
Efficient Event-Driven Reactive Control for Large Scale Robot Skin

Florian Bergner, Emmanuel Dean-Leon and Gordon Cheng

Abstract— In this work we present a novel efficient event-
driven reactive skin controller for large scale robot skin. The
novel event-driven controller derives from a standard Jacobian
torque controller and fully takes advantage of our multi-modal
event-driven robot skin. Event-driven systems only sample,
transmit and process information when the novelty of the
information is guaranteed. This increases their efficiency in
comparison to synchronous systems. We also use the new event-
driven controller formulation to design a new synchronous
reactive skin controller. We compare both controllers in a
comprehensive performance evaluation with our robot TOMM.
TOMM has two UR5 robot arms, each covered with 253 multi-
modal skin cells. Each skin cell samples 4 different modalities
and supports data mode and event mode. The results show that
the event-driven reactive skin controller always outperforms the
synchronous reference controller while both controllers show
exactly the same response. When the robot is not moving then
the event-driven controller reduces the CPU usage by 78% in
comparison to the synchronous reference controller. When the
robot is responding to contacts then the CPU usage reduces by
66%.

I. INTRODUCTION

A. Motivation

Tactile human-robot interaction is essential for collabo-
rative robots in industrial, health-care and household ap-
plication scenarios and increases the robot’s intuitiveness,
flexibility and safety. One key element of enabling intuitive
interactions is the ability to manually guide the robot by
touching it for e.g. in teach-in scenarios [22]. The stan-
dard approach for realizing such manual guidance is using
force/torque sensors in each robot joint and realizing an
interactive controller which applies a dynamic robot model
to differ between external and internal torques [15], [16].
However joint/torque sensors are expensive and cannot be
easily attached to robots in case of upgrades. Furthermore
force/torque sensors can only sense external force/torque
stimuli in a cumulative way and can thus not distinguish
between multiple contact points per joint. For example antag-
onistic forces on a joint cancel themselves. Overcoming this
problem and enabling multi-contact interactive controllers
have contributed to the motivations for developing robot
skin [1]–[3], [18]–[20]. However, to fully take advantage
of skin in tactile interaction control, the skin has to cover
the robot completely. This induces new challenges caused
by huge numbers of skin cells in large scale robot skin.
The challenges are mainly: 1) solving issues in transmitting

*This work has received funding from the European Communitys Seventh
Framework Program (FP7/2007-2013) under grant agreement no. 609206.

All authors are with the Institute for Cognitive Systems,
Technische Universität München, Munich, Germany, see
http://www.ics.ei.tum.de

Fig. 1. The robot TOMM [23] with two arms and two grippers covered
with skin; the robot holds a paper towel in its left gripper which it uses
in our experiment to push the right arm; the right arm is controlled by our
novel event-driven tactile reaction controller; it tries to avoid contacts and
moves to the right.

huge amounts of tactile information with low-latency and 2)
processing huge amounts of tactile information in real-time.
Neuromorphic event-driven sensing of tactile information
is proposed in the works of [4]–[8] and seems to be a
viable solution for reducing redundant information at sensor
level. In event-driven systems only novel information has to
be transmitted which greatly reduces required transmission
bandwidths. This work focuses on exploiting the efficiency
of event-driven information to design a novel event-driven
reactive skin controller for robots with large scale robot skin.

B. Related Work

The proposed event-driven reactive skin controller is re-
lated to standard Jacobian reactive control at torque level and
processes event-driven tactile information with low compu-
tational costs. To our best knowledge such a tactile control
system has not been fully addressed yet. However, tactile
robot interaction systems which use force/torque sensors
[15], [16] can be considered as state-of-the-art and systems
using robot skin have been proposed in the works of [17]–
[22]. Nonetheless, all these tactile interaction systems are
synchronous systems and process tactile information syn-
chronously. Event-driven sensing and processing is addressed
in the works of [7]–[14]. These works demonstrate that
event-driven systems show superior efficiency in sampling,
transmitting and processing information.

