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Peter Gritzmann, Sven de Vries
Zentrum Mathematik, TU M�unchen, D-80333 M�unchen, Germany

Abstract

The present paper deals with the computational complexity of the discrete inverse problem of
reconstructing .nite point sets and more general functionals with .nite support that are accessible
only through some of the values of their discrete Radon transform. It turns out that this task be-
haves quite di3erently from its well-studied companion problem involving 1-dimensional X-rays.
Concentrating on the case of coordinate hyperplanes in Rd and on functionals  :Zd → D with
D∈{{0; 1; : : : ; r};N0} for some arbitrary but .xed r, we show in particular that the problem can
be solved in polynomial time if information is available for m such hyperplanes when m6d−1
but is NP-hard for m = d and D = {0; 1; : : : ; r}. However, for D = N0, a case that is relevant
in the context of contingency tables, the problem is still in P. Similar results are given for
the task of determining the uniqueness of a given solution and for a related counting problem.
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1. Introduction

The problem of reconstructing .nite point sets from the values of their discrete
X-ray transform in a few directions has attracted much attention; see the surveys [10],
[11] and the monograph [12]. In particular, the computational complexity of the basic
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underlying tasks has been determined completely, showing that the problem can be
solved in polynomial time when m, the number of lines parallel to which the images
are taken, is 2 but is NP-complete for any set of at least 3 lines in any dimension d
at least 2, [8]. There is much less known about the ‘companion’ problem that involves
the discrete Radon transform. Some uniqueness theorems are due to [5] and [19],
some tractability results for contingency tables are given in [13] and [20], and some
.rst intractability results for general k-dimensional X-rays are discussed in [6]. The
starting point for the present paper is a recent result of [1] that solves a problem
raised by the .rst named author in 1996 showing that checking the consistency of data
that encode the values of the Radon transform for the 3 coordinate planes in R3 is
NP-hard. The present paper extends this result to arbitrary dimensions, determines the
computational complexity of related uniqueness and counting problems, and also treats
the tasks for the more general objects of weighted sets or, equivalently, for functionals
 :Zd→D of .nite support. The most relevant domains D for the weights are {0; 1},
the standard case of .nite point sets, and, more generally, {0; 1; : : : ; r} for some .xed
positive integer r, N0, the case corresponding to contingency tables, and [0; 1], [0; r]
and [0;∞[, the associated linear programming relaxations. (Of course, in order to deal
with these problems in the binary Turing machine model we will actually restrict all
input and output data to rationals.)

Our results show that the case of Radon transforms is much more involved than that
of the standard X-ray problem in that
• It is not only the parameters d and m that determine the computational complexity

but also the intersection pattern of the hyperplanes.
• Even in R4 there are hyperplanes S1; S2; S3 for which the consistency and unique-

ness problems are NP-hard over {0; 1; : : : ; r} and N0, but there are other hyperplanes
S1; S2; S3 for which the problems can be solved in polynomial time over these do-
mains.
• The problems can be solved in polynomial time for m6d−1 coordinate hyperplanes

over all relevant domains D, are NP-hard for m=d over {0; 1; : : : ; r} but polynomial-
time solvable over N0, [0; r] and [0;∞[.
Section 2 gives all relevant de.nitions, a brief overview of the known complexity

results, and statements of our main results. Section 3 contains proofs for the new
intractability results while some tractability results are proved in Section 4.

2. De�nitions, preliminaries and main results

Typically, in discrete tomography the objects that have to be reconstructed are .nite
lattice sets F ⊆Zd, see [12]. This is appropriate for most of the applications, particularly
for those involving crystalline structures in semiconductor physics that have to be
reconstructed from few of their images under high resolution transmission electron
microscopy; see [11]. Of course, crystal lattices are more general than Z3 but due to
the aIne invariance of the basic tasks the concentration on the standard lattice is no
real restriction of generality. Another line of research focuses on the reconstruction
of contingency tables from some of their marginal sums, see [13] and [20]. Here the



P. Gritzmann, S. de Vries / Theoretical Computer Science 281 (2002) 455–469 457

entries of the tables are nonnegative integers. Also linear programming relaxations to
‘fuzzy sets’ with weights in [0; 1] have been studied in the literature; see [4].

