
TECHNISCHE UNIVERSITÄT MÜNCHEN

Fakultät für Informatik

Resource-Elasticity Support for Distributed Memory HPC Applications

Isaı́as Alberto Comprés Ureña

Vollständiger Abdruck von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines Doktors der
Naturwissenschaften genehmigten Dissertation.

Vorsitzender: Prof. Bernd Brügge, Ph.D.

Prüfende der Dissertation:
1. Prof. Dr. Hans Michael Gerndt
2. Prof. Dr. Michael Georg Bader

Die Dissertation wurde am 23.06.2017 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 12.07.2017 angenommen.

TECHNICAL UNIVERSITY OF MUNICH

Dissertation

Resource-Elasticity Support for Distributed
Memory HPC Applications

Author: Isaı́as Alberto Comprés Ureña
First examiner: Prof. Dr. Hans Michael Gerndt
Second examiner: Prof. Dr. Michael Georg Bader

The dissertation was submitted to the Technical University of
Munich on 23.06.2017, and was approved by the Faculty of

Informatics on 12.07.2017.

I hereby declare that this thesis is entirely the result of my own work except where other-
wise indicated. I have only used the resources given in the list of references.

Garching, 5.5.2017 Isaı́as Alberto Comprés Ureña

Acknowledgments

First, I want to thank to Prof. Gerndt. It was because of a recommendation of his that
I originally had the opportunity to engage in message passing research at a reputable re-
search institution. He later gave me the opportunity to pursue this doctorate, with an ex-
panded scope that includes resource management and scheduling. In addition, the quality
of this work has largely improved thanks to his diligent supervision and advice.

I would also like to thank the people in my academic environment. To all my colleagues
that provided me with new ideas to consider, I am forever grateful. To the staff of the
Technical University of Munich, for providing a great environment for work and research.
To the Leibniz Supercomputing Center, for granting me access to the supercomputing re-
sources needed for this type of research. Finally, to the Invasive Computing Transregional
Collaborative Research Center for providing the theoretical background and necessary
funding for this work.

I would also like to take this opportunity to thank all my friends and relatives, in no
particular order, who have directly or indirectly positively influenced my life. I would like
to express my gratitude to Manuel and Gloria Cocco, who helped me during moments
of adversity. I am thankful to my mother Yvette Ureña, whose lifelong interest in my well
being has no parallels. I also want to thank my uncle Miguel Ramón Ureña for his constant
advice and support. Finally, I want to express gratitude to my aunt Miguelina Ureña, who
has helped me in many ways over the years.

vii

Abstract

Computer simulations are alternatives to the scientific method in domains where physi-
cal experiments are unfeasible or impossible. When the amount of memory and processing
speed required is large, simulations are executed in distributed memory High Performance
Computing (HPC) systems. These systems are usually shared among its users.

A resource manager with a batch scheduler is used to fairly and efficiently share the
resources of these systems among its users. Current large HPC systems have thousands
of compute nodes connected over a high-performance network. Users submit batch job
descriptions where the number of resources required by their simulations are specified.
Batch job descriptions are queued and scheduled based on priorities and submission times.

The parallel efficiency of a simulation depends on the number of resources allocated
to it. It is challenging for users to specify allocation sizes that produce adequate paral-
lel efficiencies. A resource allocation can be too small and the parallel efficiency of the
application may be adequate, but its performance may not be scaled to its maximum po-
tential. A resource allocation can be too large and therefore the parallel efficiency of the
application may be degraded due to synchronization overheads. Unfortunately, in current
systems these resource allocations cannot be adapted once the applications of a job start.

A resource manager and MPI library combination that adds resource-elasticity support
for HPC applications is proposed in this work. The resource manager is extended with op-
erations to adapt the resources of running applications in jobs; in addition, new scheduling
techniques are added to it. The MPI library has been extended with operations that enable
resource adaptations as changes in the number of processes in world communicators. The
goal is to optimize system-wide efficiency metrics through adjustments to the resource al-
locations of running applications. Resource allocations are adjusted continuously based
on performance feedback from running applications.

ix

x

Contents

Acknowledgements vii

Abstract ix

1 Introduction 1

2 Motivation 7
2.1 Adaptive Mesh Refinement (AMR) Methods 8

2.1.1 Challenges of AMR Methods in Distributed Memory Systems 9
2.2 Applications with Multiple Computational Phases 11

2.2.1 Phases with Different Scalability Properties 12
2.2.2 Network-, Memory- and Compute-Bound Phases 12
2.2.3 Phases with Different Input Dependent Network and Compute Scal-

ing Proportionalities . 15
2.2.4 Efficient Ranges for Application Phase Scalability 16

2.3 System-Wide Parallel Efficiency . 16
2.3.1 Suboptimal Network Performance due to Fixed Initial Allocations . 16
2.3.2 Idle Resources due to Inflexible Resource Requirements in Jobs . . . 18
2.3.3 Energy and Power Optimizations . 18

3 Invasive Computing 19
3.1 Invasive Computing Research Groups . 19

3.1.1 Group A Projects . 19
3.1.2 Group B Projects . 20
3.1.3 Group C Projects . 21
3.1.4 Group D Projects . 22
3.1.5 Group Z Projects . 23

4 Related Work 25
4.1 Programming Languages and Interfaces without Elastic Execution Support 25

4.1.1 Parallel Shared Memory Systems . 25
4.1.2 Distributed Memory Systems . 27
4.1.3 Cloud and Grid Computing . 28

4.2 Elastic Programming Languages and Interfaces for HPC 29
4.2.1 Charm++ and Adaptive MPI . 30
4.2.2 The X10 Programming Language . 31
4.2.3 Parallel Virtual Machine (PVM) . 32
4.2.4 Other Related Works . 32

xi

Contents

5 The Message Passing Interface (MPI) 33
5.1 MPI Features Overview . 33

5.1.1 Data Types . 34
5.1.2 Groups and Communicators . 34
5.1.3 Point-to-Point Communication . 35
5.1.4 One-Sided Communication . 35
5.1.5 Collective Communication . 36
5.1.6 Parallel IO . 37
5.1.7 Virtual Topologies . 37

5.2 Dynamic Processes Support and its Limitations 38
5.3 MPICH: High-Performance Portable MPI . 40

5.3.1 Software Architecture . 40
5.3.2 MPI Layer . 41
5.3.3 Device Layer . 41
5.3.4 Channel Layer . 41

6 Elastic MPI Library 43
6.1 MPI Extension Operations . 43

6.1.1 MPI Initialization in Adaptive Mode 45
6.1.2 Probing Adaptation Data . 45
6.1.3 Beginning an Adaptation Window . 47
6.1.4 Committing an Adaptation Window 48

6.2 MPI Extension Implementation . 48
6.2.1 MPI INIT ADAPT . 48
6.2.2 MPI PROBE ADAPT . 49
6.2.3 MPI COMM ADAPT BEGIN . 50
6.2.4 MPI COMM ADAPT COMMIT . 52

7 Elastic-Phase Oriented Programming (EPOP) 53
7.1 Motivation for a Resource-Elastic Programming Model 53

7.1.1 Identification of Serial and Parallel Phases in the Source Code 53
7.1.2 Process Entry and Data Redistribution Locations 54

7.2 The EPOP Programming Model . 56
7.2.1 Initialization, Rigid and Elastic-Phases (EPs) 56
7.2.2 EPOP Programs and Branches . 56
7.2.3 Application Data . 57

7.3 Current Implementation . 57
7.3.1 Driver Program . 57
7.3.2 Program Element . 59
7.3.3 Program Structure . 61

7.4 Additional Benefits of the EPOP Model and Driver Programs 61

8 Resource Management in High Performance Computing 63
8.1 Resource Management in Shared Memory Systems 63
8.2 Resource Management in Distributed Memory Systems 64

8.2.1 Additional Requirements for the Scheduling of Elastic Jobs 65
8.3 Simple Linux Utility for Resource Management (SLURM) 65

8.3.1 Controller Daemon (SLURMCTLD) . 67

xii

Contents

8.3.2 Node Daemon (SLURMD) . 67

9 Elastic Resource Manager 69
9.1 Overview of the Integration with the Elastic MPI Library 69

9.1.1 Rank to Process Mapping Strategy . 71
9.1.2 Support for Arbitrary Node Identification Orders 71

9.2 Elastic Batch and Runtime Scheduler . 73
9.3 Node Daemons . 74
9.4 Launcher for Elastic Jobs . 76

10 Monitoring and Scheduling Infrastructure 77
10.1 Theoretical Background on Multiprocessor Scheduling 77

10.1.1 Problem Statement . 77
10.1.2 Computational Complexity . 78
10.1.3 Resource-Static Scheduling in Distributed Memory HPC Systems . . 79
10.1.4 Modified Scheduling Problem for Resource-Elastic Execution 81

10.2 Performance Monitoring Infrastructure . 82
10.2.1 Process-Local Pattern Detection and Performance Measurements . . 82
10.2.2 Node-Local Reductions and Performance Data Updates 85
10.2.3 Distributed Reductions and Performance Models 87
10.2.4 EPOP Integration . 88

10.3 Elastic Schedulers . 88
10.3.1 Elastic Runtime Scheduler (ERS) . 89
10.3.2 Performance Model and Resource Range Vector (RRV) 92
10.3.3 Elastic Backfilling . 93

11 Evaluation Setup 97
11.1 Elastic Resource Manager Nesting in SuperMUC 97

11.1.1 Phase 1 and Phase 2 Nodes . 98
11.1.2 MPI Library and Compilers Setup . 98

11.2 Testing and Measurement Binaries . 98

12 Elastic MPI Performance 99
12.1 MPI INIT ADAPT . 99
12.2 MPI PROBE ADAPT . 99
12.3 MPI COMM ADAPT BEGIN . 100
12.4 MPI COMM ADAPT COMMIT . 100

13 Elastic Resource Manager Performance 101
13.1 Tree Based Overlay Network (TBON) Latency 101
13.2 Control Flow Graph (CFG) Detection Overhead 101

13.2.1 Scaling with Control Flow Graph (CFG) Size 102
13.2.2 Scaling with Process Counts . 103

13.3 MPI Performance Impact of the CFG Detection Overhead 104

14 Case Studies with Distributed Memory Applications 107
14.1 Cannon Matrix-Matrix Multiplication . 107

14.1.1 Basic and EPOP Implementations . 107
14.1.2 Pattern Detection . 109

xiii

Contents

14.1.3 Performance Analysis . 110
14.2 Gaussian Elimination . 111

14.2.1 Basic and EPOP Implementations . 111
14.2.2 Pattern Detection . 111
14.2.3 Performance Analysis . 113

14.3 Cannon Matrix-Matrix Multiplication and Gaussian Elimination Interaction 113
14.3.1 Gaussian Elimination and Cannon Matrix-Matrix with 4096x4096 Ma-

trices . 114
14.3.2 Gaussian Elimination and Cannon Matrix-Matrix with 1024x1024 Ma-

trices . 115
14.3.3 Cannon Matrix-Matrix with 4096x4096 Matrices and Different Time

Limits . 116
14.3.4 Upper and Lower MTCT Threshold Effects Summary 116

14.4 Summary and Discussion . 118

15 Conclusion 119

16 Future Work 121
16.1 Elastic Message Passing . 121
16.2 Elastic Batch Scheduler (EBS) . 122
16.3 Elastic Resource Management . 122

Bibliography 125

xiv

List of Figures

2.1 Example 2D mesh refinement for the z = sin(ex) surface at the x = y = 0
plane (top) with plots for the function at y = 0 (bottom). 9

2.2 Meshes with different color for each submesh distributed among 8 processes. 10
2.3 Results in MOPS (top) versus MOPS per process (bottom) of the EP, CG, LU

and BT benchmarks of the NAS suite on SuperMUC Phase 1 nodes. 13
2.4 Results in MOPS (top) versus MOPS per process (bottom) of the EP, CG, LU

and BT benchmarks of the NAS suite on SuperMUC Phase 2 nodes. 14
2.5 Compute, network and total times plus efficiency (top to bottom) of a Can-

non’s matrix-matrix multiply kernel. Results for SuperMUC Phase 1 (Sandy
Bridge, left) and Phase 2 (Haswell, right) presented. 17

3.1 Abstract overview of project groups and their application areas. 20
5.1 Simplified overview of MPI communication and buffering for small and

medium buffers (typically smaller than a megabyte) on a four process ap-
plication with a counterclockwise ring communication pattern. 34

5.2 Put and get operations initiated both by process 0 using MPI one-sided com-
munication. 36

5.3 Sequence diagram of a naive all-reduce operation implementation. 36
5.4 MPI processes organized in a 3 by 3 Cartesian grid virtual topology. 37
5.5 Algorithm (flow chart) of the MPI COMM SPAWN operation as implemented

in MPICH. 38
5.6 MPICH’s software architecture. 40
6.1 Adaptation sequence from 5 to 7 processes. 44
6.2 Flow chart of the MPI PROBE ADAPT operation. 49
6.3 Flow chart of the MPI COMM ADAPT BEGIN operation. 51
7.1 Program structure of the simple EPOP example (with source in Listing 7.6). 57
8.1 Abstract organization of a cluster based on SLURM and its main programs:

SLURMCTLD, SLURMD and SLURMSTEPD. SRUN runs in the first node of an
allocation (not shown). 66

8.2 SLURMD, SLURMSTEPD, MPI processes and SRUN in the master node of an
allocation. 66

9.1 Overview of interactions between MPICH and SLURM components during
adaptations. 71

9.2 Sequence of adaptations on 8 nodes that lead to node identifier orders that
are not incremental in some of the presented allocations. 73

9.3 Probe operation at the SLURMSTEPD daemon. 75
10.1 Possible schedule of a set of static jobs ordered by priority in a queue. 81
10.2 Process-local Control Flow Graph (CFG) representation. 85
10.3 Set of four CFGs at a node before reduction. 86
10.4 Reduced CFG from Fig. 10.3. 87
10.5 Final reduced CFG at the ERS from Fig. 10.4. 88

xv

List of Figures

10.6 Efficiency (top) and MPI time to compute time ratio (bottom) of a Can-
non’s matrix-matrix multiply kernel. Results for SuperMUC Phase 1 (Sandy
Bridge, left) and Phase 2 (Haswell, right) presented. A line is added for the
constant 0.1 boundary of the ratio. 91

10.7 Time balancing applied to two jobs. 94
10.8 Time balancing applied to three jobs. 95
10.9 Resource filling applied to two jobs. 95
10.10Possible schedule of a set of elastic jobs ordered by priority in the queue. . . 96
12.1 MPI INIT ADAPT latency. 99
12.2 MPI PROBE ADAPT latency. 99
12.3 MPI COMM ADAPT BEGIN latency from a number of staying processes to a

new total. 100
12.4 MPI COMM ADAPT COMMIT latency. 100
13.1 Latency of TBON messages from SRUN to daemons. 101
13.2 CFG size performance scaling. Results for SuperMUC Phase 1 (Sandy Bridge,

left) and Phase 2 (Haswell, right) are presented. 102
13.3 Process count performance scaling. Results for SuperMUC Phase 1 (Sandy

Bridge, left) and Phase 2 (Haswell, right) are presented. 104
13.4 MPI SEND (top) and MPI BCAST (bottom) performance examples with de-

tection enabled and disabled on a 32 entry CFG loop. Results for SuperMUC
Phase 1 (Sandy Bridge, left) and Phase 2 (Haswell, right) are presented. . . . 105

14.1 Cannon matrix-matrix multiplication trace for 16 processes. MPI time in red
and application time in blue. 107

14.2 Compute, MPI, efficiency and MTCT ratio (top to bottom) of a Cannon
Matrix-Matrix multiplication kernel. Results for SuperMUC Phase 1 (Sandy
Bridge, left) and Phase 2 (Haswell, right) are presented. 108

14.3 Cannon application with EPOP blocks. 109
14.4 Cannon CFG detection process illustrated. 110
14.5 Gaussian elimination trace for 8 processes. MPI time in red and application

time in blue. 111
14.6 Compute, MPI, efficiency and MTCT ratio (top to bottom) of a Gaussian

elimination kernel. Results for SuperMUC Phase 1 (Sandy Bridge, left) and
Phase 2 (Haswell, right) are presented. 112

14.7 Nodes (top) and MPI processes (bottom) during the interaction between the
Cannon’s matrix-matrix multiply kernel with 4096x4096 matrices and the
Gaussian elimination application with 4096x4096 matrices. Results for Su-
perMUC Phase 1 (Sandy Bridge, left) and Phase 2 (Haswell, right) are pre-
sented. 114

14.8 Nodes (top) and MPI processes (bottom) during the interaction between the
Cannon’s matrix-matrix multiply kernel with 1024x1024 matrices and the
Gaussian elimination application with 4096x4096 matrices. Results for Su-
perMUC Phase 1 (Sandy Bridge, left) and Phase 2 (Haswell, right) are pre-
sented. 115

14.9 Time balancing enabled (top) versus disabled (bottom) with different run
times on the same Cannon Matrix-Matrix multiplication application. 117

14.10Repeat of the time balance test with upper MTCT threshold increased to 0.5
for comparison with Fig. 14.9. 118

xvi

1 Introduction

Large High Performance Computing (HPC) systems are essential tools for multiple re-
search areas today. These systems can require large amounts of funds for their initial pur-
chase as well as long term maintenance. Due to the costs, these systems are usually shared
among a large number of scientists and professionals from multiple institutions.

A resource manager with a scheduler is typically used to share the resources of an HPC
system across the compute jobs submitted by its users. Schedulers can operate in time-
sharing or space-sharing mode. In time-sharing mode, the tasks of multiple jobs can get
simultaneous access to resources. Current schedulers typically operate in space-sharing
mode; in this mode, jobs get exclusive access to their allocated resources for the entirety
of their execution time. Space-sharing mode provides an environment with predictable
performance for applications that run as part of a job, and has been an adequate solution
up to the present time.

Near future HPC systems are expected to reach exaFLOPS of performance. Due to cur-
rent trends in computer hardware, this requires the aggregation of ever greater numbers of
nodes that have internally ever greater amounts of hardware parallelism. Along with the
increase of parallelism of HPC hardware, distributed system software as well as user soft-
ware will need to be updated to make efficient use of the increased number of individual
hardware resources.

Future applications are expected to become more dynamic. For example, their process-
ing requirements will vary at runtime with the use of Adaptive Mesh Refinement (AMR)
methods. These applications have varying amounts of available parallelism at runtime,
due to the number of elements in their meshes being altered. Since refinements occur in a
distributed manner, it can also lead to load imbalances.

Current applications that have limited available parallelism will also pose challenges,
even if their available parallelism is constant during runs. Strong scaling applications
where their input determines their computational domain (size and geometry) can receive
resource allocations that result in low parallel efficiency. It is difficult to predict good re-
source allocations for applications before collecting enough empirical data at a wide range
of processing resource counts. In many cases, these applications will run only once per
input set. Applications may also be composed of multiple phases, where each phase has
its own available parallelism.

Parallel applications operate at different efficiencies depending on their current avail-
able parallelism and their current resource allocation. Inadequate resource allocations
may lower the efficiency of applications. This work addresses efficiency losses due to
inadequate resource allocations by introducing a resource-elastic execution environment
for distributed memory HPC systems. The parallel efficiency of applications is estimated
with a performance model and their resources are periodically increased or reduced based
on a new heuristic.

The resources allocated to a job can be adjusted at runtime in a resource-elastic execu-
tion environment. Resource counts may be adjusted to prevent low parallel efficiency in
individual applications, if it can be detected. In the case of applications that use AMR

1

1 Introduction

methods, resources can be adjusted based on updated mesh element counts and commu-
nication patterns. Strong scaling applications can have their resource allocations adjusted
based on estimations to their parallel efficiency. The adjustment of resources can also pro-
duce a surplus of resources that can be allocated to waiting jobs.

The proposed solution is divided into two main parts: a communication library and a
resource manager. The goal is to improve efficiency mainly at the system level, while pro-
viding improvements to individual applications as much as possible. The resource man-
ager and the communication library interact to adjust the resources allocated to running
applications in order to improve their efficiency. The adjustment is a continuous activity
during the runtime of jobs in a distributed memory system.

The communication library supports the Message Passing Interface (MPI) standard. The
standard has preexisting support for expansions of resources in applications. This can be
achieved through the use of the dynamic processes operations introduced in version 2 of
the standard. Due to the performance costs and limitations of these operations, these have
not been widely used by application developers. A notable limitation is that resources
cannot be reduced.

An extension to the MPI standard is proposed in this work. It consists of four new op-
erations. These operations allow for the dynamic modification of the number of processes
of an application, matching any changes in its resources at runtime. These new operations
differ in the way they allow resource adaptations, when compared to the ones provided by
the standard dynamic processes support in MPI. The core new concept is the creation of
adaptation windows, where resources are incorporated or removed from distributed ap-
plications. Resources are abstracted as processes in the MPI COMM WORLD communicator.
Additionally, the adaptations are initiated by the resource manager and not the MPI appli-
cation. Adaptation windows are defined by a begin and a commit operation (similarly to
transactions) and cannot be nested.

A short description of the four proposed operations is provided here:

• MPI INIT ADAPT: Initializes the library in adaptive mode and indicates the status
of the local process: new or joining. A process is new when it is created as part of
the initial application launch, or joining when created as part of an expansion by a
resource manager.

• MPI PROBE ADAPT: Indicates whether the application is required to adapt. If an
adaptation is required, it also provides the status of the preexisting process. This
status can be staying or leaving.

• MPI COMM ADAPT BEGIN: Begins the adaptation window. This operation provides
helper communicators that enable communication between preexisting and newly
added process groups. It also provides additional information to aid repartitioning
schemes.

• MPI COMM ADAPT COMMIT: Completes the adaptation window. All staying preex-
isting processes and all joining processes become members of the MPI COMM WORLD
communicator after this operation, while any leaving preexisting processes are re-
moved.

Malleable applications are those that can have their computing resources adjusted at
runtime. These operations can be used to create new malleable MPI applications or to
convert existing ones.

2

The design of the operations in the MPI extension allows MPI library implementations
to hide all latencies related to resource management and the creation of new processes
from preexisting processes. Preexisting processes are only notified about adaptations once
new processes are ready and blocking in the begin operation.

The resource manager applies new resource allocations to running applications through
a reallocation message. Each application is sent a reallocation message and its status is
changed from running to adapting, in its job metadata. A six step adaptation sequence
is started with this message. In the final step, the application notifies back the resource
manager when its adaptation has been completed. The resource manager then updates
the status of the job back to running, from adapting. This is done to prevent the nesting of
adaptations, since nesting is currently not supported by the design.

Sets of applications can have their resources adapted with the use of multiple adaptation
messages simultaneously. There is a time window where processes from two applications
may reside in individual nodes. This occurs when resources are being moved from one
application to another. Once both applications complete their adaptation, exclusive access
to resources is again ensured. In summary, exclusive access to resources is guaranteed
after resource adaptations are completed, but not during adaptations.

Only things that can be measured or estimated can be managed. Some means to estimate
the efficiency of applications at their current resource allocations was needed. Without any
estimation on how efficiently applications are performing with specific resource alloca-
tions, scheduling decisions that alter resource counts would be of little value or detrimen-
tal to performance. An estimation on the expected change in efficiency of an application
given a new resource allocation is necessary to support resource-elastic scheduling.

The resource manager and the communication library interact periodically during elas-
tic application runs. During these interactions, performance data is collected and used to
generate performance models. These models are used to estimate the efficiency at which
each application is operating, given its current resource allocation. If the efficiency is esti-
mated to be low, the resources in its allocation are reduced. If its efficiency is estimated to
be high, the resources in its allocation may be preserved or increased, based on a heuristic.

Currently only one performance model has been developed: the SPMD-Phase model.
As its name suggests, it only supports Single-Program Multiple-Data (SPMD) distributed
patterns. These SPMD phases need to be first identified in distributed applications. These
distributed patterns are detected by first building a partial Control Flow Graph (CFG) of
the application at each individual MPI process. The algorithm updates a partial CFG as
the application runs. The CFG is only complete when the application terminates; therefore,
the detection is always operating on incomplete CFGs during the runtime of applications.

The generation of the CFGs relies on unique MPI call site markings that are introduced
during compilation with the use of the MPI compiler wrappers. These markers eliminate
the need of backtracing at runtime. Backtracing is a source of significant CFG detection
overheads. Previous CFG detection solutions rely on backtracing.

The first step to generate the model is to identify loops in the partial CFG of each process
of the distributed application. These are then matched, reduced and annotated with the
collected performance data. In the SPMD-Phase model, the performance data is used to
compute the proportion of MPI to compute time of the distributed loop. This proportion
is then used to produce a range of possible resource allocation sizes for the application,
where its estimated parallel efficiency is predicted to either improve or remain stable. This
is done for each application in a set of candidates for resource adaptations, and a Resource
Range Vector (RRV) is produced. The SPMD-Phase model is applied per application and

3

1 Introduction

produces the entries of the vector individually. New models are expected to be added in
the future for different parallel execution patterns.

The proposed scheduling heuristic takes as input the RRV. Its output is a Resource Scal-
ing Vector (RSV) of concrete resource counts to be applied to the set of running elastic ap-
plications considered. It is assumed that the ranges produced by the performance model
do not degrade the efficiency of the applications significantly. Additionally, the perfor-
mance of the applications are assumed to scale linearly within the supplied ranges. In
other words, the assumption is that the parallel efficiency of the application improves or
remains similar within the provided ranges.

The scheduler makes resource adaptation decisions on sets of applications in order to
improve system-wide performance metrics. The performance of individual applications
may also be improved in the process. The interactions between the resource manager and
the MPI library are only done if applications are resource-elastic. Applications that are not
resource-elastic are simply ignored.

The new scheduling heuristic is an extension to the current batch scheduling and back-
filling approach found in most distributed schedulers. Its implementation is split into two
software components: the Elastic Batch Scheduler (EBS) and the Elastic Runtime Scheduler
(ERS). The EBS was not implemented in time to be presented in this document; however,
its role in the current design has been determined and is described.

The EBS will implement moldable batch scheduling. This type of scheduling is well un-
derstood and already used in related resource-elastic scheduling research. The resources
at which jobs start are flexible with this type of scheduling. Moldable batch scheduling is
not concerned with what happens to resource allocations after applications start.

The ERS implements what is referred to as elastic backfilling in this document. Elastic
backfilling consists of resource adaptation operations that can be applied to minimize idle
node counts, while improving the overall estimated efficiency of the system. The trade-off
between estimated parallel efficiency and the number of idle node counts generated by
the technique can be configured by setting thresholds. The generation of idle nodes by
resource adaptations prioritizes the start of new jobs and benefits the estimated efficiency
of the system. The alternative is to trade estimated efficiency for lower idle node counts
and relative increases in job queues.

The elastic backfilling heuristic implementation in the ERS contains a shim that replaces
its interaction with the missing EBS. In the design, the expectation is that the ERS will
receive new jobs held by the EBS before it produces the final Resource Scaling Vector (RSV)
from the Resource Range Section (RRV) produced with the SPMD-Phase model. This will
give priority to the start of new jobs over the expansion of running ones.

The elastic backfilling heuristic applies a combination of two new operations to the set
of candidate jobs: time balancing and resource filling. The time balancing operation takes
a subset of the candidate jobs and attempts to balance their total runtime by adjusting their
resources. This operation can be used to minimize the makespan in the current prototype,
and to reduce the wait time of jobs with reservations in the future, when the EBS is intro-
duced and its shim removed. The resource filling operation is used to fill any surplus of
nodes. This operation can be combined with regular backfilling techniques to minimize
idle node counts, again, once the EBS is introduced.

A new programming model is also proposed in this work: Elastic-Phase Oriented Pro-
gramming (EPOP). Its goal is to simplify the development of elastic distributed memory
applications. This model improves the structure and modularity of elastic applications
by requiring that their work be defined as a collection of phases and control structures.

4

The CFG of applications is defined by developers in this model; this eliminates the need
of CFG detection and its related overhead. The actual execution of these applications is
controlled by a driver program. Driver programs can have different purposes, such as de-
bugging. Different driver programs can be selected at launch time without modifying the
applications.

In summary, the contributions in this work add resource-elasticity support for distributed
memory applications in current HPC systems. Support for resource-elasticity requires
changes to multiple parts of the software stack of a parallel system, such as: programming
models, runtime systems, resource managers and schedulers. Because of this, the con-
tributions presented in this document are related to multiple research areas of computer
science. More specifically, the contributions of this work can be enumerated as follows:

1. MPI library with an extension for improved dynamic processes support.

2. Resource manager with support for resource-elasticity.

3. MPI library and resource manager integration for continuous interaction.

4. Programming model for distributed memory resource-elastic applications.

5. Measurement and modeling infrastructure for resource-elastic applications.

6. Scheduling heuristic to optimize systems with resource-elasticity support.

This document continues with the motivation and the related work. It then follows with
topics related to the message passing programming model. Resource management and
scheduling contributions are described afterwards. The document is then completed with
the evaluation and closing chapters.

The content is organized in chapters. A set of application types and their scalability
with resources are presented as motivation in Chap. 2. In the same chapter, the benefits of
resource-elasticity for system-wide performance are summarized and related work cited.
This work was done within the transregional Invasive Computing project. The scope and
organization of this research project is described briefly in Chap. 3. A detailed discus-
sion on related programming models and resource management research is presented in
Chap. 4. The document continues with the chapters related to message passing. Chapter 5
provides an overview of the MPI standard and its implementation within the MPICH li-
brary. MPICH was used as basis for the communication library prototype. Afterwards,
Chap. 6 describes the proposed MPI extension and its implementation. A new resource-
elastic programming model is introduced in Chap. 7: Elastic-Phase Oriented Programming
(EPOP). The document continues with the chapters about resource management. Chap-
ter 8 provides a brief introduction to resource management in general. It also provides an
overview of the SLURM workload manager, since it is used as basis for the resource man-
ager prototype presented in this document. The new resource manager is presented in
Chap. 9. Its interaction with the communication library when performing resource adap-
tations is described in detail. The design and implementation of the new measurement,
modeling and scheduling infrastructure is covered in Chap. 10. In Chapters 11 through
14, the testing methodology is described and evaluation results for the MPI library, the re-
source manager and a selection of applications are presented. Finally, the document ends
with the conclusion in Chap. 15 and a discussion about possible future work in Chap. 16.

5

1 Introduction

6

2 Motivation

Research and engineering efforts today are conducted in several possible ways. Purely
experimental research (using the scientific method) is done when possible. For example, a
company can evaluate the response of a new material to changes in temperature in a con-
trolled environment with acceptable accuracy. However, not all research teams have that
privilege. In many other cases experiments are impractical, expensive or simply impossi-
ble. Consider the case of an environmental team evaluating the impact of some substance
in an ecosystem: they could pollute large parts of a forest with a new chemical and then
evaluate its impact in the local fauna. Needless to say, this would be unethical and could
have permanent detrimental effects in the forest. Another example could be a company in
the automotive industry. Such a company may have multiple teams working in on several
possible designs for a new engine, but may not afford to create an individual prototype for
each possibility. Finally, an experiment may simply be impossible, such as the analysis of
the effect of an earthquake of a specific strength in a city where this has never happened.

Computer simulations are an alternative to real experiments. Special care needs to be
taken when creating models and simulation code. If successful, simulations can provide
accurate results that correlate reliably to reality. Simulations can help companies save on
experimental and prototyping costs, by replacing parts of their experiments with simu-
lations. For example, in the automotive company with multiple engine designs scenario
mentioned before, the company could simulate all candidate designs before producing
physical prototypes. The number of prototypes can then be reduced by discarding less ef-
ficient designs, greatly reducing its costs. Simulations can also allow otherwise impossible
research to take place, such as the earthquake scenario mentioned before.

The time to solution of a simulation is closely related to its usefulness in many cases.
For example, a weather forecasting station needs to produce forecasts before individuals
can simply look at the sky. This requirement, together with the processing capabilities
of the system and the performance properties of the simulation code, will determine the
performance level required to meet deadlines.

Simulations vary greatly in terms of their computational requirements and the required
accuracy of their results. For many simulations, a desktop computer or workstation is
sufficient. In other cases, when the performance required far exceeds what is available
in a single workstation, a distributed memory system is required. In distributed memory
systems, the performance of thousands of compute elements can be aggregated. Instead
of workstations, the compute elements are divided in nodes and assembled in racks. The
definition of a node will vary depending of the vendor that provides the distributed mem-
ory system. If the simulation, in addition to large compute requirements, also has strong
synchronization requirements, then specialized communication networks are used to in-
terconnect the nodes. A large set of nodes interconnected by a high performance network
is today referred to as a supercomputer or a High Performance Computing (HPC) system.

Even small supercomputers can have significant costs, both for the initial purchase and
its maintenance during its service time. Costs are one of the reasons why these systems
tend to be shared among several users and even several research institutions. A resource

7

2 Motivation

manager with a scheduler is necessary to share the resources of these systems fairly and
efficiently. Most schedulers today operate in space sharing mode; this means that resources
are given exclusively to a job during its complete run, and are only released for other jobs
when it completes.

Exclusive access to resources has given applications stable and predictable performance.
This solution has been adequate given the scale of current systems and the static nature of
most algorithms used in contemporary simulations. This is expected to change as systems
continue to grow and applications become more dynamic.

Allocations can often impact the efficiency of simulations negatively. In this work, an
allocation is defined as inadequate when it lowers any efficiency metric significantly. The
allocation may be inadequate for the entirety of the run of a job, or temporarily.

Elastic execution is proposed as a solution to inadequate allocations, since allocations
can be adjusted while applications are running to improve their efficiency metrics. In
addition to justifying this research as a fix to inadequate allocations of individual jobs,
elastic execution can also improve system-wide efficiency metrics with a mix of elastic and
static applications. For example, jobs can be allocated extra nodes from an idle pool; this
minimizes the idle node count metric and is only possible with elastic execution.

In the remainder of this chapter, an incomplete set of scenarios where allocations are
often inadequate will be introduced. The focus is on parallel efficiency as the main met-
ric, since it is usually negatively affected on inadequate allocations and is often the main
objective of optimizations. The relationship between the available parallelism of an appli-
cation phase and the range of possible adequate resource allocations will be made. This
motivates the need for identifying the phases of applications and their available paral-
lelism. Finally, a short discussion about the benefits of resource-elasticity to system-wide
efficiency is included, together with references to related work. In summary, resource-
elasticity can provide efficiency increases to HPC systems and individual applications.

2.1 Adaptive Mesh Refinement (AMR) Methods

Adaptive Mesh Refinement (AMR) techniques are widely used in scientific applications
today. Applications that use these methods exhibit a tendency to generate load imbalances.
Additionally, their scalability properties change as a function of the aggregated increase or
decrease of primitives in their geometry because of any refinement or coarsening operation
applied to their meshes.

Load imbalances are generally well handled today, while changes in scalability prop-
erties are not. Load balancing is achieved by application specific techniques. Changes in
scalability properties pose a larger challenge because the application, the communication
library and the resource manager need to support resource adaptations. A software stack
that allows for resource adaptations can more efficiently support AMR applications, since
their allocations can be adjusted based on their dynamic scalability to ensure acceptable
parallel efficiency throughout their runtime.

Algorithms used to solve linear systems iteratively rely on approximations of their error,
usually referred to as the residual, in order to determine the quality of the approximation at
each iteration and determine a termination condition. The subset of these algorithms that
perform mesh refinements rely on a way to approximate their error at different refinement
levels. In most simulations, the main program performs approximations to the solution of
a system of partial differential equations per time step. Error estimations can be computed

8

2.1 Adaptive Mesh Refinement (AMR) Methods

Figure 2.1: Example 2D mesh refinement for the z = sin(ex) surface at the x = y = 0 plane
(top) with plots for the function at y = 0 (bottom).

in subdomains, to determine where to refine the mesh. This is much better than refining
the full mesh, since finer meshes require more processing and their higher resolution is
only of benefit in the submeshes where the error is estimated to be high. The technique
can be better understood with an illustration. Figure 2.1 shows a refined mesh produced
by a numerical quadrature algorithm for a particular integrand function. As can be seen in
the images, the AMR algorithm refines the 2D mesh proportionally to the spatial frequency
of the integrand. Note that the refinement divides each element in the mesh into four new
elements, although the increased resolution of only one dimension improves the accuracy
of the integration in this case.

2.1.1 Challenges of AMR Methods in Distributed Memory Systems

As described before, the use of AMR methods can offer efficiency gains to applications.
Unfortunately, there are also some challenges that arise as a result of the use of these meth-
ods. In this section, the challenges that are specific to applications that rely on AMR meth-
ods and their execution in distributed memory systems will be discussed. These are load
imbalance due to process-local refinements and variable scalability due to changes in the
total available parallelism of applications.

9

2 Motivation

(a) Regular (b) Top refinement

(c) Bottom and top refinement (d) Left refinement

Figure 2.2: Meshes with different color for each submesh distributed among 8 processes.

Local Refinements and Load Imbalance

When executing in distributed memory systems, mesh refinements are performed in a
partitioned domain. Each participating process owns a different subdomain, and therefore
will determine different refinements. The refinements can vary greatly given the amount
of symmetry in the domain, initial conditions, the equations involved, among other things.

These differences in the amount of refinement at each of the processes leads to load
imbalances. This has been solved in static allocations by having application specific re-
distribution schemes. An elastic execution model is not a solution to the load balancing
problem; however, local refinements also result in variable available parallelism.

Variable Available Parallelism and Scalability

The aggregated number of the refinements performed at each process of a distributed ap-
plication using AMR changes the scalability of the application. A net increase of the num-
ber of points in the mesh will increase the total available parallelism, while a net reduction
of the number of points on the distributed mesh will decrease the total available paral-
lelism. In applications that use AMR methods, the available parallelism varies in time.

The available parallelism of an application will determine the amount of resources that
it can use at peak or acceptable efficiency, given the relation between its computational
and communication requirements. This means that, in order to operate at high efficiency,
the resources of AMR applications need to be actively adjusted based on the results of
their refinement or coarsening operations. Moreover, in most simulations the refinements
produce different results depending on the current time step of the algorithm; therefore,

10

2.2 Applications with Multiple Computational Phases

adaptations need to be continuous in time.
A set of examples help illustrate possible situations that an application can run into. Fig-

ure 2.2 shows four meshes that are divided into 8 submeshes of equal dimensions. Such a
situation can arise on a simulation that is running in a distributed manner on 8 processes.
The number of elements in each processor is proportional to the amount of computations
its solver must perform. In the figure, meshes (a) and (c) are load balanced, while (b)
and (d) are not. In addition to this, if (a) is the starting point of the algorithm and (b),
(c) and (d) are possible outcomes of the AMR algorithm, the total amount of computa-
tion in the distributed application increases and therefore changes its available parallelism.
The change in available parallelism may render resource allocations inadequate. Because
of this, application specific redistribution schemes developed for elastic execution can ben-
efit greatly from performing load balancing together with resource adaptations.

Elastic execution is proposed as a solution to the loss of parallel efficiency due to the
variability of available parallelism produced by AMR methods in distributed memory ap-
plications. Elastic execution allows for the adjustment of resources allocated to applica-
tions based on their available parallelism as a continuous activity during runs.

2.2 Applications with Multiple Computational Phases

Most applications are seen intuitively by developers as having multiple phases. For exam-
ple, an application can be seen as having an initialization phase, a computational phase
and a finalization phase.

During initialization, an application will most likely perform IO operations to read all
of its input files. It will then setup its data structures in a distributed manner, before any
computation takes place.

During computation, if the application is a simulation, it will likely perform multiple
time steps until the simulation is done. Within each time step, multiple approximations of
linear systems of differential equations may be computed as necessary; each of these sep-
arate approximations, that could use separate specialized solvers, can be seen themselves
as separate phases.

Finally, during a finalization phase, the application may generate any output files as
necessary, such as visualization, result files, etc. The application may also free any memory
related to its data structures and close any file descriptors.

These different phases of applications tend to have different performance characteristics.
In most cases, the initialization and finalization phases do not take significant amounts of
time and therefore are not targets for optimization. However, any phases that appear in
the computational parts will be very significant to the total run time of the application.
Because of their difference in parallel efficiency, these phases may perform better with
different allocations of compute resources.

In this section, the variability of available parallelism in phases is described. Overheads
related to adaptations of resources are not considered yet; the focus is instead on the per-
formance effects given instantaneous resource adaptations. Most of the common types of
phases are classified in terms of their scalability with resources. The benefits that elastic
execution can provide to them are stated.

A distinction is made between phases that generate more work as their resources are
increased, versus those that keep their amount of work constant regardless. The former
type is known as weak scaling, while the later type is known as strong scaling. The perfor-

11

2 Motivation

mance of strong scaling phases can be optimized by adjusting resources via elastic execu-
tion. Their parallel efficiency is a function of the resources that they use for processing. In
contrast, weak scaling phases will simply increase the amount of work they do per com-
putational unit, as more resources are provided to them. Because of this, in this work only
strong scaling phases are considered.

2.2.1 Phases with Different Scalability Properties

The scalability of distributed compute phases is a measure of efficiency based on the num-
ber of resources that are allocated for their computation. The scalability of different phases
can vary greatly. A phase that can use more compute resources than another phase is said
to be more scalable, comparatively.

Figures 2.3 and 2.4 show the results of the NAS [75] Parallel Benchmarks collected on
SuperMUC [13] Phase 1 and Phase 2 nodes respectively. Results are shown for the EP, CG,
LU and BT benchmarks, each at sizes W, A and B (where W is the smallest size and B
the biggest). The MOPS (millions of operations per second) metric is plotted above, while
the efficiency metric (MOPS per process) is plotted below. The EP benchmark stands for
Embarrassingly Parallel; as can be seen on the plots, it indeed behaves as having large
available parallelism in Phase 1 nodes, while it stops scaling linearly at 32 processes in
Phase 2 nodes for size W, and at 64 for the other sizes. In most cases, such as this one, EP
applications only scale linearly with resources up to a certain amount that is dependent
on their input. All other benchmarks show clearly that they have limited scalability, with
LU and BT benchmarks scaling more strongly than the CG benchmark. All of them show
input dependent scalability, with CG being the most input dependent.

Phases with limited available parallelism, and therefore with limited scalability, are of
special interest since their parallel efficiency is a function of the resources that are allocated
to them. Elastic execution allows the adjustment of resources for these types of phases,
once their performance has been analyzed. Performance analysis will be discussed to-
gether with scheduling in Chap. 10.

2.2.2 Network-, Memory- and Compute-Bound Phases

Phases can also be classified based on which aspects of the parallel system limit their per-
formance. Phases can be limited by the network, memory or compute performance of the
system. Phases that are limited by file system performance are considered network-bound,
since distributed systems provide their file systems through their network.

It is important to note that this classification only makes sense given specific allocations,
since bottlenecks may shift after a resource adaptation. For example, a network-bound
phase can become memory-bound after a reduction of resources on its allocation. Such
a scenario indicates that the optimal number of resources lies above the new reduced al-
location and below the original allocation. This can be observed in the CG benchmark’s
efficiency plot in Fig. 2.4, evaluated in SuperMUC Phase 2 nodes. In this case, it can be
seen that the efficiency and scalability of the application changes after 8 processes only for
size B. Its scalability depends on the input, the number of resources allocated to it and the
actual type of hardware where it is run, as can be seen when comparing these same results
on SuperMUC Phase 1 nodes in Fig. 2.3.

