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A B S T R A C T

Magnetic Resonance Imaging (MRI) has become one of the most essen-
tial diagnostic imaging techniques, as it is capable of non-invasively
providing highly detailed anatomical and physiological information
of the human body. In clinical centers worldwide, MRI is the modal-
ity of choice when it comes to diagnosing tumors, neurodegenerative
disorders, and cardiac diseases, amongst others. Although MRI has
matured significantly since it was first developed, it still faces a funda-
mental challenge: the acquisition time. The nature of how MRI signals
are encoded for image formation, especially if designed to encode
quantitative parametric maps, leads to exceedingly long acquisitions
— sometimes beyond the scope for clinical acceptance.

This work focuses on developing novel methods to accelerate quan-
titative MRI. It builds on recent technological advances in image ac-
quisition and reconstruction, including Magnetic Resonance Finger-
printing (MRF), Compressed Sensing (CS), and Parallel Imaging (PI);
and combines them with machine learning techniques to achieve out-
comes in speed and accuracy previously unattainable with MRI. Im-
proved outcomes are demonstrated with scientific contributions in
three areas of quantitative MRI: hyperpolarized 13C metabolic imag-
ing in preclinical rodent models of cancer, motion encoding methods
to map diffusion and flow in vivo, and multiparametric mapping tech-
niques for fast, quantitative neuroimaging in the human brain.
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Z U S A M M E N FA S S U N G

Die Magnetresonanztomographie (MRT) hat sich zu einer der wich-
tigsten diagnostischen Bildgebungstechniken entwickelt, da sie in der
Lage ist, sehr detaillierte anatomische und physiologische Informa-
tionen des menschlichen Körpers nicht invasiv darzustellen. In klini-
schen Zentren weltweit ist die MRT die Modalität der Wahl, wenn es
u.a. um die Diagnose von Tumoren, neurodegenerativen Erkrankun-
gen und Herzerkrankungen geht. Obwohl die MRT seit ihrer ersten
Entwicklung deutlich gereift ist, steht sie immer noch vor einer grund-
sätzlichen Herausforderung: der Messzeit. Die Art, wie MRT-Signale
zur Bildgebung kodiert werden, insbesondere wenn sie für quantitati-
ve parametrische Karten konzipiert sind, führt zu langen Messzeiten,
die oft über den Umfang der klinischen Akzeptanz hinausgehen.

Diese Arbeit konzentriert sich auf die Entwicklung neuer Metho-
den zur Beschleunigung der quantitativen MRT. Sie baut auf den
neuesten technologischen Fortschritten in Bildgebung und Rekonstruk-
tion auf, wie Magnetic Resonance Fingerprinting, Compressed Sen-
sing und parallele Bildgebung, und kombiniert sie mit Machine Lear-
ning Techniken, um Ergebnisse in Geschwindigkeit und Genauigkeit
zu erreichen, die bisher mit MRT unerreichbar waren. Verbesserte Er-
gebnisse werden mit wissenschaftlichen Beiträgen in drei Bereichen
der quantitativen MRT präsentiert: hyperpolarisierte 13C metaboli-
sche Bildgebung im Kleintiermodell von Tumoren, Methoden zur Ko-
dierung von Bewegung, um Diffusion und Blutfluss in vivo zu messen,
sowie multiparametrische Quantifizierungstechniken für die Neuro-
bildgebung im menschlichen Gehirn.
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Part I

I N T R O D U C T I O N A N D S U M M A RY O F
C O N T R I B U T I O N S





1
I N T R O D U C T I O N

Magnetic Resonance Imaging (MRI) is a non-invasive imaging modal-
ity that enables the in vivo study of the structure and function of bio-
logical systems. MRI is made possible by the NMR effect, where its use
for imaging was introduced in 1973 by Lauterbur [52] and Mansfield
[57]. Since its inception, MRI has evolved into an unparalleled imaging
modality, with the ability of providing detailed and versatile informa-
tion of a tissue’s anatomy and physiology. The versatility behind MRI

can be attributed to the wide range of physical phenomena that in-
teract with resonant nuclei to affect the NMR signal. Among these,
the most commonly investigated interactions are chemical shift [2],
motion, such as molecular self-diffusion [76], and relaxation [10, 61].
Therefore, through precise calibration of Radiofrequency (RF) pulses
and magnetic gradients, one can manipulate spins of resonant nuclei
to produce signals weighted by one or more of these interactions. Thus,
different experiments with distinct acquisition parameters allow one
to create unique contrasts, providing critical information in clinical
settings [21].

Moreover, modern parameter mapping techniques enable one to
progress from qualitative images — i.e. the use of these physical inter-
actions to create imaging contrast — to quantitative maps, where the
phenomena themselves can be quantified. In this way, chemical shifts
can be taken advantage of to monitor metabolic activity in biologi-
cal tissues [11], motion encoding methods create information on the
three dimensional incoherent motion of water molecules [7], blood
perfusion [53], or blood flow [64], and relaxometry techniques pro-
vide quantitative maps of the Proton Density (PD), the longitudinal
relaxation time (T1) and the transverse relaxation time (T2) [23]. All
of these quantitative MRI techniques share a common goal: they aim at
generating quantitative image biomarkers that are both specific and
sensitive to pathology, increasing the accuracy and reproducibility of
diagnostic information [79].

As they share a common goal, quantitative MRI techniques also
share a common drawback: they are inherently slow techniques, for
they require multiple samples along different encoding dimensions
to resolve and accurately estimate quantitative metrics. With increas-
ing acquisition times, these techniques become more susceptible to
motion-related artifacts, including voluntary (e.g. head movement)
and involuntary (e.g. cardiac pulsations, breathing, brain pulsations)
motion. Also, mapping methods generally need to sacrifice Signal to
Noise Ratio (SNR) or resolution in favor of faster measurements to re-

3



4 introduction

main within the scope of clinical usability. Therefore, as accelerating
MRI in general has long been a research objective of the field [42, 75];
accelerating quantitative MRI is the specific goal of this work.

1.1 introduction to nmr imaging

The NMR effect, which was first observed by Rabi in gases in 1938 [69],
and later shown for solids independently by Bloch [10] and Purcell
[68] in 1946, is the fundamental principle that makes MRI possible.
The NMR effect states that atomic nuclei that have a non-zero spin (1H,
for example), when exposed to a strong magnetic field, will precess at
a frequency ω0 that is directly proportional to the applied magnetic
field B0 and a known constant unique to every nucleus, called the
gyromagnetic ratio γ [17]. The resonance frequency, also called the
Larmor precession frequency, is defined as1:

ω0 = γB0. (1)

When a biological sample is exposed to a magnetic field, its precess-
ing nuclei will with a Boltzmann distribution, where the spins with
parallel alignment will exceed the spins in anti-parallel alignment
only by a small fraction [12]. Nonetheless, a biological sample con-
tains millions of precessing nuclei, allowing for the formation of a
bulk magnetization vector M = [Mx My Mz]

> that behaves accord-
ing to the Bloch equations:

∂M
∂t

= γM×B −

(
Mxî +Mzĵ

)

T2
−

(Mz −M0,z) k̂
T1

. (2)

In Eq. 2, B is the total magnetic field, M0,z is the longitudinal com-
ponent of the equilibrium magnetization vector M0, î, ĵ, k̂ are unit
directional vectors in the x, y, and z direction, and T1 and T2 are
the longitudinal and transversal relaxation times, respectively. The
amplitude of M0 is related to the PD of a sample, while T1 and T2
relaxation times are tissue specific. Therefore, these three properties
currently constitute the main imaging contrasts for structural MRI.

If B = B0, the bulk magnetization will remain in its equilibrium
value oriented along the longitudinal direction k̂. However, by apply-
ing a second magnetic field B1 in the form of a RF pulse such that

B(t) = B0 + B1(t) (3)

1 This section follows the notation, and is a brief account of the concepts introduced in
Chapters 1,9, and 10 of [12]. For a more comprehensive introduction to NMR imaging,
see [12, 15, 89].
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the bulk magnetization vector can be excited and tipped into the
transversal xi−yj plane. To achieve this excitation, the B1 pulse must
have a frequency equal to the Larmor frequency defined in Eq. 1. Af-
ter excitation, the magnetization in the transversal plane will expo-
nentially decay according to:

M⊥(t) =Mxy(0)e
−iω0te

− t
T2 , (4)

while the magnetization in the longitudinal plane will gradually re-
turn to its thermal equilibrium:

Mz(t) =Mz(0)e
− t
T1 +M0,z(1− e

− t
T1 ). (5)

By introducing RF receiving coils in the perpendicular xi − yj plane,
and as the magnetization returns to thermal equilibrium, changes in
the magnetic flux will induce a current through the receiving coils.
The measurement of this current is the principal behind the NMR ex-
periment, where serial applications of B1 pulses (generally referred
to as a pulse sequence), produce signals that are a function of differ-
ent parameters, including PD, T1, and T2. Hence, the only ingredient
missing to create images from NMR measurements is the ability to
spatially resolve different signals. This can be achieved by the use of
magnetic gradients, as described in Lauterbur’s seminal paper [52].

Let Gz = ∂Bz/∂z represent a spatially constant gradient in the z-
direction. It follows, that the z-component of the field is

Bz(z, t) = B0,z + zG(t) (6)

and per Eq. 1, the variation of the angular frequency of the spins

ω(z, t) = ω0 +ωG(z, t), (7)

where

ωG(z, t) = γzG(t). (8)

From Eq. 8, one can derive that spins will deviate from the Larmor
frequency linearly in both z and G. That is, it is possible to use a
gradient to establish a link between the spatial position of spins with
their precessional frequency, a term referred to as frequency encoding.

The applied gradient will also introduce a phase accumulation of
the spins

φG(z, t) = −γz

∫t
0

dtG(t). (9)
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Let

ρ(z) ∝M⊥(z, TE) (10)

be a factor proportional the spatially varying transverse magnetiza-
tion M⊥(z, TE) at the time of data collection, or echo time, TE. This
factor, depending on the pulse sequence, can also be a proxy for the
spatially varying spin density of the samples ρ(z). Thereafter, the sig-
nal acquired by the RF coils, once the ω0 frequency has been demod-
ulated, is determined by

y(t) =

∫
dzρ(z)eiφG(z,t), (11)

where the phase φG(z, t) is determined by the introduced gradient
field. It is also possible to rewrite the spatial dependence on the ac-
cumulated phase (Eq. 9) as a function of a spatial frequency k = k(t),
with

k(t) = −γ

∫t
0

dtG(t). (12)

Equation 11 now becomes

y(k) =

∫
dzρ(z)e−i2πkz, (13)

where it can be seen that the measured signal y(k) is the Fourier
Transform of the spatial distribution ρ(z). Therefore, ρ(z) of any sam-
ple can be determined by taking the inverse Fourier transform of the
acquired signal:

ρ(z) =

∫
dky(k)e+i2πkz. (14)

The Fourier relationship between the acquired signal and the spa-
tial spin distribution introduced by magnetic gradients is the key
principle that enables imaging (i.e. the reconstruction of 2D and 3D
signals). To create an image, the concept of the spatial frequency,
also called k-space, needs to be extended into higher dimensions
k = [kx ky kz]

>. Thereafter, the spatial spin distribution in a three-
dimensional position space r = [rx ry rz]

> is given by

ρ(r) =
∫

k
y(k)e+i2πkr, (15)

and likewise, the acquired k-space signal determined by the Fourier
pair

y(k) =
∫

r
ρ(r)e−i2πkr. (16)
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An important point in the above equations is that the spatial func-
tion ρ(r), as described in Eq. 10, is not a measure of the density of the
protons in the classical sense (number of protons per unit volume),
but rather a measure of the transverse magnetization M⊥(r), which
in its simplest form depends on the T2 decay and the amount of ini-
tial transverse magnetization available after RF excitation (Eq. 4) — a
factor that in turn is a function of the actual PD and T1 recovery (Eq.
5). In its more complex form, any physical phenomenon that directly
or indirectly affects the magnetization vector will manifest itself in
the resulting reconstructed image ρ(r).

Consequently, MRI pulse sequences generally have two purposes: to
manipulate the magnetization vector at the time of signal collection to
produce contrasts that are a function of different parameters, and to
collect enough samples in k-space to reconstruct uncorrupted images.
The first purpose, contrast weighting, can be extended to parameter
quantification within the field of quantitative MRI (Sect. 1.2). The sec-
ond purpose, k-space sampling, is related to the Nyquist limit, and
is one of the most limiting factors behind scanning speed. Relevant
acceleration techniques and their applications in quantitative MRI are
discussed in Sect. 2.2.

1.2 quantitative mri

Quantitative MRI refers to the collection of techniques used to quan-
tify physical phenomena that affect the NMR signal. Quantitative MRI

techniques rely on the same image encoding principles introduced in
Sect. 1.1, and can be generalized by modifying Eq. 16 to incorporate
a temporal dependence to the k-space samples

y(k, t) =
∫

r
ρ(r)ft(r)e−i2πk(t)·r. (17)

Here, the observed signal in k-t space is described as the combination
of the spatial distribution of spin densities ρ(r) with a temporally
varying function ft(r), which in turn is a function of two parameter
sets:

ft(r) = g(η(t); θ(r)). (18)

In Eq. 18, η(t) refers to temporally varying acquisition parameters,
such as flip angle or repetition time, which can be manipulated to
encode for θ(r), the spatially varying tissue-specific parameters of in-
terest, including T1(r) and T2(r). Finally, g(·) is the encoding function
which links η with θ. Therefore the task of quantitative MRI is three-
fold:
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1. Create the encoding function g(·) and design the corresponding
acquisition parameters η such that observed NMR signals are
sensitive to relevant quantitative parameters θ.

2. Develop and implement k-t sampling schemes that efficiently
sample the measurement space.

3. Reconstruct signals to produce voxel-wise estimates of θ, and
hence, quantitative parametric maps.

In the following, a brief overview of three quantitative MRI tech-
niques will be given: hyperpolarized 13C metabolic NMR, motion en-
coding techniques, and multiparametric mapping techniques, such as
Magnetic Resonance Fingerprinting (MRF). An extensive treatment of
other quantitative MRI techniques can be found in [79].

1.2.1 Hyperpolarized 13C metabolic NMR

Hyperpolarized 13C metabolic NMR is a spectroscopic imaging method
that relies on the chemical shift of compounds to study the metabolism
of tissue in vivo. Whereas most NMR techniques measure the magnetic
moment produced by protons (1H), hyperpolarization techniques en-
able imaging of multiple nuclei, such as 15N and 13C [31]. This was
only made possible by the development of Dynamic Nuclear Polar-
ization (DNP), which lead to a 10, 000-fold increase in sensitivity of
nuclear spins [1]. By combining DNP with subsequent fast encoding
techniques, studies of e.g. cancer metabolism [51], how now become
feasible in vivo.

The experimental design of hyperpolarized 13C measurements starts
with the DNP of a particular substance, for example [1−13C]pyruvate,
subsequent rapid dissolution, and injection into a biological speci-
men [50]. After injection, efficient spectro-spatial encoding techniques
[93] allow for the collection of 5-dimensional signals: 3D spatial, 1D
spectroscopic, and 1D temporal. The kinetics of the temporal signals
for every metabolite seen in the spectrum can be quantified to yield
metabolic exchange rates, as investigated in [32]. The modeling of
these temporal signals is determined by the system of differential
equations

dMp(t)
dt = −rpMp(t) −

∑
x kp→xMp(t)

+
∑
x kx→pMx(t) + Ip(t)

dMx(t)
dt = −rxMx(t) + kp→xMp(t) − kx→pMx(t),

(19)

where Mp(t) refers to the magnetization signal over time of the in-
jected substance with an injection function over time determined by
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Ip(t), Mx(t) is the magnetization over time of downstream metabo-
lites, kp→x and kx→p are forward and backward exchange rates, and
rx refers to signal a decay term

rx =
1

T1,x
+ kx→p + f(α) (20)

with

f(α) =
1− cos(α)

TR
. (21)

Here, α is the flip angle and TR the repetition time. Hence, follow-
ing the notation introduced in Sect. 1.2, Eq. 19 is the encoding func-
tion g(·), and the acquisition parameters η = {Ip(t),α, TR} need to be
selected such that they enable the quantification of the parameters
θ = {T1,x,kp→x,kx→p}.

1.2.2 Motion encoding techniques

Spins inside a biological tissue are not static: they diffuse with Brow-
nian motion, flow inside blood vessels, disperse with brain pulsation
or move rigidly with the rest of the body. Since motion results in spa-
tial shifts of the spin distribution, it directly affects the NMR signal.
This also means that appropriate acquisition schemes are capable of
encoding for and quantifying motion and motion-related properties.
This work focuses on two motion encoding techniques: diffusion and
perfusion.

1.2.2.1 Diffusion

Diffusion Weighted Imaging (DWI) is made possible by incorporat-
ing magnetic field gradients into a spin echo experiment, as demon-
strated by Stejskal and Tanner [76]. The presence of these gradients
will cause signal loss with respect to a baseline signal proportional
to the amount of diffusion of a particular tissue. Since the Stejskal-
Tanner experiment, modeling the signal loss caused by diffusion has
been a relevant subject of study: Diffusion Tensor Imaging (DTI) was
the first attempt to capture the spatial diffusion anisotropy via a ten-
sor model [7], followed by multiple acquisition techniques — such as
Diffusion Kurtosis Imaging (DKI) [47] and Diffusion Spectrum Imag-
ing (DSI) [81] — and biophysical models that attempt to reflect the
underlying tissue architecture. Examples of choices for biophysical
models for diffusion are collected elswhere [3, 4, 63, 80].
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All of these techniques rely on an exponential signal loss caused by
diffusion. Using the tensor as an example, the signal loss is given by

E (b) =
S (b)

S (0)
= e−bD, (22)

where S (0) denotes the baseline signal acquired with no diffusion
weighting, D ∈ R3x3 is a second order diffusion tensor

D =



Dxx Dyx Dzx

Dxy Dyy Dzy

Dxz Dyz Dzz


 (23)

and the b-value groups all of the relevant terms to the diffusion ex-
periment:

b = (2π)2
(
∆−

δ

3

)
‖q‖2 . (24)

In Eq. 24, δ is the duration of the gradient, ∆ is the mixing time, and
q is as a wave vector

q =
γ

2π
gδ (25)

that is a function of the directional gradient g = [gx gy gz]
>. Af-

ter computing the diffusion tensor, it can an be decomposed into its
Eigenvectors and Eigenvalues

D = EΛET, (26)

where E are the Eigenvectors in matrix form and the i-th Eigenvalue
λi is in the i-th element of the diagonal of the matrix Λ:

λ = diag (Λ) . (27)

From the Eigenvalue decomposition of the diffusion tensor, multiple
scalar metrics can be computed. For instance, the Mean Diffusivity
(MD)

MD = D̄ = λ̄ =
1

3

3∑
i=1

λi, (28)

the Axial Diffusivity (AD)

AD = D‖ = λ‖ = λ1, (29)
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the Radial Diffusivity (RD)

RD = D⊥ = λ⊥ =
λ2 + λ3
2

(30)

or the Fractional Anisotropy (FA)

FA =

√
3

2

√√√√
∑3
i=1

(
λi − λ̄

)2∑3
i=1 λ

2
i

. (31)

As before, diffusion techniques share a common framework with
the presented quantitative MRI notation from Sect. 1.2. Equation 22

acts as an encoding function g(·), where the acquisition parameters
collected in the b-value η = b are manipulated to quantify the tensor
θ = D and its derived metrics. This notation also holds for different
acquisition schemes and more complex diffusion models.

1.2.2.2 Perfusion

Perfusion imaging in the form of Dynamic Susceptibility Contrast
(DSC) relies on the magnetic susceptibility effects caused by the injec-
tion of a bolus of paramagnetic agents [20, 88]. In a similar manner
to the DNP experiments previously described, accelerated acquisition
schemes combined with advanced reconstruction techniques create
a 4-dimensional signal (3D spatial plus 1D temporal) over which
the kinetics of the injected bolus can be modeled. From the kinetic
modeling, quantitative metrics such as the Cerebral Blood Flow (CBF),
Cerebral Blood Volume (CBV), or the Mean Transit Time (MTT) can be
computed.

1.2.3 Multiparametric mapping

Parameter mapping techniques offer quantitative measurements of in-
trinsic tissue properties, such as the relaxation times T1 and T2. These
techniques suffer also from the main limitation of quantitative MRI:
long acquisition times.

To overcome this limitation, multiple rapid parameter mapping
techniques have been proposed. These techniques generally make use
of sparse sampling with iterative reconstructions [8, 9, 26, 46, 65, 77,
99, 100], fast imaging protocols [24, 28, 56, 73, 90], or a combination
of both [65, 86]. The first class of methods aims at reconstructing
undersampled measurements by using lower dimensional signal or
image models as constraints. Typical constraints include the incorpo-
ration of simulations of expected signal evolutions for model-based
reconstructions [8, 77]; sparsity in a transform domain, e.g. wavelets
[86], finite differences [97], or data-driven transforms [9, 26]; and Low
Rank (LR) constraints [46, 100].
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The second class of methods uses pulse sequences to accelerate
data acquisition. Interestingly, most of these methods rely on varia-
tions of the Steady-state Free Precession (SSFP) sequence, which pre-
cedes the imaging era [17]. One alternative is to use an unbalanced
SSFP for T1 mapping and then combine it with a balanced SSFP for
T2 estimation [24]. Another alternative is to prepare the magnetiza-
tion to sensitize the SSFP train to multiple contrasts. For example, one
could combine an unbalanced SSFP with a saturation recovery experi-
ment for estimation of T1,T∗2 , and PD [90], or use an inversion recovery
balanced SSFP for quantification T1, T2, and PD [28, 73].

One of the most novel mapping methods, MRF [56], also relies on
an inversion recovery SSFP-like sequence structure (in both its bal-
anced [5, 56] and unbalanced [48] versions) for multiparametric map-
ping, but with two important distinctions: 1) it avoids the steady-state
by pseudorandom variations of the acquisition parameters and 2) it
subsequently estimates parameter maps by matching the acquired
transient-state signals, or so-called fingerprints, to a precomputed dic-
tionary of all foreseeable parameter combinations. With these two dif-
ferences, pseudorandom acquisitions and dictionary matching, MRF

achieves efficient relaxation mapping and sets itself apart from the
rest of the methods.

Moreover, it is possible to incorporate iterative reconstruction algo-
rithms to MRF acquisitions. Davies et al. proposed the use of iterative
projections [22], which can be extended to multiscale reconstructions
[66], accelerated with data compression and fast parameter searches
[18], or coupled with a spatiotemporal dictionary learnt from data
[35]. Zhao et al. made use of the Alternating Direction Method of
Multipliers (ADMM) to estimate parameters in a statistical framework
[99]. The ADMM algorithm is also suitable to incorporate additional
low dimensional constraints, for example, LR constraints [6] or LR

with spatial regularization [98]. By incorporating iterative reconstruc-
tions to MRF one can reduce acquisition times, increasing scan effi-
ciency. Additionally, it has been demonstrated that MRF acquisitions
can be used to eliminate artifacts caused by RF field inhomogeneities
through an estimation of B1 maps together with relaxation maps [13,
19]. Based on the above, MRF has become a highly appealing method,
with the potential to enable robust, fully quantitative parametric map-
ping within clinical settings.

Despite its potential, MRF could still benefit from methodological
improvements in both its key ideas. First, although incoherent sam-
pling schemes are a requirement for Compressed Sensing (CS) [55],
there is no theoretical justification to extend this concept to pseudo-
random acquisitions. In fact, there is a whole body of literature on the
subject of transient-state signal response characterization and modifi-
cation to fulfill certain criteria [25, 29, 44, 74, 94]. Second, creating a
dictionary for all possible parameter combinations and matching by



1.3 outline and contribution of this thesis 13

searching over the simulated space has certain drawbacks: 1) an ex-
haustive search over the entire parameter space is suboptimal; 2) the
number of combinations in the dictionary scales exponentially with
the dimensionality of the parameter space, which could result in in-
feasible dictionary sizes even for modest spaces; 3) pattern matching
with cross product requires vector normalization, leading to the loss
of magnitude information and possible confounding between finger-
prints; and 4) the estimated parametric maps will always be subject
to the discretization of the dictionary. The last point implies, on the
one hand, that a coarsely sampled dictionary is subject to estimation
errors of up to half the distance between dictionary atoms, and on the
other hand, that a densely sampled dictionary will increase memory
requirements and search times.

This thesis proposes methodological improvements to MRF through
various works concerning learning a spatiotemporal dictionary (Sect.
5.1.2), creating novel parameter maps (Sect. 5.1.3), and proposing a
robust and efficient alternative, termed Quantitative Transient-state
Imaging (QTI) (Appendix A.1.1). The methodology behind these works
is covered in Sect. 2.

1.3 outline and contribution of this thesis

The rest of this thesis is structured as follows. Chapter 2 covers the
most relevant methodology to the presented publications, beginning
with signal encoding and modeling for image formation (Sect. 2.3),
followed by data acquisition (Sect. 2.2), image reconstruction (Sect.
2.3), parameter estimation (Sect. 2.4) and anatomical labeling (Sect.
2.5). Subsequently, a chapter with a summary and each of the rele-
vant publications — the main contribution of this thesis — is dedi-
cated for each of the quantitative MRI categories that have just been
introduced: hyperpolarized 13C metabolic NMR (Chapter 3), motion
encoding techniques (Chapter 4), and multiparametric mapping tech-
niques (Chapter 5). Chapter 6 provides a discussion of the presented
methods, whereas Chapter 7 offers conclusions and an outlook to the
future. Finally, Appendix A contains manuscripts in preparation or
peer-review at the moment of submission of this dissertation.





2
M E T H O D O L O G Y

2.1 signal encoding and modeling

As introduced in Sect. 1.2, in an MRI acquisition spanning multiple
repetitions the observed signal y(k, t) at a given time t can be de-
scribed by a mixture of a spatial spin distribution, usually referred to
as spin density, with a temporally varying function:

y(k, t) =
∫

r
ρ(r)ft(r)e−i2πk(t)·r, (32)

where ρ(r) is the complex-valued spatial distribution of spins, i.e. the
PD, at position r, k(t) is the k-space trajectory, and ft(·) is the temporal
signal, which cab be modified from Eq. 18 to create the recursion:

ft(r) = ft−1g(η(t); θ(r)). (33)

In Eq. 33, the value of the function at time t is determined by the
value of the function at time t − 1 modulated by the operator g(·),
which in turn depends on two sets of parameters: the temporally vary-
ing acquisition parameters η(t), such as the flip angle α(t), repetition
time TR(t), and echo time TE(t); and the spatially dependent biophys-
ical parameters of interest θ(r), including the relaxation times T1(r)
and T2(r). The operator g(·) captures alterations to the spin dynam-
ics given by phenomena such as RF excitation, relaxation, or gradient
dephasing and can be simulated with Bloch simulators or Extended
Phase Graphs (EPG) [45, 91, 92]. Furthermore, the formulation of Eq.
33 allows for the incorporation of system imperfections, such as B1
inhomogeneities, by either including a spatial dependence in the ac-
quisition parameters η(t, r) or by modeling them as an additional
spatial parameter in θ(r).

Traditionally, SSFP experiments maintain acquisition parameters con-
stant through time to reach a steady-state. In these experiments, the
transient-state signal is discarded, and is only characterized in an ef-
fort to minimize it [44]. Once in the steady-state, ft(·) can be reduced
to a well-described, time invariant analytical expression [17], result-
ing in simplified signal modeling with consistent signal intensity in
all of the imaging encoding steps. In the transient-state, as the name
suggests, the signal changes with every repetition. And while this
introduces an extra degree of complexity, full analytical descriptions
have been demonstrated for multiple transient-state signals [29, 44,

15
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71]. Also, one could define an initial magnetization at t = 0 (one
generally assumes the entire magnetization is in longitudinal ther-
mal equilibrium prior to the first RF excitation) and follow Eq. 33

recursively to derive a simulated signal evolution for any given set
of acquisition parameters. The ability to make use of simulations to
predict different signal evolutions removes constraints on the choice
of acquisition parameters, creating ample possibilities for sequence
design.

Amongst these possibilities, MRF originally proposed arbitrary and
random patterns of η(t) to create ft(·) [56]. Subsequently, Jiang et
al. replaced random flip angles with a sinusoidally varying pattern
to create smooth transient responses [48]. More elaborate choices of
η(t) can include rapid flip angle variations [13] or orthogonal coil
configurations [19] to incorporate B1 mapping into parameter estima-
tion. Simpler alternatives for η(t) include constant repetition times
with variable flip angles [94] or linear ramps [25]. The latter idea,
acquiring data during a linear ramp-up, results in smooth transient-
state signals with an accelerated acquisition. Alternative methods for
finding the optimal acquisition parameters include the use of design
frameworks, such as Bayesian experimental design [40, 62, 87].

Irrespective of the final form of ft(·), image encoding can be formu-
lated to account for both the temporal spin dynamics and the Fourier
relationship of the spatial signal [78]. Let

xt(r) = ρ(r)ft(r;η(t); θ(r)) (34)

represent the acquired image at the t-th time point at voxel r. The
entire image xt ∈ CN for N voxels is related to the acquired data

yt ∈ CM

with M measurements by

yt = Etxt (35)

with the encoding operator

Et = UtFS ∈ CM×N. (36)

The encoding operator acts on every temporal image independently,
where xt is multiplied by the coil sensitivities S, Fourier transformed
with F, and masked by the sampling trajectory Ut of the t-th time
point. This model can be extended into k-t space encoding by taking
the entire image series X ∈ CT×N for T time points and N voxels. In
this representation, the encoding operator in k-t space is Et = UFS,
with X now determined by

Y = EX. (37)
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Image reconstruction can now be formulated as in inverse problem

X̂ = E∗Y, (38)

where E∗ represents the Hermitian encoding operator. This inverse
problem can also be solved with iterative algorithms that incorporate
lower dimensional constraints, as is described in Sect. 2.3

2.2 accelerated data acquisition

Data acquisition refers to the strategies for exciting spins and collect-
ing k-space samples in k-t space. Amongst these, fast pulse sequences
such as Fast Low-Angle Shot Imaging (FLASH) [42] and SSFP [17],
alongside fast readout schemes, including Echo-planar Imaging (EPI)
[75], were crucial to the development and widespread commercializa-
tion of MRI scanners. Nonetheless, fast pulse sequences and readout
schemes still need to collect samples at the Nyquist frequency in or-
der to reconstruct images with no artifacts.

With the introduction of the modern acceleration techniques Paral-
lel Imaging (PI) and CS, it is possible to overcome the Nyquist limit.
PI is built on the observation that receiver coils have a spatial en-
coding effect, yielding speed-up factors proportional to the number
of additional coils incorporated into the scanner [41, 67, 82]. CS ex-
ploits structure and redundancy present in NMR images to further
accelerated scans [16, 27, 55]. Both of these techniques can be used
in conjunction to recover full images from highly undersampled mea-
surements, as shown in Eq. 41: PI considers data from multiple coils
in the coil sensitivity operator S and the number of measurements is
generally far less than the number of voxels M � N, thus requiring
iterative reconstruction algorithms that incorporate prior information
to regularize the ill-posed problem.

2.3 image reconstruction with prior information

Let

dl = ρlf(η; θl) ∈ CT , (39)

represent the mapping of known acquisition parameters η and a set
of biological parameters θl = {T1, T2} to a T -dimensional transient-
state signal dl ∈ CT , where ρl represents a complex scaling factor. By
considering an ensemble of L parameter combinations, it is possible
to use Eq. 39 to compute a dictionary D ∈ CT×L of multiple signal
evolutions.

The exponential nature of the Bloch equations, which govern the
dynamics of transient-state signals, indicate that there is a smooth
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dependence of the signals in D with respect to θ. That is, small vari-
ations over θ will result in smooth signal changes of f(·). This signi-
fies that signal evolutions of continuously sampled parameter com-
binations exhibit a high level of correlation. While this high level of
correlation may be prohibitive to denoting each signal evolution in
the dictionary as unique, one could still exploit it to create a low-
dimensional temporal subspace. In the context of MRF, this idea has
previously been used to compress the dictionary to less temporal co-
efficients via Singular Value Decomposition (SVD) [58] and recently
paired with iterative reconstructions to constrain signal evolutions to
a lower-dimensional subspace [6, 98]. Reconstruction with a temporal
subspace can be achieved as follows.

Let Φ ∈ CT×T denote an orthonormal temporal basis obtained
with Principal Component Analysis (PCA) such that D = ΦΦ∗D . A
LR approximation of the temporal basis ΦK ∈ CT×K can be obtained
by truncating Φ to its first K temporal coefficients, with K � T . One
can project the image series X onto the temporal subspace by

Z =Φ∗KX ∈ CK×N. (40)

Thus, by incorporating ΦK into the encoding operator

EK = UFSΦK (41)

it is possible to rewrite Eq. 37 as a function of Z

Y = EKZ. (42)

It follows, that Eq. 38 can be re-formulated as a standard regularized
reconstruction

Ẑ = arg min
Z

‖EKZ − Y‖+ R(Z), (43)

where the first term is the data fidelity term and the second term R(·)
is the regularization term, corresponding to a local LR operator that
acts on spatiotemporal image patches [35, 78, 83]. Equation 43 is read-
ily solved with multiple iterative algorithms, such as the ADMM. In
fact, most iterative reconstruction algorithms presented in this thesis
present a similar two-term formulation, with the choice of regulariza-
tion term and solver being the key difference amongst them. After
solving for Ẑ, one can estimate the image series by projecting back
into the full temporal domain:

X̂ =ΦKẐ. (44)
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2.4 parameter estimation

The final goal of quantitative MRI is to provide a voxel-wise estimate
of the parameters θn n = 1, ..,N. As Eq. 33 establishes a forward
model that predicts potential signal evolutions, a cost function can be
defined and for every voxel in the reconstructed image series, solve
Eq. 39 in a Non-Linear Least Squares (NLLS) sense

{ρ̂n, θ̂n} = arg min
{ρn,θn}

‖x̂n − ρnf(η; θn)‖22 . (45)

Note that this departs from the dictionary matching approach pro-
posed by MRF. In dictionary matching, a closest matching dictionary
entry l̂ is found by correlation

l̂ = arg max
l

< x̂n, dl >
‖x̂n‖2 ‖dl‖2

(46)

where the parametric maps of the corresponding entry are directly
assigned to the voxel in question θ̂n = θl̂ and the density ρn is de-
termined by the scaling factor between x̂n and dl. This means that
the resulting maps will necessarily be one of the L dictionary sam-
ples. Furthermore, the denominator in Eq. 46 shows that matching
by correlation requires vector normalization. By doing so, magnitude
information is lost, left only with directionality. Thus, if parameters
in θn are encoded into the vectors magnitude, this encoding will be
lost in the process of matching to the dictionary. This could signify
that the selected entry might be confounded with other signals, af-
fecting the matching procedure. Conversely, Eq. 45 is not subject to
the discretization of and does not require vector normalization for
parameter estimation.

Another alternative to parameter estimation is to rely on Bayesian
inference methods to compute the posterior Probability Density Func-
tion (PDF) of the parameters θn given the data and the model. For
instance, the high-performance computing framework Π4U [43] uses
Transitional Markov Chain Monte Carlo (TMCMC) sampling to achieve
this. The posterior PDF p(θn|xn, ft(·)) of the parameters given the re-
constructed data xn and our signal model ft(·):

p(θn|xn, ft(·)) =
p(xn, |θn, ft(·))π(θn)

p(xn|ft(·)
. (47)

In Eq. 47, p(xn, |θn, ft(·)) is the likelihood of observing the data from
the model, π(θn) is the prior, and p(xn|ft(·) is the evidence of the
model. From the posterior PDF, it is possible to compute the Maximum
Likelihood (ML) of each of the parameters in the model, leading again
to a voxel-wise parameter estimation and, consequently, parametric
maps.
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2.5 anatomical labeling

Thus far, all shown examples have presented an encoding function
to link acquisition parameters with quantitative parameters of inter-
est. However, multiple medical imaging applications do not rely on
the quantification of physical parameters, but on the discrete labeling
of different tissue classes. For instance, one might be interested in
segmenting the brain into typically observed healthy tissue, such as:
Gray Matter (GM), White Matter (WM), Cerebrospinal Fluid (CSF), and
Blood Vessels (BV); or into segmenting brain tumors into important
regions [59].

In a way, anatomical labels are also quantitative maps — they are
voxel-wise estimates that provide information on the underlying tis-
sue characteristics. However, anatomical labels generally lack an en-
coding function that links the acquired data to the corresponding
label. Therefore, machine learning based approaches acquire impor-
tance to learn the mapping from input data to output labels. Through-
out the next chapters, multiple examples are shown on how ma-
chine learning techniques can be incorporated into quantitative MRI

pipelines to simultaneously produce quantitative maps and anatomi-
cal labels from the same dataset.
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3
S T U D Y I N G M E TA B O L I S M W I T H H Y P E R P O L A R I Z E D
13C N M R

3.1 peer-reviewed publications

This chapter contains two publications in the area of hyperpolarized
13C NMR. In Multisite Kinetic Modeling of 13C Metabolic MR Us-
ing [1-13C]Pyruvate we develop, compare and validate an alternative
model to evaluate dynamic time curves of spectroscopic data. Hy-
perpolarized 13C Metabolic Magnetic Resonance Spectroscopy and
Imaging provides a scientific overview of the methodology required
to accurately conduct 13C Magnetic Resonance Spectroscopic Imag-
ing (MRSI) experiments with DNP, including the kinetic modeling of
the injection bolus and its downstream metabolites.

23
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13c nmr

3.1.1 Multisite Kinetic Modeling of 13CMetabolic MR Using [1-13C]Pyruvate

Peer-reviewed Journal Paper

Authors: PA. Gómez, JI. Sperl, MA. Janich, O. Khegai, F. Wiesinger,
SJ. Glaser, A. Haase, M. Schwaiger, R. Schulte, MI. Menzel

In: Radiology Research and Practice 871619 (2014), p. 10 [32]

Abstract: Hyperpolarized 13C imaging allows real-time in vivo mea-
surements of metabolite levels. Quantification of metabolite conver-
sion between [1−13C]pyruvate and its downstream metabolites [1−13

C]alanine, [1−13C]lactate, and [13C]bicarbonate can be achieved with
kinetic modeling. Since pyruvate interacts dynamically and simulta-
neously with its downstream metabolites, the purpose of this work is
the determination of parameter values through a multisite, dynamic
model involving possible biochemical pathways present in MR spec-
troscopy. Kinetic modeling parameters were determined by fitting the
multisite model to time-domain dynamic metabolite data. The results
for different pyruvate doses were compared with those of different
two-site models to evaluate the hypothesis that for identical data
the uncertainty of a model and the signal-to-noise ratio determine
the sensitivity in detecting small physiological differences in the tar-
get metabolism. In comparison to the two-site exchange models, the
multisite model yielded metabolic conversion rates with smaller bias
and smaller standard deviation, as demonstrated in simulations with
different signal-to-noise ratio. Pyruvate dose effects observed previ-
ously were confirmed and quantified through metabolic conversion
rate values. Parameter interdependency allowed an accurate quantifi-
cation and can therefore be useful for monitoring metabolic activity
in different tissues.

Contribution of thesis author: Model development and implementa-
tion, experimental analysis, manuscript preparation and editing.
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Hyperpolarized 13C imaging allows real-time in vivo measurements of metabolite levels. Quantification of metabolite conversion
between [1-13C]pyruvate and downstreammetabolites [1-13C]alanine, [1-13C]lactate, and [13C]bicarbonate can be achieved through
kinetic modeling. Since pyruvate interacts dynamically and simultaneously with its downstream metabolites, the purpose of this
work is the determination of parameter values through a multisite, dynamic model involving possible biochemical pathways
present inMR spectroscopy. Kinetic modeling parameters were determined by fitting the multisite model to time-domain dynamic
metabolite data. The results for different pyruvate doses were compared with those of different two-site models to evaluate the
hypothesis that for identical data the uncertainty of a model and the signal-to-noise ratio determine the sensitivity in detecting
small physiological differences in the targetmetabolism. In comparison to the two-site exchangemodels, themultisitemodel yielded
metabolic conversion rates with smaller bias and smaller standard deviation, as demonstrated in simulations with different signal-
to-noise ratio. Pyruvate dose effects observed previously were confirmed and quantified through metabolic conversion rate values.
Parameter interdependency allowed an accurate quantification and can therefore be useful for monitoring metabolic activity in
different tissues.

1. Introduction

While 13Cmagnetic resonance spectroscopy (MRS) has been
utilized for in vivo imaging and spectroscopy of metabolism
[1] for a long time, only the development of dynamic nuclear
polarization (DNP) helped to overcome the inherent sensitiv-
ity limit; as through hyperpolarization using DNP followed
by rapid dissolution, the 13C MR signal can be amplified by
more than 10,000-fold [2].