Here we utilize a uni.ed approach by considering functions  :Zd→D, with .-
nite support supp( ) = {x∈Zd:  (x) 	= 0}, where D is some speci.c set of non-
negative numbers. The sets D that will be considered are {0; 1}, or more generally
R= {0; 1; 2; : : : ; r} for some .xed r ∈N, N0 and the corresponding relaxations [0; 1],
[0; 1]∩Q, [0; r], [0; r]∩Q, R+ and Q+, where Q+ and R+ denote the nonnega-
tive rationals and reals, respectively. (We will sometimes express results explicitly
for D = {0; 1} and D =R even though the latter case contains the former since it is
only required that r is an arbitrary but .xed positive integer allowing the choice r = 1.
This is done to emphasize that the corresponding result holds for the ‘classical case’
of .nite subsets of Zd.) The family of these sets D will be denoted by D.

For any such set D let Fd
D denote the class of all functions  :Zd→D with .nite

support. In order to emphasize the interpretation of a function  ∈Fd
{0;1} as the .nite

set supp( ) we will sometimes abbreviate Fd
{0;1} by Fd, the notation introduced in

[8]. The elements of Fd are then called lattice sets. The values  (x) of a function
 ∈Fd

D will in the following be denoted by  x.
For k; d∈N with k6d − 1, let Sk; d be the set of all k-dimensional subspaces in

d-dimensional Euclidean space Rd. Let Lk; d denote the subset of Sk; d of those spaces
spanned by vectors v1; : : : ; vk ∈Zd\{0}. The elements of Lk; d will be called lattice
spaces. For S ∈Sk; d let A(S) denote the set of all k-dimensional aIne subspaces of
Rd that are parallel to S.

Let  ∈Fd
D and S ∈Sk; d. The (discrete) k-dimensional X-ray of  parallel to S is

the function XS  :A(S)→ [0;∞[ de.ned by

XS (T ) =
∑
x∈T

 x

for T ∈A(S).
The mapping that associates with every S ∈Sk; d the X-ray XS  is called the dis-

crete k-dimensional X-ray transform of  . For k = 1 it is the standard discrete X-ray
transform while for k =d− 1 it is called discrete Radon transform of  .

Given a functional  ∈Fd
D its ‘1-norm

‖ ‖1 =
∑

x∈Zd

| x|

will be called total weight.
The present paper deals with algorithmic issues related to discrete inverse problems

associated with the Radon transform. The natural model of computation is the usual
binary Turing machine model; see [9] and [14]. Of course, all explicitly encoded data
must have .nite bit length. Hence we will employ rational points only. So, for most
purposes we will restrict the domains D to the subset DQ of elements of D that contain
only rational points. Also, all spaces S will be restricted to

⋃d−1
k=1 Lk; d.

Let S ∈Ld−1; d. In order to de.ne our basic algorithmic problems we need to param-
eterize A(S) appropriately. This is most easily done with the aid of a vector s∈ S⊥
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that has minimum Euclidean distance from the origin among all such nonzero vectors
t with (t + S)∩Zd 	= ∅. Then, of course,

A(S) = {�s + S: � ∈ Z}:

Hence we can regard XS  as function on Z, and accordingly represent data for the
reconstruction task by means of functions fS :Z→Q+ with .nite support, referred to
as data functions. The graph

{(�; f(�)) ∈ Z×Q+: f(�) 	= 0}

of fS is called an X-set. In the following we will switch freely between the di3erent
representations.

Adequate data structures can also be de.ned for general k-dimensional X-rays. This
has been done explicitly in [8] for 1-dimensional X-rays and can be extended analo-
gously to full generality. Since some more technical details are involved and since we
want to concentrate here on the case of the Radon transform anyway we refrain from
going into details. However, in order to set our results into perspective we introduce
the basic algorithmic tasks for general k-dimensional X-rays.

In the following let always d; k; m∈N with 26d;m and k6d−1. Further, D∈DQ,
unless stated otherwise. Also let S1; : : : ; Sm be m di3erent elements of Lk; d.

CONSISTENCYFd
D

(S1; : : : ; Sm).
Instance: Data functions fS1 ; : : : ; fSm .
Question: Does there exist a  ∈Fd

D such that XSi =fSi for i = 1; : : : ; m?

From a practical point of view, it is more relevant to actually reconstruct a solution.
RECONSTRUCTIONFd

D
(S1; : : : ; Sm) is de.ned similarly, the input being the same but the

question is replaced by the task of constructing a solution if one exists. Clearly, the
reconstruction problem cannot be easier than the consistency problem.

Of course, if  is a solution for a given instance I of CONSISTENCYFd
D

(S1; : : : ; Sm) then
its total weight ‖ ‖1 equals ‖fSi‖1 for any i = 1; : : : ; m. Hence ‖fS1‖1 = · · · = ‖fSm‖1

is a necessary condition for consistency, a condition that can be checked eIciently.
In the following we may assume that this condition is satis.ed; n= n(I) denotes the
corresponding cardinality.

