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Abstract— In practice often multiple control applications
share a communication channel, requiring a smart and scalable
scheduling mechanism to coordinate the access to the capacity-
limited communication medium. In this paper, we propose a
decentralized event-triggered medium access control (MAC) for
multiple feedback control loops which are coupled through
a capacity-limited communication medium. The individual
control loops are assumed to be linear time-invariant (LTI)
with stochastic heterogeneous plants. Noisy state measurements
from local sensors are transmitted through a shared com-
munication medium to their respective control units. Due to
capacity limitations in the shared communication channel, not
all sensors are allowed to transmit simultaneously. To allocate
the scarce resources, a decentralized MAC which prioritizes
the channel access according to a real-time error-dependent
measure, is introduced. The prioritization is orchestrated via
a combined deterministic and probabilistic mechanism aiming
at the efficient allocation of the limited capacity. We study
stability of the described multi-loop NCS under the proposed
MAC design in terms of Lyapunov stability in probability
(LSP). It is demonstrated that the collision rate remains low
by properly tuning the MAC parameters. Numerical results
show that the proposed MAC design significantly outperforms
conventional time-triggered and random access schemes, while
its performance closely follows the centralized TOD approach.

I. INTRODUCTION

Networked control systems such as industrial automation,

smart energy grids, and autonomous vehicular systems are

characterized by multitude of feedback control loops that

are closed over a shared communication infrastructure. This

poses novel challenges for the communication and control

system design to support such NCSs with stringent real-

time requirements [1]. The introduction of shared data trans-

mission media imposes several design challenges such as

capacity limitation, congestion, data loss, collisions, and

latency [2]. These phenomena have negative impacts on

control performance and may even destabilize the overall

NCS. Traditionally, control systems employ time-triggered

schemes with periodic sampling. There has been an increased

interest recently in networked control approaches which take

into account resource limitations leading to novel scheduling

schemes for efficient data transmission. Since the seminal

work [3] numerous results have shown that event-triggered

control and scheduling approaches outperform time-triggered

schemes as they often achieve the same control performance

while consuming significantly less of the resource [4]–[8].
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Time-triggered schemes sample the data at a fixed temporal

schedule; their reconfiguration is computationally expensive,

i.e. they are not scalable. Event-based strategies sample the

data whenever a pre-specified event is triggered. Typically,

the event depends on the system state and can be further ad-

justed based on scarcity of resource and channel situation [8].

The majority of the results study event-triggered sampling

for single-loop networked control systems, while multi-loop

NCSs over shared communication resources have attained

little attention with some exceptions in [9]–[11]. In addition,

it is mainly assumed that perfect state information is avail-

able for the event-trigger. However, in practice, often only

noisy measurements are accessible. The event-trigger can be

obtained by formulating the design as an optimal stochastic

control problem [7], [10], [12]. These works show that event-

triggered sampling outperforms time-triggered schemes also

in the multiple-loop NCSs. However, the communication

models in these works are idealized, i.e. there is no data

packet collision and no transmission delay. Prioritization

in MAC strategies is introduced in [13] with the try-once-

discard (TOD) protocol. Based on current measurement data,

TOD prioritizes transmissions by choosing the measurement

with the largest discrepancy between its actual and estimated

values, while the other measurements are discarded. TOD is

a centralized scheme, i.e. not scalable. Stochastic priority-

based protocols [14]–[17] are shown to improve scalability

and may also cope with communication unreliability. How-

ever, the designs are either centralized [14], or rely on having

access to perfect state information, i.e. they assume noiseless

sensors measure state values perfectly at every time-step [8].

In this paper, we introduce a decentralized event-triggered

MAC scheme for multi-loop NCSs consisting of stochas-

tic LTI plants sharing a limited-capacity communication

channel. The proposed MAC scheme allocates the limited

capacity based on the real-time conditions of the feedback

loops leading to an improved overall NCS performance.

The MAC protocol has a deterministic feature in form

of a threshold policy, and a probabilistic feature, via a

state-dependent biased randomization. The considered event-

trigger is considered as the discrepancy between the noisy

measurements and the estimated state. If a local event is

triggered, the current measurements are sent for transmission,

otherwise, that sub-system does not attempt to transmit.

The sub-systems attempting transmissions compete for the

limited resource in probabilistic fashion such that the larger

their local error is, the higher the chance of transmission

becomes. We study stability properties of such NCSs under

the proposed MAC scheme and show the overall NCS
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Fig. 1. Schematic of a shared resource multi-loop NCS.

stability in terms of LSP.

In the remainder of this paper, Section II presents the prob-

lem formulation and introduces the MAC strategy. Stability

of the described NCS is discussed in Section III. Simulation

results and discussions are presented in Section IV.

