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Summary 

Metabolomics can provide deep insights into the underlying biochemical mechanisms of 

diseases. Supporting this hypothesis, studies have shown that metabolic measurements in blood 

can reflect metabolic changes during the development of type 2 diabetes (T2D). To further 

investigate this relationship, the first part of this thesis addresses the association between blood 

metabolites and diabetes. Since ratios of metabolite concentrations can serve as proxies for 

enzymatic reaction rates pairwise metabolite ratios were used to identify associations with T2D. 

This analysis aimed to validate previous analyses studying the association between pairwise 

metabolite ratios and insulin response. In this study, four cohorts from the Netherlands and 

Germany were used to analyze the associations between incident and prevalent T2D and 

metabolite ratios. Out of 9,045 analyzed ratios one novel association was detected, that of the 

valine to phosphatidylcholine acyl-alkyl C32:2 (PC ae C32:2) ratio.  

Furthermore, in the Cooperative Health Research in the Region of Augsburg (KORA) study, the 

performance of different models was compared by measures of the time-dependent receiver 

operating characteristics and net reclassification improvement. Modest improvements were 

observed after the addition of this metabolite ratio to a model based on a set of established risk 

factors.  

Such variations in metabolite levels can be influenced by genetic and epigenetic changes. Thus, 

many genome-wide association studies (GWAS) have been conducted. However, so far only a 

minor part of the total metabolite variation can be explained by common sequence variants. This 

leads to the assumption that the analysis of multiple “omics” layers (such as the combination of 

genomics, epigenomics, proteomics….) – and their interactions – help to further explain 

variations in metabolite levels. Previous interaction analyses in GWAS mainly considered 

interactions between single-nucleotide polymorphisms (SNPs) and ignored possible interactions 

between different “omics” layers. Thus, the second part of this thesis concerns the development 

of a statistical tool to analyze different “omics” layers, e.g., DNA methylation and genetic 

variants, in a reasonable amount of time. This novel R package, called pulver, is the first tool to 

allow the computation of p-values of billions of linear regressions with an interaction term within 

only a few days.  



VIII 

 

The rapid running time was achieved by using the correlation coefficient to test the null-

hypothesis, i.e., whether the coefficient of the interaction term significantly differs from zero. 

Usually, for that the time intensive computation of matrix inversion is used.  

To further accelerate the run time, the order of the matrices, when to iterate through which 

“omics” layer, was taken into account and the tool was implemented in the fast programming 

language C++. Given the possible interplay between different “omics” layers in biological 

processes, pulver can be used to conduct comprehensive screenings that are beyond the 

capabilities of existing tools. 

This R package was applied to real-world data from the KORA study, comparing metabolite 

levels with the interaction of genetic variants and DNA methylation sites. Hereby, one 

significant locus, near the ACADS gene, was found. Genetic and epigenetic interaction at this 

locus was found to influence levels of the metabolite butyrylcarnitine. 

Furthermore, this R package was also applied to the previously identified ratio, valine to PC ae 

32:2. However, no statistically significant associations were identified after strict correction for 

multiple testing. 

In conclusion, this thesis provides analyses and tools to build a more holistic picture of human 

metabolism. This is achieved by identifying disease (T2D) related metabolite changes and by 

combining different “omics” layers (metabolomics, genetics, and epigenetics) to detect 

interactions in a more efficient way.  
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Zusammenfassung 
Die Metabolomik kann zum grundlegenden Verständnis biochemischer 

Erkrankungsmechanismen beitragen. So haben Metabolitenmessungen im Blut gezeigt, dass sie 

die metabolischen Änderungen während der Entwicklung zum Typ 2 Diabetes (T2D) 

widerspiegeln können. Aus diesem Grund behandelt der erste Teil der Dissertation die 

Assoziation zwischen Metaboliten im Blut und Diabetes. Da Verhältnisse der Konzentration 

verschiedener Metabolite auch als enzymatische Reaktionsrate dienen können, wurden paarweise 

Metabolitenverhältnisse verwendet, um Assoziationen zu T2D zu identifizieren. Diese Analyse 

wurde durchgeführt, um vorherige Analysen zu validieren, die die Assoziation zwischen 

paarweisen Metabolitenverhältnissen und der Insulinantwort untersuchten.  

Für die Assoziationsberechnung zwischen inzidentem bzw. prävalentem T2D und der 

Metabolitenverhältnisse wurden vier Kohorten aus den Niederlanden und aus Deutschland 

verwendet. Unter 9.045 analysierten Verhältnissen wurde eine neue Assoziation entdeckt: Das 

Verhältnis Valin zu Phosphatidylcholin-Acyl-Alkyl C32:2 (PC ae C32:2). Zusätzlich wurde in 

der "Kooperative Gesundheitsforschung in der Region Augsburg" (KORA) Studie die Güte der 

Modelle durch Messung der zeitabhängigen Receiver-Operating-Characteristic-Kurve und net 

reclassification improvement verglichen. Fügt man zum Model, das auf etablierten 

Risikofaktoren basiert, das Metabolitenverhältnis hinzu, wurden kleine Verbesserungen in den 

Messungen beobachtet. 

Die Variation der Metabolitenwerte kann von genetischen und epigenetischen Änderungen 

beeinflusst werden. Daher wurden viele genomweite Assoziationsstudien (GWAS) durchgeführt. 

Jedoch wurde bisher nur ein geringfügiger Teil der totalen Metabolitenvariation durch häufige 

Varianten erklärt. Dies führt zu der Annahme, dass die Analyse von vielen „Omics“-Ebenen (wie 

zum Beispiel die Kombination von Genetik, Epigenetik,…) – und ihren Interaktionen –hilft, die 

Variation der Metabolitenwerte besser zu erklären. In bisherigen Interaktionsanalysen in GWAS 

wurden größtenteils Interaktionen zwischen Einzelnukleotid-Polymorphismen (SNPs) betrachtet 

und daher mögliche Interaktionen zwischen verschiedenen „Omics“-Ebenen ignoriert. 

