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Abstract This contribution discusses the estimation of an invertible functional time
series through fitting of functional moving average processes. The method uses a
functional version of the innovations algorithm and dimension reduction onto a
number of principal directions. Several methods are suggested to automate the pro-
cedures. Empirical evidence is presented in the form of simulations and an applica-
tion to traffic data.

1 Introduction

Functional time series have come into the center of statistics research at the conflu-
ence of functional data analysis and time series analysis. Some of the more and most
recent contributions in this area include Aston and Kirch [1, 2] and Aue et al. [7]
who dealt with the detection and estimation of structural breaks in functional time
series, Chakraborty and Panaretos [9] who covered functional registration and re-
lated it to optimal transport problems, Horváth et al. [13] and Aue and van Delft [8]
who developed stationarity tests in the time and frequency domain, respectively,
Hörmann et al. [12] who introduced methodology for the detection of periodicities,
Hörmann et al. [11] and Aue et al. [5] who proposed models for heteroskedastic
functional time series, van Delft and Eichler [20] who defined a framework for lo-
cally stationary time series, Kowal et al. [16] who developed Bayesian methodology
for a functional dynamic linear model, Raña et al. [18, 19] who discussed outlier de-
tection in functional time series and provided methodology for the construction of
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bootstrap confidence intervals for nonparametric regression under dependence, re-
spectively, and Paparoditis [17] who introduced a sieve bootstrap procedure.

A general framework for functional time series allowing for elegant derivations
of large-sample results was put forward in Hörmann and Kokoszka [10]. This paper
introduced a concept to measure closeness of functional time series to certain func-
tional moving average processes. It was then exploited that the latter have non-trivial
autocovariance operators only for finitely many lags in order to derive large-sample
results concerning the validity of functional principal components analysis in a de-
pendent setting and change-point analysis (see [4]), among others. The focus of Aue
and Klepsch [6] was not on theoretical properties but on the more practical question
of how to estimate an invertible functional time series. This was achieved by func-
tional moving average model fitting. The fitting process involved an application of
the functional innovations algorithm, whose population properties were derived in
Klepsch and Klüppelberg [14]. This algorithm can be used to estimate the operators
in the causal representation of a functional time series. The consistency of these es-
timates is the main result. For practical purposes, the proposed method requires the
selection of the dimension reduction space through both model selection and testing
approaches. Several methods are proposed and then evaluated in a simulation study
and in an application to vehicle traffic data.

The remainder is organized as follows. Section 2 introduces the setting and the
method for estimating functional moving average processes. Several algorithms for
practical implementation are discussed in Section 3. Section 4 gives a glimpse on
large-sample theory. Section 5 briefly covers empirical aspects.

2 Estimation methodology

Let H =L2[0,1] be the Hilbert space of square-integrable functions on [0,1] equipped
with the standard norm ‖ · ‖ defined by the inner product 〈x,y〉=

∫ 1
0 x(s)y(s)ds, for

x,y ∈ H. Let (Ω ,A ,P) be a probability space and denote by L2
H = L2(Ω ,A ,P)

the space of square integrable random functions taking values in H, noting that L2
H

is a Hilbert space with inner product E[〈X ,Y 〉], for X ,Y ∈ L2
H . A functional linear

process with values in L2
H is given by the series expansion

X j =
∞

∑
`=0

ψ`ε j−`, j ∈ Z, (1)

where (ψ` : ` ∈ N0) is a sequence in the space of bounded linear operators acting
on H and (ε j : j ∈ Z) a sequence of independent, identically distributed random
functions in L2

H . A functional time series (X j : j ∈ Z) is invertible if it admits the
series expansion

X j =
∞

∑
`=1

π`X j−`+ ε j, j ∈ Z, (2)
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where (π` : `∈N) is a sequence of bounded linear operators such that ∑
∞
`=1 ‖π`‖L <

∞, with ‖A‖L = sup‖x‖≤1 ‖Ax‖ for A bounded and linear.
If X ∈ L2

H with E[X ] = 0, then its covariance operator exists and admits a spectral
representation; that is,

CX (y) = E[〈X ,y〉X ] =
∞

∑
i=1

λi〈y,νi〉νi, y ∈ H, (3)

where (λi : i ∈ N) and (νi : i ∈ N) denote the eigenvalues and eigenfunctions, re-
spectively. If X ,Y ∈ L2

H with E[X ],E[Y ] = 0, the cross covariance operator exists
and is given by

CXY (y) = E[〈X ,y〉Y ], y ∈ H. (4)

Introducing x⊗ y(·) = 〈x, ·〉y for x,y ∈ H, the lag-h autocovariance operator of a
stationary functional time series (X j : j ∈ Z) may be written as CX ;h = E[X0⊗Xh],
for h ∈ Z.