Notation: The Euclidean norm, conditional expectation, and

conditional probability are denoted by ‖·‖2, E[·|·], and P[·|·],
respectively. The trace operator is represented by tr(·). A

random vector X from a multivariate Gaussian distribution

with mean vector µ and covariance matrix Σ is denoted

by X ∼ N (µ,Σ). Superscripts and subscripts for state

vectors indicate the belonging sub-system, and time instance,

respectively. For matrices, subscripts indicate the belonging

systems, while superscripts represent the matrix power.

II. PROBLEM STATEMENT

The NCS considered in this paper consists of N het-

erogeneous physically independent control loops coupled

through a shared communication channel subject to capacity

limitations. Each control loop i∈{1, . . . , N} is composed of

an LTI stochastic process Pi, sensors Si, and a control unit

which itself includes a Kalman filter Fi and a state feedback

controller Ci, see Fig. 1. The controlled sub-system i can be

described by the following discrete-time stochastic equations

xi
k+1 = Aix

i
k +Biu

i
k + wi

k,

yik = Cix
i
k + vik,

(1)

where xi
k ∈R

ni , ui
k ∈R

mi , Ai ∈R
ni×ni and Bi ∈R

ni×mi

describe the ith sub-system state vector, control input, system

matrix, and input matrix, respectively. For the ease of deriva-

tions, we assume Ci ∈ R
ni×ni and C−1

i exists. The pairs

(Ai, Bi) and (Ai, Ci) are assumed to be controllable, and

observable, respectively. System noise and sensor noise are

i.i.d. sequences with sample realizations wi
k∼N (0,Wi) and

vik∼N (0, Vi), respectively. The initial state xi
0 is randomly

selected from an arbitrary finite-variance distribution.

Due to channel capacity limitation, not all sensor stations

can transmit at the same time, thus, scheduling units are inte-

grated in each station to determine whether a transmission is

feasible. The scheduling decision at each time-step k is taken

locally, and is denoted by the binary variable δik ∈ {0, 1} as:

δik =

{

1, yik sent through the channel

0, yik blocked.

We assume a lossless communication channel, i.e. there

is no externally caused packet loss. However, packets from

different control loops may collide during the medium ac-

cess. Acknowledgment signals are broadcasted via an error-

free reserved link so every station is informed if a collision

takes place. This can be realized in e.g. TCP-like protocols.

We assume that if a collision is detected, the involved sub-

systems are discarded with no chance of re-transmission. The

variable γi
k is the collision indicator at a time-step k as

γi
k =

{

1, yik successfully received,

0, yik collided.

System state values are estimated at the control units by

the local Kalman filters, and the control inputs are then

computed by the local feedback controllers. We define Ii
k =

{θi0, y
i
0, . . . , θ

i
k, y

i
k} as the history of received signals at the

control side Ci, where θik = δikγ
i
k. Then, the control input ui

k

is computed by the following state-feedback law described

by a measurable and causal mapping of past observations as

ui
k = −Li E[x

i
k|I

i
k] = −Lix̂

i
k, (2)

where, Li∈R
mi×ni is a stabilizing feedback gain. Depend-

ing on whether new sensory measurements are arriving, we

compute the state estimate x̂i
k via the Kalman filter, as

x̂i
k = x̂i−

k + θikK
i
k(y

i
k − Cix̂

i−
k ) (3)

with the a priori state estimate x̂i−
k , and estimate error co-

variance P i−
k =E

[

(xi
k − x̂i−

k )(xi
k − x̂i−

k )T
]

given as follows

x̂i−
k+1 = Aix̂

i
k +Biu

i
k,

P i−
k+1 = AiP

i
kA

T
i +Wi,

and the optimal Kalman gain Ki
k and the a posteriori

estimate error covariance P i
k=E

[

(xi
k − x̂i

k)(x
i
k − x̂i

k)
T
]

as

Ki
k = P i−

k CT
i (CiP

i−
k CT

i + Vi)
−1, (4)

P i
k = P i−

k −Ki
k(CiP

i−
k CT

i + Vi)K
iT

k , (5)

with the initial conditions x̂i
0=0 and P i

0=0. It follows from

(1)-(3) that δik = 0 leads to a model-based estimate of xi
k , i.e.

x̂i
k = x̂i−

k =(Ai−BiLi) x̂
i
k−1. The estimate is well-behaved

as the gain Li is stabilizing, and (Ai, Bi) is stabilizable.

We introduce the network-induced error eik for each sub-

system i∈{1, . . . , N}, at every time-step k as the difference

between measurements and state estimates at the controller

eik := yik − ŷik, (6)

where, ŷik = Cix̂
i
k. Introducing [xiT

k ei
T

k ]
T as the aggregate

state of sub-system i, it is straightforward to derive the

following state dynamics according to (1)-(6)

xi
k+1 = (Ai −BiLi)x

i
k+BiLiC

−1
i

(

eik − vik
)

+wi
k, (7)

eik+1 =
(

Ini
− θik+1CiK

i
k+1

) [

CiAiC
−1
i (eik − vik)

]

+
(

Ini
− θik+1CiK

i
k+1

) [

Ciw
i
k + vik+1

]

, (8)

It follows from (8) that evolution of the error state eik
is independent of the system state xi

k . This enables us to

take an emulation-based control approach and choose a sta-

bilizing controller a priori. The control inputs are computed
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according to this law at triggering times with updated state

information, and in between based on the model-based state

estimation. Stabilizability of pairs (Ai, Bi) ensures that the

closed-loop matrix (Ai−BiLi) is stable. It follows from (7)

that the aggregate state [xiT

k ei
T

k ]
T is stable if eik is stable.