Der zweite Teil dieser Doktorarbeit beschäftigt sich mit der Entwicklung eines statistischen 

Programms, um die verschiedenen „Omics“-Ebenen in einer angemessenen Zeit zu analysieren. 

Das neue R Paket, genannt pulver, ist das erste Programm, welches die Berechnung von p-

Werten von Milliarden von linearen Regressionen mit einem Interaktionsterm innerhalb weniger 
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Tage ermöglicht. Die schnelle Laufzeit wurde durch die Verwendung von 

Korrelationskoeffizienten erreicht, die die Null-Hypothese testet, ob sich der Koeffizient vom 

Interaktionsterm signifikant von Null unterscheidet. Traditionell wird dazu die sehr zeitintensive 

Berechnung der Matrixinversion verwendet.  

Um die Laufzeit weiter zu verkürzen, wurde die Reihenfolge, wann durch welche „Omics“-

Ebene iteriert werden soll, berücksichtigt und das Programm in der schnellen 

Programmiersprache C++ implementiert. Angesichts des möglichen Zusammenspiels der 

verschiedenen „Omics“-Ebenen in biologischen Prozessen, kann pulver verwendet werden, um 

umfangreiche Untersuchungen durchzuführen, die außerhalb der Kapazitäten von existierenden 

Programmen liegen. 

Dieses R Paket wurde mit echten Daten der KORA Studie getestet und die Metabolitenwerte mit 

der Interaktion von genetischen Varianten und DNA Methylierungsstellen verglichen. 

Ein signifikanter Locus, in der Nähe des Gens ACADS, wurde dabei gefunden. Genetische und 

epigenetische Interaktionen in diesem Locus haben einen Einfluss auf die Metabolitenwerte von 

Butyrylcarnitine. Weiterhin wurde das R Paket auf das vorherige identifizierte Verhältnis, Valin 

zu PCae 32:2 angewendet. Jedoch wurden keine statistisch signifikanten Assoziationen nach 

striktem Korrigieren für multiples Testen gefunden. 

Diese Doktorarbeit liefert Analysen und Programme, um ein holistisches Bild vom menschlichen 

Metabolitsmus zu erhalten. Dies wurde durch die Identifizierung von krankheitsbezogenen 

(T2D) Metabolitenänderungen und durch die Kombination von verschiedenen „Omics“-Ebenen 

(Metabolomik, Genetik und Epigenetik) erreicht, um die Interaktionen in einem effizienteren 

Weg aufzudecken. 
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1. Introduction

1.1. Scientific question of this thesis 

A major cause of death in developed countries are diseases due to disorders of lipid and sugar 

metabolism, such as cerebrovascular and cardiovascular diseases [1]. For example, Suhre et al. 

investigated the changes of metabolites within subjects with self-reported type 2 diabetes (T2D) 

in comparison to controls and identified 420 different metabolite levels from the sera of these 

subjects [2]. They identified perturbations in pathways related to kidney dysfunction, lipid 

metabolism, and gut microflora interactions [2].  

Moreover, these perturbations of the metabolome are a good representation of the activities of 

the cell at a functional level, as metabolomics are the result of gene expression and complement 

other “omics”, such as transcriptomics and proteomics [1]. 

Since most metabolite levels are highly impacted by enzymes, it is reasonable to consider the 

ratios of two metabolite levels, which may mirror the specific enzyme activities [3]. This in turn 

can be extrapolated to examine potential perturbations in pathways to gain further insight into 

the pathophysiology of T2D. Furthermore, as previously demonstrated by different studies [2, 4, 

5], the analysis of metabolite ratios increases the power in genetic and disease association 

studies. Thus, the main research question of this thesis was to determine which metabolite ratios 

changes are observed during T2D. This additional knowledge may help to improve individual 

risk prediction for T2D and may even lead to prevention of the manifestation of the disease. 

In addition, integrating other “omics” data to the analysis, such as genomics, transcriptomics, 

and proteomics, can provide a greater understanding of the global system biology and therefore 

the pathophysiology of cardiovascular diseases [1, 6, 7]. For example, a detailed picture of the 

pathways of the different “omics” layers or tissues can be drawn by computing correlation 

analysis and Gaussian graphical models to build a large-scale map of statistical associations [8]. 

For example, Yousri et al. [9] constructed a metabolic network, using Gaussian graphical 

modelling, that links diabetes-associated metabolites from saliva, blood plasma, and urine. This 

network reflected the biochemical dysregulation of metabolites form different pathways of 

diabetes pathology [9]. By using more complex models such as similarity network fusion, 

subtypes of complex diseases can be identified [7]. This method is robust to noise and data 

heterogeneity because it constructs first a sample-similarity network for each data type and then



2 1. Introduction 

 

integrates them into one single similarity network [7]. Another possibility is to include different 

“omics” data into a linear regression model, either additively or even as an interaction. For 

example, in a genome-wide approach genetic and epigenetic influences on metabolite levels in 

human blood were identified. Petersen et al. [10] showed that there is an interplay between 

DNA methylation and metabolite concentrations; further studies showed a similar relationship 

between single nucleotide polymorphism (SNPs) and metabolites [4, 5, 11]. Moreover, studies 

have observed associations between specific epigenetic-genetic interactions and a phenotype 

[12-14]. 

Furthermore, the biological mechanisms of those identified loci can be further elucidated by 

experiments in the lab. For example, since most associated variants are located in non-coding 

DNA regions it is assumed that some affect transcriptional regulation [15]. Therefore, Lee et al. 

[15] investigated the relationship between identified variants affecting T2D and the binding of 

transcriptions factors and co-regulators at the T2D associated PPARG locus. They observed that 

cis-regulatory variants contribute to the pathophysiology of T2D [15]. 

However, the technology and the measurements of “omics” data have rapidly increased to the 

point that the development of databases and methods for efficient storage, retrieval, integration, 

and analysis of massive data becomes necessary [16]. For example, recently, an open-source, 

scalable framework for exploring and analyzing genomic data called Hail (see 

https://github.com/hail-is/hail) was developed [17]. This software package is able to efficiently 

perform quality control, annotation, and analysis of large-scale sequencing data [17].  

