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Abstract

This thesis covers two aspects of interprocedural program analysis. In the first
part we concentrate on pure syntactical relations between program variables
and introduce a novel analysis in order to compute all interprocedural valid
Herbrand equalities for programs where right-hand sides contain at most one
program variable (which can occur several times). The novel analysis is based
on procedure summaries representing the weakest preconditions for finitely
many generic postconditions. In order to arrive at effective representations for
all occurring weakest preconditions, we show for almost all run-time values
possibly computed by the program, that they can be uniquely factorized into
tree patterns and a terminating ground term. Moreover, we introduce an
approximate notion of subsumption which is effectively decidable and ensures
that finite conjunctions of equalities may not grow infinitely. Based on these
technical results, we realize an effective fixed point iteration. Finally we show
that a two-variable invariant candidate can be verified in time polynomial in the
size of the program and in the size of the invariant candidate. Furthermore,
we show that a multi-variable invariant candidate can be verified in time
polynomial in the size of the program and in the size of the invariant candidate,
and only exponentially in the number of variables of the invariant candidate.

In the second part of this thesis we perform interprocedural program analysis
by means of partial tabulation of procedure summaries. Such an analysis might
not terminate if a procedure is analyzed for infinitely many calling contexts or
when the domain has infinite strictly ascending chains. As a remedy we provide
two local solvers for general equation systems, be they monotone or not, and
prove that these solvers only fail to terminate, if infinitely many variables are
encountered during a run. We show that interprocedural analysis performed by
these local solvers is guaranteed to terminate for all non-recursive programs.
Moreover, for recursive programs we are still able to provide termination
guarantees by over-approximating calling contexts such that the number of
contexts for each procedure is kept finite.
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Zusammenfassung

In dieser Thesis werden zwei Aspekte der interprozeduralen Programmanalyse
behandelt. Im ersten Teil konzentrieren wir uns auf rein syntaktische Relatio-
nen zwischen Programmvariablen und fiihren eine neue Analyse ein, um alle
interprozedural giiltigen Herbrand-Gleichungen fiir Programme zu berechnen,
bei denen rechte Seiten von Zuweisungen hochstens eine Programmvariable
enthalten (die mehrmals vorkommen kann). Die neue Analyse basiert auf Pro-
zedurzusammenfassungen, die die schwachsten Vorbedingungen fiir endlich
viele generische Nachbedingungen darstellen. Um die schwachsten Vorbedin-
gungen effektiv darzustellen, zeigen wir fiir fast alle Laufzeitwerte, dass diese
eindeutig in Baummuster und einen abschlieRenden Term faktorisiert werden
konnen. Dartiber hinaus stellen wir eine Idee der approximierenden Subsumti-
on vor, die effektiv entscheidbar ist und sicherstellt, dass endliche Konjunktio-
nen von Gleichungen nicht unendlich wachsen kénnen. Basierend auf diesen
Formalismen realisieren wir eine effektive Fixpunkt-Iteration. SchlieRlich zei-
gen wir, dass ein Zwei-Variablen-Invariantenkandidat in der Zeit polynomiell
in der GroRe des Programms und in der GroRe des Invariantenkandidaten
uberprift werden kann. Dartiber hinaus zeigen wir, dass ein Mehr-Variablen-
Invariantenkandidat in der Zeit polynomiell in der GréRe des Programms und
in der GroRe des Invariantenkandidaten und nur exponentiell in der Anzahl
der Variablen des Invariantenkandidaten tiberprift werden kann.

Im zweiten Teil dieser Arbeit fiihren wir eine interprozedurale Programmana-
lyse basierend auf partieller Tabellierung von Prozedurzusammenfassungen
durch. Eine solche Analyse terminiert nicht, wenn eine Prozedur fiir unend-
lich viele Aufrufkontexte analysiert wird oder wenn die Doméne unendlich
streng aufsteigende Ketten hat. Als Losung stellen wir zwei bedarfsgetriebene
Gleichungsloser fiir allgemeine Gleichungssysteme vor, seien sie monoton
oder nicht und zeigen, dass diese Gleichungsloser nur dann nicht terminieren,
wenn wahrend eines Durchlaufes unendlich viele Variablen vorkommen. Des
Weiteren zeigen wir, dass die interprozedurale Analyse von nicht rekursiven
Programmen, die anhand der neuen Gleichungsloser durchgefiithrt wird, im-
mer terminiert. Dartiber hinaus konnen wir fiir rekursive Programme durch
Uberapproximation von Aufrufkontexten Terminierung garantieren, sodass
die Anzahl an Kontexten fiir jede Prozedur endlich ist.
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1 Introduction

Static program analysis is the art of automated reasoning about programs
without actually executing them. That means by analyzing a program the
meaning or certain properties of a program are inferred. One goal of doing so
is the optimization of a program by a compiler, e.g., to eliminate dead code,
compute reachability information, minimization of registers, and so on. Other
interesting goals are the detection of bugs and errors in general or even to
verify the correctness of a program, i.e., proving the absence of errors. In
contrast to program testing, where the programmer has to specify test cases
manually in order to provide certain guarantees, program analysis is meant to
be done automatically, i.e., by programs itself.

The limits of automatic reasoning about programs are already well known
from the computability theory results from Turing [Tur37] and Rice [Ric53].
They showed that all non-trivial' semantic properties of programs written in
a Turing complete programming language are mathematically undecidable.
Still, static program analysis can reveal certain kinds of semantic properties by
being more conservative, i.e., by taking all possible and also some impossible
program executions into account—the latter clearly leads to some imprecision.
For example, it is undecidable whether or not a program variable is constant
at some program point. Still an effective analysis could compute yes or no
for a program variable and program point or also maybe—indicating that a
program variable may be constant or not. Therefore, by giving up precision it
is still possible to come up with effective analyses.

In the following we consider two aspects of interprocedurel analysis. First we
consider Herbrand Equalities and afterwards we have a look at Local Solvers.

Herbrand Equalities An alternative approach to introducing imprecision,
is to consider only certain kinds of programs for which a precise analysis is
possible, instead of considering general programs. Consider the program of
Figure 1.1 which contains only right-hand sides that depend on at most one
program variable. Inside procedure p the global variable x is at first assigned

' A property is termed as non-trivial if it is neither true for every program, nor for no program.
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o: global x,v;

1: main() { 7. pO{

2: X = f(a,a); 8: if (k) {

3: y = a; 9: X = g(X,X);

4 r(O); 10: X = f(x,X);

5: assert (x = f(y,y)); 11: rQ;

6: 1} 12: y = f(y,y);
13: y =g(y,y);
14: }
15: }

Figure 1.1: A recursive program with binary operators f and g

the result of the binary operator g applied to x. Subsequently the result of the
binary operator f applied to x is assigned to x. Then, after the recursive call,
the global variable y is also assigned the results of the binary operators g and f
but in reverse order, i.e., first operator f is applied and then g. The procedure
p is called exactly one time in procedure main and is called arbitrarily often
recursively in different calling contexts by making use of non-deterministic
branching. At program point 5 we are faced with the question whether or
not x = f(y,y) is an invariant, i.e., does the equality hold for all program
executions. The challenging problems about this question are that a recursive
procedure—without any obvious termination argument—is involved and that
the semantics of the operators g and f are unknown. Therefore we cannot
assume that the operators satisfy any obvious algebraic laws and the equality
must hold independent of the interpretation of the operators. Still the invariant
can be shown if the program variables x and y are computed by means of
syntactical identical terms of operator applications. Such equalities are called
Herbrand equalities which we make use of in Chapter 2 of this thesis. There
we introduce a novel analysis in order to compute all valid interprocedural
Herbrand equalities for programs which contain only right-hand sides which
depend on at most one program variable.

In order to arrive at this result we make use of weakest precondition computa-
tion which is related to the work of Hoare. In 1969, Hoare introduced a formal
system which rigorously defined the semantics of an imperative programming
language by introducing a set of logical deduction rules [Hoa69]. His work has
been influenced by Floyd who published a similar system for flowcharts [Flo67].
Since then Hoare logic has been further developed. One famous notion are
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predicate transformers which have been introduced by Dijkstra in 1975 [Dij75].
Predicate transformers assign meaning to each statement of an imperative
programming language, i.e., a transformer is a total function over the state
space of statements. In contrast to Hoare logic, which is a deductive system
and closely related to axiomatic semantics, predicate transformers are a kind
of denotational semantics. The difference between these two systems can also
be seen as follows. Predicate transformers reduce the problem of proving
a Hoare triple to the problem of proving a formula. That means, predicate
transformers are a reformulation of Hoare logic. There exist two well known
predicate transformers: weakest precondition and strongest postcondition trans-
former. The former has been introduced by Dijkstra which we make use of in
Chapter 2 of this thesis.

The introduction of weakest precondition computation by Dijkstra was in
the setting of intraprocedural analyses. These kinds of analyses are typically
easier to formulate when there are no procedures or where procedure calls are
handled as black boxes. In the latter case, an analysis interprets a procedure
call as an unknown statement, and in order to be sound, all accumulated
information before a call must be discarded after a call. Or in other words, all
information is lost at procedure boundaries. For our example program such
an analysis is not suitable in order to prove the invariant candidate at line 5.
Therefore, in order to come up with an analysis for our problem, we still have
to come up with a solution for procedures.

In contrast to intraprocedural analyses, interprocedural analyses take proce-
dures into account. Some programs with multiple procedures can be massaged
into programs with exactly one procedure where again techniques from in-
traprocedural analyses can be applied. Consider a program with non-recursive
procedures and static procedure calls only, i.e., for each procedure call it can
be statically determined which particular procedure is called. Then by inlining
each procedure into its corresponding procedure call, the initial program is
transformed into an equivalent program with exactly one procedure—although
the size of the resulting program might by exponentially larger. For such pro-
grams, intraprocedural analyses might be suitable. Clearly, for our example
recursive program this approach fails and more advanced interprocedural
analyses are required.

Interprocedural analyses for imperative programs have been extensively
studied since the 70s [All74; CC77c; Lom77; Bar77; Gal78; Ros79]. In 1981,
Sharir and Pnueli introduced in their seminal paper [SP81] two approaches
to interprocedural analysis. The first approach is called functional approach
where procedures are interpreted as one huge block of statements. For each



1 Introduction

such block, the input/output relation, i.e., the summary, is computed. Then,
for each procedure call, the program state after the call is determined by
the relation and the program state before the call. Technically speaking,
the relation is determined by tabulating all input/output pairs. However, in
general this is not effective. If the lattice D, describing the program states,
contains infinite elements, then the relation in D — D contains infinite strictly
increasing chains. Moreover, even if an iterative solution converges, then
there is still a space bound. While determining a fixed point, the intermediate
solution in D — D is not applied to elements in D but is manipulated. Hence
for an effective analysis, we require some compact representation of functions
inD — D.

Assume that our goal is to tabulate all weakest preconditions of all post-
conditions which occur while proving the invariant candidate at line 5 of the
example given in Figure 1.1. While computing the weakest precondition of
the postcondition x = f(y,y) for procedure p we observe that we have to
compute the weakest precondition of every postcondition x = f(y,y) where
y is arbitrarily often substituted by the term g(f(y,y), f(y,vy)). Therefore,
naive tabulation is ruled out since we would have to compute weakest pre-
conditions for infinitely many postconditions. Still, we are able to circumvent
this problem by using generic postconditions A(x) = B(y) of which only
finitely many exist. Basically, the idea is that A and B are placeholders for
arbitrary terms which contain no program variables but holes into which the
arguments get substituted. We then have to deal with equalities of the form
A(s) = B(t) where s and t are terms containing at most one program variable.
In Chapter 2 we provide an approximate notion of subsumption for such
two-variable Herbrand equalities which is strong enough to guarantee that
every occurring conjunction of two-variable Herbrand equalities is equivalent
to a finite subset. By this subsumption and compactness result we arrive at an
effective analysis and are ultimately able to determine for every program point
all valid Herbrand equalities—at least for programs which contain at most
one program variable in each right-hand side of assignments. This enables us
to finally prove the invariant candidate x = f(y,y) at program line 5 of the
example given in Figure 1.1. A proof of the invariant candidate in the sense of
a weakest precondition computation is presented in Section 2.7.

We study the complexity of the presented algorithms in Section 2.11 and
observe that the terms during the weakest precondition computation may grow
exponentially. Nevertheless, by compact representations of terms we are able
to verify a two-variable invariant candidate in time polynomial in the size of
the program and in the size of the invariant candidate. Furthermore, we show
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that a multi-variable invariant candidate can be verified in time polynomial in
the size of the program and in the size of the invariant candidate, and only
exponentially in the number of variables of the invariant candidate.

Local Solvers For interprocedural analysis, however, it is often the case that
effective representations of procedure summaries are not known. This is
already the case, e.g., for Constant Propagation since the complete lattice there
is infinite. For such a case Sharir and Pnueli introduce their second method
termed the call-string approach. Basically, the idea is that data-flow values are
tagged with the history of procedure calls in order to make interprocedural
flow explicit. That means, whenever a procedure is entered or is returned
from, the history of procedure calls—termed the call-string—is updated. By
that, procedure calls and returns are treated like jump edges with the addition,
that the call-string is updated, if we neglect parameters and local variables
for the moment. One could also think of virtually copying a procedure into
its corresponding procedure call. This approach fails for recursive programes.
That is why Sharir and Pnueli propose the call-string suffix approximation, or
also known as the k-call-string approach. In order to distinguish between
procedure calls, a sequence of at most k call sites is kept. That means, two
procedure calls to the same procedure are kept distinct, if their k-most recent
call sites are different. By that interprocedurally invalid paths are possible,
rendering the solution imprecise. However, the benefit is that only finitely
many call-strings are possible, which makes this approach suitable even for
recursive procedures.

Consider the example program given in Figure 1.2. In order to show that
the assertion at line 4 holds, it is enough to perform interval analysis in
conjunction with the k-call-string approach where k = 0. However, a priori it
is unclear whether or not a k > 0 could improve precision. Even worse, for
a k > 1 the procedure p is analyzed for k + 1 different call-strings, although

o: global x;

1: main() { 6: p(O){

2: X = 0; 7 if(x+0){x:=0;}
3: r(O); 8: else {x:=1;}
4 assert(0 < x <1); 9: if () {pO; 1}
50} 10: }

Figure 1.2: Recursive procedure p is called in two different contexts only
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the procedure is only called in two different contexts where the single global
program variable x either equals O or 1. Therefore, the procedure is analyzed
many times although the result of it only depends on two calling contexts.
This is a general drawback of the call-string approach. Assume two different
call sites to procedure p for the same calling context, then procedure p is
analyzed two times—although the result will be the same for both call sites.
Therefore, another approach is to separate data-flow values not by the history
of procedure calls but by the context in which a procedure is called. By that
we partially tabulate a procedure summary.

Following the idea presented in [CC77c] an analysis is compiled into a system
of equations with variables in N X D where N is the set of program points and
is the domain of possible calling contexts. Then each variable (u,d) € N X
characterizes the value for the program point u, if the corresponding procedure
is called in context d. This leads to a system of equations of the form

(u,d) = frudy, (ueN,deDb)

where f(, 4) is the defining right-hand side of a variable (u, d).

The domain D for an analysis can be determined by the idea of Abstract
Interpretation which was introduced by the landmark paper [CC77a] from
Patrick and Radhia Cousot in 1977. The basic idea is that an analysis executes
a program, however, instead of computing with concrete values, the analysis
computes with abstract values which describe concrete values. That means, in a
first step, the concrete semantics is defined. In order to do so, the set of possible
program states is determined which serves as the set of concrete values. The
semantics of each program statement is then defined by a corresponding
total function between concrete values. Though, the concrete semantics is
in general not computable in finite time, i.e., the least or greatest fixed point
cannot be computed of a given function of the concrete semantics in finite time.
Therefore, in a second step, the abstract semantics is defined which introduces
some kind of imprecision by over-approximating the concrete semantics. By
the right choice of imprecision, the abstract semantics is computable in finite
time. Similar to the concrete semantics, for the abstract semantics a set of
abstract values is defined such that each abstract value describes one ore more
concrete values. Then for each concrete function f a corresponding abstract
function f* between abstract values is defined such that whenever an abstract
value d describes a concrete value c, then f #(d) describes the concrete value
f(c). In other words, the abstract semantics simulates the concrete semantics.

If the domain D is infinite, then the system of equations is infinite. Thus well
known fixed point algorithms like Round-Robin Iteration, Worklist Algorithm,
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or Chaotic Iteration fail to compute a solution in finite time. However, an
infinite system of equations often encodes procedure calls for certain contexts
which never occur during any run of the program. For our example from
Figure 1.2 we only have to consider the two calling contexts for procedure p
where x is set to 0 or 1. In general, if a program is analyzed for a particular
start context, only those contexts for procedure calls are of interest, which are
reachable from program start. Therefore, instead of solving an infinite system
of equations completely, basically the idea is to begin with a particular variable,
as e.g. {Smain, do) Where $,,,in is the start node of the dedicated procedure main
and dy € D is an initial context for the program. Then new variables have to
be solved which are encountered while evaluating right-hand sides. Hence,
only those variables are solved which are necessary in order to solve the
initial variable. Solvers for such infinite equation systems are known as local
solvers [ASV13; Ama+16; Her+05].

In the classical setting of abstract interpretation widening and narrowing
are done in separate phases. This has been given up by the local solver
SLR3 [Ama+16] where the widening and narrowing operators are intertwined
into one operator. By this approach the abstract semantics follows more closely
the concrete semantics and precision is not unnecessarily given up which is
difficult to recover later. The drawback of the solver SLRj is, that termination
is not guaranteed for non-monotone equation systems where it is possible
that for a variable of the equation system the algorithm switches infinitely
often between widening and narrowing. However, interprocedural analysis in
the style of [ASV12] where partial tabulation of procedure summaries is used,
introduces non-monotone right-hand sides of equation systems.

In Chapter 3 of this thesis we introduce two novel local solvers which are
guaranteed to terminate—regardless if right-hand sides of equation systems
are monotone or not—as long as only finitely many variables are encountered
during a run. The first solver TSTP strictly separates widening and narrowing
into different phases. The novel point is that both iterations are performed in
a demand-driven way so that also during the narrowing phase fresh variables
may be encountered for which no sound over-approximation has yet been
computed. Subsequently the solver TSMP intertwines widening and narrowing,
similar as it is done for the solver SLR3, but with additional logic in order to
decide when widening or narrowing should be applied such that termination
is guaranteed. At first we present the two local solvers in the setting where a
Galois connection is present and show that if local solving terminates, then
each computed (partial) solution is sound. Secondly we drop the requirement
of a Galois connection, i.e., we consider the case when no abstraction function
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« is available, and show that the solvers remain sound when widening and
narrowing operators are used which are sound w.r.t. the concretization. Finally
we show that interprocedural analysis in the style of [CC77c; ASV12] using the
novel local solvers terminates for all non-recursive programs. For recursive
programs we present an approach to keep the number of contexts for every
procedure finite, similar to [PAHO6], by over-approximating them such that
termination is also guaranteed in this case.



2 Interprocedural Two-Variable
Herbrand Equalities

How can we infer that an equality such as x = f(y,y) holds at some program
point, if the operators by which the program variables x and y are computed,
do not satisfy obvious algebraic laws? This is the case, e.g., when either very
high-level operations such as sqrt, or very low-level operations such as bit-shift
are involved or, generally, for floating-point calculations. Still, the equality
x = f(y,y) can be inferred, if x and y are computed by means of syntac-
tically identical terms of operator applications. The equality then is called
Herbrand equality. The problem of inferring valid Herbrand equalities dates
back to [CS70] where it was introduced as the famous value numbering prob-
lem. Since quite a while, algorithms are known which, in absence of procedures,
infer all valid Herbrand equalities [Kil73; SKR90]. These algorithms can even
be tuned to run in polynomial time, if only invariants of polynomial size are
of interest [GNO4]. Surprisingly, little is known about Herbrand equalities if
recursive procedure calls are allowed. In [MSS05] it has been observed that the
intraprocedural techniques can be extended to programs with local variables
and functions—but without global variables. The ideas there are strong enough
to generally infer all Herbrand constants in programs with procedures and
both local and global variables, i.e., invariants of the form x = t where t is
ground. Another tractable case of invariants is obtained if only assignments
are taken into account whose right-hand sides have at most one occurrence of
a variable [Pet10]. Thus, assignment x := f(y, a) is considered while assign-
ments such as x := f(y,y) or x := f(y, z) are approximated with x := ?, i.e., by
an assignment of an unknown value to x. The idea is to encode ground terms
as numbers. Then Herbrand equalities can be represented as polynomial equal-
ities with a fixed number of variables and of bounded degree. Accordingly,
techniques from linear algebra are sufficient to infer all valid Herbrand equali-
ties for such programs. As a special case, the class of programs from [Pet10]
subsumes those programs where only unary operators are involved. Such
programs have been considered by [GT07]. Interestingly, the latter paper
arrives at decidability by a completely different line of argument, namely, by
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exploiting properties of the free monoid generated from the unary operators.
Another avenue to decidability is to restrict the control structure of programs
to be analyzed. In [GT09], the restricted class of Sloopy Programs is introduced
where the format of loop as well as recursion is drastically restricted. For this
class an algorithm is not only provided to decide arbitrary equalities between
variables but also disequalities.

On the other hand, when only affine numerical expressions as well as affine
program invariants are of concern, the set of valid invariants at a program
point form a vector space which can be effectively represented. This observa-
tion is exploited in [MS04] to apply methods from linear algebra to infer all
valid affine program invariants. These methods later have been adapted to
the case where values of variables are not from a field, but where integers will
overflow at some power of 2, i.e., are taken from a modular ring. Note that
in the latter structure, some number different from 0 may be a zero divisor
and thus does not have a multiplicative inverse [MS07]. For some applica-
tions, an analysis of general equalities is not necessary. In applications such
as coalescing of registers [MS08] or detection of local variables in low-level
code [Fle+11], it suffices to infer equalities involving two variables only. In
the affine case, algorithms for inferring all two-variable equalities can be con-
structed which have better complexities than the corresponding algorithms
for general equalities [Fle+11].

The question whether or not all interprocedurally valid Herbrand equalities
can be inferred, is still open. In this part of the thesis, we consider the case
of Herbrand equalities containing two variables only. These are equalities
such as x = f(g(y),v,a), i.e., right-hand sides of equalities may contain
only a single variable, but this multiple times. Accordingly, in programs only
assignments are taken into account whose right-hand sides contain (arbitrarily
many) occurrences of at most one variable. The main result is that under this
provision, all interprocedurally valid two-variable Herbrand equalities can be
inferred.

The novel analysis is based on calculating weakest preconditions for all
occurring postconditions. Since there may be infinitely many potential post-
conditions for a called procedure, we rely on generic postconditions to obtain
finite representations of procedure summaries. In a generic postcondition
second-order variables are used as place-holders for yet unknown relationships
between program variables. In the generic postcondition

A(x) = B(y)

the second-order variables A and B take as values terms with (possibly multiple

10
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occurrences of) holes (which we call templates). As preconditions we then get
conjunctions of the following form

/i A(si) = B(t)

where each term s;, t; contains at most one variable which might occur multiple
times. To realize the algorithm for inferring all interprocedurally valid two-
variable equalities, we thus require

+ amethod to finitely represent all occurring conjunctions of equalities;

+ amethod for proving that one conjunction subsumes another conjunc-
tion, i.e., a method to detect when the greatest fixed point computation
has terminated;

+ a guarantee that a fixed point will be reached in finitely many steps.

Note here that the equalities occurring during the weakest precondition com-
putation of a generic postcondition may contain occurrences of second-order
variables. Thus, subsumption between conjunctions of equalities is subtly
related to second-order unification [Gol81]. Second-order unification asks
whether a conjunction of equalities possibly containing second-order variables
is satisfiable. Since long, it is known that generally, second-order unification
is undecidable [Gol81]. Undecidability of second-order unification even holds
if only a single unary second-order variable is involved [LVO0O]. In contrast,
the problem of context unification, i.e., the variant of second-order unification
where second-order variables range over terms with single occurrences of holes
only, has recently been proven to be decidable [Jez14]. It is worth mentioning
that neither of the two cases directly applies to this application, since here
we consider unary second-order variables (as context unification) which range
over terms with one or multiple occurrences of holes (differently from context
unification). Furthermore, the occurring terms contain at most one first-order
variable whereas in [LVOO] multiple first-order variables may occur. To the
best of our knowledge, decidability of satisfiability is still open for our case.

Example 2.0.1. In the case presented here, during the weakest precondition
computation a conjunction of the following form might occur:

A(a) = B(f(a,a)) N A(b) = B(f(b,D))

where a and b are atoms. The (unique) solution for the second-order variables
A and B is then given as

A =B(f(e,e))

11



2 Interprocedural Two-Variable Herbrand Equalities

where e denotes the hole. Since the hole occurs two times in the solution, the
conjunction is not satisfiable, if only context unification is considered. ]

In this thesis, the satisfiability problem for the given unification problem is
not solved. Instead, we introduce two novel ideas to circumvent this problem
and still infer all interprocedurally valid two-variable Herbrand equalities.
First, we introduce a notion of approximate subsumption. This means that
the algorithm does not allow to prove implications between all conjunctions
of equalities—but at least sufficiently many so that accumulation of infinite
conjunctions is ruled out. Second, we note that subsumption is not required
for arbitrary valuations of program variables. Instead it suffices to consider
values which may possibly be constructed by the program at run-time. For
programs where every right-hand side of assignments contain occurrences of
single variables only, we observe that the ground terms possibly occurring
at run-time, have a specific structure, which allows for a unique factorization
of these terms into irreducible templates—at least, if these ground terms are
sufficiently large. Our factorization result applied to these kind of values,
enables us to make use of the monoidal methods of [GT07]. This approach,
which works for sufficiently large terms, then is complemented with a dedicated
treatment of finitely many exceptional cases. By that, we ultimately succeed to
construct an effective approximate subsumption algorithm which allows us to
restrict the number of equalities in occurring conjunctions and to determine
all valid two-variable Herbrand equalities.

In order to arrive at the key result, namely an algorithm to infer all valid in-
terprocedural two-variable Herbrand equalities, we thus build on the following
two novel technical constructions:

+ amethod to uniquely factorize the kind of values possibly occurring at
run-time (except finitely many) of a given program;

+ anotion of approximate subsumption which is decidable and still guar-
antees that every occurring conjunction of equalities is effectively equiv-
alent to a finite conjunction.

Subsequently, we sketch how not only all two-variable equalities, but all inter-
procedurally valid Herbrand equalities can be inferred, if only all right-hand
sides in assignments each contain occurrences of at most one variable.
Finally we show that the complexity of inferring all valid two-variable Her-
brand equalities in initialization-restricted programs is polynomial and that for
unrestricted programs, at least verifying a given equality can be performed in

12
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polynomial time. This is remarkable in so far as the terms encountered during
the weakest precondition computation may be exponentially deep. In order
to obtain a polynomial time analysis, we therefore follow the ideas sketched
in [GTO07] and provide compressed representations for the occurring terms
which support all basic term operations in polynomial time. Subsequently, we
show that our notion of approximate subsumption is decidable in polynomial
time. Furthermore, for the multi-variable case, we show that verifying an in-
variant candidate is polynomial as well, given that the number of occurrences
of variables in the postcondition is bounded.

