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Abstract. A gravimetric quasigeoid has been com-
puted for the area of Bavaria. The solution was
derived using the theory ofanalytical continuation.
The series expansion was carried out up to third or-
der for both surface free-air and RTM-reduced grav-
ity anomalies. A comparison shows the size and
shape of the usually neglected higher order terms as
well as the impact of topographic reductions. Data
preprocessing involves coordinate transformation of
all available gravimetric data to one single reference
frame. Critical in this context is the height coor-
dinate if datum offsets between different national
height systems are not very well known. Such offsets
are of the order of some decimeters in central Eu-
rope (with one extreme value of more than 2 meters
for Belgium). Neglection of proper transformations
leads to a tilt of the Bavarian geoid of the order of
1 cm=100 km. The overall quality of the quasigeoid
has been checked against height anomalies derived
from GPS/levelling in Bavaria. After reduction of a
second order trend function an RMS of 3cm was de-
rived.
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1 Theoretical background

The determination of the physical surface of the earth
from gravity anomalies is known asMolodensky’s
problem. Even though the surface anomalies are lin-
ear functions of the harmonic potential outside the
masses they can not directly be used in Stokes inte-
gral because they refer to the physical surface which
is not an equipotential surface of the gravity field.
Application of Stokes’ integral equation for geoid
computation is still possible after some corrections
have been applied to the free-air anomalies. In Molo-
densky’s solution these are the so calledMolodensky
correction terms taking into account the inclination
of the terrain. A different approach, calledanalyti-
cal continuation, was proposed by Moritz (see e.g.
Moritz, 1980). Here all surface anomalies are analyt-
ically downward continued to the level surface pass-
ing through the computation point (or any other point

level if desired). As they are analytically connected
to the surface anomalies they represent the harmonic
potential outside the earth even though they are sit-
uated inside the topographic masses. Therefore the
requirements for application of Stokes theory are ful-
filled and the height anomaly�(P ) at computation
pointP can be computed according to

�(P ) =
R
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where�g� are the downward continued anomalies
referring to the level surface throughP ,  is the
spherical distance between computation and integra-
tion point andSt( ) is the Stokes function. Accord-
ing to Moritz (1980, sec. 45) the downward contin-
ued anomalies can be expanded into a series

�g� = g0 + g1 + g2 + g3 + : : : (2)

each term being computable by the following recur-
sion, starting from the surface anomalies�g:

g0 = �g

g1 = ��hL1(g0) (3)

g2 = ��hL1(g1)��h2L2(g0)

g3 = ��hL1(g2)��h2L2(g1)��h3L3(g0):

Here�h = h� hP is the height difference between
physical surface and level surface throughP and the
operatorLn can also be computed recursively by

Ln(f) = n�1L1(Ln�1(f)): (4)

The surface operatorL1 is given by

L1(f) =
R2
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wherel0 = 2R sin  
2

is the distance between com-
putation and integration point. Using these equations
the height anomaly is computed by the series

� = �0 + �1 + �2 + �3 + : : : (6)

One can show (see e.g. Moritz, 1980, sec. 46) that
this series is termwise equal to the solution using
Molodensky corrections.



2 Computational methodology

As usually done in practical geoid determination a
remove – restoreprocedure is applied. The grav-
ity anomalies are reduced for some known or com-
putable part of the signal whose effect on the geoid is
added back after applying Stokes integral (1) on the
reduced anomalies. This is done for the long wave-
length part coming from a global potential model. In
the present computations the Earth Gravity Model
EGM96 was used. Gravity anomalies�gEGM and
height anomalies�EGM from EGM96 were pro-
cessed according to the procedure given by Lemoine
et al. (1998). The influence of the atmospheric
masses is treated according to the IAG–approach,
which is described e.g. in Moritz (1980, sec.49). The
reduced anomaly reads

�gred = �g ��gEGM + �gAtm; (7)

where�gAtm is the atmospheric gravity effect which
can be taken from Moritz (1988). As the atmospheric
effect on the height anomalies is usually quite small
it is neglected in therestoreprocedure.

The reduced anomalies still refer to the earth sur-
face but represent a reduced gravity field. They
are still quite rough especially in mountainous ar-
eas (see figure 2) as EGM96 only removes the long
and medium length structures of the field. In solving
the geodetic boundary value problem for the physi-
cal surface of the earth no topographic reductions are
necessary. Still topographic reductions smooth the
gravity field and are therefore useful for both grid-
ding purposes and a faster convergence of the se-
ries (6). As the potential model already includes the
low frequency part of the topographic effect it seems
most appropriate to use aresidual terrain model
(RTM) for reductions (see e.g. Forsberg and Tsch-
erning, 1981). Using Bouguer or isostatic anomalies
instead means to take into account topography twice.
In the present case a150 � 150 reference topography
was used, which corresponds to degreen = 720 of a
spherical harmonic expansion and is well above the
resolution of EGM96 with itsnmax = 360. In prac-
tical geoid determination one usually assumes that
theMolodensky correctionsare very small when us-
ing RTM-reduced anomalies and often neglects them
at all (see e.g. Torge and Denker, 1999; Grote, 1996).
The validity of this assumption was shown by Denker
and Tziavos (1999) by computing theMolodensky
correctionsfor a test area in the Mont Blanc region
of the European Alps. In this paper we will investi-
gate the�n terms usinganalytical continuationin a
larger area.

