observe that even if the propagation channel between SFB and AFB contains a single

complex tap, the filters will spread the effect over multiple symbols.

In the special case of low frequency and time selectivity, i.e. large coherence bandwidth and

time, the channel impulse response in have very low order compared to the M . We can assume that

Lch,m = 1 and Lo = 1 to use the following simplified notation

ym[n] =
(

xT
m[n]hm,m + xT

m−1[n]hm,m−1 + xT
m+1[n]hm,m+1

)

hch,m + ηm[n], (3.15)

where the vectors xT
ℓ [n] contain the first Lh elements of the first row of XT

ℓ [n] and hm,ℓ is defined

as in (3.6) and corresponds to the first Lh elements of the first column of Hm,ℓ. We assume that

the τh + 1-th element of hm,m is one, i.e. eTτh+1hm,m = 1, which is the middle coefficient of the

impulse response hm,m[n]
4. We can further develop the expression to

ym[n] =
(

xm[n− τh] + (x′
m)

T [n]h′
m,m + xT

m−1[n]hm,m−1 + xT
m+1[n]hm,m+1

)

hch,m + ηm[n],

(3.16)

where (x′
m)

T [n], resp. h′
m,m, is xT

m[n], resp. h′
m,m, with the τh + 1 element removed. Due to the

OQAM staggering, we can assume that xm[n− τh] is purely real. We can then define

jum[n] = (x′
m)

T [n]h′
m,m + xT

m−1[n]hm,m−1 + xT
m+1[n]hm,m+1, (3.17)

and show that

σ2
u = σ2

x

(

||h′
m,m||22 + ||hm,m−1||22 + ||hm,m+1||22

)

. (3.18)

Then we obtain the compact form

ym[n] = (xm[n− τh] + jum[n]) hch,m + ηm[n]. (3.19)

We can further extend this expression and consider that the single tap channel is time variant at the

resolution of n. By using a CP-OFDM-like notation we can finally write

ym,n = (xm,n−τh + jum,n)hch,m,n + ηm,n. (3.20)

3.2.2 Broadband CIR Model

We will consider now a model to be used when we would like to estimate the broadband channel

impulse response hch[l] defined in the higher sampling rate as shown in Fig. 3.1. We start by

redrawing the subcarrier model of Fig. 3.1 in the simplified form shown in Fig. 3.3.

The signal ym[n] contains the downsampled AFB output samples in the OQAM symbol rate

2/T and is defined as

ym[n] = h̃m,m[n] ∗ xm[n] + h̃m,m−1[n] ∗ xm−1[n] + h̃m,m+1[n] ∗ xm+1[n] + ηm[n], (3.21)

where h̃m,ℓ[n] are the downsampled impulse responses with Lh̃ that result from the convolution

of SFB subfilter hℓ[n], AFB subfilter hm[n] and broadband frequency selective channel hch[l] as

defined in (3.1). The signal ηm[n] corresponds to the downsampled filtered noise.

4For the case LP = KM we get τh = 2K − 1 and for the case LP = KM + 1 we get τh = 2K
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Fig. 3.3. Subcarrier model of Fig. 3.1 reformulated for broadband channel estimation.

We can then arrange the signal received at subcarrier m in an observations vector

ym[n] =
[

ym[n] ym[n− 1] · · · ym[n− Lo + 1]
]T ∈ C

Lo, (3.22)

which is then defined as

ym[n] = Xm[n]h̃m,m +Xm−1[n]h̃m,m−1 +Xm+1[n]h̃m,m+1 + Γmη[l], (3.23)

where the Hankel matrices Xℓ[n] ∈ CLo×L
h̃ are obtained from the input sequences in each subcar-

rier

Xℓ[n] =

L
h̃
∑

j=1

DjOℓx
R
ℓ [n]e

T
j , (3.24)

where xR
ℓ [n] ∈ R

Lx is a purely real version of xℓ[n] ∈ C
Lx , which now contain Lx = Lh̃ + Lo − 1

samples of the input sequence of symbols xℓ[n] in subcarrier ℓ, and vector ei ∈ {0, 1}Lh̃ has the

i-th element equal to one and the other elements equal to zero.

Matrix Dj ∈ {0, 1}Lo×Lx is defined as

Dj =
[

0Lo×(j−1) ILo
0Lo×(L

h̃
−j)

]

(3.25)

and selects the part of xR
ℓ [n] that appears in each column of Xℓ[n] and Oℓ = diag([..., 1, j, 1, j, ...])

represents the alternation between purely real and purely imaginary symbols of the OQAM stag-

gering.

Vectors h̃m,ℓ ∈ CL
h̃ contain the coefficients of the overall subchannel impulse responses

h̃m,ℓ[n] and can be expressed as

h̃m,ℓ = H̃m,ℓhch, (3.26)

where vector hch ∈ CLch contain the coefficients of the impulse response of the broadband propa-

gation channel hch[l].
Matrices H̃m,ℓ ∈ CL

h̃
×Lch are defined as

H̃m,ℓ = JM
2
H̄m,ℓ =











hm,ℓ[0] 0 0 . . .
hm,ℓ[M/2] hm,ℓ[M/2− 1] hm,ℓ[M/2− 2] . . .
hm,ℓ[M ] hm,ℓ[M − 1] hm,ℓ[M − 2] . . .

...
...

...
. . .











, (3.27)
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where H̄m,ℓ ∈ C(2LP−1)×Lch is the convolution matrix obtained with the coefficients of hm,ℓ[l], JM
2

represents the downsampling by M
2

and is defined as

JM
2
=













eT1
eTM

2
+1

...

eT
(L

h̃
−1)M

2
+1













(3.28)

with eq ∈ {0, 1}(2LP−1), and the result is that we take each M
2

-th row of the convolution matrix of

H̄m,ℓ.

We can now rewrite (3.23) as

ym[n] = (Xm[n]H̃m,m +Xm−1[n]H̃m,m−1 +Xm+1[n]H̃m,m+1)hch + Γmη[l], (3.29)

Again similar to the narrowband model, we define Sm[n] = Su,m[n] + Um[n] =
Xm[n]H̃m,m +Xm−1[n]H̃m,m−1 +Xm+1[n]H̃m,m+1, where Su,m[n] = Xm[n]H̃m,m and Um[n] =
Xm−1[n]H̃m,m−1 +Xm+1[n]H̃m,m+1. We then get for each observed subcarrier

ym[n] = Sm[n]hch + Γmη[l] (3.30)

= (Su,m[n] +Um[n])hch + Γmη[l]. (3.31)

We finally stack Mo vectors with the outputs of the Mo observed subcarriers we obtain











y0[n]
y1[n]

...

yMo−1[n]











=











S0[n]
S1[n]

...

SMo−1
[n]











hch +











Γ0

Γ1
...

ΓMo−1











η[l], (3.32)

y[n] = S[n]hch + η̃[n]

= (Su[n] +U[n])hch + η̃[n]. (3.33)

It should be noted that the vectors ym[n] that are collected into y[n] do not need to belong to

contiguous subcarriers. This means that the observations can be sparsely taken in the subcarrier

domain. This allows the use of preambles that are not full in the sense that they can be frequency

multiplexed with data sequences. In this way, a higher spectral efficiency is obtained by reducing

the number of training symbols transmitted in the whole training block. In the simulation results,

an example of this situation is presented.

3.2.3 Broadband-Narrowband CIR Transformation

We describe here how to obtain many narrowband channel impulse responses given one single

broadband channel impulse response.

The narrowband channel observed in each subcarrier can calculated from the broadband chan-

nel by the transformation hch,m = Bmhch. Thereby, the following definition holds

Bm =
[

ILch,m
0B1

]

WH
Lch,mMi

[

0B2 ILch,mMi
0B3

]

WNf

[

ILch

0B4

]

,
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where WNf
is an Nf-DFT matrix, Nf = MLch,mMi, 0B1 ∈ {0}Lch,m×(Lch,m(Mi−1)), 0B2 ∈

{0}(Lch,mMi)×(mLch,mMi), 0B3 ∈ {0}(Lch,mMi)×((M−1−m)Lch,mMi), 0B4 ∈ {0}(Nf−Lch)×Lch , Mi is a reso-

lution factor for the calculation’s resolution of the hch,m.

As a consequence we can rewrite (3.13) as follows

ym = S′
mBmhch + Γmη, (3.34)

and similar to (3.33) we can write y = S′hch + η, with S′T =
[

BT
0 S

′T
0 BT

1 S
′T
1 .. BT

Mo−1S
′T
Mo−1

]T
.

The narrowband to broadband transformation can be performed by stacking the hch,m into a

long vector and multiplying it by a stacking of the inverse of matrix Bm.

3.3 Narrowband CIR Estimation

Now that we have introduced the two models, namely, narrowband and broadband, we can derive

various explicit estimators for the FBMC system. In this section we present four estimators based

on the narrowband model. The first three estimators assume that given an observation vector at the

receiver side in one specific subcarrier m, at least Lx subsequent symbols in subcarriers m − 1,

m and m + 1 are known, i.e. they are reference or pilot symbols. The fourth estimator assumes

that only part of those Lx symbols are known and the other contain unknown information at the

receiver, for example, payload data.

3.3.1 Per-subcarrier LS Estimation

A first and very common estimator is the LS estimator. This channel estimation is employed when

there is no knowledge of statistics of the noise and of the channel.

The objective function here is given by

ĥch,m = argmin
hch,m∈CLch,m

‖ym − Smhch,m‖22. (3.35)

The solution to the LS problem above is straightforward and given by

ĥch,m =
(

SH
mSm

)−1
SH
mym. (3.36)

It is worth noting that the inverse contain information that is assumed to be known at the

receiver side and can be calculated offline. However, as many narrowband channels need to be

estimated as the number of receiving subcarriers.

3.3.2 Per-subcarrier ML Estimation

Another classical estimator that we will apply to the FBMC system is the ML estimator, which

typically provide better performance than the LS estimator for low SNR scenarios. The ML esti-

mation can be employed when the variance of the noise, i.e. its statistics, is known to the receiver,

but the statistics of the channel are not known. The noise variance can be estimated on previous

procedures typically employed in the receiver chain, such as synchronization or some preamble

detection.
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We can see that in the linear model of (3.13) that the noise is zero mean Gaussian distributed

with covariance matrix Rη,m = σ2ΓmΓ
H
m and the observation ym given hch,m is Gaussian dis-

tributed. The ML estimate of hch,m is thus given by

ĥch,m = arg max
hch,m∈CLch,m

p(ym|hch,m) = arg min
hch,m

J(hch,m), (3.37)

where

J(hch,m) = (ym − Smhch,m)
H
R−1

η,m (ym − Smhch,m) . (3.38)

Then the ML estimate of the narrowband multipath channel in each subcarrier is given by

ĥch,m =
(

SH
mR

−1
η,mSm

)−1
SH
mR

−1
η,mym. (3.39)

It was shown in [7, 11] that the latter estimator works fine provided enough training is employed

in the subcarriers m and m ± 1. We should note that the subchannel length, Lhch,m
, is a design

parameter of the estimator. It can be different for each subcarrier depending on how frequency

selective the channel is for the corresponding portion of the spectrum.

3.3.3 Per-subcarrier MMSE Estimation

The last classical estimator we would like to introduce for the narrowband subcarrier model of

FBMC systems is the MMSE. This channel estimation can be employed when both the noise and

the channel statistics are known to the receiver. This knowledge can be obtained by various means,

for example, by some longer term averaging or using preambles.

If we assume that the power delay profile of the sub-channel impulse response is known a

priori, then we can easily calculate the covariance matrix of hch,m, here called Rhch,m
. The MMSE

estimator has the following objective

ĥch,m = argmin
hch,m∈RLch,m

E
[

‖ym − Smhch,m‖22
]

. (3.40)

The resulting estimator is then given by

ĥch,m = Rhch,m
SH
m

[

SmRhch,m
SH
m +Rη,m

]−1
ym. (3.41)

The MMSE estimator will typically provide even better performance than the ML estimator at

lower SNR.

3.3.4 Per-subcarrier ML Estimation via EM

In this fourth channel estimator, we assume that the input sequence in the subcarrier m is known,

i.e. it is a training or pilot sequence, but the input sequences in subcarriers m − 1 and m + 1 are

unknown, i.e. they may be carrying payload data or just unknown sequences.