2.1 Programs

For the purpose of this part of the thesis, we consider imperative programs
which consist of a finite set P of procedures such as presented in Figure 2.1.
Instead of operating on the syntax of programs, we prefer to represent each

o: global x,v;

1. main() { 6: p(){

2: X = a; 7: if (x) {

3; y = a; 8: X = f(x,X);

4 pQ); 9: pQ;

500} 10: y = f(y,y);
11 }
12}

Figure 2.1: A recursive program with one binary operator f

procedure by a (non-deterministic) control flow graph. Figure 2.2 shows, e.g.,
the control flow graphs for the given example program. Formally, the control
flow graph for a procedure p consists of:

+ A finite set N, of program points where s,, ¥, € N, represent the unique
start and return point of the procedure p;

+ A finite set E, of edges (u,s,v) where u,v € N, are program points
and s denotes a basic statement.

A program which consists of the set P of procedures is then represented by
the tuple (N, E) where N := ¢),,cp N, and E := ¢),cp E,. Furthermore, each
program contains a dedicated procedure termed main.

13



2 Interprocedural Two-Variable Herbrand Equalities

main

l p
@ |

X=a x = f(x,X)
B ®

pQ

Bo ©
y = f(y,y)

Figure 2.2: The corresponding CFGs for the program from Figure 2.1

For simplicity we assume that each program variable is initialized. More-
over, let us first proceed in the style of Sharir and Pnueli [SP81] and consider
parameterless procedures which operate on global variables only. Later on, in
Section 2.9, we lift this and also introduce procedures with local variables. In
the following, X denotes the finite set of program variables. As values, we con-
sider uninterpreted operator expressions only. Thus, values are constructed
from atomic values by means of (uninterpreted) operator applications. Let
Q denote a finite signature containing a non-empty set of atomic values Qg
and sets Q, k > 0, of constructors of rank k. Then T, denotes the set of
all possible (ground) terms over Q, and 7o (X) the set of all possible terms
over Q) and (possibly) occurrences of program variables from X. In general, we
will omit brackets around the argument of unary symbols. Thus, we may, e.g.,
write hx instead of h(x).

As basic statements, we only consider assignments and procedure calls. An
assignment x = ? non-deterministically assigns any value to the program vari-
able x, whereas an assignment x := t assigns the value constructed according
to the right-hand side term t € To(X). A procedure call is of the form p() for
a procedure named p.

In this thesis, we only consider assignments whose right-hand sides contain
occurrences of at most one program variable. The assignments occurring
in the example program from Figure 2.2 fulfill this property. Note that this
program does not fall into the class presented in [Pet10], since the right-
hand sides of assignments contain more than one occurrence of a variable. In
general programs with arbitrary assignments, the assignments with right-hand
sides not conforming to the given restriction may, e.g., be abstracted by the
non-deterministic assignment of any value.
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2.2 Computing Weakest Preconditions

2.2 Computing Weakest Preconditions

Our goal is to prove for a given assertion whether it is valid at a given program
point or, better, to infer all invariants which are valid at that point. For that, we
would like to calculate weakest preconditions of assertions, or, more generally,
to determine for every program point the minimal assumptions to be met for
the queried assertion to hold at the given program point. Since the program
model makes use of non-deterministic branching, we may assume w.l.o.g. that
every program point is reachable. In particular, this implies that no procedure
is definitely non-terminating, i.e., that for every procedure p, there is at least
one execution path from the start point of p reaching the end point of p.

Example 2.2.1. Consider the program from Figure 2.2. At program exit, the in-
variant x = y holds. In a proof of this fact by means of a weakest precondition
computation, weakest preconditions must be provided for procedure p and
all assertions x = t, k = 0, where ty = y and for k > 0, ty = f(tx-1, tk—1).
This set of postconditions is not only infinite, but also makes use of an ever
increasing number of variable occurrences. Thus, an immediate encoding, e.g.,
into bounded degree polynomials as in [Pet10] is not obvious. [ ]

In order to summarize the effect of a procedure for multiple but similar post-
conditions, we tabulate the weakest preconditions for generic postconditions
only. Generic postconditions are assertions which contain template variables
which later may be instantiated differently in different contexts for arriving
postconditions. This idea has been applied, e.g., for affine equalities [MS04;
MSO08; Fle+11], for polynomial equalities [MPS06; Pet10], or for Herbrand
equalities with unary operators [GT07]. The generic postconditions which are
of interest here, are of the forms

Ax =C or Ax =By

where X,y are program variables, the ground template variable C is meant
to receive a constant value, and the template variables A, B take templates as
values, i.e., terms over the ranked alphabet Q) and having at least one occurrence
of the (fresh) place holder variable o. Computing weakest preconditions
operates on assertions where an assertion is a possibly infinite conjunction of
equalities. The equalities occurring during weakest precondition calculations
are of the forms:
As =C or As =Bt

where s, t are terms possibly containing a program variable, i.e., s,t € T (X).
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Consider a mapping o which assigns appropriate values to the program
variables from X as well as to the (non-ground or ground) template variables
A, B, C. This means that o assigns ground terms to the variables in X U {C}
and templates to A, B. Such a mapping is called variable assignment. The
variable assignment o satisfies the equality s =t (0 F (s = t) for short) iff
o™ (s) = o™ (t) where o* is the natural tree homomorphism corresponding
to o, which is the identity on all operators in Q. The homomorphism ¢*
maps, e.g., the application At of the template variable A to the term t into
o (A)[o*(t)/e], i.e., the substitution of the term o™ (t) into the occurrences of
the dedicated variable e in the template o (A). Substitution into the dedicated
variable e is an associative binary operation where the neutral element is the
template consisting of e alone. In the following, we denote this operation by
juxtaposition.

Consider, e.g., an assignment o with 0(A) = h(e,e), and o (B) = e, and
o(x) = a. Then

0*(AX) = h(e,¢)a = h(a,a) = eh(a,a) = c*(Bh(x,a))

holds. Therefore, o satisfies the equality Ax = Bh(x, a). In the following, we
will no longer distinguish between o and o *.

The variable assignment o satisfies the conjunction ¢ of equalities (o F ¢
for short), iff o F e for all equalities e € ¢.

In our application, it will be convenient not to consider arbitrary variable
assignments, but only those which map program variables to reasonable values
as shown in the following. For a subset T < T, of ground terms, we call a
variable assignment o a T-assignment, if 0 maps program variables x to
values o (x) € T only.

The conjunction ¢ then is called T-satisfiable if there is some T-assignment
o with o E ¢. Otherwise, it is T-unsatisfiable. Conjunctions ¢, ¢  are
T-equivalent if for every T-assignment o, o F ¢ iff o F ¢'. Obviously,
an empty conjunction is satisfied by every variable assignment and therefore
equal to T (true), while all T-unsatisfiable conjunctions are T-equivalent. As
usual, these are denoted by L (false). Finally, a conjunction ¢’ is T-subsumed
by a conjunction ¢, if ¢ is T-equivalent to ¢ A ¢p'.

If the set T by which we have relativized the notions of satisfiability, equiva-
lence and subsumption equals the full set T, we may also drop the prefixing
with T. In particular, we have for any T that satisfiability, equivalence and
subsumption imply T-satisfiability, T-equivalence and T-subsumption, while
the reverse implication may not necessarily hold.
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2.2 Computing Weakest Preconditions

In the following, we recall the ingredients of weakest precondition computa-
tion for assignments as well as for procedure calls as provided, e.g. in [Hoa69]
or [Cou90]. The weakest preconditions of ¢ w.r.t. assignments are given by:

[x:=t]"¢p = ¢[t/x]
[x=?]"¢p = Vx.¢

Thus, the weakest precondition for an assignment x := t is given by substitution
of the term t into all occurrences of the variable x in the postconditions, while
the weakest precondition for a non-deterministic assignment x := ? of any
value is given by universal quantification. For Herbrand equalities, universal
quantification can be computed as follows. Recall that universal quantification
commutes with conjunction. Therefore, it suffices to consider single equalities
e. If x does not occur in e, then V x. e is equivalent to e. If x occurs only on
one side of e, then V x.e = L. Now assume that x occurs on both sides of
e. If e is of the form sx = tx for templates s, t (no template variables), then
either s = t and hence e as well as V x. e is equivalent to T, or s # t, in which
case V x.e equals L. If e is of the form Asx = Btx for templates s, t, then
V x.e is equivalent to As = Bt.

Every transformation f which is specified for generic postconditions to
conjunctions of preconditions, can be uniquely extended to a transformation
f* of arbitrary postconditions by

FYNE) = Aeerf*(e)

where the transformation f* for an arbitrary equality e is defined as follows:

fAx = By)[s"/A,t'/B] ifs=s'xt=1t"y
f(Ax =C)[s' /A, t/C] if s = s'x, t ground
f(Ax =C)[s/C,t"JA] ift =t'x, s ground
s=t otherwise

ffs=t) =

Subsequently, the extended function f* is denoted by f as well. The procedure
summaries are then characterized by the constraint system S:

[r,]7 = 1d for each procedure p
[ul" = I[sy]"o[v]" foreach (u,p(),v) € E

[ul]® = [s]"ov]" for each (u, s,v) € E,
§ assignment
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2 Interprocedural Two-Variable Herbrand Equalities

where o means the composition of the weakest precondition transformers and
Id is the identity transformer. Thus, accumulation of weakest preconditions
for a generic postcondition e at procedure exit 7, starts with e and then
propagates its preconditions backward to the start point of p by applying the
transformations corresponding to the traversed edges. Here, the subsumption
relation = as defined for conjunction of equalities, has silently been raised
to the function level. Thus, f = g if f(e) subsumes g(e) for all generic
postconditions e.

W.r.t. the ordering E given by = , the weakest precondition transformer
of procedure p is then obtained as the value for the variable corresponding to
the start point s, in the greatest solution to the constraint system S.

The weakest precondition transformers for all program points are charac-
terized by the greatest solution of the constraint system R:

[Smain]’ = Id

[s,]" = [u]” for each (u,p(),_) € E
[v]’ = [u]"o[s,]" foreach (u,p(),v) €E
[v]" = [u]" o[s]’ for each (u,s,v) € E,

§ assignment

The value for [v]' for program point v is meant to transform every assertion
at program point v, into the corresponding weakest precondition at the start
point of the program. Note that the constraint system for characterizing these
functions makes use of the weakest precondition transformers of procedures
as characterized by the constraint system S.

Assume that we are somehow given the greatest solution of the constraint
system R where [v]" is the corresponding transformation for program point v.
In order to determine all one- or two-variable equalities which are valid when
reaching the program point v, we conceptually proceed as follows:

One-variable Equality. For a program variable x, let ¢ denote the universal
closure of [V]"(Ax = C). If ¢ = 1, then program variable x does not
receive a constant value at program point v. Otherwise  is equivalent
to an equality As = C where s is ground, i.e., X = s is an invariant at v.

Two-variable Equality. For distinct program variables x and vy, let v denote
the universal closure of [v]'(Ax = By). If ¢ = 1, then no equality
between x and y holds. Otherwise, ¢ equals a conjunction /\; As; = Bt;
of equalities where for each i either s;,t; € T are ground or s;,t; €
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Tq(e) \ Tq are templates. Then 71X = 1,y is an invariant at v iff rs; =
1ot; for all i, i.e., any assignment o with o (A) = 1, 0 (B) = 7>, satisfies
the conjunction.

Here, the universal closure of a conjunction ¢ is given by V x; ... V x,,.¢, if
the set of program variables equals X = { Xy, ..., Xy }.

Example 2.2.2. Consider the main procedure of the program in Section 2.1,
as defined by the control flow graph in Figure 2.2. The weakest precondition
transformer [3]" for the endpoint 3 of the main program is given by:

381" =[x=a] oly:=al o[4]
where 4 is the entry point of the procedure p. Assume that
[4]"(Ax = By) = (Ax = By) A (Af(x,%x) = Bf(y,Y))
holds. For the program variables x, y, we therefore obtain:

[3]1"(Ax = By) = (Ax = By)[a/ylla/x]
N (Af(x,x) = Bf(y,y))la/ylla/x]
= (Aa = Ba) A (Af(a,a) = Bf(a,a))

This assertion does not contain occurrences of the program variables x,y.
Therefore, it is preserved by universal quantification over program variables.
Since A = B = e is a solution, x = y holds whenever program point 3 is
reached. ]

In order to turn these definitions into an effective analysis algorithm, several
obstacles must be overcome. So, it is not clear how general subsumption, as
required in our characterization of the weakest precondition transformers,
can be decided in presence of template variables. We observe, however, that
instead of general subsumption, it suffices to rely on T-subsumption only—for
a well-chosen subset T < T. Note that the smaller the set T is, the coarser
is the subsumption relation. In particular for T = ¢, all conjunctions are
T-equivalent. Since every assertion expresses a property of reaching program
states, it suffices for our application to choose T as a superset of all run-time
values of program variables.

The following wish list collects properties which enable us to construct an
effective interprocedural analysis of all two-variable Herbrand equalities:
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T-Compactness. Every occurring conjunction ¢ is T-subsumed by a conjunc-
tion of a finite subset of equalities in ¢.

Effectiveness of subsumption. T-subsumption for finite conjunctions can
be effectively decided.

Solvability of ground equalities. The set of solutions of finite systems of
equalities with template variables only, i.e., without occurrences of pro-
gram variables can be computed.

By the first assumption, a standard fixed point iteration for the constraint sys-
tems S and R will terminate after finitely many iterations (up to T-equivalence).
By the second assumption, termination can effectively be detected, while the
third assumption guarantees that for every program point and every program
variable (or pair of program variables) the set of all valid invariants can be
extracted out of the greatest solution of R. In total, we arrive at an effective
algorithm for inferring all valid two-variable equalities.

The assumption on decidability of T-subsumption can be further relaxed.
Instead, we provide an approximate notion of T-subsumption which is decid-
able. Our approximate T-subsumption implies T-subsumption. Moreover, it is
still strong enough to guarantee that every occurring conjunction of equalities
is approximately T-subsumed by a finite subset of the equalities. Notions for
approximate T-subsumption are introduced in Sections 2.5 and 2.6.

For programs which operate on global as well as local variables, an extension
of the program model and weakest precondition calculus is given in Section 2.9.
There we introduce a program model which is general enough in order to model
usual concepts of local variables together with call-by-value parameter parsing
and returning of results in dedicated global variables. Furthermore, we extend
the weakest precondition calculus in order to deal with generic postconditions
which contain local program variables.

In the upcoming section, we recall basic properties of the set of terms,
possibly containing the variable . These properties will allow us to deal with
conjunctions of equalities where template variables are applied to ground
terms only, i.e., the case of ground equalities.

2.3 Factorization of Terms
Let T (o) denote the set of terms constructed from the symbols in Q, possibly

together with the dedicated variable o. In [Eng80], Engelfriet presents the
following cancellation and factorization properties for terms in T (e):
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Bottom Cancellation:
Assume that t; # t]. Then s1t; = spt; and s,t; = s,t; implies s; = s».

Top Cancellation:
Assume e occurs in s. Then st; = st, implies t; = t».

Factorization:

Assume t; # t; for i = 1,2. Then s1t; = s»t, and s;t] = s,t, implies that
$171 = $»1» for some 71, 1> each containing e where at least one of the 7;
equals e. In that case s; is a prefix of s, or vice versa. Therefore, by top
cancellation we furthermore have that both >t; = 7t, and 7,t] = 1, 5.
We proof the latter as follows. Assume that r; = e, i.e., 51 = 57>, we
then have s,7,t; = s>71t> from which follows by top cancellation that
r»>t; = 11to. A similar argument holds for 7,t; = 7,t; and for the case
where v, = e,

Using these cancellation properties, we obtain a complete method for equalities
without occurrences of program variables.

For one-variable equalities alone, we have the following results concerning
subsumption and compactness:

Theorem 2.3.1.

1. A single equality As = C for some ground term s has exactly one solution
where A = o,

2. Consider the conjunction As; = C A As, = C for terms s; # s» containing
the same variable x. If the conjunction is satisfiable, then the value of x
is uniquely determined.

Proof. We prove the first assertion. If A = o, then As = C is equivalent to
s = C from which follows that s is the only solution for C.

We prove the second assertion. The conjunction As; = C A Asy, = C is
equivalent to the conjunction As; = C A s; = s,. The most general unifier of
$1, S» maps X to a ground subterm of s, s, if the conjunction is satisfiable. [

As a consequence, we obtain:
Corollary 2.3.2. Consider finite conjunctions of equalities of the form As = C.

1. Subsumption for these is decidable.
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2. Every satisfiable conjunction is equivalent to a conjunction of at mostn+ 1
equalities where n is the number of program variables, when A = e,

Proof. Consider a satisfiable conjunction ¢ containing two equalities As1x = C
and As,x = C for some program variable x. Then from Theorem 2.3.1 the
ground solution for variable x is uniquely determined and therefore also the
unique solution for C. From the solution of C follows for any other equality
Aty = C of conjunction ¢ the unique solution for each program variable y.
Hence, for any two equalities At;y = C and At,y = C of conjunction ¢ we
have that Aty = C subsumes At,y = C. Therefore, the conjunction ¢ is
equivalent to a conjunction containing at most one equality for each program
variable and only for one program variable a second equality is required. O

Since the weakest precondition of a generic one-variable equality consists
of equalities of the form As = C only, Corollary 2.3.2 suffices to infer all
interprocedurally valid one-variable equalities. In the following, we therefore
concentrate on the two-variable case where the weakest precondition consists

of conjunctions of equalities of the form As = Bt. First, we observe:
Theorem 2.3.3.

1. A single equality As = Bt for ground terms s, t has only finitely many
solutions where at least one of the templates for A or B equals e.

2. Consider the conjunction As; = Bt; A As, = Bt, for ground terms s; # $»
and t, # t,. Then it has either no solution or there exists a unique solution
A = 11, B = 1, where at least one of the templates v, 7> equals e. In the
latter case the conjunction is equivalent to Ay, = Br».

3. Consider the finite conjunction /\’i‘:1 As; = Bt; for ground terms s;, t;.
Then the set of all solutions can be effectively computed, where at least
one of the templates for A or B equals e.

Proof. For a proof of the first statement, w.l.0.g. assume that s is at least as
large as t. Then for size reasons, r; = e if 7; is the template for A. This
means that s = >t must hold if 7, is the template for B. If ¢ is not a subterm
of s, there is no solution at all. Otherwise, i.e., if s contains occurrences of
t, then every solution 7, is obtained from s by replacing a non-empty set of
occurrences of £ with e.

Now consider the second statement. If the pair of equalities is satisfiable
then by factorization, there are templates 77, v» of which at least one equals
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e such that Ar; = Br», holds. Since at the same time 7,s; = 7;t; holds, the
equality Ar; = Br, is equivalent to the conjunction. Moreover, there is exactly
one solution A = ¥{, B = r; where at least one of the templates 7; equals e,
namely, ¥ = 1,, 1, = 77.

Finally, consider the third statement. If k = 1, the assertion follows from
statement 1. Therefore now let k > 1. First assume that for some 1, j, s; # s;
and t; # t;. Then by statement 2, the conjunction is unsatisfiable or there
is exactly one pair 7, 7> of templates one of which equals e, such that A =
71, B = 1, is a solution of the conjunction As; = Bt; A As; = Bt;. If in the latter
case, 115 = 7»t; for all I, we have obtained a single solution. Otherwise, the
conjunction is unsatisfiable. Now assume that no such i, j exists. Then either
the conjunction is unsatisfiable or all equalities are syntactically equal. O

Example 2.3.1. Consider the two equalities:
Af(a,gb,gb) =Bgb  Af(a,gc,gb) = Bgc

Then A = e and B = f(a, e, gb) is the only solution for A, B where at least
one of the templates equals e. [

Applying the arguments which we used to prove Theorem 2.3.3, we obtain:

Corollary 2.3.4. Consider a conjunction /\}-, As; = Bt; with ground terms
Si, ti.

1. Ifitis satisfiable, it is equivalent to the conjunction of at most two conjuncts.

2. If it is unsatisfiable, there are at most three conjuncts whose conjunction
is unsatisfiable. O

By Theorem 2.3.3, the assumption solvability of ground equalities from
Section 2.2 is met. Thus, it remains to solve the constraint systems S and
R, i.e., to construct an approximate T-subsumption relation which is both
effective and guarantees that every conjunction is approximately T-subsumed
by the conjunction of a finite subset of equalities. In order to construct such
a relation, we require stronger insights into the structure of templates and
their compositions. Let Co denote the subset of all terms in T (e) which
contain at least one occurrence of e, i.e., Co = Tq(e) \ To. The terms in Cq
have also been called templates. The set Cq, equipped with substitution, is a
free monoid with neutral element e. This monoid consists of finite products
of the irreducible elements in Cq. As usual, we call an element t irreducible

23



2 Interprocedural Two-Variable Herbrand Equalities

if t cannot be non-trivially decomposed into a product, i.e., t = uv implies
that t = u with v = e or t = v with u = . Note that there are infinitely
many irreducible elements in Co whenever Q contains constructors of rank
exceeding 1.

While templates can be uniquely factored, this is no longer the case for
ground terms, i.e., terms without variable occurrences.

Example 2.3.2. Consider the ground term t = h(f(h(1),h(1))), together with
the templates s; = h(f(e,h(1))), s = h(f(h(1),e)) and s3 = h(f(e,e)). All
these three templates are distinct. Still,

t=s h(e)l1 =5 h(e)1l =s3h(e)1 [

Thus, unique factorization of arbitrary ground terms cannot be hoped for.
Still, in the following we will observe that unique factorization for ground
terms can be obtained—at least up to a fixed finite set of ground terms.

Let G denote a finite set of ground terms which is closed by subterms. Let
Mg denote the sub-monoid of all templates in Cq whose ground subterms all
are contained in G. Then we have:

Theorem 2.3.5. Assume that S € Tq which is closed by subterms. If G < S,
then every ground termt € Tq \ S, can be uniquely factored intot = mx such
that

1. meMgandx & S;

2. x is minimal with property 1, i.e., there exists no x' € T \ S such that
x = sx’ for some s € Mg \ {e}.

Proof. Since Mg S Cq, every term in M is uniquely factorizable.

Lett = myx; = myx, withm; € Mg and x; € T\ S are minimal according
to property 2 for i = 1, 2. Then either m; = m,m’ or m, = m;m’ for some
m’ € Mg holds. Otherwise, we have a contradiction to the assumption that
mix; = mpx» holds. Consider the case where m; + m., i.e.,, m’ + o, If
m; = mym’, then we conclude that m’'x; = x, holds. This means, that
X» is not minimal according to property 2 which is a contradiction to our
assumption. A similar argument holds for m, = m;m’. Now consider the
case where m; = my, then also x; = x» from which the assertion of the
theorem follows. O

Example 2.3.3. Consider the term

t = f(h(f(2,h(1))),h(f(2,h(1))))
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and assume that the set G of forbidden ground subterms is given by G =
{h(1),1} and S = G. Then t can be decomposed into:

f(e,0) h(e) f(e h(1)) 2
If on the other hand, S = G = {2}, we obtain the decomposition:
f(e,0) h(e) f(2,0) h(e) 1

If finally, S and G are empty, the term x of Theorem 2.3.5 is the minimal
subterm such that the occurrences of x contains all ground leaves of t. This
means that x = f(2,h(1)), and we obtain the decomposition:

f(e,0) h(e) f(2,h(1)) ]

The unique decomposition of the ground term t claimed by Theorem 2.3.5,
is constructed as follows. Let X denote the set of minimal subterms x’ of t
such that x” & G. Then we construct the least subterm x & S of t such that
all occurrences of subterms x’ € X in t are contained in some occurrence of
x. This subterm is uniquely determined. Then define m as the term obtained
from t by replacing all occurrences of x with e. This term m is also uniquely
determined with t = mx. Moreover by construction, all ground subterms of
m are contained in G.

Example 2.3.4. Consider the program from Example 2.2.1. In this program,
no non-ground right-hand side contains ground subterms. Accordingly, the
set G is empty. Since the only ground right-hand side equals the atom a,
the decomposition Theorem 2.3.5 allows to uniquely decompose all run-time
values of this program into right-hand sides of assignments. [ ]

Theorem 2.3.5 allows to extend the monoidal techniques of Gulwani et
al. [GT07] for unary operators to programs where all run-time values can be
uniquely factorized into right-hand sides. This extension is given in Section 2.5.
The general case where unique factorization of all run-time values can no longer
be guaranteed, subsequently is presented in Section 2.6. For completeness
reasons, we also present simplified versions of the algorithms for monoidal
equalities from [GTO07] in the next section.

2.4 Equalities over a Free Monoid

Consider a free monoid Ms with set of generators . As usual, the neutral
element of Ms is denoted by €. Let Fs be the corresponding free group. Fs
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2 Interprocedural Two-Variable Herbrand Equalities

can be considered as the free monoid generated from X U 3~ (where X~ =
{a” | a € X} is the set of formal inverses of elements in > with > N X~ = J)
modulo exhaustive application of the cancellationrulesa-a~ = a™ -a = € for
all a € 3. In particular, the neutral element of Fs is given by €, and the inverse
g ! of an element g = a, - ay, a; € SUX,is givenby g ' = a;'-aj’
where x ™' = x~ and (x7) ! = x for x € 3.

For every w € Mss-, the balance |w| is the difference between the number
of occurrences of positive and negative letters in w, respectively. Formally,
the balance is inductively defined by

l€] =0
law| = |w|+1 ifaex
law| = |Jw|—-1 ifaeX

Thus, |[aba b c| = 1 and |a” b| = 0. Note that the balance stays invari-
ant under application of the cancellation rules. Also, |[uv| = |u| + |v| and
lu™t = —lul. Accordingly, the balance |-|. Fs — Z is a group homomor-
phism. Furthermore, we call w non-negative if |w’'| > 0 for all prefixes w’ of
w. This property is also preserved by cancellation and concatenation but not
by inverses. Instead, we have:

Lemma 2.4.1. If both u,v € Ms_s- are non-negative, and |u| = |v| then also

uv~! is non-negative.

Proof. Consider a prefix x of uv™!. If x is a prefix of u, |x| = 0 since u is

non-negative. Otherwise, x = uv’~! for some suffix v’ of v. Then |v'| < |v|,
since v is non-negative. Therefore, |luv'™!| = |u| — |v'| = |u| — |[v| = 0. O

We consider equalities of the form:
AuA™! = Bu'B™! (2.1)

where A, B are variables which take values in Ms, and u,u’ € Ms_s- are
maximally canceled. If the equality is satisfiable, then necessarily |u| = |u'|
holds. Assume from now on that u, u’ are maximally canceled, and |u| = |u/|.
Furthermore, we assume that u, u’ are both non-negative. We then have:

Lemma 2.4.2. If |lu| = |u'| = 0, then the equality (2.1) is either trivial, is
equivalent to an equality As = B or an equality A = Bs for some s € Ms or is
contradictory.
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Proof. Assume u = €. Then by cancellation AA™! = Bu’B~! is equivalent to
€ = Bu/B~!. By right multiplication of B and again of cancellation we obtain
B = Bu'. Thus either u' = € and the equality is trivial, or u’ # € and the
equality is contradictory.