Another important algorithmic task involves checking the uniqueness of a solution.

UNIQUENESSFd
D

(S1; : : : ; Sm)
Instance: A functional  ∈Fd

D .
Question: Does there exist  ′ ∈Fd

D \{ } such that XSi =XSi 
′

for i = 1; : : : ; m?

Note that UNIQUENESSFd
D

(S1; : : : ; Sm) checks, in e3ect, nonuniqueness; but this way
of de.ning the problem puts it into the class NP for all our relevant domains.

UNIQUENESSFd
D

(S1; : : : ; Sm) is a special case of #(CONSISTENCYFd
D

(S1; : : : ; Sm)), the
counting problem that asks for the number of solutions.
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Here is an overview of the results about the computational complexity of the above
tasks that are most relevant for our purposes. As pointed out before the best studied
case is that of 1-dimensional X-rays. We begin with (some slight extensions) of results
of [8].

Theorem 2.1. Let S1; : : : ; Sm ∈L1; d be m di:erent lattice lines. If m¿3 then the prob-
lems CONSISTENCYFd

D
(S1; : : : ; Sm) and UNIQUENESSFd

D
(S1; : : : ; Sm) are NP-complete while

RECONSTRUCTIONFd
D

(S1; : : : ; Sm) is NP-hard in the strong sense for D = {0; 1}; D =R
and D =N0. All three problems are solvable in strongly polynomial time for D =Q∩
[0; 1]; D =Q∩ [0; r] and D =Q+. Further, #(CONSISTENCYFd

D
(S1; : : : ; Sm)) is #P-

complete for D = {0; 1}; D =R and D =N0.

Proof. The results were proved for D = {0; 1} already in [8, Theorem 3.7] for consis-
tency, in [8, Theorem 4.3] for uniqueness and in [8, Corollary 3.8] for the counting
problem. In fact, in [8] it was actually shown, that the statements remain true, even
for instances where two data functions fi take values only in {0; 1}. This observa-
tion immediately implies the intractability results for D =R and D =N0 because such
instances permit only solutions  with values in {0; 1}.

In the other cases consistency, reconstruction and uniqueness can be reduced to linear
programming. In fact, the linear feasibility problem modeling CONSISTENCYFd

D
(S1; : : : ; Sm)

and RECONSTRUCTIONFd
D

(S1; : : : ; Sm) is of the form∑
x∈T∩Zd

 x = fSi(T ); i = 1; : : : ; m; T ∈A(Si);

 x ∈ D; x ∈ Zd:

Note that  x is zero for all but polynomially many x∈Zd, hence the coeIcient matrix
is a 0-1-matrix of size bounded by a polynomial in the input.

Given  ∈Fd
D specifying an instance of UNIQUENESSFd

D
(S1; : : : ; Sm) one can decide

for each element x0 of supp( ) whether there exists another solution  ′ with  ′
x0
	=  x0

by solving the linear programs

min  ′
x0∑

x∈T∩Zd

 ′
x = fSi(T ); i = 1; : : : ; m; T ∈A(Si);

 ′
x ∈ D; x ∈ Zd

and

max  ′
x0∑

x∈T∩Zd

 ′
x = fSi(T ); i = 1; : : : ; m; T ∈A(Si);

 ′
x ∈ D; x ∈ Zd:

The tractability assertion follows now with the aid of [18].

Of course, the problem #(CONSISTENCYFd
D

(S1; : : : ; Sm)) is essentially meaningless for
D∈{Q∩ [0; r];Q+} because a given instance permits either no, one or in.nitely many
solutions, since the set of solutions over the closure cl(FD) is convex.
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The case of higher dimensional X-rays has not been studied as comprehensively as
that of 1-dimensional X-rays. Of course, some additional features occur that make the
problems more diIcult to handle. For instance, not even the case m= 2 or the mem-
bership in NP extends without further assumptions. For instance, since the intersection
of two 2-dimensional lattice subspaces in R3 is a 1-dimensional lattice subspace it
contains an in.nite number of lattice points. So, the number of points that belong to a
solution need not necessarily be bounded by a polynomial in the bit length of the data
functions fSi . This is no problem for D =N0 but for bounded D the following general
assumption is needed.

Assumption 2.2. Let D be R or [0; r]∩Q. Then for any instance I the card-
inality n(I) is bounded by a polynomial in the bit length of the data
functions.

Remark 2.3. The problem CONSISTENCYFd
D

(S1; : : : ; Sm) belongs to NP.

