
DOI: 10.1007/s00453-004-1098-x

Algorithmica (2004) 40: 51–62 Algorithmica
© 2004 Springer-Verlag New York, LLC

Minimum Cycle Bases for Network Graphs1

Franziska Berger,2 Peter Gritzmann,2 and Sven de Vries2

Abstract. The minimum cycle basis problem in a graph G = (V, E) is the task to construct a mini-
mum length basis of its cycle vector space. A well-known algorithm by Horton of 1987 needs running time
O(|V ||E |2.376). We present a new combinatorial approach which generates minimum cycle bases in time
O(max{|E |3, |E ||V |2 log|V |}) with a space requirement of �(|E |2). This method is especially suitable for
large sparse graphs of electric engineering applications since there, typically, |E | is close to linear in |V |.

Key Words. Graph cycle, Minimum cycle basis, Matroid, Electrical network.

1. Introduction. Cycle bases in graphs have been an object of study for more than
150 years, since they have proved a useful tool in Electric Network Theory and various
other applications. Ever since Kirchhoff, cycle bases obtained from a spanning tree in
the network graph serve to check or enforce the Kirchhoff Voltage Law [Ki], [Re], [Mu],
[IM]. Other fields include Static Analysis, dealing with the rigidity of framework struc-
tures [Re], [Ka], [Sp], chemical ring perception [DGHL], and periodic event scheduling
[LM].

A cycle basis obtained from a spanning tree of the graph is generally not of minimum
length. To cope with the computational exigencies posed by the large data sets of prac-
tical electric networks, minimum cycle bases are of advantage, because the subsequent
computation time reduces with decreasing basis length.

Horton’s algorithm for finding a minimum cycle basis in an edge-weighted undirected
graph can be implemented in time O(|V ||E |α)where α denotes the matrix multiplication
constant (currently, α ∼ 2.376), see [Ho] and [GH]. With our present approach, a
minimum cycle basis can be determined in time O(max{|E |3, |E ||V |2 log|V |}) and space
�(|E |2). Thus, the new method has a lower complexity bound whenever |E |3−α ≤
|V |, hence currently for |E | = O(|V |1.61), which is the case in the aforementioned
applications, since the relevant graphs from practical electric networks are very large
and particularly sparse.

An algorithm based on the same principle as our approach has been developed inde-
pendently by Gerards et al. see [GdPS]. A similar algorithm has also been mentioned in
[CGH], the latter however with exponential running time.

The paper is organized as follows. After introducing the necessary notation in Sec-
tion 1.1, we describe a useful preprocessing step for multigraphs in Section 1.2. The

1 The authors were supported by the DFG Schwerpunktprogramm Nr. 1126, Grant No. GR993/8-1.
2 Zentrum Mathematik, Technische Universität München, Boltzmannstraße 3, D-85747 Garching bei
München, Germany. {berger,gritzman,devries}@ma.tum.de.

Received April 17, 2003; revised February 27, 2004. Communicated by S. Albers.
Online publication May 28, 2004.

52 F. Berger, P. Gritzmann, and S. de Vries

algorithm for finding a minimum cycle basis is presented in Section 2. A first indication
of its practical behavior is given in Section 2.3.

1.1. Definitions and Notation. Let G = (V, E) be an undirected multigraph with m
edges and n vertices. Let E = {e1, . . . , em}, and let ω: E → R

+ be a positive weight
function on E .

A cycle C is a subgraph of G in which all vertices have even degree. It is simple if it
is connected and if each vertex in C has degree two. A cycle C may be represented by
its incidence vector (bi (C))i=1,...,m , with

bi (C) =
{

0, if ei
∈ E(C),
1, if ei ∈ E(C),

where E(C)denotes the set of edges in C . Usually, we identify a cycle C with its incidence
vector. The weight of a cycle C with respect to ω is defined as ω(C) :=∑

e∈C ω(e). If
ω(e) = 1 for all e ∈ E , the weight of a cycle coincides with its length |C | defined by
|E(C)|.