Nevertheless, existing tools either consider only linear association analysis without interaction 

term [17-19] or genetic variant interactions [20, 21], and no practical tool is available for large-

scale investigations of the interactions between pairs of arbitrary quantitative variables. 

Thus, the second part of this thesis aimed to develop such a software tool and thirdly, to apply 

this software to investigate the interplay among DNA methylation, genetic variants, and 

metabolite levels. Furthermore, this tool was also applied to the metabolite ratios found to be 

associated with T2D to elucidate possible influence of DNA methylation and genetic variants on 

these ratios. 

 

In summary, the overall aim of this thesis is to provide a more holistic picture of human 

metabolism, particularly with respect to T2D, by investigating metabolite changes related to this 

https://github.com/hail-is/hail
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disease and by combining metabolomics data with interactions between genetic and epigenetic 

data.  

1.2. Overview of this thesis 

Two studies will be described in this thesis to provide a more holistic picture of human 

metabolism: The first study the associations between the changes of metabolite ratios in T2D 

including studies from the Netherlands and Germany is investigated (section 5.1). The second 

study combined metabolite data with interactions between genetic and epigenetic data from the 

Cooperative health research in the region of Augsburg (KORA) study using a self-implemented 

R package to enable a huge amount of regression analyses (section 5.2). For simplicity, I denote 

the first part “T2D and metabolite ratios analysis” and the second part “interaction analysis”. 

 

Prior to elaborate on these studies, the biological background relevant for this thesis is 

introduced in section 2. An overview over basic concepts and principles of the human 

metabolism (section 2.1.), particularly with respect to type 2 diabetes (section 2.2 – 2.3), 

genomics association studies, the missing heritability and epigenomics association studies 

(section 2.4-2.6, respectively), as well as interactions between genomics, epigenomics and 

metabolomics (section 2.7), are given. In section 2.8, software which is used to analyze linear 

regressions using huge data sets is presented. Finally, an outlook for GWAS is provided in 

section 2.9. 

 

In section 3, I introduce the study populations from the Netherlands and Germany (section 3.1) 

and the measurements and quality control of the “omics” data, i.e., the metabolite data (section 

3.2), the genotyping (section 3.3), and DNA methylation (section 3.4). Finally, in section 3.5 the 

assessment of the diabetes status of the different study populations is described in further detail. 

 

The statistical methods used in this thesis are provided in section 4: The linear regression, which 

is basic for the implementation of the R package for running linear regressions with interaction 

terms (section 4.1), the logistic regression to analyze prevalent T2D and metabolite ratios 

(section 4.2), and the survival analysis (section 4.3), more precisely, the Cox proportional 

hazard regression, to include the time of the onset of T2D in the model. The inclusion of 

appropriate covariates to these models to avoid confounding is further explained in section 4.4. 
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All models are parametric models, which assume a certain distribution: especially the linear 

regression model assumes a normally distributed error term, which is further addressed in 

sections 4.4 and 4.5. In section 4.7 the meta-analysis, i.e., the combined analysis of the results 

from different studies, and in section 4.8 the p-gain, i.e. the measurement of the improvement 

using metabolite ratios compared to single metabolites, are explained. Finally, the theory and the 

implementation of the R package pulver are described in detail in section 4.9. 

 

Section 6 concludes this work by giving a summary of the key results of section 5 and a 

discussion in the context of future perspectives of analyzing different “omics” layers. 

1.3. Scientific contribution 

The major scientific contributions discussed in this thesis are listed in the following. 

 The association analysis of prevalent/incident T2D and metabolite ratios leads to the 

identification of one novel association, that of the valine to phosphatidylcholine acyl-

alkyl C32:2 (PC ae C32:2) ratio 

 Development and preparation of the R software package pulver for computing p-values 

for the interactions term in a very large number of linear regression models which 

includes benchmarking different test scenarios and comparison with other R software 

packages 

 Applying pulver to analyze the regression between the interaction of a genetic variant and 

DNA methylation and metabolite levels, only one locus achieved significance suggesting 

that the power was not sufficient or that these interactions play only a minor role in the 

determination of metabolite levels in the blood 

 There is no evidence that the metabolite ratio valine to PCae32:2 is associated to the 

interaction of DNA methylation and genetic variants  

 

Parts of these contributions were already published in peer-reviewed journals. Some parts of 

this thesis will therefore correspond to these publications: 

Sophie Molnos, Simone Wahl, Mark Haid, E Marelise W Eekhoff, René Pool, Anna Floegel, 

Joris Deelen, Daniela Much, Cornelia Prehn, Michaela Breier, Harmen H. Draisma, Nienke 

van Leeuwen, Annemarie M.C. Simonis-Bik, Anna Jonsson, Gonneke Willemsen, Wolfgang 
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Bernigau, Rui Wang-Sattler, Karsten Suhre, Annette Peters, Barbara Thorand, Christian 

Herder, Wolfgang Rathmann, Michael Roden,  Christian Gieger, Diana van Heemst, Helle 

Krogh Pedersen, Valborg Gudmundsdottir, Matthias B Schulze, Tobias Pischon, Eco JN de 

Geus, Heiner Boeing,  Dorret I Boomsma, Anette G Ziegler, P Eline Slagboom, Sandra 

Hummel, Marian Beekman, Harald Grallert, Søren Brunak, Mark I McCarthy, Ramneek 

Gupta, Ewan R Pearson, Jerzy Adamski, Leen M. ‘t Hart (2017). The ratio of the metabolites 

valine and phosphatidylcholine acyl-alkyl C32:2 associates with increased risk of type 2 

diabetes; a DIRECT study. Diabetologia. In press. 

 

Sophie Molnos, Clemens Baumbach, Simone Wahl, Martina Müller-Nurasyid, Konstantin 

Strauch, Rui Wang-Sattler, Melanie Waldenberger, Thomas Meitinger, Jerzy Adamski, Gabi 

Kastenmüller, Karsten Suhre, Annette Peters, Harald Grallert, Fabian J Theis, Christian 

Gieger. pulver: An R package for parallel ultra-rapid p-value computation for linear 

regression interaction terms. BMC Bioinformatics. Under review. 

