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Abstract: Reprogramming the controller of an industrial automation system usually requires
to halt the system. In this paper, a novel method that allows reprogramming a controller at
runtime is presented. The control behavior is modeled using parallel finite state machines,
Stateflow being used as an example of modeling tool. Automatic translation to Erlang code
is implemented and Dynamic Software Update is enabled using Erlang Runtime System. The
presented method is applied and evaluated on a case study as a proof of concept.
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1. INTRODUCTION

Often, during the life-time of an industrial automation
system there is a need to reprogram the controller. It might
be necessary to correct a bug, to improve the performance
of the system, or to adapt it to new tasks.

The usual reprogramming procedure implies to halt and
restart the system, which also consists of ramp down and
ramp up phases. In the first place, downtimes and reduced
throughput cause losses. Furthermore, companies may not
apply updates as often as they could, to avoid those losses.
In this way, plants may run longer than necessary with
uncorrected bugs or suboptimal performance.

The goal of this work is to investigate a novel method that
permits reprogramming a controller at runtime. Down-
times can then be reduced and productivity increased.

The workflow of this method is depicted in Fig. 1. A MAT-
LAB Simulink Stateflow state chart, termed Stateflow in
the remainder of the paper, is used to model the controller.
The model is automatically translated to Erlang code
and executed with Erlang Runtime System (ERTS) (see
Armstrong (1996); Armstrong et al. (2016); Ericsson AB
(2016) for more details). In an update scenario, the original
model is modified to model*. Then, again, the model* is
automatically translated to Erlang code* The final and
most important step in reprogramming the controller is
to switch the running program to the updated software
version.

The concept of modifying a program at runtime is referred
to as Dynamic Software Update (DSU). This field of
research is promising and has been investigated widely,
as detailled by Seifzadeh et al. (2013). However, it is
not widespread in industrial automation. Nevertheless,
DSU is state of the art in many non-stop areas such as
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Fig. 1. The concept of reprogramming the controller at
runtime.

instant messaging or banking, where the code has to be
maintained while the system is running.

Erlang is both a programming language and a runtime
system that supports Dynamic Software Updating also
called Hot Code Upgrade. It is wildly used for applications
in telecommunication, e-commerce and instant messaging.
Armstrong et al. (2011) show Erlang’s key features like
concurrency and distribution in large scale applications,
as well as soft real-time capability and robustness.

Using Erlang’s advantages in new areas is attractive, espe-
cially in industrial automation, where fault-tolerant, dis-
tributed, (soft) real-time, and highly available applications
are needed too.

The approach of this work considers controllers, that are
modeled as parallel finite state machines. This style of



modeling is widespread. The method presented in this
paper has been applied to Stateflow as an illustration,
but could easily be extended to other modeling languages
based on finite state machines, e.g. GRAFCET. The
method consists of two parts: Firstly, converting the model
to code, that is executable in ERTS. And Secondly, to
perform a DSU between such Erlang executables.

In the second section of this paper background informa-
tion is provided. The third section explains the proposed
method in detail. This method is then applied in a case
study in section four. Finally, in the fifth section this
method is evaluated and topics for further research are
presented.

2. BACKGROUND
2.1 Related Work

In the area of distributed systems, reconfigurable designs
are an interesting topic. To put it simple, the idea is to ease
modifying a system by using modular, distributed software
architectures. When reconfiguring the system physically,
software components can be reused and changes are only
applied locally.

A more difficult task is to reconfigure the system at run-
time, also referred to as Dynamic Reconfiguration. This
is strongly related to Dynamic Software Update (DSU),
because it includes changing the code at runtime. Whereas,
DSU means even more, like bug-fixing or code optimiza-
tion at runtime. Brennan et al. (2008) describe different
approaches for dynamic reconfiguration and identify basic
requirements. Further concepts are presented by Wahler
et al. (2009), Wahler and Oriol (2014) and Atmojo et al.
(2017).