Proof. Checking whether a guessed solution  is actually a solution for a given in-
stance can easily be done in time that is polynomial in the input size of I and the
size of  . Hence it suIces to show that in case of consistency there exists a solution
whose size is polynomial in the size of I. This is clear if S =

⋂m
i=1 Si = 0. So, sup-

pose that S contains a line. If D =N and D =Q+ then in case of consistency there
always exists a solution  such that supp( )∩T is empty or a singleton for every
translate T of S. For D =R and D = [0; r]∩Q the existence of a polynomial witness
follows from Assumption 2.2, in the latter case with the aid of the fact that in case of
consistency the corresponding linear program admits a basic feasible solution whose
size is bounded by a polynomial in the input length.

It is not too diIcult to see that under the Assumption 2.2 the case m= 2 is always
simple.

Theorem 2.4. Let S1; S2 ∈Lk; d. Then all three problems CONSISTENCYFd
D

(S1; S2),
RECONSTRUCTIONFd

D
(S1; S2) and UNIQUENESSFd

D
(S1; S2) can be solved in polynomial time

for D∈DQ.

Proof. Proofs for the planar case can be found in [3], [17], and [16], and the general
result for r = 1 is contained in [7]. For r¿1 it follows by a simple network-Row
argument similar to that of [17].

It is also clear that the hardness results of Theorem 2.1 for the case of 1-dimensional
X-rays can be used to obtain some hardness results for larger k. The following theorem
is taken from [6].

Theorem 2.5 (Gardner and Gritzmann [6, Theorem 4.5.2]). Let S1; : : : ; Sm ∈Lk; d be m
di:erent spaces, and let D =R or D =N0. Further, let m¿3 and dim(

⋂m
i=1 Si) = k−1

or let m¿4 and k = 2. Then CONSISTENCYFd
D

(S1; : : : ; Sm) is NP-complete.
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The .rst more intrinsically 2-dimensional transformation is constructed in [1] to
determine the computational complexity of CONSISTENCYF3 (S 3

1 ; S
3
2 ; S

3
3 ) for the standard

coordinate planes S 3
1 ; S

3
2 ; S

3
3 in R3.

Theorem 2.6 (Brunetti et al. [1, Theorem 3.3]). CONSISTENCYF3 (S 3
1 ; S

3
2 ; S3

3) is NP-
complete.

This theorem was the starting point for the present paper. We will largely generalize
and extend it and give results that show that even though there is an obvious geometric
duality between lines and hyperplanes the case of Radon transforms is much more
involved than that of the standard X-ray problems in that various phenomena occur for
k =d− 1 that do not occur for k = 1.

To be able to state our results precisely we need some additional notation. In order
not to overload the paper with too many technicalities we will state our main results for
coordinate hyperplanes and one additional ‘diagonal’ hyperplane. It should of course
be clear that they extend to much more generality.

Let ed
1 ; : : : ; e

d
d be the standard unit vectors of Rd, let ed

d+1 = (1=d)
∑d

i=1 e
d
i , and let 1

be the ‘all-ones’ vector ded
d+1. The coordinate hyperplanes are denoted by Sd

1 ; : : : ; S
d
d

i.e.,

Sd
i = {x ∈ Rd: x�edi = 0}; i = 1; : : : ; d:

Further let

Sd
d+1 = {x ∈ Rd: x�edd+1 = 0}:

The subfamily of Sd−1; d that is most relevant for the purpose of the present paper is
then

Hd = {Sd
i : i = 1; : : : ; d + 1}:

Since our problems will from now on be restricted to subsets of Hd we will
use the abbreviation CONSISTENCYFd

D
(d;m) for CONSISTENCYFd

D
(Sd

1 ; : : : ; S
d
m); the problems

UNIQUENESSFd
D

(d;m) and #(CONSISTENCYFd
D

(d;m)) are de.ned accordingly.
Note that for any given instance I= (f1; : : : ; fm) of CONSISTENCYFd

D
(d;m) all solutions

are contained in the (generally in.nite) lattice set

G = G(I) = Zd ∩
m⋂
i=1

(supp(fi)edi + Si);

called the grid associated with I. Of course, the grid G can be .nitely represented
and computed in polynomial time from the sets f1; : : : ; fm by solving systems of linear
equations.

Now we are ready to state our main results. The .rst is a far reaching intractability
result for the algorithmic inversion of the discrete Radon transformation that generalizes
Theorem 2.6.
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Theorem 2.7. Let d=m¿3 and D = {0; 1} or, more generally, D =R. Then
CONSISTENCYFd

D
(d;m) and UNIQUENESSFd

D
(d;m) are NP-complete in the strong sense

while #(CONSISTENCYFd
D

(d;m)) is #P-complete. For the domains D∈{[0; r]∩Q;Q+},
the problems CONSISTENCYFd

D
(d;m) and UNIQUENESSFd

D
(d;m) can be solved in strongly

polynomial time.