 

Further scientific contributions 

Furthermore, the author of this thesis was involved in several other research projects, which 

were not directly connected to the focus of the thesis. The findings in these projects were also 

published in peer-reviewed journals: 

 

Melanie Heitkamp, Monika Siegrist, Sophie Molnos, Simone Wahl, Helmut Langhof, 

Harald Grallert, Martin Halle. Impact of obesity genes on weight loss during lifestyle 

intervention in children with obesity. In preparation. 

 

Heekyoung Lee, Kun Qian, Christine von Toerne, Lena Hoerburger, Melina Claussnitzer, 

Christoph Hoffmann, Viktoria Glunk, Simone Wahl, Michaela Breier, Franziska Eck, Leili 

Jafari, Sophie Molnos, Harald Grallert, Ingrid Dahlman, Peter Arner, Cornelia Brunner, 

Hans Hauner, Stefanie M. Hauck, Helmut Laumen (2017). Allele-specific quantitative 

proteomics unravels molecular mechanisms modulated by cis-regulatory PPARG locus 
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2. Background 
The recent development of high-throughput measurement technologies has facilitated the 

analysis of different “omics” layers, such as variations of the deoxyribonucleic acids (DNA) 

sequence (genomics), functionally relevant modifications of the genome that leave the DNA 

sequence unchanged (epigenomics), gene expression (transcriptomics), protein abundances, and 

modifications (proteomics), as well as metabolite profiles (metabolomics) in thousands of 

samples in large well-powered studies (see Figure 2.1). The interaction of the different “omics” 

layers and the environment, e.g. smoking, can lead to different phenotypes, such as developing 

T2D. By integrating multi-omics datasets it is now possible to draw a more holistic picture of the 

biological system in health and disease [22].  

 

Figure 2.1: The interplay between different “omics” layers, environment, and the phenotype 

adapted from [8]. This chart represents a simplified view of an information flow which is still 

the subject of active debate. 
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There are several ways how to integrate different “omics” layers, such as using association or 

correlation analysis and Gaussian graphical models [8] or using more complex models such as 

similarity network fusion [7] as mentioned in the introduction.   

2.1. Human metabolism in the field of common diseases – explained by 

genetics and epigenetics  

Metabolomics is the study of low molecular weight compounds (< 2,000 Dalton) that are 

intermediate or end products of enzymatic reactions [23]. Metabolite levels represent a 

combination of biological pathways in the organism, including, besides many others, genetically 

determined processes, environmental exposures, and the gut microbiome [24]. Thus, they reflect 

the human health status and are therefore ideal candidates to identify dysregulations of enzymes 

which may lead to diseases [8]. Several studies have already shown that metabolite levels can be 

used as biomarkers for certain diseases [25-27]. For example, the concentration of phenylalanine 

and the ratio of phenylalanine to tyrosine are measured to diagnose the inborn error of 

phenylketonuria [28], a disease which is characterized by intellectual disability, microcephaly, 

and seizures [29]. In addition, there is evidence in literature that the study of metabolite ratios 

might reveal important biological processes [5]. It was for instance shown that the ratio of 3-

methyl-2-oxobutanoate and alpha-hydroxyisovalerate levels is under strong genetic control [30]. 

Both metabolites are products of valine catabolism and recently it was shown that genetic 

variation influencing the lactate dehydrogenase gene is likely responsible for the changed alpha-

hydroxyisovalerate level, coding for an enzyme which catalyzes multiple reactions [31].  

There are two main approaches available to measure levels of metabolites, namely targeted and 

non-targeted techniques. The non-targeted approach detects and identifies as many metabolites 

as possible, which includes even unknown molecules whereas in the targeted approach only 

selected metabolites can be quantified [32]. The targeted approach is more sensitive and 

accurate regarding the detection of a limited number of metabolites. With the untargeted 

approach it is possible to detect and identify unknown metabolites but with no possibility for 

quantification and high-quality precision. Furthermore, the time required for accurate metabolite 

identification and quantification can be significant [33, 34]. 
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2.2. Type 2 diabetes 

T2D is one of the most wide-spread diseases, with rising prevalences and incidences worldwide 

[35]. The International Diabetes Federation estimated that the total number of people having 

diabetes will increase from 415 million (8.8%) in 2015 to 642 million (10.4%) in 2040 [36]. In 

Germany T2D rose from 8.5% in 2009 to 9.5% in 2015 [37]. Additionally, there is a high 

estimated number of unknown cases, e.g., in the study of Rathmann et al. [38] about 50% of the 

cases with T2D were undiagnosed. T2D is characterized by increased blood glucose levels 

caused by pancreatic 𝛽-cell dysfunction and/or insulin resistance [27]. In contrast to type 1 

diabetes, the insulin deficiency is caused by non-autoimmune etiology [39, 40]. T2D is related 

to increasing adiposity, inactivity, and age [41]. Furthermore, there is strong evidence for a 

genetic susceptibility [42] and the heritability is estimated at 25-80% [43]. However, all T2D 

associated genetic variants identified to date explain less than 20% of T2D heritability [43]. 

There are several severe long term micro- and macrovascular clinical consequences of T2D such 

as myocardial infarction [44] or eye diseases [45]. The global estimated costs of treating 

diabetes and its consequences are expected to increase from 673 billion in 2015 up to 802 billion 

US dollars in 2040 [36]. Therefore, it is necessary to understand the pathogenic mechanisms to 

find new biomarkers for early detection/ risk prevention or therapies in fighting this disease. 