Network-bound phases are limited by the performance of the network of the parallel
system. Additionally, they may be sensible to the topology of its allocated resources in

12

2.2 Applications with Multiple Computational Phases

 10

 100

 1000

 10000

 100000

 1000000

1 2 4 8 9 16 25 32 64 128 256 512 1024

M
O

P
S

Number of MPI processes

EP W
EP A
EP B

CG W
CG A
CG B
LU W
LU A
LU B
BT W
BT A
BT B

 1

 10

 100

 1000

 10000

1 2 4 8 9 16 25 32 64 128 256 512 1024

M
O

P
S

 P
e

r
P

ro
c
e

s
s

Number of MPI processes

EP W
EP A
EP B

CG W
CG A
CG B
LU W
LU A
LU B
BT W
BT A
BT B

Figure 2.3: Results in MOPS (top) versus MOPS per process (bottom) of the EP, CG, LU
and BT benchmarks of the NAS suite on SuperMUC Phase 1 nodes.

13

2 Motivation

 10

 100

 1000

 10000

 100000

 1000000

1 2 4 8 9 16 25 32 64 128 256 512 1024

M
O

P
S

Number of MPI processes

EP W
EP A
EP B

CG W
CG A
CG B
LU W
LU A
LU B
BT W
BT A
BT B

 1

 10

 100

 1000

 10000

1 2 4 8 9 16 25 32 64 128 256 512 1024

M
O

P
S

 P
e

r
P

ro
c
e

s
s

Number of MPI processes

EP W
EP A
EP B

CG W
CG A
CG B
LU W
LU A
LU B
BT W
BT A
BT B

Figure 2.4: Results in MOPS (top) versus MOPS per process (bottom) of the EP, CG, LU
and BT benchmarks of the NAS suite on SuperMUC Phase 2 nodes.

14

2.2 Applications with Multiple Computational Phases

the network. Phases of this kind generally do not scale well on large resource allocations,
since they tend to lower their parallel efficiency. Setting the number of processes per node
to the maximum number of cores per node may provide the best performance in these
cases. Parallel efficiency can be improved by reductions of resources in their allocations.

Memory-bound phases are limited by the bandwidth or latency of the memory subsys-
tem of the compute nodes. These may be sensible to the number of processes executing
internally at each node, and may benefit by a reduction of these, in contrast to the network-
bound case. Scaling with the number of nodes will in most cases still gain significant per-
formance before lowering the parallel efficiency of the application.

Compute-bound phases are limited by the performance of the arithmetic units of the
processing elements in its allocation. These phases are targets for expansions of their al-
located resources. Compute-bound phases may become network- or memory-bound once
given enough resources due to their available parallelism. For example, the EP benchmark
in Fig. 2.3 behaves as compute-bound for all allocations and input sizes on SuperMUC
Phase 1 nodes, while on Phase 2 hardware its bottleneck is shifted starting at 32 processes
(with different severity depending on its input size), as shown in Fig. 2.4.

Compute-bound phases normally scale to larger numbers of resources than other types
of phases, such as those that are network- or memory-bound. Compute-bound phases
may in some cases scale up to a number of resources that exceeds the available resources
of the parallel system. These are not particularly interesting when optimizing an individ-
ual application since they perform at near their maximum efficiency independently of the
amount of resources that they have allocated. It is important to identify them, since they
can be efficient at a wide range of resource allocations and therefore can be used to fill
up idle nodes. This can help minimize idle node counts and other system-wide efficiency
metrics.

2.2.3 Phases with Different Input Dependent Network and Compute Scaling
Proportionalities

It is common to find that the network and compute times of a phase scale with different
proportionalities depending on its input. For example, there are distributed kernels and
solvers where the computation scales cubically with the size of the subdomain of a process,
while the communication scales quadratically with the same size of the subdomain. In this
case, the application follows the surface to volume scaling proportionality, due to its com-
putational domain being a volume while its communication boundaries are surfaces. The
size of the subdomains depends on the size of the input and number of processes given
to the application, as resources. When this situation arises, there are concrete allocation
sizes that maximize the efficiency of the computation. Moreover, if overlap of communi-
cation and computation is possible, the optimal allocation for parallel efficiency is the one
that makes both the computation and communication times match, potentially halving the
execution time.

This type of scaling occurs frequently in simulation software due to common domain
decompositions and computational kernels. Data partitioning schemes for distributed
memory applications split a domain across the processes of an application. When simulat-
ing physical phenomena, domains tend to represent a volume. A decomposition scheme
slices a specific domain into smaller sub-volumes, where the area of the sides of the sub-
volumes determine the proportionality of the communication requirements, while the size
of the sub-volumes themselves determine the proportionality of the computational re-

15

2 Motivation

quirements at each process. This situation arises very often in simulations where their
solvers are based on stencils that represent sparse diagonal or block diagonal system ma-
trices. In such cases, communication takes place across neighbors in the simulated physical
domain; communication can be then optimized by placing processes that are computing
in neighboring simulation subdomains close in the real physical network topology.

Even experts will have a hard time guessing the amount of resources a phase can use
efficiently before the actual simulation takes place. In addition to this, since applications
may have multiple phases, a fixed amount of resources that is efficient for the whole ap-
plication may be impossible.

This can be better explained with an example. Figure 2.5 presents (from top to bottom)
compute time, MPI time, total time (MPI and compute) and efficiency (matrix elements
processed per second per process) metrics of a distributed Cannon algorithm implemen-
tation for matrix-matrix multiplication evaluated in SuperMUC Phase 1 (left) and Phase 2
(right) nodes. The results for allocations of 4 through 1024 processes are presented. These
times were measured at the actual matrix multiplication kernel phase. As can be seen from
the plots, as long as the MPI times are only a small fraction of the computation times, the
kernel shows relatively constant results for its efficiency metric, and the total time contin-
ues to scale well with the number of resources. Once MPI time exceeds computation times,
the efficiency and scaling of the application is reduced greatly. For this application, there
is a ceiling on the resources that can be used efficiently by it. This ceiling depends on the
size of the input (matrices in this case).

2.2.4 Efficient Ranges for Application Phase Scalability

It has been observed that there are ranges of process counts where application phases
are efficient. There is only an upper bound on these ranges; applications tend to retain
a similar level of efficiency with lower process counts. The upper limit on these ranges
correlate to high proportions of MPI time versus compute time in the phases. Ensuring
that application phases have resource allocations inside their efficient range is desirable.
Exceeding the upper bound of the efficiency range should be avoided.

2.3 System-Wide Parallel Efficiency

The overall efficiency of complete supercomputers is of great importance. Current sched-
ulers try to maximize system-wide efficiency metrics while applying best effort techniques
to ensure fairness in terms of the wait times of individual jobs and their performance once
started [89, 126, 200, 166, 90].

So far only the efficiency of phases as a function of their allocated resources has been
discussed; this efficiency relates only to individual applications and not the efficiency of
the complete parallel system. In this section, scenarios where elastic execution can improve
the overall efficiency of complete HPC systems are discussed. The assumption here is that
a system will have a mix of elastic and static jobs, in contrast to the current systems where
jobs are strictly static.

2.3.1 Suboptimal Network Performance due to Fixed Initial Allocations

It has been shown by several researchers that the placement of processes can greatly im-
pact the network performance of distributed applications [24, 162, 116, 202, 133, 171, 129,

16

2.3 System-Wide Parallel Efficiency

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

4 16 64 256 1024

C
o
m

p
u
te

 T
im

e
 (

s
e
c
o
n
d
s
)

Number of MPI processes (Sandy Bridge)

4096x4096
2048x2048
1024x1024

512x512
256x256
128x128

64x64

4 16 64 256 1024
 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000
C

o
m

p
u
te

 T
im

e
 (s

e
c
o
n
d
s
)

Number of MPI processes (Haswell)

4096x4096
2048x2048
1024x1024

512x512
256x256
128x128

64x64

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

4 16 64 256 1024

M
P

I
T

im
e
 (

s
e
c
o
n
d
s
)

Number of MPI processes (Sandy Bridge)

4096x4096
2048x2048
1024x1024

512x512
256x256
128x128

64x64

4 16 64 256 1024
 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

M
P

I T
im

e
 (s

e
c
o
n
d
s
)

Number of MPI processes (Haswell)

4096x4096
2048x2048
1024x1024

512x512
256x256
128x128

64x64

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

4 16 64 256 1024

T
o
ta

l
T

im
e
 (

s
e
c
o
n
d
s
)

Number of MPI processes (Sandy Bridge)

4096x4096
2048x2048
1024x1024

512x512
256x256
128x128

64x64

4 16 64 256 1024
 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

T
o
ta

l T
im

e
 (s

e
c
o
n
d
s
)

Number of MPI processes (Haswell)

4096x4096
2048x2048
1024x1024

512x512
256x256
128x128

64x64

 100

 1000

 10000

 100000

 1e+06

 1e+07

4 16 64 256 1024

E
ff
ic

ie
n
c
y
 (

e
le

m
e
n
ts

 p
e
r

s
e
c
o
n
d
 p

e
r

p
ro

c
e
s
s
)

Number of MPI processes (Sandy Bridge)

4096x4096
2048x2048
1024x1024

512x512
256x256
128x128

64x64

4 16 64 256 1024
 100

 1000

 10000

 100000

 1e+06

 1e+07

E
ffic

ie
n
c
y
 (e

le
m

e
n
ts

 p
e
r s

e
c
o
n
d
 p

e
r p

ro
c
e
s
s
)

Number of MPI processes (Haswell)

4096x4096
2048x2048
1024x1024

512x512
256x256
128x128

64x64

Figure 2.5: Compute, network and total times plus efficiency (top to bottom) of a Cannon’s
matrix-matrix multiply kernel. Results for SuperMUC Phase 1 (Sandy Bridge,
left) and Phase 2 (Haswell, right) presented.

17

2 Motivation

156, 187, 155, 134, 196, 157, 220, 211, 182]. Topology aware algorithms already exist that
minimize the number of hops between nodes when allocating resources for a job [129, 44,
48, 128, 43, 125, 67, 201, 220, 150, 226, 117]. The goal is to minimize the network latency and
maximize the bandwidth between the nodes allocated to a job. However, it is preferable to
start a job that is waiting in the queue of a system immediately, instead of waiting for the
ideal resources that provide the best network latency and bandwidth. Because of this, very
often the allocation of resources is not ideal, depending on the level of fragmentation and
node availability on a system when a job is launched. Elastic execution can alleviate this
by allowing the reallocation of resources of a job once other resources are made available
that minimize the number of hops across the full allocation.

2.3.2 Idle Resources due to Inflexible Resource Requirements in Jobs

The set of available jobs in the queue at a specific time and their static resource require-
ments can make it impossible for schedulers to fill up the totality of the resources of a
parallel system. This becomes more difficult in systems that attempt to ensure fairness
based on the arrival time of jobs in the queue. Indeed, the minimization of idle nodes has
been the goal of several backfilling techniques developed over the years [200, 166, 212, 199,
206, 143, 233, 193, 144, 136, 151, 227].

In combination with backfilling, elastic execution can further alleviate this problem
when there are sufficient elastic jobs in the queue that can make use of any idle nodes.
In addition to this, waiting jobs in the queue may start immediately with a lower number
of nodes, and later expand as needed once other jobs terminate and release resources. In
general, elastic execution can completely eliminate idle nodes without needing the right
combination of static jobs in the queue at all times, given sufficient elastic jobs. Jobs with
phases that have very high scalability are particularly attractive, since they can be used to
fill up idle resources with minimal efficiency penalties.

2.3.3 Energy and Power Optimizations

In addition to parallel efficiency, energy optimizations are increasing in importance in cur-
rent HPC systems [88, 34, 55, 225, 102, 101, 190]. Energy costs have long overtaken the price
of purchase and other maintenance costs, during the lifetime of these systems. Because of
this, system administrators today may opt to use schedulers that optimize both perfor-
mance and energy metrics simultaneously with multi-objective optimization techniques.

As previously discussed, elastic applications can have their resources adjusted to max-
imize their parallel efficiency and potentially reduce their runtime. In addition to this,
resources can be adjusted so that energy efficiency is also optimized. This can be achieved
through multi-objective optimizations that find Pareto-optimal solutions or by minimiz-
ing metrics such as the energy-delay product. In contrast, static applications cannot be
optimized in this manner since the number of resources for the job must remain the same
during its run.

Power-level stabilization is of great importance today to some compute centers. There
are two common reasons: first, the stability of megawatt power delivery circuits, and sec-
ond, the way some energy providers set up their billing contracts. Some contracts can
have penalties for both not meeting or exceeding certain power levels. Elastic execution
makes it easier for scheduling algorithms to meet and stabilize power levels by reducing
idle nodes and scaling the resources of elastic jobs with different power characteristics.

18

3 Invasive Computing

This work is part of the research efforts coordinated by the Transregional Collaborative
Research Center 89: Invasive Computing. Invasive Computing focuses on resource-aware
computing in parallel systems. It has a wide scope: from embedded devices to distributed
memory supercomputers in terms of hardware, and from operating systems to scientific
computing applications in terms of software.

The Invasive Computing research project has been divided in three research and funding
phases. It is currently in its second phase. There are several research groups divided across
three universities. Their organization and goals will be described in this section.

3.1 Invasive Computing Research Groups

Invasive Computing is organized in research groups. Researchers are located across all
three participating institutions: University Friedrich-Alexander Erlangen-Nüremberg, Karl-
sruhe Institute of Technology and the Technical University of Munich.

The research groups are clustered in five sets under the letters A, B, C, D and Z. Each
individual group is identified with a unique combination of one of the preceding letters
and a number. These are described in detail in this section. Figure 3.1 provides an abstract
overview of where projects A through D fit in terms of their hardware and software appli-
cation areas. The horizontal axis denotes the hardware abstraction level: Arithmetic Logic
Unit (ALU), Tightly-Coupled Processor Array (TCPA), Central Processing Unit (CPU) and
High Performance Computing (HPC). The only Invasive Computing specific term is the
TCPA: these are collections of processing units that are used to accelerate certain work-
loads. Projects B, C and D are represented on the left vertical axis, with group B repre-
senting the lowest level and group D the highest. Projects in the A group interact with the
others just mentioned, and are represented vertically on the right side of the figure. Each of
the groups of the current research and funding phase will be introduced in the remainder
of this chapter.

3.1.1 Group A Projects

Group A projects focus on research related to programming models, algorithm complexity
analysis, software performance optimization and hardware-software cooperative design
opportunities. The currently active projects in phase two are briefly described below.

A1: Basics of Invasive Computing

This project aims to enhance the programming language and framework developed for
Invasive Computing specifically: InvadeX10. As its name suggests, it is the X10 pro-
gramming language with syntax extensions to enable resource-aware programming. A
framework has been developed around it, with a runtime system that allows for resource
changes in both shared and distributed memory systems. The project also aims to develop

19

3 Invasive Computing

Project Area D

Project Area C

Project Area B

Project Area A

Applications

Compiler, Simulation,

and Run-Time Support

Hardware Architecture

Fundamentals, Languages

and Algorithms

ALU TCPA CPU HPC

D1

D3

C3

C5

C2

C1

B5

B2 B3

B1 B4

A1

A4

Figure 3.1: Abstract overview of project groups and their application areas.

X10 language extensions for the specification of non-functional guarantees, such as perfor-
mance, correctness and fault tolerance. Support to any introduced language extensions is
added to its runtime system.

A3: Scheduling and Load Balancing

The additional flexibility provided by resource-aware programming enables additional
scheduling and load balancing opportunities. This research subgroup focuses on identi-
fying additional scheduling requirements for resource-aware runtime systems, in order to
take full advantage of this additional flexibility. The output of this group is a set of tech-
niques for scheduling resource-aware applications; these techniques are designed to im-
prove load balancing and non-functional guarantees related to correctness, performance,
energy, among other things.

A4: Design-Time Characterization and Analysis of Invasive Algorithmic Patterns

The added flexibility provided by resource-aware programming also increases the com-
plexity of schedulers and compute algorithms. Because of this, it is necessary to develop
new analysis techniques for invasive programs and runtime systems. The output of this
group is a set of techniques and tools for the characterization and analysis of invasive
software.

3.1.2 Group B Projects

Group B projects research any hardware development opportunities to benefit invasive
software and execution models. Specifically, they look at hardware features that bene-
fit embedded systems, where invasive software can provide advantages in terms of pre-
dictability and other real time guarantees; the research does not look at performance ben-
efits exclusively. There are five groups currently active and are described below.

20

3.1 Invasive Computing Research Groups

B1: Adaptive Application-Specific Invasive Microarchitectures

This project investigates hardware mechanisms to be built into compute microarchitec-
tures that facilitate the adaptation of resources for running applications. The aim is to have
hardware resources that are reconfigurable during the run of applications. These resources
include communication links, the number and type of computational units, amounts of
memory, slices of the cache, even the length of instruction pipelines, among other things.
The group aims to design and implement hardware features that enable applications to
reserve hardware resources and get exclusive access to them.

B2: Invasive Tightly-Coupled Processor Arrays (TCPAs)

Researchers in this group evaluate design opportunities related to Tightly-Coupled Pro-
cessor Arrays (TCPAs). Processor arrays can accelerate the processing of vector operations
with high energy efficiency and predictable times. These type of workloads can be ex-
tracted from code with loops that are common in scientific software and digital signal
processing. This group investigates the efficient reconfiguration and allocation of these
arrays for resource-aware computing.

B3: Power-Efficient Invasive Loosely-Coupled MPSoCs

Energy efficiency is ever more important for computing hardware designs. Designs for
resource-aware computing are no exception. This group investigates opportunities pro-
vided by resource-aware hardware design and scheduling for improved energy efficiency.
Special attention is given to the Thermal Design Power (TDP) for embedded systems, such
that invasive designs do not exceed safe temperature limits while at the same time provid-
ing adequate performance and energy efficiency.

B4: Hardware Monitoring System and Design Optimization for Invasive Architectures

This project focuses on the design of monitoring facilities for invasive hardware. These
facilities are essential for the evaluation of non-functional properties in resource-aware
software, such as performance predictability, fault tolerance, energy efficiency, thermal
safety, and others.

B5: Invasive NoCs – Autonomous, Self-Optimizing Communication Infrastructures for
MPSoCs

Networks on-Chips (NoCs) are necessary in current hardware designs with many comput-
ing elements. Communication bandwidth and latency need to scale well with reasonable
amounts of transistors when compared to crossbars. This group designs hardware on-
chip networks that can be reconfigured at runtime to provide security and performance
guarantees to resource-aware applications.

3.1.3 Group C Projects

Group C projects investigate system level software and programming models for resource-
aware computing. Different teams look at operating systems for distributed memory ar-
chitectures, programming models for distributed algorithms, security for resource-aware

21

3 Invasive Computing

applications, among other things. There are four projects that are active currently in phase
two; these are introduced and briefly described here.

C1: Invasive Run-Time Support System (iRTSS)

This research group looks mainly at operating system features that help runtime systems
support resource-aware software. A Unix-like operating system is part of the output of
this group. The operating system has extensions that allow the adaptation of the resources
of running applications. Extensions are being added that enable the specification of non-
functional requirements (such as performance and power levels) for resource-aware appli-
cations.

C2: Simulative Design Space Exploration

In this project, researchers develop simulators based on models of invasive hardware and
software. Simulations can then be used to steer the design process for invasive hardware,
as well as aid the optimization of resource-aware software.

C3: Compilation and Code Generation for Invasive Programs

Code generation and transformation techniques for resource-aware software are investi-
gated in this project. Code is generated for a variety of hardware resources with differ-
ent dimensionalities, given the reconfigurable nature of the design of the CPU cores, the
Tightly-Coupled Processor Arrays (TCPAs) and network links, among others. The com-
piler is developed with support for the InvadeX10 language and framework, and has back
ends for different CPU architectures.

C5: Security in Invasive Computing Systems

Security in computing systems is of great importance. Because of the highly dynamic
nature of resource-aware software, providing security for it is challenging. For example,
memory that is reallocated from one application to another, should not be readable at the
target, therefore access control alone is not sufficient for the resource-aware case. This
research group aims to provide reliable security solutions for invasive software.

3.1.4 Group D Projects

Group D projects focus on potential application areas for Invasive Computing. Most areas
of computing are considered, from embedded systems to distributed memory supercom-
puters. There are currently two active projects and are briefly described here.

D1: Invasive Software-Hardware Architecture for Robotics

This research group investigates the benefits and limitations of resource-aware computing
in robotics. In particular, research is aimed at its application on humanoid robots in com-
plex scenarios, where large computations need to take place concurrently and in a timely
fashion.

22

3.1 Invasive Computing Research Groups

D3: Invasion for High Performance Computing

There are three main areas of research in this group: numerical methods and implemen-
tations for resource-aware computing, advantages of resource-aware computing in HPC
and support for current HPC hardware and programming models. The work presented in
this document belongs to this group of the Invasive Computing project. This work focuses
mainly on supporting Invasive Computing in state of the art HPC hardware and software.

3.1.5 Group Z Projects

The general administration tasks of the Invasive Computing project are performed in the
Z project groups. Contacts with important individuals, research sites and companies are
managed by these groups. These groups also provide the necessary coordination for con-
solidated results, such as the demonstration platform produced by the Z2 project.

Z2: Validation and Demonstrator

The main goal of this project is to provide an FPGA based hardware platform for vali-
dations and demonstrations. Contributions from multiple other projects are integrated in
this platform.

23

3 Invasive Computing

24

4 Related Work

A broad discussion on related work is presented in this chapter. First, an incomplete
overview of programming languages, interfaces and resource managers that do not sup-
port elastic execution is presented. In spite of the lack of support for elastic execution,
meaning that these works are not alternatives to what is proposed in this document, their
overview is provided for completeness. Afterwards, closely related works that support
resource-elasticity are discussed in detail.

4.1 Programming Languages and Interfaces without Elastic
Execution Support

The work presented in this document is related to programming models and resource
managers that target applications with high synchronization requirements. In this sec-
tion, an overview is provided about related works that are not direct replacements to what
is proposed in the rest of this document, but that could potentially be extended to sup-
port resource-elasticity in the future. First, programming languages and interfaces that
target only parallel shared memory systems are discussed. Afterwards, programming
languages and interfaces for distributed memory that only support resource-static exe-
cution are covered. Finally, solutions for cloud and grid computing systems that support
resource-elasticity are described and compared to HPC solutions.

4.1.1 Parallel Shared Memory Systems

Shared memory is a term used to indicate the presence of a single address space across
all processing elements. There are several parallel programming languages and interfaces
that target shared memory systems exclusively. These have increased in number and im-
portance, due to the increase of parallelism in shared memory systems in recent years.
These languages and interfaces are related to this work, since each node that is managed
in a distributed memory HPC system is itself a parallel shared memory system. Brief
descriptions of the most widely recognized languages and interfaces that target parallel
shared memory systems are presented here. Additionally, a brief discussion on hybrid
programming models with MPI is provided.

Open Multi-Processing (OpenMP)

Open Multi-Processing (OpenMP) [9, 76, 191] is an Application Programming Interface
(API) that can be used by programmers to parallelize serial applications. The API is stan-
dardized by the OpenMP Architecture Review Board and is currently at version 4.5. The
API is provided as pragma directives to Fortran, C and C++. Additionally, environment
variables and compiler extensions are also defined in the specification. OpenMP has en-
joyed support from several compilers over the years, both free and commercial, such as:
GCC, IBM XL, Intel, PGI, Cray, Clang [4, 17], and others.

25

4 Related Work

The pragmas allow for the annotation of regions that can run in parallel in the source
code of programs. Additionally, developers can provide instructions that specify how
these parallel regions should be executed. For example, a region can be executed following
a fork-join threading model or, since version 3.0 of the specification, following a task-based
model [35]. OpenMP is known to allow for relatively simple conversions of serial Fortran
and C programs into threaded programs. This makes it an attractive choice for software
projects where significant resources have already been dedicated to the development and
validation of preexisting source code.

Within the Invasive Computing research project, extensions to OpenMP and a runtime
system have been developed to support resource-aware computing [100, 118]. The goal
is to adjust the computing resources allocated to OpenMP applications running simulta-
neously in shared memory systems, such as CPU cores, based on their scalability. This
previous research targeted parallel shared memory systems, while the research presented
in this document targets distributed memory systems.

POSIX Threads (PThreads)

The POSIX [1, 172] standard defines a thread API and model that is usually referred to
as POSIX Threads or PThreads [169] for short. The API is supported by several Unix and
Unix-like operating systems, such as: FreeBSD, NetBSD, OpenBSD, Solaris, Linux, Mac
OS, etc. There are also implementations available for Microsoft Windows and other oper-
ating systems.

The API provides operations for thread management, such as: creation, termination,
synchronization, scheduling, etc. For synchronization, there are mutexes, joins and condi-
tion variables. Mutexes are used to ensure exclusive access to resources, such as memory
or external devices. Joins are operations that are used to wait at a specific thread for other
threads to complete. A thread may create multiple other threads and then wait on them
with a join operation, following a fork-join pattern. Finally, condition variables can be used
to make threads wait until certain conditions are met.

Cilk Plus

Cilk Plus [147, 210, 148] is a parallel programming language based on the C language with
extensions for the definition of parallel loops and fork-join patterns. The language and its
runtime has been improved over time and has become a commercial product.

The Cilk Plus language is designed to expose parallelism in the source code. Once the
parallelism of a program is defined, a runtime system can schedule its work automatically
on parallel shared memory systems. The spawn keyword is used for the creation of tasks,
while the sync keyword is used to wait for them. These can be used for the creation of fork-
join patterns. Cilk Plus also extends C with keywords for the creation of parallel loops, the
specification of reduction operations, the creation of arrays and simplifications to array
accesses, among other things.

The schedulers found on Cilk Plus runtime systems implement work-stealing [22] tech-
niques that can effectively balance the load across executing units. With work-stealing,
threads that are idle due to finishing their own tasks early can take and execute entries
from the work queues of other threads, effectively stealing them.

26

4.1 Programming Languages and Interfaces without Elastic Execution Support

Threading Building Blocks (TBB)

Threading Building Blocks (TBB) [184, 73] is as a C++ template library that provides high
level constructs that ease the creation of parallel programs, such as: parallel loops, reduc-
tions, pipelines, queues, vectors, maps, memory allocations, mutexes, atomic operations,
etc. Similarly to Cilk Plus, it attempts to separate the definition of tasks from their actual
execution in a parallel system. Its schedulers also implement work-stealing techniques.

Hybrid Programming Models

Shared memory programming models are numerous and are generally orthogonal to mes-
sage passing. The passing of messages is unnecessary when data can be accessed directly
in the same address space, without the need of copies. The passing of messages is needed
across nodes in distributed memory systems. There have been research efforts to bring the
benefits of shared memory to MPI applications with minimal modifications to application
source code and libraries [94, 168].

The combinations of message passing and shared memory programming models are
usually referred to as hybrid programming models. Message passing with MPI can be
combined with shared memory APIs and libraries, such as MPI and OpenMP [179, 56, 222,
141], MPI and POSIX Threads [173], etc. The idea is that a shared memory programming
model can better abstract the parts of a program that map to the hardware inside of a node,
while MPI can better abstract the operations that take place across nodes.

Shared memory programming models are not alternatives to the work presented in this
document and are instead complimentary. In this work, resource adaptations are done at
the node level, meaning that resource adaptations are done based on whole nodes. Because
of this, resource adaptations have no impact on any shared memory language or interface
used for intra-node parallel programming in hybrid scenarios.

4.1.2 Distributed Memory Systems

After the discussion about popular languages and interfaces for parallel programming
in shared memory systems, a similar discussion is presented here for those that support
distributed memory systems. The introduction to MPI is done later in Chap. 5, since it is
used as basis for the elastic message passing research presented in this document. The
alternatives to MPI presented here follow the Partitioned Global Address Space (PGAS)
programming model.

High Performance Fortran (HPF)

High Performance Fortran (HPF) [153, 139, 218, 137] is an extension to the Fortran lan-
guage. The portability of parallel programs across multiple HPC systems is one of its
goals. Its implementations aim to provide high performance while preserving the higher
productivity of the language when compared to MPI.

The HPF extensions add support for controlling data distribution. More specifically, the
extensions allow for the mapping of arrays to distributed memory with layout control.
Data parallel constructs can then be performed on the distributed arrays (e.g., forall). The
pure attribute allows developers to identify functions that do not modify global memory,
pointers or perform IO. The independent directive allows programmers to identify blocks

27

4 Related Work

of code that can be performed in any order. The HPF extensions also include intrinsic
functions for distributed array access, among other things.

Coarray Fortran (CAF)

Similarly to HPF, Coarray Fortran (CAF) [161, 130, 85, 113, 224, 192] started as an extension
to Fortran that aims to increase productivity while maintaining competitive performance
when compared to MPI. It has been added to the official Fortran 2008 standard in 2010,
with small changes to its original syntax. Thanks to its inclusion into the Fortran language
standard, its implementations have risen in recent years and official support for the PGAS
model is now available in Fortran.

The CAF extensions allow programmers to define grids of virtual processors. They also
allow for the partitioning of data and its mapping to virtual processors. There are oper-
ations for the movement of data and synchronization. Parallel programs are composed
of multiple images that can be run in distributed memory systems. These have a simple
two-level memory hierarchy, where accesses to memory can be local or remote. Remote
memory accesses are performed with put and get operations to global addresses. There
are operations for barriers, critical regions, team synchronizations with notify and wait,
among other things. Collective operations previously present in CAF were not included
in Fortran 2008 and will perhaps appear in future standards [160, 161].

Chapel

Chapel [63, 37, 64, 194, 197] is a programming language that aims to ease the develop-
ment of parallel software with support for distributed memory systems. Chapel provides
a threaded programming model with language constructs that help represent parallelism.
There are language grammars that can be used to represent data and task level parallelism.
The language also allows the description of data decomposition. The expressiveness of the
language aids runtime systems when optimizing the placement of data and computation.
This is specially important in distributed memory systems due to the variability of laten-
cies and bandwidth depending on localities.

Unified Parallel C (UPC)

Unified Parallel C [87, 32, 80] is an extension to the C programming language, similarly to
how CAF and HPF are extensions to the Fortran language, with the purpose of simplifying
the task of producing parallel software with support for distributed memory systems.

Its extensions to the C language allow developers to define data distributions and affini-
ties. Distributed applications consist on multiple threads running independently. These
can synchronize with barriers, locks and other memory consistency controls. The memory
model consists of pointers in a global address space that can be shared or private. Point-
ers that are shared can reside in local or remote memory, depending on their affinities,
since they are partitioned among threads. There are also language constructs for parallel
computation and synchronization.

4.1.3 Cloud and Grid Computing

Both programming models and resource managers exist for cloud computing environ-
ments that have achieved the goals of this work: efficient resource-elasticity and schedul-

28

4.2 Elastic Programming Languages and Interfaces for HPC

ing in distributed memory systems. Indeed, there are cloud and grid computing program-
ming models and resource managers that allow for resource-elasticity [50, 39, 223, 217].
Some of these models even support fault-tolerance. In contrast, elastic execution and fault-
tolerance research are still in their infancy in the HPC domain. The reason for this is that
cloud workloads have lower synchronization requirements, where applications tend to
follow client-server or MapReduce patterns. The same can be concluded from embarrass-
ingly parallel workloads, such as parameter sweeps.

For the client-server pattern, a set of load balancers with worker hosts [41, 81, 82, 119,
181, 92] provide a reliable and well performing resource-elastic execution model with the
added benefit of fault tolerance. This is all thanks to the low synchronization requirements
across user sessions in web server workloads. There are a lot of applications and services
on the web that fit this execution model. For this reason, cloud services from several ven-
dors [97] continue to enjoy success in the market place.

Applications [86, 219, 68, 66] that fit well the MapReduce [78, 79, 146] programming
model can have a clear separation between their map operations and their reduce oper-
ations. Both map and reduce operations, due to their low synchronization requirements,
can be allocated effectively to resources so that elastic execution and fault tolerance are
achieved. Data is redistributed in an intermediate step between maps and reductions,
usually referred to as a shuffle step. Outside of the shuffle step, there are hardly any syn-
chronization requirements in MapReduce applications. There are several data processing
algorithms that fit this model well.

Unfortunately, although the before mentioned solutions are mature and quite success-
ful, scientific computing workloads do not fit well [159, 111] in their programming and
execution models. The main sources of incompatibility are the large synchronization re-
quirements due to data dependencies. The domain of a typical scientific application is par-
titioned across processing units. Depending on data dependencies, synchronizations that
are typically frequent and periodic are required. Programming models that abstract syn-
chronization operations aid the development and maintenance of scientific applications
better.

It is important to note the differences between HPC clusters, Cloud and Grid comput-
ing systems [188, 228, 33]. HPC systems are designed with high performance networks to
minimize the impact of synchronization and allow applications to scale to larger resource
allocations efficiently. In contrast, cloud systems can be designed more economically with
commodity networks, thanks to the low synchronization requirements of the workloads
they target. The specialized networks used in HPC systems have lower latencies and
higher bandwidths, but also higher purchase and maintenance costs when compared to
commodity networks. Grid computing can support scientific computing workloads, since
a grid system can be composed of multiple HPC systems that are geographically sepa-
rated. Due to the additional latencies and lower bandwidth across geographic locations,
it can be unfeasible to distribute workloads across sites. Grid computing software can be
seen as complimentary to a resource manager that manages a single HPC systems at a
single geographic location, since it can aggregate multiple of these systems.

4.2 Elastic Programming Languages and Interfaces for HPC

Elastic languages and interfaces are those that have abstractions to represent changes in re-
sources at runtime. These can also be referred to as resource-elastic. In contrast, resource-

29

4 Related Work

static are those that have no abstractions for resource changes and operate under the as-
sumption that resources are never modified during the execution of an application.

Elastic programming languages and interfaces can be classified based on whether they
support shared memory systems only, or both shared and distributed memory systems.
This is an important distinction, since the reconfiguration and movement of memory over
a communication network are only necessary in distributed memory systems. In this sec-
tion, we will only discuss works related to elastic programming models and runtime sys-
tems that support distributed memory. In contrast to the previously discussed related
works, these are highly relevant and alternatives to the work presented in this document.

There are multiple past and ongoing research efforts related to resource-elasticity in
HPC; however, these are not as numerous as those that only support resource-static ex-
ecution. Developers of both resource-elastic applications and runtime systems need to
carefully manage any added overheads related to the reconfiguration of resources and
memory, because of their significant performance impact in distributed memory systems.
In addition to this, runtime systems and resource managers need to be properly integrated
to support resource-elasticity. It is possible that these additional challenges have limited
the amount of related works in this area.

4.2.1 Charm++ and Adaptive MPI

Exactly like this work, Charm++[132, 23, 127, 3] and Adaptive MPI [120, 122, 121, 42] are
motivated by the dynamic behavior of certain workloads, such as Adaptive Mesh Refine-
ment (AMR) methods (as mentioned in the motivation, Chap. 2) where load imbalances
often occur at runtime. Their solution for load imbalances in distributed memory systems
is to implement MPI on the Charm++ runtime system. The result is Adaptive MPI, an MPI
implementation that supports automatic load balancing given that any preexisting MPI
code is converted to meet certain conditions. Load balancing is achieved through thread
migration mechanisms [229, 174].

A rank in Adaptive MPI is a user-level thread that is associated with Charm++ objects.
Because ranks are threads, additional restrictions need to be applied to global variables
when converting preexisting MPI code to Adaptive MPI. Automated tools are available to
assist in the conversion of MPI code to Adaptive MPI [168, 170].

Adaptive MPI programs follow a message driven execution model. Its runtime system
picks threads that have their messages ready, and therefore can continue doing progress.
The system relies on the oversubscription of ranks, where multiple ranks are pinned to
each CPU core available.

The ranks in Adaptive MPI can be migrated. There are programming constructs that
allow the creation of programs where ranks can be migrated without the need for cus-
tom pack and unpack routines. Ranks can be dynamically load balanced by the runtime
system. Load balancing techniques can be overloaded by user provided implementa-
tions. Some of its runtime systems also provide fault tolerance, through automated check-
pointing and restarts [62, 232, 231].

Adaptive MPI currently supports MPI up to version 2.2. The newer features of MPI 3.0
and later, such as non-blocking collectives, are not supported. Adaptive MPI has achieved
performance and efficiency comparable to other MPI implementations. Distributed appli-
cations that have achieved good strong scaling properties and overall performance have
been developed with it. These compare favorably versus their regular MPI versions when
load balancing is of increased importance.

30

4.2 Elastic Programming Languages and Interfaces for HPC

Resource-Elasticity with Charm++ and Adaptive MPI

Charm++ and Adaptive MPI are probably the projects that are most closely related to this
work. There are several Charm++ and Adaptive MPI resource-elastic works that are highly
relevant to what is presented in this document. Support for malleable jobs, that can have
the number of nodes allocated to it modified at runtime, has been demonstrated [131, 110].
Some of these rely on the creation of a checkpoint, to then later restart with a modified
thread count [110]. The cost of these operations can be mitigated by using shared mem-
ory [230]; results have been clearly better than checkpoints that are backed by file systems,
although the overheads can still be large depending on the initialization costs of the ap-
plication. There are limitations in some of the proposed solutions, such as the inability to
have larger number of resources than initially allocated [131]. Also, as ranks are abstracted
as threads, in some implementations there are processes left running in preexisting re-
sources. These are used for messaging or other Charm++ related support operations [131],
and can degrade the performance of other processes in the same node.

Similarly to this work, many of the resource-elastic solutions that are based on Charm++
and Adaptive MPI have been paired with resource management research [110, 177, 178].
This is necessary to enable the adaptation of resources of applications in shared systems;
the application programming language or API, the runtime system and the resource man-
ager need to support resource-elasticity and be properly integrated.

The proposed solution presented in this work follows the current MPI execution model
of processes with private address spaces and no oversubscription, instead of the threading
with oversubscription and a message driven execution model found in Charm++. The
current MPI model better prevents interference between applications, but does not provide
automatic load balancing.

4.2.2 The X10 Programming Language

X10 [65, 189, 167, 74, 207, 163, 21] is an object oriented programming language with dis-
tributed arrays. It follows the Partitioned Global Address Space (PGAS) programming
model. It is object-oriented with strong typing. Its runtime system provides a garbage col-
lector. Similarly to other languages that follow the PGAS model, one of its goals is to im-
prove the productivity of application developers when writing applications for distributed
memory systems. It differs from other PGAS languages in that many of its constructs are
designed to allow asynchronous execution.

As may be expected, X10 shares many similarities with its peer PGAS languages, such
as a two-layered memory model with local and remote memory, constructs for parallel
execution and synchronization, distributed arrays, etc. The language is supported by a
complier, a runtime system and a standard library that are all extensions to their preexist-
ing Java counterparts, with the addition of optional C++ back ends.

Resource-Elasticity with X10

The language is attractive for resource-elasticity support since it abstracts resources (e.g.,
nodes in a distributed memory system) with the concept of Places. There is also the concept
of PlaceGroups. These are ordered sets of Places. Computations and data are distributed
across Places. Mapping routines attempt to optimize the location of Places based on net-
work topologies to optimize performance. Support for elastic execution was added with

31

4 Related Work

version 2.5, by allowing applications to execute over dynamically varying sets of Places in
PlaceGroups.

X10 is one of the core programming languages supported by the Invasive Computing
project. Researchers have extended the X10 language to support the goals of the project,
such as the specification of non-functional requirements (like performance, energy, etc.),
support for resource-aware programming, the addition or removal of Places at runtime,
among other things. The project has produced X10 programs and a full X10 stack [175,
176, 112, 185, 164, 49, 51]: compilers, an operating system, custom runtimes, and even
hardware support.

4.2.3 Parallel Virtual Machine (PVM)

The Parallel Virtual Machine (PVM) [10, 38, 205, 158, 99, 108] system allows a set of nodes
to be viewed as a single parallel computer. The set of nodes is managed by the user and
can be modified at runtime. This allows for resource-elasticity and some forms of fault-
tolerance. Like MPI, it follows the Message Passing (MP) programming model and sup-
ports distributed memory systems.

The main goal of MPI is to provide a message passing interface only, while PVM ab-
stracts a distributed operating system with support for message passing. PVM provides
operations to spawn tasks and coordinate them, as well as to modify the parallel machine
itself. MPI had spawn operations added in version 2.0 of the standard. The spawn opera-
tions in MPI depend on its integration with resource managers while PVM simply spawns
new tasks as requested by application processes.

The PVM system is composed of two main parts: a daemon that runs at each node and a
runtime library. The daemons need to be started before applications run in the nodes. The
library is linked into application binaries and provides the implementation of the PVM
API. The typical PVM application is started as a single task that spawns other tasks. Once
the tasks are started, they can start exchanging messages. Individual tasks have unique
identifiers that are used to send and receive messages.

Resource-elastic behavior can be achieved with PVM within the resources of single jobs.
The system provides no coordination with resource managers; this makes PVM inadequate
for resource-elasticity in systems with multiple users. Additionally, its message passing
features and performance are limited when compared to the current MPI implementations.

4.2.4 Other Related Works

Several research groups have demonstrated the benefits of malleable jobs when optimizing
parallel compute systems [91, 83, 123, 215, 57, 204, 165, 46]. Multiple works also describe
the need for performance feedback from applications to schedulers, mainly to improve the
quality of resource adaptation decisions [26, 203].

Standard MPI applications that rely on spawn operations have been used with cus-
tomized resource managers to achieve resource-elasticity [59]. The proposed MPI exten-
sion provides several advantages over these and are discussed in detail in Chap. 5.

Some other alternatives rely on the creation of check points by the applications, and
their ability to restart at different scales [183, 110, 25, 216] with large IO and reinitialization
overheads. The solution presented in this document enables resource adaptations with
less overhead, thanks memory to memory repartitions over the network in adaptation
windows. The trade-off is that adaptation windows need to be developed.

32

5 The Message Passing Interface (MPI)

Message Passing (MP) is a widely used programming model for distributed memory sys-
tems. The Message Passing Interface (MPI) is a standard for message passing that has been
of great importance for both communication library implementors and application devel-
opers. The standardization efforts of the MPI forum [18] have allowed for compatibility
between vendors at the source code level. This means that applications are portable across
distributed memory HPC systems.

Portable code was rare in earlier years when systems relied largely on proprietary Appli-
cation Programming Interfaces (APIs) and libraries for inter-node communication. In past
years, many different communication libraries were provided by different vendors for dis-
tributed memory computing. Each vendor had its own view on how distributed memory
applications should be developed. While this flexibility allowed communication libraries
to provide APIs that closely matched the specialized hardware that they abstracted, soft-
ware had to be ported to each new machine.

A need for standardization was determined and the MPI standard was eventually de-
fined. Its first version was released in the year 1994. The standard defines an API only;
it is up to each vendor to decide how to implement it. Two open source MPI implemen-
tations are currently the most widely used: Open MPI [96, 105, 103, 154, 104, 115, 7] and
MPICH [209, 107, 109, 52, 53, 6]. Some of the current commercial MPI libraries are based on
these libraries with the addition of vendor specific customizations for better performance
or specific hardware support.

The operations specified in the standard are designed to allow a wide range of com-
munication hardware to be supported efficiently. In some cases, the standard itself has
been updated to allow for better efficiency on new communication network hardware.
For example, the one-sided communication API was updated to better fit newer RDMA
implementations with version 3.0 of the standard.

In this chapter, an incomplete list of the features provided by MPI will be briefly intro-
duced first. Afterwards, limitations in the current specification and implementations of
the dynamic processes support of MPI will be identified; the set of extensions described
later in Chap. 6 is proposed as a way to overcome these limitations. Finally, an overview
of the MPICH library is presented, since it is the basis for the Elastic MPI library presented
in Chap. 6.

5.1 MPI Features Overview

In this section, the API specified by the MPI standard in its current 3.1 version is briefly
described. MPI offers API sets for: point-to-point communication, collective communica-
tion, one-sided communication, parallel IO, derived data types, virtual topologies, group
and communicator management, and more.

33

5 The Message Passing Interface (MPI)

Process 1 Data Process 0 Data

Process 3 Data

MPI Communication

Buffers

Process 0Process 1

Process 3Process 2

MPI_Send

MPI_Recv

MPI_Send

MPI_Recv

MPI_Send

MPI_Recv

MPI_Recv

MPI_Send

Process 2 Data

Figure 5.1: Simplified overview of MPI communication and buffering for small and
medium buffers (typically smaller than a megabyte) on a four process appli-
cation with a counterclockwise ring communication pattern.