C. Contributions

We propose a novel event-driven reactive skin controller
for large scale robot skin. Our control system fully exploits
the advantages of event-driven information. The controller

only processes tactile information when the novelty of
tactile information is guaranteed. Tactile activity correlates
directly to the occurrence of events and searches through the
complete set of tactile data are no longer necessary. This
increases the computational efficiency of the controller and
tactile information can be processed inside the control loop
at full speed. For the development of the event-driven tactile
controller, we separate the Jacobian torque calculation into
three parts. One part only depends on static transformations,
one only on joint coordinate frames of the robot kinematics
and one depends on both. We use these separated formu-
lations also to design a more efficient synchronous tactile
interaction controller. We finally compare the performance
of both controllers on a real robot through comprehensive
experiments and demonstrate the superior performance of
our novel event-driven reactive skin controller.

II. SYSTEM DESCRIPTION
A. Robot skin

1.4 cm

Normal ForceProximity

Acceleration

Port 1Port 2

Port 4 Port 3Temperature
(Front Side) (Back Side)

LED

Micro
Controller

Fig. 2. Robot skin.

Our robot skin [18] is a multi-modal, self-organizing and
self-calibrating robot skin. Its hexagonally shaped skin cells
are organized in patches (see Fig. 3) and build up a self-
organized redundant communication network. Bidirectional
communication trees establish connections from each skin
cell to the PC and vice versa. The skin cells sense multi-
modal tactile stimuli like vibration (3D acceleration sensor),
pressure (3 capacitive force sensors), pre-touch (proximity
sensor) and temperature (2 temperature sensors). Recently
we updated the firmware code of the skin cells which now
supports two modes: the data mode and the event mode
[7], [8]. In the data mode, skin cells transmit information
synchronously with a constant sample rate (e.g. 250 Hz).
In the event mode, skin cells transmit information asyn-
chronously in events. The option to switch between modes
enables us to easily compare event-driven algorithms with
their synchronous state-of-the-art counterparts.

Fig. 3. The skin cell network architecture and interface to the PC.

The skin system is able to self-calibrate [24], [25] and
automatically determines static transformations iTk of a skin

cell i with respect to its robot joint k (see also Fig. 5). This
allows us to define the kinematic chains of every skin cell
to a common reference frame. The tactile reactive controller
needs these kinematic chains and manual calibration for 253
skin cells would be infeasible.

B. The Tactile Omnidirectional Mobile Manipulator TOMM
We perform our experiments on our robot TOMM [23]

see Fig. 1 and 4. TOMM has a mobile omnidirectional base,
two UR5 robot arms and two Lacquey grippers. Each arm
is covered with 253 skin cells and each gripper with 57 skin
cells. TOMM is fully integrated in ROS (Robot OS). Fig.
4 visualizes the control loop of one arm. The green box
addresses the reactive skin torque controller of this paper.

Fig. 4. The control framework on the robot TOMM.

C. Fusing force and proximity values to external force
The skin cells i can only detect external normal forces

along their own z-axes. We calculate this external normal
force Fz,i by fusing the sum of the 3 normalized capacitive
forces Fc with the normalized proximity value Fp (see Algo.
1). αc and αp denote positive gains and Fc,th, Fp,th and Fz,th

denote noise canceling thresholds. A skin cell i is considered
as active as soon as Fz > 0.

Algorithm 1 Calculate Fz for given Fc and Fp

1: if Fc < Fc,th then
2: Fc := 0

3: end if
4: if Fp < Fp,th then
5: Fp := 0

6: end if
7: Fz := αc Fc + αp Fp

8: if Fz < Fz,th then
9: Fz := 0

10: end if

D. Reactive skin torque controller
We developed a torque based reactive skin controller

which avoids contacts. This controller has to map the
wrenches of skin cells i to corresponding torques τ [22].
Fig. 5 depicts that an external wrench wi ∈ R6 exerted on
a skin cell i results in torques τl in joints 1, . . . , k. These
joints we name as active joints. The index k denotes the last
active joint. Skin cells i only detect normal external forces
Fz,i such that the wrench w̄i ∈ R6 of a skin cell simplifies
to

w̄T
i =

[
0 0 Fz,i 0 0 0

]T (1)

Fig. 5. Kinematic chain from skin cell i on active joint k to the world
reference frame 0.