The entries of Su,m in (3.13) are a result of the convolution between the training sequence in

subcarrier m and the resulting subcarrier filter—synthesis convolved with analysis—in the same

subcarrier. Although the resulting filter has a purely real impulse response when the prototype

has a purely real impulse response, the resulting convolution with the OQAM staggered training

sequence results in a complex valued sequence. Consequently all entries of Su,m are complex
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valued. In contrast, the entries of Um are alternatingly purely real and purely imaginary valued,

because in addition to the OQAM symbols in subcarriers m − 1 and m + 1 also the impulse

response between the two adjacent subcarriers has alternating real and imaginary coefficients, also

resambling an real and imaginary staggering. As a consequence, the interference term Um has

improper statistics [66] and one way to estimate it is by employing Widely Linear (WL) processing.

Now, one can rewrite the observation vector in (3.13) on each subcarrier as

ym = Su,mhch,m +Hmum + ηm = Su,mhch,m +H′
mOmHu,mxu,m + ηm (3.42)

where now we assume that the vector um ∈ R

Lh′ , or equivalently xu,m, in each subcarrier is

unknown, um = Hu,mxu,m and Hm = H′
mOm, where H′

m is the convolution matrix associated to

the m-th narrowband channel impulse response, i.e. hch,m. For convenience, we define

Om =

{

diag([1, j, 1, ...]), for m even

diag([j, 1, j, ...]), for m odd.
(3.43)

Note that in this case Hu,m ∈ RLh′×2Lx is a purely real matrix related to the matrices Hm,m−1 and

Hm,m+1 in (3.5).

Although the exact values of um are unknown, its statistics are typically known, for example,

if it contains QAM symbols. We define then an interference covariance matrix as

Ru,m =
σ2
x

2
Hu,mH

H
u,m, (3.44)

where we assume that xu,m is i.i.d. and Gaussian distributed with zero mean and variance σ2
x/2.

This is typically a good approximation although xu,m elements are symbols taken from a finite

constellation.

For the linear model of (3.42), the ML estimator has no closed form solution due to the un-

known or interference components, and an efficient way to implement it is to employ the iterative

EM algorithm [55].

The EM algorithm works here as follows: Before the first iteration, a rough ML channel esti-

mate is obtained by ignoring the interference and only considering the known training sequence in

the observed subcarrier m. This estimate is given by

ĥm,0 = (SH
u,mR

−1
η,mSu,m)

−1SH
u,mR

−1
η,mym. (3.45)

Then, the iterative process starts, where for each iteration i, the algorithm involves two steps: the

E-step and the M-step. In the E-step, an approximation of the ML objective function (here its

derivative) is obtained by taking the expected value of it conditioned on the channel estimated in

the iteration before and on the observation sequence, as follows

Eu|y,hch,m,i

[

∂J(hch,m,i)

∂hH
ch,m,i

]

=
[

SH
u,mR

−1
η,mSu,m + SH

u,mR
−1
η,mE[Um] + E[Um]

HR−1
η,mSu,m

+E[UH
mR

−1
η,mUm]

]

hch,m,i − (Su,m + E[Um])
HR−1

η,mym. (3.46)

We can show that the result is a function of E[um] and E[UH
mR

−1
η,mUm]. E[um] = ûm,i can be

viewed as an instantaneous estimate of the interference term um in the i-th iteration.
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To express the last expectation in (3.46) also in terms of the estimate ûi, one has first to write

the matrix Um as a function of vector um as

Um =

Lch,m
∑

j=1

DjOmume
T
j , (3.47)

where Dj =
[

0j−1 ILo
0Lh′−Lo−j

]

is a matrix that selects Lo rows of um and ej ∈ {0, 1}Lch,m

is a vector with one in the j-th row and the rest of its elements are zero. Then we plug(3.47) in the

expected value

E
[

UH
mR

−1
η,mUm

]

= E





Lch,m
∑

l=1

elu
T
mOH

mD
T
l R

−1
η,m

Lch,m
∑

j=1

DjOmume
T
j





=

Lch,m
∑

l=1

el

Lch,m
∑

j=1

E
[

uT
mOH

mD
T
l R

−1
η,mDjOmum

]

eTj

=

Lch,m
∑

l=1

el

Lch,m
∑

j=1

tr
{

OH
mD

T
l R

−1
η,mDjOmE

[

umu
T
m

]}

eTj . (3.48)

Furthermore, we can develop the expression

E
[

umu
T
m

]

= Rǫ,m,i + E[um]E[um]
T = Rǫ,m,i + ûm,iû

T
m,i, (3.49)

where Rǫ,m,i is the covariance matrix of the estimation error of um in the i-th iteration. Conse-

quently, we get

E
[

UH
mR

−1
η,mUm

]

=

Lch,m
∑

l=1

el

Lch,m
∑

j=1

tr
{

OH
mD

T
l R

−1
η,mDjOmRǫ,m,i

}

eTj + E [Um]
H
R−1

η,mE [Um] ,

=Ψm,i + E [Um]
H
R−1

η,mE [Um] , (3.50)

where we applied the definition [Ψm,i]j,l = tr
{

OH
mD

T
j R

−1
η,mDlOmRǫ,m,i

}

. Finally, we can find the

expression for the E-step as

Eum|ym,hch,m,i

[

∂J(hch,m,i)

∂hH
ch,m,i

]

=

(

(

Su,m + Ûm,i

)H

R−1
η,m

(

Su,m + Ûm,i

)

+Ψm,i

)

hch,m,i

−
(

Su,m + Ûm,i

)H

R−1
η,mym. (3.51)

Given that an estimate of hch,m,i and the training sequence are known, one can subtract

Su,mĥch,m,i from the observations vector to make an estimate of the interference vector um. Then

the resulting vector can be processed using an MMSE estimator. As mentioned previously, the in-

terference vector is composed of purely real and purely imaginary terms, and for that a WL MMSE

estimator [66] can be employed as follows

E[um,i] = ûm,i = 2Re
{

W
H
m

(

ym − Su,mĥch,m,i

)}

, (3.52)
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where the estimator matrix is given by

Wm =
(

Ry,m −PT
y,mR

−T
y,mP

H
y,m

)−1 (
RH

uy,m −PT
y,mR

−T
y,mP

H
uy,m

)

, (3.53)

the following definitions for the covariance matrices hold

Ry,m = Ĥm,iRu,mĤ
H
m,i +Rη,m, and Ruy,m = Ru,mĤ

H
m,i, (3.54)

and the pseudo-covariance matrices are defined by

Py,m = Ĥm,iRu,mĤ
T
m,i, and Puy,m = Ru,mĤ

T
m,i, (3.55)

and Ĥm,i = Ĥ′
m,iOm, where Ĥ′

m,i is a convolution matrix containing the estimated subchannel

impulse response ĥch,m,i. The corresponding covariance matrix of the estimation error is given by

Rǫ,m,i = Ru,m − 2Re
{

WmR
H
uy,m

}

. (3.56)

Finally, the M-step is performed, where J(hm,i) is minimized, resulting in a new channel esti-

mate to be used in the next iteration i+ 1

ĥch,m,i+1 =

(

(

Su,m + Ûm,i

)H

R−1
η,m

(

Su,m + Ûm,i

)

+Ψm,i

)−1
(

Su,m + Ûm,i

)H

R−1
η,mym.

(3.57)

The alternate estimation of um and hch,m is then repeated for NEM iterations until convergence is

achieved.

3.3.5 Simulation Results

The simulation results reported here are from the numerical performance evaluation of the nar-

rowband EM-based ML sub-channel estimator. An ITU Veh-A channel was employed as channel

model, at a bandwidth of 10 MHz and sampling rate M/T = 15.36 MHz. The FBMC/OQAM sys-

tem was employed with M = 256 subcarriers, from which 210 were occupied with training and

data symbols, with the rest being inactive. The resulting subcarrier spacing is 60 kHz. The proto-

type is an RRC filter with K = 4 (of length LP = 1025) and roll-off one. With this configuration

and scenario, Lch,m = 5 taps for the narrowband multipath sub-channels and Le = 5 taps for the

corresponding per-subcarrier equalizers were seen to be sufficient for all subcarriers. Preamble-

based channel estimation was performed, with Lo observations per subcarrier. This corresponds to

a training sequence of Lx = 19 + Lo FBMC symbols. 16-QAM was adopted for FBMC/OQAM

and 32-QAM for CP-OFDM. Moreover, the CP length was Lcp = 64. With this combination

of constellation size and CP length, the two systems achieve the same data throughput. For the

training sequences, pseudorandom QPSK symbols were employed. Monte-Carlo simulations were

run on 200 channel realizations for different Eb/N0. For calculating the bit error rate (BER), 100

FBMC data symbols were transmitted after training.

In Fig. 3.4, the NMSE of the narrowband channel estimation as a function of Eb/N0 is depicted

for different number of observation Lo and for different numbers of iterations NEM. Also the re-

sults for the ML narrowband channel estimation with known training on the adjacent subcarriers,

i.e. no ICI, are shown as references. We can observe a considerable loss in NMSE for the EM
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Fig. 3.4. NMSE as a function of Eb/N0 for ML estimator, different number of observations and EM itera-

tions.

based estimator that increases with the Eb/N0. The coresponding BER as a function of Eb/N0 is

shown in Fig. 3.5. The results for perfect channel state information for both FBMC and OFDM are

included for comparison and as references. We can observe that for the BER the gap between the

two estimation methods is not so high as the NMSE curves show. We can also note that for suffi-

ciently many observations and iterations, very good estimates of the subchannels can be achieved

for a broad range of Eb/N0. Regarding the convergence of the algorithm, it was observed in the

experiments that it practically always provides a stable solution after a certain number of iterations.

3.4 Broadband CIR Estimation

Now based on the linear model in (3.33) and analogous to the previous section on narrowband

channel estimation, we will provide here also the four estimators, i.e. the LS, ML, MMSE and ML

combined with EM algorithm.

3.4.1 LS Estimation

The optimization for the LS estimation for the broadband model is given by

ĥch = argmin
hch∈CLch

‖y − Shch‖22 (3.58)

we have the estimate

ĥch =
(

SHS
)−1

SHy. (3.59)
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The covariance matrix of the estimation error ∆ĥch = (ĥch − hch) broadband LS estimator is

given by

R∆ĥLS
= E

[

∆ĥch∆ĥ
H

ch

]

=
(

SHS
)−1

(3.60)

The theoretical MSE of the broadband LS estimator, that in this case it is equal to the Cramér-

Rao Lower Bound (CRLB) is given by

ǫLS =
σ2Mf

M
tr
{

R∆ĥLS

}

=
σ2Mf

M
tr
{

(

SHS
)−1
}

, (3.61)

where Mf is the total number of subcarriers occupied with either data or training. In practical

deployment of FBMC Mf < M to take advantage of the spectral containment of the prototype

filter and to leave a band-guard to the adjacent channel, similar to what is also done in CP-OFDM.

In this case, R∆ĥLS
will become ill-conditioned, i.e. the ratio between the largest and the smallest

eingenvalue becomes too large. The intuitive explanation is that we are not able to estimate the

channel in the region of the spectrum where there is neither training nor data transmitted, i.e. there

is no excitation our sounding signal in those regions of the channel. In this case the calculation of

the inverse will explode and some numerical measure has to be taken.

We have decided to utilize a pseudo-inverse with the help of the Singular Value Decomposition

(SVD) as a measure to mitigate the numerical overrun of the inverse. The total number of singular

values of R∆ĥLS
is Lch—its dimensions are Lch × Lch—and it can be proven that only NSV =

⌈LchMf

M
⌉ singular values need to be inverted to obtain the best theoretical MSE performance. As

a consequence, for the theoretical MSE only the sum of the inverted singular values need to be

performed. Later, in the simulation results, we will show the effect of the use of the pseudo-inverse

in the measured MSE.
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3.4.2 ML Estimation

We can see that in (3.33) the noise vector η is Gaussian distributed with zero mean and covariance

matrix Rη = σ2
νΓΓ

H = diag(Rη,0,Rη,1, ...,Rη,Mo−1) and the observation y given hch is then

Gaussian distributed. The ML estimate of hch in this case is given by

ĥch = arg max
hch∈CLch

p(y|hch) = argmin
hch

J(hch),

=
(

SHR−1
η S
)−1

SHR−1
η y, (3.62)

where

J(hch) = (y − Shch)
HR−1

η (y − Shch) (3.63)

and we assume here that (SHR−1
η S) is non-singular. Moreover, the covariance matrix of the esti-

mation error ∆ĥch = (ĥch − hch) of the broadband ML estimator is given by

R∆ĥch
= E

[

∆ĥch∆ĥ
H

ch

]

=
(

SHR−1
η S
)−1

. (3.64)

As a consequence, the theoretical MSE of the broadband ML estimator is given by

ǫML =
σ2Mf

M
tr
{

R∆ĥch

}

. (3.65)

When multicarrier systems like FBMC or CP-OFDM are deployed, the number of subcarriers

filled with data and training Mf is smaller than M , in order to allow for upsampling, filtering and

D/A conversion. Even if all Mf subcarriers are only filled with training symbols, the estimation

of the broadband CIR can only be performed in a fraction of its total frequency response. As a

consequence (SHR−1
η S) will become ill conditioned or, most probably, singular. The reason is that

the portions of the channel frequency response that are not excited cannot and need not be reliably

estimated.