5.1.1 Data Types

Instead of using types from the C or Fortran programming languages, MPI defines its own
data types. This allows MPI libraries to adapt and align memory properly when transfer-
ring messages across machines or software stacks with incompatible type representations.
MPI provides a set of basic types, such as MPI INT and MPI DOUBLE. In addition to this,
users can create their own derived data types, for example, to represent vectors or struc-
tures. Data types need to be specified in all MPI operations that perform message transfers
or perform distributed arithmetic on buffers.

5.1.2 Groups and Communicators

Groups are ordered sets of processes in MPI. Communicators enable communication among
the processes of a group. After initialization, MPI libraries provide a communicator that
includes all the processes that were started as part of an application: the MPI COMM WORLD
communicator. This communicator is usually sufficient when managing the communica-
tion of a few processes. However, when applications reach a certain level of complexity, it

34

5.1 MPI Features Overview

helps to create groups and communicators to modularize the code of MPI applications.
A typical application will first duplicate a communicator, then split it or divide in ways

that will benefit the clarity of the algorithms in the distributed application. Communi-
cators can be manipulated directly, or alternatively, groups can be created first and then
communicators created from them. The latter approach requires more steps but has flex-
ibility advantages. For example, there are union and intersection operations that can be
applied to groups but not to communicators.

5.1.3 Point-to-Point Communication

The point-to-point set of operations in the MPI standard allows for the transmission of
bytes from one specific process to another. There are several variants available with dif-
ferent send modes: default, ready, synchronous and buffered. The status of the receiver
end is undefined in the default variant. Ready sends complete when the matching receive
has been posted. Synchronous sends only complete when the matching receive has also
completed. Finally, buffered sends rely on user provided buffers for their operation.

In addition to send modes, these operations also have blocking and non-blocking ver-
sions. Blocking versions do not return until the operations have been completed, while
non-blocking versions will return immediately. When using non-blocking versions, the
application needs to check the status of the operations with the wait or test operations.
The non-blocking operations allow for the overlap of communication and computation.

Figure 5.1 provides a simplified visual overview of the interactions of application and
MPI communication buffers during point-to-point communication. In the figure, four pro-
cesses are depicted performing a send and a receive each in a counterclockwise ring pat-
tern. As can be seen, several copies are performed from application buffers to MPI commu-
nication buffers and the other way around. This is common in most implementations with
internal eager or rendezvous communication protocols at the byte transfer layer; these
protocols are used when transferring small to medium buffers (before buffer sizes where
DMA transfers become more efficient). Typical MPI implementations, including MPICH
(discussed in Sec. 5.3), decompose collective operations into multiple point-to-point mes-
sages; therefore, this figure also applies to most types of communication that do not rely
on network hardware acceleration (such as RDMA or hardware collective operations).

5.1.4 One-Sided Communication

Network hardware with Remote Direct Memory Access (RDMA) features can improve
communication performance by reducing latencies and overheads related to buffering and
synchronization. In addition, RDMA allows for better overlap of communication and com-
putation. MPI added its one-sided communication API to allow implementations to effi-
ciently support RDMA hardware. This API was introduced in version 2.0 of the standard,
and was updated to match more recent RDMA capable network hardware in version 3.0.

With these operations, MPI implementations can reduce the amount of memory needed
for buffering and the number of memory copies performed on typical communication pro-
tocols (refer to Fig. 5.1). In cases where hardware RDMA is not available, most MPI li-
braries fall back to an internal point-to-point based implementation; this way, applications
that use one-sided communication remain portable.

In this mode of communication, MPI processes create memory windows that can be ac-
cessed by remote processes. They can then read and write data to their own and remote

35

5 The Message Passing Interface (MPI)

Process 1 Data Process 0 Data

Process 0Process 1

MPI_Put

MPI_Get

Window 1 Window 0

Figure 5.2: Put and get operations initiated both by process 0 using MPI one-sided
communication.

buffers. Synchronization operations are also provided, to prevent race conditions. Fig-
ure 5.2 provides an illustration of a possible interaction between two processes. In this
case, the process with MPI rank 0 transfers some data from its own address space (blue)
towards the memory window of the remote process with rank 1. Rank 0 also transfers
data from the remote window of rank 1 (yellow) into its own address space. The same
operations can be performed by the process with rank 1 on the window created by rank 0.

5.1.5 Collective Communication

P1P1 P3P3P2P2 P4P4

Send P2
Local Data

Send P3
Local Data

Send D4
Local Data

Reduction
Operation

Send Total
Reduction

Send Total
Reduction

Send Total
Reduction

Figure 5.3: Sequence diagram of a
naive all-reduce operation
implementation.

MPI also provides operations that work on
groups of processes. These can be synchro-
nization operations such as a barrier, data
transfer operations such as broadcasts, and
collective operations on data such as reduc-
tions. With MPI 3.0, non-blocking versions
of these operations were introduced. Neigh-
borhood collectives were also introduced
with MPI 3.0; these can be more efficient
on certain communication patterns, such as
those generated by stencil based distributed
solvers.

The use of collectives is highly recom-
mended to MPI application developers. The
internal collective algorithms implemented
within MPI libraries perform well, based
on long term research related to their effi-
ciency; in addition to this, MPI implemen-
tations can take advantage of hardware net-
work collectives when available. It is very
unlikely that users will achieve better per-
formance than the well tuned internal implementations provided by Open MPI or MPICH.
Take for example the sequence diagram of a naive algorithm presented in Fig. 5.3: an appli-

36

5.1 MPI Features Overview

cation developer may be tempted to perform this sequence of operations with MPI point-
to-point operations (a gather, followed by a reduction and finally a broadcast), instead
of relying on well researched and optimized internal implementations abstracted by the
MPI ALLREDUCE operation.

5.1.6 Parallel IO

MPI offers an abstraction to parallel file systems through its MPI-IO API introduced in
version 2.0 of the standard. The Input-Output (IO) API makes applications portable across
multiple distributed file system implementations. In contrast to POSIX or proprietary par-
allel IO APIs, MPI IO benefits from its integration with MPI. For example, its operations
can work transparently with MPI data types, including complex derived data types cre-
ated by MPI application developers.

Similar to other parts of the MPI standard, the IO API is designed to allow for efficient
implementations. There are several optimizations possible. For example, since the net-
works of HPC systems typically have lower latencies and higher bandwidth than their
file systems, implementations can rely more on the network and minimize the amount of
accesses to the distributed parallel file system. Implementations can streamline the order
and reduce the number of IO operations.

5.1.7 Virtual Topologies

1

(0,1)

0

(0,0)

2

(0,2)

4

(1,1)

3

(1,0)

5

(1,2)

7

(2,1)

6

(2,0)

8

(2,2)

Figure 5.4: MPI processes organized
in a 3 by 3 Cartesian grid
virtual topology.

The development of distributed memory applica-
tions pose additional challenges to computer sci-
entists. Any type of abstraction that can simplify
the description of distributed algorithms is a wel-
come addition to any programming model. MPI
virtual topologies is one such feature: developers
can define them to simplify the implementation of
distributed algorithms, while at the same time ex-
posing communication patterns to the MPI imple-
mentation. These patterns can be used by MPI li-
braries to improve the order of ranks based on the
proximity of actual processes in the real network
topology of a supercomputer.

With virtual topologies, applications may define
a Cartesian grid or a graph, where the nodes are
the processes and the edges indicate which pro-
cesses communicate with each other. The lack of
an edge does not impede communication between
processes, so arbitrary point-to-point communica-
tion is still possible. For example, a Cartesian grid topology may be defined to simplify
the communication of an algorithm that operates on a checkered board type of data dis-
tribution. Figure 5.4 depicts the organization of 9 MPI processes in a 3 by 3 Cartesian
grid virtual topology with wraparound. The top number indicates their ordered ranks in
the MPI COMM WORLD communicator, while the bottom pair indicates their location in the
Cartesian grid communicator. The more general case is the graph topology, where any
arbitrary relationship can be described.

37

5 The Message Passing Interface (MPI)

5.2 Dynamic Processes Support and its Limitations

A large number of scientific applications rely on MPI to achieve scaling with multiple
nodes in HPC systems. Scaling these applications to large numbers of nodes is in many
cases necessary due to memory and performance requirements.

The original MPI computational model was static in terms of the number of processes.
Dynamic processes support was added in version 2.0 of the standard, mainly through the
addition of the operations MPI COMM SPAWN and MPI COMM SPAWN MULTIPLE. Resources
can be added to a running MPI application with the use of these operations. In this section,
an enumeration of shortcomings in these operations is presented. These shortcomings will
be later addressed by the proposed extensions, described in Chap. 6.

Start

Open and
Publish Port

Is
Root?

Call
PMI2_Spawn

Block in
Accept

No

Yes

End

Is
Root?

Close Port

Yes

No

Figure 5.5: Algorithm (flow chart) of
the MPI COMM SPAWN op-
eration as implemented in
MPICH.

The spawn operations create new processes in
a separate child process group, where the callers
belong to the parent process group. The callers,
or parents, block in the spawn operation, while
the resource manager creates the new children
processes. The new processes are created in
a different way than processes created through
the launcher command provided by the resource
manager (e.g., mpiexec, mpirun, srun, etc.),
where during the MPI INIT operation the child
process group needs to communicate with the par-
ent process group to collectively generate an inter-
communicator. This intercommunicator can then
be used by application processes to reach the re-
mote group (the parent group from the children,
or the child group from the parents). The differ-
ence between the regular spawn and the multiple
version, is that the later allows the callers to spec-
ify multiple binaries to start as children processes.
The flow chart in Fig. 5.5 illustrates the algorithm
for MPI COMM SPAWN in MPICH.

Additional operations were also introduced
so that applications could start independently
and later connect their process groups, such as:
MPI OPEN PORT, MPI CLOSE PORT,
MPI PUBLISH NAME, MPI UNPUBLISH NAME,
MPI LOOKUP NAME, MPI COMM ACCEPT,
MPI COMM CONNECT and MPI COMM JOIN. With
these operations, the creation of the new pro-
cesses is done externally (e.g., with the provided
launcher) and the groups establish communica-
tion and generate an intercommunicator with a
combination of these operations afterwards.

38

5.2 Dynamic Processes Support and its Limitations

The following shortcomings related to the MPI 2.0 dynamic processes operations have
been identified:

1. The spawn operations are synchronous across both the parent and the children pro-
cess groups.

2. These operations produce intercommunicators based on disjoint process groups.

3. Subsequent creations of processes result in additional process groups.

4. Destruction of processes can only be done on entire process groups.

5. The adaptation of resources can only be initiated by the application.

6. Processes created with spawn are typically run in the same resource allocation.

The first shortcoming affects performance. The spawn operations are collective across
both the parent and child process groups. This is particularly taxing for the parent pro-
cesses, since they block while the children process are being created by the resource man-
ager, then complete their MPI INIT operation and finally establish communication. The
process creation delay can be several seconds in current systems. Additionally, the initial-
ization process (the call to MPI INIT after the children process starts) can also be several
seconds (depending on the number of processes). A non-blocking version of these opera-
tions could be developed to overcome this issue.

The second shortcoming complicates the development of MPI applications and limits
the amount of preexisting code that can be reused. Most computational kernels are de-
signed around a single communicator (e.g., MPI COMM WORLD or a derived communica-
tor) where the rank orders are important for the correctness of the algorithm. For exam-
ple, many applications derivate communicators with virtual topologies (as explained in
Sec. 5.1.7). Having multiple separate process groups complicates the generation of derived
communicators. To be fair, an application can use MPI INTERCOMM MERGE to create a flat
intracommunicator from the intercommunicator provided by these operations.

The third shortcoming also complicates the development of MPI applications that re-
quire dynamic processes. As mentioned before, an application can indeed use
MPI INTERCOMM MERGE to create a flat intracommunicator from an intercommunicator
provided by the current operations; however, subsequent creations of processes will re-
quire careful management of merged communicators. The application will have more and
more process groups and intercommunicators as a result.

The fourth shortcoming limits what can be achieved with dynamic processes. With the
current operations, only whole groups of processes can be destroyed by having them call
MPI FINALIZE and manipulating any previously generated intercommunicators or intra-
communicators (e.g., through MPI INTERCOMM MERGE) so that these process groups are
no longer included. This limits the granularity and location of the resources that the appli-
cation can release at runtime.

The fifth shortcoming limits the quality of adaptations. Applications have no informa-
tion related to the availability of resources or the state of other applications in the system.
In contrast, resource managers have access to this information. In addition to this, resource
managers have control over running applications, access to the pool of pending jobs, can
pick which applications from the queue to start and when, etc. Inverting this control,
where the resource adaptation is initiated by the resource manager, is preferable.

39

5 The Message Passing Interface (MPI)

Finally, the last shortcoming limits the usefulness of the spawn operation. Most imple-
mentations that support MPI COMM SPAWN make it so that any processes are created in
resources already allocated to the job. This is not a limitation of the standard operation
itself, but it is found in typical resource manager implementations. The extensions pre-
sented in this work (in Chap. 6) are better integrated with the resource manager (described
in Chap. 9) such that processes are created on new resources before being added to the al-
location of a job; this ensures that new processes can contribute to the performance of the
application, due to them running in additional hardware resources.

5.3 MPICH: High-Performance Portable MPI

One of the goals of this work is to overcome the limitations of the current standard dy-
namic processes support in MPI, as described in Sec. 5.2. For this, it was determined that
an extension to MPI was necessary, with an accompanying implementation as proof of
concept. For the extended implementation, there were two options: to develop a new MPI
library from scratch or to extend an existing open source implementation of MPI. The later
was chosen, since the proposed extension to MPI is compact (only four additional oper-
ations described in Chap. 6) and developing a completely new MPI library is a long and
challenging undertaking.

There are two dominant open source MPI projects today: MPICH [209, 107, 109, 52, 53,
6] and Open MPI [96, 105, 103, 154, 104, 115, 7]. Given the maturity, network hardware
support and performance levels of both software projects, both libraries were adequate as
the basis for the MPI library prototype. MPICH was selected based in large part to the
author’s familiarity with this software project in previous work [71, 72, 69, 70, 195]. An
overview of the software architecture of MPICH is presented in this section.

5.3.1 Software Architecture

MPI

MPICH

Device

CH3

Channel

Nemesis

Application

Network Module

Mellanox
Open Fabrics Portals 4

TCP

ROMIO

Figure 5.6: MPICH’s software architecture.

The MPICH library’s design contains
three main internal software layers:
the MPI, device and channel layers.
The MPI application interacts with
the MPI layer over the standard API.
The MPI layer converts MPI opera-
tions into their device layer equiva-
lents. Finally, the device decomposes
each operation as one or more low
level operations on specific network
hardware. Network hardware is ab-
stracted behind the channel API. For
the prototype presented in this work,
the CH3 device and the Nemesis chan-
nel implementations were selected, as
shown in Fig. 5.6.

MPICH’s software architecture is preserved in this work and new non-standard MPI
operations are added. These operations have their MPI and device layer counterparts, as
well as any device and channel extensions that were necessary to support them.

40

5.3 MPICH: High-Performance Portable MPI

5.3.2 MPI Layer

The MPI layer ensures compliance with the MPI standard. Additionally, parameter vali-
dation and errors and handled in this layer and propagated to the calling application. As
expected given the tiered architecture, the MPI layer exchanges information exclusively
with the device layer of MPICH and the caller application.

5.3.3 Device Layer

The device layer provides operations that are counterparts of every actual MPI operation
that is part of the standard. These counterparts do not conform to the standard, and use
instead implementation specific data structures and in some cases different numbers of
parameters. Often multiple variants of these implementation specific operations are pro-
vided with different performance and scaling characteristics; these are selected by the MPI
layer depending on the parameters passed by the calling application. For example, for
point-to-point operations, the MPI layer may select the eager or rendezvous versions of
the operations based on the size of the buffer to be transfered. In the case of collectives,
in addition to buffer sizes, the MPI layer may select internal collective implementations
based on the number of processes in the specified communicator.

5.3.4 Channel Layer

The lowest layer is the channel layer. This layer is designed mainly to abstract different
types of networks. It provides low level byte transfer facilities, as well as network specific
operation overloads for hardware accelerated functionality, such as RDMA and hardware
collectives.

NEMESIS Channel and its Network Module (NETMOD) System

The Nemesis channel implementation provides a hybrid shared memory and network
communication subsystem. This hybrid design allows for fast intra-node communication
through shared memory, while preserving support for inter-node communication over net-
work interfaces. The shared memory part of the implementation is essentially the same on
all supported platforms; for it, only the type of shared memory model is selected (e.g.,
POSIX or System V), while the algorithms and data structures remain the same. The net-
work part has multiple implementations available that are specific to different types of
network hardware.

A network module (NETMOD) system is implemented within NEMESIS. This system
adds an additional layer to the software architecture, as can be seen in Fig. 5.6. Similar
to other layers, it has its own API and data structures. Support for different network
hardware can be configured by selecting the correct network module.

41

5 The Message Passing Interface (MPI)

42

6 Elastic MPI Library

The Elastic MPI Library is composed of an MPICH base with a set of new operations and
their required resource manager integration. The new operations serve as an alternative
to the standard dynamic processes support in MPI. The API extension and its implemen-
tation were designed with these primary goals in mind: latency hiding, minimal collective
latency and ease of programming.

In this chapter, the interfaces of the new operations in the extension are first explained.
Afterwards, their implementation and integration with the proposed elastic resource man-
ager (covered in Chap. 9) are described.

6.1 MPI Extension Operations

A set of four operations that overcome the limitations of the dynamic processes support of
MPI, discussed before in Sec. 5.2, is proposed. The operations were designed taking into
account the needs and goals of developers of MPI applications, resource managers and
MPI libraries. The design simplifies the development of elastic MPI applications, while
allowing for efficient implementations of both the resource manager and the proposed
new MPI operations in communication libraries.

The general flow of an MPI application is different with the use of the proposed exten-
sions. First, the application initializes itself in adaptive mode by calling the new initial-
ization operation. Afterwards, it starts doing its usual work and checking for adaptation
instructions from the resource manager with the probe operation. In the event of an adap-
tation, the application needs to reach a safe location (typically at the beginning or end of
a computational loop or phase), where it can begin the adaptation. Once an adaptation is
completed, the application resumes doing progress on its computations.

To perform an adaptation, applications rely on the creation of adaptation windows
with the new begin and commit adaptation operations. The begin adaptation operation
provides the application with helper communicators; the application can use these com-
municators to redistribute its data. Once an adaptation is complete, the application calls
the commit operation, where the MPI COMM WORLD communicator is transformed perma-
nently. A code snippet of the expected structure of an elastic application that uses the
proposed extensions is provided in Listing 6.1. Figure 6.1 shows a simplified sequence
diagram of an application that starts with 5 processes and later expands to 7.

43

6 Elastic MPI Library

There are important differences between these operations and the current ones included
with standard MPI:

1. During resource expansions, the new and preexisting process groups operate asyn-
chronously.

2. The operations produce modifications on MPI COMM WORLD and its process group.

3. Subsequent adaptations result in the same number of process groups.

4. The resource manager can give instructions to destroy processes without group size
restrictions.

5. The adaptations are initiated by the resource manager, and not the MPI application.

6. Resource managers can provide extra resources or remove resources of a job together
with the adaptation instructions.

These differences allow the new operations to overcome the limitations of the standard
dynamic processes API, as described previously (refer to Sec. 5.2). In the following sec-
tions, each operation is described in detail with their actual C and Fortran interfaces.

i n t main (i n t argn , char * * argc){
MPI Ini t adapt (&argn , &argc , &l o c a l s t a t u s) ;
for (. . .) {

MPI Probe adapt(&adapt , . . .) ;
i f (l o c a l s t a t u s == MPI ADAPT STATUS JOINING

| | adapt == MPI ADAPT TRUE){
MPI Comm adapt begin (. . .) ;
/ / a d a p t a t i o n window ’ s body with
/ / d a t a r e d i s t r i b u t i o n c o d e
MPI Comm adapt commit (. . .) ;

}
/ / compute and MPI c o d e

}
}

Listing 6.1: Expected structure of an elastic MPI application.

P1 P3P2

P6 P7

P5P4

Figure 6.1: Adaptation sequence from 5 to 7 processes.

44

6.1 MPI Extension Operations

6.1.1 MPI Initialization in Adaptive Mode

The first operation in the extension allows applications to be initialized in adaptive mode.
Its interface is identical to the standard MPI INIT with the exception of an extra output
parameter: local status. The C and Fortran versions of this operation can be seen in
Listings 6.2 and 6.3.

i n t MPI Ini t adapt (
i n t * argc ,
char * * * argv ,
i n t * l o c a l s t a t u s
) ;

Listing 6.2: MPI INIT C interface.

SUBROUTINE MPI INIT ADAPT(&
l o c a l s t a t u s ,&
i e r r o r)

INTEGER l o c a l s t a t u s , i e r r o r
END SUBROUTINE MPI INIT ADAPT

Listing 6.3: MPI INIT Fortran interface.

In this operation, the output parameter local status can take two possible values:
MPI ADAPT STATUS NEW or MPI ADAPT STATUS JOINING. It is set to new when the pro-
cess doing the MPI initialization was created through the launcher command provided by
the resource manager (e.g., mpiexec, srun, etc.). In contrast, when the process doing the
initialization was created by the resource manager, as part of an expansion of resources,
then the local status is set to joining.

The addition of this extra output parameter at initialization is necessary since joining
processes need to call the MPI COMM ADAPT BEGIN operation immediately after initializa-
tion, so that they can take part in an adaptation window together with preexisting pro-
cesses and other joining processes.

6.1.2 Probing Adaptation Data

The next proposed operation allows preexisting processes to probe the resource manager
for adaptation instructions. As mentioned before, the decision of when and how to do
the adaptation comes from the resource manager; this is an inversion of control when
compared to the standard spawn operations offered by the dynamic processes support of
the MPI standard.

The C and Fortran versions of the probe operation can be seen in Listings 6.4 and 6.5.
There are a total of three output parameters in this operation.

i n t MPI Probe adapt (i n t * pending adaptation ,
i n t * l o c a l s t a t u s , MPI Info * i n f o) ;

Listing 6.4: MPI PROBE ADAPT C interface.

SUBROUTINE MPI PROBE ADAPT(current opera t ion , l o c a l s t a t u s , info , i e r r o r)
INTEGER pending adaptation
INTEGER l o c a l s t a t u s
INTEGER i n f o
INTEGER i e r r o r

END SUBROUTINE MPI PROBE ADAPT

Listing 6.5: MPI PROBE ADAPT Fortran interface.

45

6 Elastic MPI Library

The pending adaptation parameter tells the application whether there is an adapta-
tion pending with the values: MPI ADAPT TRUE or MPI ADAPT FALSE.

The local status parameter tells the calling process what its individual status is. This
variable has three possible values: MPI ADAPT STATUS JOINING,
MPI ADAPT STATUS STAYING or MPI ADAPT STATUS LEAVING. Each process is required
to operate based on its local status inside adaptation windows.

A process is joining if it was created by the resource manager in newly allocated re-
sources. In this case, it is redundant information from MPI INIT ADAPT, and joining pro-
cesses can skip calling the probe operation and proceed to call the MPI COMM ADAPT BEGIN
operation immediately. Joining processes block in the adapt begin operation before the
parents. Preexisting processes are notified about the adaptation only after all joining pro-
cesses are blocking at the MPI COMM ADAPT BEGIN operation. This allows preexisting pro-
cesses to continue doing progress without interruption while scheduling decisions are tak-
ing place and new processes are being created, effectively hiding those latencies.

Preexisting processes can receive the status staying or leaving. All processes that are
required to stay in the process group, after the MPI COMM ADAPT COMMIT operation mod-
ifies the MPI COMM WORLD communicator, receive the status staying; in contrast, all pro-
cesses that will be eliminated from the MPI COMM WORLD communicator, after the
MPI COMM ADAPT COMMIT operation completes, receive the status leaving.

Finally, there is an MPI INFO object that can be used to provide additional information
from resource managers. This parameter is optional: it can be used to provide implemen-
tation specific information or alternatively be set to NULL by implementors.

i n t MPI Probe adapt (i n t * pending adaptation , i n t * l o c a l s t a t u s ,
i n t * n fa i l ed , i n t * f a i l e d r a n k s , MPI Info * i n f o) ;

Listing 6.6: MPI PROBE ADAPT C interface with fault information.

SUBROUTINE MPI PROBE ADAPT(pending adaptation , l o c a l s t a t u s ,&
nfa i l ed , f a i l e d r a n k s , info , i e r r o r)

INTEGER pending adaptation
INTEGER l o c a l s t a t u s
INTEGER n f a i l e d
INTEGER f a i l e d r a n k s (*)
INTEGER i n f o
INTEGER i e r r o r

END SUBROUTINE MPI PROBE ADAPT

Listing 6.7: MPI PROBE ADAPT Fortran with fault information.

Potential for Fault Tolerance Support

With the proposed API extensions, there is potential to support adaptations as a result of
failures with a modified version of the MPI PROBE ADAPT operation. Listings 6.6 and 6.7
show the modified interfaces with two additional output parameters that provide a list of
failed ranks in the MPI COMM WORLD communicator.

The pending adaptation output parameter has an additional possible status to indi-
cate that the application needs to adapt its resources due to failures: MPI ADAPT FAULT. In
such a case, the application is required to read the nfailed and failed ranks parame-

46

6.1 MPI Extension Operations

ters; these values should be used to prevent the application from initiating communication
with failed ranks. This additional operation can be complementary to ongoing efforts from
members of the Fault Tolerance Working Group of the MPI forum [140, 45, 47, 40]. The ad-
dition of this operation alone is not sufficient for fault tolerance. For example, application
processes may be blocking waiting for failed processes and may not reach the probe oper-
ation.

6.1.3 Beginning an Adaptation Window

The third operation marks the start of an adaptation window. This operation provides
two communicators as output: one intercommunicator that is similar to the one provided
by standard spawn operations, and one intracommunicator that gives an early view of
the future MPI COMM WORLD communicator. In addition to the two helper communica-
tors, the counts for staying, leaving and joining processes are also provided. These counts
can be used by applications to compute any necessary dimensions for their repartitioning
schemes. The C and Fortran interfaces for this operation are presented in Listings 6.8 and
6.9.

i n t MPI Comm adapt begin (
MPI Comm * intercomm , MPI Comm * new comm world ,
i n t * s taying count , i n t * leaving count , i n t * j o i n i n g c o u n t
) ;

Listing 6.8: MPI COMM ADAPT BEGIN C interface.

SUBROUTINE MPI COMM ADAPT BEGIN(intercomm , new comm world,&
staying count , leaving count , jo in ing count , i e r r o r)

INTEGER intercomm
INTEGER new comm world
INTEGER s tay ing count
INTEGER l eav ing count
INTEGER j o i n i n g c o u n t
INTEGER i e r r o r

END SUBROUTINE MPI COMM ADAPT BEGIN

Listing 6.9: MPI COMM ADAPT BEGIN Fortran interface.

It is up to the application to make calls to this operation in a location where it is safe
for it to adapt to new resources. In general, it is expected that it takes place inside of a
progress loop. Frequent checks for adaptations are desirable to minimize the idle times of
joining processes in newly added resources.

Each process that is staying or joining is required to read its future rank and size from
the provided new comm world helper communicator to perform adaptations consistently.

Processes that are leaving during the adaptation window will not have access to the fu-
ture MPI COMM WORLD, since a leaving process will be removed from the process group;
leaving processes’ new comm world will be set to MPI COMM NULL. These processes will
need to be reached over the provided intercomm from the children, or their current
MPI COMM WORLD from the parents, during an adaptation window.

47

6 Elastic MPI Library

6.1.4 Committing an Adaptation Window

The last operation commits the adaptation. Its interface takes no parameters. The C and
Fortran versions only include the return error code or the error parameter, as presented in
Listings 6.10 and 6.11.

i n t MPI Comm adapt commit () ;

Listing 6.10: MPI COMM ADAPT COMMIT C interface.

SUBROUTINE MPI COMM ADAPT COMMIT(i e r r o r)
INTEGER i e r r o r

END SUBROUTINE MPI COMM ADAPT COMMIT

Listing 6.11: MPI COMM ADAPT COMMIT Fortran interface.

This operation modifies MPI COMM WORLD: any leaving processes are eliminated from it,
and any new joining processes are inserted into it. The MPI COMM WORLD communicator
will match exactly the new comm world communicator provided by the
MPI COMM ADAPT BEGIN operation after MPI COMM ADAPT COMMIT completes.

This operation also notifies the resource manager that the current adaptation is com-
plete. This is necessary to prevent the resource manager from triggering a new adaptation
while one is still ongoing, since adaptation windows are not allowed to be nested.

An application that creates any derivative communicator is required to reconstruct them
after this operation. Additionally, any libraries that use MPI will need to be reinitialized
as well; this will require support from external libraries such as linear algebra packages,
visualization libraries, performance tools, and so forth.

6.2 MPI Extension Implementation

As previously mentioned, the proposed API extensions have been designed so that effi-
cient implementations are possible. The MPICH library has been taken as basis for the
initial prototype. The library is largely designed and optimized for static process groups
that keep their set of resources fixed during the full runtime of an application. Because of
this, a large number of small changes were necessary to support these new operations.

In this section, mainly the high level algorithms of each proposed operation in the exten-
sion are described. Important design decisions related to performance will be explained.

6.2.1 MPI INIT ADAPT

The addition of the new initialization routine only requires that the Process Management
Interface (PMI) [36, 61, 60, 198] provides the extra parameter to the application. This in-
formation is provided by the resource manager (covered in Chap. 9), and is simply propa-
gated to each application process.

Currently, internal data structures in MPICH are optimized based on the assumption
that the size of the MPI COMM WORLD communicator never changes. In the future, this
operation could initialize the MPICH library with data structures that are better designed
for elastic execution.

48

6.2 MPI Extension Implementation

Start

Synchronize with
local SLURMD

Was delayed?

MPI_COMM_WORLD
Barrier

Set
MPI_ADAPT_TRUE

No

End

Read
Local Metadata

All processes
Participating?

Yes

Update
Local Metadata

Yes

Set
MPI_ADAPT_FALSE

No

Pending
Adaptation?

Yes

No

Set
Delayed Flag

Unset
Delayed Flag

Figure 6.2: Flow chart of the MPI PROBE ADAPT operation.

6.2.2 MPI PROBE ADAPT

As mentioned before in Sec. 6.1.2, this operation provides information to the application.
The implementation presented here has been optimized based on two assumptions:

1. This operation will be called periodically and as frequently as possible to minimize
the idle times of joining processes in newly allocated resources.

2. The result of the vast majority of calls to this operation will output the value
MPI ADAPT FALSE in the pending adaptation variable.

The operation reads the adaptation metadata set by the resource manager at each node,
from a shared memory segment. For this operation, a race condition is only possible when
the adaptation flag is set by the resource manager and one or more processes have not read

49

6 Elastic MPI Library

it, while one or more other processes have read it already. This potential race is managed
by the probing algorithm.

The flow chart of the probing algorithm is presented in Fig. 6.2. Each process has a
counter for entering and another counter for exiting the probe operation. When a process
reads that there is an adaptation pending, it proceeds to contact its local SLURMD to syn-
chronize. If the SLURMD daemon detects that not all processes are waiting for instructions
and that some have exited the operation (based on the counters and metadata), it releases
all local processes and inserts a delay. The network of SLURMD daemons for the applica-
tion synchronize over the SRUN component, and all insert the delay if one or more of them
detected early processes.

In summary, this algorithm depends on interactions between the MPI library and the re-
source manager over the PMI. It is therefore split between the MPI library and distributed
components of the resource manager. The resource manager’s side of this algorithm is
described in Sec. 9.3.

The performance consequence of this implementation is that the processes simply read
and write a few bytes of metadata from a shared memory segment for the case of no adap-
tation. These reads and writes are performed without synchronization based on a non-
blocking access pattern. Each process has exclusive write access to a single memory block;
this eliminates the need of locks or any other form of synchronization, and makes the op-
eration very fast for the case of no adaptations. Assuming that this is the most common
case, this improves performance greatly at the cost of possible delays in events where there
is an adaptation and the race condition is detected. Additionally, when adaptations are re-
quired, the aggregated performance penalty of delay insertions depends on the probability
that the race condition occurs.

6.2.3 MPI COMM ADAPT BEGIN

The MPI COMM ADAPT BEGIN operation is by far the most important operation in terms of
performance. Special attention was given to its design. The perspectives of application,
MPI library and resource manager developers were considered when defining its interface.

The main performance benefit of this operation is its ability to hide the latencies related
to resource management and MPI process creation. These are:

1. Scheduling and job metadata management at the resource manager.

2. MPI processes creation on new resources.

3. The time of the MPI INIT ADAPT operation on newly created processes.

4. Entry on MPI COMM ADAPT BEGIN routine at newly created processes.

The last three latencies only apply when performing resource expansions. These laten-
cies can amount to several seconds, and it is therefore desirable to hide them from the
preexisting processes of a job, so that their progress is not interrupted.

These latencies are hidden in part by inverting the order of the MPI COMM ACCEPT and
MPI COMM CONNECT operations, when compared to the MPI COMM SPAWN and
MPI COMM SPAWN MULTIPLE operations as implemented in MPICH.

The flow chart of the algorithm is presented in Fig. 6.3. The children processes are cre-
ated by the resource manager and acquire the status joining from the MPI INIT ADAPT

50

6.2 MPI Extension Implementation

Is
Joining?

Read Local
Metadata

Start

Open and
Publish Port

Is
Root?

Notify Joining
Processes Ready

Block in
Accept

No

Yes

Yes

Is
Root?

Lookup
Port

Initiate
Connect

No

No

Yes

End

Update Local
Metadata

Is
Root?

Close Port

No

Yes

Figure 6.3: Flow chart of the MPI COMM ADAPT BEGIN operation.

operation. They then proceed to call the MPI COMM ADAPT BEGIN operation, open a port
for the preexisting processes to find, and perform an accept operation on it. Right before
blocking on the accept operation, the root process on the joining process group notifies
the resource manager that these processes are ready to join the preexisting processes. The
resource manager then notifies all preexisting processes. Once the preexisting processes
probe for instructions, they will call the MPI COMM ADAPT BEGIN operation. Inside the
operation, they do a lookup on the port name of the newly created processes, and pro-
ceed to perform a connect on it. At that point, the MPI COMM ADAPT BEGIN operation’s
algorithm is very similar to the standard MPI COMM SPAWN operation, and it generates an
intercommunicator that is equivalent to performing a spawn. Additionally, it computes
a process group that contains all staying and joining processes; any leaving processes are
excluded from this process group. Based on this process group, the new world comm
communicator is generated. Both of these communicators are then passed to the applica-
tion as outputs. Each staying and joining process is expected to read its new rank during
the adaptation window, from the new comm world communicator. Finally, the counts of
staying, leaving and joining processes are computed and provided as output.

51

6 Elastic MPI Library

6.2.4 MPI COMM ADAPT COMMIT

This operation is relatively fast when compared to the begin adaptation operation, with
only an internal implicit barrier as its main communication overhead. It is possible to
remove this barrier with some rework on the internals of the MPICH library, specifically
on its virtual channel creation algorithm. Unfortunately, in the current implementation
the library fails in certain sequences when a virtual channel is being created and the target
process is not ready. This situation can arise, although perhaps infrequently, if the barrier
is removed from the current implementation.

The commit operation modifies the internal metadata of the local process without the
need of extra information: it takes the process group of the generated new comm world in
the MPI COMM ADAPT BEGIN operation, and updates the local process’ world group and
MPI COMM WORLD communicators based on it. After that, it cleans up any unnecessary
metadata, internal process groups and helper communicators generated for the adaptation
window. Finally, it destroys any user created communicators and process groups, since
they are now invalid given the addition or reduction of MPI ranks in the MPI COMM WORLD
communicator. As mentioned before, applications are expected to recompute any derived
communicators and to reinitialize any libraries after this operation completes and before
doing progress.

52

7 Elastic-Phase Oriented Programming
(EPOP)

During the development of the Elastic MPI library and supporting applications, difficulties
faced by application developers were identified. There were two main difficulties in non-
trivial software projects: dealing with the difference between preexisting processes and
joining processes, and implementing data redistribution schemes.

Elastic-Phase Oriented Programming (EPOP) attempts to improve the structure of elastic
distributed memory applications to help developers cope with these additional challenges
of resource-elastic programming. In this chapter, arguments to justify the use of EPOP
for the development of resource-elastic applications are first presented. Afterwards, its
current implementation is described in detail. Finally, additional benefits that EPOP and
its implementation can provide in the future are discussed.

7.1 Motivation for a Resource-Elastic Programming Model

In this section, how EPOP can help both developers and runtime systems is described. It
helps developers manage the complexity of resource-elastic distributed memory software
by improving code structure with clearly defined phases and redistribution code. Runtime
systems can rely on these definitions to better analyze performance and, as a consequence,
take better scheduling decisions that optimize individual applications while at the same
time maximizing system-wide efficiency metrics.

7.1.1 Identification of Serial and Parallel Phases in the Source Code

As mentioned in the motivation (Chap. 2), the focus of this work is mainly on the analysis
and optimization of strong scaling computational phases since their efficiency is largely
dependent on resource allocations; the efficiency of weak scaling computational phases is
in general independent of allocated resources since they fix the amount of computational
work to be done per resource unit.

The efficiency of strong scaling phases follows Amdahl’s law. Let p be the number of
processes (properly pinned to a hardware computing resource, such as a CPU) and τ(p)
be the time these processes take to finish the computational work of a particular phase.
The reduction of time due to an increase from a reference pr processes to pn new processes
allocated to a phase is defined as δ(pr, pn) and its reciprocal, the speedup, as Γ(pr, pn). The
following formula describes their relationship:

δ(pr, pn) =
τ(pn)

τ(pr)
=

1

Γ(pr, pn)
. (7.1)

53

7 Elastic-Phase Oriented Programming (EPOP)

Amdahl’s law separates single process performance, τ(1), into two parts: a serial and a
parallel part. The serial part is defined here as τs and the parallel part as τp. Since only the
parallel part of the execution time of a phase can be reduced with additional processes, it
follows that:

τ(p) = τs +
τp
p

(7.2)

Amdahl’s law states that the best speedup possible, from a reference of 1 process, is
limited by the inequality:

Γ(1, pn) =
τ(1)

τ(pn)
≤ τs + τp
τs + τp/pn

. (7.3)

We can conclude from Amdahl’s law that resource adjustments will only have an im-
pact on the performance of parallel phases. Therefore, on elastic execution environments
all serial phases should be ignored when performing performance analyses and resource
adjustments; the identification of these types of phases is therefore of increased importance
in elastic execution environments.

These parallel and serial phases are in many cases identifiable by the developers of the
application, but are difficult for compilers and profilers to automatically identify. EPOP
allows developers to explicitly identify phases that are parallel and elastic, and any other
remaining phases of the application as rigid.

Elastic runtime systems can take advantage of the clear definition of parallel elastic
phases by only analyzing and optimising the resource allocations of these, and ignoring
all others. In reality, there will be some serial blocks in parallel elastic phases and there-
fore the scalability of these phases will as well follow Amdahl’s law; in spite of this, the
advantage of having clearly defined phases that are targets for optimization is still great.

7.1.2 Process Entry and Data Redistribution Locations

A performance goal for elastic applications is to minimize the time required to integrate
new resources into ongoing simulations. This can be achieved by having entry points be
reached as frequently as possible during the run of an application.

Typical scientific simulations are composed of several blocks of code and each of these
can run for several minutes, hours and in some cases days. It is therefore beneficial for elas-
tic applications to define multiple entry points for new processes. Furthermore, this also
helps schedulers reduce the idle time of resources with minimal need for oversubscription.

Typical MPI programs have several branches in complex control structures. This makes
the code hard to statically analyze by performance tools and in many cases even applica-
tion experts. This situation is even more severe in elastic MPI programs, where additional
branching and control structures are introduced due to the difference between preexisting
and joining processes.

Given that allowing new processes to join at arbitrary locations of the program is ben-
eficial to the application and system-wide efficiency, it is of great importance to simplify
the definition of these locations and to minimize the need for complex control structures.

54

7.1 Motivation for a Resource-Elastic Programming Model

i n t main (i n t argn , char * * argc){
MPI Ini t adapt (&argn , &argc , &l o c a l s t a t u s) ;
MPI Comm rank (MPI COMM WORLD, &rank) ;
MPI Comm size (MPI COMM WORLD, &s i z e) ;
/ / i n i t i a l i z a t i o n b l o c k
i f (l o c a l s t a t u s == MPI ADAPT STATUS NEW){

phase index = 0 ;
} e lse { / / j o i n i n g p r o c e s s

MPI Comm adapt begin(&intercomm , &new ,
&staying count , &leaving count , &j o i n i n g c o u n t) ;

/ / r e d i s t r i b u t i o n b l o c k
MPI Comm adapt commit () ;
MPI Comm rank (MPI COMM WORLD, &rank) ;
MPI Comm size (MPI COMM WORLD, &s i z e) ;
MPI Bcast (&count , 1 , MPI INT , 0 , MPI COMM WORLD) ;
MPI Bcast (&phase index , 1 , MPI INT , 0 , MPI COMM WORLD) ;

}
i f (phase index == 0){

while (count <= phase0 passes){
MPI Probe adapt(& current opera t ion , &l o c a l s t a t u s , &i n f o) ;
i f (c u r r e n t o p e r a t i o n == MPI ADAPT TRUE){

MPI Comm adapt begin(&intercomm , &new ,
&staying count , &leaving count , &j o i n i n g c o u n t) ;

/ / r e d i s t r i b u t i o n b l o c k
MPI Comm adapt commit () ;
MPI Comm rank (MPI COMM WORLD, &rank) ;
MPI Comm size (MPI COMM WORLD, &s i z e) ;
MPI Bcast (&count , 1 , MPI INT , 0 , MPI COMM WORLD) ;
MPI Bcast (&phase index , 1 , MPI INT , 0 , MPI COMM WORLD) ;

}
/ / p h a s e 0 c o m p u t a t i o n and communicat ion b l o c k

}
phase index ++;

}
i f (phase index == 1){

while (count <= phase1 passes){
MPI Probe adapt(& current opera t ion , &l o c a l s t a t u s , &i n f o) ;
i f (c u r r e n t o p e r a t i o n == MPI ADAPT TRUE){

MPI Comm adapt begin(&intercomm , &new ,
&staying count , &leaving count , &j o i n i n g c o u n t) ;

/ / r e d i s t r i b u t i o n b l o c k
MPI Comm adapt commit () ;
MPI Comm rank (MPI COMM WORLD, &rank) ;
MPI Comm size (MPI COMM WORLD, &s i z e) ;
MPI Bcast (&count , 1 , MPI INT , 0 , MPI COMM WORLD) ;
MPI Bcast (&phase index , 1 , MPI INT , 0 , MPI COMM WORLD) ;

}
/ / p h a s e 1 c o m p u t a t i o n and communicat ion b l o c k

}
phase index ++;

}
MPI Final ize () ;
return 0 ;

}

Listing 7.1: Simple elastic MPI application with 2 phases.

55

7 Elastic-Phase Oriented Programming (EPOP)

In EPOP, parallel elastic phases that have redistribution code are Elastic-Phases (EPs).
The creation of EPs clearly defines process entry and redistribution locations, and allows
the runtime system to insert new resources into the application without the need of com-
plex control structures to be developed by the programmers of elastic applications. List-
ing 7.1 shows a very simple elastic MPI C program with 2 phases. In the code, each process
needs to enter the correct redistribution block and then follows into the correct computa-
tional and communication block of the phase. As can be observed, the control structure is
already quite complex due to the multiple possible paths depending on whether a process
is: newly created, preexisting in phase 0, joining into phase 0, preexisting in phase 1, or
joining into phase 1.