Remark 1: In this paper we assume that output matrices

are invertible. Relaxing this assumption urges the inclusion

of additional observers which results in an additional obser-

vation error. Since the pairs (Ai, Ci) are observable for all

i’s, stabilizing observer gains exist such that stability of the

closed-loop system, including the observer state, is ensured

in the absence of the capacity constraint. It is straightforward

to show that, the evolution of network-induced error defined

in (6) remains independent from the observer state and hence

the scheduling process remains unaffected. The relaxation

to arbitrary output matrices Ci, i.e. true output feedback

control, is not considered here due to ease of derivations and

space limitations. The essential techniques to show stability,

however, extend to this case as well.

A. Decentralized MAC Architecture

Assume that the sampling interval of the communication

network (micro slot), is much finer than the one of the control

systems (macro slot). Further, assume T is the sampling

period of the control systems, then between two consecutive

macro time slots kT→(k+1)T , the micro slots are distributed

as {kT, kT+τ, . . . , kT+(h−1)τ, kT + hτ}, where τ is the

temporal duration of each micro slot and h ≫ 1 denotes the

number of micro slots within one macro slot, hence T = hτ .

We ideally assume that upon granting the channel access to

a sensor station, noisy measurements are transmitted within

the same control period. We additionally assume the channel

is error-free, and sampling delays are negligible.

Having a decentralized architecture, the ith control and

scheduling units are provided with only local information

Ai, Bi, Ci, Wi, Vi, Li, K
i
k, λi, Qi, I

i
k and the distribution

of xi
0, where λi and Qi denote pre-assigned error threshold,

and positive definite weight matrix, respectively. The vector

yik′+1 becomes eligible to enter the competition for the

channel with the other control systems at a time-step k′+1
only if the square weighted norm of eik′ exceeds the pre-

designed local threshold λi, otherwise it is discarded. Hence

P[δik′+1 = 1
∣

∣eik′ ] = 0 if ‖eik′‖2Qi
≤ λi, (9)

where, ‖eik′‖2Qi
:= ei

T

k′Qie
i
k′ . We introduce Gk′+1 as the set

of sensor stations cleared to transmit at time-step k′+1, i.e.

for each i ∈ {1, . . . , N}, i ∈ Gk′+1, if ‖eik′‖2Qi
> λi.

For the ease of notation, we assume that only one sensor

station can transmit within every macro time-step, i.e.

∑N

i=1
δik′ = 1. (10)

The following results can be readily generalized for c ded-

icated channels, i.e.
∑N

i=1 δ
i
k′ = c < N . A transmission

can be commenced at any of the h micro slots, within one

macro slot, i.e. {0, τ, 2τ, . . . , (h−1)τ}, only if the channel

is sensed idle. We define a random variable νik′ , called
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Fig. 2. NCS architecture with decentralized MAC algorithm.

waiting time, to determine the commence time. Thereby

νik′ ∈{0, τ, 2τ, . . . , (h−1)τ} holds. Waiting times are chosen

independently for each sub-system and at each time-step

and denote the time duration a sensor station i ∈ Gk′+1

waits and then starts sensing the channel, i.e. at k′T +νik′ .

Such a scenario can be implemented as a one-time back-off

algorithm within, e.g. CSMA-based protocol. We propose a

mechanism to select the local waiting times in a probabilis-

tically prioritized fashion based on the real-time conditions

of the local error states. First, we define independent local

discrete distributions with finite-variance concave probability

mass functions (pmf ), where the outcomes are the micro slots

between k′→k′+1. The waiting time νik′ is then randomly

selected from the given local pmf with the following error-

dependent expected value

E[νik′ ] =
αi
k′

‖eik′‖2Qi

, (11)

where, αi
k′ is a local design parameter to tune the shape

of the pmf, which consequently affects the collision rate.