One of the most common and viable agents for in vivo
use is [1-13C]pyruvate (PYR) [3]. After intravenous injection,
it is transported to the observed tissue or organ under

observation, where it is enzymatically metabolized to its
downstream metabolites [1-13C]alanine (ALA) by alanine
transaminase (ALT), [1-13C]lactate (LAC) by lactate dehy-
drogenase (LDH), and [13C]bicarbonate (BC) by pyruvate
dehydrogenase (PDH) to varying extent, depending on tissue
type and predominant metabolic activity. At the same time
PYR is in chemical exchange with [1-13C]pyruvate-hydrate
(PYRH). As part of gluconeogenesis, PYR may also be car-
boxylated to oxaloacetate [4].

In order to quantify themetabolic exchange between PYR
and its downstream metabolites, MRS data acquired over a
certain time period after injection first require assignment of
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spectral peaks [5] in the spectral domain and second require
quantification of these peaks over time. Several different
methods have been used for this time-domain analysis, and
among these the most simple and robust method is the
determination of metabolite signal ratios. These ratios are
usually obtained from the peak metabolite signals [6] or
through integrating over time [5]. The latter approach has
been employed in our previous study, conducted by Janich
et al. [5], where hyperpolarized PYR spectra were quantified
for different PYR doses and subsequently used to determine
the dose effects on Wistar rats based on time integrated
metabolite signal ratios.

Although the approach of obtaining relative metabolite
signal ratios, LAC to PYR or ALA to PYR, is straightforward
and robust, independently if obtained from peak signal or
time integrals, the results suffer from an increasingly strong!1 weighting of the integral, which skews the resulting ratios.
Furthermore, although time-domain visualization and signal
ratio determination is an effective tool for assessing the effect
of different PYRdoses, it provides no quantitative kinetic data
of metabolic exchange.

In order to achieve this quantification, different methods
for kinetic modeling of hyperpolarized 13C MR data have
been reported. Most approaches, derived from the modified
Bloch equations, represent a two-site interaction between
PYR and one specific downstream metabolite, for example,
either LAC or ALA [7–14]. Modeling can be extended to
include more sites (intra- and extracellular) or more metabo-
lites [9, 12] (for a comprehensive comparison, see [15]).
Even so, presumably for robustness, previous work focuses
primarily on fitting data with just one downstream metabo-
lite, keeping most parameters fixed, or even model free,
based on signal ratios [5, 16, 17]. When PYR is injected and
the corresponding metabolic reactions begin to take place,
PYR is not metabolized exclusively into ALA (or LAC),
but it changes dynamically into all of the aforementioned
downstream metabolites [18]. There is furthermore some
skepticism, if the implicit assumption of rate constant stability
holds in all applications [17] and there are few analyses on
model parameter dependence on SNR [19]. In particular,
metabolic conversion in the heart predominantly follows the
PDH path producing BC [6, 20]. We therefore hypothesize
that the simultaneous consideration of various metabolic
pathways is necessary to obtain an accurate evaluation of in
vivo metabolic conversion rates. On this basis, we propose
using a mathematical framework for multisite modeling
(similar to [8, 21, 22]) by simultaneously fitting different
possible 13Cmetabolic pathways for PYR, which can typically
be observed after injection of pyruvate labeled in the [1-13C]
position.

Additionally, although our prior work [5] evaluates quan-
tification of spectra and employed a semiquantitativemethod
to investigate metabolic conversion under different PYR
doses (based onmetabolite to PYR ratios), it does not provide
fully quantitative kinetic data. Therefore, in this subsequent
work we employ the experimental data obtained in [5] and
implement the proposed multisite, dynamic model to deter-
mine metabolic conversion and signal decay rates for full

quantification of the kinetics of metabolic conversion. Fur-
thermore, the proposed model gives access to effective lon-
gitudinal relaxation times (!1eff), both for PYR and for the
downstream metabolites.

Using the identical biological data, the kinetic parameters
estimated by the multisite model are then compared to the
parameters obtained using the two-site models proposed
both in [8] and in [23].The estimated parameters of all mod-
els are also compared between the three different doses uti-
lized in [5], that is, 20, 40, and 80mM (corresponding to 0.1,
0.2, and 0.4mmol/kg bodyweight) of PYR, in order to eval-
uate the capability of the model for the assessment of dose
response. As identical data is used, the evaluation allows
for direct assessment of kinetic model stability and quality.
Ideally, a successful kinetic model would allow the reduction
of data variability due to modeling to a minimum, allowing
the visualization of biological variability (i.e., as a response to
dose treatment, etc.). In addition, using simulated metabolic
data based on exemplary conversion rates, we assessed the
variability and stability of the kinetic models under the influ-
ence of noise. Here, the expectation towards a model is that
both systematic bias and standard deviation of the resulting
metabolic conversion rates should be as low as possible over
a large range of signal-to-noise ratio (SNR).

2. Theory

In our previous study [5], MRS spectral data after injection
of pyruvate was acquired and analyzed utilizing time-domain
fitting with AMARES [24], resulting in a time course ofmeta-
bolite levels. To quantify the metabolic conversion, this pre-
vious study employed integrated metabolite signal ratios. In
the following paragraphs, we will compare this simple inte-
grative approach to kinetic modeling using three different
approaches, which are two-site exchange differential model,
two-site exchange integral model, and multisite exchange
integral model.

2.1. Two-Site Exchange Differential Model. Using a two-site
exchange differential model (2SDM) allows computingmeta-
bolic exchange rates "pyr→" and the respective metabolite’s
effective signal decay rates #" by solving a system of linear
equations given in differential form$%" (&)$& = −#"%" (&) + "pyr→"%pyr (&) . (1)

The effective metabolite signal decay rate #" is dominated by!1 relaxation, the respective backward metabolic exchange
rate ""→ pyr, and a flip angle (FA) term, which also depends
on the repetition time (TR), accounting for the irreversible
consumption of signal after successive excitations:#" = 1!" + ""→ pyr + ( (FA) (2)

with ( (FA) = 1 − cos (FA)TR
. (3)

Hence, #" results in a single, inseparable term of signal decay.
However, FA and TR are known from experimentation and
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can be corrected for. In case the backward exchange rate""→ pyr is assumed to be negligible, true !1 relaxation times
can be quantified; however, it remains unclear whether this
assumption holds true in all physiological states of the animal.

2SDM does not assume a PYR input function and for
that reason the first order differential equation (1) can be
solved as a linear system. This approach is independent
of the time course of PYR administration and is therefore
straightforward to apply.

2.2. Two-Site Exchange Integral Model. Another approach
in kinetic modeling, the two-site exchange integral model
(2SIM), assumes a PYR input function that represents the
PYR signal in time (%pyr(&)). In Zierhut et al. [8] a series of
piecewise defined exponential equations were presented:

%pyr (&) = {{{{{
-pyr#pyr [1 − /−$pyr(%−%arrival)] , &arrival ≤ & < &end,%pyr (&end) /−$pyr(%−%end), & ≥ &end.

(4)

The first part of the equation takes into account PYR signal
loss due to #pyr and the injection of PYR with a constant
rate -pyr from the arrival time &arrival until &end. It nevertheless
assumes that no conversion of PYR takes place during injec-
tion. The second part, for all time measurements later than&end, is characterized only by the PYR signal loss. In a similar
manner, an assumption on the initial PYR concentration can
be made instead of an assumption on the input function,
leading to the modeling of only the exponential decay, as
shown in [25]. Explicit modeling of%pyr allows for (1) to be
solved yielding metabolite signals in time [8]:%" (&)
=
{{{{{{{{{{{{{{{{{{{{{{{{{{{

"pyr→"-pyr#pyr − #" [1 − /−$!(%−%arrival)#" − 1 − /−$pyr(%−%arrival)#pyr ] ,&arrival ≤ & < &end,%pyr (&end) ∗ "pyr→"#pyr − #" [/−$!(%−%end) − /−$pyr(%−%end)]+%" (&end) /−$!(%−%end), & ≥ &end.
(5)

Alongside the parameters characterizing the PYR input func-
tion, these equations contain the same parameters ("pyr→"
and #") that were solved for using 2SDM.

2SIM can be considered as a two-step approach. First,&arrival, #pyr, and -pyr are determined by fitting (4) to the mea-
sured PYR signal. &end is simply calculated by summing &arrival
and the known injection duration. These parameters are
then utilized to fit (5) to the LAC and ALA signals. In [6],
this model is also utilized to fit the BC signal. Finally the
computed metabolic exchange rates "pyr→", the decay rate#pyr, and the flip angle correction (3) can be used to estimate
apparent !1 relaxation of PYR.

2.3. Multisite Exchange Integral Model. As described above,
the metabolite signal decay rate #" depends on !1 relaxation,
backward metabolic exchange rates ""→ pyr, and signal loss
from flip angle variations. On the other hand, the PYR signal
decay #pyr does not depend on backwardmetabolic exchange,
but on forward metabolic exchange rates "pyr→". This signi-
fies that the rate of PYR decay is also proportional to the rate
of PYR downstream conversion.

Hence, when passing from 2SIM to a multisite exchange
integral model (MSIM), the PYR input function (4)—repre-
sented in its differential form—needs to include all of the
metabolic exchange rates:

$%pyr (&)$& =
{{{{{{{{{{{{{{{
−#pyr%pyr (&) −∑" "pyr→"%pyr (&) + -pyr,&arrival ≤ & < &end,−#pyr%pyr (&) −∑" "pyr→"%pyr (&) ,& ≥ &end.

(6)
Note that both the PYR signal decay rate #pyr and the sum of
all of the metabolic exchange rates ∑" "pyr→" are multiplied
by the same term%pyr(&) and can therefore be grouped into
a total PYR signal decay rate::pyr = #pyr +∑" "pyr→". (7)

By replacing (7) in (6), the integral formof the newPYR input
function reads%pyr (&) = {{{{{

-pyr:pyr [1 − /−&pyr(%−%arrival)] , &arrival ≤ & < &end,%pyr (&end) /−&pyr(%−%end), & ≥ &end.
(8)

The representation of the total PYR relaxation rate :pyr as the
sum of the PYR relaxation rate and the metabolic conversion
rates allows for a simultaneous fitting process, where the
conversion rates are taken into account also in the PYR
input function, creating dependent curves and a parameter
interdependency. In addition, the estimation of !1 values for
PYR can be achieved directly using1!1pyr = #pyr − ( (FA) . (9)

Utilizing the same:pyr term for themetabolite signals, (5)
becomes%" (&)
=
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

"pyr→"-pyr:pyr − #" [1 − /−$!(%−%arrival)#" − 1 − /−&pyr(%−%arrival):pyr ] ,&arrival ≤ & < &end,%pyr (&end) ∗ "pyr→":pyr − #" [/−$!(%−%end) − /−&pyr(%−%end)]+%" (&end) /−$!(%−%end), & ≥ &end.
(10)
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As seen in (2), the backward exchange rates are inseparably
confounded with !1 in the respective signal decay rate #"
of each metabolite. A nonnegligible backward reaction thus
leads to an overestimation of the true !1 values for all of
the downstream metabolites. For LAC, the overestimation
might be considered negligible since the backward reaction
was reported to have only a very small effect on kinetics [26],
although earlier work indicates upregulated gluconeogenesis
in liver-metabolism of tumor-bearing rats [27].The assump-
tion of negligible backward reactions might also not hold for
ALA. There is no need to apply a backward exchange to BC;
however, depending on pH, it is breathed out as 13CO2 and
this could lead to an apparent shortening in !1.This signifies
that the !1 values for ALA and BC obtained utilizing this
model can only be considered bounds for the true value.

3. Methods

3.1. Experimental Data. The experimental data was obtained
from healthy male Wistar rats through the acquisition of
slice-selective FID signals in heart, liver, and kidney tissue.
Three different hyperpolarized PYR concentrations (20, 40,
and 80mM, which correspond to an injected dose of 0.1,
0.2, and 0.4mmol/kg bodyweight) were utilized to measure a
total of 15 animals. Each dose was injected into five different
animals twice, resulting in a total of 10measurements for each
dose. A flip angle of 5∘ was utilized and TR was triggered
to animal breathing yielding an average value of ∼1 s. SNR
was calculated by dividing the maximum PYR signal by the
average noise for all time steps.More experimental details can
be directly found in [5].

Further exemplary data to evaluate modeling perfor-
mance at presence of pathology were obtained from adult
female Fischer 344 rats (Charles River, Sulzfeld, Germany)
beating subcutaneous mammary adenocarcinomas.The ani-
mals’ anesthesia was maintained with 1–3% isoflurane in
oxygen starting about 1 h before the first injection. During the
experiment, the heart rate, temperature, and breathing signal
were monitored using an animal monitoring system (SA
Instruments, Stony Brook, NY, USA). All 13C animal exper-
iments were approved by the regional governmental com-
mission for animal protection (Regierung von Oberbayern,
Munich, Germany). Two injections were performed using an
80mM concentration, allowing for direct comparison. For
this set of experiments, a flip angle of 10∘ was utilized and TR
was fixed to 1 s.

3.2. Data Processing. The experimental data <(,) with = ∈{lac, ala, pyr, bc} acquired at time steps &) was fitted to MSIM
in a constrained least-squares sense; that is,

min* ( (?) s.t. lb ≤ ? ≤ ub, (11)

with cost function( (?) =∑(∑) (<(,) −%((&),?))2, (12)

parameters ? = [#lac, . . . , #bc, "pyr→ lac, . . . , "pyr→ bc, -pyr, &end],
and lower and upper bounds lb and ub, respectively. While

&arrival was fixed to the time when the PYR signal reached
10% of its maximum peak value, &end was set as a fitting
parameter accounting for various injection times. On the
contrary, the implementation in [8] kept &end fixed while
fitting for &arrival. Even though the duration of the injection
was known, fixing &arrival in function of its peak value and
calculating &end as a parameter allowed for different delivery
and perfusion times. Delivery, perfusion, and export are
however not implicitly included in themodel. To improve the
convergence properties of the optimization, the gradient of
the cost function was calculated analytically. The optimiza-
tion was carried out using the MATLAB function fmincon
(MathWorks, Natick, MA, USA) employing the Trust Region
Reflective Algorithm and a function tolerance of 1@ − 10.
The utilized bound constraints were set to physically relevant
limits: upper bounds of 0.1 s−1 for metabolic conversion rates"pyr→", since they have been reported to be of a smaller order
[8, 23], and of 0.005 s−1 for the decay rates #" (equivalent to
a 200 s inverse effective signal decay rate) and lower bounds
establishing the positivity of all parameters. Note that the
optimization always converged far away from the bounds
and theywere only implemented for numerical improvement.
After optimization, !1 values were estimated for all metabo-
lites from the effective signal decay rate (see (2) and (9)).
Initial conditions were fixed to expected normal parameters;
however, randomizing the starting guess in between bounds
and performing various iterations yielded comparable results.

Pyruvate-hydrate (PYRH), which is also present in spec-
troscopy, was not included in the minimization process.The
reason for this is that conversion between PYR and PYRH is
not enzymatic and we are interested in quantifyingmetabolic
rates that lead to a better understanding of enzymatic
activity. Additionally, since chemical exchange with PYRH
is instantaneous and almost in equilibrium, including PYR
would require adding three extra parameters to the mini-
mizationwithout providing additional information regarding
metabolic activity. In fact, if PYRH were to be included, the
immediate conversion of PYR to PYRH would lead to an
overestimation of the apparent metabolic rate, which in turn
would decrease all other parameters intrinsic in :pyr leading
to an overestimation of !1 values for PYR.

The same reasoning holds for the exclusion of additional
pools. Although the MSIM model can be further extended
to include multiple pools [15, 22], including them only adds
variables to the minimization with no direct benefit to the
determination of enzymatic conversion rates.

4. Results

4.1. Convergence and Quality of Fit. Parameter fitting with
MSIM was shown to converge to an optimal point for every
set of experimental data. Figures 1(a)–1(c) show the fitted
curves of all metabolites for all models. The residuals for
every metabolite and every measurement in the time domain
were analyzed (Figures 1(d)–1(f)), and the error of the fitted
curves and computed parameters was determined based on
the parameter covariance matrix [28].This error was utilized
to determine 95% confidence intervals on the fitted data (see
Figures 1(a)–1(c)).
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Figure 1: Example of metabolic data acquired for a 40mM (0.2mmol/kg) dose in kidney predominant tissue, fitted curves (solid lines) using
(a) MSIM, (b) 2SIM, and (c) 2SDM and 95% confidence intervals (dotted lines). (d–f) Residuals of fit.

3.1 peer-reviewed publications 29



6 Radiology Research and Practice

Table 1: Exemplary parameter estimates (± standard error) obtained from three different kinetic modeling methods for a 40mM
(0.2mmol/kg) dose of kidney predominant tissue.
Model MSIM 2SIM 2SDM"pyr→ lac [s−1] 0.03194 ± 9.71@ − 04 0.03202 ± 7.75@ − 04 0.03448 ± 1.15@ − 03"pyr→ ala [s−1] 0.02507 ± 1.07@ − 03 0.02518 ± 4.97@ − 04 0.02832 ± 1.02@ − 04"pyr→ bc [s−1] 0.00379 ± 1.51@ − 03 0.00381 ± 2.67@ − 04 0.00392 ± 4.48@ − 04!1lac [s] 16.36 ± 0.620 16.28 ± 0.488 14.13 ± 0.629!1ala [s] 14.48 ± 0.752 14.38 ± 0.552 12.18 ± 0.578!1bc [s] 14.11 ± 4.78 14.11 ± 1.19 13.46 ± 2.051!1pyr [s] 16.67 ± 0.676 16.82 ± 0.845 N/A∗∗According to (1), 2SDM only fits for ,pyr→" exchange rates and the corresponding -1 values.
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Figure 2: Metabolic conversion rates of LAC (left), ALA (center), and BC (right) obtained for heart, kidney, and liver predominant slices
at 20, 40, and 80mM concentrations (0.1, 0.2, and 0.4mmol/kg doses) for 2SDM (top), 2SIM (center), and MSIM (bottom). Every box plot
displays minima, 25th percentiles, medians, 75th percentiles, maxima, and outliers.

Note that for both MSIM and 2SIM the residuals have a
distinct pattern. The pattern indicates that a linear injection
rate does not fully model biological activity. In [9], the input
function is modeled as a trapezoidal instead of a linear input,
but the authors provide no residual analysis. On the other
hand, assuming no input function by establishing a fixed
initial PYR concentration [25] or solving the differential
linear systemmay not fully account for the entire kinetic time
course of the measured signals. In any case, this should be
considered as a limitation for both models.

4.2. Model Comparison. For all of the experimental data,
parameters were obtained utilizing the 2SDM, the 2SIM, and
the MSIM. While a single implementation of MSIM brought

forth parameter values for all downstream metabolites, an
independent implementation for LAC, ALA, and BC was
necessary in the two-site models. Since all three models were
applied on exactly the same experimental data, the com-
parison between them and to the results obtained for the
integrated metabolite signal ratios obtained from Janich et al.
[5] directly allows assessing model accuracy separated from
biological variability and experiment related inaccuracies like
low SNR levels. Results from one exemplary minimization
are shown in Table 1; Table 2 displays mean estimated !1pyr
values for all experiments and their respective SNR levels; and
Figure 2details the obtainedmetabolic conversion rates for all
three models.
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Table 2: !1pyr calculated for MSIM and 2SIM and corresponding
SNR levels for all concentrations and slices (mean ± standard
deviation). !1PYR (MSIM) !1PYR (2SIM) SNR
20mMol

Heart 8.93 ± 2.68 9.04 ± 2.82 15.52 ± 3.87
Liver 22.14 ± 12.26 24.25 ± 14.28 8.62 ± 2.03
Kidney 27.63 ± 12.11 61.61 ± 91.27 11.63 ± 1.87

40mMol
Heart 10.02 ± 2.81 10.17 ± 2.88 44.57 ± 15.56
Liver 20.70 ± 3.72 22.83 ± 8.44 20.14 ± 6.36
Kidney 21.11 ± 7.04 21.73 ± 9.20 27.58 ± 5.38

80mMol
Heart 10.85 ± 5.98 10.94 ± 6.11 84.65 ± 32.32
Liver 25.75 ± 7.90 25.88 ± 7.89 23.06 ± 14.60
Kidney 20.69 ± 10.38 20.00 ± 10.33 29.61 ± 12.95
Conversion rates and !1PYR values calculated with MSIM

tended to be lower than those of 2SIM and these in turn are
lower than 2SDM (see Tables 1 and 2). Although performance
is very similar for all models, reduced data spread can be
observed in PYR to LAC conversion in kidney predominant
tissue (Figure 2). Since MSIM fits up to nine parameters
simultaneously, estimated error from the parameter covari-
ance matrix was usually higher for MSIM.

Additionally, for an exemplary dataset, a noise analysis
of all three models was implemented by adding Gaussian
noise to different extent. Parameters were first obtained
from an exemplary minimization with MSIM and were then
subsequently used for time curve simulation. Every model
was then fit 1,000 times with different initial parameters to
this simulated time curve to create a model specific ground
truth. Finally, based once again on 1,000 iterations, the
simulated dataset was corruptedwith randomGaussian noise
and minimized with each model. Figure 3 displays mean and
standard deviation of "pyr→ lac values up to a 10% noise level.

Figure 3 illustrates that although allmodels yield the same
results in noise-free data, with increasing noise both bias and
standard deviation of the two-site models 2SIM and 2SDM
increase. As a consequence, the resulting metabolic conver-
sion rates obtained from these two-site models increasingly
suffer from systematic under- or overestimation. In contrast,
the simulation demonstrates that the MSIM model remains
bias-free, evenwith increased noise level, while exhibiting the
smallest standard deviation compared to the two-sitemodels.

From experimental results, it is clear that SNR increases
with higher concentrations of injected PYR and that 20mMol
injections in liver and kidney predominant tissue had the
lowest SNR (with corresponding noise levels of nearly 10%),
whereas SNR in heart was generally higher but had a larger
standard deviation (Table 2). According to noise simulations,
it is precisely in low SNR regions that MSIM is expected to
perform with lower deviations. Standard deviations for !1pyr
values and reduced data spread in 20mMol "pyr quantifica-
tion, especially in kidney predominant tissue, are indications
that this holds.
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Figure 3: Noise level analysis for exemplary simulated data. Error
bars show mean ± standard deviation.

4.3. Pyruvate Dose Assessment. The effects of PYR dose on
Wistar rats were examined through the injection of solutions
with concentrations of 20, 40, and 80mM (doses of 0.1,
0.2, and 0.4mmol/kg) hyperpolarized PYR. Kinetic data was
obtained for all downstream metabolites and visualized with
the same box plots used in [5]. With this approach, a direct
comparison between the results previously obtained and the
results obtained with kinetic modeling could be made, using
median values as a distance dimension between the results
obtained by the different models, rather than as confirmatory
values (see Figure 2). As in [5], all median values suggest
saturation effects. A more detailed assessment of the PYR
dose effects on metabolism and its biological interpretation
can be found in [5].

4.4. Tumor Evaluation. In tumor cells, it is well known that
conversion from PYR to LAC is elevated even in the presence
of oxygen [29, 30]. Additionally, some tumors show changes
in alanine transaminase activity, leading to suppression of
conversion of PYR to ALA [31–34]. Both effects were quanti-
fied by comparing experimental data obtained from a healthy
rat and a rat with mammary carcinoma and using MSIM
to obtain conversion rate parameters (see Figure 4). It can
be seen that, for the same dose, the "pyr→ lac conversion rate
was more than four times larger in tumor cells than healthy
cells and the "pyr→ ala rate was more than 18 times larger in
healthy cells than tumor cells.Therefore, obtained conversion
rates provide a quantitative metric of metabolic differences
between healthy and tumor cells.

5. Discussion and Conclusion

Three different kinetic modeling methods were implemented
and investigated for the quantification of time-dependent
metabolite levels. The two-site exchange differential model
(2SDM) and two-site exchange integralmodel (2SIM) assume
a two-site interaction between pyruvate (PYR) and one
specific metabolite. The proposed multisite exchange inte-
gral model (MSIM) takes into account various downstream
metabolites in one system and allows fitting in a one-step
process.That is, all of the parameters are generated in a single
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Figure 4: Comparison of "pyr→ lac and "pyr→ ala conversion rates
between a healthy rat (from an 80mM dose in kidney predominant
tissue) and a rat with mammary carcinoma.

minimization, avoiding the need for separate implementa-
tions for every specific metabolite and resulting in a robust,
optimal convergence far from the imposed constraints.

The threemodels were compared by takingmedian values
as a distance dimension and, using exemplary simulated
data, performing a noise analysis. In this analysis, metabolic
exchange rate values obtained with 2SDM and 2SIM showed
a bias with increasing noise levels. On the other hand, MSIM
showed almost no bias, maintaining the average computed
value close to the ground truth even at high noise levels, with
smaller standard deviations than 2SDM and 2SIM.

Using the experimental data of [5], all kinetic models
were compared between different PYR concentrations to
assess the effect of increased PYR doses on in vivo meta-
bolism. Results obtained from all three kinetic models were
very similar; however, MSIM yielded smaller data spread
for metabolic conversion in low SNR experiments and more
accurate effective !1 values for PYR as downstream metabo-
lite rates are taken into account during the optimization,
while effective!1-estimation in 2SIM requires postprocessing
corrections.

MSIM was then further utilized to evaluate model per-
formance in disease. Obtained conversion rates from MSIM
showed significant differences in healthy cells in comparison
to tumor cells, where LAC conversion was elevated and ALA
conversion, on the other hand, was suppressed.

Extending two-site models into a multisite model yields
both biological and numerical insight. Biologically, it has
been shown that calculated rates give proof of the saturation
effects studied in [5] and can be used to quantify metabolic
differences between normal and tumor cells. Numerically,
a one-step fitting process with parameter interdependency

performs marginally better than other fitting methods, par-
ticularly in regions with low SNR. Further work with the
MSIM model will focus on pixelwise metabolic mapping
of cellular activity and its application to different metabolic
systems.

AbbreviationsA: Index of downstream metabolites:
lactate, alanine, bicarbonate, and
pyruvate-hydrate"pyr→": Metabolic conversion rate from
pyruvate to A

LDH: Lactate dehydrogenase
ALT: Alanine transaminase
PDH: Pyruvate dehydrogenase
CA: Carbonic anhydrase
2SDM: Two-site differential model
2SIM: Two-site integral model
MSIM: Multisite integral model%"(&): Time dependent signal for metabolite A%pyr(&): Time dependent pyruvate signal((FA): Flip angle function&arrival: Time of pyruvate arrival&end: Time at which pyruvate

is no longer injected-pyr: Pyruvate injection rate#": Metabolite signal decay#pyr: Pyruvate signal decay rate without
metabolic conversion rates:pyr: Pyruvate signal decay rate including
metabolic conversion rates

lb: Vector of lower bounds
ub: Vector of upper bounds=: Index of all metabolites (lactate,

alanine, pyruvate, and bicarbonate)&): Sampling times?: Vector of optimization parameters<(,): Measured data point for metabolite=
and time step &)%((&,?): Time dependent signal of metabolite= as a function of parameters ?.
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3.1.2 Hyperpolarized 13C Metabolic Magnetic Resonance Spectroscopy and
Imaging
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Abstract: In the past decades, new methods for tumor staging, restag-
ing, treatment response monitoring, and recurrence detection of a va-
riety of cancers have emerged in conjunction with the state-of-the-art
positron emission tomography with 18F−fluorodeoxyglucose ([18F]−
FDG PET). 13C MRSI is a minimally invasive imaging method that en-
ables the monitoring of metabolism in vivo and in real time. As with
any other method based on 13C Nuclear Magnetic Resonance (NMR),
it faces the challenge of low thermal polarization and a subsequent
low signal-to-noise ratio due to the relatively low gyromagnetic ra-
tio of 13C and its low natural abundance in biological samples. By
overcoming these limitations, Dynamic Nuclear Polarization (DNP)
with subsequent sample dissolution has recently enabled commonly
used NMR and Magnetic Resonance Imaging (MRI) systems to mea-
sure, study, and image key metabolic pathways in various biological
systems. A particularly interesting and promising molecule used in
13CMRSI is [1−13 C]pyruvate, which, in the last ten years, has been
widely used for in vitro, preclinical, and, more recently, clinical stud-
ies to investigate the cellular energy metabolism in cancer and other
diseases. In this article, we outline the technique of dissolution DNP

using a 3.35 T preclinical DNP hyperpolarizer and demonstrate its us-
age in in vitro studies. A similar protocol for hyperpolarization may
be applied for the most part in in vivo studies as well. To do so, we
used lactate dehydrogenase (LDH) and catalyzed the metabolic reac-
tion of [1−13 C]pyruvate to [1−13 C]lactate in a prostate carcinoma
cell line, PC3, in vitro using 13CMRSI.

Contribution of thesis author: Development and implementation of
kinetic modeling, manuscript revision.

1 Scientific video protocol is available here: https://www.jove.com/video/54751/

hyperpolarized-13c-metabolic-magnetic-resonance-spectroscopy
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Abstract

In the past decades, new methods for tumor staging, restaging, treatment response monitoring, and recurrence detection of a variety of cancers
have emerged in conjunction with the state-of-the-art positron emission tomography with 18F-fluorodeoxyglucose ([18F]-FDG PET). 13C magnetic
resonance spectroscopic imaging (13CMRSI) is a minimally invasive imaging method that enables the monitoring of metabolism in vivo and in
real time. As with any other method based on 13C nuclear magnetic resonance (NMR), it faces the challenge of low thermal polarization and a
subsequent low signal-to-noise ratio due to the relatively low gyromagnetic ratio of 13C and its low natural abundance in biological samples. By
overcoming these limitations, dynamic nuclear polarization (DNP) with subsequent sample dissolution has recently enabled commonly used
NMR and magnetic resonance imaging (MRI) systems to measure, study, and image key metabolic pathways in various biological systems.
A particularly interesting and promising molecule used in 13CMRSI is [1-13C]pyruvate, which, in the last ten years, has been widely used for in
vitro, preclinical, and, more recently, clinical studies to investigate the cellular energy metabolism in cancer and other diseases. In this article, we
outline the technique of dissolution DNP using a 3.35 T preclinical DNP hyperpolarizer and demonstrate its usage in in vitro studies. A similar
protocol for hyperpolarization may be applied for the most part in in vivo studies as well. To do so, we used lactate dehydrogenase (LDH) and
catalyzed the metabolic reaction of [1-13C]pyruvate to [1-13C]lactate in a prostate carcinoma cell line, PC3, in vitro using 13CMRSI.

Video Link

The video component of this article can be found at http://www.jove.com/video/54751/

Introduction

Presently, the most widely used clinical method for tumor staging, restaging, treatment response monitoring, and recurrence detection of a wide
variety of cancers is [18F]-FDG PET.1 However, recently, several novel and alternative approaches have emerged. One of those methods is
13CMRSI. This technique involves the introduction of the 13C-molecule into a biological sample, followed by minimally invasive MRI to assess the
metabolism in vitro or in vivo in real time. Nevertheless, the biggest challenge of 13CMRSI, compared to the other methods such as [18F]-FDG
PET or computed tomography, is its low signal-to-noise ratio.

The NMR signal is directly proportional to the level of polarization, a ratio of the spin ½ nuclei population difference in two energy states to the
total population (Figure 1A). The polarization is a product of the gyromagnetic ratio (γ) of the nuclei and the applied magnetic field strength
over the temperature. A typical polarization of 1H nuclei is in the order of 0.001% to 0.005% at 3 T, which gives a relatively poor signal-to-noise
ratio. Today's state-of-the-art MRI has been a successful imaging method only due to the high abundance of 1H in biological samples and the
high gyromagnetic ratio of 1H (γ1H = 42.576 MHz/T). However, observing other nuclei, such as carbon, is more demanding. The only stable,
magnetically active carbon isotope, 13C, makes up only 1.1% of all carbon atoms. In addition, the gyromagnetic ratio of 13C (γ13C = 10.705 MHz/
T) is four times lower than that of 1H, leading to a lower detection efficiency. In summary, the low 13C abundance and low γ13C cause thermal 13C
measurements to achieve 0.0176% of the sensitivity of a 1H-NMR measurement in vivo.

Dynamic Nuclear Polarization
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A method to overcome the relatively poor sensitivity of 13C measurements is DNP. It was originally described for metals in 1953 by Albert W.
Overhauser. In his article, he stated: "It is shown that if the electron spin resonance of the conduction electrons is saturated, the nuclei will be
polarized to the same degree they would be if their gyromagnetic ratio were that of the electron spin."2 Later that year, Carver and Slichter
experimentally confirmed Overhauser's hypothesis3. In 1958, Abragam and Proctor described this effect for electrons in liquids and named it
the "solid effect." At temperatures below 4 K, electron-spin polarization reaches nearly 100% and is more than three orders of magnitude higher
than the nuclear-spin polarization (Figure 1B)4. This occurs because the gyromagnetic ratio of the electron (γe = 28024.944 MHz/T) is three
orders of magnitude higher than the nuclear gyromagnetic ratios. The weak interactions between electrons and nuclei, such as the Overhauser
effect, the solid effect, the cross effect, and the thermal mixing effect, allow the transfer of polarization from electron spins to nuclear spins using
microwave irradiation with a frequency close to the corresponding electron paramagnetic resonance (EPR) frequency5,6. DNP theory has been
further developed to involve more electrons and thermal mixing. Nevertheless, to date, no unified quantitative theoretical description of DNP has
been published7,8.

 

Figure 1: Understanding Dynamic Nuclear Polarization and Hyperpolarization. A) A schematic comparison of the spin population in the
thermal equilibrium polarization state and the hyperpolarized state. B) The polarization is dependent upon temperature. The polarization of an
electron (e-) reaches 100% below 1.4 K. The DNP allows the transfer of the polarization from the e- to the 13C nuclei, which increases their
polarization up to 105-fold. Please click here to view a larger version of this figure.

To introduce DNP in studies of biological systems using 13C NMR, subsequent rapid sample dissolution had to be developed. 50 years after
Overhauser's hypothesis, Jan H. Ardenkjaer-Larsen et al. solved the technically challenging issue of bringing the hyperpolarized frozen
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sample into the liquid state with minimal hyperpolarization loss6. Dissolution DNP opened a new field of research called 13CMRSI, providing
a new method to investigate and characterize various disease states9,10. As stable carriers of an unpaired electron, a trityl radical tris (8-
carboxy-2,2,6,6-tetra-(hydroxyethyl)-benzo-[1,2-4,5]-bis-(1,3)-dithiole-4-yl)-methyl sodium salt (OX063) or (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl
(TEMPO) is usually used. These are mixed with the desired 13C-labeled molecule and exposed to microwave irradiation with a frequency close
to the corresponding EPR frequency. Using this technique, the polarization of 13C nuclei can be increased up to 37%11. This results in a 105-fold
polarization enhancement compared to the thermal equilibrium polarization11,12. However, as soon as the microwave irradiation is stopped and/
or the 13C-molecule is transferred to the liquid state, the polarization decays with the longitudinal relaxation time (T1) of the 13C nucleus that was
polarized. Thus, the invention of fast dissolution techniques or any subsequent technique shortening the time before experimental measurement
(i.e., injection) is crucial for biological applications13.

There are three major requirements that the candidate molecule needs to fulfill for successful 13CMRSI studies. First, the 13C nucleus of interest
has to have a sufficiently long T1 (> 10 s). The choice of the 13C-label is crucial. The best candidate nuclei are carbons with no direct contact with
1H-nuclei via a bond. It also needs to be rapidly metabolized within 2 - 3 T1 times, resulting in a downstream metabolic product with a significantly
different chemical shift from the original substance. The sample mixture must also form an amorphous glass when in a solid state so that the
spatial distribution decreases the distance between the electron and 13C, allowing the transfer of polarization. If the candidate molecule does not
form amorphous glass naturally, it needs to be highly soluble in a glassing agent, such as glycerol or dimethyl sulfoxide14. These requirements
result in a relatively small number of candidate molecules. However, even after the successful discovery of a suitable molecule, developing a
working protocol for hyperpolarization can be technically challenging9,14,15.

In recent years, several substrates have been successfully polarized, such as [1-13C]pyruvate12,16-36, [2-13C]pyruvate37, [1-13C]ethyl pyruvate38,
[1-13C]lactate39, [1-13C]fumarate40-43, 13C-bicarbonate36,44,45, [1-13C]sodium acetate43,46-49, 13C-urea6,36,50,51, [5-13C]glutamine15,52,53,
[1-13C]glutamate53,54, [1-13C]2-oxoglutarate55, [1-13C]alanine, and others14,56. A particularly interesting and commonly used substrate
for hyperpolarization is [1-13C]pyruvate. It is widely used in preclinical studies to investigate the cellular energy-metabolism in various
diseases14,17,22. [1-13C]pyruvate meets all the requirements for successful hyperpolarization, including a relatively long T1 and rapid transport
across the cell membrane before subsequently being metabolized. Preclinical studies with [1-13C]pyruvate are currently being translated into the
clinic57.

Metabolism of Pyruvate

It is well known that there is a direct link between mutations in a cancer cells' DNA and changes in their metabolic pathways. Already in the
1920s, Otto Warburg discovered that there is an increased metabolism of glucose and production of lactate in tumors compared to healthy
tissue58-60. Subsequently, various alternations in other metabolic pathways, such as the pentose-phosphate pathway, the tricarboxylic acid cycle,
oxidative phosphorylation, and the synthesis of nucleotides and lipids, have been described.

Pyruvate is the final product of glycolysis. In the tumor, it undergoes anaerobic glycolysis catalyzed by LDH61 and reacts with the reduced form
of the coenzyme nicotinamide adenine dinucleotide (NADH), resulting in lactate and the oxidized form of the coenzyme (NAD+). Alternatively,
pyruvate undergoes a transamination reaction with glutamate to form alanine, catalyzed by alanine transaminase (ALT). Both reactions are
readily reversible. Pyruvate also undergoes decarboxylation catalyzed by pyruvate dehydrogenase (PDH) to carbon dioxide and acetyl-CoA,
representing an irreversible reaction at this step. Alternations in these reaction rates can be linked to tumor metabolism17,21,22,25,62. The metabolic
pathways are summarized in Figure 2.
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Figure 2: Diagram of the major metabolic reaction of pyruvate. Pyruvate/lactate conversion is catalyzed by LDH, and pyruvate/alanine
conversion is catalyzed by ALT. Pyruvate is irreversibly converted to acetyl-CoA and CO2 by PDH, and CO2 is in a pH-dependent equilibrium
with bicarbonate80. Please click here to view a larger version of this figure.

The detection of hyperpolarized [1-13C]pyruvate and its metabolites has been previously demonstrated in the rat heart37,63-65, liver66, muscle,
and kidney62,67. One study demonstrated significant differences in the lactate-to-alanine ratio between the normal and fasted rat liver66 and
demonstrated a highly elevated and hyperpolarized [1-13C]lactate level in liver cancer68,69. There is evidence that the tumor grade can be
identified in a transgenic adenocarcinoma of mouse prostate (TRAMP) using hyperpolarized [1-13C]pyruvate22, with the hyperpolarized lactate
levels showing a high correlation with the histological grade of the excised tumors. The alanine catalyzed from pyruvate by ALT has also been
suggested as a useful marker in rat hepatocellular carcinoma23.

Measuring the pyruvate-lactate metabolic flux has been used for monitoring ischemia63,65,70 and as a response to treatment with cytotoxic
chemotherapy17,40, targeted drugs24,25,41, or radiotherapy26 in animal models. It has also been used for the detection of the phosphatidylinositol
3-kinase (PI3K) inhibitor LY294002 response in glioblastoma and breast cancer mouse models25. Changes in pyruvate metabolism in brain
tumors26 and prostate cancer24,71 have also been observed after treatment.

Prostate Carcinoma
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Prostate carcinoma is the predominant cancer in elderly men and the second leading cancer related to death in men worldwide72. To date,
no reliable, non-invasive methods are available for an early diagnosis and characterization of prostate cancer73,74, emphasizing the urgent
need for novel metabolic imaging techniques to enable stringent detection and staging of patients. Prostate carcinoma was used as a model to
demonstrate the possibilities of dissolution DNP combined with 13CMRSI in patients57. This work was continued in a first clinical trial employing
[1-13C]pyruvate and 13CMRSI for the imaging of prostate cancer, and it has just recently has been completed (NCT01229618).

The motivation behind this work was to illustrate in more detail and for a wider audience the application of the 13CMRSI method in a preclinical
setting with cells. Measuring the LDH-catalyzed metabolism of [1-13C]pyruvate to [1-13C]lactate in vitro in the PC3 prostate carcinoma cell line,
we demonstrate the possible application of dissolution DNP in in vitro studies and address the crucial steps and challenges during experiments.