Let us note in passing that the part of Theorem 2.7 dealing with uniqueness shows
in particular that, unless P=NP, the uniqueness criterion for d=m= 3 of [19] cannot
be checked eIciently.

On the other hand, Wiegelmann [20] has given the following tractability result that
is based on an algebraic study of the underlying toric ideals; it generalizes a result
of [13].

Theorem 2.8 (Wiegelmann [20, Section 4.2.2]). Let d=m¿2. Then CONSISTENCYFd
N0

(d;m) and UNIQUENESSFd
N0

(d;m) can be solved in polynomial time.

In Section 4 we will give an elementary proof and simple and fast algorithm for a
slight generalization of the former tractability result that shows that whenever d¿m¿2
there is a solution for a given instance I= (f1; : : : ; fm) of CONSISTENCYFd

N0
(d;m) if

and only if ‖f1‖1 = · · · = ‖fm‖1. This simple condition is in striking contrast to the
more involved characterization of [15] and [16] of the feasibility of instances of
CONSISTENCYF2

{0; 1}
(2; 2). As another consequence of Theorems 2.7 and 2.8 we see that

the complexities for problems over {0; 1} and N0 may di3er dramatically, another fea-
ture that does not occur in the case of 1-dimensional X-rays. On the positive side, we
obtain a simple tractability result for D =R.

Theorem 2.9. Let d∈N with d¿m¿2. Then there is a polynomial time algorithm
for CONSISTENCYFd

R
(d;m) and RECONSTRUCTIONFd

R
(d;m).

In particular Theorem 2.9 shows that there is no .xed number m0, independent of d,
such that our basic problem CONSISTENCYFd(d;m) becomes intractable whenever m¿m0.
In conjunction with Theorem 2.5 this shows that unlike in the case of 1-dimensional
X-rays, the computational complexity of problems involving the Radon transform does
not depend on the parameters d and m alone but also on the intersection pattern of the
hyperplanes that are involved.

3. Intractability results

By a modi.cation of the approach of [1] for CONSISTENCYF3 (3; 3), we will show in
this section that for D =R and d¿3 the problems CONSISTENCYFd

D
(d; d) and

UNIQUENESSFd
D

(d; d) are NP-complete and #(CONSISTENCYFd
D

(d; d)) is #P-complete. In
[1] a reduction is given from a particularly restricted consistency problem, that was
shown to be NP-complete in [2]. The construction fails, however, to show the NP-
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hardness of the uniqueness problem and the #P-hardness of the counting problem. Here
we construct a transformation from the unrestricted 1-dimensional X-ray problem that
allows us to invoke Theorem 2.1 and determine the complexity not only in the gen-
eral case of CONSISTENCYFd

D
(d; d) but also for UNIQUENESSFd

D
(d; d) and #(CONSISTENCYFd

D

(d; d)) at the same time. Together with the results of the next section this will
in particular fully characterize the computational complexity for planes orthogonal
to the coordinate axes in arbitrary dimension d¿3. The classical counting problem
#(CONSISTENCYF2 (2; 2)) for two 1-dimensional X-rays remains, however, open.

Let d¿3. For i = 1; : : : ; d let S ′
i = Sd−1

i , and Si = Sd
i . Of course, S1; : : : ; Sd are hy-

perplanes of Rd while S ′
1; : : : ; S

′
d will be regarded as hyperplanes of Rd−1. Whenever

useful we will identify Rd−1 with the hyperplane of Rd of those vectors whose last
coordinate is 0.

For our complexity results we will use transformations whose validity can be most
easily seen with the aid of a geometric argument which relies on the notion of the
barycenter c of  . As usual, the barycenter of a function  ∈Fd

R+
that is not identically

0 is de.ned by

c =
1
‖ ‖1

∑
x∈supp( )

 xx:

Next we see how information about the barycenter of  can be derived from its
X-rays parallel to a hyperplane S.