Therefore, assume that u # € # u’. Then u and u’ must be of the form
u=xyz ' u =x"y'z"! for maximal x,x’,z,z € Ms, i.e., y,y’ each are
either equal to € or of the form a”wb for some a,b € 3. Then all x,x’,z, z’
are different from €. Then equality (2.1) is equivalent to:

Ax =Bx' ANy =y ANAz =BZ

By bottom cancellation, these three equalities either are equivalent to one fixed
relation between As = B or A = Bs for some s € Ms, or to a contradiction. O

Example 2.4.1. Consider the equality

Affg AT = Bfg B!

which is, according to Lemma 2.4.2, equivalent to

Aff =Bf he =€ NAfg = Bg

By bottom cancellation, we conclude that the conjunction is equivalent to a
solved equality Af = B. (]

Now assume that there is another equality:
AvA~! = Bv'B™! (2.2)
with non-negative v, v’ where |v| = |v'].

Theorem 2.4.3. The two equalities (2.1) and (2.2) are effectively equivalent
either to one solved equality, or to a single equality of the form (2.1) or are
contradictory.

Proof. We perform an induction on the sum of balances |u| + |v|. W.lo.g.
assume that |u| = |v|. If |[v| = 0, then the assertion follows from Lemma 2.4.2.
Therefore, assume that |v| > 0, and » > 1 is the maximal number such that
[v"| = v - |v| < |ul. Then we construct the elements uv~" and u'v'~", which
are both non-negative by Lemma 2.4.1. Let w, w’ be obtained from uv~" and
u' V7" by exhaustively applying the cancellation rules. By construction, these
are non-negative as well. Then we consider the equality:

AwA™! = Bw'B™! (2.3)
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2 Interprocedural Two-Variable Herbrand Equalities

which is implied by the two equalities (2.1) and (2.2).

If w = ¢, then either w’ = € holds and the equality (2.3) is trivial, or w’ # €
and equality (2.3) is contradictory. In the first case, the equality (2.2) is implied
by equality (2.1), while in the second case the two given equalities (2.1) and (2.2)
are contradictory. The same argument applies when w’ = € with the roles of
A, B exchanged. Therefore now assume that w # € # w’. Otherwise, the pair
of equalities (2.1) and (2.2) is equivalent to the pair of equalities (2.2) and (2.3),
where the sum of balances |w| + |v| < |w| + 7 - |v| = |u| < |u| + |v] has
decreased. For these, the claim follows by inductive hypothesis. O

In [GTO7] a similar argument is presented. The argument there together
with the resulting algorithm has been significantly simplified by introducing
the extra notion of non-negativity.

2.5 Initialization-restricted Programs

In the subsequent let R be the set of ground right-hand sides of assignments,
and G be the set of ground subterms of non-ground right-hand sides of as-
signments of our program. Then generally, each value x possibly constructed
at run-time by the program is of the form x = mvr where m € Mg and v € R
or ¥ € X. The latter case with » € X indicates an unknown value where a
variable was not initialized.

Example 2.5.1. Consider the following program consisting of three assign-
ments:

X=Yy; X= f(x,X); y= f(y,y)

Although variable y is not initialized before its first read and therefore an
unknown value has to be assumed for it, the invariant x = y holds at program
exit. [

We thus have:
Lemma 2.5.1. Each program variable in X ranges over the set MgR or MgX. O

This means that for preconditions ¢ possibly occurring in a weakest precon-
dition computation for a program invariant, we are only interested in variable
assignments o which map each program variable x to a possible run-time
value for x, i.e., to a value from the set MsR. In the subsequent let

T:=MgR and T =MsX
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then during the weakest precondition computation template variables are
applied to ground terms in T and non-ground terms in T’ only. Henceforth, we
therefore no longer consider general satisfiability, equivalence and subsump-
tion, but only T-satisfiability, T-equivalence and T-subsumption. This restric-
tion is crucial for the generalization of the monoidal techniques from [GTO07].
In the following, we first consider the sub-class of programs P where the set R
of ground right-hand sides of P satisfies the two properties:

1. RNG = Q.

2. The elements in R are mutually incomparable ground terms, i.e., for
1,72 € R, 171 is a subterm of 7 iff 1, = 7.

The program P then is called initialization-restricted (IR for short).

Example 2.5.2. Assume that the non-ground right-hand sides of assignments
of a program are f(x,h(1)) and f(2,h(y)). Then the set G is given by G =
{1,h(1),2}. A suitable set R of ground right-hand sides might be, e.g., R =
{0,a}. n

Our condition here is not as restrictive as it might seem. Programs where each
variable is initialized by a non-deterministic assignment, are all IR. The same
holds true for programs where all non-ground right-hand sides of assignments
do not contain ground terms, and variables are initialized with atoms only.
The latter property is met by our Example 2.2.1. By suitably massaging variable
initializations, it also comprises all programs using monadic operators only
(as in [GTO7])).

We distinguish between two-variable equalities of the following formats:

[Fxx] Asx = Btx where s,t € Mg
[Fx,y] Asx = Bty  wheres,t € Mg
[F.x] As = Bitx where s € Tand t € Mg
[Fx.] Atx = Bs where s € Tand t € Mg

For each format separately, we observe:
Theorem 2.5.2.

T-subsumption. For finite sets E,E’ of two-variable equalities of the same
format it is decidable whether /\ E T-subsumes /\ E' or not.

T-compactness. Every T-satisfiable conjunction of a set E of two-variable equal-
ities of the same format is T-subsumed by a conjunction of a subset of at
most three equalities in E.
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2 Interprocedural Two-Variable Herbrand Equalities

Proof. In order to prove the theorem we show that every T-satisfiable conjunc-
tion of equalities of the same format is effectively T-subsumed by a conjunction
of at most three equalities. Furthermore, the proof indicates that, given three
equalities, it can be effectively decided whether or not a fourth equality is
T-subsumed or not. We consider one case of the assertion of the theorem
after the other.

Same variable on both sides. Consider the two distinct equalities

As1X = Bt1x AsyX = Birx

where s;,t; € Mg, and assume that the conjunction of them is T-satisfiable.
We claim that then s;x + s»x and t;x # tox—otherwise x would be a subterm
of the terms s;,t; from Mg which is a contradiction to our assumption. If
$1 = Sp, then from As;x = Bt;x A As;x = Bt,x follows that t;x = t,Xx must
hold which means that x is a subterm of t; which is again a contradiction to
our assumption. A similar argument applies for the case if t; = t,. Therefore,
s1 #+ s> and t; # t> must hold. Then for a contradiction, assume that s;x = s>X.
Since s; # $p, their unifier must map x to a ground term of s; and s,. These
ground terms are all contained in G, whereas we only consider values for x in
MgR, which is disjoint from G. A similar argument also shows that t1x + t>x
holds. Thus by factorization, Ar; = Br, must hold for some 77,1> € Mg of
which at least one equals . Due to unique factorization, we then may cancel x
on both sides, resulting in the equalities As; = Bt; and As, = Bt,. These can
be simplified to one equality Ar; = B, for some 71,7, € Mg where 7; = o for
at least one i. Hence, the second equality is T-subsumed by the first one.
Different variables on both sides. Consider the three distinct equalities

As1X = Bty AsyX = Bty As3X = Bty

for distinct program variables x,y where s;,t; € Mg, and assume that the
conjunction of them is T-satisfiable. As before, we argue that s;x + s;X,
t;y # tjy for all i # j must hold. Then by factorization, A is a prefix of B or
vice versa. But then, due to unique factorization, also As; is a prefix of Bt; or
vice versa. This means that there are u, v € Mg of which one equals e such
that As;u = Bt,v, which (by top cancellation) implies that vx = uy holds.
From that, we conclude that As;u = Bt;v for all i. Assume again w.l.o.g. that
the balance of s; is less or equal to the balances of s, and s3. We then proceed
as in the last case to obtain the T-equivalent three equalities:

Asju=Btiv  As,;sitATY = Btot7!B™! AsysitATl = Bty B!
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where 5,57, tot7Y, s3s7!, t3t7! are non-negative. According to Theorem 2.4.3,
the latter two equalities again are T-equivalent to an equality Ar; = Br, for
templates 77, > of which at least one equals e, or are T-equivalent to each
other, and the assertion follows.

One-sided single variable. Consider the three distinct equalities

A51 = Bt1X ASZ = Bth A53 = Bth

where s; € MgR and t; € Mg, and assume that the conjunction of them is
T-satisfiable. Again, we argue that all s; must be distinct as well as all ¢;x. Then
again by factorization, Ar; = B, for some templates 7, > of which at least
one equals e. By unique factorization, s; = s;+ for some s; € Mg and v € R.
Therefore, again by unique factorization, the value for x also must terminate
in the term 7, i.e., is of the form x = x’ for some x’ € M;. Accordingly,
also s;, s3 can be factored as s; = s;r for suitable s; € Mg. Canceling out the
ground terms ¥, we obtain the monoid equalities:

As] = Bt;x"  Asy = Bt,x'  Asj = Bt;x’

Assume w.l.o.g., that the balance of s; is less or equal to the balances of s, and
s3. Then the conjunction of the three equalities is T-equivalent to:

Asp = Bhix'  AspsiT'ATU = BLITBTY AsysiTIAT = Bt BT

77— 7 I’ —

where s5s17% tot7 !, 4517, t5t7 ! all are non-negative. According to Theo-
rem 2.4.3, the two last equalities are either T-equivalent to each other, which
means that the initial conjunction is T-equivalent to the conjunction of the
two equalities

As1 = Btx Asy = Btrx

and the assertion follows. Otherwise, they are T-equivalent to an equality
Ar, = Br, for templates 7, 7> of which at least one equals o. A fourth equality
is then either T-subsumed or falsifies the conjunction of equalities. A similar
argument applies to equalities of the form At;x = Bs;. This completes the
proof. O

Since T-subsumption is decidable, at least for equalities of the same format,
we define an approximate T-subsumption for conjunctions of equalities /\ E
and /\ E’ as follows. Let Er and E; denote the subsets of equalities of the
same format F in E and E’, respectively. Then /\ E approximate T-subsumes
/\ E"iff /\ Er T-subsumes /\ Ej for all formats F. Hence, by Theorem 2.5.2,
we obtain:
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Corollary 2.5.3. Assume that n is the number of program variables.

Approximate T-subsumption. For finite sets E,E’ of two-variable equalities,
it is decidable whether )\ E approximately T-subsumes /\ E' or not.

Approximate T-compactness. Every T-satisfiable conjunction of a set E of
two-variable equalities is approximately T-subsumed by a conjunction of
a subset of at most O (n?) equalities in E. O

Overall, we therefore conclude for IR programs:

Theorem 2.5.4. For every program point u of an IR program, the set of all two-
variable Herbrand equalities can be determined that are valid when reaching
program point u.

Proof. By Corollary 2.5.3, the greatest solutions of the constraint systems S and
R can be effectively computed. Let [u]", u program point, denote the greatest
solution of the system R. Then the set of valid equalities sx = ty between
program variables x, y is given by the set of solutions to a system of ground
equalities which are obtained by universal quantification over all program
variables of the conjunction of equalities [u]" (Ax = By). By Theorem 2.3.3, a
representation of the set of solutions for the template variables A, B in this
conjunction can be explicitly computed.

Likewise, the set of valid equalities x = t for program variable x and ground
term t can be extracted from the universal quantification over all program
variables of the conjunction of equalities [u]' (Ax = C). The resulting con-
junction may either equal L (meaning no constant value for x) or contain only
the variable C. Consequently, the possible constant value for x and program
point u can also be effectively computed. This completes the proof. O

Example 2.5.3. According to our constructions presented in Section 2.2 and
Theorem 2.3.3, the set of all interprocedurally valid assertions can be obtained
from the greatest solutions to the constraint systems S and R. Consider, e.g.,
the constraint system R for the recursive procedure p from Section 2.1, as
defined by the control flow graph of Figure 2.2. If round-robin iteration is
applied to calculate the transformers [u]" for the program points u = 4, 5,6, 7,
we obtain for the generic postcondition Ax = By the result depicted by
Table 2.1 where in the ith column, we only displayed preconditions which have
additionally been attained in the ith iteration for the program points 7, 6, 5 and
4, respectively. For convenience, we displayed the terms in equalities according
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Table 2.1: Round-robin iteration for procedure p from Figure 2.2

L1 | 2 | 3 |
7||Ax = By
6| Ax = Bf(e,0)y
5 T Ax = Bf(e,0)y | Af(e,e0)x = Bf(e,0)f(e,0)y
4||Ax = By Af(e,0)x = Bf(e,0)y | Af(e,0)f(e, )X = Bf(e,0)f(e 0)y

to their unique factorizations. For program point 4, the two equalities after
the second iteration, imply:

Af(e,0)A™" = Bf(e,e)B™"
The second equality for program point 4 together with this identity imply that
Af(e,0)AT'Af(e,@)x = Bf(e,0)B"'Bf(e,0)y

from which the third equality for program point 4 as provided by the third
iteration follows. Thus, round-robin fixed point iteration reaches the greatest
fixed point after the third iteration. |

2.6 Unrestricted Programs

Our analysis of IR programs relied on the fact that all run-time values of
program variables can be uniquely factorized. This was possible since in IR
programs the “bottom end” of values can be uniquely identified by means of
the ground right-hand sides from R. In general, though, ground right-hand
sides could very well also occur as subterms of other right-hand sides in
the program. In this case, we can no longer assume that R serves as such
a handy set of end marker terms. At first sight, therefore, the monoidal
method seems no longer applicable. A second look, however, reveals that the
monoidal method essentially fails only, where program variables take small
values. Again, let R and G denote the set of all ground right-hand sides and
the set of all ground subterms of non-ground right-hand sides of assignments
in the program, respectively. We call a term in MR small if it is a ground
subterm of a right-hand side of an assignment. Let us denote the finite set of
all small terms by S. Thus in particular, R € S. The terms in MgR which are
not small, are called large, i.e., we then have:

T=MgR=SWL
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Example 2.6.1. Consider the program fragment consisting of the statements:
X1 =a; Xy = f(xg,a); X3:=g(Xe, f(a,a))

Then a is a ground right-hand side, and f(a,a) is a ground subterm of a
non-ground right-hand side, i.e., a € R and f(a,a) € G. Since the term
f(a,a) is also contained in M¢R, it is small. [

Let R be the set of minimal elements in M;R which are large, i.e., not
contained in S. Then by Theorem 2.3.5, every large term t can be uniquely
factored such that t = t'» where t' € M and v € R. We then have for small
and large terms:

S=Mz;RN(R*UG) and L = MR

where R* is the subterm closure of R. For small terms, i.e., for terms in S,
on the other hand, we cannot hope for unique factorizations. Since there are
finitely many small terms only, we take care of small terms by two means:

+ We restrict the formats [Fx.] and [F. x] from the last section to the case
where the occurring ground terms are large and introduce dedicated
sub-formats [Fx ] and [F;x] for each small term s in the equalities.

+ For T-subsumption, we single out the case of subsumption w.r.t. assign-
ments of large terms only and treat subsumption w.r.t. assignments
assigning small terms separately.

The set of non-ground terms is again given as T’ := M;X. Thus, we now
consider the following formats of two-variable equalities:

[Fxx] Asx = Btx where s,t € Mg
[Fx,y] Asx = Bty where s,t € Mg
[F.x] As = Btx where s € Land t € Mg
[Fsx] As = Btx where s € S and t € Mg
[Fx,.] Atx = Bs where s € Land t € Mg
[Fxs] Atx = Bs where s € S and t € Mg

In the following, let us call a substitution o of program variables small, if
for every program variable x, o (x) either equals x or is a small ground term.
The notions of satisfiability, equivalence and subsumption restricted to the
set T can be inferred by means of the corresponding notions restricted to the
set L of large terms only. We have:
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+ A conjunction ¢ of equalities is T-satisfiable iff there is a small substitu-
tion o such that o (¢) is L-satisfiable.

+ A conjunction ¢ of equalities T-subsumes an equality e, iff for every
small substitution o, o (¢) L-subsumes o (e).

According to this observation, it seems plausible to consider the analogue of
Theorem 2.5.2 for L-subsumption and L-compactness only. We obtain:

Theorem 2.6.1.

L-subsumption. For finite sets E,E’ of two-variable equalities of the same for-
mat it is decidable whether /\ E L-subsumes /\ E' or not.

L-compactness. Every L-satisfiable conjunction of a set E of two-variable equal-
ities of the same format is L-subsumed by a conjunction of a subset of at
most three equalities in E.

Proof. For equalities of the formats [Fx,y ], [Fx,. 1, [F. x] the proofs are analogous
to the corresponding proofs for Theorem 2.5.2 where the set T is replaced
with the set L = M¢R, i.e., instead of the set R we rely on the set R of unique
end marker terms.

Now consider equalities of the format [F; x| for a small term s € S. W.Lo.g.
let As = Btx and As = Bt'x be two equalities of this format. If t # t’, then
their conjunction is either contradictory, or tx, t'x have a ground unifier which
maps x to a value from G—in contradiction to the assumption that x takes
values from L only.

Therefore, each conjunction of a set E of equalities of the format [F; ]
either is L-equivalent to L or to a single equality in E, and the assertion of the
theorem follows. The same argument also applies for the format [Fx s]. O

Given that L-subsumption is decidable, at least for equalities of the same
format, and that also L-compactness holds, we define in the following an ap-
proximate T-subsumption of conjunctions of equalities /\ E and /\ E’. Let E¢
and E; denote the subsets of equalities of format F, in E and E’, respectively.
Then A E approximately T-subsumes /\ E’ iff for all small substitutions o,
/\ 0 (Er) L-subsumes /\ o (Er) for all formats F. As a consequence of Theo-
rem 2.6.1, we obtain:

Theorem 2.6.2. Assume that n is the number of program variables and m is
the cardinality of the set S of small terms.
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Approximate T-subsumption. For finite sets E,E’ of two-variable equalities,
it is decidable whether /\ E approximately T-subsumes /\ E’ or not.

Approximate T-compactness. Every T-satisfiable conjunction of a set E of
two-variable equalities is approximately T -subsumed by a conjunction of
a subset of at most O(n? - m?) equalities in E.

Proof. In the following we consider equalities of formats which contain either
one or two program variables.

One program variable. Let E’ denote a subset of equalities of E of the same
format which contains only the program variable x. Then for every
small term ¢ € S we construct a subset E. € E’ such that N\ E.[c/x]
T-subsumes /\ E'[c/x]. Furthermore, we construct a subset E; < E’
which L-subsumes E’. Then the conjunction of U.cs E. UE; T-subsumes
the conjunction of E'.

For each set E; we require at most two equalities according to Corol-
lary 2.3.4, while for the set E; we require at most three equalities, ac-
cording to Theorem 2.6.1. Thus, overall, at most 2m + 3 equalities are
required.

Two program variables. Let E' denote a subset of equalities of E of format
[Fx,y ] which contains only the distinct program variables x,y. We pro-
ceed as follows.

1. For every ¢ € S, we construct a set E;y S E’ such that A E;y[c/x]
T-subsumes N E'[c/x].
2. For every ¢ € S, we construct a set Ex. < E’ such that A Ex.[c/Y]
T-subsumes A E'[c/y].
3. Finally, we construct a set E; € E’ such that /\ E; L-subsumes /A E’.
Then the conjunction of U,eg Ex,c UEcy UE; T-subsumes the conjunction
of E'.

For each set Ex . resp. E; y we require at most 2m + 3 equalities. While for
the set E; we require at most three equalities according to Theorem 2.6.1.
Thus, overall, at most 4m? + 6m + 3 equalities are required for E’.

For each program variable x we distinguish between 2m + 3 different formats
([Fxsl, [Fsx], s € S, and [Fxx],[Fx.1, and [F. x]) of equalities. While for two
distinct program variables we only have one format [Fy y ] of equalities. Hence
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2.7 Revisiting the Introductory Example Program

we conclude that every conjunction E is T-subsumed by a conjunction of a
subset of F which contains at most

n-2m+3)-2m+3)+n-m—1)-@m?>+6m+3) € 0On*-m?
equalities. This completes the proof. O

Due to Theorem 2.6.2, representations of the greatest solutions of the con-
straint systems S and R can be effectively computed. By that, we arrive at our
main result:

Theorem 2.6.3. Assume that all right-hand sides of assignments of a program
contain at most one variable. Then all interprocedurally valid two-variable
Herbrand equalities can be inferred.

The proof is analogous to the proof of Theorem 2.5.4—only that Theo-
rem 2.6.2 is used instead of Corollary 2.5.3.

2.7 Revisiting the Introductory Example Program

Let us again consider the program given in Figure 1.1 from the introduc-
tory chapter. The corresponding control-flow graphs of the program are
depicted in Figure 2.3. The program is not initialization-restricted since
the ground right-hand side a is a subterm of the ground right-hand side
f(a,a). Hence we consider an unrestricted program for which we have that
the set of small terms S = { a, f(a,a) } and the set of minimally large terms
R2{g(a,a),g(f(a,a), f(a,a)) }.

2.7.1 Computing the Summary for Procedure p

We compute the summary of procedure p by round-robin iteration. Let us
denote the term f(e,®) and g(e, ®) by f and g respectively, i.e.,

f = f(.’.) and g = g(';')-

If started with the generic post-condition Ax = By at program point 10 we
obtain for the program point 5 in the third iteration the following equalities:

AX = By (2.4)
Afgx = Bgfy (2.5)
Afgfgx = Bgfgfy (2.6)
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Figure 2.3: The corresponding CFGs for the program from Figure 1.1
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For all small substitutions o of the form {x —» x,y» slor{x— s,y >y}
the equality 0 (Ax) = o (By) is of format [Fx ] or [F;,y]. Therefore, in order
to decide approximate T-subsumption, the equality has to be kept separately.
A fixed point is still not reached since for the remaining two equalities (2.5)
and (2.6) approximate T-subsumption is not decidable—we require at least
three equalities. In the fourth iteration the additional equality

Afgfgfgx = Bgfgfgfy (2.7)

is obtained. In the following we show that for all small substitutions, the equal-
ity (2.7) is L-subsumed by the conjunction of the three equalities (2.4), (2.5),
and (2.6).

Small substitution o0 = {x—» a,y~a}
If the small substitution is applied to the four initial equalities, then the
following four equalities are obtained:

Aa = Ba (2.8)

Afga = Bgfa (2.9
Afgfga = Bgfgfa (2.10)
Afgfgfga = Bgfgfgfa (2.11)
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The conjunction of the distinct equalities (2.8) and (2.9) is equivalent to a
solved equality Ar; = Bv, with v1, > € M where at least one of them equals
o if the conjunction is satisfiable. Hence from equality (2.8) we conclude that
r>a = r1a must hold. If v; = e, then 7, = e must hold and we conclude that
A = B must hold. For A = B the equality (2.9) is unsatisfiable. Likewise, if
> = o, then 7; = e must hold and the same argument applies. Since the
conjunction of the two equalities (2.8) and (2.9) is unsatisfiable and therefore
equivalent to false it subsumes the equalities (2.10) and (2.11). Therefore, the
equalities (2.4) and (2.5) L-subsume the equality (2.7) w.r.t. small substitution
o.

Small substitution o = {x ~ f(a,a),y » a}
If the small substitution is applied to the four initial equalities, then the
following four equalitites are obtained:

Afa = Ba (2.12)
Afgfa = Bgfa (2.13)
Afgfgfa = Bgfgfa (2.14)
Afgfgfgfa = Bgfgfgfa (2.15)

Again as for the previous case we have that from the first two equalities (2.12)
and (2.13) follows that ¥»fa = r;a must hold, if the conjunction is satisfiable.
If ; = o, then the equality r»fa = a is unsatisfiable. Otherwise, if 1, = e,
then fa = 1, a is satisfiable with 7; = g. As a solution we have Ag = B which
satisfies all four equalities. Therefore, the equalities (2.4) and (2.5) L-subsume
the equality (2.7) w.r.t. the small substitution o.

Small substitution o = {x ~ a,y ~ f(a,a) }

This case is similar to the case of the small substitution {x ~ a,y = a },
i.e., the conjunction of the equalities (2.4) and (2.5) is unsatisfiable w.r.t. the
small substitution o. Therefore, the equalities (2.4) and (2.5) L-subsume the
equality (2.7) w.r.t. the small substitution o.

Small substitution o = {x~» x,y ~» a}

For the equality Ax = By which has been obtained in the first iteration we
have that 05(Ax) = 05(By) is an equality of format [Fx,]. Therefore, the
equality has to be kept separately. Let us now consider the remaining three
equalities of iteration 4. If the small substitution o is applied to these, then
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the following three equalities are obtained:

Afgx = Bg(f(a,a), f(a,a)) (2.16)
Afgfgx = Bgfg(f(a,a), f(a,a)) (2.17)
Afgfgfgx = Bgfgfg(f(a,a), f(a,a)) (2.18)

Note that every large term is represented by its unique factorization. For exam-
ple, by applying the substitution o to the term gfgfy the resulting term gfgfa
is uniquely factorized by gfg(f(a,a), f(a,a)) where g(f(a,a), f(a,a)) is a
unique end-marker term in R and gf € M.

For L-subsumption we have that for each equality (2.16), (2.17), and (2.18)
x=x'g(f(a,a), f(a,a)) for some x" € Mg must hold. By bottom cancella-
tion of the term g(f(a, a), f(a,a)) we receive the following three equalities
where each term contains e, i.e., each term can be uniquely factorized:

Afgx’ =B (2.19)
Afgfgx’ = Bgf (2.20)
Afgfgfgx’ = Bgfgf (2.21)

We have that the balance |fgx’'| < |fgfgx'| and |fgx'| < |fgfgfgx’| holds.
Hence the equalities (2.19) and (2.20) imply the equality

Afgfgx'x' g 1f71A™! = Bgfp™!
which is equivalent to the maximally canceled equality
AfgA~! = BgfB L. (2.22)
Similarly we have that the equalities (2.19) and (2.21) imply the equality
Afgfgfgx'x'1g f 1A~ = BgfgfB™!
which is equivalent to the maximally canceled equality
AfgfgA~! = BgfgfB™!. (2.23)

For the equalities (2.22) and (2.23) we have that the balance |fgfg| = 2 - |fg].
Therefore, the two equalities imply the equality

Afgfgg 1f g lf 1Al = Bgfgff g f g1}
which is equivalent to the maximally canceled equality
AeA™! = BeB L.