Protocol

1. Sample Stock Solution Preparation

1. Add gadoterate meglumine (GadM, 0.5 mol/L) to concentrated [1-13C]pyruvic acid to give a final concentration of 1-mmol/L GadM. Add trityl
radical tris (8-carboxy-2,2,6,6-tetra-(hydroxyethyl)-benzo-[1,2-4,5]-bis-(1,3)-dithiole-4-yl)-methyl sodium salt (OX063) to this mixture to give a
final concentration of 15 mmol/L. Vortex until complete dissolution.
 

NOTE: This stock solution preparation is designed for usage with a 3.35-T preclinical DNP hyperpolarizer. When a 7-T clinical hyperpolarizer
is used, the gadoterate meglumine is not required because, at a higher magnetic field, its benefits are negligible. The addition of a
gadolinium-based contrast agent increases the achievable solid-state polarization and also the polarization rate. However, in the liquid state,
the contrast agent shortens the T1 relaxation time.

2. Growing the Cell Culture

1. Grow PC3 cells in a culture flask with a 125-cm2 growth area. Use F-12K medium containing 10% fetal calf serum (FCS) and maintain the
cells at 37 °C in a humidified atmosphere at 5% CO2. Before the dissolution step, remove the medium from the culture flask.
 

NOTE: Each cell line requires a particular preparation protocol for cell propagation. Consult the requirements with the cell line provider.

3. Preparation of the Cells for the Experiment

1. Remove the cell medium and wash the cells with ~ 10 mL of phosphate-buffered saline (PBS).
2. Add 5 mL of trypsin to the flask and return the cell culture flasks to the incubator for 3 to 5 min.
3. Add ~ 5 mL of F-12K medium to deactivate the trypsin.
4. Count the cells using an automatic cell counter. Mix 10 µL of the cell solution with 10 µL of the stain solution. Mix well with the pipette and

transfer 10 µL of the mixture into the chamber of a "counting glass".
5. Remove and count the cells in the flask(s). Transfer the appropriate volumes containing the desired number of cells (e.g., 5 x 106 up to 108)

into plastic vials.
6. Centrifuge the cells at 1,200 x g for 5 min and discard the supernatant.
7. Re-suspend the cells in the F-12K medium containing 10% FCS to a total volume of 800 μL and transfer them into a reaction cup (2 mL).

Place the reaction cup into a plastic vial filled with warm water.

4. Dissolution Agent Preparation

NOTE: The dissolution agent is a liquid that is used to dissolve the hyperpolarized sample. In biological applications, dissolution is usually
performed with H2O-based or deuterium oxide (D2O)-based buffers, such as PBS or tris(hydroxymethyl)aminomethane (Tris), containing 1 g/L
ethylenediaminetetraacetic acid (EDTA).

1. Preparation of 20 mmol/L PBS buffer
1. To prepare 100 mL of the dissolution agent, dissolve 36 mg of monosodium phosphate (NaH2PO4), 247 mg of disodium phosphate

(Na2HPO4), and 10 mg of EDTA in a solution of 20 mmol/L sodium hydroxide (NaOH) in D2O. Mix properly until complete dissolution.
 

NOTE: EDTA (1 g/L) is added to the buffer to eliminate possible ferromagnetic ions, which can spoil the hyperpolarization. The NaOH is
used to neutralize the pyruvic acid in a 1:1 mol ratio to reach a pH of 7.4.

5. Variable Temperature Insert (VTI) Cooldown

1. In the DNP-NMR polarizer program main window, click on "Cooldown."
 

NOTE: This switches on the vacuum pump and evacuates the VTI to approximately 5.0 mbar. Subsequently, the needle valve between the
VTI and the liquid helium reservoir fully opens, allowing liquid helium to flow into the VTI. The flow rate is regulated by the needle valve
to maintain the optimal amount of liquid helium in the VTI until it reaches the helium boiling temperature. Then, the VTI is evacuated to
almost complete vacuum, and the temperature reaches approximately 1.4 K. The VTI is filled with liquid helium up to 65%. At this point, the
instrument is ready for sample insertion.

6. Sample Preparation and Insertion

1. Using a micropipette, add ~ 8 µL of 13C-labeled sample stock solution into a plastic cup.
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2. Attach the plastic cup to the insertion rod and initiate the sample insertion process by pressing "Insert sample" in the main program window.
Select "Normal sample" and click "Continue."
 

NOTE: During this process, the needle valve first closes to discontinue the flow of liquid helium into VTI, and the pressure in the VTI then
increases. The sample holder inside the VTI is raised from the liquid helium, the inlet valve at the top of the VTI opens, and a gaseous helium
flow is introduced from the inlet valve to prevent outside contamination by air moisture.

3. When prompted, push the insertion rod with the attached plastic cup down into the VTI. Make sure to reach the sample holder at the bottom
of the VTI. Otherwise, the gaseous helium can push the sample out of the VTI.

4. Detach and remove the insertion rod.
5. Finish the procedure by clicking "Next" in the dialog window. The sample insertion procedure should not take longer than 10 s.

 

NOTE: The inlet valve then closes, the gaseous helium flow is discontinued, the sample holder with the sample cup is submerged into liquid
helium, and the needle valve is opened to allow the liquid helium to flow into the VTI. After 5 - 10 min, the VTI is cooled below 1.4 K, allowing
all of the free electrons to be polarized.

6. Confirm that the plastic cup with the sample was introduced correctly into the VTI by checking that it is not attached to the insertion rod or
pushed out from the VTI by helium gas. Then click "Finish."

7. Microwave Sweep (optional)

NOTE: A microwave sweep allows the determination of the optimal microwave frequency to maximize the hyperpolarization rate of the 13C nuclei
in the target compound.

1. To measure the microwave sweep, start the RINMR program, type "HYPERSENSENMR," and click "Select Config" and "Do Microsweep."
2. To initiate the process, select the "calibrate" tab on the main program window.
3. Click "Generate" and choose the beginning and ending frequency (e.g., 94.100 GHz-94.200 GHz), the frequency step size (e.g., 20 MHz), the

power (100 mW), and the time (60 s). Click "Continue," "Enable," and "Start."
 

NOTE: With these settings, the hyperpolarizer first polarizes the sample for 60 s using a microwave frequency of 94.100 GHz and a power of
100 mW. Then, it applies a 90° radio-frequency (RF) pulse and acquires the hyperpolarized 13C signal using the built-in spectrometer. These
steps are repeated for each step in specified frequency range. For subsequent hyperpolarization, choose the microwave frequency with the
maximal signal amplitude measured.

8. Polarization

1. To measure the polarization build-up, start the RINMR program, type "HYPERSENSENMR," and click "Select Config" and "Solid Build-up."
2. In the DNP-NMR polarizer program main window, click "Polarization" to initiate the hyperpolarization process.
3. Choose the optimal microwave frequency (obtained during the microwave sweep) and the power (e.g., 100 mW) for the sample and click

"Next."
4. Enable "Polarization build-up monitoring" and click "Finish."
5. Polarize the sample to > 95% (~ 60 min for [1-13C]pyruvate).

 

NOTE: During the polarization, microwaves are guided into the VTI and to the sample, causing the 13C spins to align with the hyperpolarized
unpaired electron spins. To measure the hyperpolarization buildup, RF pulses with a flip angle (FA) of 5° are applied periodically (e.g., every
300 s), and the resulting signal is plotted as a polarization build-up curve.

9. Dissolution

1. When the polarization reaches > 95%, initiate the dissolution process by clicking "Dissolution" in the DNP-NMR polarizer program main
window.

2. Choose the dissolution process from the drop-down menu and click "Next."
 

NOTE: The polarizer allows one to define the desired dissolution process by choosing the timing of the chasing gas.
3. Load ~ 5 mL of the dissolution agent through the top valve into a heated vessel in the dissolution part of the polarizer. Calculate the exact

volume of the dissolution agent needed using following equation:
 

 

where VDA is the wanted volume of dissolution agent, mPA, mOX063, and mGad are the masses of the pyruvate, OX063 and gadoterate
meglumine, respectively, added to the sample stock solution.

4. Place the dissolution stick in the active position above the inlet valve.
 

NOTE: This allows the instrument to connect its dissolution instrumentation to the sample cup in the VTI.
5. Click "Finish" to start the dissolution process.

 

NOTE: The dissolution agent is pressurized to 3 bar by helium gas and is subsequently heated up to 200 °C, causing an increase in
pressure. When the pressure reaches 10 bar, the needle valve closes to discontinue the flow of liquid helium into the VTI. The sample
holder raises the cup from the liquid helium. The dissolution stick is lowered into the VTI and connected to the sample cup. The conditioned
dissolution agent is pushed by the pressure, which results from the heating vessel containing the dissolution buffer and helium gas, through
the dissolution stick to the cup, causing a rapid dissolution of the sample. The solution then flows out into the collection flask via plastic
tubing. The dissolution stick with the attached cup is then raised from the VTI.

6. Move the dissolution stick with the attached cup to the "cleaning" position and finish the process by clicking "Finish."

10. Detection of the 13C Hyperpolarized Signal

1. 13C metabolic magnetic resonance spectroscopy in vitro
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1. Mix 200 µL of the 20-mmol/L dissolved hyperpolarized sample from the collection flask with 800 µL of the cell solution.
 

NOTE: The resulting final concentration of [1-13C]pyruvate is 4 mmol/L.
2. Mix the suspension well using a micropipette and transfer ~ 600 µL into a 5-mm NMR tube.
3. Insert the 5-mm NMR tube into the 1-T NMR spectrometer. In the main window of the software, click "Run" to start the measurement,

applying series of one hundred 10° RF pulses every 3 s.
 

NOTE: Measure the time between the initial mixing of the hyperpolarized sample with the cells and the start of the spectroscopic
acquisition. Ensure that the mixing procedure does not exceed 30 s to minimize polarization loss.

2. 13C metabolic magnetic resonance imaging
1. To build a container for the in vitro experiments using the MRI spectrometer, take a 5-mL syringe and connect it to a catheter (d = 1.2

mm) that is long enough to reach from the spectrometer's iso-center to the approachable area of the spectrometer.
2. Fill the in vitro container with the cell solution of the desired concentration for the experiment (e.g., 108) or with an enzymatic solution.
3. Place an in vitro container at the isocenter of the MRI magnet. Place a 13C-tuned radio frequency receiver coil on the container. Place a

concentrated 13C-labeled calibration phantom (e.g., 10-mol/L 13C-urea) nearby.
4. Insert the "in vitro container" near the iso-center of the NMR scanner.
5. Run the scanner's standard 3-plane localization sequence and adjust the in vitro container's position to the iso-center, as needed.
6. Run a 1H T2-weighted "anatomical" sequence covering the in vitro container localization. Use the following settings: 2D spin echo with

axial orientation, repetition time (TR) = 2,000 ms, echo time (TE) = 20 ms, slice thickness = 1 mm, field of view covering the in vitro
container, and 16 echoes per excitation. Ensure that field shimming is done on protons during this step.

7. In the anatomical images, select 5 contiguous slices centered on the region of interest. Prescribe a 13C spectroscopic calibration
acquisition covering the selected anatomical slices. Use the following settings: 2D Block-Siegert calibration sequence with axial
orientation 12 x 12 centric encoded, TR = 1,000 ms, slice thickness = 5 mm, field of view matching anatomical images, number of
scans (NS) = 64, bandwidth = 5,000 Hz, and FA = 90°.

8. Select the 13C spectroscopic calibration sequence (for more information, see Schulte et al. 2011)75 from the pulse sequence library.
Download the pulse sequence to the scanner from the computer by clicking "Download." Click on "Spectra Prescan" to run the
spectroscopic prescan. In the spectrum magnitude plot, adjust the peak from the 13C calibration phantom to the center of the scanner
frequency. Set the receiver gains to the maximum. Click "Start" to run the 13C spectroscopic calibration sequence. Note the reported
transmit gain and centric frequency.

9. Set a 13C chemical shift imaging (CSI) acquisition covering the selected anatomical slices. Use the following settings: 2D echo-planar
spectroscopic imaging (EPSI) with axial orientation 12 x 12 centric encoded, TR = 400 ms, slice thickness = 5 mm, field of view
matching anatomical images, NS = 300, and bandwidth = 5,000 Hz.
 

NOTE: EPSI samples a single line in k-space repeatedly after one RF excitation to acquire both spatial and spectral information
simultaneously. For more information about the acquisition techniques, see the article by Durst et al. 201576.

10. Download the 13C CSI sequence and run the spectroscopic prescan. Adjust the scanner frequency and transmit the gain as specified
by the calibration sequence output.

11. After the hyperpolarized solution is deposited in the collection flask, draw up ~ 3 mL into a syringe and then inject it into the catheter
connected to the in vitro container. Start the acquisition. After the acquisition is complete, save the raw data file for subsequent
reconstruction.

11. Data Reconstruction

1. Apply one of the two described kinetic models to analyze the acquired data.
1. In the first method for describing the LDH kinetics, kinetic value (k), compare the sum of the lactate signal (MLAC) to the signal of all

hyperpolarized molecules (Mx)
21,77.

 

2. In the other method, measure the lactate and pyruvate signals over time and fit these to a kinetic model17,25,71. To solve the metabolic
exchange rate, kPA→LAC, and the effective signal decay rate of lactate, rLAC, use the following linear differential equations using the two-
site exchange differential model, yielding for lactate:
  

Note: The effective lactate signal decay rate rLAC is dependent upon the lactate longitudinal relaxation time (T1,LAC), the opposite metabolic
exchange rate from lactate to pyruvate kLAC→PA, the applied FA and TR, and the signal intensity of pyruvate (MPA) and lactate (MLAC), taking into
account the irreversible signal reduction after each successive excitation:
  

Therefore, rLAC results in a single, inseparable term of signal decay. Since it is possible to correct for the flip angle and the repetition time,
and even though there is a flux LAC→PA, we assume that the exchange rate from lactate to pyruvate (kLAC→PA) does not need to be included
in the calculation, based on the results of Harrison et al. 201278. Their results show that the kLAC→PA does not play as crucial a role as one
would assume. This mode allows the T1 relaxation time of lactate to be quantified. This model is independent of pyruvate administration to the
measurement, which, in the case of in vitro experiments, is not crucial and can be neglected. It does, however, play an important role for in vivo
measurements79.
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Representative Results

The results of the “microwave sweep” are illustrated in Figure 3. It shows that the optimal microwave frequency for the [1-13C]pyruvate sample
is at 94.156 GHz for the local 3.35-T hyperpolarizer. All following hyperpolarization experiment (n = 14) were performed using this microwave
frequency with a power of 100 mW. The microwave irradiation was applied for 60 to 80 min, leading to a solid-state hyperpolarization higher than
90%. The results are presented in Figure 4. The hyperpolarized [13C]pyruvate was mixed with 5 × 106 (n = 2), 107 (n = 2), 2 × 107 (n = 1), 3 × 107

(n = 2), 4 × 107 (n = 1), 6 × 107 (n = 2), 8 × 107 (n = 2), and 108 (n = 1) of the prostate cancer cell line PC3.

The resulting data are summarized in Figure 5 and Figure 6. Acquired data with spectral and temporal resolution are shown in Figure 5A-D and
Figure 6A-D, with only a temporal resolution for each molecule observed (Figure 5E-H and Figure 6E-H), and with only a spectral resolution
(Figure 5I-L and Figure 5I-L). We have observed three major hyperpolarized signals representing [1-13C]pyruvate, [1-13C]pyruvate hydrate,
and [1-13C]lactate, with chemical shifts at 173 ppm, 181 ppm, and 185 ppm, approximately relative to the trimethylsilyl propanoic acid (TMSP)
at pH 7.4 and temperature 20 °C. The signal ratios between the three metabolites are summarized in Table 1. The data show a clear correlation
between the lactate signal and the number of cells present in the sample (Figure 7). However, the results from the experiments with less than
2 × 107 cells exhibit significant deviation, likely due to a low signal-to-noise ratio. Therefore, we suggest using more cells than this for further
experiments. When the relative lactate signal (kinetic value) is normalized by the number of cells (Figure 8), it clearly demonstrates similar
uptake and metabolism throughout all of the cells. However, there is a trend of decreasing lactate production per cell with an increasing number
of cells. We believe that one of the causes of reduced cell metabolic activity is a very high concentration of cells in a very small volume, resulting
in the increased viscosity of the sample. The results of the two-site exchange differential model are summarized in Table 2 and shown in Figure
9. The data follow a trend similar to the previous model: increasing kPA→LAC with an increasing number of cells. However, this model results in a
steeper increase of the kinetics with the number of cells. When the metabolic exchange rate kPA→LAC is normalized to the number of cells, we can
again see a clear trend of decreasing kPA→LAC with an increasing number of cells (Figure 10).

Figure 11 demonstrates the possibility of the addition of spatial localization to the experiment. It shows a phantom injected with 80 mmol/L
hyperpolarized [1-13C]pyruvate next to a 10 mol/L 13C-urea phantom. The technique allows the attainment of a spectrum with temporal and
special resolution (Figure 11A) or of the signal decay of the chosen metabolite signals in time (Figure 11B). The spectra in the time domain can
also be summed to receive a better signal-to-noise ratio (Figure 11C). The special resolution allows the choice of the desired frequency region
of the 13C spectrum belonging to certain metabolites, such as [1-13C]pyruvate (Figure 11D), [1-13C]pyruvate hydrate (Figure 11E), or reference
13C-urea (Figure 11F). It can be co-registered with a 1H image. The pulse sequence used (EPSI) allows the acquisition of an image of the whole
slice every 4.9 s. In summary, this technique can provide data with a spatial, temporal, and spectral resolution for any metabolite.

 

Figure 3: Results of a Microwave Sweep with [1-13C]pyruvate at the Local 3.35-T Hyperpolarizer. The result of the measurements
determining the optimal microwave frequency to maximize the hyperpolarization rate of 13C nuclei in the target compound of [1-13C]pyruvate. The
microwave sweep has a shape of an EPR absorption spectrum. The shape and separation of the peaks are based on the radical used (in this
case, trityl radical), and the biggest influence have a solid effect and thermal mixing. Please click here to view a larger version of this figure.
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Figure 4: Solid State Polarization Buildup of a [1-13C]pyruvate Sample. An average of n = 13 solid-state polarization buildups with the error
represented by the standard deviation measured every 300 s for up to 4,500 s. Please click here to view a larger version of this figure.

 

Figure 5: Results of the 13C NMR Spectroscopy for the Number of Cells (5 x 106 to 3 x 107 cells). The acquired data plotted with spectral
and temporal resolution (A-D), plotted with temporal resolution only for [1-13C]pyruvate, [1-13C]pyruvate hydrate, and [1-13C]lactate (E-H), and
plotted with spectral resolution only, summing all time steps (I-L). Please click here to view a larger version of this figure.
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Figure 6: Results of the 13C NMR Spectroscopy for the Number of Cells (4 x 107 to 1 x 108 cells). The acquired data plotted with spectral
and temporal resolution (A-D), plotted with temporal resolution only for [1-13C]pyruvate, [1-13C]pyruvate hydrate, and [1-13C]lactate (E-H), and
plotted with spectral resolution only, summing all time steps (I-L). Please click here to view a larger version of this figure.

 

Figure 7: Results of the Simple Metabolite Ratio Kinetic Modeling. Data represents the ratio of the [1-13C]lactate signal to the sum of
[1-13C]pyruvate, [1-13C]pyruvate hydrate, and [1-13C]lactate versus the number of cells in the experiments. The error represents the standard
deviation. Please click here to view a larger version of this figure.
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Figure 8: Results of the Simple Metabolite Ratio Kinetic Modeling Normalized to the Number of Cells. The data represent the ratio of
the [1-13C]lactate signal to the sum of [1-13C]pyruvate, [1-13C]pyruvate hydrate, and [1-13C]lactate normalized to the number of cells versus the
number of cells in the experiments. The error represents the standard deviation. Please click here to view a larger version of this figure.

 

Figure 9: Results of the Two-site Exchange Differential Model. The data represent the metabolic exchange rate (kPA→LAC) versus the number
of cells in the experiments. The error represents the standard deviation. Please click here to view a larger version of this figure.
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Figure 10: Results of the Two-site Exchange Differential Model Normalized to the Number of Cells. The data represent the metabolic
exchange rate (kPA→LAC) normalized to the number of cells versus the number of cells in the experiments. The error represents the standard
deviation. Please click here to view a larger version of this figure.

 

Figure 11: Result of Magnetic Resonance Imaging of the Hyperpolarized [1-13C]pyruvate Probe. A) The spectrum acquired over the whole
slice and all time steps. B) The decay of the [1-13C]pyruvate and [1-13C]pyruvate hydrate signal over time. The third signal is the 10 M 13C-urea
localization reference. C) The spectrum acquired from the whole spatial and temporal resolution. D) The 1H image overlaid with the 13C image
of the summed [1-13C]pyruvate signal over all time steps. E) The 1H image overlaid with the 13C image of the summed [1-13C]pyruvate hydrate
signal over all time steps. F) The 1H image overlaid with the 13C image of the summed 13C-urea signal over all time steps (reference). The 13C-
signal in C-E is normalized to the maximum of the signal of the specific metabolite. Please click here to view a larger version of this figure.

Cell number

5×106 (n=2) 107 (n=2) 2×107 (n=1) 3×107 (n=2) 4×107 (n=1) 6×107 (n=2) 8×107 (n=2) 108 (n=1)

[1-13C]
 

pyruvate
92.9 ± 1.4 91.7 ± 1.0 86.7 77.5 ± 2.7 76 69.7 ± 0.5 65.9 ± 3.7 42.9

[1-13C]
 

pyruvate
hydrate

6.8 ± 1.2 6.7 ± 1.6 9.5 10.1 ± 1.8 8.9 7.7 ± 1.5 10.4 ± 0.2 13.4

[1-13C]
 

lactate
0.3 ± 0.3 1.6 ± 0.6 3.8 12.4 ± 4.5 15.1 22.5 ± 1.1 23.7 ± 3.5 43.7

Table 1: The Relative Ratio of Hyperpolarized Metabolites with Respect to the Different Number of Cells.
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Cell number

5×106 (n=2) 107 (n=2) 2×107 (n=1) 3×107 (n=1) 4×107 (n=1) 6×107 (n=2) 8×107 (n=2) 108 (n=1)

kPA → LAC

[*10-4]
0.924±0.870 4.984±1.19 15.135 36.289 58.904 112.174±10.491114.3±37.059 349.234

Table 2: Results of the Two-site Exchange Differential Model.

Discussion
13CMRSI with hyperpolarized probes is a promising method to monitor metabolism in real time in vitro and in vivo. One very important aspect
when employing this experimental process is the proper standardization, especially regarding in vitro experiments. First, the preparation of the
sample needs to be done properly and consistently to achieve the same concentration of hyperpolarized material in each experiment. This
requires a precise weighing of both the sample to be hyperpolarized and the buffer. If the concentration is not correct, the final pH of the solution
is not precise, which can have an influence on T1 and the cells' responses. It is also crucial to handle the cells as uniformly as possible. The
cells should always be prepared in such a way that there is a minimal delay between cell harvest and the subsequent experiment in order to
minimize the duration of time the cells are kept at a very high concentration and low volume. Variation in the cell preparation protocol, such as
a different preparation times or temperatures, could result in substantial variations in the obtained data. The mixing of the sample with the cells
should also be standardized. It is important to measure the time between the additions of the tracer to the cell suspension and the beginning of
the measurement, because this can vary; during the data analysis, this should be considered.

The correct choice of the data analysis and kinetic modeling is crucial in the interpretation of the acquired data. The simple model is suitable
for a linear one-way reaction with a constant exchange rate of two metabolites. As described in the introduction, pyruvate undergoes several
enzymatic reactions and, more importantly, it also undergoes a non-enzymatic reversible-exchange reaction with pyruvate hydrate. This reaction
played a crucial role in the experiments, and its effect is well demonstrated in the experiment with 8 × 107 cells. Although Table 1 indicates that
the pyruvate hydrate relative concentration is similar to other experiments, when closely investigated in Figure 6D, it shows a much higher
pyruvate hydrate signal at the beginning of the experiment compared to the other experiments. However, when the temporal resolution is
summed up, this important information is lost and causes an error in the reconstruction of the data. On the other hand, the two-site exchange
differential model is a more robust and precise description of the kinetics because it includes the temporal resolution in the calculation. Thus, it
includes the non-enzymatic exchange with pyruvate hydrate, even if it rapidly exchanges with pyruvate during the measurement.

There are various imaging strategies to choose between to observe the hyperpolarized signal or to track the metabolism of a hyperpolarized
molecule in preclinical and clinical studies. Durst et al. demonstrated the advantages and disadvantages of different pulse sequnces76. The free
induction decay chemical shift imaging (FIDCSI) sequence is relatively robust but has limited use for multi-slice and temporally resolved imaging.
Echo-planar spectroscopic imaging (EPSI) is robust for gradient issues and off-resonance effects but, it is prone to reconstruction artifacts. The
iterative decomposition of water and fat with echo asymmetric and least-squares estimation (IDEAL)81, spiral chemical shift imaging (ISPCSI),
pulse sequence35, and spiral chemical shift imaging (SPCSI) have high encoding efficiencies but are sensitive to B0 inhomogeneity. The choice
of the sequence will depend on the scanner characteristics, the biological question, and the system being investigated.

There are many requirements that need to be fulfilled for successful hyperpolarization. However, there are also several limitations that the
hyperpolarized 13CMRSI technique is nowadays facing. The primary and unchangeable limitation is the T1 relaxation time of the 13C nucleus in
the molecule, which defines the amount of detectable signal available at the specific time of measurement. The signal is lowered by each RF
excitation that causes a loss of the hyperpolarization signal repeatedly during data acquisition. Another limitation is the relatively long time period
that is required to hyperpolarize a molecule. This typically takes from 30 to 90 min.

In comparison to other techniques of molecule imaging, such as [18F]-FDG PET, hyperpolarized 13CMRSI does not require tumors with increased
glycolytic metabolic pathways and therefore, increased glucose consumption. The technique shows a real metabolic flux in real time. On
the other hand, [18F]-FDG PET does not give direct information about metabolism but only indirect information about accumulation in the
metabolically active area. This could cause a false negative result, where the tumor seems to be metabolically inactive but is actually using
different metabolic pathways, such as glutaminolysis, as the carbon source for proliferation.

In conclusion, dissolution DNP can be used in a variety of applications to study an unlimited list of diseases (such as diabetes)82, measure
pH15,36,45, or monitor metabolic changes in various types of cancer. These measurements can be accomplished on different levels, from in vitro
cell experiments, through preclinical studies using animal models (such as mice, rats, rabbits, pigs, and dogs), to recent human clinical studies57.
The future clinical applications will feature a very powerful and noninvasive diagnostic tool that could not only detect and localize the disease but
also allow the observation of the treatment response in real time83.
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In this section, two publications are presented, where novel data re-
construction and processing techniques are demonstrated to accel-
erate data acquisition and provide multiple outputs from the same
input data. Spatio-temporal MRI Reconstruction by Enforcing Local
and Global Regularity via Dynamic Total Variation and Nuclear Norm
Minimization and Robust Reconstruction of Accelerated Perfusion
MRI Using Local and Nonlocal Constraints show principled algo-
rithmic developments to reconstruct dynamic MRI data from highly
undersampled measurements.
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4.1.1 Spatio-temporal MRI Reconstruction by Enforcing Local and Global
Regularity via Dynamic Total Variation and Nuclear Norm Mini-
mization

Peer-reviewed Conference Paper

Authors: C. Ulas, PA. Gómez, JI. Sperl, C. Preibisch, BH. Menze

In: Proceedings of International Symposium on Biomedical Imaging (ISBI)
(2016), pp. 306 – 309 [83]

Abstract: In this paper, we propose a new spatio-temporal recon-
struction scheme for the fast reconstruction of Dynamic Magnetic
Resonance Imaging (dMRI) data from undersampled k-space measure-
ments. To utilize both spatial and temporal redundancy in dMRI se-
quences, our method investigates the potential benefits of enforcing
local spatial sparsity constraints on the difference to a reference image
for each frame and additionally exploiting the low-rank property of
global spatio-temporal signal via Nuclear Norm (NN) minimization.
We present here an iterative algorithm that solves the convex opti-
mization problem in an alternating fashion. The proposed method
is tested on in-vivo 3D cardiac MRI and Dynamic Susceptibility Con-
trast (DSC)-MRI brain perfusion datasets. In comparison to two state-
of-the-art methods, numerical experiments demonstrate the superior
performance of our method in terms of reconstruction accuracy.

Contribution of thesis author: Algorithmic discussions and imple-
mentation, manuscript revision and editing.

Copyright Notice: © IEEE 2016. All rights reserved.
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ABSTRACT
In this paper, we propose a new spatio-temporal reconstruc-
tion scheme for the fast reconstruction of dynamic magnetic
resonance imaging (dMRI) data from undersampled k-space
measurements. To utilize both spatial and temporal redun-
dancy in dMRI sequences, our method investigates the poten-
tial benefits of enforcing local spatial sparsity constraints on
the difference to a reference image for each frame and ad-
ditionally exploiting the low-rank property of global spatio-
temporal signal via nuclear norm (NN) minimization. We
present here an iterative algorithm that solves the convex op-
timization problem in an alternating fashion. The proposed
method is tested on in-vivo 3D cardiac MRI and dynamic sus-
ceptibility contrast (DSC)-MRI brain perfusion datasets. In
comparison to two state-of-the-art methods, numerical exper-
iments demonstrate the superior performance of our method
in terms of reconstruction accuracy.

Index Terms— compressed sensing, dynamic MR imag-
ing, low-rank approximation, total variation, nuclear norm

1. INTRODUCTION

Dynamic magnetic resonance imaging (dMRI) is an impor-
tant medical imaging technique that enables the visualization
of anatomical and functional changes of internal body struc-
tures through time, resulting in a spatio-temporal signal. Al-
though MRI is a non-invasive, non-ionizing technology and
provides an unmatched quality in soft tissue contrast, phys-
ical and physiological limitations on scanning speed makes
this an inherently slow process [1]. Besides, there is a trade-
off between the spatial and temporal resolution. The reason
is that acquiring fewer k-space samples than those dictated
by the Nyquist criterion accelerates the process significantly,
but exhibits aliasing artifacts in image space. Fortunately, dy-
namic MR sequences usually provide redundant information

This research has received funding from the European Union’s H2020
Framework Programme (H2020-MSCA-ITN-2014) under grant agreement
no 642685 MacSeNet.

? Corresponding author. E-mail: cagdas.ulas@tum.de

in both spatial and temporal domains, which allows the reduc-
tion of acquisition time by using compressed sensing (CS) ap-
proaches [2, 3]. More recently, CS theory has been applied to
MRI enabling highly accurate reconstructions from fewer k-
space measurements depending on the assumption of sparsity
of the reconstructed data under some transform domain [4].

In recent years, researchers have proposed sophisticated
CS-based reconstruction methods that exploit both spatial
and temporal redundancies of the entire dataset, such as
spatio-temporal total variation [5], dictionary learning [6],
and low-rank approximation and sparsity [5, 7]. In general,
dynamic MR images are temporally correlated due to slow
changes of the same organ(s) through the whole image se-
quence, and such high correlation in the temporal domain has
been successfully investigated based on a sparsity constraint
in the temporal domain for dMRI reconstruction [6]. As an
extension of the conventional spatial total variation (TV), a
new sparsity inducing norm called dynamic total variation
(dTV) [8] has been recently introduced to utilize both spatial
and temporal correlations in online reconstruction.

In this paper, we make an attempt to integrate two fun-
damentally different approaches for CS-based reconstruction:
we enforce local coherences at the pixel-level via dynamic
total variation (dTV) and global regularity in the full spatio-
temporal domain via a nuclear norm (NN) minimization con-
straint. We present the dTV/NN optimization in a joint formal
framework which allows us to rely on an iterative minimiza-
tion algorithm. The joint minimization problem is solved iter-
atively by utilizing an alternating minimization strategy. The
proposed method is validated on two different dynamic MR
sequences with comparisons to state-of-the-art methods.

Our main contributions can be summarized as follows:
We propose a novel reconstruction scheme that iteratively en-
forces not only the local (spatial) regularity in every single
frame but also the global (spatio-temporal) regularity of a full
sequence. To this end, we introduce a reconstruction model
that is jointly using dTV sparsity and nuclear norm penalties,
exploiting both the sparsity of inter-frame differences and the
low-rank structure of the dynamic MR sequences in the full

978-1-4799-2349-6/16/$31.00 ©2016 IEEE 306
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spatio-temporal space. Our approach also employs, for the
first time, the dTV sparsity inducing norm in an offline recon-
struction scheme.

2. METHODS

2.1. Problem formulation

Here, we denote X3D as a dMRI sequence to be represented
as a spatio-temporal 3D volume of size P = N ×N ×T , i.e.,
the images are of size N × N and T is the total number of
frames in the sequence. Let Xt denote the MR image matrix
at the tth frame, yt is the k-space data for the tth frame and
T = {1, 2, ..., T} is the set of frame number indices. The
main objective here is to reconstruct all Xt’s, t ∈ T, from
the collected k-space measurements yt’s. The MR imaging
equation for each frame is formulated as

yt = Ftxt + η (1)

where Ft denotes the undersampling 2D Fourier opera-
tor for frame t, i.e., Ft = RtF2D, where Rt ∈ Rm×N ,
m � N , is the undersampling mask to acquire only a sub-
set Ω of k-space, xt denotes the MR image vector formed
by row/column concatenation of Xt and η ∈ Cm is addi-
tive Gaussian noise in k-space. We stack the data for all
the frames of the MR sequence as columns and denote them
as follows: Y = [y1|y2|...|yT ], X = [x1|x2|...|xT ], and
Fu = diag{F1,F2, ..,FT }.

We propose solving the following optimization problem
for the reconstruction of dMRI sequences:

min
X

ν1‖X‖∗ + ν2(dTV (X, x̄))

s.t. ‖FuX − Y ‖22 ≤ ε
(2)

where ν1 and ν2 are respective regularization parameters for
the two terms, and ‖X‖∗ denotes the nuclear norm of X and
is calculated as

‖X‖∗ =
∑
i

σi(X)

where σi(X) represents the ith singular value of X . For an
image xt with N2 pixels, dTV (X, x̄) can be defined as

dTV (X, x̄) =
∑
t∈T

N2∑
n=1

√
(∇x(xt − x̄)n)

2
+ (∇y(xt − x̄)n)

2

where x̄ is the reference image calculated by averaging all
the frames in the sequence, ∇x and ∇y represent the finite-
difference matrices along the x and y dimensions respectively.

Let us introduce new variables zt = xt − x̄ and bt =
yt−Ftx̄, then the problem (2) can be reformulated as follows:

min
X,z

ν1‖X‖∗ + ν2
∑
t∈T
‖zt‖TV

s.t.

{
‖FuX − Y ‖22 ≤ ε
‖Ftzt − bt‖22 ≤ ε, ∀t

(3)

where z = [z1, ..., zT ] and ‖zt‖TV = ‖[D1zt, D2zt]‖2,1,
where D1 and D2 are two N2 × N2 first order finite differ-
ence matrices in vertical and horizontal directions, and `2,1
norm is the summation of the `2 norm of each row, [a1,a2]
denotes concatenating two vectors a1 and a2 horizontally.

2.2. Image reconstruction algorithm

The optimization problem (3) is convex and we choose to split
it into two simpler subproblems that can be efficiently solved
with greedy algorithms. Alternating the solution of these two
subproblems iteratively will give an approximate solution to
Eq. (3). In this approach, an approximate generic solution is
refined towards a better solution.

- Subproblem 1 : Enforcing local (spatial) regularity

min
zt

1

2
‖Ftzt − bt‖22 + ν2‖zt‖TV , ∀t (4)

For each frame xt in the sequence, we solve the optimiza-
tion problem (4) to reconstruct each frame individually given
a reference image x̄. This guarantees that the sum of TV
norms in Eq. (3) is also minimized. The problem (4) can
be efficiently solved by the fast iteratively reweighted least
squares (FIRLS) algorithm [9] based on preconditioned con-
jugate gradient. This algorithm provides fast convergence and
low computational cost by designing a new preconditioner
which can be accurately approximated using the properties
of the Fourier transform and diagonally dominant structure of
the FHt Ft matrix, where H denotes the conjugate transpose.
We refer the reader to [9] for more details on FIRLS.

- Subproblem 2 : Enforcing spatio-temporal regularity

min
X

1

2
‖FuX − Y ‖22 + ν1‖X‖∗ (5)

The spatio-temporal signal representation of a dMRI se-
quence can be arranged as a 2D matrix of X , where each
column represents a vectorized image frame. Due to the
repetitive structure of the dMRI sequence between consecu-
tive frames, and the resulting high correlation between each
column ofX , this matrix can be generally approximated to be
low-rank, i.e., X has only a few significant singular values.

By exploiting the low-rank property of X , we can solve a
low-rank matrix recovery problem using convex nuclear norm
as a prior. In this way, we pose low-rank matrix recovery
as a nuclear norm regularized linear least squares problem as
stated in (5). This problem can be solved iteratively through
an accelerated proximal gradient (APG) algorithm [10]. The
algorithm provides a computationally efficient way of recov-
ering low-rank matrices iteratively and consists of two main
steps: a first order update and a proximal projection of the
penalty that is solved via the singular value thresholding op-
erator, i.e., Sα(G) = U diag{(Σ − α)+}VH , where U, Σ,
V are obtained from singular value decomposition of G.

Our proposed scheme follows an iterative refinement of an
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Algorithm 1 NNMdTV reconstruction
1: Input: Y , ν1, ν2, Fu, IterNo
2: Output: X
3: Initialize: X = X0 = FHu Y , x̄ = x̄0 = mean(FHu Y )
4: for i = 1 to IterNo do
5: for each t ∈ {1, 2, ..., T} do
6: ẑt ← arg min

zt

1
2‖Ftzt − bt‖

2
2 + ν2‖zt‖TV

7: xt ← ẑt + x̄i
8: end for
9: Form updated Xi = [x1|x2|...|xT ]

10: Xi ← arg min
X

1
2‖FuX − Y ‖

2
2 + ν1‖X‖∗

11: x̄i ← mean(Xi)
12: end for

initial solution. First, we start with zero-filled sequence and
iteratively improve the previous reconstruction by first solv-
ing the Subproblem 1 for each frame and refining this solution
by solving the Subproblem 2 as a following step. Second,
in each iteration we update the reference image that is used
for solving Subproblem 1, providing a better reference image
given as the input to the problem (4), thus yielding more ac-
curate reconstructions. Throughout the paper we will simply
term our proposed method as NNMdTV. Algorithm 1 sum-
marizes the steps of the NNMdTV algorithm.

3. EXPERIMENTS AND RESULTS

3.1. Experimental setup

We evaluate our method on two different types of dynamic
MR sequences. We use an in-vivo breath-hold cardiac per-
fusion sequence [8] of size 192 × 192 × 40 and a dynamic
susceptibility contrast (DSC)-MRI brain perfusion sequence
of size 128 × 128 × 60 with normalized intensities. Both
sequences are artificially corrupted by multiplying its corre-
sponding k-space representation with a binary undersampling
mask and subsequently adding complex Gaussian white noise
with a standard deviation σ. A radial sampling mask is used
to simulate undersampling. The same undersampling mask is
used for all frames in our experiments.

3.2. Evaluation

For quantitative evaluation, we adopt the Peak Signal-to-
Noise Ratio (PSNR) as the metric in our experiments. We
compare our method with two state-of-the-art methods: k-t
SLR [5] and dynamic total variation (dTV) [8]. The codes
of dTV and k-t SLR reconstruction methods are downloaded
from each author’s website and for k-t SLR we use the de-
fault parameter settings in the package for all experiments.
For dTV reconstruction, we use the first frame as the refer-
ence frame with 1/4 sampling rate and 1/6 sampling rate for
the remaining frames. The sampling rate for all frames is also

set to 1/6 for NNMdTV and k-t SLR. To ensure fair compar-
ison, the parameters settings used in dTV reconstruction are
also used in our NNMdTV method for all experiments. For
the NNMdTV method, we set ν1 = 5 × 10−8, ν2 = 0.001
and IterNo = 5 for both sequences. The noise standard
deviation is set to σ = 10−5 for all reconstruction methods.