To solve this problem we define the downsampled (DS) broadband CIR vector hDS ∈ C
LhDS

that can be estimated in the occupied spectrum. Then we define the linear transformation hch =
AhDS, that performs a fractionally upsampling of hDS by a factor of Lfrac = Lch/LhDS

, where

LhDS
= ⌊Mf

M
Lch⌋. This operation is performed in three steps: upsampling by a factor of Lch, low-

pass filtering and downsampling by a factor LhDS
. Mathematically, this can be described by

A = JA
DS

[

0A ILhDS
Lh

0A

]

HintJUS ∈ R
Lh×LhDS , (3.66)

where JA
DS is a downsampling matrix with its ℓ-th row given by eTq ∈ {0, 1}(LhDS

Lch) for q= (ℓ −
1)LhDS

+ 1 and ℓ ∈ {1, 2, ..., Lch}, JUS is an upsampling matrix with its ℓ-th column given by eq ∈
{0, 1}(LhDS

Lch) for q= (ℓ − 1)Lch + 1 and ℓ ∈ {1, 2, ..., LhDS
}, Hint ∈ R

(L
DS

Lch+2(dg−1))×(LhDS
Lh) is

a convolution matrix obtained from the interpolation filter gint ∈ R2dg−1, 0A ∈ {0}(LhDS
Lch)×(dg−1).

gint[n] is taken as an FIR approximation of a raised cosine (RC) filter with a sharp roll-off α =
0.001, transfer function degree of Lgint

= 10LhDS
Lch and group delay dg = 5LhDS

+ 1.

By substituting h = AhDS in (3.33) we can calculate the new ML estimator to obtain

ĥDS =
(

AHSHR−1
η SA

)−1
AHSHR−1

η y, (3.67)

where now
(

AHSHR−1
η SA

)

is neither ill conditioned nor singular and the corresponding MSE is

given by

ǫDS =
σ2
νMf

M
tr
{

(

AHSHR−1
η SA

)−1
}

. (3.68)
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3.4.3 MMSE Estimation

Let us here also assume that the power delay profile of the broadband impulse response is known

a priori. In other words, the covariance matrix of hch, here called Rhch
, is provided to the channel

estimator. This can be done via estimation of the matrix from other reference symbols or other

source of information about the environment. In this case, another alternative is to minimize the

MSE of the channel estimation, which is formulated as

ĥch = argmin
hch∈CLch

E
[

‖y − Shch‖22
]

. (3.69)

By solving (3.69), one can find that the MMSE solution for the broadband channel estimation is

expressed as

ĥch = Rhch
SH
(

SRhch
SH +Rη

)−1
y. (3.70)

Finally, the MSE of the broadband MMSE estimator is given by

ǫMMSE = tr
{

R∆ĥch

}

= tr

{(

ILch
−Rhch

SH

(

SRhch
SH +

σ2Mf

M
Rη

)−1

S

)

Rhch

}

. (3.71)

In the case of the broadband MMSE estimator, there is no conditioning problem for the matrix

that has to be inverted, at least for typical Eb/N0 values. Only for very high Eb/N0 values some

numerical measure has to be taken, for example, the SVD approach mentioned for the LS estimator

can be used.

3.4.4 Simulation Results Comparing LS, ML and MMSE Estimators

For the simulations, the same scenario is considered as previously, where the length of hch is

Lch = 36. Of the M = 256 subcarriers, either all or only 111 were carrying training signals. As

previously, QPSK pseudo-random training sequences were employed, of length Lx = Lo + 19
symbols were employed. The parameter Me gives the distance (in frequency) between neighbor-

ing pilot subcarriers. It thus denotes how densely or sparsely were the subcarriers occupied with

training sequences. Thus, Me = 1 means that all 210 subcarriers are used for the estimation while

Me = 7 implies that only 37 subcarriers were used as pilot tones.

In Fig. 3.6, the MSE performance of the LS, ML and MMSE estimators and for a different

number of observations is depicted. As expected the MMSE provides the best MSE performance

and increasing the number of subcarriers—reducing Me—used for channels significantly improves

the performance. It is worth noting that we have reduced the number of observations Lo in the last

case.

We show some simulation results for the case Mf = 210 in Fig. 3.7. In this case only

NSV = ⌈LhMf

M
⌉ = 30 singular values are inverted. One can see the error floor because of the

bad approximation of the inverse.

Again for Mf = 210, in Fig. 3.8 we have also employed the pseudo-inverse, but now NSV = 32.

We can see there that the simulated MSE is closer to the CRLB for wider range of Eb/N0

In Fig. 3.9, the result of equalizing these channels with the WL MMSE equalizer of [75,77] of

length 5 and with 16-QAM data is shown. Again, in this plot the perfect CSI case is included for

the sake of the comparison.
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3.4.5 ML Channel Estimation via EM

We now assume that the Ums in (3.33) are unknown, this means that the subcarriers adjacent to

the ones with training contain data. Moreover, in Section 3.3.4 and in [6] we have employed the
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subcarrier model where a narrowband propagation channel was estimated in each subcarrier. Now

we modify the subcarrier observations vector to contain a mix of two models: for the training or
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reference symbols part we take the broadband model and for the unknown symbols part we will

take the narrowband model.

Now, we can rewrite the observations vector in (3.29) obtained for each subcarrier at the re-

ceiver as

ym = Su,mhch +Umhch + ηm

= Su,mhch +U′
mhch,m + ηm,

= Su,mhch +U′
mBmhch + ηm,

= Su,mhch +Hmu
′
m + ηm

= Su,mhch +HmHu,mxu,m + ηm, (3.72)

where Hm ∈ C
Lo×Lg̃′ , with Lg̃′ = Lch,m + Lḡ′ − 1 and Lḡ′ = ⌈2LP−1

M/2
⌉, is a convolution matrix

obtained from the narrowband propagation channel hch,m ∈ CLch,m observed in each subcarrier

that is calculated from the broadband channel by the transformation hch,m = Bmhch. Thereby, the

following definition holds

Bm =
[

ILch,m
0B1

]

FH
Lch,mMi

[

0B2 ILch,mMi
0B3

]

FNf

[

ILch

0B4

]

,

with FNf
being an Nf-DFT matrix, Nf = MLch,mMi, 0B1 ∈ {0}Lch,m×(Lch,m(Mi−1)), 0B2 ∈

{0}(Lch,mMi)×(kLch,mMi), 0B3 ∈ {0}(Lch,mMi)×((M−1−k)Lch,mMi), 0B4 ∈ {0}(Nf−Lch)×Lch , Mi is a reso-

lution factor for the calculation’s precision of the hch,ms.

Moreover, the following equalities hold

Umhch = U′
mBmhch = U′

mhch,m = Hmu
′
m = HmHu,mxu,m, (3.73)

where U′
m is a Hankel matrix obtained for the narrowband subcarrier model. Note that Hu,m ∈

C
Lg̃′×2L′

t and xu,m ∈ C2L′

t , where L′
t = Lg̃′ + Lo − 1.

Stacking all the subcarrier observations, we get











y0

y1
...

yMo−1











=











Su,0

Su,1
...

Su,Mo−1











h+HE











u′
0

u′
1
...

u′
Mo−1











+











Γ0

Γ1
...

ΓMo−1











ν,

y = Suhch +HEu
′ + η

= Suhch +Uhch + η, (3.74)

where U = [BT
0U

′ T
0 ,BT

1U
′ T
1 , ...,BT

Mo−1U
′ T
Mo−1]

T and HE = diag(H0,H1, ...,HMo−1).
Although the exact values of u′

m are unknown, their statistics are known. We then de-

fine the interference covariance and pseudo-covariance matrices as Ru,m =
σ2
d

2
Hu,mH

H
u,m and

Pu,m =
σ2
d

2
Hu,mdiag(1,−1, 1, ...)HT

u,m, where xu,m was assumed to be i.i.d. and Gaussian dis-

tributed with zero mean and variance σ2
d/2. This is usually a good approximation, although xu,m is

composed of symbols taken from a finite constellation set.

For the linear model of (3.74), the ML estimator has no closed form solution due to the unknow

component and one way to calculate it is by employing the iterative EM algorithm [55], that works
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here as follows: Before the first iteration, an initial channel estimate is performed by ignoring U.

This estimate is given by

ĥch,0 = (SH
u R

−1
η Su)

−1SH
u R

−1
η y. (3.75)

Then, the iterative process starts. For each iteration i, the algorithm is divided into two steps: the

E-step and the M-step. In the E-step, an approximation of the ML function (here its derivative) is

obtained by taking its expected value conditioned on the channel estimate in the iteration before

and the observed sequence, as follows

E

[

∂J(hch,i)

∂hH
ch,i

∣

∣

∣

∣

∣

y,hch,i

]

=
(

SH
u R

−1
η (Su + E[U]) + E[U]HR−1

η Su + E
[

UHR−1
η U

])

hch,i

− (Su + E[U])HR−1
η y.

The result is a function of E[U] and E[UHR−1
η U], and E[U] is a function of E[u]. E[u] = ûi is

actually an estimate of the interference term u in the i-th iteration. Furthermore, one can show that

E[UHR−1
η U] =

Mo−1
∑

m=0

E[UH
mR

−1
η,mUm] =

Mo−1
∑

m=0

BH
mE[U

′H
mR−1

η,mU
′
m]Bm.

To express the above expectation also in terms of the estimate ûi, one first has to write the ma-

trix U′
m as a function of the vector u′

m as U′
m =

∑Lch,m

ℓ=1 Dℓu
′
me

T
ℓ , where Dℓ=

[

0D1 ILo
0D2

]

is a matrix that selects Lo rows of u′
m, 0D1 ∈ {0}Lo×(ℓ−1), 0D2 ∈ {0}Lo×(Lch,m−ℓ) and eℓ ∈

{0, 1}Lch,m . We then obtain

E
[

U′H
mR−1

η,mU
′
m

]

= E

[

Lch
∑

λ=1

eλu
′H
mDT

λR
−1
η,m

Lch
∑

ℓ=1

Dℓu
′
me

T
ℓ

]

=

Lch
∑

λ=1

eλ

Lch
∑

ℓ=1

E
[

u′H
mDT

λR
−1
η,mDℓu

′
m

]

eTℓ

=

Lch
∑

λ=1

eλ

Lch
∑

ℓ=1

tr
{

DT
λR

−1
η,mDℓE

[

u′
mu

′H
m

]}

eTℓ .

Furthermore,

E
[

u′
mu

′H
m

]

= Rǫ,m,i + E[u′
m]E[u

′
m]

H = Rǫ,m,i + û′
m,iû

′H
m,i, (3.76)

where Rǫ,m,i is the covariance matrix of the estimation error of u′
m in the i-th iteration. Conse-

quently, we obtain

E
[

U′H
mR−1

η,mU
′
m

]

= Ψm,i + E[U′
m]

HR−1
η,mE[U

′
m], (3.77)

with [Ψm,i]ℓ,λ = tr
{

DT
ℓ R

−1
η,mDλRǫ,m,i

}

. Then it follows that

E[UHR−1
η U] =

Mo−1
∑

m=0

BH
m

(

Ψm,i + E[U′
m]

HR−1
η,mE[U

′
m]
)

Bm,

= Ψi + ÛH
i R

−1
η Ûi, (3.78)
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where ÛH
i R

−1
η Ûi =

∑Mo−1
m=0 BH

mÛ
′H
m,iR

−1
η,mÛ

′
m,iBm, and Ψi =

∑Mo−1
m=0 BH

mΨm,iBm.

Finally, we define Ŝi = Su + Ûi and write

E

[

∂J(hch,i)

∂hH
ch,i

∣

∣

∣

∣

∣

y,hch,i

]

=
(

ŜH
i R

−1
η Ŝi +Ψi

)

hch,i − ŜH
i R

−1
η y.