The concavity of the local pmf s emphasizes the prioritized

character of the MAC protocol as it ensures that the waiting

times are more likely selected around the mean (11). Thus,

the higher the local error of a sub-system is, the shorter the

selected waiting time is expected to be. Finally, the sensor

station associated with the shortest waiting time transmits,

and the other stations discard. The same process repeats at

the start of each macro slot incorporating the updated error

norms. Hence, considering (10), the probability that sensor

station i∈Gk′+1 transmits at time-step k′+1 is as follows:

P[δik′+1 = 1
∣

∣eik′ ] = P[νik′ < νlk′ ], ∀l ∈ Gk′+1, l 6= i. (12)

According to (12), a collision occurs if at least two sched-

ulers select identical waiting times. Selecting the waiting

times in the introduced random fashion reduces the collision

rate since it decreases the chance of collision between

sub-systems with similar error values. On the other hand,

assuming many sub-systems with high error values leads to

concentration of local pmf s across early micro slots, which

increases the chance of collision. To avoid so, parameter αi
k′

can be properly adjusted according to broadcasted channel
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feedback which contains information about latest traffic and

collisions, to place the mean of the pmf s farther than the

congested area. We will discuss this in Section IV.

Remark 2: The error thresholds are incorporated to im-

prove performance of the scheduling process by efficient

allocation of limited resources. Intuitively, setting the thresh-

olds very low allows the sub-systems with negligible error

values to take part in the channel competition. Since channel

access is granted randomly, those sub-systems may transmit

instead of sub-systems with higher priorities. On the other

hand, setting the thresholds high implies that sub-systems

with relatively high errors are blocked, which also leads

to performance deficiency. Hence, there should be optimal

values of error thresholds which maintain a balance be-

tween optimizing performance and maximizing transmission

chance for sub-systems with critical real-time conditions

[18]. Deriving optimal thresholds is out of this paper’s scope.

III. STABILITY ANALYSIS

Definition 1: (Lyapunov Stability in Probability, [19]) A

discrete linear system with state vector xk possesses LSP if

for given εi, ε
′
i>0, exists ρi(εi, ε

′
i)>0 s. t. |x0|<ρi implies

lim
k→∞

supP
[

xT
kxk ≥ ε′i

]

≤ εi. (13)

Recall that the emulation-based control approach ensures

the closed-loop matrix (Ai−BiLi) is stable. We show in the

following lemma that the existence of stabilizing gains Li’s

ensures a sub-system i with the aggregate state [xiT

k ei
T

k ]
T is

LSP, only if the error state eik is bounded in probability.

Lemma 1: For a control loop with state vector [xiT

k ei
T

k ]
T,

described in (7) and (8), respectively, the LSP condition (13)

is equivalently satisfied if ξ′i > 0 and 0 ≤ ξi ≤ εi exists s. t.

lim
k→∞

supP
[

ei
T

k e
i
k ≥ ξ′i

]

≤ ξi. (14)

Proof: The system state xi
k evolves according to (7),

where the closed-loop matrix (Ai −BiLi) is Hurwitz. In

addition, the term BiLiC
−1
i

(

eik − vik
)

in (7) represents the

consequence of limited resources on the system dynamics,

which cannot be affected by the control input ui
k. It follows

from Markov’s inequality that for ζ′i > 0

P

[

(eik − vik)
T(eik − vik) ≥ ζ′i

]

≤
E
[

(eik − vik)
T(eik − vik)

]

ζ′i

=
E
[

‖eik − vik‖
2
2

]

ζ′i
≤

E
[

‖eik‖
2
2

]

+tr(Vi)+2
√

tr(Vi)E
[

‖eik‖
2
2

]

ζ′i

where the last inequality follows from E
[

‖eik − vik‖
2
2

]

=

E
[

‖eik‖
2
2

]

+E
[

‖vik‖
2
2

]

−2Cov(ei
T

k , v
iT

k ), and Cov(ei
T

k , v
iT

k ) ≤
√

V ar(vik)V ar(eik). The closed-loop system (Ai−BiLi)x
i
k+

wi
k is bounded in expectation and consequently possesses

LSP, since (Ai−BiLi) is Hurwitz and E[xi
0] is bounded,

while wi
k∼N (0,Wi). Thus, showing E

[

ei
T

k e
i
k

]

is bounded,

ensures limk→∞ supP
[

(eik − vik)
T(eik − vik) ≥ ζ′i

]

≤ ζi with

ζi=
E[‖eik‖

2
2]+tr(Vi)+2

√

tr(Vi)E[‖eik‖2
2]

ζ′
i

. This implies bounded-

ness of E
[

xiT

k+1x
i
k+1

]

which assures εi ≥ ξi and ε′i>0 exist

such that limk→∞ supP
[

xiT

k+1x
i
k+1 ≥ ε′i

]

≤ εi, and LSP of

the system with state [xiT

k ei
T

k ]
T then readily follows.

Note that the random variables eik and vik are statistically

dependent, according to (8), and thus the error state eik is not

inherently Markovian. However, Markovianity of a process

state is not necessary to show the LSP, see Definition 1.