The incidence vectors of cycles span a binary vector space CG F(2)(G), the cycle space
of the graph when the addition of two cycles C1 and C2 is defined as the binary addition
of their incidence vectors. It corresponds to the symmetric difference

C1 ⊕ C2 = (E(C1) ∪ E(C2))\E(C1 ∩ C2).

A set of cycles is called linearly independent if their incidence vectors are linearly
independent over G F(2). The following result is well known (see, e.g., [Di]).

PROPOSITION 1. The dimension µ(G) of CG F(2)(G) is equal to m − n + c(G), where
c(G) is the number of connected components of G.

µ := µ(G) is also called the cyclomatic number of G. A cycle basis B is a basis
of CG F(2)(G). It is called a minimum cycle basis if its weight ω(B) := ∑

C∈B ω(C) is
minimal. The cycle-edge incidence matrix A ∈ G F(2)µ×m of a cycle basis B has as
rows the (incidence vectors of the) cycles in B.

Adapting an argument of [LS] for graphs with positive edge weights, it is easy to see
that the following holds.

REMARK 2. Each cycle in a minimum cycle basis is simple.

Some cycle bases may be constructed from a spanning tree or—if G is not connected—
from a spanning forest T of G (fundamental tree bases, Kirchhoff bases) by adding edges
to T . Any nontree edge e forms a unique fundamental cycle F(e) with edges of T . The
set of such cycles has cardinality µ and their linear independence is obvious since every
nontree edge is contained in exactly one cycle.

A fundamental tree basis BT can be computed in time O(mn), more specifically in
time O(

∑µ

i=1 |Fi |), where Fi , i = 1, . . . , µ, are the fundamental cycles [Pa].
In Section 2.2 we use the fact that the columns of the incidence matrix A of a fun-

Minimum Cycle Bases for Network Graphs 53

damental tree basis BT may be ordered such that A = (Iµ|A′), where Iµ is the µ × µ
identity matrix.

Horton’s polynomial time algorithm for finding a minimum cycle basis of a graph G
[Ho], [GH] is based on the fact that the cycle space of G has the structure of a matroid
with sets of linearly independent cycles as independent sets. It follows that, if all cycles
were explicitly given, the Greedy algorithm could be used to find a minimum cycle
basis [Ox]. However, the number of simple cycles in G may be exponential in n, so it is
necessary to reduce the number of cycles to be checked. Horton’s algorithm generates
a polynomially sized set of candidate cycles which is guaranteed to contain a minimum
cycle basis. The minimum cycle basis is then extracted from this set by means of the
Greedy algorithm. Linear independence of the cycles is checked by Gaussian elimination
on the corresponding cycle-edge incidence matrix.

The cycles in Horton’s candidate set are of the form C(x, y, z) = P(z, x)+ (x, y)+
P(y, z) for every triple {x, y, z} with (x, y) ∈ E and z ∈ V , where P(z, x) denotes an
arbitrary path from z to x that is shortest with respect to the weight ω.

REMARK 3 [Ho]. The number of candidate cycles is O(mn).

In their recent article, Golynski and Horton show that the running time complexity of
the algorithm is O(|E |α|V |) where α denotes the matrix multiplication constant [GH].

In planar graphs a minimum cycle basis can be found in time O(n2 log n + m), see
[HM]. Faster algorithms exist also for special graph classes like Halin-graphs, outerplanar
graphs, and series-parallel graphs, see [LS] and [St].

1.2. Preprocessing. Clearly, the cycle space of a graph is the direct product of the
cycle spaces of its connected components. Similarly, the cycle space of a connected but
not 2-connected graph G is the direct product of the cycle spaces of its 2-connected
components. Therefore, a minimum cycle basis of G can be found by concatenating
minimum cycle bases of the 2-connected components. The 2-connected components can
be computed in linear time, see, e.g., [Ta]; consequently we henceforward consider only
2-connected graphs.

Multigraphs from electric engineering applications often have many parallel edges
and loops. However, as we will see, these can be removed in a preprocessing step. In
practice, this often leads to a significant reduction of the problem size.

The following statement shows that there are classes of cycles, a representative of
which must be contained in every minimum cycle basis.