3.3. Experimental results

In Figs. 1 and 2, we present qualitative results for the DSC
brain and cardiac perfusion datasets respectively. Fig. 1
shows the temporal profile of the DSC brain data along a
fixed row. From the error maps (see Fig. 1(d, f, h)), it is
clearly visible that NNMdTV reconstructs better result com-
pared to other two methods. The red arrows in Fig. 1(h)
show the regions where the reconstruction is improved with
NNMdTV. A frame of the reconstructed cardiac sequence is
shown in Fig. 2. Visible artifacts can clearly be seen on the
images reconstructed by k-t SLR. In contrast, compared to the
dTV, the reconstruction result of NNMdTV is more similar to
the fully-sampled frame, and less noisy (see Fig. 2(h)).

Quantitative results of different methods on two perfusion
datasets are shown in Fig. 3. From the figure, we can clearly
observe that the proposed NNMdTV achieves the highest
PSNR for each iteration and for all frames of the sequences.
The graphs at the top of Fig. 3 mainly validate the fact that it-
eratively updated mean reference image in NNMdTV enables
better reconstruction accuracy.

4. CONCLUSION

In this paper, we have proposed a new CS-based reconstruc-
tion model for dynamic MRI based on the joint minimiza-
tion of local differences in each frame and global differences
in the full spatio-temporal space and developed an iterative
reconstruction algorithm to solve this minimization problem.

a b c d e f g h

Fig. 1. Temporal profile of row 75 in the original DSC brain
dataset (a), its undersampled by 6 zero-filled version (b), and
reconstructions using k-t SLR (c), dTV (e), and NNMdTV (g)
with their respective errors multiplied by 3 (d, f, h).
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Fig. 2. Visual comparison of a fully sampled frame of cardiac
dataset (a), its undersampled by 6 zero-filled version (b), and
reconstructions using k-t SLR (c), dTV (e), and NNMdTV (g)
with their respective errors magnified by 4 (d, f, h).

Experiments on two different perfusion datasets have demon-
strated the effectiveness of our method over the state-of-the-
art. Future work will aim at extending our method with the
use of patch-wise redundancies of spatio-temporal neighbor-
hoods in adjacent frames and making it more robust to noisy
scenarios and large inter-frame motion.
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thermore, we introduce an efficient iterative algorithm based on a
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with fast convergence. We evaluate our method on Dynamic Suscepti-
bility Contrast (DSC)-MRI brain perfusion datasets as well as on a pub-
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proposed method demonstrates superior reconstruction performance
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tion of perfusion time profiles, which is very essential for the precise
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Abstract. Dynamic perfusion magnetic resonance (MR) imaging is a
commonly used imaging technique that allows to measure the tissue
perfusion in an organ of interest via assessment of various hemody-
namic parameters such as blood flow, blood volume, and mean tran-
sit time. In this paper, we tackle the problem of recovering perfusion
MR images from undersampled k-space data. We propose a novel recon-
struction model that jointly penalizes spatial (local) incoherence on tem-
poral differences obtained based on a reference image and the patch-
wise (nonlocal) dissimilarities between spatio-temporal neighborhoods of
MR sequence. Furthermore, we introduce an efficient iterative algorithm
based on a proximal-splitting scheme that solves the joint minimization
problem with fast convergence. We evaluate our method on dynamic
susceptibility contrast (DSC)-MRI brain perfusion datasets as well as
on a publicly available dataset of in-vivo breath-hold cardiac perfusion.
Our proposed method demonstrates superior reconstruction performance
over the state-of-the-art methods and yields highly accurate estimation
of perfusion time profiles, which is very essential for the precise quantifi-
cation of clinically relevant perfusion parameters.

1 Introduction

Medical diagnosis and research heavily employ perfusion-weighted magnetic res-
onance imaging (MRI) techniques to estimate the blood flow and volume through
examination of the spatio-temporal changes of the signal intensities following the
injection of a blood bolus via exogenous paramagnetic tracers. In neuroimag-
ing, these techniques have become widespread clinical tools in the diagnosis of
stroke – for the assessment of the tissue at risk –, and the treatment of patients
with cerebrovascular disease. One of the major obstacles in the clinical use of per-
fusion imaging is the need to track the rapid kinetics of contrast agent (tracer)
uptake for accurate perfusion quantification [6]. Moreover, the short scanning

c© Springer International Publishing AG 2017
M.A. Zuluaga et al. (Eds.): RAMBO 2016/HVSMR 2016, LNCS 10129, pp. 37–47, 2017.
DOI: 10.1007/978-3-319-52280-7 4
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time available for each frame often results in limited spatial and temporal res-
olution, or poor signal-to-noise ratio (SNR) images. In order to improve the
spatial or temporal resolution, one widely used approach is to accelerate the
acquisition of each frame through the undersampling of k-space by acquiring
only a subset of k-space lines [3,15]. However, the undersampling often results
in aliasing artifacts in image space and in the context of perfusion MRI, accurate
reconstruction of the complete temporal perfusion signal with its peak and high
dynamics becomes an even more challenging task.

In recent years, various approaches have been proposed to solve the recon-
struction problem in related dynamic imaging tasks, considering, such as piece-
wise smoothness in the spatial domain [17], high correlation and sparsity in
the temporal domain [3,4,10], sparse representations of local image regions via
learned dictionaries [3] and low-rank property of MR sequences in the full spatio-
temporal space [10,14,17]. Although these methods allow highly accurate recon-
structions from fewer k-space data, the main drawback is that their performance
is very sensitive to motion and rapid intensity changes occurring over the dura-
tion of image acquisition as encountered in perfusion MRI. In addition, these
methods often result in over smooth and blurry image regions that are lacking
finer details when the acquired data are contaminated with high noise.

In this paper, we integrate two fundamentally different approaches that both
increase the robustness of the reconstruction for perfusion MRI: (i) we enforce
pixel-wise local sparsity constraint on the temporal differences that limits the
overall dynamic of the perfusion time series, (ii) we enforce patch-wise similarity
constraint on the spatio-temporal neighborhoods of whole MR sequence, which
provides smooth spatial image regions with less temporal blurring especially
when there is significant inter-frame motion and noise. We present the main
optimization problem in a joint formal framework and introduce a new proximal
splitting strategy that benefits from the weighted-average of proximals – thus,
overcome a key limitation of the widely used Fast Composite Splitting Algo-
rithm (FCSA) [9] –, and efficiently solves the joint minimization problem with
fast convergence. The proposed method is validated on different types of MR per-
fusion datasets in comparison with the state-of-the-art methods and extensive
experiments demonstrate the superior performance of our method in terms of
reconstruction accuracy and accurate estimation of perfusion time profiles from
undersampled k-space data even when being presented with high noise levels.

Contributions. Our main contributions are four-fold: (1) We present a new
reconstruction scheme which cannot only produce high-quality spatial images
for dynamic MRI but also enable to reconstruct the complete temporal sig-
nal dynamics for perfusion MRI from undersampled k-space data (Sect. 2).
(2) We introduce an efficient proximal-splitting algorithm based on a generalized
forward-backward splitting scheme [13]. This algorithm provides fast convergence
and can be easily applied to various medical image applications that consider
optimization problems where the objective function is the sum of several convex
regularization terms (Sect. 3). (3) We demonstrate the efficiency and effective-
ness of our method by comparing with state-of-the-art techniques on clinical
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datasets (Sect. 4). (4) Our proposed reconstruction model can enable accurate
quantification of clinically useful perfusion parameters while accelerating the
acquisition through the use of fewer k-space samples.

2 Formulation

Throughout the paper we consider the reconstruction problem only on 2D+t
data (i.e., on a single slice followed over time), however the idea presented here
can also easily be extended to 3D+t data. We assume that X3D ∈ CM×N×T

is a 2D perfusion image series represented as a spatio-temporal 3D volume. Let
xt ∈ CM×N denote one perfusion MR frame at time t with M×N pixels, yt is the
corresponding undersampled k-space measurements of xt, and T = {1, 2, ..., T}
is the set of frame number indices in the sequence. The main goal is to recover
all xt’s from the collected k-space measurements yt’s. The observation model
between xt and yt can be mathematically formulated as

yt = Rt(F2Dxt + η) (1)

where Rt denotes the undersampling mask to acquire only a subset of k-space,
F2D is the 2D Fourier Transform operator and η is additive Gaussian noise in
k-space. We also denote the partial 2D Fourier operator for frame t as Ft = RtF2D,
and stack the Ft for all frames of the sequence as Fu = diag{F1,F2, ..,FT }.

We propose solving the following optimization problem for the reconstruction
of perfusion MR sequences:

X̂ = arg min
X

{
1

2
‖FuX − Y ‖2

2 + λ1G1(X) + λ2G2(X)

}
(2)

where X ∈ CMN×T denotes the whole perfusion MRI sequence and Y ∈ CMN×T

represents the collection of all the k-space measurements. λ1 and λ2 are the
tuning parameters for two regularization terms.

Local (G1) regularizer: The first regularization term in (2) penalizes the sum of
spatial finite differences on the difference images calculated based on a reference
for every image frame xt ∈ CM×N , and this term is named as dynamic total
variation (TV) [4] and for the whole MR sequence, it can be defined as

G1(X) =
∑

t∈T

M×N∑

n=1

√
(∇x(xt − x̄)n)

2
+ (∇y(xt − x̄)n)

2
(3)

where x̄ is the reference image computed by averaging all the frames in MR
sequence, ∇x and ∇y represent the finite-difference operators along the x and y
dimensions, respectively. The intuition behind using dynamic TV over standard
TV is that it is better adjusted to the variation in time, and this regularizer
serves as a penalty on the overall dynamic of the temporal perfusion signal.
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Nonlocal (G2) regularizer: The second regularization term in (2) penalizes
the weighted sum of �2 norm distances between spatio-temporal neighborhoods
(patches) of MR sequence, and this penalty term can be specified by [16]

G2(X) =
∑

(px,py,pt)∈Ω

∑

(qx,qy,qt)∈Np

w(p, q)‖Pp(X3D) − Pq(X
3D)‖2

2 (4)

where p = (px,py,pt) and q = (qx, qy, qt) are two voxels, and the voxel of
interest is p ∈ Ω, where Ω = [0,M ]× [0, N ]× [0, T ]. The term Pp(X3D) denotes a
spatio-temporal 3D patch of the MR sequence centered at voxel p. We represent
Np as a 3D search window around voxel p, and the size of the patch should
be smaller than the size of the search window. We simply denote Np and Nw

as the size of a patch and search window, respectively. The weights w(p, q) are
determined based on �2 norm distance between the patches and calculated as

w(p, q) = e− ‖Pp(X3D)−Pq(X3D)‖2
2

h2 (5)

where h is a smoothing parameter controlling the decay of the exponential func-
tion. The use of exponential weighting ensures that a voxel which is more similar
to the voxel of interest in terms of Euclidean distance receives higher weight.

This regularizer is capable of exploiting the similarities between patch pairs in
adjacent frames and it can enforce smooth solutions in the spatio-temporal neigh-
bourhoods of MR sequence even when there is significant inter-frame motion and
high noise introduced during acquisition.

3 Algorithm

To efficiently solve the primal problem (2), we propose to apply a proximal-
splitting framework to this problem. Before describing our proximal-splitting
based algorithm, we should first give the definition of a proximal map.

Proximal map: Given a continuous convex function g(x) and a scalar ρ > 0,
the proximal operator associated to convex function g can be defined as [9]

proxρ(g)(z) := arg min
x∈H

{
1

2ρ
‖x − z‖2

2 + g(x)

}
(6)

Now we can reformulate the problem (2) as the following denoising problem

X̂ = arg min
X

{
1

2
‖X − Xg‖2

2 + ρλ1G1(X) + ρλ2G2(X)

}
(7)

Since each of the regularization term in the cost function (2) is convex, the prob-
lem (7) can be represented as the proximal map of the sum of two regularization
terms as described in Fast Composite Splitting Algorithm (FCSA) [9]

X̂ = proxρ(λ1G1 + λ2G2)(Xg) (8)
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The problem (7) admits to a unique solution as given in (8). However, the prox-
imity operator of the sum of two functions is usually intractable. To compute it
iteratively, one can adopt an efficient proximal-splitting method to this problem.
Proximal-splitting methods are first-order iterative algorithms that solve rela-
tively large-scale optimization problems with several nonsmooth penalties. They
operate by splitting the convex objective function to minimize and generating
individual subproblems which are evaluated easily via proximal operators.

To solve our main problem in (7), we split the objective function into two
individual subproblems that we term G1-subproblem and G2-subproblem.

G1-subproblem: The proximal map for this subproblem can be defined as

XG1
= proxρ(λ1G1)(Xg) = arg min

X

{
1

2ρ
‖X − Xg‖2

2 + λ1G1(X)

}
(9)

In order to solve the subproblem (9), we first reformulate it by introducing new
variables dt = xt − x̄ and dt

g = Xt
g − x̄, in this way the problem turns into

d̂ = arg min
d

{∑

t∈T

(
1

2ρ
‖dt − dt

g‖2
2 + λ1‖dt‖TV

)}
(10)

where d = {d1, ..., dT } and ‖dt‖TV = ‖[Q1dt, Q2dt]‖2,1, where Q1 and Q2 are
two MN × MN first order finite difference matrices in vertical and horizontal
directions, and �2,1 norm is the sum of the �2 norm of each row of given matrix.

Given a reference image x̄, the cost function in (10) can be minimized indi-
vidually for every frame xt of MR sequence. This guarantees that the sum of
the costs in (10) is also minimized. The cost function can be efficiently mini-
mized by using the fast iteratively reweighted least squares (FIRLS) algorithm
[5] based on preconditioned conjugate gradient method. This algorithm enables
fast convergence and low computational cost by adopting a new preconditioner
which can be accurately approximated using the diagonally dominant structure
of the matrix FH

t Ft, where H is the conjugate transpose. Once the problem (10)
is solved, the estimated solution for problem (9) can be calculated as

X̂G1
=

[
d̂1 + x̄, d̂2 + x̄, ...., d̂T + x̄

]
(11)

G2-subproblem: The proximal map for G2 subproblem can be specified by

XG2
= proxρ(λ2G2)(Xg) = arg min

X

{
1

2ρ
‖X − Xg‖2

2 + λ2G2(X)

}
(12)

The problem (12) can be solved using a two-step alternating minimization
scheme in an iterative projections onto convex sets (POCS) framework [11]. In
each iteration, the first step involves the projection of image estimate onto the
data fidelity term via a steepest descend update and the second step performs
the minimization of the neighborhood penalty term on the projected data. The
minimization of the penalty function in (12) is equivalent to applying non-local
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means (NLM) filter [2] to the projected images. This is mathematically derived
in [12] with a single assumption that only one sub-iteration of the penalty term
is performed with constant and predetermined weights. The mathematical for-
mulation of a NLM filter is given as [12]

X̂(px,py,pt) =

∑
(qx,qy,qt)∈Np

w(p, q)X(qx, qy, qt)∑
(qx,qy,qt)∈Np

w(p, q)
(13)

We have now iterative solvers for each subproblem G1 and G2. In this work,
we have developed an efficient algorithm by adopting a generalized forward-
backward splitting (GFBS) framework [13] that minimizes the sum of multiple
convex functions. Basically, FCSA and GFBS are operator-splitting algorithms
and they both use forward-backward schemes. The main difference between
GFBS and FCSA is that GFBS enables the use of weighted-average of the out-
puts of individual proximal mappings for finitely many convex functions, whereas
FCSA only applies simple averaging. The weighted-average of the outputs of
proximals may practically yield better results depending on the effectiveness of
each penalty (regularization) term employed in various applications.

We further accelerate the convergence of the algorithm with an additional
acceleration step similar to the Fast Iterative Shrinkage-Thresholding Algorithm
(FISTA) [1]. This step adaptively increases the value of step size parameter (αk)
through iterations and make it sufficiently close to 1. Our proposed reconstruc-
tion algorithm is outlined in Algorithm 1. The most computationally expensive
step of our algorithm is solving each proximal map. Fortunately, the computation
of proximal maps can be done in parallel since there is no dependency between
the inputs of proximity operators. All the other steps involve adding and mul-
tiplying vectors or scalars, and are thus very cheap in terms of computational
complexity. The GFBS method has been shown to converge when γ < 2/L if
the convex function f = 1

2‖X − Xg‖2
2 has a Lipschitz continuous gradient with

constant L [13]. We refer the readers to original GFBS paper [13] for details
concerning the proof of the convergence of the algorithm.

4 Experiments

Experimental Setup: We evaluate our method on two different types of
perfusion MRI datasets. We use three DSC-MRI brain perfusion sequences
(128 × 128 × 60) and one in-vivo breath-hold cardiac perfusion sequence1

(192 × 192 × 40) from [4] with normalized intensities. All the perfusion datasets
used in the experiments are acquired with full-sampling and the fully-sampled
sequences are artificially corrupted by multiplying its corresponding k-space
representation with a binary undersampling mask and subsequently adding
Gaussian white noise. To simulate undersampling, we retrospectively apply a
time-varying variable density Cartesian mask in our experiments (see Fig. 1).
The sampling ratio is set to 1/4 for brain sequences and 1/6 for cardiac sequence.

1 Available at: http://web.engr.illinois.edu/∼cchen156/SSMRI.html.
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Algorithm 1. Proposed algorithm

Input: Undersampled k-space data Y , Fu, λ1, λ2

Initialize: z0
1 = z0

2 = FH
u Y , w1, w2, X0 =

∑2
i=1 wiz

0
i , α0 = 0.5, γ = 1, k = 0

while stopping criteria not met do

Xg = Xk − γFH
u (FuXk − Y ) ;

zk+1
1 = zk

1 + αk(prox γ
w1

(2λ1G1)(X
k + Xg − zk

1 ) − Xk) ;

zk+1
2 = zk

2 + αk(prox γ
w2

(2λ2G2)(X
k + Xg − zk

2 ) − Xk) ;

Xk+1 = w1z
k+1
1 + w2z

k+1
2 ;

αk+1 = 1 + 2(αk − 1)/(1 +
√

1 + 4(αk)2) ;
k ← k + 1 ;

end
Output: Reconstructed image data X

We compare our method with three state-of-the-art reconstruction methods: the
dynamic total variation (DTV) [4], (k,t)-space via low-rank plus sparse prior (kt-
RPCA) [14], and fast total variation and nuclear norm regularization (FTVNNR)
[17]. To ensure fair comparison, similar to the experiments presented in [3], we
empirically fine-tune the optimal regularization parameters for all methods indi-
vidually for each dataset and depending on noise level. For our proposed method,
we specifically set λ2 = 0.25 for all noise levels and set λ1 = 0.025 for relatively
high level noise and λ1 = 0.001 for low noise levels. We test the following noise
levels and report the results: σ = {10−1, 5× 10−2, 10−2, 5× 10−3, 10−3}. For the
proposed method, we set Nw = 7 × 7 × 7, Np = 5 × 5 × 5, and w1 = w2 = 0.5
for all sequences. We consider using small cubic neighborhoods for Nw and Np

since large neighborhoods drastically increase the computation time. To reduce
the computational burden, we also employ an optimized blockwise version of
the non-local means filter that was proposed by Coupé et al. [7] for 3D med-
ical data. We adopt the Peak Signal-to-Noise Ratio (PSNR) as the metric for
quantitative evaluation. Instead of directly calculating PSNR on a whole image
or 3D sequence, we employ a region-based analysis by calculating the PSNR on
randomly selected 100 image blocks (50×50) in 2D frames. This allows us to test
for statistical differences using paired t-test when comparing different methods.

Results: Figures 1 and 2 demonstrate a single reconstructed frame of the first
and third brain perfusion dataset, respectively, and the estimation of perfusion
time profiles averaged over voxels inside a small region of interest. The results
in Fig. 1 reveal that kt-RPCA and FTVNNR show quite similar performances,
and the DTV yields both better reconstruction and estimation of perfusion signal
compared to these two methods. Compared with all three methods, our proposed
method can achieve the best reconstruction and very accurate estimation of
perfusion time profiles even when the k-space measurements are contaminated
with a relatively high level noise (σ = 5×10−2). The reconstruction results of our
method are also statistically significant (p-value < 10−5) when compared with
all other methods. Moreover, both kt-RPCA and FTVNNR result in over spatial
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Fig. 1. (Top) Results (mean±std, h-value) of the 22nd frame of the first brain dataset
and close-up views of two regions of interest (yellow and green square). h= 1 speci-
fies the statistical significance between the results of proposed and compared method,
(Bottom) An exemplary undersampling mask and for each method, estimation of per-
fusion time profiles averaged over the voxels inside the red square shown in top-left
figure. The standard deviation of added Gaussian noise is σ = 5 × 10−2. Our method
achieves both the best frame-based reconstruction and the most accurate estimation
of peaks and temporal pattern of perfusion signal. (Color figure online)

Fig. 2. (Top) Results (mean±std, h-value) of the 15th frame of the third brain dataset
and close-up views of two regions of interest (yellow and green square), (Bottom) For
each method, estimation of perfusion time profiles averaged over the voxels inside the
red square shown in top-left figure. The standard deviation of added Gaussian noise is
σ = 10−3. Our method again achieves both the best frame-based reconstruction and
the most accurate estimation of peaks and temporal pattern of perfusion signal. (Color
figure online)
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smoothing (see close-up views in Fig. 1) and along time as well, which can be
clearly seen from smoothening of the perfusion peaks in the third-fourth column
of Fig. 1. In contrast, the proposed method reconstructs a perfusion pattern that
is in good agreement with the pattern of the fully sampled data (see Fig. 1 bottom
fifth column), and produces less blurry image regions and sharper edges. The
perfusion time profiles obtained from the third dataset (see Fig. 2 bottom plots)
also demonstrate the success of our proposed method. Considering the spatial
outputs, when looking at details in close-up views of Fig. 2, the reconstructions
obtained by kt-RPCA and FTVNNR are more blurry and thus lacking some
finer details in yellow region, whereas the reconstruction obtained by proposed
method involves more finer information in yellow region and provides sharper
edges in green region.

Fig. 3. (Top) Results of the 18th frame of the cardiac dataset with added noise
σ = 10−2, (Bottom) Temporal cross sections by the red dashed line. All methods
can produce high quality spatial frames, however, our method yields less noisy and
blurry temporal profiles, and the aliasing artifacts are also mostly removed. (Color
figure online)

We also validate our method on a cardiac perfusion data from [4] and the
results are presented in Fig. 3. All methods here can produce high quality images,
however, when looking temporal cross sections at bottom, it can be observed that
our method gives less noisy and with lower aliasing artifacts reconstruction on
myocardium surface while FTVNNR provides more blurry result. The reason is
that our method can utilize both local consistency in temporal differences and
nonlocal similarities between spatio-temporal neighborhoods of MR sequence
while the FTVNNR does not explicitly exploit sparsity in temporal domain.

Quantitative results of different reconstruction methods on both brain and
cardiac perfusion datasets are shown in Fig. 4. Note that the NLM only solves
the G2-subproblem of Sect. 3. From the figure, one can clearly see that our pro-
posed method achieves the highest mean PSNR for all noise levels applied. The
running time of all methods on the brain and cardiac datasets is provided in
Table 1. Compared with the other three methods, our method needs the highest
amount of processing time. However, due to its faster convergence, our method
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Fig. 4. PSNR results versus noise std (σ) for (left) Brain, (right) Cardiac datasets.
Our joint local and nonlocal regularization based method performs the best.

can achieve the best reconstruction accuracy within the first 3–4 iterations on
average, which approximately takes 4.5 min for cardiac dataset on a desktop with
Intel Xeon CPU E3-1226 v3 Processor.

Table 1. The time cost of different reconstruction methods.

Time (Seconds) DTV kt-RPCA FTVNNR Proposed

Brain (128 × 128 × 60) 54.5 194.5 74.3 304.6

Cardiac (192 × 192 × 40) 46.2 263.9 81.7 278.1

5 Conclusion

We have presented a robust reconstruction model for perfusion MRI, which is
based on a joint regularization of pixel-wise and patch-wise spatio-temporal con-
straints. Numerical experiments validate the efficiency of our method over the
state-of-the-art methods in terms of reconstruction accuracy and estimation of
perfusion time profiles in varying noise conditions. We also introduce an iterative
algorithm that efficiently solves convex optimization problems with mixtures of
regularizers. Our algorithm provides fast convergence and can be easily extended
to other medical image applications, in particular denoising and super-resolution.
The proposed method can be also extended to parallel MR imaging [8] and be
applied to multi-coil data. Future work will aim at expanding our work with the
fitting of pharmacokinetic models and quantitative analysis of perfusion para-
meters on 3D+t brain perfusion data using partial k-space measurements.
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4.2 relevant peer-reviewed abstracts

Abstracts related to motion encoding techniques focus on alterna-
tive methods for signal reconstruction, processing, and modeling. Fit-
ting the Diffusional Kurtosis Tensor to Rotated Diffusion MR Images
shows a simplified kurtosis model that reduces the number of free pa-
rameters without compromising quantification accuracy. Theory, Val-
idation and Aplication of Blind Source Separation to Diffusion MRI
for Tissue Characterisation and Partial Volume Correction presents
Blind Source Separation (BSS), a technique to separate mixed signals
by taking advantage of multiple measurements. Finally, A Robust Re-
construction Method for Quantitative Perfusion MRI: Application to
Brain Dynamic Susceptibility Contrast (DSC) Imaging demonstrates a
robust reconstruction framework that combines spatial and temporal
penalty functions.
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4.2.1 Fitting the Diffusional Kurtosis Tensor to Rotated Diffusion MR Im-
ages

Peer-reviewed Conference Abstract

Authors: PA. Gómez, T. Sprenger, MI. Menzel, JI. Sperl

In: Proc Intl Soc Mag Reson Med (2015) [33]

Abstract: Estimating the diffusional kurtosis tensor requires fitting a
model with 22 free parameters to noisy diffusion signals, and is sub-
ject to low accuracy. We propose a variation of the model that makes
use of the main directions of diffusion, only requiring the fitting of
10 parameters. Monte Carlo simulations and experiments on volun-
teer datasets indicate that the reduced version of the model has less
bias than the full model, particularly in white matter areas with high
fractional anisotropy.

Contribution of thesis author: Model development and evaluation,
experimental design, abstract preparation and editing.
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Abstract. Estimating the diffusional kurtosis tensor requires fitting a
model with 22 free parameters to noisy diffusion signals, and is subject to
low accuracy. We propose a variation of the model that makes use of the
main directions of diffusion, only requiring the fitting of 10 parameters.
Monte Carlo simulations and experiments on volunteer datasets indicate
that the reduced version of the model has less bias than the full model,
particularly in white matter areas with high fractional anisotropy.

1 Introduction

Diffusion Kurtosis Imaging (DKI) allows for the characterization of the non-
Gaussian diffusion of water within a biological tissue [3]. Kurtosis is quantified
by deriving scalar metrics from the fourth order kurtosis tensor, obtained in turn
from fitting the measured diffusion signal to a model with 22 free parameters.
Fitting this model is prone to low accuracy and high bias of the derived scalar
metrics due to the low SNR of diffusion weighted images and the Rician nature
of the noise distribution [5]. We hypothesize that a simpler version of the model,
i.e. one that only requires the fitting of 10 free parameters, should have a lower
bias and higher accuracy than the standard model. We develop this model based
on the assumption that the cross-terms of the diffusion and kurtosis tensors are
eliminated if the diffusion encoding space (q-space) of every voxel is rotated into
the main directions of diffusion before fitting.

2 Theory

The second order diffusion tensor D ∈ R3×3 and the fourth order kurtosis tensor
W ∈ R3×3×3×3 are related to the measured diffusion signal S by:

S(b) = S0 · exp


−b

∑

i,j

gigjDi,j +
b2

6

(∑

i

Dii

3

)2 ∑

i,j,k,l

gigjgkglWijkl


 , (1)

where S0 is the non-weighted signal, b corresponds to the b-value of the diffusion
experiment, and gn represents the n-th component of the directional unit vector
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Fig. 1. Different kurtosis contrasts estimated from the standard (left column) and
reduced (right column) models.

g ∈ R3. We develop the reduced version of the model in three steps: first, we es-
timate the main directions of diffusion; second, we rotate the diffusion encoding
space (q-space) of every voxel into its principal coordinates using the Eigenvec-
tors of the diffusion tensor; and third, we fit the data in the rotated coordinate
system to:

S(b′) = S0 · exp


−b′

∑

i

λi +
b′2

6

(∑

i

λi
3

)2∑

i,j

gigjŴij


 , (2)

In (2) the cross-terms are neglected, yielding a direct calculation of the Eigen-
values λi of the diffusion tensor and reducing the amount of free parameters to
10: S0, the three Eigenvalues of the diffusion tensor, and six coefficients from
the kurtosis tensor, which is now second order instead of fourth.

3 Methods

Two experiments were performed to assess the performance of the reduced
model. In the first experiment we fitted both models to a volunteer dataset.
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Fig. 2. Estimated standard deviation (SD) (a-c) and bias (d-f) from the Monte Carlo
Simulation for characteristic a/d) gray matter (GM), b/e) white matter (WM) with
low fractional anisotropy (FA), and c/f) WM with high FA voxels.

Acquisition was performed in a 3T GE MR750 clinical MR scanner (GE Health-
care, Milwaukee, WI, USA) using a 32-channel head coil (single shot EPI, single
spin echo, TE =80.7 ms, TR = 1.8 s, 96x96, FOV=24 cm) and a 3-shell DKI ac-
quisition with 25, 35 and 70 non collinear directions and corresponding b-values
of 750, 1070, and 3,000 s/mm2 [4]. Post-processing on the data included motion
correction, skull extraction [2], and the estimation of rotationally invariant kur-
tosis metrics [1]. The second experiment consisted of a Monte Carlo simulation
for three representative voxel types: one gray matter (GM) voxel and two white
matter (WM) voxels, one with high and one with low fractional anisotropy (FA).
The FA for each of these voxels was defined as: 0.17 for GM, 0.50 for WM with
low FA, and 0.79 for WM with high FA. These three standard voxels were artifi-
cially corrupted with Rician noise to different extent and fit to both versions of
the model in a linear and non-linear (NL) manner. The simulation consisted of
a total of 1,000 instances for six SNR levels ranging from 10 to 20. The bias was
calculated by subtracting the mean of the different instances to the ground truth
voxels, while the accuracy was quantified in terms of the standard deviation (SD)
of the noise instances.

4 Results

Figure 1 depicts mean kurtosis (MZ), orthogonal apparent kurtosis coefficient
(AKC⊥), and maximum apparent kurtosis coefficient (AKCmax) estimated from
linear fitting of both the standard and reduced model. In areas of known high
anisotropy, such as the areas near the corpus callosum, the estimated kurtosis
maps were smaller than the maps of the standard model. Figure 2 shows the bias
and standard deviation of MZ for the different methods in the three standard
voxels. In areas of WM with high FA the bias of the non-linear implementation
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of the reduced model was significantly less than the other implementations of
the model.

5 Discussion

We propose to reduce the standard kurtosis model by fitting the measured dif-
fusion data in a rotated coordinate system. This implementation reduces the
amount of free parameters from 22 to 10 by making use of an initial estima-
tion of the main directions of diffusion. Even at a reduction of over 50% of
parameters, the method yields comparable parametric maps, stability, and bias.
Furthermore, results indicate that the reduced model yields parametric maps
with a reduced bias in areas of high anisotropy.
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4.2.2 Theory, Validation and Aplication of Blind Source Separation to Dif-
fusion MRI for Tissue Characterisation and Partial Volume Correc-
tion
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Authors: M. Molina-Romero, PA. Gómez, JI. Sperl, AJ. Stewart, DK.
Jones, MI. Menzel, BH. Menze
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Abstract: Here we present Blind Source Separation (BSS) as a new
tool to analyze multi-echo diffusion data. This technique is designed
to separate mixed signals and is widely used in audio and image pro-
cessing. Interestingly, when it is applied to diffusion MRI, we obtain
the diffusion signal from each water compartment, what makes BSS

optimal for partial volume effects correction. Besides, tissue character-
istic parameters are also estimated. Here, we first state the theoretical
framework; second, we optimize the acquisition protocol; third, we
validate the method with a two compartments phantom; and finally,
show an in-vivo application of partial volume correction.
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Abstract. Here we present blind source separation (BSS) as a new tool
to analyse multi-echo diffusion data. This technique is designed to sep-
arate mixed signals and is widely used in audio and image processing.
Interestingly, when it is applied to diffusion MRI, we obtain the diffusion
signal from each water compartment, what makes BSS optimal for par-
tial volume effects correction. Besides, tissue characteristic parameters
are also estimated. Here, we first state the theoretical framework; second,
we optimise the acquisition protocol; third, we validate the method with
a two compartments phantom; and finally, show an in-vivo application
of partial volume correction.

1 Purpose

The compartmental nature of tissue is generally accepted [1,7,11,14,17,19]. The
diffusion-weighted MRI (dMRI) signal depends on the relaxation times of the
compartments (T2i), their diffusivities (Di), volume fractions (fi) and proton
density (S0). The simultaneous contribution of these parameters results in a
lack of specificity to each independent effect and induces a bias [13,16] on the
diffusion metrics known as partial volume contamination. Specificity and partial
volume correction problems have been addressed independently [2,6,9,13,14].
Here we present blind source separation (BSS) as a new approach in dMRI that
separates mixed signals and yields tissue microstructure parameters, tackling
both problems at once.

2 Methods

2.1 Theory

This method is based on three assumptions: 1) tissue is made of water compart-
ments with different diffusivities [6,14]; 2) there is no water exchange [1]; and
3) each compartment has a different T2 [6,11,14]. Hence, we can describe the
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Fig. 1. (b-d) Mean error of the parameter estimations. (a) Relationship between the
slope of the columns of A and the estimation of T2 for several TE differences. When
the slope of the columns tends towards 1 (T2 � TE), the estimation of T2 is in the
asymptotic region and thus uncertain. This uncertainty can be observed in (b) where
the minimum error is larger than in (c,d) for fixed T22 and dismissed T22 effect. Notice
that the optimal TE pairs are marked by the red dashed lines. The red dots mark the
TE pair used for phantom validation experiment.

measured diffusion signal as the weighted sum of the compartmental sources.
These weights depend only on the volume fraction (f) and the ratio between the
compartmental T2i and the experimental TEj . Therefore, varying TE modifies
the weights and the system can be expressed as a BSS problem:



X(TE1, ∆, q)

...
X(TEM , ∆, q)


 =



f1e

TE1/T21 · · · fNeTE1/T2N

...
. . .

...
f1e

TEM/T21 · · · fNeTEM/T2N






S1(∆, q)

...
SN (∆, q)


S0 (1)

X = AS, (2)

where X are the measurements for several TEs, A the mixing matrix, S the
compartmental diffusion source, M the number of measurements, and N the
number of compartments. Here, among the possible BSS solutions [18], and
unlike in [12], we use a sparsifying transform [15] followed by non-negative sparse
coding [8].

Here we focus on two-compartment environments (N = M = 2). Besides,
when T2i is larger than the TEs (i.e. CSF), the exponential term can be dis-
missed (exp(TEj/T2i) ≈ 1) and thus the T2i. Alternatively, T2i can be fixed to
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Fig. 2. (a) b0 image at TE1 = 26 ms with ROIs overlaid. Each ROI represents a
possible case: ROI1 (f ≈ 0.5), whole phantom; ROI2 (f ≈ 0), water; ROI3 (f ≈ 1),
yeast. (b) Signal intensity at TE = 0 ms. Volume fractions for the associated intra-
cellular (c) and extra-cellular (d) compartments. T2 for the intra-cellular (e) and extra-
celullar (f) cell compartments. Averaged multi-echo signal for each ROI (g,h,i) and the
corresponding T2 spectral fitting with NNLS and EASI-SM (j,k,l) compared with the
volume fractions and T2s estimated by BSS (T22 fixed at 0.6 s according to NNLS and
EASI-SM). Measured and separated diffusion signals for each ROI (m,n.o).

an expected value if prior knowledge is available (i.e. T2CSF ≈ 2 s 6). We study
the effect both approximations on the error of the parameter estimation.

We perform three experiments to: 1) find the range of optimal TEs; 2) vali-
date our method; and 3) show an application. Figure 4 contains the experimental
details.

2.2 Optimisation simulations

Tissue with two compartments was simulated with known T2s (22 and 597 ms)
for restricted and free diffusion signals [4]. We ran a simulation experiment vary-
ing TE and f (11 points) to calculate the mean error for all the parameter com-
binations and find the optimal TE region for free, fixed and dismissed T22.

2.3 Phantom validation

For validation, we used a phantom made of yeast and water (1:1) as a two
compartments sample [5]. A multi-echo experiment was acquired and T2s fitted
with NNLS [10] and EASI-SM [3]. Besides, BSS was applied on the diffusion
dataset fixing T22 = 0.6 s (NNLS). Finally, results from the three methods were
compared.
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Fig. 3. Comparison of DTI metrics with and without CSF contamination correction
by BSS. Histograms of values for the whole brain (i-l) show an increase of FA, and a
decrease of MD, RD and L1. Both effects are consistent with the elimination of the
CSF contribution. Besides, we observe a significant increase of FA in the borders of
the ventricles (zoomed area), where the contamination is expected to be high. Notice
that BSS mostly crops the ventricles and the external CSF and increases the contrast
of the white matter.

2.4 In vivo

A young female volunteer went under a DTI acquisition. CSF signal was ex-
tracted from the data using BSS, fixing T22 = 2 s [11]. Finally, DTI metrics
with and without correction were compared.

3 Results and discussion

3.1 Optimisation simulations

Fig 1a depicts T2 versus the slope of a column of A. As the slope tends towards 1,
the estimation falls into an asymptotic region increasing the uncertainty on the
T2 estimation. Therefore, fixing its value or dismissing its contribution reduces
the mean error of the parameter estimations (Fig. 1b-d). Moreover, fixing the
T2 value performs slightly better than dismissing its effect (Fig. 1c-d).

3.2 Phantom validation

Fig.2g-o compare the results of BSS against NNLS and EASI-SM in a ROI-based
analysis. Fig. 2j,l show agreement of T21 and f with NNLS and EASI-SM for
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Fig. 4. Experimental setups for the optimisation simulation, the phantom validation
and the in-vivo experiment.

ROI1 and ROI3. Besides, in Fig. 1m, S1 (associated with intra-cellular space)
describes a restricted diffusion signal similar as in Fig 2o, and S2 (associated
with extra-cellular space) shows a free diffusion behaviour as in Fig. 2n. Both
findings are in agreement with the simulations and indicate that BSS success-
fully separates signals from two compartments. Interestingly, BSS disentangles
measurements from ROI2 into two similar and equally scaled sources (Fig. 2n)
indicating that only one source exists. For illustration, Fig. 2b-f show that the
voxel-based maps generated with BSS are consistent with the ROI based analy-
sis.

3.3 In vivo

In Fig. 3, with BSS, we observe an increase of the fractional anisotropy (FA)
(a,e,i) and a reduction of the mean diffusivity (MD) (b,f,j), radial diffusivity
(RD) (c,g,k), and tensor’s main eigenvalue (L1) (d,h,l). This is consistent with
the elimination of the CSF contribution. Also, we notice that with BSS the
ventricles are extracted and white matter structures are better defined, especially
the voxels at the border of the ventricles (zoomed area).
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4 Conclusions

Here we show that BSS of diffusion data is a suitable technique to separate com-
partmental sources. We demonstrate that this method is appropriate for partial
volume correction. Besides, tissue volume fraction, relaxation and diffusivity pa-
rameters are estimated allowing for simultaneous tissue characterisation.
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wise incoherence on temporal differences and patch-wise dissimilar-
ities between spatio-temporal neighborhoods of perfusion image se-
ries. We evaluate our method on dynamic susceptibility contrast Dy-
namic Susceptibility Contrast (DSC)-MRI brain perfusion datasets and
demonstrate that the proposed reconstruction model can achieve up
to 8-fold acceleration by yielding improved spatial reconstructions
and providing highly accurate matching of perfusion time-intensity
curves, thus leading to more precise quantification of clinically rele-
vant perfusion parameters over two existing reconstruction methods.
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Abstract. We propose a robust reconstruction model for dynamic per-
fusion magnetic resonance imaging (MRI) from undersampled k-space
data. Our method is based on a joint penalization of the pixel-wise inco-
herence on temporal differences and patch-wise dissimilarities between
spatio-temporal neighborhoods of perfusion image series. We evaluate
our method on dynamic susceptibility contrast (DSC)-MRI brain perfu-
sion datasets and demonstrate that the proposed reconstruction model
can achieve up to 8-fold acceleration by yielding improved spatial re-
constructions and providing highly accurate matching of perfusion time-
intensity curves, thus leading to more precise quantification of clinically
relevant perfusion parameters over two existing reconstruction methods.