We conclude that the equality (2.18) is subsumed by the two equalities (2.16)
and (2.17). Therefore, the equalities (2.5) and (2.6) L-subsume the equality (2.7)
w.r.t. the small substitution o.
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Small substitutions

{x—>x,y~ fla,a)},{x~ fla,a),y~y},and {x~a,y~y}

These cases are all similar to the case of the small substitution { x = x,y = a },
i.e., the equalities (2.5) and (2.6) L-subsume the equality (2.7) w.r.t. the corre-
sponding small substitution.

Small substitution o = {x~» X,y » y }
In this case we have that o is the identity substitution. Let us consider the
following three equalities:

Afgx = Bgfy (2.24)
Afgfgx = Bgfgfy (2.25)
Afgfgfgx = Bgfgfgfy (2.26)

Since all three equalities are distinct, according to unique factorization A must
be a prefix of B or vice versa. Therefore, Afgu = Bgfv must hold for some
u,v € Mg where at least one equals e. By top cancellation this implies that
vx = 1y must hold. Hence we conclude that the three equalities (2.24), (2.25),
and (2.26) imply the following three equalities where each term contains e, i.e.,
each term can be uniquely factorized:

Afgu = Bgfv (2.27)
Afgfgu = Bgfgfv (2.28)
Afgfgfgu = Bgfgfgfv (2.29)

We have that the balance |fgu| < |fgfgu| and |fgu| < |fgfgfgu| holds.
Hence the equalities (2.27) and (2.28) imply the equality

Afgfguu'g 'f'A™! = Bgfgfvv 'f g B!
which is equivalent to the maximally canceled equality
AfgA~! = BgfB . (2.30)
Similarly we have that the equalities (2.27) and (2.29) imply the equality
Afgfgfguu ‘g 'f 'A~! = Bgfgfgfvv 'f g 'B7!
which is equivalent to the maximally canceled equality
AfgfgA~! = BgfgfB™!. (2.31)

From the previous case we already know that the equalities (2.30) and (2.31)
imply the equality AcA™! = BeB~!. Therefore, the equalities (2.5) and (2.6)
L-subsume the equality (2.7) w.r.t. the small substitution o.
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Conclusion

In total we have that for all small substitutions the equality (2.7) is L-subsumed
by the conjunction of the three equalities (2.4), (2.5) and (2.6). Therefore, fixed
point iteration terminates and as a summary for procedure p we have that

[5]" (Ax = By) = (Ax = By A Afgx = Bgfy A Afgfgx = Bgfgfy).

2.7.2 Computing Reachability Information

Assume we want to compute the reachability information at program end, i.e.,
at program point 4. In the course of weakest precondition computation we
have that an assert statement has the same semantics as a skip statement.
Therefore, for the reachability information at program point 4 the transformer
[4]" = [3]". For the generic postcondition Ax = By we have:

[3]" (Ax = By)

([0]" o [1]1" o [2]") (Ax = By)

([x=fa] o[y :=al' o[5]") (Ax = By)

([x:=fa] o[y :=al") (Ax = By A Afgx = Bgfy A Afgfgx = Bgfgfy)
= (Afa = Ba A Afgfa = Bgfa N Afgfgfa = Bgfgfa)

The resulting three ground equalities are equivalent to one solved equality
Af =B

according to Theorem 2.3.3. From the solved equality we derive all valid two-
variable Herbrand equalities of the form x = ty or tx = y. If B = o, then
the equality Ag = B is not satisfiable. Otherwise, if A = o, then the equality
Af = B has exactly one solution with B = f. Therefore, we conclude that the
equality
x =fy

is the only valid two-variable Herbrand equality between the program variables
x and y at the program points 3 and 4. Consequently we have proven that the
assertion x = f(y,y) at program line 5 of Figure 1.1 always holds.

2.8 Multi-variable Equalities

In this section, we extend our methods to arbitrary equalities such as

x = f(gy,z)
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where, w.l.0.g., the left-hand side is a plain program variable while the right-
hand side is a term possibly containing occurrences of more than one variable.
Note that an equality where the left-hand side is not a plain program variable
is either contradictory as e.g. gx = f(y, z) or can be massaged via top can-
cellation into an equivalent conjunction of equalities where each left-hand
side of an equality is a plain variable. Still, we consider programs where each
right-hand side of an assignment contains occurrences of at most one variable
only. Here, we indicate how for any program point # and any given candi-
date Herbrand equality x = t, we verify whether or not the equality is valid
whenever u is reached. There are only constantly many candidate equalities
of this form, namely, all equalities which hold for a variable assignment o,
computed by a single run of the program reaching u. Since such a single run
can be effectively computed before-hand, we conclude:

Theorem 2.8.1. Assume that all right-hand sides of assignments of a program
contain at most one variable. Then all interprocedurally valid Herbrand equali-
ties can be inferred.

Now consider the single Herbrand equality x = t, where t contains occur-
rences of the program variables vy, ..., yx. Then we construct new generic
postconditions as follows. First, we consider all substitutions o which map
each variable y; in t either to a fresh template variable C; or an expression
A;y; for a fresh template variable A; and any program variable y;. Then the
new generic postconditions are of the form x” = t" where x’ is any program
variable, and t’ is a subterm of to. Note that this set may be large but is
still finite. In a practical implementation, we may, however, tabulate for each
procedure the weakest preconditions only for those postconditions which
are really required. Since we envision that for realistic programs, only few
of these equalities for each procedure will be necessary to prove the queried
assertion at target point u, the potential exponential blow-up is hopefully not
an obstacle.

Example 2.8.1. Assume the equality we are interested inis x = f(gvy, z), then,
e.g.,
X = f(gA1y,Axz) Y= f(gAi1X, AxzZ)

are new generic postconditions to be considered, as well as
z= f(gC Ay) y=f(gAz () »

Starting from a new generic postcondition x = p, repeatedly computing
weakest preconditions w.r.t. assignments may result in conjunctions of equali-
ties which can be simplified by top cancellation to one of the following forms:
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¢ s = (C;ors = A;t; where s and t; contain occurrences of at most one
program variable each;

¢ y = p', ie., the left-hand side is a plain program variable, and the
right-hand side p’ is obtained from a subterm of p by substituting each
occurrence of a program variable y; with some term t; containing occur-
rences of at most one program variable each.

Example 2.8.2. Consider, e.g., the generic postcondition x = f(gA Yy, A»Z).
Then

[x = f(x,hx)]"(x = f(gA1Y, A»2)) = f(X,hx) = f(gA1Y, ArZ)
= (x = gA1yY) A (hx = Apz)

which means that we equivalently obtain two two-variable equalities. Likewise,
for an assignment to one of the program variables on the right, we have:

[y = f(b,y)]"(x = f(gA1Y,A22)) = (X = f(gALf(D,y),ArZ))
which is an equality of the form described in the second item. [

The equalities from the first item contain at most one program variable on each
side. They can be dealt with in the same way as we did for plain two-variable
equalities. They are even somewhat simpler, in that only one template variable
occurs (instead of two). The equalities of the second item, on the other hand,
we may group into equalities which agree in the variable on the left as well as
in the constructor applications outside the template variables A;. Of each such
group it suffices to keep exactly one equality. Any conjunction with another
equality from the same group will allow us to simplify the second equality to
a conjunction of equalities with at most one program variable on each side.

Example 2.8.3. Assume that we are given the conjunction of the two equalities:
x = f(gA1y,Axz) X = f(gAshy, Asgz)
This conjunction is equivalent to the first equality together with:
f(gAry, Axz) = f(gAshy, Asgz)
The latter equality, now, is equivalent to the conjunction of:
A1y = Azhy ArZ = Augz

which is a finite conjunction of two-variable equalities. ]
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Thus, in the course of weakest precondition computation for any of the new
generic postconditions, we obtain conjunctions which (up to finitely many
exceptions) consists of two-variable equalities only, to which we can apply our
methods from Section 2.6. In summary, we thus find that it can be effectively
verified whether or not a general Herbrand equality is interprocedurally valid
at a given program point u.

2.9 Global and Local Program Variables

So far we considered programs with global variables only. In this section we
extend the program model from Section 2.1 in order to also deal with programs
which contain global as well as local variables. Assume that the finite set of
program variables X contains a subset L. € X consisting of local program
variables, while the remaining variables are considered as global. The scope of
local variables is meant to be restricted to the body of the current procedure.
At the start of a procedure call, the fresh local variables are assumed to be
uninitialized, i.e., have any value, whereas at procedure exit, the current locals
are abandoned while the locals of the calling procedure are recovered. By
means of global variables, this simple model already allows to realize call-by-
value variable passing as well as the returning of functional results.

In order to deal with a non-empty set of locals, we enhance the weakest
precondition calculus by an operator { which takes the weakest precondition
transformation realized by the body of a procedure as an argument, and
returns the weakest precondition transformation of the procedure call. For
a given weakest precondition transformation f, the weakest precondition
transformation H (f) is defined as follows.

H(fH(Ax=C) = VLSf(Ax=C(C) x global

H(f)(Ax = By) = VL.f(Ax = By) X,y global
H(f)(Ax =By) = (VL f(Ax = ())[By/C] x global, y local
H(f)(Ax =By) = (VL f(Ay =(C))[B/A,Ax/C] xlocal, y global
H(f)(e) = e e contains no globals

where L is the sequence of local variables in L. Accordingly, the constraints
for call edges in the constraint systems S and R must be changed into:

[ul' = Hdsp1") o [v]’ for each (u,p(),v) € E
and

[v]" = [ul’ o H([sp1") for each (u,p(),v) € E
respectively.
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2.10 Soundness of the Analysis

In order to prove the soundness of every solution to the constraint systems S
and R we first introduce some basic concepts. A path 7 is a finite sequence
ki ky -k, of edges k; € E with k; = (u,_,v) and k;+1 = (v,_,w). The
semantics [k] of an edge k = (u,lab,v) is defined by [k] = [lab]. The
semantics [77] of a path 77 is then given as the composition of edge effects

[mr] = Tkn] o o[k]
and likewise in the course of weakest precondition computation

[r]" = [ki]" 0 = o [kul"
[rr]" = [kn]" 00 [ki]".

An interprocedural valid path is a path where for each return of a procedure
p a corresponding enter to the procedure p exists, such that in-between
these pairs no enter to a procedure p” without a corresponding return occurs.
Consider the context-free grammar with non-terminals A, , where u,v € N
are program points, start non-terminal A and production rules

Smain,¥ main?

Ayu €
Ayw = (U, 8,V) Ay (u,s,v) € E, s statement
Ayw = (U, (), Sp) As,r, (T, ([ P), V) Ay (u,p(),v) € E, p procedure

where € denotes the empty path and the labels (p) and (/p) denote the entering
and returning of a procedure call, respectively. We silently lift the set E of
edges to the set containing additionally edges (u, (p), s,) and (7}, {/p), v) for
each edge (u, p(),v) € E. Let us then denote by IT(u, v) the set of paths which
can be derived from the non-terminal A, ,, i.e.,

M(u,v) = {Tl’ € E* ‘Au,y —* Tl'}

for u # v. Note that if II(u,v) = @ holds, then there exists no interpro-
cedurally valid path between the program points u and v. Otherwise, if
II(u,v) + @ holds, then II(u,v) contains all interprocedurally valid paths
between the program points u and v.

Here we follow the idea presented in [SWH12] and term any path 1 in IT(u, v)
as a same-level computation, i.e., for each opening parenthesis (f) occurring
in a path 1, there is also a corresponding closing parenthesis {/f) in 1 such
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that 1 is well-parenthesized. Furthermore, let us term any prefix of a path
in T1(Smain, ¥ main) €nding at node u as a u-reaching computation, i.e., each
u-reaching computation 7 is of the form

T = (Smain) To{P1) 01 = {Pr) Tk (-, -, U)

for procedures p; and same-level computations 7r;. The set of all u-reaching
computations is then given by

(u) = {7 [ mr’ € I(Smain, ¥ main), T = To(_, -, u) }
for u # Sain- The semantics of a path is then defined as follows

[krt] =[] o [k] for a normal edge k
Kp)m(/p)m'] = [1t'] o H ([1r]) for a procedure p and
same-level computation 1

By that we arrive at the following theorem:

Theorem 2.10.1. Let [- ]} respectively [} be solutions to the constraint systems
S respectively R. We then have

[sp1h = AfIml" | ments,n !
[wll = A{lmrl"|menw) |
for all procedures p and all program points u.

Proof. We remark that composition of monotone funcions yields a monotone
function. In particular we have for monotone functions f, f’, with f = f’
and g, g’,withg = g' that (fo f') = (gog’) holds.

We proceed by structural induction over the path 1. For the induction base
let ™ = (u,s,r,) where s is a statement. Then [uli = [s]' o [r,]% =
[s]" oId = [s]" = [m]'. Now assume that for any path ' = (v,_, )"
with v"'mt" € TI(sp, 7p) the claim [v]i = [7t']" holds. As the induction
hypothesis we have for all procedures f that [s f]]l< = [[1Tf]]T for all paths
1y € II(sp,vp). Let T = (u,s,v)m’ where s is a statement. Then [u]x =
[s]" o [v]%. By assumption [v]% = [m']" holds and therefore [u]i =
[rr]" from which the assertion of this claim follows. Now let r = (u, f(), v)1r’
where f is a procedure. Then [u]i = [s¢]% o [v]k. Since by induction
hypothesis [s¢]% = [m/] forany path 7ty € T1(sf, 7f) and [v]y = [T']7,
we have that [u]i = [m]" and the assertion of this claim also follows.

This proves the assertion for the constraint system S. A similar argument
holds for the solution of the constraint system R. O
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From Theorem 2.10.1 we conclude that each solution to the constraint
systems S resp. R is sound. In the following we reason about the precision of
the greatest solutions to the constraint systems. Note here the intraprocedural
coincidence theorem from Kildall [Kil73] who pointed out that if every function
[-]1 of a constraint system corresponding to an intraprocedural program is
M-distributive, then the greatest solution [-]« to the constraint system equals
the meet-over-all-paths, i.e., [u]x = [ | { [m] | = € II(u) } for all wu.

Lemma 2.10.2. For every statement s, its weakest precondition transformer
[s1" is M-distributive. The transformer H is M-distributive, if applied to a
M-distributive transformer.

Proof. Let o be a variable assignment and ¢, ¢» be conjunctions of equal-
ities, respectively. We then have that o (¢p; M ¢2) = 0(¢1) M o (¢,) holds.
Since a weakest precondition transformer for a statement s equals a variable
assignment the transformer [s]’ is also M-distributive. Furthermore, we have
that the composition of M-distributive functions yields again a rM-distributive
function, and the universal closure as well as any substitution commutes with
conjunction. Hence, the transformer # (f) is also M-distributive. O

Theorem 2.10.3 (Seidl et al. [SWH12]). Let us assume that for each procedure
p there exists at least one same-level computation from the entry point s, to
every program point u of p, i.e., Il(s,, u) * Q. Let us further assume that all
transformer [-]" of normal edges and the transformer 3 are M-distributive.
We then have for the greatest solution [-]% to the constraint system S and for
each procedure p

[spli = /\{ [mr]’ ‘ T € TI(sp, 7p) } O

Theorem 2.10.4 (Seidl et al. [SWH12]). Let us assume that for each program
point u there exists at least one u-reaching computation, i.e., I1(u) # &. Let
us further assume that all transformer [-]" of normal edges and the trans-
former H are M-distributive. We then have for the greatest solution [+ ]} to the
constraint system R and for each program point u

[u];:/\{[n]T‘WEH(u)}. O
From the theorems 2.10.3 and 2.10.4 we conclude that the greatest solutions

to the constraint systems S and R equal their corresponding meet-over-all-
paths, respectively.
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2.11 Analysis of Computational Complexity

In the following we indicate how the presented algorithms for inferring in-
terprocedurally valid Herbrand equalities can be realized in polynomial time.
Crucial for the complexity is the size of representations of occurring terms.
Note that already the factorization of a term results in a succinct representa-
tion by sharing isomorphic subtrees. Still, the depth of occurring terms may
grow exponentially in a program with procedures.

Example 2.11.1. Consider the following program fragment consisting of pro-
cedures p,, and two global variables x and y:

pi {1pi-10; pi-10; }
po {x=f(x,%x);y:=f(y,y);}

The weakest precondition of a generic postcondition Ax = By for a proce-
dure p,, is then given by a single equality Af(e,®)?> x = Bf(e, )% y with
exponentially deep terms on both sides of the equality. [ ]

Hence, in order to arrive at polynomial algorithms, polynomially sized repre-
sentations must be provided for all occurring terms which additionally support
the required operations on terms in polynomial time. For trees, tree straight-
line programs (TSLP, for short) have been proposed which efficiently represent
trees by context-free tree grammars (see [Sch13; Loh15] for recent overviews).
Polynomial algorithms for equality of the represented trees, however, are
only known in case that the tree grammars in question are linear—meaning
that each parameter of a rule occurs in the corresponding right-hand side at
most once. Our factorizations of trees, however, may easily introduce non-
linear terms. Therefore, we apply compression only to elements from the
free monoid M;. We use ordinary straight-line programs (SLP for short)—but
with the understanding that individual letters are irreducible trees. For plain
symbols (corresponding to unary constructors only), algorithms based on such
a representation have been sketched in [GT07]. Thus in our application, an
SLP P of size k consists of a sequence of definitions

Xi — « izl,...,k

where either k = 1 and «; = e, or each right-hand side «; is either of the form
X;X; for unknowns X;, X; with i < j, [ or a single irreducible term t € M.
Given a suitable ordering on the unknowns together with an initial unknown,
we may consider P also as a set of definitions of unknowns.
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Beyond the size, we are also interested in the depth, i.e., the length h of the
longest chain of unknowns Y1, ..., Y, in P such that Y} — o; Yoo}, ..., Yh-1 —
&},_1 Yn&),_, occur among the definitions in P for suitable «;, ;.

An SLP can also be considered as a context-free grammar (in Chomsky Normal
Form) generating a single term in M. Formally, the term [P] represented by
P is defined by [P] = [X; ]p where

[Xilp = [X;lp[Xi]p (X;i - X;X;) €P
[Xilp =1t (X;—>t)ePandt € Mg

We remark that in linear time in the size of P, we can determine the length of
the represented element in Mg, which is defined by:

I Xillp = I1Xllp + [ Xillp (X;i - X;X;) €P
I Xillp =0 (X; >®)EP
IXillp =1 (X;i > t)ePandt € Mg \ {e}

An SLP in Chomsky Normal Form of size k cannot produce a word larger than
2%, Therefore, the length of each word which it generates can be described by
k bits. For such numbers, basic operations as equality and addition can be
done in linear time in k.

In order to avoid repeated computation of lengths, we assume that every
unknown occurring during the analysis will once for all be annotated with
its length. For later use, we collect a set of basic algorithms for SLPs (see,
e.g., [Loh12]).

Theorem 2.11.1. The following tasks can be vealized in polynomial time:

1. Given an SLP P representing a termt = t, -ty € Mg. Determine an
SLP Q for the reverse t’ = ty -t of t such that Q has the same size and
depth as P.

2. Given an SLP P representing a termt = t, .-ty € Mg of some length k,
and some number 0 < h < k. Determine an SLP Q for the prefix ti - t),
(suffix ty—p - tr) of t of length h. The number of new definitions in Q is
bounded by the depth of P, and the depth of Q is not increased.

3. Given SLPs P and Q for terms t,t' € M. Determine whether or not
t=t'.
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4. Given SLPs P and Q for terms t,t’ € Mg. Determine the length of the
longest common prefix (suffix) of t,t', i.e., lett = t; - t, andt’ = t] - t;,
where each t;, t; is irreducible, then the longest common prefix is of length
kift; =t; forl <i <k andt,,, * t,,, and likewise the longst common
suffix is of length k ift,,_; = t,,_; forO < i <k andt,_, # t,,_y-

5. Given SLPs P and Q for termst,t’ € M. Determine an SLP for tt'. At
most one new definition is introduced and also the depth is increased at
most by one.

Proof. An SLP for the reverse of t is obtained from P by introducing a fresh
copy of unknowns X’ for every unknown X in P together with a definition
X' - fif X > fwith f € Mg, and a definition X" — Z'Y" if P has a definition
X — YZ. This new SLP clearly generates the reverse of the SLP P—proving
assertion 1.

For a proof of assertion 2, we only consider the construction of an SLP for the
prefix of t of length h. The case where h = 0 is trivial. Therefore, assume that
h > 0. We construct the new SLP by successively introducing fresh unknowns
X' for the unknowns X on a path in P. in order to do so, we maintain the
sum of the lengths I of the unknowns to the left of the path. We start with
the initial unknown X; of P where [ = 0 with corresponding fresh unknown
X7. In general, assume that I < h, and we have reached an unknown X with
corresponding fresh unknown X'. First assume that the definition of X in P is
given by X — f for some irreducible term f € M. In this case, h = [+ 1, and
we set the definition of X" to X" — f. Then assume that the definition of X in
Pisgivenby X - YZ.If h < 1+ | Y| p, then we introduce a fresh copy Y’ for Y
and the definition X" — Y’ for X', and proceed with Y'. If L + ||Y||p < h, then
we introduce a fresh copy Z’ for Z and the definition X’ - YZ' for X’ and
proceed with Z'. The resulting set of definitions, though, may not meet our
assumptions on SLPs. The definitions with single unknowns in their right-hand
sides, can however, be removed in polynomial time by a technique similar to
the removal of chain rules in context-free grammars.

Polynomial time algorithms for deciding equivalence of SLPs were indepen-
dently discovered by Hirshfeld et al. [HJM96], Mehlhorn et al. [MSU97], and
Plandowski [Pla94] proving assertion 3. The algorithms can be applied to
obtain a polynomial time algorithm for determining the length of longest
common prefixes of elements in a free monoid as claimed in assertion 4. First,
the algorithm from assertion 3 can be extended to decide whether or not ¢ is a
prefix of t’ by first determining the lengths h and h’ of t and t’, respectively.
If h > h/, t is not a prefix of t'. Otherwise, we may determine an SLP Q" of Q
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representing the prefix of t’ of length h which then is checked for equivalence
with P. In the next step, that algorithm is extended to the case where t is not
necessarily a prefix of t" by performing binary search on the prefixes of t.
Finally, consider assertion 5. If t or t" equals e, the concatenation is trivial.
So assume that neither t nor t" equal e, and that the initial unknowns of the
SLPs P and Q equal X; and Y7, respectively. Let X, denote a fresh unknown.
Then the term ¢t can be represented by the SLP P U Q together with the initial
definition Xy, - X;Y;. O

The size of aterm t € Tq(X) UTq(e) is given by size(t) which is recursively
defined as follows:

size(t) = 143K size(t;) ift = f(ty,...,t) and f € O
size(t) = 1 ift e XU {e}

In the following we define the size of a program. As mentioned in Section 2.1
we do not operate on the syntax of a program directly but on the corresponding
control flow graph. The size of a program is then given as the sum of the
number of nodes, the number of edges, and the sum of the sizes of terms of
right-hand sides of assignments.

A non-ground term t = t'X containing occurrences of the variable x is then
succinctly represented by the pair (P, x) where P is an SLP for t". Ground terms
in T may be factorized differently for initialization-restricted or unrestricted
programs. In the following, we first consider initialization-restricted programs,
and subsequently unrestricted programs.

2.11.1 Polynomial Time Algorithms for IR Programs

For initialization-restricted programs, every ground term t possibly produced
at run-time, can be uniquely factored into t = t'r for t" € M; and a ground
term * € R occurring as a right-hand side in the program. Such a term t is
represented by a pair (P, r) where P is an SLP for t". We remark that the size
of the term v is bounded by the size of the program.

In a succinct representation of a postcondition ¢, every occurring term in
TUT' (recallthat T = MgR and T' = M;X) is represented by such a pair where
the different SLPs need not necessarily be disjoint but may share unknowns
together with their definitions. The weakest precondition of a postcondition
¢ w.r.t. a non-ground assignment x := ty is given as ¢[ty/x]. This means
that ty must be substituted into each term sx, s € M occurring in ¢. If s or
t equals e, the substitution is trivial. So assume that neither s nor t equal e.
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Then by Theorem 2.11.1 an SLP P for st can be constructed from the SLPs for
s and t by adding one fresh unknown together with its definition, so that the
depth of the involved SLPs increases at most by one—even if the depth of the
resulting term may be doubled. The resulting term of the substitution is then
represented by the pair (P,y).

Now consider a substitution ¢ [t/x] for a ground term t = t'r wheret’ € Mg
and r € R is a ground term of some assignment. This means that £ must be
substituted into each term sx occurring in ¢. If s equals e, the substitution is
trivial. Therefore, assume that s does not equal e. Then by Theorem 2.11.1 an
SLP P for st can be determined from the SLPs for s and t’ in polynomial time.
The resulting term of the substitution is then represented by the pair (P, 7).
We thus have proven:

Lemma 2.11.2. Consider a single equality As, = Bs, or As = C where the terms
$1,82,8 € TUT are succinctly represented. Then a succinct representation
of the weakest precondition of the equality w.r.t. an assignment X = t can be
determined in time polynomial in the size of t. Furthermore, for each succinctly
represented term at most one fresh unknown is introduced such that the depth
of an SLP increases at most by one. O

The weakest precondition of a postcondition Asx = Bty w.r.t. a procedure
call p() is given as ¢’ = ¢p[As/A, Bt/B] if the weakest precondition of the
generic postcondition Ax = By w.r.t. a procedure call p() is given as ¢. This
case is similar to the case of (non-)ground program variable assignments.
That means that, instead of a program variable two template variables are
substituted. In order to obtain succinct representations for the terms in ¢’,
we again can apply our techniques for computing succinct representations for
the result of the substitution of terms.

Lemma 2.11.3. Consider a single equality Asx = Bty (resp. As = Btx, Asx =
Bt, or Asx = C)where the occurring terms s,t € Mg are succinctly represented.
Moreover, assume that each term of type T U T’ occurring in the weakest
precondition ¢ of a generic postcondition AX = By (resp. Ax = C) w.r.t. a
procedure call p() is also succinctly represented. Then a succinct representation
of the weakest precondition of the equality w.r.t. a procedure call p() can be
computed in time polynomial in the number of equalities in ¢. Furthermore,
for each succinctly represented term at most one fresh unknown is introduced
such that the depth of an SLP increases at most by one. O

From Lemmas 2.11.2 and 2.11.3 we conclude that the sizes and depths of
occurring SLPs during the whole fixed point computation for determining
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the weakest precondition transformers for procedures as well as the weakest
precondition transformers for reachability, remains polynomial in the size of
the program and the numbers of equalities occurring in preconditions. Ac-
cordingly, a polynomial time algorithm for inferring valid Herbrand equalities
is obtained whenever we are given polynomial time algorithms for

+ solving systems of ground equalities, as well as for
+ approximate T-subsumption.

Consider a satisfiable equality of the form As = Bt where s,t € T are
ground. Let A = e, then the finite set of all solutions for B equals the set

{uw € Cq | s = uvt and u, v € Mg and v is irreducible and wt = vt }.

