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Abstract

Photons do not interact in vacuum, as they carry neither mass nor charge.
However, controlled interactions can be mediated by optically nonlinear me-
dia. A paradigm studied in the course of this thesis is a single atom trapped at
the center of a high-finesse optical cavity. In the first part, it is shown that pho-
tons of one light field experience strong interactions when resonantly driving an
atomic transition that couples strongly to a single cavity mode. The coupled
system exhibits an anharmonic energy level structure that is employed to ex-
cite a two-photon resonance and demonstrate a two-photon blockade whereby
the absorption of two photons blocks further excitation. In the second part,
such strong interactions are realized between individual photons of two differ-
ent light fields which drive separate cavity modes each strongly coupled to a
different transition of the atom. An additional control laser induces a tunable
coupling between these modes which manifests in an energy level structure
that is anharmonic in both photon numbers. This coupling is demonstrated
in two regimes by either mutual blocking or conjunct transit of photons in
different modes, while photons in the same mode do not interact.

Zusammenfassung

Photonen wechselwirken nicht im Vakuum, da sie weder Masse noch Ladung
besitzen. Kontrollierte Wechselwirkungen konnen jedoch durch optisch nichtli-
neare Medien realisiert werden. Ein Beispiel eines solchen Mediums ist ein ein-
zelnes Atom, das im Zentrum eines optischen Resonators hoher Giite gehalten
wird, wie es im Rahmen dieser Arbeit untersucht wurde. Im ersten Teil wird
gezeigt, dass starke Wechselwirkungen zwischen Photonen eines Lichtfeldes
auftreten, wenn dieses resonant einen atomaren Ubergang treibt, welcher stark
an eine einzelne Resonatormode koppelt. Das gekoppelte System besitzt eine
anharmonische Energieniveaustruktur, die verwendet wird, um einen Zwei-
Photonen-Ubergang anzuregen und so eine Zwei-Photon-Blockade zu realisie-
ren, wobei die Absorption von zwei Photonen weitere Anregungen blockiert.
Im zweiten Teil werden solche starken Wechselwirkungen zwischen einzelnen
Photonen verschiedener Lichtfelder realisiert, die zwei separate Resonatormo-
den anregen, welche jeweils stark an unterschiedliche Ubergéinge eines Atoms
koppeln. Ein weiterer Kontrolllaser induziert eine durchstimmbare Kopplung
zwischen diesen Moden, was sich in einer Energieniveaustruktur manifestiert,
die in beiden Photonenzahlen anharmonisch ist. Diese Kopplung wird in zwei
Regimen durch entweder wechselseitiges Blockieren oder gemeinsames Pas-
sieren von Photonen unterschiedlicher Moden nachgewiesen, wahrend Photon
derselben Mode nicht wechselwirken.
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1. Introduction

The central ideas of quantum mechanics were formulated in the early days
of the 20th century. It was Max Planck who first abandoned the concept of
energy as a continuous quantity in 1900 and required instead that it manifests
in multiples of a smallest quantum in order to deduce a complete descrip-
tion of the black-body spectrum [Pla00]. In 1905, Albert Einstein applied
this new concept of quantization to electromagnetic radiation to explain the
photoelectric effect [Ein05] which constitutes the discovery of an elementary
quantum of light, the photon. Employing the nascent quantum theory, Niels
Bohr was able to understand the stable orbits of electrons around the nucleus
in Rutherford’s atom model which represents the birth of today’s concept of
atomic orbitals [Boh13]. These initial steps have lead to the development of a
relativistic quantum field theory that unifies quantum mechanics, electromag-
netism and special relativity and gives full account of light-matter interaction.
It is referred to as quantum electrodynamics (QED) [Fey85]. Central momen-
tum for QED’s fast evolution derives from its controversial nature being the
most precisely tested theory while conflicting with our everyday experience.

Quantization on the microscopic level was initially introduced to explain
effects of macroscopic ensembles with averaged outcomes devoid of a classical
description such as black-body radiation or the photoelectric effect. The micro-
scopic consequences, on the other hand, were considered counterintuitive and
even “ridiculous” [Sch52]. As it was assumed that “we never experiment with
just one electron or atom”, thought experiments such as Schrodinger’s cat that
is dead and alive at the same time [Sch3ba] were devised to demonstrate the
impossibility of such a theory that defies determinism or local realism. Albert
Einstein, Boris Podolsky and Nathan Rosen proposed the EPR paradox that
displayed a “spooky action at a distance” whereby correlations between two
distant particles seemingly violate the theory of relativity [Ein35]. This corre-
lation was later termed entanglement and recognized not as “one but rather
the characteristic trait of quantum mechanics, the one that enforces its entire
departure from classical lines of thought” [Sch35b]. Today, it is entanglement
that yields the advantage of prospective quantum devices over classical systems
in metrology, communication, information processing and simulation. Both,
curiosity for quantum physics and potential quantum improvements for some
of today’s biggest challenges, drive modern research in quantum optics and are
central incentives for the work described in the following.

Despite the early skepticism, systems aspiring to experiment with individual
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quanta developed in the second half of the 20th century. The advent of the
laser in the 1960s [Mai60] and consecutive progress in trapping and cooling
of atoms [Phi98| lead to the prospering field of quantum optics where iso-
lated atoms interacting with electromagnetic radiation became a testbed for
quantum theory. An example is the quantum Zeno effect that was theoreti-
cally predicted to inhibit the system’s evolution to a final state by continuous
observation [Mis77]. It was demonstrated experimentally with ions in a Pen-
ning trap that were treated with short light pulses while driving ground state
transitions with a radio frequency field [Ita90]. The first measurements of the
emission from single atoms that defies classical description were performed
with dilute atomic beams [Car76, Kim77]. Soon after in 1980, an ion in a dy-
namic electric trap was the first system to realize trapping of a single particle
in free space for continuous observation [Neu80] which finally opened the route
to testing microscopic predictions of QED like quantum jumps [Ber86, Sau86].

However, the interaction of single photons with these single emitters in free
space remains in the perturbative regime as the coupling to each single op-
tical mode of the vast environment is negligible. To observe the reversible
dynamics of the fundamental interaction between single quanta of light and
matter [Rem87], as described by the Jaynes-Cummings model [Jay63], requires
engineering of the environment of the atom. Two mirrors that form a cavity
may enhance the vacuum fluctuations of a single optical mode such that the
coupling to an atom exceeds their interaction with all other modes which we
refer to as strong coupling regime. Thus, birth and death of a microwave
photon in a cavity could be recorded by transiting atoms in 2007 [Gle07], an
experiment considered as “ridiculous” 70 years ago. While in parallel systems
with artificial atoms like quantum dots in semiconductor microcavities [Rei04]
and superconducting qubits in transmission line resonators [Wal04] were devel-
oped, advances in experiments with optical photons and neutral atoms required
trapping [Hoo00, Pin00], cooling [Mau05, Nufi05b, Kub09], and positioning
[NuBi0ba, Reil3, Neul6] of the atom to a well-defined location within an op-
tical cavity of high finesse and small mode volume. The resulting increase in
observation time and larger coupling have enabled repeated interaction with
the system required for quantum information processing [Rit12, Reil4] and
more precise spectroscopy of its unique energy structure [Boc04, Mau05] to
resolve features like the y/n-nonlinearity [SchO8b] or an atomic antiresonance
[Sam14]. Therefore, to advance the work on mechanical control over the atom,
we realized 3D atom microscopy of a stationary atom by resolving its position
in all three dimensions. Feeding this information back to adjust the position,
we achieve a record 97 % of the theoretical maximum coupling strength of our
apparatus.

After the advances in harnessing external and internal degrees of freedom
(DOF), cavity quantum electrodynamics (CQED) in the regime of strong light-
matter coupling provides an ideal system for studying quantum phenomena



and, today, two major research fields unfold on this platform: quantum non-
linear optics and linear quantum networking. Quantum nonlinear CQED deals
with two or more photons in the same mode [Chal4], while in linear quantum
networking the system interacts sequentially with individual photons in sepa-
rate temporal modes [Reil5].

Motivation for quantum nonlinear CQED has always been curiosity for the
fundamental principles of QED and the prospect of building quantum infor-
mation devices like quantum light sources. The central ingredient is the an-
harmonic ladder of energy eigenstates characteristic to the Jaynes-Cummings
system and a direct consequence of quantization of both, atom and light field
[Rem91, Car96, Tho98, Car08]. It consists of a set of doublets for each excita-
tion number n. Since the splitting of this doublet scales with y/n, this yields a
strong nonlinearity on the level of individual photons [Sch08b, Fin08]. When
driving the cavity at the frequency of the first manifold, all higher states are
tuned out of resonance by the nonlinear splitting and consequently the ab-
sorption of one photon blocks further excitation. Photons are then emitted
one by one from the system. In a seminal paper, Birnbaum et al. [Bir05a]
were able to demonstrate that no two photons are detected at the same time
in the emission of the cavity which truncates the Hilbert space at n = 1. This
so-called single-photon blockade holds great promise for single-photon sources,
a central ingredient to quantum technology [Chal4].

Going beyond a single excitation, has lead to the realization of photon-
induced tunneling [Far08], two-photon gateway [Kub08] and squeezing [Ourl1].
However, truncation at n = 2 and thus a two-photon blockade with prospects
for two-photon sources was only achieved throughout the course of this thesis
[Ham17]. We introduce the general theory and observables of n-photon block-
ade. We show how bosonic bunching, which hindered previous realizations by
favoring excitation to higher manifolds, can be avoided by exciting the atom
instead of the cavity. Such atom driving better resolves the inherent nonlin-
earity, as we demonstrate by an improved single-photon blockade. Finally, by
application of this technique, we demonstrate a two-photon blockade for the
first time. This approach enables realization of higher n-photon blockades and
opens the route towards quantum nonlinear optics with n > 1 photons.

In the second research direction of linear quantum networking, the cavity
is mostly used as an efficient interface for photons. These serve as carriers
of information, so-called flying quantum bits (qubits), as they hardly interact
with the environment carrying neither mass nor charge [Kim08]. As such,
each qubit occupies its own spatio-temporal mode. The atom in the cavity
is required to store, interrogate or process these qubits [Rit12]. For example,
interaction with a photon leaves a trace in the atom that is read out in a
second step [Nog99, Dua04] which enables non-destructive detection of the
photon [Gue07, Reil3, Tielda], or an atom-photon gate [Rau99, Reild]. A
photon-photon gate is realized by consecutive interaction of two photons with
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the atom-cavity system [Hacl6]. Compared to nonlinear CQED, quantum
networking mostly relies on linear interactions between photons in separate
modes.

We go beyond both approaches and engineer a system that mediates nonlin-
ear interaction between photons of two distinct modes which opens the route
towards quantum nonlinear all-optical sensing. In that case, photons of one
field directly influence, modify or measure photons in the other field while the
system merely catalyzes the interaction, but remains inactive in the actual
sensing process. Such all-optical quantum nonlinear sensing holds potential
for non-destructive counting of photons with photons [Imo85] or heralded n-
photon sources [Munl14].

The physical system comprises a four-level atom with two transitions strongly
coupled to two cavity modes. The coupling between these modes is induced by
a control beam that causes electromagnetically induced transparency (EIT).
We demonstrate that the resulting energy level structure consists of a land-
scape of quadruplets whose splitting depends nonlinearly on the number of
photons in both modes. The system, thus, catalyzes direct nonlinear interac-
tions between photons of two fields driving the cavity modes. We show that
this enables either a photon-photon switch in a regime of mutual blocking
or conjunct transit of photons in different fields when working on resonance
to the new eigenstates of the system. While studied extensively in theory
[Wer99, Reb99, Ber06, Le 16], realization of this so-called N-type system con-
stitutes a breakthrough in CQED and holds great potential for future investi-
gation of all-optical quantum nonlinear sensing.

The thesis is organized as follows: In Chapter 2, we introduce the theory of
strong light-matter coupling including dissipation to the environment. Further-
more, we describe the experimental apparatus, 3D positioning of atoms, and
experimental techniques to investigate and manipulate their energy level struc-
ture and eigenstate. The work on two-photon blockade that extents truncation
of the Hilbert space to n > 1 photons is discussed in Chapter 3. Major topics
are the theoretical definition and experimental detection of n-photon blockade,
transition strengths between eigenstates in dependence of the driving scheme
and the experimental realization of single- and two-photon blockade. We cover
the work on strong coupling between photons of two light fields in an N-type
CQED system in Chapter 4. We discuss the novel theory and energy level
structure, address quantum simulation of the system, outline techniques used
to overcome the challenge of resonant strong coupling between two atomic
transitions and two cavity modes and finally demonstrate the first features of
this novel system reflecting the interactions between photons of two different
fields in spectroscopy and cross-correlation measurements. We conclude the
manuscript with a brief summary of the main results and an outlook on future
perspectives in Chapter 5.



2. Theory, Techniques & Tools for
Atoms in Cavities

This chapter gives a general introduction to the theory of atom-light interac-
tion, the apparatus, atom trapping, and spectroscopic characterization of the
system. For brevity and clarity, we skip all parameters and formulas that are
irrelevant for the physical understanding. A collection of all useful numbers
and equations is given in Appendix A. A full technical description and charac-
terization of the apparatus can be found in the primal work of Markus Koch
[Kocllal.

As the theory (Section 2.1) has been described numerous times before in
textbooks and theses, I will present my own short tale of cavity QED and
remain descriptive rather than mathematically rigorous in deriving or scarce
in summarizing. Thus, we will touch on some topics and physical concepts
that influenced and motivated me for this field of research.

3D atom microscopy (Section 2.2) has been a central effort for many years
and remained a vital topic throughout my whole PhD project. On the one
hand, it refers to the localization of single atoms in all spatial dimensions that
we use to prepare one atom at a well-defined position in space which serves as
a workhorse for all later experiments and shows a formidable level of control
achieved in recent years. On the other hand, well-localized atoms are used as
a precise spatial sensor to probe their electromagnetic environment.

After demonstrating full control over the external DOF, we turn to the
internal ones via atom spectroscopy (Section 2.3). This is a second ingredient
to a solid foundation of quantum optical experiments. Most relevant is the
detection of the state of the atom, as well as the characterization of changes
to the atomic energy level structure when exposed to external fields. In the
end, knowledge and control of these internal DOF establishes the backbone for
experiments of much greater complexity.

2.1. Theory of Light-Matter Interaction

In this section, we introduce the fundamental idea of a two-level system (TLS)
interacting with a single optical mode. Its theoretical description is based on
the Hamiltonian % which yields to the total energy of the system from which
any observable quantity is derived. The temporal evolution of the quantum
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system is described by the Schrédinger equation where () is a wave function
that reflects the state of the system [Sch26]:

ihd, [ (1)) = H |v(1)) (2.1)

The specific Hamiltonian for a TLS coupled to an optical mode takes the form:

H=Hs+H, +H, (2.2)

Its first two terms correspond to the eigenenergies of the optical field H 5 and
two-level system #,. The third term H; yields the energy stored in the inter-
action between the two.

This Hamiltonian will describe the dipole interaction between the polariza-
tion of the TLS and the electric field of the optical mode. It constitutes the
central ingredient to the physical effects described within this thesis. Further-
more, it serves as the fundamental building block of various, more complex
physical systems that exhibit a wealth of novel physics. Two very different
realizations will be encountered in Chapters 3 and 4.

Due to the central role of this Hamiltonian, we will take the time to deduce
its general form. In Section 2.1.1, we derive a description of the optical field in
second quantization that can be identified with the quantum mechanical har-
monic oscillator and express the TLS in terms of the spin—% raising and lowering
operators. We construct the interaction Hamiltonian and end by bringing the
now complete Hamiltonian of the full system into a practically useful form via
the rotating wave approximation. To describe realistic systems, we introduce
the master equation approach in Section 2.1.2 that allows modeling of mixed
states and coupling to the environment. The latter is not only an imperfection
but also a prerequisite for the observation of quantum systems in the labora-
tory or serves as inputs and outputs for aspired quantum information devices.
In Section 2.1.3, we show how this yields quantitative results for experimental
observables at the example of a two-level atom strongly coupled to a single
mode of an optical cavity which lays the groundwork for the following sections
and Chapter 3. The concepts discussed here are described in greater detail in
several textbooks on CQED, e.g. [Har06].

2.1.1. Hamiltonian

In the classical description, light is an electromagnetic wave that arises as a so-
lution of a special set of linear partial differential equations known as Maxwell’s
equations who formulated them already in 1865 [Max65]. In vacuum, i.e. with-
out currents or charges, these are given by:

I V-E=0 II1. VxE=-9B

2.3
II. V-B=0 IV. VxB=c¢?E (2:3)
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(c)

[2,+)
v 2) b S —
N [2,-)
3 3
[1,+)
-—n 5 le) e —
3 3 3
——— |0) == lg) == [0,9)

Figure 2.1.: Atom-field coupling. (a) An electromagnetic field exhibits
a harmonic energy ladder where the steps count its number of excitations.
Its wavevector lies along z, while its electric field is polarized in . Dashed
lines illustrate its oscillation in time. (b) An atom is described as a two-level
system with ground and excited states |g) and |e). (c) The atom is coupled
to the field being localized to an antinode which results in the anharmonic
Jaynes-Cummings ladder.

Here, E and B are the electric and magnetic field and ¢ = (peo)~'/? is the
speed of light, with 1o (&) being the free-space permeability (permittivity).
Any particular solution to these differential equations strongly depends on the
specific boundary conditions. For the quantization, we will consider a light
mode confined to a finite volume V' by two perfectly conducting parallel plates
with distance L along the z-direction. A solution is the standing wave for the
electric field parallel to the z-axis depicted in Figure 2.1 and described by:

2
2wf

-q(t) sin(ky - 2) (2.4)

Here, ¢ = ¢(t) and ¢ = ¢(t) describe the temporal modulation of the ampli-
tudes. The wavelength Ay is defined by the boundary conditions whereby the
electric field must vanish on the conducting plate surfaces: [ - %f = L and
I € N is the number of antinodes between the plates. From this the (angular)
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frequency vy (wy) and wavevector ky follow as:

2me cm
=2 =ckf=—=1-— 2.5
wy = 2myy = ckp =0 7 (2.5)
Each [ refers to a specific longitudinal mode of the field.
From Equation (2.4), we can directly find the corresponding magnetic field
that is oriented along y via the fourth of Maxwell’s equations:

2
Ho€o 2wy
By(s.t) = (,ﬂf) L0y conliy -2 (26)

If we define p := ¢ and consider that the total energy is given by the sum of
the electric and magnetic energy within the volume, we find:

= ;/dV (eoEi(z,t) + /Lale(z,t)) = ; (p2 + wj%qQ) (2.7)

The latter part is formally identical to the energy relation of the classical har-
monic oscillator where ¢ and p are known as position and momentum. In
order to find a quantum description of light, we apply canonical quantization
whereby the classical quantities ¢ and p become the quantum mechanical op-
erators ¢ and p which fulfill the commutation relation for canonical conjugate
variables that directly imply the Heisenberg uncertainty principle [Hei27]:

[G,p] = ih (2.8)

In reverse, this also transforms the Hamiltonian, electric and magnetic field
into operators H s Er7 and By, respectively. These operators now act on the
quantum states [¢)) that reflect the state of the quantum system within its
Hilbert space that is spanned by all potential eigenstates.

A formal solution to # s is found by introducing the bosonic creation and
annihilation operators, the name of which will become clear later:

1

A‘i‘ o ( Ao
a' = weG — ip) (2.9a)
Shy
a ! (wp§ + ip) (2.9b)
a= W + 1P )
Shey
These operators fulfill the commutation relation [&, dq = 1 and build the

photon number operator 7 = a'a. The fields now take the form:

2 A AT hew
E.(z,t) = Ey (a + aT) sin(kf-z) , Ey = Viez

A 3
By(zt) = —iBy (a — a') cos(ky - 2) , By = ,/h“’fvc“(’ (2.10D)

(2.10a)
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Here, @ and a' play the role of field amplitudes. In fact, if we consider the field
classical and replace @ and a' by the complex amplitude a and its complex
conjugate o, we recover the classical amplitudes where £, = EyRe() sin(k; -
z) and B, = Bylm(a)cos(ky - z) are proportional to the real and imaginary
part of «, respectlvely
Substituting £, and By, we find the field Hamiltonian to be:

Hp = (a*a+2) hw; (2.11)
Its energy eigenstates |n) fulfill the eigenvalue equation:
Hyln) = & |n) (2.12)

This together with previous relations is sufficient to show the following prop-
erties of the introduced operators:

aln) = vnln—1) (2.13a)
atln) =vn+1|n+1) (2.13b)
n|n) = n|n) (2.13¢)
Hyln = (n+3) hwoy [n) (2.13d)

Consequently, the eigenenergies of the field £, = (n+ 3)hw; form the expected
equidistant energy ladder of the quantum harmonic oscillator (Figure 2.1(a)).
In other words, energy appears in quanta of hw; which we refer to as photons.
As a result, n = 0,1, 2, ... corresponds to the photon number, and we call the
corresponding eigenstates |n) the photon number states. The operator 4 =
vnln—1)(n| (&' = v/n+1|n+ 1) (n|) then annihilates (creates) a photon in
the mode [ of the field!.

