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Abstract. Modern convolutional neural networks for facial landmark
detection have become increasingly robust against occlusions, lighting
conditions and pose variations. With the predictions being close to pixel-
accurate in some cases, intuitively, the input resolution should be as
high as possible. We verify this intuition by thoroughly analyzing the
impact of low image resolution on landmark prediction performance. In-
deed, performance degradations are already measurable for faces smaller
than 50 × 50 px. In order to mitigate those degradations, a new super-
resolution inception network architecture is developed which outperforms
recent super-resolution methods on various data sets. By enhancing low
resolution images with our model, we are able to improve upon the state
of the art in facial landmark detection.

1 Introduction

In the last couple of years, convolutional neural networks (CNNs) have proven to
be very powerful in many applications surrounding image processing, computer
vision and pattern recognition. While CNNs already outperform humans in the
field of image recognition [7, 19] and face recognition [25], they still struggle
with facial landmark detection [6]. This is not too surprising given that humans
are very experienced and well-trained in detecting and locating human faces.
Facial landmark detection is difficult because of the large variety of parameters
that need to be considered, for example, shape, pose, gender, age, race, lighting,
(self-)occlusion, and many more.

Many facial landmark data sets have acknowledged this variety with “in-
the-wild” images [3, 9, 15]. The train and test images are typically of fairly high
resolution. This is sensible since the facial landmarks have to be labeled accu-
rately, which requires some minimum resolution. Real-world data, however, may
be captured under far worse conditions. For example, surveillance systems often
operate at high compression rates, recording people from relatively far away.
In that sense, reality can be “even wilder” than common “in-the-wild” data
sets. Wang et al. [28] distinguish two principle approaches of dealing with low
resolution: Direct and indirect.

Direct Methods try to find appropriate feature representations in the low
resolution space. For example a direct approach is to create low resolution images
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from the high resolution data sets via post-processing. This requires additional
effort during training and is not common practice. State-of-the-art landmark
detection methods are therefore optimized for medium to high resolution images.

Indirect Methods try to restore high resolution information, for example, via
statistical models or super resolution. The key advantage of indirect approaches
is that they operate independently of the landmark detection algorithm, simpli-
fying training and preserving maximum flexibility. For example, there is much
more available training data for super resolution than for landmark detection.

In this work, we pursue an indirect approach to facial landmark detection on
low resolution images. Our main contributions are the following:

– We analyze the impact of low resolution images on CNN landmark detection.
– We present a new super-resolution inception (SRINC) architecture with

slight improvements over the state of the art in super resolution.
– We demonstrate that CNN landmark detection performance can be improved

by applying super resolution to low quality images.
– We show that additional performance can be gained by training the super-

resolution network in the same domain as the landmark detection algorithm
(i.e., faces).

2 Related Work

Facial Landmark Detection on Low Resolution Images has not been
addressed in many publications. While there is a wide range of research for face
recognition in the context of low image resolution, facial landmark detection has
not gained nearly as much attention. The few works that exist mostly focus on
direct methods.

Biswas et al. [2] provide an in-depth analysis of pose regression in low reso-
lution images, using five different landmarks. They transform “the poor quality
probe images and the high-quality gallery images in such a manner that the
distances between them approximate the distances had the probe images been
captured in the same condition”. In other words, they use a direct approach in
the taxonomy of Wang et al. [28].

An elaborate analysis considering the impact of low resolution in the context
of facial landmark detection is provided by Seshadri [22]. In the taxonomy of
Wang et al. [28], Seshadri also uses a direct approach by adopting the training
set resolution to the test set, but also investigates some cross-resolution effects.
In contrast to our approach, Seshadri does not consider convolutional neural
networks. Indirect approaches are not considered, either.

Super Resolution Since our proposed super-resolution method is based on
CNNs, we focus on related work in the field of deep learning. A thorough overview
of classical image super resolution methods is given in [4] and [30].
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Dong et al. were the first to implement image super resolution using a
convolutional neural network (SRCNN) [5] and were able to beat the fairly
recent methods A+ [26], super-resolution forests [21], and transformed self-
exemplars [10] concerning PSNR and structural similarity (SSIM) [29]. In the
following, we will discuss a number of improved network architectures that have
since been proposed [12–14, 27].