Lemma 3.1. Let S be a hyperplane and let v be a normal to S. If  ∈Fd
R+

then

v�c =

∑
y∈S⊥ XS (y + S) v�y∑

T∈A(S) XS (T )
:

Proof. Let U = supp( ). First, note that

‖ ‖ 1 =
∑
x∈U

 x =
∑

T∈A(S)

∑
x∈T∩U

 x =
∑

T∈A(S)
XS (T ):

Second,

v�c = v�
(

1
‖ ‖1

∑
x∈U

 xx
)

=
1
‖ 1‖

∑
x∈U

 xv�x

=
1
‖ ‖1

∑
T∈A(S)

∑
x∈T∩U

 xv�x =
1
‖ ‖1

∑
y∈S⊥

XS  (y + S) v�y;

which concludes the proof.

Lemma 3.1 implies that the barycenter c of a function  ∈Fd
R+

is uniquely de-
termined by the X-rays parallel to S1; : : : ; Sd. In the sequel we only need the weaker
statements that 1�c can be computed in polynomial time from XSi , i = 1; : : : ; d and
also from XSd+1 alone.
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In the following let Z always be a .nite subset of Nd
0 , let n∈N, let r ∈N, and

denote by F(Z; n; r) the set of all  ∈Fd
[0; r] with supp( )⊂Z and of total weight

n. We will now characterize those elements  ∗ of F(Z; n; r) which minimize the
functional � :F(Z; n; r)→R de.ned by �( ) = 1�c .

For  ∈N set

PZ; = {x ∈ Z : 1�x ¡  }; HZ; = {x ∈ Z : 1�x =  };

and

F (Z; n; r) = { ∈F(Z; n; r): PZ; ⊂ supp( ) ⊂ PZ; ∪ HZ; ∧  |PZ; ≡ r};

where  |PZ;  denotes the restriction of  to PZ; .

Lemma 3.2. Let  ; n∈N be such that F (Z; n; r) 	= ∅. Then a function  ∈F(Z; n; r)
minimizes the functional � if and only if  ∈F (Z; n; r).

Proof. Let  ∈F(Z; n; r);  ∗ ∈F (Z; n; r), U = supp( ) and U ∗ = supp( ∗). Note that

1�c = 1�c ∗ +
1

‖ ∗‖1

( ∑
x∈U

 x1�x − ∑
x∈U∗

 ∗
x 1

�x
)

;

hence for the ‘if’-assertion it suIces to show that( ∑
x∈U

 x1�x − ∑
x∈U∗

 ∗
x 1

�x
)
¿ 0:

With the abbreviation P for PZ; we have

∑
x∈U

 x1�x − ∑
x∈U∗

 ∗
x 1

�x

=
( ∑

x∈U∩P
 x1�x − ∑

x∈P
r · 1�x

)
+

( ∑
x∈U\P

 x1�x −  
∑

x∈U∗\P
 ∗
x

)

=

( ∑
x∈U∩P

( x − r)1�x − ∑
x∈P\U

r · 1�x

)
+

( ∑
x∈U\P

 x1�x −  
∑

x∈U∗\P
 ∗
x

)
:

Since  x − r60, 1�x6 − 1 for x∈P and 1�x¿ for x∈U\P we have

∑
x∈U

 x1�x − ∑
x∈U∗

 ∗
x 1

�x

¿ ( − 1)
(( ∑

x∈U∩P
 x

)
− r|P|

)
+  

( ∑
x∈U\P

 x −
∑

x∈U∗\P
 ∗
x

)
:



P. Gritzmann, S. de Vries / Theoretical Computer Science 281 (2002) 455–469 465

Now, r|P|+∑x∈U∗\P  ∗
x = ‖ ∗‖1. Hence

∑
x∈U

 x1�x − ∑
x∈U∗

 ∗
x 1

�x ¿  
( ∑

x∈U
 x − ‖ ∗‖1

)
= 0;

concluding the proof of the ‘if ’-part of the assertion. As to the ‘only if’-part observe
that equality holds in the above computation only if

r · |P| = ∑
x∈U∩P

 x and
∑

x∈U\P
 x1�x =  

∑
x∈U\P

 x;

which implies  ∈F (Z; n; r).

In the following we describe a lifting procedure that constructs from a feasible
instance of CONSISTENCYFd−1

[0; r]
(S ′

1; S
′
2; : : : ; S

′
d) an equivalent instance of CONSISTENCYFd

[0; r]

(S1; S2; : : : ; Sd).
So let I′ = (f′

1 ; : : : ; f
′
d ) be an instance of CONSISTENCYFd−1

[0; r]
(S ′

1; S
′
2; : : : ; S

′
d). The con-

struction will be described in terms of the corresponding X-sets; let them be of the
form

X ′
i = {( j; %i;j): j ∈ U ′

i } for i = 1; : : : ; d;

where U ′
i = supp(f′

i ) for i = 1; : : : ; d. As the algorithmic problems are invariant under
translation, we may assume that 0 = min U ′

i for i = 1; : : : ; d−1. This is to say that the
grid G(I′) is contained in Nd−1