In the set above, each w equals v where some occurrences of e are substituted
by t. That means, once the decomposition of s into uvt is known, then all
solutions can be trivially derived. Still there exist 2° — 1 many solutions if
e occurs i times in the term v. Let u = [P] be represented by some SLP P
and t = [Q]r be represented by some SLP Q and » € R. Then the set of all
solutions for B is succinctly represented by the tuple

(P,v,Q,7). (2.32)

Similarly, the finite set of all solutions for the template variable A is succinctly
represented by a tuple of the form (2.32), if B = e.

Theorem 2.11.4. In the following consider only equalities of the form As = Bt
where s,t € T are ground and succinctly rvepresented.

1. It is decidable in polynomial time whether or not the equality As = Bt
is satisfiable where A or B receives the value . Furthermore, if it is
satisfiable, then a succinct representation of the form (2.32) of the set of
all solutions for A (resp. B) can be determined in polynomial time.

2. It is decidable in polynomial time whether or not the conjunction of the
two distinct equalities As; = Bty and As, = Bt is satisfiable where A or
B receives the value o. Furthermore, if it is satisfiable, then a succinct
representation of the unique solution can be determined in polynomial
time.
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Proof.

1. Let A = o, i.e., we then consider s = Bt. If the equality is satisfiable, then
s = t't for some t' € M; must hold. Whether or not t is a suffix of s is
decidable in polynomial time.

Assume that the equality is satisfiable. Then each solution of B equals s
where some occurrences of t are substituted by e. Let s = uvt for some
U,V € Mg and v is an irreducible element in M. A succinct representa-
tion Q of the prefix u of s of length ||s|| — (||t|| + 1) can be determined
in polynomial time. Likewise, the irreducible element v occurring in the
unique factorization of s can be determined in polynomial time. Assume
that t is succinctly represented by the tuple (P, 7). Then the set of all
solutions for B is succinctly represented by the tuple (Q, v, P, 7) of the
form (2.32), from which the assertion of this part follows.

2. Let A = o,i.e., we then consider s; = Bt; and s, = Bt,. If the conjunction
of the two equalities is satisfiable, then s; = tt; and s, = tt, for some
t € Mz must hold, i.e., B = t is then a solution. From the succinctly
represented term s; a succinct representation of the prefix u; of length
IIsill — IIt;]l and the suffix v; of length ||t;|| can be determined in polyno-
mial time for i = 1,2. If u; = u, and v; = t; and v, = t, holds, then
the conjunction is satisfiable and 1, is a solution for B. This is decidable
in polynomial time.

According to Theorem 2.3.3, t is a unique solution, i.e., there exists no
other solution t" # t. A similar argument holds for the case B=e. O

Assume that we are given a conjunction of ground equalities arising from the
analysis. Clearly, it allows to efficiently test any candidate templates whether
or not they constitute a solution. In light of Theorem 2.11.4, the conjunction
allows to infer a succinct representation of all valid equalities in polynomial
time.

Theorem 2.11.5. T-subsumption for equalities of the form As = C where
s € TUT are succinctly represented is decidable in polynomial time.

Proof. Consider two equalities Asx = C and Atx = C with s,t € Mg (resp.
As = C and At = C with 5,t € T). The conjunction of the two equalities is
T-unsatisfiable, if s #+ t holds which is decidable in polynomial time. Otherwise,
if s = t holds, then one equality is subsumed by the other. O
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In the following we show that approximate T-subsumption of two-variable
equalities is decidable in polynomial time, too. In order to do so we first extend
the idea of succinctly represented terms in Mg to terms in the corresponding
free group F;. That means that definitions of an SLP representing a term in
F; are now either of the form X — Y Z for suitable unknowns Y, Z or X — f
where f is an irreducible term in F;. The length ||t]] of a term t € F; can be
determined in time linear in the size of the SLP representing t similar to any
term s € Mg. The balance |t]| of a term t € F; which is represented by the
SLP P can be determined in linear time in the size of P as follows:

| Xilp = |1 Xjlp + | Xilp (X;i —> X;X;) P

| Xilp =0 (X; > ®)EP
I Xilp =1 (Xi > f) €Pand f € Mg \ {e}
| Xilp = —1 (X;i > f7)€Pand f € Mg\ {e}

An SLP in Chomsky normal form of size k cannot produce a word larger than
2%, Therefore, the balance of each word which it generates can be described
by k + 1 bits. For such numbers, basic operations as equality, addition and
subtraction can be done in time linear in k—even if only single bit operations
are considered as constant time.

Lemma 2.11.6. Assume that all terms are succinctly represented and let F; be
the corresponding free group of M. Then the following tasks can be realized
in polynomial time:

1. All tasks described in Theorem 2.11.1 can also be realized for terms in F.
2. Given a term w € F, determine the term w™! € Fg.

3. Given two maximally canceled terms u,v € Fg, determine w = uv such
that w is maximally canceled.

4. Given a term w € Fg, determine the term w", v > 1.

Proof. For the tasks described in Theorem 2.11.1 it is irrelevant from which
algebraic structure an element f in a definition X — f comes. That means, it
does not matter if f € Mg or f € Fg proving assertion 1.

Given an SLP P representing some term w € Fg, the SLP P’ representing the
term w™! can be constructed as follows. If the definition X — Y Z is included
in P, then let X’ — Z'Y’ be included in P’. Otherwise, if the definition X — f,
f € F; isincluded in P, then let X’ — f~! be in P’. The size and the depth of
P and P’ are the same proving assertion 2.
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Assume that the SLPs P and Q represent the terms u and v from Fg, respec-
tively. By assertion 2, an SLP for u ™! can be determined in polynomial time.
Furthermore, by Theorem 2.11.1, the length k of the longest common prefix of
u~! and v can be determined in polynomial time. Again by Theorem 2.11.1, an
SLP Q for the prefix u’ of u of length ||u|| — k can be determined in polynomial
time. Similarly, an SLP Q' for the suffix v" of v of length |[v| — k can be
determined in polynomial time. Finally, an SLP for the term w = u'v’" can be
determined in polynomial time. Since w is maximally canceled, this proves
assertion 3.

The last assertion 4 can be proven as follows. The case where v = 1 is trivial.
Therefore, assume that » > 1. Let the term w be represented by the SLP P
with initial unknown X, and size sp. The term wzk, k = 1 is then represented
by the SLP Qj with initial unknown N1 and the following definitions (for
fresh unknowns Ny):

N1 = XoXo
N;+1 — N;N; 1<i< lng(k)

Assume that the binary representation of » equals bjog, () ... bo Where by is the
least significant bit and let j; < -+ < j, equal the list of indices j where b; = 1.
Then we introduce the SLP Q with initial unknown M; and the following fresh
definitions:

M, - N My forl<k<n

My, = Nj,

Thus, the SLP Q represents w". The size of Q is in @ (log, (¥) + sp) from which
the assertion follows. O

A term uv which is not maximally canceled, may only be constructed during
checks of subsumption when two terms u, v € Fg; are concatenated. According
to Lemma 2.11.6, however, a maximally canceled term corresponding to uv
can be determined in polynomial time. Therefore, in the following we assume
that each succinctly represented term occurring during subsumption checks
are maximally canceled.

Lemma 2.11.7. Assume that all occurring terms are succinctly represented
and maximally canceled. Then the assertion of Lemma 2.4.2 is decidable in
polynomial time, i.e., the question whether for an equality of the form AuA™! =
Bu'B Y withu,u’ € F; and |u| = |u'| = 0, it is decidable in polynomial time,
whether it is trivial, is equivalent to an equality As = B or A = Bs for some
S € Mg, or is contradictory.
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Proof. Assume that u and u’ are represented by the SLPs P and Q, respectively.
The equality is trivial iff [P] = e = [Q] which can be checked in constant time
since we assumed that succinctly represented terms are maximally canceled.
If [P] =e + [Q], or [P] + e = [Q] holds, then the equality is contradictory.
The latter can also be checked in constant time.

Otherwise, we proceed as follows. The length n < ||u|| of the longest positive
prefix of u can be determined similarly to the length ||| of u, and thus can
be determined in time linear in the size of P. Likewise, the length m < ||u|| of
the longest negative suffix of u can be determined in polynomial time, by first
computing the inverse of u, i.e., u~! and then determining the longest positive
prefix of u~!. We then proceed by determining SLPs for the prefix x of u of
length n and the remaining suffix w of u of length ||u| — n. From the SLP
representing w we then derive SLPs for the prefix y of length ||w]| — m and
suffix of length m of w such that u = xyz~!. This can be done in polynomial
time.

Similarly, we determine succinct representations for the longest positive
prefix x” of u’, longest negative suffix z’~! and y’ such that u’ = x'y'z' "%

Overall this means that the equivalent simplified conjunction Ax = Bx' A
vy = ¥ A Az = BZ' can be determined in polynomial time. Since y,y’ €
Mg, their equality can be checked in polynomial time. If the conjunction is
satisfiable then it is equivalent to a solved equality As = B or A = Bs which
means that either x = sx’ and z = sz’, or x' = sx and z' = sz holds which
can be checked in polynomial time. O

Lemma 2.11.8. Assume that all occurring terms are succinctly represented and
maximally canceled. Then the assertion of Theorem 2.4.3 is decidable in polyno-
mial time, i.e., it is decidable in polynomial time whether the conjunction of the
two equalities AuA™' = Bu'B™! and AvA™" = BU'B™! withu,u’,v,v’ € F; is
equivalent to one solved equality, or to a single equality, or are contradictory.

Proof. W.l.o.g. assume that |u| = |v|. If |v| = 0, then from Lemma 2.11.7
follows that AvA™! = Bv'B~! is either trivial, i.e., the conjunction of the two
initial equalities is equivalent to AuA~! = Bu’B~!, or is contradictory, i.e., the
conjunction of the two initial equalities is equivalent to AVA™! = Bv'B™ !, or
the equality is equivalent to one solved equality As = B (resp. A = Bs). In the
latter case either holds u = su’s™! (resp. u' = sus™!) and the conjunction
of the two equalities is equivalent to AvA~! = Bv'B~! or the conjunction is
contradictory. According to Theorem 2.11.1 and Lemma 2.11.6 the equality
check u = su’s™! (resp. u’ = sus™!) can be done in polynomial time—from
which the assertion of this part follows.
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Otherwise, if |v| > 0, then let ¥ = |u| mod |v| and we derive a third equality
AwA™! = Bw'B™! such that w = uv™" and w’ = u'v'”". According to
Lemma 2.11.6 the terms w,w’ can be determined in polynomial time. We
then start allover by considering the two equalities AvA™! = Bv'B™! and
AwA™" = Bw' B~ ! where |v| > |w/| holds. This algorithm is a generalization of
Euclid’s algorithm. Since Euclid’s algorithm performs at most logarithmic many
iterations [Mol08, pp. 21-22] and in each iteration we introduce logarithmic

many new unknowns, the assertion of the theorem follows. O

Theorem 2.11.9. For finite sets E, E" of equalities of the form As = Bt where
s,t € TUT are succinctly represented, it is decidable in polynomial time
whether )\ E approximately T-subsumes /\ E' or not, if A or B equals e.

Proof. Consider equalities of the form As = Bt where s,t € T are ground
terms. According to Theorem 2.11.4 T-subsumption is decidable in polynomial
time.

Consider the three equalities As;x = Bt;y,i = 1,2,3 and let w.L.o.g. |s;| =
Is>], |s3]. We then derive the two equalities AuA~! = Bu’B™! and AvA™! =
BU'B 'where u = 51551, u' = 165, v = 51571, and v’ = tt5! are maximally
canceled in polynomial time. According to Lemma 2.11.8 it is decidable in
polynomial time whether the conjunction is unsatisfiable, or equivalent to one
equality, i.e., equality As;x = Bty is then subsumed, or is equivalent to one
solved equality. In the latter case from a fourth equality either follows the
same solved equality and is therefore subsumed or is contradictory. A similar
argument holds for equalities of the format As = Btx (resp. Atx = Bs).

We conclude that T-subsumption for equalities of the same format is decid-
able in polynomial time. Since we consider only polynomial many different
formats of equalities, the assertion of the theorem follows. O

Theorem 2.11.10. Assume that all right-hand sides of assignments of an
initialization-restricted program contain at most one variable. Then for ev-
ery program point u and program variables x and y, a succinct representation
of the form (2.32) of the set of all valid two-variable Herbrand equalities between
x and y, can be determined in time polynomial in the size of the program. [

2.11.2 Polynomial Time Algorithms for Unrestricted Programs

For unrestricted programs there need not exist a unique factorization for every
possible run-time value. Only for large terms, i.e., terms in L = MR, unique
factorizations are possible. Accordingly, a large term t = t'v where t' € Mg
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and r € R is succinctly represented by a pair (P,r) where P is an SLP such
that [P] = t'. We remark that the size of the term 7 is polynomially bound by
the size of the program and therefore can be represented explicitly.

For small terms, i.e., terms in S, on the other hand, we cannot hope for
unique factorizations. Since the size of each small term is bound by the size
of the program, each small term s € S is succinctly represented by a pair (P, s)
where P is an SLP such that [P] = e.

Similar as for initialization-restricted programs, during the weakest precondi-
tion calculation, we assume that each occurring term is succinctly represented.
Let us again consider the operation substitution. In order to obtain polynomial
algorithms, we must ensure that substitution of succinctly represented terms
is polynomial. Consider the non-ground terms sx, ty where s,t € M. Then
the succinct representation of the resulting term (sx)[ty/x] is determined in
a similar way as for initialization-restricted programs, and therefore can be
constructed in polynomial time. Now consider the terms sx,t where s € Mg
and t € T is ground. Then the resulting term of the substitution (sx)[t/x] is
given as st. If the term is large, then in order to succinctly represent st, the
unique factorization must be determined in polynomial time.

Lemma 2.11.11. Given succinctly represented terms s,t where s € Mg and
t € T. Then a succinct representation of st € T can be determined in time
polynomial in the size of a maximal element in R.

Proof. First assume that t € L is large. This means that t is represented by
a pair (Q, r) where Q is an SLP for some term t" € M. and 7 is a term in R.
Then the unique factorization of st is given by s+ where s = st'—for which
an SLP can be constructed from an SLP for s and Q by introducing one fresh
unknown together with a single definition.

Finally, assume that the term t is small. Given an SLP P for the term s, our
goal is to determine the unique factorization st = s’ with s’ € M; and v € R.
If s = o, nothing must be done. Otherwise, assume that s is given as the
factorization s; - sx. Then we consider the factorization s; - sx—1 5, where
S, = sx[t/e]. This factorization equals the term st. If k = 1, we are done. If
k > 1 and the term s, = sg[t/e] is contained in the set R of minimally large
terms, i.e., s is not a small term, then we have found the unique factorization
of st. Otherwise, we proceed by constructing s;,_; = s;_,[s;/®] and so on, until
either we exhausted the factors of s or obtained the factorization st = s's;_,,
where s" = s - sx_p—1 and s;_;, = $;_j, = Skt € R. Since the size of every term
in R is bounded by the size of the input program, so is the number h. For
every length h < h’ < k, SLPs for the intermediately occurring prefixes of s
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can be determined in time O(d) by Theorem 2.11.1, if d is the depth of the
SLP for s. m

The previous Lemma 2.11.11 enables us to state the following two lemmas:

Lemma 2.11.12. Consider a single equality Asy = Bs, or As = C where
$1,82,8 € TUT are succinctly represented. Then a succinct representation
of the weakest precondition of the equality w.r.t. an assignment x = t can be
determined in time polynomial in the size of t and in the size of a maximal
element in R. O

Lemma 2.11.13. Consider a single equality Asx = Bty (resp. As = Btx, Asx =
Bt, or Asx = C) where the occurring terms s,t € Mg are succinctly represented.
Moreover, assume that each term of type T U T’ occurring in the weakest
precondition ¢ of a generic postcondition AX = By (resp. Ax = C) w.r.t. a
procedure call p() is also succinctly represented. Then a succinct representation
of the weakest precondition of the equality w.r.t. a procedure call p() can be
computed in time polynomial in the number of equalities in ¢ and in the size of

a maximal element in R. O

The proofs of the lemmas are analogous to the proofs of Lemma 2.11.2
and 2.11.3 except that for the substitution we also need Lemma 2.11.11.

In order to compute solutions in polynomial time for the constraint systems
S and R, T-subsumption for one-variable and approximate T-subsumption for
two-variable equalities must be decidable in polynomial time.

Theorem 2.11.14. For finite sets E, E" of equalities of the form As = C where
s € TUT' are succinctly represented it is decidable in polynomial time whether
/\ E T-subsumes /\ E’ or not.

Proof. Consider two distinct equalities Asx = C and Atx = C. If the conjunc-
tion of them is satisfiable, then s = wu and t = wv for some u,v,w € Mg
such that w is a longest common prefix of s,t and u # v but ux = vx
must hold. According to Theorem 2.11.1 the longest common prefix of two
succinctly represented terms can be determined in polynomial time. Similar
representations for u, v can be determined in polynomial time, too. Assume
that the sizes of the terms u, v are not bound by the maximal size of an
element in R, then the terms ux, vx are large terms no matter what ground
term the variable x is actually bound to. But then the terms u, v must have a
common prefix which is a contradiction to the assumption that w is the longest
common prefix of s, t if the conjunction is satisfiable. Therefore, assume that
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the sizes of the terms u, v are bound by the maximal size of an element in R.
Then the most general unifier of ux = vx can be determined in polynomial
time. Assume the most general unifier maps x to the ground term t’ € S.
Then the initial conjunction is equivalent to the conjunction of the equalities
Asx = C and Att’ = C where the latter equality does not contain any program
variable. According to Lemma 2.11.11 a succinct representation of the term
tt’ can be determined in polynomial time. Overall, the equivalent conjunction
can be determined in polynomial time.

For equalities which contain no program variable we have the following
result. Consider two equalities As = C and At = C where s,t € T are ground.
If s = t, then one equality subsumes the other. Otherwise, if s + t, then the
conjunction of them is unsatisfiable. For succinctly represented terms such
equality checks can be performed in polynomial time from which the assertion
of the theorem follows. O

Theorem 2.11.15. For finite sets E, E" of equalities of the form As = Bt where
s,t € T UT are succinctly represented, it is decidable in polynomial time
whether )\ E approximately T-subsumes /\ E’ or not, if A or B equals e.

Proof. Ground equalities: Let us first consider only equalities of the form
As = Bt where s,t € T are ground. Then in the following we assume that
each conjunction of equalities is not trivially unsatisfiable, i.e., there exist no
two equalities of the form As = Bt and As = Bt’ where t # t’, or vice versa,
where the roles of A and B are interchanged. If two succinctly represented
terms in T are equal or not, is decidable in polynomial time.

First consider equalities of the form As = Bt where s,t € L are large terms.
The proof is analogous to the corresponding proofs for Theorem 2.11.4 where
the set T is replaced with the set L = M(R, i.e., instead of the set R we rely on
the set R of unique end marker terms.

Now consider three equalities As; = Bt; where s; € L are large terms and
t; € S are small terms for i = 1, 2, 3. For the proof of this case, we require to
extend the notion of substitution to a replacement of occurrences of arbitrary
subterms. Consider arbitrary ranked terms s,t,t" € To(X U {e}). Then by
s[t/t'] we denote the term where all occurrences of t’ in s are replaced by
the term t. Formally, if s does not contain the subterm t’, then s[t/t'] = s.
Otherwise, if s contains the subterm t’, then let s = s't’ such that s’ € Cq
does not contain the subterm t’. Then s[t/t'] = s't.

We then proceed as follows. Assume that there exist i, j € [1, 3] such that
t; does not occur in s;. If i = j, then the single equality As; = Bt; is not
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satisfiable. Therefore assume now that i # j. If the conjunction of the three
equalities is satisfiable, then the solution for B must not contain occurrences
of t;,i.e., u = s;[®/t;] is the only possible solution for B. If all three equalities
are satisfied by this solution, then the first two would already have B = u as
their unique solution. Accordingly, the third equality is subsumed. Whether
or not B = u is a solution can be decided in polynomial time.

In the following we therefore assume that for each i, j € [1, 3] the term ¢;
occurs at least once in the term s;. We define an equivalence relation of terms
as follows. Let # denote a fresh symbol and let s, s, ¢t,t" € T. If t, t" are incom-
parable, i.e., there exists no u € Mg such that t = ut’ or t" = ut, then the
terms s, s’ are equivalent modulo the terms t,t" if s[#/t,#/t'] = s'[#/t,#/t"]
holds. Otherwise, if there exists a u € M such that t = ut’, then the terms
s,s" are equivalent modulo the terms t,t" if (s[#/t])[#/t'] = (s'[#/t])[#/t']
holds. The case where t" = ut holds is similar. For all three cases we can
decide which term to substitute first by comparing the size of both terms
t,t’. That means, if t = ut’ (resp. t' = ut) holds, then size(t) > size(t’)
(resp. size(t’) > size(t)) must hold, too. In case the terms are incompa-
rable it does not matter in which order we substitute the terms. Assume
size(t) > size(t’), then the terms s, s are equivalent modulo the terms ¢, t" if
(s[#/tD[#/t']1 = (s'[#/t])[#/t'] holds, which we denote by (s = s') mod ¢, t’.
We extend the equivalence relation as follows. Let t” € T and assume
that size(t) > size(t') > size(t”), then s and s are equivalent modulo
the terms t,t',t" if ((s[#/tD)[#/t'D[#/t"] = ((s'[#/t])[#/t'])[#/t"] holds
which we denote by (s = s) mod t,t’,t”". We observe that if the conjunction
Asy = Bty A Asy = Bt, is satisfiable, then sy, s, differ only in some occurrences
of t1,tp. That means that (s; = s») mod t;, t, must hold. A similar argument
holds for the conjunction As; = Bt; A As3 = Btz and for the conjunction
As, = Bty A As3 = Bt3. Observe that the other direction does not necessarily
hold, i.e., if the conjunction is not satisfiable, then (s; # s») mod t;, t> need not
hold. For example, consider the conjunction Af(a,b) = Ba A Af(b,a) = Bb
which is not satisfiable but f(a, b)[#/a,#/b] = f(##) = f(b,a)[#/a,#/b]
holds. However, we claim that if

(s1 = sp) mod ty, b (2.33)
(s1 = s3) mod ty, t3 (2.34)
(5o = s3) mod ty, t3 (2.35)
(51 = $» = s3) mod ty, tp, t3 (2.36)

holds, then the conjunction As; = Bt; A As, = Bt, A As3 = Bts is satisfiable.
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Since for A = e, the two first equalities uniquely determine the solution for
B, we conclude that the third equality is subsumed. Our claim is proved as
follows.

In the following we denote by s|, = t that a term s € T contains at position
p the subterm t € T. From (2.36) follows that all three terms sy, s, s3 share a
common pattern u” which is obtained by successively replacing all subterms
tq, to, t3 with #, where we proceed from the larger to the smaller terms. From
u’, we then construct a solution u for B by replacing the occurrences of # in
u’ with terms ty, t», t3 or e. Let p be any position of a leaf # in u’.

If s11, = s21, then let ul, = s1l, (2.37)
If s11p # 21, thenlet ul, = @ (2.38)

We claim that the resulting term u is indeed a solution for B, which satisfies
all three equalities. If u|, = t; then according to (2.37) s1l, = s20p, = 4
and from (2.35) follows that s3], = t;. If u|, = t, then according to (2.37)
Silp = $21p, = to and from (2.34) follows that s3], = t,. Otherwise, assume
that u|, = t3. Then according to (2.37) si1l, = 2|, = t3. If 531, = &y,
then (2.35) implies that s> |, = t; whichis a contradiction. Similarly, if s3|, = &,
then (2.34) implies that s, |, = ¢, which again is a contradiction. Therefore,
s3lp = t3 must hold. In total we have, if ul, = t;, then s;[, = $21, = s31, = t;
for i = 1,2, 3. Now consider the case where u|, = o. Assume that s;|, = f»,
then from (2.33) and (2.38) follows 52|, = t;. However, then from (2.34) follows
that s3|, = t> and from (2.35) follows that s3|, = t; which is a contradiction.
Hence, 51|, = t; and s3[, = t, must hold. A similar argument holds for
s3lp = t3 from which we conclude that s; = ut; for i = 1, 2,3. Therefore,
B = u is indeed a solution satisfying all three equalities. This complete the
proof of our claim.

What remains to prove is that the equality checks (s; = s;) mod ¢;, t; and
(s; = s;) mod ty,tp,t3 can be done in polynomial time. For that we must
show that from an arbitrary succinctly represented large term, a succinctly
represented and uniquely factorized term can be derived where certain small
terms are substituted by a fresh symbol. We explain the idea for the test
(s1 = sp) mod tq,t,. W.Lo.g. let size(t;) = size(ty) and o = [#/t1][#/t>]. Let
G ={go|geG}andR ={ro |r €R}. We extend the factorization of
terms in T = MgR to terms in T' = Mg R'. In Section 2.6 we have partitioned
the set of terms T into non-uniquely factorizable small terms S and uniquely
factorizable large terms L, i.e., T = MgR = S W L. We proceed along the same
line for T* which we partition into #-small terms S’ which are non-uniquely
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factorizable, and into #-large terms L’ which are uniquely factorizable. The set
S" equals then the set (G’ U R’)* where * is the subterm closure, and the set
L’ equals the set M¢'R" \ S’. We call a term minimally #-large if it is a minimal
term in L. The (finite) set of all minimally #-large terms is denoted by R’.
Then every #-large term s* € L’ can be uniquely factored into s" = u'r’ where
u' € Mg and a term ¥’ € R’ which is minimally #-large. If one of the terms
$10 or s»0 is not #-large, then the size of that term is polynomial. Therefore,
the equality test can be realized in polynomial time as well. Accordingly
assume that the terms s;0 and s,o are both #-large. In this case, our goal is
to determine from the succinct representations of the factorizations of sy, s»,
succinct representations for the factorizations of s; o, s, 0 which then can be
compared in polynomial time. For that, consider a factorization s = 1 - Ug?
of alarge term s € T into irreducible factors u; € Mg and a minimally large
term » € R, and assume that s’ = so is #-large. Then there is a maximal
index j such that ; = (u; - uxr)o is #large. This index can be found in
polynomial time. Moreover, TJ'- can then be uniquely factored in polynomial
time into »; = u'r’ for a minimally #-large term +' € R and u" € M. Then
the unique factorization of s is given by:

_u'r’

’ ’ ’

where for each i, v; is a factorization of u;o into irreducible factors in Mg .
Note that the lengths of the factorizations v; are bounded by the sizes of the
corresponding factors and thus of the sizes of right-hand sides of the input
program. Therefore these factorizations can be obtained in polynomial time as
well. These factorizations then allow us to construct from an SLP for u; -~ u;_4,
an SLP for v; - v;_;ju’. Altogether, we obtain a succinct representation for
s’ from a succinct representation of s in polynomial time from which the
assertion of this part follows.