The TLS, as depicted in Figure 2.1(b), consists of ground state |g) and
excited state |e) split by energy Aw,. It is formally equivalent to a spin—%
system with a magnetic field, i.e. the quantization axis, along the z-direction.
Transitions are described by the fermionic raising and lowering operators ¢ =
lg) {e| and &1 = |e) (g|. These fulfill the anticommutator relation {6, 6T} =1
If we choose the ground state as the point of zero energy, then the eigenenergy
of the TLS is solely determined by the population in the excited stated as
measured by 16 in units of Aw,. This results in the Hamiltonian for the TLS:

Ho = hw,6'6 (2.14)
The remaining Hamiltonian H; reflects the interaction between the dipole
of the TLS and the electric field of the optical mode. In its general form, it is

given by: A
H,=d- - E (2.15)

'In general, the operators @ and a' therefore carry an index I. Since we typically only
work with a single optical mode, we drop the index for simplicity of notation.
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The dipole operator d= q - 1 measures the electric dipole moment of a system
which classically corresponds to the separation 1 between two charges ¢ of
opposite sign. As before, we choose the optical mode and atomic quantization
axis along z and place the atom at an antinode of the field?:

Hi=d-E(t)=d- B (a+a) (2.16)

We take a brief detour to understand the form of the dipole operator. It
acts onto the states of the TLS. Atomic energy eigenstates, however, exhibit a
well defined parity and, therefore, possess no dipole moment. As a result the
diagonal terms vanish:

(g|d|g) =0
dle) =d
ldle) =d .
(e|d]g) =d
(eldle) =0
In consequence, we may write the dipole operator as:
d=d(o+06") (2.18)

Here, d is a complex prefactor that describes the dipole strength. Defining
the single-photon coupling strength g = \/%, the interaction Hamiltonian

becomes:

Hi=hg (6+6") (a+al) (2.19)

Together with the previous results, we arrive at the so-called Rabi Hamilto-
.
nian’:

H = hwpi'a + hw,t'5 + hg (6 + &) (a+al) (2.20)

The analytical solution to this Hamiltonian has only been found recently
[Brall]. This is surprising considering its importance. As a major obsta-
cle, it lacks a second conserved quantity besides energy since the interaction
Hamiltonian strikingly violates conservation of particle number:

A

i = hg (60" + &'a + 6+ 5'al) (2.21)

The first two terms describe processes that conserve particle number: deexci-
tation of the TLS creates a photon in the optical mode or annihilation of a
photon is accompanied by excitation of the TLS. In contrast, the last two terms
display simultaneous deexcitation and annihilation or excitation and creation.
An early way out of this dilemma was proposed by Jaynes and Cummings

2We assume the dipole approximation holds, i.e. the atomic dimensions are much smaller
than the optical wavelength and an atom experiences a spatially constant electric field.
3Note that we have dropped a %hw ¢ since it only causes an overall energy offset.
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[Jay63]. The creation and annihilation operators were initially introduced as
time varying amplitudes which now become @ = @ - e~™r* and af = af - etr?,
respectively*. Likewise, the raising and lowering operator oscillate at the tran-
sition frequency of the TLS, 6 = & - e~™et and 67 = 67 - et™a!. Formally this
corresponds to a change from the Schrodinger to the interaction picture:

A

H, = ﬁg (8_&T€i(wffwa)t + S_Taei(wafwf)t + S_aefi(wf+wa)t + éT&Tei(warwa)t) (222)

The last two terms oscillate rapidly at the sum frequency (wy + w,), while the
particle number conserving terms are only evolving slowly at (wf —w,). If
the TLS is near resonant to the optical mode (lwf —w,| < ws + w,), then
the quickly oscillating terms average out in the temporal mean. With this so-
called rotating wave approximation, we arrive at the famous Jaynes-Cummings
Hamiltonian after transformation back to the Schrodinger picture:

H = hwpata + hw,6'6 + hg (50 + 61a) (2.23)

The corresponding eigenvalue equation is solved by the dressed-states with
ground state |0, g) and the excited states |n, £):

In,+) =sinf|n, g) + cosf|n —1,¢) (2.24a)
In,—) =cosf|n,g) —sinf|n—1,¢e) (2.24b)

Here, n becomes the number of excitations in the system and # is the mixing
angle with detuning 6 = w, — wy:

2/ng

tanf = (2.25)
d+1/(2y/ng)? + 062
The corresponding eigenenergies are found to be:
1
Ee = hopn + 5 ((wa +wp) £/ (2vng)? + 52) (2.26)

In case of positive detunings (6 > 0), the |n,+) have a stronger contribution
from the TLS while the |n, —) are more photon-like®. The situation reverses
for negative 6. At resonance (0 = 0), TLS and field contribute equally to
both states, however, a finite energy splitting persists. This situation is re-
ferred to as avoided crossing. The dressed-states at resonance simplify to
In,£) = (|n,g) £ |n — 1,€)) /v/2 and form an anharmonic ladder of doublets
that are split by 24/ng (Figure 2.1(c)). In the time domain, this manifests as
an oscillatory energy exchange between the optical mode and the TLS at rate

4To keep things short, we have omitted the derivation of the explicit time dependence
via the Schrodinger equation.
5In the limit of very far detunings, we recover the undisturbed TLS and field.
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2y/ng. As reflected by the dressed states, only the superposition of the states
of the optical mode and TLS yields proper stationary eigenstates of the joint
system. This is very similar to the classical analogue of two pendula coupled
via a spring where two new modes arise from the in-phase and out-of-phase os-
cillation. In stark contrast however, the latter exhibits no notion of excitation
quanta and the new modes form two separate harmonic ladders as expected
for two independent oscillators of eigenfrequencies w, + g and w,. — g [Har06].
The huge interest to realize the Jaynes-Cummings Hamiltonian derives from
that last result: A TLS coupled to an optical mode responds nonlinear already
at the level of a single excitation [Chal4]. The distinct photon number depen-
dent response constitutes an effective photon-photon interaction which is a key
element for our realization of single- and two-photon blockade in Chapter 3.

2.1.2. Master Equation and Open Quantum Systems

Equation (2.23) describes an isolated quantum system. Any realistic system,
however, will be coupled to the environment, which is modeled as a thermal
bath, via dissipative processes. Examples for dissipation are photons that leak
out of the considered optical mode or spontaneous emission of the two-level
system into free space. The reverse processes, i.e. spontaneous excitation of the
TLS or field mode from the thermal bath, are negligible at room temperature,
since optical contributions of black-body radiation only become significant
above 1000 K. As dissipative processes due to the environment cause deco-
herence, great experimental effort is focused on reducing their influence and
restricting the irreversible coupling to very specific input and output channels
to extract useful information, as discussed in the next section [Har89, Wal92].
In this section, we want to explore how such an open quantum system can
be described quantitatively. We follow the approaches of References [Car93]
and [Mey07].

Dissipation or excitation resulting from coupling to the environment will
cause the quantum system that is prepared in an eigenstate to decohere into a
mixture of states. Therefore, we will now describe its state by a density matrix
p = > pi |i) (1] that is a statistical ensemble of several quantum states 1
with probability p;. In addition to the system Hamiltonian Hg, we also have to
include the Hamiltonian of the environment R=2; mj&;f»&j that we model
as a reservoir of harmonic oscillators, i.e. in our case the continuum of modes of
the quantized electromagnetic field in free space. Interaction between the two
is described by H rs that is assumed to be linear in system and bath operators,
Hpg = Ry giyj(OAlT&j + OAZ&;) Here, O; is a system operator. This follows
the same language, we introduced before: Energy exchange between system
and reservoir consists of simultaneous annihilation of a system excitation and
creation of a quantum in mode j of the bath or the reverse process. We assume
the reservoir to be large such that its state remains practically unchanged and
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that correlations within the bath decay much faster than the time scale of
interest that in turn must be small compared to the system’s evolution. The
latter is referred to as Markoff approximation.

The joint system is now described by the density matrix prs(t) and its
temporal evolution is governed by the von Neumann equation:

. ]. A A A
prs(t) = — [HS + Mg + Hrs, /)Rs(t)] (2.27)
The system’s density matrix can be recovered by tracing out the reservoir:
p(t) = trr (prs(l)) (2.28)

If we do the Born approximation, i.e. only taking terms linear in Hrs into
account, we find the Lindblad master equation for the density matrix:

(6 = 1 [Fs. o 0] + 32 (26p(0C! = pOCIC = ClCplt) - (229)

Here, the first term describes the coherent evolution of the isolated system and
the second term models the non-unitary coupling to the environment. The
newly introduced generalized dissipation operators C; = ﬁO contain the
dissipation rates 7; that result from integration over the coupling to all reservoir
modes and thus quantify the interaction strength with the environment. This
interaction is irreversible since we imposed an environment “without memory”
in the Markoff approximation. The equation of motion can be expressed in
terms of the Lindblad superoperator L:

pt) = Lp(t) (2.30)
We find a formal solution by:

p(t) = e“p(0) (2.31)
At timescales long compared to the dissipative processes, the system will relax

to a steady state Lpss = 0. Thus, we find the time dependent as well as the
steady state expectation values for an arbitrary experimental observable O:

(O(1)) = tr (O™ p(0)) (2.32)
(O)ss = tr (Opas) (2.33)
As a third measure, we use correlations between observables. These grant
insight into the dynamics of the system. The quantum regression theorem

[Lax63] introduces an efficient way to calculate correlations between different
observables at time delay 7:

(O101(1)0;(r)05) = tr (O10;¢* [04p:0}] ) (2.34)
This can be interpreted as following: The first observation projects the system
out of the steady state into the new state inssO;L whose subsequent evolution

back to the steady state is then described by the Lindblad operator interrupted
after a time delay 7 by a second observation.
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2.1.3. Example: Strongly Coupled Two-Level Atom

Observation of the fundamental building block of light-matter interaction de-
scribed by the Jaynes-Cummings Hamiltonian in Equation (2.23) has been at
the center of great experimental efforts in various different systems [Vah03,
Boc04, Wal04, Mau05, Wal06, Kat15, Chil6b]. A major difficulty is posed by
the continuum of free-space modes that surround any emitter, as we discussed
in Section 2.1.2. For the derivation of the Jaynes-Cummings Hamiltonian, we
only considered a single mode. But what distinguishes this one mode from the
plethora of available modes that we identified as the origin of dissipation? The
answer lies in the coupling strength g we introduced earlier as:

cufd2
_ 2.35
9=\ 9V e, (2.35)

It quantifies the interaction strength between the electric field and the TLS.
While eigenfrequency wy (= w, at resonance) and dipole moment d are charac-
teristics of the emitter and cannot easily be tuned, the mode volume V' plays
a central role. In free space, the spatial extend of the mode is not restricted
and as a consequence the mode volume diverges®. The strength of interaction
remains weak and any coherent coupling to the TLS will be obscured by the
dissipation to all other modes. However, if we restrict the spatial extend of
that one specific mode via two mirrors that form a cavity, we can reduce the
mode volume considerably which strongly enhances the vacuum fluctuations
(due to the Heisenberg uncertainty) and electric field per photon”. The coher-
ent energy exchange between TLS and optical field can then be observed if the
rate of interaction, as described by the coupling strength, exceeds the dissipa-
tion rates of the system due to the coupling to all other modes, g > ;. This
is often referred to as the strong coupling condition. Practically, it requires a
sufficiently small mode volume to achieve a large coupling per photon. As the
mode volume strongly depends on the mirror separation, the cavity length L
plays a key role in reaching strong coupling.

Another route is engineering the environment by reducing the number of
accessible modes which in turn will decrease the dissipation rates [Har89].
This is achieved by enforcing boundary conditions on the free-space modes
thus cutting down the continuum to discrete solutions. If for example the
confining length scale orthogonal to the mode of interest is chosen below half
a wavelength, it cannot support any mode at the frequency of interest and
consequently the spontaneous emission in this direction is suppressed. The

SFor this reason, a free-space mode is not well-defined since it cannot be normalized.

"Note that this also causes an excited atom to predominantly emit into the cavity mode
as the mode with the strongest contribution to the dissipation rate, an effect known as
Purcell effect [Pur46]. This picture, however, partly breaks down as the coupling becomes
reversible and new eigenstates emerge.
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Figure 2.2.: Atom-cavity system. (a) An atom-cavity system is excited
either via the cavity (blue arrow) or atom (green arrow). The emission
from the cavity is monitored on a detector. (b) Tuning the frequency of the
probe field yields the spectrum for the uncoupled (black) and coupled cavity
driven (blue) as well as atom driven (green) system. Solid (dashed) lines
show the steady state expectation value of the photon number for g = 10«
(g =5K), Aue =0, 7v=3/2K, Nc =N = K/2.
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resulting dissipation rate is smaller than the one in free space since the number
of integrated modes is reduced. Though great progress has been made [Nod07],
we abandon this topic as it remains unimportant for our specific realization.

Here, we want to consider an optical cavity QED system that consists of
a single two-level atom with eigenfrequency w, and polarization decay rate ~y
coupled with coupling strength ¢ to an optical cavity of eigenfrequency w,. and
field decay rate k, i.e. leakage of the light field out of the cavity, as depicted in
Figure 2.2(a). The strong coupling condition becomes g > (k,7). We apply
an additional drive Hy at frequency wy to probe the system by displacing it
from the ground state and detecting emission from the cavity. This drive is
either incident on the cavity in which case it adds photons to the light field
and takes the form Hy = hn, (a+a') or it excites the atom and is described via
Hy = hn, (6 + 61) where 7, and 7, are the respective driving strengths. The
latter shows how weakly interacting fields couple to the atom. Inserting the
electric field described by classical amplitudes into the interaction Hamiltonian
in Equation (2.15) directly yields the above result.

If we transform Equation (2.23) into a frame rotating at wg, then the full
Hamiltonian for the driven CQED system becomes:

H =hA, 66 + hA.ata+ hg (676 + 61a) + Hy (2.36)

Here, A, = wg — w, (Ar = wyg — w,) is the atom (cavity) detuning with re-
spect to the driving frequency. The atom-cavity detuning is then defined as
Aac = w, — w.. We identify the associated generalized dissipation operators as
C, = /76 and C, = V/ka and construct the Lindblad superoperator according
to Equation (2.29). Numerical solutions for different measures and observables,
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as described in Section 2.1.2, can then be found via e.g. the Quantum Op-
tics Toolbox for Matlab [Tan99] or the Quantum Toolbox in Python (QuTiP)
[Joh13]. In Figure 2.2(b), we show the spectrum versus cavity-probe detun-
ing by calculating the steady state expectation value for the photon number
(), = <€sz> . Without coupling (¢ = 0), we observe the Lorentzian of the
empty cavity with a linewidth of 2%. This splits into two new modes for the
coupled system at frequencies +¢ with linewidths of %7 referred to as nor-
mal modes. These reflect the first doublet of the Jaynes-Cummings ladder
|1,+) (Figure 2.1(c)) and agree with the classical expectation for two coupled
pendula. Both spectra for atom and cavity excitation seem very similar, but
disagree around A. = 0. This is the consequence of an antiresonance in case
of cavity probing due to destructive interference between the coherent drive
and the field radiated by the atom that keeps the cavity unexcited [Sam14].

2.2. Apparatus & Atom Position Control: A 3D
Atom Microscope

The term 3D atom microscopy can be interpreted in two different ways. On
one hand, it may refer to the localization of single atoms (in cavities) in all di-
mensions which has been a central topic for many years [Ho098, Hoo00, Reil3].
Besides the obvious curiosity on how the atom moves about in its potential
landscape, it serves the very practical purpose of maximizing the coupling
strength by enabling position control of the atom to the very maximum of
the cavity field [Pin00, Nufi0ba]. This is of central importance due to the
limited atom-cavity coupling strength that has so far been obtained in the
optical regime [Dev07]. A major limitation is posed by the direct dependence
of the coupling constant on the atomic dipole moment that in turn causes
large polarization decay rates. Therefore, the best tuning knob is the mode
volume that depends on the waist of the optical mode and the cavity length.
The latter, however, affects the resonance frequency and we will see that we
are not always free to choose here. Alternatively minimizing the waist is a
very challenging technical topic. Only recently developed, novel fiber cavities
display significant improvements on the waist and a corresponding increase of
the coupling strength [Col07, Mull0]. For now, we need to be as close as pos-
sible to the coupling strength achievable in our system to work in the strong
coupling regime of CQED. This is taken one step further in Chapter 4, when
the relative position with respect to two spatially differing modes has to be
precisely adjusted.

Such atom positioning requires a proper cooling technique, sub-wavelength
trapping potentials and knowledge about the absolute position in three-dimen-
sional space. Mastering all of these, we achieve a record atom-cavity coupling
strength of 97 % of the theory value.



2.2 Apparatus & Atom Position Control: A 3D Atom Microscope 17

On the other hand, 3D atom microscopy may also refer to the atom play-
ing the role of the probe. In fact, a well-localized atom in free space can be
employed as a very sensitive spatial sensor to probe its electromagnetic envi-
ronment. Atomic ions that exhibit strong coulomb interaction have, thus, been
used to measure light-induced charging effects on dielectrics [Har10] or to sense
sub-attonewton forces in three dimensions [Blul7]. A single ion [Gut01] and
a beam of neutral atoms [Leel4], on the other hand, have been used to probe
the cavity vacuum field, a quest we will also embark on with our stationary
atom.

We start by introducing the apparatus and atom trapping in Section 2.2.1
to get an understanding of the experimental system and general working prin-
ciple. In Section 2.2.2, we describe the imaging and positioning of atoms. We
demonstrate how we count their number and localize them in three dimen-
sions. The latter allows us to employ them as a probe for the cavity vacuum
field. Finally, we use that newly available information to stabilize the atom’s
position to the region of maximum coupling strength.

2.2.1. Apparatus and Atom Trapping

Our system consists of single 8" Rb atoms coupled to a high-finesse (F =
195000) Fabry-Pérot resonator of variable length L (150 pm to 5 mm) adjusted
to 202 pm (Chapters 2 and 3) or 295 um (Chapter 4). Figure 2.3(a) shows a
sketch of the complete system.

Cavity Mode. The resonator is formed by two spherical mirrors with high-
reflectivity dielectric coatings of curvatures 1 cm and 20 cm. Most of the tech-
nical details are given in Reference [Koclla] and summarized in Appendix A.
In short, the cavity supports a T'EMy, mode that is of Gaussian shape in
the radial direction and has a standing wave pattern modulated at half the
wavelength axially. The frequency spacing between two neighboring longitu-
dinal modes that fulfill the boundary conditions of the mirrors follows Equa-
tion (2.5), vpsr = ¢/2L, and is referred to as free spectral range (FSR). In our
case for cavity lengths of 202 pm or 295 pm | it amounts to 750 GHz or 500 GHz.
The cavity field decay rates k/2m are calculated to be 1.9MHz and 1.3 MHz
at 780 nm excluding birefringence (~ 180 kHz) which causes measured rates of
2.0 MHz and 1.5 MHz. The mode waist wy at which the field strength (inten-
sity) falls to 1/e (1/€?) of its amplitude in the radial direction is found to be
18.6 pm or 20.4 pm, respectively. The small spacing of the mirrors compared to
their curvatures yields a large Rayleigh range, zg, of 1.4 mm or 1.7 mm which
gives the distance from focus at which the area of the cross section is doubled.
Since zg is much larger than the cavity lengths, we approximate the mode as a
cylinder. The spatial mode function of the field for the cavity along the z-axis
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Figure 2.3.: Apparatus and trap geometry. (a) The sketch shows the
apparatus used for the experiments in this thesis. (b) The intracavity probe
(cyan) and trap (blue), omitted in (a) for clarity, are shown exemplary for
neighboring longitudinal (Al = 1) modes. (c¢) The orthogonal transverse
traps cross at angles of 45° to the horizontal plane.

is then given by:
27 _igﬁ

fm(r) = cos <TZ) e "o (2.37)
This function describes the spatial variation of the cavity field and consequently
also the change of coupling strength g(r) = ¢ - f(r) when displacing atoms
from the mode center at (z,y, z) = (0,0,0). We will directly observe the Gaus-
sian envelope in Section 2.2.2 via 3D atom microscopy. The axial modulation
plays an important role in the motional dynamics observed in correlations in
Chapter 3.

Dipole Traps. To ensure good localization and maximum coupling, atoms
are confined to an antinode of the cavity field via a three-dimensional lattice
of detuned, standing-wave optical dipole traps [Gri00, Reil3, Neul5b]. These
exert a dipole force onto the atom that leads to a conservative trapping po-
tential.

In brief, the electric field of the trapping light induces a dipole moment
p = oE in the atom that, as we have seen before (Section 2.1.1), exhibits no
permanent dipole moment in its ground state. Here, « is the polarizability
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of the ground state. The interaction of the induced dipole with the inducing
electric field yields a dipole potential that is, therefore, quadratic in the applied
field: Uy = —%oz|E|2 = —(ceg) 'al. Here, I = %|E|2 is the light intensity.
For a TLS in rotating wave approximation, one finds a simple solution for the
trapping potential U; when approximating the atom as a classical oscillator
which allows us to get a qualitative understanding [Gri00]®:

3mc? 2y
— —1 2.
s (2.38)

Ut:

Here, A = w; — w, is the detuning of the trap with frequency w; with respect
to the atomic transition. We find that depending on the detuning the polar-
izability can be either positive or negative resulting in attractive or repulsive
potentials. Dipole traps blue-detuned (w; > w,) to the nearest atomic tran-
sition tend to exhibit negative polarizabilities and a repelling potential while
red-detuned (w; < w,) traps yield positive polarizabilities and attract atoms
to regions of high intensity [Neulba]. As the dipole moment is induced by
off-resonant coupling to an atomic transition, it manifests itself as an energy
shift of the atomic energy levels AS referred to as light shift or ac Stark shift.
Consequently, red-detuned traps that localize atoms at antinodes of the field
will cause a permanent light shift. The strength of this light shift is propor-
tional to A~! and closer resonances will therefore experience a larger shift than
those that are farther detuned. We will use this to achieve differential shifting
of two different transitions in 3" Rb in Section 4.3.

As seen before, the shape of the trapping potential is described by the square
of the wave function of the laser beam which is given by f2(r) in the focus
of a Gaussian beam. Consequently, it causes strong confinement in the axial
direction (~ A/2) and weak confinement in the radial direction (~ wg). The
overlap of three orthogonal standing-wave dipole traps in a three-dimensional
lattice can then localize atoms to far below A/2 in all directions [Reil3].

In our case, the lattice is formed by two blue- and one red-detuned traps
[Tieldb]. One blue-detuned trap at 773.1nm is an intracavity field detuned
by Al =5 (Al = 7 at 295 um cavity length) FSRs to the resonant mode at
780.2nm. As a result, it exhibits a spatial beating with the resonant mode as
shown exemplary for Al = 1 in Figure 2.3(b). It is easy to convince oneself that
this leads to Al regions where both fields are completely out of phase. Only
atoms in those regions couple maximally to the resonant cavity mode, as the
blue-detuned trap localizes them to its nodes. With a power of 1 tW measured
behind the cavity, it causes a trapping potential of U; ~ h - 24 MHz = kg -
1.1mK. In addition, this trap is used for length stabilization of the cavity via a
Pound-Drever-Hall technique that feeds back onto a piezo tube separating the

8The full theory of ac Stark shifts to calculate quantitative results for real multi-level
atoms is described in great detail and clarity in Reference [Neulba).
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Figure 2.4.: Level scheme, cooling and sequence. (a) 8" Rb exhibits
a complex level structure. Nevertheless, e.g. [2,+2) « |3”,43) forms a
cycling transition that serves as a TLS (blue). (b) Cooling applies a red-
detuned beam that realizes a Sisyphus-type scheme with a repumper on the
Dy line. (c¢) The main part of the sequence consists of the measurement
part during which also atom images are recorded.

mirrors [Dre83]. The red-detuned trap with a wavelength of 797.5nm and the
other blue-detuned trap (772.8 nm) are incident at 45° and —45° with respect to
the y-axis in the z-y-plane orthogonal to the cavity z-axis (Figure 2.3(c)). Both
beams have a waist of approximately 40 pm and, with powers levels of 500 mW
and 180 mW, we estimate their depths to U; =~ —h - 70 MHz = kg - 3.3 mK and
Uy = h-18MHz = kp - 0.8 mK, respectively.

Atomic Level Structure. The atomic energy level structure of 3" Rb is de-
picted in Figure 2.4(a). The alkali atom exhibits two stable hyperfine ground
states, the 5512, ' = 1 and F' = 2 detuned by 6.8 GHz. The first excited states
are the 5P/, doublet at 795 nm referred to as D line with polarization decay
rate vp, /27 = 2.9 MHz and the 5P3/, quadruplet at 780 nm known as D, line
with vp,/2m = 3.0 MHz. The hyperfine splitting within these manifolds varies
between 70 MHz to 800 MHz. Both, the splittings of ground and excited states
exceed the transition linewidths by more than one order of magnitude and are,
therefore, well-resolved. The complete level scheme for the D lines of 3" Rb
including the eigenfrequencies of the hyperfine states is given in Appendix A
in Figure A.1. We will use the notation |F,mg) or |F’,mg) and |F", mg) for
the 5515 ground states or 5P, 2 and 5P, excited states, respectively. F'is the
quantum number of the total angular momentum of the hyperfine structure
consisting of spin-orbit coupling and interaction with the non-zero nuclear spin
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of 3/2. mp corresponds to the z-component of the total angular momentum,
also referred to as magnetic quantum number that denotes the Zeeman states.