Let Vd = sp{ν1, . . . ,νd} be the subspace generated by the first d principal direc-
tions and let PVd be the projection operator from H to Vd . For an increasing sequence
(di : i ∈ N) ⊂ N define Xd, j = PVdi

X j, j ∈ Z, i ∈ N and denote by F̃n,k the smallest
subspace containing Xdk,n, . . . ,Xd1,n−k that is closed with respect to bounded, linear
operators. The best linear predictor of Xn+1 given F̃n,k is then

X̃n+1,k = PF̃n,k
(Xn+1) =

k

∑
i=1

θk,i(Xdk+1−i,n+1−i− X̃n+1−i,k−i), (5)

where X̃n−k,0 = 0. This is the form required for the innovations algorithm developed
in Klepsch and Klüppelberg [14] that provides a solution to recursively compute the
coefficients θk,1, . . . ,θk,k on the population level. However, for practical purposes,
an estimated version of (5) is needed. Define

V̂di = sp{ν̂1, . . . , ν̂di} and P̂(k) = diag(PV̂dk
, . . . ,PV̂d1

),

where ν̂i denotes the ith eigenfunction of the sample covariance operator ĈX . The
best linear predictor can now be computed with the functional innovations algorithm
given in Section 3. The large-sample behavior is presented in Section 4.

3 Algorithms

The following algorithm details how an estimate of the best linear predictor may be
computed by recursion. Denote by A∗ the adjoint of an operator A.

Functional innovations algorithm. The best linear predictor X̃n+1,k of Xn+1 given
F̃n,k can be computed by the recursions
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X̃n−k,0 = 0 and V̂1 = PV̂d1
ĈX PV̂d1

,

X̃n+1,k =
k

∑
i=1

θ̂k,i(Xdk+1−i,n+1−i− X̃k−i
n+1−i),

θ̂k,k−i =

(
PV̂dk+1

ĈX ;k−i PV̂di+1
−

i−1

∑
j=0

θ̂k,k− jV̂jθ̂
∗
i,i− j

)
V̂−1

i , i = 1, . . . ,k−1,

V̂k = ĈXdk+1
−X̃n+1,k

= ĈXdk+1
−

k−1

∑
i=0

θ̂k,k−iV̂iθ̂
∗
k,k−i. (6)

Application of the algorithm requires the selection of the di and and also the
FMA order q. The selection of the former can be achieved through the following
portmanteau test for independence. Here all di are set to the same value.

Determining the principal subspace by testing for independence.

(1) Given functions X1, . . . ,Xn, estimate λ̂1, . . . , λ̂n and ν̂1, . . . , ν̂n. Select d∗ such that

TVE(d∗) =
∑

d∗
i=1 λ̂i

∑
n
i=1 λ̂i

≥ P

for some prespecified P ∈ (0,1).

(2) Let fh(`,`
′) and bh(`,`

′) denote the (`,`′)th entries of C−1
X∗;0CX∗;h and CX∗;hC−1

X∗;0,
respectively, and (X∗j : j ∈ Z) the process consisting of the d + 1st to d + lth
principal directions of CX . If

Qd∗
n = n

h̄

∑
h=1

d∗+l

∑
`,`′=d∗+1

fh(`,`
′)bh(`,`

′)> q
χ2

d∗2 h̄
,

set d∗ = d∗+1.
(3) If Qd∗

n ≤ q
χ2

d∗2 h̄
, apply the functional innovations algorithm with di = d∗.

Once d is selected, the order of the resulting VMA process can be determined
with a Ljung–Box test or an AICC criterion. Both are described next.

(I) Order selection with Ljung–Box test.

(1) Test the null hypothesis H0 : CX;h = 0 for all h ∈ [h,h] with the test statistic

Qh,h = n2
h

∑
h=h

1
n−h

tr
(
Ĉ>X;hĈ−1

X;0ĈX;hĈ−1
X;0

)
,

which is asymptotically χ2
d2(h−h−1)

-distributed.

(2) Iteratively compute Q1,h,Q2,h, . . . and select q as the largest h such that Qh,h is
significant but Qh+h,h is insignificant for all h.
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(II) Order selection with AICC criterion.

(1) Choose the order of the FMA process as the minimizer of

AICC(q) =−2lnL(Θ1, . . . ,Θq,Σ)+
2nd(qd2 +1)
nd−qd2−2

where Θ1, . . . ,Θ1 are the VMA matrices and Σ the covariance matrix.

Another option is provided by the following FPE-type criterion that selects d and
q jointly. Is is an adaptation of a similar criterion for FAR processes put forward in
Aue et al. [3].

Determination of principal subspace and order selection with FPE criterion.