The reactive skin controller maps the wrench w̄i of skin cell
i to torques τl of joints l. Therefore it uses the transposed
Jacobian JT

i (q) of a skin cell i and the principle of virtual
work:

τ i = JT
i (q) iw̄0 (2)

iw̄0 is the wrench measured by skin cell i with respect
to the base coordinate frame 0 and τ i ∈ RDOFs is the
torque generated by skin cell i. The Jacobian can be easily
determined geometrically by applying the laws of physics
for translating and mapping linear and angular velocities to
joint velocities. For a skin cell i on an active joint k the rows
jTl (q), l ∈ 1, . . . , k of JT

i (q) have to be updated while the
rows with index l > k remain zero. Forces detected by a
skin cell i do not effect joints after joint k:

jTl,i(q) =
[(

l−1z0(q)×
[
it0 − l−1t0(q)

])T l−1zT
0 (q)

]
jTl (q) = 0T ∈ R6 if l > k (3)

JT
i (q) =

[
j1,i(q) . . . jk,i(q) 0 . . . 0

]T (4)

Note that l−1z0 ∈ R3 is the z-axis of coordinate frame l− 1
with respect to the base coordinate frame 0 and it0 ∈ R3 is
the origin of the coordinate frame of skin cell i with respect
to the base coordinate frame 0. The transformation from
coordinate frame l − 1 to 0 is defined by the homogeneous
transformation matrix l−1T0 ∈ R4×4 (see Fig. 5). The axes
x, y, z and the translation of the origin t can be easily
extracted from the corresponding transformation matrices T:

kT0 =

[
kx0

ky0
kz0

kt0
0 0 0 1

]
(5)

E. Cell-wise reactive skin torque control

The easiest way to calculate the total skin torque of all skin
cells is to first calculate the torque τ i of each skin cell i and
then to sum them up. The number of calculations can be
reduced by thresholding the external forces Fz,i. The torque
τ i is then only calculated whenever the external force is
above noise level. See Algorithm 2. However, this algorithm
becomes inefficient for large amount of active skin cells.
Especially lines 9, 15 and 16 are computationally expensive
and contain many redundant calculations. Furthermore, the
algorithm has to loop over all skin cells, has to calculate the
external force and check if it crossed the threshold. For these
reasons we propose a new algorithm which calculates only
what is necessary. The new algorithm separates calculations
into calculations which have to be processed only for force
changes and respectively into calculations which have to be
processed only for joint position changes.

Algorithm 2 Cell-wise skin torque calculation
1: update lT0(q) ∀l ∈ 1, . . . , DOF
2: τ := 0
3: for all skin cells i do
4: calculate Fz,i using Algo. 1
5: if not Fz,i > 0 then
6: continue
7: end if
8: map i to k
9: iT0(q) := kT0(q) iTk

10: fi :=
(
0 0 Fz,i

)T
11: f̄i :=

(
fTi 0

)T
12: if̄0 := iT0(q) f̄i

13: iw̄0 :=
(
if̄T0 0 0

)T
14: extract it0 from iT0(q)

15: calculate JT
i (q)

16: τ i := JT
i (q) iw̄0

17: τ := τ + τ i

18: end for

F. Component-wise reactive skin torque control

Looking at the l-th component of τ for a skin cell i on
joint k we get:

τl,i(q) = jTl,i(q) iw̄0

=
(
l−1z0(q)×

[
it0 − l−1t0(q)

])T
if0

=

([
it0 − l−1t0(q)

]T [
l−1z0(q)

]T
×

)T
iz0 Fz,i

= [Al,i(q)−Bl,i(q)] Fz,i (6)

with

Al,i(q) = itT0

[
l−1z0(q)

]T
×

iz0

= it̂Tk
kTT

0 (q)
[
l−1ẑ0(q)

]T
×

kT0(q) iz̄k

= it̂Tk Sl,k(q) iz̄k (7)

Bl,i(q) = l−1tT0 (q)
[
l−1z0(q)

]T
×

iz0

= l−1t̂Tk (q)
[
l−1ẑ0(q)

]T
×

kT0(q) iz̄k

= tTl,k(q) iz̄k (8)

Note that this formula already takes the zero torque entries
of the wrench iw̄0 in to account. Furthermore, the formulas
Sl,k(q) (Eq. 9) and tl,k(q) (Eq. 10) depend now only on
the active joint and on the joint positions q. Thus they only
need to be updated on joint changes and, as we will see,
on changes of kmax. iz̄k and it̂k depend only on a static
transformations resulting from the skin calibration. These
transformations can be calculated once in advance. The bar
above vectors denote 3D vectors which have been extended
to homogeneous 4D vectors by appending 0. The hat denotes
homogeneous vectors with the standard extension. The cross-
product matrix operator [·]× produces a skew symmetric
matrix and thus the calculation of Sl,k(q) and tl,k(q) can

be simplified further:

Sl,k(q) = kTT
0 (q)

[
l−1ẑ0(q)

]T
×

kT0(q) (9)

=

 0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 1


a =

(
kx0 × ky0

)T
l−1z0 b =

(
kx0 × kz0

)T
l−1z0

c =
(
kx0 × kt0

)T
l−1z0 d =

(
ky0 × kz0

)T
l−1z0

e =
(
ky0 × kt0

)T
l−1z0 f =

(
kz0 × kt0

)T
l−1z0

tTl,k(q) = l−1t̂Tk (q)
[
l−1ẑ0(q)

]T
×

kT0(q) (10)

=
(
ā b̄ c̄ d̄

)
ā = kxT

0

(
l−1z0 × l−1t0

)
b̄ = kyT

0

(
l−1z0 × l−1t0

)
c̄ = kzT

0

(
l−1z0 × l−1t0

)
d̄ = ktT0

(
l−1z0 × l−1t0

)
+ 1

Using the results for Sl,k(q) and tl,k(q) of Eq. 9 and 10
we can symbolically expand Al,i(q) and Bl,i(q) of Eq. 7
and 8 and order and re-factorize everything considering the
permutation rules of the triple product expansion of the cross-
product. We have such a triple product in all the entries
of Sl,k(q) and tl,k(q). This reduces redundant calculations
caused by the extended skew symmetric matrix Sl,k(q):

Al,i(q) =
(
izk × itk

)T  d−b
a

− izT
k

ce
f

 (11)

= l−1zT
0 (q)

[
kA0(q)

(
izk × itk

)
− kB0(q)izk

]
= l−1zT

0 (q)
[
kA0(q) ick − kB0(q) izk

]
= l−1zT

0 (q) ic0(q)

Bl,i(q) = izT
k

kRT
0 (q)

(
l−1zk × l−1tk

)
(12)

= izT
r,0(q) l−1c0(q)

with
ic0(q) = kA0

ick − kB0
izk (13)

kA0(q) =
(
kz0 × ky0

kx0 × kz0
ky0 × kx0

)
(14)

kB0(q) =
(
kx0 × kt0

ky0 × kt0
kz0 × kt0

)
(15)

ick =
(
izk × itk

)
(16)

izr,0(q) = kR0
izk (17)

kR0(q) =
(
kx0

ky0
kz0

)
(18)

l−1c0(q) =
(
l−1z0 × l−1t0

)
(19)

and
τl,i(q) = Jl,i(q) Fz,i (20)

= [Al,i(q)−Bl,i(q)] Fz,i

=
[
l−1zT

0 (q) ic0(q)− izT
r,0(q) l−1c0(q)

]
Fz,i

Algorithm 3 Update Fz,i for a given skin cell data packet
1: get skin cell id, Fc and Fp from data packet
2: map id to i
3: calculate Fz using Algo. 1
4: Fz,i := Fz

Algorithm 4 Update τ for a given joint position q
1: τ := 0
2: update lT0(q) ∀l ∈ 1, . . . , DOF
3: calculate l−1c0(q) ∀l ∈ 1, . . . , DOF
4: calculate kA0(q) ∀k ∈ 1, . . . , DOF
5: calculate kB0(q) ∀k ∈ 1, . . . , DOF

6: for all active skin cells i do
7: calculate τl,i(q) := Jl,i(q) Fz,i ∀l ≤ k
8: compose τl,i to τ i

9: τ := τ + τ i

10: end for

We observe that Eq. 13 - Eq. 19 separate Eq. 20 in to
parts which have to be calculated only once per active joint
(Eq. 14, 15, 18 and 19, colored in red, containing index k
or l), into parts which are only dependent on the static skin
calibration (Eq. 16, colored in green, containing only index
i) and into parts which are a combination of the former two
(Eq. 13, 17 and Eq. 20). These equations which only depend
on active joints only depend on terms of the robot kinematics;
the axes and translations of the active joint coordinate frames.
These equations only need to be updated when the robot state
changes, notably when the joint positions q change. Eq. 16
only depends on static skin information and can be calculated
in advance. The remaining equations Eq. 13, 17 and Eq. 20
combine joint and skin transformations and only need to be
updated when skin cell i is active or when the joint positions
q change.