PROPOSITION 4 [HS]. Let e ∈ E be an edge of a graph G through which there exists a
shortest cycle C(e). Then there is a minimum cycle basis B containing C(e). Moreover,
every minimum cycle basis must contain some shortest cycle through e.

In general, the set {C(e) : C(e) is a shortest cycle through e ∈ E} does not span
CG F(2)(G). For instance, in Figure 1 every edge e belongs to one of the eight triangles,
but according to Proposition 1, dim CG F(2)(G) = 16− 8+ 1 = 9.

By Proposition 4, cycles formed by loops in G belong to every minimum cycle basis.
Remark 2 implies that it is possible to remove the loops from G, compute a minimum

54 F. Berger, P. Gritzmann, and S. de Vries

Fig. 1. Example showing that Proposition 4 generally does not provide a cycle basis. We assume hereω(e) = 1
for all e ∈ E .

cycle basis of the remaining graph, and add to it the cycles corresponding to loops. The
basis obtained is a minimum cycle basis of G.

Let u, v be two vertices that are joined by k parallel edges with k ≥ 2. Select an edge
e′ with minimum weight among them. For each edge e of the other k − 1 parallel edges
compute successively a shortest cycle through e and then remove e from G. The graph
that remains after doing this for all pairs of adjacent vertices is simple. We claim that
the set of cycles B obtained by computing a minimum cycle basis B0 of the reduced,
simple graph together with the set of cycles B1 resulting from the parallel edges and
loops described above form a minimum cycle basis of G.

LEMMA 5. The resulting set of cycles B := B0 ∪ B1 is a minimum cycle basis of G.

PROOF. B clearly consists of µ cycles. The cycles in B1 are linearly independent. In
fact, their cycle-edge incidence matrix A, where the edges are numbered according to the
order in which the cycles are constructed, has upper triangular form. Further, all cycles
in B1 are also linearly independent from all cycles in B0.

It remains to show that B is a minimum cycle basis of G. By choice of the edge e′, B0

is part of a minimum cycle basis of G; no cycle could be replaced by a shorter cycle. The
cycles of B1 are shortest possible cycles in G through the corresponding edges, again by
choice of e′, and thus belong to a minimum cycle basis by Proposition 4.

2. A Fast Minimum Cycle Basis Algorithm

2.1. The Basic Scheme. In this section we describe our main algorithm for computing
a minimum cycle basis of an undirected edge-weighted graph G. By the results of
Section 1.2, we assume that G is simple and 2-connected.

It is based on the observation that a cycle basis is minimal when no cycle in it can
be replaced by a strictly smaller cycle. Thus, the algorithm begins with a fundamental
tree basis and successively exchanges cycles for smaller ones if possible. This is done
by constructing specific shortest paths in an auxiliary graph. The basic scheme is given
in Algorithm 1.

Minimum Cycle Bases for Network Graphs 55

Algorithm 1. Basic exchange scheme

Input: Undirected 2-connected simple edge-weighted graph G
Output: Minimum cycle basis B of G

1: Construct a fundamental tree basis B0 = {F1, . . . , Fµ}.
2: for i = 1 to µ do
3: Find a shortest cycle Ci that is linearly independent of Bi−1\{Fi }

with Subroutine 2.
4: if ω(Ci) < ω(Fi) then
5: Bi := (Bi−1\{Fi }) ∪ {Ci }
6: end if
7: end for
8: Output B := Bµ

Of course, the crucial part is the selection of the new cycle Ci in Subroutine 2, which
is given in detail in Section 2.3. In any case, it follows readily from the matroid property
that Algorithm 1 produces a minimum cycle basis. Finding a fundamental tree basis takes
time O(mn). As we will show in Lemma 13, each of the O(m) steps of the algorithm
can be carried out in O(max{m2, n2 log n}) time. Hence, we can conclude

THEOREM 6. Algorithm 1 computes a minimum cycle basis with O(max{m3,mn2 log n})
time.