As individual loops operate independently, we define the

overall NCS state [xT
k eT

k]
T by stacking local states [xiT

k ei
T

k ]
T

from all i∈{1, . . . , N}. Therefore, ensuring LSP for all sub-

systems guarantees the overall NCS with the augmented state

[xT
k eT

k]
T is LSP. In the other words, existence of ξ, ξ′>0 such

that limk→∞ supP
[

eT
kek ≥ ξ′

]

≤ ξ, implies ε, ε′ > 0 exist

such that limk→∞ supP
[

xT
k+1xk+1 ≥ ε′

]

≤ε. Incorporating

weight matrix Q=diag(Qi), LSP condition (14) becomes

lim
k→∞

supP
[

eT
kQek ≥ ξ̄′

]

≤ ξ̄. (15)

According to Markov’s inequality, we can instead focus on

the expectation of weighted quadratic error norm, i.e.

P

[

eT
kQek ≥ ξ̄′

]

≤
E
[

eT
kQek

]

ξ̄′
=

∑N
i=1 E

[

‖eik‖
2
Qi

]

ξ̄′
. (16)

Due to the constraint (10), boundedness of (16) is not always

guaranteed over one time-step horizon, i.e. from k → k+1.

The following example illustrates this observation.

Illustrative Example: Let an NCS consist of two identical

scalar control loops, i.e. A1=A2= ā, competing for the sole

transmission possibility at time-step k+1. For the purpose

of illustration, let Q1 =Q2 = 1, λ1 = λ2 = 0, α1
k =α1

k = ᾱ,

C1 = C2 = 1, V1 = V2 = 0 and e1k = e2k = ēk be the initial

state. Consider that both sub-systems select their waiting

times ν1k+1 and ν2k+1 from identical pmf s, with the same

mean ᾱ
‖ēk‖2

2
, according to (11). Hence, each sub-system has

50% chance of channel access. It follows from (8) that
∑

i=1,2

E
[

‖eik+1‖
2
2|e

i
k

]

=
∑

i=1,2

E
[

‖
(

1−θik+1

)(

aēk + wi
k

)

‖22|ēk
]

=
∑

i=1,2

1

2
E[‖aēk + wi

k‖
2
2|ēk]=

tr(W1+W2)

2
+ a2‖ēk‖

2
2,

which is not bounded for arbitrary initial state ēk and system

parameter ā. This is an inevitable effect of the capacity

limitation. The absence of new measurements results in the

expected growth of local errors. Generally, boundedness of

the error state in expectation can only be obtained over

an interval during which all sub-systems are expected to

transmit. Due to the constraint (10), the interval of length

N provides enough transmission chances, i.e. N , for all

sub-systems. It should however be noticed that having N

transmission chances does not at all guarantee that all N

sub-systems transmit. In what follows, we will show that (15)

can be guaranteed over an operational interval of length N ,

i.e. starting from time-step k, we take the interval [k, k+N ].
Before proceeding to the main theorem of this paper, we

compute the probability that all transmission attempts from

every sensor station fail due to successive collisions, over

the interval [k, k+N ]. Due to the decentralized nature of
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the MAC protocol (9) and (12), there exists a non-zero

probability that collisions take place successively over the

interval [k, k+N ], and all sub-systems remain open-loop. This

occurs if at least two sub-systems select identical waiting

times at every time-step over [k, k+N ]. Assume a sub-system

i selects a waiting time νik′ = sik′τ at time-step k′, with

sik′ ∈ {1, . . . , h−1}. We can compute the probability that

another sub-system j 6= i selects exactly the identical waiting

time ν
j
k′ = sik′τ . We know from the probability theory that

E[νjk′ ] =
∑h−1

m=1 mτ P(νjk′ =mτ). In addition, knowing that

E[νjk′ ]=
α

j

k′

‖ej
k′‖

2
Qj

<
α

j

k′

λj
, we can compute an upper-bound for

the probability that the certain event ν
j
k′ = sik′τ is selected:

P(νjk′ =sik′τ)=
1

sik′τ

[

E[νjk′ ]−
∑h−1

m=1,m 6=si
k′

mτ P(νjk′ =mτ)

]

<
1

sik′τ

[

α
j
k′

λj

−
∑h−1

m=1,m 6=si
k′

mτ P(νjk′ =mτ)

]

≤
α
j
k′

sik′τλj

.

Extending this for every pair of sub-systems i and j, we find

the upper-bound for probability of successive collisions as

P

[

N
∑

i=1

θik′ =0, ∀k′

]

≤
k+N
∏

k′=k

N
∑

i=1

N
∑

j=1,j 6=i

α
j
k′

sik′τλj

. (17)

From (17), increasing the error thresholds lowers the

successive collision rate, which is intuitive as it results in

more sub-systems being out of channel access competition.

Moreover, increasing h reduces the collision probability as

it increases the number of events sik′τ , hence reducing the

probability that a specific event is selected more than once.

In addition, (17) provides an upper-bound for the probability

that Lyapunov stability cannot be achieved, which motivates

the selection of the stability notion, i.e. LSP, in this paper.