τl,i(q) =

{
Jl,i(q) Fz,i, l ≤ k ∧ cell i is active
0, otherwise

(21)

Overall the newly proposed component-wise skin torque
calculation is computationally less expensive than the cell-
wise skin torque calculation because it uses less complex
mathematical operations and its separability allows for re-
ducing the redundancy of calculations. This is advantageous
for both controller modes, the data mode and the event mode.

G. The skin joint controller in data mode

The skin joint controller in data mode consists of two
functions which we present in Algo. 3 and 4. One is a
callback function (see Algo. 3) which is called whenever the
controller receives a new skin cell data packet containing the
normalized sensor values and the skin cell id. This callback
function first maps the skin cell id to the corresponding index
i and then updates the external force Fz,i in the controller
memory. The other function (Algo. 4) calculates the skin
torques and is called in the update loop of the skin joint
controller. This function first updates the kinematic chain
such that all transformations lT0(q) are updated according
to the joint position q of the robot. Then it calculates the
torque τ i for each active skin cell.

Algorithm 5 Update Fz,i, and τ for a given skin cell event
1: if not force event and not proximity event then
2: return
3: end if
4: get skin cell id from event
5: map id to i
6: if force event then
7: Fc,i := value of event
8: end if
9: if proximity event then

10: Fp,i := value of event
11: end if
12: calculate Fz using Algo. 1
13: if |Fz,i − Fz| < Fz,e,th then
14: return
15: end if
16: Fz,i := Fz

17: if joint k becomes active then
18: add k to active joint list K
19: kmax,p := kmax

20: update kmax

21: for l ∈ kmax,p, . . . , kmax do
22: update l−1c0(q)
23: end for
24: update kA0(q), kB0(q)
25: end if
26: if joint k becomes inactive then
27: update kmax

28: remove k from active joint list K
29: end if
30: τ := τ − τ i

31: τ i := 0
32: if Fz,i > 0 then
33: calculate τl,i(q) := Jl,i(q) Fz,i ∀l ≤ k
34: compose τl,i to τ i

35: end if
36: τ := τ + τ i

Algorithm 6 Update τ for a given joint position q
1: flag := false
2: for l ∈ 1, . . . , DOF do
3: if |qp,l − ql| > qe,th then
4: flag := true
5: break
6: end if
7: end for
8: if not flag then
9: return τ

10: end if
11: update lT0(q) ∀l ∈ 1, . . . , DOF
12: calculate l−1c0(q) ∀l ∈ 1, . . . , kmax

13: calculate kA0(q) ∀k ∈ K
14: calculate kB0(q) ∀k ∈ K
15: for all active skin cells i do
16: τ := τ − τ i

17: calculate τl,i(q) := Jl,i(q) Fz,i ∀l ≤ k
18: compose τl,i to τ i

19: τ := τ + τ i

20: end for

H. The skin joint controller in event mode

The skin joint controller in event mode also uses two
functions (see Algo. 5 and 6). The callback function (Algo.
5) is executed whenever a skin cell reports capacitive force
events or proximity events. The Algo. 5 fuses these events
to the corresponding external force Fz,i. Furthermore, if the

change of the external force Fz,i exceeds the event threshold
Fz,e,th then Algo. 5 stores the external force Fz,i in its
local controller memory, updates the affected joints and
finally calculates the skin torque. The update of the joint
related properties only happens whenever a joint becomes
active or inactive. To sum up, Algo. 5 triggers all the
necessary calculations to map an external force event to
the corresponding torque response. Algo. 6 is executed in
the update loop of the skin joint controller. However, this
algorithm simulates joint events and only triggers further
calculations when the change of joint positions q is large
enough (above the joint event threshold qe,th). Otherwise it
immediately returns the current skin torque τ . The Algo. 6
uses external forces Fz,i and joint related properties which
are updated by Algo. 5.

III. EXPERIMENTS

The following demonstration scenarios are part of the
European project Factory-in-a-Day.

