

# Advanced algorithms for ionosphere modelling in GNSS applications within the AUDITOR project

Andreas Goss<sup>1</sup>, Eren Erdogan<sup>1</sup>, Michael Schmidt<sup>1</sup>, Alberto Garcia-Rigo<sup>2</sup>, Manuel Hernandéz-Pajares<sup>2</sup>, Haixia Lyu<sup>2</sup>, Metin Nohutcu<sup>3</sup>

- (1) Deutsches Geodätisches Forschungsinstitut der Technischen Universität München (DGFI-TUM), München, Germany
- (2) Universitat Politecnica de Cataluny (UPC), IonSat research group, Barcelona, Spain
- (3) Hacettepe University, Department of Geomatics Engineering, Ankara, Turkey

EGU – General Assembly Vienna, Austria 28.04.2017







## Introduction

#### AUDITOR

- is an acronym for "Advanced Multi-Constellation EGNSS Augmentation and Monitoring Network and its Application in Precision Agriculture"
- is a project within the Horizon 2020 programme of the European Commission (EC),
- was officially started in January 2016 with a running time of 2 years.
- is a joint initiative of an international consortium of small and medium enterprises
   (SME) and universities under the leadership of a Spanish company.
- The main goal of the project is the implementation of a novel precise positioning technique – based on augmentation data – in a customized GNSS receiver.
- These new receivers will enable cost-effective precision agriculture services to farmers, especially those with small and medium-sized businesses in areas of Europe where EGNOS coverage is poor.
- Within the project four main concepts have to be developed
  - a new receiver design for precision farming,
  - the processing of data from continually operating GNSS network,
  - the computation and delivery of the corrections for the augmentation system and
  - advanced algorithms to improve the quality of the correction data (e.g. ionospheric corrections). (WP 4 of the work plan structure)





## Introduction

- To reach this goal sophisticated ionosphere models have to be developed and implemented to increase the accuracy in real-time at the user side.
- The scientific part within the project has been performed mainly by DGFI-TUM and UPC,
   i.e. the involved universities.
- The main ambition of the project is to
  - reduce the convergence time of precise point positioning for multi-frequency receivers and to
  - increase the accuracy for single-frequency receivers.







Agricultural robots developed by the project partner DLO





# Global and regional ionospheric modelling

- One goal of the WP 4: Advanced algorithms for GNSS is to develop
  - global ionospheric real-time products
     with a high-precision ionospheric
     information for regions in Europe...
  - ... based on an data adaptive modelling approach by means of appropriate B-spline series expansions.



- Distribution of ionospheric pierce points (IPP) based on a batch of hourly observation on July 23, 2016.
- The terrestrial **GNSS observations** provide **high-resolution information** for specific continental regions, e.g., Europe or North America.
- In such areas a global ionosphere model for the vertical total electron content (VTEC)
  can be densified to a regional ionospheric model, according to

$$VTEC_{reg}(\varphi, \lambda) = VTEC_{glob}(\varphi, \lambda) + \Delta VTEC_{reg}(\varphi, \lambda)$$





# Process chain of the developed approach

time







# Process chain of the developed approach

time







# **Global B-spline modelling**

Usage of polynomial and trigonometric B-splines:

### **Polynomial B-splines**

$$VTEC_{\text{glob}}(\varphi,\lambda) = \sum_{k_1=0}^{K_{J_1}-1} \sum_{k_2=0}^{K_{J_2}-1} d_{k_1,k_2}^{J_1,J_2} N_{J_1,k_1}^2(\varphi) T_{J_2,k_2}^2(\lambda)$$

**Trigonometric B-splines** 



- $K_{J_1} = 2^{J_1} + 2$  defines the number of polynomial B-Splines
- $K_{J_2} = 3 \cdot 2^{J_2}$  defines the number of trigonometric B-Splines
- The B-spline levels  $J_1$  and  $J_2$  define the **spectral content** of the global representation.
- The values  $J_1 = 4$  and  $J_2 = 3$  provide a VTEC representation **comparable with** the IGS products, i.e. a spherical harmonic representation up to degree n = 15.
- The global model is set up in the Geocentric Solar Magnetospheric (GSM)
  coordinate system.
- References: Schmidt 2007, Dettmering et al. (2011), Schmidt et al. (2015),