7.2 The EPOP Programming Model

EPOP is a programming model that has abstractions that help programmers modularize
the blocks of computation, the data and the control flow of potentially, but not necessarily,
resource-elastic applications. In this section, these abstractions will be described in detail.

7.2.1 Initialization, Rigid and Elastic-Phases (EPs)

Phases are used to represent the computational blocks of an application in the EPOP
model. At the core of EPOP is the concept of Elastic-Phases, or EPs for short; these phases
are used to represent blocks of code where resource adaptations are possible. There are
also two other types of phases. Here is a more detailed description of the phase types:

• Initialization Phase: Each application must have one and only one initialization
phase. These are called only once at each application process launch. The data of
each EPOP application is first allocated and initialized in these phases.

• Rigid-Phase: These are phases where resource adaptations are not possible. Appli-
cations that have no support for resource-elasticity can be defined with the use of
these. Even on resource-elastic applications, these can be used for blocks where it
does not make sense to allow adaptations, such as during finalization. These types
of phases can define a loop, but this is optional.

• Elastic-Phase: These are phases that implement a code block, a redistribution block
and a loop definition. In contrast to rigid-phases, the loop definition is mandatory
for this type of phases. The computational block of each EP will be executed several
times based on the definition of its own loop conditions. The adaptation block is
triggered by resource managers when needed.

An illustration of a simple EPOP program with 4 phases is shown in Fig. 7.1. The pro-
gram consists of one initialization phase (as required by the model), two EPs and a rigid-
phase for finalization. As can be seen in the unrolled loop view, each EP is also a loop and
the application data is passed to its computational block on each iteration.

7.2.2 EPOP Programs and Branches

A collection of phases can be combined with branches to create an EPOP program. Branches
can be if, if-else or similar constructs that operate at the phase level. Branches in EPOP de-
termine the next phase in an execution order based on its conditions.

56

7.3 Current Implementation

Initialize

Phase 0

Phase 1

Finalize

Phase 0

Iter: 0

Phase 0

Iter: 1
Data

Phase 0

Iter: phase0_passes
Data

Phase 1

Iter: 0

Phase 1

Iter: 1
Data

Phase 1

Data
Iter: phase1_passes

Unrolled Loop View

Data

Data

Data

F
in

a
li
z
e

 C
o

n
d

it
io

n
:
F

a
ls

e

Figure 7.1: Program structure of the simple EPOP example (with source in Listing 7.6).

A branch can select any phase except the initialization phase; the initialization phase is
restricted to have a single execution. In the example shown in Fig. 7.1, a branch determines
whether to finalize the application after Phase 1, or if to continue execution from Phase 0.

7.2.3 Application Data

All application state is held outside of the phases in the application data, similarly to func-
tional programming languages. Instead of holding state, all static or allocated application
data and file descriptors are required to be created in the data block only and then passed
around between phases. Once the computations of a block are applied, the data is passed
to the next computational block based on the control flow of the program.

In the example presented in Fig. 7.1, it can be observed that the data of the application
is passed from phase to phase. In the case of the EPs, the data is also passed again to
its computational block on each iteration. Finally, if the branch is taken, the data is then
passed from the EP Phase 1 to the EP Phase 0.

7.3 Current Implementation

A minimalistic implementation of EPOP is presented in this section. It is currently imple-
mented in the C programming language. The implementation will be used to show more
concretely how EPOP solves the original problem of improving the structure of elastic MPI
programs, while also providing some additional benefits, like simplifying the creation of
performance models to assist runtime schedulers.

7.3.1 Driver Program

EPOP programs are not compiled as executable binaries. Instead, they are built into
archives that are loaded by a driver program. Currently only one driver is provided with
EPOP, but multiple drivers can be provided later since driver programs are independent
of EPOP applications. Profiling and automatic tuning drivers could be added to the im-
plementation in the future.

57

7 Elastic-Phase Oriented Programming (EPOP)

Each EPOP program implements a get program() routine that returns a program def-
inition. The program definition includes its size, a program structure and some other
metadata that describes it.

mpiexec −n 1024 epop ./ double phase example <parameter1> <parameter2>

Listing 7.2: EPOP + MPI application started with an MPI launcher. Multiple EPOP
drivers are started (each with its own instance of the EPOP application and
common parameters).

EPOP applications are not necessarily also MPI applications. In fact, these applications
don’t even need to be parallel to be implemented with the EPOP framework. For EPOP +
MPI applications, multiple driver programs are launched. Each driver instance created by
the MPI launcher will load the EPOP + MPI application in a typical SPMD style launch.
Listing 7.2 shows a sample launch command with a typical mpiexec launcher provided
by some resource manager and MPI library combinations.

/ / t h e i n i t i a l i z a t i o n p h a s e i s c a l l e d b e f o r e t h i s c o d e b l o c k
/ / t h e i n i t i a l pc v a l u e i s p r o v i d e d by t h e r e s o u r c e manager
while (pc < program−>s i z e){

switch (program−>elements [pc] . type){
case EP :

do {
/ / p r o b i n g f o r a d a p t a t i o n s i s done h e r e
i f (resource adapta t ion)

program−>elements [pc] . phase adapt (program−>data) ;
program−>elements [pc] . phase exec (program−>data) ;

} while (program−>elements [pc] . loop condi t ion (program−>data)) ;
pc ++;
break ;

case RP :
do{

program−>elements [pc] . phase exec (program−>data) ;
} while (program−>elements [pc] . loop condi t ion (program−>data)) ;
pc ++;
break ;

case BRANCH:
pc = program−>elements [pc] . branch condi t ion (pc , program−>data) ;
i f (pc == 0 | | pc > program−>data) return −2;
continue ;

default :
return −1;

}
}

Listing 7.3: Simplified example control loop of a driver program.

Listing 7.3 shows a simplified example of a control loop used to implement a driver
program. The program counter (pc variable) is used as an index in an array of EPs, rigid-
phases and branches, and each is called according to its type with the program’s data.

58

7.3 Current Implementation

7.3.2 Program Element

As seen in the sample code in Listing 7.3, the driver program traverses an array of both
phases and branches. This is possible with the use of the program element structure as the
type for the elements of the array used by the implementation. A program element can be
one of the three phase types or a branch. In the sample driver code, there is no case for
the initialization program element type, since these are called only once before entering
the driver loop. The current C language implementation of the program element type is
shown in code Listing 7.4.

typedef s t r u c t {
i n t type ;
void (* i n i t) (i n t * , char * * * , void * *) ;
void (* phase adapt) (void *) ;
void (* phase exec) (void *) ;
i n t (* loop condi t ion) (void *) ;
i n t (* branch condi t ion) (int , void *) ;

} program element t ;

Listing 7.4: C structure of the program element.

The compute blocks of phases resemble kernels in other programming models. Each
compute block defined in nearly the same way as a PThread [169, 1, 172], with a single
void pointer as input and an integer return type for error handling by the driver program.
The adaptation block has the same interface, but has a different purpose. When the driver
program interacts with the resource manager and determines that there is an adaptation
to be performed, this routine is called on preexisting processes. On joining processes, the
driver program proceeds to get the program counter value from the resource manager first,
and then calls the adaptation block of the appropriate phase. This design eliminates the
need for complex control structures found in regular resource-elastic MPI applications.

The branch type can be used for arbitrary jumps. This is achieved by modifying the
program counter passed to the branch implementation by the driver program. The branch
operation takes both the application data and the program counter. Differential or absolute
jumps can be implemented by either computing a concrete value for the program counter,
or by adding or subtracting a differential to its current value. An example code snippet of
an if-else block based on differential jumps can be seen in Listing 7.5.

i n t branch (i n t pc , void * appdata){
i f (appdata−>branch condi t ion == 0) return (pc + 1) ;
e lse return (pc + 2) ;

}

Listing 7.5: C code for a differential branch performing an if-else operation. The
driver continues to the program element at pc+1 or pc+2 depending on the
appdata->branch condition variable. The program structure must be
assembled with the correct order in the get program() routine.

59

7 Elastic-Phase Oriented Programming (EPOP)

i n t i n i t (i n t * argn , char * * * argc , void * * data){
/ / i n i t i a l i z a t i o n b l o c k
MPI Ini t adapt (NULL, NULL, &((* appdata) . s t a t u s)) ;
MPI Comm rank (MPI COMM WORLD, &((* appdata) . rank)) ;
MPI Comm size (MPI COMM WORLD, &((* appdata) . s i z e)) ;
* data = (void *) appdata ;

}
i n t adapt (void * data){

MPI Comm adapt begin(&intercomm , &new ,
&staying count , &leaving count , &j o i n i n g c o u n t) ;

/ / r e d i s t r i b u t i o n b l o c k
MPI Comm adapt commit () ;

}
i n t phase0 (void * data){

/ / p h a s e 0 c o m p u t a t i o n and communicat ion b l o c k
}
i n t phase0 condit ion (void * data){

i f (appdata . count <= appdata . phase0 passes) return 1 ;
e lse return 0 ;

}
i n t phase1 (void * data){

/ / p h a s e 1 c o m p u t a t i o n and communicat ion b l o c k
}
i n t phase1 condit ion (void * data){

i f (appdata . count <= appdata . phase1 passes) return 1 ;
e lse return 0 ;

}
i n t f i n i (void * data){

MPI Final ize () ;
}
program t * get program (void){

program t * program = malloc (s i ze of (program t)) ;
epop al loc phases (&program , 4) ;
program−>elements [0] . type = INIT ;
program−>elements [0] . phase exec = i n i t ;
program−>elements [1] . type = EP ;
program−>elements [1] . phase adapt = adapt ;
program−>elements [1] . phase exec = phase0 ;
program−>elements [1] . loop condi t ion = phase0 condit ion ;
program−>elements [2] . type = EP ;
program−>elements [2] . phase adapt = adapt ;
program−>elements [2] . phase exec = phase1 ;
program−>elements [2] . loop condi t ion = phase1 condit ion ;
program−>elements [3] . type = RP ;
program−>elements [3] . phase exec = f i n i ;
program−>elements [3] . loop condi t ion = NULL;
return program ;

}

Listing 7.6: Simple elastic EPOP application (for comparison with MPI in Listing 7.1).

Examples of the initialization, EP and rigid-phase types can be seen in the double phase
example in Listing 7.6; this example matches the code in the MPI example shown in List-

60

7.4 Additional Benefits of the EPOP Model and Driver Programs

ing 7.1. When comparing the original MPI code to the EPOP conversion, it can be seen that
once the program structure is created in the get program() routine, the programmer no
longer needs to track the branching structure of the application and can instead focus on
the body of the computation and adaptation blocks of both elastic phases. In addition to
this, the structure is exposed at the beginning of the application to the driver program;
this structure can then be shared with other components such as the resource manager,
a performance analyzer, etc. Finally, the driver program can report application progress
to the resource manager or a tracker without extra development effort by the application
programmer.

7.3.3 Program Structure

The program structure is a collection of program element instances and the application
data. The array of program elements included in the structure is traversed by the driver
program. The data is passed to each computational block.

This array is created in the get program() routine of an EPOP application, as seen in
the code snippet presented in Listing 7.6. The structure of an EPOP program is overlaid on
the flat array of program elements. This array is not allowed to be modified at runtime. The
driver program traverses it by modifying the program counter and calling each program
element based on its type, as seen in the example code of the driver program in Listing 7.3.
When a computational block completes, the program counter is incremented by one except
when it is computed by a branch program element. Drivers are in complete control of the
execution of EPOP programs through their program counters.

typedef s t r u c t {
void * data ;
i n t s i z e ;
program element t * elements ;

} program t ;

Listing 7.7: C code of the program structure.

7.4 Additional Benefits of the EPOP Model and Driver Programs

The definition of phases in EPOP programs can help improve the quality of performance
modeling techniques. The structure of programs is known before the application starts. A
driver program can serialize the program structure of an EPOP application and transfer it
to a resource manager or a monitoring program. A performance profile can then be pop-
ulated by annotating the program structure with performance data. This can be done on
completion or partially with updates at runtime. The types of the phases of an application
are also known; because of this, performance modeling routines can be enabled selectively
for EPs, while rigid-phases may be ignored especially when they do not loop.

Driver programs can also implement progress reporting transparently. A driver pro-
gram can track phase changes and the iterations of phases that loop, and then transfer
progress information to a resource manager. This can help increase the quality of resource
adaptation and scheduling decisions, since the resource manager can better predict the fu-
ture time when an application will complete. The rate of progress can be evaluated at dif-
ferent application processes to evaluate their load balance. The collective rate of progress

61

7 Elastic-Phase Oriented Programming (EPOP)

can also be used to evaluate the quality of resource adaptations, since they correlate well
with efficiency metrics.

A pausing mechanism can be added to driver programs. This can make preemption
possible. It can also allow for the timing of applications or specific phases to be controlled.
For example, the start time of an application can be delayed. Timing control can be useful
for schedulers that try to minimize the idle times of nodes, since application processes
may be created early if there is sufficient free memory in the nodes of an allocation. These
processes can then be released immediately after the preceding application completes.

62

8 Resource Management in High
Performance Computing

Resource managers for distributed memory systems have traditionally differed signifi-
cantly from their shared memory counterparts. In general, implementations have tried to
solve very different problems, and therefore relied on entirely different approaches and
scheduling algorithms.

In this chapter, a brief introduction to resource management in shared memory systems
is provided. Afterwards, resource management is covered more specifically in the context
of distributed systems. Towards the end of the chapter, the state of the art of resource
management in HPC is summarized. Additionally, necessary changes needed to support
of elastic execution in distributed memory HPC systems are identified. These are used as
motivation for the development of the resource manager presented in Chap. 9. Finally, an
overview of the implementation of the SLURM resource manager is provided, since it was
used as basis for the elastic resource manager presented in this work.

8.1 Resource Management in Shared Memory Systems

Computers had no operating systems in earlier times. Early compute systems used to
run a single program until it completed. There was no need for resource management
since the program had exclusive access to all the resources in the machine. Subsequent
developments in computer hardware and software made it possible to share resources
among multiple programs in a single computer. Once resources could be shared, there
was the need for arbitration in cases of contention. Operating systems provide this needed
arbitration and are the resource managers found in shared memory systems today.

Shared memory schedulers have been developed as part of operating systems. These
execute tasks immediately without queuing, with some exceptions. For example, a sys-
tem may create tasks periodically based on its time-based job scheduler; however, when
the task is started it runs immediately. Work is not postponed or queued. Compute and
other resources are shared in time as necessary. There are some exceptions, such as in the
case of real-time systems, where space-sharing is still favored over time-sharing. Granting
exclusive access to resources with space-sharing helps ensure that any required deadlines
are met in real-time systems.

Processing units first come to mind when thinking of hardware resources that need man-
agement. In addition, an operating system needs to arbitrate access to IO (such as hard
drives and other long term storage devices), network, random access memory, audio and
video devices, keyboard and mouse, etc. Current systems support the concurrent execu-
tion of tasks. While having large numbers of tasks running concurrently has the benefit of
increasing resource utilization, it also has the disadvantage of creating resource contention.

The scheduler of an operating systems controls the placement of tasks in processing
resources and their timing to minimize contention. Different trade-offs are made by real-
time, desktop and server oriented schedulers in shared memory systems. Schedulers can

63

8 Resource Management in High Performance Computing

be optimized for real-time guarantees or for throughput. Real-time schedulers support
the exclusive allocation of resources in space-sharing mode, while throughput optimized
operating systems tend to operate in time-sharing mode exclusively. Desktop and server
schedulers are throughput optimized. These differ in that resource utilization is maxi-
mized for servers, while a compromise between response time and resource utilization is
targeted for desktop systems.

As mentioned before, HPC systems today are a collection of nodes interconnected with
a high-performance network. Each of these nodes is a shared-memory system with its own
local operating system. Their schedulers are throughput optimized and operate in time-
sharing mode. Time-sharing is achieved through preemption on these schedulers: started
tasks use a processing element, such as a CPU, for a time slot before being interrupted by
the operating system to give a time slot to another task. Most algorithms employ a round
robin strategy, where the time of computing resources is distributed equally among tasks
of equal priority.

8.2 Resource Management in Distributed Memory Systems

Distributed memory schedulers have, for the most part, been developed separately from
operating systems. These schedulers are implemented as separate software packages that
run is user space (although usually under a super user). This is a consequence of the
fact that there is no real distributed operating system to date; there have been some pro-
totypes such as GNU Hurd [5] or Microsoft’s Barrelfish [14], but no production solution
to this date. More specifically, the major open source operating systems today (such as
FreeBSD [15] and Linux [16]) do not support distributed memory. This is also true for pro-
prietary operating systems such as Microsoft Windows or closed source Unix systems. In-
stead of being developed for operating systems, these schedulers have been developed for
distributed resource managers; these operate in space-sharing mode, and are commonly
referred to as batch schedulers.

As mentioned before, current distributed memory systems are collections of shared
memory systems. Each shared memory systems that is part of a distributed system is typ-
ically referred to as a node. Current distributed systems are considered supercomputers if
these nodes are interconnected by a high performance network, with optimized latencies
and bandwidth. Each node, being a shared memory system itself, runs an operating sys-
tem with a scheduler in time-sharing mode and optimized for throughput, as described in
the previous section. One of the typical assumptions is that each computing element will
run a single task, and special effort is made to minimize system noise.

Distributed memory resource managers have centralized and distributed components.
Usually a resource management daemon is run at each node available for computation.
Most, if not all, of current resource managers also require an additional dedicated node
to run their centralized components. Utilities related to performance tracking, node status
trackers, user reports, accounting, etc., run in a centralized manner together with the batch
scheduler.

Batch schedulers are fundamentally different than time-sharing schedulers found in op-
erating systems. One of the main differences is that jobs are not started immediately after
they are created. Instead, these schedule jobs after they have been submitted by users
and placed in a queue. Jobs are run in the background at some time in the future with-
out any user interaction. Resources are managed at a coarser level, where full nodes are

64

8.3 Simple Linux Utility for Resource Management (SLURM)

typically the resource unit instead of individual processing elements. These run in space-
sharing mode, where each node is given exclusively to a job during its run. Some resource
managers do allow for time-sharing as well, but this is not commonly enabled even when
available, since the minimization of interference between jobs is of higher importance in
the domain of supercomputing. The starting times of jobs is generally not guaranteed; this
differs from time-sharing schedulers, where tasks are started immediately.

Batch scheduling in space-sharing mode with rigid allocations has been adequate up to
the present date. For elastic execution, where applications can adjust to changes in com-
putational resources at runtime, additional scheduling strategies need to be developed.

8.2.1 Additional Requirements for the Scheduling of Elastic Jobs

In addition to the exclusive access to resources and the minimization of interference re-
quired by HPC jobs, elastic jobs need continuous performance tracking. Since the re-
sources of elastic jobs can be adjusted at runtime, additional scheduling strategies need
to be developed that will maximize or minimize performance metrics in HPC systems
(such as throughput, idle node count, power level stabilization, etc.) based on continuous
resource adaptations.

Schedulers for elastic jobs require that their resource management infrastructure sup-
ports the modification of resource allocations. The number of resources of individual
elastic jobs needs to be adjusted during their execution, based on their efficiency. Once
a scheduler has determined that a resource adaptation is needed, it needs to be applied to
the running system in some manner. When operating in distributed memory, an imple-
mentation needs to reconfigure the running system while ensuring consistency between
its distributed components and the application processes of running jobs. Interactions
between the distributed resource manager components need to be coordinated though
communication protocols over the management network of the HPC system.

No resource managers for HPC systems today meet these additional requirements nec-
essary to support elastic jobs. It is for this reason, that as part of this work, a new resource
manager or an extension of an existing one was needed. After a long survey of avail-
able options, it was decided that extending the SLURM [12] workload manager to support
elastic jobs was a good option.

8.3 Simple Linux Utility for Resource Management (SLURM)

The Simple Linux Utility For Resource Management (SLURM) [12] is a scalable workload
manager currently being developed by SchedMD [11] and is released under the GNU Gen-
eral Public License (GPL). It is a highly scalable solution and quite popular in current HPC
systems, including several of the fastest computers in the world today [19, 11].

From an implementation’s perspective, SLURM can be seen as a collection of binaries
that share a single configuration file. There is a significant amount of shared source code
among these binaries, for purposes such as configuration parsing, plugin loading and
management, communication protocols, among others things.

The collection of binaries that make up SLURM include: the controller (SLURMCTLD),
the node daemons (SLURMD), the launcher (SRUN), the step daemons (SLURMSTEPD), as
well as several account management and information utilities. These binaries are highly
threaded and have a collection of plugin interfaces for several extensible functions, such as:

65

8 Resource Management in High Performance Computing

Managed Nodes

Allocation

Allocation

 SLURMCTLD

Job
Queue

Scheduler Plugin

SLURMD SLURMD SLURMD SLURMD

SLURMD SLURMD SLURMD SLURMD

SLURMD

SLURMSTEPD

Rank 0 Rank 1

SLURMD

SLURMSTEPD

Rank 2 Rank 3

PMI PMI PMI PMI

MPI MPI MPI MPI

MPI Process

Node

Figure 8.1: Abstract organization of a cluster based on SLURM and its main programs:
SLURMCTLD, SLURMD and SLURMSTEPD. SRUN runs in the first node of an allo-
cation (not shown).

scheduling, topology, MPI/PMI support, accounting, database support, and many more
features. Figure 8.1 shows how these binaries interact and where they reside on an HPC
system. The PMI and MPI libraries linked to MPI processes are also illustrated.

SLURMD

SLURMSTEPD

Rank 0 Rank 1

PMI PMI

MPI MPI

Rank 2

PMI

MPI

Rank 3

PMI

MPI

SRUN

MPI ProcessNode

Figure 8.2: SLURMD, SLURMSTEPD, MPI processes and SRUN in the master node of an
allocation.

66

8.3 Simple Linux Utility for Resource Management (SLURM)

8.3.1 Controller Daemon (SLURMCTLD)

The controller daemon (SLURMCTLD) is the only centralized component of SLURM. This
component includes the batch scheduling algorithm, manages security, user accounts,
tracks individual nodes (by reaching each distributed daemon), and so forth. Each of the
user control and information binaries interact over the network with this component, such
as:

• SRUN: Launch a parallel job (interactively or inside a batch).

• SBATCH: Submit a job defined in a batch script.

• SQUEUE: View information about submitted jobs that reside in the queue.

• SSTAT: Display status information about running jobs.

• SCANCEL: Used to cancel submitted jobs (running or queued).

• SACCT: Display accounting data about jobs in the system.

• SCONTROL: Used to view and modify the configuration of SLURM online.

There are many parts of SLURM that have been made modular and loadable as plugins.
One of them is the batch scheduler algorithm. There are multiple implementations that
can be selected though the configuration file.

8.3.2 Node Daemon (SLURMD)

The SLURMD binaries run as daemons on each node that is part of a partition. Each daemon
monitors its individual node. They are also responsible for setting up and starting an ad-
ditional type of daemon: the SLURMSTEPD. Daemons of this type track the node local part
of a job step: the subset of application processes that run on its node. A job step in SLURM
is an application started with SRUN and its allocated resources. Figure 8.2 illustrates the
interaction between the SLURMD daemon of a node, the local SLURMSTEPD daemon, and
the MPI processes through the PMI. The figure also illustrates how the SRUN binary runs
independently of MPI processes in the master node of the allocation of a job step.

67

8 Resource Management in High Performance Computing

68

9 Elastic Resource Manager

The SLURM workload manager was selected as the basis for the development of the elastic
resource manager presented in this document. It has been modified extensively for elastic
resource management and integration with the Elastic MPI library.

Similarly to MPICH, SLURM has been designed for static resource allocations. There
is some form of resource-elasticity, where a job can have an extra allocation as an expan-
sion to its resources. This was not sufficient for the use cases considered in this work,
since both increases and reductions to the resources given to MPI applications are needed.
In addition, expansions through adaptation windows require that new processes be cre-
ated on newly allocated resources; the creation of processes was only possible through the
launcher in SLURM (e.g., mpiexec or srun).

The creation of a new resource manager may be required to support the elastic execution
of MPI applications more elegantly and perhaps also more efficiently. Indeed, such efforts
have been already initiated with the development of the Flux [31] resource manager. The
Flux resource manager was still under development and was not mature enough to be
used as the basis for the prototype presented in this document. Additionally, the creation
of a new resource manager was not realistic within the time scheduled for this work. For
these reasons, the extension of an existing and mature resource manager was determined
as the most feasible option. SLURM was selected based on its compatibility, performance
and widespread adoption.

Close integration with the MPI runtime is necessary for elastic applications. It is desir-
able that each created process is pinned to a hardware CPU core. In order to ensure that,
the resource manager needs to create processes on new resources, and destroy processes
(in coordination with MPI) when resources are taken from an application. New processes
could be created in the same resources, allowing for oversubscription of CPU cores, but
that is of little benefit to the performance and scalability of most HPC applications.

Multiple SLURM binaries and shared subsystems were modified to add support for
resource-elasticity and integrate the new MPI operations. The most important changes
will be described in this section.

9.1 Overview of the Integration with the Elastic MPI Library

An overview of the integration of both the Elastic MPI library (based on MPICH) and the
Elastic Resource Manager (based on SLURM) is presented in this section. The interactions
between the MPI library and the different resource manager components are explained in
detail. These interactions were introduced to support the proposed extensions to MPI.

Figure 9.1 presents a high level view of nodes, resource manager components and MPI
processes. The following resource manager components are labeled in the figure:
Elastic Batch Scheduler, Elastic Runtime Scheduler, SRUN, SLURMD and
SLURMSTEPD. Finally, inside the MPI processes there are two linked libraries: the PMI
library and the MPI library.

69

9 Elastic Resource Manager

From the proposed extensions introduced in Chap. 6, the MPI INIT ADAPT operation
is essentially the same as the standard MPI INIT operation. The launcher command, in
this case SRUN, receives an allocation and credentials from the Elastic Runtime Scheduler
(ERS). It then proceeds to create the necessary MPI processes through interactions with
each SLURMD daemon running at each node of its allocation. After that, it waits until the
MPI application completes its execution. The extra value of local status needs to be
propagated to each process together with its initialization metadata.

With the MPI PROBE ADAPT operation, information is forwarded from the scheduler of
the resource manager all the way to each preexisting MPI process of an application. The
SRUN binary coordinates how this information is forwarded. Preexisting process groups
are only notified after the newly created expansion processes are ready.

It takes six steps to complete an adaptation window in the current implementation. Fig-
ure 9.1 contains arrows to indicate which components participate during each step. The
arrows point from the component that initiates the action towards the components that
performs it. Each step is enumerated and described here:

1. Reallocation Message: The scheduler makes a decision and the resource manager
applies it by sending a reallocation message to the job step’s SRUN instance.

2. Create New Processes in Expansion Nodes: If there is one or more processes to be
created in one or more expansion nodes, SRUN sends a launch command with the
required instructions to the SLURMD at each participating expansion node.

3. New Processes Ready: After the processes created in the expansion allocation are
ready at the MPI COMM ADAPT BEGIN operation, the SLURMD at the leader node no-
tifies SRUN.

4. Notify Preexisting Processes: SRUN sends instructions to each preexisting node’s
SLURMD. Each SLURMD then updates the metadata to be provided to each of its local
processes though the MPI PROBE ADAPT operation. This will cause the parent pro-
cesses to enter the adaptation window and interact with the newly created children
processes in the expansion.

5. Adaptation Commit: Once the adaptation window is completed (all staying and
joining processes are ready and leaving processes are terminating) the leader node
notifies SRUN that the adaptation is complete.

6. Reallocation Complete: SRUN then notifies the scheduler that the reallocation was
applied to the job step. Finally, SRUN receives an updated credential from resource
manager with leaving nodes removed from its allocation.

It should be noted that steps 2 and 3 are only necessary when there is a resource expan-
sion (i.e., these steps are unnecessary when only a reduction of resources is performed)
as part of the adaptation. Additionally, step 4 only contains instructions for processes to
leave the process group if there is a resource reduction.

The design does allow for simultaneous resource expansions and reductions. The only
current limitation is that the node where SRUN is located needs to remain in the allocation,
since SRUN cannot be migrated given the inherited design from SLURM. Adding a migra-
tion feature to SRUN would enable arbitrary migrations of full MPI applications with the
current design.

70

9.1 Overview of the Integration with the Elastic MPI Library

Jo
b

Forw
ard

R
es

o
u

rc
e

O
ff

er
s

New Adapted Allocation

Preexisting Allocation

SLURMD

SLURMSTEPD

Rank 0 (0) Rank 1 (1)

PMI PMI

MPI MPI

Rank 2 (2)

PMI

MPI

Rank 3 (3)

PMI

MPI

SRUN

SLURMD

SLURMSTEPD

Rank 4 (4) Rank 5 (5)

PMI PMI

MPI MPI

Rank 6 (6)

PMI

MPI

Rank 7 (7)

PMI

MPI

 Elastic Runtime Scheduler
1: Reallocation Message

SLURMD

SLURMSTEPD

Rank 0 (8) Rank 1 (9)

PMI PMI

MPI MPI

Rank 2 (10)

PMI

MPI

Rank 3 (11)

PMI

MPI

SLURMD

SLURMSTEPD

Rank 4 (12) Rank 5 (13)

PMI PMI

MPI MPI

Rank 6 (14)

PMI

MPI

Rank 7 (15)

PMI

MPI

2: Create New Processes in Expansion Nodes3: New Processes Ready

4: Notify Preexisting Processes

5: Adaptation Commit

6: Reallocation Complete

Expansion Allocation

MPI Process

Node

 Elastic Batch Scheduler

Static Job Queue Elastic Job Queue

M
on

it
or

in
g

an
d

P
er

fo
rm

a
n

ce

D
at

a

Figure 9.1: Overview of interactions between MPICH and SLURM components during
adaptations.

9.1.1 Rank to Process Mapping Strategy

In Fig. 9.1, it can be seen that each MPI process in the scenario presented has two rank
numbers, with one in parenthesis. The first number is its rank before the commit opera-
tion, while the one in parenthesis is its rank afterwards in the adapted MPI COMM WORLD
communicator.

The current rank to process mapping algorithm minimizes rank changes on preexist-
ing staying processes. This is achieved by selecting leaving processes with the maximum
ranks possible, and giving joining processes ranks bigger than the greatest staying rank.
Avoiding rank changes on staying ranks helps minimize the movement of data during
redistributions in adaptation windows.

9.1.2 Support for Arbitrary Node Identification Orders

During the normal operation of the resource-elastic system, multiple resource adaptations
per job may occur. These adaptations may be expansions or reductions of resources of
arbitrary amounts of nodes. Each node in these sets is unique and is identified with a
number. These identifiers are set based on the order the nodes appear in the slurm.conf
configuration file.

Each resource allocation consists of a set of unique nodes that are specified with their

71

9 Elastic Resource Manager

identifiers in the metadata. These are ordered from the lowest identifier to the highest. To
support MPI and other distributed programming models, the system provides vectors that
specify the way application processes are to be overlaid in a set of nodes. These vectors
have the following format:

(vector, (identifier, count, processes), (identifier, count, processes), ...)

Each tuple in the specified vector is a subset of the mapping. The identifier value speci-
fies the node in the allocation to start with. The count value indicates for how many nodes
to apply the mapping. The processes value determines how many processes to create in
each node of the mapping. For example, if the system has 8 physical CPU cores per node,
and the user launched an application that requires 20 processes in an allocation with 3
nodes, a dense mapping would look as follows:

(vector, (0, 2, 8), (2, 1, 4))

This concretely specifies that 8 processes should be created in each of the first two nodes
of the allocation, while in the third and last node only 4 processes are to be created, for a
total of 20 as required by the launch.

As may be deduced from the overview, there are multiple process groups during adapta-
tion operations (refer to Fig. 9.1). In the case of an expansion, the first one is the preexisting
group, followed by the expansion group. In the case of a reduction of resources, there is
only the preexisting group. On the completion of an adaptation, there is the new result-
ing group. This means that the resource manager needs to specify three vector mappings
in the expansion case and two vector mappings in the reduction case, so that the system
knows how to overlay the processes in the changing node allocation.

This vector data is also used by the MPI library. It uses the vector mapping to order the
ranks of the processes. As explained before, the rank ordering technique clips higher ranks
on reductions, and appends new ranks on expansions.

The correctness of this scheme depends on the incremental order of the node identi-
fication numbers. Consider the adaptation sequence presented in Fig. 9.2. Each square
represents a node, with its unique identifier in the system as the first number, followed by
its identifier in the allocation for the job. Each color represents a different node allocation.
In adaptations 1 and 2, the node identifiers of each application are ordered incrementally,
although in the second adaptation job 2 has its nodes fragmented. Fragmentation does
not affect the correctness of the mapping; however, if the node identifiers are not ordered
incrementally, the original scheme does not work. In adaptation 3, job 1 has an allocation
with the sequence: 2, 2; 3, 3; 4, 0; 5, 1. The second digits of each pair indicate that its inter-
nal node identifiers are not incremental: 2, 3, 0, 1. This occurred because an expansion to
its resources was performed and its expansion nodes were of lower global identifiers than
its preexisting nodes. A similar situation arises in adaptation 4 for job 3.

The issue is that the processes will be overlaid incorrectly in the original system, with
the vector specification, because the node identifiers were always assumed to be in incre-
mental order. Additional data was added to the launcher infrastructure and the algorithm
was adjusted so that the vector specifications can be applied to arbitrary orders of nodes.
The format of the vectors was preserved, since this ensures compatibility with the elastic
MPI library without any changes necessary. Preserving the vector format will also ensure
that integrating other programming models in the future is less challenging.

72

9.2 Elastic Batch and Runtime Scheduler

0,0 1,1 2,2 3,3 4,0 5,1 6,2 7,3

0,0 1,0 2,0 3,1 4,0 5,1 6,2 7,3

0,0 1,0 2,2 3,3 4,0 5,1 6,1 7,2

0,3 1,0 2,2 3,3 4,0 5,1 6,1 7,2

Job 0 Job 1 Job 2 Job 3

Adaptation 1

Adaptation 2

Adaptation 3

Adaptation 4

Figure 9.2: Sequence of adaptations on 8 nodes that lead to node identifier orders that are
not incremental in some of the presented allocations.

9.2 Elastic Batch and Runtime Scheduler

As can be seen in Fig. 9.1, the controller daemon (SLURMCTLD) from the original SLURM
design is no longer present. Instead, it has been replaced by two separate components: the
Elastic Batch Scheduler (EBS) and the Elastic Runtime Scheduler (ERS). The new resource-
elastic scheduling algorithm that is split into these two components is described separately
in Chap. 10.

The functions that were originally provided by the controller in SLURM, such as batch
scheduling and security, are now managed by the EBS. The more dynamic behavior needed
for the support of elastic MPI applications is implemented in the ERS, such as node moni-
toring, performance modeling, as well as the management of adaptation windows through
the SRUN component.

Here is a list with the most important changes that were introduced with the addition of
the EBS and ERS components:

1. A new operation that initiates an adaptation through the SRUN instance of a job step:
srun realloc message.

2. Supporting protocol messages and handlers for the new srun realloc message
operation.

3. A new elastic scheduling algorithm that relies on performance modeling (covered in
Chap. 10).

4. Extra metadata for elastic job entries in the elastic job queue. For example, a new job
status that indicates that jobs are performing an adaptation: JOB ADAPTING.

The srun realloc message is used to initialize the adaptation process of a single
application in a job. A job may have multiple applications running simultaneously, in
what is called a job step. Each job step has its own instance of the SRUN binary and a set of
SLURMSTEPD daemons. The number of SLURMD daemons remains at one per node in all
situations.

73

9 Elastic Resource Manager

The srun realloc message provides SRUN the following information:

• New nodes allocated to the application and the number of processes to create on
them.

• Preexisting nodes from where processes need to be destroyed and how many pro-
cesses to destroy in them.

• The full list of nodes that compose the new allocation.

• Updated SLURM credential object that is necessary for communication with the new
expanded nodes.

• The set of vector process mappings mentioned earlier. These are used by the MPI
library to generate the communicators of each process group, as well as the future
MPI COMM WORLD communicator correctly.

Only whole nodes are added or removed from a job during adaptations in the cur-
rent implementation. Future developments may add the ability to schedule intra-node
resources.

9.3 Node Daemons

The resource manager side of the algorithm used to support the MPI PROBE ADAPT op-
eration is implemented in these daemons, based on the instructions forwarded to each
participating node.

Given the design inherited from SLURM, when MPI processes need to be created at a
node, its SLURMD forks first a SLURMSTEPD. This daemon then receives all required infor-
mation to create the subgroup of processes that will run in the node.

The PMI plugin is loaded by the SLURMSTEPD daemon. The PMI has been extended
with additional operations that allow MPI processes to notify their SLURMSTEPD when:

1. Processes that are joining have opened a port and are waiting in the internal accept
operation of MPI COMM ADAPT BEGIN.

2. Both the joining and preexisting processes have completed their adaptation and will
shortly exit MPI COMM ADAPT COMMIT.

The first extension to the PMI is used by leader processes of joining groups. A leader pro-
cess notifies its local SLURMSTEPD. This daemon then notifies the SRUN instance of the job
step. The SRUN instance then proceeds to notify each of the SLURMD daemons running at
preexisting nodes. These daemons then proceed to update their local MPI PROBE ADAPT
metadata and start their side of the probe algorithm. The flowchart of the probe algorithm
from the side of the daemons is presented in Fig. 9.3. Each daemon starts by setting the
adaptation flag to true and then reading its local metadata. It then determines whether it
is locally consistent, meaning that all local processes read the flag correctly and are now
blocking waiting for confirmation. The local status can be inconsistent when some pro-
cesses are not blocking and incremented their counter, indicating that they exited the probe
operation too early. Each local consistency result is communicated to SRUN. All nodes are
notified if one or more nodes reached an inconsistent state. If the preexisting processes are

74

9.3 Node Daemons

Start

Set
MPI_ADAPT_TRUE

End

Locally
consistent?

Global
Daemon Barrier

Read
Local Metadata

Notify SRUN:
Inconsistent

Notify SRUN:
Consistent

Get global
consistency
from SRUN

Globally
consistent?

Set
Delayed Flag

Release blocked
Local PIDs

Yes No

Yes

No

Figure 9.3: Probe operation at the SLURMSTEPD daemon.

globally consistent, then all processes are released and they can then enter the adaptation
window; otherwise, a delay is inserted and all processes will be consistent the next time
they call the probe operation.

The second extension to the PMI is used by the leader processes of adapted process
groups. These groups are created as a result of successful completions of adaptation win-
dows through calls to the MPI COMM ADAPT COMMIT operation. Leader daemons (those
where the MPI process with rank 0 resides) send a notification message to the SRUN in-
stance of its parallel application. The SRUN instance then forwards it to the scheduler.
The resource manager handles these messages by updating the status of the adapting job
from JOB ADAPTING to JOB RUNNING, making the application eligible again for resource
adaptations. Additionally, the resource manager provides an updated job credential to the
SRUN instance as a response.

75

9 Elastic Resource Manager

9.4 Launcher for Elastic Jobs

The final component of the resource manager that has been extended is the SRUN program.
Most of the operations that are initiated by either the scheduler or any application process
(via the PMI) are handled partially by SRUN. Here are some of the new protocol messages
that SRUN can now handle:

1. Reallocation message received from the controller daemon.

2. Notification that joining processes are ready and waiting in the
MPI COMM ADAPT BEGIN operation.

3. Notification that an ongoing adaptation window was completed though a successful
MPI COMM ADAPT COMMIT.

In addition to these handlers, SRUN has also been extended to manage the IO redirec-
tion of joining processes. In the original implementation, these were setup only at the
beginning when the user launched the application; SRUN can now manage redirections
dynamically as processes are created and destroyed.

Another important change to SRUN is a new set of operations that enable the reconfigu-
ration of its Tree Based Overlay Network (TBON) with the daemons of its current alloca-
tion. All communication between SRUN and these daemons is done through this network
to ensure scalability. However, with each resource adaptation, the number of nodes in an
allocation may be reduced or increased; this requires a reconfiguration of the TBON. The
reconfiguration is performed in a distributed manner between SRUN and its daemons on
each adaptation.

The inherited design from SLURM, where SRUN needs to run in the master node of
an allocation, is a limitation to elastic execution models such as the one presented in this
work: the SRUN binary has to remain in the same node throughout the execution of a
job. This means that migrating applications to a completely new set of nodes is currently
impossible. It may be desirable to add migration functionality to SRUN in the future, since
the communication performance of MPI can be improved by relocating applications to
nodes that are more closely clustered in the network of an HPC system, as they become
available.

76

10 Monitoring and Scheduling Infrastructure

Distributed computing systems are expected to deliver performance that is commensurate
to their available hardware resources. This is achieved by the optimization of system-wide
performance metrics. The optimization of these performance metrics is a task usually
delegated to schedulers. In the case of distributed systems, schedulers take as input the
jobs to be performed and the set of available compute resources. They produce as output
the job startup order and the resources where they will be executed. These orders are
referred to as schedules. These schedules affect the performance of individual applications
and whole systems, and therefore determine the quality of schedulers.

The terms resource manager and scheduler are sometimes used interchangeably. In re-
ality, these are different software components that are often bundled together due to their
equal importance. Distributed systems need both a resource manager and a scheduler in
order to share its resources with its users in a fair and efficient manner.

In previous chapters, the resource manager and its unique features that allow support
for elastic jobs were introduced. In this chapter, the scheduler and its unique features for
optimizing application and system-wide efficiency metrics are discussed. This scheduler
takes advantage of the support for elastic jobs provided by the resource manager.

As seen previously in Fig. 9.1, the scheduler is divided in two smaller sub-schedulers
that closely interact: the Elastic Batch Scheduler (EBS) and the Elastic Runtime Scheduler
(ERS). Unfortunately, the EBS was not developed in time to be described in this document.
Because of this, only the ERS and the measurement infrastructure will be described in
detail. The role of the EBS and its expected interaction with the ERS will be covered briefly.

This chapter begins with an introduction to the general multiprocessor scheduling, the
batch scheduling and the runtime scheduling problems. The additional features of the
resource manager that provide performance information to the Elastic Runtime Scheduler
(ERS) are described afterwards. Finally, the ERS and its current scheduling heuristic are
described.

10.1 Theoretical Background on Multiprocessor Scheduling

The general multiprocessor scheduling problem is stated in an abstract manner in this
section. The problem statement for batch scheduling with static resource allocations is
presented after that, together with a short discussion on the taxonomy of schedulers and
how it is classified. This problem statement is then extended to fit the more specific elastic
scheduling problem addressed in this work. New requirements are identified from the
new problem statement.

10.1.1 Problem Statement

Multiprocessor scheduling is an optimization problem that can be stated verbally as fol-
lows: given a set of tasks to be completed and a set of resources that can complete them by

77

10 Monitoring and Scheduling Infrastructure

some means, find an assignment of tasks to resources that optimizes a set of objective func-
tions. The tasks are bounded in time and may require collectively more resources than are
available simultaneously; therefore, the assignment of tasks to resources may also require
an order. Different orders can produce different outputs of the objective functions.

We can define the problem of scheduling more rigorously. Let T be a set of tasks ti where
the subscript i ∈ N identifies each task uniquely; this set may or may not be finite. Simi-
larly, let R be a set of m resources rj where the subscript {j ∈ N | j < m} identifies each
resource uniquely. One or more resources in R can perform the tasks in T in some manner.
If τ(ti) ∈ R is the maximum execution time and ρ(ti) ∈ N the number of resources re-
quired to perform a task ti, then we can define multiprocessor scheduling as the following
optimization problem:

given inputs T = {ti | τ(ti) <∞∧ ρ(ti) ≤ m},
R = {rj | j < m}

compute a S = {ti 7→ %i}

that optimizes
w∑

k=0

Ok

(10.1)

The result of this optimization is a schedule S. The schedule is a set of mappings from
individual tasks ti into specific subsets of resources %i of size ρ(ti), where %i ⊂ R. Tasks
where ρ(ti) > m are impossible to schedule and therefore not considered.