1 Purpose

Perfusion-weighted MR imaging (PWI) is a widely used imaging technique that
allows to measure the hemodynamic parameters of perfusion through the ex-
amination of spatio-temporal changes of signal intensities following the injec-
tion of bolus via exogenous contrast agents. Although PWI techniques have
become widespread clinical tools for the assessment of tumor malignancy, quan-
titative PWI requires high temporal resolution to capture the rapid kinetics
of contrast agent uptake, high spatial resolution to accurately delineate spa-
tial boundaries, and high signal-to-noise ratio (SNR) to enable precise fitting
of quantitative model parameters [6]. With such severe limitations, quantitative
PWI can greatly benefit from dynamic imaging reconstruction techniques [4,1,8].
This work presents a new reconstruction model that is specifically developed for
PWI and is capable of producing high-quality spatial images and reconstructing
the complete temporal signal dynamics, hence enabling accurate estimation of
perfusion parameters from accelerated acquisitions.
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2 Methods

Our reconstruction model integrates two different data-driven constraints for
the reconstruction of PWI: (i) the pixel-wise sparsity constraint on the temporal
differences of the image series, limiting the overall dynamic of the perfusion time
series, (ii) the patch-wise similarity constraint on the spatio-temporal neighbor-
hoods of the whole data, providing smooth image regions with less temporal
blurring when there are high inter-frame intensity changes. The proposed model
can be formulated as,

X̂ = arg min
X

{
1

2
‖FuX − Y ‖22 + λ1G1(X) + λ2G2(X)

}
(1)

where X denotes the perfusion image series to be reconstructed, Y represents
undersampled k-space data, λ1 and λ2 are the regularization parameters. The
first regularizer here penalizes the sum of pixel-wise differences on the temporal
difference images with respect to a reference image, and defined as,

G1(X) =
∑

t∈T

M×N∑

n=1

√
(∇x(xt − x̄)n)

2
+ (∇y(xt − x̄)n)

2
(2)

where x̄ is the reference image calculated by averaging all temporal frames, ∇x

and ∇y are the finite-difference operators along x and y dimensions, respectively.
This regularizer is better adjusted to the variation in time. The second regularizer
penalizes the weighted sum of `2 norm distances between spatio-temporal (3D)
patches of the image series, and this term is specified by,

G2(X) =
∑

(px,py,pt)∈Ω

∑

(qx,qy,qt)∈Np

w(p, q)‖Pp(X3D)− Pq(X3D)‖22 (3)

where Pp(X3D) is a 3D patch centered at voxel p, Np is a 3D search window
around p. The weights w(p, q) are determined using exponentially weighted `2
norm distance. This regularizer can exploit similarities between patch pairs and
enforce smooth solutions by averaging distance-wise close patches. To efficiently
solve the optimization in (1), we adopt an accelerated iterative algorithm based
on a generalized forward-backward splitting framework [5].

We evaluate our method using 5 DSC image series acquired within a PET/MR
study on brain tumor hypoxia. Data were acquired using a 3T Siemens mMR
Biograph scanner with a 2D dynamic single-shot gradient-echo EPI sequence
(TR/TE = 1500/30 ms, flip angle = 70◦, voxel size = 1.8 × 1.8 × 4 mm3, 60
dynamics). A bolus of 15 ml Gd-DTPA (Magnevist, 0.5 mmol/ml) was injected
3 minutes after an initial bolus of 7.5 ml with 4 ml/s injection rate. We com-
pare our method with two reconstruction methods: SparseSENSE with multiple
constraints [3] and k-t RPCA [7]. For fair comparison, we empirically fine-tuned
the optimal regularization parameters for each method. Undersampling was ret-
rospectively done via variable density Poisson-disc sampling [9]. A tracer kinetic
model [2] based on intravascular indicator-dilution theory was used for estimat-
ing perfusion parameters. Concordance correlation coefficients (CCCs) were used
to quantitatively compare the perfusion maps.
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Fig. 1. Spatial reconstructions of a single frame and time-intensity curves (TIC) aver-
aged over the region of interests (ROIs) of Subject 1 (A) and Subject 2 (B) obtained
with an 8-fold acceleration factor. Subfigure (A) also displays an exemplary under-
sampling mask in the bottom-left figure. For each frame, close-up views of two regions
(yellow and green square) are also displayed. Subfigure (B) shows the TICs obtained
from both non-tumor (nt) and tumor (tmr) region. Our method achieves the most ac-
curate estimation of peaks and temporal patterns of perfusion signal, whereas spatial
reconstructions are quite close to those obtained by SparseSENSE.
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Fig. 2. Perfusion parameter maps (CBF, CBV, MTT) of Subject 3 obtained by different
methods with an 8-fold acceleration. The tumor region is marked by a white arrow in
the Ground Truth CBF image. The proposed method results in perfusion maps where
most of the structures are preserved and appear sharper compared to SparseSENSE,
but some finer details are missing due to undersampling. The kt-RPCA reconstruction
method produces highly inaccurate perfusion maps as expected by the mismatch of
TICs shown in Figure 1. This method does not explicitly exploit variation in temporal
domain, which makes it inadequate for quantitative PWI.

3 Results

Figure 1 displays the results of both spatial reconstructions and estimated perfu-
sion time-intensity curves (TICs) of all methods obtained from two different sub-
jects with an 8-fold acceleration. The proposed method yields the most accurate
matching of peaks and temporal pattern of perfusion signal and produces accept-
able spatial reconstructions together with SparseSENSE. Figure 2 demonstrates
resulting perfusion maps of different reconstruction methods with an 8-fold ac-
celeration. Our method produces maps that are closer to the GT maps obtained
by fully sampled data and provide sharper edges compared to SparseSENSE. The
inefficiency of kt-RPCA for quantitative PWI is also demonstrated in Figure 2.
Figure 3 shows how the quality of perfusion maps of a subject decreases depend-
ing on increasing acceleration rates, and this evidence is quantitatively assessed
and illustrated for another subject in Figure 4. Figure 5 reports the average
CCCs of CBF and CBV parameters obtained from all methods with increasing
acceleration rates. Our method yields the best CCCs up to 8-fold acceleration
and shows similar performance like SparseSENSE at further accelerations.
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Fig. 3. Perfusion parameter maps (CBF, CBV, MTT) of Subject 1 resulting from
our proposed reconstruction method with respect to different acceleration factors and
Ground Truth (GT) perfusion maps for comparison. The estimated perfusion maps
appear highly accurate up to 8-fold acceleration but the maps start to deteriorate and
show over-smooth regions at higher acceleration rates..

4 Discussion

This study presents an efficient reconstruction method for quantitative PWI,
which jointly exploits the temporal variations in pixel-wise and patch-wise level.
The processing time of our method on a single-slice DSC-MRI dataset is around
4-5 minutes (on a Intel desktop). The maximum acceleration achieved with our
method could be further increased with the use of a high-spatial resolution data.
However, high-spatial resolution is not clinically realistic for PWI because a high
temporal resolution is necessary to accurately track the kinetics of the tracer.

Acknowledgements. The research leading to these results has received funding
from the European Unions H2020 Framework Programme (H2020-MSCA-ITN-
2014) under grant agreement no 642685 MacSeNet.
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5.1 peer-reviewed publications

The three publications presented here on multiparametric mapping
techniques focus on using multi-contrast datasets for parameter quan-
tification, including anatomical labeling. In Joint Reconstruction of
Multi-Contrast MRI for Multiple Sclerosis Lesion Segmentation, a
joint reconstruction framework that exploits mutual information from
different contrast weighted images is evaluated with respect to its
ability to subsequently segment lesions in the brain. Learning a Spa-
tiotemporal Dictionary for Magnetic Resonance Fingerprinting with
Compressed Sensing demonstrates how machine learning techniques
can be incorporated into a an MRF reconstruction coupled with CS.
Moreover, Simultaneous Parameter Mapping, Modality Synthesis, and
Anatomical Labeling of the Brain with MR Fingerprinting pushes this
idea even further, by showing how additional quantitative informa-
tion — including tissue labels — can be estimated from an MRF acqui-
sition by matching small spatiotemporal patches of the acquired data
to an existing database.
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5.1.1 Joint Reconstruction of Multi-Contrast MRI for Multiple Sclerosis
Lesion Segmentation

Peer-reviewed Conference Paper

Authors: PA. Gómez, JI. Sperl, T. Sprenger, C. Metzler-Baddeley, DK.
Jones, P. Saemann, M. Czisch, MI. Menzel, BH. Menze

In: Bildverarbeitung für die Medizin 2015 (2015) [34]

Abstract: A joint reconstruction framework for multi-contrast MRI

images is presented and evaluated. The evaluation takes place in
function of quality criteria based on reconstruction results and per-
formance in the automatic segmentation of Multiple Sclerosis (MS)
lesions. We show that joint reconstruction can effectively recover arti-
ficially corrupted images and is robust to noise.

Contribution of thesis author: Algorithmic development and imple-
mentation, experimental design, data analysis, manuscript prepara-
tion and editing.
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Abstract. A joint reconstruction framework for multi-contrast MR im-
ages is presented and evaluated. The evaluation takes place in function
of quality criteria based on reconstruction results and performance in the
automatic segmentation of Multiple Sclerosis (MS) lesions. We show that
joint reconstruction can effectively recover artificially corrupted images
and is robust to noise.

1 Introduction

Multi-contrast MR imaging enables the quantification of metrics that provide
information on tissue micro-structure. In the domain of neuroimaging, these
metrics deepen our understanding of the brain in both health and disease, and
could potentially assess the early onset of neurological disorders, such as Multiple
Sclerosis (MS). Quantitative metrics are obtained from different MRI techniques,
generating multiple contrasts and a wide-range of information regarding tissue
micro-structure. Obtaining this information, however, comes at the expense of
long acquisition times and low signal to noise ratios (SNR).

One possibility for overcoming the limitation of long scan times is through
accelerated data acquisitions by compressed sensing (CS). In Diffusion Spectrum
Imaging (DSI), acceleration by CS has been successfully demonstrated [1] and
is currently being validated in clinical settings. A different approach is to use
spatial context to increase data quality without further incrementing acquisition
times. One of these methods, presented by Haldar et al. [2], takes advantage of
structural correlations between datasets to perform a statistical roint reconstruc-
tion. This is achieved by incorporating gradient information from all contrasts
into the regularization term of a maximum likelihood estimation.

In this study we evaluate the performance of joint reconstruction under differ-
ent noise levels. Furthermore, we investigate the performance of this approach
using a metric that evaluates the segmentation accuracy of MS lesions – i.e.,

H. Handels et al. (Hrsg.), Bildverarbeitung für die Medizin 2015, Informatik aktuell,
DOI 10.1007/978-3-662-46224-9_28, © Springer-Verlag Berlin Heidelberg 2015
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the tasks the images were acquired for – rather than focusing on the common
reconstruction error calculated from image intensities.

2 Materials and methods

2.1 Data acquisition

Five volunteers were scanned with a 3T GE HDx MRI system (GE Medical
Systems, Milwuakee, WI) using an eight channel receive only head RF coil. MRI
datasets were acquired for a HARDI protocol, a mcDESPOT [3] protocol, and
a high resolution T1 weighted anatomical scan (FSPGR). The HARDI protocol
consisted of 60 gradient orientations around a concentric sphere with b = 1200
s/mm2 and 6 baseline images at b=0. HARDI datasets were corrected for motion
using FSL’s FLIRT and FNIRT [4] and both HARDI and mcDESPOT were
rigidly registered to the T1 anatomical scan with FLIRT [3].

Seven MS patients were scanned with a CS-DSI acquisition protocol using a
GE MR750 scanner (GE Medical Systems, Milwaukee, WI). The CS-DSI proto-
col comprised of 514 volumes acquired on a Cartesian grid with maximal b-value
= 3000 s/mm2. Additionally, high resolution T1, T2, and FLAIR contrasts were
acquired. DSI volumes were co-registered to the first b=0 image, corrected for
motion using FLIRT and FNIRT, and a brain mask was obtained using BET [4].
T1, T2 and FLAIR images were down-sampled to the same resolution as the
DWIs and all of the volumes were once again co-registered with each other. Fi-
nally, for every patient, 11 slices were selected and lesions were manually labelled
using a basic region growing algorithm on thresholding FLAIR intensity values.

2.2 Multi-constrast joint reconstruction

In a first experiment we want to evaluate whether joint reconstruction can effec-
tively remove noise and maintain data quality in datasets of our multi-contrast
sequence. To this end, we studied the reconstruction error under different noise
level and optimized the necessary regularization parameters.

After data acquisition and pre-processing, volunteer datasets were artificially
corrupted with homogeneous Rician noise and reconstructed using joint recon-
struction. Then, or a given set of M images, the reconstructed data x̂ was
obtained from the corrupted data y using

{
x̂1, x̂2, . . . , x̂M

}
= arg min

{x1,x2,...,xM }

M∑

m=1

μ2
m ‖Fmxm − ym‖2

2 + Φ
(
x1,x2, . . . ,xM

)

(1)
where F is the Fourier encoding operator, μ is a parameter that adjusts data
consistency, and Φ (·) is a regularization term. As in [2], we define the regular-
ization term as the finite differences over all images. We have to optimize μ and
Φ as a function of data quality.
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2.3 Lesion segmentation

In a second experiment we evaluate the performance of a joint reconstruction for
our sequence using not the reconstruction performance of the images, but the
DICE scores of an automatic lesion segmentation algorithm. Here, we compare
the DICE scores of the ground truth patient datasets with corrupted and jointly
reconstructed versions of the datasets.

Random forests have already been implemented to segment MS lesions in
multi-contrast MR images, achieving performance comparable to other state of
the art segmentation methods [5]. We also propose the use of discriminative
classifiers within a random framework to classify voxels, but, given the nature
of our patient data, replace context rich features with scalar diffusion features
calculated from the CS-DSI protocol.

The feature vector consists of a total of 27 features: three structural MRI
intensity channels (T1, T2, and FLAIR), eight diffusion features and 16 kurtosis
features. Diffusion features were estimated from the Eigenvalue decomposition
of the diffusion tensor D ∈ R3×3, while kurtosis features were estimated from
projections of the fourth order kurtosis tensor W ∈ R3×3×3×3 into spherical and
elliptical coordinates. Both tensors were calculated by fitting the data to the
diffusional kurtosis model defined in [6] and to a version of the model with a
coordinate system rotated into the main directions of diffusion.

The classification task with random forests was accomplished using Matlab’s
(The Mathworks, Inc) Statistics Toolbox. For this work, a total of 30 trees were
grown from four randomly selected datasets and the trained forest was fit to
the other three patients. Every tree received a randomly subsampled dataset of
voxels and lesion voxels where weighted to proportional to non-lesion voxels.

Raw data Corrupted Reconstructed 3*Difference

T1

SPGR

DWI

Fig. 1. Reconstructed datasets
from a noisy input. Rows
show, from top to bottom, three
different acquisition protocols:
T1, SGPR, and DWI. Columns,
from left to right, display: raw
data, data corrupted with σ =
4% homogeneous Rician noise,
reconstructed data, and abso-
lute difference between the raw
data in the first column and the
reconstructed data in the third
column multiplied times three
for better visualization.
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3 Results

3.1 Optimization of joint reconstruction parameters

In the first experiment we determine regularization parameters of the joint re-
construction algorithm that are optimal for our imaging sequence. We use the
high resolution volunteer data set.

Volunteer datasets were artificially corrupted with homogeneous Rician noise
and reconstructed with different parameter settings. The three regularization
parameters, which control for data consistency, regularization, and sensitivity
of edge detection, were optimized in function of the remaining noise fraction
(RNF) of the reconstructed images, and the root mean square error (RMSE)
and structural similarity index (SSIM) [7] of these images to the original raw
data.

Tab. 1 shows exemplary results for a given parameter set with optimized
regularization parameters, and Fig. 1 provides a visual comparison of each of
the reconstructed contrasts. In this example, joint reconstruction was able to
remove more than 75% of the artificially added Rician noise, leading to RNF
computations between 17.7 and 24.7%.

σ [%]
0 2 4 6 8 10

Pr
ed

ic
tio

n

Ground truth

Raw data

Corrupted

Reconstructed

FLAIR

RD/2

FA

FLAIR

Fig. 2. Segmentation performance with respect to noise. Each row shows a different
contrast, indicated in white letters, and the labeled lesions for ground truth (top row)
plus predictions on raw data, corrupted data and reconstructed data (bottom three
rows). Note that fractional anisotropy (FA) and radial diffusivity (RD) maps weren’t
directly corrupted, but estimated from corrupted data. RD is shown divided by two
for better visualization.
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Quality Protocol

criteria T1 MCDESPOT DWI

σx̂ [%] 0.992 0.981 0.981

RNF 0.177 0.238 0.247

RMSE 0.090 0.050 0.042

SSIM 0.711 0.683 0.772

Table 1. Quality metrics esti-
mated for different jointly re-
constructed datasets. Every
dataset was individually cor-
rupted with σ = 4% homoge-
neous Rician noise and jointly
reconstructed using (1).

3.2 Evaluation of MS lesion segmentation accuracy

The second experiment evaluated whether joint reconstruction can effectively
remove noise without losing critical information, such as the borders between
lesions and non-lesions. We evaluate the scores on the patient data set.

For five different noise levels, the following was done: homogeneous Rician
noise was added to all of the images to corrupt them, images were subsequently
reconstructed using joint reconstruction, two different kurtosis and diffusion
models were fit to the corrupted and reconstructed datasets, and lesion segmen-
tation was performed. The experiment was repeated over 10 iterations and a
mean DICE score for every noise level was obtained. Fig. 2 shows the segmenta-
tion results of an exemplary dataset and Fig. 3 displays the general performance
and robustness to noise.

As seen in Figs. 2 and 3, joint reconstruction has a significant impact on
segmentation results. At low noise levels, jointly reconstructed datasets yield
lower DICE scores than raw data and even noisy datasets. This is most likely do
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Fig. 3. DICE scores for corrupted and reconstructed datasets as a function of noise
levels. Plots show mean ± standard deviation of 10 iterations and the black line
indicates the average DICE score obtained from raw data.
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to the fact that joint reconstruction has a smoothing effect and that, for certain
parameter settings, small edge structures are ignored and blurred out. These
small edge structures include the boundary between lesions and non-lesions,
especially since this boundary is not completely clear or the same in the multiple
contrasts. As noise levels increase, DICE scores of corrupted datasets decrease
while reconstructed datasets maintain similar values.

4 Discussion

In this work, joint reconstruction was evaluated for multi-contrast MR images
according to multiple criteria and the role of the method on lesion segmentation
was further studied. From this analysis, it was established that joint recon-
struction has a significant impact on lesion segmentation, especially at low noise
levels, where over-smoothing can lead to decreased performance of the segmen-
tation algorithm. On the other hand, joint reconstruction proved to be robust to
noise, and at higher noise levels, was able to remove noise while still capturing
the differences between lesions and non-lesions.

Parameter settings play a crucial role on the joint reconstruction framework.
Optimizing parameters with respect to the reconstruction errors may not lead
to the parameter set that is optimal for lesion segmentation. Furthermore, data
quality of each particular dataset also affects the optimal parameter set. Con-
sequently, future work will focus on developing novel, disease-specific and data-
adaptive metrics that effectively discriminate between normal state and disease
and that can be used to optimize the entire imaging pipeline from data acquisi-
tion to analysis.
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lutions over time and the voxel-wise matching of these signals to a
dictionary simulated using the Bloch equations. In this study, we pro-
pose to increase the performance of MRF by not only considering the
simulated temporal signal, but a full spatiotemporal neighborhood
for parameter reconstruction. We achieve this goal by first training
a dictionary from a set of spatiotemporal image patches and subse-
quently coupling the trained dictionary with an iterative projection
algorithm consistent with the theory of Compressed Sensing (CS). Us-
ing data from BrainWeb, we show that the proposed patch-based re-
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Abstract. Magnetic resonance fingerprinting (MRF) is a novel tech-
nique that allows for the fast and simultaneous quantification of mul-
tiple tissue properties, progressing from qualitative images, such as
T1- or T2-weighted images commonly used in clinical routines, to quanti-
tative parametric maps. MRF consists of two main elements: accelerated
pseudorandom acquisitions that create unique signal evolutions over time
and the voxel-wise matching of these signals to a dictionary simulated
using the Bloch equations. In this study, we propose to increase the per-
formance of MRF by not only considering the simulated temporal signal,
but a full spatiotemporal neighborhood for parameter reconstruction.
We achieve this goal by first training a dictionary from a set of spa-
tiotemporal image patches and subsequently coupling the trained dictio-
nary with an iterative projection algorithm consistent with the theory of
compressed sensing (CS). Using data from BrainWeb, we show that the
proposed patch-based reconstruction can accurately recover T1 and T2
maps from highly undersampled k-space measurements, demonstrating
the added benefit of using spatiotemporal dictionaries in MRF.

1 Introduction

Quantitative magnetic resonance imaging (qMRI) techniques measure relevant
biological parameters, providing a profound characterization of the underlying
tissue. In contrast to conventional weighted MRI, where the image signal is rep-
resented by intensity values and different tissues are described relative to each
other, qMRI generates parametric maps of absolute measures that have a phys-
ical interpretation, leading to reduced bias and reproducible diagnostic infor-
mation. On the other hand, obtaining quantitative maps is a time consuming
task. It requires the repeated variation of typical MR acquisition parameters,
such as flip angle (FA) or repetition time (TR), and the fitting of the mea-
sured signal to a model in order to estimate the parameters of interest, includ-
ing the MR specific longitudinal (T1) and transversal (T2) relaxation times.
Long acquisition times, together with high sensitivity to the imaging device

c© Springer International Publishing Switzerland 2015
G. Wu et al. (Eds.): Patch-MI 2015, LNCS 9467, pp. 112–119, 2015.
DOI: 10.1007/978-3-319-28194-0 14
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and system setup, are the main restrictions to clinical applications of qMRI
techniques.

A recently proposed qMRI method, magnetic resonance fingerprinting
(MRF), aims to overcome these limitations through accelerated pseudorandom
acquisitions [6]. It is based on the idea that pseudorandom variations on acquisi-
tion parameters cause the signal response for different tissue types to be unique.
This unique signal evolution can be matched to a precomputed dictionary cre-
ated from known combinations of the parameters of interest (e.g. T1 and T2).
Therefore, by matching the measured signal to one atom in the dictionary, all of
the parameters used to simulate the corresponding atom can be simultaneously
extracted. Furthermore, since the form of the signal evolution used for pat-
tern matching is known a priori, MRF is less sensitive to measurement errors,
facilitating accelerated acquisitions through the undersampling of the measure-
ment space (k-space). It should be noted that, so far, all matching is done for
one-dimensional temporal signals only.

The notion of reconstructing signals from undersampled measurements comes
from the theory of compressed sensing (CS) [5]. CS has been successfully applied
to accelerate parameter mapping [4] and recently Davies et al. [3] demonstrated a
CS strategy for MRF that does not rely on pattern matching for error suppression
and has exact recovery guarantees, resulting in increased performance for shorter
pulse sequences. The authors further extend their CS model to exploit global
spatial structure by enforcing sparsity in the wavelet domain of the estimated
density maps, slightly improving the performance of their approach.

Spatial information can also be incorporated locally by using image patches.
Patch-based dictionaries have the advantage of being able to efficiently represent
complex local structure in a variety of image processing tasks. Furthermore,
the use of overlapping patches allows for averaging, resulting in the removal
of both noise and incoherent artefacts caused by undersampling. Patch-based
dictionaries have been previously used for the task of MR image reconstruction
[7], where the sparsifying dictionary was learnt directly from the measured data,
resulting in accurate reconstructions for up to six fold undersampling.

In this work, we propose to use a dictionary with both temporal and local
spatial information for parametric map estimation. We create a training set
by using the Bloch equations to simulate the temporal signal response over a
predefined spatial distribution obtained from anatomical images and train a
spatiotemporal dictionary by clustering similar patches. The trained dictionary
is incorporated into a patch-based iterative projection algorithm to estimate T1
and T2 parametric maps. We see two main benefits of our approach:

1. Incorporating spatial data increases the atom length, i.e. the amount of
descriptive information available per voxel, requiring less temporal points
for an accurate reconstruction.

2. Training improves the conditioning of the dictionary by creating atoms dis-
tinct to each other, leading to a better signal matching.

The rest of this paper is structured as follows. In Sect. 2 we describe the
method, in particular the proposed patch-based algorithm for MRF. Section 3
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depicts the experiments and demonstrates the application of recovering para-
metric maps from undersampled data, and in Sect. 4 we offer conclusions.

2 Methods

The goal of MRF is to obtain parametric maps θ ∈ RN×Q from a sequence
of undersampled measurements Y ∈ CM×T , where Q is the number of tissue
relaxation parameters (T1 and T2), T is the sequence length, every map θq ∈ RN

has a total of N voxels, every measurement yt ∈ CM is sampled M times,
and M � N . This is achieved in three steps: image reconstruction, template
matching, and parameter extraction.

Image reconstruction is the task of obtaining the image sequence X ∈ CN×T

from the measurements Y. This is generally formulated as a inverse problem:
Y = EX, where E ∈ CM×N is the encoding operator. The reconstructed image
is then matched to a precomputed dictionary D ∈ CT×L of L atoms, to find
the dictionary atom dl ∈ CT that best describes it. This is done at every voxel
location xn ∈ CT by selecting the entry ln that maximizes the modulus of the
atom and the conjugate transpose of the signal:

l̂n = arg max
l

l=1,...,L

|x∗
ndl| (1)

where both, dl and xn, were previously normalized to have unitary length.
Finally, the T1 and T2 parameters used to construct the matching entry are
assigned to the voxel n, creating θn = {T1n, T2n}. Thus, by repeating the
matching over all voxels of the image, the parametric T1 and T2 maps are
found.

Davies et al. [3] interpret the template matching as a projection of xn onto
the cone of the Bloch response manifold, and propose an iterative projection
algorithm to accurately extract parametric maps. The algorithm, termed Bloch
response recovery via iterated projection (BLIP), iteratively alternates between
a gradient step, a projection step, and a shrinkage step to reconstruct the image
sequence X and estimate the corresponding parameter maps θ.

2.1 Spatiotemporal Dictionary Design

Given a set of fully sampled 2D spatial parametric maps θ ∈ RN×Q, where
N = Ni × Nj and Q = 2, an image sequence X ∈ CN×T of T temporal points
can be created at each voxel using the Bloch equations to simulate the magne-
tization response of an inversion-recovery balanced steady state free-precession
(IR-bSSFP) sequence with pseudorandomized acquisition parameters (see Fig. 1)
[6]. X can be processed to create a spatiotemporal dictionary as follows.

Let Rn ∈ CP×N be the operator that extracts 2D image patches of size
P = Pi × Pj , so that the spatiotemporal image patch x̃n ∈ CP×T at a given
spatial location n is given by

x̃n = RnX. (2)
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Fig. 1. Pseudorandom acquisition sequence and the corresponding signal response. a,
TR values following a Perlin noise pattern. b, Flip angle series of repeating sinusoidal
curves and added random values. c, Signal evolution for different tissue classes: white
matter (WM), grey matter (GM), and cerebrospinal fluid (CSF).

It is then possible to create the patch-based image matrix X̃ ∈ CPT×N by con-
catenating the vector representation of every spatiotemporal patch of dimension
Pi × Pj × T for each spatial location in X. Repeating the operation on θ cre-

ates the patch-based multiparametric matrix θ̃ ∈ RPQ×N . The spatiotemporal
dictionary D̃ ∈ CPT×K is then constructed by using k-means to cluster atoms
in X̃ with similar signal values into K clusters, averaging the corresponding T1
and T2 values in θ̃ to create the clustered patch-based matrix Θ ∈ CPQ×K , and
simulating the signal evolution for each cluster. A new simulation of the signal
evolution ensures that the atoms in D̃ correspond exactly to the entries in Θ.

2.2 Patch-Based BLIP Reconstruction (P-BLIP)

The BLIP algorithm [3] reconstructs the image sequence X in an iterative fash-
ion. Given an image sequence X(i) at iteration i, the reconstructed sequence
X(i+1) in the next iteration is determined by

X(i+1) = PA(X(i) + μEH(Y − EX(i))), (3)

where PA represents the projection onto the signal model A, EH is the Hermitian
adjoint of the encoding operator, and μ equals the step size. P-BLIP builds on
this algorithm, incorporating the patch extraction operator in (2) and an update
step to make (3) applicable to a spatiotemporal signal model.

At every iteration the updated sequence X is transformed into the patch-
based matrix X̃ by (2). X̃ is related to the trained dictionary D̃ by

X̃ = D̃W, (4)
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where W ∈ RK×N represents the weights. Equation 4 can be readily solved using
greedy algorithms that find sparse solutions to linear systems of equations by
adding a sparsity constraint to the �0-norm of each column vector wn:

Ŵ = arg min
W

‖X̃ − D̃W‖2
2, s.t. ‖wn‖0 ≤ γ, n = 1, ..., N. (5)

We set the sparsity constraint to γ = 1, equivalent to finding one dictionary
atom, as done in the template matching used in [3,6].

After estimating the weights, the patch-based image matrix is projected onto
the dictionary by X̂ = D̃Ŵ. At this point, each voxel is overrepresented a total
of P times, requiring an update step to return to the original image sequence X.
This update is achieved by averaging the P temporal signals that contribute to
a given voxel location. Finally, the parametric maps θ are estimated by applying
the weights and patch-wise updates on Θ.

3 Experiments and Results

Image Data. Experiments were performed using twenty digital brain phantoms
from BrainWeb [2]. Of these, ten were used to train the spatiotemporal dic-
tionary and ten to test the performance of three different reconstruction algo-
rithms: the original MRF reconstruction [6], BLIP [3], and the proposed P-BLIP.
Experiments were designed to evaluate the performance of each algorithm as a
function of sequence length and acceleration factors, and, for the case of P-BLIP,
also as a function of spatial patch size. Ground truth datasets were generated by
selecting a slice of crisp datasets labeled with different tissue classes, and resam-
pling them to a matrix size of 256×256 to accelerate computations. Quantitative
maps were then obtained by replacing the tissue labels with their correspond-
ing T1 and T2 values. The values for the three main tissue types grey matter
(GM), white matter (WM), and cerebrospinal fluid (CSF) were equaled to those
reported in [6], while the values for the rest of the classes (fat, bone, muscle,
vessels, dura matter, and connective tissue) were obtained directly from [1].

Modeling the Signal Evolution. At every voxel, the ground truth quantitative
maps served as a basis to simulate the temporal evolution of the signal based
on the IR-bSSFP pulse sequence with acquisition parameters displayed in Fig. 1,
where the TRs follow a Perlin noise pattern, FAs are a series of repeating sinu-
soidal curves with added random values, and the radio frequency phase alternates
between 0◦ and 180◦ on consecutive pulses. Off-resonance frequencies were not
taken into account. This pulse sequence was combined with all possible combi-
nations of a given range of T1 and T2 values to create a temporal dictionary
used in both MRF and BLIP. The selected range was reported in [3], where T1
spans from 100 ms to 6000 ms and T2 from 20 ms to 1000 ms, both sampled at
varying step sizes. Additionally, the dictionary included the exact T1 and T2
combinations corresponding to the different tissue classes.

Spatiotemporal Dictionary. To train the spatiotemporal dictionary used in P-
BLIP, a region of interest that accounted for the entire head area was defined.
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Fig. 2. Exemplary reconstruction results of one dataset with T = 200, R = 10, and
P = 3×3. The upper row shows T1 maps for all algorithms and the ground truth; and
the bottom row the corresponding T2 maps. Most visible in T2 maps, subsampling
artefacts can be effectively removed with P-BLIP.

The space covered by this region of interest was randomly and equally subsam-
pled and each of the subsampled sets was assigned to a training subject. The
selected parametric maps of each subject were then used as an input to train
the dictionary as described in Sect. 2.1 with a total of K = 200 clusters.

Subsampling Strategy. We use a random EPI subsampling strategy for all exper-
iments: the k-space is fully sampled in the read direction (kx) and uniformly
undersampled in the phase encoding direction (ky) by an acceleration factor R.
The sampling pattern is shifted by a random a number of ky lines at every shot
of the sequence.

Experimental Setup. An initial experiment was performed with spatiotemporal
patches of size 3×3×200 and an acceleration factor R = 10 to visually evaluate
the reconstructed maps (see Fig. 2). Subsequently, three experiments assessed
the reconstruction performance with respect to sequence length, acceleration
factor and spatial patch size. The first experiment varied sequence lengths from
100 to 500 in step sizes of 100, the second experiment used acceleration factors
of R = {2, 5, 10, 15, 20}, and the final experiment used spatial patches of sizes
P = {1×1, 3×3, 5×5, 7×7}. The reconstruction error of the first two experiments
was calculated using the signal-to-error ratio (SER) in decibels (dB), defined as

20 log10
‖x‖2

‖x−x̂‖2
; and the third experiment with the SSIM values [8].

Results. Figure 2 displays the reconstructed parametric maps of an exemplary
dataset. The MRF estimates show the characteristic ghosting artefacts caused
by sub-Nyquist sampling. BLIP removes most of these artefacts from the T1
estimation, though they are still visible in the T2 maps. P-BLIP effectively
removes these artefacts from both maps, resulting in reconstructions very close to
the ground truth. These visual observations can be confirmed with quantitative
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Fig. 3. a,c, Performance as a function of sequence length with R = 10, P = 3 × 3;
and b,d, as a function of acceleration factor with T = 200, P = 3 × 3. P-BLIP is
best in estimating T2 maps and shows better results for shorter sequences and higher
acceleration for T1 maps.

Table 1. Average SSIM values for T1 and T2 map estimation with respect to different
spatial patch sizes, T = 200 and R = 10.

Method Baseline Proposed: P-BLIP

MRF BLIP 1 × 1 3 × 3 5 × 5 7 × 7

T1 0.761 0.814 0.848 0.852 0.691 0.625

T2 0.616 0.591 0.769 0.857 0.667 0.601

results. Figure 3c and d show how P-BLIP achieves better T2 estimates inde-
pendently of the sequence length or acceleration factor. On the other hand, T1
maps for P-BLIP remain relatively constant for sequence lengths larger than 100
(Fig. 3a) and all acceleration factors (Fig. 3b), whilst the performance of MRF
and BLIP increases with the sequence length and lower acceleration factors.
The reason for these results is twofold. First, the IR-bSSFP sequence is mostly
T1-weighted, favoring a better T1 matching over T2 matching for all methods.
Second, a trained dictionary containing a longer sequence, but fixed K, is less
flexible, and if the trained dictionary does not exactly contain the ground truth
values, the quantitative error will be higher.

Table 1 indicates the performance of P-BLIP for different patch sizes in com-
parison to the performance of MRF and BLIP. A spatial patch size of P = 1× 1
implies that the training dataset was created from voxel-wise temporal evo-
lutions and that the trained dictionary is a clustered version of the temporal
dictionary. It can be seen that clustering a temporal dictionary alone improves
the reconstruction with respect to MRF and BLIP, and that the spatiotemporal
dictionary further improves these results for P = 3 × 3. At larger spatial patch
sizes the results begin to decline, indicating that the cluster size of K = 200 is
not enough to capture the entire spatial variability of the parametric maps.
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4 Conclusions

This work presents a novel patch-based reconstruction scheme for MRF con-
sistent with the theory of CS. It is based on a spatiotemporal signal model
and relies on the training of the corresponding dictionary from a set of exam-
ples. This patch-based scheme shows improved performance for shorter pulse
sequences and at higher acceleration factors, leading to an increased efficiency
of parameter mapping with MRF.

An important discussion point of our approach is the size of the dictionary in
terms of space, time, and atoms. Larger spatial patches allow, in theory, for the
acquisition of less temporal points, but the amount of atoms in the dictionary
should in turn be large enough to account for large spatial variability. We have
seen from our results that a dictionary size of K = 200 is not enough for spatial
patch sizes larger than 3 × 3 for structures in the brain. A potencial solution
to this shortcoming might be to make K dependant on the atom length or
arbitrarily large at the cost of computational complexity. This point is currently
under investigation and future work will focus on extending the method to incor-
porate 3D spatial patches and applying it to real datasets.
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Abstract. Magnetic resonance fingerprinting (MRF) quantifies various
properties simultaneously by matching measurements to a dictionary of
precomputed signals. We propose to extend the MRF framework by using
a database to introduce additional parameters and spatial characteristics
to the dictionary. We show that, with an adequate matching technique
which includes an update of selected fingerprints in parameter space,
it is possible to reconstruct parametric maps, synthesize modalities, and
label tissue types at the same time directly from an MRF acquisition. We
compare (1) relaxation maps from a spatiotemporal dictionary against
a temporal MRF dictionary, (2) synthetic diffusion metrics versus those
obtained with a standard diffusion acquisition, and (3) anatomical labels
generated from MRF signals to an established segmentation method,
demonstrating the potential of using MRF for multiparametric brain
mapping.

1 Introduction

Magnetic resonance fingerprinting (MRF) is an emerging technique for the simul-
taneous quantification of multiple tissue properties [7]. It offers absolute measure-
ments of the T1 and T2 relaxation parameters (opposed to traditional weighted
imaging) with an accelerated acquisition, leading to efficient parameter mapping.
MRF is based on matching measurements to a dictionary of precomputed sig-
nals that have been generated for different parameters. Generally, the number of
atoms in the dictionary is dictated by the amount of parameters, and the range
and density of their sampling. As an alternative to continuous sampling of the
parameter space, one could use measured training examples to learn the dictio-
nary, reducing the number of atoms to only feasible parameter combinations [2].
In this work, we propose to use a database of multi-parametric datasets to create
the dictionary, presenting two new features of MRF that can be achieved simul-
taneously with relaxation mapping: modality synthesis and automatic labeling
of the corresponding tissue.

c© Springer International Publishing AG 2016
S. Ourselin et al. (Eds.): MICCAI 2016, Part III, LNCS 9902, pp. 579–586, 2016.
DOI: 10.1007/978-3-319-46726-9 67
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In this extended application of MRF towards image synthesis and segmenta-
tion, we follow a direction that has recently gained attention in the medical image
processing literature [1,3,5,6,9,10]. The working principle behind these meth-
ods is similar: given a source image and a multi-contrast database of training
subjects, it is possible to generate the missing contrast (or label) of the source
by finding similarities within the database and transferring them to create a
new image. The search and synthesis strategy can take several forms: it could
be iterative to incorporate more information [10]; can be optimized for multi-
ple scales and features [1]; may include a linear combination of multiple image
patches [9]; or be configured to learn a nonlinear transform from the target to the
source [5]. There have been several applications of synthetic contrasts, including
inter-modality image registration, super-resolution, and abnormality detection
[3,5,6,9,10]. Furthermore, in addition to the creation of scalar maps in image
synthesis, similar techniques can be used for mapping discrete annotations; for
example, in the segmentation of brain structures [1].

Inspired by these ideas, we present a method for synthesizing modalities and
generating labels from magnetic resonance fingerprints. It relies on the creation of
a spatiotemporal dictionary [2] and its mapping to different parameters. Specifi-
cally, in addition to the physics-based mapping of MRF signals to the T1 and T2
relaxation parameters, we train empirical functions for a mapping of the signals
to diffusion metrics and tissue probabilities. We show that we can achieve higher
efficiency relaxation mapping, and demonstrate how the use of a spatiotemporal
context improves the accuracy of synthetic mapping and labeling.

We see three main contributions to our work. (1) We present a framework
for creating a spatiotemporal MRF dictionary from a multi-parametric database
(Sect. 2.1). (2) We generalize fingerprint matching and incorporate a data-driven
update to account for correlations in parameter space, allowing for the simul-
taneous estimation of M different parameters from any fingerprinting sequence
(Sect. 2.2). (3) Depending on the nature of the m-th parameter, we call it a map-
ping, synthesis, or labeling, and show results for all three applications (Sect. 3.1).
This is the first attempt - to the best of our knowledge - to simultaneously map
parameters, synthesize diffusion metrics, and estimate anatomical labels from
MR fingerprints.

2 Methods

Let Q = {Qs}S
s=1 represent a database of spatially aligned parametric maps

for S subjects, where each subject Qs ∈ RN×M contains a total of N = Ni ×
Nj × Nk voxels and M maps. Every map represents an individual property, and
can originate from a different acquisition or modality, or even be categorical.
Our database includes the quantitative relaxation parameters T1 and T2; a non-
diffusion weighted image (S0); the diffusion metrics mean diffusivity (MD), radial
diffusivity (RD), and fractional anisotropy (FA); and probability maps for three
tissue classes: gray matter (GM), white matter (WM), and cerebrospinal fluid
(CSF). Thus, for every subject Qs = {T1,T2,S0,MD,RD,FA,GM,WM,CSF}.
We use this database to create a spatiotemporal MRF dictionary as follows.
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2.1 Building a Spatiotemporal MRF Dictionary

With the relaxation parameters T1 and T2 and knowledge of the sequence vari-
ables, it is possible to follow the extended phase graph (EPG) formalism to
simulate the signal evolution of a fast imaging with steady state precession MRF
(FISP-MRF) pulse sequence [4]. In EPG the effects of a sequence on a spin sys-
tem are represented by operators related to radio-frequency pulses, relaxation,
and dephasing due to gradient moments. Therefore, for every voxel in all sub-
jects, application of the EPG operators leads to a dictionary D ∈ CNS×T with
a total of T temporal points (see Fig. 1).
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Fig. 1. FISP-MRF acquisition sequence. a, Repetition times following a Perlin noise
pattern. b, Flip angles of repeating sinusoidal curves. c, k-space trajectory of four
different spiral interleaves, 32 interleaves are required for full k-space coverage.