The computations are carried out by fast spectral
algorithms, i.e. by the 1D-FFT method proposed by
Haagmans et al. (1993). The method can be applied
to convolution integrals such as Stokes integral (1) or
the downward continuation operator given in (5). For
the Stokes integral we have

� =
R�'��
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and for theL1–operator
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R2�'��
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where F1f�g denotes 1D–Fourier transformation
andF�1

1 f�g denotes the inverse transformation.

3 Data and preprocessing

3.1 Gravimetric data

Point and block mean gravity values were collected
in a 4�-cap around Bavaria. In a preprocessing step
all values were transformed, first, to one single ref-
erence frame and, secondly, to a consistent set of
equally sized block mean values by least squares
prediction. The horizontal position of the points
was transformed to ETRS89. The height component
was shifted to the German system DHHN92, which
is close to the United European Leveling Network
UELN95 (offset 1 cm, see (Sacher et al., 1999)).
Transformation does not only affect the coordinates
but due to
 = 
(h; ') also the values of the gravity
anomalies, where the height component is the most
critical part. Sacher et al. (1999) have reported trans-
formation relations between national height systems
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Fig. 1. Differences between DHHN92 normal heights and
national height systems in cm. Difference between UELN95
and DHHN92 is +1cm. [taken from: Sacher et al. (1999)]



and the UELN95 (see Figure 1). Those were used
for the present computations. The height differences
include not only offsets due to different datum points
but also the effect of different types of height like
normal or orthometric height.

3.2 Topographic data

Height information is necessary both for topographic
reductions as well as for computing thegn terms ac-
cording to (3). In the present computation Digital
Height Models (DHM) of different resolution have
been used, from30" � 30" down to 50m�50m in
Bavaria. The reductions are based on simple prism
bodies. The resolution of the reference topography
was150 � 150. For computation of thegn terms the
30" � 30" DHM was used in the entire area. The
results of Denker and Tziavos (1999) show that the
evaluated height anomaly differs only by some few
centimeters in rough terrain if a30"� 45" DHM is
used instead of a dense7:5"� 7:5" DHM. This cor-
responds to the results obtained by Grote (1996). For
smoother terrain the difference is even less. Figure
2 shows the effect of RTM reduction on surface free
air anomalies. As stated earlier the reduced anoma-
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Fig. 2. Surface free-air anomalies�gFA (top) and RTM-
reduced anomalies�gRTM (bottom). Both are reduced for
the global effect of EGM96. The anomalies reach values up to
�250mGal in case of�gFA and�80mGal for�gRTM .

lies still refer to the real earth surface but represent a
smoothed topography. They can be seen as analyti-
cally continued values from the smoothed to the real
surface. It is worthwhile noticing the strong correla-
tion between�gFA and height in case of rough ter-
rain. In lowlands there is no such correlation. Mind
that in figure 2 the EGM effect is already substracted
so that there is only a small signal left in lowlands.

4 Numerical investigations

4.1 Effect of height system offsets on the
geoid

Lacking information about the reference frame of
some given data and the connection to the chosen
computation reference frame one must forego trans-
formations in the preprocessing step. This often hap-
pens in practice, when one is collecting data from dif-
ferent institutions. Therefore it is interesting to see,
how such unknown offsets between different national
heights affect the geoid. Two geoid computations
were carried out, one based on the original (not trans-
formed) heights and another one including transfor-
mation to DHHN92 according to the numbers given
in figure 1. Comparison shows for the Bavarian geoid
a tilt of 0:7 cm=100 km in north–eastern direction.
The effect is shown in Figure 3.
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Fig. 3. Bias of Bavarian geoid induced by datum offsets be-
tween different national height systems.