Objective functions typically produce single scalar values in R within the range [0,∞).
By optimizing (either minimizing or maximizing) the sum of the output of each Ok ob-
jective function, where {k ∈ N | k < w}, the quality of the produced schedule can be
improved. Different objective functions can evaluate the quality of full schedules S or
individual mappings ti 7→ %i. This allows schedulers to optimize based on system-wide
metrics, performance metrics of individual applications, or both.

The sum of all required resources of the tasks in T may exceed the total number of
resources m in R: ∑

ρ(ti) > m (10.2)

In such a condition all tasks cannot be started simultaneously at the earliest time of the
schedule {δ0 ∈ R | δ0 > 0}. Because of this, both a starting time and duration need to
be added as part of each mapping in the schedule when resource sharing is not allowed.
Each mapping then becomes a reservation of resources with a starting time δi ≥ δ0 and the
duration of its task τ(ti), in addition to its set of unique resources %i. A schedule S then
becomes:

S = {ti 7→ 〈%i, δi, τ(ti)〉} (10.3)

This modification to S can be inserted in the initial optimization problem definition
(equations 10.1) to indicate that schedules need to be produced with these additional tim-
ing specifications.

10.1.2 Computational Complexity

The theoretical complexity of the multiprocessor scheduling problem can be determined
with the aid of complexity theory. The goal is to determine the asymptotic complexity of

78

10.1 Theoretical Background on Multiprocessor Scheduling

the optimization problem based on its inputs. A bound to the number of steps of possible
algorithms, based on the number of steps required to reach a solution, should be deter-
mined. Thankfully, this topic has been of great interest to researchers and results from
previous analyses [135, 98, 149, 142, 93] are available.

The multiprocessor scheduling problem belongs to a family of problems that have no
known solutions of polynomial or better complexity [77, 84, 138, 214]. It is for this rea-
son that current schedulers rely on approximation algorithms that are based on heuristics.
These algorithms settle for solutions that are feasible but not necessarily optimal; the as-
sumption is that in most cases adequate heuristics guide the approximations so that pro-
duced schedules approach optimal results, based on a set of objective functions.

10.1.3 Resource-Static Scheduling in Distributed Memory HPC Systems

A scheduling problem for specific compute systems, in a more concrete way, can be classi-
fied by several characteristics related to its set of tasks, its set of resources and its method
used to generate the output schedule. There have been several efforts to create a taxonomy
of scheduling problems [152, 106, 186, 58, 149]. The scheduling problem in distributed HPC
systems is clearly defined [89, 126, 200, 166, 90] for current resource-static execution mod-
els. Current solutions consist generally of First-Come First-Serve (FCFS) batch scheduling
with static allocations and backfilling.

Current supercomputing systems are usually shared among several researchers across
multiple institutions. Individual tasks are submitted to these systems by its users, in the
form of batch job definitions. The arrival rate of these job definitions can be modeled with
the aid of traffic theory. Batch job definitions include their number of resources required,
their priority and their maximum execution time, among several other aspects that may
not be as important to schedulers. Batch job definitions are entered in a queue. This queue
represents the input task set T of the optimization problem 10.1.

The resources of current supercomputing systems tend to be similar. In most systems,
the hardware on each node is identical. There may be cases where the nodes have het-
erogeneity internally (e.g., in the form of accelerators). In general, it can be assumed that
all resources can handle all tasks similarly. A node is abstracted as a single resource in
most cases. This means that in spite of the growing amount of parallelism internally at
each node, schedulers only consider as a resource a full node, instead of subsets of cores
or even accelerators where available.

The operation of schedulers is currently divided in two steps: batch scheduling and
backfilling. The batch scheduling step scans a window of the job queue and attempts
to start as many jobs as possible based on their priority. When a job cannot be started
immediately, it may instead get a resource reservation in the future. Once this first step is
done, the scheduler proceeds to the backfilling step: it attempts to start jobs that fit in the
gaps of remaining idle resources. Jobs that are started during this second step should not
delay the start of higher priority jobs that have reservations.

The general strategy is illustrated in Fig. 10.1. It presents a scenario with four nodes, a
job queue of six jobs with a priority based order. In the illustration, a schedule is computed
where job 4 receives a reservation later than jobs 5 and 6 due to the availability of resources.
In the same schedule, job 6 is scheduled early to minimize idle nodes through a backfilling
operation.

79

10 Monitoring and Scheduling Infrastructure

In summary, static batch scheduling with backfilling on current distributed systems has
the following task set, resource set and algorithm properties:

• Task set:

– Set properties:

* Multiple users submit tasks

* Tasks submitted randomly

* Unbounded task capacity

* Best effort First-In, First-Out (FIFO)

* Tasks are removed on completion

– Task properties:

* Set of one or more tasks as jobs

* Jobs are time bounded

* Jobs and tasks are not periodic

* Fixed number of resources specified

* Jobs receive exclusive access to resources

* No Service Level Agreements (SLAs)

• Resource Set

– Symmetric Multiprocessing (SMP) nodes as resources

– Nodes have identical hardware (homogeneous)

– Nodes may have attached accelerators

– No quality of service (QoS) support

– Resources are finite and cannot be scaled on demand

– Resources are located in a single building

– Power and energy scaling features available

– No job or task migration support

– No fault tolerance support

• Algorithm

– Nodes as the units of resources

– Job level scheduling (no task level scheduling)

– Objective functions for mainly system-wide performance metrics

– Two step resource-static scheduling

* Batch scheduling with priority based FIFO

* Backfilling to minimize idle nodes

– Scheduling without performance guarantees

– Scheduling without reactive adjustments

– Jobs cannot be preempted

80

10.1 Theoretical Background on Multiprocessor Scheduling

Job Queue

0

1

2

3

4

5

6

0

1

53

4

26

Node 0

Node 1

Node 2

Node 3

Schedule

Time

Figure 10.1: Possible schedule of a set of static jobs ordered by priority in a queue.

10.1.4 Modified Scheduling Problem for Resource-Elastic Execution

The scheduling problem described so far applies to cases where only static allocations
are possible. Static allocations mean that the resource reservation of a job stays constant
throughout its execution. The scheduling problem needs to be updated if the resource
allocation of a job can change during the runtime of its tasks; resources may increase (ex-
pansion), decrease (reduction) or the unique nodes allocated to a job may change while
their total stays the same (migration).

The current scheduling problem, solved with batch scheduling and backfilling, needs to
be modified to include the added flexibility of resource-elastic execution. Only the prop-
erties of the jobs in the task set need to be modified:

• Jobs have a range of feasible resource counts.

• Jobs have a time bound that is a function of its resources.

This modified scheduling problem remains very similar to the preexisting one due to
only these two differences. All other mentioned properties in the previous section remain.
Jobs still retain exclusive access to the resources on its resource allocations, although some
resources may be added or removed from this allocation at runtime. Due to this, the time
required for the job to complete becomes dependent of the number of resources in time. In
general, jobs will still provide a worst case time bound as part of its description.

Although similar to the preexisting scheduling problem, these two differences in the
properties of jobs add new requirements to the algorithm of a potential scheduler. In
addition to the previous batch and backfilling steps, a scheduler for HPC systems with
resource-elastic execution capabilities must also:

1. Continuously monitor the performance of the tasks of running jobs.

2. Adjust the resource allocations of jobs based on their observed performance.

In the proposed design, the first activity is delegated to the previously described infras-
tructure, while the second activity is delegated to the new Elastic Runtime Scheduler (ERS).
Most of the traditional batch-scheduling activities are still handled by a more traditional
scheduler. The design will be covered in the next sections of this chapter.

81

10 Monitoring and Scheduling Infrastructure

10.2 Performance Monitoring Infrastructure

The performance of individual jobs is monitored by the infrastructure. The infrastructure
is composed of the MPI library described in Chap. 6 and the resource manager components
described in Chap. 9. Performance data is captured and a performance model is built. The
performance model is then used to drive scheduling decisions.

The collection of data is performed in a hierarchical manner. At the lower level, each
MPI library linked into each application process detects the structure of the computation
in the local process and collects performance data. This structure is then reduced to a
node-local representation by the SLURMD daemon at each node. Finally, the Elastic Run-
time Scheduler (ERS) (described later is Sec. 10.3) performs a final reduction to create the
individual performance model of the distributed application. The set of models of all run-
ning applications are used to drive scheduling decisions.

10.2.1 Process-Local Pattern Detection and Performance Measurements

At the process-local view, the MPI library linked to the process performs pattern detection
and performance metrics evaluations. The pattern of computation is detected before any
performance metric is determined, since these metrics will be attached to specific control
flow locations only after they are detected. Process local operations are kept to a minimum
once the pattern is detected.

Pattern Detection

Since the pattern detection is intended to occur during the actual production run of appli-
cations, the minimization of its performance impact is of great importance. Because of this,
the structure of computation is detected based on markers introduced by the compilation
wrappers provided by the MPI library (mpicc and mpifc in this case). There have been
previous works that rely on backtracing the sequence of calls in a program to determine
unique locations during execution. These are then used as identifiers for pattern detec-
tion [95, 27, 28, 29, 30, 124], such as loops, in MPI applications. The introduction of these
markers at compilation time eliminates the overhead related to backtracing, although the
technique is limited to binaries generated within a single software project.

The markers are inserted by splitting the compilation of objects into the emission of
assembler and the final assembly step. Thankfully, most modern compilers have support
for these operations. In the current implementation, the compiler wrapper works with
Intel and GNU compilers. Versions 10.0 and later of the Intel compilers were tested, while
versions 4.9 and later were tested for the GNU compilers. Other compilers were not tested,
since those are the ones available in the SuperMUC system where this work was evaluated.

The current wrapper based technique relies on the way these compilers generate library
calls in the emitted assembler. The actual API names of library calls are preserved, when
linking C based libraries. Fortunately, MPI is a pure C based library and its calls can be
easily identified with text processing in the intermediate assembler of each target object
of the compilation. Additionally, since the MPI standard requires that any operation with
the MPI prefix be provided only by the MPI library in compliant programs, it is guaran-
teed that only MPI operations will be intercepted. Additionally, the PMPI pattern can be
selected to preserve support for any PMPI based profilers and tools.

82

10.2 Performance Monitoring Infrastructure

Once the MPI calls are identified in the assembler, a unique ID is computed and inserted
before the MPI call through an additional operation available in the Elastic MPI library.
This operation is called MPI T set call site identifier, and as its prefix MPI T sug-
gests, it belongs to the MPI tools interface. This tooling call sets the identifier for the device
layer of the layered software architecture inherited from MPICH (as described is Chap. 5).
This operation sets an integer identifier that is later read by the library at each individual
MPI operation. This identifier establishes the uniqueness of the call site without the need
of backtracing.

The MPI library relies on these markers to detect the structure of the computation at run-
time. There have been several algorithms developed to detect patterns in sequences [145,
213, 208, 114, 180]. A pattern detection algorithm, that was originally designed to analyze
programs from decompilation, fits well this pattern detection use case [221]; this algorithm
is also used in other recent related works [28].

The pattern detection algorithm was implemented within the Elastic MPI library. In the
current implementation, the algorithm provides the following output information to the
runtime system, based on the current partial sequence of call site identifiers provided to it
as input:

1. The detected Control Flow Graph (CFG).

2. Each node of the CFG is annotated with its number of revisits.

3. Nodes that are the heads of unique loops are marked.

4. Nodes that are the tails of unique loops are marked.

5. Nodes that are reentry points from nested loops are marked.

The detection logic is only available when the MPI application has been initialized with
the MPI INIT ADAPT operation. In addition to this, the detection algorithms is disabled
at the start of applications. It is only enabled after a running application performs its first
MPI PROBE ADAPT call. It should be noted that EPOP applications disable this feature
entirely through an MPI T extension, since these provide the structure of applications at
launch time and therefore do not need to rely on any form of pattern detection.

The CFG update routine is called at relevant MPI operations with their unique identifiers
and types. There are different operation types for point-to-point, one-sided, collectives,
MPI-IO, etc. The system does not perform CFG updates inside adaptation windows. The
MPI library has an operation that serializes its local CFG to a shared memory segment,
where it can then be read directly by the local daemon. Unique blocks of shared memory
are dedicated to each MPI rank in the node.

An example can be used to better explain the algorithm’s behavior. Listing 10.1 shows
the log output of a single MPI process given the sequence of identifiers:
2 0 6 3 1 6 3 1 6 3 1 9 7 9 7 3 1 6 3 1 6 3 1 9 7 9 7
The detector can produce a text representation of its current CFG, in tabular form, as

logging output. Listing 10.2 shows the detected CFG that matches the previous sequence.
Each output row represents a node in the CFG. The first column is the address in the local
memory of the process. The second columns is the identifier number. After that, the loop
head flag (H), the loop body flag (B), the reentry counter (Re) and the revisit counter (Rv)
are provided. The final two columns provide the tail data of loop heads, and the head data
of loop body nodes. As seen in listing 10.1, there is also a time differential (TD) computed

83

10 Monitoring and Scheduling Infrastructure

at each step. In the current implementation, the time resolution of this differential is in
nanoseconds. The time of creation is set each time a new node is added to the CFG. Total
differential times from head nodes are accumulated on node revisits. The average distance
in time from the head node of a loop to any node in the body can therefore be computed
by dividing the accumulated differential by its total number of revisits.

Figure 10.2 presents a graphical depiction of the text based CFG output. Reverse arrows
on the left side of the figure represent loops, while the reverse arrow on the right represents
a reentry. The time taken at each MPI block is represented as its vertical length. The time
of the compute blocks can be computed by subtracting the MPI times from the differential
from preceding MPI operations. Their time is also represented by their vertical length
in the figure. In summary, all necessary data is included so that such a graph can be
computed by the local daemon from the serialized CFG data.

0 : root id : 2
1 : id : 0 ; detec ted : 0 ; −> NOT in a loop ; (TD: 4638)
2 : id : 6 ; detec ted : 0 ; −> NOT in a loop ; (TD: 10243)
3 : id : 3 ; detec ted : 0 ; −> NOT in a loop ; (TD: 14440)
4 : id : 1 ; detec ted : 0 ; −> NOT in a loop ; (TD: 17938)
5 : id : 6 ; detec ted : 1 ; −> head : 6 ; (TD: 22178)
6 : id : 3 ; detec ted : 1 ; −> head : 6 ; (TD: 26174)
7 : id : 1 ; detec ted : 1 ; −> head : 6 ; (TD: 30090)
8 : id : 6 ; detec ted : 1 ; −> head : 6 ; (TD: 33756)
9 : id : 3 ; detec ted : 1 ; −> head : 6 ; (TD: 37407)

1 0 : id : 1 ; detec ted : 1 ; −> head : 6 ; (TD: 41180)
1 1 : id : 9 ; detec ted : 0 ; −> NOT in a loop ; (TD: 44758)
1 2 : id : 7 ; detec ted : 0 ; −> NOT in a loop ; (TD: 48493)
1 3 : id : 9 ; detec ted : 1 ; −> head : 9 ; (TD: 52336)
1 4 : id : 7 ; detec ted : 1 ; −> head : 9 ; (TD: 56155)
1 5 : id : 3 ; detec ted : 1 ; −> body re−entry ; head : 6 ; (TD: 60054)
1 6 : id : 1 ; detec ted : 1 ; −> head : 6 ; (TD: 63853)
1 7 : id : 6 ; detec ted : 1 ; −> head : 6 ; (TD: 67418)
1 8 : id : 3 ; detec ted : 1 ; −> head : 6 ; (TD: 70916)
1 9 : id : 1 ; detec ted : 1 ; −> head : 6 ; (TD: 74361)
2 0 : id : 6 ; detec ted : 1 ; −> head : 6 ; (TD: 77798)
2 1 : id : 3 ; detec ted : 1 ; −> head : 6 ; (TD: 81239)
2 2 : id : 1 ; detec ted : 1 ; −> head : 6 ; (TD: 84788)
2 3 : id : 9 ; detec ted : 1 ; −> head re−entry ; head : 9 ; (TD: 88710)
2 4 : id : 7 ; detec ted : 1 ; −> head : 9 ; (TD: 92452)
2 5 : id : 9 ; detec ted : 1 ; −> head : 9 ; (TD: 96131)
2 6 : id : 7 ; detec ted : 1 ; −> head : 9 ; (TD: 99669)

Listing 10.1: Step by step updates based on the specified ID sequence.

Current detec ted Control Flow Graph (CFG) :
0 x030 ; id : 2 ; H: 0 ; B : 0 ; Re : 0 ; Rv : 0 ; t a i l : ; head :
0x2b0 ; id : 0 ; H: 0 ; B : 0 ; Re : 0 ; Rv : 0 ; t a i l : ; head :
0 x310 ; id : 6 ; H: 1 ; B : 0 ; Re : 0 ; Rv : 4 ; t a i l : 0x3d0 ; head :
0 x370 ; id : 3 ; H: 0 ; B : 1 ; Re : 1 ; Rv : 5 ; t a i l : 0 x550 ; head : 0 x310
0x3d0 ; id : 1 ; H: 0 ; B : 1 ; Re : 0 ; Rv : 5 ; t a i l : ; head : 0 x310
0 x4f0 ; id : 9 ; H: 1 ; B : 0 ; Re : 0 ; Rv : 3 ; t a i l : 0 x550 ; head :
0 x550 ; id : 7 ; H: 0 ; B : 1 ; Re : 0 ; Rv : 3 ; t a i l : ; head : 0 x4f0

Listing 10.2: Example CFG detected based on the specified ID sequence.

84

10.2 Performance Monitoring Infrastructure

Performance Measurements

The MPI library starts to record performance data once the heads and tails of one or more
loops are detected. Currently two performance metrics are recorded:

1. Total Loop Time (TLT)

2. Total MPI Time (TMT)

MPI 2

MPI 0

MPI 1

Compute

Compute

Compute

Process-Local Pattern

MPI 3

MPI 9

MPI 7

MPI 6

Compute

Compute

Compute

Figure 10.2: Process-local Control
Flow Graph (CFG)
representation.

The TLT metric is the total time spent on the de-
tected loop. The TLT metric can be computed at
each loop, including nested loops. The TLT metric
is computed from two real numbers. The first one is
its creation time. This time is set for each node in the
CFG structure regardless of its type. The second one
is the last visit time. The MPI library does not per-
form any more operations for this metric. Instead,
the data is provided as it is to the local daemon once
requested. The daemon is expected to perform the
subtraction of these values for the total accumulated
time, and to divide this value by the number of vis-
its (revisits plus one) to get the average.

The second metric is the Total MPI Time (TMT).
The TLT is inclusive of this time. This time is the dif-
ference between the entry and the exit times of each
MPI call. In contrast to the TLT, these times are not
stored in the CFG nodes where they are computed;
instead, this metric is aggregated in the loop head of
the node. There is no recursive search for the loop
head in nested loops. The average can be computed
by dividing the aggregated times by the total number of visits to their loop heads.

10.2.2 Node-Local Reductions and Performance Data Updates

Once a loop is detected, the library switches to a mode of CFG verification and perfor-
mance data collection. As mentioned before, each process serializes its CFG data on its
own shared memory segment. Each process notifies its local daemon on the following
events:

• Loop detected

• Unexpected Loop exit

• Unexpected loop reentry

These events occur in the sequence presented in Listing 10.1: a loop detection occurs in
steps 5 and 13, in step 11 an unexpected loop exit occurs, and in step 15 an unexpected
loop reentry is encountered. All of these create changes in the CFG and therefore need to
be communicated to the local daemon. These events tend to be more common during the
initialization of MPI applications, and settle after a while. Expected loop reentries in the

85

10 Monitoring and Scheduling Infrastructure

MPI 2

MPI 0

MPI 1

Compute

Compute

Compute

Process 0 Pattern

MPI 3

MPI 9

MPI 7

MPI 6

Compute

Compute

Compute

MPI 2

MPI 0

MPI 1

Compute

Compute

Compute

Process 1 Pattern

MPI 3

MPI 6

Compute

MPI 2

MPI 0

MPI 1

Compute

Compute

Compute

Process 2 Pattern

MPI 3

MPI 6

Compute

MPI 2

MPI 0

MPI 1

Compute

Compute

Compute

Process 3 Pattern

MPI 3

MPI 6

Compute

Figure 10.3: Set of four CFGs at a node before reduction.

body or loop heads do not generate any events, since they do not trigger changes in the
CFG. The library instead continues updating performance data without notifying its local
daemon, if there are no changes to the CFG.

The number of notifications to the local daemon is limited by the sampling timer that
currently defaults to one minute. This minimizes synchronization overheads, especially
during the initialization of an application. If one or more loop detection or break events
occur between timers, the local daemon is notified only once.

Performance data is updated separately from the CFG. These are updated periodically
on each expiration of the sampling timer. These are only produced at the next loop head
reentry, and not in any arbitrary MPI operation. Each metric specifies the identifier of its
loop head, since more than one loop may be detected.

The local daemons do not read the performance data periodically. Instead, the latest data
is read on demand when requests from the Elastic Runtime Scheduler (ERS) are received.
These requests also have a field that optionally specifies a new value for the sampling
timer. This enables the ERS to adjust the frequency of data collection per application,
based on previous performance data and trends.

Node-Local CFG Reduction

The daemon of a node keeps track of the notifications generated by each of its MPI pro-
cess. When any of its local processes have notified that their CFGs have been updated, it
proceeds to read them and to perform a CFG reduction operation. The reduction operation
depends on the order and type of the operations in it.

86

10.2 Performance Monitoring Infrastructure

The following rules are followed on the collection of CFGs to produce a reduction:

1. Nodes outside of loops are ignored.

2. Consecutive point-to-point or one-sided operations are collapsed.

3. Identical loops are combined into one with a process range.

MPI 1

Compute

Reduced Pattern

MPI 9

MPI 7

MPI 6,3

Compute

Range: 0-3

Range: 0

Figure 10.4: Reduced CFG from
Fig. 10.3.

The reduced CFG is then stored in the memory of the
local daemon. It is populated with performance data be-
fore it is sent to the Elastic Runtime Scheduler (ERS) on
each request. If a request is received from the ERS, but
the CFG data is still unavailable, the response to the re-
quest has a field to indicates this.

An example set of four CFGs is presented in Fig. 10.3.
All processes contain the loop from 6 to 1, but miss the
nested loop with head 9 and tail 7. Rule 1 ignores the
nodes 2 and 0. MPI operations with identifier 6 and 3 are
of the type point-to-point. This means that they will be
collapsed according to rule 2. All other operations are in
loops. Finally, given rule 3, the loop from 6 to 1 will be
clustered for ranks 0 through 3, while the loop from 9 to
7 will be separated for only rank 0. The information on
its reentry is preserved. This indicates that it is nested
within the common loop, but only at rank 0. The result
is presented in Fig. 10.4.

The three rules in the reduction algorithm can be justified. The first rule is justified by
the fact that code that occurs outside of loops is not relevant to elastic execution. The
creation of adaptation windows is only performed inside of loops. The second rule comes
from the observation that MPI applications that use multiple point-to-point and one-sided
operations match logically across ranks. For example, it is common to observe branching
based on the rank number of the local process in an MPI program to determine is the
process will perform a send or a receive. These sends and receives can be matched as a
single block of communication in a distributed view of the program, greatly simplifying
the loop matching algorithm. The final rule produces the reduction based on similarity. It
is essentially a form of compression.

Node-Local Performance Data Reductions

The sum of all the TLT and TMT metrics of each process in a loop are added to the data of
the reduced loop head nodes. In contrast, the mode (the value that occurs the most) of the
loop revisit counts are set. It is expected that with enough revisits a small difference in the
number of measurements will not affect the mean of the metrics significantly.

10.2.3 Distributed Reductions and Performance Models

The Elastic Runtime Scheduler (ERS) generates requests for performance data that reach all
the daemons of an application. The requests and responses are routed through the SRUN
binary of the application, over the Tree Based Overlay Network (TBON) that it creates

87

10 Monitoring and Scheduling Infrastructure

with the nodes of its application. In the response to these request, each daemon sends
the reduced CFGs with the TLT and TMT metrics attached to each loop head. The final
distributed view of the CFG of the application is then generated from these at the ERS.

MPI 1

Compute

Distributed Pattern

MPI 6,3

Range: 0-127

Figure 10.5: Final reduced CFG
at the ERS from
Fig. 10.4.

Matching loops are reduced by combining all of their
TLT and TMT metrics. The union of the process sets is set
as the final range. The final distributed representation of
the earlier example is presented in Fig. 10.5.

Finally, the average loop time and MPI time metrics
are computed based on the number of iterations of the
loop heads and the TLT and TMT metrics provided. Ad-
ditional memory is dedicated to store the mean, vari-
ance, minimum and maximum values of these final met-
rics. Additionally, a vector of their recent values is
stored, to detect performance trends.

SPMD-Phase Performance Model

Currently only one type of performance model has been implemented: the SPMD-Phase
model. When the system detects one or more distributed loops, it creates an SPMD-Phase
performance model instance for the application. Applications that do not fit this model
(i.e., that have no distributed loop) are currently ignored. SPMD-Phase models consist of
a set of distributed loops and their performance metadata. In general, models are used by
the scheduling heuristic to try to ensure that application phases remain in their efficient
range of resources. This design decision comes from the observations first summarized in
the motivation (Sec. 2.2.4).

10.2.4 EPOP Integration

The capture of the CFG and the performance data is supported in the EPOP programming
model through the driver programs and a special mode of operation without pattern de-
tection for the MPI library and the infrastructure components. This mode of operation is
set by an additional MPI tools operation: MPI T enable EPOP mode(). This operation
is set by driver programs at launch, before calling the initialization routine of the EPOP
program loaded.

Driver programs in EPOP generate CFGs from the EPOP program definitions. This elim-
inates the overhead of the pattern detection techniques and the reductions. In addition to
this, the added certainty allows the MPI library to operate in verification mode from the
start of the application.

Loop head TLT and TMT metrics are still computed by the MPI library. This means
that the sampling timer is still controlled by it, and not the driver program, based on the
instructions received from the Elastic Runtime Scheduler (ERS). All of the techniques are
otherwise used in the same manner for EPOP programs.

10.3 Elastic Schedulers

Instead of completely replacing the current solution for systems with static execution mod-
els, batch scheduling with backfilling, the preservation of several aspects of these success-
ful techniques is proposed. The extra flexibility of resource-elastic execution models is

88

10.3 Elastic Schedulers

addressed separately. For this purpose, the scheduler has been separated into two: the
Elastic Batch Scheduler (EBS) and the Elastic Runtime Scheduler (ERS).

The EBS has not been implemented in this work, and will instead be developed as part
of future work. The expected functionality of this scheduler will be mentioned where
relevant. In its expected design, the EBS replaces the batch and backfilling techniques with
moldable batch scheduling. Moldable batch scheduling is performed on resource offers
provided by the ERS, instead of on the global view of resources. Resource offers depend
on the availability of nodes due to job terminations and resource adaptations on running
jobs. That means that any job start or reservation decision depends on the evolution of
resource allocations on the set of running jobs. In contrast, previous systems performed
scheduling decisions that depended only on job completions and reservations.

The lack of a batch scheduler means that MPI applications are started directly with the
SRUN launcher, and not the SBATCH command. It also means that instead of queues, each
individual SRUN command blocks until the Elastic Runtime Scheduler (ERS) has enough
resources to launch its job step. In summary, SRUN will be the source of jobs in the evalua-
tion and jobs will consist of only one job step.

The ERS adds the two additional capabilities that were previously identified for elastic
execution support (Sec. 10.1.4): it continuously monitors application performance and pe-
riodically adjusts the resources of running jobs as necessary. This scheduler relies on the
additional performance data collection facilities in the infrastructure (described earlier in
this chapter) to create performance models that drive the resource adaptations.

In the remainder of this section, the current performance model and the Elastic Runtime
Scheduler (ERS) are described in detail.

10.3.1 Elastic Runtime Scheduler (ERS)

As mentioned before, the Elastic Runtime Scheduler (ERS) fulfills the extra requirements of
resource-elasticity (Sec. 10.1.4). These extra requirements are a consequence of the added
flexibility of malleable jobs. The design decisions made when developing this scheduler
were motivated by the following observations:

1. The scalability properties of distributed applications based on its allocated resources
is input dependent.

2. Empirical and historical based methods for performance prediction require perfor-
mance measurements at multiple resource allocations sizes.

3. Machine learning research that is applicable to job scheduling is still in its early
stages; additionally, these techniques require additional storage and databases. These
requirements would add premature complications to the current prototype.

4. It is desirable to be able to optimize applications that are running for the first time,
as well as applications with new input sets.

5. In addition to backfilling, expansions of running jobs can be performed to minimize
the count of idle nodes.

6. Both system-wide and individual application performance metrics must be opti-
mized.

89

10 Monitoring and Scheduling Infrastructure

The first observation comes from the experience of running simulation codes that per-
form differently with different sized inputs, or even inputs of similar size but with different
geometries. In addition to affecting their overall performance, the input size also deter-
mines the available parallelism of the application. Its available parallelism determines the
amount of resources it can use efficiently.

The second observation is that history based performance predictors require large col-
lections of data. In the case of distributed systems, resource adaptations can involve
the movement of large amounts of data and require expensive repartitioning sequences.
This makes the collection of empirical data a lot more expensive computationally than
on shared memory systems, where a reconfiguration does not involve the movement of
memory over a network. A history of empirical data can be created as applications are
executed. Given enough time a predictor may collect adequate amounts of data.

The third observation is that machine learning research, as it relates to scheduling on
distributed memory systems, is at the moment limited. These techniques have great po-
tential and may be applied in this domain in the near future. The storage requirement is
related to the second observation; once it is in place and enough samples are collected, this
methods will become feasible. Data collection may need to be repeated on new system
installations, depending on the method.

The next observation is that the system should be able to handle new elastic jobs that
have no history with acceptable efficiency. It should also be possible to efficiently execute
jobs that execute only once. Applications are often run multiple times but each time with
different input sets.

Another observation is that there is potential to further improve the minimization of
idle nodes in distributed systems due to the added flexibility of elastic execution. With the
addition of support for malleable jobs, it is easier to perform the backfilling operation by
filling up idle nodes with resource expansions. Additionally, jobs can be started at different
node counts. These are advantages over systems with support for only rigid jobs.

The final observation is that the overall efficiency of an HPC system depends on the
efficiency of the individual applications running, and not only idle nodes. System-wide
and application efficiency metrics can be further improved with resource-elastic execution
models.

The ERS performs scheduling decisions at a configurable rate. On each evaluation, the
elastic scheduling algorithm follows the following steps:

1. Iterate the list of jobs and make a list of selected running jobs that are elastic and
have performance data available.

2. Process the performance data to generate the performance model of the selected jobs.

3. Compute a range of optional and mandatory resource adaptations on the set of jobs.

4. Provide a resource offer based on the ranges to the Elastic Batch Scheduler (EBS).

5. Perform Elastic Backfilling (described later in this section).

6. Use the srun realloc message to apply individual resource adaptations.

7. Start any new jobs based on the batch definitions received from the EBS.

8. Wait until the system reaches a steady state before applying further resource trans-
formations.

90

10.3 Elastic Schedulers

 100

 1000

 10000

 100000

 1e+06

 1e+07

4 16 64 256 1024

E
ff
ic

ie
n
c
y
 (

e
le

m
e
n
ts

 p
e
r

s
e
c
o
n
d
 p

e
r

p
ro

c
e
s
s
)

Number of MPI processes (Sandy Bridge)

4096x4096
2048x2048
1024x1024

512x512
256x256
128x128

64x64

4 16 64 256 1024
 100

 1000

 10000

 100000

 1e+06

 1e+07

E
ffic

ie
n
c
y
 (e

le
m

e
n
ts

 p
e
r s

e
c
o
n
d
 p

e
r p

ro
c
e
s
s
)

Number of MPI processes (Haswell)

4096x4096
2048x2048
1024x1024

512x512
256x256
128x128

64x64

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

4 16 64 256 1024

M
P

I
to

 C
o
m

p
u
ta

ti
o
n
 R

a
ti
o

Number of MPI processes (Sandy Bridge)

4096x4096
2048x2048
1024x1024

512x512
256x256
128x128

64x64

4 16 64 256 1024
 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

M
P

I to
 C

o
m

p
u
ta

tio
n
 R

a
tio

Number of MPI processes (Haswell)

4096x4096
2048x2048
1024x1024

512x512
256x256
128x128

64x64

Figure 10.6: Efficiency (top) and MPI time to compute time ratio (bottom) of a Cannon’s
matrix-matrix multiply kernel. Results for SuperMUC Phase 1 (Sandy Bridge,
left) and Phase 2 (Haswell, right) presented. A line is added for the constant
0.1 boundary of the ratio.

The remainder of this section will be dedicated to the description of steps 2, 3, and 5. Step
1 is trivial, since the scheduler simply iterates the list of running jobs and makes an addi-
tional list of those that are marked as elastic and have their performance data populated.
Steps 4 and 7 are not yet implemented, since they depend on the availability of the EBS. As
mentioned before, the EBS has not been implemented as part of this work, and is instead
postponed as future work. Step 6 has been described extensively already in Chap. 9, where
the design of the elastic resource manager and its interaction with the elastic MPI library
have been documented. The final step has also been described in that chapter. When a
transformation is triggered on a job via the srun realloc message command, its status
changes from JOB RUNNING to JOB ADAPTING. With the MPI COMM ADAPT COMMIT op-
eration, each application notifies the resource manager when its adaptation is completed.
Its job record is then updated from the status JOB ADAPTING to JOB RUNNING; this state
change marks the application as eligible for adaptations again and its released resources
available for other jobs. At that moment, the resource manager updates the credentials for
SRUN based on its new allocation.

91

10 Monitoring and Scheduling Infrastructure

10.3.2 Performance Model and Resource Range Vector (RRV)

As mentioned before, in step 2 of the scheduling algorithm, a performance model is gen-
erated based on the performance data collected. In step 3, the ranges of optional and
mandatory resource adaptations are produced. In this section, both of these steps are ex-
plained based on the performance model and heuristic implemented. The performance
model is used to conservatively predict the maximum amount of nodes that can be allo-
cated to the application while preserving an acceptable level of efficiency. Efficiency is
evaluated individually for each application, and not based on general expectations.

A heuristic was developed based on empirical data collected from different distributed
computational kernels used in simulations. These include: block-tridiagonal iterative
solvers, fast-Fourier transform (FFT), embarrassingly parallel problems, matrix-matrix mul-
tiplication, matrix-vector multiplication, dense linear system solvers, sorting algorithms,
conjugate-gradient iterative solvers, multi-grid iterative solvers, matrix decomposition,
and others. The data collected shows a correlation between the proportion of MPI time in
computational kernels and their individual efficiency metrics.

Figure 10.6 shows concrete values for a cannon matrix-matrix multiplication kernel. As
can be observed, regardless of the size of the input size, the efficiency metric (matrix ele-
ments per second per process in this case) drops drastically when the proportion of MPI
time to compute time exceeds a certain upper threshold. It can also be observed that a wide
range of applications remain efficient below a certain lower threshold. Based on empirical
data, a value of 0.1 has been set for the upper threshold and a value of 0.01 has been set
for the lower threshold, as defaults. These have been found to manage well the behavior
of the evaluated applications in the SuperMUC HPC system.

A Resource Range Vector (RRV) is generated based on the average and trend values of
the MPI to compute time (MTCT) metric of the current distributed loop of an application.
The average and trends for this metric are reset after each resource adaptation of the appli-
cation. Recent MTCT values are stored to compute the recent trend of the metric (tMTCT)
within a configurable time window. The RRV is generated as follows:

• If any MTCT is above the upper threshold, set the resource range to half of itself.

• If one of the MTCTs is between the upper and lower threshold while the other is
below, remove the application from the set of candidates.

• If both MTCTs are below the lower threshold, then set the range to double of itself.

The difference between the upper and lower thresholds creates a band that helps prevent
resource adaptation oscillations. The doubling and halving of resources can be replaced
with more precise values once better performance models are developed in the future.
The algorithm tries to keep the values of the MTCT metric below the upper threshold for
all applications. The reduction of resources is mandatory, while resource expansions are
optional. This prioritizes the startup of applications in the queue over expanding running
ones: resources are eagerly reduced and conservatively expanded. The resources of an
application are not lowered below their specified minimum, since a minimum node count
may be due to memory requirements and not performance.

92

10.3 Elastic Schedulers

10.3.3 Elastic Backfilling

The elastic backfilling algorithm is designed to reduce the number of idle nodes by tak-
ing advantage of the extra flexibility provided by resource-elasticity. Elastic backfilling is
performed in step 5 of the Elastic Runtime Scheduler (ERS) algorithm.

The algorithm takes the following parameters of each job description as input:

1. Current node count.

2. Estimated time of completion.

3. Its resource range (from its entry in the RRV).

4. Average adaptation time.

The estimated time of completion is estimated linearly based on the provided comple-
tion time by the user and the starting node count. This value is currently set with the -t
or --time option of the SRUN launcher. The minimum number of nodes is set through an
extension that reads an environment variable. Both these values will be specified in addi-
tional options in batch descriptions once the Elastic Batch Scheduler (EBS) is developed.
The third input is produced by the heuristic explained previously. It can have a reduction
of nodes or an optional expansion. The average adaptation time is computed from pre-
vious measured adaptations. It is not available if the application has not adapted before.
This time is measured from the moment the srun realloc message is sent to when the
status flag of the application is changed back to JOB RUNNING.

The algorithm performs two basic operations: time balancing and resource filling. These
operations are applied to sets of jobs and are described in the remainder of this section.

Time Balancing

Time balancing is an operation that transforms the number of nodes of each job in a job set
such that their completion times become as close as possible. This can lower the makespan
of the schedule and reduce wait times. It is a transformation that can be described with
linear algebra. In this subsection, the transformation will be described for cases with two,
three and four applications. Extrapolating from these, the technique can be understood
for an arbitrary number of applications. This operation is only applied if applications are
expected to retain their efficiency levels with the new resource allocations.

Consider the two jobs presented in Fig. 10.7. If t0 and t1 are the estimated time comple-
tions of jobs 0 and 1, and their node counts are n0 and n1 respectively, then the following
linear system can be solved to find a vector of x0 and x1, such that the expected comple-
tions times of both jobs match. This transformation assumes linear scaling; this can be
assumed to be approximately true within efficient node ranges, if the performance model
determines these accurately. Defining x0′ = 1/x0 and x1′ = 1/x1, the following linear
system can be solved to get the scaling factors of the time balancing operation:Ç

1/t0 −1/t1
n0 n1

åÇ
x0′

x1′

å
=

Ç
0

n0 + n1

å
(10.4)

After that we can directly multiply x0′ ∗ n0 and x1′ ∗ n1 to get our scaled node counts
and apply the time balancing operation. In the same matter, time balancing can be applied
to a set of three applications.

93

10 Monitoring and Scheduling Infrastructure

0

1

Time

N
o

d
e

 C
o

u
n

t

0

1

Time

N
o

d
e

 C
o

u
n

t

Before After

t0 x0*t0

t1 x1*t1

n0

n1

n0/x0

n1/x1

Figure 10.7: Time balancing applied to two jobs.

Figure 10.8 presents a similar scenario as before, but with one extra application. The
following linear system can be solved to obtain the three scaling factors x0′, x1′ and x2′:Ö

1/t0 −1/t1
1/t1 −1/t2

n0 n1 n2

èÖ
x0′

x1′

x2′

è
=

Ö
0
0

n0 + n1 + n2

è
(10.5)

Similarly, the following linear system can be solved to obtain the four scaling factors x0′,
x1′, x2′ and x3′ for a set of 4 applications:á

1/t0 −1/t1
1/t1 −1/t2

1/t2 −1/t3
n0 n1 n2 n3

ëá
x0′

x1′

x2′

x3′

ë
=

á
0
0
0

n0 + n1 + n2 + n3

ë
(10.6)

As can be deduced, these linear systems follow a simple pattern while increasing the
number of jobs to be transformed. Its current implementation creates matrices in aug-
mented form based on the selected jobs and solves the linear system with Gaussian elim-
ination. These are solved quickly even for transformations with thousands of jobs. The
current number of idle nodes (Nidle) can be added to the total of nodes to the last equation.
For example, the last equation in the 4 job example becomes:
x0′ ∗ n0 + x1′ ∗ n1 + x2′ ∗ n2 + x3′ ∗ n3 = n0 + n1 + n2 + n3 +Nidle

Solving the modified linear system makes the time balancing operation produce a re-
source scaling vector that can fill these idle nodes as well.

Since the scaling factors are real numbers, while node counts are natural numbers, a
floor operation is applied to each of the results: x0′ ∗ n0, x1′ ∗ n1, x2′ ∗ n2, etc. This means
that the operation may indeed produce a surplus of nodes, instead of zero, in some cases.
Any remaining nodes can be filled with the resource filling operation described next.

Resource Filling

This operation takes the number of nodes that are idle and expands applications accord-
ing to their estimated efficient maximum number of nodes determined by the performance
model and heuristic. The resource filling operation is much simpler than time balancing.
The algorithm starts by creating a list of jobs based on their remaining runtime, from high-
est to lowest. This reordering helps lower the makespan of the schedule. It then expands

94

10.3 Elastic Schedulers

0

1

Time

N
o

d
e

 C
o

u
n

t 0

1

Time

N
o

d
e

 C
o

u
n

t

Before After
t0 x0*t0

t1
x1*t1

n0

n1

n0/x0

n1/x1

2

t2

n2
2

x2*t2

n2/x2

Figure 10.8: Time balancing applied to three jobs.

0

1

Time

N
o

d
e

 C
o

u
n

t

0

1

Time

N
o

d
e

 C
o

u
n

t

Before After

Figure 10.9: Resource filling applied to two jobs.

the jobs one by one until all idle nodes are filled or all candidate jobs reach their maximum
node count.

Figure 10.9 provides an illustration of this operation being applied to two jobs. In this
case the completion times do not need to match. This operation is performed so that the
idle node count is minimized, and generally produces a reduction on the available number
of nodes for potential application starts. Job priorities are not taken into consideration.

Resource Scaling Vector (RSV)

As mentioned earlier, currently the Elastic Batch Scheduler (EBS) is not implemented. The
Elastic Runtime Scheduler (ERS) produces schedules for jobs that are started with the SRUN
command. Multiple applications can be launched simultaneously and the SRUN command
blocks until available resources are available given the number of nodes required by the
application. The priority of the jobs is assigned based on their arrival time, where earlier
jobs have higher priority following a First-Come First-Serve (FCFS) policy.

The ERS needs to produce a resource scaling vector (RSV) to minimize the makespan of
all the jobs, running or blocking with a reservation. The RSV specifies new node counts
for a subset of the running jobs. This vector is applied to the running system through an
srun realloc message per application. If the node count is smaller than the current

95

10 Monitoring and Scheduling Infrastructure

Job Queue

0

1

2

3

4

5

6

0

1

5

3

42
6

Node 0

Node 1

Node 2

Node 3

Schedule

Time

Figure 10.10: Possible schedule of a set of elastic jobs ordered by priority in the queue.

value, then an expansion is started. In contrast, if the node count is greater a reduction is
started. If the new value is the same, then the message is not generated. This can occur
due to rounding during any of the transformations, although the individual application
was a candidate for adaptations.

The elastic backfilling algorithm applies traditional backfilling together with the previ-
ously described time balancing and resource filling techniques. The following rules sum-
marize the heuristic used to apply these three techniques.