2.3. Human metabolism and type 2 diabetes 

Circulating metabolites have been shown to reflect metabolic changes during the development 

from a healthy glucose metabolism to the clinical manifestation of T2D [27, 46]. It was shown 

that branched-chain amino acids (BCAAs), valine, leucine, and isoleucine, as well as several 

phospholipids can have an impact on disease progression [47-50]. Wang-Sattler et al. [27], for 

instance, investigated the association between metabolites and individuals with impaired and 

normal glucose tolerance. They identified three novel pre-diabetes-specific markers glycine, 

lysophosphatidylcholine (LPC) (18:2), and acetylcarnitine. Floegel et al. [46] observed that 

hexose, phenylalanine, and diacyl-phosphatidylcholines C32:1, C36:1, C38:3, and C40:5 were 

independently associated with increased risk of T2D while glycine, sphingomyelin C16:1, acyl-

alkyl-phosphatidylcholines C34:3, C40:6, C42:5, C44:4, and C44:5; and 

lysophosphatidylcholine C18:2 were associated with decreased risk. Furthermore, elevated free 
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fatty acids in the plasma has also been observed to be associated with insulin resistance and 

T2D, which might reflect global impaired fatty acid oxidation [51, 52].  

2.4. Genomics 

Genomics is the generic name of the study of genes and their function encoded in the DNA 

sequence [53]. The DNA consists of four bases, namely cytosine, guanine, adenine, and 

thymine, which are bound to sugar deoxyribose and a phosphate groups, thereby forming 

nucleotides. Nucleotides are connected to one another, building a strand [54]. Two strands 

intertwine to a double helix. Cytosine and guanine as well as adenine and thymine form pairs of 

complementary bases. The double helices are further wrapped on proteins called histone 

octamers resulting in a structure called nucleosome [55]. The histone octamer consists of 

histones H2A, H2B, H3 and H4 [56]. DNA, the histones, and proteins together form the 

chromatin. The gene expression depends on the chromatin organization. Various covalent 

modifications on specific residues of histones such as methylation, phosphorylation, acetylation, 

and ubiquitination can alter the chromatin organization [56]. 

About 99.9% of the human genome is identical between individuals [57]. Thus, only few 

genetic variations lead to individual differences between the subjects. The type of genetic 

variations most commonly studied are single base exchanges, the single nucleotide 

polymorphisms (SNPs) [58, 59]. SNPs which are in neighboring loci tend to be co-inherited. 

This observation is also known as linkage disequilibrium (LD) [60]. The different states of a 

SNP are called alleles or genotypes. A person can be homozygous in the major allele, i.e. both 

chromosome copies carry the base of the more frequent SNP, or homozygous in the minor 

allele, which means, that both chromosomes carry the less frequent base [61]. If the person 

carries different bases, it is called heterozygotic [61]. If the true state is unknown, SNPs can also 

be presented as the probabilities of a subject being homozygotic in the major allele, 

heterozygotic or homozygotic in the minor allele. If a SNP is genotyped, the value of one of 

these states is 1 and the others are 0. However, since the International Haplotype Map Project 

started to sequence individuals from eleven different populations [62] following the 1,000 

Genomes project which aimed to sequence the genome of 2,504 subjects from 26 populations 

[63], it has become possible to estimate (= impute) SNPs that are not measured based on a 

specific set of measured SNPs using information on correlations between SNPs [64]. Thus, if a 
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SNP is imputed, the probability of each the three states varies between 0 and 1, adding up to 1 in 

total.  

To check whether there are problems with genotyping or population structure, it is common 

practice to calculate the exact test of the “Hardy-Weinberg equilibrium” (HWE). To test if HWE 

is valid in the absence of migration, mutation, natural selection, and assortative mating, 

genotype frequencies at any locus are calculated as a simple function of allele frequencies [65]. 

Analyzing millions of SNPs has become feasible due to better and cheaper high throughput 

techniques [66] as well as faster software to identify linear associations. For example, 

OmicABEL [18] efficiently exploits the structure of the data and the R package MatrixEQTL 

[19] computes linear regressions very quickly based on matrix operations. In genome-wide 

association studies (GWAS), in which thousands of genetic associations are calculated, it is 

possible to open new perspectives in understanding and treatment of diseases. For example, 

before the GWAS era, the only known robust association between DNA sequence variations and 

body mass index (BMI) were low-frequency variants in the MC4R gene [67]. But with the 

advent of GWAS the number of identified associations has increased and in 2015 Locke et al. 

[68] found 634 associations within 97 loci using a genome-wide approach.  

2.5. Missing heritability  

Although many associations between genetic variations and traits have been found, it soon 

became obvious that in the cases of complex multifactorial diseases (e.g., T2D) or traits, such as 

BMI, and levels of different metabolites, the so far identified SNPs only explained a small 

fraction of variation, much smaller than the expected heritability estimated from twin studies. 

This phenomenon has become to known as the “missing heritability” [69-71]. Increasing the 

sample size apparently does not solve the disparity completely.  

Moreover, the distribution of research on genes is biased and tends to be especially dense on 

few genes, probably because researchers tend to work on genes they perceive to be important 

[72]. However, even after two decades of intense and sophisticated molecular and genetic 

analyses, there are still more than a third protein-coding genes with negligible literature or 

known function which is also known as “ignorome”[72].  

One way to tackle the “missing heritability” and “ignorome” is the development of methods 

analyzing polygenic variants, i.e., the same variants are jointly associated with the complex 

disease, [70, 71], or pleiotropic variants, i.e., the same variants are associated with multiple 
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traits [67, 73]. Recent work has indicated the potential power of jointly analyzing multiple 

phenotypes and several different analytical tools have been developed [74-76]. For example, 

Shen et al. [77] performed a multi-trait meta-GWAS using summary statistics and discovered 

359 novel loci significantly associated with six anthropometric traits (BMI, height, weight, hip 

circumference, waist circumference, and waist-hip ratio).  