This work makes use of Erlang’s capability for DSU and
combines it with a common modeling style, here Stateflow
respectively parallel finite state machines. A closely related
approach is presented by Prenzel and Provost (2017). They
consider TEC 61499 — a industrial standard for process
and control systems —, that is used to model distributed
systems. Both projects aim to investigate Erlang’s usabil-
ity for industrial applications in combination with existing
modeling styles.

2.2 Stateflow

Stateflow is an environment for modeling and simulat-
ing decision making systems. Finite state machines can
be modeled including hierarchy, parallelism and history.
Stateflow state charts can be used in combination with
MATLAB Simulink models to represent hybrid systems,
e.g. a decision making controller interacting with a contin-
uous plant.

2.8 Modeling of State Machines

In the process of developing a controller the first step is to
model the desired control behavior. The method proposed
in this paper supports parallel finite state machines as a
control model. Actually, those models are only a subclass
of Stateflow charts, which can extend to higher complexity
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Fig. 2. Detail of a Stateflow model: parallel state machines
(dashed outline), containing the sequential substates
(solid outline) and transitions labeled with [condi-
tion]/{actions}; the execution order is placed in the
top right corner of the parallel states.

and multiple abstraction levels. Therefore some Stateflow
features are not yet supported.

Fig. 2 shows an example of the supported model class as
a set of parallel state machines (in the following briefly
state machines). These state machines are flat and consist
of sequential states (in the following briefly states). Within
a state machine, the states are linked with transitions
labeled with a condition and an action. The model class
has the following characteristics:

e The state machines are executed in a given execution
order to ensure deterministic behavior.

e A state can have several outgoing transitions. Again,
a execution order ensures determinism in case of more
than one transition being enabled.

e Transitions are labeled with a condition and a tran-
sition action.

e Conditions are boolean expressions and can consist of
equality expressions on data variables, e.g. s3 == 1,
or temporal expressions referring the moment of en-
tering the state, e.g. after(2500, msec).

e Actions are compositions of assignations to data
variables, e.g. ¢4 = 1.

e Data variable can be input, output or user defined
variables. Input variables can only be accessed for
reading, whereas the others can also be written.

e Each state machine has an initial state.

As stated above, some features of Stateflow state transition
diagrams are not yet supported:
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Fig. 3. (left) cycle in normal execution mode (right) cycle
in update mode: extended with state transformation
attempt.

2.4 Dynamic Software Update

Write output

Erlang code is structured in translation units, called mod-
ules. A running Erlang application consists of several mod-
ules and also processes, which execute the functions stored
in the modules. Under an update scenario, a module is
modified, compiled and loaded to ERTS, where a code
server holds the old and new software version of the mod-
ule. There are several ways to perform the update itself
regarding when and how the processes switch to the new
software version.

One way is to stop a process and restart it with the
new software version. A more advanced way is to switch
the process to the new software version in the sense
of DSU. This might be necessary, when the running
process contains important data, e.g. values of variables or
references to other processes. This information is referred
to as the state of the process. According to Seifzadeh et al.
(2013), it is very important to transform the state of the
process to the new software version. The update might
have affected the data structure.

3. METHOD
3.1 Erlang Code Generation and Ezrecution

As shown in Fig. 1, the model is translated to Erlang code.
Therefore, two types of information are extracted from
the model. On the one hand, the information to initialize
the controller, i.e. the set of all initial states. On the
other hand, the information to execute the model, i.e. the
state transition information. The state of the controller,
respectively the state of the process as introduced in the
previous section, is the set of all active states.

Before the execution starts, the controller is initialized
with the set of initial states. Then the controller starts
executing cyclically as shown in Fig. 3 (left). Firstly, the
input is read from the plant. Secondly, the controller is
executed according to the state transition information.
Finally, the output is written to the plant.
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Fig. 4. The state machine from version 1 (top) and version
2 (bottom) are paired. Matching candidates for a
transformation are a, b or c. In d the transformation
is not possible.