Theorem 1: Let a multi-loop NCS consist of N hetero-

geneous LTI stochastic sub-systems with states and mea-

surements given by (1), sharing a communication channel

subject to the constraint (10). Under the control, estimation

laws (2) and (3), and scheduling rule (9) and (12), the overall

NCS with augmented state [xT
k, e

T
k]

T possesses LSP for any

positive λi’s and αi
k’s, and any positive definite Qi’s.

Proof: See Appendix.

IV. NUMERICAL RESULTS

To evaluate the performance of the proposed approach, we

consider a model of NCS with two different classes of scalar

sub-systems, i.e. {cl1, cl2}. The state-space representation for

the first class including unstable plants is (Acl1 , Bcl1 , Ccl1)=
(1.25, 1, 1), while for the second class containing stable

plants (Acl2 , Bcl2 , Ccl2) = (0.75, 1, 1). Each sub-system is

steered via a dead-beat control law Li=
Ai

Bi
. For simplicity,

we select Qi = I for all i, and set xcl1
0 = xcl2

0 = 0.

The process noise and measurement noise are realized as

wi
k ∼N (0, 1) and vik ∼N (0, 0.1), respectively. We conduct

a Monte Carlo simulation with 2×105 samples and assume

a channel capacity of c=1. The simulations are performed

for a varying number of sub-systems N ∈{2, 4, 6, 8, 10, 12},

TABLE I

DECENTRALIZED AND UNIFORM BI-CHARACTER SCHEDULING

Number of plants (N) 2 4 6 8 10 12

decentralized bi-character

Error threshold (λ) 0.01 0.10 0.40 0.70 0.88 0.98

aggregate error variance 1.08 1.50 1.96 2.50 3.17 4.20

collision rate (%) 0.78 0.89 1.12 1.35 1.58 1.88

uniform bi-character

Error threshold (λ) 0.10 2.10 3.80 6.00 11.20 14.00

aggregate error variance 0.90 1.91 2.79 3.79 5.10 7.61

collision rate (%) 0.19 0.19 0.24 0.30 0.27 0.35

with N
2 sub-systems belong to each class. Moreover, in

every simulated NCS setting the same error thresholds λ are

applied for all sub-systems. The number of micro slots is set

to h= 150 and the waiting times are chosen from Poisson

distributions with error-dependent mean (11). To tune the

scaling factor αi
k′ , we utilize the feedback signal broadcasted

from the channel, according to the following empirical law

αi
k′ = qtnt,k′−1 + qcnc,k′−1, (18)

where nt,k−1 is the traffic, i.e. the number of systems trying

to transmit, and nc,k−1 is the latest time collision rate, and

they are accompanied by the weights qt and qc, respectively.

Table I shows the resulting aggregate error variance of

our proposed MAC for different number of sub-systems N ,

with the error thresholds λ and the scaling weights qt =60
and qc = 34. Furthermore, it provides the collision rates,

which are shown to be low due to proper parameterization

of the Poisson distributions. It also shows the results of

a uniform bi-character realization, where sub-systems are

deterministically excluded from channel access if their error

is below the threshold λ, otherwise waiting times are chosen

based on a uniform distribution. As expected, this leads to

less collisions since the waiting times are selected by iden-

tical probabilities across the entire macro slot, however, it

increases error variances as channel access is not prioritized.

Fig. 3 provides comparisons with the other commonly

known protocols. The centralized TOD approach is consid-

ered as the lower bound as it leads to the best performance.

For the CSMA, constant access probabilities are assigned

to each sub-system depending on the system matrices, i.e.
‖Ai‖

2
2

∑

N
j=1 ‖Aj‖2

2

, which is already an improvement to standard

CSMA with access probability is 1
N

. This approach yields an

acceptable performance only for N=2. The performance of

the proposed MAC protocol follows that of the TOD closely,

which proves that the performance is almost preserved with

the proposed decentralization. Moreover, it outperforms the

TDMA, where a constant time-based order of transmission is

assumed wherein only unstable plants are part of the sched-

ule. The uniform bi-character comparison shows a decrease

in collision rates, but error variances can not compete with

the decentralized law for high number of systems.

Fig. 4 shows the impact of distribution scaling on the

collision rate and aggregate error variance, for a typical NCS

with N = 8. The red pdf, where the mean of the scaling
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Fig. 3. Comparison of the aggregate error variances for a varying number
of sub-systems and different MAC protocol realizations.

factor αi
k′ equals 77.51, shows that the selected waiting times

are concentrated at the beginning of the macro slot, which

leads to a collision rate of 3.47%, and error variance of

2.71. By tuning the parameters in (18) properly, the mean

of αi
k′ changes to 163, which results in a better use of the

entire channel range in one slot. This leads to less collisions

(1.35%) and consequently lower error variance (2.50).

P
ro

b
a

b
ili

ty

Waiting time

macro slot
[

k′, k′ + 1
]

mean(αi
k′ ) = 77.51

mean(αi
k′ ) = 163.00

0
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Fig. 4. pdf of resulting waiting times with mean value α
i

k′ = 77.51 and

αi

k′ = 163.00, for NCS with N = 8 sub-systems during one macro slot.