A. Experimental setup

For a comprehensive performance evaluation of the in-
troduced skin joint controllers (in data/event mode) it is
essential to ensure the exact repeatability of the experiment.
This includes that both controllers are excited in exactly the
same way through all experiments; otherwise the controller
response and its load on CPU and network would not be
comparable between experiments and modes.

In order to excite the robot repeatedly in exactly the same
way we use TOMM’s left arm and excite with it its right
arm. On the right arm we run our skin joint controllers (see
Fig. 1) and on the left arm we execute a Cartesian position
controller. The left arm moves along a predefined trajectory
and touches the lower part of the right arm with a paper
towel held in its left gripper. We provide a video to further
illustrate the experiment.

B. Performance evaluation

1) Comparability of experiments and controllers: To
prove the comparability of the experiments we have to
prove that a repeated execution of the experiment produces
the same excitation on the skin and that both controllers
respond in the same way. In Fig. 7 e) we observe that the
external forces Fext,e (event mode) and Fext,d (data mode)
are identical for both experiments. The comparability of the
controllers in data/event mode is shown in Fig. 7 f). The
response in angular joint velocities q̇ is identical for both
controllers.

2) Controller performance (Idle robot): Fig. 6 depicts the
network and CPU usage of the skin driver and the reactive
skin controller for both modes. The robot is idle (not moving
and not in contact) in phase I. In this phase we observe that
the network usage in the skin driver is with 2.5 KB/s for
the event mode much lower than in the data mode where
it is 1 MB/s. The network usage in data mode is constant
in all phases and there is no difference whether the robot is
being touched or not. The network usage in the controller is

Fig. 6. Comparison of CPU usage and network traffic in data/event mode
for controlling one robot arm covered with 253 skin cells.

about 2.25 times higher than in the skin driver. This is caused
by the overhead in the communication between ROS nodes.
For the idle robot the CPU usage in the skin driver is with
5.5% much lower than in data mode where it is constantly
at 95%. The CPU usage in the controllers is not constant for
both modes (see Fig. 6 and 7). For the idle robot the CPU
usage of the controller in event mode is 36.5% and in data
mode 99%. The reduction of the combined CPU usages of
skin driver and controller in event mode compared to data
mode is from 194% to 42%. The total relative reduction from
event mode to data mode is thus 78% for an idle robot. The
results clearly show that network and CPU usage are lower
for the event-driven system (event mode) in comparison to
the synchronous system (data mode) when the robot is idle.
The results also show that network and CPU usage in the
event-driven system depend on tactile excitation while in the
synchronous system only the CPU usage of the controller
is not constant. This behavior proves that the event-driven
system only transmits and processes novel information and is
thus more efficient. The CPU usage of the controller in data
mode is not constant because its computational complexity
depends on the number of active skin cells.

3) Controller performance (Robot reacting to contact): In
this section we analyze the performance of both controllers
in different experiment phases (see Fig. 7 and Tab. I):

(I) The controller is idle; the robot is not moving and not
excited on its skin

(II) The controller is processing only skin information but
has no active skin cell; the robot is not moving

(III) The controller has active skin cells and is processing
skin and joint information; the robot starts to respond
to the contact

(IV) The controller has less active skin cells but is still pro-
cessing skin and joint information; the robot continues
to respond to the contact

(V) The controller has no longer active skin cells and is
processing only skin information; the robot is still
moving but is no longer in contact and the joint
velocities decrease

(VI) The controller is no longer processing skin informa-
tion; the robot movement slowly ends

Tab. II shows the CPU usages of the reactive skin controller
within the different phases for both modes. As soon as the

Fig. 7. Comprehensive comparison of controller in data/event mode; all
subplots a) - d) are synchronized at t = 0 where the controller first detects
more than one active skin cell; subplot c) depicts the normalized proximity
forces Fprox, the normalized force of the capacitive force sensors Fcap and
the fused external force Fext for one skin cell; with index d for data mode
and index e for event mode.