As mentioned before, the execution of the Stateflow model
happens in a strictly sequential manner to ensure deter-
minism. Thereby, the cycle time and the memory con-
sumption grow linearly in the worst case with the number
of:

state machines per model
outgoing transitions per state
components per condition
assignations per transition action

Because of the strict sequential execution of Stateflow
models, Erlang’s capability for concurrency and distribu-
tion cannot be fully utilized. It would indeed be possible
(in the sense of the IO and final state determinism) if the
subsystems were independent.

So far, the code generation was only discussed with respect
to the state transition behavior, but data variables are also
part of the controller. For time reasons, data variables
are not considered for automatic code generation and
updating. It is assumed that updating does not affect the
variables respectively future version work on the very same
set of variables. Therefore a data server is written manually
to manage variables and link them to physical connectors.
However, it does not seem to be too complex to achieve
automatic code generation and DSU of the data server.

3.2 State Transformation of Finite State Machines

In the following, the state transformation of parallel Finite
State Machines is presented as well as a condition for when
it can be performed.

Two state machines are said to be paired, if they have
the same name. States within these state machines are
called matching, again, if they have the same name. It is
assumed that matching states represent the same physical
state of the plant. Under this assumption, a condition for
state transformation can be defined: for all paired state
machines, there must exist a state in the new version, that
matches the active state in the old version.

When this condition is satisfied, the state transformation
splits up into three different cases:



e If a state machine exists in both versions, i.e. is paired,
the active state is retained, as it has a matching coun-
terpart in the new version. This is reasonable, because
it was assumed, that matching states represent an
equivalent physical condition. Fig. 4 shows different
possible matching candidates for transformation.

o If a state machine only exists in the old version, i.e.
it was deleted, the active state is also deleted.

e If the state machine only exits in the new version, i.e.
it was added, it is started in the initial state.

The set of retained and initialized states is the state of the
controller after the transformation.

It has to be mentioned, that designing updates requires
some expert knowledge. Careless use might lead to unde-
sired behavior. Especially matching of inappropriate states
or deletion of states might cause data inconsistency or data
loss.

3.8 Dynamic Software Update Process

In Fig. 1 the Process of DSU is displayed. The controller
is executing an old software version. In parallel a new
version is loaded to the code server. On a user command,
the system switches from normal execution to an update
mode, shown in Fig. 3 (right). The normal execution cycle
is extended with a state transformation attend.

Thereby, the state transformation condition is evaluated,
as defined in the previous section. If the condition holds,
the state can be transformed to the new version and the
update is successful. The following execution cycle will run
with the new software version in normal execution mode.
Otherwise, the system stays in update mode and retries
state transformation until the update is successful.

Thus, the update will not be performed immediately, but
is deferred until a transformable state of the controller
is reached, i.e. a state where the state transformation
condition holds. This might not always be possible. It
would be useful to introduce Updateability as a new term
to describe a successful update scenario:

e A transformable state exists and can be reached
e A transformable state will be reached within n cycles

Further analysis on the Updateability aspect is not in the
scope of this work, but will be considered in future work.

4. APPLICATION

The previously presented method is applied to an edu-
cational plant as a proof-of-concept and to evaluate its
performance.

4.1 Hardware Setup

An educational plant !, shown in Fig. 5, is used to build a
demonstration application. In Fig. 6 the structure of the
plant is illustrated in detail. The u-shaped band conveyor
transports workpiece blocks. At the corners pistons push
the blocks to the next conveyor segments. On two machin-
ing stations a processing can be simulated. Some positions
on the band conveyor are equipped with light sensors to
detect a workpiece.

1 fischertechnik — Indexed line with 2 machining stations

Fig. 5. Plant for demonstration application. (Source: IKH
DIDACTIC SYSTEMS)
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Fig. 6. The U-shaped band conveyor in detail: The inde-
pendent conveyor segments cX transport workpieces.
Pistons pX move the workpieces around the corners.
At to machining stations mX a processing can be
simulated. At some positions the conveyor band is
equipped with light sensors [ X to detect workpieces.
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Fig. 7. Hardware architecture of the demonstration appli-
cation.
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Fig. 8. This state machine controls the main line of the
plant including both machining stations before the
update.