PROOF. We show that in each step i the set of the first i cycles can be extended to a
minimum cycle basis. For a contradiction, let i0 be the smallest index such that the first
i0 new cycles in the basis Bi0 cannot be supplemented by other cycles in G such that a
minimum cycle basis is obtained. Let B be a minimum cycle basis which contains the
first i0−1 cycles of Bi0 . As the cycle Ci0 cannot be a linear combination of the first i0−1
cycles, its basis representation by cycles fromB requires at least one other cycle. If one of
these cycles has weight equal to or larger than Ci0 , we could replace it by Ci0 inB. Hence
all are strictly smaller. However, then at least one of these cycles is linearly independent
of Bi0−1\{Fi }, for otherwise, replacing each such cycle by its basis representation with
respect to Bi0 yields a representation of Ci0 with cycles of Bi0 , a contradiction. Hence,
in step i0, we could have found a strictly shorter cycle, contradicting the choice of Ci0 .

Note that our algorithm differs from Horton’s algorithm fundamentally in that no
explicit global set of candidate cycles is required. Moreover, a cycle basis is maintained
in every step of the algorithm. Thus it can also be used as a heuristic method to obtain
a sparse cycle basis, by starting with the longest cycles in B0 and stopping after some
time interval has elapsed.

This trade-off property is particularly important in dealing with very large scale
electric networks.

2.2. A Criterion for Linear Independence. Now, we describe a criterion for construct-
ing a cycle that is linearly independent of a set of µ − 1 basis cycles efficiently. Such
a cycle is called feasible. We show in the following three subsections that a shortest

56 F. Berger, P. Gritzmann, and S. de Vries

feasible cycle needed in Line 3 of Algorithm 1 can be computed by combinatorial means
in time O(max{m2, n2 log n}).

Note that testing linear independence by Gaussian elimination requires that all cycles
to be checked are explicitly given; but this is not the case here.

Our approach utilizes the fact that a cycle Ci is linearly independent of the row space
of the cycle-edge incidence matrix A of a set of cycles if and only if there exists a vector
u ∈ ker A such that 〈Ci , u〉 = 1, where 〈·, ·〉 denotes the standard inner product over
G F(2). As this statement plays a crucial role in the following, we include it as an explicit
lemma.

LEMMA 7. Let C be a set of cycles, let A be its cycle-edge incidence matrix, and let
Ci
∈ C be a cycle. Ci is linearly independent of the row space of A if and only if there
exists a vector u ∈ ker A such that 〈Ci , u〉 = 1.

PROOF. (⇒) If no vector u ∈ ker A with the claimed property exists, we have ker
(A

Ci

) =
ker A. However, by linear independence, rank

(A
Ci

) = rank(A)+ 1, a contradiction.
(⇐) If Ci =

⊕
j∈J aj for some index set J , then 〈Ci , u〉 = 〈⊕j∈J aj , u〉 =⊕

j∈J 〈aj , u〉 = 0 for all u ∈ ker A, again a contradiction.

In Subroutine 2 we first compute the kernel of the incidence matrix of the cycles of
Bi−1\{Fi } for i ∈ {1, . . . , µ} by transforming the matrix into upper triangular form by
Gaussian elimination. Since the bases Bi and Bi−1 for i = 1, . . . , µ differ in at most a
single cycle, the corresponding new matrices can be calculated from the previous ones
very efficiently.

In the following, A0 denotes the cycle-edge incidence matrix of B0. Since B0 is a
fundamental tree basis we may assume that A0 is of the form (Iµ|A′), where Iµ denotes
the µ × µ unit matrix. In general, Ai denotes the upper triangular matrix obtained
after completion of step i and corresponding elimination. For i = 1, . . . , µ, the matrix
resulting from Ai−1 by the removal of row i is denoted by A(i)i−1. For instance, A(1)0 is the
cycle-edge incidence matrix of B0\{F1}.

If in step i of Algorithm 1, Fi is replaced by a new cycle Ci , the matrix Ai is obtained
from A(i)i−1 by adding the incidence vector of Ci as row i and subsequent Gaussian
elimination on this row.

By construction, each matrix A(i)i−1 has upper triangular form. Therefore, only after

insertion of a new cycle Ci into A(i)i−1, row i might have nonzero entries below the
diagonal. Hence it suffices to perform Gaussian elimination steps only on row i ; rows
with index j
= i remain unchanged.