0 , and 0∈G(I′). Let &= max U ′
d , set

P = {x = ('1; : : : ; 'd)� ∈ U ′
1 × U ′

2 × · · · × U ′
d−1 × Z: 1�x ∈ U ′

d\{&}}:
Now we de.ne an instance I= (f1; : : : ; fd) of CONSISTENCYFd

[0; r]
(S1; S2; : : : ; Sd) by spec-

ifying its X-sets as follows:

Xi = {(j; %i;j + r · |P ∩ (jedi + Sd
i )|): j ∈ U ′

i } for i = 1; : : : ; d− 1;

Xd = {((&− j); %d;j + r · |P ∩ ((&− j)edd + Sd
d)|): j ∈ U ′

d}:
Observe that the grids of I′ and I are related by

G(I) = {x + jedd: x ∈ G(I′) ∧ (&− j) ∈ U ′
d}:

Further, with the notation introduced before Lemma 3.2,

P = PG(I);& and (Sd HG(I);& = G(I′);

where (Sd denotes the orthogonal projection on Sd.

Theorem 3.3. Let I′ be a feasible instance of CONSISTENCYFd−1
[0; r]

(S ′
1; S

′
2; : : : ; S

′
d), and let

I be the corresponding instance of CONSISTENCYFd
[0; r]

(S1; S2; : : : ; Sd) constructed above.

Then the solutions in Fd−1
[0; r] of I′ are in one-to-one correspondence with the solutions
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in Fd
[0; r] of I. The bijectivity persists even when the ranges of the functionals are

restricted to [0; r]∩Q or R.

Proof. Let  ′ ∈Fd−1
[0; r] be a solution for I′. We construct a solution  ∈Fd

[0; r] for I
as follows. Let

F = {x + (&− 1�x)edd: x ∈ supp( ′)}
and

 x =




r for x ∈ PG(I);&;

 ′
(Sd (x) for x ∈ F;

0 else:

This construction can easily be reversed for solutions

 ∈F&(G(I); ‖ ‖1; r);

simply by taking

 ′
x =  x+(&−1�x)edd

for all x ∈ G(I′):

It follows from the explicit construction above that the solutions  ′ ∈Fd−1
[0; r] of I′

are in one-to-one correspondence with those solutions  ∈Fd
[0; r] for I that belong to

F&(G(I); ‖ ‖1; r). Hence all that remains to be shown is that all solutions of I are
of this kind.

So, let  ∈Fd
[0; r] be a solution for I. By our assumption there exists a solution

 ′ ∈Fd−1
[0; r] for I′. Let  ∗ ∈F&(G(I); ‖ ‖1; r) be the corresponding solution for I, in

Fd
[0; r]. By Lemma 3.1,

1�c = 1�c ∗ ;

thus Lemma 3.2 implies

 ∈F&(G(I); ‖ ∗‖1; r);

concluding the proof of the .rst assertion.
The last two claims of the theorem follow by observing, that under the bijection the

values of the functions are not changed. Therefore, integers correspond to integers and
rationals to rationals.

The next result is needed for an induction step in the proof of Theorem 2.7.

Remark 3.4. Using the notation introduced before Theorem 3.3, let I′ be a feasible
instance of CONSISTENCYFd−1

[0; r]
(S ′

1; S
′
2; : : : ; S

′
d) and let I= (f1; : : : ; fd) be the correspond-

ing instance of CONSISTENCYFd
[0; r]

(S1; S2; : : : ; Sd). Further, we de.ne an additional data
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function fd+1 corresponding to the hyperplane Sd
d+1 orthogonal to ed

d+1 by

fd+1(�) =

{
r · |P ∩ (�edd+1 + Sd

d+1)| if � 	= &;

n(I′) if � = &:

Then (f1; : : : ; fd; fd+1) is an instance Î of CONSISTENCYFd
[0; r]

(S1; S2; : : : ; Sd; Sd
d+1). The sets

of solutions of I and Î are identical. This fact persists even when the ranges of the
functionals are restricted to [0; r]∩Q or R.

Now we can prove Theorem 2.7, our main intractability result. Note that for D∈
{[0; r]∩Q;Q+} consistency, reconstruction and uniqueness can be reduced to linear
programming with matrices and objective function with values only 0 and 1. From [18]
it follows then, that they are solvable in strongly polynomial time.

So let D =R now. Membership of the problems in the relevant complexity classes
is trivial.