We further process the dictionary to incorporate spatial information by
expanding each voxel with its 3D spatial neighborhood of dimension P =
Pi×Pj×Pk and compressing the temporal dimension into its first V singular vec-

tors [8]. This results in a compressed spatiotemporal dictionary D̃ ∈ CNS×PV .
Finally, we define a search window Wn = Wi × Wj × Wk around every voxel

n, limiting the dictionary per voxel to D̃n ∈ CWnS×PV . The choice for a local
search window has a two-fold motivation: it reduces the number of computations
by decreasing the search space and it increases spatial coherence for dictionary
matching [10].

Applying subject concatenation, patch extraction, and search window reduc-
tion on the database Q leads to a voxel-wise spatio-parametric matrix R̃n ∈
RWnS×PM . For simplicity, we will use D and R instead of D̃n and R̃n, where
every dictionary entry dc ∈ CPV has its corresponding matrix entry rc ∈ RPM .

2.2 Dictionary Matching and Parameter Estimation

MRF aims to simultaneously estimate several parametric maps from undersam-
pled data. This is achieved by reconstructing an image series and matching it
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to the dictionary. We reconstruct V singular images [8] and extract 3D patches
from them to create the patch-based matrix X ∈ CN×PV . At every voxel xn, we
find the set Mn of the C highest correlated dictionary entries dc, c = 1, .., C, by:

Mn = {dc ∈ D : ρ(xn, dc) > τC} (1)

with the threshold value τC such that |M| = C and

ρ(x, d) =
〈x, d〉

‖x‖2‖d‖2
. (2)

Making use of the selected entries dc and the corresponding parametric vec-
tors rc, an estimated value q̃n,m at voxel location n in map m is determined by
the weighted average of the correlation between every entry dc and the signals
xp within Ωn, the spatial neighborhood of n:

q̃n,m =

∑
p∈Ωn

∑
c ρ(xp, dc)rc,pm

P
∑

c ρ(xp, dc)
, (3)

where rc,pm indexes the quantitative value of voxel p centered around atom c in

map m. Repeating this procedure for every voxel creates an estimate Q̃ of all of
the parametric maps, including synthetic modalities and anatomical labels.

Data-Driven Updates. Ye et al. [10] proposed the use of intermediate results
to increase spatial consistency of the synthetic maps. We take a similar approach,
and define a similarity function relating image space and parameter space:

f(x, d, r, q, α) = (1 − α)ρ(x, d) + αρ(q, r) (4)

where α controls the contributions of the correlations in image and parameter
space. The selected atoms are now determined by

Mn = {dc ∈ D, rc ∈ R : f(xn, dc, q̃n, rc, α) > τC}. (5)

In the first iteration α = 0 as we have no information on the map Q̂ for our
subject. In a second iteration we increase α, adding weight to the similarities in
parameter space and compute Eq. 5 again to find a new set of dictionary atoms.
The final version of the maps is given by a modified version of Eq. 3:

q̂n,m =

∑
p∈Ωn

∑
c f(xp, dc, q̃n, rc, α)rc,pm

P
∑

c f(xp, dc, q̃n, rc, α)
. (6)

This procedure is essentially a 3D patch-match over a V -dimensional image
space and M -dimensional parameter space, where the matching patches are com-
bined by their weighted correlation to create a final result.
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Fig. 2. Exemplary results of one test subject with P = 3 × 3 × 3. The upper row
displays the first five singular images; while the second and fourth row show the output
for different parametric maps and the correlation to the reference image, displayed in
the third and fifth row, respectively. Additionally, the last column in rows four and
five shows labels obtained from selecting the tissue class with highest probability and
the dice similarity coefficient (DSC) from the output labels to the reference. The bar
underneath represents, from left to right, background, GM, WM, and CSF; and the
DSC was computed from the GM, WM, and CSF labels. T1 and T2 scale is displayed
in ms; S0 is qualitatively scaled to 255 arbitrary units; MD and RD are in mm2/s; FA,
GM, WM, and CSF are fractional values between zero and one.

2.3 Data Acquisition and Pre-processing

We acquired data from six volunteers with a FISP-MRF pulse sequence [4] on a
3T GE HDx MRI system (GE Medical Systems, Milwaukee, WI) using an eight
channel receive only head RF coil. After an initial inversion, a train of T = 1024
radio-frequency pulses with varying flip angles and repetition times following a
Perlin noise pattern [4] was applied (see Fig. 1). We use one interleave of a zero-
moment compensated variable density spiral trajectory per repetition, requiring
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32 interleaves to sample a 22 × 22 cm field of view (FOV) with 1.7 mm isotropic
resolution. We acquired 10 slices per subject with a scan time of 13.47 seconds
per slice, performed a gridding reconstruction onto a 128 × 128 Cartesian grid,
projected the data into SVD space, and truncated it to generate V = 10 singular
images. The choice of V = 10 was motivated by the energy ratio, as this was
the lowest rank approximation which still yielded an energy ratio of 1.0 [8]. The
singular images were matched to a MRF dictionary comprising of T1 values
ranging from 100 to 6,000 ms; and T2 values ranging from 20 ms to 3,000 ms.

In addition, we scanned each volunteer with a diffusion weighted imaging
(DWI) protocol comprising of 30 directions in one shell with b = 1000 s/mm2.
The FOV, resolution, and acquired slices were the same as with MRF-FISP,
resulting in a 15 min scan. We applied FSL processing to correct for spatial dis-
tortions derived from EPI readouts, skull strip, estimate the diffusion tensor and
its derived metrics MD, RD, and FA; and used the non-diffusion weighted image
S0 to compute probability maps of three tissue types (GM, WM, CSF) using
[11]. Finally, we applied registration across all subjects to create the database.

3 Experiments and Results

For every subject, we performed a leave-one-out cross validation, wherein the
dictionary was constructed from five subjects and the remaining subject was
used as a test case. Following the procedure described in Sect. 2.2, we created
a database of nine parametric maps (T1,T2,S0,MD,RD,FA,GM,WM,CSF) and
compared the estimated metrics to the reference by their correlation.

We explored the influence of the window size Wn, the number of entries C,
and the α on the estimated maps. We found correlations increased with diminish-
ing returns as Wn increased, while adding more entries yielded smoother maps.
Correlations were higher after a second iteration of data-driven updates with
α > 0, irrespective of the value of α. Nonetheless, variations of these parameters
didn’t have a significant effect on the overall results. To investigate the impact
of using spatial information, we repeated the experiment for spatial patch sizes
of P = 1 × 1 × 1, 3 × 3 × 3, and 5 × 5 × 5. For these experiments we used
Wn = 11 × 11 × 11, C = 5, α = 0.5, and two iterations.

3.1 Results

The reference T1 and T2 maps were estimated from a FISP-MRF sequence with
a temporal dictionary, while we used a spatiotemporal dictionary with varying
spatial patches. Estimated T1 and T2 maps were consistent with the reference,
with increasing spatial smoothness for larger spatial patches. This also lead to
a decrease in correlation to the reference, most notably in T2 estimation (see
Fig. 3a–b), which could also be attributed noisier T2 estimates. In future exper-
iments we will rely on standard relaxation mapping for reference comparison.

The synthetic S0 and diffusion metrics MD, RD, and FA show spatial coher-
ence, achieving correlation values over 0.90 with respect to a standard DWI
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Fig. 3. Correlation as a function of spatial patches for all subjects. a–b, T1 and T2
parameter mapping. c–f, Synthesis of S0 and diffusion metrics. g–i, Tissue labeling.

acquisition (Fig. 2). Similar to [10], we found that FA maps were generally the
least correlated to the reference. This is due to the fact that diffusion encoding
in DWI acts as a proxy for underlying tissue anisotropy, whereas the measured
fingerprints are not diffusion sensitive, failing to exactly recover directionality
present in FA. In fact, the higher the directionality encoded in a given modality,
the lower the correlation to the reference (ρS0 > ρMD > ρRD > ρFA). Fur-
thermore, for all cases in modality synthesis, incorporating spatial information
generated increased consistency and higher correlated results (Fig. 3c–f).

Figure 2 shows the visual similarity between tissue probability maps obtained
directly as an output from matching and those computed with [11] and the labels
obtained by selecting the class with the highest probability. As with modal-
ity synthesis, anatomical labels improved when spatial information was taken
into account (Fig. 3g–i). Particularly in CSF, incorporation of spatial informa-
tion eliminated false positives, yielding better quality maps. On the other hand,
thresholding of probability maps lead to an overestimation of GM labels, notably
at tissue boundaries. Labeling at tissue boundaries could benefit from higher res-
olution scans and a multi-channel reference segmentation.

4 Discussion

This work proposes to replace a simulated temporal MRF dictionary with a
spatiotemporal dictionary that can be learnt from data, increasing the efficiency
of relaxation parameter mapping, and enabling the novel applications of modality
synthesis and anatomical labeling. In terms of methodology, we borrow concepts
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such as the search window and parameter space regularization from the image
segmentation and synthesis literature [1,3,10], but change the input to a V -
dimensional image space and the output to an M -dimensional parameter space,
making it applicable to MRF. Moreover, our framework is valid for any MR
sequence, provided signal evolutions can be computed from the training data.

Results indicate that it is possible to use MRF to simultaneously map T1 and
T2 parameters, synthesize modalities, and classify tissues with high consistency
with respect to established methods. While our method allows us to circum-
vent post-processing for diffusion metric estimation and tissue segmentation, it
is important to note that changes in synthetic diffusion maps can only be prop-
agated from the information available in the database. Therefore, creating the
dictionary from pathology and exploring advanced learning techniques capable
of capturing these changes is the subject of future work.
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The abstracts in this section show novel methods in tissue segmen-
tation and parameter quantification. In 3D Magnetic Resonance Fin-
gerprinting with a Clustered Spatiotemporal Dictionary, an unsuper-
vised learning approach to create an MRF dictionary is presented. Spi-
ral Keyhole Imaging for MR Fingerprinting demonstrates an effective
unaliasing technique based on k-space viewsharing. Fast, Volumetric
and Silent Multi-contrast Zero Echo Time Imaging shows a method
for silent, distortion free, and 3D multiparametric mapping. Finally,
Accelerated Parameter Mapping with Compressed Sensing: an Alter-
native to MR Fingerprinting removes many unnecessary components
in MRF to present an optimized alternative — QTI.
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5.2.1 3D Magnetic Resonance Fingerprinting with a Clustered Spatiotem-
poral Dictionary

Peer-reviewed Conference Abstract

Authors: PA. Gómez, G. Buonincontri, M. Molina-Romero, C. Ulas,
JI. Sperl, MI. Menzel, BH. Menze

In: Proc Intl Soc Mag Reson Med (2016) [37]

Abstract: We present a method for creating a spatiotemporal dictio-
nary for Magnetic Resonance Fingerprinting (MRF). Our technique
is based on the clustering of multi-parametric spatial kernels from
training data and the posterior simulation of a temporal fingerprint
for each voxel in every cluster. We show that the parametric maps es-
timated with a clustered dictionary agree with maps estimated with
a full dictionary, and are also robust to undersampling and shorter se-
quences, leading to increased efficiency in parameter mapping with
MRF.

Contribution of thesis author: Algorithmic development and imple-
mentation, experimental design, data analysis, abstract preparation
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Pedro A Gómez1,2, Guido Bounincontri3, Miguel Molina-Romero1,2,
Cagdas Ulas1,2, Jonathan I Sperl2, Marion I Menzel2, Bjoern H Menze1

1Computer Science, Technische Universität München, Munich, Germany
2GE Global Research, Munich, Germany

3INFN Pisa, Pisa, Italy

Abstract. We present a method for creating a spatiotemporal dictio-
nary for magnetic resonance fingerprinting (MRF). Our technique is
based on the clustering of multi-parametric spatial kernels from train-
ing data and the posterior simulation of a temporal fingerprint for each
voxel in every cluster. We show that the parametric maps estimated with
a clustered dictionary agree with maps estimated with a full dictionary,
and are also robust to undersampling and shorter sequences, leading to
increased efficiency in parameter mapping with MRF.

1 Purpose

Magnetic resonance fingerprinting (MRF) allows for the simultaneous quantifi-
cation of multiple tissue properties via the matching of acquired signals to a pre-
computed dictionary, created by sampling a wide range of the parameter space
[4]. As the parameters of interest increase, so does the dictionary size, leading
to long reconstruction times. One possibility for overcoming this limitation is to
use a clustered dictionary with both spatial and temporal information [2]. This
work aims at increasing MRF efficiency by using a clustered spatiotemporal dic-
tionary and incorporating it into a MRF pipeline that includes B1 mapping and
a view-sharing (VS) anti-aliasing strategy [1].

2 Methods

We tested our approach using 3D MRF data of a Lister-hooded adult rat brain
adult acquired with a Bruker BioSpec 47/40 system (Bruker Inc., Ettlingen,
Germany) [1]. The sequence was based on SSFP-MRF [3]with Cartesian sam-
pling, T = 1000 shots, and 0.5 mm isotropic resolution. A dictionary D ∈ CL×T

was simulated using extended phase graphs with the following ranges: T1 from
100ms to 3,000ms in 20ms steps; T2 from 20ms to 100ms in 5ms steps and from
100 to 500ms in 10ms steps; and B1 as a flip angle factor from 50% to 150% in
1% steps, resulting in a dictionary of size 840522× 1000. The acquired data was
matched to the dictionary to create a reference dataset.
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Fig. 1. Parameter distribution obtained from selected slices in the left hemisphere
used as a training dataset. The upper triangle displays density plots, the diagonal
histograms, and the lower triangle scatter plots. Note that parameters approach a
Gaussian distribution and are densely scattered within a specific range.

Exploiting symmetry of the brain, the reference dataset was divided along
the medial longitudinal fissure, separating the left and right hemisphere. The
estimated parametric T1, T2 and B1 maps of the left hemisphere (see Fig. 1)
were used to create spatiotemporal dictionaries of different sizes by first cluster-
ing multi-parametric (T1,T2,B1) spatial kernels using k-means and subsequently
simulating the temporal signal of every voxel in each cluster. The right hemi-
sphere of the reference dataset was then matched to dictionaries with spatial
kernel sizes of P = 1× 1× 1 (clustered only), P = 3× 3× 3 and P = 5× 5× 5
(see Fig. 2).

We hypothesize that a dictionary that contains only feasible parameter com-
binations and spatial information should enable acceleration in both space and
time. We test this by samplingless k-space points using a Gaussian mask in the
phase encode directions with different acceleration factors (Figs. 3-4), and by re-
ducing the sequence length (Fig. 4). Undersampled datasets were reconstructed
with the original dictionary template matching (TM) [4]and with our VS ap-
proach, and compared to the reference dataset by their similarity index (SSIM)
[5]. Furthermore, we study the amount of clusters required to accurately capture
the entire spatio-parametric variability in our dataset by evaluating the mean

122 multiparametric mapping : mr fingerprinting and beyond



3D MRF with a Clustered Spatiotemporal Dictionary 3

Fig. 2. Comparison of the estimated T1, T2 and B1 parametric maps from the fully
sampled dataset with a temporal dictionary D ∈ CL×T and three clustered dictionaries
D̂ 3√

P
∈ CK×TP with K = 300, T = 1000, and P = 1× 1× 1, 3× 3× 3, and 5× 5× 5.

Spatial smoothing obtained with and is achieved by averaging all contributing patches
to a given voxel.

square error (MSE) of the training and testing data for different spatial kernels
(Fig. 5).

3 Results

Figure 1 shows how the estimated parameters approximate a Gaussian distribu-
tion, and are scattered in a restricted range within the parameter space. Hence,
using dictionaries trained from this distribution yields parametric maps that
agree with maps estimated using the full dictionary (see Fig. 2). Figure 3 com-
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Fig. 3. Estimated T2 parametric maps from fully sampled reference data and data
undersampled with an acceleration factor R=5 (20% of k-space) for two different re-
construction methods: template matching (TM) and view-sharing (VS). The clustered
dictionaries D̂ 3√

P
∈ CK×TP consisted of K = 300, T = 1000, and P = 1 × 1 × 1,

3× 3× 3, and 5× 5× 5.

pares the reconstructed maps with 20% sampling of k-space, where D and D̂1

combined with VS are the most similar to the reference dataset. Figure 4 shows
smaller variation of the clustered dictionaries with undersampling, though hav-
ing less similarity to the reference dataset in fully sampled cases. Fig. 5 evidences
how the training error decreases for more clusters in all cases, while the testing
error only decreases continuously for D̂1.

4 Discussion

We use spatiotemporal dictionaries of different spatial kernel sizes with K = 300
clusters (0.036% of the original dictionary size) and obtain comparable paramet-
ric maps (see Fig. 2). Furthermore, Figs. 3-4 show that clustered dictionaries,
especially if they contain spatial information, are more robust to undersampling
and shorter sequences. Conversely, the spatial smoothing achieved with larger
spatial kernels along with the constant testing errors for increasing clusters in
Fig. 5 indicate that the training data does not accurately represent the testing
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Fig. 4. Acceleration in space and time. The left column displays the SSIM for each of
the dictionaries and two reconstruction methods: template matching (TM) and view-
sharing (VS) for different levels of k-space sampling. The right column shows the es-
timated SSIM for increasing sequence length and an acceleration factor R=5 (20% of
k-space).

data for kernel sizes larger than P = 3 × 3 × 3. In fact, the amount of train-
ing observations required and the corresponding size of the dictionary in terms
of space, time, and clusters, leads to two important discussion points: 1) using
clustering enables higher acceleration, at the expense of disregarding parame-
ter combinations that are not present in the training set (e.g. pathology); and
2) adding spatial information increases the dimensionality of the dictionary, re-
quiring approaches that can effectively deal with matching in high dimensional
spaces.

5 Conclusions

We propose a method to create clustered MRF dictionaries and show the added
benefit of combining it with a view-sharing strategy to enable both accelerated
acquisitions by undersampling, and accelerated reconstructions through dictio-
nary compression. Further investigation of data-driven approaches could pave
the way towards tissue and disease specific dictionaries in clinical settings.
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Fig. 5. Training and testing error for different cluster sizes K from the fully sampled
reference dataset. For D̂1 both the training and testing error reduce with an increasing
number of clusters, while testing errors for D̂3 and D̂5 do not change significantly with
increasing clusters.
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5.2.2 Spiral Keyhole Imaging for MR Fingerprinting
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Abstract: Magnetic Resonance Fingerprinting (MRF) can be used for a
fast and quantitative estimation of physical parameters in MRI. For the
fast acquisition of MRF, common approaches have used non-Cartesian
sampling of k-space. Here, we introduce a method for non-iterative
anti-aliasing of the spiral MRF time series, based on the concept of
keyhole imaging. Our approach does not change acquisition or dic-
tionary creation and matching procedures. As frames require only
minimal density compensation in k-space, noise amplification during
reconstruction is reduced. After applying our algorithm, individual
images from the MRF time series are artifact-free and clearer parame-
ter maps are obtained in a shorter time while preserving the accurate
quantification of MRF.

Contribution of thesis author: Algorithmic development and imple-
mentation, abstract revision.
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Abstract. MR Fingerprinting can be used for a fast and quantitative es-
timation of physical parameters in MRI. For the fast acquisition of MRF,
common approaches have used non-Cartesian sampling of k-space. Here,
we introduce a method for non-iterative anti-aliasing of the spiral MRF
time series, based on the concept of keyhole imaging. Our approach does
not change acquisition or dictionary creation and matching procedures.
As frames require only minimal density compensation in k-space, noise
amplification during reconstruction is reduced. After applying our algo-
rithm, individual images from the MRF time series are artifact-free and
clearer parameter maps are obtained in a shorter time while preserving
the accurate quantification of MRF.

1 Introduction

Magnetic resonance fingerprinting (MRF) is an efficient method to acquire quan-
titative parameters using MRI [6]. Fast acquisition of MRF data usually features
non-Cartesian k-space sampling schemes, using variable density spirals [4,6] or
radial waveforms [2]. With these strategies, sampling density is higher in areas
rich of contrast information at the centre of k-space, while areas containing less
image contrast, such as the edges of k-space, are sampled less frequently. One
of the main advantages of MRF is that imaging frames do not require full sam-
pling, as pattern matching can ”see through” aliasing [6]. Although anti-aliasing
is not required, it has been demonstrated that using anti-aliasing strategies on
the imaging frames can permit higher acceleration [3,10]. Most approaches have
used iterative algorithms, which come at the expense of long image reconstruc-
tion times. Recently, a non-iterative anti-aliasing scheme was demonstrated for
MRF using Cartesian imaging for small animals at 4.7T, based on the concept
of k-space view sharing [1]. Here, we extend this approach to spiral MRF of the
human brain.

2 Methods

Our method is based on the concept of k-space view sharing. The original MRF
approach applies density correction to the acquired k-space points and zero-
filling to non-acquired datapoints. In our approach, k-space coordinates are first
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Fig. 1. Sketch of the algorithm using a spiral trajectory: oversampled part of k-space
is in red, in panel a) sampling trajectory and in panel b) its corresponding DCF. In
the oversampled (red) area, the algorithm applies density compensation like in regular
gridding. In the undersampled area (black), data is shared with n neighbouring frames
proportionally to the DCF (panel c). The residual DCF is then applied to the borrowed
frames (panel d).

divided into two groups: oversampled part, where the k-space density compensa-
tion function (DCF) is less than 1, and the undersampled part, where the DCF
is greater than 1 (Figure 1a). In the oversampled area, standard density com-
pensation is applied (Figure 1b). In the undersampled area, each k-space point
is shared with 2n neighbouring views. The number 2n approximates, for each
k-space coordinate, the sampling density associated with the given distance to
the k-space centre (Figure 1c). As this view-sharing step only accounts for odd
integer DCF values, a small density correction factor is still applied to the bor-
rowed data-points to achieve uniform sampling across all k-space points (Figure
1d).
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Fig. 2. Flip angle (FA) and repetition time (TR) list used for both phantom and
volunteer scans.

2.1 MRF acquisition

Data was acquired using a gradient-spoiled SSFP spiral MRF sequence at 1.5T
(GE HDx, 8ch receiver coil, Milwaukee USA) [4]. Dictionary creation and pattern
matching were as in [6], acquisition parameter list is shown in Figure 2. To
maximize spatial and temporal incoherence, we incremented the angle of the
spirals each time by the golden angle [9].

2.2 Conservation of quantification and acceleration

We scanned the Eurospin TO5 phantom [5], and retrospectively performed the
MRF experiment using the first 356, 712, 1078, and 1424 frames. We compared
quantification values across undersampling factors and between the keyhole ap-
proach and the standard reconstruction. To evaluate the method in a more re-
alistic case, we acquired data in one asymptomatic volunteer.
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Fig. 3. . Comparison between MRF and keyhole MRF (here labelled VS MRF) across
different T1 and T2 values, when acquiring 356, 712, 1078 and 1424 frames. Data are
referred to MRF with 1424 frames. Bias is mainly due to the undersampling factor and
is similar when applying or not applying anti-aliasing. Our anti-aliasing strategy does
not affect quantification.

2.3 Conservation of image geometry

To assess whether the described anti-aliasing technique would corrupt image
geometry, we scanned a resolution phantom and compared the image when ap-
plying the algorithm and when not applying it. We used visual inspection for
qualitative assessment and the autofocus objective function [7] averaged across
the image as a quantitative metric of conservation of the PSF.

3 Results

Figure 3 shows the effects on quantification of shortening the MRF acquisition,
with and without our anti-aliasing strategy. Shortening acquisition achieved sim-
ilar bias (<5% for T1 in 712 frames, <10% for T2 when acquiring 712 frames)
in both cases, indicating that quantification is affected by acquisition length but
not by anti-aliasing. Figure 4 displays brain images obtained with the first 754
frames only. Our anti-aliasing technique can achieve clearer T1, T2 and PD maps
without increasing scan time, as well as giving diagnostically useful un-aliased
frames. Figure 5 shows the effects of view sharing on a geometrical phantom,
showing that image geometry is conserved when using our algorithm.

4 Discussion

Our results demonstrate anti-aliasing of MRF frames without using iterative
algorithms. The concept used is similar to keyhole imaging [8], and is based
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Fig. 4. Comparison of MRF without anti-aliasing and MRF with our technique. Data
are obtained sampling the first 754 timeframes only, with an acquisition time of eight
seconds. The last column compares imaging frame 41, tissue border enhancement can
be observed in the anti-aliased frames. Keyhole MRF produces clearer images.

on the assumption that the image contrast is mainly stored in the centre of k-
space, while the image details, which are mostly unchanged between frames, are
in the edges of k-space. Therefore, the signal evolution for dynamic imaging can
be in principle estimated well when only the central part of k-space is updated
between subsequent frames. Notably, our approach requires only minimal density
compensation in k-space, leading to less noise amplification. As the anti-aliased
frames are free from artefacts, these can be used for radiological purposes in
addition to the parameter maps.

5 Conclusions

We demonstrated keyhole spiral MRF. Our algorithm achieves significant accel-
eration with a preservation of the accurate quantification of MRF and does not
require iterative algorithms or changes to the dictionary.
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silent method for quantitative T1 mapping with Zero Echo Time (ZTE)
imaging, and generate multiple T1-weighted images at virtual inver-
sion times. By designing an interleaved radial trajectory for ZTE, and
constraining the temporal behavior of the signal with low-dimensional
sub-space and spatiotemporal low rank regularization, we conducted
a volumetric T1 mapping in 2 minutes with acoustic noise only 1.1dB
higher than scanner background.
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Abstract. The current work aims to provide a volumetric, fast and
silent method for quantitative T1 mapping with Zero Echo Time (ZTE)
imaging, and generate multiple T1-weighted images at virtual inversion
times. By designing an interleaved radial trajectory for ZTE, and con-
straining the temporal behavior of the signal with low-dimensional sub-
space and spatiotemporal low rank regularization, we conducted a volu-
metric T1 mapping in 2 minutes with acoustic noise only 1.1dB higher
than scanner background.

1 Purpose

Zero echo time (ZTE) imaging has many favorable features, as it is distortion
free, silent and can provide isotropic resolutions, however with poor image con-
trast [1]. The aim of this work is to generate multiple T1 contrast images at
virtual inversion times (TIs) and quantitative T1 maps with magnetization pre-
pared ZTE, in clinical feasible time and low acoustic noise to enhance patient
comfort. We designed an interleaved radial trajectory to best elevate scan ef-
ficiency, and implemented a low dimensional temporal subspace and low rank
(LR) regularization method [3] for reconstruction.

2 Methods

2.1 Sequence design

The radial trajectory is designed according to an interleaved Archimedean spi-
ral trajectory [4]. The acquired data is segmented along the readout, and data
segments with the same position in the readout (similar TI) from different in-
terleaves are grouped together to generate undersampled images. The effective
TI is defined as the center of the acquisition window for each segment. The tra-
jectory of each interleave is shifted to guarantee that the undersampled volumes
can uniformly cover the K space. The trajectory design is shown in Fig. 1.
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Fig. 1. Demonstration of acquisition protocol and trajectory design. Data is segmented
along the readout (as illustrated in the dashed box), and segments acquired at the same
inversion time (TI) are grouped together to generate under sampled images. On the
left is a representation of the K space trajectory at one effective TI. Segments from
different interleaves (illustrated in different colors) can uniformly cover the K space.

2.2 Data acquisition

The experiment was conducted on a GE 3T MR750w scanner with a GEM
head array coil (GE Healthcare, Waukesha, WI). A phantom (DiagnosticSonar,
Livingston, UK) consisting of tubes with different T1 values were used in the
experiment. An adiabatic inversion recovery (IR) prepared ZTE was conducted
with FOV=21.6cm, flip angle=2◦, readout BW = ± 15.6 kHz, isotropic reso-
lution of 3mm, and a waiting time of 1000ms to allow signal recovery between
consecutive interleaves. The data acquisition began 40ms after the IR pulse and
lasted 3000ms. Acoustic noise measurements were performed using a Bruel &
Kjaer sound level meter equipped with MR compatible microphone, which was
placed in-bore at scanner isocenter inside the head coil. An initial volunteer scan
was also conducted with the same imaging protocol.

2.3 Data reconstruction

The compressed sensing reconstruction with low dimensional temporal subspace
constraint and LR regularization was implemented [3]. The observed signal y(t)
can be modeled as y = EXt, in which E is the encoding operator and Xt

represents the temporal dynamic image series. The signal evolution is a function
of tissue parameter (T1, proton density) and IR pulse flip angle (due to imperfect

136 multiparametric mapping : mr fingerprinting and beyond



Fast, Volumetric and Silent Multi-contrast Zero Echo Time Imaging 3

Fig. 2. The signal evolution can be observed by looking at the reconstructed temporal
dynamic T1 contrast: different T1 samples come to their zero crossing at different TIs.

IR pulse), and can be approximated by temporal basis determined by the signal
model. The LR regularization exploits spatiotemporal correlations and reduces
the degree of freedoms in the subspace. In the current work we chose K=3
temporal coefficients, and segmented the data into 64 time points with different
TIs.

3 Results

As shown in Fig. 2, the temporal behavior of different T1 samples can be observed
in reconstructed image series at different virtual TIs. Fig. reffig3 shows the signal
evolution before and after applying temporal subspace and LR regularization,
and the fitted signal curve. Mean and standard deviation of the fitting results
for each tube are shown in Table 1. Compared to vendor provided ground truth
T1 values, the fitting results are similar but with an underestimation of long T1
(tube7). T1 values consistent with literature were generated in gray and white
matter area from the volunteer scan, and are shown in Figure 4. However, the
acquisition and reconstruction parameters need further improvement to generate
decent T1 mapping in vivo. The current experiment took less than 2 minutes,
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Fig. 3. The signal evolution curve of different T1 values before (blue) and after (red)
applying temporal subspace and LR regularization. The fitted data curve is plotted in
dashed black line.

and the acoustic noise was 71.1dB, only 1.1dB higher than the background noise
(70.0dB).

Table 1. The T1 mapping results compared to the ground truth T1 value provided
by vendor.

Tube number True values (ms) Fitted values (ms)

1 218 203.1 ± 9.8
2 322 302 ± 10.6
3 487 483.1 ± 0.3
4 476 489.8 ± 16.0
5 647 665.6 ± 3.8
6 833 812.5 ± 4.7
7 1092 980.1 ± 0.35
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Fig. 4. The T1mapping result from preliminary volunteer scanning experiment. White
matter, CSF and gray matter can be distinguished easily. The measured T1 values are
around 730-800ms in white matter area, and around 950-1000ms in gray matter area,
which is reasonable. However, the acquisition and reconstruction parameters need to
be improved to generate decent T1 maps.

4 Discussion

In this study we conducted volumetric, fast and silent T1 mapping and recon-
structed multiple T1 contrast images at virtual TIs with IR prepared ZTE. The
current method was validated in T1 phantom and initially validated in volunteer
scanning, yet further improvement is necessary. Unlike Cartesian or spiral trajec-
tory, radial trajectory has no defined contrast point as it constantly updating the
center of K space. Previous studies [2] used view-sharing for IR prepared radial
sequence to solve the contradiction between image quality and contrast. In this
work, we utilized an alternative method by having undersampled images acquired
at similar TI times, and reduce undersampling artifacts by low-dimensional sub-
space and LR regularization. Additionally, there are several limitations that need
to be improved in next steps. First, there was an underestimation bias of long
T1 values, which could be improved by a longer acquisition window to better
capture the dynamic relaxation curve of long T1 samples. Second, the signal
model does not consider inaccurate flip angle during ZTE readout which could
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also affect the signal evolution. Including the possible flip angle variations in the
signal model could increase the accuracy in calculating the temporal basis.

5 Acknowledgments

With the support of the TUM Institute for Advanced Study, funded by the Ger-
man Excellence Initiative and the European Commission under Grant Agree-
ment Number 605162.

References

1. Börnert, P., Groen, J., Smink, J., Nehrke, K.: Magnetization Prepared ZTE to
address Multiple Diagnostic Contrasts. Proc Intl Soc Mag Reson Med (2015)

2. Kecskemeti, S., Samsonov, A., Hurley, S.A., Dean, D.C., Field, A., Alexander, A.L.:
MPnRAGE: A technique to simultaneously acquire hundreds of differently con-
trasted MPRAGE images with applications to quantitative T 1 mapping. Magnetic
Resonance in Medicine 75(3), 1040–1053 (2016)

3. Tamir, J.I., Uecker, M., Chen, W., Lai, P., Alley, M.T., Vasanawala, S.S., Lustig,
M.: T 2 shuffling: Sharp, multicontrast, volumetric fast spin-echo imaging. Magnetic
Resonance in Medicine (2016)

4. Wong, S.T.S., Roos, M.S.: A strategy for sampling on a sphere applied to 3D selec-
tive RF pulse design. Magnetic Resonance in Medicine 32(6), 778–784 (1994)

140 multiparametric mapping : mr fingerprinting and beyond



5.2 relevant peer-reviewed abstracts 141

5.2.4 Accelerated Parameter Mapping with Compressed Sensing: an Alter-
native to MR Fingerprinting

Peer-reviewed Conference Abstract

Authors: PA. Gómez, G. Buonincontri, M. Molina-Romero, JI. Sperl,
MI. Menzel, BH. Menze

In: Proc Intl Soc Mag Reson Med (2017) [39]

Abstract: We introduce a method for MRI parameter mapping based
on three concepts: 1) an inversion recovery, variable flip angle ac-
quisition strategy designed for speed, signal, and contrast; 2) a com-
pressed sensing reconstruction which exploits spatiotemporal corre-
lations through low rank regularization; and 3) a model-based opti-
mization to simultaneously estimate proton density, T1, and T2 values
from the acquired measurements. Compared to Magnetic Resonance
Fingerprinting (MRF), the proposed method achieves a five-fold accel-
eration in acquisition time, reconstructs an unaliased series of images,
and does not rely on dictionary matching for parameter estimation.

Contribution of thesis author: Algorithmic development and imple-
mentation, experimental design, data analysis, abstract preparation
and editing.



Accelerated Parameter Mapping with
Compressed Sensing: an Alternative to MR

Fingerprinting
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Abstract. We introduce a method for MR parameter mapping based
on three concepts: 1) an inversion recovery, variable flip angle acquisition
strategy designed for speed, signal, and contrast; 2) a compressed sens-
ing reconstruction which exploits spatiotemporal correlations through
low rank regularization; and 3) a model-based optimization to simulta-
neously estimate proton density, T1, and T2 values from the acquired
measurements. Compared to MR Fingerprinting, the proposed method
achieves a five-fold acceleration in acquisition time, reconstructs an un-
aliased series of images, and does not rely on dictionary matching for
parameter estimation.

1 Purpose

MR fingerprinting (MRF) [12] has recently gained attention due to its ability to
simultaneously estimate multiple parametric maps within clinically feasible scan
times. MRF is based on three main ingredients: a pseudorandom acquisition, the
reconstruction of aliased measurements, and the matching of these measurements
to a precomputed dictionary. While conceptually appealing, MRF suffers from
multiple methodological shortcomings. The purpose of this work is to present an
alternative method to parameter mapping that addresses these limitations by
optimizing the acquisition, reconstructing unaliased measurements, and fitting
the measurements in a model-based optimization not subject to the discretiza-
tion of the dictionary.

2 Methods

In an MRI experiment the observed signal y(t) can be described by the combi-
nation of a spatial function with a temporal signal evolution:

y(t) =

∫

r

ρ(r)ft(r)e−2πk(t)·rdr; (1)
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Fig. 1. Flip angle trajectories and correlation between observations. a-b, Flip angle
trajectory for MRF and variable flip angles (vFA). c-d, Temporal signal evolution of
three exemplary observations. The legend displays the correlation c between each of
them. e-f, Correlation matrix for all observations and the norm of the matrix; where
the observations are less correlated in vFA.

where ρ(r) is the spatial distribution of the spin density at position r, k(t) is the
k-space trajectory, and ft(r) is the temporal signal, given by the recursion:

ft(r) = ft−1(r)g (θa(t);θb(r)) . (2)

The temporal signal ft(r) at time t is determined by the signal value at the
previous time point ft−1(r) modulated by g (·), a function of two different pa-
rameter sets: the temporally varying acquisition parameters θa(t), e.g. flip angle
α(t) and repetition time TR(t); and the spatially dependent biological param-
eters of interest θb(r), such as T1(r) and T2(r). In MRF, the temporal signals
are denoted fingerprints, where the method aims at creating unique signals for
different spatial locations through pseudorandom variations of the acquisition
parameters θa(t). Alternatively, we chose θa(t) to satisfy three criteria: speed,
signal, and contrast. We increased the speed by minimizing TR(t), and optimized
α(t) for signal and contrast using a training dataset x ∈ CL×T with L obser-
vations and T time points; wherein we experimentally attempted to increase
both the orthogonality between observations, and the norm within observations
[3,4,8].
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Fig. 2. Reconstructed images at different repetition indexes t. While the nuFFT oper-
ation reconstructs a series of aliased images, the proposed CS reconstruction removes
the aliasing, allowing for an easier visualization of the temporal dynamics of the signal.

Whereas the original MRF reconstructs aliased images from the measure-
ments, recent work has shown that the acquired data can also be reconstructed in
an iterative framework [1,2,5,7,13,17,18]. Based on these ideas, we implemented
a compressed sensing (CS) [11] reconstruction that constrains the temporal sig-
nal evolution to a low dimensional subspace [14,17], and regularizes the image
series by promoting local low rank of spatiotemporal image patches [14,15]. Fi-
nally, once we reconstruct an unaliased image series, we propose to replace the
matching to a simulated dictionary with an optimization based on least-squares
curve fitting for the simultaneous estimationof ρ(r), T1(r), and T2(r).

We acquired a single slice from a healthy volunteer based on the FISP im-
plementation of MRF [10] on a GE HDx MRI system (GE Medical Systems,
Milwaukee, WI), with an eight channel receive only head RF coil. After an ini-
tial inversion, a train of T = 1000 pulses with varying flip angles and repetition
times was applied (Tacq = 13.15 s per slice). In addition, we acquired a train of
T = 300 variable flip angles (vFA) with TR = 8 ms (Tacq = 2.42 s per slice).
For both acquisitions, we used a zero-moment compensated variable density spi-
ral designed with 22.5 × 22.5 cm FOV, 256 × 256 matrix size, 1 mm in-plane
resolution, 5 mm slice thickness, and golden angle rotations between every in-
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4 Gómez et al.

Fig. 3. Signal evolution of a single observation with dictionary matching and model-
based optimization. a-b, The high levels of aliasing in the acquisitions lead to different
parameter estimates between matching and optimization. c-d, Matching and optimiza-
tion results are similar when the evolution is unaliased, where the optimization is not
constrained to the discretization of the dictionary. The T2 values obtained from CS-vFA
present an underestimation with respect to the T2 in MRF and CS-MRF.

terleave. Each acquisition was reconstructed using the nuFFT operator [6] and
with the proposed CS method, and parameter maps were subsequently estimated
with both dictionary matching and model-based optimization. We simulated the
dictionary for a varying range of T1 and T2 values using the EPG formalism
[9,16].

3 Results

We found that two linear ramps yielded T1 and T2 sensitivity while reducing the
cost (see Fig. 1). Compared to MRF, the proposed strategy reduces the num-
ber of repetitions (Fig. 1a-b), while increasing the orthogonality of the signal
evolutions between training observations (Fig. 1c-d). This acquisition, coupled
with the proposed CS reconstruction, allows for the recovery of a series of un-
aliased images (Fig. 2), which in turn facilitate a model-based optimization for
parameter mapping (Figs. 3,4).

4 Discussion

When the measurements are aliased, the optimization is subject to local minima
due to high noise levels of the temporal signals, resulting in biased parame-
ter estimates. On the other hand, as soon as the image series is unaliased, the
optimization converges, yielding parametric maps that are not subject to the
discretization of the dictionary. vFA maps display an underestimation of T2 val-
ues, indicating that the vFA strategy could still benefit from better T2 encoding
using variable repetition or echo times.
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Fig. 4. Estimated parametric maps with dictionary matching and model-based opti-
mization. Dictionary matching yields consistent results with noisy and unaliased sig-
nals, while the optimization only converges when fitting unaliased signals (rows 2 and 4,
right). When fitting noisy signals, the optimization converges to local minima, leading
to an incorrect estimation of parametric maps (rows 1 and 3, right). On the other hand,
the optimization is not subject to dictionary discretization, allowing for a wider range
of parameters in the solution space. T2 maps in vFA are underestimated in comparison
to MRF.