LEMMA 8. The matrices Ai , i = 1, . . . , µ, are the cycle-edge incidence matrices of
the sets Bi after Gaussian elimination.

It is clear that the row operations do not change the kernel of the corresponding
matrix. Further, since the dimension µ of the cycle space coincides with the rank of
Ai−1, it follows that 〈Fi , u〉 = 〈Ci , u〉 for each u ∈ ker A(i)i−1, hence ker Ai−1 = ker Ai .

LEMMA 9. For each i = 1, . . . , µ, ker A0 = ker Ai ⊂ ker A(i)i−1.

Minimum Cycle Bases for Network Graphs 57

The dimension of ker A0 is m −µ = n− 1. Since A0 = (Iµ|A′), a basis for ker A0 is
given by the columns of

(A′
Im−µ

) =: U . We index the kernel vectors in U as uµ+1, . . . , um

to point out that, in this basis, every kernel vector corresponds to a free variable of A0

with entry 1 in the row corresponding to its index.
The kernel of each matrix A(i)i−1, i = 1, . . . , µ, is spanned by the vectors uj , j =

µ + 1, . . . ,m, and an additional basis vector ui . ui can be chosen such that ui j = 0
for j > i and uii = 1. Its entries for j < i are then determined by solving the upper
triangular (i − 1)× i part of the system A(i)i−1ui = 0 which requires at most O(m2) time.
Note that u1 is the binary vector with one as the first entry and m − 1 zeros.

By Lemmas 7 and 9, every cycle Ci that is linearly independent of the row space of
A(i)i−1 must fulfill 〈Ci , ui 〉 = 1. Therefore it is sufficient to examine only the additional

kernel basis vector ui constructed for A(i)i−1 in order to find all feasible cycles.
Lemma 8 ensures that a shortest cycle Ci with 〈Ci , ui 〉 = 1 will be linearly indepen-

dent not only from the rows of A(i)i−1 but also from Bi−1\{Fi } in each step i = 1, . . . , µ.
To construct a shortest linearly independent cycle note that any cycle with odd parity with
respect to ui will be linearly independent of Bi−1\{Fi } and we simply select a shortest
one with respect to ω. Details are given in the next subsection.

2.3. Constructing a Shortest Linearly Independent Cycle. Consider a fixed step i ∈
{1, . . . , µ} of Algorithm 1. To find a shortest feasible cycle C with 〈C, u〉 = 1 for the
kernel vector u := ui constructed above we consider an auxiliary graph Gu in which
this can be achieved by solving a shortest path problem.

Subroutine 2. Constructing a shortest feasible cycle C

Input: Index i ≥ 1, Matrix Ai−1

Output: Shortest feasible cycle C

1: Form A(i)i−1 by removing row i from Ai−1.
2: Construct kernel vector u by setting ui = 1, uj = 0 for j > i

and solving A(i)i−1u = 0.
3: Form graph Gu as described in Section 2.3.
4: Let C be an empty set of cycles.
5: for all vertices v incident to an edge e in G with ue = 1 do
6: Find a shortest v–v′ path Pv in Gu with respect to ωu .
7: if Pv does not contain a vertex pair {x, x ′} with x
= v then
8: C := C ∪W (Pv)
9: end if

10: end for
11: if minD∈C ω(D) < ω(Fi) then
12: Let C := argminD∈Cω(D)
13: Form Ai by inserting C into row i of A(i)i−1 and performing

Gaussian elimination on row i .
14: else
15: C := Fi , Ai := Ai−1

16: end if
17: return C .

58 F. Berger, P. Gritzmann, and S. de Vries

The graph Gu is constructed from G as follows (for an example see Figure 2): For
every vertex v of G make two vertices v and v′ in Gu . For each edge e = (x, y) in G add
two edges to Gu : If entry ue is one, add edge (x, y′) and edge (x ′, y), if it is zero, add
edges (x, y) and (x ′, y′). This way, Gu displays graph G on two levels. Define a weight
function ωu : Gu → R

+ by assigning each edge the weight ω(e) of the corresponding
edge e in G it comes from.

Gu has 2n vertices and 2m edges; it can be constructed in time O(m) and needs space
�(m).