Given the high finesse and small waist of our cavity and the atomic dipole
strength of 8" Rb , we expect to be strongly coupled on any transition in the
range from 150 pm to 500 pm where the lower limit is a technical constraint.
The strongest atom-cavity coupling, however, is found on the cycling transition
12,4+2) <> [3",4+3). A cavity length of 202 pm in Chapters 2 and 3 results in
g/2m = 19.6 MHz and 295 pm in Chapter 4 yields g/2r = 14.8 MHz. Even
though 8"Rb is a multi-level atom, this transition is closed and forms a real
TLS. Due to the dipole selection rules AF = 0,41, Amp =0, %1, and AF =
0, Amp # 0, an atom in |3”, £3) can only decay into |2, £2) via a o*-transition
(Figure 2.4(a)). While this two-level nature is pivotal for realizing the Jaynes-
Cummings Hamiltonian in Chapter 3 and serves as a central ingredient to state
detection in Section 2.3.1, we will go beyond such two-state systems and exploit
the level structure, symmetries and selection rules in Chapter 4. In fact, the
more complex but inherent energy level structure and long-lived ground states
are one of the central advantages of real over artificial atoms [Bulll].

Sequence. Atoms are loaded into the cavity via an atomic fountain from a
magneto-optical trap (MOT) 25cm below (Figure 2.3) [Raa87]. The MOT
resides in a separate vacuum chamber that is connected to the main chamber
via a narrow tube. At the beginning of each sequence (Figure 2.4(c)), atoms
evaporated from a rubidium dispenser are loaded into the MOT. After 2s,
we ramp down the MOT beam powers and increase their detunings within
50 ms, then switch off the magnetic field and cool the cloud of atoms to an
optical molasses of about 5pK [Dal89]. We let the system equilibrate for
2ms, before we detune the upper cooling beams with respect to the lower in
order to cool the atoms into a moving frame, thus, launching them towards
the cavity. The cloud takes about 170 ms to overcome the distance of 25cm
to the cavity in the upper chamber. During this time, the atoms have to
work against the gravitational force and fully convert their kinetic energy into
potential energy such that they have on average zero velocity at the altitude
of the resonator. This marks the turning point of the fountain after which
the atoms will accelerate back downwards. Atoms passing between the two
mirrors are attracted to and captured in the red-detuned dipole trap focused
to the center of the cavity while the intracavity trap confines them on-axis.
Since the cloud has spread due to its finite temperature of the atoms, the full
transit takes about 30 ms.

After the loading, we ramp up the other transverse trap which encloses the
atoms in three dimensions and start the actual experimental sequence. The
latter consists of 370 ms long modules that are repeated until the atom is lost
from the trap and we restart the sequence after a typical trapping time of
8s. The first 70 ms of each module are used for atom positioning and during
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the residual 300 ms we run the desired measurement sequence at a kHz rate
preserving about 90% of the time for cooling. A common sample sequence
featuring cooling, state preparation and probing is depicted in Figure 2.4(c).

The required friction force to capture and cool atoms stems from cooling
beams counterpropagating along the z-direction with orthogonal linear po-
larizations. This light is red-detuned by about 30 MHz with respect to the
F =2« F” = 3 transition (Figure 2.4(b)) and leads to intracavity Sisyphus
cooling in all directions [NuB05b]. A weak transverse beam resonant to the
F =1« F’' = 2 transition repumps atoms that end up in the F' = 1 ground
state due to off-resonant scattering.

The cooling light scattered by the atoms is collected with a high numerical
aperture objective and detected using a sensitive EMCCD camera with an
integration time of 300 ms matched to the measurement sequence. A sample
image is shown in the upper part of Figure 2.3(a). The detection of the presence
of atoms, their number and position in real-time will be described in detail in
the next section. For each captured image, we calculate the deviation of the
atom position from the cavity mode center along the z- and y-direction which is
then fed back onto piezo motors that shift the standing waves of the transverse
traps to realign atoms. During the data analysis, we postselect on single atoms
well confined to the center of the cavity along x, y, and z.

The quantization axis is defined parallel to the cavity axis by an offset mag-
netic field along the z-direction of typically 0.4 G to 0.6 G.

Experimental Control. Technically, the slow experimental sequence includ-
ing the cloud preparation, fountain, atom trapping and storing is handled
by a CPU running a real-time (RT) operating system employing two field-
programmable gate arrays (FPGA) for in- and output of digital and analog
signals at a rate of 100 kHz [BS15]. In fact, neglecting the huge differences in
architecture, the filling of the FPGAs’ data buffers with simultaneous output
and sequence control including triggers exhibits great similarities to the im-
plementation of the display output of the original Super Mario game on the
Nintendo Game Boy® [Stel6]. Furthermore, the RT system is synchronized to
another CPU with a standard operating system that provides the user inter-
face, handling of devices not capable of real-time and database connection for
bookkeeping of the experimental settings. For the fast measurement sequence,
the RT system temporary hands the control over to an external FPGA running
at a clock rate of 50 MHz to compile sequences with time steps down to 20 ns.

2.2.2. Atom Imaging and Positioning

Once the cloud has passed the optical resonator, we need to continuously
detect the atoms’ presence and count their number, localize them in three
dimensions and feed that information back to stabilize their position at the
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cavity mode center. This has to be performed within the 70ms time slot
between the exposure times of the images and includes the downstreaming of
the data from the camera. For the latter, we use another field-programmable
gate array (FPGA) that directly reads the digital camera data consisting of
pixel values with a resolution of 16 bit on a parallel bus transmitting with a
clock rate of 10 MHz. Then, transfer of a typical 100 x 200 pixel image takes
about 2ms. The data is then copied to the computer for further processing
via direct memory access (DMA), thus bypassing the CPU.

For data processing, we pursue two different strategies. In the first ap-
proach, we integrate the intensity in the region of interest (ROI) of the image
and compare the calculated brightness values. This is mostly used for atom
detection and counting but yields no spatial information. In the second ap-
proach, we detect and fit each atom which provides additional information on
position. In a first step, we detect the rough position of a potential atom. We
set a threshold of a few standard deviations above the mean count rate and
identify an atom as a spot, i.e. a group of pixels, that exceeds this threshold.
To ensure rapid processing in the second step, we select a region of typically
10 x 10 pixel around that spot and fit a two-dimensional Gaussian function
to that data which yields amplitude, - and z-position as well as the corre-
sponding widths o, and o,. Finally, we cut out a region of 3 times the width
in each direction around the center position from the original image and move
to the next point that exceeds the threshold until no point fulfills the con-
dition anymore which gives us the number of atoms. The second approach
requires considerably more processor time that, in addition, fluctuates since it
depends on the number of fitting iterations to achieve the predefined accuracy
and, moreover, scales with the number of atoms. After some optimization, we
achieved routines as fast as 5ms per atom and, consequently, remain reliably
below 30ms overall processing time. The remaining 40 ms are then used for
positioning.

The image quality depends crucially on the design and proper alignment of
the optics. Our self-designed and -built objective with a high numerical aper-
ture of NA = 0.47 is matched to the specific geometry of the vacuum chamber
and the variable length cavity. It consists of 5 spherical lenses to compensate
aberrations plus a focusing lens [Eck13]. It provides a magnification of 16.5
which in conjunction with the 16 pm pixel size of the EMCCD yields a con-
version of 0.97 pm/pxl and is found to be diffraction limited at a resolution of
1.07(1) pm. In addition, the camera objective exhibits a longitudinal resolution
(along the optical axis) of 4.7 pm.

Detection and Counting. The foremost task is to detect the presence and
number of atoms in order to decide whether to continue or restart the sequence.
Figure 2.5(a)-(c) show three images with discernible atom numbers of 1 to 3
identified as bright spots on a comparably even background. However, in
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Figure 2.5.: Counting atoms. (a) One, (b) two, and (c) three atoms
are identified in camera images as bright spots on a low-noise background.
The integrated intensity in a given region of interest allows the detection of
atoms even if these overlap spatially or jump. (d) The probability versus
the integrated intensity in the ROI (white rectangles in (a)-(c)) corrected
by the background mean exhibits clear peaks at integer multiples that are
identified as number of atoms with a brightness of 65kcts each. Yellow,
cyan and purple bars correspond to data postselected on the atom number
as determined from the Gaussian fit. The cumulative probability confirms
that we work with a single atom in about 66.5 % of the time.

other cases atoms may spatially overlap, or jump during the image and show
up as two spots of half brightness. The brightness per atom, i.e. the overall
number photons scattered by one atom from the cooling beam and collected
with the objective, remains constant for a given cooling power and detuning.
As a result (lower part of Figure 2.5(d)), we find that the probability of the
integrated intensity peaks at integer multiples of about 65kcts. These are
identified with number of atoms in the ROI. However, as indicated above,
when comparing the fitted atom number to the integrated intensity, we find
that the fit result for single atoms also displays a peak at 130 kcts, double the
brightness per atom. Likewise, data postselected on two atoms from the fit
also exhibits structure at the single atom intensity. The former stems from
atoms that are too close to be separated by the fit and the latter from an atom
that moved during the exposure time. In consequence, we use the integrated
intensity during evaluation of the data to determine the proper number of
atoms as indicated by the gray dashed lines.

The cumulative probability allows us to determine the fraction of modules
with 0, 1 and 2 atoms. Note that this does not correspond to the probability
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Figure 2.6.: Atom position distribution and objective focus. (a)
The atom position distribution in the z-z-plane is found by recording the
atoms’ positions in over 12000 images. (b) Defocusing from the focal plane
causes an increase in the width of the atom images that is asymmetric in
the z-direction. Figure (c)-(e) show the averaged images at defocusing of
—30pm, Opm and 30 pm in (b). The asymmetry again reflected in (c) is
not fully understood. For better display, (c) and (e) have been scaled in
intensity by a factor of 2.

of atoms arriving at the cavity which we expect to be Poissonian, but takes
into account all modules. By adjusting the dispenser current, we change the
size of the 8" Rb cloud during MOT phase which in turn will change the mean
number of atoms arriving at the cavity. This initial atom number will then
decrease over time due to losses from the trap. With typical parameters, we
find a single atom trapped in the cavity for about two thirds of the time.

3D Atom Microscopy. After detecting the presence and number of atoms,
their localization is of central importance. While confinement to below half
a wavelength in optical lattices and cooling close to the mechanical ground
state have been addressed before [NuB05b, Mur06, Kaul2, Reil3, Les14], the
absolute localization in space in all three dimensions remains an outstanding
problem. However, it is prerequisite in order to position the atom at the point
of maximum coupling.

The localization in the z-z-plane, orthogonal to the objective axis, is di-
rectly accessible via the images and has been shown to be measurable below
A/2 [Neul6]. The two-dimensional Gaussian fit directly yields the z- and z-
coordinate. Figure 2.6(a) shows the position distribution for many repetitions
of the experiment. Due to the red-detuned, transverse trap, we find the dis-
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Figure 2.7.: Vertical position gauging via an oscillating atom. (a)
Slices of 5pxl width along z versus the x-axis deviation Az are merged
over time for a single atom trapped for 15s. The atom is shifted in a
sine wave along a 45° axis to the objective. (b) Fitting yields the relative
position dx which, when compared to the relative width do, and considering
that the change in position must be the same for both due to the angle of
45°, allows us to deduce the conversion from width to vertical position of
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tribution to be elongated along the z-direction and narrow on the cavity axis.
The vertical position along y is more complicated. However, the limited depth
of field of our objective allows us to get information on the longitudinal posi-
tion with respect to its focus. When shifting a point source or pinhole away
from the focal plane one observes an increase of the image width and reduced
peak intensity. In other words, the resolution decreases and an imaged object
appears less sharp. Figure 2.6(b) shows the atom image width versus defocus-
ing of the objective from the main trapping plane. We find an almost tenfold
increase in width for a shift of the focal point by only 40 pm. While the be-
havior in z-direction is rather symmetric, the image broadening in z-direction
is less pronounced and only present for positive defocussing. This is believed
to result from clipping of fluorescent light on the cavity mirrors that may in-
troduce an asymmetry. A quantitative understanding is complicated since we
are not imaging a fixed pinhole but multiple atoms that are trapped at various
heights and in-plane positions. In addition, these may move during the image
or experience varying trapping potentials when far from the cavity center.

In order to achieve a good vertical resolution, we therefore choose the width
along the x-axis as a measure. However, for atoms trapped in the focus of our
objective, a broadening indicates their displacement, but does not yield the
direction since the width increases for both, inside- and outside-focus. The
solution is similar to the side-of-fringe locking method for laser stabilization to
a reference cavity [Bar73]: A decrease of transmitted intensity of a laser tuned
to the center of the Lorentzian resonance of the reference cavity does not yield
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Figure 2.8.: Coupling strength along the cavity axis. The dephasing
between the intracavity trap and the resonant mode due to a detuning of

Al = 5 FSRs causes atoms to experience a decreasing coupling strength
along the cavity axis away from its center with a periodicity of L/Al =
40.4pm. Data is taken the same way as for Figure 2.9 and the red line
shows a theory for atoms localized at the nodes of the blue-detuned trap
with the vertical scaling as the only free parameter.

information whether the laser frequency has increased or decreased. This is
circumvented by shifting the laser to the side of the fringe where the intensity is
a monotonous function of the laser frequency. In our case, we slightly defocus
the objective from the cavity mode center such that the atom’s width becomes
a monotonous function of the vertical position. In order to demonstrate the
working principle and gauge the image width to a vertical position, we put
a sinusoidal voltage modulation with a frequency of 0.2 Hz and an amplitude
of 0.6V onto the piezo mirror of the 797.5nm trapping arm (Figure 2.3(a)).
This causes a corresponding oscillation of the standing wave pattern along
the axial direction of the trap which will in turn shift an atom localized to
an antinode with it. The trap exhibits an angle of 45° (—45°) to the z-axis
(y-axis). The resulting images for one trapped atom over time are depicted
in Figure 2.7(a). We observe a clear oscillation in both, position and width
along x, until the atom is lost after 15s. We plot the fit values in Figure 2.7(b)
for a quantitative analysis. Both follow a clear sinusoidal behavior with a
frequency of 0.2 Hz and are exactly m out-of-phase. The piezo shift is given in
the datasheet as 10 pm/V and considering the projection onto the x-axis, we
find an expected modulation amplitude of 4.2 pm in good agreement with the
fitted oscillation amplitude of 4.7(1) pm. Due to the 45° angle, the projection
onto the horizontal and vertical axis must be the same which allows us to
calculate the conversion from image width to vertical position change.
Knowing the conversion from vertical shift to change in width, we can now
find our absolute position in space. The intracavity trap inherently localizes
atoms along the cavity axis. We only observe the increasing dephasing to the
resonant probe mode due to the detuning by 5 FSRs, as depicted in Figure 2.8.
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Since it cannot be shifted, we drop the corresponding z-axis for now and get
back to it in Section 4.3.3 to observe the different beatings for two probe fields.
Nevertheless, it is crucial to postselect atoms in a region where the intracavity
trap and probe field are exactly out-of-phase to ensure maximum coupling.

We run a sequence to measure the normal modes on the cycling transition.
During the state preparation of the measurement sequence, we optically pump
the atom to the |2,+2) state by driving the cavity with a right-circularly-
polarized probe as described in more detail in Section 3.3. In the probing
interval, we then switch the probe beam to a different detuning that is scanned
from A, =—30MHz to +30 MHz throughout the 300 ms of each measurement
module and record the transmission. Consequently, we take a full normal
mode spectrum per measurement module, and thus many spectra per atom.
After many repetitions, we can then investigate this spectrum as a function of
position during the modules.

Figure 2.9(a) shows three sample spectra taken at different positions (z, )
relative to the cavity mode center that show good agreement with our simu-
lation in Section 2.1.3. The fits with a semiclassical theory according to Ap-
pendix B yield coupling strengths of g/27 =18.5 MHz, 12.3 MHz and 6.9 MHz
that decrease with increasing displacement |r| = /2?2 + y? of 2.6 pm, 12.4 pm
and 20.9 pm. This change in coupling is expected to follow the spatial mode
function of Equation (2.37) and in fact, when plotting ¢g/27 along both axes
in Figure 2.9(b), we recover the expected Gaussian envelope with cavity mode
waists of wy = 19.1(4) pm along the z-axis and wy = 21.9(6) pm along the y-
axis which is in reasonable agreement with our expected value of wy = 18.6 pm.
The full two-dimensional map of the coupling constant is depicted in Fig-
ure 2.9(c). This essentially images the vacuum field enhanced via the cavity
[Gut01, Leel4].

In addition, the fit also yields the detuning A, of the atomic transition to the
cavity resonance that varies since atoms trapped at different sites experience
varying light shifts due to their displacement with respect to the red-detuned
dipole trap?. The two-dimensional map is depicted in Figure 2.9(d). Atoms
trapped close to the center of the trap experience a larger light shift than
those farther away. The corresponding transition frequency, remains almost
constant along the diagonal axis from lower left to upper right that coincides
with the 797.5nm trap. On the other hand, it goes down away from the center
in the anti-diagonal direction which is expected to follow the radial Gaussian
shape of the trap. The spectra in Figure 2.9(a) were chosen along the axis
of the red-detuned trap and, therefore, display an equal light shift that is set

9Remember that the red-detuned trap only confines atoms along its strong axial direction
to its antinodes while localization along the other axes is provided by the blue-detuned traps.
As a result, we do not observe light shifts due to the atom’s position along the red-detuned
trap which only shows up as a temperature-dependent shift and broadening of the atomic
transition as described in Appendix B.
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Figure 2.9.: Microscopy of the vacuum field with an atom probe.
(a) Spectra at varying positions within the cavity are fitted by a semiclas-
sical theory considering a finite temperature of the atoms (Appendix B)
which yields coupling strengths of g/2m = 18.5 MHz, 12.3 MHz and 6.9 MHz
that decrease away from the cavity center. (b) Atoms displaced along the
radial axes show the expected Gaussian shape of the cavity field mode with
waists of wy = 19.1(4) pm along = and wg = 21.9(6) pm in the y-direction.
Interpolation of binned data (black dots) yields a two-dimensional recon-
struction of the cavity mode via the coupling strength in (c¢) and of the
profile of the red-detuned dipole trap via the atomic light shift in (d).

to compensate the bare atom-cavity detuning to A,. &~ 0 causing symmetric
normal modes.

Positioning. Knowledge of the exact position relative to the cavity mode
and trap allows us to only select those atoms which are well-localized to the
center. However, a strict postselection causes a poor efficiency since most
traces have to be disregarded. In fact, only about 1.0 % of the data fall within
a region of at least 97 % of the maximum field amplitude. To improve the
data rate it is better to not only detect the atoms’ positions but also shift
them to the point of maximum coupling. A natural solution is to employ the
piezo mirror used for the modulation along the axis of the red-detuned trap in
the previous section. Applying the same voltage to the piezo motors of both
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Figure 2.10.: Stabilization of the atom position in z-direction.
(a) The initially broad atom distribution along x can be condensed to (b) a
narrow strip of only few pm in width via position stabilization which greatly

increases the postselection efficiency from 17 % to 88 %.

transverse traps leads to a change of the vertical position only, whereas opposite
voltages vary the horizontal. Results for horizontal stabilization employing a
simple proportional feedback loop are depicted in Figure 2.10. The initially
broad distribution spanning more than 30 pm along x condenses to a small
region of only 5pm. Atoms postselected to a maximum displacement Az of
+3pm from the mode center still experience 97 % of the maximum coupling
strength. The corresponding efficiency, i.e. number of atoms that fall within
the bounds relative to all atoms, increases drastically from 17 % to 88 % due
to the stabilization.

We follow the same strategy for the vertical axis to control the height with
respect to the cavity center. We stabilize to an atomic width of roughly 4 pm
and again observe a significant narrowing of the position distribution as shown
in Figure 2.11(a). The efficiency for a width interval corresponding to +3 pm
displacement increases from 22 % to 82 %. The peak around a width of 2 um
for the data without position stabilization is expected to result from atoms
right at the focal point where the vertical resolution deviates from our lin-
ear approximation and worsens considerably as the gradient approaches zero.
Furthermore, if we postselect the z-axis and stabilize the z- and y-axes, we
measure a normal mode spectrum with a prominent splitting corresponding
to a coupling strength of 19.0 MHz which amounts to 97 % of the theoretical
maximum and is in great agreement with our stabilization limits. This also
demonstrates that atoms are cooled close to the ground state and may at most
have small residual thermal excitation. When applying stabilization along x
and y, we find an atom in the postselected region in 28 % of the cases, which
is a more than 20-fold increase to before. The remaining limitation is the z-
axis that cannot be actively stabilized. However, mechanical refocusing, i.e.
(i) ramping down the intracavity trap, (ii) cooling atoms to the center of the
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Figure 2.11.: Stabilization of the atom position in y-direction.
Applying the same feedback used for the stabilization along x to the y-axis,
also reduces the vertical distribution to a narrow region, as inferred from
the atom width. Here, the postselection efficiency increases from 22 % to
82 %. In fact, with position control along x and postselection along z, the
feedback causes an increase of the coupling strength from g/27m =17.8 MHz
to 19.0 MHz.

transverse, red-detuned trap, and (iii) ramping the intracavity trap back up,
has shown promising results and may be used in future experiments. More-
over, an optical tweezer, i.e. a tightly focused red-detuned dipole trap, could
be implemented via the camera objective which would allow active positioning
along z.

2.3. Atom Spectroscopy

Besides mastering the external DOFs, precise control of the atom’s internal
DOFs is the second mainstay to investigate feeble quantum effects and tame the
ever-growing complexity of quantum optical experiments. Atom spectroscopy
subsumes a number of techniques used to characterize the atom. While none
of these has been newly developed within the context of this thesis, it is their
first application to the described apparatus and they are of central importance,
especially in Chapter 4. Consequently, we focus on the results meaningful for
the later work rather than on a strict theoretical description.

High-fidelity discrimination, whether the atom resides in the F' =1 or F' = 2
ground state, serves as a backbone to all spectroscopic techniques described
here. We explore two potential schemes in Section 2.3.1. In Section 2.3.2, we
use this hyperfine state detection for measuring the transition frequencies to
the excited hyperfine states and, consequently, their light shifts induced by
the traps. Finally, Raman spectroscopy induces transitions between Zeeman
levels of the two ground states and reveals the atom’s initial (prepared) state.
It allows us to quantify the magnetic field at the atom’s position and yields
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Figure 2.12.: Schemes for state detection. (a) For fluorescence state
detection, a beam resonant to the |g1) <> |e) transition impinges from the
side and is scattered onto the detector. Emission into that direction is
enhanced by the cavity. (b) In case of state detection by differential trans-
mission, the normal mode splitting switches the transmission of the empty
cavity off when the atom resides in state |g;). Atoms prepared in |gp) and
later detected in |g1) (]go)) count as “1” (“0”) to the transfer probability.

information on its temperature or mechanical state (Section 2.3.3). For future
experiments, it provides opportunities to coherently prepare an exact Zeeman
substate or a superposition of such.