robot is in contact and processes skin information (phase II
to phase V) the relative CPU usage of the controller in event
mode is increasing faster than in data mode with respect to
the CPU usage in the idle phase. This faster relative increase
is caused by the additional network usage of the force and
proximity events which is close to zero in the idle phase.
The network usage in data mode is constant in all phases
and thus its contribution to the relative CPU usage cancels
out. We compensate the contribution of the network usage
to the relative CPU usage in event mode and get changes
in relative CPU usage as depicted in Tab. III. The change
of relative CPU usage correlates to the computational cost
which the reactive skin controller causes when processing
skin information of active skin cells. The controller in event

mode outperforms the controller in data mode by a huge
margin in all experimental phases. In the worst case (phase
III) the controller in event mode requires 60.52% less CPU
usage than in data mode. This means that the event-driven
controller reduces the CPU usage by at least 59%. The skin
driver in event mode causes in worst case a CPU usage of
25%. The CPU usage in data mode is constantly 95%. The
combined worst case CPU usage of skin driver and controller
is 66.5% in event mode and 199% in data mode. Thus the
event-driven system reduces the total system CPU usage by
at least 66.6%.

Phase Mode network traffic active skin cells joints active

I data yes no no
II data yes no yes
III data yes yes yes
IV data yes yes yes
V data yes no yes
VI data yes no yes
I event no no no
II event yes no no
III event yes yes yes
IV event yes yes yes
V event yes no yes
VI event no no yes

TABLE I

Mode I II III IV V VI

data 99% 99.75% 101.05% 102.1% 102.9% 101%
event 36.5% 37.9% 40.2% 41.58% 40.1% 37%

TABLE II

Mode II III IV V VI

data ∼ 0% 2.1% 3.1% 3.9% 2%
event ∼ 0% ∼ 0.3% ∼ 2.4% ∼ 2.5% 0.5%

TABLE III

IV. CONCLUSIONS

We discussed in detail how we developed an efficient
event-driven reactive skin controller which based on Jacobian
torque control. The novel controller efficiently processes
events of our event-driven robot skin. We evaluated the
reactive skin controller in event mode by comparing it
to a reference controller in data mode. We validated the
controllers on our robot TOMM and designed an experi-
mental setup which ensures the comparability of repeated
experiments. We also proved the comparability of the event-
driven controller with its synchronous counterpart. Besides
executing different algorithms, both controllers responded to
identical tactile stimuli in exactly same way. When the robot
is not moving and idle then the event-driven reactive skin
controller outperforms the controller in data mode by 78%
and when robot responds to contacts then by at least 66%.
The event-driven reactive skin controller shows a substantial
reduction in CPU usage and paves the way for full body
reactive skin controllers for large scale robot skin.

REFERENCES

[1] L. D. Harmon, “Automated Tactile Sensing”, in The International
Journal of Robotics Research, vol. 1, no. 2, pp. 3-32, 1982.

[2] G. Cannata and M. Maggiali and G. Metta and G. Sandini, “IEEE
International Conference on Multisensor Fusion and Integration for
Intelligent Systems”, in 4th International Conference on Cognitive
Systems (CogSys), pp. 434-438, 2008.

[3] M. Strohmayr and D. Schneider, “The DLR artificial skin step I:
Uniting sensitivity and collision tolerance”, in IEEE International
Conference on Robotics and Automation (ICRA), pp. 1012-1018, 2013.

[4] S. Caviglia, M. Valle and C. Bartolozzi, “Asynchronous, event-driven
readout of POSFET devices for tactile sensing”, in IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 2648-2651, 2014.

[5] S. Caviglia, L. Pinna and C. Bartolozzi, “An event-driven POSFET
taxel for sustained and transient sensing”, in IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 349-352, 2016.

[6] W. W. Lee and S. L. Kukreja and N. V. Thakor, “A kilohertz kilo-
taxel tactile sensor array for investigating spatiotemporal features in
neuromorphic touch”, in Biomedical Circuits and Systems Conference
(BioCAS), pp. 1-4, 2015.

[7] F. Bergner, P. Mittendorfer, E. Dean-Leon and G. Cheng, “Event-
based signaling for reducing required data rates and processing power
in a large-scale artificial robotic skin”, in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 2124-2129,
2015.

[8] F. Bergner, E. Dean-Leon and G. Cheng, “Event-based signaling for
large-scale artificial robotic skin - Realization and performance eval-
uation”, in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 4918-4924, 2016.

[9] M. Neugebauer, and K. Kabitzsch, “A New Protocol for a Low Power
Sensor Network”, in IEEE International Conference on Performance,
Computing and Communications, pp. 393-399, 2004.