LEMMA 10. Let C be a simple cycle in G. Then the following two statements are
equivalent: (a) 〈C, u〉 = 1. (b) For every vertex v ∈ C there exist two simple v–v′ paths
in Gu which do not contain any pair of vertices {x, x ′} with x
= v.

PROOF. (⇐) Trivial. (⇒) Let C = {e1, . . . , er } be a simple cycle in G that fulfills
〈C, u〉 = 1. Let e1 = (v, v1), . . . , ek = (vk−1, vk), . . . , er = (vr−1, v). We construct a
path in Gu according to the assertion. For e1 choose edge (v, v′1) in Gu if ue1 = 1, (v, v1)

otherwise. For every subsequent edge ek in C with uek = 0 choose edge (vk−1, vk) or
(v′k−1, v

′
k), depending on the end vertex of edge ek−1. If uek = 1, take edge (vk−1, v

′
k)

or (v′k−1, vk), again depending of the end vertex reached in the previous step. Since
〈C, u〉 = 1, this procedure must end with v′ in the last step. C is simple, therefore, for
every vertex x ∈ C\{v}, either x or x ′ appears in Gu , but not both.

For every simple cycle C with v ∈ C , there are two v–v′ paths of the same weight
which represent C , the v–v′ path P1 described above, and a v′–v path P2 which uses x ′

wherever P1 uses x for all x ∈ C .

While, according to Lemma 10, simple odd parity cycles in G lead to simple paths
in Gu , without the condition on the pairs {x, x ′} not every simple v–v′ path P in Gu

corresponds to a simple cycle in G. It need not even correspond to a cycle at all (see
Figure 2). However, then it contains a subpath Q corresponding to a strictly smaller
simple cycle in G.

LEMMA 11. For a vertex v of G and a simple v–v′ path Pv in Gu let W (Pv) denote the
closed walk in G obtained by replacing each vertex x ′ of Pv by x . Then W (Pv) contains
a simple odd parity cycle C in G.

2

➀

3 4

1

1
0

2

3
0

G Gu

3 4

4
0

1

2
0

Fig. 2. The dashed 1–1′ path in Gu does not correspond to a cycle in G. However, it contains the bold 3–3′
subpath corresponding to cycle {2, 3, 4}. Here, u contains only one nonzero entry, namely for edge (2, 3),
displayed as©1 in G.

Minimum Cycle Bases for Network Graphs 59

PROOF. Let Pv be a simple v–v′ path in Gu . If W (Pv) is no simple cycle, there must be
a vertex x ∈ W (P) different from v which is encountered at least twice. This means that,
for this vertex, both copies x and x ′ must be contained in Pv , for otherwise Pv would
not be simple. Consider the strictly shorter x–x ′ subpath Px . If Px does not correspond
to a simple cycle either, the argument may be repeated and eventually, since the edge
weights ωu are positive, a shortest subpath Q is found that corresponds to a simple cycle
C ∈ G.

Lemma 10 enables us to find a shortest odd parity cycle containing v if it exists, by
constructing a shortest v–v′ path in Gu and checking whether it contains a pair of vertices
{x, x ′} with x
= v. This is done in Subroutine 2 for each vertex v incident to an edge
e whose corresponding component in the kernel vector u is 1. By Lemma 11, a simple
path that contains such a pair can still be used since it contains a subpath corresponding
to a shortest odd parity cycle for a different pair of vertices. The existence of at least one
odd parity cycle is guaranteed, since the removed fundamental cycle Fi has odd parity
with respect to u by construction. We obtain up to n paths which all correspond to simple
feasible cycles. Among these, we select a shortest one with respect to ωu and discard the
rest. Hence, we conclude with the following lemma.

LEMMA 12. The cycle returned by Subroutine 2 in each step i ∈ {1, . . . , µ} is a shortest
cycle with respect to ω that is linearly independent of all cycles in Bi−1\{Fi }.

2.4. Time Bounds. We analyze the time complexity of Algorithm 1.

LEMMA 13. Subroutine 2 runs in time O(max{m2, n2 log n}).