2.3.1. State Detection

We pursue two different strategies to detect the hyperfine ground states. For
now, we assume a simplified level scheme of only three states, two ground
states |go) and |g;) that we want to discriminate and an excited state |e).
The first scheme is based on detection of fluorescence light scattered by the
atom [Fuhl1] and was initially developed for free-space ion-trap experiments
[Nag86, Ber86, Lei03]. When driving the atom with a beam resonant to the
lg1) <> |e) transition, it scatters many photons at rate I'; if it is in state
|g1) and remains unexcited if it is in state |go), since the latter is far detuned
(Figure 2.12(a)). If the emission is monitored by a sensitive detector for a
probing time T long enough to expect an average photon number 7, = T -
[’y > 1, we can unambiguously discriminate state |g;) from |go) within a single
shot since @y = 0 (neglecting dark counts and background light). To ensure
that the atom scatters sufficiently many photons, |e) should dominantly decay
into |g1) as the atom will turn dark after decay into another ground state,
e.g. |go) in our case. Since the rate for the latter remains finite in most
experimental situations, a high detection efficiency is of utmost importance.
The photon collection efficiency, however, typically remains poor since the
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Figure 2.13.: Fidelities of state detection. The experimental distribu-
tions of detection events for preparation of either of the two ground states
are clearly separated for both, (a) fluorescence detection and (b) differen-
tial transmission. The detection error quantifies the relative false detection
when using the respective photon number as discrimination threshold. The
maximum of both at each point yields the joint error, the minimum of which
corresponds to the threshold with maximum detection fidelity, here 99.3 %
and 99.5 %.

atom emits into a solid angle of 47 in free space. In our case, the cavity
is resonant to the drive and significantly enhances emission into its mode.
Scattered light is, thus, efficiently directed towards the detector. In contrast
to traditional Purcell enhancement that boosts the irreversible emission into
one specific mode, strong coupling causes coherent oscillations between atom
and cavity such that excitation is evenly distributed between both and the
chance to find the photon at the output of the cavity is naively expected to
solely depend on the ratio of the dissipation rates: x/(k + 7). Likewise, a
fraction of v/(k + =) is emitted by the atom into free space.

The second scheme employs differential transmission of a probe resonantly
driving the cavity that is strongly coupled to the |g;) <> |e) transition [Geh10].
Thus, already a single atom in |g;) blocks photons from transiting through the
system, while an atom in the uncoupled state |gg) results in full transmission
of an empty cavity, as depicted in Figure 2.12(b). The detection efficiency for
this scheme is inherently high as we measure the photon number in the mode
of the incident beam. The contrast between the bright and the dark state is
given by (1 + ¢*/(x7))? which depends on the coupling strength [Kub10], as
displayed in Figure 2.2(b). As a notable difference to the previous scheme,
the atom remains practically unexcited in both cases since the light is either
far detuned or cannot enter the cavity and is reflected at the input mirror. A
comparison of both techniques is shown in Reference [Boc10].

In the experiment, we use the F' = 1 and F' = 2 hyperfine manifolds of the
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ground state as |go) and |g;), respectively. The excited state |e) is best imple-
mented on the F” = 3 manifold, since the coupling strength is maximal and
the decay to ' =1 is dipole forbidden. The dominant depumping mechanism
is expected to be off-resonant excitation of F” = 2 and subsequent decay to
F = 1. However, when resonantly driving the |2) <> |3”) transition, |2) <> |2)
is detuned by ¢/2m = 267 MHz and consequently strongly suppressed by a
factor of (§/2vp,)? ~ 2000. Another possible source is unwanted scattering
from the dipole traps.

After the cooling interval, atoms start in a random ground state. Therefore,
during the sequence, we need to first prepare a proper initial state. To this
end, we use transverse beams that selectively drive atoms from one of the two
hyperfine ground states to an excited state that has a finite probability to
decay to the other ground state until all population has been transferred. By
careful selection of the beam polarization and consideration of the Clebsch-
Gordan coefficients of 8" Rb (Appendix A, Figure A.2), one can even prepare
specific Zeeman substates with this simple method. We refer to it as incoherent
state preparation. The atom is initiated in the F' = 1 manifold by scattering
photons from two pumps resonant to the |2) <+ [1”) and |2) <> |2") transitions
until atoms starting in /' = 2 have been pumped to F' = 1. The ground state
F = 2 can be prepared by depopulating F' = 1 when driving the [1) < |2')
and |1) <> |2”) transitions. This state preparation is typically followed by a
spectroscopy interval during which a beam selectively transfers atoms to the
other ground state. This is monitored in the subsequent state detection during
which we collect the photons emitted from the cavity for a typical integration
time of 7" = 80 ps and decide via a preset threshold photon number whether
the atom has been transferred (“1”) or not (“0”). By averaging over many
repetitions, we then find the transfer probability. The fidelity describes the
probability to correctly discriminate the ground states, i.e. how well the photon
distributions of the bright and dark state are separated.

In Figure 2.13, we show the measured photon distributions for preparing
either of the ground states. As anticipated for fluorescence detection, we detect
almost zero photons when the system is in the uncoupled F' = 1 state, while
the F' = 2 yields a Poisson distribution with an average of m = 18.5. The
maximum 7 is limited by excessive heating of the atom due to the scattering
of photons. It may be improved by working off-resonantly [Boc10]. However,
the distributions are well separated and we find a fidelity for state detection of
99.3 % at a threshold of 2 photons. This includes errors due to imperfect state
preparation. In case of differential transmission, the situation is reversed: An
atom prepared in F' = 1 leads to a high transmission at empty cavity resonance,
that is suppressed for an atom in F' = 2. Here, the dark state exhibits a higher
count rate as the atom initially starts in a random Zeeman state of the F' = 2
manifold whose coupling strengths vary from 5.1 MHz to 19.6 MHz causing
relative transmissions as high as 3.5%. As will be shown in Chapter 3, the
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Figure 2.14.: Light shift spectroscopy. Spectroscopy of (a) D; tran-
sitions [2) «» [1") and |2) < |2/), and (b) D9 transitions |1) > [1”) and
|1) <> |2”) reveals light shifts. Detunings correspond to the hyperfine split-
ting as in Appendix A, Figure A.1 and Reference [Ste03]. Red lines are
Lorentz fits.

right-circular probe pumps the atom into the cycling transition within a few
scattering events upon which the system is dark with a relative transmission
of only 0.02%. Since the atom remains mainly unexcited, we are not limited
by heating and can go to much higher count rates for the bright state. In
addition, it has a much better detection efficiency than fluorescence detection.
Already at a mean photon number of 7 = 68.5, this scheme outperforms the
previous one with a detection fidelity of 99.5% at a threshold of 45 photons.
The qualitative disagreement to Reference [Bocl0], who found fluorescence
detection to be the favorable technique, is caused by the roughly fourfold
larger coupling strength in our system. In the end, both techniques yield high
fidelities and we choose differential transmission due to the lower heating rate.

2.3.2. Light Shift Spectroscopy

Spectroscopy is a technique to measure the transition frequencies from ground
to electronically excited states such as the D lines for " Rb . While these
are a priori known, any additional light shifts resulting from the dipole traps
can be detected. Thus, one may find the exact frequency of a transition or
monitor the induced Stark shift. The idea follows the concept of incoherent
state preparation: starting in one of the ground states, the spectroscopy laser
is ramped across the transition to an excited state that has a finite probability
to decay to the other ground state. Only when the laser is resonant to the
transition, atoms are transfered which is discerned during state detection.

In Figure 2.14(a) and (b), we display two different sample spectra on the D,
and Ds line, respectively. The detuning corresponds to the absolute hyperfine
splitting [Ste03]. For Figure 2.14(a), the F' = 2 ground state was prepared and
the spectroscopy laser was tuned across both excited states on the D; line. We
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find detunings of —482.4 MHz and +334.5 MHz and a splitting of 817.0 MHz.
As a result, the red-detuned dipole trap shifts both transitions almost equally
by about 26.7 MHz and 29.1 MHz!°,

On the Dy line, the F' = 1 was chosen as an initial state and the laser was
swept almost across the full excited state manifold. Due to dipole selection
rules, only the transitions [1) <> [1”) at —213.7(1) MHz and [1) <> |2”) at
—55.7(1) MHz are observed. The F” = 0 state expected about 72.2 MHz to the
red of F” =1 is not coupled to the F' = 2 ground state and therefore absent.
When comparing these frequencies to the known detunings of —229.9 MHz
and —72.9 MHz, we find an almost equal light shift for both of 16.2 MHz and
17.2MHz, which is considerably lower than the one for the D; line. This is
expected for a dipole trap which is closer in frequency to the latter transition.

2.3.3. Raman Spectroscopy

Having measured the light shifts of excited states, we also want to investigate
the transitions between ground states. Electronic dipole transitions between
these are forbidden. Microwave fields can transfer population between the two.
However, their long wavelength results in a large focus and weak coupling to the
atom. As a result, high power levels are required and transfer remains slow. In
addition, it is difficult to achieve small directed microwave fields and metallic
elements surrounding the cavity shield the atom. In a first test, microwaves
caused disturbance to the cavity length stabilization. Therefore, we follow a
different approach using stimulated Raman transitions via an auxiliary excited
state which only requires two phase-stable optical fields. It is, thus, easily
integrated into our setup using the existing optical axes and allows for fast
coherent transfer between distinct Zeeman states of F'=1 and F' = 2.

Principle. A pump beam impinging on a multilevel system experiences scat-
tering by which photons are deflected from the incident field. In contrast to
Rayleigh scattering that denotes elastic scattering where the state of the par-
ticle remains unchanged, Raman scattering refers to an inelastic process by
which the energy of the scattered photon differs from the incident radiation
as the particle transits to another state via spontaneous decay of an interme-
diate excited energy level [Ram28|. The effect has been observed in a variety
of realizations for atoms, molecules, liquids and solid state systems. Another
beam, the Stokes beam, coupling the excited state to the new ground state can
turn the spontaneous decay into a stimulated emission process, thus preserv-
ing coherence. For this stimulated Raman transition both light fields must be
coherent, phase-stable to each other and exhibit an energy difference that cor-
responds to the difference of the initial and final state. Together, they form a

ONote that during these measurements the trap was at 800nm and at a lower power
than described previously.
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Figure 2.15.: Principles of Raman spectroscopy. (a) For stimulated
Raman transfer, an atom absorbs a photon from one beam and emits it
into the other beam in a stimulated process. The Raman pair needs to
be phase-stable. In our case, it impinges transversally along x with linear
orthogonal polarization, is detuned by about 0.2 THz to the D; line and
derived from the same laser with one beam shifted with an electro-optic
modulator by the ground state hyperfine splitting of 6.834 683 GHz. (b)
The polarization of both beams yields the possible ground state transitions,
some of which destructively interfere and may not be driven. (c) For our
pair of m and o™ + o~ we find four non-degenerate transition frequencies
with Amp = =1 in the presence of a finite Zeeman shift d,.

so-called A-system as depicted in Figure 2.15(a). While we require a vanishing
two-photon detuning A in order to coherently transfer population between the
states, one avoids resonant excitation and subsequent spontaneous emission
by choosing a one-photon detuning Agr to the excited state much larger than
the decay rate v, Agr > ~. As the coherent transfer also works in reverse, one
observes a population oscillation between the states known as Rabi flopping
with a Rabi frequency Qg:

Qp — QpQs

Ap

where Qp and Qg are the driving strengths (Rabi frequencies) of the pump
and Stokes beam. As the excited state remains unpopulated and in absence of
dephasing, the transition width is solely given by 2Q2g. Consequently, stimu-
lated Raman transitions can be very narrow limited only by the ground state
coherence and finite excitation probability.

Stimulated Raman transfer is a standard technique of the quantum optics
toolbox for ultracold atom experiments and has been studied extensively, in
theory and experiment [Lei03, Foo05, Boo08, Hanl13]. It was pioneered with
ions in electrical traps [Hei90, Mon95|, but has since then spread to a variety
of experiments with neutral atoms [Kas91, Hen00, Reil4, Les14]. Its narrow
linewidth makes it useful to investigate even small shifts of the ground states
due to, e.g., magnetic fields or atomic motion in the trap. In the latter case,

(2.39)
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ultracold atoms in deep dipole traps will no longer show classical oscillation
but form discrete mechanical eigenstates of a quantized harmonic oscillator,
the splitting of which corresponds to the trap frequency. Via stimulated Ra-
man transitions, one can resolve these splittings on the order of hundreds of
kHz. Using Raman sideband cooling [Ker00], it is possible to induce tran-
sitions between these states and thus step down the harmonic ladder to the
lowest mechanical state referred to as motional ground state. Finally, stimu-
lated Raman transfer is used to prepare specific Zeeman states and coherent
superpositions of such [Ber98, Reil3].

To understand the state selectivity, we need to consider the polarizations
of pump and Stokes beam. Several possible combinations are depicted in Fig-
ure 2.15(b). For any combination, one has to sum over all possible transitions,
weighted by the Clebsch-Gordan coefficients (Appendix A, Figure A.2). This
potentially leads to destructive interference as is the case for both beams in
m-polarization. Thus, one can realize transitions between Zeeman states with
Amp =0, —1, +1 and £1. In the experiment, we choose a combination of two
co-propagating transverse beams where one is polarized along the quantization
axis driving 7 transitions and the other orthogonal to the first which causes
ot + 0~ transitions (green arrow in Figure 2.3(a)). The corresponding change
of the magnetic quantum number is Amp = +1. All possible transitions are
displayed in Figure 2.15(c). Theoretically, all of these transitions are degen-
erate. In practice, the earth magnetic field and, after compensation of that,
our offset magnetic field lift this degeneracy via the linear Zeeman effect that
describes the shift of atomic energy levels in a weak B-field. Analogously to
the coupling of an electric dipole to an E-field in Equation (2.15), the inter-
action energy of a magnetic dipole with a magnetic field is simply given by
Hp = —ﬁB. The electron orbiting the positive core, its spin and the spin of
the nucleus all contribute to the magnetic dipole moment ﬁ of an atom. In
the perturbative regime, the shift of the Zeeman states of a manifold d&5 is
proportional to the magnetic quantum number for a magnetic field along the
optical axis z:

(S(C/,Z = héz = gFuBmFBO (240)

where the g-factor gr relates the magnitude of the magnetic dipole moment
for the specific fine- and hyperfine coupling of the state to the Bohr magneton
g = % that serves as the natural unit of the electron magnetic moment. For
the two hyperfine ground states ' = 1 and F' = 2 of 8 Rb , we find gr = —1/2
and +1/2 which yields a corresponding Zeeman shift of 0,/By = —0.7 MHz/G
and 0z /By = +0.7 MHz/G, respectively.

As a consequence, we expect the transitions depicted in Figure 2.15(c) to
separate into four frequencies at +10; and +£3d;. In fact, the experimental
Raman spectrum in Figure 2.16(a) with an offset magnetic field of about 0.6 G,
i.e. 0z.theo = 0.42 MHz, displays four prominent peaks with d; = 428.6(18) kHz
and a center shift of —42.9(41) kHz. The latter is a differential shift of the cen-
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Figure 2.16.: Raman spectrum and Rabi oscillations. (a) The Ra-
man spectrum versus two-photon detuning at an offset magnetic field along
z of +0.6 G displays the expected four peaks. The red solid line shows
asymmetric Lorentz fits with different linewidths in each direction. (b)
When A = —360z and varying the duration of the Raman pulse, we observe
Rabi oscillations between the two ground states with a 1/e coherence time
of 51.2(21) s, as found from an exponentially decaying sinusoidal fit (red
line).

ter frequencies of the F' = 1 and F' = 2 states resulting from the red-detuned
dipole trap that is sufficiently close in frequency to the D; line to resolve the
atomic hyperfine structure of the ground states. The small feature close to
zero detuning reflects the transition |1,0) <> |2,0) caused by imperfect polar-
izations of the Raman beams. To demonstrate that the transfer is coherent,
we show Rabi oscillations of the population of |1,—1) < |2,—2) at =307 in
Figure 2.16(b) with a coherence time of 51.2(21) ps.

Magnetic Field Characterization. Next, we focus on the characterization
of magnetic fields. Stray magnetic fields at the position of the atom can be
caused by the earth’s magnetic field or electronic devices such as transformers.
Compensation of these background fields is achieved via three pairs of coils in
Helmholtz configuration along the z-, y-, and z-direction. Such a pair induces
a uniform axial magnetic field B;([;), i = x,y, z, if it carries a current of equal
magnitude and direction. The strength of the total magnetic field is then given
by:

By = \/(0B, + Bo(I,))? + (6B, + B,(L,))? + (6B. + B.(L.))? (2.41)

Here, 6 B; is the stray magnetic field along ¢ = x, y, z. For its characterization,
we scan the field along each direction separately to find the zero-field current
]7;70 where 5Bz + BZ(L,,()) = 0.

The scans of the magnetic field in the radial directions y and x are depicted in
Figure 2.17(a) and (b), respectively. Along y, we find a zero-field offset of I,y =
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Figure 2.17.: Scans of radial magnetic fields. The Zeeman shift due to
magnetic fields along (a) y and (b) z alters the Raman transition frequencies
and yields zero-field offset currents of +64 mA and —19mA.

+64mA and observe the expected quadratic increase of the Zeeman shift for
small deviations. From a fit of Equations (2.40) and (2.41), we deduce a shift of
0.73(1) MHz/A which results in a gauging for our Helmholtz coils of By (1,) =
1.04(1) G/A-I,. When varying the B,-field, we observe a similar behavior at an
offset of I, o = —19mA, a shift of 0.86(1) MHz/A and B, (I,) = 1.22(1) G/A-1,.
However, in addition to the four original peaks, we get resonances at 0, and
420, when increasing the magnetic field along x. Increasing the magnetic
field in a direction other than the cavity axis, will inevitably also rotate the
quantization axis alongside. While changing B,, the quantization axis moves
in the y-z-plane spanned by the Raman beam polarizations which increasingly
turns the m-polarized arm into ot + o~ and the other from o + o~ into
m, but will not affect the possible transitions. In contrast, B, rotates the
optical axis onto the direction of propagation in the z-z-plane. Then, o + o~
remains the same, but the 7 beam gets contributions from ot — ¢~ which
leads to transitions with Ampr = 0 and consequently peaks at 00, and +26,,
transitions which are not present at zero offset field.

After compensation of B, and 6B, such that 0B, + B,({,0) = 0 and
B, + By(1,0) = 0, we vary the magnetic field along z, as depicted in Fig-
ure 2.18(a). By is now a linear function of B, and all resonances cross at
the zero-field offset of I,y = +291 mA. The slope yields 0.72 MHz/A and the
gauging is B,(I,) = 1.03G/A - I,. In Figure 2.18(b), we show the spectrum
when I, = I, and, thus, By = 0. Consequently, the Zeeman substates are
degenerate and all transitions collapse onto one peak. A Voigt profile yields a
full width at half maximum of 123.2 kHz which shows good compensation and
low decoherence. This will be important for the work on electromagnetically
induced transparency in Chapter 4 that shares similarities with stimulated
Raman transitions. However, considering a stimulated Raman pulse duration
of 100 ps, this is still above the expected Fourier limit of 10 kHz. The residual
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Figure 2.18.: Scan of magnetic field along the quantization axis.
When compensating 6B, and dB,, the Zeeman splitting becomes a linear
function of B, and resonances reach degeneracy at I,9 = +291mA.(b) A
fit at this point with a Voigt profile yields best agreement to data and a
linewidth of 123.2 kHz.

linewidth may be caused by magnetic field fluctuations. Considering that the
width is likely limited by the £36, transitions that react by three-fold larger
shift in opposite directions to any variation of the magnetic field, this indicates
a field fluctuation of 123.2kHz/(2-3-0.7MHz/G) = 29.3mG.

Altogether, a background magnetic field of about 0.3 G, as calculated via
the offset currents, is in good agreement with the earth’s magnetic field of
0.24 G to 0.64 G [Fin10]. In addition to compensation of the background field,
we apply an offset magnetic field of 0.4 G to 0.6 G along the cavity axis z to
define the quantization axis for most of the experiments reported in Chapters 3
and 4.

Trap Polarization and Vector Light Shifts. During these investigations,
another effect was observed that can cause a broadening and asymmetry of
the Raman resonances and may be used to measure the temperature of the
atom. It has recently been described and explained in great detail in Refer-
ence [Neulba|, therefore we will keep it short here. Optical dipole traps with
circular polarization induce a vector light shift which, similarly to the Zeeman
effect, is linear in the magnetic quantum number. As a result, also the trap
frequency and thus the splitting between the mechanical states depends on the
Zeeman substate. Since we drive Ampr = +1 transitions with co-propagating
beams that cannot change the mechanical state n,,, an atom will be trans-
ferred to another Zeeman state that may have a lower or higher spacing of the
motional states and, consequently, experience a reduced or increased transition
frequency:

A(npm) = (M +12) - (V5 — Vea) + (Mp9r; +MEgr) - peBo/h  (2.42)
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Figure 2.19.: Trap polarization and mechanical states. (a) Rotating
a half-wave plate relative to a quarter-wave plate in the path of the intracav-
ity trap yields circular components that cause vector light shifts enhancing
or counteracting the Zeeman shift as a function of the mechanical state n,,.
(b) These mechanical states are observed as peaks with a fixed splitting
of 105.1(11) kHz in the —30z-resonance when preparing the |2, —2), as de-
scribed earlier. (Inset) Lorentzian fits yield the occupation of each state
and an average mechanical state 7, = 0.65(15) close to the ground state.

where 1v4; (14,f) is the trap frequency of the initial (final) state. We define the
differential trap frequency dv; = vy f — 14;. If the trap is o™ polarized, du; is
positive (negative) for Amp = +1 (Amp = —1) transitions. The resulting
shift may then enhance or counteract the Zeeman shift.

In Figure 2.19(a), we show Raman spectra for varying polarization of the
intracavity dipole trap that we change by rotating a quarter-wave plate. For a
linear trap, the peaks seem symmetric. However, the cooling scheme does not
work properly at this point [Neulba] and data remains noisy. When deviating
from the linear trap, we observe an asymmetry that broadens the resonances
towards larger or smaller detunings depending on the trap polarization in
agreement with our expectation. Figure 2.19(b) displays a spectrum for the
peak at —3dz. One can clearly observe equally spaced peaks that correspond
to the mechanical states where the low-frequency edge corresponds to the mo-
tional ground state n,, = 0. We deduce the occupation of each mechanical
state and find an average phonon number of 7, = 0.65(15). Finally, this con-
firms that our cooling technique is capable of efficiently cooling atoms almost
to the mechanical ground state.



3. One Mode Coupled to a
Two-Level Atom: Two-Photon
Blockade

This chapter deals with the effect of two-photon blockade in a two-level atom
strongly coupled to a single cavity mode. The content has partially been
published in [Ham17]:

C. Hamsen, K.N. Tolazzi, T. Wilk, and G. Rempe,
"Two-Photon Blockade in an Atom-Driven Cavity QED System”,
Physical Review Letters 118, 133604 (2017).

3.1. Introduction: Shrinking the Hilbert Space

An open driven quantum system exhibits fluctuations that reflect its walk
through Hilbert space. These fluctuations are inherited by the leakage to
the environment. More specifically in the case of discrete variables like par-
ticle number, the concept of quantum jumps, i.e. the sudden transition from
one eigenstate to another by emission or absorption of one energy quantum,
yields a direct link between the fluctuations of the system and its output
[Ber86, Sau86]. This discontinuous evolution of the system is in stark con-
trast to the classically expected continuous trajectories and has been observed
experimentally [Gle07]. However, by integrating over many repetitions or tak-
ing longtime averages, we recover the classically expected quantities, e.g. the
mean number of particles or the lifetime of an eigenstate [Gue07]. The mean
particle number will then be directly linked to its statistical fluctuation, i.e.
the variance, via the Poisson distribution. Blocking parts of the Hilbert space
can reduce these fluctuations and stabilize the output, which leads to statistics
with a reduced variance that are, therefore, inherently quantum in nature. A
blockade that sets an upper limit to the Hilbert space occurs when there is a
sufficiently strong interaction between the involved quanta. Examples include
the Coulomb force for electrons or the effective interaction between photons
in an optically nonlinear medium. The latter has been used to realize single-
photon blockade [Ima97] where n = 1 photons block further photons so that
they are emitted one by one. This has been realized in various systems like a
single atom in free space [Kim77], coupled to a macroscopic optical [Bir05a]
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or microtoroid cavity [Day08], a transmon qubit in the electric field of a trans-
mission line resonator [Lanll, Hofl1l] or quantum dots embedded in photonic
crystal nanocavities [Far08, Reil2]. The next challenge is to scale the blockade
to n > 1 photons [Shal0, Mir13, Carl5] and produce a stream with at most n
quanta. Such quantum scissors that truncate the Hilbert space could lead to
novel applications in multi-photon quantum-nonlinear optics like an n-photon
source [Chal4].