V. CONCLUSION

We propose a decentralized MAC strategy for multiple-

loop NCSs with shared communication resources. The deci-

sion that either a sensor station can transmit is performed

by local schedulers, capable of real-time prioritization in

both deterministic and probabilistic fashions. It is shown that

the MAC strategy preserves stability of the overall NCS in

terms of LSP, and in addition can be appropriately adjusted

to cope with channel traffic. Simulation results illustrate the

performance enhancement by the proposed error-dependent

approach compared to the TDMA and CSMA protocols

and non-error-dependent approach. Moreover, our approach

performs closely to the centralized TOD approach.

APPENDIX

Proof: (Theorem 1) As discussed in Lemma 1, LSP of

the NCS with augmented state [xT
k, e

T
k]

T follows if ek satisfies

(14). Furthermore, the condition (14) can be satisfied by

alternatively upper-bounding the expectation of the weighted

error norm, according to (16). In addition, we discussed that

the condition (14) is investigated over an interval with length

N , i.e. [k, k+N ]. First, we express the dynamic behavior of

a local error state eik while transiting up to time-step k+N ,

starting at the reference time k + ri, where ri∈ [0, N−1]:

eik+N =
∏N−ri−1

d1=0

(

∆i
k+N−d1

Āc
i

) (

eik+ri
− vik+ri

)

(19)

+
∑N−1

q1=ri

∏N−q1−2

d2=0

(

∆i
k+N−d2

Āc
i

)

∆i
k+q1+1Ciw

i
k+q1

+
∑N−1

q2=ri+1

∏N−q2−1

d3=0

(

∆i
k+N−d3

Āc
i

)(

∆i
k+q2

−Ini

)

vik+q2

+∆i
k+Nvik+N ,

where, ∆i
k′ = Ini

− θik′CiK
i
k′ , and Āc

i = CiAiC
−1
i , and

we define
∏−1

0 (·) := 1, and
∑N−1

N (·) := 0. We first study

the case that successive collisions occur over the interval

[k, k + N ], i.e. θik′ = 0 for all i ∈ {1, . . . , N} at all time-

steps k′ ∈ [k, k+N ]. Let ri = 0, then it holds from (19)

that eik+N = ĀcN−1

i

(

eik−vik
)

+
∑N−1

q1=0 Ā
cN−q1−2

i Ciw
i
k+q1

+

vik+N . The probability that such a scenario occurs is

computed in (17). Setting ξ̄′ =
∑N

i=1 ‖Ā
cN−1

i

(

eik−vik
)

+
∑N−1

q1=0Ā
cN−q1−2

i Ciw
i
k+q1

+vik+N‖2Qi
, it then follows from

(15) that ξ̄ equals the right side of the inequality (17), i.e.,

sup
ek

P

[

N
∑

i=1

‖eik+N‖2Qi
≥ ξ̄′

]

<

k+N
∏

k′=k

N
∑

i=1

N
∑

j=1,j 6=i

α
j
k′

sik′τλj

.

In the rest of this proof, we assume that not all data packets

collide over the interval [k, k+N ]. The behavior of a sub-

system i while transiting from k to k+N can be characterized

by one of the following three complementary and mutually

exclusive occurrences, covering the entire sample space.

First, a sub-system i is in the set Ḡk′+1 := N−Gk′+1, at

least in one occasion over [k, k+N ], where N is the set of

all sub-systems {1, . . . , N}. Second, a sub-system i is always

in Gk′+1, but has successfully transmitted at least once over

[k, k+N ]. Third, over the same period, a sub-system i is

always in Gk′+1, while it has never successfully transmitted.

For the first scenario, denoted as s1, assume that the time-

step k+ri is the latest occasion where i ∈ Ḡk+ri+1. This

implies ‖eik+ri
‖2Qi

≤ λi. From (19), and due to the mutual

statistical independence of eik+ri
, wi

k+q1
, vik+q2

, and vik+N ,

and in addition, knowing from (4) that I−CiK
i
k′ is positive

definite, the following upper-bound is obtained for all i∈s1
∑

i∈s1
E
[

‖eik+N‖2Qi
|eik

]

≤
∑

i∈s1
‖ĀcN−ri−1

i ‖22 E
[

‖eik+ri
−vik+ri

‖2Qi
|eik

]

+

∑

i∈s1

∑N−1

q1=ri
tr(QiWi)‖Ā

cN−q1−2

i Ci‖
2
2+tr(QiVi) ≤

∑

i∈s1
‖ĀcN−ri−1

i ‖22

[

λi+tr(QiVi)+2
√

tr(QiVi)λi

]

+ζib (20)

where, ζib stands for the third line of the above expression.