PROOF. The kernel vector u may be constructed in time O(m2) by solving in step i ∈
{1, . . . , µ} a linear system A(i)i−1u = 0, with A(i)i−1 an upper triangular matrix. Construction
of the graph Gu takes linear time, and the solution of at most n shortest path problems
time O(n(m + n log n)). Further, the operations for updating matrix Ai require linear
time and Gaussian elimination has to be performed on row i , if a new cycle was inserted,
so only the first (i − 1) entries of row i might have to be annihilated; note that no other
elements are affected; rows of index j with j > i still contain the original cycles from
the fundamental tree basis B0. Rows of index j with j < i have already been examined.
As cycles have at most n nonzero entries, this adds another O(mn) term.

LEMMA 14. The space requirement of Algorithm 1 is �(m2).

PROOF. The matrices Ai for i = 1, . . . , µ can have at most�(m2) entries. n additional
paths have to be stored temporarily in every step i for i = 1, . . . , µ, with a space
requirement of �(n2). The graph Gu needs linear space. The bases Bi , i = 0, . . . , µ,
require space �(mn).

For practical instances from electric engineering with up to 2000 vertices, Algorithm 1
took less than an hour on an SGI Octane, with 2 × 250-MHz MIPS R10000 CPUs

60 F. Berger, P. Gritzmann, and S. de Vries

(Data Cache: 32 kB; Instruction Cache: 32 kB; L2-Cache: 1 MB) and 640 MB RAM. A
forthcoming contribution [BGdV2] gives fast heuristic approaches appropriate for sparse
graphs with O(105) vertices. Applications in Computational Chemistry can be found in
[BGdV1].

To compare the practical performance of Algorithm 1 with Horton’s original algo-
rithm from [Ho], we conducted experiments on sparse real-world graphs. It turned out
that Horton’s algorithm took a prohibitively long time for such small graphs from the ap-
plications. For larger randomly generated graphs with small average degree, Algorithm 1
outperforms Horton’s by orders of magnitude.

Figure 3 depicts the average running time of Algorithm 1 for graphs with average
degree close to 4, 6, and 8, taken over a sample of 20 graphs with 10–100 vertices. The
graphs were created by randomly choosing edges between all pairs of vertices, and then
adding further edges to make the graph 2-connected if this was not already the case.

10 20 30 40 50 60 70 80 90 100
0

2000

4000

6000

8000

10000

12000

14000

#nodes

Random Graphs

MCB
Horton
n3log n/500

(average degree 4)

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6
x 10

4 Random Graphs

#nodes

tim
e

(m
s)

MCB
Horton
n3log n/500

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7
x 10

4 Random Graphs

#nodes

tim
e

(m
s)

MCB
Horton
n3log n/500

(average degree 6) (average degree 8)

Fig. 3. The average running time of a standard implementation of Horton’s algorithm and Algorithm 1 (MCB).
For comparison, we include the curve n3 log n (scaled by some constant factor). This is the theoretical worst-
case complexity of Algorithm 1 for our sample graphs.

Minimum Cycle Bases for Network Graphs 61

2.5. Minimum Cycle Bases of Regular Matroids. Golynski and Horton also show that
a minimum cycle basis for weighted regular matroids can be computed in time O(kα+1)

where k denotes the cardinality of the ground set and α is the matrix multiplication
constant, see [GH].

Regular matroids are matroids M which are representable over every field, i.e., for
every field F there is a mapping from the ground set of M into a finite-dimensional
vector space W over F such that a set of elements of M is independent if and only if its
image is linearly independent in W , see [Ox] for details.

Golynski and Horton’s [GH] algorithm uses the fact that regular matroids can be
decomposed into graphic matroids, cographic matroids, and copies of the special matroid
R10 [Se], [Tr]. It cleverly combines minimum cycle bases of these components to obtain
a minimum cycle basis of the matroid itself. Algorithm 1 can be used alternatively as a
subroutine for graphic matroids instead of Horton’s algorithm, to some advantage if the
graphs corresponding to the graphic matroids are sparse.

Note Added in Proof. Recently, T. Kavitha, K. Mehlhorn, D. Michail, and K. Paluch
used fast all pairs shortest path algorithms to derive an O(m2n + mn2 log n) algorithm
for the minimum cycle basis problem.