## **Regional B-spline modelling**

Usage of polynomial B-splines:

**Polynomial B-splines** 

$$\Delta VTEC_{\text{reg}}(\varphi,\lambda) = \sum_{k_3=0}^{K_{J_3}-1} \sum_{k_4=0}^{K_{J_4}-1} d_{k_3,k_4}^{J_3,J_4} N_{J_3,k_3}^2(\varphi) N_{J_4,k_4}^2(\lambda)$$

 The regional B-spline levels J<sub>3</sub> and J<sub>4</sub> define the number of 2-D basis functions in the area of investigation.



$$J_3 \leq \log_2(\frac{\Phi}{\Delta \varphi} - 1)$$
  $J_4 \leq \log_2(\frac{\Lambda}{\Delta \lambda} - 1)$ 

- From the empirical formulae above we chose for a region with size of  $\Phi = 30^{\circ}$  and  $\Lambda = 40^{\circ}$  in latitude and longitude with a mean sampling intervals of  $\Delta \varphi = 4^{\circ}$  and  $\Delta \lambda = 6^{\circ}$  of the IPPs the level values  $J_3 = 3$  and  $J_4 = 3$  result.
- It represents the finer signal structures (cf. spherical representation greater than degree n=30)





# **Regional B-spline modelling**

• Modelling of  $\Delta VTEC_{reg}$  with **uniform B-splines** (UBS)



 The regional VTEC model is set up in the Earthfixed geographical coordinate system.







# **Regional B-spline modelling**

• Adaptive modelling of  $\Delta VTEC_{reg}$  with Non-uniform Adapative B-Splines (NABS)



- The regional VTEC model is set up in the Earthfixed geographical coordinate system.
- Due to the inhomogeneous data distribution, the NABS functions provide an adaptive modelling.

NABS represent the regions with a higher data density by a larger number of basis functions with a more narrow spatial support.

NABS represent the regions with large data gaps by a less number of basis functions with a wider spatial support.









# Process chain of the developed approach

time







# Preliminary forecasted global model

- An approach was developed to **forecas**t the VTEC values of the global model by introducing series expansions for the B-Spline coefficients  $d_{k_1,k_2}^{J_1,J_2}$  for the time difference between RT and NRT of a maximum of 3 hours.
- The series expansion is set up as a sum of a Fourier series and a stochastic part, e.g. an ARMA model

$$d_{k_1,k_2}^{J_1,J_2}(t) = (a_0 + \sum_{i=1}^n \{a_i \cos(\omega_i t) + b_i \sin(\omega_i t)\})_{k_1,k_2} + s_{k_1,k_2}(t)$$

- As **periods**  $T_i = 2\pi/\omega_i$  we choose  $T_1 = 1$  day,  $T_2 = 0.5$  day,  $T_3 = 0.33$  day,  $T_4 = 0.33$ 0.25 day and so on up to 15 min.
- The coefficients  $a_0$ ,  $a_i$  and  $b_i$  for  $i = 1, \dots, n$  are estimated for each coefficient **independent** by evaluating its time series over the five previous days.

#### **Preliminary forecast results:**

Hoque et al.: lonosphere monitoring and forecast activities within IAG working group "lonosphere Prediction", Poster Session G5.2,





# Combination of global and regional model







# **Summary**

- Real-time ionosphere modelling by means of a densification approach has been developed and can be applied for precision agriculture on autonomous driving robots.
- The approach consists of a
  - global forecasted model which represents the low-frequency part, i.e. the coarser signal structures as the basis and the
  - regional real-time B-spline model for areas of investigation which represents the higher-frequency part, i.e. the finer structures of the signal.
- In order to set up an optimal compromise between the UBS and the NABS as basis functions we chose
  - the UBS for the global part and
  - the NABS for the regional densification area.
- With the proposed Barcelona lonospheric Mapping (BIM) function the estimated STEC value corrects the GNSS measurement which can then be used, e.g., for precision farming.