A similar argument holds for equalities of the form As = Bt where s € S is
small and t € L is large.

Non-ground Equalities: Now we consider equalities which contain at least
one program variable. We first prove that L-subsumption for finite conjunc-
tions of equalities of the same format is decidable in polynomial time.

For equalities of the formats [Fxy ], [Fx,.], [F.x] the proofs are analogous to
the corresponding proofs of Theorem 2.11.9 where the set T is replaced with
the set L = M¢R, i.e., instead of the set R we rely on the set R of unique end
marker terms.

Now consider two equalities As = Btx and As = Bt'x where s € S is a small
term, i.e., equalities of the format [F; x]. Then the first equality L-subsumes
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the second equality, if t = t" holds. This is decidable in polynomial time.
Otherwise, the conjunction is L-unsatisfiable. A similar argument holds for
two equalities of the format [Fx].

We conclude that L-subsumption for equalities of the same format is decid-
able in polynomial time. In order to decide T-subsumption between conjunc-
tions of sets E, E" of equalities of the same format, for each small substitution
o, L-subsumption between Eo and E'o has to be decided. Since there exist
at most polynomial many small substitutions and formats of equalities, we
conclude that approximate T-subsumption is decidable in polynomial time. O

We showed that solutions to the constraint systems S and R can be de-
termined in polynomial time. For initialization-restricted programs we also
showed that a succinct representation of all solutions can be determined in
polynomial time. Whereas for unrestricted programs we show that given a
candidate solution for the template variables A and B where at least one equals
e it is decidable in polynomial time whether or not the solution holds.

Theorem 2.11.16. Given a term u € Cqo and an equality As = Bt where
s,t € T are ground and succinctly represented. Then it is decidable in time
polynomial in the size of the term u and in the size of a maximal term in S,
whether or not A = u and B = e, or vice versa, A = ® and B = u is a solution
for the equality.

Proof. Let us first consider the case for A = u and B = e, i.e, decide if us =t
holds or not.

Assume that s,t € L are large terms. If u € Mg, i.e., all subterms of
u are small, then u must be a prefix of t, and s must be a suffix of t, i.e.,
us = t must hold. This is decidable in time polynomial in the size of u and
polynomial in the sizes and lengths of the SLPs representing s, t. Otherwise, if
u contains large terms as subterms, i.e., u € Cq \ Mg. Then u = vw for some
v € Mg and some irreducible element w € Cq \ Mg must hold. Furthermore,
t = vw’s for some irreducible element w’ € Mg such that w equals w’ where
some occurrences of e are substituted by s must hold. This is decidable in
time polynomial in the size of u and polynomial in the lengths of the SLPs
representing s, t.

Now consider the case where s € S is small and t € L is large. Then us =t
is decidable in time polynomial in the size of u and in the size of s which is
bound by the size of the program.

Otherwise, if s € L is large and t € S is small, then the equality is not
satisfiable.
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Now assume that both s,t € S are small. Whether or not us is a small term
and if us equals t is decidable in polynomial time.

Furthermore, verifying if A = e and B = u is a solution for the equality is
similar from which the assertion of this theorem follows. O

Finally this enables us to state our main result for unrestricted programs
and one- or two-variable equalities:

Theorem 2.11.17. Assume that p is a program whevre all right-hand sides of
assignments contain at most one variable. Then for every program point u of
p and every equality of the formx =t wheret € T U T, it can be verified in
time polynomial in the size of the program as well as the size of t whether or
not the equality is an invariant. O

Recall that for initialization-restricted programs, each possible run-time value
can be uniquely factorized. This property enabled us to derive in polynomial
time from a ground equality As = Bt where s,t € T a succinct representation
of all possible solutions for the template variables A and B where at least
one equals e. Consider the case where A = e and assume that s = uvt for
some U,V € Mg where v is an irreducible element. Then each solution for
B has u as a prefix—which might be exponentially large. That means, that
the solutions only differ in the very last factor which can be derived from the
element v. Accordingly, we were able to provide a succinct characterization
of all solutions. The situation is more complicated for unrestricted programs.
For these, only weaker forms of factorization are available. Thus, substitutions
of right-hand sides may still result in terms which are still small and therefore
cannot be uniquely factorized.

Example 2.11.2. Assume that a,b € S are small terms and » € R is a mini-
mally large term. Then consider the uniquely factorized equalities

A f(e,0) g(a,h(b,e,a),h(b,e,b)) v =B a

A f(g(a,e,e),g(b,e,e)) h(b,e.b) ¥y =B b
Since a and b are small terms and the template variable A is applied to large

terms, B cannot equal e in any possible solution. Therefore, now assume that
A = e, Then the unique solution for B, satisfying both equalities, equals

f(g(a,h(b,r,e),h(b,v,b)),g(e,h(b,r,e), h(b,v,b)))

Thus, all three factors from the original equality are collapsed into a single
irreducible term for B. This irreducible term contains the large term h(b, v, b)
as a subterm and is contained in Cq \ M. [
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For initialization-restricted programs we observed that a solution is not
necessarily in Mg but might very well also be in Cq \ M. This is also the
case for unrestricted programs. However, in contrast to initialization-restricted
programs, we have for unrestricted programs that a solution need not reflect
the factorizations of terms at all of initial equalities. The factorization of terms,
however, was the basis of our compression scheme via SLPs. Accordingly, it
remains unclear how to derive compressed representations of solutions in
polynomial time.

2.11.3 Complexity Results for Verifying Multi-variable Equalities

Let us now consider a multi-variable invariant candidate such as x = f(gvy, z).
In this case, the right-hand side f(gy,z) = t[y,z] where t is the (multi-
variable) pattern t = f(ge;, ®,) for distinct variables e, ®,. Now consider a
generic postcondition X" = f(gAy’, Bz') which might occur during the proof
that the given equality indeed is an invariant at some program point. In
contrast to the pattern, the terms which may be substituted into one of the
program variables or the template variables A, B of the right-hand side during
the fixed point iteration may grow exponentially deep and therefore must be
succinctly represented. Now consider a term which is substituted into the
left-hand side. For this term, the root must be deconstructed according to
the constructors occurring in t. This deconstruction can also be realized for
succinctly represented terms in polynomial time.

For the multi-variable case we observe that during the weakest precondition
computation we obtain for a postcondition a conjunction possibly containing
one-, two-, and multi-variable equalities. A conjunction of two multi-variable
equalities which coincide in the left-hand side and the pattern of the right-hand
side is equivalent to a conjunction of one of them and polynomial many one-
and two-variable equalities. Such an equivalent conjunction can be determined
in time polynomial in the size of the invariant candidate. Since for conjunctions
of one- and two-variable equalities approximate T-subsumption is decidable in
polynomial time, approximate T-subsumption is also decidable in polynomial
time for conjunctions containing multi-variable equalities, i.e., we have proven
the following lemma:

Lemma 2.11.18. For finite sets E, E' of one-, two-, and multi-variable equalities
where each termin T U T’ is succinctly represented, it is decidable in polynomial
time whether )\ E approximately T-subsumes /\ E’ or not. O

We note that from a single invariant candidate x = t where t € To(X),
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exponentially many generic multi-variable postconditions can be derived, i.e.,
we have exponentially many different formats of multi-variable equalities. Still,
we have:

Theorem 2.11.19. Assume that p is a program where all right-hand sides of
assignments contain at most one variable. Then for every program point u of
p and every multi-variable Herbrand equality x =t where t € Tq(X) has at
most k variables, it can be verified in time polynomial in the size of the program
as well as the size of t, and exponential only in k whether or not the equality is
an invariant. O

2.12 Summary

In this chapter we provided an analysis which infers all interprocedurally valid
Herbrand equalities for programs where all assignments are taken into account
whose right-hand sides depend on at most one variable. The novel analysis is
based on three main ideas. First, we restricted general satisfiability, subsump-
tion, and equivalence to satisfiability, subsumption, and equivalence w.r.t. a set
of values subsuming all possible run-time values of a given program. Together
with our factorization theorem, this allowed us to apply the monoidal methods
from [GTO7] to effectively infer all interprocedurally valid two-variable Her-
brand equalities, at least for programs, which we called initialization-restricted.
In the second step, we abandoned this restriction by introducing the extra
distinction between large values (which can be uniquely factored) and small
values (of which there are only finitely many). Finally, we showed how all
general Herbrand equalities can be inferred.

In Section 2.11 we analyzed the complexity of the presented analysis. For
that we first observed that the factorization of terms already leads to com-
pressed terms by sharing isomorphic subterms. However, the depth of terms
may grow exponentially. Therefore, we followed the idea from [GT07] and
introduced straight-line programs in order to also compress the depth of
terms. By that we were able to provide a polynomial time algorithm which
infers compact representations of all two-variable Herbrand equalities for
initialization-restricted programs. For unrestricted programs, we were at least
able to verify in polynomial time whether or not a given equality is an invari-
ant at a given program point. The reason why we cannot infer all equalities
in polynomial time for unrestricted programs as for initialization-restricted
programs is that the succinct representation of terms relies on the factoriza-
tion of terms. For unrestricted programs we have that a solution might not

69



2 Interprocedural Two-Variable Herbrand Equalities

reflect the factorization of terms at all. Hence it remains unclear how to derive
compressed representations of solutions in polynomial time. The algorithm
could also be extended to general Herbrand equalities (possibly containing
more than one variable). Here we have the result that an invariant candidate
x = t where t contains at most k differing variables can be verified in time
polynomial in the size of the program, and the term t, and exponentially only
in k.
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It is well known that static analysis of run-time properties of programs by
means of abstract interpretation can be compiled into systems of equations
over complete lattices [CC77a]. Thereby, various interesting properties require
complete lattices which may have infinite strictly ascending or descending
chains [GHO6; Che+10; Bag+05]. In order to determine a (post-) solution
of a system of equations over such lattices, Cousot and Cousot propose to
perform a first phase of iteration using a widening operator to obtain a post-
solution which later may be improved by a second phase of iteration using
a narrowing operator. This strict arrangement into separate phases, though,
has the disadvantage that precision unnecessarily may be given up which later
is difficult to recover. It has been observed that widening and narrowing need
not be organized into separate phases [ASV13; ASV16; Ama+16]. Instead
various algorithms are proposed which intertwine widening with narrowing
in order to compute a (reasonably small) post-fixed point of the given system
of equations. The idea there is to combine widening with narrowing into a
single operator and then to iterate according to some fixed ordering over the
variables of the system. Still, monotonicity of all right-hand sides is required
for the resulting algorithms to be terminating [ASV13; Ama+16].
Non-monotone right-hand sides, however, are introduced by interprocedural
analysis in the style of [ASV12] when partial tabulation of summary functions
is used. In order to see this, consider an abstract lattice D of possible program
invariants. Then the abstract effect of a procedure call can be formalized as
a transformation f# from D — D. For rich lattices D such transformations
may be difficult to represent and compute with. As a remedy, each single
program procedure may be decomposed into a system of equations with
equation variables—one for each possible argument—where each such variable
now receives values from D only. As a result, the difficulty of dealing with
elements of D — D is replaced with the difficulty of dealing with systems
of equations which are infinite when D is infinite. Moreover, composition
of abstract functions is translated into indirect addressing of variables (the
outcome of the analysis for one function call determines for which argument
another function is queried) which implies non-monotonicity [FS96]. Thus,
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termination of interprocedural analysis by means of the solvers from [ASV13;
Ama+16] cannot be guaranteed. Interestingly, the local solver SLR3 [Ama+16]
terminates in many practical cases. Nontermination, though, may arise in two
flavors:

+ infinitely many variables may be encountered, i.e., some procedure may
be analyzed for an ever growing number of calling contexts;

+ the algorithm may for some variable switch infinitely often from a nar-
rowing iteration back to a widening iteration.

From a conceptual view, the situation still is unsatisfactory: any solver used
as a fixed point engine within a static analysis tool should reliably terminate
under reasonable assumptions. In this section of the thesis, we therefore
re-examine interprocedural analysis by means of local solvers. First, we extend
an ordinary local solver to a two-phase solver which performs widening and
subsequently narrowing. The novel point is that both iterations are performed
in a demand-driven way so that also during the narrowing phase fresh variables
may be encountered for which no sound over-approximation has yet been
computed.

In order to enhance precision of this demand-driven two-phase solver, we
then design a new local solver which intertwines the two phases. In contrast
to the solvers in [ASV13; Ama+16], however, we can no longer rely on a fixed
combination of a widening and a narrowing operator, but must enhance the
solver with extra logic to decide when to apply which operator. For both
solvers, we prove that they terminate whenever only finitely many variables
are encountered, irrespective whether the abstract system is monotone or not.
Both solvers are guaranteed to return (partial) post-solutions of the abstract
system of equations only if all right-hand sides are monotone. Therefore,
we make clear in which sense the computed results are nonetheless sound
even in the non-monotone case. For that, we provide a sufficient condition
for an abstract variable assignment to be a sound description of a concrete
system—given only a (possibly non-monotone) abstract system of equations.
This sufficient condition is formulated by means of the lower monotonization
of the abstract system. Also, we elaborate for partial solutions in which sense
the domain of the returned variable assignment provides sound information.
Here, the formalization of purity of functions based on computation trees and
variable dependencies plays a crucial role. The concept of lower monotoniza-
tion requires a Galois connection to relate concrete sets of states and abstract
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values. Later, we lift this restriction enabling us to verify that the novel local
solvers work correctly also in a more general setting.

Finally, we prove that interprocedural analysis in the style of [CC77c; ASV12]
with partial tabulation using the novel local solvers terminates for all non-
recursive programs and every complete lattice with or without infinite strictly
ascending or descending chains.

3.1 Basics on Abstract Interpretation

In the following we recapitulate the basics of abstract interpretation as in-
troduced by Cousot and Cousot [CC77a; CC92]. Assume that the concrete
semantics of a system is described by a system of equations

X = fx, x EX (3.1)

where X is a set of variables taking values in some power set lattice (C, S, U)
where C = 22 for some set Q of concrete program states, and for each x € X,
fx: (X = C) = Cis the defining right-hand side of x. For the concrete system
of equations, we assume that all right-hand sides fy,x € X, are monotone.
Accordingly, this system of equations has a unique least solution o which can
be obtained as the least upper bound of all assignments o, T an ordinal. The
assignments o, . X — C are defined as follows. If T = 0, then o x = L for
all x € X. If T = 7" + 1 is a successor ordinal, then oy x = fyx 0, and if T
is a limit ordinal, then o x = U { 0r x | 7" < T }. A corresponding abstract
system of equations

y=fi, yeEY (3.2)

specifies an analysis of the concrete system of equations. Here, Y is a set of
abstract variables which may not necessarily be in one-to-one correspondence
to the concrete variables in the set X. The variables in Y take values in some
complete lattice (D, £, LI) of abstract values and for every abstract variable
vy €Y, fy” (Y - D) — D is the abstract defining right-hand side of y.
The elements d € D are meant to represent invariants, i.e., properties of
program states. It is for simplicity that we assume the set D of all possible
invariants to form a complete lattice, as any partial order can be embedded into
a complete lattice so that all existing least upper and greatest lower bounds
are preserved [Mac37].

In order to relate concrete sets of program states with abstract values, let
us assume for the moment that there is a Galois connection between C and
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D, i.e., there are monotone functions «: C - D, y . D — C such that for all
ceCandd e D, ax(c) Ediff c € y(d). A similar assumption has already
been made in [CC77a]. In [CC92] this assumption is weakened to frameworks
where no best abstract descriptions of concrete sets of program states can be
obtained via an abstraction function «. In Section 3.7, we therefore later will
consider this more general situation.

In the presence or absence of a Galois connection, we assume that there is
a description relation R € X X Y between the sets of concrete and abstract
variables. The description relation R between variables is lifted to a description
relation R* between assignments o: X —» Cand 0% Y — D such that

o R* 0 <= o(x)<yc?(y)

for all x € X and v € Y whenever x R 7y holds. Following [CC92], we
do not assume that the right-hand sides of the abstract equation system are
necessarily monotone. For a sound analysis, we only assume that all right-hand
sides respect the description relation, i.e., that for all x € X and y € Y with
xRy,

feo S y(fSo?) (3.3)

whenever o R* o# holds.

Our key concept for proving soundness of abstract variable assignments w.r.t.
the concrete system of equations is the notion of the lower monotonization
of the abstract system. For every function f#: (Y - D) — D we consider the
function

frfo=[1{fo|occo'} (3.4)
which we call lower monotonization of f*. By definition, we have:
Lemma 3.1.1. For every function f*: (Y - D) — D the following holds:
1. f* is monotone;
2. ffofe ffof forallo?;
3. f¥ = f* whenever f* is monotone. O

The lower monotonization of the abstract system (3.2) then is defined as the
system
Y = ii, yEY (3.5)

Since all right-hand sides of (3.5) are monotone, this system has a least solution.
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Example 3.1.1. Consider the single equation
v =if y =0then1lelse0

over the complete lattice N of non-negative integers equipped with the natural
ordering and extended by an infimum element. This system is not monotone.
Its lower monotonization is given by y = 0. [ ]

Lemma 3.1.2. Assume that o is the least solution of the concrete system (3.1).
Then o R* o? for every post-solution o* of the lower monotonization (3.5).

Proof. For every ordinal T, let o denote the Tth approximation of the least
solution of the concrete system. Assume that o is a post-solution of the
lower monotonization of the abstract system, i.e.,

iio“;a”y

holds for all ¥ € Y. By ordinal induction, we prove that o= R* o*. The claim
clearly holds for T = 0.

First assume that T = T’ + 1 is a successor ordinal, and that the claim holds
for T/, i.e., o R* o¥. Accordingly, o~ R* ¢’ holds for all ¢’ 2 o*. Consider
any pair of variables x, y with x R y. Then o, x = f, 0 S y(fﬁ o) for all
o' 2 of. Accordingly, x(o; x) E fﬁ o’ for all ¢’ 2 o#, and therefore,

ax(orx) E |_| {f; o’

!

o 20“;=i§0";0”y

since o* is a post-solution. From that, the claim follows for the ordinal T.

Now assume that T is a limit ordinal, and that the claim holds for all ordinals
T’ < T. Again consider any pair of variables x, v with x R y. Then

sex=Ufovx| v <r}eUlve s |7 <7} =@
and the claim also follows for the limit ordinal T. O

Note that for the proof of Lemma 3.1.2 it was crucial to assume that there
is a Galois connection between the concrete and abstract domains. From
Lemma 3.1.2 we conclude that for the abstract system from Example 3.1.1
the assignment o* = {y ~ 0} is a sound description of every correspond-
ing concrete system, since 0¥ is a post-solution of the corresponding lower
monotonization y = 0.

In general, Lemma 3.1.2 provides us with a sufficient condition guaranteeing
that an abstract assignment o * is sound w.r.t. the concrete system (3.1) and the
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description relation R, namely, that o is a post-solution of the system (3.5).
This sufficient condition is remarkable as it is an intrinsic property of the
abstract system since it does not refer to the concrete system. As a corollary
we obtain:

Corollary 3.1.3. Every post-solution o* of the abstract system (3.2) is sound.

Proof. Forally € Y,o* y 2 ff o* = ii o? holds. Accordingly, o? is a post-
solution of the lower monotonization of the abstract system and therefore
sound. O

Before we go on let us introduce some basic notation. We define an update
operator @ for total functions g: Y — D and partial functions h €Y — D as
follows. For all y € Y we have

g(y) if his not defined for v,

(9O )= {h(y) otherwise.

Furthermore by L. Y — D respectively T: Y — D we denote two constant
functions which return L respectively T for all inputs, i.e., for all y € Y we
have

L(y)=1 and T(y):=T.

3.2 Widening and Narrowing

It is instructive to recall the basic algorithmic approach to determine non-
trivial post-solutions of abstract systems (3.2) when the set Y of variables is
finite, all right-hand sides are monotone and the complete lattice D has finite
strictly increasing chains only. In this case, chaotic iteration may be applied.
This kind of iteration starts with the initial assignment | which assigns L to
every variable y € Y and then repeatedly evaluates right-hand sides to update
the values of variables until the values for all variables have stabilized. This
method may also be applied if right-hand sides are non-monotone. The only
modification required is to update the value for each variable not just with
the new value provided by the left-hand side, but with some upper bound of
the old value for a variable with the new value. As a result, a post-solution of
the system is computed which, according to Corollary 3.1.3, is sound.

The situation is more intricate, if the complete lattice in question has strictly
ascending chains of infinite length. Here, we follow Cousot and Cousot [CC77a;
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CC92; Coul5] who suggest to accelerate iteration by means of widening and
narrowing. A widening operator V: D X D — D takes the old value a €
and a new value b € D and combines them to avaluea LI b E a V b such
that for any sequence b;, i > 0, and any value a, the sequence a;+; = a; V b;,
i = 0, is ultimately stable.

In contrast, a narrowing operator A: D X D — D takes the old value a €
and a new value b € D and combines them to a value a A b satisfyingamb =
aA b E a such that for any sequence b;, i > 0, and any value ag, the sequence
ai+1 = a; Ab;, i =0, is ultimately stable.

While the widening operator is meant to reach a post-solution after a finite
number of updates to each variable of the abstract system, the narrowing
operator allows to improve upon a variable assignment once it is known to
be sound. In particular, if all right-hand sides are monotone, the result of
a narrowing iteration, if started with a post-solution of the abstract system,
again results in a post-solution. Accordingly, the returned variable assignment
can easily be verified to be sound. In analyzers which iterate according to
the syntactical structure of programs such as ASTREE [Cou+09], this strict
separation into two phases, though, has been given up. There, when iterating
over one loop, narrowing for the current loop is triggered as soon as locally
a post-solution has been attained. This kind of intertwining widening and
narrowing is systematically explored in [ASV13; Ama+16]. There, a widening
operator is combined with a narrowing operator into a single derived operator
U defined by

aAb ifbE a,
allb = .
a V b otherwise.

The operator is also called warrowing operator.

Solvers which perform chaotic iteration and use warrowing to combine old
values with new contributions, necessarily return post-solutions whenever they
terminate. In [ASV13; ASV16], termination could only be guaranteed for sys-
tems of equations where all right-hand sides are monotone. For non-monotone
systems as may occur at interprocedural analysis, only practical evidence could
be provided for the proposed algorithms to terminate in interesting cases.

Here, our goal is to lift these limitations by providing solvers which terminate
for all finite abstract systems of equations and all complete lattices—no matter
whether right-hand sides are monotone or not. For that purpose, we dissolve
the operator @ again into its components. Instead, we equip the solving
routines with extra logic to decide when to apply which operator such that
termination is again guaranteed.
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3.3 Terminating Structured Round-Robin Iteration
Let us consider a finite abstract system as given by:
yi=ff, (i=1..,n (3.6)

In [ASV13], a variation of round-robin iteration is presented which is guar-
anteed to terminate for monotone systems, while it may not terminate for
non-monotone systems. In order to remedy this failure, we re-design this
algorithm by additionally maintaining a flag which indicates whether the vari-
able presently under consideration has or has not reached a sound value
(Figure 3.1). Solving starts with a call solve(false,n) where n is the highest
priority of a variable. A variable y; has a higher priority than a variable y;
whenever i > j holds. A call solve(b, i) considers variables up to priority i
only. The Boolean argument b indicates whether a sound abstraction (relative
to the current values of the higher priority variables) has already been reached.
The algorithm first iterates on the lower priority variables (if there are any).
Once solving of these is completed, the right-hand side ff of the current
variable y; is evaluated and stored in the variable tmp. Additionally, b’ is
initialized with the Boolean argument b.

First assume that b has already the value true. Then the old value o[ y;]
is combined with the new value in tmp by means of the narrowing operator
giving the new value of tmp. If that is equal to the old value, we are done and
solve returns. Otherwise, o[y;] is updated to tmp, and solve(true, i) is called
tail-recursively.

Next assume that b has the value false. Then the algorithm distinguishes
two cases. If the old value o[y;] exceeds the new value, the variable tmp
receives the combination of both values by means of the narrowing operator.
Additionally, b’ is set to true. Otherwise, the new value for tmp is obtained
by means of widening. Again, if the resulting value of tmp is equal to the
current value o[y;] of y;, the algorithm returns, whereas if they differ, then
o[y;]is updated to tmp and the algorithm recursively calls itself for the actual
parameters (b', n).

In light of Theorem 3.3.1, the resulting algorithm is called Terminating
Structured Round-Robin iteration or TSRR for short.

Theorem 3.3.1. The algorithm in Figure 3.1 terminates for all finite abstract

systems of the form (3.6). Upon termination, it returns a variable assignment
o which is sound. If all right-hand sides are monotone, o is a post-solution.
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void solve(b, i) {
if (i < 0) return;
solve(b,i — 1);
tmp = ff o;
b =b;
if (b) tmp = o[y;] A tmp,
else if (tmp E o[y;]) {
tmp = olyi]l A tmp;
b’ = true;
} else tmp == o[y;] V tmp;
if (o[y;] = tmp) then return;
oly;] = tmp,
solve(b’,1);

Figure 3.1: Terminating Structured Round-Robin iteration (TSRR)

Proof. By induction on i, we prove that solve(b, i) terminates. For i = 0, the
statement is obviously true. Now assume that i > 0 and that by induction
hypothesis, solve(b’,i — 1) terminates for b’ € { true, false }. First consider
the case where b = true. In this case, the flag b’ for the tail-recursive call will
be equal to true as well, and only narrowing will be applied to y;. Therefore,
the sequence of tail-recursive calls solve(b, i) eventually will terminate.

Now consider the case where b = false. By induction hypothesis, all recursive
calls solve(b’,i — 1) terminate. Consider the sequence of tail recursive calls
where the flag b’ is not set to true. Within this sequence, the new values for y;
form an ascending chain do C d; C d, - where dj; = d; V a;j for suitable
values a;. Due to the properties of a widening operator, this sequence is
finite, i.e., there is some j such that dj;; E d;. In this case the call either
terminates directly or recursively calls solve(b’, i) for b’ = true. Therefore,
solving terminates also in this case.

It remains to prove that upon termination, a sound variable assignment o
is found. For j = 1,...,n, and a variable assignment p:. {y1,..., yn} = D, we
consider the system Z, ; defined by:

yi=fi,  i=1,..,J)

with fii of = filp®o®)foro?: {y,...,y;} - D. Let £, ; denote the lower
monotonization of £, ;. We claim:
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1. Assume 07 is a post-solution of the system £, ;. Then solve(true, j) when
started with p; = p @ 01, returns with a variable assignment p, = p @ o»
where 0> is still a post-solution of zp’j.

2. solve(false, j) returns a post-solution of Z, ;.

We proceed by induction on j. For j = 0, nothing must be proven. Therefore
assume j > 0. Consider the first claim. As post-solutions of £, ; are preserved
by each update which combines an old value o[y;] with the value of the
corresponding right-hand side fj,l- for o by means of M and thus also by A,
the claim follows.