4.2 Effect of RTM reductions on the geoid

One usually assumes that smoothing the gravity field
by RTM reductions reduces the size of the Moloden-
sky correction term. Series (6) should converge faster
in that case. This can be seen from the following
representation in spherical harmonics. The gravity



anomaly is given by

�g =

1X
n=2

�
R

r

�n+2
�gn(�; �); (10)

wheregn(�; �) are the surface spherical harmonics.
Then the gradient@=@r is given by

@�g

@r
= �

1X
n=2

�
R

r

�n+2
n+ 2

r
�gn(�; �) (11)

and so forr = R we get�
@�g

@r

�
n

= �
n+ 2

R
�gn: (12)

If we restrict ourselves to a first order expansion (1)
reads, using equations (2) and (3),

�(P ) =
R
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According to equation (12) the anomaly gradient is
much smaller than the anomaly itself because of the
factor1=R. Only the high frequencies can gain con-
siderable size where the factor(n + 2) counteracts
1=R. That means the second term in (13) must be
taken into account depending on the size of the high
frequency part in the anomaly signal. If there is only
small power in the high frequencies it can be ne-
glected. This is the case when the field is smoothed
by topographic reductions. Figures 4 and 5 show the
results of the computations carried out using the un-
smoothed free-air anomalies and the smoothed RTM-
anomalies. Of course the largest signal shows up in
the Alps because the gravity anomalies reach their
highest values there. Stokes’ integration smoothes
the high frequency gravity signal and spreads it over
a larger area. This results in a tilt for areas outside the
Alps region. Comparison of the first order term�FA1
shows that for free-air anomalies (FA) the contribu-
tion to the height anomaly is quite large and reaches
the same order of magnitude as the zero order terms
�FA0 and�RTM0 . Its high positve values counteract
the negative signal coming from�FA0 . In compar-
ison, �RTM1 amounts to one decimeter values only,
which is less more than one order of magnitude. The
terms�RTM2 and�RTM3 decrease quite fast by a fac-
tor of 1=10 per order. Using free-air anomalies the
convergence of the series is much slower.�FA2 and
�FA3 still reach values up to one decimeter. Again
�FA3 counteracts�FA2 , which gives the free-air se-
ries an alternating character (it is not really alternat-
ing, because the first and second order terms have the
same sign).
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Fig. 4. Height anomaly from free-air gravity anomalies
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Fig. 5. Height anomaly from RTM-reduced gravity anomalies

4.3 Comparison to height anomalies from
GPS/levelling

To get an idea of the overall accuracy obtained by
the above computations the quasigeoid was com-
pared to height anomalies derived by GPS/levelling
in Bavaria. A set of 97 control points with an es-
timated accuracy of2 � 3 cm was used. The dif-
ferences (see figure 6, top) show a significant tilt of
about10 cm=100 km in south–eastern direction. This
order of magnitude fits to the findings of other quasi-
geoid computations, like e.g. EGG97. Torge and
Denker (1999) report tilts of around 1.5 ppm for the
same region. The reason for such a bias is not fully
understood until now, but propagation of EGM er-
rors is a strong candidate. A low order correction
surface can be used to fit the gravimetric solution
to the GPS/levelling results. A second order sur-
face was used for the present computations. The
residuals given in figure 6 (bottom) show minima
and maxima at -9.8 cm and 8.2 cm with an RMS of
3 cm. These numbers are derived from the solution
obtained from the RTM-reduced anomalies. Using
the free-air anomalies the same accuracy is achieved
after trend reduction.

Fig. 6. Raw (top) and trend reduced (bottom) differences
between the gravimetric quasigeoid and height anomalies de-
rived from GPS/levelling at 97 points in Bavaria.



5 Discussion

It is shown that smoothing the gravity field by topo-
graphic reductions is very favourable to the conver-
gence of the series solution for the height anomaly.
The first order term gives a contribution of up to
one decimeter in the Alps and a slight tilt in the sur-
rounding areas. Aiming at centimeter accuracy the
second order term is only significant in very rough
topography, giving maximum contributions of 1 cm,
while the third order term can be neglected in any re-
gion. For a solution derived from unreduced free-air
anomalies the series converges much slower and even
the third order term shows values up to one decimeter
in the Alps.

The whole solution is biased compared to height
anomalies derived from GPS/levelling, assumedly
due to propagation of EGM errors. The gravimetric
solution is fitted to the GPS/levelling height anoma-
lies using a low order correction surface. In Bavaria
such a low order surface takes care not only of the
EGM errors but also of the tilt caused by the first or-
der term as well as for the bias introduced by disre-
garding the proper transformation of all gravimetric
data to one height system. This leads to the conclu-
sion that one can restrict the gravimetric solution to
the zero order term and might neglect datum offsets
in preprocessing, if in a postprocessing step a low
order correction surface is considered acceptable to
fit the solution to GPS/levelling points. This is not
valid for areas in the central region of the Alps where
the contribution of the higher order terms is not so
smooth.

Choosing for the correction surface a second or-
der function seems to be appropriate in Bavaria be-
cause the trend is not a mere plane, but the inclination
is steeper close to the Alps. Of course higher order
correction surfaces give a better fit to GPS/levelling.
But one should be aware that fitting to GPS/levelling
tends to bend the gravimetric solution, which is as-
sumed to represent short wavelengths with highest
accuracy. Some arbitrariness is introduced this way.
Further investigations are needed for a theoretical
formulation of the problem.
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