Tuzel et al. [27] train a global-local upsampling network specifically suited
for super resolution of human faces. They demonstrate superior performance
compared to SRCNN and other face-specific methods on face data sets. However,
they neither provide their model, nor any comparisons for non-facial images,
which makes it overall difficult to compare against their results.

Kim et al. propose a very deep super-resolution (VDSR) architecture [13]. In
contrast to SRCNN, VDSR is trained on the residual between the ground truth
and the interpolated bicubic result. This residual learning strategy is similar to
the recently proposed ResNet approach by He et al. [8] but only affects the very
last layer, i.e., there is a shortcut connection from input to output but none
in between layers. Since VDSR is still shallow compared to ResNet, the single
shortcut is already sufficient to boost the network performance considerably. In
another work, Kim et al. use the same residual learning target as in [13], but
instead of a linear deep architecture they use a recurrent neural network [14].

Another interesting method was proposed by Johnson et al. [12]. Instead of
optimizing their network towards PSNR, they introduce a perceptual loss that
accounts for the way the human eye perceives image quality. Although their
PSNR is worse than simple bicubic interpolation, the results are optically very
appealing and realistic. Apart from the fact that the perceptual quality is hard
to compare objectively, using a perceptual loss results in more drastically altered
images, especially on small scales. This would likely confuse a landmark detection
algorithm relying heavily on small scale features. Therefore, we do not consider
perceptual loss for our further analysis.

3 Landmark Detection on Low Resolution Images

In this section we investigate the impact of low resolution images on two state-
of-the art landmark detection algorithms: TCDCN [35] and CFSS [36]. We use
the iBUG [20] (135 images) and HELEN [16] (330 images) data sets for the eval-
uation. By empirical analysis we found that there are no significant differences
for bounding boxes larger than 100×100 px. The images are thus sampled down
such that the bounding boxes (provided by [36]) are 100 px in width. Images
with bounding boxes narrower than 100 px are discarded. These new test sets
will be referred to as iBUG-Norm (90 images) and HELEN-Norm (330 images).

The landmark detection performance is measured using the detection error
as used in [23]:

ε =
1

Nd0

N∑
n=1

√
(xn − x′n)2 + (yn − y′n)2 , (1)
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where (xn, yn) and (x′n, y
′
n) represent the ground truth and predicted coordi-

nates for the N = 68 landmarks, respectively. The error is normalized in relation
to the ocular distance d0.

For the analysis, the images are scaled down and up again by different factors
(×2,×3, and×4) via bicubic interpolation. Figure 1 depicts the detection error
distributions for TCDCN and CFSS on both test sets. The detection error in-
creases considerably at factors×3 and×4, but even for factor×2 there is a slight
degradation. Note that CFSS and TCDCN use an internal resizing to 60× 60 px
and 250 × 250 px, respectively, which explains why the effect of ×2 scaling is
less significant for CFSS. The results indicate that there is a general margin
for improving landmark detection on low resolution images: A super resolution
algorithm preceding CFSS could theoretically reduce the error for iBug-Norm at
×4 scaling from 12.0% to under 9.7%, which is a relative improvement of 19.5%.
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Fig. 1. Landmark detection error (Eq. 1) for TCDCN [35] and CFSS [36] on iBUG-
Norm and HELEN-Norm test sets at original scale (×1) and scaling factors×2 through
×4. The detection error clearly increases for larger scalings, i.e., for lower image quality.

4 Proposed Super-Resolution Network

In order to improve the landmark detection on low resolution images we imple-
ment a novel super resolution network, which is described in more detail in the
following sections.

4.1 Network Architecture

We follow the general idea of a deep convolution neural network as described
by Kim et al. (VDSR) [13] and combine it with inception modules inspired by
Szegedy et al. [24] as illustrated in Figure 2. As proposed in [13], the network
is trained on the residual by adding the input to the output before calculat-
ing the loss. This helps the network to converge much faster. The model was
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implemented using Microsoft’s Cognitive Toolkit (CNTK) [33]. We provide the
network configurations and trained models at www.mmk.ei.tum.de/srinc/.