Given the estimate of hch and the training, one can estimate u′. It can be shown that the entries

of u′ are alternating purely real and purely imaginary, because in addition to the OQAM data

signals in subcarriers m−1 and m+1 also the impulse response from the two adjacent subcarriers

have alternating real and imaginary coefficients. As a consequence, the interference term u′
m has

improper statistics and the following Widely Linear MMSE [66] estimator can be employed

E[u′
i] = û′

i = W1yu +W2y
∗
u, (3.79)

where yu = y − Sĥi ≈ ĤE,iu
′ + η,

W1 = (Ruyu −PuyuR
−∗
yu P

∗
yu)(Ryu −PyuR

−∗
yu P

∗
yu)

−1,

W2 = (Puyu −RuyuR
−1
yu Pyu)(R

∗
yu −P∗

yuR
−1
yu Pyu)

−1,

while Ryu = ĤE,iRuĤ
H
E,i +Rη, and Ruyu = RuĤ

H
E,i. The pseudo-covariance matrices are given

by Pyu = ĤE,iPuĤ
T
E,i and Puyu = PuĤ

T
E,i, where Ru = diag(Ru,0, ...,Ru,Mo−1), and correspond-

ingly for Pu. One can see that all covariance matrices are block diagonal and the estimation of u′

in (3.79) is equivalent to estimating the u′
ms subcarrier-wise.

The corresponding error covariance is given by

Rǫ,i = Ru −W1R
H
uyu −W2P

H
uyu , (3.80)

where Rǫ,i = diag(Rǫ,0,i,Rǫ,1,i, ...,Rǫ,Mo−1, i).
Finally, the M-step is performed, where J(hch,i) is minimized, resulting in the new channel

estimate

ĥch,i+1 = AĥDS,i

= A(AH(ŜH
i R

−1
η Ŝi +Ψi)A)−1AHŜH

i R
−1
η y,

where A was defined in (3.66) and we employ the ML estimator from (3.67). The estimation of u

(E-Step) and hch (M-Step) are then repeated NEM-times until convergence is achieved.

3.4.5.1 Simulation Results

For the performance simulations, the parameters were M = 256, Mf = 210, K = 4 and an

RRC prototype with roll-off one. The total signal bandwidth is 12.6 MHz and the sampling rate

is M/T = 15.36 MHz, giving a subcarrier bandwidth of 60 kHz and a symbol duration of T =
16.67 µs. The channel model was the ITU-Vehicular A without mobility. The CIR duration is

Lh = 36 samples.

The observations were taken from every 4-th subcarrier. Then we can consider two cases: for

a known u, 158 subcarriers are filled with training and the rest with unknown symbols, while for

unknown u, only 53 subcarriers are filled with training and the rest with further unknown symbols.



92 3. Channel Estimation

We have used random QPSK training symbols. The NMSE of the channel estimation was averaged

over 100 channel realizations, each was also averaged over 10 training sequences and, for each

training, averaged over 10 noise realizations. In Fig. 3.10, the theoretical and numerical NMSEs

for the different estimators are depicted as a function of Es/N0. Further parameters are Lo = 4
and for the ML-EM algorithm Lch,m = 3. The theoretical NMSE and the curve where u is known
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Fig. 3.10. NMSE as a function of Es/N0.

show a lower bound on the NMSE performance. The curve for NEM = 0 shows an upper bound,

since there the interference from data carrying subcarriers degrades the estimation performance.

The ML-EM curves show the performance for NEM = 2, 5, 7, 10 and 20 iterations. One can see

that for 10 and 20 iterations the performance is nearly the same, showing that no more than 10

iterations are necessary. A great improvement compared to 0 iterations is achieved and a low level

of MSE is achieved.

3.4.6 Spectrally Efficient CIR Estimation

One can see that the model in (3.33) is dependent on the inputs of three adjacent subcarriers and,

in addition to that, the number of input symbols to generate Xℓ is dependent on the prototype

length LP, on the CIR length Lh, and on the number observations Lo collected at the receiver side.

Usually, the length of the training should be as short as possible and not necessarily depend on

all those factors. Actually, it is usually desired to have short training sequences distributed over

the time vs. frequency plane, as for example in LTE standards. In this way one could consider

that short training sequences are interpolated in the frequency axis by data subcarriers and data

symbols which are transmitted immediately before and after the training sequences, without any

guard intervals (or empty subcarriers) neither in time nor in frequency.

Let us now define the desired training sequence length Lt < Lx and the constants Ld1 =
⌊Lx−Lt

2
⌋ and Ld2 = ⌈Lx−Lt

2
⌉. Then, we decompose Xℓ = Xt,ℓ + Xd,ℓ, where Xt,ℓ is generated
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from the vector
[

0T
Ld1

xT
t,ℓ 0T

Ld1

]T ∈ CLx containing training symbols and Xd,ℓ is generated from

the vector
[

xT
d1,ℓ 0T

Lt
xT

d2,ℓ

]T ∈ CLx containing data symbols, with xt,ℓ ∈ CLt , xd1,ℓ ∈ CLd1 and

xd2,ℓ ∈ C
Ld2 . The reason for this choice of the values of Ld1 and Ld2 is that the prototype filter IR

is symmetric and its energy is concentrated in the coefficients in the middle of the IR.

We further define the following observations vector as a function of two input terms: a training

dependent and an interference dependent one

ym = (Su,m +Um)hch + Γmν, (3.81)

where for the model in (3.33) one can clearly see that Um = 0. Then, three cases can be considered

for an spectral efficient channel estimation: (3.33)

• Case 1, ICI limited estimation: Xm+1 = Xd,m+1 and Xm−1 = Xd,m−1 contain only data

symbols and Xm = Xt,m is fully filled with training, so that the following definitions hold

Sm = Xt,mH̄m,m and Um = Xd,m−1H̄m,m−1 +Xd,m+1H̄m,m+1.

• Case 2, ISI limited estimation: We use the decomposition of Xℓ to get the matrices Sm =
∑m+1

ℓ=m−1Xt,ℓH̄m,ℓ and Um =
∑m+1

ℓ=m−1Xd,ℓH̄m,ℓ.

• Case 3, ICI and ISI limited estimation: We decompose only Xm to get the matrices Sm =
Xt,mH̄m,m and Um = Xd,mH̄m,m +Xd,m−1H̄m,m−1 +Xd,m+1H̄m,m+1.

Similar to (3.33) the observations can be stacked to get

y = (Su +U)hch + η. (3.82)

The estimator in (3.67) can then be employed and, for the moment, the interference term Uhch

is just ignored. In Section 3.4.5, [6] and [5] we have proposed methods to iteratively estimate

the hch and U for the Case 1 based on the EM algorithm and we have shown that the estimation

quality can be significantly improved. Extensions for the cases 2 and 3 are also possible, but were

not considered in this work.

3.4.6.1 Simulation Results

For the performance evaluations, the parameters were M = 256, Mf = 156, K = 4 and the

prototype was an RRC filter with roll-off one. The total signal bandwidth is 12.6 MHz and the

sampling rate is M/T = 15.36 MHz, giving a subcarrier bandwidth of 60 kHz and a symbol

duration of T = 16.67 µs. The channel model was the ITU-Vehicular A without mobility. The CIR

duration is Lch = 36 samples.

The observations were taken from every 4-th subcarrier, resulting in Mo = 39 observations

subcarriers. For Cases 1 and 3, only those 39 subcarriers are filled with training or reference sym-

bols. 117 subcarriers are filled with training symbols for the interference free estimation and for

Case 2. All the other subcarriers in all cases are filled with random Quadrature Phase-Shift Key-

ing (QPSK) symbols, which are assumed as unknown at the receiver. Moreover, we have used

random QPSK training symbols with symbol period T . The NMSE ǭ = E[ǫDS]
E[||hDS||] of the channel

estimation was averaged over 100 channel realizations, each was also averaged over 10 training

sequences and, for each training, averaged over 10 noise realizations.

In Fig. 3.11, we show simulation results for both broadband and narrowband models for Lo = 4
observations. For Cases 2 and 3, the training length in the T/2 period is Lt = 4, which is equivalent

to two QAM symbols in the period T . For the narrowband model, we have used Lhm
= 3 for each

subcarrier. We can see that the interference worsens the performance of both channel estimators
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Fig. 3.11. MSE as a function of Es/N0 for Lt = 4.

as expected. The use of different models seems to make no difference in the results for this set of

parameters.

One extreme example is shown in Fig. 3.12, where the main difference is for Cases 2 and

3, where the training length is now Lt = 2 in the T/2 period, what is equivalent to one QAM

symbol in each training subcarrier. Here the training length is minimal and, for the three cases, one

can see that both broadband and narrowband based models show the same performance when the

interference is ignored.

To better illustrate the effect of longer training sequences, we show in Fig. 3.13 an example

where Lt = 6, i.e. three QAM symbols long. It is possible to see that the performances for Cases

1 and 3 gets very close to each other, because the ISI in this case becomes negligible compared

to the ICI, which dominates also over the noise for a wide range of Es/N0. It is also possible to

see that Case 2 gets very close to the interference free case for the broadband based model and

for the narrowband not that much. The reason for that is the length of the necessary interference

free training length for this model. If we extend the training to Lt = 8—corresponding to four

QAM symbols in period T—the result becomes identical to the interference free one for the same

parameters.

3.5 Summary and Discussion

In this Chapter we have presented two basic approaches for channel estimation in FBMC systems.

The first one is based on a narrowband modeling of the propagation channel, i.e. an impulse

response per subcarrier is estimated per subcarrier. The equalizer that is then designed also per

subcarrier will then utilize the corresponding impulse response. The narrowband approach assumes

that training symbols are inserted in each subcarrier utilized for the estimation. In the subcarriers
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Fig. 3.13. MSE as a function of Es/N0 for Lt = 6.

where no training symbols are inserted, the estimation can be done by applying an interpolation

in the frequency axis for each of the coefficients in an analogous way as frequently employed

in CP-OFDM. If the channel presents time variations and the training symbols are periodically
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transmitted, two alternatives can be envisioned to obtain a more accurate estimation in the interval

between training symbols: the use of adaptive algorithms or also a one dimensional interpolation

for each of the coefficients of the impulse responses.

The second approach is based on a broadband model of the propagation channel, where one

single impulse response is estimated and can be employed in the design of the equalizer of all active

subcarriers. Not all active subcarriers need to have training symbols inserted, but it is assumed that

they are uniformly distributed across the subcarriers with a distance that depends on the level of

frequency selectivity.

The choice between narrowband or broadband approach will depend on different characteris-

tics of the system, the environment, complexity and required spectral efficiency. The narrowband

approach presents some similarities to the conventional channel estimation in CP-OFDM and may

employ a per sub-carrier parallel processing during the estimation. Depending on the level of fre-

quency selectivity and for a given total number of active subcarrier, different levels of spectral

efficiency can be achieved for narrowband or broadband, since the total number of training sym-

bols necessary to achieve a certain performance may be different.

For both narrowband and broadband approaches, we have presented the EM based ML esti-

mation that assumes that training symbols are only inserted in the observations subcarriers and

their adjacent can convey data symbols. This improves the spectral efficiency at the cost of higher

complexity for the estimation.

Finally, we also presented three conventional objectives for the design utilizing both narrow-

band and broadband approach, namely LS, ML and MMSE. The LS objective is the simplest

one and does not require any information about the statistics of the noise, resulting in a very low

complexity to calculate the estimation matrix. The ML estimation requires knowledge about the

statistics of the noise, which requires a higher complexity to obtain the estimation matrix, but pro-

vides better performance than the LS objective for low noise levels. The MMSE objective requires

knowledge about the statistics of both noise and channel, but will provide the best performance in

low SNR scenarios.

From the comparison discussed above, it becomes clear that the choice between LS, ML and

MMSE will basically depend on the computational capabilities, availability of noise and channel

statistics, and SNR level. It is worth noting that in this work we have presented the EM based esti-

mation only based on the ML estimator, but this can be further extended for the MMSE objective.
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4.1 Introduction

One of the main advantages of MultiCarrier Modulation (MCM) schemes for broadband wireless

communications is their robustness to multi-path propagation1 channels, stemming from the fact

that they divide the channel spectrum in very narrow subbands and, in the extreme case, no fre-

quency selectivity, i.e., only flat fading, is observed in each of them. For an increased spectral effi-

ciency, most practical MCM schemes have their subbands overlapped in frequency. In CP-OFDM,

ISI and ICI can be completely removed if the CP is at least as long as the channel delay spread.

Thus, at the expense of reducing the spectral efficiency due to the CP redundancy, the subchannels

corresponding to the different subbands are completely decoupled. The equalization in CP-OFDM

then becomes trivial and can be performed by a single complex multiplication per subcarrier, giv-

ing rise to the so-called single-tap equalizer. Usually this is of the Zero Forcing (ZF) type, which

directly inverts the frequency response of the channel at each subcarrier. More sophisticated equal-

izers, such as the MMSE one, are adopted if the noise and channel statistics are known or estimated.