An ideal platform for the implementation of an optical n-photon blockade is
cavity quantum electrodynamics (QED) which strongly couples a single two-
level atom, perfectly blockaded at one photon, to a cavity that is completely
unblocked. Both subsystems alone fail to show multi-photon blockade: the
cavity needs the nonlinearity introduced by the atom, and the atom needs
access to the larger Hilbert space provided by the cavity. Only the com-
bined system with its anharmonic energy level structure provides the nec-
essary photon-number dependent nonlinearity. Nevertheless, realization of
multi-photon blockade is challenging due to the limited atom-cavity coupling
strength that has so far been obtained [Vah03, Dev07, Sch08b]. Although
strategies have been proposed to improve the blockade by extension to a
three- or four-level atom involving electromagnetically induced transparency
[Reb99, Soul3] or Raman scattering [Rosll, Rosl5], multi-photon blockade
has not been observed in optical systems. Its demonstration in circuit QED
seems pending, too, although well-resolved multi-photon transitions have been
investigated [Fin08, Dep08, Bis09].

In this chapter, we will explore two-photon blockade in a Jaynes-Cummings
system with dissipation. We start with theoretical considerations in Sec-
tion 3.2. First, we give a formal definition of n-photon blockade and derive
practical conditions for experiments which culminate in two inequalities for the
photon correlations of nth and (n 4+ 1)th order. Then, we focus on the physics
of the atom-cavity system that allows for implementation of the two-photon
blockade. We investigate how the driving of either atom or cavity affects the
transition strengths between eigenstates. In Section 3.3, we discuss our exper-
imental implementation of the proposed system. Section 3.4 gives the central
experimental results. Firstly, we explore single-photon blockade for cavity and
atom driving via second-order photon correlations. Secondly, we demonstrate
two-photon blockade in this system via correlations of second- and third-order.
Section 3.5 concludes this chapter and outlines future perspectives.

3.2. Theory

3.2.1. n-Photon Blockade

A system with one input and one output mode is said to exhibit n-photon
blockade if the Hilbert space of its output unlike the input is restricted to
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Figure 3.1.: Black box. The sys-
tem is considered as a ‘black box’ with
a coherent input field and an output
channel. It is solely characterized by
the photon statistics of the emitted
light. These statistics are experimen-
tally accessible via equal-time photon
correlations.

states containing at most n quanta.

Within this section, we therefore treat the system as a ‘black box’ driven by
a coherent input field [Bir05b] and characterized solely by the photon statistics
of the emitted light (Figure 3.1). For simplicity, any further inputs, outputs
or couplings to the environment are contained within that box. In case of an
ideal n-photon blockade, the emission with mean photon number (1) shows
the following photon number distribution [Mir13]:

(i) P(m)=0form>n (3.1a)
(i1) P(n)#0 (3.1b)

Furthermore, P(m) has to still fulfill normalization, >>7°_, P(m) = 1, which
means that () < n. For () = n, the system even constitutes as an n-
photon source. While the first condition (3.1a) reflects the fact that at most
n photons are emitted at the same time, the second condition (3.1b) is set
to exclude that the system is already (n — 1)-photon blockaded. These two
conditions can be translated into conditions for the normalized equal-time kth-
order photon correlation that is better suited for experimental investigations
since it does not suffer from e.g. low detection efficiencies. The correlations
are linked to the distribution via:

~GP0o) 1 &

m!
T TR R TR 52

In order to verify if a system is n-photon blockaded, the correlations of the
emitted light field then have to fulfill the following conditions:

(i) ¢"(0)=0 (3.3a)
(it) g™ (0) #0 (3.3b)

These strict conditions are only fulfilled for a perfectly blockaded system, which
is hard to achieve in experiments. If the n-photon blockade does not work
perfectly, we expect that P(m) # 0 even for m > n, but that the probability
to get more than n photons is suppressed compared to a Poisson distributed
light field P(m) = (1)™e~" /m! with the same average photon number (172
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as the emitted field. We use the Poisson distribution as a reference since it
describes the probability of recording a given number of clicks in a fixed time
interval for a known average photon number in case of perfectly uncorrelated
photons. As a result, the two conditions in Equations (3.1a) and (3.1b) when
reformulated for an imperfect blockade become:

(1) P(m) <P(m) form >n (3.4a)
(i1) P(n) > P(n) (3.4Db)

Again, the first condition ensures that all photon numbers above n are sup-
pressed, and the second condition ensures that this is not yet the case for
(n — 1) photons. In this case, each kth-order correlation, and consequently
the respective condition as well, depends in general on all higher probabilities
of the photon distribution since Equation (3.2) contains an infinite sum. It
only simplified to Equations (3.3a) and (3.3b) since all elements m > n were
0. However, if we assume a small mean photon number (/1) < 1, and a dis-
tribution that is sufficiently well-behaved fulfilling P(m) > P(m + 1), then
it is sufficient to only consider probabilities up to (n + 1)th order. In conse-
quence, it suffices to demonstrate that Equation (3.4a) holds for m = n + 1
and P(n+ 1) can again be given in terms of the correlation function ¢ (0).
The condition then reads:

A (n+1)
Pn+1)= U g™t (0)
(n+1)!
<m>(”+1> (3.5)
P(n+1) (1) e ™,
This can be simplified using the Taylor expansion for e=™:
A A\ 2 A\3
gm0) <1 — ) + o) () + ... (3.6)

1! 2! 3!

Since (M) < 1, we find a lower bound for which the condition formulated in
Equation (3.4a) always holds:

g t(0) < 1 — (1) (3.7)

For the second condition given in Equation (3.4b), we can also find a re-
formulation in terms of correlation functions under the same restrictions as
Equation (3.7) was derived:

)" o (n+1)
P(n) = 0 g0 o) - L e o)
n: n: o (3.8)
>P(n) = () e~ (M)
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When inserting the upper limit ¢™+9(0) = 1 — () from Equation (3.7) into
the inequality, this reduces to:
()
g"(0) =1 -~ (3.9)
Again, if this stricter condition is met, Equation (3.4b) is fulfilled, too. In
summary, we therefore find for an imperfect n-photon blockade:

(i) ¢g"tY0)<1—(m)~1 (3.10a)
(i) ¢g™(0)>1-— <”;>2 ~ (3.10b)

The last approximation often holds in our experiments since the terms of (/m)
or (1m)? remain below the error bars.

Now, we have found two conditions for the photon correlations of nth and
(n+1)th order that allow us to determine whether a system exhibits n-photon
blockade. Typically, the restriction () < 1 is fulfilled in experiments since
the truncation at n photons is only achieved in systems that exhibit a suf-
ficiently strong nonlinearity and are therefore inherently hard to excite. On
the other hand, this prolongs measurement time for correlations of high orders
that rely on coincidence of multiple photons. Photon correlations up to third
order have been demonstrated in systems consisting of atoms and optical cavi-
ties [Kocl1b], and even up to fourth order with quantum dots in microcavities
with three orders of magnitude higher decay and count rates [Runl4]. From
that point of view, at least single- and two-photon blockade should be within
experimental reach in our system.

While showing that ¢(®(0) < 1 is sufficient for single-photon blockade’, in
order to prove a two-photon blockade, it is necessary to fulfill Equations (3.10a)
and (3.10b) for n = 2, which yields:

(i) ¢®(0) <1 (3.11a)
(i) ¢g?@(0) > 1. (3.11b)

Note that this derivation was done for a comparison of the output light field
with a light field following Poissonian statistics for which all orders of normal-
ized photon correlations are equal to one, which corresponds to the level of
uncorrelated photons.

3.2.2. Atom Driven versus Cavity Driven System

In the previous section, we have given a definition of n-photon blockade that is
solely based on the statistics of the emitted light and found conditions for the

LCondition (3.4b) must be fulfilled if condition (3.4a) is met and (M) is to remain the
same.
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Figure 3.2.: Energy ladder and effective driving strengths. A sketch
of the experimental setup and physical system inside the ‘black box’ is
revealed. As depicted in (a), a single atom is trapped at the antinode of
an intracavity light field. The anharmonic energy-ladder system (b) can
either be excited via a cavity (blue, effective driving strengths see (c)) or
atom drive (green, effective driving strengths see (d)). The resulting cavity
field is then monitored via an extended Hanbury Brown and Twiss detection
setup.

nth- and (n+1)th-order photon correlation which can be tested experimentally.
The physical system was, however, treated as a ‘black box’ The question
arises: What kind of system has to be enclosed in that box? Several practical
requirements follow naturally from the simple idea of an n-photon blockade
as a truncation of the Hilbert space. Firstly, such a system must be able
to store at least n excitations at once. Secondly, to access n > 1 quanta
stored in the system, a decay channel should be capable of releasing multiple
excitations inside the system to the outside world simultaneously. Finally,
truncation at n excitations requires some kind of n-photon nonlinearity such
that further absorption to (n 4 1) excitations is suppressed. The two-level
atom strongly-coupled to a cavity, as described in Section 2.1, exhibits such
an n-photon nonlinearity in form of an anharmonic energy ladder of doublets
split by 24/ng (Figure 3.2(a)and (b)). For resonant excitation of the first (I)
or second (IT) manifold, the drive is detuned to higher lying eigenstates and we
expect single- or two-photon blockade. However, while it seems unimportant
which component, cavity or atom, we use to excite the system, only the cavity
can emit multiple photons at once.

The simple argumentation solely focusing on the anharmonicity of the en-
ergy ladder is insufficient since we also have to take the transition strengths
between the eigenstates into account. These transition strengths depend on
whether we drive the atom or cavity and become specifically important if the
coupling strength is limited compared to the decay rates of the system such
that considerable overlap with higher manifolds is expected.

As derived in Section 2.1, the CQED system is well described by the Hamil-
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tonian:

H=hA,6'6 + hA.ata + hg (ate + 6Ta) + Hy (3.12)

The last term describes the excitation via the driving field. The energy struc-
ture remains unaffected as long as the drive strength is much smaller than g and
does not exceed the atomic polarization decay rate v and cavity-field decay rate
k [Als92, Bis09, Koc11b]. However, the corresponding excitation strengths be-
tween different manifolds differ whether the cavity is driven, Hy = fin. (a+at),
or the atom, Hy = hn, (6 + 61) [Als91]. Here, 1, (1,) is the strength of the
cavity (atom) drive. Both strengths are expressed in terms of bare eigenstates
of the system without atom-cavity interaction. We can reformulate these in
the dressed state basis of the coupled system (|n,+)). For the case of cavity
driving, we find [Car09, Koclla):

'ﬂdzhm(a+a0

— e (VAF T+ 1) {nl +he) @ () (gl le) (e])

n=0

mef

(n+ 14yt + I+ 1 =) (=) g

VL

(In+1,=) (n,+|+ n+1,4) (n,—|)

Y2 (11,2 (0,51 + [1.4) (0.90) + hc)

This reformulation yields effective driving strengths 7)./2 that are depicted
schematically in Figure 3.2(c). For the transition from the ground state to
the first manifold, |0,g) — |1,4), these are 7, = v/2n.. For the transition
from the nth to the (n 4+ 1)th manifold, bosonic bunching causes symmetry
conserving transitions, (|n,+) — [n+1,+)), to be strongly enhanced by 7. =
(vn+ 1+ /n)n. whereas those that change symmetry, (|n,+) = |n+ 1, F)),
are suppressed, 7. = (v/n+ 1 — y/n)n.. For small atom decay rates, this can
effectively split the energy ladder of doublets into two separate ladders.

Reformulating the driving term for excitation of the atom gives a different
result:

o=t (5 +0%) = b (o) (el + ) g & 3 In) 0
(3.14)

—fﬁ(W+L—Hm+wwn+L—Hm—D+hg>
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Figure 3.3.: Simulated photon correlations and statistics. (a) Sim-
ulated second- (solid) and third-order (dashed) equal-time photon corre-
lations versus probe-cavity detuning A. are depicted in units of coupling
strength for atom (green) and cavity driving (blue). Vertical lines indicate
the nth manifold and red arrows show the detunings chosen for the distribu-
tions. Filled areas indicate regions of single- (1PB) or two-photon blockade
(2PB) as described by Equations (3.10a) and (3.10b). The relative devia-
tions of the simulated photon distributions to Poisson distributions of the
same mean photon number are shown for atom (b),(d) and cavity (c),(e)
excitation at the first (b),(c) and second (d),(e) manifold. The parame-
ters correspond to those used in the experiment (Section 3.4). In (e), the
ordinate is scaled by a factor of & = 1000.

Again, we find effective strengths 7,/2 shown in Figure 3.2(d). While the
transition from the ground state to the first manifold remains the same 7, =
++/2n,, all other transitions have equal strengths, with the sign being that of
the upper state, 7, = £n,.

As a consequence, resonant driving of the nth manifold via the cavity di-
minishes the structural suppression of higher excitations since the correspond-
ing transition strengths increase. In contrast, the transition strengths remain
constant when driving the atom instead. To understand the consequences for
single- and two-photon blockade, we show simulations of the second- and third-
order equal-time photon correlation function in Figure 3.3(a). The stronger
suppression of higher rungs for atom excitation manifests itself in a broad
range of detunings and an improved purity of single-photon emission on the
first manifold [Bir05b]. This is confirmed by simulations of the photon distribu-
tions shown in Figure 3.3(b)and (c). We find that the two-photon and higher
components are more strongly suppressed for atom than for cavity driving.

Figure 3.3(d) and (e) depict the distributions for excitation close to the sec-
ond manifold. The bosonic bunching dominates for cavity driving and the
population grows with increasing photon number relative to the Poisson dis-
tribution. For atom excitation, we observe two-photon blockade as the two-
photon component is enhanced while all higher probabilities are suppressed.
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Figure 3.4.: Driving scheme and sequence. (a) The driving scheme
is illustrated for atom (green) and cavity drive (blue). The o™ pump dur-
ing state preparation (light blue) populates the F' = 2, mp = +2 ground
state. Due to the large difference in Clebsch-Gordan coefficients, the linear
transverse probe experiences an almost two-level-system. (b) Measurement
sequence used during the experiment (see Figure 2.4 for full sequence). (c)
Transmission during state preparation exhibits a steep increase due to the
turn on behavior of the probe and falls off after 5ns with a decay constant
of 4ys as the atom is prepared in the |2, +2).

The effect, however, remains weak for three photons. It is dependent on the
driving strength and limited to a small range in frequency (Figure 3.3(a)).

Altogether, the comparison of photon correlations with distributions com-
plements our previous derivation in Section 3.2.1.

3.3. Experimental Implementation

For this experiment, the high-finesse Fabry-Pérot resonator is adjusted to a
cavity length of only 202 pm in order to maximize the coupling strength (g o
L’%). This yields a field decay rate of k/2r = 2.0 MHz. We work with
8TRb atoms on the D, line at 780 nm that exhibit a polarization decay rate
of v/2m = 3.0MHz. The ac Stark shift, mainly caused by the red-detuned
standing-wave dipole trap set to 800 nm, compensates the bare atom-cavity
detuning of —15.2 MHz to the F' = 2 «» F” = 3 transition to only a few MHz.
For the largest dipole matrix element between the Zeeman states |2, 42) <>
13", +3) (Figure 3.4(a)), a theoretical atom-cavity coupling constant of g/2m =
19.6 MHz puts us well into the strong-coupling regime of CQED, g > (k,7).
The quantization axis is defined parallel to the cavity axis by an offset magnetic
field along the z-direction of about 0.4 G.

By the time of the experiment, the algorithm for the full 3D microscopy
of atoms was not yet in place. Only positioning along the z-direction and
postselection on the cavity axis were implemented leaving the vertical axis
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Figure 3.5.: Atom and cavity driven normal mode spectra. Spec-
tra measured for the uncoupled (black, scaled by factor 1/8) and strongly-
coupled (blue) cavity driven system in comparison to exciting the atom
(green) are depicted. The thick colored lines are fits of a model consider-
ing residual thermal excitation and remnants of the empty cavity for the
coupled spectra in case of cavity driving as described in Appendix B.

uncontrolled. Fluctuations in width of the atom images, however, indicate a
significant distribution along this direction on the order of the cavity waist.
This is considered the main experimental imperfection and led to the develop-
ment of the atomic side-of-fringe lock, as described in Section 2.2.2.

While the atom is trapped, we repeat our measurement sequence as de-
picted in Figure 3.4(b) with a rate of 2kHz alternating between cavity and
atom driving. We start with a cooling interval of 400 ps followed by 50 ps of
state preparation. Here, we pump the atom to the |2,+2) ground state by
applying a circularly polarized, resonant cavity probe that drives ot transi-
tions (light blue arrows in Figure 3.4(a)). As the respective Clebsch-Gordan
coefficients increase towards the final state, excitation will be increasingly sup-
pressed (Figure 3.4(c)) due to a growing normal mode splitting. This ensures
rapid state preparation with a strong drive while at the same time avoiding
excessive heating. We finish with the probe interval during which either the
cavity or the atom drive excites the system at the desired frequency. We record
the transmitted signal on four single-photon detectors in a Hanbury Brown
and Twiss-type configuration with a timing resolution of 1 ns. Depumping and
heating effects are minimized by keeping this interval short (20ps to 50 ps),
especially in case of higher driving strengths. While the cavity probe drives
only om transitions, we excite the atom with a linearly polarized transverse
probe that drives ot and o~ transitions. Since the dipole matrix element for
the o~ transition is much weaker, we expect a quasi two-level behavior. How-
ever, depumping and coherent admixtures of other transitions cannot be fully
neglected and may affect the observed coupling strength, especially close to
the second manifold where these have their strongest contributions due to the
smaller splitting.
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Finally, the power is chosen such that we remain in the weak driving regime,
Nae < (K,7). During the whole time, a weak transverse beam resonant to the
F =1+ F' =2 transition on the D; line at 795 nm repumps atoms that end
up in the F' = 1 ground state due to off-resonant scattering.

Spectra for atom and cavity driving are depicted in Figure 3.5. The distinct
splitting of the normal modes reflects the strong coupling of the system in both
cases. We deduce an experimental coupling constant of ¢g/2m = 16.38(4) MHz.
The finite temperature and position distribution of the atoms causes a notable
broadening of the red-detuned normal mode that is more strongly affected as its
character is more atom-like due to a residual detuning between atom and cavity
[Sch08a]. The stronger drop of transmission around zero detuning in case of
cavity driving results from the atomic antiresonance caused by destructive
interference when exciting the cavity [Sam14]. This also slightly increases the
observed normal mode splitting. The small peak at A. = 0 MHz when exciting
the resonator is identified as remnants of the empty cavity due to imperfect
polarization of the transmitted light resulting from birefringence. The effect
amounts to about 1% and can be suppressed by polarization filtering.

3.4. Results

In this section, we first explore the effect of the drive on the first manifold
via single-photon blockade and demonstrate two-photon blockade in a second
step. For the latter case, we discuss the complex dynamics of the third-order
photon correlations.

3.4.1. Single-Photon Blockade

In order to show single-photon blockade, we have to measure the time-dependent
second-order photon correlation ¢®(7) = (A - 2(7))/(7)? (normal and time
ordered) and demonstrate that ¢ (0) < 1 (Section 3.2.1). As proposed in
Section 3.2.2, we excite the system close to the first manifold via the atom or
the cavity to confirm its dependence on the driven component. For atom driv-
ing, we excite the system with a strength of n,/27 ~ 0.55 MHz which yields a
mean photon number (1) ~ 0.01 inside the cavity. The resulting correlation
shown in Figure 3.6(a) is in good qualitative agreement with the corresponding
theory that is depicted as an inset. A strong sub-Poissonian antibunching with
a g (0) = 0.16(1) and a rising slope indicate emission of single light quanta
due to a strong blockade of multiple excitations (compare Figure 3.2(b,I)). We
observe a small and rapid oscillation at approximately twice the coupling rate
g known as vacuum Rabi oscillation [Rem91]. It originates from the coherent
energy exchange between atom and cavity. Since the ¢ (7) is conditioned
on detection of a photon, and the respective probability is higher when all
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Figure 3.6.: Photon correlations at one-photon resonance. The
second-order photon correlation function for atom (a),(b) and cavity (c),(d)
excitation of the first manifold at A./2r = 18 MHz is depicted with a bin-
ning of 3ns. The behavior at short time delays between the photons reveals
single-photon blockade. The theory (insets) is calculated from numerical
solution of the master equation and serves as qualitative comparison. De-
viations to experimental results stem from atomic motion and position dis-
tribution of atoms within the cavity mode as can be seen in the long time
behavior shown in (b) and (d). From the fit of an oscillating function (red
solid lines) we deduce a frequency of about 395 kHz in good agreement with
the expectation for our axial trap frequency. In addition, we find a finite
offset from one even after decay of the trap dynamics for 7 > 15 ps.

excitation is predominantly in the cavity, the oscillation always starts with a
local maximum for 7 = Ons. In order to observe this coherent evolution, the
system must therefore be at least doubly excited. In other words, the am-
plitude of the oscillation depends on the amount of population in the second
manifold and, thus, decreases with increasing single-photon blockade. We es-
timate the coupling rate from the second oscillation maximum at 31.5(15) ns
to be 15.9(8) MHz which is in good agreement with the fitted value from the
spectrum.

Excitation of the cavity (n./2m ~ 0.55 MHz, (/) ~ 0.01) on the first man-
ifold is depicted in Figure 3.6(c) and yields qualitatively the same behavior.
However, the value ¢®(0) = 0.83(2) is much larger, and stronger vacuum Rabi
oscillations indicate significant excitation of higher manifolds. In accordance
with theory, atom driving does exhibit a far stronger photon blockade effect
despite the same energy level structure. For cavity excitation, the second os-
cillation maximum occurs at 28.5(15) ns which corresponds to a coupling rate
of 17.5(9) MHz.