1. If one or more higher priority jobs were delayed due to lack of resources:

a) Select a set of running jobs with resources that add up to the number of re-
quired resources to start the high priority jobs. Include any idle nodes based on
availability.

b) If a set is found, apply time balancing to it.

c) Create reservations on the time balanced nodes for the high priority jobs.

2. If after starting new jobs and applying time balancing there are still idle nodes:

a) Select jobs that fit in the gaps and apply traditional backfilling.

b) Apply resource filling to fill any remaining jobs.

The first rule is an attempt to minimize the wait times of high priority jobs. The second
rule shares the same goal as traditional backfilling techniques: to try to minimize the num-
ber of idle nodes. It is better than backfilling only when resource-elastic jobs are available
to further fill the gaps. As mentioned before, because the EBS is not available, its shim al-
ways returns that the queue is empty. This means that currently new jobs are never started
with backfilling.

Figure 10.10 illustrates an alternative schedule produced thanks to the support of resource-
elasticity in the presented prototype. The job queue matches that of Fig. 10.1. As can be
observed, in this case job 2 has been started at an initial smaller node count and later ex-
panded. This allows the start of the jobs based on their priorities, therefore ensuring fair-
ness. Additionally, the makespan is shorter. These are clear improvements to fairness and
performance when compared to the previous static schedule. Ensuring per application
efficient operation, with the techniques described in this chapter, is an additional benefit.

96

11 Evaluation Setup

The evaluation has been performed in the SuperMUC [13] petascale system. This super-
computer is managed by the Leibniz Supercomputing Center (LRZ) and is located in
Garching, Germany. The resources of this HPC system are managed by an IBM Load
Leveler resource manager.

There were some challenges encountered when testing the custom resource manager
and communication library. As may be expected, it is not possible to replace the resource
manager from the HPC system in production. Additionally, the new resource manager
is composed of multiple daemons in a distributed memory setup. This system is shared
among many users; this means that jobs need to wait for undetermined amounts of time in
a queue. To overcome these challenges a set of scripts and custom binaries were developed.

11.1 Elastic Resource Manager Nesting in SuperMUC

A set of scripts have been written to allow the presented resource manager to be boot-
strapped inside a job allocation. The scripts parse the set of host names that were allocated
with each Load Leveler job that is submitted for testing the infrastructure. A slurm.conf
file is generated dynamically for each job. With the configuration in place, the set of dae-
mons are started at each host of the allocation. A few seconds are allowed for the resource
manager to bootstrap itself and become capable of supporting new application starts. An
HPC cluster of the size of the Load Leveler resource allocation is emulated this way in
SuperMUC. In summary, the set of hosts allocated for a Load Leveler job becomes a test
parallel system. Applications built with the custom MPI implementation can be launched
inside Load Leveler jobs once the custom resource manager has finished bootstrapping
itself inside an allocation.

This setup has the disadvantage that different performance is observed with each differ-
ent job allocation, due to the different subset of nodes allocated by the Load Leveler in each
run. There is not much control over the selection of the nodes. The job description may
ask for the nodes to be allocated inside of a single island (set of racks with lower latency
across nodes), and not much else. In general, a different set of nodes is expected with each
new test run. This requires that multiple tests be performed to smooth out the variability
of measurements due to different node sets.

Another disadvantage is that, as a normal job submission to the Load Leveler, the test
jobs need to wait in the job queue. Jobs will have variable wait times depending on the size
of the queue and the number of resources. It is common to observe wait times of multiple
days for test jobs with more than a hundred node allocations. Because of this, only modest
node counts (64 maximum) were requested with test jobs.

97

11 Evaluation Setup

11.1.1 Phase 1 and Phase 2 Nodes

The SuperMUC system has multiple types of nodes divided in two sets: Phase 1 and Phase
2. There are three types of Phase 1 nodes: Fat Nodes, Thin Nodes and Many Core nodes.
In this work, tests were performed only on Phase 1 Thin Nodes, and not on Fat or Many
Core Nodes. Phase 1 thin nodes are based on Intel’s Sandy Bridge architecture. Phase 2
nodes only have one type. These are all based on Intel’s Haswell architecture.

Phase 1 nodes are based on a dual socket board with two Sandy Bridge-EP, Xeon E5-
2680, Central Processing Units (CPUs). Each of these CPUs has 8 physical cores each,
for a total of 16 per node, running at 2.7 GHz. These have support for Simultaneous
Multi-Threading (SMT) and the feature is enabled. This must be taken into account in
the configuration since the operating system sees the extra threads as additional physical
cores. Each of these cores has a peak performance of 21.6 billion double precision float-
ing point operations per second (gigaFLOPS). SuperMUC has a total of 9216 nodes of this
kind. These have provided 2.897 petaFLOPS of performance under the High-Performance
Linpack (HPL) benchmark used for the top 500 supercomputers [19] ranking.

Phase 2 nodes are also based on a dual socket board but with two Haswell-EP, Xeon
E5-2697, Central Processing Units (CPUs). These have a higher CPU count of 14 physical
cores each, for a total of 28 per node, running at lower 2.6 GHz. From a feature set, these
are very similar to their Phase 1 counterparts. The peak floating point performance rating
of these newer cores is higher at 41.6 gigaFLOPS. SuperMUC has a total of 3072 nodes of
this kind. The higher peak gigaFLOPS as well as improvements in efficiency allow these
nodes to reach 2.814 petaFLOPS of performance under the HPL benchmark.

11.1.2 MPI Library and Compilers Setup

All components (SLURM, MPICH and test applications) have been compiled with the GCC
version 6 module provided in the SuperMUC system. The SuperMUC interconnect is
based on Mellanox Infiniband network interfaces. Because of this, MPICH was config-
ured to use its OpenFabrics Interfaces (OFI) [8] network module (with the Verbs provider).
There is currently an open issue that results in incorrect reconfigurations when using this
module. Because of this, resource adaptation tests were performed with the TCP/IP mod-
ule in the Elastic MPI performance evaluation (next chapter). This means that significant
performance improvements are possible in the near future. All other tests were performed
with the OFI module. MPICH was configured with the --enable fast=all option, and
all binaries (application, MPI library and resource manager) were compiled with the -O2
optimization level.

11.2 Testing and Measurement Binaries

Due to the complexity of the system, several special modes of operation were added to the
resource manager daemons and the MPI library. These allow for quick isolated and precise
testing of the different pattern detection, reduction, and scheduling algorithms. Testing
these separate aspects of the infrastructure would have been much more time consuming
and less precise during regular application runs.

98

12 Elastic MPI Performance

In this chapter, the performance and scaling of the new MPI operations is evaluated. For
the measurements presented here, a simple test application that performs redundant MPI
communication was used. The application runs indefinitely and adapts to new resources
based on a precomputed schedule. Performance data was collected every time the test
application adapted. Sweeps from 16 to 512 or 1024 processes were performed. Measure-
ments were accumulated from 10 separate runs (with different allocations) for each type
of SuperMUC node.

12.1 MPI INIT ADAPT

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

16 32 64 128 256 512

T
im

e
 (

s
e
c
o
n
d
s
)

Number of MPI processes

Sandy Bridge
Haswell

Figure 12.1: MPI INIT ADAPT latency.

Figure 12.1 presents the mean time and stan-
dard deviation for the MPI INIT ADAPT op-
eration. The times observed are indistin-
guishable from those with standard MPICH
and SLURM with the provided PMI2 imple-
mentation. Poor scaling with increased num-
bers of processes is observed; this may be-
come a target for optimization in the future.
These times are observed from both the orig-
inal processes in an application launch and
those created by the resource manager on
an expansion. The latency of this operation
is hidden from preexisting processes thanks
to the design of the MPI COMM ADAPT BEGIN
operation, as described in Sec. 6.2.3.

12.2 MPI PROBE ADAPT

 0.0001

 0.001

 0.01

 0.1

 1

 10

16 32 64 128 256 512

T
im

e
 (

s
e
c
o
n
d
s
)

Number of MPI processes

Sandy Bridge; adaptation: false
Sandy Bridge; adaptation: true

Haswell; adaptation: false
Haswell; adaptation: true

Figure 12.2: MPI PROBE ADAPT latency.

As mentioned in Sec. 6.2.2, this operation
has been designed such that the general case
is very fast. As can be seen in Fig. 12.2, it is
the fastest operation in the MPI extension.
When the adaptation flag is false, the la-
tency of this operation is about 1 millisec-
ond at 512 processes. The performance is
much slower when the adaptation flag is set
to true. As explained before, the expecta-
tion is that resource adaptations will be in-
frequent; therefore, the low latency of this
operation when no adaptations need to take

99

12 Elastic MPI Performance

place is more important. The latency on the true case is dominated by the TBON protocol
between the SRUN program and the daemons.

12.3 MPI COMM ADAPT BEGIN

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

16|32 32|64 64|128 128|256 256|512 512|1024

T
im

e
 (

s
e
c
o
n
d
s
)

Number of MPI processes (from|to)

Sandy Bridge
Haswell

Figure 12.3: MPI COMM ADAPT BEGIN la-
tency from a number of staying
processes to a new total.

A full sweep of all possible combinations
of preexisting processes and expansion pro-
cesses is not presented for this operation,
since its latency is dominated by the size of
the biggest process group. Because of this,
balanced cases are presented, where preex-
isting process groups are of the same size as
expansion process groups, for resulting pro-
cess groups of double the size of the preex-
isting ones. It is also worth mentioning that
a reduction of resources does not impact the
performance of this operation, since preex-
isting leaving processes participate in the
same way as preexisting staying processes
during adaptation windows, due to their
required participation during data reparti-
tions.

As can be seen in Fig. 12.3, the implementation is successful in hiding the latencies re-
lated to the creation of new processes on new resources from preexisting processes. The
measured times are significantly lower than the initialization times required by the chil-
dren processes. Unfortunately, linear scaling has been observed due to the inherited im-
plementation of the accept and connect routines from MPICH. These operations are reused
in the current implementation and could be targets for optimization in the future.

12.4 MPI COMM ADAPT COMMIT

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

32 64 128 256 512 1024

T
im

e
 (

s
e
c
o
n
d
s
)

Number of MPI processes

Sandy Bridge
Haswell

Figure 12.4: MPI COMM ADAPT COMMIT
latency.

The last operation to be evaluated is
MPI COMM ADAPT COMMIT. This operation
is evaluated on the total number of pro-
cesses, since it operates on the consolidated
process group after an adaptation. This op-
eration is in general very fast and has good
scalability properties. It has not been a tar-
get for optimization. The reason for this
is that all required synchronization takes
place in the MPI COMM ADAPT BEGIN oper-
ation and is stored in the MPI library. When
this operation is called, the process group
and communicator metadata is updated lo-
cally in the memory of the process.

100

13 Elastic Resource Manager Performance

A selection of resource manager operations is evaluated in this chapter. This selection
contains all operations that impact the performance of MPI operations during normal
computations. The operations that were not included are very numerous, but are either
performed locally by one of the resource manager components, or do not impact the per-
formance of preexisting MPI processes thanks to the latency hiding features described in
previous chapters.

13.1 Tree Based Overlay Network (TBON) Latency

The communication between SRUN and the SLURMD daemons that manage the execution
of an MPI application is important for the MPI PROBE ADAPT operation when the adap-
tation flag is set to true. The algorithm for probing has two sides: the side at each MPI
process and the side at each SLURMD daemon. When the adaptation flag is set to true, mul-
tiple synchronization operations between the SRUN program and each daemon take place.
These synchronization operations are performed over the Tree Based Overlay Network
that connects SRUN to each SLURMD daemon. Because of this, the latency of messages over
the TBON can impact the overhead of MPI processes when they are required to adapt.

 0.01

 0.1

 1

16 32 64 128 256 512

T
im

e
 (

s
e
c
o
n
d
s
)

Number of MPI processes

Sandy Bridge
Haswell

Figure 13.1: Latency of TBON messages
from SRUN to daemons.

Figure 13.1 presents the latency of a sin-
gle message and its confirmation from
each participating node. In the figure, its
scalability based on process count is pre-
sented. This means that the results for the
Sandy Bridge and Haswell nodes will dif-
fer mainly due to the different core counts
in the nodes. In the case of Haswell, only
20 nodes are needed to run 512 processes,
while 32 nodes are needed in the Sandy
Bridge nodes. As expected of a TBON net-
work, the latency of messages scale loga-
rithmically.

13.2 Control Flow Graph (CFG) Detection Overhead

In this section, the overhead of the set of operations that perform Control Flow Graph
(CFG) detection is measured. Some of these operations impact the performance of MPI
processes directly, while some can have a small impact since they are performed in the core
where the SLURMD daemon of the node runs. These operations are: insertion, reduction,
packing, unpacking and collapse.

The reduction, packing, unpacking and collapse operations are not as significant to the
performance of MPI application processes due to their infrequent executions, as men-

101

13 Elastic Resource Manager Performance

tioned. That leaves the insertion operation as the only one that can impact the performance
of application processes. In the remainder of this section, the latency of these operations
will be presented. The measurements are presented based on their scalability with respect
to the size of the CFG graph, the total number of processes at each node, and finally the
number of iterations of the loop in the application.

13.2.1 Scaling with Control Flow Graph (CFG) Size

It is important to understand how the detection overheads scale with increased CFG com-
plexity. Figure 13.2 presents the scalability of all of the operations for CFG sizes between
8 and 1024 entries. Results for Phase 1 and Phase 2 nodes are included side by side for
comparison. The sizes of CFGs are typically less than 100 entries, so the wide range of up
to 1024 entries is pessimistic.

 10

 100

 1000

 10000

 100000

8 16 32 64 128 256 512 1024

L
a

te
n

c
y
 (

n
a

n
o

s
e

c
o

n
d

s
)

Loop length in CFG entries (Sandy Bridge)

Insertion Latency

8 16 32 64 128 256 512 1024
 10

 100

 1000

 10000

 100000

L
a

te
n

c
y
 (n

a
n

o
s
e

c
o

n
d

s
)

Loop length in CFG entries (Haswell)

Insertion Latency

 100

 1000

 10000

 100000

 1e+06

8 16 32 64 128 256 512 1024

L
a

te
n

c
y
 (

n
a

n
o

s
e

c
o

n
d

s
)

Loop length in CFG entries (Sandy Bridge)

CFG Reduction, 2 processes
CFG Reduction, 4 processes
CFG Reduction, 8 processes

CFG Reduction, 16 processes
CFG Reduction, 32 processes
CFG Reduction, 64 processes

CFG Reduction, 128 processes

8 16 32 64 128 256 512 1024
 100

 1000

 10000

 100000

 1e+06

 1e+07

L
a

te
n

c
y
 (n

a
n

o
s
e

c
o

n
d

s
)

Loop length in CFG entries (Haswell)

CFG Reduction, 2 processes
CFG Reduction, 4 processes
CFG Reduction, 8 processes

CFG Reduction, 16 processes
CFG Reduction, 32 processes
CFG Reduction, 64 processes

CFG Reduction, 128 processes

 100

 1000

 10000

 100000

 1e+06

8 16 32 64 128 256 512 1024

L
a

te
n

c
y
 (

n
a

n
o

s
e

c
o

n
d

s
)

Loop length in CFG entries (Sandy Bridge)

Packing
Unpacking

Collapse

8 16 32 64 128 256 512 1024
 100

 1000

 10000

 100000

 1e+06

L
a

te
n

c
y
 (n

a
n

o
s
e

c
o

n
d

s
)

Loop length in CFG entries (Haswell)

Packing
Unpacking

Collapse

Figure 13.2: CFG size performance scaling. Results for SuperMUC Phase 1 (Sandy Bridge,
left) and Phase 2 (Haswell, right) are presented.

102

13.2 Control Flow Graph (CFG) Detection Overhead

As mentioned before, the insertion latency is the most significant overhead. Unfortu-
nately, the insertion latency scales exponentially with the number of entries in the CFG.
Fortunately, although with bad scalability, the actual cost of the operation is small. A
typical MPI operation runs for multiple milliseconds, while the insertion overhead is of
around 700 nanoseconds for a 8 entry CFG, up to 10 microseconds for the extreme case of
1024 CFG entries. For the typical case of 128 CFG entries, the overhead of insertion is less
than 2 microseconds.

The CFG reduction operation scales exponentially with the number of entries in the
CFG. The overhead of 5 microseconds for 8 entries up to about 500 microseconds in the
extreme 1024 entry case are acceptable, given the infrequency of this operation. The pack-
ing, unpacking and collapse operations scale exponentially, but their actual costs is much
lower than the reduction operation, since these are performed in parallel with the partici-
pation of each MPI process. Their maximum cost of 100 microseconds at the extreme case
of 1024 entries is also acceptable given the infrequency of these operations.

13.2.2 Scaling with Process Counts

In addition to scaling with the size of the CFG, it is also important to evaluate how the
overheads scale with increasing numbers of processes at each node. These are intra-node
operations, so only process counts that are expected to be possible, without oversubscrip-
tion, in near future HPC nodes are considered: from 2 to 128 processes.

Figure 13.3 presents scalability data for the detection operations based on process counts.
Results for the larger CFG sizes 256, 512 and 1024 are presented for Phase 1 (left) and Phase
2 (right) nodes. As can be seen, the overheads for the insertion, packing, unpacking and
collapse operations do not depend on the process counts, while the reduction operation
does. Their latencies vary between a few hundred nanoseconds to a few hundred mi-
croseconds.

Not scaling with the number of processes is desirable, since it means that an arbitrary
number of processes can be added at each node and these overheads will not increase.
This is specially important in the case of the insertion latency, since this overhead is added
to each MPI operation while the CFG detection mechanism is enabled. Once the CFG logic
switches to verification, this overhead is removed. The packing, unpacking and collapse
overheads are not as impact full to application performance, as mentioned before, since
these occur infrequently.

The situation for the reduction operation is not so fortunate, where its overhead in-
creases with the number of processes per node of an application. As measured before, the
overhead of this operation also increases with larger CFG sizes. Because of this, this op-
eration has the worse scaling properties of the measurement infrastructure. Fortunately,
these operations do not occur frequently and the absolute latency numbers it reaches are
still not large.

103

13 Elastic Resource Manager Performance

 100

 1000

 10000

 100000

2 4 8 16 32 64 128

L
a

te
n

c
y
 (

n
a

n
o

s
e

c
o

n
d

s
)

Process count (Sandy Bridge)

Insertion Latency, CFG size 256
Insertion Latency, CFG size 512

Insertion Latency, CFG size 1024

2 4 8 16 32 64 128
 100

 1000

 10000

 100000

L
a

te
n

c
y
 (n

a
n

o
s
e

c
o

n
d

s
)

Process count (Haswell)

Insertion Latency, CFG size 256
Insertion Latency, CFG size 512

Insertion Latency, CFG size 1024

 1000

 10000

 100000

 1e+06

 1e+07

2 4 8 16 32 64 128

L
a

te
n

c
y
 (

n
a

n
o

s
e

c
o

n
d

s
)

Process count (Sandy Bridge)

CFG Reduction, CFG size 256
CFG Reduction, CFG size 512

CFG Reduction, CFG size 1024

2 4 8 16 32 64 128
 1000

 10000

 100000

 1e+06

 1e+07

L
a

te
n

c
y
 (n

a
n

o
s
e

c
o

n
d

s
)

Process count (Haswell)

CFG Reduction, CFG size 256
CFG Reduction, CFG size 512

CFG Reduction, CFG size 1024

 10

 100

 1000

 10000

 100000

 1e+06

2 4 8 16 32 64 128

L
a

te
n

c
y
 (

n
a

n
o

s
e

c
o

n
d

s
)

Process count (Sandy Bridge)

Packing, CFG size 256
Packing, CFG size 512

Packing, CFG size 1024
Unpacking, CFG size 256
Unpacking, CFG size 512

Unpacking, CFG size 1024
Collapse, CFG size 256
Collapse, CFG size 512

Collapse, CFG size 1024

2 4 8 16 32 64 128
 10

 100

 1000

 10000

 100000

 1e+06

L
a

te
n

c
y
 (n

a
n

o
s
e

c
o

n
d

s
)

Process count (Haswell)

Packing, CFG size 256
Packing, CFG size 512

Packing, CFG size 1024
Unpacking, CFG size 256
Unpacking, CFG size 512

Unpacking, CFG size 1024
Collapse, CFG size 256
Collapse, CFG size 512

Collapse, CFG size 1024

Figure 13.3: Process count performance scaling. Results for SuperMUC Phase 1 (Sandy
Bridge, left) and Phase 2 (Haswell, right) are presented.

13.3 MPI Performance Impact of the CFG Detection Overhead

Additional measurements were performed to evaluate the impact of these operations in
actual MPI operations. MPI operations can run from a few microseconds to multiple sec-
onds, depending on the type of operation, the number of processes and the size of the
buffers.

In Fig. 13.4, results for the MPI SEND and MPI BCAST operations are presented. These
two operations were selected since they have the lowest latencies among the set of point-
to-point and collective operations, respectively. The figure presents the latency for the
MPI SEND operation at the top and the MPI BCAST operation at the bottom. Results for
Phase 1 (left) and Phase 2 (right) nodes are presented side by side for comparison. Results
for 16 and 1024 processes are presented with buffer sizes from 16 bytes up to a megabyte.
The size of the CFG was set to 32 for these tests. Most applications and benchmarks that
have been evaluated generate less CFG entries by the time they terminate.

104

13.3 MPI Performance Impact of the CFG Detection Overhead

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 16 256 4096 65536

L
a
te

n
c
y
 (

n
a
n
o
s
e
c
o
n
d
s
)

Buffer size in bytes (Sandy Bridge)

No CFG detection 16 Processes
CFG detection enabled 16 Processes

CFG verification enabled 16 Processes
No CFG detection 1024 Processes

CFG detection enabled 1024 Processes
CFG verification enabled 1024 Processes

 16 256 4096 65536
 10

 100

 1000

 10000

 100000

 1e+06

 1e+07
L
a
te

n
c
y
 (n

a
n
o
s
e
c
o
n
d
s
)

Buffer size in bytes (Haswell)

No CFG detection 16 Processes
CFG detection enabled 16 Processes

CFG verification enabled 16 Processes
No CFG detection 1024 Processes

CFG detection enabled 1024 Processes
CFG verification enabled 1024 Processes

 1000

 10000

 100000

 1e+06

 16 256 4096 65536

L
a
te

n
c
y
 (

n
a
n
o
s
e
c
o
n
d
s
)

Buffer size in bytes (Sandy Bridge)

 16 256 4096 65536
 1000

 10000

 100000

 1e+06

 1e+07

L
a
te

n
c
y
 (n

a
n
o
s
e
c
o
n
d
s
)

Buffer size in bytes (Haswell)

Figure 13.4: MPI SEND (top) and MPI BCAST (bottom) performance examples with detec-
tion enabled and disabled on a 32 entry CFG loop. Results for SuperMUC
Phase 1 (Sandy Bridge, left) and Phase 2 (Haswell, right) are presented.

As can be seen in the plots, the performance of MPI SEND is only impacted significantly
for message sizes of up to 4096 bytes, but only at lower process counts. For the case of
1024 processes, the overhead of the CFG detection algorithm is insignificant even for very
small messages of 16 bytes. Additionally, the overhead of detection is not measurable on
verification mode. This means that its overhead will only be observed when the detection
algorithm has not encountered a loop, or when it exits a loop and resumes its detection.

A smaller performance impact can be observed for the MPI BCAST operation. As men-
tioned before, the latency of this operation is the lowest among MPI collectives; therefore,
the impact of CFG detection can be expected to be almost negligible when collectives are
being used. Although the detection overhead is lower in terms of absolute latency, the
percentage impact is higher in the case of Phase 2 nodes.

105

13 Elastic Resource Manager Performance

106

14 Case Studies with Distributed Memory
Applications

Two computational kernels are evaluated in detail in this chapter: a matrix-matrix multi-
plication kernel and a Gaussian elimination kernel. The matrix-matrix kernel is based on
the Cannon algorithm, while the Gaussian elimination kernel is a naive row-block imple-
mentation.

These have been selected due to their simplicity: these have well understood scalability
and efficiency properties and execute fast enough. Because of this, a full sweep of pos-
sible resource combinations with them can be done in a timely manner. More complex
applications are already developed or under development, such as Computational Fluid
Dynamics (CFD) simulations with AMR [70].

14.1 Cannon Matrix-Matrix Multiplication

Figure 14.1: Cannon matrix-matrix multiplication trace for 16 processes. MPI time in red
and application time in blue.

In this section, a matrix-matrix distributed multiplication kernel based on the Can-
non [54] algorithm is analyzed. The response of the CFG detection and scheduling al-
gorithms of the infrastructure to its performance and scalability properties are discussed.

14.1.1 Basic and EPOP Implementations

The original implementation was a small single C source file with the MPI based Cannon
algorithm. The new implementation uses MPI topologies to simplify the communication

107

14 Case Studies with Distributed Memory Applications

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

4 16 64 256 1024

C
o
m

p
u
te

 T
im

e
 (

s
e

c
o

n
d
s
)

Number of MPI processes (Sandy Bridge)

4096x4096
2048x2048
1024x1024

512x512
256x256
128x128

64x64

4 16 64 256 1024
 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

C
o
m

p
u
te

 T
im

e
 (s

e
c
o
n
d
s
)

Number of MPI processes (Haswell)

4096x4096
2048x2048
1024x1024

512x512
256x256
128x128

64x64

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

4 16 64 256 1024

M
P

I
T

im
e
 (

s
e
c
o
n
d
s
)

Number of MPI processes (Sandy Bridge)

4096x4096
2048x2048
1024x1024

512x512
256x256
128x128

64x64

4 16 64 256 1024
 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

M
P

I T
im

e
 (s

e
c
o
n
d
s
)

Number of MPI processes (Haswell)

4096x4096
2048x2048
1024x1024

512x512
256x256
128x128

64x64

 100

 1000

 10000

 100000

 1e+06

 1e+07

4 16 64 256 1024

E
ff
ic

ie
n
c
y
 (

e
le

m
e
n
ts

 p
e
r

s
e
c
o
n
d
 p

e
r

p
ro

c
e
s
s
)

Number of MPI processes (Sandy Bridge)

4096x4096
2048x2048
1024x1024

512x512
256x256
128x128

64x64

4 16 64 256 1024
 100

 1000

 10000

 100000

 1e+06

 1e+07

E
ffic

ie
n
c
y
 (e

le
m

e
n
ts

 p
e
r s

e
c
o
n
d
 p

e
r p

ro
c
e
s
s
)

Number of MPI processes (Haswell)

4096x4096
2048x2048
1024x1024

512x512
256x256
128x128

64x64

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

4 16 64 256 1024

M
P

I
to

 C
o
m

p
u
ta

ti
o
n
 R

a
ti
o

Number of MPI processes (Sandy Bridge)

4096x4096
2048x2048
1024x1024

512x512
256x256
128x128

64x64

4 16 64 256 1024
 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

M
P

I to
 C

o
m

p
u
ta

tio
n
 R

a
tio

Number of MPI processes (Haswell)

4096x4096
2048x2048
1024x1024

512x512
256x256
128x128

64x64

Figure 14.2: Compute, MPI, efficiency and MTCT ratio (top to bottom) of a Cannon Matrix-
Matrix multiplication kernel. Results for SuperMUC Phase 1 (Sandy Bridge,
left) and Phase 2 (Haswell, right) are presented.

108

14.1 Cannon Matrix-Matrix Multiplication

with neighbor processes during computation. This is particularly helpful with the Cannon
algorithm given its block wise exchanges in the main kernel. The kernel remains the same
in both EPOP and basic versions of the code. This kernel is presented in Listing 14.1.

for (cannon block cyc le = 0 ; cannon block cyc le < s q r t s i z e ; cannon block cyc le ++){
for (C index = 0 , A row = 0 ; A row < A loca l b lock rows ; A row++){

for (B column = 0 ; B column < B loca l b lock co lumns ; B column++ , C index ++){
for (A column = 0 ; A column < A local block columns ; A column++){

C l o c a l b l o c k [C index] +=
A l o c a l b l o c k [A row * A local block columns + A column] *
B l o c a l b l o c k [A column * B loca l b lock co lumns + B column] ;

}
}

}
/ / r o t a t e b l o c k s h o r i z o n t a l l y
MPI Sendrecv replace (A loca l b lock , A l o c a l b l o c k s i z e , MPI DOUBLE,

(coordinates [1] + s q r t s i z e − 1) % s q r t s i z e , 0 ,
(coordinates [1] + 1) % s q r t s i z e , 0 , row communicator , &s t a t u s) ;

/ / r o t a t e b l o c k s v e r t i c a l l y
MPI Sendrecv replace (B l o c a l b l o c k , B l o c a l b l o c k s i z e , MPI DOUBLE,

(coordinates [0] + s q r t s i z e − 1) % s q r t s i z e , 0 ,
(coordinates [0] + 1) % s q r t s i z e , 0 , column communicator , &s t a t u s) ;

}

Listing 14.1: Cannon kernel.

The adaptation window was inserted in the main kernel loop. No proper adaptation
code was implemented. Instead, the root process of the application redistributes the matrix
data on each adaptation. A better solution will be to add an MPI based collaborative
repartitioning scheme where all processes participate.

Initialize

Cannon Kernel

Finalize

Data

Data

Figure 14.3: Cannon applica-
tion with EPOP
blocks.

For testing, long running applications are needed to ob-
serve the behavior of the scheduler. Because of this, an ad-
ditional loop was added that effectively repeats the num-
ber of matrix-matrix multiplications that are performed
by the application. The source matrices are not modified,
therefore no changes were necessary to ensure correctness.

Although it is a very simple application, it suffers from
the difficulties described in the EPOP chapter. An EPOP
version of the application was also developed. Figure 14.3
illustrates its design based on EPOP blocks. It is a single
EP application, with its required initialization block and
a single rigid phase used for finalization. Because EPOP
operates at a very coarse level, the performance of the ap-
plication in both versions is indistinguishable. Because of
this, the performance data presented in this evaluation are
relevant to both implementations.

14.1.2 Pattern Detection

The Cannon application was also used to verify the correctness of the pattern detection
functionality presented in the scheduling chapter. Figure 14.4 illustrates what occurs when
the system detects the CFG of the non-EPOP implementation. At the beginning, each ap-
plication process starts the detection process. Fortunately, the application is simple enough
that the detected CFG of a full execution can be illustrated. The CFGs of the root process

109

14 Case Studies with Distributed Memory Applications

PTPCluster; ID: A

PTPCluster; ID: B

PTPCluster; ID: C

Compute

Compute

PTPCluster; ID: C

Compute

Rank 0 Other Ranks Rank 0 Other Ranks

Collapse

Reduction

PTPCluster; ID: C

Compute

All Ranks

Init; Type: 0

Size; Type: 0

Rank; Type: 0

Cart_create; Type: 0

Cart_coords; Type: 0

Cart_sub; Type: 0

Cart_sub; Type: 0

Send; Type: 1

Send; Type: 1

Send; Type: 1

Sendrecv; Type: 1

Sendrecv; Type: 1

Recv; Type: 1

Sendrecv; Type: 1

Sendrecv; Type: 1

Compute

Compute

Compute

Compute

Compute

Compute

Compute

Compute

Compute

Compute

Compute

Finalize; Type: 0

Compute

Init; Type: 0

Size; Type: 0

Rank; Type: 0

Cart_create; Type: 0

Cart_coords; Type: 0

Cart_sub; Type: 0

Cart_sub; Type: 0

Recv; Type: 1

Recv; Type: 1

Recv; Type: 1

Sendrecv; Type: 1

Sendrecv; Type: 1

Recv; Type: 1

Sendrecv; Type: 1

Sendrecv; Type: 1

Compute

Compute

Compute

Compute

Compute

Compute

Compute

Compute

Compute

Compute

Compute

Finalize; Type: 0

Compute

Recv; Type: 1

Compute

Figure 14.4: Cannon CFG detection process illustrated.

and other processes are illustrated on the left side of the figure. These differ in that root
has more loops than the rest of the processes. There is a loop where matrix dimensions are
broadcasted, and another loop where the operand matrix sub-blocks are distributed. There
is an additional loop where the final results are gathered. For each of these three loops, the
rest of the processes have a matching receive (one for each of the first two loops at root)
and a matching send (for the final gather loop at root). The CFG collapse and reduction
operations for this application are illustrated from left to right, respectively. The collapse
operation simplifies the loops at each process. The reduction operation detects the loops
that are present at all processes and produces the distributed loop metadata.

14.1.3 Performance Analysis

A trace with an allocation of 16 processes showing the MPI and application times for this
application is presented in Fig. 14.1. As can be seen, the proportion of MPI to compute time
is low. Figure 14.2 shows a detailed sweep of the performance and efficiency properties
of this application based on the number of processes. It helps to remember that, in the
presented infrastructure, the number of processes of an application is ensured to match
the number of CPU cores that are allocated to it. In the figure, the different times for the
iteration of the detected loop in the CFG are presented. From top to bottom: total time,
MPI time, efficiency and MPI to compute time ratio (the MTCT metric described in the
scheduling chapter).

As can be seen in the bottom plots, the number of processes for MTCT metric values
below 0.1 correlate well with the number of processes where the efficiency metric of the
application is near the maximum possible for each input size. The heuristic described in
the scheduling chapter halves the number of process in all cases where the average or trend
MTCT values are above 0.1. The quality of the decisions can be verified for this applica-
tion, since its performance and efficiency has been evaluated before for a wide range of
input matrices and process counts. In this case, the algorithm makes resource adaptation
decisions that do not lower the application’s parallel efficiency significantly.

110

14.2 Gaussian Elimination

14.2 Gaussian Elimination

In this section, a distributed Gaussian elimination kernel is analyzed. The approach to
its analysis is very similar to that of the previously discussed Cannon matrix-matrix mul-
tiplication implementation. This kernel has very different performance properties when
compared to the previous matrix-matrix example.

14.2.1 Basic and EPOP Implementations

The original distributed Gaussian elimination implementation was even simpler than the
previous matrix-matrix multiplication example, with a single C source file of less than
300 lines of code. This is a very minimalistic Gaussian elimination implementation with
row-blocking.

Figure 14.5: Gaussian elimination trace for 8
processes. MPI time in red and
application time in blue.

This base implementation was extended
for resource-elastic execution in a similar
manner to the Cannon application, with
the root process redistributing the matrix
and right hand side vector, instead of a
collaborative repartitioning scheme. Also
similarly, this otherwise short running ap-
plication was made to run longer with an
outer loop; this is necessary to properly ob-
serve the response of the scheduler.

The EPOP version of this application is
identical in structure to that of the Cannon
application. A single initialization block, a
single EP block and a single rigid block for
finalization. Refer to the EPOP illustration
in the previous section. Again, in this case
the benefits of EPOP were more related to
the elegance and cleanliness of the imple-
mentation, with no extra branching code to enter adaptation windows or for locating join-
ing processes. The performance is indistinguishable in both implementations.

14.2.2 Pattern Detection

The pattern detection produces a peculiar result that is too complex to illustrate it com-
pactly in this document. The implementation has multiple loops, but only the inner loops
get detected at all processes. In the current implementation, only these loops are then
tracked. This creates a situation where a lot of relevant performance data gets clipped
out of the model. The measured MTCT metric allows the heuristic to make the correct
decisions, but the results show a lower ratio than that found with tracing. This type of
communication pattern could be one of the worst cases for the detection algorithm pre-
sented in this work.

111

14 Case Studies with Distributed Memory Applications

 0.01

 0.1

 1

 10

 100

 1000

8 16 32 64 128 256 512

C
o

m
p

u
te

 +
 M

P
I

T
im

e
 (

s
e

c
o

n
d

s
)

Number of MPI processes (Sandy Bridge)

8192x8192
4096x4096
2048x2048
1024x1024

512x512

8 16 32 64 128 256 512
 0.01

 0.1

 1

 10

 100

 1000
C

o
m

p
u

te
 +

 M
P

I T
im

e
 (s

e
c
o

n
d

s
)

Number of MPI processes (Haswell)

8192x8192
4096x4096
2048x2048
1024x1024

512x512

 0.001

 0.01

 0.1

 1

 10

 100

 1000

8 16 32 64 128 256 512

M
P

I
T

im
e
 (

s
e
c
o
n
d
s
)

Number of MPI processes (Sandy Bridge)

8192x8192
4096x4096
2048x2048
1024x1024

512x512

8 16 32 64 128 256 512
 0.001

 0.01

 0.1

 1

 10

 100

 1000

M
P

I T
im

e
 (s

e
c
o
n
d
s
)

Number of MPI processes (Haswell)

8192x8192
4096x4096
2048x2048
1024x1024

512x512

 10

 100

 1000

 10000

 100000

 1e+06

8 16 32 64 128 256 512

E
ff
ic

ie
n
c
y
 (

e
le

m
e
n
ts

 p
e
r

s
e
c
o
n
d
 p

e
r

p
ro

c
e
s
s
)

Number of MPI processes (Sandy Bridge)

8192x8192
4096x4096
2048x2048
1024x1024

512x512

8 16 32 64 128 256 512
 10

 100

 1000

 10000

 100000

 1e+06

E
ffic

ie
n
c
y
 (e

le
m

e
n
ts

 p
e
r s

e
c
o
n
d
 p

e
r p

ro
c
e
s
s
)

Number of MPI processes (Haswell)

8192x8192
4096x4096
2048x2048
1024x1024

512x512

 0.01

 0.1

 1

 10

 100

 1000

 10000

8 16 32 64 128 256 512

M
P

I
to

 C
o

m
p

u
ta

ti
o

n
 R

a
ti
o

Number of MPI processes (Sandy Bridge)

8192x8192
4096x4096
2048x2048
1024x1024

512x512

8 16 32 64 128 256 512
 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

M
P

I to
 C

o
m

p
u
ta

tio
n
 R

a
tio

Number of MPI processes (Haswell)

8192x8192
4096x4096
2048x2048
1024x1024

512x512

Figure 14.6: Compute, MPI, efficiency and MTCT ratio (top to bottom) of a Gaussian elim-
ination kernel. Results for SuperMUC Phase 1 (Sandy Bridge, left) and Phase
2 (Haswell, right) are presented.

112

14.3 Cannon Matrix-Matrix Multiplication and Gaussian Elimination Interaction

14.2.3 Performance Analysis

Figure 14.5 shows a trace for this application with 8 processes, with compute time in blue
and communication time in red. As can be seen, most of the time is spent in MPI opera-
tions. This can only result in very low efficiency metrics for this application. Indeed, this
is a naive row-blocking distributed implementation of the Gaussian elimination algorithm
and is known to have low efficiency and poor scaling properties with increased numbers
of processes.

Figure 14.6 shows a detailed sweep of the performance and efficiency properties of this
application based on the number of processes. Again, the infrastructure ensures that the
number of processes match available physical cores in all cases. Similarly to the previous
analyzed kernel, the figure presents from top to bottom: compute, MPI time, efficiency and
MPI to compute time ratio. Again, the ratio in the bottom plots is the MTCT metric used
by the performance model described in the scheduling chapter. In both this case and the
matrix-matrix multiplication before, these are only the averages and not the trend values
for the MTCT metric.

The heuristic reacts very differently with this kernel, when compared to the Cannon
kernel. In this case, the MTCT is never below the 0.1 threshold, as can be seen. Indeed, the
scheduler always determines that this application is operating at an inefficient scale and
will halve its resources in each scheduling iteration until it reaches its minimum number
of processes, as specified by the user.

14.3 Cannon Matrix-Matrix Multiplication and Gaussian
Elimination Interaction

The interaction between the Cannon matrix-matrix and the Gaussian elimination (GE) ap-
plications can be well understood after their characteristics have been determined individ-
ually. In this section, these applications are run together and the response of the system,
through its performance modeling features and its scheduler, is observed.

These observations are made currently in the log output of the Elastic Runtime Sched-
uler (ERS). Its logs record when the srun realloc message is sent and when the commit
message is received, for each individual application. It also logs the preexisting allocation,
the expansion allocation and the final allocation of each individual resource adaptation
(in both node counts and process counts). In the plots presented in this section, only the
completion times are illustrated, since these are the most relevant. The resource adapta-
tion decisions are done within milliseconds of each periodic scheduler decision time. It is
important to note that the ERS schedules job steps and not jobs. Job steps are the combina-
tion of an SRUN instance, and the MPI processes of an application with their SLURMSTEPD
per node. These applications adapt quickly: the difference between the time when the
srun realloc message is sent and the commit is confirmed is in the millisecond scale.
Future work needs to include the adaptation times of applications in the scheduling deci-
sion; adaptation times are currently ignored.

First, combinations of both applications are run to evaluate the effect of the resource
filling operation. Afterwards, two instances of the Cannon matrix-matrix multiplication
application are used to observe the effect of the time balancing operation. It is important
to note again that these applications have been modified to be long-running, by adding
an outer loop around their core kernels. This allows the system to properly collect perfor-

113

14 Case Studies with Distributed Memory Applications

N
o
d
e
s

Scheduler Decision (Sandy Bridge)

Idle Nodes GE 4096x4096 Cannon 4096x4096

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5 6 7
N

o
d
e
s

Scheduler Decision (Haswell)

Idle Nodes GE 4096x4096 Cannon 4096x4096

 0

 5

 10

 15

 20
 0 1 2 3 4 5 6 7

C
P

U
 C

o
re

s

Scheduler Decision (Sandy Bridge)

Idle CPUs GE 4096x4096 Cannon 4096x4096

 0

 100

 200

 300

 400

 500

 600

 0 1 2 3 4 5 6 7

C
P

U
 C

o
re

s

Scheduler Decision (Haswell)

Idle CPUs GE 4096x4096 Cannon 4096x4096

 0 1 2 3 4 5 6 7
 0

 100

 200

 300

 400

 500

 600

Figure 14.7: Nodes (top) and MPI processes (bottom) during the interaction between the
Cannon’s matrix-matrix multiply kernel with 4096x4096 matrices and the
Gaussian elimination application with 4096x4096 matrices. Results for Super-
MUC Phase 1 (Sandy Bridge, left) and Phase 2 (Haswell, right) are presented.

mance data and react by modifying their resources. Finally, a discussion of the effect of the
upper and lower MTCT thresholds is included.

14.3.1 Gaussian Elimination and Cannon Matrix-Matrix with 4096x4096
Matrices

Figure 14.7 shows the node counts of the allocations of the Gaussian elimination and Can-
non applications. The horizontal axis represents the times where the scheduler makes a
decision. The frequency of these decisions can be configured, and has been set to one
minute for these experiments. As can be seen in the plots, in the first few iterations the
scheduler does nothing. This is to be expected since the performance data is requested in
the first step of the scheduler and both applications have been started simultaneously. The
performance data is available only after the second scheduler step, and this is where the
first resource adaptations can take place.

Node counts are presented in the top, and CPU cores in the bottom. Results for both
types of SuperMUC nodes are included, with Phase 1 results on the left and Phase 2 nodes
on the right, in the same arrangement as previous figures. As can be seen in the plots, the
results vary greatly depending on the node type.