FBMC/OQAM systems do not have to employ a CP and they can enjoy (real-field) orthogo-

nality in ideal propagation scenarios. This also means that full orthogonality exists, by considering

the QAM symbols before the OQAM staggering at the SFB and after OQAM de-staggering at the

AFB, as originally proved for PR MDFT FilterBank (FB) [43] and later for FBMC/OQAM systems

in [68]. In other words, the so-called self-interference can easily be removed by the OQAM de-

staggering. For realistic propagation scenarios, where channel distortions are present, the symbols

received at the AFB output are contaminated by both ISI and ICI, which are channel-induced. With

mildly frequency selective channels, a single-tap equalizer, like the one presented in Section 4.2.1,

should be sufficient to compensate for the channel effects and minimize both kinds of interference.

However, with moderate to highly frequency selective channels, more elaborate equalizers have

to be used, which will also increase the receiver complexity. Such equalizers can be designed and

implemented in the time or the frequency domain, and they have the ability to compensate also for

time and phase shifts.

Another advantage of FBMC/OQAM systems, apart from the CP-free transmission, is that

they provide a flexibility in choosing the subcarrier spacing. In usual cases where a higher sym-

bol rate per subcarrier is necessary to reduce latency or frequency offset/phase noise are relevant

impairments, a higher subcarrier bandwidth (large subcarrier spacing) can be considered. The con-

sequences of this include an increase in the complexity of the per-subcarrier equalization due to

1We mainly refer to wireless channels here although MCM and the solutions presented in this chapter could also

be employed in broadband wireline systems, e.g., in Digital Subscriber Line (DSL), power line, and fiber optics

communications, where frequency selective channels are also involved.
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the larger number of taps required. In other practical cases, where a higher granularity in frequency

domain is desired, a higher PAPR can be tolerated2, and a longer symbol duration can be accepted,

narrower subbands (smaller subcarrier spacing) can be considered. Then equalizers of low com-

plexity can be employed, with the single-tap one being the simplest possible.

A first solution to compensate for the effects of multi-path propagation in FBMC/OQAM sys-

tems was presented in [33], where it was shown that it is possible to completely eliminate ISI,

ICI, compensate for time deviations and demodulating carrier phase deviations if a per-subcarrier

T/2-spaced3 equalizer with a sufficient number of taps is employed, where T is the symbol pe-

riod. The equalizer coefficients are computed using an MMSE steepest descent adaptive algorithm.

The analytical solution for the multi-tap equalizer presented in Section 4.2.2 shares many objec-

tives and properties with the one in [33]. It is worth mentioning that in [33] two structures for

the implementation of the fractionally-spaced equalizer are introduced, which correspond to the

equalizer operating at the 2/T or the 1/T sampling rate. Much later, in [79], both fractionally- and

symbol-spaced adaptive steepest descent equalizers were proposed. In the non-fractionally-spaced

case, three equalizers per subcarrier, which combine the output of the subcarrier of interest and

its neighbors and are placed after the OQAM de-staggering, are employed to remove ISI and ICI.

In the fractionally-spaced case, also three equalizers per subcarrier are employed and two variants

are provided: with and without the OQAM destagering in the adaptation loop. In [57], a combined

equalization and echo cancellation solution was presented, where a fractionally-spaced FIR filter

for the equalization and another for the echo cancellation part are employed. For the latter, a pre-

processing before the FIR filter is included to emulate the SFB- and AFB-equivalent response. The

per-subcarrier equalization for odd-stacked FBMC/OQAM systems was revisited in [37], where

specific equalizer structures were presented to compensate for different levels of frequency selec-

tivity. In [35], an equalizer similar with the one presented in Section 4.2.2 was designed so as to

cope with ICI from all subcarriers and channel time selectivity. An evaluation of the spectral effi-

ciency as a function of the time and frequency spread was performed and showed that the MMSE

multi-tap equalizer significantly increases spectral efficiency. To improve the robustness to ISI and

ICI, a combination of Walsh-Hadamard transform with FBMC/OQAM was proposed in [2]. The

effect of the transform is to spread the symbols over all subcarriers, resulting in frequency diver-

sity. An MMSE equalizer was employed at the receiver. It is worth mentioning here that frequency

diversity can also be achieved by combining bit-interleaved channel coding and the equalization

schemes presented in this chapter. The authors in [56] performed an analysis of ISI and ICI and

proposed a new equalizer structure that uses the interference effect in a positive way. A single-

tap ZF equalizer before OQAM de-staggering is combined with an interference estimation and

cancellation scheme applied after the de-staggering, on a per-subcarrier basis.

For mildly frequency selective channels, the classical single-tap ZF equalizer, applied before

the OQAM destaggering, was compared to two alternative equalizers in [45]: a dispersion receiver,

where the AFB is designed to match SFB-plus-channel and ZF equalization is then applied, and an

interference-free receiver, which pre-processes the received signal before the AFB, to transform the

equivalent channel to one with purely real or imaginary Channel Frequency Response (CFR), thus

allowing the interference to be completely eliminated. It was shown that all three receivers behave

2It should be noted that, while the subcarrier spacing directly affects the number of active subcarriers in the used

frequency band, also the PAPR properties become an important concern in the FBMC/OQAM system dimensioning.
3We refer here to a fractionally-spaced equalizer because its inputs are the signals before the OQAM de-staggering

or complex symbols before the Pulse Amplitude Modulation (PAM) demodulation, depending on which subcarrier

model is employed.
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similarly for mildly frequency selective channels. If the channel dispersion increases, the first one

presents better performance than the other two. In [40], also for mildly frequency selective channels

and considering channel coding, a method for calculating the Log-Likelihood Ratio (LLR) values

was derived for the specific OQAM signaling in FBMC systems when single-tap ZF equalizers are

employed. More recently, a single-tap equalizer that maximizes the Signal-to-Interference Ratio

(SIR) was derived in [53], again for mildly frequency selective channels. It was shown that the

maximum SIR criterion leads to improved performance compared to the ZF one. The authors of

[69] propose a per subchannel joint equalizer and AFB filter design method based on maximizing

SINR. They follow an iterative two-step approach, where in the first step the equalizer and in

the second step the Receiver (RX) prototype filter are optimized, in an alternating manner. The

convergence of the algorithm is proved and an extension to MIMO is also introduced.

The design of the equalizer should take into account the signal model according to the location

of the equalizer. If a time-domain filtering, like when the polyphase network based structure is

employed, the equalizer is typically located in each subcarrier after the FFT and before the OQAM

staggering - although as shown in Chapter 2 equalizer and OQAM destaggering can be combined

to reduce the complexity. In this case, the corresponding subcarrier filtering should be considered

during the equalizer design. While if a frequency domain filtering is employed, the equalizer can

be placed in two different positions: after the subcarrier frequency domain filtering and before the

OQAM de-staggering; or before - or jointly realized - with the subcarrier frequency domain filter-

ing. For the first location, the design and implementation should be identical to those used in the

polyphase based structure. In the second case, the design of the equalizer can be performed by only

considering the FFT operation and the proceeding serial-to-parallel or block overlapped serial-to-

parallel operation. The AFB filter does not need to be considered during the design, although the

equalizer and frequency domain filter coefficients can be combined in one multiplier.

The book chapter in [4] provides a further review of existing channel equalization schemes for

FBMC.

4.2 SISO Equalization and Precoding

4.2.1 Single-tap MMSE Linear Equalizer Design

For mildly frequency selective channels or, in other words, transmission scenarios where the sub-

carrier bandwidth is small compared to the coherence bandwidth of the channel, a single-tap com-

plex equalizer per subcarrier can be employed, similarly with CP-OFDM systems. Moreover, it

can be assumed, as it is common in MC systems, that the coherence time of the channel covers at

least one MC symbol. With these assumptions, FBMC/OQAM systems have a similar complexity

for their equalization with conventional CP-OFDM, with the difference that the pulse shaping and

the OQAM scheme modify the system model. This needs to be taken into account in order not

to have a poor equalization performance. ISI and ICI limit the performance of the ZF equalizer.

Hence, in the following, a single-tap MMSE equalizer is developed so as to take into account the

effect of the pulse shaping and the OQAM modulation properties.

The pulse shaping at the mth subcarrier, m = 0, 1, . . . ,M−1, is given by (see also Section 2.3)

hm[l] = hP[l]e
j 2π
M

m(l−LP−1

2 ), l = 0, 1, . . . , LP − 1, (4.1)

where hP[l] is the (symmetric and unit energy) prototype filter impulse response with LP coef-

ficients, M is the (even) number of subcarriers and K is the time overlapping factor. The latter
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should be kept as small as possible so as not only to limit the complexity but also to reduce the

time-domain spreading of the symbols and the transceiver latency. A typical value is K = 4 and

the roll-off factor of the prototype filter is usually set to one. Thus, hm[l] has a non-negligible

overlap in frequency only with its two adjacent filters. Observe that the subcarrier filter response

in (4.1) is the paraconjugate of itself, namely h∗
m[LP − 1− l] = hm[l].

The subcarrier model commonly adopted for a single-tap equalizer design is described in (3.20)

and relies on the assumption that the channel is sufficiently slowly varying in frequency and time

that its CFR is (almost) invariant over the first-order Time-Frequency (T-F) neighborhood of the

given Frequency-Time (F-T) point, (m,n). Then (3.20) applies and the AFB output at subcarrier

m and time instant n can be written as

ym,n ≈ hch,m,n(xm,n−τh + jum,n) + ηm,n, (4.2)

where the PAM symbol xm,n contains the information of interest, jum,n stands for the interference

contributed by its T-F neighbors, and ηm,n is the corresponding noise component. Consider the

complex-valued single-tap equalizer wm,n. The real part of its output is taken to yield an estimate

of xm,n
4

x̃m,n−τh = Re{wm,nym,n} = w(R)
m,ny

(R)
m,n − w(I)

m,ny
(I)
m,n

= w̄T
m,n

(

H̄ch,m,nx̄m,n + η̄m,n

)

, (4.3)

where

x̄m,n =
[

xm,n−τh um,n

]T

H̄ch,m,n =

[

h
(R)
ch,m,n −h

(I)
ch,m,n

h
(I)
ch,m,n h

(R)
ch,m,n

]

w̄m,n =
[

w
(R)
m,n w

(I)
m,n

]T

η̄m,n =
[

η
(R)
m,n η

(I)
m,n

]T

=

[

h
(R)
m h

(I)
m

−h
(I)
m h

(R)
m

]T
[

η
(R)

η
(I)

]

= H̄mη̄, (4.4)

with hm ∈ CLP containing the coefficients of the analysis filter impulse response of the mth

subcarrier and η ∈ CLP containing samples of the noise that is added to the channel output. The

noise is assumed zero mean white Gaussian with variance σ2
η . The AFB output noise, ηm[n], is

then also Gaussian with zero mean but colored and has the same variance σ2
η , because we assume

unitary filters.

The ZF equalizer is a first and straightforward solution for single-tap equalization, that has

been extensively employed in the literature [45]. Similarly to CP-OFDM, the ZF equalizer is given

by wm,n = 1/hch,m,n. But it may not be the best possible option to be employed here, because of

the existing interference, which strongly limits its performance and because it does not take the

influence of the filters into account. Another solution frequently used in practice5 is the Linear

4The decomposition into real-valued vectors and matrices shown here was first introduced in the context of OQAM

equalizers in [70], for Single-Carrier (SC) systems.
5Although the ZF is the mostly commonly encountered solution in the CP-OFDM literature, in practical imple-

mentations, such as in LTE, it is the MMSE that is more often adopted.
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Minimum Mean Squared Error (LMMSE) equalizer, which must take into account the statistics of

the interference and of the noise, in addition to the properties of the OQAM signaling. The latter

solution is given by

w̄opt
m,n = argmin

w̄m,n

E
{

|x̃m,n−τh − xm,n−τh |2
}

=

(

H̄ch,m,n

[

1 0

0 σ2
u

σ2
x

]

H̄T
ch,m,n +

σ2
η

2σ2
x

H̄mH̄
T
m

)−1 [

h
(R)
ch,m,n

h
(I)
ch,m,n

]

, (4.5)

where σ2
d and σ2

u are the variances of the input symbols and the interference term, respectively.

Recalling the variance of the interference σ2
u from (3.18), where it only depends on the prototype

filter. The complex single-tap equalizer is then obtained by de-stacking the two components of

w̄m,n into its real and imaginary parts. An efficient implementation of the single-tap equalizer,

which combines it with the OQAM de-staggering was presented in 2.4.3.