The hardness assertions for d= 3 follow from the corresponding results for (S2
1 ;

S2
2 ; S

2
3) of Theorem 2.1. In fact, since the feasibility of a given instance over [0; r]

can be veri.ed in strongly polynomial time the intractability results of Theorems 2.1
persists if we restrict the set of instances to those that are feasible over [0; r]. Hence
the assertion follows directly from Theorem 3.3.

For d¿3 we proceed by induction. Suppose we know already that CONSISTENCYFd−1
R

(d − 1; d − 1) and UNIQUENESSFd−1
R

(d − 1; d − 1) are NP-complete in the strong
sense, and that #(CONSISTENCYFd−1

R
(d − 1; d − 1)) is #P-complete. By Remark 3.4

CONSISTENCYFd−1
R

(d−1; d) and UNIQUENESSFd−1
R

(d−1; d) are NP-complete in the strong
sense, and the counting problem #(CONSISTENCYFd−1

R
(d−1; d)) is #P-complete. The as-

sertion follows then again with the aid of Theorem 3.3.

4. Tractability results

We begin by proving a lemma characterizing consistency.

Lemma 4.1. Let d¿m¿2 then there is a solution for a given instance I= (f1; : : : ; fm)
of CONSISTENCYFd

N0
(d;m) if and only if ‖f1‖1 = · · · = ‖fm‖1. If m6R, the assertion

persists even for D = {0; 1}.

Proof. Let I= (f1; : : : ; fm) be an instance of CONSISTENCYFd
N0

(d;m). All we need to

show is that the condition ‖f1‖1 = · · · = ‖fm‖1 is suIcient. This can be done by in-
duction over n= n(I). Of course, for n= 0 there is nothing to show. So suppose n¿1.
For every index i = 1; : : : ; m we choose a point �i ∈ supp(fi) and set

f′
i (�) =

{
fi(�)− 1 for � = �i;

fi(�) for � 	= �i:
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Then I′ = (f′
1 ; : : : ; f

′
m) is an instance of CONSISTENCYFd

N0
(d;m) with n(I′) = n−1. Since

‖f′
1 ‖1 = · · · = ‖f′

m‖1, the instance I is feasible by the induction hypothesis; let  ′ be
a solution. Further, T =

⋂m
i=1(�iedi + Sd

i ) 	= ∅, hence we can raise the value of  ′ on
one point in T to obtain a solution for I. This implies the .rst assertion.

Turning to the second, let I be an instance of CONSISTENCYFd
{0; 1}

(S1; : : : ; Sm) satisfying
the condition. We regard I as an instance of CONSISTENCYFd

N0
(S1; : : : ; Sm), and apply the

.rst part of Lemma 4.1 to obtain a solution  . Note that since now m6d− 1,

S =
m⋂
i=1

Si

is at least 1-dimensional. Let T be any translate of S that meets supp( ). If we
replace  |T by an arbitrary functional )T :T ∩Zd→{0; 1} with support of cardinality∑

x∈T∩Zd  x and de.ne a new functional  ′ by  x =)T (x) for x∈T and T ∈A(S)
then we obtain a solution for I as an instance of CONSISTENCYFd

{0; 1}
(S1; : : : ; Sm).

Next, Algorithm 1 is a polynomial-time method proving Theorem 2.8 for the general
case of d¿m¿2.

Algorithm 1. Reconstruction

Initialize: For i = 1; : : : ; m, let supp (fi) = {�( j)
i : j = 1; : : : ; ni} and *( ji)

i ←fi(�
( j)
i )

while (*(1)
i ; : : : ; *(ni)

i )� 	= 0 for all i = 1; : : : ; m do
for i = 1 to m do

ji← arg min{*( j)
i : j = 1; : : : ; ni ∧ *( j)

i 	= 0}
end for
i0← arg min{*( ji)

i : i = 1; : : : ; m}
y0← (�( j1)

1 ; �( j2)
2 ; : : : ; �( jm)

m ; 0�d−m)�

 y0← *( j0)
i0

for i = 1 to m do
*( ji)
i ← *( ji)

i −  y0

end for
end while
if *( j)

i 	= 0 for some index i then
report ‘infeasible’

else
output  

end if

Note, that each iteration step can be performed in polynomial time. Further, in each
step at least one of the *( j)

i turns 0, hence the algorithm runs in strongly polynomial
time. This implies Theorem 2.8.

Also, Theorem 2.9 is now a consequence of the second part of Lemma 4.1. In fact,
due to Assumption 2.2, the construction in its proof can be speci.ed in such a way,
so as to run in polynomial time.
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