For Phase 1 nodes, the scheduler manages to keep the idle node and CPU counts low.
This is thanks to the high efficiency estimation for the Cannon application with 4096x4096
matrices. This application has its resources increased from 16 nodes to 28 nodes in 2 steps.
Afterwards in step 5, its resources are increased to 31 nodes by an application of the re-

114

14.3 Cannon Matrix-Matrix Multiplication and Gaussian Elimination Interaction

N
o
d
e
s

Scheduler Decision (Sandy Bridge)

Idle Nodes GE 4096x4096 Cannon 1024x1024

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5 6 7

N
o
d
e
s

Scheduler Decision (Haswell)

Idle Nodes GE 4096x4096 Cannon 1024x1024

 0

 5

 10

 15

 20
 0 1 2 3 4 5 6 7

C
P

U
 C

o
re

s

Scheduler Decision (Sandy Bridge)

Idle CPUs GE 4096x4096 Cannon 1024x1024

 0

 100

 200

 300

 400

 500

 600

 0 1 2 3 4 5 6 7

C
P

U
 C

o
re

s

Scheduler Decision (Haswell)

Idle CPUs GE 4096x4096 Cannon 1024x1024

 0 1 2 3 4 5 6 7
 0

 100

 200

 300

 400

 500

 600

Figure 14.8: Nodes (top) and MPI processes (bottom) during the interaction between the
Cannon’s matrix-matrix multiply kernel with 1024x1024 matrices and the
Gaussian elimination application with 4096x4096 matrices. Results for Super-
MUC Phase 1 (Sandy Bridge, left) and Phase 2 (Haswell, right) are presented.

source filling operation; this successfully lowers the idle node count to zero. The sequence
of adaptations for the Cannon application is due to its implementation being limited to
square process counts only. This is also the reason why there are still idle CPU cores
although all nodes have been filled. In contrast, the efficiency of the GE application is
estimated to be low. This application is reduced from 16 nodes to 1 node in 4 steps.

The sequence of adaptations and the idle node counts are very different for Phase 2
nodes. The Cannon application is estimated to lose efficiency at a lower node count by
the performance model. The band created by the upper and lower MTCT thresholds, with
values 0.1 and 0.01, result on the application being removed from the candidate set at each
scheduler iteration. The application is not perturbed and it is left to run with a 16 node
allocation for the entirety of its run. The GE application has the same resource reduction
as in the Phase 1 case. Its resources are reduced to one node in the same 3 reduction steps.

14.3.2 Gaussian Elimination and Cannon Matrix-Matrix with 1024x1024
Matrices

An additional test is performed with the same applications but with the input matrices
changed to the 1024x1024 size for the Cannon application. The changes in the resources

115

14 Case Studies with Distributed Memory Applications

for each application are presented in Fig. 14.8. This figure follows the same organization
as before. The difference in the resource adaptations is significant.

The resource adaptations for both types of nodes are indistinguishable in this case. The
resources of the GE application are the same as before, since the input of this application
was not modified. Additionally, the efficiency of this application is estimated to be low
for all possible input sets, so a difference on the resource scheduling decision would be
unexpected. In contrast, the response for the Cannon application is very different with the
1024x1024 input size. The application has its resources lowered from 16 nodes to 2 nodes
in 3 steps. The upper and lower band for the MTCT metric keep the application fixed at 2
nodes. The systems reaches a steady state with 1 node for the GE application and 2 nodes
for the Cannon application in Phase 1 nodes, and one each in Phase 2 nodes. The number
of idle nodes and idle CPU cores is much larger for both types of nodes in this case.

14.3.3 Cannon Matrix-Matrix with 4096x4096 Matrices and Different Time
Limits

The next and final scenario presented is a set of three Cannon application instances that
each has different numbers of iterations on their outer loops. These iterations are set so
that they approximate 5, 10 and 15 minutes of runtime. These times are set through the
SRUN command’s --time option in these experiments, since the Elastic Batch Scheduler
(EBS) is not yet available. The third instance of this application blocks until resources are
available for it. This is achieved by specifying the --immediate option; this option forces
the SRUN instance of the application to block until its required resources are available.

As can be observed in Fig. 14.9, the number of idle nodes in the schedule for Phase 1 dif-
fers significantly for the cases with and without time balancing. Time balancing provides
three benefits in this case: it manages to reduce the number of idle nodes, it reduces the
wait time for the third application instance start, and it also reduces the makespan of the
schedule.

For Phase 2 nodes, no time balancing was possible since the scheduler removes both
instances of the Cannon algorithm from the candidate list for adaptations. This is a conse-
quence of the efficiency estimation given the upper and lower thresholds. The idle node
and CPU counts are a lot higher in this case. The wait time for the third instance of the
application is not lowered. Finally, the makespan of the schedule is also not improved.

14.3.4 Upper and Lower MTCT Threshold Effects Summary

The MTCT upper and lower bands influence the generation of the Resource Range Vector
(RRV) for the list of candidate jobs at each scheduling step. Each entry in the final Re-
source Scaling Vector (RSV) that is applied to the running system is within its range in the
RRV. By modifying the upper and lower thresholds, the RRV and therefore the possible
values of the RSV can be influenced. A wider range for these thresholds means that ap-
plications are more likely to be left running uninterrupted instead of their resources being
adapted. Higher values for both of these thresholds increase the tolerance of the system to
the estimated inefficiencies of individual applications. A large difference in these values
help prevent oscillations, where the system may attempt to increase and decrease the re-
sources of an application in an endless cycle. This can be very detrimental to performance,
especially of applications with large adaptation times.

116

14.3 Cannon Matrix-Matrix Multiplication and Gaussian Elimination Interaction

N
o
d
e
s

Scheduler Decision (Sandy Bridge), time balancing

Idle Nodes
Cannon 4096x4096, 16 nodes, 5 Minutes

Cannon 4096x4096, 16 nodes, 10 Minutes
Cannon 4096x4096, 31 nodes, 15 minutes

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14

N
o
d
e
s

Scheduler Decision (Haswell), time balancing

Idle Nodes
Cannon 4096x4096, 16 nodes, 5 Minutes

Cannon 4096x4096, 16 nodes, 10 Minutes
Cannon 4096x4096, 31 nodes, 15 minutes

 0

 5

 10

 15

 20
 0 2 4 6 8 10 12 14

N
o

d
e

s

Scheduler Decision (Sandy Bridge), no time balancing

Idle Nodes
Cannon 4096x4096, 16 nodes, 5 Minutes

Cannon 4096x4096, 16 nodes, 10 Minutes
Cannon 4096x4096, 31 nodes, 15 minutes

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14

N
o

d
e

s

Scheduler Decision (Haswell), no time balancing

Idle Nodes
Cannon 4096x4096, 16 nodes, 5 Minutes

Cannon 4096x4096, 16 nodes, 10 Minutes
Cannon 4096x4096, 31 nodes, 15 minutes

 0 2 4 6 8 10 12 14
 0

 5

 10

 15

 20

Figure 14.9: Time balancing enabled (top) versus disabled (bottom) with different run
times on the same Cannon Matrix-Matrix multiplication application.

Different trade-offs can be configured between idle node counts and total system effi-
ciency with the adjustment of these thresholds. A higher idle node count favors the start of
new jobs from the queue, while a lower idle node count favors the completion of running
jobs. The current setting of 0.1 for the upper threshold and 0.01 for the lower threshold ap-
pears to favor queued job starts and higher overall estimated system efficiency in the types
of nodes evaluated. These parameters need to be adjusted for each HPC system based on
performance data and expected job queue lengths.

Results with the upper threshold for the MTCT metric modified from 0.1 to 0.5 are pre-
sented in Fig. 14.10. As can be observed, the schedule is the same for the Phase 1 nodes
case. The same cannot be stated for the schedule in Phase 2 nodes. The increase in the
threshold enable the two instances of the Cannon application to run with lower estimated
efficiencies. This allows the system to generate an RRV where both applications can be
expanded, and therefore time balancing applied. The result is that the idle node count
is reduced, the wait time for the third Cannon instance is reduced, and the makespan is
reduced. This comes at a trade-off of overall lower estimated efficiency. If jobs could be
started from a queue, this also has the effect of delaying their start since idle nodes are
minimized.

117

14 Case Studies with Distributed Memory Applications

N
o
d
e
s

Scheduler Decision (Sandy Bridge), time balancing

Idle Nodes
Cannon 4096x4096, 16 nodes, 5 Minutes

Cannon 4096x4096, 16 nodes, 10 Minutes
Cannon 4096x4096, 31 nodes, 15 minutes

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14

N
o
d
e
s

Scheduler Decision (Haswell), time balancing

Idle Nodes
Cannon 4096x4096, 16 nodes, 5 Minutes

Cannon 4096x4096, 16 nodes, 10 Minutes
Cannon 4096x4096, 31 nodes, 15 minutes

 0

 5

 10

 15

 20
 0 2 4 6 8 10 12 14

N
o

d
e

s

Scheduler Decision (Sandy Bridge), no time balancing

Idle Nodes
Cannon 4096x4096, 16 nodes, 5 Minutes

Cannon 4096x4096, 16 nodes, 10 Minutes
Cannon 4096x4096, 31 nodes, 15 minutes

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14

N
o

d
e

s

Scheduler Decision (Haswell), no time balancing

Idle Nodes
Cannon 4096x4096, 16 nodes, 5 Minutes

Cannon 4096x4096, 16 nodes, 10 Minutes
Cannon 4096x4096, 31 nodes, 15 minutes

 0 2 4 6 8 10 12 14
 0

 5

 10

 15

 20

Figure 14.10: Repeat of the time balance test with upper MTCT threshold increased to 0.5
for comparison with Fig. 14.9.

14.4 Summary and Discussion

The doubling and halving of resources is an underestimation of the needed adaptations
in our evaluations. More precise individual ranges in the RRV are desirable. This could
be achieved with performance model improvements in the future. Underestimating the
ranges has the negative effect of requiring more adaptation steps before a steady state is
reached for an application. The overhead of unnecessary adaptations can be very expen-
sive depending on the adaptation costs of the application being adapted. Overestimating
an expansion can also have negative effects, since the efficient maximum allocation of an
application may be exceeded. Modifying the resources of an application to an amount that
lowers its parallel efficiency should be avoided.

Applications with a lot of available parallelism and that can adapt to arbitrary numbers
of resources are the most beneficial to system-wide efficiency metrics, such as node utiliza-
tion. Even better are applications that can also utilize all the CPU cores available in the
nodes of the system.

Scheduling trade-offs can be configured through the adjustment of the MTCT thresholds
of the presented SPMD-Phase model. Node utilization potential can be traded for better
estimated parallel efficiency and lower job wait times.

The current defaults favor job starts over expansions. Favoring application starts can be
negative when queues are low or empty. It may be beneficial to run at lower estimated
efficiency levels and minimize idle node counts in these cases. Alternatively, idle nodes
may be turned off; this is indeed supported already by the design inherited from SLURM.
This will increase job start latencies when nodes that are turned off need to be booted.

118

15 Conclusion

Support for resource-elasticity was successfully demonstrated on the SuperMUC HPC sys-
tem with the software prototype presented in this document. The prototype is composed
of two main software components: an MPI library and a resource manager.

The MPI library was extended with a set of new operations that improve the support
for dynamic processes in MPI. These new operations allow for initialization, probing for
adaptation instructions and the creation of adaptation windows. The needs and goals of
application, MPI library and resource manager developers were considered in their design.

The creation of resource-elastic applications is more flexible with the use of adaptation
windows, when compared to using the current standard spawn operations of MPI. MPI
application developers can insert adaptation windows in locations that can be reached
periodically. Applications can support resource adaptations of arbitrary sizes with these
extensions. Resources are abstracted as MPI processes in the world communicators of
applications.

Preexisting MPI applications can be converted to support resource-elasticity. Conver-
sions require the insertion of control flow statements to differentiate between processes
that are part of a normal application launch and processes that were created by the re-
source manager as part of an expansion of resources. All processes must meet at the correct
location where the adaptation window begins.

The performance of the new dynamic processes operations in the proposed MPI ex-
tension was evaluated. The performance of the initialization operation is identical to the
standard one. The probe operation is very fast for the common case where no adaptations
need to be made, while performing well when adaptation instructions are received. The
highlight of the implementation is the adaptation window. The split design with a begin
and a commit operation allowed for the demonstrated latency hiding design. This was
verified by measurements at the begin operation of preexisting processes. The commit
operation that is used to complete adaptation windows was shown to be very fast when
compared to the begin operation. In summary, the latency hiding properties and general
performance goals of the design were achieved.

The MPI library and the resource manager prototypes are well integrated. The resource
adaptations are initiated by the resource manager, and not the application. This inversion
of control, when compared to standard spawn operations, allows schedulers to optimize
for both application and system-wide efficiency metrics. The resource manager has addi-
tional features for the gathering of performance data through continuous interaction with
MPI processes.

A CFG detection algorithm was implemented without the need of backtracing, in the
MPI library. These CFGs are detected at each process and shared with the local resource
manager daemons at compute nodes. These are eventually transfered to the scheduler
running at a remote node through the TBON and the SRUN instance of applications. The
overhead was shown to depend on the length of the CFG of applications. Because most
applications produce CFGs that are in the order of hundreds of elements and the detection
does not rely on backtracing, the overhead of detection was kept in the order of nanosec-

119

15 Conclusion

onds in most cases. The library switches to a verification only mechanism when a partial
CFG remains stable. The overhead of verification cannot be measured even on single byte
MPI messages with latencies in the order of microseconds.

A performance model is produced at the scheduler for each MPI application with its
CFG and performance data. Currently only one model is implemented: the SPMD-Phase
model. This model relies on the detection of distributed loops. It provides the scheduler
with average and trend MPI to Compute Time (MTCT) ratios. These ratios are then used
to generate Resource Range Vectors (RRV) for sets of applications that are candidates for
resource adaptations.

The generation of these range vectors can be influenced by the setting of two param-
eters in the heuristic: the upper and lower MTCT thresholds. The modification of these
thresholds have multiple effects on the quality of the schedules produced. A wide mar-
gin between them prevents potential resource adaptation oscillations. These parameters
can also be calibrated for different trade-offs between estimated efficiencies and idle node
counts. This was demonstrated in the evaluation.

An experimental scheduler was also presented. This scheduler has a split design, com-
posed of two separate schedulers with a clear separation of concerns: the Elastic Batch
Scheduler (EBS) and the Elastic Runtime Scheduler (ERS). Unfortunately, the EBS was not
implemented in time to be demonstrated together with the ERS in this document. The
ERS was described in detail, and its interaction with the eventual EBS discussed. The ERS
produces a Resource Scaling Vector (RSV) from the RRV at each scheduling interval. This
vector contains the final resource count for the allocation of each application in the list of
candidates for resource adaptations. Although incomplete tests, given the missing EBS,
the evaluation of the ERS with two test applications illustrated the benefits of resource-
elasticity for HPC systems: it can reduce the makespan of schedules, wait times of jobs
and idle node counts. These are only initial results and further analyses are needed.

The importance of integrating resource managers and programming models for resource-
elasticity support was illustrated. The message passing model was integrated through the
extension to MPI. An additional model that targets resource-elastic execution was pre-
sented: Elastic-Phase Oriented Programming. This model provided important abstrac-
tions that further simplified the development of resource-elastic applications, but also its
integration with resource managers and performance modeling techniques.

It is expected that the integration of programming models and resource managers will
increase in importance as exascale levels of performance are reached in HPC systems. Pro-
gramming models that support resource-elastic execution and bring computational and
energy efficiency benefits, while at the same time allowing for fault-tolerance, are expected
to increase in importance in the near future.

In summary, the research presented in this document is related to multiple areas of com-
puter science: programming models, resource management, performance modeling and
scheduling. A prototype that is a combination of a communication library and a resource
manager was presented and evaluated. The prototype currently supports SPMD type MPI
applications with resource-elasticity. Its scheduling heuristic can provide system-wide
and individual application parallel efficiency improvements, in some cases. The results
presented in the evaluation are limited, but also promising given the early stage of devel-
opment of the prototype.

120

16 Future Work

A large amount of research on resource-elasticity in HPC is still left to be done. The re-
search and prototypes presented in this work are only the beginning. In this chapter, an
incomplete discussion on future research opportunities related to message passing, the
missing Elastic Batch Scheduler (EBS), and finally resource management, is presented.

16.1 Elastic Message Passing

More applications need to be developed with support for resource-elasticity. The ben-
efits of resource-elasticity are only possible when sufficient elastic jobs are submitted to
compute systems. Options should be explored for the simplification of the conversion of
existing codes to resource-elasticity, with the elastic MPI library or the EPOP model.

To support exascale, fault tolerance needs to be an important part of future develop-
ment efforts. Several options are being evaluated at the Fault Tolerance Working Group of
the MPI forum [140, 45, 47, 40]. These research efforts should be followed closely. Fault-
tolerance should be added as soon as possible to potential future resource-elastic software
stacks such as the one presented in this work.

Automatic tuning needs to be added to the elastic MPI library. MPI has many configura-
tion parameters that have a performance impact. These parameters tend to be set when the
application initializes the MPI library, and remain the same through its execution. Because
of the expected changes in resource allocations and the number of processes in MPI appli-
cations due to resource-elastic behavior, the MPI library should update these parameters
periodically, or at least once per resource adaptation.

A more sophisticated implementation of the EPOP model may be worth developing. Its
current implementation is a minimalistic C library with a single driver program. While
this is sufficient to illustrate the benefits of the model, a more elaborate solution may be
better for the development and performance of EPOP applications. For example, a new
programming language or an extension to an existing one may simplify the development
of applications. Additionally, there may be optimizations possible to the patterns of EPOP
programs based on a global view of their structure. Driver programs for automatic tuning
and other purposes can also be added.

The current insertion of markers for automatic pattern detection can be improved. The
insertion of markers can be made better through the use of compilers, such as Clang [4]
from the LLVM [17] project. This would allow for more data to be included with the mark-
ers, such as the location of loops or branches. The detection algorithms could be simplified
as a consequence.

Elastic programming models may be split into shared memory and distributed memory
techniques. In this work, only distributed memory techniques were considered. A com-
bination with shared memory adaptation and load balancing techniques can prove bene-
ficial. These techniques can be treated as orthogonal, and later integrated in a complete
software stack for distributed memory systems.

121

16 Future Work

Integration with external visualization (such as Vampir [20]), performance modeling and
reporting tools (such as Caliper [2]) will also be of great importance in the future. Visual-
ization techniques that aid the understanding of the resource-elastic executions of these
distributed applications should be developed. The dynamic changes in resources make
the understanding of these applications even more challenging than typical distributed
memory applications.

The extension to MPI should be adapted based on the new developments of the future
MPI 4.0 standard. Any changes to the way the communicators are handled, such as the ses-
sions [18] proposal, should be considered in updates to the proposed adaptation window
creation operations.

16.2 Elastic Batch Scheduler (EBS)

The immediate next development goal is to implement and integrate the Elastic Batch
Scheduler (EBS) into the infrastructure. The necessary operations to support efficient
moldable job starts are already available in the Elastic Runtime Scheduler (ERS). Given
the current design, the batch scheduler is expected to interact with the ERS on each situa-
tion that results in the availability of nodes or more jobs, such as:

• Typical job completion or termination events.

• Mandatory or optional reductions determined based on the performance model.

• New job arrivals at the queue of the Elastic Batch Scheduler (EBS) from users.

A moldable batch scheduling technique is to be developed, where the starting node
allocation of jobs is based on a range instead of the fixed amounts found in current systems.
The technique should preserve the FCFS policy by attempting to start early jobs first. In
cases where only lower priority jobs can be started due to resource availability, higher
priority jobs should still be forwarded to the Elastic Runtime Scheduler (ERS). The ERS
should be then forced to provide reservations for these higher priority jobs and minimize
their waiting times, with elastic resource transformations such as time balancing.

16.3 Elastic Resource Management

The creation of a more flexible infrastructure for resource management may be the best
long term option. New resource management research such as that of the Flux [31] project
may benefit resource-elasticity greatly. A more scalable, modular and hierarchical ap-
proach to resource management may be necessary to better support resource-elasticity at
exascale.

Better performance models and analysis techniques can be added that produce the nec-
essary ranges used as input by the Elastic Runtime Scheduler (ERS). These could consider
additional performance metrics, progress reports and adaptation measurements. Since the
design is modular, multiple performance models may be implemented in the future.

Energy optimization will also be of greater importance at exascale. Energy metrics need
to be measured by the infrastructure. New performance models that consider energy met-
rics need to be added. Multi-objective optimizations that optimize performance and en-
ergy need to be developed in the future. Additionally, strategies for system-wide power-
level stabilization and power capping will be required.

122

16.3 Elastic Resource Management

Machine learning and other history based techniques may be added to the scheduler and
its performance model. These techniques have great potential in optimization problems
such as scheduling. Given the highly dynamic nature of the presented system and the high
cost of adaptations due to distributed memory, any technique that improves the quality of
predictions is of great importance.

The pattern detection technique should continue to be improved. Currently it is effective
at the detection of SPMD patterns, but it should be extended to handle other patterns as
well. Master-worker patterns can be supported by representing them as separate SPMD
blocks that are coupled. Additionally, support for arbitrary MPMD patterns is desirable.

Resource management may be performed on intra-node resources, such as cores and
memory. Memory should be tracked as a resource by the scheduler and the resource man-
ager. If memory usage is known, then the minimal number of nodes specified by users can
be taken as a hint, instead of as a fixed constraint. This can further benefit the minimization
of idle node counts by the scheduler.

Topology optimizations should be explored in the future. For this, first the SRUN pro-
gram should be extended with a migration function. After that, full migrations from frag-
mented allocations to dense allocations can be performed on jobs so that their network
performance is efficient. The MPI library may be extended with communication pattern
detection mechanisms to support this.

The quality of the time balancing operation in the runtime scheduler depends on the
accuracy of the remaining time estimation of the job. This estimation is currently provided
by users and is very unreliable. New modeling techniques that predict the remaining run
times of jobs should be developed. Additionally, progress reporting APIs can be added to
allow applications to report their progress and an estimation of their remaining time. The
EPOP model can include a way to report the current iteration number and bound of the
loops in Elastic-Phases (EPs).

123

Bibliography

[1] Standard for information technology–portable operating system interface (posix(r))
base specifications, issue 7. IEEE Std 1003.1, 2016 Edition (incorporates IEEE Std
1003.1-2008, IEEE Std 1003.1-2008/Cor 1-2013, and IEEE Std 1003.1-2008/Cor 2-2016),
pages 1–3957, Sept 2016.

[2] Caliper: Application Introspection System. http://computation.llnl.gov/
projects/caliper, 2017. [Online].

[3] Charm++: Parallel Programming with Migratable Objects. http://charm.cs.
illinois.edu/research/charm, 2017. [Online].

[4] Clang: a C language family frontend for LLVM. https://clang.llvm.org/,
2017. [Online].

[5] GNU Hurd. https://www.gnu.org/software/hurd/hurd.html, 2017. [On-
line].

[6] MPICH: High-Performance Portable MPI. http://www.mpich.org, 2017. [On-
line].

[7] Open MPI: Open Source High Performance Computing. https://www.
open-mpi.org/, 2017. [Online].

[8] OpenFabrics Alliance. http://openfabrics.org/, 2017. [Online].

[9] OpenMP: An API for multi-platform shared-memory parallel programming in
C/C++ and Fortran. http://www.openmp.org, 2017. [Online].

[10] Parallel Virtual Machine (PVM). http://www.csm.ornl.gov/pvm/, 2017. [On-
line].

[11] SchedMD. http://www.schedmd.com/, 2017. [Online].

[12] Simple Linux Utility For Resource Management. http://slurm.schedmd.com/,
2017. [Online].

[13] SuperMUC Petascale System. https://www.lrz.de/services/compute/
supermuc/, 2017. [Online].

[14] The Barrelfish Operating System. http://www.barrelfish.org/, 2017. [On-
line].

[15] The FreeBSD Project. http://www.freebsd.org, 2017. [Online].

[16] The Linux Kernel. http://www.linux.org/, 2017. [Online].

[17] The LLVM Compiler Infrastructure. http://llvm.org/, 2017. [Online].

125

http://computation.llnl.gov/projects/caliper
http://computation.llnl.gov/projects/caliper
http://charm.cs.illinois.edu/research/charm
http://charm.cs.illinois.edu/research/charm
https://clang.llvm.org/
https://www.gnu.org/software/hurd/hurd.html
http://www.mpich.org
https://www.open-mpi.org/
https://www.open-mpi.org/
http://openfabrics.org/
http://www.openmp.org
http://www.csm.ornl.gov/pvm/
http://www.schedmd.com/
http://slurm.schedmd.com/
https://www.lrz.de/services/compute/supermuc/
https://www.lrz.de/services/compute/supermuc/
http://www.barrelfish.org/
http://www.freebsd.org
http://www.linux.org/
http://llvm.org/

Bibliography

[18] The MPI 4.0 standardization efforts. http://mpi-forum.org/mpi-40/, 2017.
[Online].

[19] Top 500 Supercomputers. http://www.top500.org/, 2017. [Online].

[20] Vampir - Performance Optimization. https://www.vampir.eu/, 2017. [Online].

[21] X10: Performance and Productivity at Scale. http://x10-lang.org/, 2017. [On-
line].

[22] Umut A. Acar, Arthur Chargueraud, and Mike Rainey. Scheduling parallel programs
by work stealing with private deques. In Proceedings of the 18th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, PPoPP ’13, pages 219–228,
New York, NY, USA, 2013. ACM.

[23] Bilge Acun, Abhishek Gupta, Nikhil Jain, Akhil Langer, Harshitha Menon, Eric
Mikida, Xiang Ni, Michael Robson, Yanhua Sun, Ehsan Totoni, Lukasz Wesolowski,
and Laxmikant Kalé. Parallel programming with migratable objects: Charm++ in
practice. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’14, pages 647–658, Piscataway, NJ, USA, 2014.
IEEE Press.

[24] T. Agarwal, A. Sharma, A. Laxmikant, and L. V. Kalé. Topology-aware task mapping
for reducing communication contention on large parallel machines. In Proceedings
20th IEEE International Parallel Distributed Processing Symposium, pages 10–20, April
2006.

[25] A. M. Agbaria and R. Friedman. Starfish: fault-tolerant dynamic MPI programs on
clusters of workstations. In Proceedings. The Eighth International Symposium on High
Performance Distributed Computing (Cat. No.99TH8469), pages 167–176, 1999.

[26] Kunal Agrawal, Yuxiong He, Wen Jing Hsu, and Charles E. Leiserson. Adaptive
scheduling with parallelism feedback. In Proceedings of the Eleventh ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’06, pages 100–
109, New York, NY, USA, 2006. ACM.

[27] Xavier Aguilar, Karl Fürlinger, and Erwin Laure. MPI trace compression using event
flow graphs. In Euro-Par 2014 Parallel Processing: 20th International Conference, Porto,
Portugal, August 25-29, 2014. Proceedings, pages 1–12. Springer International Publish-
ing, 2014.

[28] Xavier Aguilar, Karl Fürlinger, and Erwin Laure. Automatic on-line detection of MPI
application structure with event flow graphs. In Euro-Par 2015: Parallel Processing:
21st International Conference on Parallel and Distributed Computing, Vienna, Austria, Au-
gust 24-28, 2015, Proceedings, pages 70–81, Berlin, Heidelberg, 2015. Springer Berlin
Heidelberg.

[29] Xavier Aguilar, Karl Fürlinger, and Erwin Laure. Visual MPI performance analysis
using event flow graphs. Procedia Computer Science, 51:1353 – 1362, 2015.

[30] Xavier Aguilar, Karl Fürlinger, and Erwin Laure. Event flow graphs for MPI per-
formance monitoring and analysis. In Tools for High Performance Computing 2015:

126

http://mpi-forum.org/mpi-40/
http://www.top500.org/
https://www.vampir.eu/
http://x10-lang.org/

Bibliography

Proceedings of the 9th International Workshop on Parallel Tools for High Performance Com-
puting, September 2015, Dresden, Germany, pages 103–115, Cham, 2016. Springer In-
ternational Publishing.

[31] Dong H. Ahn, Jim Garlick, Mark Grondona, Don Lipari, Becky Springmeyer, and
Martin Schulz. Flux: A next-generation resource management framework for large
HPC centers. In 10th International Workshop on Scheduling and Resource Management
for Parallel and Distributed Systems. IEEE Computer Society, 2014.

[32] Michail Alvanos, Montse Farreras, Ettore Tiotto, and Xavier Martorell. Automatic
communication coalescing for irregular computations in UPC language. In Proceed-
ings of the 2012 Conference of the Center for Advanced Studies on Collaborative Research,
CASCON ’12, pages 220–234, Riverton, NJ, USA, 2012. IBM Corp.

[33] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H. Katz,
Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, Ion Stoica, and
Matei Zaharia. Above the clouds: A berkeley view of cloud computing. Technical
Report UCB/EECS-2009-28, EECS Department, University of California, Berkeley,
Feb 2009.

[34] Axel Auweter, Arndt Bode, Matthias Brehm, Luigi Brochard, Nicolay Hammer, Her-
bert Huber, Raj Panda, Francois Thomas, and Torsten Wilde. A case study of energy
aware scheduling on SuperMUC. In Supercomputing: 29th International Conference,
ISC 2014, Leipzig, Germany, June 22-26, 2014. Proceedings, pages 394–409, Cham, 2014.
Springer International Publishing.

[35] E. Ayguade, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli, X. Teruel, P. Un-
nikrishnan, and G. Zhang. The design of OpenMP tasks. IEEE Transactions on Parallel
and Distributed Systems, 20(3):404–418, March 2009.

[36] Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, Jayesh Krishna, Ew-
ing Lusk, and Rajeev Thakur. PMI: A scalable parallel process-management interface
for extreme-scale systems. In Recent Advances in the Message Passing Interface: 17th Eu-
ropean MPI Users’ Group Meeting, EuroMPI 2010, Stuttgart, Germany, September 12-15,
2010. Proceedings, pages 31–41, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[37] Richard F Barrett, Philip C Roth, and Stephen W Poole. Finite difference stencils
implemented using Chapel. Oak Ridge National Laboratory, Tech. Rep. ORNL Technical
Report TM-2007/122, 2007.

[38] Adam Beguelin, Jack Dongarra, Al Geist, Robert Manchek, Keith Moore, and Vaidy
Sunderam. PVM and HeNCE: Tools for heterogeneous network computing. In Soft-
ware for Parallel Computation, pages 91–99, Berlin, Heidelberg, 1993. Springer Berlin
Heidelberg.

[39] Francine Berman, Richard Wolski, Henri Casanova, Walfredo Cirne, Holly Dail,
Marcio Faerman, Silvia Figueira, Jim Hayes, Graziano Obertelli, Jennifer Schopf,
Gary Shao, Shava Smallen, Neil Spring, Alan Su, and Dmitrii Zagorodnov. Adaptive
computing on the grid using apples. IEEE Trans. Parallel Distrib. Syst., 14(4):369–382,
April 2003.

127

Bibliography

[40] Maciej Besta and Torsten Hoefler. Fault tolerance for remote memory access pro-
gramming models. In Proceedings of the 23rd international symposium on High-
performance parallel and distributed computing, pages 37–48. ACM, 2014.

[41] Abhay Bhadani and Sanjay Chaudhary. Performance evaluation of web servers us-
ing central load balancing policy over virtual machines on cloud. In Proceedings of the
Third Annual ACM Bangalore Conference, COMPUTE ’10, pages 16:1–16:4, New York,
NY, USA, 2010. ACM.

[42] Milind Bhandarkar, L. V. Kalé, Eric de Sturler, and Jay Hoeflinger. Adaptive load
balancing for MPI programs. In Computational Science - ICCS 2001: International Con-
ference San Francisco, CA, USA, May 28—30, 2001 Proceedings, Part II, pages 108–117,
Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[43] Abhinav Bhatel e, Eric Bohm, and Laxmikant V. Kalé. Optimizing communication
for Charm++ applications by reducing network contention. Concurrency and Compu-
tation: Practice and Experience, 23(2):211–222, 2011.

[44] A. Bhatele and L. V. Kalé. Application-specific topology-aware mapping for three
dimensional topologies. In 2008 IEEE International Symposium on Parallel and Dis-
tributed Processing, pages 1–8, April 2008.

[45] Wesley Bland, Aurelien Bouteiller, Thomas Herault, Joshua Hursey, George Bosilca,
and Jack J. Dongarra. An evaluation of user-level failure mitigation support in MPI.
In Recent Advances in the Message Passing Interface: 19th European MPI Users’ Group
Meeting, EuroMPI 2012, Vienna, Austria, September 23-26, 2012. Proceedings, pages 193–
203, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[46] J. Blazewicz, M. Machowiak, G. Mounié, and D. Trystram. Approximation algo-
rithms for scheduling independent malleable tasks. In Euro-Par 2001 Parallel Process-
ing: 7th International Euro-Par Conference Manchester, UK, August 28–31, 2001 Proceed-
ings, pages 191–197, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[47] Aurelien Bouteiller, George Bosilca, and Jack J Dongarra. Plan b: Interruption of on-
going MPI operations to support failure recovery. In Proceedings of the 22nd European
MPI Users’ Group Meeting, page 11. ACM, 2015.

[48] B. Brandfass, T. Alrutz, and T. Gerhold. Rank reordering for MPI communication
optimization. Computers and Fluids, 80:372 – 380, 2013. Selected contributions of the
23rd International Conference on Parallel Fluid Dynamics ParCFD2011.

[49] Matthias Braun, Sebastian Buchwald, Manuel Mohr, and Andreas Zwinkau. Dy-
namic X10: Resource-aware programming for higher efficiency. Technical Report 8,
Karlsruhe Institute of Technology, 2014. X10 ’14.

[50] J. Buisson, O. Sonmez, H. Mohamed, W. Lammers, and D. Epema. Scheduling mal-
leable applications in multicluster systems. In 2007 IEEE International Conference on
Cluster Computing, pages 372–381, Sept 2007.

[51] Hans-Joachim Bungartz, Christoph Riesinger, Martin Schreiber, Gregor Snelting,
and Andreas Zwinkau. Invasive computing in HPC with X10. In Proceedings of
the Third ACM SIGPLAN X10 Workshop, X10 ’13, pages 12–19, New York, NY, USA,
2013. ACM.

128

Bibliography

[52] D. Buntinas, G. Mercier, and W. Gropp. Design and evaluation of Nemesis, a scal-
able, low-latency, message-passing communication subsystem. In Cluster Comput-
ing and the Grid, 2006. CCGRID 06. Sixth IEEE International Symposium on, volume 1,
pages 10 pp.–530, May 2006.

[53] Darius Buntinas, Guillaume Mercier, and William Gropp. Implementation and
evaluation of shared-memory communication and synchronization operations in
MPICH2 using the Nemesis communication subsystem. Parallel Computing, 33(9):634
– 644, 2007. Selected Papers from EuroPVM/MPI 2006.

[54] Lynn Elliot Cannon. A Cellular Computer to Implement the Kalman Filter Algorithm.
PhD thesis, Bozeman, MT, USA, 1969. AAI7010025.

[55] T. Cao, Y. He, and M. Kondo. Demand-aware power management for power-
constrained HPC systems. In 2016 16th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), pages 21–31, May 2016.

[56] F. Cappello and D. Etiemble. MPI versus MPI+OpenMP on the IBM SP for the NAS
benchmarks. In Supercomputing, ACM/IEEE 2000 Conference, pages 12–12, Nov 2000.

[57] T. E. Carroll and D. Grosu. Incentive compatible online scheduling of malleable par-
allel jobs with individual deadlines. In 2010 39th International Conference on Parallel
Processing, pages 516–524, Sept 2010.

[58] T. L. Casavant and J. G. Kuhl. A taxonomy of scheduling in general-purpose dis-
tributed computing systems. IEEE Transactions on Software Engineering, 14(2):141–
154, Feb 1988.

[59] Márcia C. Cera, Yiannis Georgiou, Olivier Richard, Nicolas Maillard, and Philippe
O. A. Navaux. Supporting malleability in parallel architectures with dynamic
CPUSETs mapping and dynamic MPI. In Proceedings of the 11th International Con-
ference on Distributed Computing and Networking, ICDCN’10, pages 242–257, Berlin,
Heidelberg, 2010. Springer-Verlag.

[60] S. Chakraborty, H. Subramoni, A. Moody, A. Venkatesh, J. Perkins, and D. K. Panda.
Non-blocking PMI extensions for fast MPI startup. In 2015 15th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing, pages 131–140, May 2015.

[61] S. Chakraborty, H. Subramoni, J. Perkins, A. Moody, M. Arnold, and D. K. Panda.
PMI extensions for scalable MPI startup. In Proceedings of the 21st European MPI
Users’ Group Meeting, EuroMPI/ASIA ’14, pages 21:21–21:26, New York, NY, USA,
2014. ACM.

[62] Sayantan Chakravorty, Celso L. Mendes, and Laxmikant V. Kalé. Proactive fault tol-
erance in MPI applications via task migration. In High Performance Computing - HiPC
2006: 13th International Conference, Bangalore, India, December 18-21, 2006. Proceedings,
pages 485–496, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[63] Bradford L Chamberlain, David Callahan, and Hans P Zima. Parallel programmabil-
ity and the Chapel language. The International Journal of High Performance Computing
Applications, 21(3):291–312, 2007.

129

Bibliography

[64] Bradford L. Chamberlain, Steven J. Deitz, David Iten, and Sung-Eun Choi. User-
defined distributions and layouts in Chapel: Philosophy and framework. In Proceed-
ings of the second USENIX Conference on Hot Topics in Parallelism, HotPar’10, pages
12–12, Berkeley, CA, USA, 2010. USENIX Association.

[65] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan
Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: An object-
oriented approach to non-uniform cluster computing. SIGPLAN Not., 40(10):519–
538, October 2005.

[66] Yanpei Chen, Sara Alspaugh, and Randy Katz. Interactive analytical processing in
big data systems: A cross-industry study of MapReduce workloads. Proc. VLDB
Endow., 5(12):1802–1813, August 2012.

[67] I-Hsin Chung, Che-Rung Lee, Jiazheng Zhou, and Yeh-Ching Chung. Hierarchical
mapping for HPC applications. Parallel Processing Letters, 21(03):279–299, 2011.

[68] J. Cohen. Graph twiddling in a MapReduce world. Computing in Science Engineering,
11(4):29–41, July 2009.

[69] Isaı́as A. Comprés Ureña, Michael Gerndt, and Carsten Trinitis. Wait-free message
passing protocol for non-coherent shared memory architectures. In Recent Advances
in the Message Passing Interface: 19th European MPI Users’ Group Meeting, EuroMPI
2012, Vienna, Austria, September 23-26, 2012. Proceedings, pages 142–152, Berlin, Hei-
delberg, 2012. Springer Berlin Heidelberg.

[70] Isaı́as A. Comprés Ureña, Ao Mo-Hellenbrand, Michael Gerndt, and Hans-Joachim
Bungartz. Infrastructure and API extensions for elastic execution of MPI applica-
tions. In Proceedings of the 23rd European MPI Users’ Group Meeting, EuroMPI 2016,
pages 82–97, New York, NY, USA, 2016. ACM.

[71] Isaı́as A. Comprés Ureña, Michael Riepen, Michael Konow, and Michael Gerndt.
RCKMPI - lightweight MPI implementation for Intel’s single-chip cloud computer
(SCC). In EuroMPI, volume 6960 of Lecture Notes in Computer Science, pages 208–217.
Springer, 2011.

[72] Isaı́as A. Comprés Ureña, Michael Riepen, Michael Konow, and Michael Gerndt.
Invasive MPI on Intel’s Single-Chip Cloud Computer. In Architecture of Computing
Systems – ARCS 2012: 25th International Conference, Munich, Germany, February 28 -
March 2, 2012. Proceedings, pages 74–85, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

[73] G. Contreras and M. Martonosi. Characterizing and improving the performance of
Intel threading building blocks. In 2008 IEEE International Symposium on Workload
Characterization, pages 57–66, Sept 2008.

[74] David Cunningham, David Grove, Benjamin Herta, Arun Iyengar, Kiyokuni
Kawachiya, Hiroki Murata, Vijay Saraswat, Mikio Takeuchi, and Olivier Tardieu. Re-
silient X10: Efficient failure-aware programming. SIGPLAN Not., 49(8):67–80, Febru-
ary 2014.

130

Bibliography

[75] D. Bailey et al. The NAS parallel benchmarks. Technical Report RNR-91-002, NAS
Systems Division, January 1991.

[76] L. Dagum and R. Menon. OpenMP: an industry standard API for shared-memory
programming. IEEE Computational Science and Engineering, 5(1):46–55, Jan 1998.

[77] Robert I. Davis and Alan Burns. A survey of hard real-time scheduling for multipro-
cessor systems. ACM Comput. Surv., 43(4):35:1–35:44, October 2011.

[78] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on
large clusters. Commun. ACM, 51(1):107–113, January 2008.

[79] Jeffrey Dean and Sanjay Ghemawat. MapReduce: A flexible data processing tool.
Commun. ACM, 53(1):72–77, January 2010.

[80] James Dinan, Pavan Balaji, Ewing Lusk, P. Sadayappan, and Rajeev Thakur. Hybrid
parallel programming with MPI and Unified Parallel C. In Proceedings of the 7th ACM
International Conference on Computing Frontiers, CF ’10, pages 177–186, New York, NY,
USA, 2010. ACM.

[81] S. G. Domanal and G. R. M. Reddy. Load balancing in cloud computingusing modi-
fied throttled algorithm. In 2013 IEEE International Conference on Cloud Computing in
Emerging Markets (CCEM), pages 1–5, Oct 2013.

[82] S. G. Domanal and G. R. M. Reddy. Optimal load balancing in cloud computing
by efficient utilization of virtual machines. In 2014 Sixth International Conference on
Communication Systems and Networks (COMSNETS), pages 1–4, Jan 2014.

[83] Richard A. Dutton and Weizhen Mao. Online scheduling of malleable parallel jobs.
In Proceedings of the 19th IASTED International Conference on Parallel and Distributed
Computing and Systems, PDCS ’07, pages 136–141, Anaheim, CA, USA, 2007. ACTA
Press.

[84] Jr. E. G. Coffman, M. R. Garey, and D. S. Johnson. An application of bin-packing to
multiprocessor scheduling. SIAM Journal on Computing, 7(1):1–17, 1978.

[85] Deepak Eachempati, Hyoung Joon Jun, and Barbara Chapman. An open-source
compiler and runtime implementation for Coarray Fortran. In Proceedings of the
Fourth Conference on Partitioned Global Address Space Programming Model, PGAS ’10,
pages 13:1–13:8, New York, NY, USA, 2010. ACM.

[86] J. Ekanayake, S. Pallickara, and G. Fox. MapReduce for data intensive scientific
analyses. In 2008 IEEE Fourth International Conference on eScience, pages 277–284, Dec
2008.

[87] Tarek El-Ghazawi and Lauren Smith. UPC: Unified Parallel C. In Proceedings of the
2006 ACM/IEEE Conference on Supercomputing, SC ’06, New York, NY, USA, 2006.
ACM.

[88] M. Etinski, J. Corbalan, J. Labarta, and M. Valero. Parallel job scheduling for power
constrained HPC systems. Parallel Computing, 38(12):615 – 630, 2012.

131

Bibliography

[89] Yoav Etsion and Dan Tsafrir. A short survey of commercial cluster batch sched-
ulers. School of Computer Science and Engineering, The Hebrew University of Jerusalem,
44221:2005–13, 2005.

[90] Dror G. Feitelson, Larry Rudolph, and Uwe Schwiegelshohn. Parallel job scheduling
— a status report. In Proceedings of the 10th International Conference on Job Schedul-
ing Strategies for Parallel Processing, JSSPP’04, pages 1–16, Berlin, Heidelberg, 2005.
Springer-Verlag.

[91] Dror G. Feitelson, Larry Rudolph, Uwe Schwiegelshohn, Kenneth C. Sevcik, and
Parkson Wong. Theory and practice in parallel job scheduling. In Job Scheduling
Strategies for Parallel Processing: IPPS ’97 Processing Workshop Geneva, Switzerland,
April 5, 1997 Proceedings, pages 1–34, Berlin, Heidelberg, 1997. Springer Berlin Hei-
delberg.

[92] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad Al-
isafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia Ailamaki,
and Babak Falsafi. Clearing the clouds: A study of emerging scale-out workloads on
modern hardware. SIGPLAN Not., 47(4):37–48, March 2012.

[93] Lance Fortnow. The status of the P versus NP problem. Commun. ACM, 52(9):78–86,
September 2009.