4.2.2 Multi-tap Linear MMSE Equalizer Design

Multi-tap equalizers can be divided into two basic categories depending on how they are computed

and realized. On a per-subcarrier basis, equalizer design and implementation can be performed

both in the time and frequency domains. Moreover, the computation of the equalizer coefficients

does not impose a specific structure to be adopted. This also means that, during the design step, a

specific structure can be assumed, which is not exactly the implemented one. For example, in [37],

the authors base the design of the equalizers on the frequency responses of the channel and the FB

prototype, but the implementation is primarily based on time domain real and complex valued FIR

filters. On the other hand, in the FS-FBMC structure [14] or in the equalizers presented in [62],

multiple frequency bins per subcarrier are assumed, the equalizer is designed in the frequency

domain and implemented as one complex multiplier per frequency bin. Clearly, one multiplier

per frequency bin is not the same as a single tap per subcarrier presented previously and can also

address frequency selectivity at the subchannel level. The frequency domain design can also follow

ZF or MMSE criteria.

This section focuses on classical Tap Delay Line (TDL) structure-based design. One or more

equalizers per subcarrier are represented as FIR filters and their coefficients are then computed. It

is worth noting that, a TDL or any other structure can be implemented. That is, other FIR filter

structures, such as polyphase based, non-recursive lattice, CORDIC-based, etc., can be employed

for the equalizer operation. One example is the efficient polyphase based structure presented in

Section 2.4.3. Moreover, the design that follows can be also effectively implemented in the fre-

quency domain, as long as the number of frequency bins is the same as the number of equalizer

taps in the time domain.

In an FBMC/OQAM system, the SFB combines the M complex-valued QAM input signals

xm[k] = xm[2n] + jxm[2n − 1], m = 0, 1, . . . ,M − 1, generated at a rate of 1/T , into a single

complex-valued signal xSFB[l] of a higher sampling rate, 1/Ts = M/T . The signal is transmit-

ted to the receiver through a frequency selective channel, and white Gaussian noise is added. In

our system, M corresponds to the total number of subcarriers available and Mu is the number of

subcarriers used for transmission. The AFB separates the received signal back into its Mf compo-

nents at the lower rate 1/T per subcarrier. A subcarrier model that can be used to design multi-tap

equalizers is given in Figure 4.1. Oℓ and O′
ℓ represent the staggering and de-staggering operations,

respectively.
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Fig. 4.1. Subcarrier model for the multi-tap equalizer design.

The first operation in the SFB is the OQAM staggering of each input xℓ[k] that generated the

output sequence xℓ[n] as

xℓ[n] =







[

x′
ℓ[n] jx′

ℓ[n− 1] x′
ℓ[n− 2] · · ·

]T

, m+ n is odd,
[

jx′
ℓ[n] x′

ℓ[n− 1] jx′
ℓ[n− 2] · · ·

]T

, m+ n is even.
(4.6)

The input symbol xℓ[k] is split into its real x
(R)
ℓ [k] = x′

ℓ[2n] and j times its imaginary jx
(I)
ℓ [k] =

jx′
ℓ[2n−1] parts and up-sampled by a factor of two. Then depending on the parity of the subcarrier

index that we observe, either x′
ℓ[n] or jx′

ℓ[n] is delayed by exactly T/2 samples and finally these

components are added together. At the receiver, the AFB applies OQAM de-staggering to recon-

struct the complex QAM x̂m[k] symbols from the equalizer outputs x̂m[2n] and x̂m[2n− 1] at the

observed subcarrier m and time slot n.

To have a simple notation for the system in Figure 4.1, we define the following filtering and

downsampling operation, h̃m,ℓ[n] = (hm[l] ∗ hch[l] ∗ hℓ[l]) |l=nM
2

. This represents the overall im-

pulse response from subcarrier ℓ at the SFB to subcarrier m at the AFB, with ℓ ∈ {m−1, m,m+1}.

The resulting filter has Lh̃ =
⌈

2LP+Lch−2
M/2

⌉

coefficients. Moreover, we define the transposed convo-

lution matrix Hm,ℓ ∈ RLeq×(L
h̃
+Leq−1) generated from the impulse response h̃m,ℓ[n], where Leq is

the number of taps of the equalizer. Furthermore, we assume the channel impulse response hch[l]
or an estimate is available.

Also here, we work with a purely real notation and therefore define a purely real input sequence

as x′
ℓ[n], where the relation xℓ[n] = Jℓ,nx

′
ℓ[n] holds with

Jℓ,n =







diag
[

1 j 1 j · · ·
]

, ℓ+ n is odd,

diag
[

j 1 j 1 · · ·
]

, ℓ+ n is even.
(4.7)

This extracts the imaginary constants j from the input signal. We then multiply the transposed

convolution matrix of hm,ℓ[n] from the right by Jℓ,n and obtain H′
m,ℓ = Hm,ℓJℓ,n. Hence we can

write

x̂m[n] = w̄T
m

(

H̄′
m,mx

′
m[n] + H̄′

m,m−1x
′
m−1[n] + H̄′

m,m+1x
′
m+1[n] + Γmη̄

)

, (4.8)
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where we define

x′
ℓ[n] ∈ R

(L
h̃
+Leq−1)×1,

H̄′
m,ℓ =

[

(H′
m,ℓ)

(R)

(H′
m,ℓ)

(I)

]

∈ R
(2Leq)×(L

h̃
+Leq−1),

with ℓ ∈ {m− 1, m, m+ 1},

w̄m =

[

w
(R)
m

w
(I)
m

]

∈ R
(2Leq)×1,

Γm =

[

(Ȟm)
(R) −(Ȟm)

(I)

(Ȟm)
(I) (Ȟm)

(R)

]

∈ R
(2Leq)×2(Leq+L

h̃
−1) and

η̄ =

[

η
(R)

η
(I)

]

∈ R
2(Leq+L

h̃
−1)×1. (4.9)

The matrix Ȟm is obtained by taking every M
2

th row of the convolution matrix generated from the

AFB subfilter impulse response hm[l].
We make here the usual assumption that the input symbols are independent and identically

distributed (i.i.d.) and Gaussian distributed, although they belong in reality to a discrete alphabet.

As a result, the covariance matrix of x′
ℓ[n] can be expressed as E

[

x′
ℓ[n]x

T
ℓ [n]

]

= σ2
dI and, again,

the noise vector η at the AFB input has covariance σ2
ηI.

The multi-tap MMSE equalizer is given by [77]

w̄opt
m = argmin

w̄m

E
{

|x̂m,n − xm,n−ν |2
}

=

(

m+1
∑

ℓ=m−1

H̄′
m,ℓ(H̄

′
m,ℓ)

T +
σ2
η

2σ2
x

ΓmΓ
T
m

)−1

H̄′
m,meν+1. (4.10)

The vector eν+1 ∈ {0, 1}(Lh̃
+Leq−1)×1 contains a unity at the (ν+1)th position and ν is the equalizer

delay typically chosen as ν = 2K + ⌈Leq/2⌉. It can be easily proved that separately solving for

real or imaginary symbols gives the same result. Moreover, there is a number of solutions in the

literature to simplify the matrix inversion above in order to reduce the costs of its implementation.

An efficient implementation of the multi-tap equalizer, which combines it with the OQAM

de-staggering was presented in 2.4.3.

4.2.2.1 Bias Removal

Given an equalizer impulse response for each subchannel, it can be shown that the MSE at its

output is given by

MSEeq
m = σ2

x(1− w̄T
mH̄m,meν+1). (4.11)

On the other hand, the output of the MMSE equalizer is given by

x̂m[n] = αm(xm[n− ν] + ISIm + ICIm + ηm[n]), (4.12)

where ISIm and ICIm are the residual intersymbol and intercarrier interference, respectively, while

the factor αm = E[x̂m[n]|xm[n−ν]]/xm[n−ν] < 1 is related to the bias inserted by this equalizer,
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as it is well-known that the linear MMSE equalizer is biased. Consequently, it can be demonstrated

that the SINR at the output of the MMSE LE is [24]

SINRm =
σ2
x

MSEm
− 1. (4.13)

Moreover, as shown in [24], the bias is defined as

αm =
1

1 + (SINRm)−1
. (4.14)

A simple way to force the MMSE equalizer to become unbiased is by simply multiplying its output

by α−1
k . As a result, the bias removal coefficient is given by

α−1
m =

σ2
d

σ2
d −MSEm

(4.15)

It is worth noting that although the bias removal reduces the symbol estimation error, it increases

the MSE in each subchannel. The new MSE becomes

MSEm,U =
1

αk
MSEm =

σ2
dMSEm

σ2
d −MSEm

Furthermore, we would like to comment that in the case of CP-OFDM, the trivial one-tap MMSE

unbiased equalizer is equal to the zero forcing equalizer. The latter is widely accepted as the stan-

dard one-tap equalizer for CP-OFDM.

4.2.2.2 MLSE Receiver

In the classical literature of receivers for frequency selective channels, the MLSE equalizer is

referred as the optimal receiver [61]. In addition to completely mitigating the ISI, those receivers

make use of the time diversity inserted by the multipath channel. The main drawback and an

obstacle to practical use of the MLSE is its computational complexity.

Let us now consider the more sophisticated MLSE equalization for the FBMC system in order

to compare with the more practical MMSE solution previously presented. The optimal MLSE

receiver should take into account the output of all subchannels to find the most likely input symbols.

The problem is that this joint ML decoding among all subcarriers is computationally infeasible.

Nevertheless, since there is overlap only between contiguous subchannels, the complexity can be

reduced by using a two-dimensional Viterbi-like detector, but it still remains much more complex

than a per-subchannel detector.

Therefore, for simplicity, the interference from the adjacent subcarriers is assumed to be Gaus-

sian distributed, which means that we separately perform a suboptimal MLSE on each subcarrier.

Furthermore, we ignore the fact the ICI is colored. In that case, the MLSE rule is only related to

the impulse response h̃m,m[n], whose length is denoted by Lh̃. For the case of Offset Quadrature

Phase-Shift Keying (OQPSK) modulation, the trellis has 2L
h̃

states with only two possible transi-

tions per state since the detection is carried out on a real representation of the data. The MLSE

selects the input sequence x̂m[0], ..., x̂m[B] of length (B + 1) that minimizes the cost

Cm[B] =

B
∑

µ=0

∣

∣

∣

∣

∣

∣

ym[µ]−
L
h̃−1
∑

n=0

x′
m[µ− n]h̃m,m′[n] · I(µ− n)

∣

∣

∣

∣

∣

∣

2

, (4.16)
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where

I(n) =

{

1 for n even,

j for n odd.
(4.17)

Hereby, the case distinction follows from the OQAM constellation structure and we assume the

subcarrier index m to be odd. For even m, we just have to reverse the definition of I(n). More

precisely, the MLSE rule (4.16) can be computed sequentially using the Viterbi algorithm as

Cm[µ] = Cm[µ− 1] +

∣

∣

∣

∣

∣

∣

ym[µ]−
L
h̃−1
∑

n=0

x′
m[µ− n]h̄m,m[µ, n]

∣

∣

∣

∣

∣

∣

2

, (4.18)

where h̄m,m[µ, n] represents a time-variant impulse response given by

h̄m,m[µ, n] =

{

h̃m,m[n] for m even,

jh̃m,m[n] for m odd,
(4.19)

and x′
m[n] ∈ {±1} for the OQPSK case. In other words, the added single squared error term at

time m to the cost at time m− 1 has to be computed differently, depending on whether m is even

or odd.

4.2.2.3 Numerical Results

In our simulations we have considered the FBMC system described in Chapter 2. The prototype

was obtained by the frequency sampling method described in [13]. The channel between synthesis

and analysis FBs is modeled as an FIR filter to reproduce the effects of multipath propagation

encountered in wireless communication environments. For the matter of comparison, we have

employed at the receiver both MLSE and Unbiased MMSE linear equalizer to compensate for the

frequency selectivity of the channel.

In the first example we have employed the parameters in Table 4.1. Fig. 4.2 shows a comparison

Parameter Value

Modulation QPSK

Total number of subchannels M = 128
Data filled subchannels Mf = 96
Subchannel spacing ∆f = 87.2 kHz

Total bandwidth BW = 10 MHz

Sampling period Ts = 89.28 ns

Equalizer length Leq = 21
Channel model ITU Vehicular B static

RMS delay spread τRMS = 4µs

Symbols per subchannel 100

Channel realizations 100
Table 4.1. Parameters for BER comparison of FBMC receivers

of the uncoded BER between the MMSE Linear Equalizer and two variants of the MLSE equalizer.