For a proof of the second claim, let us consider the sub-sequence of tail-
recursive calls solve(b, j) where b’ remains false. Eventually this sequence
ends with a last call where b’ is set to true. Let p’ denote the variable as-
signment before this update occurs. Then p'(y;) 2 fjp’ 2 ij p’. Likewise,
by induction hypothesis, p’|,, ;1) is a post-solution of £, ;_,. Altogether
therefore, p’ = p ® o’ for some variable assignment o’ {y1,...,¥;} —
which is a post-solution of £, ;. Accordingly, solve(false, j) either directly
terminates with p’, and the second claim follows, or solve(true, j) is called,
and the second claim follows from the first one. This completes the proof of
the two claims. Since the second claim, instantiated with j = n, implies that
the variable assignment returned by the algorithm is a post-solution of the
lower monotonization of the system, it is sound. By Lemma 3.1.1, it is then
also a post-solution of the original abstract system whenever all right-hand
sides are monotone. O

In fact, for monotone systems, the new variation of round-robin iteration
behaves identical to the algorithm SRR from [ASV13].

3.4 Local Solvers

Local solving may gain speed-ups by querying the value of only a small subset
of variables which is still sufficient to answer the initial query. Such solvers are
at the heart of program analysis frameworks such as the CIAO system [Her+05;
Her+12] or GOBLINT [V0j+16]. In order to reason about partial variable as-
signments as computed by local solvers, we can no longer consider right-hand
sides in equations as black boxes, but require a notion of variable dependence.

For the concrete system we assume that right-hand sides are mathematical
functions of type (X — C) — C where for any such function f and variable
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assignment o . X — C, we are given a superset dep(f, o) of variables onto
which f possibly depends, i.e.,

(Vx €dep(f,0).0lx]=0'[x]) = fo=fo (3.7)

forall 0’: X - C. Let 0. X — C denote a solution of the concrete sys-
tem. Then we call a subset X' € X of variables o-closed, if for all x € X',
dep(fx,0) S X'. Then for every x contained in the o-closed subset X', the
value f, o can be determined already if the values of o are known for the
variables in X’ only.

In [MH90; SFOO0] it is observed that for suitable formulations of interproce-
dural analysis, the set of all run-time calling contexts of procedures can be
extracted from o-closed sets of variables.

Example 3.4.1. Consider the following example program

main H.ZD pQO;p(0) pﬂg

consisting of a procedure main which at some program point u inside a loop
calls the procedure p twice in arow. The procedure p iterates on some program
point v by repeatedly applying the function g: Q — 2% which describes the
operational behaviour of the body of the loop at v. The following system of
equations arises from the program

(u,q) = Ulwan) e eUlw,a) | a € (u,a)}tuial
(va) = Ulgar lai €(v,qa)}Uiq}

for g € Q. Here, Q is a superset of all possible system states, and the unary
function g: Q — 22 describes the operational behavior of the body of the loop
at v. The set of variables of this system is givenby X = {(u, q), (v,q) | g € Q}
where (u, q), (v, q) represent the sets of program states possibly occurring
at program points u and v, respectively, when the corresponding procedures
have been called in context q. For any variable assignment o, the dependence
sets of the right-hand sides are naturally defined by:

dep(fug,0) = H{u, @)}V {v,q2) | g2 € 0 {u,q)}
U{v,q1) 1 g2 € o{u,q),q1 € 0(v,q2)}
dep(flwag,0) = {{v,q)}

where f, again denotes the right-hand-side function for a variable x. As-
suming that g(qo) = {q1} and g(q1) = J, then the least solution o maps
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(u, qp), (v, qo) to the set {qo,q1} and maps (u, q1), (v,q1) to {q1}. Accord-
ingly, the set {(u, q;), {v,q;) | i = 0,1} is o-closed. We conclude, given the
program is called with initial context g, that the procedure p is called with
contexts qo and q; only. n

In concrete systems of equations, right-hand sides may depend on infinitely
many variables. Since abstract systems are meant to give rise to effective
algorithms, we impose more restrictive assumptions onto their right-hand-
side functions. For these, we insist that only finitely many variables may
be queried. Following the considerations in [HKS10b; HKS10a; Kar13], we
demand that every right-hand side f* of the abstract system is pure in the
sense of [HKS10b]. This means that, operationally, the evaluation of f # for any
abstract variable assignment o consists of a finite sequence of variable look-
ups before eventually, a value is returned. Technically, f# can be represented
by a computation tree, i.e., is an element of

tree == Answer | QueryY X (D — tree)

Thus, a computation tree either is a leaf immediately containing a value or
a query, which consists of a variable together with a continuation which, for
every possible value of the variable returns a tree representing the remaining
computation. Each computation tree defines a function [t]: (Y — D) — D by:

[Answerd] o = d
[Query (y,c)]o = [c(olyD]lo

Following [HKS10b], the tree representation is uniquely determined by (the
operational semantics of) f*.

Example 3.4.2. Computation trees can be considered as generalizations of
binary decision diagrams to arbitrary sets D. For example, let D = N* and the
function f#: (Y -» D) — D with {y;, >} S Y, defined by

ffo=ifo[y]>5thenl + o[y,] else o[y;]
is then represented by the tree

Query (y1,fund; — if d; > 5 then
Query (y,,fund, — Answer (1 + d5))
else
Query (yq,fund; — Answerd;)) =

82



3.4 Local Solvers

A set dep(f*,0?) € Y with a property analogous to (3.7) can be explicitly
obtained from the tree representation t of f* by defining dep(f*, o*) =
treedep(t, o%) where:

treedep(Answerd, o %) = @
treedep(Query (y,¢),0%) = {y} Utreedep(c (c*[¥]),0")

Technically, this means that the value f* 0% = [t] 0% can be computed already
for partial variable assignments ¢’ Y’ — D, whenever dep(f*, T @ 0’) =
treedep(t, T®0’) € Y'.

Example 3.4.3. Consider the function f* from Example 3.4.2 together with
the partial assignment o’ = {y, ~ 3}. Then dep(f*, T @& ¢’) = {y1}. [

We call a partial variable assignment ¢’ . Y’ — D closed (w.r.t. an abstract
system (3.2)), if for all y € Y’, dep(fﬁ,l o)y

In the following, we strengthen the description relation R additionally to
take variable dependencies into account. We say that the abstract system (3.2)
simulates the concrete system (3.1) (relative to the description relation R)
iff for all pairs x, v of variables with x R 1y, such that for the concrete and
abstract right-hand sides f, and fﬁ, respectively, property (3.3) holds and
additionally dep(fy,0) R dep(fyﬁ, o?) whenever 0 R* o*. Here, a pair of
sets X', Y’ of concrete and abstract variables is in relation R if for all x € X',
x R y for some y € Y'. Theorem 3.4.1 demonstrates the significance of
closed abstract assignments which are sound.

Theorem 3.4.1. Assume that the abstract system (3.2) simulates the concrete
system (3.1) (relative to R) where o is the least solution of the concrete system.
Assume that o? . Y' — D is a partial assignment with the following properties:

1. 0% is closed:

2. T @ o is a post-solution of the lower monotonization of the abstract
system.

ThenthesetX' = {x € X |3y €Y .xR vy} iso-closed.

Proof. By Lemma 3.1.2, 0 R* (T ® o) holds. Now assume that x R y for
some x € X and y € Y'. By definition therefore, dep(fy, o) R dep(fy“,I @
o?). Since the latter is a subset of Y’, the former must be a subset of X', and
the assertion follows. O
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3.5 Terminating Structured Two-Phase Solving

We first present a local version of a two-phase algorithm to determine a sound
variable assignment for an abstract system of equations. As the algorithm
is local, no pre-processing of the equation system is possible. Accordingly,
variables where widening or narrowing is to be applied must be determined
dynamically (in contrast to solvers based on static variable dependencies
where widening points can be statically determined [Bou93]). We solve this
problem by assigning priorities to variables in decreasing order in which they
are encountered, and consider a variable as a candidate for widening/narrow-
ing whenever it is queried during the evaluation of a lower priority variable.
The second issue is that during the narrowing iteration of the second phase,
variables may be encountered which have not yet been seen and for which
therefore no sound approximation is available. In order to deal with this
situation, the algorithm does not maintain a single variable assignment, but
two distinct ones. While assignment oy is used for the widening phase, o7 is
used for narrowing with the understanding that, once the widening phase is
completed, the value of a variable v from oy is copied as the initial value of y
into o,. This clear distinction allows to continue the widening iteration for
every newly encountered variable y’ in order to determine an acceptable initial
value before continuing with the narrowing iteration. The resulting algorithm
can be found in Figure 3.2.

Initially, the priority queue Q and the sets dom; and dom are empty. Ac-
cordingly, the mappings o;: dom; — D and infl: dom — 2 are also empty.
Likewise, the set point is initially empty. Solving for the variable 7y, starts with
the call solve; (yy, 0).

Let us first consider the functions solve, iterateg, do_vargy. These are meant
to realize a local widening iteration. A call solveg(y) first checks whether
v € domy. If this is the case, solving immediately terminates. Otherwise,
oyl ] is initialized with L, y is added to domy, infl[y] is set to the empty
set, and y receives the next available priority by means of the call next_prio().
Subsequently, do_vary(y) is called, followed by a call to iterateq(prio[y])
to complete the widening phase for y. Upon termination, a call iterateg(n)
for an integer n has removed all variables of priority at most n from the
queue Q. It proceeds as follows. If Q is empty or contains only variables of
priority exceeding n, it immediately returns. Otherwise, the variable y with
least priority is extracted from Q. Having processed do_vary(y), the iteration
continues with the tail-recursive call iterateg(n).

It remains to describe the function do_vary. When called with a variable
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void iterateg(n) {

}

if (Q # @ A min_prio(Q) <n) {

vy = extract_min(Q);

do_vary(y);
iterateg(n);

void solvey(y) {

}

if (¥ € domg) return;
domg :== domgy U {y};
prio[y] := next_prio();

ooly] =1,
infl[y] = @,
do_varg(y);

iteratey (prio[y]);

void do_varg(y) {

isp == 1y € point;
point := point \ {v};
evaly(z) {
solveg(z2);
if (prio[z] = prio[y])
point := point U {z};
infl[z] = infl[z] U {y};
return oy(z]);
}
tmp := f; evalg;
if (isp) tmp = 001V tmp;
if (op[y] = tmp) return;

ooly] = tmp;

forall (z € infl[y]) insert z Q;
infl[y] = &

return;

void iterate; (n) {

}

if (Q = @ A min_prio(Q) <n) {
y = extract_min(Q);
solve, (y, prio[y] — 1);
do_vary (y);
iterate; (n);

void solve; (y,n) {

}

if (¥ € dom;) return;
solvey (y);

dom; :== dom; U {y};
o1ly] = ooly];

forall (z € {y} Uinfl[y]) insert z Q;

inflly] = &;
iterate; (n);

void do_vary (y) {

}

isp == y € point;

point := point \ {y};

eval;(z) {
solve; (z, prio[y] — 1);
if (prio[z] = prio[y])

point := point U {z};

infl[z] = infl[z] U {y};
return o;[z];

}

tmp := f;’f evaly;

if (isp) tmp == o[y] A tmp;

if (01[y] = tmp) return;

o1[y] = tmp;

forall (z € infl[y]) insert z Q;
infl[y] = &;

return;

Figure 3.2: Terminating Structured Two-Phase solver (TSTP)
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v, the algorithm first determines whether or not y is a widening/narrowing
point, i.e., contained in the set point. If so, y is removed from point, and the
flag isp is set to true. Otherwise, ispis set to false. Then the right-hand side fﬁ
is evaluated and the result stored in the variable tmp. For its evaluation, the
function f;, however, does not receive the current variable assignment oy but
an auxiliary function evaly which serves as a wrapper to the assignment oy.
The wrapper function evaly, when queried for a variable z, first calls solveq (z)
to compute a first non-trivial value for z. If the priority of z is greater or
equal to the priority of y, a potential widening point is detected. Therefore,
z is added to the set point. Subsequently, the fact that z was queried during
the evaluation of the right-hand side of 1y, is recorded by adding y to the set
infl[z]. Finally, oy[z] is returned.

Having evaluated fﬁ evaly and stored the result in tmp, the function do_var,
then applies widening only if isp equals true. In this case, tmp receives the
value of o[ y] V tmp. In the next step, tmp is compared with the current value
ooly]. If both values are equal, the procedure returns. Otherwise, oy y] is
updated to tmp. The variables in infl[y] are inserted into the queue Q, and
the set infl[ y] is reset to the empty set. Only then the procedure returns.

The functions solve;, iterate; and do_var;, on the other hand, are meant to
realize the narrowing phase. They essentially work analogously to the corre-
sponding functions solvey, iterateg and do_vary. In particular, they re-use the
mapping infl which records the currently encountered variable dependencies
as well as the variable priorities and the priority queue Q. Instead of o, domy,
however, they now refer to o;, domy, respectively. Moreover, there are the
following differences.

First, the function solve; now receives not only a variable, but a pair of an
integer n and a variable y. When called, the function first checks whether
v € dom;. If this is the case, solving immediately terminates. Otherwise,
solveg () is called first. After that call, the widening phase for y is assumed
to have terminated where the resulting value is oy[y]. Accordingly, o[V ]
is initialized with oy[y], and vy is added to dom;. As the value of o; for y
has been updated, y together with all variables in infl[y] are added to the
queue, whereupon infl[ y] is set to the empty set, and iterate; (n) is called to
complete the narrowing phase up to the priority n. Upon termination, a call
iterate; (n) for an integer n has removed all variables of priority at most n
from the queue Q. In contrast to iteratey, however, it may extract variables y
from Q which have not yet been encountered in the present phase of iteration,
i.e., are not yet included in dom; and thus have not yet received a value in
0. To ensure initialization, solve; (v, n) is called for n = prio[y] — 1. This
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choice of the extra parameter n ensures that all lower priority variables have
been removed from Q before do_var; () is called.

It remains to explain the function do_var; (). Again, it essentially behaves
like do_vary(y) with the distinction that the narrowing operator is applied
instead of the widening operator. Furthermore, the auxiliary local function
evaly is replaced with eval; which now uses a call to solve; for the initialization
of its argument variable z (instead of solvey) where the extra integer argument
is given by prio[y] — 1, i.e., an iteration is performed to remove all variables
from Q with priorities lower than the priority of y (not of z).

In light of Theorem 3.5.1, we call the algorithm from Figure 3.2 terminating
structured two-phase solver.

Theorem 3.5.1. The local solver TSTP from Figure 3.2 when started with a
call solve; (yy,0) for a variable vy, terminates for every system of equations
whenever only finitely many variables are encountered.

Upon termination, assignments (ff . Y; > D,i=0,1 are obtained for finite
sets Yo 2 Yy of variables so that the following holds:

1. yo €Yy,
2. U(f is a closed partial post-solution of the abstract system (3.2);

3. Uf is a closed partial assignment such that T & af is a post-solution of
the lower monotonization of the abstract system (3.2).

Proof. Assume that only finitely many variables are encountered during the
run of the algorithm, i.e., from some point neither domy nor dom; receive new
elements. Since solvey () is called before the variable y is added to dom;, and
solvey(y) enforces that y is included in domgy, we have that dom; S domg
throughout the algorithm. Therefore, we define Y; = dom; when the iteration
has terminated for i = 0, 1. Due to the initial call solve; (g, 0), 3¢ is contained
in Y; implying the first item in the list.

Variables y are added into sets infl[z] only during the evaluation of a call
to eval; and after an appropriate call to solve; implying that  is contained
in dom; whenever eval; was called inside a call do_var;(y). Accordingly, all
variables added to the priority queue necessarily are contained in domg. Thus,
all variables for which do_varg is called at a call of iterateq(7) are all contained
in domg, while all variables for which do_var; is called at a call of iterate;(n)
are already contained in dom;. We claim that for every priority n, the following
holds:
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1. Every call iterateg(n) during the evaluation of solveq(0, yy) terminates.

2. Every call iterate; (n) during the evaluation of solve; (0, () terminates
as well.

In order to prove the first claim, assume for a contradiction that there is some
n such that the call iterateg(n) does not terminate. Since Yy is finite, there must
be a variable y of maximal priority prio(y) < n so that do_vary(y) is evaluated
infinitely often. This means that from some point on, y is the variable of
maximal priority for which do_var is called. Let d;, i = 0 denote the sequence
of the new values for y. We claim that for every i > 0, d;1+1; = d; V a; holds
for some suitable value a;. This holds if y € point from the first evaluation
onward. Clearly, if this were the case, we arrive at a contradiction, as any such
widening sequence is ultimately stable. Accordingly, it remains to prove that
from the first evaluation onward, y is contained in point whenever do_vary(y)
is called. Assume for a contradiction that there is a first such call where v is
not contained in point. Assume that this call provided the ith value d; for y.
This means that, since the last evaluation of fﬁ, no query to the value of y
during the evaluation of lower priority variables has occurred. Accordingly,
the set infl[ ] does not contain any lower priority variables, which means that
no further variable is evaluated before the next call do_vary(y). But then this
next evaluation of f}f will return the value a;. Subsequently, the queue Q does
no longer contain variables of priority less then or equal to n, and therefore
the iteration would terminate, in contradiction to our assumption.

Now consider the second claim. For a contradiction now assume that there
is some 1 so that the call iterate; (n) does not terminate. Since every call
iteratey(m) encountered during its evaluation is already known to terminate,
we conclude that there must be a variable y of maximal priority less then
or equal to n so that do_var; () is evaluated infinitely often. As before this
means that from some point on, 7 is the variable of maximal priority for
which do_var,(y) is called. Let d;, i = 0 denote the sequence of the new
values for y. We claim that for every i > 0, d;+1 = d; A a; holds for some
suitable value a;. This holds if d; E d;;+; and v € point from i = 1 onward.
Again, if this were the case, we arrive at a contradiction, as any such narrowing
sequence is ultimately stable. Accordingly, it remains to prove that from
the first evaluation onward, y is contained in point whenever do_var; () is
called. This, however, follows by the same argument as for iterateg(y). This
completes the proof of the claim.

By the claim which we have just proven, each occurring call iterate;(n) will
terminate. From that, the termination of the call solve; (g, 0) follows as stated
by the theorem.
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It remains to prove the remaining two assertions of the enumeration. Again,
we assume that only finitely many variables are encountered in a run of the
local two-phase solver when started for a variable y,, and assume that after
some call to do_var;, no further variable is added to domg, and likewise no
further variable is added to dom;. In order to prove the second assertion, we
prove that the following invariants hold before every call do_var;(y;):

1. For every variable y in the current domain dom,, infl[y] contains (at
least) all variables z € Q U {y,} whose last evaluation of ff has called
eval; (y);

2. If y € domg \ (Q U {y1}), then oy[y] =2 fﬁ(l@ 09);

3. If y € domy \ (Q U {»1}), then 0[] 2 f1 (T & 01);

Here, T is the variable assignment which maps each variable in Y to T.

We prove the first invariant. The set infl[y] is initialized to the empty set in
function solve;, i.e., when the variable is solved for the very first time. In that
case no prior call to eval;(y) from any prior evaluation of any ff happened.
Therefore, no other variable depends on y and infl[ y] = & holds. Now assume
that the variable vy is initialized. Then infl[y] is set to the empty set only in
a call to function do_var;. Before infl[y] is set to the empty set, all variables
which are influenced by y are added to the queue Q. Therefore, all variables
which are influenced by y are in Q or are in the set infl[ ] which proves the
first invariant.

We prove the second invariant. Consider variables y whose current iteration
already terminated, i.e., which are neither in Q nor equal y;. For those variables
v we have that the current iteration only terminates if oy[y] E f yﬁc (T & oy)
holds, proving the second invariant.

We prove the third invariant. For that, consider a call to do_var; (7). If this
is the very first call of do_var; for y;, then this occurs inside a call solve; ().
Accordingly, the value 0[] has been initialized to oy[y]. Then we have, by
the second invariant:

o] = ooli] 2 f3, (T & o) 2 i;l (T & 09)

At that moment, the priority queue does not contain any variable y with
priority less or equal the priority of y4, implying that for all these v, o[y] =
iﬁ/ (T & o7) holds. Accordingly, all variables z from infl[ y, ] with priority less
or equal to y; will subsequently be iterated upon with iterate;. But since these

89



3 Terminating Local Solvers

variables z satisfy o[z] 3 i i (T ® 07), the invariant holds for the calls of
do_var; therein.

By construction, O is the maximal priority of any variable. y, receives the
greatest priority. Therefore, solve; (0, ) returns with an empty queue Q. By
the third invariant the second assertion of the theorem follows. O

3.6 Terminating Structured Mixed-Phase Solving

The draw-back of the two-phase solver TSTP from the last section is that it
may lose precision already in very simple situations.

Example 3.6.1. Consider the system:

Y1 = max(y1, y2)
Y2 = min(y3,2)
Ys=y2+1
over the complete lattice N U {co} of natural numbers (equipped with the

natural ordering and extended with oo as top element) and the following
widening and narrowing operators:

oo ifa<b
aVb= .
a otherwise

b ifa=o
alAb= )
a otherwise

Then solvey(y;) detects y» as the only widening point resulting in
00 = {1 = 0,y = 00, y3 > 0}

A call to solve; (4, 0) therefore initializes y; with co implying that o[ y;] =
irrespective of the fact that o;[y,] = 2. [

We may therefore aim at intertwining the two phases into one without
sacrificing the termination guarantee. The idea is to operate on a single variable
assignment only and iterate on each variable first in widening and then in
narrowing mode. In order to keep soundness, after every update of a variable
vy in the widening phase, all possibly influenced lower priority variables are
iterated upon until all stabilize with widening and narrowing. Only then the
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widening iteration on 7 continues. If on the other hand an update for y occurs
during narrowing, the iteration on possibly influenced lower priority variables
is with narrowing only. The distinction between the two modes of the iteration
is maintained by a flag where false and true correspond to the widening and
narrowing phases, respectively. The algorithm is provided in Figure 3.3.

Initially, the priority queue Q and the set dom are empty. Accordingly, the
mappings o . dom — D and infl: dom — Y are also empty. Likewise, the
set point is initially empty. Solving for the variable y, starts with the call
solve(yy). Solving for some variable 7y first checks whether y € dom. If this
is the case, solving immediately terminates. Otherwise, v is added to dom
and receives the next available priority by means of a call to next_prio. That
call should provide a value which is less than any priority of a variable in dom.
Subsequently, the entries o[y] and infl[y] are initialized to L and the empty
set, respectively, and do_var is called for the pair (false, y). The return value
of this call is stored in the Boolean variable b’. During its execution, this call
may have inserted further variables into the queue Q. These are dealt with by
the call iterate(b’, prio[y]).

Upon termination, a call iterate(b, n) has removed all variables of priority
at most n from the queue Q. It proceeds as follows. If Q is empty or contains
only variables of priority exceeding n, it immediately returns. Otherwise, the
variable y with least priority n’ is extracted from Q. For (b, y), do_var is
called and the return value of this call is stored in b’.

Now we distinguish several cases. If b = true, then the value b’ returned
by do_var will necessarily be true as well. In that case, iteration proceeds by
tail-recursively calling again iterate(true, ). If on the other hand b = false,
then the value b’ returned by do_var can be either true or false. If b’ = false or
b’ = true and n’ = n, then iterate(b’, n) is tail-recursively called. If, however,
b’ = true and n > n’, then first a sub-iteration is triggered for (true, n") before
the main loop proceeds with the call iterate(false, n).

It remains to describe the function do_var. When called for a pair (b, y)
consisting of a Boolean value b and variable 1y, the algorithm first determines
whether or not y is a widening/narrowing point, i.e., contained in the set point.
If so, v is removed from point, and the flag isp is set to true. Otherwise, isp
is just set to false. Then the right-hand side f; is evaluated and the result
stored in the variable tmp. For its evaluation, the function f;, however, does
not receive the current variable assignment o, but an auxiliary function eval
which serves as a wrapper to o. The wrapper function eval, when queried
for a variable z, first calls solve(z) to compute a first non-trivial value for
z. If the priority of z exceeds or is equal to the priority of 7y, a potential
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void iterate(b, n) {
if (Q # 3 A min_prio(Q) <n) {

v = extract_min(Q);

b" := do_var(b, y);

n' = prio[y];

if(b+xb An>n'){
iterate(b’,n’);
iterate(b, n);

} else iterate(b’, n);

bool do_var(b, y) {

isp = y € point;

point := point \ {v};

eval(z) {
solve(z);
if (prio[z] = prio[y])

point := point U {z};

infl[z] = infl[z] U {y};
return o[z];

}

tmp = f5 eval;

b’ = b;

void solve(y) {
if (y € dom) return;
dom :=dom U {y};
prio[y] := next_prio();
olyl=1;
inflly] = &;
b" = do_var(false, y);
iterate(b’, prio[y]);

if (isp)

if (b) tmp = o[y] A tmp;

else if (tmpE o[y]) {

tmp = o[y] A tmp,
b’ = true;

} else tmp == o[y] V tmp;
if (o[y] = tmp) return true;
oly] = tmp,
forall (z € infl[y]) insert z Q;
infl[y] = &;
return b’;

}

Figure 3.3: Terminating Structured Mixed-Phase solver (TSMP)
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widening/narrowing point is detected. Therefore, z is added to the set point.
Subsequently, the fact that the value of z was queried during the evaluation
of the right-hand side of vy, is recorded by adding 7y to the set infl[z]. Finally,
the value o[z] is returned.

Having evaluated fﬁ eval and stored the result in tmp, the function do_var
then decides whether to apply widening or narrowing or none of them accord-
ing to the following scheme. If isp has not been set to true, no widening or
narrowing is applied. In this case, the flag b’ receives the value b. Therefore
now consider the case isp = true. Again, the algorithm distinguishes three
cases. If b = true, then necessarily narrowing is applied, i.e., tmp is updated
to the value of o[y] A tmp, and b’ still equals b, i.e., true. If b = false then
narrowing is applied whenever tmp C o[y] holds. In that case, tmp is set to
o[y]Atmp, and b’ to true. Otherwise, i.e., if b = false and tmp % o[y], then
widening is applied by setting tmp to o[y] V tmp, and b’ obtains the value
false.

In the next step, tmpis compared with the current value o[y ]. If their values
are equal, the value true is returned. Otherwise, o [y] is updated to tmp. The
variables in infl[y] are inserted into the queue Q, and the set infl[ ] is reset
to the empty set. Only then the value of b’ is returned.

Example 3.6.2. Consider the system of equations from Example 3.6.1. Calling
solve for variable y; will assign the priorities 0, —1, —2 to the variables y1, y»
and 3, respectively. Evaluation of the right-hand side of y, proceeds only after
solve(y») has terminated. During the first update of y», y» is inserted into the
set point, implying that at the subsequent evaluation the widening operator
is applied resulting in the value o for y, and y3. The subsequent narrowing
iteration on y, and ys3 improves these values to 2 and 3, respectively. Only
then the value for y, is determined which is 2. During that evaluation, y; has
also been added to the set point. The repeated evaluation of its right-hand side,
will however, again produce the value 2 implying that the iteration terminates
with the assignment

o={y1~ 2,2~ 2,y3~ 3} [

In light of Theorem 3.6.1, we call the algorithm from Figure 3.3, terminating
structured mixed-phase solver or TSMP for short.