LSP condition (15) is fulfilled according to (16) with ξ̄′

selected larger than (20), and ξ̄=
∑

i∈s1
E[‖eik+N‖2

Qi
|eik]

ξ̄′
<1.
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For sub-systems i within the second scenario s2, assume

k+ri is the latest time-step that θik+ri
=1. Hence, θik+rii

=0
for all time-steps rii, with ri<rii≤N . It follows from (19)

∑

i∈s2
E
[

‖eik+N‖2Qi
|eik

]

≤
∑

i∈s2
‖ĀcN−ri−1

i ‖22 tr(QiCiP
i
k+ri

CT
i ) + ζib, (21)

where, P i
k+ri

is the posteriori covariance matrix of estima-

tion error xi
k+ri

− x̂i
k+ri

. Upper-bound (21) follows from

the Kalman filter properties ensuring that if θik+ri
= 1,

then, E
[

eik+ri
− vik+ri

]

= Ci E
[

xi
k+ri

− x̂i
k+ri

]

= 0, and

E
[

‖eik+ri
− vik+ri

‖2Qi

]

= tr(QiCov[eik+ri
− vik+ri

]). Simi-

larly, LSP condition (15) satisfies considering ξ̄′ selected to

be larger than (21), and ξ̄=
∑

i∈s2
E[‖eik+N‖2

Qi
|eik]

ξ̄′
<1.

For sub-systems i∈ s3, a uniform bound for E
[

‖eik+N‖2Qi

]

cannot be found since ‖eik′‖2Qi
> λi for all k′ ∈ [k, k+N ].

However, as the introduced scenarios are mutually exclusive,

one can compute the probability that a sub-system i belongs

to s3. Intuitively, i belongs to s3 due to either successive

channel busy, or having collisions whenever the channel is

idle. Assume that whenever a collision is detected, a virtual

control loop has successfully transmitted. This means at the

time a collision occurs, N real and one virtual sub-systems

share the channel and the virtual sub-system transmits. The

virtual loops are assumed to have the same dynamics as in

(1). Assume that the channel experiences m<N collisions

over the interval [k, k +N ]. Having N +m sub-systems

requires our operational interval to be extended to [k, km],
where km = k+N+m. For one sub-system i to be in s3,

another sub-system, say j, should have re-transmitted at the

final time km. Let k+rj < km denote the latest time at which

θ
j
k+rj

=1. The probability that j re-transmits at km, in the

presence of sub-system i∈s3, can be computed as

P[θjkm
=1|θjk+rj

= 1, θik′ = 0 ∀k′∈ [k, km]] =

P[νikm−1> ν
j
km−1|θ

j
k+rj

=1, θik′ = 0 ∀k′∈ [k, km]] ≤

E[νikm−1|θ
i
k′ = 0 ∀k′∈ [k, km]]

s
j
km−1τ

, (22)

where, the last expression follows from Markov’s inequality,

and ν
j
km−1 = s

j
km−1τ , for arbitrary s

j
km−1 ∈ {1, . . . , h−1}.

Exploiting the law of iterated expectation, we can compute

(22), given the latest error vector eikm−1, and from (11):

E[E[νikm−1|e
i
km−1]|θ

i
k′ =0]

s
j
km−1τ

=
αi
km−1

s
j
km−1τ‖e

i
km−1‖

2
Qi

:= Ps3 .

Incorporating Ps3 , we have for a sub-system i ∈ s3
∑

i∈s3
Ps3E

[

‖eikm
‖2Qi

|eikm−1

]

=
∑

i∈s3
P[νikm−1>ν

j
km−1|θ

i
k′ =0, ∀k′]E

[

‖eikm
‖2Qi

|eikm−1

]

≤
∑

i∈s3

αi
km−1‖Ā

c
i‖

2
2

s
j
km−1τ

(23)

+
∑

i∈s3

αi
km−1

[[

‖Āc
i‖

2
2 + 1

]

tr(QiVi)+‖Ci‖22 tr(QiWi)
]

s
j
km−1τλi

,

where, the last line follows as ‖eikm−1‖
2
Qi

> λi. Extending

the interval to [k, km], we can upper-bound (16) as follows:
∑

N+m
i=1 E

[

‖eikm
‖2Qi

]

≤
∑

i∈s1
E
[

‖eikm
‖2Qi

]

+
∑

i∈s2
E
[

‖eikm
‖2Qi

]

+
∑

i∈s3
Ps3 E

[

‖eikm
‖2Qi

]

.

As (14) holds over the interval [k, k+N ] within the scenarios

s1 and s2, it also holds over longer intervals. Moreover,

since (23) is uniformly bounded, (15) will be satisfied

over [k, km] by setting ξ̄′ greater than (23) and selecting

ξ̄ =
∑

i∈s3
Ps3E[‖e

i
km

‖2
Qi

|eik]
ξ̄′

< 1. Thus (15) is satisfied over

the interval [k, km] with m collisions. It follows then from

Lemma 1 that the described NCS possesses LSP.
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