The curve denoted MLSE ICI corresponds to the case where the ICI is not removed before the
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sequence estimation, but just seen as Gaussian noise. The curve denoted MLSE corresponds to the

case where ICI is completely removed from the received signal unrealistically assuming that the

receiver perfectly knows it. This is consequently a performance lower bound for a feasible MLSE.
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Fig. 4.2. Uncoded BER comparison between MMSE Linear Equalizer and MLSE. Parameterization from

Table 4.1.

The analytical probability of error is also depicted in Fig. 4.2. For this computation, we have

assumed that the sum of the residual ISI, ICI and noise at the output of the equalizer are Gaussian

distributed. Consequently the probability of error was calculated for an AWGN channel on each

subchannel and for each channel realization. The variance of that interference-plus-noise source is

given by the MSE in Eq. (4.11).

We can see that for low values of Eb/N0 (Energy per bit over the one sided noise power spec-

tral density) both MMSE and MLSE equalizers present similar results, only for higher values of

Eb/N0, the MLSE without ICI presents significant improvements. Clearly, this improved perfor-

mance comes at the price of an impractical increase in the computational complexity.

As a second example, we have considered a comparison between the coded and uncoded BER

for both FBMC employing 16-QAM and CP-OFDM employing 32-QAM. We have used a convo-

lutional encoder and a soft decoder. All the other parameters are shown in Table 4.2 and the results

are depicted in Fig. 4.3. By choosing different QAM alphabets both systems will possess the

same spectral efficiency in bits/Hz. It should be clear that CP-OFDM loses in spectral efficiency

proportionally to the length of the CP.

From the simulation in Fig. 4.3 it is possible to see that the FBMC system allows a reduction

of 2.5 dB in the transmitted power to achieve the same data rate and BER performance of a similar

CP-OFDM system.
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Parameter Value

Total number of subchannels M = 1024
Data filled subchannels Mf = 768
Subchannel spacing ∆f = 10.9 kHz

Total bandwidth BW = 10 MHz

Sampling period Ts = 89.28 ns

CP length TCP = 22.85µs (1/4)

Equalizer length Leq = 5
Channel model ITU Vehicular B static

RMS delay spread τRMS = 4µs

Symbols per subchannel 1000

Channel realizations 200

Code rate, R 1/2
Code polynomials 1 +D1 +D2 +D3 +D6

1 +D2 +D3 +D5 +D6

Type of decoder Max-log-MAP algorithm
Table 4.2. Parameters for BER comparison between FBMC and CP-OFDM
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Fig. 4.3. Uncoded and coded BER comparison between FBMC with LE and OFDM

4.2.3 Precoder Design based on MSE Duality Transformations

In scenarios where the channel impulse response is known at the transmitter side, it is usually

preferred to employ a precoder instead of or complementary to an equalizer. The precoder has the

advantage that it will not color nor amplify the noise like the equalizer does, so that the symbol de-

tection can be performed with the white noise assumption. Other advantage is in case the transmit-

ter has more computational capability and has performed the estimation of the dual channel during
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the reception or obtained as feedback from the receiver. An example is when an infrastructure

network node communicates via a wireless channel with a mobile device with low computational

capability, for example, a low power IoT device.

A block diagram with the subcarrier model for the linear precoder design is shown in Fig. 4.4,

where bℓ[n] are the impulse responses of the precoders that have Lpre coefficients. The precoder

needs to be designed in a way that the transmit power is limited, otherwise, depending on the

channel conditions the precoder may try to amplify the transmit signal above the capabilities of

the hardware where it is implemented and saturation will occur. That is why the single coefficient

w̄
(pre)
m ∈ R+ needs to be employed at the AFB.

Om−1

Om

Om+1

xm−1[k]

xm[k]

xm+1[k]

bm−1[n]

bm[n]

bm+1[n]

xm−1[n]

xm[n]

xm+1[n]

x


M
2

x


M
2

x


M
2

hm−1[l]

hm[l]

hm+1[l]

hch[l] hm[l]


y
M
2

w̄
(pre)
m O′

m

x̂m[n]
x̂m[k]

η[l]

Fig. 4.4. Subcarrier model for the multi-tap precoder design.

We can then write the signal at the output of the AFB and before the OQAM destaggering as

x̂m[n] = w̄(pre)
m

(

m+1
∑

ℓ=m−1

b̄T
ℓ H̄

′
m,ℓx

′
ℓ[n] +R

{

hH
mη̄
}

)

, (4.20)

where the matrices and vectors employed here are similarly or identically defined as in (4.9).

Based on the subcarrier model presented, we can calculate the MSE per subcarrier as a function

of the precoders and the subcarrier subfilters as follows

MSEpre
m = σ2

x

(

(

w̄(pre)
m

)2
m+1
∑

ℓ=m−1

b̄T
ℓ H̄

′
m,ℓH̄

′ T
m,ℓb̄m + 1− 2w̄(pre)

m b̄T
ℓ H̄

′
m,meν+1

)

+
(

w̄(pre)
m

)2
σ2
η||hP||22.

(4.21)

where ||hP||22 is the norm of the prototype filter. We can observe that the MSE is a function not only

of the precoders of the subcarrier under consideration but also of the precoders of the adjacent sub-

carriers. If we would like to design the precoders to minimize this MSE, we would need to jointly

minimize for all subcarriers, which consecutively overlap. This would be increase the dimensions

of the problem in a impractical and unnecessary way.

One way to still minimize the MSE and calculate the precoder on a subcarrier basis is to

employ the MSE duality [36, 54]. Instead of directly designing the precoders, an equalizer of the

dual subcarrier system is firstly designed an then a duality transformation is employed to obtain the

coefficients of the precoder. A basic assumption of the duality transformation is that the transmit

power remains preserved, i.e. the transmit power of the system employing precoders is the same

as of the dual system employing equalizers.

The first step is to calculate the MMSE equalizer as described in Section 4.2.2. Then we need

to make the MSE from the precoder system equal to the one of the dual equalizer system. Here we

have two possibilities: make the sum of the MSE along all subcarriers equal or make the individual

subcarrier MSE equal. Those two possibilities translate in two different duality transformations

that we describe in detail in the next sections.
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4.2.3.1 Sum-MSE Duality Transformation

This duality transformation preserves the sum of the MSE and is the simplest one, since a single

scaling factor is required which leads to a relatively low computational complexity. We first define

the relation between equalizer and precoder with a real valued positive scaling factor such that

b̄m = γw̄m and w̄(pre)
m = γ−1. (4.22)

The sum of the MSE along all subcarriers are set equal for precoder and equalizer as follows

Mf−1
∑

m=0

MSEpre
m =

Mf−1
∑

m=0

MSEeq
m. (4.23)

We plug (4.22) into (4.21), employ it together with the MSE definition from 4.11, and solve for γ
to get the following expression

γ2 =
Mfσ

2
η||hP||22

∑Mf−1
m=0 σ2

x

(

w̄T
ℓ H̄

′
m,meν+1 −

∑m+1
ℓ=m−1 w̄

T
ℓ H̄

′
m,ℓH̄

′ T
m,ℓw̄m

) . (4.24)

This method spreads the transmit power across the subcarriers as required by the channel frequency

response. The disadvantage of this method arises if the MSE of certain subcarriers is dispropor-

tionately large. This leads to these subcarriers obtaining a greater amount of transmit power at

the cost of reduced power in subcarriers with better channel conditions. This is also known as the

inverse water filling solution.

4.2.3.2 Per-Subcarrier MSE Duality Transformation

In this transformation the MSE per subcarrier is preserved and results in an individual scaling

factor for each subcarrier. We define the relation between equalizer and precoder with a real-valued

scaling factor per subcarrier such that

b̄m = γmw̄m and w̄(pre)
m = γ−1

m (4.25)

The individual MSE expressions per subcarrier equal as follows

MSEpre
m = MSEeq

m, for m = 0, ...,Mf − 1 (4.26)

By making the appropriate substitutions we end-up with the following system of equations

T











γ2
0

γ2
1
...

γ2
Mf−1











= Mfσ
2
η ||hP||221Mf

(4.27)

where the tridiagonal matrix T is given by

[T]m,ℓ =



















−σ2
xw̄

T
m−1H̄

′
m−1,m−1H̄

′ T
m−1,m−1w̄m+1 for ℓ = m− 1

σ2
x

(

w̄T
ℓ H̄

′
m,meν+1 − w̄T

mH̄
′
m,mH̄

′ T
m,mw̄m

)

for ℓ = m

−σ2
xw̄

T
m+1H̄

′
m+1,m+1H̄

′ T
m+1,m+1w̄m+1 for ℓ = m+ 1

0 elsewhere.

(4.28)

We get a linear system of equations for Mf scaling factors, which results in a higher computational

complexity than a Sum-MSE transformation. Now the transmit power is not spread amongst the

subcarriers but instead we normalize the filter in each subcarrier.
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4.2.4 Multi-tap Linear Maximum SINR Equalizer Design

An alternative equalizer design to the MMSE solution described in Section 4.2.2 is to maximize

the SINR. In this solution we can also compensate for ICI in addition to ISI.

We start by defining the effective channel experienced by the specific symbol being equalized

such that

h̄
′(eff)
m = H̄′

m,meν+1. (4.29)

With that we can express the power of the signal of interest as

SPm = E
[

|w̄T
mh̄

′(eff)
m |2

]

= w̄T
mh̄

′(eff)
m h̄

′(eff),T
m w̄m. (4.30)

Now we define the temporal spread, i.e. the coefficients of the ISI, by H̄
′(ISI)
m,m =

H̄′
m,m

(

IL
h̃
− eν+1e

T
ν+1

)

in order to calculate the ISI power at the output of the equalizer as follows

ISIm = E
[

|w̄T
mH̄

′(ISI)
m,mx′

m[n]|2
]

= σ2
xw̄

T
mH̄

′(ISI)
m,m H̄

′(ISI),T
m,m w̄m. (4.31)

Furthermore, we can define the ICI power after equalization as

ICIm = E
[

|w̄T
mH̄

′
m,m−1x

′
m−1[n]|2

]

+ E
[

|w̄T
mH̄

′
m,m+1x

′
m+1[n]|2

]

(4.32)

= σ2
xw̄

T
m

(

H̄′
m,m−1H̄

′ T
m,m−1 + H̄′

m,m+1H̄
′ T
m,m+1

)

w̄m. (4.33)

Finally, we define the noise power in the equalizer output such that

Nm = E
[

|w̄T
mΓmη̄|2

]

= σ2
ηw̄

T
mΓmΓ

T
mw̄m. (4.34)

The optimum equalizer in the sense of maximizing the SINR is given by

w̄opt
m = argmax

w̄m

SINRm = argmax
w̄m

SPm

ISIm + ICIm +Nm

, (4.35)

which after performing the corresponding substitutions results in the following expression

SINRm =
w̄T

m

(

h̄
′(eff)
m h̄

′(eff),T
m

)

w̄m

w̄T
m

(

H̄
′(ISI)
m,m H̄

′(ISI),T
m,m + H̄′

m,m−1H̄
′ T
m,m−1 + H̄′

m,m+1H̄
′ T
m,m+1 +

σ2
η

σ2
x
ΓmΓ

T
m

)

w̄m

(4.36)

If we then define the matrix Ā = h̄
′(eff)
m h̄

′(eff),T
m and further define

C̄ = H̄
′(ISI)
m,m H̄

′(ISI),T
m,m + H̄′

m,m−1H̄
′ T
m,m−1 + H̄′

m,m+1H̄
′ T
m,m+1 +

σ2
η

σ2
x

ΓmΓ
T
m, (4.37)

we get the following simple equation for the SINR

SINRm =
w̄T

mĀw̄m

w̄T
mC̄w̄m

(4.38)

The solution for the SINR equalizer is then given by the matrix pencil (Ā, C̄), which means that

the equalizer vector w̄opt
m is the principal eigenvector corresponding to the maximum eigenvalue of

the matrix C̄−1Ā from the solution of a generalized eigenvalue decomposition.

We should note here that an SINR duality similar to the MSE duality we previously presented

also exist and can be employed for a dual precoder design.
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4.2.5 Multi-tap Linear Maximum SLR Precoder Design

This is a precoder design method that allows us to obtain the precoder coefficients directly without

the use of a duality transformation. The maximization of the SLR for the precoder is analogous

to the maximization of the SINR equalizer design, but instead of considering the ICI from the

subcarriers m−1 and m+1 that contaminates the subcarrier of interest m, it considers the leakage

from the subcarrier m into its adjacent subcarriers m− 1 and n+ 1.