The fact that the network is fully convolutional without any fully-connected
layers allows for arbitrary input dimensions and therefore arbitrary input scales.
Since the patterns on different scales differ, each scale requires a separate set
of filters. The core idea behind using inception modules is to allow the network
to combine and select among several filter scales in each layer that account for
different object scales.

18

Fig. 2. Proposed super resolution inception (SRINC) architecture: The zero-padded
input image is convolved with 128 3×3 filters in the first layer. After 19 successive
inception modules, a last convolutional layer shrinks the feature maps down to the
number of output channels, i.e, in our case one (grayscale) channel. Rectified linear
units are used between layers except after the final convolution and addition.

Another benefit lies in the fact that the receptive field of the network is
increased. The maximum receptive field of the network is 195×195 px via the
path of consecutive 11×11 convolutions. Nevertheless, we use 51×51 px patches
for training to limit memory consumption. The patch size obviously does not
exploit the full capacity of the network, but we found that it is sufficient for
scaling factors up to×4. This can be explained by two facts: 1) the output of the
network depends mostly on local features and 2) the outer parts of the receptive
field are supported by far less paths through the network and therefore contain
mostly noise. Further tests (not shown) revealed that the patch size has to be
increased for scaling factors larger than×10 because the local regions affecting
the pixels are enlarged.

4.2 Training

Our SRINC model is trained on Set291 which is a composition of 91 natural
images by Yang et al. [32] and another 200 natural images from the Berkeley
Segmentation Dataset [18].
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As in Section 3, the training images are sampled down and up, creating a
multi-scale training set. Additionally, the data is rotated and flipped, following
the same protocol as SRCNN, VDSR and DRCN [5, 13, 14]. Finally the data set
is broken down into approximately 1.2 million 51×51 px patches at a stride of
26 px. As described in [13], deeper networks are more likely to fail to converge.
For this reason, adjustable gradient clipping is used for training in order to
prevent exploding gradients. The clipping threshold per sample is set to 0.01
at a mini-batch size of 32. All weights are initialized according to He et al. [7].
The learning rate is set to 0.0596 and divided by a factor of 3 every 20 epochs.
Training 60 epochs on a GTX1080 takes roughly 10 days.

4.3 Results

We benchmark our SRINC model against the state of the art on four widely used
test sets for super resolution: Set5 [1], Set14 [34], BSD100 [31] and Urban100 [11].
Table 1 provides a summary of the quantitative evaluation. With only few ex-
ceptions, our SRINC model outperforms recent approaches consistently in both
PSNR and structural similarity (SSIM) [29]:

PSNR = 10 log10

(
Npx · I2max

(∑
x

∑
y

(
I(x, y)− I ′(x, y)

)2)−1)
(2)

SSIM =
(2µxµy + C)(2σxy + 9C)

(µ2
x + µ2

y + C)(σ2
x + σ2

y + 9C)
with C =

(
Imax
100

)2

(3)

Imax describes the maximum intensity value (i.e., 255 for 8 bits); I and I ′ are
the ground truth and predicted images, respectively; µ∗ and σ∗ are the means
and (co-)variances, respectively.

In order to get a deeper understanding of these results, we conduct a more
fine-grained analysis, comparing against VDSR and DRCN as the closest com-
petitors. Instead of the mean PSNR, we take a look at the error distribu-
tion. Therefore, we define the cumulative PSNR, considering only errors up to
δpx ∈ [1, Imax] pixels:

PSNRΣ = 10

δpx∑
n=1

log10

(
Npx · I2max

(∑
x

∑
y

(
I(x, y)− I ′(x, y)

)2)−1)
(4)

∀x, y | I(x, y)− I ′(x, y) = n

Npx denotes the number of pixel in the image. The differences are emphasized
by putting the cumulative PSNR in relation to our SRINC method:

∆PSNRΣ,<method> = PSNRΣ,<method> − PSNRΣ,SRINC (5)
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Table 1. Average PSNR/SSIM on Set5 [1], Set14 [34], BSD100 [31], and Urban100 [11]
test sets for scaling factors×2,×3 and×4. The best performance is highlighted in bold.