(1) Select (d,q) as minimizer of

fFPE(d,q) =
n+qd

n
tr(V̂n)+ ∑

i>d
λ̂i,

where V̂n is the matrix version of V̂n in (6).

4 Large-sample properties

The following theorem states that Γ̂k is a consistent estimator for Γk.

Theorem 1. If (X j : j ∈ Z) defined in (1) is such that ∑
∞
m=1 ∑

∞
`=m ‖ψ`‖L < ∞ and

E[‖ε0‖4] < ∞, then (n− k)E[‖Γ̂k −Γk‖2
N ] ≤ kUX , where ‖ · ‖N denotes nuclear

norm and UX a constant that does not depend on n.

To discuss the consistency of the estimators in the causal and invertible represen-
tations, further conditions are needed. As n→ ∞, let k = kn→ ∞ and dk → ∞ such
that

k1/2(n− k)−1/2
α
−2
dk
→ 0,

k1/2
α
−1
dk

(
∑
`>k
‖π`‖L +

k

∑
`=1
‖π`‖L ∑

i>dk+1−`

λi

)
→ 0,

k3/2
α
−2
dk

n−1
( dk

∑
`=1

δ
−2
`

)1/2

→ 0, (7)

where αdk is related to the spectral gaps of CX and αdn is the infimum of the eigen-
values of the spectral density operator of ((〈Xn,ν1〉, . . . ,〈Xn,νdn〉)T : n ∈ N).

Theorem 2. Under the assumptions of Theorem 1 and the above conditions, for all
x ∈ H and i ∈ N as n→ ∞, ‖(β̂k,i−πi)(x)‖

p→ 0, and ‖(θ̂k,i−ψi)(x)‖
p→ 0. If the
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Fig. 1 Model selection for different FAR(1) processes. The left three plots in each small figure
give the d chosen by total variation explained with P = 0.8 (TVE), the test for independence (IND)
and the functional FPE criterion (FPEd). The right three plots in each small figure give the selected
order q by AICC, Ljung–Box and fFPE.

operators (ψ` : ` ∈ N) and (π` : ` ∈ N) are Hilbert–Schmidt, then the convergence
is uniform.

Detailed proofs of both theorems may be found in Aue and Klepsch [6].

5 Empirical results

As an illustration of the proposed fitting method, a simulation is provided in which
an FAR(1) process is approximated through an FMA(q) process, where the process
is generated as outlined in Aue et al. [3], choosing various norms κ of the FAR
operator and fast and slow decays of eigenvalues of the covariance operator. Model
selection results for the different methods are provided in Figure 1, noting that FMA
models are fit to an FAR time series.

Figure 2 displays 1440 curves of average velocity per minute obtained at a fixed
measurement station on A92 Autobahn in southern Germany. Klepsch et al. [15]
indicate that this functional time series is stationary and that an FMA fit may be
appropriate. Applying the functional innovations algorithm together with any of the
proposed procedures to select d and q leads to a first-order dynamics. Additional
information is provided in Aue and Klepsch [6].

Acknowledgements This research was supported by NSF grants DMS 1305858 and DMS 1407530.
The velocity data was provided by Autobahndirektion Südbayern.
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Fig. 2 Discrete velocity observations (left) and corresponding velocity functions (right).

References

1. Aston, J.A.D., Kirch, C.: Detecting and estimating changes in dependent functional data. J.
Mult. Anal. 109, 204–220 (2012).

2. Aston, J.A.D., Kirch, C.: Evaluating stationarity via change-point alternatives with applica-
tions to FMRI data. Ann. Appl. Statist. 6, 1906–1948 (2012).
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11. Hörmann, S., Horváth, L., Reeder, R.: A functional version of the ARCH model. Econometr.
Th. 29, 267–288 (2013).
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15. Klepsch, J., Klüppelberg, C., Wei, T.: Prediction of functional ARMA processes with an ap-
plication to traffic data. Econ. Statist. 1, 128–149 (2017).

16. Kowal, D.R, Matteson, D.S., Ruppert, D.: A Bayesian multivariate functional dynamic linear
model. J. Am. Statist. Assoc. (2016) doi: 10.1080/01621459.2016.1165104

17. Paparoditis, E.: Sieve bootstrap for functional time series. ArXiv preprint (2016). Available
online at https://arxiv.org/abs/1609.06029.

18. Raña, P., Aneiros, G., Vilar, J.M.: Detection of outliers in functional time series. Environm.
26, 178–191 (2015).

19. Raña, P., Aneiros, G., Vilar, J.M., Vieu, P.: Bootstrap confidence intervals for nonparametric
regression under dependence. Electr. J. Statist. 10, 1973–1999 (2016).

20. Van Delft, A., Eichler, M.: Locally stationary functional time series. ArXiv preprint (2016).
Available online at https://arxiv.org/abs/1602.05125.