The solution looks very similar to the SINR equalizer solution, where the optimum precoder

per subcarrier is given by

b̄opt
m = argmax

b̄m

SLRm = argmax
b̄m

SP(pre)
m

ISI(pre)
m + ICI(leak)

m

. (4.39)

We just need first to define SP(pre)
m , i.e. the power of the signal of interest as

SP(pre)
m = b̄T

mh̄
′(eff)
m h̄

′(eff),T
m b̄m. (4.40)

Second we define the ISI power as

ISI(pre)
m = σ2

xb̄
T
mH̄

′(ISI)
m,m H̄

′(ISI),T
m,m b̄m (4.41)

Third, we define the sum of the contributions from subcarrier m to the ICI in each of the

adjacent subcarriers m− 1 and m+ 1, i.e. the sum of the leakage from subcarrier m as

ICI(leak)
m = E

[

|b̄T
mH̄

′
m−1,mx

′
m[n]|2

]

+ E
[

|b̄T
mH̄

′
m+1,mx

′
m[n]|2

]

(4.42)

= σ2
xb̄

T
m

(

H̄′
m−1,mH̄

′ T
m−1,m + H̄′

m+1,mH̄
′ T
m+1,m

)

b̄m. (4.43)

By performing the corresponding substitutions we obtain the following SLR expression

SLRm =
b̄T
mh̄

′(eff)
m h̄

′(eff),T
m b̄m

b̄T
m

(

H̄
′(ISI)
m,m H̄

′(ISI),T
m,m + H̄′

m−1,mH̄
′ T
m−1,m + H̄′

m+1,mH̄
′ T
m+1,m

)

b̄m

=
b̄T
mĀb̄m

b̄T
mC̄

′b̄m

(4.44)

The solution for the SLR precoder is then given by the matrix pencil (Ā, C̄′), which is similar

to the SINR equalizer, but with the corresponding interference elements.

4.2.6 Further SISO Equalizer and Precoder Design Extensions

The linear multitap equalizers and precoders based on the MMSE criteria presented in this chapter

can be further extended following different directions. In [10] the linear MMSE equalizers were

extended to non-linear MMSE decision feedback equalizers. Later in [39] the MSE duality was

employed to transform the Decision Feedback Equalizer (DFE) into a Tomlinson-Harashima Pre-

coder (THP). The non-linear equalizers and precoders are especially useful for very high frequency

selectivity inside one subcarrier. This scenario may occur when the subcarrier spacing is very large

and the propagation channel has large multipath

Another natural extension is the combination of multitap equalizer with multitap precoder. In

this case a joint design, which is usually iterative, needs to be employed. For this joint design, the

MSE duality can also be employed.
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The equalizers and precoders design described in this chapter always assume perfect channel

knowledge, i.e. the impulse responses contained no error. In reality the channel impulse response

needs to be estimated, for example, using the methods presented in the previous chapter. Depending

on the technique used for the channel estimation, the statistics of the estimation may become

available. Those statistics can be employed for the calculation of the equalizer or precoder to end-

up with robust design.

4.2.7 Summary and Discussion

In this section we have presented different strategies to design equalizers for SISO FBMC sys-

tems. In the case of equalizer design the MMSE and SINR objectives will require the same knowl-

edge about channel and noise. Nevertheless, the final calculation of the equalizer coefficients em-

ploy a different types of calculations and the choice among them will in principle depend on the

specifics of the computational capability, especially if specialized hardware is available. Typically,

the MMSE equalizer will provide slightly better BER results compared to SINR, although not

shown in this work. The MLSE equalizer will typically provide the best BER performance but

its complexity may be prohibitive and has not been well studied in FBMC systems. In this work

we have employed an idealized MLSE to see what is the higher bound in performance if such an

equalizer could be employed.

For the choice of the precoder design we have presented two fundamental variants: one based

on the MSE duality, where the precoder is indirectly obtained from a dual equalizer and an SLR,

where the precoder is directly designed and is analogous to the SINR equalizer. The SLR will

typically provide worse results for low SNR, because the statistics of the noise and its power are

not taken into account. It is worth noting that there also exist a SINR duality, such that the precoder

can also be indirectly calculated from a dual equalizer.

4.3 Extension to MU-MIMO Equalizer and Precoder Design

The equalizers and, more importantly, the precoders presented in this chapter can be further ex-

tended to scenarios where multiple mobile stations with one or more antennas communicate with

a base station with many antennas.

In [58] a method for the precoder design in a MU-Multiple-Input Single-Output (MISO) sce-

nario is presented, where a modified MMSE is utilized as objective function. The MSE in subcar-

rier m is added to the power of the contributions from subcarrier m to the ICI in subcarriers m− 1
and m+ 1, resulting in a sum of MSE with leakage. The work further extend the result for a joint

precoder and equalizer design.

In [22] extensions of the MMSE precoder from [58] and from the SLR precoder for MU-MIMO

scenarios is presented. The first one being an iterative solution and in both cases an MRC receiver

is employed at the mobile station.

In [23] a precoder design based on maximum Signal-to-Leakage-plus-Noise Ratio (SLNR)

criteria combined with an equalizer design based on the zero-forcing criteria are applied to multi-

streaming MU-MIMO scenarios.

In [17] the MSE duality was applied for the precoder and equalizer designs in MU-MISO

scenarios. In addition to the two MSE duality transformations presented in this chaper two other

transformations exist from the base station perspective. When the dimension number of users is

introduced the sum MSE among the users has to be considered for each of the two dualities pre-
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sented in this chapter. The same authors further extended those results in an internal report, where

the non-linear THP precoder designed to improve the separation of the users in cases where the

number of users approximate the number of transmit antennas.

In [18], the algorithms to design precoders introduced in [17] are further extended for MU-

MIMO scenarios, where mobile stations also employ multiple antennas. An iterative design is

introduced and two MSE duality transforms need to be performed in an alternating manner, either

form the mobile or from the base station.

Further extensions to all those precoder and equalizer design methods applied to MIMO

scenarios include multi-streaming, robust design when channel knowledge is imperfect, effects

of quantization at the antenna ports, massive number of antennas and compact antenna arrays.

In [19, 32, 47, 80], further MIMO aspects and design methods, including for multi-user environ-

ment, are reviewed and presented in detail.





5. Concluding Remarks

Multicarrier systems have already found their path into wired and wireless communications stan-

dards and technology. Cyclic Prefix based Orthogonal Frequency Division Multiplexing (CP-

OFDM) is currently the mostly deployed and well studied multicarrier system among all. Its

simplicity from both theoretical and practical implementation perspectives have helped an easy

acceptance among researchers, technologists and business persons. Due to the use of the CP, its

poor spectral properties, sensitivity to synchronization errors and inflexibility in changing the sub-

carrier bandwidth, CP-OFDM do not provide the spectral and energy efficiency, robustness and the

adaptability necessary for advanced wired and wireless technology.

Filter Bank based Multicarrier (FBMC) systems provide on the other hand an effective alterna-

tive to CP-OFDM. FBMC systems based on Offset-Quadratude Amplitude Modulation (OQAM),

in particular, have properties which allows to fulfil a number of the requirements for advanced

wireless communications. Due to the lack of CP and the orthogonal or near-orthogonal overlap-

ping of the subcarriers, an improved spectral and energy efficiency is achieved. The use of a pulse

shaping in each subcarrier tailored to fulfil stricter frequency and time domain requirements allows

to improve the spectral containment and increase the robustness to synchronization errors. Further-

more, the pulse shaping can be flexibly chosen to convey the transmission of different categories

of communications traffic.

This dissertation covered different aspects of FBMC systems based on OQAM with the ob-

jective to bring further maturity to this combination of classical digital signal processing building

blocks and pave its way into wireless standards and future technology.

In the first part, the basic theory and fundamental operations of FBMC systems were presented.

Different structures for the realization of the system were derived. They allow to efficiently perform

the per-subcarrier filtering, modulation and combination of all subcarrier signals. The presentation

of the structures was followed by a complexity analysis and comparison. Finally, some options for

the choice of the filter employed in each subcarrier were presented.

In the second part, different procedures for the estimation of the propagation channel under

which the system operates were shown. In addition to the need of schemes that differ from the

ones used in CP-OFDM, FBMC systems also require appropriate subcarrier signal models that are

tailored to the channel estimation scheme chosen. Two basic models were presented: a first one

that considers a per-subcarrier estimation of a narrowband channel and a second that considers an

estimation of the broadband propagation channel by collecting observations of multiple subcarri-

ers. Then channel estimation algorithms that are adapted to each of the corresponding model were

derived and also different levels of knowledge of the channel and noise statistics were considered.

In the final part, methods to compensate and mitigate the effects of the propagation channel are

presented. The channel equalization or precoding in FBMC systems also has to be adapted to the
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underlying signal model. Then different methods based on different objectives were presented for

both equalizer and precoder design. An extension from systems which involve single antenna at

the transmitter and single antenna at the receiver, to systems with multiple antennas on both sides

is also discussed in this work.



Bibliography

[1] Project PHYDYAS FP7-ICT 211887.

[2] M. Al-Attraqchi, S. Boussakta, and S. Le Goff. An enhanced OFDM/OQAM system exploit-

ing Walsh-Hadamard transform. In Proc. IEEE VTC-Spring 2011, Budapest, Hungary, May

2011.

[3] M Alard, C Roche, and P Siohan. A new family of function with a nearly optimal time-

frequency localization. Technical Report of the RNRT Project Modyr, 1999.

[4] L. G. Baltar, P. Chevalier, M. Renfors, J. Yli-Kaakinen, J. Louveaux, X. Mestre, F. Bader, and

V. Savaux. Chapter 12 - FBMC channel equalization techniques. In M. Renfors, X. Mestre,

E. Kofidis, and F. Bader, editors, Orthogonal Waveforms and Filter Banks for Future Com-

munication Systems, pages 299–337. Academic Press, 2017.

[5] L. G. Baltar, T. Laas, M. Newinger, A. Mezghani, and J. A. Nossek. Enhancing spectral

efficiency in advanced multicarrier techniques: A challenge. In Proceedings of the 22nd Eu-

ropean Signal Processing Conference (EUSIPCO-2014), Lisbon, Portugal, September 2014.

[6] L. G. Baltar, A. Mezghani, and J. A. Nossek. EM based per-subcarrier ML channel estimation

for filter bank multicarrier systems. In Proc. of the 10-th Int. Symposium on Wireless Comm.

Systems ISWCS 2013, pages 1–5, August 2013.

[7] L. G. Baltar and J. A. Nossek. Multicarrier systems: A comparison between filter bank based

and cyclic prefix based OFDM. In 17th International OFDM Workshop 2012 (InOWo 12),

Aug. 2012.

[8] L. G. Baltar, F. Schaich, M. Renfors, and J. A. Nossek. Computational complexity analysis

of advanced physical layers based on multicarrier modulation. In Proc. Future Network &

Mobile Summit (FutureNetw), pages 1–8, 2011.

[9] L. G. Baltar, D. S. Waldhauser, and J. A. Nossek. Out-of-band radiation in multicarrier

systems: A comparison. In Multi-Carrier Spread Spectrum 2007, pages 107–116. Springer,

2007.

[10] L. G. Baltar, D. S. Waldhauser, and J. A. Nossek. MMSE subchannel decision feedback

equalization for filter bank based multicarrier systems. In Proc. IEEE Int. Symp. Circuits and

Systems ISCAS 2009, pages 2802–2805, Taipei, Taiwan, May 2009.

[11] L.G. Baltar, M. Newinger, and J.A. Nossek. Structured subchannel impulse response estima-

tion for filter bank based multicarrier systems. In Wireless Communication Systems (ISWCS),

2012 International Symposium on, pages 191 –195, aug. 2012.

[12] P. Banelli, S. Buzzi, G. Colavolpe, A. Modenini, F. Rusek, and A. Ugolini. Modulation

formats and waveforms for 5G networks: Who will be the heir of OFDM?: An overview of

alternative modulation schemes for improved spectral efficiency. IEEE Signal Process. Mag.,

31(6):80–93, 2014.

117



118 Bibliography

[13] M. Bellanger. Specification and design of a prototype filter for filter bank based multicarrier

transmission. In Proc. IEEE ICASSP 2001, Salt Lake City, UT, May 2001.

[14] M. Bellanger. FS-FBMC: A flexible robust scheme for efficient multicarrier broadband wire-

less access. In Proc. IEEE GLOBECOM 2012, Anaheim, CA, December 3-7 2012.

[15] M. Bellanger. FS-FBMC: An alternative scheme for filter bank based multicarrier transmis-

sion. In 2012 5th International Symposium on Communications, Control and Signal Process-

ing, pages 1–4, May 2012.

[16] M. Bellanger, D. Le Ruyet, D. Roviras, M. Terré, J. A. Nossek, L. G. Baltar, Q. Bai, D. Wald-
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