Method Bicubic SRCNN [5] VDSR [13] DRCN [14] SRINC (ours)
Training Set Set291 Set291 Set91 Set291

Data Set Scale PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Set5
x2 33.66 0.930 36.66 0.954 37.53 0.959 37.63 0.959 37.58 0.959
x3 30.39 0.868 32.75 0.909 33.66 0.921 33.82 0.923 33.92 0.923
x4 28.42 0.810 30.48 0.863 31.35 0.884 31.53 0.885 31.55 0.886

Set14
x2 30.24 0.869 32.42 0.906 33.03 0.912 33.04 0.912 33.07 0.912
x3 27.55 0.774 29.28 0.821 29.77 0.831 29.76 0.831 29.87 0.834
x4 26.00 0.703 27.49 0.750 28.01 0.767 28.02 0.767 28.09 0.770

BSD100
x2 29.56 0.843 31.36 0.888 31.90 0.896 31.85 0.894 31.97 0.897
x3 27.21 0.738 28.41 0.786 28.82 0.798 28.80 0.796 28.88 0.800
x4 25.96 0.668 26.90 0.710 27.29 0.725 27.23 0.723 27.34 0.728

Urban100
x2 26.88 0.840 29.50 0.895 30.76 0.914 30.75 0.913 30.89 0.915
x3 24.46 0.735 26.24 0.799 27.14 0.828 27.15 0.828 27.29 0.832
x4 23.14 0.658 24.52 0.722 25.18 0.752 25.14 0.751 25.31 0.758

The fine-grained results are illustrated in Figure 3. Reflected by the slope
from upper left to bottom right, the most evident observation is that both VDSR
and DRCN perform better than SRINC for small errors, but worse overall. This
behavior persists on all tested data sets and scaling factors. It can be concluded
that VDSR and DRCN are more susceptible to generating outlier pixels. In our
intuition, outlier robustness is very important for tasks such as facial landmark
detection, because those tasks require reliable data down to the pixel level. This
should be kept in mind when analyzing the results presented in Section 5.1.
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5 Super Resolution for Facial Landmark Detection

Putting the theoretical insights from Section 3 into practice, the actual impact
of super resolution for facial landmark detection remains to be investigated. For
optimal results, it is crucial to choose the training set according to the purpose
of the model avoiding domain shift. Hence, we train our SRINC model on a
different training set, CelebA [17], containing facial images rather than natural
images. Only the first 5k images are used. These are cropped and decomposed
into 51×51 px patches at a stride of 26 px. Patches with a bicubic PSNR less
than 35.12 for×3 scaling are discarded for being too blurry, for example, because
they contain background. This results in approximately 227k patches total. We
refer to this newly trained model as SRINC-F. Except for an additional dropout
rate of 10% (all 3×3, 7×7, and 11×11 convolutions), the parameterizations for
training SRINC and SRINC-F are identical, see Section 4.2.

5.1 Results

Following the same protocol as in Section 3, we compare VDSR [13] and DRCN [14]
with our SRINC and SRINC-F models on the iBUG-Norm and HELEN-Norm
data sets, using TCDCN [35] and CFSS [36] for facial landmark detection. In or-
der to highlight the differences between the methods in a more readable fashion,
Figure 4 shows the error reduction (εSR − εLR) rather than the absolute error
(εSR, cf. Eq. 1).
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Fig. 4. The landmark detection error reduction (cf. Eq. 1) after applying different
super-resolution methods to low resolution images from iBUG-Norm and HELEN-
Norm, cf. Section 3. As a reference, the red line indicates the theoretical performance
limit, i.e., the mean ground-truth resolution performance according to Figure 1. Best
viewed in the digital version.
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The results clearly indicate that both TCDCN and CFSS profit from super
resolution when the original image resolution is low. The variance is relatively
high and no method is strictly dominating. For the iBUG-Norm data set, this
can be attributed to the relatively small test set (90 images). The small test
set also explains why the super-resolution methods are sometimes able to help
perform better than the ground-truth resolution (red line).