[94] Andrew Friedley, Greg Bronevetsky, Torsten Hoefler, and Andrew Lumsdaine. Hy-
brid MPI: Efficient message passing for multi-core systems. In Proceedings of the Inter-
national Conference on High Performance Computing, Networking, Storage and Analysis,
SC ’13, pages 18:1–18:11, New York, NY, USA, 2013. ACM.

[95] Karl Fürlinger and David Skinner. Capturing and visualizing event flow graphs of
MPI applications. In Euro-Par 2009 – Parallel Processing Workshops: HPPC, HeteroPar,
PROPER, ROIA, UNICORE, VHPC, Delft, The Netherlands, August 25-28, 2009, Revised
Selected Papers, pages 218–227, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[96] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra,
Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew
Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Graham, and Timothy S.
Woodall. Open MPI: Goals, concept, and design of a next generation MPI implemen-
tation. In Recent Advances in Parallel Virtual Machine and Message Passing Interface: 11th
European PVM/MPI Users’ Group Meeting Budapest, Hungary, September 19 - 22, 2004.
Proceedings, pages 97–104, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[97] G. Galante and L. C. E. d. Bona. A survey on cloud computing elasticity. In 2012
IEEE Fifth International Conference on Utility and Cloud Computing, pages 263–270, Nov
2012.

[98] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[99] GA Geist, James A Kohl, and Phil M Papadopoulos. PVM and MPI: A comparison
of features. Calculateurs Paralleles, 8(2):137–150, 1996.

132

Bibliography

[100] M. Gerndt, A. Hollmann, M. Meyer, M. Schreiber, and J. Weidendorfer. Invasive
computing with iOMP. In Proceeding of the 2012 Forum on Specification and Design
Languages, pages 225–231, Sept 2012.

[101] Neha Gholkar, Frank Mueller, and Barry Rountree. Power tuning HPC jobs on
power-constrained systems. In Proceedings of the 2016 International Conference on Par-
allel Architectures and Compilation, PACT ’16, pages 179–191, New York, NY, USA,
2016. ACM.

[102] César Gómez-Martı́n, Miguel A. Vega-Rodrı́guez, and José-Luis González-Sánchez.
Performance and energy aware scheduling simulator for HPC: evaluating different
resource selection methods. Concurrency and Computation: Practice and Experience,
27(17):5436–5459, 2015. cpe.3607.

[103] R. L. Graham, G. M. Shipman, B. W. Barrett, R. H. Castain, G. Bosilca, and A. Lums-
daine. Open MPI: A high-performance, heterogeneous MPI. In 2006 IEEE Interna-
tional Conference on Cluster Computing, pages 1–9, Sept 2006.

[104] Richard L. Graham, Brian W. Barrett, Galen M. Shipman, Timothy S. Woodall, and
George Bosilca. Open MPI: A high performance, flexible implementation of MPI
point-to-point communications. Parallel Processing Letters, 17(01):79–88, 2007.

[105] Richard L. Graham, Timothy S. Woodall, and Jeffrey M. Squyres. Open MPI: A flexi-
ble high performance MPI. In Parallel Processing and Applied Mathematics: 6th Interna-
tional Conference, PPAM 2005, Poznań, Poland, September 11-14, 2005, Revised Selected
Papers, pages 228–239, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[106] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G.Rinnooy Kan. Optimization and
approximation in deterministic sequencing and scheduling: a survey. In Proceedings
of the Advanced Research Institute on Discrete Optimization and Systems Applications,
volume 5 of Annals of Discrete Mathematics, pages 287 – 326. Elsevier, 1979.

[107] William Gropp. MPICH2: A new start for MPI implementations. In Proceedings of
the 9th European PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual
Machine and Message Passing Interface, pages 7–, London, UK, UK, 2002. Springer-
Verlag.

[108] William Gropp and Ewing Lusk. Why are PVM and MPI so different? In Recent Ad-
vances in Parallel Virtual Machine and Message Passing Interface: 4th European PVM/MPI
Users’ Group Meeting Cracow, Poland, November 3–5, 1997 Proceedings, pages 1–10,
Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

[109] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-
performance, portable implementation of the MPI message passing interface stan-
dard. Parallel Computing, 22(6):789 – 828, 1996.

[110] A. Gupta, B. Acun, O. Sarood, and L. V. Kalé. Towards realizing the potential of
malleable jobs. In 2014 21st International Conference on High Performance Computing
(HiPC), pages 1–10, Dec 2014.

[111] Abhishek Gupta and Dejan Milojicic. Evaluation of HPC applications on cloud. In
Proceedings of the 2011 Sixth Open Cirrus Summit, OCS ’11, pages 22–26, Washington,
DC, USA, 2011. IEEE Computer Society.

133

Bibliography

[112] Frank Hannig, Sascha Roloff, Gregor Snelting, Jürgen Teich, and Andreas Zwinkau.
Resource-aware programming and simulation of MPSoC architectures through ex-
tension of X10. In Proceedings of the 14th International Workshop on Software and Com-
pilers for Embedded Systems, SCOPES ’11, pages 48–55, New York, NY, USA, 2011.
ACM.

[113] Manuel Hasert, Harald Klimach, and Sabine Roller. CAF versus MPI - applicabil-
ity of Coarray Fortran to a flow solver. In Recent Advances in the Message Passing
Interface: 18th European MPI Users’ Group Meeting, EuroMPI 2011, Santorini, Greece,
September 18-21, 2011. Proceedings, pages 228–236, Berlin, Heidelberg, 2011. Springer
Berlin Heidelberg.

[114] Paul Havlak. Nesting of reducible and irreducible loops. ACM Trans. Program. Lang.
Syst., 19(4):557–567, July 1997.

[115] Nathan Hjelm. Optimizing one-sided operations in Open MPI. In Proceedings of the
21st European MPI Users’ Group Meeting, EuroMPI/ASIA ’14, pages 123:123–123:124,
New York, NY, USA, 2014. ACM.

[116] T. Hoefler and J. L. Traff. Sparse collective operations for MPI. In 2009 IEEE Interna-
tional Symposium on Parallel Distributed Processing, pages 1–8, May 2009.

[117] Torsten Hoefler and Marc Snir. Generic topology mapping strategies for large-scale
parallel architectures. In Proceedings of the International Conference on Supercomputing,
ICS ’11, pages 75–84, New York, NY, USA, 2011. ACM.

[118] Andreas Hollmann and Michael Gerndt. Invasive computing: An application as-
sisted resource management approach. In Multicore Software Engineering, Perfor-
mance, and Tools: International Conference, MSEPT 2012, Prague, Czech Republic, May
31 - June 1, 2012. Proceedings, pages 82–85, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

[119] J. Hu, J. Gu, G. Sun, and T. Zhao. A scheduling strategy on load balancing of vir-
tual machine resources in cloud computing environment. In 2010 3rd International
Symposium on Parallel Architectures, Algorithms and Programming, pages 89–96, Dec
2010.

[120] Chao Huang, Orion Lawlor, and L. V. Kalé. Adaptive MPI. In Languages and Com-
pilers for Parallel Computing: 16th International Workshop, LCPC 2003, College Station,
TX, USA, October 2-4, 2003. Revised Papers, pages 306–322, Berlin, Heidelberg, 2004.
Springer Berlin Heidelberg.

[121] Chao Huang, Gengbin Zheng, Laxmikant Kalé, and Sameer Kumar. Performance
evaluation of adaptive MPI. In Proceedings of the Eleventh ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’06, pages 12–21, New York,
NY, USA, 2006. ACM.

[122] Chao Huang, Gengbin Zheng, and Laxmikant V Kalé. Supporting adaptivity in MPI
for dynamic parallel applications. Technical Report; Parallel Programming Laboratory,
Department of Computer Science, University of Illinois at Urbana-Champaign, 2007.

134

Bibliography

[123] J. Hungershofer. On the combined scheduling of malleable and rigid jobs. In 16th
Symposium on Computer Architecture and High Performance Computing, pages 206–213,
Oct 2004.

[124] N. Ioannou, M. Kauschke, M. Gries, and M. Cintra. Phase-based application-driven
hierarchical power management on the single-chip cloud computer. In 2011 Inter-
national Conference on Parallel Architectures and Compilation Techniques, pages 131–142,
Oct 2011.

[125] Satoshi Ito, Kazuya Goto, and Kenji Ono. Automatically optimized core mapping to
subdomains of domain decomposition method on multicore parallel environments.
Computers and Fluids, 80:88 – 93, 2013. Selected contributions of the 23rd International
Conference on Parallel Fluid Dynamics ParCFD2011.

[126] David B. Jackson, Quinn Snell, and Mark J. Clement. Core algorithms of the Maui
scheduler. In Revised Papers from the 7th International Workshop on Job Scheduling Strate-
gies for Parallel Processing, JSSPP ’01, pages 87–102, London, UK, UK, 2001. Springer-
Verlag.

[127] N. Jain, A. Bhatele, J. S. Yeom, M. F. Adams, F. Miniati, C. Mei, and L. V. Kalé.
Charm++ and MPI: Combining the best of both worlds. In 2015 IEEE International
Parallel and Distributed Processing Symposium, pages 655–664, May 2015.

[128] E. Jeannot, G. Mercier, and F. Tessier. Process placement in multicore clusters: Algo-
rithmic issues and practical techniques. IEEE Transactions on Parallel and Distributed
Systems, 25(4):993–1002, April 2014.

[129] Emmanuel Jeannot and Guillaume Mercier. Near-optimal placement of MPI pro-
cesses on hierarchical NUMA architectures. In Euro-Par 2010 - Parallel Processing:
16th International Euro-Par Conference, Ischia, Italy, August 31 - September 3, 2010, Pro-
ceedings, Part II, pages 199–210, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[130] G. Jin, J. Mellor-Crummey, L. Adhianto, W. N. Scherer III, and C. Yang. Implementa-
tion and performance evaluation of the HPC challenge benchmarks in Coarray For-
tran 2.0. In 2011 IEEE International Parallel Distributed Processing Symposium, pages
1089–1100, May 2011.

[131] L. V. Kalé, S. Kumar, and J. DeSouza. A malleable-job system for timeshared par-
allel machines. In Cluster Computing and the Grid, 2002. 2nd IEEE/ACM International
Symposium on, pages 230–230, May 2002.

[132] Laxmikant V. Kalé and Sanjeev Krishnan. CHARM++: A portable concurrent ob-
ject oriented system based on C++. In Proceedings of the Eighth Annual Conference on
Object-oriented Programming Systems, Languages, and Applications, OOPSLA ’93, pages
91–108, New York, NY, USA, 1993. ACM.

[133] K. Kandalla, H. Subramoni, A. Vishnu, and D. K. Panda. Designing topology-aware
collective communication algorithms for large scale infiniband clusters: Case studies
with scatter and gather. In 2010 IEEE International Symposium on Parallel Distributed
Processing, Workshops and Phd Forum (IPDPSW), pages 1–8, April 2010.

135

Bibliography

[134] C. Karlsson, T. Davies, and Z. Chen. Optimizing process-to-core mappings for ap-
plication level multi-dimensional MPI communications. In 2012 IEEE International
Conference on Cluster Computing, pages 486–494, Sept 2012.

[135] Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Com-
puter Computations: Proceedings of a symposium on the Complexity of Computer Compu-
tations, pages 85–103, Boston, MA, 1972. Springer US.

[136] Peter J. Keleher, Dmitry Zotkin, and Dejan Perkovic. Attacking the bottlenecks of
backfilling schedulers. Cluster Computing, 3(4):245–254, 2000.

[137] Ken Kennedy, Charles Koelbel, and Hans Zima. The rise and fall of High Perfor-
mance Fortran: An historical object lesson. In Proceedings of the Third ACM SIG-
PLAN Conference on History of Programming Languages, HOPL III, pages 7–1–7–22,
New York, NY, USA, 2007. ACM.

[138] A. A. Khan, C. L. Mccreary, and M. S. Jones. A comparison of multiprocessor
scheduling heuristics. In Internatonal Conference on Parallel Processing Vol. 2, volume 2,
pages 243–250, Aug 1994.

[139] Charles H Koelbel. The high performance Fortran handbook. MIT press, 1994.

[140] Ignacio Laguna, David F Richards, Todd Gamblin, Martin Schulz, Bronis R de Supin-
ski, Kathryn Mohror, and Howard Pritchard. Evaluating and extending user-level
fault tolerance in MPI applications. International Journal of High Performance Comput-
ing Applications, page 1094342015623623, 2016.

[141] Michael Lange, Gerard Gorman, Michèle Weiland, Lawrence Mitchell, and James
Southern. Achieving efficient strong scaling with PETSc using hybrid MPI/OpenMP
optimisation. In Supercomputing: 28th International Supercomputing Conference, ISC
2013, Leipzig, Germany, June 16-20, 2013. Proceedings, pages 97–108, Berlin, Heidel-
berg, 2013. Springer Berlin Heidelberg.

[142] Eugene L. Lawler, Jan Karel Lenstra, Alexander H.G. Rinnooy Kan, and David B.
Shmoys. Chapter 9 sequencing and scheduling: Algorithms and complexity. In
Logistics of Production and Inventory, volume 4 of Handbooks in Operations Research and
Management Science, pages 445 – 522. Elsevier, 1993.

[143] Barry G. Lawson and Evgenia Smirni. Multiple-queue backfilling scheduling with
priorities and reservations for parallel systems. In Job Scheduling Strategies for Parallel
Processing: 8th International Workshop, JSSPP 2002 Edinburgh, Scotland, UK, July 24,
2002 Revised Papers, pages 72–87, Berlin, Heidelberg, 2002. Springer Berlin Heidel-
berg.

[144] Barry G. Lawson, Evgenia Smirni, and Daniela Puiu. Self-adapting backfilling
scheduling for parallel systems. In Proceedings of the 2002 International Conference
on Parallel Processing, ICPP ’02, pages 583–593, Washington, DC, USA, 2002. IEEE
Computer Society.

[145] Inbok Lee, Costas S. Iliopoulos, and Kunsoo Park. Linear time algorithm for the
longest common repeat problem. Journal of Discrete Algorithms, 5(2):243 – 249, 2007.
2004 Symposium on String Processing and Information Retrieval.

136

Bibliography

[146] Kyong-Ha Lee, Yoon-Joon Lee, Hyunsik Choi, Yon Dohn Chung, and Bongki Moon.
Parallel data processing with MapReduce: A survey. SIGMOD Rec., 40(4):11–20,
January 2012.

[147] Charles E. Leiserson. Programming irregular parallel applications in Cilk. In Solv-
ing Irregularly Structured Problems in Parallel: 4th International Symposium, IRREGU-
LAR’97 Paderborn, Germany, June 12–13, 1997 Proceedings, pages 61–71, Berlin, Hei-
delberg, 1997. Springer Berlin Heidelberg.

[148] Charles E. Leiserson. Cilk. In Encyclopedia of Parallel Computing, pages 273–288,
Boston, MA, 2011. Springer US.

[149] J.K. Lenstra, A.H.G. Rinnooy Kan, and P. Brucker. Complexity of machine schedul-
ing problems. In Studies in Integer Programming, volume 1 of Annals of Discrete Math-
ematics, pages 343 – 362. Elsevier, 1977.

[150] D. Li, Y. Wang, and W. Zhu. Topology-aware process mapping on clusters featur-
ing NUMA and hierarchical network. In 2013 IEEE 12th International Symposium on
Parallel and Distributed Computing, pages 74–81, June 2013.

[151] A. M. Lindsay, M. Galloway-Carson, C. R. Johnson, D. P. Bunde, and V. J. Leung.
Backfilling with guarantees made as jobs arrive. Concurrency and Computation: Prac-
tice and Experience, 25(4):513–523, 2013.

[152] R. V. Lopes and D. Menascé. A taxonomy of job scheduling on distributed comput-
ing systems. IEEE Transactions on Parallel and Distributed Systems, 27(12):3412–3428,
Dec 2016.

[153] David B Loveman. High performance Fortran. IEEE Parallel & Distributed Technology:
Systems & Applications, 1(1):25–42, 1993.

[154] Jeffrey M. Squyres and Andrew Lumsdaine. The component architecture of Open
MPI: Enabling third-party collective algorithms. In Proceedings of the Workshop on
Component Models and Systems for Grid Applications., pages 167–185, Boston, MA,
2005. Springer US.

[155] T. Ma, G. Bosilca, A. Bouteiller, and J. Dongarra. Hierknem: An adaptive frame-
work for kernel-assisted and topology-aware collective communications on many-
core clusters. In 2012 IEEE 26th International Parallel and Distributed Processing Sym-
posium, pages 970–982, May 2012.

[156] T. Ma, T. Herault, G. Bosilca, and J. J. Dongarra. Process distance-aware adaptive
MPI collective communications. In 2011 IEEE International Conference on Cluster Com-
puting, pages 196–204, Sept 2011.

[157] T. Malik, V. Rychkov, A. Lastovetsky, and J. N. Quintin. Topology-aware optimiza-
tion of communications for parallel matrix multiplication on hierarchical heteroge-
neous HPC platform. In 2014 IEEE International Parallel Distributed Processing Sym-
posium Workshops, pages 39–47, May 2014.

[158] Timothy G. Mattson. Programming environments for parallel and distributed com-
puting: A comparison of P4, PVM, Linda, and Tcgmsg. Int. J. High Perform. Comput.
Appl., 9(2):138–161, June 1995.

137

Bibliography

[159] Piyush Mehrotra, Jahed Djomehri, Steve Heistand, Robert Hood, Haoqiang Jin,
Arthur Lazanoff, Subhash Saini, and Rupak Biswas. Performance evaluation of
Amazon EC2 for NASA HPC applications. In Proceedings of the 3rd Workshop on
Scientific Cloud Computing Date, ScienceCloud ’12, pages 41–50, New York, NY, USA,
2012. ACM.

[160] J Mellor-Crummey, L Adhianto, and WN Scherer III. A critique of co-array features
in Fortran 2008. Fortran Standards Technical Committee Document J, 3:08–126, 2008.

[161] John Mellor-Crummey, Laksono Adhianto, William N. Scherer, III, and Guohua Jin.
A new vision for Coarray Fortran. In Proceedings of the Third Conference on Partitioned
Global Address Space Programing Models, PGAS ’09, pages 5:1–5:9, New York, NY,
USA, 2009. ACM.

[162] Guillaume Mercier and Emmanuel Jeannot. Improving MPI applications perfor-
mance on multicore clusters with rank reordering. In Recent Advances in the Mes-
sage Passing Interface: 18th European MPI Users’ Group Meeting, EuroMPI 2011, San-
torini, Greece, September 18-21, 2011. Proceedings, pages 39–49, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg.

[163] J. Milthorpe, V. Ganesh, A. P. Rendell, and D. Grove. X10 as a parallel language for
scientific computation: Practice and experience. In 2011 IEEE International Parallel
Distributed Processing Symposium, pages 1080–1088, May 2011.

[164] Manuel Mohr, Sebastian Buchwald, Andreas Zwinkau, Christoph Erhardt, Benjamin
Oechslein, Jens Schedel, and Daniel Lohmann. Cutting out the middleman: OS-level
support for X10 activities. In Proceedings of the ACM SIGPLAN Workshop on X10, X10
2015, pages 13–18, New York, NY, USA, 2015. ACM.

[165] Gregory Mounie, Christophe Rapine, and Dennis Trystram. Efficient approximation
algorithms for scheduling malleable tasks. In Proceedings of the Eleventh Annual ACM
Symposium on Parallel Algorithms and Architectures, SPAA ’99, pages 23–32, New York,
NY, USA, 1999. ACM.

[166] A. W. Mu’alem and D. G. Feitelson. Utilization, predictability, workloads, and user
runtime estimates in scheduling the IBM SP2 with backfilling. IEEE Transactions on
Parallel and Distributed Systems, 12(6):529–543, Jun 2001.

[167] PVR Murthy. Parallel computing with X10. In Proceedings of the 1st International
Workshop on Multicore Software Engineering, IWMSE ’08, pages 5–6, New York, NY,
USA, 2008. ACM.

[168] Stas Negara, Gengbin Zheng, Kuo-Chuan Pan, Natasha Negara, Ralph E. Johnson,
Laxmikant V. Kalé, and Paul M. Ricker. Automatic MPI to AMPI program trans-
formation using Photran. In Euro-Par 2010 Parallel Processing Workshops: HeteroPar,
HPCC, HiBB, CoreGrid, UCHPC, HPCF, PROPER, CCPI, VHPC, Ischia, Italy, August
31–September 3, 2010, Revised Selected Papers, pages 531–539, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

[169] Bradford Nichols, Dick Buttlar, and Jacqueline Farrell. Pthreads programming: A
POSIX standard for better multiprocessing. O’Reilly Media, Inc., 1996.

138

Bibliography

[170] J. L. Overbey, S. Negara, and R. E. Johnson. Refactoring and the evolution of For-
tran. In 2009 ICSE Workshop on Software Engineering for Computational Science and
Engineering, pages 28–34, May 2009.

[171] Antonio J. Peña, Ralf G. Correa Carvalho, James Dinan, Pavan Balaji, Rajeev Thakur,
and William Gropp. Analysis of topology-dependent MPI performance on Gemini
networks. In Proceedings of the 20th European MPI Users’ Group Meeting, EuroMPI ’13,
pages 61–66, New York, NY, USA, 2013. ACM.

[172] Frederic Petrot and Pascal Gomez. Lightweight implementation of the POSIX
threads API for an on-chip MIPS multiprocessor with VCI interconnect. In Proceed-
ings of the Conference on Design, Automation and Test in Europe: Designers’ Forum -
Volume 2, DATE ’03, Washington, DC, USA, 2003. IEEE Computer Society.

[173] W. Pfeiffer and A. Stamatakis. Hybrid MPI/Pthreads parallelization of the RAxML
phylogenetics code. In 2010 IEEE International Symposium on Parallel Distributed Pro-
cessing, Workshops and Phd Forum (IPDPSW), pages 1–8, April 2010.

[174] L. L. Pilla, C. P. Ribeiro, D. Cordeiro, C. Mei, A. Bhatele, P. O. A. Navaux, F. Bro-
quedis, J. F. Méhaut, and L. V. Kalé. A hierarchical approach for load balancing on
parallel multi-core systems. In 2012 41st International Conference on Parallel Processing,
pages 118–127, Sept 2012.

[175] Alexander Pöppl and Michael Bader. SWE-X10: An actor-based and locally coordi-
nated solver for the shallow water equations. In Proceedings of the 6th ACM SIGPLAN
Workshop on X10, X10 2016, pages 30–31, New York, NY, USA, 2016. ACM.

[176] Alexander Pöppl, Michael Bader, Tobias Schwarzer, and Michael Glaß. SWE-X10:
Simulating shallow water waves with lazy activation of patches using ActorX10. In
Proceedings of the Second Internationsl Workshop on Extreme Scale Programming Models
and Middleware, ESPM2, pages 32–39, Piscataway, NJ, USA, 2016. IEEE Press.

[177] S. Prabhakaran, M. Iqbal, S. Rinke, C. Windisch, and F. Wolf. A batch system with
fair scheduling for evolving applications. In 2014 43rd International Conference on
Parallel Processing, pages 351–360, Sept 2014.

[178] S. Prabhakaran, M. Neumann, S. Rinke, F. Wolf, A. Gupta, and L. V. Kalé. A batch
system with efficient adaptive scheduling for malleable and evolving applications.
In 2015 IEEE International Parallel and Distributed Processing Symposium, pages 429–
438, May 2015.

[179] R. Rabenseifner, G. Hager, and G. Jost. Hybrid MPI/OpenMP parallel programming
on clusters of multi-core SMP nodes. In 2009 17th Euromicro International Conference
on Parallel, Distributed and Network-based Processing, pages 427–436, Feb 2009.

[180] G. Ramalingam. Identifying loops in almost linear time. ACM Trans. Program. Lang.
Syst., 21(2):175–188, March 1999.

[181] M. Randles, D. Lamb, and A. Taleb-Bendiab. A comparative study into distributed
load balancing algorithms for cloud computing. In 2010 IEEE 24th International Con-
ference on Advanced Information Networking and Applications Workshops, pages 551–556,
April 2010.

139

Bibliography

[182] Mohammad Javad Rashti, Jonathan Green, Pavan Balaji, Ahmad Afsahi, and
William Gropp. Multi-core and network aware MPI topology functions. In Recent
Advances in the Message Passing Interface: 18th European MPI Users’ Group Meeting, Eu-
roMPI 2011, Santorini, Greece, September 18-21, 2011. Proceedings, pages 50–60, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[183] A. Raveendran, T. Bicer, and G. Agrawal. A framework for elastic execution of exist-
ing MPI programs. In 2011 IEEE International Symposium on Parallel and Distributed
Processing Workshops and Phd Forum, pages 940–947, May 2011.

[184] James Reinders. Intel threading building blocks: outfitting C++ for multi-core processor
parallelism. O’Reilly Media, Inc., 2007.

[185] Sascha Roloff, Alexander Pöppl, Tobias Schwarzer, Stefan Wildermann, Michael
Bader, Michael Glaß, Frank Hannig, and Jürgen Teich. ActorX10: An actor library
for X10. In Proceedings of the 6th ACM SIGPLAN Workshop on X10, X10 2016, pages
24–29, New York, NY, USA, 2016. ACM.

[186] H. G. Rotithor. Taxonomy of dynamic task scheduling schemes in distributed com-
puting systems. IEE Proceedings - Computers and Digital Techniques, 141(1):1–10, Jan
1994.

[187] Paul Sack and William Gropp. Faster topology-aware collective algorithms through
non-minimal communication. In Proceedings of the 17th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’12, pages 45–54, New York,
NY, USA, 2012. ACM.

[188] N. Sadashiv and S. M. D. Kumar. Cluster, grid and cloud computing: A de-
tailed comparison. In 2011 6th International Conference on Computer Science Education
(ICCSE), pages 477–482, Aug 2011.

[189] Vijay A. Saraswat, Vivek Sarkar, and Christoph von Praun. X10: Concurrent pro-
gramming for modern architectures. In Proceedings of the 12th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, PPoPP ’07, pages 271–271,
New York, NY, USA, 2007. ACM.

[190] Osman Sarood, Akhil Langer, Abhishek Gupta, and Laxmikant Kalé. Maximizing
throughput of overprovisioned HPC data centers under a strict power budget. In
Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’14, pages 807–818, Piscataway, NJ, USA, 2014. IEEE Press.

[191] M. Sato. OpenMP: parallel programming API for shared memory multiprocessors
and on-chip multiprocessors. In 15th International Symposium on System Synthesis,
2002., pages 109–111, Oct 2002.

[192] William N. Scherer, III, Laksono Adhianto, Guohua Jin, John Mellor-Crummey, and
Chaoran Yang. Hiding latency in Coarray Fortran 2.0. In Proceedings of the Fourth
Conference on Partitioned Global Address Space Programming Model, PGAS ’10, pages
14:1–14:9, New York, NY, USA, 2010. ACM.

[193] Edi Shmueli and Dror G. Feitelson. Backfilling with lookahead to optimize the per-
formance of parallel job scheduling. In Job Scheduling Strategies for Parallel Processing:

140

Bibliography

9th International Workshop, JSSPP 2003, Seattle, WA, USA, June 24, 2003. Revised Paper,
pages 228–251, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[194] A. Sidelnik, S. Maleki, B. L. Chamberlain, M. J. Garzar’n, and D. Padua. Performance
portability with the Chapel language. In 2012 IEEE 26th International Parallel and
Distributed Processing Symposium, pages 582–594, May 2012.

[195] Anna Sikora, Eduardo César, Isaı́as A. Comprés Ureña, and Michael Gerndt. Au-
totuning of MPI Applications Using PTF. In Proceedings of the ACM Workshop on
Software Engineering Methods for Parallel and High Performance Applications, SEM4HPC
’16, pages 31–38, New York, NY, USA, 2016. ACM.

[196] Edgar Solomonik, Abhinav Bhatele, and James Demmel. Improving communication
performance in dense linear algebra via topology aware collectives. In Proceedings of
2011 International Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’11, pages 77:1–77:11, New York, NY, USA, 2011. ACM.

[197] S. Spetka, H. Hadzimujic, S. Peek, and C. Flynn. High productivity languages for
parallel programming compared to MPI. In 2008 DoD HPCMP Users Group Confer-
ence, pages 413–417, July 2008.

[198] Jaidev K. Sridhar and Dhabaleswar K. Panda. Impact of node level caching in
MPI job launch mechanisms. In Recent Advances in Parallel Virtual Machine and Mes-
sage Passing Interface: 16th European PVM/MPI Users’ Group Meeting, Espoo, Finland,
September 7-10, 2009. Proceedings, pages 230–239, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

[199] S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan. Characterization of
backfilling strategies for parallel job scheduling. In Proceedings. International Confer-
ence on Parallel Processing Workshop, pages 514–519, 2002.

[200] Srividya Srinivasan, Rajkumar Kettimuthu, Vijay Subramani, and Ponnuswamy Sa-
dayappan. Selective reservation strategies for backfill job scheduling. In Job Schedul-
ing Strategies for Parallel Processing: 8th International Workshop, JSSPP 2002 Edinburgh,
Scotland, UK, July 24, 2002 Revised Papers, pages 55–71, Berlin, Heidelberg, 2002.
Springer Berlin Heidelberg.

[201] H. Subramoni, D. Bureddy, K. Kandalla, K. Schulz, B. Barth, J. Perkins, M. Arnold,
and D. K. Panda. Design of network topology aware scheduling services for large
infiniband clusters. In 2013 IEEE International Conference on Cluster Computing (CLUS-
TER), pages 1–8, Sept 2013.

[202] H. Subramoni, S. Potluri, K. Kandalla, B. Barth, J. Vienne, J. Keasler, K. Tomko,
K. Schulz, A. Moody, and D. K. Panda. Design of a scalable infiniband topology
service to enable network-topology-aware placement of processes. In High Perfor-
mance Computing, Networking, Storage and Analysis (SC), 2012 International Conference
for, pages 1–12, Nov 2012.

[203] H. Sun, Y. Cao, and W. J. Hsu. Efficient adaptive scheduling of multiprocessors with
stable parallelism feedback. IEEE Transactions on Parallel and Distributed Systems,
22(4):594–607, April 2011.

141

Bibliography

[204] H. Sun, Y. Cao, and W. J. Hsu. Fair and efficient online adaptive scheduling for
multiple sets of parallel applications. In 2011 IEEE 17th International Conference on
Parallel and Distributed Systems, pages 64–71, Dec 2011.

[205] V. S. Sunderam. PVM: A framework for parallel distributed computing. Concurrency:
Pract. Exper., 2(4):315–339, November 1990.

[206] D. Talby and D. G. Feitelson. Supporting priorities and improving utilization of the
IBM SP scheduler using slack-based backfilling. In Proceedings 13th International Par-
allel Processing Symposium and 10th Symposium on Parallel and Distributed Processing.
IPPS/SPDP 1999, pages 513–517, Apr 1999.

[207] Olivier Tardieu, Benjamin Herta, David Cunningham, David Grove, Prabhanjan
Kambadur, Vijay Saraswat, Avraham Shinnar, Mikio Takeuchi, and Mandana Vaziri.
X10 and APGAS at petascale. In Proceedings of the 19th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’14, pages 53–66, New York,
NY, USA, 2014. ACM.

[208] Robert Tarjan. Testing flow graph reducibility. In Proceedings of the Fifth Annual ACM
Symposium on Theory of Computing, STOC ’73, pages 96–107, New York, NY, USA,
1973. ACM.

[209] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. Optimization of collective
communication operations in MPICH. The International Journal of High Performance
Computing Applications, 19(1):49–66, 2005.

[210] S. Tham and J. Morris. Cilk vs MPI: comparing two very different parallel program-
ming styles. In 2003 International Conference on Parallel Processing, 2003. Proceedings.,
pages 143–152, Oct 2003.

[211] J. L. Traff. Implementing the MPI process topology mechanism. In Supercomputing,
ACM/IEEE 2002 Conference, pages 28–28, Nov 2002.

[212] D. Tsafrir, Y. Etsion, and D. G. Feitelson. Backfilling using system-generated predic-
tions rather than user runtime estimates. IEEE Transactions on Parallel and Distributed
Systems, 18(6):789–803, June 2007.

[213] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.

[214] J.D. Ullman. Np-complete scheduling problems. Journal of Computer and System
Sciences, 10(3):384 – 393, 1975.

[215] G. Utrera, J. Corbalan, and J. Labarta. Implementing malleability on MPI jobs. In
Proceedings. 13th International Conference on Parallel Architecture and Compilation Tech-
niques, 2004. PACT 2004., pages 215–224, Sept 2004.

[216] SATHISH S. VADHIYAR and JACK J. DONGARRA. SRS: A framework for develop-
ing malleable and migratable parallel applications for distributed systems. Parallel
Processing Letters, 13(02):291–312, 2003.

[217] Sathish S. Vadhiyar and Jack J. Dongarra. Self adaptivity in grid computing. Concur-
rency and Computation: Practice and Experience, 17(2-4):235–257, 2005.

142

Bibliography

[218] G Matthijs van Waveren. High performance Fortran. In International Conference on
High-Performance Computing and Networking, pages 429–433. Springer, 1994.

[219] Rares Vernica, Michael J. Carey, and Chen Li. Efficient parallel set-similarity joins
using MapReduce. In Proceedings of the 2010 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’10, pages 495–506, New York, NY, USA, 2010.
ACM.

[220] Sebastian von Alfthan, Ilja Honkonen, and Minna Palmroth. Topology aware process
mapping. In Applied Parallel and Scientific Computing: 11th International Conference,
PARA 2012, Helsinki, Finland, June 10-13, 2012, Revised Selected Papers, pages 297–308,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[221] Tao Wei, Jian Mao, Wei Zou, and Yu Chen. A new algorithm for identifying loops
in decompilation. In Static Analysis: 14th International Symposium, SAS 2007, Kongens
Lyngby, Denmark, August 22-24, 2007. Proceedings, pages 170–183, Berlin, Heidelberg,
2007. Springer Berlin Heidelberg.

[222] F. Wolf and B. Mohr. Automatic performance analysis of hybrid MPI/OpenMP ap-
plications. In Eleventh Euromicro Conference on Parallel, Distributed and Network-Based
Processing, 2003. Proceedings., pages 13–22, Feb 2003.

[223] Gosia Wrzesinska, Jason Maassen, and Henri E. Bal. Self-adaptive applications on
the grid. In Proceedings of the 12th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP ’07, pages 121–129, New York, NY, USA, 2007. ACM.

[224] Chaoran Yang, Wesley Bland, John Mellor-Crummey, and Pavan Balaji. Portable,
MPI-interoperable Coarray Fortran. SIGPLAN Not., 49(8):81–92, February 2014.

[225] Xu Yang, Zhou Zhou, Sean Wallace, Zhiling Lan, Wei Tang, Susan Coghlan, and
Michael E. Papka. Integrating dynamic pricing of electricity into energy aware
scheduling for HPC systems. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, SC ’13, pages 60:1–60:11,
New York, NY, USA, 2013. ACM.

[226] H. Yu, I. h. Chung, and J. Moreira. Topology mapping for blue Gene/L supercom-
puter. In SC 2006 Conference, Proceedings of the ACM/IEEE, pages 52–52, Nov 2006.

[227] Y. Yuan, Y. Wu, W. Zheng, and K. Li. Guarantee strict fairness and utilization pre-
diction better in parallel job scheduling. IEEE Transactions on Parallel and Distributed
Systems, 25(4):971–981, April 2014.

[228] Yan Zhai, Mingliang Liu, Jidong Zhai, Xiaosong Ma, and Wenguang Chen. Cloud
versus in-house cluster: Evaluating amazon cluster compute instances for running
MPI applications. In State of the Practice Reports, SC ’11, pages 11:1–11:10, New York,
NY, USA, 2011. ACM.

[229] G. Zheng, E. Meneses, A. Bhatele, and L. V. Kalé. Hierarchical load balancing for
Charm++ applications on large supercomputers. In 2010 39th International Conference
on Parallel Processing Workshops, pages 436–444, Sept 2010.

143

Bibliography

[230] G. Zheng, Xiang Ni, and L. V. Kalé. A scalable double in-memory checkpoint and
restart scheme towards exascale. In IEEE/IFIP International Conference on Dependable
Systems and Networks Workshops (DSN 2012), pages 1–6, June 2012.

[231] Gengbin Zheng, Chao Huang, and Laxmikant V. Kalé. Performance evaluation of
automatic checkpoint-based fault tolerance for AMPI and Charm++. SIGOPS Oper.
Syst. Rev., 40(2):90–99, April 2006.

[232] Gengbin Zheng, Lixia Shi, and L. V. Kalé. FTC-Charm++: an in-memory checkpoint-
based fault tolerant runtime for Charm++ and MPI. In 2004 IEEE International Con-
ference on Cluster Computing (IEEE Cat. No.04EX935), pages 93–103, Sept 2004.

[233] D. Zotkin and P. J. Keleher. Job-length estimation and performance in backfilling
schedulers. In Proceedings. The Eighth International Symposium on High Performance
Distributed Computing (Cat. No.99TH8469), pages 236–243, 1999.

144

	Acknowledgements
	Abstract
	1 Introduction
	2 Motivation
	2.1 Adaptive Mesh Refinement (AMR) Methods
	2.1.1 Challenges of AMR Methods in Distributed Memory Systems

	2.2 Applications with Multiple Computational Phases
	2.2.1 Phases with Different Scalability Properties
	2.2.2 Network-, Memory- and Compute-Bound Phases
	2.2.3 Phases with Different Input Dependent Network and Compute Scaling Proportionalities
	2.2.4 Efficient Ranges for Application Phase Scalability

	2.3 System-Wide Parallel Efficiency
	2.3.1 Suboptimal Network Performance due to Fixed Initial Allocations
	2.3.2 Idle Resources due to Inflexible Resource Requirements in Jobs
	2.3.3 Energy and Power Optimizations

	3 Invasive Computing
	3.1 Invasive Computing Research Groups
	3.1.1 Group A Projects
	3.1.2 Group B Projects
	3.1.3 Group C Projects
	3.1.4 Group D Projects
	3.1.5 Group Z Projects

	4 Related Work
	4.1 Programming Languages and Interfaces without Elastic Execution Support
	4.1.1 Parallel Shared Memory Systems
	4.1.2 Distributed Memory Systems
	4.1.3 Cloud and Grid Computing

	4.2 Elastic Programming Languages and Interfaces for HPC
	4.2.1 Charm++ and Adaptive MPI
	4.2.2 The X10 Programming Language
	4.2.3 Parallel Virtual Machine (PVM)
	4.2.4 Other Related Works

	5 The Message Passing Interface (MPI)
	5.1 MPI Features Overview
	5.1.1 Data Types
	5.1.2 Groups and Communicators
	5.1.3 Point-to-Point Communication
	5.1.4 One-Sided Communication
	5.1.5 Collective Communication
	5.1.6 Parallel IO
	5.1.7 Virtual Topologies

	5.2 Dynamic Processes Support and its Limitations
	5.3 MPICH: High-Performance Portable MPI
	5.3.1 Software Architecture
	5.3.2 MPI Layer
	5.3.3 Device Layer
	5.3.4 Channel Layer

	6 Elastic MPI Library
	6.1 MPI Extension Operations
	6.1.1 MPI Initialization in Adaptive Mode
	6.1.2 Probing Adaptation Data
	6.1.3 Beginning an Adaptation Window
	6.1.4 Committing an Adaptation Window

	6.2 MPI Extension Implementation
	6.2.1 MPI_INIT_ADAPT
	6.2.2 MPI_PROBE_ADAPT
	6.2.3 MPI_COMM_ADAPT_BEGIN
	6.2.4 MPI_COMM_ADAPT_COMMIT

	7 Elastic-Phase Oriented Programming (EPOP)
	7.1 Motivation for a Resource-Elastic Programming Model
	7.1.1 Identification of Serial and Parallel Phases in the Source Code
	7.1.2 Process Entry and Data Redistribution Locations

	7.2 The EPOP Programming Model
	7.2.1 Initialization, Rigid and Elastic-Phases (EPs)
	7.2.2 EPOP Programs and Branches
	7.2.3 Application Data

	7.3 Current Implementation
	7.3.1 Driver Program
	7.3.2 Program Element
	7.3.3 Program Structure

	7.4 Additional Benefits of the EPOP Model and Driver Programs

	8 Resource Management in High Performance Computing
	8.1 Resource Management in Shared Memory Systems
	8.2 Resource Management in Distributed Memory Systems
	8.2.1 Additional Requirements for the Scheduling of Elastic Jobs

	8.3 Simple Linux Utility for Resource Management (SLURM)
	8.3.1 Controller Daemon (SLURMCTLD)
	8.3.2 Node Daemon (SLURMD)

	9 Elastic Resource Manager
	9.1 Overview of the Integration with the Elastic MPI Library
	9.1.1 Rank to Process Mapping Strategy
	9.1.2 Support for Arbitrary Node Identification Orders

	9.2 Elastic Batch and Runtime Scheduler
	9.3 Node Daemons
	9.4 Launcher for Elastic Jobs

	10 Monitoring and Scheduling Infrastructure
	10.1 Theoretical Background on Multiprocessor Scheduling
	10.1.1 Problem Statement
	10.1.2 Computational Complexity
	10.1.3 Resource-Static Scheduling in Distributed Memory HPC Systems
	10.1.4 Modified Scheduling Problem for Resource-Elastic Execution

	10.2 Performance Monitoring Infrastructure
	10.2.1 Process-Local Pattern Detection and Performance Measurements
	10.2.2 Node-Local Reductions and Performance Data Updates
	10.2.3 Distributed Reductions and Performance Models
	10.2.4 EPOP Integration

	10.3 Elastic Schedulers
	10.3.1 Elastic Runtime Scheduler (ERS)
	10.3.2 Performance Model and Resource Range Vector (RRV)
	10.3.3 Elastic Backfilling

	11 Evaluation Setup
	11.1 Elastic Resource Manager Nesting in SuperMUC
	11.1.1 Phase 1 and Phase 2 Nodes
	11.1.2 MPI Library and Compilers Setup

	11.2 Testing and Measurement Binaries

	12 Elastic MPI Performance
	12.1 MPI_INIT_ADAPT
	12.2 MPI_PROBE_ADAPT
	12.3 MPI_COMM_ADAPT_BEGIN
	12.4 MPI_COMM_ADAPT_COMMIT

	13 Elastic Resource Manager Performance
	13.1 Tree Based Overlay Network (TBON) Latency
	13.2 Control Flow Graph (CFG) Detection Overhead
	13.2.1 Scaling with Control Flow Graph (CFG) Size
	13.2.2 Scaling with Process Counts

	13.3 MPI Performance Impact of the CFG Detection Overhead

	14 Case Studies with Distributed Memory Applications
	14.1 Cannon Matrix-Matrix Multiplication
	14.1.1 Basic and EPOP Implementations
	14.1.2 Pattern Detection
	14.1.3 Performance Analysis

	14.2 Gaussian Elimination
	14.2.1 Basic and EPOP Implementations
	14.2.2 Pattern Detection
	14.2.3 Performance Analysis

	14.3 Cannon Matrix-Matrix Multiplication and Gaussian Elimination Interaction
	14.3.1 Gaussian Elimination and Cannon Matrix-Matrix with 4096x4096 Matrices
	14.3.2 Gaussian Elimination and Cannon Matrix-Matrix with 1024x1024 Matrices
	14.3.3 Cannon Matrix-Matrix with 4096x4096 Matrices and Different Time Limits
	14.3.4 Upper and Lower MTCT Threshold Effects Summary

	14.4 Summary and Discussion

	15 Conclusion
	16 Future Work
	16.1 Elastic Message Passing
	16.2 Elastic Batch Scheduler (EBS)
	16.3 Elastic Resource Management

	Bibliography