Theorem 3.6.1. The local solver TSMP from Figure 3.3 when started for a
variable vy, terminates for every system of equations whenever only finitely
many variables are encountered.
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Upon termination, an assignment o . Y, — D is returned where Y, is the set
of variables encountered during solve(yy) such that the following holds:

* Yo €Y,

+ o is a closed partial assignment such that T ® o* is a post-solution of
the lower monotonization of the abstract system (3.2).

Proof. Assume that only variables from the finite set Y, are encountered during
the run of the algorithm. We claim that for every priority i, the following holds:

1. Every call iterate(true, i) during the evaluation of solve(y,) terminates.

2. Every call iterate(false, i) during the evaluation of solve(y,) terminates
as well.

In order to prove the first claim, assume for a contradiction that there is some
i such that the call iterate(true, i) does not terminate. Note that then any
subsequent call to do_var as well as iterate will always be evaluated for the
Boolean value true. Since Yj is finite, there is a variable y of maximal priority
prio(y) < i so that do_var(true, y) is evaluated infinitely often. This means
that from some point on, 7 is the variable of maximal priority for which do_var
is called. Let d;, i = 0 denote the sequence of the new values for y. We claim
that for every i > 0, d;+; = d; A a; holds for some suitable value a;. This
holds if v € point from the first evaluation onward. Clearly, if this were the
case, we arrive at a contradiction, as any such narrowing sequence is ultimately
stable.

Accordingly, it remains to prove that from the first evaluation onward,
vy is contained in point whenever do_var(true, y) is called. Assume for a
contradiction that there is a first such call where 7y is not contained in point.
Assume that this call provided the ith value d; for . This means in particular
that, since the last evaluation of fﬁ, no query to the value of y during the
evaluation of lower priority variables has occurred. Accordingly, the set infl[y]
does not contain any lower priority variables, which means that no further
variable is evaluated before the next call do_var(true, 7). But then this next
evaluation of fﬁ will return the value d;. Subsequently, the queue Q no longer
contains variables of priority < i, and therefore the iteration would terminate,
in contradiction to our assumption.

Let us therefore now consider the second claim. For a contradiction now
assume that there is some i so that the call iterate(false, i) does not terminate.
Since every call iterate(true, j) encountered during its evaluation is already
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known to terminate, we conclude that there must be a variable y of maximal
priority < i so that do_var(false, y) is evaluated infinitely often. As before
this means that from some point on, y is the variable of maximal priority for
which do_var(false, ) is called. Let d;, i = 0 denote the sequence of the new
values for y. We claim that for every i = 0, d;+1 = d; V a; holds for some
suitable value a; where y € point from i = 1 onward. Again, if this were the
case, we arrive at a contradiction, as any such widening sequence is ultimately
stable.

Accordingly, it remains to prove that from the first evaluation onward, y is
contained in point whenever do_var(false, y) is called. This, however, follows
by the same argument as for iterate(true, y). This completes the proof of the
claim.

Now assume that only finitely many variables are encountered in a run of
TSMP when started for a variable x, and assume that after some call to do_var,
no further variable is encountered. Let Y, denote this set of variables. By
the claim which we have just proven, each subsequent call to the function
iterate will terminate. From that, the termination of the call solve(yy) follows
as stated by the theorem.

It remains to prove the second assertion. We remark that, whenever a new
variable is encountered, it is added into the set dom and never removed. Let
Y, again denote the finite set of variables encountered during solve(yy), i.e.,
the final value of dom. In particular, Y, is contained in Y,. In order to prove
the second assertion, we note that the following invariants hold before every
call do_var(b, y):

1. For every variable y in the current domain dom, infl[y] contains (at
least) all variables z € Q U {y,} whose last evaluation of ff has called
eval(y);

2. 1f y € dom\ (QU {»m}), then o'[¥] 2 f? (T & 0);

3. If b = true, then o[y,] = i;l (T® o).

The proof of the first and second invariant is similar as for the proof in Theo-
rem 3.5.1. Here, T is the variable assignment which maps each variable in Y, to
T. In order to see the third statement, we observe that iteration on a variable
always starts with the flag false. Now consider a call to do_var(false, y;) where
b’ is set to true. This is the case when o [y;] 2 tmp where tmp is the value of
the last evaluation of the right-hand side of y;. Accordingly,

o2 fH (T80 2f (Teo)

95



3 Terminating Local Solvers

At that moment, the priority queue does not contain any variable y with priority
less or equal the priority of y,, implying that for y, o[y] 3 ﬁ) (T @ o) holds.
Accordingly, all variables z from infl[y;] with priority less or equal to y;
will subsequently be iterated upon with b = true. But since these satisfy
olz] 2 f7(T @ o), the invariant holds for the calls of do_var therein.

By construction, y, receives the greatest priority. Therefore, solve(yy)
returns with an empty queue Q. By the second invariant the second assertion
of the theorem follows. O

By Theorem 3.6.1 the only condition for TSMP to terminate is that only
finitely many variables are encountered. No further assumptions, e.g., w.r.t.
monotonicity of right-hand sides must be made as in [ASV13; Ama+16]. Upon
termination, the algorithm is guaranteed to return sound results. The returned
variable assignment is a (partial) post-solution of the lower monotonization
of the system, which means it may not necessarily be a post-solution of the
original system, given that some right-hand sides are not monotone.

3.7 Concretization only

So far, we have assumed that we are given a Galois connection to relate concrete
sets of states and abstract values. In some applications, though, such a Galois
connection may not exist (see [CC92] for a detailed discussion). In this case, a
best abstract description of a set of states (as otherwise given by means of the
abstraction function «) may not always exist. Accordingly, the meet of two
sound descriptions need no longer be a sound description. This implies that
the concept of lower monotonization as presented in Section 3.1 can no longer
be used for proving the correctness of fixed point algorithms. In the following
we indicate how we can deal with this more general setting.

Assume thus that we are given a monotone concretization functiony : D - C
with y(T) = Q only which provides for each element d € D the set y(d)
described by d. For a non-empty subset D S D, we define the y-closure t,D
by

tyD={de€D|Qp <y}

where
Qp=N{yd)|d €D}

Note that, according to our assumption on the value y(T), T is always con-
tained in 1, D. We call a non-empty subset D € D y-closed, if D = 1,D. For
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consider the set y consisting of all y-closed subsets D < D, i.e., @y =
{D c ’ D=1%D } We establish functions &: C —» D, and y: D, — Cby

&(Q)={debD|Qcy(d} and y(D):=Qp

With the ordering &, given by Dy &, D, iff D; 2 D,, the set D, is a complete
lattice where the least upper bound is given by ||, D = () D. For the latter,
we need to convince ourselves that () D is indeed y-closed:

ND={deD|VDeDdecD}

{deD|U{Qp|IDeD}cyd}

=&(U{Qp[DeD})
€D,

Accordingly, the pair (&, y) forms a Galois connection between C and D, .
The greatest lower bound operation [ ], on D, exists (as D, is a complete
lattice) but is more complicated than plain union of sets:

M, D=1,UD)

as y-closedness is not preserved under union.
Furthermore, we consider the mapping ¢, : D — D, defined by

y(d = {deD|y@dcyd)}
= 1,{d}

This mapping is monotone, but not necessarily injective. Still, the following
two properties hold:

1. y(d) = y(ty(d)), and
2. y(D) < y(d) foralld € D.

For a function f: (Y - D) — D, we introduce the y-monotonization f, . (Y —
D,) — D, as the substitute of the lower monotonization in case that we are
given a concretization function y only. The function f, is defined by

fo=M{ufor|vyev.omeoml
Y

ty (U { Ly (fo') ‘ VyeY.o (y) € o(y) })
X (ﬂ {y(faoh|Vyey.o'(y) € o(y) })
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We notice that the function f, is monotone where for every ¢’ : Y — D,
fy(tyod) Ey i, (fo')

Thus, if f is sound (w.r.t. R and y) then so is f, (w.r.t. R and y). As the
y-monotonization of the system (3.2), we therefore define the system

y=fry, YEY (3.8)

As all right-hand sides of equations in the system (3.8) are monotone, this
system has a least solution ¢: Y — D, which is sound. Accordingly, any
assignment o . Y — D so that ¢, o0 is a post-solution of the y-monotonization,
i.e, if 0 E, 1, o o holds, is sound as well.

Assume that the binary operators V and A on D satisfy the properties

y(a)Uy(b) € y(aVb)
y@a)Nny() cylalAb) cy(a)

In particular, for any y-closed set D, a, b € D implies that
DE, ty(a) My t,(b) E, ty(aADb) Ey ty(a)

holds. We additionally assume that for all sequences b;, i > 0 the sequences
ai,i>0and a;, i > 0, defined by:

ai+1 =a; Vb, and aj., =a;Ab;

both are ultimately stable for all ag, a; € D. Note that the stability notion is
defined relative to D (and not relative to D,). Operators with these properties
have already been proposed in [Coul5] where they are called sound (w.r.t. the
concretization y).

Theorem 3.7.1. Assume that the local solvers TSTP and TSMP from Sections 3.5
and 3.6 are equipped with sound widening and narrowing operators. Upon
termination, each of them returns a closed partial assignment o €Y — D so
that i, o (T ®0) is a post-solution of system (3.8), i.e., the y -lower monotonization
of system (3.2). Consequently, the mapping T @ o is sound (w.r.t. the description
relation R and the concretization y). Upon termination, each of them returns a
closed partial assignment o . Y — D so that t, o (T & o) is a post-solution of
system (3.8), i.e., the y-monotonization of system (3.2). O
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We remark that at no point during the whole construction we had to refer to
the original ordering of D, but instead based all our considerations onto the
function y, the element T and the operators V and A. Therefore, we may drop
the assumption for the algorithms that D is a complete lattice and work with
ordinary partial orders, possibly extended with a maximal element T where
the start value L may be any element in D.

3.8 Interprocedural Analysis

As seen in example 3.4.1, the concrete semantics of programs with procedures
can be formalized by a system of equations over a set of variables X = {{u, q) |
u € U,q € Q} where U is a finite set of program points and Q is the set
of possible system states. A corresponding abstract system of equations for
interprocedural analysis can be formalized using abstract variables from the set
Y = {{u,a) | u € U,a € D} where the complete lattice D of abstract values
may also serve as the set of abstract calling contexts for which each program
point u may be analyzed. The description relation R between concrete and
abstract variables is then given by (u,q) R (u,a) < q € y(a) for all
(u,q) € X and (u,a) € Y and program points u € U. Moreover, we require
that for all right-hand sides f, of the concrete system and f; of the abstract
system f q S y( f; a) holds, whenever x R y and g € y(a). Right-hand sides
for abstract variables are given by expressions e according to the following
grammar:

e = dlalgie el (ue (3.9)

where d € D denotes arbitrary constants, « is a dedicated variable represent-
ing the current calling context, g* : D — - — D is a k-ary function, and (u, )
with u € U refers to a variable of the equation system. Each expression e
describes a function [e]?: D — (Y - D) — D which is defined by:

[d]fao = d

[x]*ao = a

[g°e1—e]faoc = g°([ei]fao)-([e]*ao)
[{(u,e)l*aoc = o{(u,lel*ao)

A finite representation of the abstract system of equations is then given by
the finite set of schematic equations

(U, x) = ey, ueu (3.10)
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for expressions e,,. Each schematic equation (u, ) = e, denotes the (possibly
infinite) family of equations for the variables (u,a),a € D. For each a € D,
the right-hand-side function of (u, a) is given by the function [e,]? a. This
function is indeed pure for every expression e, and every a € D. Such systems
of equations have been used, e.g., in [CC77b; ASV12] to specify interprocedural
analyses.

Example 3.8.1. Consider the schematic system:

(u, ) (v, (v, (u,x))) U
(v,x) = g% (v,x) U«

for some unary function g% : D — D. The resulting abstract system simulates
the concrete system from Example 3.4.1, if g(q) < y(g*(a)) holds whenever
qa < ya). m

As we have seen in the example, function calls result in indirect addressing
via nesting of variables. In case that the program does not have recursive
procedures, there is a mapping A: U — N so that for every u with current
calling context «, right-hand side e, and every subexpression (u’,e’) of e,
the following holds:

o If A1) = A(u), thene' = «;
¢ If A1) = A(u), then A(u') < A(u).

If this property is satisfied, we call the equation scheme stratified where A(u)
is the level of u. Intuitively, stratification means that a new context is created
only for some point 1" of a strictly lower level. For the interprocedural analysis
as formalized, e.g., in [ASV12], all program points of a given procedure may
receive the same level while the level decreases whenever another procedure
is called. The system from Example 3.8.1 is stratified: we may, e.g., define
A(u) =2 and A(v) = 1.

Theorem 3.8.1. The solver TSTP as well as the solver TSMP terminate for strat-
ified equation schemes.

Proof. We only consider the statement of the theorem for solver TSMP, for
the solver TSTP the proof is similar. Assume we run the solver TSMP on
an abstract system specified by a stratified equation scheme. In light of
Theorem 3.6.1, it suffices to prove that for every u € U, only finitely many
contexts a € D are encountered during fixed point computation. First, we note
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that variables (u, a) may not be influenced by variables (v, a’) with a higher
level, i.e., whenever A(u) < A(v) holds. Second, we have that new contexts for
a point u at some level k are created only by evaluation of right-hand sides of
variables v of higher levels. Third, since U is finite, the level can decrease only
finitely often.

We proceed by induction on k. Assume that k is the least level, i.e., there
exists no v € U such that A(v) < k. Then evaluating a call solve (u, a) with
A(u) = k will query at most other variables (u’,a’) where A(u’) = k and
therefore a = a’ holds. Hence, no new context is created and therefore only
finitely many variables have to be queried.

Now assume that k is not the least level and that we have proven termination
for all calls solve (v, b), A(v) < k. Then evaluating a call solve (u, a) with
A(u) = k will either query the values of other variables (1, a’) where A(u’) =
k and therefore a = a’ holds. Hence, no new context is created and therefore
only finitely many variables have to be queried. Or variables (1', a’) are queried
with A(u") < k. For those which have not yet been encountered solve (u’,a’)
is called. By induction hypothesis, all these calls terminate and therefore
only finitely many variables are queried. As the evaluation of solve (u, a)
encounters only finitely many variables, it terminates. O

A similar argument explains why interprocedural analyzers based on the
functional approach of Sharir and Pnueli [SP81; AM95] terminate not only for
finite domains but also for full constant propagation, if only the programs
are non-recursive. However, for interprocedural analysis we often encounter
the situation where we are faced with recursive programs and therefore with
recursive equation systems, i.e., in particular with non-stratified equation
systems. We already observed that local solving of a particular variable does
not terminate, if during the computation infintely many contexts and therefore
infinetely many variables, have to be considered. In the following we introduce
a method in order to decide which variable is abstracted by another one. By
a suitable choice of an abstract variable function, this enables use to finitely
bound the number of contexts and, therefore, also of variables, which have
to be considered during a fixed point iteration. A similar approach has been
proposed for the C1AO compiler where widening is performed on the calling
contexts [PAHOG6].

An abstract variable function absVar: (Y ~ D) - Y — Y, where the first
parameter is a partial variabel assignment, must fulfill the following properties:

(@absvar.l) VoS Y ->D: xRy = x R (absVaro y)
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(absVvar.2) Let vy, ¥», ¥v3,... with Y, € Y be an arbitrary sequence of variables,
and oy, 0, 03, ... with o . Yy, — D where Y, S Y be a sequence of partial
variable assignments such that Yy, = Yx U { absVar oy v }. Then there
exists an i € N such that Y; = Yj;.

The first property (absVar.1) ensures that an abstract variable function absVar
respects the description relation R. Hence whenever a concrete variable x € X
and an abstract variable y € Y are in the description relation R, i.e., x R y
holds, then the abstract variable ' = absVar ¢ y is also in relation with x,
i.,e.,, x R v holds, for all o. The second property (absVar.2) ensures that
any increasing sequence Yy, Y, Y3, ... with Yy, = Y U {absVaroy yi } is
ultimately stable. In particular, if initially Y; is a finite subset of Y, then by
the property it is ensured that there exists a partial assignment o: Y’ —
such that Vy € Y.(absVaro y) € Y’ where Y’ is a finite subset of Y. For
each such abstract variable function we have:

Lemma 3.8.2. For any concrete variable assignment o . X — C and partial
abstract variable assignment o* € Y — D, if o R* (T ® o*) holds, then
o R* ((T®o?) o(absVaro?)). O

We already observed that if indirect addressing is involved, i.e., right-hand
sides of the equation system contain expressions of the form (u, g% e, - ex) or
(u, (v, e)), then local solving may not terminate since infinitely many variables
might be encountered. However, the problem of non-termination might even
arise if only direct addressing occurs.

Example 3.8.2. Consider the infinite abstract equation system

i+ {(u,i+1), i€ N
0

(u, 1)
(u, co)

over the complete lattice N U {oo} of natural numbers equipped with the
natural ordering and extended with oo as top element. Although, every context
of every variable is statically known, in order to solve any variable (u, k),
k € N infinitely many variables have to be solved. Let y; = (u,i) and ff =
i+ yi+1 be the corresponding right-hand side of the variable y;. We then have
dep(fi, T®o*)=Y\{»,...,yn} foraloc* €Y - Dandn € N. n

In the following we modify the abstract equation system in order to en-
sure that only finitely many variables have to be solved for any initial query.
So far right-hand-side functions [e]?: - (Y - D) — of an abstract
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equation system where derived from expressions e which are generated by
the grammar (3.9). Let us now consider modified right-hand-side functions
[-1°: — (Y - D) — D which incorporate an abstract variable function
absVar. An expression of the form (u, e) then describes a function [{u,e)]°
which is defined by:

[{u,e)]®aoc = o(absVaro (u,[e]° a o))

For all other expressions e we have [e]° = [e]?. The functions [-]° then give
rise to an equation system of the form

(u,a) = [e,]° a, (u €U,a €D) (3.11)
for which we obtain the following lemma:

Lemma 3.8.3. Let o be the least solution of the concrete equation system (3.1)
and o? be a post-solution of the lower monotonization of the abstract equation
system (3.11), then o R* o*. O

Theorem 3.8.4. For every local solver, assume that oy . Yy — is the kth
computed partial assignment such that Y, € Yy, S Y holds for all k. If started
for some variable in Y and abstract equation system (3.11), then there exists an
i € N such thatY; = Y1y foralln € N.

Proof. By construction of the equation system (3.11) it is ensured that each
variable y € Y occurring in a right-hand side is not queried directly. Instead
in iteration i a variable Y’ = absVar g; y is queried by a local solver such that
the resulting assignment 0.1 . Y;+1 — D satisfies Y;,; = Y; U {y’}. According
to property (absVar.2) there exists an i € N such that Y; = Y;,; holds for any
variable y’. O

What remains is to give an effective function absVar, which we provide in the
following. Let us denote by dom (o) the domain of a given partial assignment
o € Y — D. Furthermore, assume we are given a function t . U — N which
assigns to each program point u € U a number n € N with the additional
understanding that the program point u should be analyzed for at most n
many contexts precisely.

let absVar o (u,a) = ifa € (ctx, o) or #(ctx,, o) < t(u) then (u,a)
else if 3b € (ctx, 0).a E b then (u, b)
elseletd = | |(ctx, o) in {u,d V a)

let ctx, O = {al{u,a) €dom(o)}
(3.12)
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Lemma 3.8.5. The function absVar from (3.12) fulfills the properties (absVar.1)
and (absVar.2).

Proof. We first prove that absVar fulfills property (absVar.1). Letoc € Y —
and y' = (u, b) = absVar o y for some v = (u,a) € Y. Furthermore, assume
that x R y holds for some x = (u,q) € X. We then have that a E b holds.
Since a € y(a) and y(a) € y(b), we conclude that x R " holds proving the
first assertion of the lemma.

We prove that absVar fulfills property (absVar.2). Let o:. Y; — with
Y; € Y and y' = absVaro y for some y = (u,a) € Y. We have that y’ € Y;
if and only if there exists no (u,b) € Y; with a = b. In that case Yy’ =
(u, (L] ctx, (o)) V a). By widening we conclude that there exists an i such
that y' € Y;. Therefore, we consider only finitely many contexts for each
program point and since we only consider finitely many program points the
assertion of the lemma follows. O

In total we have the following result for our local solvers TSTP and TSMP.

Theorem 3.8.6. The solvers TSTP and TSMP terminate for every abstract equa-
tion system of the form (3.11) equipped with the function absVar from (3.12).
The computed partial assignments are sound. O

3.9 Summary

We have presented local solvers which are guaranteed to terminate for all
abstract systems of equations whenever only finitely many variables are
encountered—irrespective of whether right-hand sides of the equations are
monotone or not or whether the complete lattice has infinite strictly ascend-
ing/descending chains or not. Furthermore, we showed that interprocedural
analysis with partial tabulation of procedure summaries based on these solvers
is guaranteed to terminate firstly for non-recursive programs and generalized
it afterwards even for recursive programs. Clearly, theoretical termination
proofs may only give an indication that the proposed algorithms are well-suited
as fixed point engines within a practical analysis tool. Termination within rea-
sonable time and space bounds is another issue. Some practical experiments
within the analysis framework GOBLINT have been provided in [SSV17] which
seem encouraging. Interestingly, a direct comparison of the two-phase versus
mixed-phase solver for full context-sensitive interprocedural analysis, indi-
cated that TSMP was virtually always faster, while the picture w.r.t. precision
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is not so clear. Also, the new solvers always returned post-solutions of the
abstract systems—although they are not bound to do so.

In case that widening and narrowing were defined relative to the ordering
on D, our correctness proofs required a Galois connection to relate the con-
crete with the abstract domain. In Section 3.7, however, we showed that our
algorithms remain correct when widening and narrowing operators are used
which are sound w.r.t. the concretization. In this case, the requirement of a
Galois connection can be dropped.
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4 Conclusion

In this thesis we covered two aspects of interprocedural static program analysis.
First we explored Herbrand equalities and introduced a novel analysis which
is based on procedure summaries. In the second part of this thesis we then
introduced two novel local solvers which can be used in the general setting
of abstract interpretation. We also gave explicit examples of interprocedural
analyses in Section 3.8 where we made use of partial tabulation of procedure
summaries in order to demonstrate the strengths of the presented local solvers.

4.1 Contributions

In the field of Herbrand equalities we extended the state of the art analyses
in order to infer all interprocedurally valid Herbrand equalities for programs
where all assignments are taken into account whose right-hand sides depend
on at most one variable. The novel analysis is based on the following core
contributions:

+ An extension of the analysis presented in [GT07] where programs must
contain only unary operators to programs with operators of any arity—as
long as at most one variable occurs (possibly multiple times) in a term.
This extension can be seen as the non-trivial complication derived from
dealing with terms instead of words.

+ A method to uniquely factorize all possibly occurring run-time values
into tree patterns—except finitely many.

+ A notion of approximate subsumption which is decidable and which still
guarantees that every occurring conjunction of equalities is effectively
equivalent to a finite conjunction.

+ An in-depth analysis of the complexity showing that for initialization-
restricted programs a succinct representation of all interprocedurally
valid two-variable Herbrand equalities can be computed in polynomial
time. For unrestricted programs we had that a two-variable invariant
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candidate x = ty can be verified in time polynomial in the size of the
program and in the size of t. Additionally for unrestricted programs a
multi-variable invariant candidate x = t where t € T4 (X) can be verified
in time polynomial in the size of the program and in the size of t and
only exponentially in the number of variables occurring in t.

In the second part of this thesis two novel local solvers TSTP and TSMP
were provided in order to compute (partial) solutions of equation systems. At
first the solver TSTP was introduced which separates widening and narrowing
into different phases. Subsequently the solver TSMP was presented which
breaks up with this approach and intertwines widening and narrowing into
one phase, similarly as it is done for the solver SLR3. However, in contrast to
SLR3 the solver TSMP introduces extra logic in order to decide when widening
or narrowing has to be used. The following core contributions were provided:

+ Termination guarantees for every system of equations—irrespective if
occurring right-hand sides are monotone or not—were given for both
local solvers, if only finitely many variables are encountered during a
run.

+ For stratified equation systems, which may arise for interprocedural
analysis of non-recursive programs, we showed that at most finitely
many variables are encountered during a run and, therefore, both solvers
always terminate.

+ For the general case an abstract variable function was introduced which
ensures that at most finitely many variables are encountered during
any run. That means, by over-approximating calling contexts for each
procedure, the number of possible contexts is kept finite. Hence, even
for recursive programs, termination is guaranteed.

+ Soundness arguments were given for both local solvers, i.e., upon termi-
nation the computed partial solutions of both solvers are sound w.r.t.
description relation R and the concretization y. At first we required a
Galois connection and subsequently dropped this requirement, i.e., we
considered the case when no abstraction function « is available.

4.2 Future work

For the case of computing all valid two-variable Herbrand equalities we made
use of conjunctions of equalities of the form As = Bt where s and t are terms

108



4.2 Future work

containing at most one program variable. The presented algorithm to decide
subsumption heavily depends on the unique factorizations of terms. However,
as observed in Section 2.11.2 for unrestricted programs, a solution for A or
B might not reflect the unique factorization of s or t at all, i.e., these terms
can be in the set Cq \ M;. Hence, in order to compute all solutions or to
verify an invariant candidate a succinctly represented term might very well
be made explicit. Therefore, for unrestricted programs we were only able to
verify an invariant candidate in time polynomial in the size of the program
and in the size of the invariant candidate. It might be worthwhile to reconsider
the second-order unification problem for these particular equalities. In case
that satisfiability is decidable and finally also subsumption, then the terms
need not be represented by their unique factorizations. By a suitable compact
representation of such terms it might be possible to compute a succinct
representation of all valid two-variable Herbrand equalities in time polynomial
in the size of the program. The succinct representation might be more natural
than the representation of the invariants by a conjunction of equalities—as it
is the case now—or even more natural than the program itself.

Ultimately it is still an open question how to infer all valid Herbrand equal-
ities of programs where right-hand sides contain arbitrarily many program
variables.

For the two novel local solvers TSTP and TSMP it remains open to extend them
in a way which allows restarting as proposed in [Coul5]. That means, once
a solution is computed, the solvers start all over again but this time in each
widening step the computed result is upper bounded by the previous known
solution. This could result in more precise solutions by not overshooting the
least/greatest fixed point too much in the widening step which is hard or even
impossible to recover in the narrowing step.

Finally in Section 3.8 we presented the idea of a function absVar in order to
keep the number of variables of an equation system for which a solution must
be computed finite. Instead of using the function for every variable look-up it
might be of interest to only use this function for variables which correspond
to recursive procedures. By that loss of precision would be introduced only for
recursive procedures, while it should still be guaranteed that only finitely many
variables are encountered during any run. This would mean that termination
would be guaranteed even for equation systems corresponding to recursive
programs.
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