In both cases, the non-classical behavior disappears on a timescale deter-
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Figure 3.7.: Photon distributions of the probe intervals at one-
photon resonance. The photon distribution P(n) per probe interval is
shown for (a) atom and (b) cavity excitation. These distributions are used
to calculate the expected values for a second- and third-order photon cor-
relation of a given light field. The deviation in average photon number is
caused by the different spectral intensities. The red bars show a Poisson
distribution of the same mean photon number.

mined by the decay rate of the excited dressed states (“32)~! &~ 64 ns. Beyond
this time, the correlations are expected to approach 1, the value expected for
independent photons as described by a Poisson distribution. In the exper-
iment, both correlations deviate from 1 due to atomic motion and residual
displacement from the cavity-mode center and excitation beam [Rem91]. As
described in Section 3.3, the position distribution is caused by the loading
and trapping scheme for atoms while motion results from finite temperatures
after cooling and heating due to the resonant probe beams. Both effects are
observed in correlations. In Figure 3.6(b)and (d) we show the second-order
correlations on the first manifold for atom and cavity driving for time delays
up to 20ps. We observe how the pronounced antibunching feature at 7 = 0
and the quantum dynamics of the system settle to a peak resulting from tech-
nical fluctuations. The major contribution of this bunching peak comes from
an oscillation of about 395kHz that agrees well with twice the atomic trap
frequency along the cavity axis determined by the blue-detuned intracavity
dipole trap [Die87, Rot08]. The transverse trap frequencies are on the same
order, but only excursions along the standing wave of the cavity will cause
a significant modulation of the coupling constant which in turn will cause a
‘breathing’ of the normal modes. Consequently, the shape and amplitude of
the resulting intensity modulation strongly depends on the driving frequency.
The correlations are taken close to the maximum of the normal modes at the
outside slope and are therefore prone to show strong motion artifacts. In ad-
dition, motion along all trap axes leads to varying atom-cavity detunings. The
motion changes the overlap with the optical dipole traps which in turn affects
the corresponding light shift from the dynamical Stark effect. We expect the
resulting background to be incoherent as the variations happen at different
frequencies and lack phase stability relative to each other.
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In total, we model the long-time behavior of the two-photon correlations by
the following function:

f(r)=A.-e 7 -sin (20 f,7) + A; - e+ (3.15)

While the first two terms describe the intensity fluctuation due to coherent
variation of the coupling constant along the cavity axis and incoherent back-
ground due to light shifts, the third term describes an offset expected to be
1 for a Poissonian light field. We find values of 1.25 and 1.06 for atom and
cavity drive at the first manifold, respectively.

We attribute this additional offset after decay of all dynamics of the system
to the random vertical position of the atoms with respect to the cavity mode
center which varies from run to run. This position distribution causes fluc-
tuations in the coupling constant, light shift, and overlap with the excitation
beams. Therefore, it may be thought of as excess intensity noise of the field
emitted from the cavity.

To further investigate the deviation from one, we compare the large-delay
offsets with the photon number distributions P(n), i.e. the number of photons
of the full measurement interval, averaged over many realizations (Figure 3.7).
The width of the latter already indicates an increased variance in comparison
to a Poissonian light field shown as red bars. Furthermore, values for ¢ (0)
and ¢®(0) as expected from the photon distributions can be calculated via
Equation (3.2):

_ San(n—1)P(n)

(2)
g9p (0) > nP(n)]2 (3.16a)
o (0) = I (3.160)

The resulting values are given as an inset in Figure 3.7 and we find gg)(O) =
1.27 for atom and gg)(O) = 1.07 for cavity driving are in good agreement with
the large delay averages given above. While error bars on these numbers from
the fit are below the presented accuracy, we expect a dominant systematic
error stemming from the random choice of the averaging interval with respect
to residual oscillations due to atomic motion. This may explain the remaining
deviation.

3.4.2. Two-Photon Blockade

We want to investigate whether two-photon blockade, as described by the
conditions in Equations (3.11a) and (3.11b) and predicted in Section 3.2.2,
can be achieved in our system. This requires second- and third-order photon
correlation measurements.
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Figure 3.8.: Photon correlations at two-photon resonance. Close to
the second manifold at A./2m = 9MHz, second-order photon correlations
with 3ns binning for (a) atom and (c) cavity driving show bunching. In
(b) and (d), we show the corresponding third-order photon correlations
with antibunching and bunching, respectively. This indicates a two-photon
blockade for atom excitation. The increase of the binning to 10ns in (b)
and (d) accounts for the considerably smaller probability of three-photon
events. Grey dashed lines indicate the long-time averages and insets depict
the corresponding theory, which we add for qualitative comparison.

We tune the drives close to the second manifold (compare Figure 3.2(b,II))
and increase their strengths to 7,/2m ~ 1.6 MHz and 7./2m ~ 1.1 MHz. This
allows for significant population of higher states without yet affecting the level
structure. Despite the significant driving, the intracavity photon number (/)
remains small at 0.04 for atom and 0.01 for cavity excitation since only a small
fraction of the drives is coupled into the joint system. The corresponding
correlations are depicted in Figure 3.8.

The second-order photon correlations in Figure 3.8(a)and (c) yield super-
Poissonian emission in both cases since ¢®(0) > 1 which is indicative of pho-
ton numbers higher than one. Cavity excitation shows strong photon bunching
with ¢ (0) = 13.58(8) that falls off rapidly and exhibits vacuum-Rabi-oscil-
lations [Kub08]. The observed dynamics for atom driving is more complex.
The interplay between conflicting mechanisms, a two-photon resonance on one
hand and an emitter that can only absorb one excitation at a time on the other
hand, leads to a novel photon-concatenation effect. Since the rate of coher-
ent energy exchange between atom and cavity exceeds the spontaneous decay
rate of the system, higher manifolds are populated in stepwise excitation via
the emitter. As a consequence, we observe that the second-order correlation
function peaks 37.5(15) ns after the trigger photon which indicates that the
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Figure 3.9.: Photon distributions of the probe intervals at two-
photon resonance. The photon distribution P(n) per probe interval is
depicted for (a) atom and (b) cavity excitation. These distributions are
used to calculate the expected values for a second- and third-order photon
correlation of a given light field. The deviation in average photon number is
partly caused by different driving strengths (n, /27 ~ 1.6 MHz and 7./27 ~
1.1 MHz) but mostly due to the different spectral intensities at the driving
frequency. The red bars show a Poisson distribution of the same mean
photon number.

coupling rate rather than the lifetime determines the probability for detection
of a second photon. This is in stark contrast to the first-manifold dynamics
described above. As g® (1) > ¢®(0) for some 7, this behavior violates the
Cauchy-Schwarz inequality and is thus quantum in nature [Man95, Mie98|.
Again, we find good qualitative agreement with the simulations, but the val-
ues for uncorrelated photons at large delays, even after the motional dynamics,
deviate from 1 significantly for both, atom driving with 1.26 and cavity driving
with 2.58.

While Figure 3.8(a) and (c¢) indicate multi-photon emission and fulfill condi-
tion (3.11a), we now have to show that in addition higher photon numbers are
suppressed via the third-order correlations. The time-dependent third-order
photon correlation is given by ¢® (71, 7) = (A -A(m) -A(1 +7))/(7)* (normal
and time ordered). 7 is the delay between the first and second photon and 7
the delay between the second and third photon. In general, ¢©® (71, 7) gives a
two-dimensional plane which grants insight into the dynamics of the system,
especially the second manifold.

For now, we focus on ¢®(7,7) as depicted in Figure 3.8(b) and (d). In this
case, the time separation between all three photons grows with 7. For time
intervals exceeding the time scale of the internal coherence, 7 > 2/(k + 7),
g®) (7, 7) is proportional to the probability of detecting three uncorrelated pho-
tons. As anticipated, we observe a strong bunching in case of cavity driving
that originates in the enhancement of excitation to higher manifolds and in-
hibits a two-photon blockade. Atom excitation, however, shows antibunching
as expected from simulations. In contrast to theory, ¢ (0,0) = 1.43(12) is
above 1, the value expected for a Poissonian light field. However, we do sig-
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nificantly underpass the long-term averaged value of 1.98(1) that serves as a
reference for uncorrelated photons. As described in Section 3.4.1, this value
is above 1 due to technical fluctuations that shift ¢©®(7,7) to higher values.
Again, we confirm this by calculating our expected offset for the second- and
third-order correlation via the photon number distribution per interval (Equa-
tions (3.16a) and (3.16b)). The distributions and comparison to a Poissonian
field of the same mean photon number for atom and cavity driving are shown in
Figure 3.9. In case of atom excitation, we find gg)(O) = 1.28 and gg’)(O) =1.99
for uncorrelated photons. These values agree very well with the long-time av-
eraged ¢®?(7) and ¢®(7,7) and prove that the field exhibits an increased
variance, likely due to residual atomic motion and a distribution of positions
with respect to the cavity mode and atom drive for different atoms. We can
therefore conclude that the ¢©® (7, 7) demonstrates a reduction of the proba-
bility of detecting more than two photons at the same time, while two-photon
emission is enhanced compared to a Poissonian field of the same mean photon
number, as shown by 9(2)(0). In consequence, our atom-driven CQED system
thus exhibits a two-photon blockade. In contrast, cavity driving displays pho-
ton bunching in ¢ (7) and ¢® (7, 7). Both, the results from atom and cavity
driving, agree qualitatively with the simulated results.

At the end of this section, we want to focus on additional features as de-
scribed by the full ¢® (71, 75) and understand more about the dynamics of the
two-photon blockade. Figure 3.10(a)and (b) show the full two-dimensional
plane of ¢® (71, 1) for atom and cavity driving. The previous ¢©® (7, 7) for the
description of three uncorrelated photons at large time delays corresponds to
a diagonal cut through the origin. As we have already seen before, the two
exhibit distinctly different behavior.

When the drive excites the cavity field, we find the highest probability for
coincidences at zero time delay and a rapid decay to the steady state value for
all delays. This indicates that the system tends to emit three and more pho-
tons in bunches. We are detuned to the first manifold and close to the second
manifold which favors double excitation. The photon bunching described in
Section 3.2.2 causes excitation to even higher manifolds. Once excited to the
third manifold, the system rapidly returns to the steady state with the highest
probability to detect all photons at zero time delay. The system can be quali-
tatively understood by considering the relevant decay paths when starting in a
given excited state of the third manifold. Along the abscissa and ordinate, we
find the dynamically interesting case of (71, 7) = (0, 7) where the third-order
correlation yields information on the conditional evolution of (7) ({(7?)), i.e.
the dynamics on the first (second) manifold for positive (negative) 7 [Kocl1b].
The experimental results for cavity driving are displayed in Figure 3.10(d).
We find excellent agreement with a theory that has been scaled and shifted
which can be understood as a correction up to first order to compensate for
atomic motion and displacement. As the bunching falls off to steady state,
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Figure 3.10.: 2D plane of third-order photon correlation. The
two-dimensional plane of the third-order photon correlation g(3)(7'1,7'2) is
displayed for (a) atom and (b) cavity excitation close to the second man-
ifold with a binning of 10ns. The corresponding cuts along the vertical
and horizontal axis ¢®(0,7) are depicted in (c) and (d). For qualitative
comparison, the theory for the same parameters (inset) has been scaled and
shifted to fit experimental data (dash dotted red lines).

data and theory exhibit oscillations at different frequencies for positive and
negative times that reflect the coherent evolution on the first and second man-
ifold at frequency 2¢ and 2v/2g, respectively [Kocllb]. At large 7, we now
observe an offset of 27.8(3). This is much larger than for three independent
photons (Figure 3.8(d)). For ¢®(0,7), two of the photons are correlated for
any 7 and therefore we do not expect the correlation to approach 1 for large
7, but the value of ¢ (0) - g@(7) for 7 > 2/(k + ) [Koclla]. While this
yields a good qualitative understanding, we do not find accurate quantitative
agreement. This is considered to be a consequence of the deviation from the
expectation for a coherent field at large delays.

Exciting the atom instead leads to drastically different behavior and re-
quires to consider the excitation path in addition to the decay, as we already
observed for the second-order photon correlations. In Figure 3.10(a), we find
that ¢3(0,0) marks the overall lowest point which complements our argu-
mentation for a two-photon blockade from before. Several notable dynamical
features are observed. Increasing the delay between all three photons leads to
a bunched region between 20ns to 100 ns as was also shown in Figure 3.8(b).
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This is not as prominent along the horizontal or vertical axis, that are shown
as a cut in Figure 3.10(c), which demonstrates an enhanced probability for
the emission of independent photons while any correlated emission of three
photons remains weak. Note that at the peak of ¢®® (7, 7) at 7 ~ 60ns (Fig-
ure 3.8(b)) the third photon has a delay to the first that exceeds the coherence
time of the system. The fact that this maximum exceeds the value for uncor-
related photons and peaks on the second oscillation after the first detection
may indicate a photon concatenation effect for three photons similar to the
one for two excitations where now three photons can only be added stepwise
to the system. At close observation of ¢(® (0, 7), we find a significant asymme-
try in the larger bunching region around 75ns at positive delays. In further
theoretical investigations, its occurrence agrees with the inverse of the probe
detuning to the first manifold. The detection of two photons very likely brings
the system to the ground state upon which the probability for re-excitation is
enhanced. If the single photon arrives first, however, the stepwise excitation
via the atom hinders emission of two-photons and the third-order correlation
function remains low for larger delays. Finally, the beating of the first and
second manifold dressed states at frequencies 2g and 2v/2¢ are again visible in
theory and faintly in data.

3.5. Conclusion

In conclusion, we have given a definition of multi-photon blockade and derived
some criteria that can be tested experimentally. We have shown in theory
and experiment that driving the quantum emitter instead of the resonator
improves the nonlinear response of the strongly coupled system. This allows
us to demonstrate both single- and two-photon blockade. Future experiments
could explore the extension of the blockade mechanism to even higher photon
numbers. For example, simulations indicate that three-photon blockade seems
feasible with our system. As blockade truncates the high end of the photon-
number distribution, any additional reduction of the low end [Far08, Kub0§]
may enable carving of various non-classical photon states like those contain-
ing n photons. Excitation of the cavity at higher manifolds, as explored in
this chapter, may appear as a natural candidate. Direct production of n-
photon states has also been proposed for strong atom driving, n, > ¢, with the
cavity tuned as to selectively enhance a specific n-photon transition between
dressed atom-laser states [Munl4]. Selective population of higher-energetic
atom-cavity states might be possible by stepwise excitation of the symmetry-
changing transitions (|n, ) — |n+ 1, F)). When exciting the atom instead of
the cavity, these transitions exhibit larger and thus more favorable strengths
[Fin08]. Finally, driving atom and cavity simultaneously might enable a quan-
tum interference induced photon blockade where single-photon emission results
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from destructive interference between different transition paths [Tanl5].



4. Two Modes Coupled to an
N-type Atom: Interacting Light
Fields

4.1. Introduction: Coupling Photons of Two Light
Fields

In the previous chapter, we have seen an example of quantum nonlinear optics
between indistinguishable photons of the same continuous driving field. In
contrast, linear quantum networking does not exploit such direct interactions
between photons, since each photon populates a separate well-defined spatio-
temporal mode and, e.g., its polarization encodes the qubit [Reil5]. Controlled
interactions between these qubits are required to process the associated quan-
tum information [Kok10]. A model platform is provided by cavity quantum
electrodynamics [Kim08, Chal4]|. As recently demonstrated, interaction with
a photon leaves a trace in the atom that can be read out in a second step
[Nog99, Dua04] enabling the realization of non-destructive photon detection
[Gue07, Gle07, Reil3, Tielda] and an atom-photon gate [Rau99, Reild]. A
gate between two photons is then performed sequentially by consecutive inter-
action of the photons with the CQED system [Hacl6]. Engineering a system
that catalyzes a direct nonlinear interaction between simultaneous photons in
two distinct modes is still an outstanding challenge. For this purpose, its en-
ergy eigenstates must depend nonlinearly on the number of photons in each of
the modes, a condition we refer to as strong coupling of light fields in analogy
to CQED. Such a system holds potential for all-optical quantum nonlinear
sensing. Hereby, photons measure photons while the system remains inactive
in the actual sensing process.

Here, we will demonstrate strong nonlinear coupling between photons in two
different cavity modes. Without a medium, two cavity modes do not interact
which leads to a purely harmonic energy level structure as depicted in Fig-
ure 4.1. Only adding a four-level atom that forms an N-type system where
two transitions (probe and signal) are strongly-coupled to the cavity modes
and connected via a strong coherent field (control) allows us to mediate in-
teractions between the fields. Probe and control form a lambda configuration
with a common excited and two ground states featuring electromagnetically

63
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Figure 4.1.: Strongly coupled light fields. (a) Two light fields, probe
(yellow) and signal (red), resonant to different modes of an optical cavity do
typically not show any interaction and the harmonic energy ladders persist
into the joint system (orange bars in (d)). (b) However, coupling these
modes strongly to two transitions of a four-level atom (c) with coupling
strengths g, and g, allows us to mediate an interaction between these modes
via a coherent field of strength 2. that causes EIT. (d) The resulting energy
level structure (black bars) is nonlinear in the number of photons in both
modes, n, (ordinate) and ng (abscissa).

induced transparency [Har90, Fle05]. Here, quantum interference puts the sys-
tem into a dark superposition between the two ground states, eliminating the
excited state population, rendering the otherwise opaque medium transparent
for the probe light. Signal light in turn couples the control ground state to a
second excited state thus disturbing the fragile ground state coherence. The
resulting energy level structure displays a landscape of quadruplets for each
combination of probe and signal photon number (Figure 4.1(d)). The splittings
within the quadruplets depend nonlinearly on the number of photons in each
cavity mode [Wer99, Reb02, Ber06, Le 16]. We show that this enables realiza-
tion of a photon-photon switch in a regime of mutual blocking (anticorrelation)
between photons in different modes. Furthermore, the system can be tuned
to correlated transmission where photons only transit the cavity conjunctly.
Photons of the same mode, however, do not interact and travel undisturbed.

We have seen that strong coupling between a single emitter and a cavity
requires a small cavity length to enhance the vacuum fluctuations [Vah03].
On the downside, this increases the optical mode spacing, making it dif-
ficult to reach resonance on two different atomic transitions. As a result,
recent exemplary studies worked with substantial detunings [Alb11] or only
one cavity-coupled and another free-space mode [Chel3, Becl4] which made
it necessary to use many atoms to observe significant effects. However, the
prospect of strong nonlinear interactions between light fields has even moti-
vated many free-space realizations, though the single-photon coupling remains
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small. Thus, switches [Yan01, Bra03, Che05, Baj09], nonlinear phase shifts
[Che06, Feilb, Lil5], transistors [Chel3], and even partially non-destructive
detection [Hos16] have been shown. Recently, also systems exploiting Rydberg
states in atomic ensembles with long-range dipole-dipole coupling embarked
on the challenge to realize controlled interactions between two distinct light
fields [Firl3, Busl7, Thol7].

In this chapter, we will first focus on the theoretical description of an N-
type atom coupled strongly to two cavity modes in Section 4.2. After a brief
introduction to the system, we build its Hamiltonian and derive the time-
independent form. In Section 4.2.2, we discuss the resulting energy level struc-
ture that lies at the heart of the later observed quantum effects and possible
future applications. We outline the ansatz for a full quantum simulation fol-
lowing the master equation approach in Section 4.2.3 and briefly introduce our
implementation. The major experimental challenge of this work that hindered
realization of this system ever since it was first proposed [Ima97] is caused by
the condition of resonant coupling of two cavity modes to two atomic transi-
tions. Our efforts for reaching resonance between cavity modes and transitions
are described in Section 4.3. We demonstrate a rough adjustment via the cav-
ity length (Section 4.3.1), fine tuning via differential Stark shifts (Section 4.3.2)
and address the spatial mode overlap within the cavity in Section 4.3.3. In
Section 4.4, we describe the atomic states used for the experiment as well as
the experimental sequence employed to prepare these states and to acquire
the data, which is shown and discussed in Section 4.5. For the latter, we
start by investigating each transition separately, show that strong coupling is
reached for both and the high-quality of EIT for the probe (Section 4.5.1). In
Section 4.5.2, we spectroscopically probe the (n,=1,n,=1)-manifold to show
direct evidence of the new energy level structure. Interaction between the fields
is then demonstrated via photon-photon switching (Section 4.5.3) and cross-
correlations that display mutual blocking and conjunct transit of photons in
different modes (Section 4.5.4). We conclude with an outlook on future per-
spectives of the system (Section 4.6).

4.2. Theory

The system consists of a four-level atom and two cavity modes (Figure 4.2).
The four atomic levels i = 1,2,3,4 are denoted as |i) with eigenfrequency
w;. The excited states 7 = 3,4 are further described by the spontaneous
polarization decay rate v; = > ;% that is the sum of decays to ground states
k = 1,2 which themselves are (meta-) stable (7, = 0) except for a dephasing
between the two states 74 due to technical fluctuations. The transition from
an initial state |i) to a final state |f) at frequency wy; is then represented by
the operator 64; = |f) (i
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Figure 4.2.: Physical system. The level scheme with all central param-
eters consists of atomic states [1),|2), |3), and |4) coupled to cavity modes
|a) and |b).

The cavity modes A and B are described by their resonance frequencies
w, and wy as well as the field decay rates x, and k. The photon creation
(annihilation) operators are denoted as a' (a) and b (b), respectively. The
photon numbers of the corresponding drives, probe and signal, are then given
by f, = a'a and f, = b'b. The probe transition from ground state 1) to
excited state |3) couples strongly to cavity mode A with a coupling strength
gp as described by standard CQED in Section 2.1. This cavity mode is excited
by the probe field of frequency w, and driving strength 7, causing an average
intracavity photon number (,) = 72/k2 on resonance. Likewise, the signal
field of frequency wy and strength 7, ({(fs) = n?/k?) drives mode B which
is strongly-coupled to the signal transition |2) < |4) with strength gs. The
control laser beam of frequency w. connects the separate probe and signal
systems by driving the |2) < |3) transition at Rabi frequency (2. causing EIT.
Since we work in a CQED environment, we refer to this as cavity EIT (CEIT)
[Soul3].

To get an intuition, this system may be understood as consisting of either
a lambda (probe) or vee (signal) EIT system where the control-coupled addi-
tional state, |2) or |3), respectively, is dressed by the respective other cavity
drive [Fle05]. In analogy to the lambda and vee configuration, we refer to the
system as N-type!.

4.2.1. Hamiltonian

The derivation of the time independent Hamiltonian is very similar to Refer-
ence [Le 16]. For simplicity, we choose i = 1. The full system Hamiltonian is

'Note that for lambda-, vee- and N-type systems the naming simply sketches the applied
level scheme: A,V, N.
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described by:
7:[ = 7:latom + ﬁcavity + ﬁint + ﬁd (41)

Here, ’}-Atatom and ﬁcam’ty yield the relevant eigenenergies of the unperturbed
atom and cavity, respectively. 7:[1-,“ describes the interaction between atomic
transitions and cavity modes and #, contains the external driving fields ap-
plied to the system. All terms are defined analogously to Section 2.1.1. For a
four-level atom and a cavity with two different longitudinal modes, we find:

Hatom = w1611811 + w3blsbs + wab 46 (4.2a)
Heavity = Wal a + wpblb (4.2b)
We have chosen the zero point of energy at level |2) without loss of generality.
The interaction of atomic transitions to their respective cavity mode in the

dipole and rotating wave approximation is given by:

Hine = gp (07615 + 6150) + g0 (624 + 65,D) (4.3)
The driving term for the three light fields, the two cavity drives (probe and
signal) as well as the control beam, can be written as:

Ty = npe " r'a’ + nse” bt 4+ Qe 5], + h.c. (4.4)

Note that our definition of €2, corresponds to half of the standard definition of
the Rabi frequency.