As previously stated in section 2.1., metabolites are linked closer to the genetics as compared to 

the typically analyzed phenotypes, such as BMI and diseases [8]. Therefore, they have the 

potential to identify genetic mutations or environmental influences associated with the 

underlying disease pathways. Several GWAS have been conducted to find the influence of 

genetics on human metabolism [4, 5, 11]. Those analyses are used to get a deeper understanding 

of how single enzymes are determined by genetic and environmental factors, and how they are 

involved in the metabolic pathways eventually leading to a major disease. For example, 

recently, Draisma et al. [11] found a previously unidentified association between SNP 

rs7582179 in the AGPS gene and the choline plasmalogen PC ae C44:5. The authors mentioned 

that this gene encoded the enzyme alkylglycerone phosphate synthase and that mutations of this 

gene may lead to a rare autosomal recessive disorder, named rhizomelic chondrodysplasia 

punctata type 3 (RCDP3). However, the variance in serum metabolite levels explained by 

significantly associated SNPs (< 10%) is less than the heritability estimated in a monozygotic 

twin sample (< 80%) [11]. 

2.6. Epigenomics 

Epigenomics is the study of factors which influence the expression of genes in a cell o entire 

organism and are not caused by changes in the DNA sequence. There are different types of 

epigenetic mechanisms, such as DNA methylation, histone modification, chromatin remodeling, 

and ribonucleic acid (RNA) inference [78]. Yet, the epigenetic modification most often studied 

is DNA methylation, which denotes the attachment of a methyl group to a DNA base. DNA 

methylation is involved in genome stability, the regulation of gene expression, imprinting, and 

X-chromosome inactivation in females [79, 80].  

Mostly, human DNA methylation is observed on the cytosine nucleotides preceding a guanine 

nucleotide, also called CpG sites. Hereby the methyl group is catalyzed by DNA 

methyltransferases (DNMT) to the 5’carbon of the cytosine, leading to a 5’methylcytosine [79]. 
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The maintenance of DNA methylation within the cells occurs with the help of DNMT1. The 

new attachment of the methyl group happens with DNMT3a, DNMT3b, and the regulatory 

factor DNMT3L. The Tet family proteins are responsible for actively demethylating the 

methylated cytosine [81]. 5’hydroxymethyl-cytosines are produced as an intermediate on the 

pathway. 5’hydroxymethyl-cytosines are found to be positively correlated with gene activity and 

with methylation of histone H3 at lysine 4 (H3K4me1) and acetylation of histone 3 at lysine 27 

(H3K27ac) [81].  

In vertebrate genomes, most CpG sites are methylated, except so called CpG islands, which are 

DNA sequences that are on average 1000 base pairs long, GC-rich, CpG-rich, and 

predominantly nonmethylated [82-84]. These islands are usually rare and often near to 

promotors. Usually these promoters are not wrapped up in nucleosomes and the regions are 

flanked by nucleosomes which are marked with trimethylation of histone H3 at lysine 4 

(H3K4me3) [79].  

In general, methylated CpG sites are underrepresented because methylated cytosine tends to 

spontaneously deaminate and convert to thymine, resulting in a thymine:guanine mismatch [85]. 

In contrast, unmethylated cytosine can deaminate to uracil, an RNA-base, which is then 

recognized and fixed to cytosine. The methylation of DNA near to gene promoters usually leads 

to decreased gene expression [86]. Generally it was thought that expression can be stimulated 

when the gene bodies of actively transcribed genes are methylated [79, 87, 88]. However, it has 

been shown that this is not always true. For example, CTCF, a DNA binding factor, can be 

blocked by DNA methylation within the gene body. CTCF is responsible for slowing down the 

elongation rate of polymerase II on the human CD45 gene by serving as a roadblock, and thus 

elevating the probability of the inclusion of the alternative exon [89]. In contrast, the 

multifunctional protein MeCP2 binds to methylated CpG sites. MeCP2 also slows the 

polymerase elongation resulting in an elevated inclusion of exons [89].  

Due to cheaper and massively parallel techniques, it has become feasible to measure DNA 

methylation across the whole genome [86, 90]. For example, recently, Wahl et al. [91] 

conducted an epigenome-wide analysis study (EWAS) of 5,387 individuals and observed that 

increased BMI appears to lead to changes in DNA methylation. These alterations might also 

eventually lead to T2D independently of traditional risk factors [91].  
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With the help of GWAS lots of loci have been found to be associated with certain metabolite 

levels, but, usually, they can only explain a minor proportion of the variance of the analyzed 

phenotype (section 2.4) [70]. This missing heritability might be caused by epigenetics. Further, 

a greater understanding of human diseases could be achieved by analyzing the association 

between DNA methylation and metabolites, since metabolites are the connection between the 

genotype and the phenotype [8]. The first EWAS with metabolites was conducted by Petersen et 

al. [10]. They identified that certain CpG loci are associated with 4-vinylphenol sulfate (4-vs). 

These CpG sites resided within a region which was previously identified to be associated with 

tobacco smoking [92]. Furthermore, they observed associations, which disappeared after 

adjustment for SNPs in the neighborhood, thus demonstrating that the associations were 

potentially driven by genetic factors. The major difference of EWAS to GWAS is that causality 

cannot be inferred as easily. Altered DNA methylation profiles could be the cause or the 

consequence or part of a complex network of interactions of the observed environmental factor. 

For example, Etchegaray and Mostoslavsky described, that the activity of most enzymes 

involved in dynamic chromatin modifications is dependent on intermediary metabolites, such as 

acetyl-CoA, SAM, ATP, NAD+, flavin adenine dinucleotide (FAD), 𝛼 –KG, and uridine 

diphosphate (UDP) [93]. Alternatively, DNA methylation may even just serve as biomarker 

without being directly a causal part of the disease [94].  

2.7. The interplay between DNA methylation, genetic variants, and 

environment 

Epigenetics may provide mechanistic insights into the complex interplay of genetic and 

environmental risk factors for disease or may serve as a biomarker of exposure or disease. There 

are several biological theories which aim to explain the observed associations between DNA 

methylation, the genetic variants and environment, respectively. For example, DNA methylation 

can act as so called epigenetic mediation. This means that the methylation state of a specific 

locus is driven by a nearby genetic variant or environmental factor and eventually can lead to 

disease [94]. The loci, usually SNPs, where genotype is associated with methylation level at a 

given locus are called methylation quantitative trait loci (meQTL) [12, 95], see also Figure 2.2 

for epigenetic mediation due to a genetic variant. Most of the identified meQTLs have been 

observed with CpG sites within 3000 base pairs of the genetic variant [94]. These relationships 
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are perhaps realized due to intermediate mediators, such as DNA binding factors or secondary 

chromatin structures [12, 96].  Furthermore, meQTLs may provide a possible explanation for the 

identified associations between intergenic and intronic SNPs and the phenotype [12, 96]. For 

example, Heyn et al. [12] investigated the interplay between SNPs and DNA methylation to 

improve the interpretation of risk alleles in human tumors identified in GWAS. They observed 

that 21% of the interrogated cancer risk polymorphisms are also associated with DNA 

methylation. 