The margin for improving landmark detection using super resolution is ex-
ploited pretty well by our SRINC-F model. Linking the results to the findings
from Section 3, the landmark detection error can be reduced by up to 17.5%
(ground-truth resolution 19.5%) relative to the bicubic error, with an average
improvement of 13.2% (ground-truth resolution 15.5%) for×4 scaling. Even for
×2 and×3 scaling the super-resolved images perform close to the ground-truth
resolution with respect to the landmark detection error.

(a) GT

: 5.46%
SSIM: 1.000

PSNR: -

(b) BICUB

: 36.60%
SSIM: 0.817
PSNR: 26.44

(c) VDSR

: 11.03%
SSIM: 0.851
PSNR: 27.23

(d) DRCN

: 27.71%
SSIM: 0.860
PSNR: 27.73

(e) SRINC

: 13.71%
SSIM: 0.853
PSNR: 27.43

(f) SRINC-F

: 9.26%
SSIM: 0.862
PSNR: 27.69

: 2.19%
SSIM: 1.000

PSNR: -
: 3.30%

SSIM: 0.722
PSNR: 21.19

: 4.42%
SSIM: 0.814
PSNR: 23.94

: 4.22%
SSIM: 0.795
PSNR: 23.53

: 3.65%
SSIM: 0.817
PSNR: 24.38

: 1.91%
SSIM: 0.845
PSNR: 24.85

Fig. 5. Landmark detection examples for CFSS [36] (top) and TCDCN [35] (bottom)
on super resolved LR images (×4). Third row also shows ground truth (red dots) and
predicted landmarks (green crosses). The provided PSNR and SSIM figures refer to
the zoomed patches only. Best viewed in the digital version.



10 Knoche, M.; Merget, D.; Rigoll, G.

Compared with the other approaches, our SRINC-F model is the most consis-
tent and performs overall best with a clear advantage over SRINC, although the
training set is significantly smaller. This underlines that selecting the training
data best suited for the problem is of key importance.

Complementary to the quantitative results in Figure 4, Figure 5 depicts two
sample images, visualizing the qualitative nature of the different super-resolution
methods. Not only do the images look more realistic, but they also explain why
landmark detection is positively influenced by SRINC-F. For example, SRINC-F
reconstructs the top image with a clearer and more realistic nose contour, which
ultimately leads to better landmark predictions.

Landmark detection algorithms are essentially based on pattern matching
and are easily confused when the patterns reconstructed by super resolution
differ from the expectation. This is most evident in the bottom example of
Figure 5. Despite the higher PSNR and SSIM, the standard super resolution
approaches are outperformed by a simple bicubic interpolation. This is a hint
that PSNR and SSIM alone are no ideal metrics for evaluating the reliability of
landmark detection. This correlates well with the findings of Johnson et al. [12]
and could be addressed by future research.

While none of the other methods is able to reconstruct the pupil and eye
lid correctly, our SRINC-F model predicts a nicely shaped eye. This is mostly
explained by the different training sets. Our SRINC-F model blends well with
the landmark detection algorithms because it is able to recognize that eyes must
be a composite of recurring patterns, for example, a circular pupil.

6 Conclusion

While there is a wide range of research for face recognition considering low im-
age resolution, facial landmark detection has not been thoroughly addressed, yet.
Tackling this problem, we first showed that low image resolution degrades facial
landmark detection performance, especially for faces smaller than 50 × 50 px,
leaving a margin for improvement of up to 19.5%. A new super-resolution in-
ception (SRINC) convolutional neural network architecture was thus presented,
beating state-of-the-art super-resolution methods in both PSNR and SSIM. By
practical experiments, it was verified that super-resolution indeed helps to im-
prove landmark detection considerably.

Subsequently, in order to achieve the best result possible, the SRINC network
was trained on faces rather than natural images. This enables the network to
identify recurring patterns such as eyes more accurately and thus enhance the
landmark prediction performance even further. Applying our super-resolution
network before landmark detection, we are able to improve the average landmark
prediction error by up to 17.5% (∅13.2%) which is very close to the ground-truth
resolution performance with 19.5% (∅15.5%).
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