5 Conclusions

We demonstrated an alternative to MRF based on variable flip angles, a com-
pressed sensing reconstruction, and a model-based optimization. Our proposal
reduces the acquisition time by a factor of five, reconstructs unaliased tempo-
ral signals, and, notably, does not rely on dictionary matching for parameter
estimation.
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D I S C U S S I O N O F T H E P R E S E N T E D M E T H O D S

This publication-based dissertation presents methodological advances
to quantitative MRI in three different categories: hyperpolarized 13C
metabolic NMR, motion encoding techniques, and multiparametric
mapping. In total, this thesis contains seven publications, seven ab-
stracts, and two manuscripts currently being considered under re-
view for publication.

In hyperpolarized 13C metabolic NMR, the main focus of this the-
sis has been on the kinetic modeling of different metabolic path-
ways. By formulating a joint system of differential equations, it has
been possible to infer multiple parameters with a single routine, in-
creasing fitting robustness. The robustness of the fitting is relevant,
since the quantified parameters, the metabolic exchange rates, can be
subsequently used to monitor metabolism and differentiate between
healthy and diseased tissue.

The contributions of this thesis with respect to motion encoding
methods are related to image reconstruction, signal processing, and
modeling. Work in dynamic MRI reconstruction has demonstrated
that by exploiting all of the available dimensions of the data, it is
possible to recover full signals from drastically undersampled mea-
surements. Also, by using advanced algorithms from the field of ma-
chine learning, the undersampling level can be further increased with-
out compromising the quality of the computed scalar metrics. Signal
processing techniques, such as BSS, have enabled the separation of en-
tangled signals stemming from different tissue compartments inside
a single voxel. Finally, alternative modeling methods, including sim-
plified kurtosis models, have been presented for the computation of
scalar metrics.

The multiparametric mapping techniques presented in this work
have been mainly inspired by MRF. This dissertation contains several
methodological improvements to MRF, including the learning of a dic-
tionary from data, creating new maps and contrasts, and automati-
cally labeling different tissues as an output of the processing pipeline.
Moreover, advances in MRF have led to the creation of an alternative
acquisition and reconstruction method, namely QTI, which is scalable
into higher dimensions, more efficient, and more robust than MRF.

Finally, this work contains several limitations: to have impact in
healthcare, the technical advances shown here require further method-
ological development, reproducibility studies, and clinical validation.
This is the subject of future work.
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O U T L O O K A N D F U T U R E W O R K

The advances presented in this thesis have been possible by build-
ing on state-of-the-art research at the intersection of Computer Sci-
ence and MRI physics. Notably, the work in this thesis relies on PI,
CS, MRF, and machine learning to improve quantitative MRI. Certainly,
progress in the field needs to be constant, leaving ample space for fu-
ture work; especially with regard to QTI. On the methodological side,
QTI can be further improved in many aspects such as encoding for 3D
images; revisiting aspects of the sequence design to further increase
efficiency; incorporating additional parameters into the model, in-
cluding diffusion and magnetization transfer; or exploring the limits
of QTI in terms of speed, resolution, SNR, and field strength. Clinically,
QTI needs to be proven for a large cohort of patients and multiple dis-
eases, where the estimated metrics should be specific and sensitive to
pathology. Finally, commercially, only when the developed methods
and algorithms behind QTI are tested, validated, and released, will
their impact and reach in the healthcare sector be significant.

Additionally, the past few years have demonstrated that machine
learning, especially algorithms related to deep learning [95], is becom-
ing increasingly relevant for medical imaging. While this thesis has
an important focus on machine learning, it does not cover the specific
field of deep learning (author contributions in that field are collected
elsewhere [30]). On the other hand, novel applications in medical im-
age segmentation [49, 70] and reconstruction [72, 96] indicate that
deep learning has just begun and will continue to transform the field.
Hence, future work will also focus in this direction, combining the
previously developed techniques with deep learning algorithms to
further improve MRI in general, and quantitative MRI in specific. By
moving in this direction, MRI can become more automatic, with the
potential of eliminating cumbersome and error-prone manual tasks.

Also, the combination of deep learning with quantitative MRI tech-
niques could significantly increase the capabilities and diagnostic
value of MRI scanners, especially in situations where physical and the-
oretical models do not hold. For example, deep learning could play
a key role when the acquired data violate the Nyquist limit, the SNR

is too low, or the underlying biophysical models are too complex or
inaccurate. These techniques could also relax hardware constraints,
potentiating the commercialization of robust and portable devices.
This in turn, would transform MRI into a commodity instead of a
luxury, increasing patient access and benefiting the population and
healthcare systems on a global scale.
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Abstract: Magnetic Resonance Imaging (MRI) is a remarkably pow-
erful diagnostic technique. It allows for the imaging of a rich set of
contrasts and the mapping of a host of parameters that enable the
non-invasive study of tissue anatomy and physiology. Its extraordi-
nary power, however, is limited by its speed: obtaining complemen-
tary information requires lengthy acquisitions, which are often in-
feasible or impractical within clinical settings. Here, we demonstrate
that, by remaining in the transient-state and relying on physical mod-
eling of spin dynamics to optimally encode and reconstruct signals,
it is possible to generate hundreds of clinically relevant images with
unique contrast alongside multiple quantitative maps and tissue la-
bels with a single, accelerated acquisition. Our method - Quantitative
Transient-state Imaging (QTI) - offers novel directions in sequence de-
sign; producing fast, accurate, and high-resolution results, drastically
simplifying image processing, and paving the way to new diagnostic
opportunities.
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Abstract. Magnetic resonance imaging (MRI) is a remarkably power-
ful diagnostic technique. It allows for the imaging of a rich set of con-
trasts and the mapping of a host of parameters that enable the non-
invasive study of tissue anatomy and physiology. Its extraordinary power,
however, is limited by its speed: obtaining complementary information
requires lengthy acquisitions, which are often infeasible or impractical
within clinical settings. Here, we demonstrate that, by remaining in the
transient-state and relying on physical modelling of spin dynamics to
optimally encode and reconstruct signals, it is possible to generate hun-
dreds of clinically relevant images with unique contrast alongside multi-
ple quantitative maps and tissue labels with a single, accelerated acqui-
sition. Our method - quantitative transient-state imaging (QTI) - offers
novel directions in sequence design; producing fast, accurate, and high-
resolution results, drastically simplifying image processing, and paving
the way to new diagnostic opportunities.

1 Introduction

Since Lauterbur’s breakthrough idea[25], magnetic resonance imaging (MRI)
has enjoyed decades of incremental improvements, evolving into an unparalleled
imaging modality with the ability of providing detailed information on a tissue’s
structure and function. Modern MR scanners use sophisticated combinations of
radiofrequency pulses and magnetic gradients to probe the complex dynamics of
spins inside the human body. Through careful calibration, one can manipulate
spins to produce MR signals that are ’weighted’ by one or more of the multiple
parameters that MR is sensitive to. Thus, different experiments with distinct ac-
quisition parameters allow one to image a wide range of contrasts, which provide
critical information in clinical settings. In its simplest form, scanners produce
images weighted by the longitudinal relaxation time (T1), the transverse re-
laxation time (T2), and the proton density (PD). Moreover, parameter mapping
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techniques enable the quantification of these parameters - progressing from qual-
itative images to quantitative maps, increasing accuracy and reproducibility of
diagnostic information[47].

However, MRI’s versatility comes at the expense of long acquisition times.
MRI is an inherently slow technique, as it requires acquiring multiple samples
along different encoding dimensions to reconstruct uncorrupted images. For in-
stance, conventional techniques need 128 or 256 repetitions along one of the
encoding dimensions to reconstruct a single weighted image with a matrix size
of 128× 128 or 256× 256, respectively. In these acquisitions, scan times are di-
rectly proportional to the number of repetitions, and, depending on the protocol
at hand, can become exceedingly long. Lengthy acquisitions mean higher risk of
motion-related image distortions, decreased value in time-critical diagnostic sce-
narios, less patients benefitting within a certain time window, and, importantly,
the acquisition of only a limited set of qualitative images, as acquiring quantita-
tive maps further increases scan times and is often impractical in clinical MRI.
Therefore, accelerating scans has long been one of the primary objectives of MR
research[15,45].

The early development of fast techniques, such as fast low-angle shot imaging[15],
or echo-planar imaging (EPI)[32], resulted in the widespread adoption of clinical
scanners. Thereafter, despite continued efforts to accelerate acquisitions, only
towards the turn of the millennium we witnessed disruptive innovations with
significant impact on scanning speed. First, the introduction of parallel imaging,
built on the observation that receiver coils have a spatial encoding effect, yielded
speed-up factors proportional to the number of additional coils incorporated into
the scanner[37]. Then, compressed sensing[29] further accelerated scans by ex-
ploiting structure and redundancy present in MR images. Both these techniques
allowed us to overcome the Nyquist limit, increasing the value of MRI by en-
abling the reconstruction of uncorrupted images with less acquired data; that
is, less repetitions. Still, while these methods result in substantial acceleration
for each individual weighted image, these images ultimately represent a mere
snapshot of the underlying spin dynamics - they provide information at a single
point in time and a specific location in space.

Recently, MR fingerprinting (MRF)[30], emerged as a promising technique
with a radical new approach to data acquisition. Instead of relying on serial
repetitions for individual weighted images, MRF proposes to create unique sig-
nal evolutions in the transient-state - so-called ’fingerprints’ - for the simulta-
neous quantification of multiple parameters with a single scan. With this tech-
nique, MRF produces quantitative maps in a scan time comparable to traditional
weighted imaging, improving the scan efficiency of previous mapping methods by
almost 2-fold. Unfortunately, this improvement in scan efficiency comes at a high
cost. First, the pseudorandom nature of MRF acquisitions provides no indication
as to how and where parameters are encoded into MRF signals, thus lacking a
theoretical basis for optimising sequences beyond trial and error. Furthermore,
the pattern recognition technique employed by MRF requires constructing a
dictionary by simulating a signal for every parameter combination possible, a

A.1 manuscripts under review 159



Quantitative transient-state imaging (QTI) 3

method inherently limited in memory and precision by the dimensionality of the
parameter space. Finally, neither the evolving signals, i.e. the fingerprints, nor
the resulting images can be inspected or visually interpreted.

Here, we propose QTI, a novel method for data acquisition, image recon-
struction, and parameter estimation. The key idea behind QTI is to combine
physical modelling of spin dynamics with optimal transient-state encoding to
reconstruct one image per repetition with short repetition times (TR). With
our framework for designing the acquisition strategy and reconstructing signal
dynamics, we open the door to a wide range of possibilities. First, we design the
sequence considering specific objectives, enabling us, for example, to reconstruct
the entire temporal dynamics for every voxel in the image. Second, our design
guarantees that the parameters we are interested in quantifying are optimally
encoded, resulting in high-resolution and accurate measurements with more than
a 3-fold improvement in scan time over MRF.

Together, these two properties of QTI can fundamentally shift the way we
perform MR examinations: whereas a typical scan requires hundreds of repeti-
tions to construct a single image, we produce as many images as we have repeti-
tions - even while using 100-fold shorter TR than EPI based techniques[28,42].
Each image provides insights into the anatomical context, it has distinctive con-
trasts, offering rich and complementary information with high clinical and sci-
entific value. Also, as these images also represent voxel-wise signal dynamics, we
can rely on inference techniques to find the quantitative parameters that best
describe the signal evolutions.

Moreover, and most importantly, we can design sequences such that signals
evolve during acquisition towards maximally discriminative tissue contrasts, sig-
nificantly simplifying subsequent image processing routines, and replacing, for
example, complex brain tissue segmentation algorithms[34] by simple threshold-
ing operations.

2 Signal modelling of spin dynamics in the transient-state

In the transient-state, as opposed to the steady-state, signals evolve dynamically
throughout data acquisition, causing imaging artefacts when combining measure-
ments from multiple repetitions to form a single image. Consequently, limited
efforts have been made to image[44,55] or map parameters[22] in the transient-
state, whereas most steady-state methods discard transient-state signals, only
characterising the signals in an effort to minimize them[7,20]. On the other hand,
the transient-state signal dependence on T1 and T2 is well known[39,41], and
it is possible to cope with signal alterations from one repetition to the next by
formulating a model of the signal over time ft(η; θ) in a recursive manner:

ft(η; θ) = ft−1 · g(η; θ). (1)

In Eq. 1, the value of the function ft at time t is determined by the value of the
function at time t−1 modulated by the operator g(η; θ), which in turn depends on
two variable sets: η, the design variables of a potential acquisition scheme (e.g.
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4 Gómez et al.

flip angle, TR, number of repetitions); and θ = {T1,T2}, the parameters we
wish to estimate. The operator g(η; θ) captures alterations to the spin dynamics
given by physical phenomena such as radiofrequency excitation, relaxation, or
gradient dephasing and can be simulated with a framework that describes the
evolution of magnetisation over time named extended phase graphs[52]. We use
this signal model in three serial steps: to determine the optimal design variables
η; to reconstruct the entire spatiotemporal image space, that is, the temporal
function ft for every spatial voxel in the image; and to provide a voxel-wise
estimate of θ for parametric mapping.

3 Sequence design with optimal encoding

Recently, MRF proposed the use of arbitrary and random patterns of η to esti-
mate θ. However, this pseudorandom acquisition results in suboptimal encoding
of the parameters of interest and casts uncertainty into how the resulting MRF
signals provide additional relevant information. QTI, contrary to MRF, designs
the acquisition to achieve specific objectives, allowing for the direct use and
interpretation of transient-state signals. The design also maximises parameter
encoding with an accelerated acquisition, and therefore, experimental efficiency.

To achieve this, we rely on Bayesian decision theory to guide our experimental
design[36,50]; where we aim at finding an acquisition scheme that maximises
the expected information gain while fulfilling all design constraints. Using the
signal model in Eq. 1, we can define a utility functional for the information gain
provided a particular θ:

u(η; θ) = det
∑

t




∂2ft
∂θ21

. . . ∂2ft
∂θ1θN

...
. . .

...
∂2ft
∂θNθ1

. . . ∂2ft
∂θ22


 . (2)

Hence, for every possible experiment we use Eq. 2 to compute the utility
functional for a specific parameter combination; and, in a Bayesian manner,
marginalize the utility over a prior distribution to find the overall utility:

U(η) =

∫

θ

log u(η; θ)π(θ)dθ. (3)

The prior distribution π(θ) was informed by literature[9,12,28,31,43,53] and
represents mean T1/T2 values and standard deviations of different tissue classes
of interest. In brain scans, for example, these are: grey matter (GM), white mat-
ter (WM), cerebrospinal fluid (CSF), and blood vessels (BV) (Fig. 2a). Finally,
the optimal design is determined as the one that maximises the utility whilst
satisfying three objectives: speed, smoothness, and contrast. Speed is determined
by considering only experiments with an acquisition readout less or equal to 4
seconds per slice; smoothness is computed via the average gradient of the signals
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Fig. 1. Constrained Bayesian experimental design. a, Smoothness of the signals,
computed by the negative of the absolute value of the gradient over time (−|∇|) and
the corresponding design threshold. Large initial flip angles produce oscillatory signals,
increasing the gradient and consequently decreasing overall smoothness. The horizontal
plane represents the smoothness threshold, where we consider a design as valid only if
it is above the threshold b, WM/GM contrast, calculated by the absolute difference
between mean WM and GM transient-state signals. Contrast is maximized when the
initial flip angle is small and the final flip angle large. The horizontal plane refers to
the contrast threshold. c, BV contrast over multiple acquisition times. The T1/T2
composition in BV results in contrast in lengthier acquisitions, where small initial flip
angles and large final angles maximize the contrast. d, Design utility with constraints.
Areas with zero or negative utility indicate that one or more of the design criteria were
not met. −3 indicates that smoothness was below the established threshold, while −2
and −1 refer to BV and WM/GM contrast, respectively. The area with zero utility
shows where the acquisition readout time exceeds 4 s (readout time = number of
repetitions × repetition time).

over time, where we desire to obtain smooth transient responses by avoiding sig-
nal oscillations[7]; and WM/GM as well as BV contrast is defined as the maximal
signal difference of the tissue’s mean value over time (Fig. 1 and Fig. 2e).

The resulting design consists of an inversion pulse followed by a variable flip
angle ramp (Fig. 2b), constant repetition and echo times (TE) with TE/TR =
2/8 ms, and an unbalanced gradient moment in each repetition. This encoding
strategy, while seemingly simple, is highly efficient: the first 200 repetitions en-
code mostly for T1 as the magnetisation recovers from the inversion with T1
relaxation, and the last 300 repetitions encode mostly for T2, as T2 relaxation
affects the amount of magnetisation available to be excited in the next repeti-
tion. Hence, tissues with longer T1 will have an inversion later in time (Fig. 2c)
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Fig. 2. Optimal encoding scheme for tissue priors and transient-state signals.
a, T1 and T2 space with Gaussian priors of four tissue classes: GM, WM, CSF, and
BV. b, Flip angle ramp corresponding to the optimal encoding scheme. c-d, Signal
evolutions for varying T1/T2 values, where (c) longer T1s (dashed, red line) experience
their inversion later in time and (d) shorter T2s (continuous, black line) produce higher
signal decay throughout the course of the experiment. e, Signal evolution from the mean
value of the four classes. In this example, WM/GM contrast is maximal close to the
inversion of GM, while BV contrast becomes apparent towards the end of the sequence.
d, Ensemble of signals simulated from a broad range of T1 and T2 values. As signals are
smooth and exhibit correlation, it is possible to use them to create a lower dimensional
subspace for image reconstruction.

and tissues with shorter T2 will cause a faster signal decay by allowing less mag-
netisation to recover for the next excitation (Fig. 2d). Furthermore, our design
leads to maximal WM/GM contrast at an acquisition time of approximately 1.1
seconds and BV contrast towards the end of the acquisition (Fig. 2e). Finally,
small flip angle variations generate smooth signal evolutions, wherein similar
tissue types will have similar evolutions, while different tissue types will distin-
guish from each other throughout the course of the acquisition. Therefore, one
can observe that a simulated ensemble of signals exhibits a certain level of corre-
lation, spreading a continuum over the signal space (Fig. 2f). It is precisely these
two factors, signal smoothness and correlation, that allow us to reconstruct the
spatiotemporal image space.
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4 Spatiotemporal image space reconstruction and
parameter estimation

If we would attempt to measure the spatiotemporal image space, the scan time
would increase significantly. Even for the time-efficient MRF, rodent experiments
which fully sampled the temporal signal in a 3D volume required over 17 hours of
scan time[2]. Fortunately, compressed sensing provides mathematical theory for
recovering full images from undersampled data by incorporating prior knowledge
into the reconstruction formulation[29]. Here, prior knowledge takes the form of
spatiotemporal data correlations given by the signal model and the design of the
acquisition scheme.

Temporal correlations are present in the transient-state signals by design.
That is, we rely on the exponential nature of the Bloch equations and use small
flip angle variations such that small changes in T1/T2 will result in smooth
differences over the transient-state signals (Fig. 2c-d). Spatial correlations are
a given in biological tissue because similar tissue types have similar relaxation
values[9,12,28,31,43,53]. For example, the GM in the cortex has longer T1 and
T2 times than WM, determined by myelinated areas of the brain; and CSF, con-
centrated around the brain and inside the ventricles, has the longest T1 and T2
times (see Table 2 for reference values). Thus, local spatial neighbourhoods ex-
hibit a high level of correlation in their relaxation times, and, consequently, also
a high level of temporal correlation. Therefore, one can exploit these correlations
with image reconstruction algorithms[1,46,56] to obtain a series of unaliased im-
ages for every point in time (Fig. 5b).

Once the images are reconstructed, we make use of high-performance com-
puting for Bayesian inference[16] to obtain a voxel-wise estimation of T1 and T2
with their associated uncertainties. This can be done by calculating the posterior
probability density function p(θ|xt, ft) of the parameters given the reconstructed
data xt and our signal model ft:

p(θ|xt, ft) =
p(xt|θ, ft)π(θ)

p(xt|ft)
. (4)

In Eq. 4, p(xt|θ, ft) is the likelihood of observing the data from the model,
π(θ) is the prior, and p(xt|ft) is the evidence of the model. From the probability
density function, we can obtain the maximum likelihood of each of the param-
eters in the model (T1 and T2), while PD is estimated as the scaling factor
between the data and the model[30], leading to the final quantification of three
parameters: T1, T2, and PD. In conclusion, QTI results in one image per repeti-
tion, 500 in this work, interpretable voxel-wise dynamics, and the corresponding
parameters that best describe the signal evolution.
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5 Benchmarking QTI: measurement accuracy, precision,
and efficiency

In parameter mapping, developed methods can be compared against each other
in terms of accuracy, precision, and efficiency of measurements. In its original
form, MRF showed tremendous potential by increasing the efficiency of the previ-
ously most efficient mapping method[6] by almost a factor of 2, while maintaining
measurement accuracy and precision[30]. However, the original implementation
of MRF is sensitive to banding artefacts caused by inhomogeneous static fields,
leading to the development of a robust version of MRF that makes use of un-
balanced gradients in each repetition[24]. This version of MRF has now become
state-of-the-art, has been extensively validated for reproduciblity[23], and has
been used in multiple subsequent works[2,3,8,13,17,18,56]. Our proposed tech-
nique also relies on transient-state encoding and an unbalanced gradient, making
both methods directly comparable.

In Fig. 3 we provide a comparison of QTI versus MRF using agar phantoms,
displaying accuracy and efficiency of measurements. Figure 4 compares dictio-
nary matching with maximum likelihood estimations and parameter uncertainty.
In Supplementary Fig. A.2 we also analyse the precision of measurements as a
function of scan time. Table 1 provides a benchmark of QTI against different
MRF variants in terms of resolution, time efficiency, mapping, uncertainty quan-
tification, and imaging.

In Fig. 3a and b we observe that QTI has a comparable accuracy to MRF,
with a concordance correlation coefficient[27] to the reference of 0.9940 and
0.9945 for T1 and T2, respectively. On the other hand, Fig. 3c and d evidence
that QTI is, on average, 3.90 more efficient than MRF. This increase in scan effi-
ciency is due QTI’s optimal T1 and T2 encoding with an accelerated acquisition.
For T2 quantification, QTI is also more precise than MRF for shorter scans (Sup-
plementary Fig. A.2). Figure 4 shows that matching noisy MRF data to a simu-
lated dictionary yields the closest match within the discretization bounds of the
dictionary, while the maximum likelihood estimation diverges from the reference
and has high parameter uncertainty. QTI estimates with dictionary matching
are also subject to the dictionary discretization, but maximum likelihood esti-

Table 1. Resolution, time efficiency, mapping, and imaging capabilities of
QTI versus MRF.

MRF QTI
Ma[30] Jiang[24] Cloos[4] QTI QTI+B1

Resolution (mm2) 2.3× 2.3 1.17× 1.17 1.4× 1.4 1.3× 1.3 1.3× 1.3
Scan time per slice (s) 12 13 7-21 4 4.8

Clinical parameters T1,T2,PD T1,T2,PD T1,T2,PD T1,T2,PD T1,T2,PD
Parameter uncertainty No No No Yes Yes

Imaging No No No Yes Yes
B1 mapping No No Yes No Yes
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Fig. 3. Measurement accuracy and efficiency. a-b, Measurement accuracy for
MRF and QTI with respect to the reference. Measurements show mean ± standard
deviation over a 150 voxel region of each tube. The inset on the left of each image
shows the estimated parametric maps in the phantom for each method. c-d, MRF
and QTI efficiency. Efficiency is determined as precision per the square root of the
acquisition time[30]. QTI has an average 4.8 and 3.0 higher T1 and T2 efficiency than
MRF, respectively.

mates are not, and converge to a more accurate quantification with decreased
uncertainty with respect to the reference. We also observed this phenomenon
in volunteer data, where a maximum likelihood estimation with undersampled
MRF data (Supplementary Fig. A.3) resulted in convergence to inaccurate local
minima (Supplementary Fig. A.4). Our quantification of T1 and T2 of volunteer
data is also consistent with literature findings for different tissue types in the
brain (Table 2).

Table 2. In vivo data compared to literature[9,12,28,31,43,53].

T1 (ms) T2 (ms)
QTI Literature QTI Literature

Grey matter 1,248 ± 213 945−1,934 94 ± 20 61−106
White matter 799 ± 97 661−1,155 68 ± 12 52−72

Cerebrospinal fluid 4,078 ± 143 3,393−4,241 1,970 ± 408 1,000−2,500
Blood vessels 1,593 ± 316 1,465−2,017 256 ± 85 225−325
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Fig. 4. Transient-state signals and parameter estimation. a-b, Transient-state
signal evolutions for MRF and QTI. The parameters that best describe the signal evo-
lutions can be estimated with dictionary matching (red), or with maximum likelihood
(ML) estimations (blue). ML estimations also allow for uncertainty quantification, plot-
ted as the light blue area. MRF signals are characteristically noisy, where dictionary
matching gives the highest correlated dictionary entry to the signal to estimate T1 and
T2. When the acquired data is not reconstructed with our proposed reconstruction,
the estimated parameter uncertainty increases significantly (a). The signal modelling
for image reconstruction employed in QTI allows for the recovery of denoised signals,
facilitating both dictionary matching and parameter inference with a ML estimation
(b). Here, the uncertainty decreases to 2.5% of the reference estimate. c-d, Parameter
estimation in T1/T2 space. The scatter plot represents the log-likelihood of observing
the parameters given the reconstructed data and the model, the black square shows
the reference value, the red circle is the value estimated with dictionary matching, and
the blue diamond represents the ML estimate obtained from the posterior probability
density function in Eq. 4. Compared to MRF, QTI displays less uncertainty, produces
estimates with higher likelihood, and closer to the reference.

6 Beyond parametric mapping: transforming image
processing

QTI achieves an unconstrained, high resolution, and more efficient quantifica-
tion of multiple parametric maps over previous MRF variants (Table 1), while
also yielding 500 images, and an interpretable signal evolution of different tissue
types (Fig. 5). For comparison, a traditional, high-resolution scan with a ma-
trix size of 256 × 256 with equivalent TR would not even produce two images
(it would need 512 repetitions), and MRF requires between 7 and 13.2 seconds
per slice to generate parametric maps. Even when coupled with an appropri-
ate reconstruction[5,14,56], the resulting images provide no immediate clinical
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Fig. 5. Imaging, signal dynamics and parametric mapping. a, Reconstructed
QTI images produce unique contrast throughout the acquisition. The contrast is also
informative: at t = 0.47 s, WM is close to its inversion time, thus has low signal,
followed by GM with longer T1 and then CSF with the longest T1; at t = 0.98 s, GM
is approximating its inversion and WM has not yet been affected by T2 relaxation,
inverting the WM/GM contrast of the previous image; at t = 1.6 s CSF signal intensity
has started to decrease; and, finally, at t = 2.9 s most CSF has been nulled due to the
inversion, but blood vessels, which have a shorter T1 and T2 compared to CSF, now
have high signal intensity. b, Signal dynamics for the each of the tissue classes and
the corresponding maximum likelihood and parameter uncertainty. The discrete points
represent measured data points, while the continuous lines are the signals which best
fit the data ± the corresponding uncertainty. c, Parametric maps obtained through
maximum likelihood estimation. The last pane also shows corresponding tissue labels,
obtained with nothing but a set of simple thresholding operations on the images in
(a).

information due to the pseudorandom acquisition process in MRF. Also, while
QTI does not explicitly encode for transmit field inhomogeneities through B1
mapping[2,4], our formulation allows to incorporate a separate B1 map prior
to parameter estimation for correction of inhomogeneous fields (Supplementary
Fig. A.5). Thus, by using fast B1 mapping methods[35], QTI can be used at any
field strength with increased efficiency. QTI is also scalable to high-dimensional
spaces, for contrary to dictionary matching, the number of required computa-
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tions for parameter estimation does not scale exponentially with the number
of parameters in the model. These parameter estimates, alongside our signal
model, can also be used to simulate any given acquisition scheme to synthesise
new contrasts[51] for different image processing tasks. In fact, the amount and
quality of data produced by QTI has the potential of transforming image pro-
cessing through simplification. An example of this is displayed in Fig. 5, where
thresholding of the images displayed in Fig. 5a leads to the tissue segmentation
shown in Fig. 5c.

7 Discussion

QTI is a novel method for simultaneous imaging and multiparametric mapping
that goes beyond the limit of what was previously possible in MRI. We build on
cutting-edge acceleration techniques, namely parallel imaging and compressed
sensing, and surpass their capabilities by incorporating optimal parameter en-
coding in the transient-state and physical modelling into the reconstruction for-
malism, enabling accurate, high-resolution results in 4.02 seconds per slice, over
three times faster than MRF. Besides parametric mapping, the images gener-
ated by QTI provide unique diagnostic value. Over the dynamic evolution of
different tissue types, unique contrasts will appear, allowing for a comprehensive
assessment of a tissue’s condition. For example, blood vessels are not clearly
visible in the parametric maps, but their unique T1/T2 composition will lead to
a signal hyper-intensity towards the end of the scan, enabling immediate visual-
ization and valuation. This could significantly impact diagnosis and monitoring,
for example, in stroke and other vascular diseases[11,40].

QTI also creates new opportunities in MRI. First, it radically simplifies im-
age processing. For instance, by selecting images with optimized contrast, sim-
ple thresholding operations lead to brain and tissue segmentation without the
need of applying nonlinear image registration or classification methods. Sec-
ond, the combination of temporal images with parametric maps creates new
dimensions for biomarker exploration, which could potentiate the early identifi-
cation of multiple diseases[47]. Also, our proposed design framework can be used
to systematically encode additional MR-sensitive parameters, such as diffusion
via gradient manipulation or magnetisation transfer using off-resonance pulses.
Hence, QTI converts the long-time aspiration of having a single scan for mul-
tiparametric imaging and quantification into a reachable objective. Moreover,
while we have provided a demonstration for 2D slices, the extension of QTI
into three-dimensional spatial encoding will further increase its efficiency. Fi-
nally, QTI boosts the performance of existing imaging hardware. While we have
shown fast, high-resolution results obtainable with standard clinical scanners,
QTI could also push the limits of speed and resolution of scanners with more
powerful image encoding gradients[42]. On the other hand, as QTI recovers spa-
tiotemporal signal dynamics from corrupted and noisy data, it could also be used
to relax hardware constraints. Thus, integrating QTI into ultralow field-strength
scanners[38] would significantly increase their capabilities and diagnostic value,
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potentiating the commercialization of robust, affordable, and portable MRI de-
vices. This in turn, would transform MRI into a commodity instead of a luxury,
increasing patient access and benefiting the population and healthcare systems
on a global scale.

8 Methods

Signal modelling. Extended phase graphs[21,52] provide a framework to pre-
dict transient-state signal evolutions from any given acquisition sequence. They
work by describing the magnetisation in terms of Fourier configuration states,
where physical phenomena are characterized via matrix operations on these
states. We simulate the QTI sequence by first inverting the magnetisation to the
negative longitudinal plane, and subsequently simulating serial radiofrequency
pulses with the flip angles from Fig. 2b. In every repetition, we collect the data
at TE = 2 ms, assuming the same TE for all the collected samples, and then
wait TR = 8 ms before applying the next radiofrequency pulse. Before each new
radiofrequency pulse, we simulate an unbalanced gradient moment by dephasing
the configuration states[24].

Bayesian experimental design. We created a grid in T1/T2 space ranging
from 0 to 3/6 seconds with 20/10 ms step sizes, respectively. We simulated the
prior distribution over the grid using the following mean T1/T2 values: 1,700/95
ms for GM; 685/65 ms for WM; 4,000/1,500 ms for CSF; and 1,900/275 ms
for BV. For each tissue class, we generated a broad Gaussian prior (Fig. 2a) to
ensure the resulting design is optimised for a wide range of values. We considered
four design variables: initial flip angle from 1 to 50 degrees in 5 degree steps,
final flip angle from 25 to 70 degrees in 5 degree steps, repetition times from
8 to 26 ms in 2 ms steps, and number of repetitions from 50 to 1,250 in 50
repetition steps. Only designs with an acquisition readout less or equal than 4
s were considered. For each potential design, we simulated the transient-state
signal at every discrete point on the grid using the physical model of Eq. 1. We
then computed the utility with Eq. 2 for each discrete point and marginalized
it via Eq. 3 to find the overall utility. We also used the mean tissue values to
calculate a normalized WM/GM and BV contrast and computed the gradient of
the signal over time to assess smoothness. The selected design was the one with
maximum utility that fulfilled all the design criteria (Fig. 1).

Temporal subspace creation and evaluation. By sampling the parameter
space and simulating a signal with Eq. 1 for every sample, it is possible to create
a dictionary of transient-state signal evolutions. One can then create a tempo-
ral subspace by applying principal component analysis over the signals in the
dictionary[1,33,56]. We evaluated our temporal subspace based on two criteria:
the sampling of the parameter space and the number of temporal coefficients used
to represent it. One alternative to select the samples in parameter space is to use
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the scheme proposed by MRF: sample a certain range with a specified density
and simulate the signals for every sample. This continuous sampling approach,
however, incorporates no prior knowledge into the parameter distribution and
is not scalable to higher dimensional spaces. A second alternative is to use a
training dataset and known tissue priors to inform the sampling. This has the
advantage of significantly reducing the total number of parameter combinations,
maintaining a low subspace error in areas with high sampling density (Supple-
mentary Fig. A.1), and being scalable. The number of temporal coefficients, the
second criterion for evaluating the subspace, presents a trade-off between bias
and noise amplification. Supplementary Fig. A.1a and c display the normalized
model error (NME)[46] for four different voxel types for both the continuously
sampled dictionary and the data-driven alternative. For all cases, we can observe
a sharp decrease in NME with the first four temporal coefficients and a stable
decrease below 1% after six coefficients. Supplementary Fig. A.1b and d dis-
play the NME over the entire parameter space using eight subspace coefficients.
The temporal subspace with the data-driven sampling and eight subspace coeffi-
cients is subsequently used to reconstruct images using spatiotemporal low rank
constraints.

Image reconstruction with spatiotemporal low rank constraints. We
formulate the image reconstruction problem to account for both the temporal
spin dynamics and the Fourier relationship of the spatial signal. The acquired
image xt at every point in time is related to the acquired data yt by an encoding
operator yt = Etxt; which in turn consists of three terms: Et = UtFS. Ut repre-
sents the spatial acquisition trajectory - a spiral waveform obtained with time-
optimal gradient design[19], F is the non-uniform fast Fourier transform[10],
and S are the coil sensitivities[48]. By additionally incorporating a temporal
subspace projection[1,46,56] operation into the encoding operator, we can use
iterative algorithms to reconstruct regularized subspace images. Here, we use the
alternating direction method of multipliers[1,46,56,57] to reconstruct eight sub-
space images, regularized via a low rank thresholding on spatiotemporal images
patches[14,46,49] of dimension 8×8×500. We then project the subspace images
back to the full temporal space to obtain the full spatiotemporal image space.

Parameter estimation and uncertainty quantification. We used Π4U[16]
for Bayesian uncertainty quantification and propagation. This high-performance
computing tool relies on Transitional Markov Chain Monte Carlo Monte (TM-
CMC) sampling to compute the posterior probability density function of the
parameters given the data (the reconstructed voxel-wise signal) and the model
(signal simulations) - see Eq. 4. From the probability density function, one can
compute the maximum likelihood and corresponding parameter uncertainty (Fig.
4a-b and Fig. 5b). The maximum likelihood estimate can also be computed in
a least-squares sense, by finding the parameter set that minimizes the error be-
tween the data and the model (Fig. 5c and Supplementary Figs. A.4 and A.5).
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Data acquisition. We scanned the Eurospin T05 phantom[26], comprising of
different vials with characteristic T1 and T2 values to perform the accuracy and
efficiency analysis of QTI and MRF. For each method, we scanned the phantom
with increasing acquisition times, from to 0.8 to 4.8 seconds per slice. For MRF,
we also acquired 8 series of the full flip angle train (13.13 seconds per slice)[24]
and processed all MRF data as in the original publications[30,24] to create a
reference. For QTI, we adjusted the slopes such that they always increased to 70
degrees and we reconstructed maps using our image reconstruction and param-
eter estimation framework. Additionally, we scanned a single slice of a healthy
volunteer (24 years, female) with MRF and QTI. For all methods, data was read
out with a single arm of a variable density spiral waveform within each TR[19].
Each waveform required 18 interleaves to sample the centre of k-space and 89 to
sample a full 22.5 × 22.5 field of view, resulting in 1.3 mm2 in-plane resolution
with 5 mm slice thickness. To increase sampling incoherence, the waveforms were
rotated with the golden angle from one repetition to the next[54]. All experi-
ments were performed on a 3T 750w scanner (GE Healthcare, Milwaukee, WI),
with a 12-channel head receiver-only coil.

Statistical analysis. For each tube, we selected a central region of 150 voxels
to perform statistical analysis. Both the concordance correlation coefficient and
efficiency were estimated per the original MRF publications[24,30]. The concor-
dance correlation coefficient estimates the average similarity of the quantification
for all tubes with respect to the reference[27]. The efficiency is defined as the
precision (mean / standard deviation) divided by the square root of the acqui-
sition time. The time of each sequence considered for the efficiency analysis was
4.02 s for QTI (4.00 s readout plus 0.02 s inversion pulse) and 13.13 s for MRF
(13.11 s readout plus 0.02 s inversion pulse).
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16 Gómez et al.