The full system Hamiltonian, H , can be transformed to a rotating frame
of reference in which the Hamiltonian is time-independent. By defining the
frequencies of the drives relative to the frequency of their respective cavity
mode,

Ay =w, — W, (4.5a)
Ay = wg — wy (4.5b)
Ar = we — w2, (4.5¢)
and the detunings between the atomic transitions and the cavity frequencies,
Azl = w, —wa1 (4.6a)
Agy = wp — wag, (4.6b)

we find the final Hamiltonian to be:
H= (A, — A+ Agy)6,611 — Ablz6ss
— (Ay+ Ap)6h,64
— Ayifa — A (4.7)
+gp (615 + 615a) + go (b6 + 64,D)
+ (ppa’ + bt + Q.65 + he)
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Figure 4.3.: Energy level structure and eigenstates. The new energy
eigenstates form quadruplets that exhibit nonlinear splittings AE> in probe
n, (ordinate) and signal photon number ng (abscissa). Blue lines in the
zooms show the tuning of the quadruplet versus the signal coupling strength
for the (n,=1,n4=1)-manifold without (top) and with (bottom) coupling to
the environment via spontaneous atomic polarization and cavity field decay.
The green line demonstrates the increased splitting at the avoided crossing
between each upper or lower doublet due to a larger 2.

Diagonalization of this Hamiltonian allows us to find the eigenstates and
eigenenergies of the system displayed in Figure 4.3.

4.2.2. Energy Level Structure and Eigenstates

For simplicity, we choose the detunings to be zero, Az = Agpn = A, = 0.
Furthermore, we assume that the coupling strengths g, and g exceed their
respective field decay rates k, and k; and polarization decay rates v3 and 4.
The control Rabi frequency remains smaller or on the order of the couplings,
Qc 5 (gp7 gs)

Yet without dissipation, this yields the novel set of eigenstates arranged in
quadruplets for each (n,,n,)-manifold, as depicted in Figure 4.3. The ground
state exhibits a small dressing due to the control field. Along both axes lie the
undisturbed eigenstates of the probe lambda- (vertical) and signal vee-type
(horizontal) cavity EIT systems. Without probe excitations (n, = 0), we find
the harmonic ladder of the empty cavity resonance for the signal light. Above
and below, lie the dressed states according to vee-type CEIT. As the popula-
tion accumulates in state |1), these remain unpopulated unless the control is
turned off and the atom is prepared in |2). For ny = 0, we recover the known
solution of cavity EIT for the probe: the dressed states are extended by a
long-lived EIT state at zero detuning [Miic10, Soul3]. Adding just a single
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signal excitation splits the formerly harmonic EIT resonance and leads to a
new quadruplet of states with the energy splittings AE. and AE.. A simple
form for these splittings can be found in case of zero detunings. Then, the
N-type Hamiltonian of Equation (4.7) in matrix form for the base vectors of
the atomic states {|1),2),3),]4)} becomes:

0 0 i o0
N I R A
=1 o o ol (48)

0 —igs 0 0

where we have introduced g, = /1,9, and g, = \/nsg, for brevity. To find the
eigenenergies and eigenstates of #, we have to solve the eigenvalue problem:
|H — EI| = 0. Here, I is the identity matrix. The energies 5;"”’"5) of the

new eigenstates ‘w§"p’n5)> with j = 1,2,3,4 are then given as the roots of the
resulting quartic eigenvalue equation:

Np,Ns 1 ~ ~ ~ ~ 2 ~y ~

gl = ﬁ\/(gf, 0+ \/(gf, + 32+ 92) — 43352 (4.92)
np,n 1 ~ ~ pa P 2 a2a

g = ﬁ\/(gg + g2+ 92) - \/(gg + G2+ 92) — 49292 (4.9b)
n ns 1 ~ ~ ~ ~ 2 ~o ~

Em) = ——\/5 (2 +32+2) - \/(gg + 32+ 02) — 4523 (4.9¢)

e =@ e ) (@) —agE s

This nested radical can be denested according to the following equation [Wes99]:

VX LY = \/15 (\/X+\/X2—Y2i\/X—\/X2—Y2> (4.10)

Thus, we find a simple form of the splittings AE. and A& in terms of the
new coupling strengths of the joint system g (n,, ns):

A&z (ny,ns) = 20 (g4 (np, ns) £ g (1, 1))

. 1 2
withs gs(nm.) = 54/ (Vg = Vi) + 2

(4.11)

This is depicted graphically in the upper zoom of Figure 4.3 at the example
of the (1,1)-manifold. The eigenenergies 5;”’7 ") in terms of g+(ny, ng) are
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Figure 4.4.: Avoided crossing of the eigenstates. The eigenstates of
the (1,1)-manifold display the the typical behavior for an avoided crossing.
The contribution of amplitudes A;(1,1), B;(1,1), C;(1,1), and D;(1,1) of
the uncoupled states to each new eigenstate inverts at the crossing point

9p = Gs-

described by:

Finally, the corresponding new eigenstates |1/1§"”’n5)) are given in terms of the

amplitudes A;(ny, ns), B;(ny, ns), Cj(ny,ns), and D;(n,, ns) of the uncoupled
states |i) @ [n,) @ |ns) of atom, probe and signal light field:

‘¢§np,ns)> =Aj(np, ns) [1,mp,n5) + Bj(ny,ns) [2,n, —1,n)

(4.13)
+Cj(np,ns) 13,1, — 1,n5) + Dj(ny, ng) [4,n, — 1,0, — 1)

The full analytical form of the amplitudes, including detunings, can be found
in Reference [Le 16].

At the example of the (1,1)-manifold, we demonstrate how increasing the
signal coupling strength dresses the control ground state which in turn splits
the EIT peak into a doublet that exhibits an avoided crossing with the former
Jaynes-Cummings states at g; = g,, with a splitting of 2.. This is consistently
reflected in the eigenstate amplitudes depicted in Figure 4.4. As expected,
states change in nature at the point of the crossing. As an example, we follow
the upper j = 1 state that starts close to hg, at hg, .g:

pvefr = DE= (1, 0)/2h = [ (\/11p0,)% + Q2 (4.14)
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At small g,, the j = 1 remains unaffected by the new signal-dressed states
that are far detuned. It is dominated by the probe transition with amplitudes
Ay and C} corresponding to state |1) and |3). The admixture of the signal
transition via B; and D, gets stronger the more g, approaches g, ¢ and all
atomic states contribute almost equally at the minimum splitting between
j =1and j = 2. After this avoided crossing, j = 1 turns into a state defined
by the signal states |2) and |4). Similar behaviors are also observed for states
J = 2,3,4. However, many parameters such as g,, gs, np, ns, (), and the
detunings Az = Ay = A, contribute to the amplitudes.

Finally, if we add decoherence to the system in the form of spontaneous emis-
sion of excited states and loss of photons from the cavity modes by introducing
complex detunings into the Hamiltonian [Le 16], we find that the splitting of
the EIT resonance displays an onset at small g, (lower zoom in Figure 4.3),
analogous to the strong coupling condition of cavity quantum electrodynamics.

In summary, though each mode exhibits a harmonic energy ladder at reso-
nance, coupling between the cavity modes mediated by the N-type atom leads
to a significant splitting already for a single photon in each mode. Moreover,
the splitting depends nonlinearly on the number of photons in mode A and B.
We refer to this as strongly coupled light fields.

4.2.3. Quantum simulation

In order to simulate quantum dynamical effects, e.g. photon correlations, it
is necessary to perform a full quantum simulation of the system including
dissipative processes. To this end, we solve the master equation of the system
as presented in Section 2.1.2. For the N-type system, the dissipation operators
C; include the atomic polarization decays,

Chy = /b3
Coy = /Y2303
Cha = /711614 (4.15¢
Cos = /Y2104, (4.15d

and cavity dissipation of both modes,

C = \/Raid (4.16a)
Cy = \/Ryb. (4.16D)

A dephasing of rate 74 between the ground states is modeled as a pure dephas-
ing of |2) without relaxation [Tem11]:

Cha = /Yab2 (4.17)
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Further possible polarization decays or dephasings are specific to the concrete
implementation or level scheme and are not considered in the theory presented
here. With the (ji, we build the Lindblad superoperator according to Equa-
tion (2.29). Thus, we follow the formal solution to calculate steady state

expectation values or the cross-correlation function Gg)) (1) between the two
light fields:

(715 (0)72p (7))
(bt (0)al (r)a(r)b(0)) (4.18)
= tr(atae’ (bpysb?))

Analogously to Equation (2.34), a first signal photon from cavity mode B
projects the system into the state bp,b’. The term a'a then gives time de-
pendent probability to detect a probe photon from cavity mode A during the
subsequent equilibration process. The normalized cross-correlation function is
defined as g{2 (1) = G&(7)/({fis)(f,)). As for the normal ¢®(7), g{?(7) =1

sp
for independent photons, ¢{?)(r) < 1 for anticorrelated and g{2(7) > 1 for
correlated fields. However, the Cauchy-Schwarz inequalities [Mie98] and thus
the test for quantum behavior in emission via classical bounds do not apply
for a cross-correlation.

Using the theory described in this and previous sections, we have written a
software framework in the programming language Python that allows to easily
perform simulations of our system. As a basis, we use the Quantum Toolbox
in Python (QuTiP) [Joh13] that allows creating a Hilbert space, the defini-
tion of quantum objects therein and numerically solves the system dynamics
via, e.g., the master equation or quantum Monte-Carlo method. We have pro-
grammed a convenience layer based on QuTiP that implements the system’s
Hamiltonian as well as the operators. It provides the functionality to perform
correlation and spectroscopic simulations. This leads to a very rapid workflow
and parameter tuning during theoretical investigation of the system.

Via this framework, we produce the simulations shown in Figures 4.11, 4.12,
4.13 and 4.14 in the following sections. However, since numerical simulations
with four atomic levels and two cavity modes with each > 3 Fock states are
computationally intensive, we use a semiclassical theory (Appendix B), for fits
of the spectra in Figure 4.9.

4.3. The Challenge: A Cavity Resonant on Two
Atomic Transitions

The desired experiment imposes 4 nontrivial conditions onto the system:

e two atomic transitions have to be resonant to two distinct longitudinal
modes of the optical cavity
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o the transitions should posses different (meta-) stable ground states

o one of the transitions should form a lambda configuration with the other
ground state and the additional control beam

o the atom should be strongly-coupled to the cavity light field on both
transitions

The F = 1 and F = 2 states of 3" Rb, separated by 6.8 GHz, are well suited
as ground states. They couple to the D; and D, excited state manifolds at
795nm and 780nm, respectively. The hyperfine splitting within these mani-
folds varies between 70 MHz to 800 MHz (Appendix A, Figure A.1). For our
system, strong coupling may be reached on any transition for cavity lengths
from 150 pm to 500 pm. This leads to a frequency spacing of neighboring
TEMgy modes, as described by the free spectral range vpsg, between 1 THz
to 0.3 THz, respectively. Since this far exceeds the separation of the hyperfine
states, the four-level system has to be implemented on the fine structure split
D; and D, line the difference of which amounts to 7.1 THz, about 7 to 24
FSRs.

4.3.1. Cavity Length Tuning

Several possible combinations of hyperfine states of the 5P, and 5P;/, man-
ifold exist and the final choice of ' = 2 to F’ = 1 as probe transition and
F =1to F” =1 as signal transition is solely based on the possibility to reach
resonance for both at the same time. For that, the cavity length has to be an
integer multiple of both half wavelengths:

l = Ny 7 (419&)

where (n4,n5) € N denote these longitudinal modes. In fact, the cavity is built
out of dielectric mirrors that rely on destructive interference in the forward
direction due to partial reflection at A/4 stacks of different refractive index
materials. For these so-called Bragg mirrors, the physical length [y has to be
extended by the leakage of the optical mode into the dielectric coating dl. For
wavelengths close to the center wavelength of the mirror, a first simple estimate
is given by 6/ = f - A where the penetration factor is f = (4An)~! with the
refractive index difference An of the stacked materials [Bro95, Hoo01]. How-
ever, the interference of the Bragg mirrors is obviously wavelength dependent
or, in other words, can only be optimized for a single wavelength, the center
wavelength. As a consequence, the finesse and also the penetration depth 0/
vary for the eigenfrequencies of the Dy and Dy line. Then, the cavity length
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Figure 4.5.: Tuning the cavity length. (a) The two-mode detuning
as a function of cavity length shows a triangle-waveform. We find a fitted
penetration factor f = 0.646(2). The corresponding change of the CQED
parameters is shown exemplary for the cycling transition: (b) Coupling
strength g and cavity field decay rate k decrease as a function of cavity
length. (c) Spectra at the old (blue) and newly found position (red) for
an empty cavity (scaled by 1/5, dark) and coupled system (light) display
a change in coupling strength from 19.0 MHz to 14.0 MHz and 2.0 MHz to
1.5 MHz in cavity field decay rate derived from fits of Lorentzians and a
semiclassical theory (Appendix B) shown as solid lines. Both are in good
agreement with theory. The relative height difference between empty cavity
and coupled system results from a five-fold higher driving strength at the
shorter cavity length.

l(v) = lp+26l(v) is frequency dependent, as is the FSR vpgr (). This hinders
a purely analytical solution and will cause deviations from the simple estimate
above.

For the chosen transitions, we measure the two-mode detuning 6 = [Ag| +
|Ay2| as a function of length. To this end, we increase the cavity length in
steps of A\y2/2 to go from one to the next longitudinal mode, n, — (n, + 1).
When resonant to the signal transition, i.e. |Ay| = 0, measuring the detuning
of the probe transition to the closest longitudinal mode yields § = |Ag].
For this purpose, we monitor the transmission of two lasers at frequencies
w31 and wyo on a single detector while scanning the cavity length around the
current position. A transmission peak is observed whenever a cavity mode
becomes resonant with either of the two lasers. In order to measure the two-
mode detuning, the probe laser frequency is shifted to match the transmission
window of the signal laser, whereby the frequency difference is tracked by a
wavemeter. Figure 4.5(a) shows the two-mode detuning as a function of length.
We find that the minimum detunings form a triangle-wave with a decaying
amplitude dp/27 = “5R = & and a period given by L = m ~ 21 pm.
The former simply states that the maximum possible distance is given by the
center between two longitudinal modes. The latter derives from the condition
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Figure 4.6.: Differential Stark shifts. (a) Dynamic Stark Shift of the
probe and signal transition is depicted for trap wavelengths of 797.5 nm
and 800.1 nm. Solid lines correspond to a theoretical calculation via the
polarizabilities as derived by second-order perturbation theory [Neulbb].
For both wavelengths, we scale the trap power of the Dy and Ds theory by
the same amount to match the D; data. The shaded area for the Do theory
spans the shifts for different Zeeman substates due to the nonzero tensor
polarizability of the 5Pz, excited states. The center line is the weighted
mean. (b) The differential Stark shift as calculated from the data and theory
depicted in (a) shows that two-mode resonance (dashed line) can be reached
for a trap wavelength of 797.5 nm.

that the detuning becomes minimal every time an integer multiple of the FSR
is similar to the frequency difference between the lines. The two-mode detuning
remains greater 1 GHz throughout the whole tuning range except for a single
point at 295 pm (inset) where the splitting approaches a few 10’s of MHz and
is thus just within experimental reach.

For this cavity length, the F' = 2 to F’ = 1 transition is only about 37 MHz
red-detuned to mode A, when transition /' = 1 to F” = 1 is resonant to
mode B. However, tuning the cavity length also affects the field decay rate s
and coupling strength g. In Figure 4.5(b), we show the corresponding theory
curves. Finally, Figure 4.5(c) depicts the spectra for a cavity that is either
empty or strongly coupled to the cycling transition of the atom at our previous
length of 202 pm and the new mirror distance of 295 pm . The change is in good
agreement with our theoretical expectation and shows that we still recover
about 3/4th of the previous coupling strength.

4.3.2. Differential Stark shift

The residual detuning can be compensated by applying a differential light
shift. As described in Section 2.2.1, the dynamic Stark effect of optical dipole
traps causes energy shifts AS of the electronic transitions of atoms that are
proportional to X1 (Equation (2.38)). Setting the red-detuned dipole trap
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Figure 4.7.: Overlap of two cavity modes and the trap. (a) The
overlap of the D; (blue) and Dy (red) cavity modes with the nodes of the
intracavity dipole trap is described by the detuning in number of FSRs,
Al, that amounts to 21 and 7, respectively. The green rectangle marks the
presumed working region in the experiment shown as a zoom in (b). Data
corresponds to the experimental coupling strengths as derived from fits of

a finite temperature semiclassical model to normal mode spectra. Vertical
scaling was the only free parameter for the matching theory.

closer in frequency to the D; than to the D, line, we impose a stronger shift
to the former than to the latter transition, i.e. a differential light shift 65 =
AS31—AS,o, which can be used to compensate the residual two-mode detuning.
Here, AS3; (ASys) is the dynamical Stark shift of the |1) <> |3) (|2) +> |4))
transition due to the transverse, red-detuned dipole trap. In case A is chosen
small compared to the fine structure splitting between Dy and D, a dipole
trap of reasonable power may induce substantial differential light shifts.

We perform spectroscopy of both transitions (Section 2.3.2) and record the
induced Stark shift as a function of trap power [Neulbb]. Figure 4.6(a) shows
the result for trapping wavelengths of 797.5nm and 800.1 nm, thus detunings
of 2.5nm (17.3nm) and 5.1 nm (19.9nm) with respect to the Dy (D) line. By
reducing the detuning, we increase the atomic polarizability and cause much
larger light shifts. Moreover, the boost of the differential shift between probe
and signal transition enables us to tune both transitions resonant to their
respective mode at the same time when using the transverse standing-wave
dipole trap at 797.5nm (Figure 4.6(b)).

4.3.3. Cavity Mode Overlap

The spatial overlap of different longitudinal modes has been addressed schemat-
ically in Section 2.2.1. The blue-detuned intracavity trap localizes the atoms
at its nodes and these shift in overlap with respect to the resonant mode as
a function of the axial position. The number of perfect in-phase and out-of-
phase regions is directly described by the detuning in FSRs Al, as depicted in
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Figure 4.8.: Level scheme and state preparation. (a) The four-level
system is implemented between the D; and Ds line of 87 Rb on the Zeeman
substates as indicated by the probe (yellow arrow), the signal (red arrow)
and control light field (blue arrow). The green dashed and pink dotted
lines indicate the important repumpers used to populate the |2, —2) during
state preparation. (b) Raman spectroscopy drives transitions between dis-
tinct Zeeman substates (Section 2.3.3) and can be used to demonstrate the
preparation of |2, —2) that only couples to |1, —1) via the transition at +30.
Consequently, we observe an increasing probability of this transition and re-
duction of all others from unprepared (top) to only the o~ repumper (mid-
dle) and finally 0~ and 7 beams. Red solid lines correspond to asymmetric
Lorentz fits with different linewidths in each direction. Note the larger cen-
ter shift of —272(10) kHz due to the higher power of the red-detuned trap
and the smaller detuning to the D; line compared to Figure 2.16(a).

Figure 4.7(a). The detuning between the D mode and trap of Al = 21 is par-
ticularly large. This yields a complete shift of 27 in relative phase within only
14 pm, thus imposing an axial atom position resolution around 1jpum, which
is recognized as a final testbed for our 3D atom microscope (Section 2.2). In
Figure 4.7(b), we show a zoom into an overlap region between probe and signal
mode. Coupling strengths determined from experimental normal mode scans
for both chosen transitions are plotted versus axial position. We find good
agreement to a scaled theory. This clearly demonstrates our ability to localize
the atoms. Comparisons to theoretical expectations in the next sections will
confirm the high degree of control. Furthermore, this constitutes a tuning knob
to vary the relative coupling strength of the two fields that may be useful for
future experiments with degenerate couplings.

4.4. Experimental Implementation

As depicted in Figure 4.8(a), the four-level system is implemented on the
Zeeman substates |2, —2) <> |1’,—1) for the probe and |1,—1) <> [1”,0) for
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the signal in order to maximize the transition matrix elements and thus the
coupling strengths (Appendix A, Figure A.1). This leads to theoretical pa-
rameters of (gp, Ka,v3)/2m = (10.3,2.0,2.9)MHz on the probe transition and
(gs, Kb, v4)/2m = (9.5, 1.5,3.0)MHz on the signal transition, which in both cases
puts us well into the strong-coupling regime of cavity QED, g > (k,7).

While an atom is trapped, the measurement sequence as depicted in Fig-
ure 2.4(c) is repeated at a rate of 2kHz. We start with a cooling interval of
460 ps followed by 20 s of state preparation after which we probe for 5ps to
20 ps in order to reduce depumping effects and maximize data rate. To pre-
pare the |2, —2) ground state, we apply a strong left-circular and a faint linear
polarized pump on |2) < |1’) that drive 0~ — and m—transitions (dashed and
dotted arrows in Figure 4.8(a)). Additional beams repump atoms that end
up in the F' = 1 ground states. As a consequence, |2, —2) becomes the only
dark ground state of the system. This is supported by investigations of the
ground state population without and with different types of state preparation,
as depicted in Figure 4.8(b). Only applying both, the ¢~ and 7, prepares the
population predominantly in the |2, —2).

This state preparation is, however, very sensitive to the polarizations of its
drives which is believed to cause a central experimental imperfection. Further-
more, the right-circularly polarized probe and signal beam during the mea-
surement interval will inevitably pump the system out of the desired substates
over time. Therefore, we keep the probing time short. However, even in short
intervals the left-circularly polarized cavity mode may induce a coherent cou-
pling via vacuum induced transparency (VIT) [TS11] to the ground states |2, 0)
and |1, +1) for probe and signal, respectively. This could only be suppressed
by applying strong fields to lift the two-photon resonance when differentially
shifting both ground states.

The cavity drives are separated behind the cavity via interference filters.
The probe passes another stage of polarization filtering that blocks any non-
right-circular components. Both are then detected on two separate Hanbury
Brown and Twiss detection setups consisting of two single-photon counters each
with a timing resolution of 1ns. It is ensured that this timing resolution also
holds between the detection setups which allows us to perform time dependent
photon cross-correlations and two-photon coincidence spectroscopy.

4.5. Results

4.5.1. Individual Subsystems

In Figure 4.9(a), we show spectra on the probe transition in absence of signal
light versus A, = w, — w,. When the atom is coupled, the empty cavity
Lorentzian splits into the well-known normal modes of the Jaynes-Cummings
model. The residual peak at zero detuning results from the imperfections
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Figure 4.9.: Probe and signal spectra. (a) Experimental spectra for
the probe in absence of signal light are depicted for the empty cavity (blue),
normal modes of the two-level case (green) and under CEIT conditions
(orange). (b) Empty cavity (blue) and normal mode splitting (red) can also
be observed on the signal transition without probe and control field which
proves simultaneous resonant strong coupling on two transitions. Solid lines
correspond to fits of Lorentzians for bare cavities and finite-temperature,
semiclassical models for CQED and cavity EIT spectra (Appendix B).

described in Section 4.4. We find (g, k4, v3)/2m = (10.1,2.0,2.9) MHz which
puts the experiment well into the regime of strong coupling. When adding
the control field at strength €2./27 = 5.6 MHz, we observe the emergence of
a narrow EIT peak that amounts to almost 90 % transmission. The control
field dresses the excited state and thus increases the normal mode splitting,
as described by Equation (4.14). Preparing the system in state |2) and only
driving the signal transition at Ay, = ws — wyp, we demonstrate strong coupling
with parameters (gs, Ky, 74)/2m = (9.3,1.5,3.0) MHz (Figure 4.9(b)). Again,
we observe empty cavity remnants at zero detuning.