[10] M. Miskowicz, “Send-on-delta Concept: An Event-Based Data Re-
porting Strategy”, in sensors, vol. 6, no. 1, pp. 49-63, January 2006.

[11] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128 x 128 120 dB 15
µs Latency Asynchronous Temporal Contrast Vision Sensor”, in IEEE
Journal of Solid-State Circuits, vol. 43, no. 2, pp. 566-576, February
2008.

[12] C. Posch, T. Serrano-Gotarredona, B. Linares-Barranco, and T. Del-
bruck, “Retinomorphic Event-Based Vision Sensors: Bioinspired Cam-
eras With Spiking Output”, in Proceedings of the IEEE, vol. 102, no.
10, pp. 1470-1484, October 2014.

[13] C. Bartolozzi, and G. Indiveri, “Selective Attention in Multi-Chip
Address-Event Systems”, in Sensors, vol. 9, no. 7, pp. 5076-5098,
2009.

[14] R. Benosman, S.-H. Ieng, C. Clercq, C. Bartolozzi, and M. Srini-
vasan, “Asynchronous frameless event-based optical flow”, in Neural
Networks, vol. 27, pp. 32-37, 2012.

[15] G. Grunwald, G. Schreiber and A. Albu-Schäffer and G. Hirzinger,
“Programming by Touch: The Different Way of HumanRobot Interac-
tion”, in IEEE Transactions on Industrial Electronics, 2003.

[16] D. Massa, M. Callegari and C. Cristalli, “Manual guidance for
industrial robot programming”, in Industrial Robot, 2015.

[17] T. Wösch and W. Feiten, “Reactive Motion Control for Human-Robot
Tactile Interaction”, in IEEE International Conference on Robotics
and Automation (ICRA), 2002.

[18] P. Mittendorfer, E. Yoshida, and G. Cheng, “Realizing whole-body
tactile interactions with a self-organizing, multi-modal artificial skin
on a humanoid robot”, in Advanced Robotics, vol. 29, no. 1, pp. 51-67,
February 2015.

[19] M. Fritzsche and N. Elkmann and E. Schulenburg, “Tactile sensing:
A key technology for safe physical human robot interaction”, in
Proceedings of the 6th International Conference on Human-robot
Interaction, pp. 139-140, 2011.

[20] Robot Bosch GmbH, “APAS Intelligent Systems for Man-Machine
Collaboration”, 2016.

[21] F. Nori and S. Traversaro and J. Eljaik and F. Romano and A. Del
Prete and D. Pucci, “iCub whole-body control through force regulation
on rigid non-coplanar contacts”, in Frontiers in Robotics and AI, pp.
1-18, 2015.

[22] E. Dean-Leon, K. Ramirez-Amaro, F. Bergner, I. Dianov, P. Lanil-
los and G. Cheng, “Robotic Technologies for Fast Deployment of
Industrial Robot Systems”, in The 42nd Annual Conference of IEEE
Industrial Electronics Society (IECON), pp. 6900-6907, 2016.

[23] E. Dean-Leon, B. Pierce, P. Mittendorfer, F. Bergner, K. Ramirez-
Amaro, W. Burger and G. Cheng, “TOMM: Tactile Omnidirectional
Mobile Manipulator”, in IEEE International Conference on Robotics
and Automation (ICRA), 2017, In Press.

[24] P. Mittendorfer and G. Cheng, “3D surface reconstruction for robotic
body parts with artificial skins”, in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2012.

[25] P. Mittendorfer, E. Dean-Leon and G. Cheng, “3D spatial self-
organization of a modular artificial skin”, in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2014.

	INTRODUCTION
	Motivation
	Related Work
	Contributions

	SYSTEM DESCRIPTION
	Robot skin
	The Tactile Omnidirectional Mobile Manipulator TOMM
	Fusing force and proximity values to external force
	Reactive skin torque controller
	Cell-wise reactive skin torque control
	Component-wise reactive skin torque control
	The skin joint controller in data mode
	The skin joint controller in event mode

	EXPERIMENTS
	Experimental setup
	Performance evaluation
	Comparability of experiments and controllers
	Controller performance (Idle robot)
	Controller performance (Robot reacting to contact)

	CONCLUSIONS
	References