Figure 2.2: Example of an epigenetic mediation due to genetic variation adapted from [94]. The 

individual with the TT genotype is methylated at a particular CpG site and hence the associated 

gene is silenced. However, the individual with the genotype AA is not methylated at this CpG 

site, which leads to the transcription of the associated gene. The differences in the DNA 

methylation are driven by genotype differences and thus the epigenetic state mediates the 

relationship between the genotype and the phenotype and can potentially lead to a disease. 

From a more complicated point of view there are also epigenetic mechanisms within gene-

environment interactions (GxE) [94]. In this concept, the gene expression, and, consequently, 

the phenotype is influenced by the combination of genetics and environmental factors. For 

instance, healthy humans who have a disease-causing variant but are protected through DNA 

methylation can suddenly suffer from the disease because of the deletion of this DNA 

methylation due to environmental factors. Figure 2.3 shows an example for GxE with DNA 

methylation.   
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Figure 2.3: Example of gene-environment interaction (GxE) adapted from [94]. The expression 

of a gene may be influenced by both, the underlying genetic variant and a particular 

environmental exposure. Individuals with genotype CC and TT in panels A and B show no gene 

expression because the genes are silenced due to DNA methylation at a particular locus. In 

contrast, if the DNA methylation is removed due to environmental exposure the gene is 

transcribed. However, because the individual with the genotype TT forms a stop codon the 

protein is not produced (panel D). 

As already illustrated in Figure 2.1, many interdependencies within and between different 

“omics” data can be observed. As mentioned in section 2.1, metabolite levels result from a 

combination of genetically determined processes and environmental exposures. Thus, an 

alternative to analyzing the association between genetic-epigenetic interaction and 

environmental factors, is considering metabolite levels. Recent literature suggests that specific 

epigenetic modifying enzymes are dependent on the availability of metabolites [29, 93, 97]. On 

the other hand, levels of metabolites can represent the activity of enzymes which were 

influenced by SNPs and DNA methylation [25]. It is very likely that there even exists an 

interaction between genetic, epigenetic data, and metabolite levels. For example, Ma et al. [13] 

explored whether the interaction between a genetic variant and a fatty acid, is mediated by DNA 

methylation leading to the observed blood lipids. They found some evidence that these 

interactions act on blood lipids through DNA methylation. For example, higher plasma HDL 
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cholesterol was associated with fewer C alleles at SNP rs2246293 (region ABCA1) and higher 

circulating eicosapentaenoic acid (EPA). Furthermore, they showed that the CpG site 

cg14019050 was significantly associated with HDL cholesterol and that SNP rs2246293, EPA 

and the interaction between both were also associated with the DNA methylation of cg14019050 

indicating a mediation of the CpG site.  

However, due to computational costs to run the exhaustive search of all pairs, to this point, no 

association analysis between three layers, i.e., DNA methylation, genetic variants, and 

metabolite levels in a genome-wide view has been conducted.   

2.8. Software analyzing linear regression with interaction term 

As introduced in section 2.4, it is possible to analyze millions of linear regressions using rapid 

software, such as OmicABEL [18] and the R package MatrixEQTL [19]. With the recently 

established software framework Hail (see https://github.com/hail-is/hail) [17], it is possible to 

efficiently analyze gigabyte-scale data on a laptop or terabyte-scale data on a cluster. In 

addition, several fast tools have been implemented analyzing the interactions between SNPs in 

genome-wide studies. For example, BiForce [98] is a stand-alone Java program that integrates 

bitwise computing with multithreaded parallelization, SPHINX [99] is a framework for genome-

wide association mapping which finds SNPs as well as SNP-SNP-interactions using a piecewise 

linear model, and epiGPU [20] is a software that calculates contingency table-based 

approximate tests using consumer level graphics cards. However, they are specialized for the 

case of analyzing SNP-SNP-interactions. In case of analyzing interactions between any kinds of 

“omics” data, e.g., between DNA methylation and mRNA expression, it is only possible to use 

standard software, such as R’s build-in function lm or the software OmicABEL [18]. However, 

before calling the function OmicABEL, it is necessary to compute the interaction of these 

“omics” layers first. The reason therefore is this function computes only linear regressions 

without interaction term. Taking into consideration the time required for first loading, then 

computing the interaction, and finally run the linear regression, this process can be very time 

consuming. Furthermore, some tools may require the data in a special format which can add to 

the processing time. Thus, there is a need for implementing fast tools for models analyzing 

interactions between different “omics” layers. 

https://github.com/hail-is/hail
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2.9. What is after GWAS? 

GWAS could not resolve the genetic bases of common diseases [70, 100, 101]. Still, there is a 

disparity between the explained and expected heritability of complex diseases, as introduced in 

section 2.5. In most GWAS only additive genetic variation are computed, but underlying 

molecular networks are highly nonlinear [101]. For example, Zuk et al. [70] argued that 

estimates of total heritability ignore the genetic interactions (epistasis) among loci often 

observed in studies. Also, the proportion of heritability is computed from the ratio of the 

significant associated variants and the total heritability, inferred indirectly from population data 

[70]. Thus, when accounting for epistasis, the total heritability may be much smaller and thus 

the proportion of heritability explained much larger [70]. In this study the authors referred to the 

missing heritability for Crohn’s disease, where 80% of the currently missing heritability could 

be due to genetic interactions [70]. Therefore, as conducted in this thesis, different models 

including interaction terms as well as combining different “omics” data such as DNA 

methylation, transcriptomics, or metabolomics, should be analyzed to further examine the 

biological system. Furthermore, results from GWAS can be used to infer biological networks, 

such as gene regulatory networks (GRN) [101]. Thus, the combination of population genetic 

models and molecular biological knowledge may help the fitting of experimental data to very 

complex models, as well as allow accurate in capturing of the uncertainty of resulting inference 

[101]. For example, Frau et al. [102] used the loci identified in GWAS for T2D to conduct 

network and pathway enrichment analyses to understand mechanisms of action and clinical 

relevance of these variants.  