We further investigate the CEIT on the probe transition. We take several
spectra for varying control Rabi frequency 2. and fit the two normal modes
and the narrow EIT feature with three Lorentzians. As a reference for each
CEIT spectrum, we also take a spectrum without control beam which yields
the normal mode splitting. The center frequency of the normal modes in CEIT
allows us to determine the splitting. The dressing of the normal modes, as de-
scribed by Equation (4.14), is used to gauge our control field power P, to Rabi
frequency, depicted in Figure 4.10(a). It follows a clear square root behavior
as expected from theory, €. ~ \/P.. The corresponding shift of the CEIT
versus the CQED splitting is shown in Figure 4.10(b). The coupling strength
for . = 0 deviates slightly from the actual value deduced in the previous
paragraph since this evaluation is influenced by small detunings between the
cavity mode and atomic transition which affect the magnitude and symmetry
of the splitting.

Next, we investigate the EIT transmission and contrast in Figure 4.10(c).
The transmission increases for small control Rabi frequencies and settles to
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Figure 4.10.: Characterization of cavity EIT. (a) From the change of
the CEIT splitting, we gauge the set control power to Rabi frequency by
fitting a square root (red line) to the data. To do so, the splitting (b) is fit
by Equation (4.20) in order to derive €. (yellow solid line). The green data
and solid line reflect the average splitting for the CQED case. We further
investigate CEIT transmission and contrast, defined as the EIT transmission
subtracted by the normal mode offset, (¢) and linewidth (d). The red solid
curve shows a fit of Equation (4.20) with only 74 as a free parameter.

values of above 85 % with a contrast of about 80 % for Q./2r > 6 MHz. Two
effects, diminish the transmission: ground state dephasing and EIT bandwidth.
The EIT linewidth, thus also the bandwidth, decreases for decreasing €2. which,
in turn, causes an increase of the time it takes to build up coherence in the
system [Chil6al:

VEIT = 927_1_02 + Ya (4.20)

In the experiment, we keep the probing interval short to avoid depumping
which means that for small control powers the system may not be able to
reach full transmission. Similarly, the dephasing will limit the transmission as
it becomes comparable to the EIT linewidth such that the system decoheres
faster than it can build up coherence.

For a better understanding of these limitations, we investigate the EIT
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Figure 4.11.: Coincidence spectroscopy of the (1,1)-manifold. (a)
Simulation of the two-photon coincidence spectrum Gg}(()) versus probe
detuning and control Rabi frequency based on a full quantum model.
Dashed lines show the corresponding tuning of the eigenenergies of the
(1,1)-manifold calculated from the analytical formula. (b)-(e) Experimental
coincidence spectra at Q. = (4.3(1),8.8(2),10.8(3), 13.4(3)) MHz for corre-
lated and uncorrelated photons. For correlated data (blue) both photons
are detected at the same time. Uncorrelated spectra (green) result from

photons with a delay beyond the coherence times of the system.

linewidth as a function of control Rabi frequency in Figure 4.10(d). The fit of
Equation (4.20) to the data using the previously determined coupling strength
and known field decay rate shows good agreement and yields v, = 64(1) kHz.
This constitutes a significant improvement over previous results for single atom

CEIT [Chil6a).

4.5.2. Resolving the (1,1)-manifold

With two cavity modes strongly coupled to the atom, we meet the criteria
for strong coupling between the light fields and operate the system close
to the avoided crossing (g, ~ gs). For direct demonstration of the N-type
system, measurement of the interacting states with both modes populated,
ie. n, > 0Ang > 0, is required. However, spectroscopic observation of
the (1,1)-manifold via (f,) or (i) is obscured by the strong contribution of
the lower rungs. In addition, excitation of multi-photon resonances is an in-
trinsically hard task in anharmonic systems and requires more involved tech-
niques [Kub08, Sch08b, Fin08]. Here, we perform two-photon coincidence spec-
troscopy. We fix the signal detuning at A; = 0 and record the coincidences
G? (1 = 0) versus probe detuning. Detecting a signal and probe photon at the

sp
same time means the system must have started at least in the (1,1)-manifold.
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We expect contributions from higher rungs to be negligible since the popula-
tion of both modes is kept low ((7,) , (725)) < 1. In Figure 4.11(a), we show the
result of a full quantum simulation for the lower two eigenstates when tuning
the control field strength. As described above, the control field corresponds to
the splitting between the states. Their corresponding center frequencies cal-
culated from the analytical expression for (n,,ns) = (1,1) in Equation (4.11)
are in good agreement with the maxima of the simulated Gg}(O).

In Figure 4.11(b)-(e), we show experimental results of the G)(0) and G2 (7 )
versus A, for different €. Here, 7 is large compared to the coherences of the
system such that Gg}) (7-) yields coincidences for uncorrelated photons. At
weak driving, Gg)) (7-) is sensitive to the undisturbed probe ladder. The spec-
tra display a CEIT normal mode that shifts to larger detunings for increasing
control Rabi frequency, as expected from Equation (4.14). In comparison,
correlated detection shows the emergence of a shoulder at low detunings that
turns into a separate maximum in Figure 4.11(e). At the same time the overall
height decreases which also agrees with the simulation. A major disagreement
to theory is a strong peak towards zero detuning. It originates from the resid-
ual transmission observed for the spectra at this frequency in the previous
section. This residual transmission of photons not coupled to the system in
conjunction with the high intensity of the EIT resonance causes a large num-
ber of false coincidences. However, the measurement constitutes the first direct
observation of the tunable splitting of the (1,1)-manifold.

4.5.3. Photon-Photon Switching

Due to the strong coupling between the photons of the two light fields, dis-
placing the average signal photon number from 0 switches the probe EIT off,
as the CEIT resonance is split for ny > 1. In Figure 4.12(a), we show a zoom
into the narrow EIT peak. Increasing the signal strength indeed reduces the
peak height. At the same time, we observe a small shift of its center frequency
that stems from the dynamic Stark effect of the signal drive onto the ground
states via neighboring transitions.

Figure 4.12(b) demonstrates that only 1.24(1) average signal photons per
cavity lifetime reduce the contrast from 0.62(3) to 0.10(1) which corresponds
to a switching of 84(2) %. The somewhat small starting contrast is caused by a
low control power of only €./27 &~ 4 MHz that keeps the EIT dark state fragile.
The data is in good agreement with a quantum simulation. A small deviation
may be caused by the empty cavity residual already observed for the spectra
and is expected to limit the switching contrast. Still, almost full switching
on the level of a single photon is achieved which we expect to improve greatly
when using a pulsed scheme and postselecting on the presence of a single signal
photon [Chel3, Baul4]. Furthermore, systematic investigations of the control
Rabi frequency versus switching contrast may allow additional refinement.
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Figure 4.12.: Photon-photon switch. (a) Spectra of the narrow central
EIT resonance are plotted for average signal photon numbers per cavity
lifetime of (f5) =0.0, 0.24 and 1.24 in purple, cyan, and green, respectively.
The red dashed line displays a fit to the separately measured normal mode
offset which is subtracted to derive the EIT contrast (corresponding dashed
lines). The sum of these yields the solid curves. The gray data and line in
the back show the empty cavity and fit. As a fit function, we use Lorentzians
for both, empty cavity (remnants) and EIT resonances. (b) The probe EIT
contrast (blue) is plotted versus (fs). A switching (red), i.e. the relative
decrease of the contrast, of 84(2) % for (ns) = 1.24(1) is achieved. The solid
curve results from a quantum simulation according to Section 4.2.3 only
using the independently determined parameters from Section 4.5.1.

4.5.4. Mutual Blocking and Conjunct Transit

In the previous section, signal photons switch off the probe. Conversely, the
probe, however, also blocks the signal light, since the (1,1)-manifold describes
a splitting for both fields. This causes anticorrelation between the fields. We
keep both driving strengths low, i.e. (f,) = (;) = 0.02, and perform a second
order cross-correlation g(Q)( ) of the two fields at A, = A; = 0. As anticipated,
we observe pronounced antibunching with ¢{2(0) = 0.29(2) demonstrating that
the probability to detect a signal and probe photon at the same time is strongly
suppressed (Figure 4.13). For negative delays, the g2)(7) is proportional to the
probability of measuring a signal photon with time delay 7 upon detection of
a probe photon. The correlation increases to 1, i.e. the value for uncorrelated
photons, on the time scale required to build up a field in the empty cavity:
(kp)~t. For 7 > 0, the signal photon triggers the correlation and the slope
to equilibration is dominated by the EIT bandwidth of the probe [Becl4].
As a consequence, increasing €2, steepens the slope. The behavior is in good
agreement with our quantum simulation.

The small average photon number for both beams leads to a negligible co-
incidence probability of about 0.04% and consequently the self-correlations
(1) and g{2) (1) are barely affected by the presence of the other field. We find
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Figure 4.13.: Mutual photon blocking. The second order time de-
pendent cross-correlation at zero cavity detunings A, = A; = 0 for varying
control field strengths displays strong anticorrelation and thus mutual block-
ing between the fields. Red (purple) data shows the corresponding probe
(signal) self-correlations. Bright solid curves correspond to results of a full
quantum simulation. Black dashed lines show the same theory scaled by
a factor of 0.77 around 1 which yields good quantitative agreement for all
three values of the control Rabi frequency.

that even though interactions between photons of different fields are strong,
photons of the same field show hardly any correlation. This is in perfect agree-
ment with the expectation for an empty cavity field (signal) or a coherent dark
state (probe). The latter displays a slightly bunched behavior that is stronger
for lower control Rabi frequency and results from finite ground state coher-
ence. This reduces the EIT transmission and admixes features of the two-level
CQED system that exhibits bunching at this frequency. In addition, the probe
photon is slowed considerably at small control strengths and its transit time
diverges for vanishing €., ultimately causing the interaction probability with
signal photons to become significant.

The observed anticorrelation stems from the splitting of the (1,1)-manifold.
When tuning either of the two fields to the new resonances, we expect to find
correlated transmission. In Figure 4.14, we show cross-correlations for dif-
ferent detunings of the signal light while keeping the probe at A, = 0 and
(n,) = 0.02, and increasing (f5) to 0.2 in order to compensate for the lower
incoupling. With increasing detuning, we observe the emergence of oscilla-
tions. Their frequency is given by the signal detuning (A,)~! for negative and
the effective probe coupling (g,,.g) " for positive times which results from in-
terference between each drive and the decay paths via either the signal EIT
resonance or the dressed states of the probe, respectively. At zero time de-
lay, the fields change from anti- to correlated transmission where signal and
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Figure 4.14.: Conjunct photon transit. Varying A, while keeping A, =
0 allows tuning of the second order time dependent cross-correlation from
mutual blocking to conjunct transit of photons indicated by high correlation.
Q. is set to 4 MHz. The theory (light curves) is scaled by the factor to the
left (gray) around 1.

probe photons only transit the system conjunctly. The strongest bunching
occurs at Ag/2m ~ 10 MHz in good agreement with the new eigenenergies of
the (1,1)-manifold.

In summary, photons of the same color display no interaction while they
couple strongly to photons of the other field causing either mutual blocking or
conjunct transit. Overall good agreement between data and a theory without
accounting for imperfections demonstrates good control over the system.

4.6. Conclusion

In summary, we have theoretically described and experimentally demonstrated
strong coupling between two light fields via interaction with a four-level atom.
First direct evidence of the energy structure arranged in quadruplets is ob-
served via coincidence spectroscopy. We show photon-photon switching and
strong correlations between the two light fields without self-correlation. Out-
standing challenges are the observation of the avoided crossing and demonstra-
tion of the nonlinear behavior for (n,,ns) > (1,1). Future applications of the
system include a switch or transistor [Chel3] or a quantum phase gate [Lil5].

Furthermore, in case of conjunct transit, the detection of a signal photon
heralds the presence of probe photons in the other mode and vice-versa. Ex-
ploiting the system’s inherent nonlinearity due to strong coupling between the
photons could in future experiments enable selective excitation of a specific
manifold, e.g., the (n,1). This realizes a heralded n-photon source where de-
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tection of a signal photon announces n photons in the probe mode.

Another potential application of the system is non-destructive photon count-
ing that requires undisturbed propagation of the photons to be sensed. This
condition is met for dispersive coupling of the signal where the respective cavity
mode is detuned from the atomic transition [Sch07, Gue07]. In such a scenario,
photons in that signal mode induce a linear photon-number dependent light
shift on ground state |2), leading to a distinct shift in the two-photon detun-
ing of the narrow EIT resonance between probe and control beam. Detecting
this shift of the dark state via the probe amounts to non-destructive counting
of signal photons, another example of all-optical quantum-nonlinear sensing.
For best performance, a matching of photon transit times through the system
catalyzing the interaction seems inevitable.

Moreover, instead of using two modes of one cavity, crossed single-mode
cavities could be employed. These allow individually tuning modes into reso-
nance with emitter transitions at widely separated wavelengths, thus providing
a pathway to all-optical sensing for example of quantum communication pho-
tons at telecom wavelengths for which good counters are not available [Uph16].

Finally, using linear probe and signal pulses, a double N-type system can be
realized: The probe lambda EIT is implemented on the Dj line with [1,0) as
|1) coupled via the excited states |17, £1) to both ground states |2, —2) and
|2,4+2) that serve as |2). Here, choosing a proper linear polarization of the
control with respect to the probe suppresses coupling to |2,0) via destructive
interference. The signal then couples the ground states |2, +2) to excited states
|1/, £1). This leads to the two N-type arms of (i) ot probe with o~ signal and
(ii) o~ probe with o signal. In the regime of mutual blocking, only probe
and signal photons that each couple to a different arm are simultaneously
transmitted which creates polarization-entangled photons useful for quantum
communication.



5. Summary and Outlook

In the course of this thesis, full control over the internal and external degrees
of freedom of the atom was achieved. Many steps were required to reaching
this goal: An imaging system was constructed [Eck13] and implemented to
detect the fluorescence of atoms. The real-time imaging allows monitoring
the presence of atoms independent of their coupling to the cavity, which is
an indispensable tool when going beyond Jaynes-Cummings physics with two-
level atoms [Chil6a]. In addition, it enables direct detection of the number
of trapped atoms and their position. Moreover, the extension of the system
by two additional transverse dipole traps [Tiel4b] and the transition from an
active feedback-based cooling to a passive Sisyphus-type scheme have lead to
three-dimensional confinement of atoms close to the motional ground state.
In addition, this extended the atom’s trapping time to about 8s, a more than
sevenfold improvement over previous results [Kocl10]. Particularly, the results
on 3D microscopy of atoms and subsequent control of their exact position
in space are of central importance for realizing an almost ideal CQED sys-
tem. The reliable and efficient preparation of atoms with an average coupling
strength of 97 % of the theory value in unison with a more performant exper-
imental control system [BS15] has drastically reduced the measurement time
of, for example, spectra from hours to minutes. With this positioning at hand,
precise measurement of dipole trap-induced Stark shifts of the electronic tran-
sitions, Zeeman shifts of the ground states due to magnetic fields and the
preparation of magnetic substates have been performed at this apparatus for
the first time.

The new level of control enabled recording of high-quality, second- and third-
order photon correlations with trapped atoms in the regime of low driving.
Using those correlations, two-photon blockade, i.e. truncation of the Hilbert
space at n = 2 quanta, was demonstrated [Ham17]. This constitutes the
first example of a blockade at n > 1 photons and, thus, goes beyond simple
single-photon nonlinearities that are already observable with a single atom in
free space. It shows the unique capabilities of a CQED system for n-photon
quantum-nonlinear optics. Central to its success was the realization that un-
wanted excitation to higher manifolds can be suppressed by driving the atom
instead of the cavity that suffers from bosonic enhancement. While a natural
extension is attempting a blockade at n = 3 or more photons, a reduction of
the contribution from single photon events could turn the two-photon blockade
into a two-photon source. For example, a two-photon gateway [Kub08] and
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photon-induced tunneling [Far08] in case of cavity driving have been demon-
strated to enhance population of higher manifolds, in accordance with our own
results.

Finally, strong coupling between photons of two light fields was demon-
strated in an N-type CQED system. Here, two transitions of a four-level
atom are simultaneously strongly coupled to two distinct cavity modes that
are driven by initially uncorrelated fields, probe and signal. An additional
control laser induces a tunable interaction between the modes. It is shown
that the resulting energy level structure is arranged in quadruplets that can
be expressed in terms of new coupling strengths of the joint system. Their
splittings depend nonlinearly on the number of photons in each of the modes,
n, and ng, which causes the strong coupling between the fields.

The general system has been initially envisioned 20 years ago [Ima97], but
remained experimentally challenging due to the requirement of resonance of
two modes to two transitions. Here, two-mode resonance is reached for the
first time by tuning the cavity length and applying a differential Stark shift
to the two transitions. It is demonstrated that the system catalyzes inter-
actions between photons of different fields in two regimes by either mutual
blocking or conjunct transit, while photons in the same mode do not interact.
Furthermore, a photon-photon switch between the fields is realized.

The strong coupling of fields opens the route to quantum nonlinear all-
optical sensing. Here, correlations between, for instance, the photon numbers
in the two fields are used to directly measure photons with photons. Among
other applications, a potential first step is exploiting the doubly nonlinear en-
ergy ladder to selectively excite a state with n, = n and n, = 1, such that
detection of one signal photon heralds n probe photons. This potentially re-
quires the previously developed atom driving for both fields to avoid unwanted
excitation to higher-lying states. Furthermore, moderate detuning could facili-
tate selective addressing of one specific state, as has been demonstrated for the
CQED system [Sch08b, Fin08]. The resulting heralded n-photon source may
be demonstrated via correlations up to (n + 1)th order of the probe triggered
by a signal photon.



A. Numbers and Equations

name symbol unit value formula comment
mirror 1: high reflection, incoupling mirror
curvature R, cm 20 —
transmittance T ppm 2.5(5) - at 780 nm
ppm 5.0(5) - at 772 nm
losses Ly ppm 5.5(5) —
coned diameter Dq min 2 —
mirror 2: outcoupling mirror
curvature Rs cm 1 -
transmittance T, ppm 17.8(5) - at 780 nm
ppm 21.0(5) - at 772 nm
losses Lo ppm 5.5(5) —
coned diameter D, mm 1.5 —
finesse F 103 195(2) e, At 780nm
10° 170(5) at 772 nm
cavity length L mm 0.1to1 - variable
penetration depth L nm ﬁ
cavity field decay & 2r MHz - 5L F variable
free spectral range vpgr THz 0.15 to 1.50 57 variable
mode waist Wy nm 15 to 28 \/ i—;% variable!
Rayleigh range ZR mm 0.9 to 3.2 Wng variable
mode volume 1% pm? — ﬂ—w‘% variable
optical power I W - -
electric field amp.  FEj Vm?t - 2L

ceg

Lonly true for L < (Ry, R2)
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Numbers and Equations

name symbol unit value formula comment
intensity I Wem=2 - % running?
% standing?
Tff o intracavity®
efficiencies
outcoupling Mo - 0.57(3) m at 780 nm
detector Ndet — 0.65(5) - specified
fiber coupling Nfe - 0.8(1) -
optical elem. M — 0.95t0 0.99 - filters, ...
detection Nd - ~ 0.5 NdetNye L1 i
count rate Ty MHz - %
2K1M,M4 (71)
87 Rb
mass m 107 kg 1.443 —~
trans. dipole mom. d 1072 Cm  2.534(3) - cycl. trans.?
Dy line frequency — wp, 27 THz 377.107 —
Dy line frequency Wp, 27 THz 384.230 -
Rabi frequency Q 2m MHz - d'fo
224y
spatial mode func. fm(r) - - cos(kz)e v
coupling constant g 2m MHz - ﬁ/d:o variable
spat. coupl. const. g(r) 2rMHz - g fm(r) variable
cooperativity C - - % variable
critical atom num. Ny — — c! variable
critical photon num.  ng — — 7722 variable
trapping potential U, kg-mK - %a|E]2 -
polarizability Q@ Cm?/V - 3”(5360 X simple TLS?

2

wave for a Gaussian beam.

3relates the power behind the cavity to the intracavity intensity.
4For other transitions obtained by multiplication with the Clebsch-Gordan coefficients.
®Quantitative results should be calculated by a multi-level theory taking the large atomic
energy structure into account as elaborated in great detail by [Neulba].
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193.7 MHz
266.7 MHz
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P
2P 72.9 MHz 87 Rb
Fr=2
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Fll_
722 MHz
F'=0
I F’ = 2
, 305.4 MHz
Dsline 5P 814.5 MHz
780.241 209 686 nm
09.1 MH
384.230 484 468 THz 2091 Mz
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Figure A.1.: Hyperfine transitions of 3’Rb . Full 8" Rb D line data taken from
[Ste03]. Illustration modified from [Eck13].
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Figure A.2.: Clebsch-Gordan coefficients of 87Rb . Clebsch-Gordan coeffi-
cients for the D lines of 87 Rb are taken and modified from Dr. Stephan Diirr. The
general sign conventions follow [Edm60].



B. Semiclassical Spectral
Functions

In Section 2.1, we developed a theory to calculate the outcomes for the observ-
ables of a quantum system including dissipation. From the Lindblad master
equation (Equation (2.29)), one can find the equation of motion of an oper-
ator O defined as 9,(0) = tr(Op) [Sch08a, Miic11]. This leads to a set of
coupled differential equations for the operators describing the atomic excita-
tion and population of the cavity field, which can in general not be solved
analytically. Numerical solutions of the full quantum system are, however, of-
ten computationally intensive and consequently unsuitable for efficient fitting
of experimental spectra.

On the other hand, in most of these spectra for the CQED and CEIT system,
we keep the driving strength low. Under the assumption of a resulting low
atomic excitation, one can then attempt a semiclassical solution. Following
the ideas of References [Luk03] and [Miicl0], it is possible to calculate the
mean photon number for CEIT using the definitions of Section 4.2:

|77p’2
(np) = (B, + ira) — X|? (B.1)

Here, x is the complex linear susceptibility of an EIT medium. In the limit of
a single atom, it takes the form:

5 = 912; (Ap + Agl — AC + Z’yd)
(Ap + Agi +i73)(Ap + Azt — A + i) —

(B.2)

Using this formula, for example the fit to the CEIT spectrum in Figure 4.9(a)
was performed.

When 2. = 0, one recovers the solution for the CQED system from Equa-
tion (B.1) as given in Reference [Mur03|. For the probe CQED system, it
yields:

(n) = 1Ay + Azt + i) (B.3)
P/ 2 .
‘(Ap + Z'K,a) (Ap + A31 + i’731) — gg’

Likewise, we we can find a similar solution for the case when the drive 7, is
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applied to the atom which was used in Chapter 3 [Sch08a, Ham17]:

n2g?
(ny) = , - , 5 (B4)
’(Ap +ika) (Ap + Azt + iy51) — gf,’

Finally, we may also take the effects of atomic motion into account. Due to
the light shifts of the optical dipole traps, finite temperature T of the atom
causes an inhomogeneous broadening of the atomic resonance which in turn
affects the spectrum. This can be modeled by averaging over Boltzmann-
distributed atomic detunings as described in the supplementary material of
Reference [Neulba]. The model, however, assumes one steady state tempera-
ture for the whole spectrum, while in our system the drive is the main source of
heating which in turn depends strongly on the driving strength and detuning
[Mau05].

To incorporate the effects of imperfect state preparation or probe polariza-
tion, we add an additional term to the analytical normal mode formula. We
use a Lorentzian of amplitude A and width 2k, centered at zero detuning.

In summary, this model is for example applied to fit the CQED spectra in
Figures 2.9, 3.5 and 4.9 using the driving and coupling strengths, atom-cavity
detunings, temperatures, and amplitudes as free parameters.
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