A remote I/O module? (RIOM) is connected to the plant’s
sensors and actuators. The RIOM and a computer com-
municate with the Modbus TCP protocol over Ethernet.
On the computer ERTS runs the controller software. Fig. 7
illustrates this architecture.

4.2 Case study Machining Process

In the first software version four state machines build
the controller. The machining process itself is modeled
with the state machine machining. It controls the main
line of the plant including the machining stations. The
three other state machines control the supply conveyor,
the storage conveyor and the pistons.
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Fig. 9. This state machine controls the line in the area of
the first machining station after the update.

Fig. 8 shows machining in the first software version. Step
by step, the workpiece is handled. As soon as the piston
pushes a workpiece on the band, it is transported to the
first machining station. After the machining it is trans-
ported to the second machining station. The workpiece
is transported to the storage system, when the second
machining is finished and the storage is ready to receive
the product.

In this case study, the user starts the production system
with the first version of the controller. After some time,
the user detects that the strictly sequential execution in
the machining process could be optimized. In this version,
the first machine is idle as long as the controller manages
the second station. An upgrade of the Stateflow model
will allow the two machines to work concurrently, thus the
throughput will be increased.

To perform this upgrade, a new controller version is mod-
eled. The three state machines for supply and storage
conveyors and pistons are transfered to the new version
without modifications. The state machine machining is
modified and will only manage the machining process on
the first station. Another state machine machining?2 is
added to control the second machining station. Fig. 9
and Fig. 10 show the new state machines. For the three
unmodified state machines and the added state machine
the state transformation is possible in any case. The
paired state machines machining (represented by Fig. 8
and Fig. 9) share 4 matching states: idle, conveyingl, ma-
chiningl and conveying2. A matching state and therefore
a transformable state of the controller will eventually be
reached, because the machining process in the first version
is cyclical.
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Fig. 10. This state machine controls the line in the area of
the second machining station after the update.

4.3 Ezperimental Results

Experiments show, that the plant can be controlled with
both software versions. The modeled behavior is executed
without any noticeable delays. The update is easy to
apply and the production is not affected in any way.
Furthermore, the throughput could be increased by the
update.

5. CONCLUSION

In this paper, a novel method for controlling industrial
automation plants was presented, including a conceptional
easy way to model a controller and reprogram it in a
running system. Furthermore, a possible application of
ERTS to industrial automation tasks was given. In a
case study the method was applied to a real system with
promising results.

So far, the data server is written manually and cannot
yet be updated as mentioned in Sec. 3.1. It would be
interesting to extend the code generation and DSU to the
data server.

The aspect of Updatability from Sec. 3.3 could be investi-
gated with reachability analysis. It is important to know,
if an update will be successful before trying to apply it to
a running system.

As mentioned before, the method presented in this paper
has been applied to Stateflow as an illustration, but could
be extended to other modeling languages based on finite

state machines. This seems to be attractive especially
for modeling languages, that support independent state
machines. The concurrency capability of Erlang could be
utilized and the performance of the controller improved.

For an industrial automation system real-time perfor-
mance is essential. On the one hand, the hardware ar-
chitecture presented in Sec. 4.1 has to be improved.
Firstly, a real-time fieldbus communication protocol such
as EtherCAT should be used instead of Modbus TCP and
secondly, the computer system should support real-time
applications. On the other hand, the software has to be
modified. An important point to remind is that Erlang
supports soft real-time but does not guarantee hard real-
time. Nicosia (2007) shows how to improve Erlang’s soft
real-time performance to hard real-time.

Generally speaking, the focus of further research will be
placed in applying the method to large scale systems,
to determine scalability and performance of this method
under realistic circumstances.
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