4. Cloos, M.A., Knoll, F., Zhao, T., Block, K., Bruno, M., Wiggins, C., Sodickson, D.:
Multiparamatric imaging with heterogenous radiofrequency fields. Nature Commu-
nication pp. 1–10 (2016)

5. Davies, M., Puy, G., Vandergheynst, P., Wiaux, Y.: A Compressed Sensing Frame-
work for Magnetic Resonance Fingerprinting. SIAM Journal on Imaging Sciences
7(4), 2623–2656 (2014)

6. Deoni, S.C.L., Rutt, B.K., Peters, T.M.: Rapid combined T1 and T2 mapping using
gradient recalled acquisition in the steady state. Magnetic Resonance in Medicine
49, 515–526 (2003)

7. Deshpande, V.S., Chung, Y.C., Zhang, Q., Shea, S.M., Li, D.: Reduction of Tran-
sient Signal Oscillations in True-FISP Using a Linear Flip Angle Series Magneti-
zation Preparation. Magnetic Resonance in Medicine 49(1), 151–157 (2003)

8. Doneva, M., Amthor, T., Koken, P., Sommer, K., Börnert, P.: Low Rank Matrix
Completion-based Reconstruction for Undersampled Magnetic Resonance Finger-
printing Data. Proc Intl Soc Mag Reson Med (2016)

9. Ethofer, T., Mader, I., Seeger, U., Helms, G., Erb, M., Grodd, W., Ludolph, A.,
Klose, U.: Comparison of Longitudinal Metabolite Relaxation Times in Different
Regions of the Human Brain at 1.5 and 3 Tesla. Magnetic Resonance in Medicine
50(6), 1296–1301 (2003)

10. Fessler, J.A., Sutton, B.P.: Nonuniform Fast Fourier Transforms Using Min-Max
Interpolation. IEEE Trans Signal Processing 51(2), 560–574 (2003)

11. Fisher, M.: New Magnetic Resonance Techniques for Acute Ischemic Stroke.
JAMA: The Journal of the American Medical Association 274(11), 908 (1995)

12. Gelman, N., Gorell, J.M., Barker, P.B., Savage, R.M., Spickler, E.M., Windham,
J.P., Knight, R.A.: MR Imaging of Human Brain at 3.0 T: Preliminary Report on
Transverse Relaxation Rates and Relation to Estimated Iron Content. Radiology
210(3), 759–767 (1999)
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A Supplementary Information

Fig. A.1. Normalized model error for subspace projection. a, c, Normalized
model error (NME) as a function of temporal coefficients for each tissue type for a uni-
formly sampled (a) and data-driven (c) dictionary. In both cases, the NME decreases
rapidly with the first four temporal coefficients and reaches levels under 1% after six
coefficients. b, d, NME of the entire parameter space using eight subspace coefficients.
Here, the NME remains below 4% for both alternatives, even when the data-driven dic-
tionary has significantly less samples than its uniformly sampled counterpart (∼ 1×103

vs ∼ 1× 106).
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Fig. A.2. Accuracy and precision of measurements versus scan time. Every
point shows mean ± standard deviation over the 150 masked voxels in each tube. Both
MRF and QTI show a high degree of robustness in T1 estimates. This is due to the
inversion pulse at the beginning of the sequences, yielding increased T1 sensitivity in the
first two seconds of the acquisition. In QTI, T2 sensitivity becomes relevant after 200
repetitions (1.6 s) and is sufficiently encoded after 4 s, time at which QTI measurements
become unbiased. T2 measurements with MRF are less precise (as evidenced by a larger
standard deviation) for shorter acquisitions.
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Fig. A.3. Temporal image series at different acquisition times. Whereas MRF
results in aliased measurements, QTI reconstructs images by exploiting spatiotemporal
data correlations. The first two images reflect maximal WM/GM contrast, while the
last show the process of CSF nulling and maximisation of BV contrast (see also Fig.
2e). QTI images also shown in Fig. 5a.
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Fig. A.4. Quantitative maps versus MRF. As demonstrated previously for MRF,
matching noisy data to the simulated dictionary results in consistent parametric
maps[24,30]. Conversely, the high level of noise in the data restricts maximum likeli-
hood estimations and results converge to inaccurate local minima. In QTI, the proposed
reconstruction eliminates aliasing and reduces noise levels, facilitating convergence of
maximum likelihood estimations. Maximum likelihood estimates of QTI are also shown
in Fig. 5c.
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Fig. A.5. B1 mapping. B1 maps obtained with a fast B1 mapping method[35] require
0.8 s per imaging slice. Maximum likelihood estimates of QTI without B1 mapping are
also shown in Fig. 5c.
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Abstract: Purpose: The compartmental nature of brain tissue microstruc-
ture is typically studied by diffusion MRI, MR relaxometry or their
correlation. Diffusion MRI rely on signal representations or biophys-
ical models. MR Relaxometry and correlation studies are based on
regularized Inverse Laplace Transform (ILT). Here we introduce a
general framework to characterize microstructure that does not de-
pend on diffusion modeling and substitutes the ill-posed ILT by BSS.
This framework yields proton density, relaxation times, volume frac-
tions and signal separation of the tissue components. Theory and
methods: Diffusion experiments repeated for several echo times con-
tain entangled diffusion and relaxation compartmental information
on the microstructure. They can be disentangled by BSS using a phys-
ically constrained non-negative matrix factorization. Results: Com-
puter simulations, phantom and in vivo results proved the disentan-
gling capability of BSS, and its potential to estimate proton density,
compartmental volume fractions and spin-spin relaxation times. Con-
clusion: Formulation of the diffusion-relaxation dependence as a BSS
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Abstract

Purpose: The compartmental nature of brain tissue microstructure is typically studied by

diffusion MRI, MR relaxometry or their correlation. Diffusion MRI rely on signal representations

or biophysical models. MR Relaxometry and correlation studies are based on regularized inverse

Laplace transform (ILT). Here we introduce a general framework to characterize microstructure

that does not depend on diffusion modeling and substitutes the ill-posed ILT by blind source

separation (BSS). This framework yields proton density, relaxation times, volume fractions and

signal separation of the tissue components.

Theory and methods: Diffusion experiments repeated for several echo times contain en-

tangled diffusion and relaxation compartmental information on the microstructure. They can

be disentangled by BSS using a physically constrained non-negative matrix factorization.

Results: Computer simulations, phantom and in vivo results proved the disentangling ca-

pability of BSS, and its potential to estimate proton density, compartmental volume fractions

and spin-spin relaxation times.

Conclusion: Formulation of the diffusion-relaxation dependence as a BSS problem avoids

diffusion modeling and ILT, circumventing geometrical simplifications of the tissue complexity

and ill-posed ILT. Thus, BSS introduces a framework that paves the way to a deeper analysis

of microstructure compartmentalization.

Keywords: brain microstructure, diffusion MRI, blind source separation, model-free, MR re-

laxometry, non-negative matrix factorization
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Introduction

More than fifty years have passed since Stejskal and Tanner published their early work on pulsed

gradient spin echo (PGSE) (39). Thereafter, diffusion weighted imaging (DWI) became an essential

tool for non-destructive tissue microstructure characterization. The pioneering studies on ex vivo

tissue and simulations of Krägger (25), Latour et al. (28), Szafer et al. (41) and Stanisz et al.(38)

established the theoretical basis of the compartmental model of neural tissue.

These early contributions were later translated to target specific biomarkers for in vivo human

studies. White matter (WM) anisotropy turned into fiber orientation with the introduction of DTI

(4). The composite hindered and restricted model of diffusion MR (CHARMED) (2) extended DTI

to two compartments with restricted and hindered diffusion behavior. On the same principles, the

neurite orientation dispersion and density imaging (NODDI) model (47) introduced fiber orientation

dispersion metrics and added an isotropic compartment. Additionally, axon diameter was addressed

by AxCaliber (3) or ActiveAx (1). These and other approaches rely on diffusion signal representa-

tions, or a variety of geometrical biophysical assumptions of the underlying tissue compartments,

producing a wide range of possible configuration (see (18)).

Parallel to the development of multicomponent diffusion tissue models, relaxometry addressed

the compartmental nature of tissue microstructure from a different perspective (27). Multi-echo

spin echo (SE) experiments combined with regularized inverse Laplace transform (ILT) for mul-

tiexponential fitting show the presence of multiple water components in the tissue. Up to date,

non-negative least squares (NNLS) (30) is the gold standard to compute a regularized discrete ILT

for several compartments (45, 31). Alternatively, the exponential analysis via system identification

using Steiglitz–McBride (EASI-SM) for multicomponent estimation was introduced by Stoika et al.

(40, 9). Moreover, mcDESPOT (16), used a spoiled gradient-recalled echo and a balanced steady-

state free precession to yield relaxation, volume fractions and water exchange parameters for three

compartments.

Nevertheless, the paths of diffusion MRI and MR relaxometry have been entangled over the

years. Studies on ex vivo nerves with a diffusion-weighted CPMG sequence (36, 17) showed the

existing relationship between compartmental T2 decay and diffusivity. However, diffusion-weighted

CPMG experiments need long acquisition times and high specific absorption rate that makes them

unsuitable for human in vivo studies. Typically, two dimensional ILT was used to fit the data. This

approach is highly ill-posed and requires a big amount of data for stabilization. Recently, Benjamini
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et al. (6) introduced the marginal distributions constrained optimization (MADCO). A non-CPMG

compressed sensing based solution that reduced the amount of necessary data for NMR diffusion-

relaxation correlation experiments. Moreover, Kim et al. translated DR-COSY (11, 21) into imaging

(DR-CSI) (26), using spatial regularization to reduce the necessary data and stabilize the ILT. Yet,

they require specific diffusion protocols with increasing b-values along a unique diffusion direction,

and repeated echoes or inversion times. Other alternatives combine diffusion models together with

multicompartmental relaxation. For instance, inversion recovery DWI was used to identify fiber

populations (15, 13); and WM integrity has been characterized using the axonal stick model and

multiple echo times (TE) (43).

The compartmental analysis of the diffusion signal is intimately related to a recurrent issue:

cerebrospinal fluid (CSF) contamination (37, 32). This problem has been tackled in several works.

All the existing contributions agree on using a bi-tensor signal model: parenchyma and CSF. How-

ever, this is an ill-posed problem for a single shell and ill-conditioned for multiple shells acquisition

(7). Spatial regularization was proposed by Pasternak et al. (35) relying on the local smoothness of

the diffusion tensor. Later, a protocol optimization for multiple shells was presented by Hoy et al.

(20), eliminating such a constraint. Other solutions regularize the problem by adding priors (42),

or finding the best fitting to the model (19). Nevertheless, the CSF contribution to the diffusion

signal depends on the TE. Thus, disentangling the tissue CSF volume fraction requires an approach

that includes T2 compartmental dependencies (42, 12, 34).

In the current work, we propose a general framework to study diffusion and relaxation character-

istics in tissue microstructure. We entitle it as general because it does not model the compartmental

diffusion behavior. Moreover, it replaces the ILT by a blind source separation (BSS) technique, re-

ducing the minimum number of distinct echo times (to the number of compartments in the tissue)

compared to ILT based methods. Other than the requirement to measure at more than one echo

time, this framework is diffusion protocol agnostic. Thus, it can be used in combination with any

protocol of interest. Our approach quantifies proton density (PD), compartmental volume fractions

and transverse relaxation times. Importantly, it separates diffusion signals from each compartment

independently, allowing for individual analyses and thus, performs CSF partial volume correction

as direct application.
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Theory

Following the Bloch-Torrey equation, we described the diffusion signal as a weighted sum of the

signals from the compartments that compose the tissue:

X(TE, b) = S0

M∑

i=1

fie
− TE

T2i Si(b). [1]

Where, the compartmental diffusion sources Si are weighted by their volume fraction, fi, TE and

T2i . The exponent of the ration between TE and T2i scales the contribution of each compartment

to the acquired signal. Therefore, measuring at different TEs, produces distinct diffusion signals

(14) with different weights from the compartmental signal sources.

As a result, the signal of a single voxel measured with a protocol accounting for multiple echoes

can be formulated as:



X1(TE1, b)
...

XN (TEN , b)


 = S0




f1e
−TE1
T21 · · · fMe

−TE1
T2M

...
. . .

...

f1e
−TEN
T21 · · · fMe

−TEN
T2M







S1(b)
...

SM (b)


 , [2]

where Xj , j ∈ [1, N ] are the diffusion acquisitions for N echo times. fi and T2i , i ∈ [1,M ], are the

volume fraction and T2 decay for the ith compartment, and M is the number of compartments.

Eq. 2 can be expressed in its matrix form, X=AS. This is a matrix factorization of the mea-

surements, X ∈ RN×n
≥0 , into two new matrices: the mixing matrix, A ∈ RN×M

≥0 , which is defined by

the experimental TEs, the compartmental volume fractions, f , and T2 decays; and the sources ma-

trix, S ∈ RM×n
≥0 , containing the diffusion sources of each sub-voxel compartment. Interestingly, we

noticed from the definition of A that the ratio between the experimental TEs and T2i , determines

the direction (or slope for N = 2) of the ith column vector of the mixing matrix. Therefore:

T2i =
TEk − TEl

log( ali
aki

)
, [3]

where TEk < TEl, and aki and ali are the kth and lth elements of the ith column of the mixing

matrix.

Additionally, diffusion is an attenuation contrast and as such, S(b = 0) = 1, which allows
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rewriting Eq. 2 in the following form:




X1(TE1, b = 0)
...

XN (TEN , b = 0)


 = S0




e
−TE1
T21 · · · e

−TE1
T2M

...
. . .

...

e
−TEN
T21 · · · e

−TEN
T2M







f1
...

fM


 , [4]

that together with
∑M

i=1 fi = 1 solve for volume fractions and proton density (fi and S0) when the

number of measurements matches the number of compartments (M = N). Contrary, when there

exist more compartments than measurements (M > N), Eq. 4 is undetermined and fi and S0

cannot be estimated.

Factorizing A and S from X is known as blind source separation (BSS) (46) of mixed measure-

ments into their generating sources (Figure 1). For BSS to identify these sources, they have to be

distinct: Si 6= Sj ∀ i 6= j. Therefore, supported by literature (36, 17), we assumed them to be

different.

There are four main approaches for BSS: principal component analysis (PCA) (24), independent

component analysis (ICA) (22), non-negative matrix factorization (NMF)(8) and sparse component

analysis (SCA) (10). PCA is not an applicable solution to the problem at hand because the diffusion

sources are not orthogonal. ICA assumes, as prior knowledge, that the signal sources are statistically

independent and have non-Gaussian distributions. However, diffusion MRI signals are correlated

by the tissue structure and temperature, and they present a non-Gaussian distribution only in

restricted compartments. Thus, ICA is not a suitable approach. In previous work we explored SCA

(33). We found that, even though the results on simulations and real data for specific diffusion

protocols were encouraging, finding a sparse and disjoint domain to meet the requirements of the

method is not always possible for arbitrary diffusion protocols. We observed the same issue for a

version of NMF that enforces sparsity in a similar way (34).

In the present work, we followed a BSS approach based on NMF (X, A and S are non-negative).

Instead of sparsity, we used a popular NMF solver: alternating least squares algorithm (ALS) (8).

We extended ALS to account for physically plausible limitations resulting in Algorithm 1. We

referred to it as constrained alternating least squares (cALS). Literature values of compartmental

T2 (31) allowed us to limit the solution space of the columns of A (Eq. 3). Moreover, for in vivo

data, CSF is known to be isotropic with high diffusivity (3 · 10−3 mm2/s) (37), adding extra prior

information. Constraints and priors enforce cALS to converge towards physically realistic solutions

(Figure 1).
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Algorithm 1 Constrained Alternating Least Squares (cALS)
1: procedure cALS(X)

2: Use priors on T2 and experimental TEs to initialize the direction of the columns of A.

3: while iter < maximum iterations do

4: Solve for S in ATAS=ATX. . Least Squares.

5: Set all negative elements of S to 0. . Non-negativity.

6: [Fix the one element of S to a known signal.] . If analytical expression is known.

7: Solve for A in SSTAT=SXT . . Least Squares.

8: Set all negative elements of A to 0. . Non-negativity.

9: Constrain the directions of the columns of A. . T2 consistency.

10: end while

11: return A

12: end procedure

Following the factorization of A, we estimated T2 and f for each compartment, as described in

Eqs. 3 and 4, and recalculated the actualA. This is an important step since the norm of the columns

of the factorized A do not inform about the volume fractions. Then, S=A−1X is calculated.

An iterative algorithm as cALS inverts A repeatedly. This enforced A to be non-singular, and

thus, introduces a new requirement in our framework. Following Eq. 2, A is non-singular when the

T2i 6= T2j ∀ i 6= j. Hence, agreeing with literature (36, 17), we assumed transverse relaxation times

from each compartment to be distinct.

Methods

1 Phantom experiment

We built a phantom based on pure water and eleven different concentrations of agar and sucrose.

Hence, eleven unique combinations of T2 and diffusivity were produced (Table 1)(29). We scanned

the phantom (see below) and defined ROIs over the tubes containing the eleven concentrations.

Each ROI was independently processed with BSS to study the one compartment case (see section

1.1). Moreover, we mixed the signals from two ROIs to generate a pair of two compartments dataset

and feed these mixtures to our BSS solver (see section 1.2). Finally, we combined three ROIs to

consider the three compartments case, and separated them with BSS (see section 1.3). We aimed
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to demonstrate that our framework is able to yield T2 estimation for one compartment; and volume

fraction, T2 estimations and diffusion signal separation for two and three compartments.

For reference, we measured a multi-echo SE acquisition (Signa HDx 3T, GE Healthcare, Milwau-

kee, WI), with TE values from 10 to 640 ms in 10 ms increments; TR=3460 ms; NEX=2; matrix size

of 128x128; FOV of 240 mm and slice thickness of 7 mm. In addition, eleven diffusion experiments

were acquired for TE ranging from 77.5 to 127.5 ms with 5 ms step. We kept constant the following

parameters: FOV=240 mm; slice thickness of 7 mm; matrix size of 64x64; TR=4 s; ASSET factor

of 2; A/P diffusion direction; and 41 equally spaced b-values from 0 to 2000 s/mm2.

The multi-echo SE signals were averaged within each ROI. Each signal was fitted with NNLS

(30) using a log-scaled grid with 500 points of T2 values between 10 ms and 2 s. We used the

maximum value of the NNLS T2 spectra as the reference value of each ROI (Figure 2). Besides, we

also fit the signal from each ROI with EASI-SM (9) for assurance.

1.1 One compartment

For one compartment (M = 1), we processed diffusion data with BSS for ten pairs of TE measure-

ments. We used pairs of TEs (N = 2) to include the relaxation effects in the dataset. The short

TE was fixed to 77.5 ms. For each pair, the long TE was increased from 82.5 to 127.5 ms along

the measured echo times. We constrained the solution space for the estimated T2 between 10 and

2000 ms to account for all the ROIs. No other prior information was considered. We report the

evolution of the BSS estimated T2, for each ROI and the difference between short and long TE

(∆TE), against their reference values (Figure 2).

1.2 Two compartments

For two compartments (M = N = 2), we created two different datasets. First, we used the diffusion

data measured at the shortest TE for ROI6 and ROI11 as the sources, S. These signals did not contain

relaxation information (Figure 3a). Thus, in order to mix them together we had to compute the

mixing matrix (A) as in in Eq. 2. To this end, we used their reference T2 values, the experimental

TEs, and a volume fraction of fROI6 = 0.7 (Figure 3c). We named this as simulated dataset, given

that the signals are mixed under ideal conditions. Second, we normalized the measured data for

each ROI and TE to its maximum value at the shortest TE. This allows for posterior comparison of

the volume fractions. In this case, the signals already contained the relaxation information (Figure

3b). Therefore, we did not need to compute A. We scaled the normalized measured signals by
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the given volume fraction, and added them together to create the mixed measurements, X. We

referred to this dataset as measured (Figure 3c). It accounts for system imperfections like signal

drift, imperfect non-diffusion weighting or eddy currents. To constrain the solution of the cALS

algorithm we used T2ROI11
and SROI11 as prior knowledge and searched for T2ROI6

between 0 and

200 ms.

1.3 Three compartments

We extended the two compartments experiment to three (M = N = 3) by adding ROI5. Simulated

and measured datasets were created as explained for two compartments (Figures 4a, b, c, d and e).

In this case, we used volume fractions: fROI5 = 0.2 and fROI6 = 0.6. To limit the solution space of

the cALS algorithm, we assumed T2ROI11
and SROI11 to be prior knowledge. Besides, we constrained

T2ROI5
and T2ROI6

values between 0 and 50 ms, and 50 and 200 ms correspondingly. For the two

and three compartment experiments we report the stability of the framework, the relative error of

the parameters and the disentangling capability.

2 Simulation: searching for myelin

Clinical systems require long TEs to achieve the prescribed diffusion weighting. Contrary, myelin T2

is considerably shorter than these echo time (31). Hence, the contribution of myelin to the observed

signal is very low, impeding its detection. This makes simulations at short TEs a way to study the

potential of BSS to detect myelin presence in the diffusion signal.

We generated a simulated dataset for tissue with three compartments (M = 3) using MATLAB

(The MathWorks, Natick, MA). The first compartment (S1) hadD1 = 0.1·10−3 mm2/s, T21 = 15 ms

and f1 = 0.25; the second compartment (S2) had D2 = 0.7 ·10−3 mm2/s, T22 = 70 ms and f2 = 0.6;

and the third compartment (S3) had D3 = 3 · 10−3 mm2/s, T23 = 2000 ms and f3 = 1− f1− f2. T2
values were chosen from literature to represent myelin (S1), IE water (S2) and CSF (S3) (31). We

ran 200 simulations adding Rician noise for an SNR=300 at b=0 s/mm2 and the shortest echo time.

Three TE values (N = 3) were optimized to minimize the condition number of A. We accounted

for TE values between 10 to 150 ms (Figure 5).

To constrain the matrix factorization problem, we considered T23 and S3 as prior information.

The parameter space of T21 and T22 was limited from 1 to 40 ms and 40 to 200ms respectively. We

report the stability of the framework, statistics on the relative error of the estimated parameters,

and the disentangling capability.
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3 In vivo clinical data

We aimed to prove that BSS has potential applications in clinical settings. To this end, we ran

an experiment to analyze its performance for estimating tissue parameters and correcting for CSF

contamination.

3.1 Data acquisition

Two young adult volunteers, male and female with an average age of 26 years, were scanned in

a 3T GE MR750w (GE Healthcare, Milwaukee, WI). The in vivo study protocol was approved

by our institutional review board and prior informed consent was obtained. First, we acquired

seven diffusion PGSE EPI for TE values from 75.1 to 135.1ms with 10 ms steps. These series were

measured with constant parameters: FOV=240 mm; slice thickness of 4 mm; TR=6 s; matrix size

96x96; ASSET factor 2; and 30 directions. Additionally, we measured a FLAIR multi-echo SE

echo planar imaging (EPI) readout for 17 equally spaced TEs ranging from 20 to 260 ms. The

same imaging parameters as for the diffusion experiments were prescribed with no acceleration

(ASSET=0).

3.2 Data processing

Diffusion data for all TEs were first registered with FSL’s FLIRT (23) to the shortest TE volume.

Then, we processed them with BSS in pairs (M = N = 2) with fixed short TE equal to 75.1 ms.

The long TE was increased from 85.1 to 135.1 ms for a total span of ∆TE of 60 ms (Figures 7 and

6). We used literature values of CSF (T2CSF = 2 s and DCSF = 3 ·10−3 mm2/s) as prior knowledge,

and constrained the possible values of T2IE between 0 and 200 ms (31, 37). We report maps for

BSS relative factorization error (Figure 6a, b , g and l), CSF volume fraction (Figure 6c, h and m),

proton density (Figure 6d, i and n), T2IE (Figure 6e, j and o) and number of compartments (Figure

6f, k and p).

For reference, FLAIR multi-echo EPI data were also registered with FLIRT to the shortest TE

non-diffusion weighted volume. Then, the signal decay for each voxel was matched to a dictionary

of monoexponential decays from 0 to 300 ms with a grid of 1 ms. We compared this map against

the BSS T2IE map (Figure 7).
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We defined the relative error of the matrix factorization for in vivo data as follows:

ε =
|X− S0AS|2
|X|2

. [5]

This is an index of the performance of BSS for each voxel. Given that we calculated S=A−1X,

this error formulation is sensitive to: 1) deviations in the proton density estimation, S0; 2) numerical

instability derived from the condition of A; and 3) infractions of the BSS conditions due to artifacts.

Finally, BSS does not model the compartmental diffusion signal. However, to show a simple way

to perform compartment independent analysis, we fitted the measured and disentangled signals to

the DTI model (4). This allowed us to observe the CSF correction effect of BSS on the diffusion

signal. For that, mean diffusivity (MD) and fractional anisotropy (FA) maps were derived using the

FSL’s FDT Toolbox (http://www.fmrib.ox.ac.uk/fsl). We fitted the measured diffusion volumes at

the shortest TE, and the BSS separated signal for the IE and the CSF compartments, with standard

linear regression (Figures 8 and 9).

Results

1 Phantom experiment

1.1 One compartment

There was a correlation between the estimated T2 values for one compartment with multi-echo SE

for 17 TEs and BSS for 2 TEs (Figure 2a and Table 1). The estimation of T2 from ROI2 to ROI10

showed a relative error below 10% for ∆TE equal to 50 ms (Figure 2b). The decreasing pattern of

the error is due to the relationship between the slope of a column of A and its T2 (Figure 2c). When

∆TE increased, the dynamic range of the slope of the columns of A expanded, yielding a better

estimation of T2. On the other hand, in Figure 2b, ROI1 and ROI11 showed an increasing error with

∆TE. In the case of ROI1, this is due to the low SNR of the measurements at the experimental

TEs. The noise floor induced a change in the signal for longer TEs that biased the estimation of

T2. Finally, the effect observed in ROI11 cannot be explained by SNR nor slope-T2 dependence. We

attributed this result to an underestimation of the reference T2, due to the incomplete recovery of

the longitudinal magnetization, produced by the short experimental TR compared to the T1 value

of ROI11 (T1 = 2.2s).
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1.2 Two compartments

The disentangled signals for the simulated dataset replicated the profile of the reference sources

(Figure 3d). Moreover, the maximum relative error on fS,ROI6 and T2S,ROI6
was below 1% for

all the possible values of ∆TE. Interestingly, BSS was able to separate the signal sources of the

measured dataset (Figure 3d). This data accounted for non-ideal conditions due to the system

imperfections: signal drift, eddy currents or imperfect non-diffusion weighting, (Figure 3b, c, d and

f). In that case, the relative error of the T2S,ROI6
estimation remained under 10% for ∆TE > 10 ms.

We explained the 15% error on fS,ROI6 due to the differences between the simulated and measured

signals at b=0, its influence on Eq. 4, and the error propagation from the estimation of T2. Finally,

we also observed a small stabilization effect in the volume fraction estimation as ∆TE increases

(Figure 3f). This behavior is due to the reduction of the condition number of A that improves the

numerical stability of the cALS algorithm (Figure 3e).

1.3 Three compartments

The condition number of A significantly increased in comparison to the two compartments model

(Figures 3e and 4g). Results for the simulated data (Figure 4a, e and f), showed that signals for

the compartments ROI6 and ROI11 were separated in agreement with their reference. Likewise,

the relative error of the T2S,ROI6
and fS,ROI6 estimations were below 1%, which agrees with a good

separation. It is worth noting that the signal for the fast decaying compartment (ROI5) was detected

although heavily contaminated by the ROI6. We explained this result by the comparable large

values of the experimental TEs, that reduced its contribution to the observed signal. Equivalently,

we found a 15% error in the estimation of fS,ROI5 and 45% for T2S,ROI5
.

Results for the measured data at the lowest condition number of A showed that signals from

ROI6 and ROI11 were still separated in agreement with the reference (Figure 4f). However, the

signal from ROI5 was lost due to acquisition imperfections, bad conditioning of A, and the small

contribution of this compartment at the measured TEs. On the other hand, the estimation of

T2S,ROI6
showed stability with a relative error of 11%. Contrary, fS,ROI6 was more instable due to

the bad conditioning of the system and error propagation from the T2S,ROI6
estimation.
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2 Simulation: searching for myelin

Simulations for three compartments accounting for shorter minimal TE showed better stability than

clinically reachable TEs for phantom data. The condition number of A was drastically reduced by

lowering TE1 to 10 ms and TE2 to 38.57 ms (Figure 5a). These values hardly achievable in clinical

systems. However, they speak of the potential of BSS to separate signals from three compartments,

including a fast decaying species. We observed a good separation of the signal sources for all the

noisy simulations (Figure 5d). The relative error of the volume fraction estimations, and T22 , are

statistically below 10% (Figure 5c). Interestingly enough, the uncertainty of T21 was close to zero,

with 35% a bias, denoting that cALS remains at the center of the parameter space for fast decaying

components (Figure 5c). This result might be due to the small amount of information that this

compartment added to the mixed measurements and low SNR.

3 In vivo clinical data

We observed that the mean relative error for the whole brain (〈ε〉) decreased as ∆TE increased

(Figure 6a, b and c), in agreement with the findings in the phantom. Interestingly enough, for the

maximum ∆TE, we can see how the number of compartments equals two in regions next to the

ventricles and the cortex, while it is one inside the ventricles and in some deep WM areas (Figure

6k). It is also noteworthy that the pure CSF areas (e.g. the ventricles) are removed from the T2IE

map (Figure 6h and i) and the opposite effect is observed in the CSF volume fraction (Figure 5d

and e), indicating a successful disentangling effect.

We compared the BSS estimated T2IE maps as ∆TE increased with the reference map obtained

from the FLAIR multi-echo SE data. We noticed how the structural similarity index (44) increased,

and the mean relative error decreased with the enlargement of ∆TE (Figure 7a and b). Additionally,

the histograms for both subjects tended towards the reference as the difference between the short

and long echo times grew. This reflects an underestimation of T2IE for small ∆TE that is explained

by Eq. 3 and Figure 2c. Moreover, the FLAIR T2 map showed high values in the ventricles. This

might indicate imperfect CSF suppression and thus, slightly increased reference values (Figure 7a,

c and d).

FA and MD maps and histograms were calculated from the BSS IE and CSF disentangled

signals for both subjects (Figures 8 and 9). They displayed an overestimation of the CSF volume

fraction for low ∆TE values (the low FA peak in Figure 8a and e was removed). This resulted as
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a compensation effect from the previously shown underestimation of T2IE . Besides, the histograms

of FA (Figure 8a and e) showed a tendency towards higher FA values, and a reduction of the low

FA peak associated with free water. In general, the true IE FA histogram must lay between the

standard DTI fitting (black line in Figure 8a and e) and the over-corrected ones for short ∆TE (light

colored lines in Figure 8a and e). Long ∆TE seems to tend towards an homogeneous distribution of

FA. Moreover, we observed an enlargement of the corpus callosum, a general recovery of peripheral

WM tracts and the fornix in the colored FA maps (Figure 8b and f).

Additionally, on the MD histograms for IE water (Figure 8c and g) we reported a diminution

of the number of voxels with diffusivity larger than 1 mm2/s. Contrary, the main peak at 0.7·10−3

mm2/s, associated with the parenchyma, remained at its original place denoting that IE water

represents non-CSF tissue. This decrement of MD was also visible in the maps (Figure 8d and h).

Finally, the histograms of MD for CSF water (Figure 9) denoted a tendency towards 3 ·10−3 mm2/s

as ∆TE increased, in agreement with literature (37). All these findings agreed with a disentangling

of IE and CSF signals and thus, a correction of the free water partial volume effect on the diffusion

signal.

Discussion

1 Disentangling the diffusion sources and free water elimination

Unlike other diffusion multicompartment models (39, 25, 47, 18, 2), and more recent contributions

(43, 12) our approach does not model compartmental diffusion. Our framework relies on three

assumptions: 1) microstructural water compartments have distinct T2 relaxation times (31, 45);

2) each have different diffusion characteristics (36, 17); and 3) the effects of the water exchange

at the time scale of our experiments are negligible (3, 5). Furthermore, our solution is diffusion

protocol agnostic (two TEs and one non-diffusion weighted volume are necessary), allowing for a

flexible design of the acquisition protocol that might include any number of diffusion directions and

b-values. This is an advantage over diffusion-relaxation correlation techniques based on regularized

inverse Laplace transformation (26, 6).

One direct application of the protocol agnostics nature of our framework is correcting for free

water contamination. Recently Collier et al. (12) included TE dependence on the bi-exponential

diffusion tensor model to regularize the fitting problem. However, they fitted the bi-exponential

DTI model directly. Contrary, our solution does not assume any diffusion model, it separates the
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signal from each compartment allowing for a more flexible and independent study. In this regard,

the analysis of the signal associated with the CSF compartment can be seen as a disentangling

quality assurance metric (Figures 8 and 9).

The range of feasible experimental echo times is limited at the lower bound by gradient perfor-

mance, and SNR at the upper bound. However, in the in vivo experiments we did not reach the

SNR limit. Even though, for ∆TE = 60 ms the long TE was 135 ms. Thus, further exploration of

the TE space or higher in plane resolutions are possible.

We want to point out the general benefit on the parameter estimation and signal separation for

long ∆TE. This is not surprising and agrees the findings of with Collier et al. (12). Not only due to

the relationship between A and T2 expressed in Eq. 3 and plotted in Figure 2c. Also because longer

differences between TEs produce a more distinct level of mixtures and thus a better codification of

the information from each source. Namely, the short TE contains more information about the fast

relaxing species, while the long TE is dominated by CSF.

2 Relaxation times and volume fractions estimation

BSS provides the means to estimate T2 relaxation values and volume fractions. Interestingly, only a

number of TE repetitions equal to the number of compartments that are assumed to be in the tissue

is necessary. This results of the substitution of the ILT by BSS, in comparison to other techniques

(31, 9, 6, 26). We reported a good agreement between T2IE estimation of the FLAIR multi-echo SE

for 17 TEs and BSS for 2 TEs, due to the factorization algorithm of A (cALS). In this sense, all

the measurements along the diffusion space for both TEs are considered, incorporating redundancy

and enforcing the estimation of T2.

3 Stability

Four main approaches exist to the BSS problem (ICA, PCA, NMF or SCA). The choice depends

on the prior knowledge on the signal sources. In our experiments we relied on NMF using a

constrained version of the ALS algorithm (cALS). In this regard, cALS stability is linked to the

condition of A. An ill-conditioned mixing matrix will lead to propagation of errors due to numerical

instability. Fortunately, we can optimize the experimental TEs to reduce the condition number of A

for literature T2 reference values. Nevertheless, the theoretical framework stated here is independent

on the solver of choice. In that sense, more stable solutions to the BSS problem might be develop

in the future. Benefiting the multicompartment analysis of diffusion signals.
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Phantom experiments validated that BSS is able to accurately estimate T2 for one compartment;

and separate diffusion signals sources and estimate T2 and f for two compartments. Furthermore,

we also showed that scaling the cALS algorithm to three compartments is unstable at the range of

the clinically available TE values.

Finally, we showed results for two volunteers that exhibit consistent disentangling and estimation

patterns. This indicate that the cALS is a reproducible algorithm for CSF correction, proton density,

CSF volume fraction, number of compartments and T2IE estimation.

4 Meylin detection

Simulations proved that our method has the potential to disentangle three compartments by reduc-

ing the minimum TE of the diffusion experiments. In that sense, myelin water could be incorporated

into the model (Figure 5).

Gradient performance on clinical scanners is a hardware limitation that prevent us from conduct-

ing such experiments. Typical TE values on these systems are between 60 and 75 ms for b=1000

s/mm2, image resolution of 96x96 and ASSET factor of two. Literature values of T2 for myelin

water are around 15 ms (31), this result in a minimum loss of 55% of the signal for TE=60 ms due

to transverse relaxation. Besides, the maximum content of myelin water in a voxel is 30%. Thus,

for non-diffusion weighted volumes, the maximum contribution from myelin water to the measured

signal is 0.5%. Undetectable even if we do not consider diffusion and noise.

Conclusions

We introduced for the first time a blind source separation formulation to express the relationship

of diffusion acquisitions at different echo times. This new approach does not rely on diffusion

modeling nor on inverse Laplace transform. Our results show that blind source separation allows for

disentangling the diffusion signal sources generated by each sub-voxel compartment independently.

Paving the way for individual analyses for each of them. Moreover, it estimates at the same time

proton density, volume fractions, relaxation times and number of compartments of the underlying

microstructure.
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Figure 1: Factorization of measurements, X, into the sources, S, and mixing matrix, A.

Example of a blind source separation operation for two monoexponential sources (M = 2) and two

TE measurements (N = 2). In this illustration, the measurements, X, show a bi-exponental decay

profile. BSS is capable of separating these two independent exponential functions, S; and calculate

their mixing matrix, A. The parameters that determine the level of mixture (T21 , T22 and f), plus

the scaling factor S0, were estimated as described in Eqs. 3 and 4. We showed an exponential case

for simplicity. However, this is not limiting. Any signal can be processed in the same manner.
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Figure 2: Evolution of the relative error of the T2 estimation with ∆TE for one com-

partment.

The correlation of T2 estimated with BSS and the reference is shown in (a), where ∆TE goes from 5

(darker colors) to 50 ms (lighter colors). The dashed line marks the identity while the solid parallel

lines are the limits of the 10% error. This plot can be unfold into (b), where error evolution with

∆TE is better seen. Finally, the dependence of T2 on the direction (slope) of the columns of A (Eq.

3) is shown in (c), where one can see how increasing ∆TE improves the dynamic range of the slope

of A, which results in a better estimation of T2. Reference and BSS T2 estimated values agreement

increases with ∆TE.
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Figure 3: Separation of two compartments and parameter estimation on phantom.

The signal sources of the simulated dataset are plotted in (a). The measured data were generated

from the signals in (b). The resulting mixture for both datasets are shown in (c). We used subscripts

M and S to refer to estimation of the measured and simulated datasets respectively. Measurement

errors are highlighted by the differences between the measured and simulated signals (c). BSS

disentangled the original sources for both datasets (d). We chose ∆TE=50 ms to minimize the

condition of A and increase the numerical stability of the framework (e). Finally, the relative errors

of the estimated parameters T2ROI6
and fROI6 are plotted in (f) for all possible values of ∆TE. We

observed a good agreement between reference signal and those disentangled with BSS.
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Figure 4: Separation of three compartments and parameter estimation on phantom data.

The simulated dataset was generated from the signal sources in (a). The measured dataset were

calculated from the measured signals for ROI5 (b), ROI6 (c) and ROI11 (d). The mixed signals for

both datasets (e) show a mismatch due to measuring errors. They were disentangled with BSS (f).

We fixed TE1=77.5 ms and TE3=127.5 ms, and varied TE2 to find the minimum condition number

of A (g). Relative errors of the estimated parameters are plotted along the TE2 (h).
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Figure 5: Simulation of three compartments separation for short TEs

Distinct signals for three compartments (S1, S2 and S3) (d) were mixed together as in Eq. 2. We used

literature T2 values, and volume fractions for f1 = 0.25 and f2 = 0.6 (b). To maximize the stability

of the framework, the TE space for the three measurements was explored to minimize the condition

number or A (a). The experiment was ran 200 times adding Rician noise, and disentangled with

BSS for each execution. Signal sources are represented in (d) with light color lines. The averaged

disentangled signal sources are compared (d, dashed) against the reference noise-free sources (d,

solid). The statistical distribution of the relative error of the estimated parameter is represented

in (c). We observed good stability of the framework for three compartments when short TE values

were measured.
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Figure 6: Relative factorization error of BSS for incremental ∆TE values.

The evolution of the factorization relative error averaged for the whole brain with ∆TE is shown

in (a). As an example of how this error reduction affects the BSS estimation we show in the rows

the relative error map (b and c), CSF volume fraction (d and e), PD (f and g), T2IE (h and i) and

the number of compartments (j and k) for ∆TEs values of 20 and 60 ms in each column. The mean

relative factorization error decreases when ∆TE increases, benefiting the parameter estimation.
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Figure 7: Comparison of the BSS estimated T2IE against a FLAIR reference.

The reference (a, upper middle) for subject one is compared to the BSS T2IE estimation for incre-

mental values of ∆TE. The visual comparison was quantified by SSIM (44) and mean relative error

(b). Histogram of the BSS estimated T2IE are plotted against the reference (c and d). The high

T2 values in the ventricles for the reference indicate that the suppression of the CSF signal in the

FLAIR experiment was not perfect, although they appeared dark in the images (see supplementary

Figure S2). This might have induced a positive bias on the reference. Finally, BSS estimation of

T2IE for values of ∆TE > 50 ms showed a good agreement with the reference.
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Figure 8: FA and MD of the BSS disentangled IE signal against the standard estimation.

Comparison of the FA (a and e) and MD(c and g) histograms, for both subjects, calculated from

the separated IE signal are plotted against the standard DTI fitting for the short TE measured

data. Besides, MD (d and h) and colored FA maps (b and f) are also included for comparison. We

observed a CSF correction effect in these metrics.
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Figure 9: Evolution of the MD histogram of the BSS disentangled CSF component with

∆TE.

The MD histograms, calculated from the the DTI fitting on the signal disentangled for the CSF

compartment, are plotted in (a and c). MD maps (b and d) are shown for anatomical inspection.

CSF MD histograms tends towards 3·10−3 mm2/s in agreement with literature.
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ROI Agar [%] Sucrose [%] T2EASI−SM [ms] T2NNLS [ms] T2BSS [ms] Relative error [%]

1 5 15 25.02 23.88 ± 1.92 29.9 25.37

2 5 5 31.59 31.13 ± 2.19 31.6 1.43

3 3 30 37.68 36.50 ± 3.04 35.4 2.95

4 3 15 106.23 110.07 ± 7.93 106.0 3.70

5 3 5 45.40 44.66 ± 2.85 44.5 0.40

6 1 30 95.46 102.19 ± 10.30 93.7 8.34

7 1 15 222.22 228.94 ± 12.15 214.1 6.47

8 1 5 225.19 233.85 ± 13.84 210.3 10.09

9 0 30 457.08 456.37 ± 26.50 467.6 2.47

10 0 15 395.95 397.56 ± 21.17 401.0 0.87

11 0 0.5 876.97 881.23 ± 64.07 1008.6 14.46

Table 1: Phantom reference values and BSS estimation.

Each ROI in the phantom was built using the concentration of agar and sucrose here described.

Signal decays along the diffusion dimension were compared to each other to ensure their disparity, as

required by BSS (see supplementary Figure S1). For reference, T2 values were characterized using

a NNLS fitting. Confidence intervals were taken at half maximum of the NNLS spectral peaks.

Besides, a second method, EASI-SM (9) was used to confirm the validity of the fitting. Finally, the

T2BSS values were estimated for ∆TE = 50 ms and compared to the NNLS reference.
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Figure S1: Normalized diffusion signal decay for all ROIs at each TE.

For reference, the measured signals for each ROI at all TEs are show. Signals for shorter TEs are

plotted in light colors, while longer TEs are represented in dark colors. Eleven TEs were measured

from 77.5 to 127.5 ms in 5ms increments. The phantom is shown along the ROIs in the lower right

plot. Each ROI has a characteristic diffusion and relaxation signal decay.
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Figure S2: FLAIR EPI images for both subjects at different echo times.

Wemeasured FLAIR EPI images for both subjects and TEs from 20 to 260ms with 15 ms increments.

We showed the shortest four TEs here for both subjects. The signal intensity in the ventricles is

dark, indicating attenuation of the CSF component.
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