References

[BGdV1] F. Berger, P. Gritzmann, and S. de Vries. Computing cyclic invariants for molecular graphs.
Manuscript, 2004.

[BGdV2] F. Berger, P. Gritzmann, and S. de Vries. New heuristics for the sparse cycle basis problem.
Manuscript, 2004.

[CGH] D.M. Chickering, D. Geiger, and D. Heckerman. On finding a cycle basis with a shortest maximal
cycle. Inform. Process. Lett., 54:55–58, 1995.

[DGHL] G.M. Downs, V.J. Gillet, J.D. Holliday, and M.F. Lynch. Review of ring perception algorithms
for chemical graphs. J. Chem. Inform Comput. Sci., 29:172–187, 1989.

[Di] R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer-Verlag,
Berlin, 1997. 2nd Edn. 2000.

[GdPS] A.M.H. Gerards, J.C. de Pina, and A. Schrijver. Shortest circuit bases of graphs. Manuscript,
2002.

[GH] A. Golynski and J.D. Horton. A polynomial time algorithm to find the minimal cycle basis of
a regular matroid. In Algorithm Theory - SWAT 2002, Turku, Finland, volume 2368 of Lecture
Notes in Computer Science, pages 551–570. Springer-Verlag, Berlin, 2002.

[HM] D. Hartvigsen and R. Mardon. The all-pairs min-cut problem and the min cycle basis problem
on planar graphs. SIAM J. Discrete Math., 7:403–418, 1994.

[Ho] J.D. Horton. A polynomial-time algorithm to find the shortest cycle basis of a graph. SIAM J.
Comput., 16:358–366, April 1987.

[HS] E. Hubicka and M.M. Syslo. Minimal bases of cycles of a graph. In M. Fiedler, editor, Recent
Advances in Graph Theory, Proc. 2nd Czechoslovak Conference on Graph Theory, pages 283–
293. Academia, Prague, 1975.

[IM] S. Iwata and K. Murota. Combinatorial relaxation algorithm for mixed polynomial matrices.
Math. Programming Ser. A, 90:353–371, 2001.

[Ka] A. Kaveh. On minimal and optimal cycle bases of graphs for sparse flexibility matrices.
Z. Angew. Math. Mech., 69:T212–T214, 1989.

62 F. Berger, P. Gritzmann, and S. de Vries

[Ki] G. Kirchhoff. Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der
linearen Vertheilung galvanischer Ströme geführt wird. Ann. Physik Chem., 72(12):497–508,
1847.

[LM] C. Liebchen and R. Möhring. A case study in periodic timetabling. In Proceedings of ATMOS
2002, volume 66, No. 6 of Electronic Notes in Theoretical Computer Science (ENTS), 2002.

[LS] J. Leydold and P. F. Stadler. Minimal cycle basis of outerplanar graphs. Electron. J. Combin.,
5:R16, 1998.

[Mu] K. Murota. Matrices and Matroids for Systems Analysis, volume 20 of Algorithms and Combi-
natorics. Springer-Verlag, Berlin, 2000.

[Ox] J.G. Oxley. Matroid Theory. Oxford Gradutae Texts in Mathematics. Oxford University Press,
Oxford, 1992.

[Pa] K. Paton. An algorithm for finding a fundamental set of cycles of a graph. Comm. ACM,
12(9):514–519, 1969.

[Re] A. Recski. Matroid Theory and its Applications, volume 6 of Algorithms and Combinatorics.
Springer-Verlag, Berlin, 1989.

[Se] P. Seymour. Decomposition of regular matroids. J. Combin. Theory Ser. B, 28:305–359, 1980.
[Sp] K.V. Spiliopoulos. On the automation of the force method in the optimal plastic design of frames.

Comput. Methods Appl. Mech. Engrg., 141:141–156, 1997.
[St] P.F. Stadler. Minimum cycle bases of Halin graphs. J. Graph Theory, 43:150–155, 2003.
[Ta] R. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput., 1:146–160, 1972.
[Tr] K. Truemper. Matroid Decomposition. Academic Press, Boston, MA, 1992.