Experiments and epidemiological studies can complement each other to further examine the 

biological background underlying complex diseases. For example, in this thesis, the observed 

association between metabolite ratios and insulin secretion is validated by computing the 

association between T2D and insulin secretion [103]. 
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3. Material 

3.1. Study populations 

In this section I describe the study populations of four cohorts from two different European 

countries (the Netherlands and Germany) which were analyzed in this thesis. The studies were 

approved by their local Ethics Committee and all participants signed an informed consent.  

3.1.1. Cooperative health research in the region of Augsburg 

Cooperative health research in the region of Augsburg (KORA) is a research platform that  

comprises a population-based set of epidemiological surveys and follow-up studies in the 

region of Augsburg in southern Germany [104]. For this thesis, subsets of the data from the 

survey KORA S4 (1999/2000) comprising 4,261 subjects aged 25-74 years and the follow-up 

study KORA F4 (2006–2008) comprising 3,080 participants were included. Detailed 

information about study design, sampling method and data collection has been described 

elsewhere [104]. For the IMI DIRECT project the baseline characteristics for KORA S4 are 

shown in Table 3.1, for KORA F4 in Table 3.2. See Figure 3.1 for visualization of number of 

subjects from KORA S4 with information of T2D as used for analysis of IMI DIRECT (see 

section 5.1. for further information). For the interaction project, a subset of 1,613 or 1,643 

participants were analyzed including the intersection of DNA methylation, genotyping, and 

metabolite levels, measured from the platforms Metabolon or Biocrates, resprectively. 

 

Figure 3.1: Schematic design of the KORA S4 (left) and KORA S4 to F4 studies. 
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 Table 3.1: The baseline characteristics of the KORA S4 incident T2D sample. 

Number of participants (n) 1610 

 n missing 

Age (Years) 0 64.1 ± 5.5 

Gender (n male (%)) 0 827 (51.4)  

BMI (kg/m
2
) 13 28.6 ± 4.4 

Fasting Glucose (mmol/l) 225 5.69 ± 0.95 

Fasting Insulin (pmol/l) 144 113 ± 162 

Physical activity (active) 8 670 (41.8) 

Alcohol intake (g/day) 7 16±20.9 

Smoking (smoker (n (%))) 2 206 (14.9) 

Systolic blood pressure (mmHg) 6 136.6±20.6 

HDL cholesterol (mg/dl) 1 57.5±16.4 

 

Incident Type 2 diabetes (n (%))* 110 ( 9.4) 

Prevalent Type 2 diabetes (n (%)) ** 127 (7.9) 

Lipid medication (Yes), (n (%)) 195 (12.1) 

Fasting (Yes) (n (%)) 1,349 (86.7) 

Data are means ± SD or number (n). * Developed T2D during the on average seven year 

follow-up from the baseline S4 measurement till the follow-up F4 measurements (denoted in 

the text as KORA S4 to F4 sample including 110 incident T2D cases and 1,170 non-diabetic 

controls) (27).  

** excluded in this study 
 

  Table 3.2: The baseline characteristics of the KORA F4 prevalent T2D sample. 

Number of participants (n) 3044 

 n missing 

Age (Years) 0 56.0 ± 13.3 

Gender (n male (%)) 0 1,472 (48.4)  

BMI (kg/m
2
) 15 27.6 ± 4.8 

Fasting Glucose (mmol/l) 34 5.45 ± 1.05 

Fasting Insulin (pmol/l) 19 54 ± 205 

 

Incident Type 2 diabetes (n (%)) NA 
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Prevalent Type 2 diabetes (n (%)) 213 (7.0) 

Lipid medication (Yes), (n (%)) 392 (12.9) 

Current smoking (n (%)) 466 (18.7) 

Fasting (Yes) (n (%)) 3,026 (99.4) 

Data are means ± SD or number (n). NA not available 

3.1.2. European prospective investigation into cancer and nutrition - 

Potsdam study 

European prospective  investigation  into  cancer  and nutrition - Potsdam study (EPIC-

Potsdam)  is part of the multicenter EPIC study and comprises 27,548 participants aged 

between 35-65 years, recruited in 1994-1998 from the general population in the area of 

Potsdam in eastern Germany [105]. A case-cohort study within EPIC-Potsdam was constructed 

by randomly drawing subjects from the EPIC-Potsdam study population [46]. Hereby all 

incident cases of T2D identified up to 31 August 2005 (n = 849, mean follow-up seven years) 

were included. The controls were drawn from a sub cohort and controlled for matched age and 

sex (n = 2,500). See Figure 3.2 for visualization of structure of EPIC-Potsdam. The baseline 

characteristics of EPIC-Potsdam  are shown in Table 3.3. 

 

 

 

 

 

 

 

 

Figure 3.2: Schematic design of the EPIC-Potsdam study. 

 

Baseline 
S4 

Follow-up 
F4 

EPIC-Potsdam Baseline 

study 

n = 27,548 

Random drawn 

sub cohort 

n = 2,500 

T2D 

n (total) = 800 

n (external) = 

715 

 
 
 
 

             7 years 

(Exclusion of subjects with missing values 

in covariates) 

T2D 

n (internal) = 85 

Non-T2D 

n = 2,197 



22 3. Material 

 

 

  Table 3.3: The baseline characteristics of the EPIC-Potsdam study population. 

Number of participants (n) 2997 

 n missing  

Age (Years) 0 50.7 ± 8.8 

Gender (n male (%)) 0 1289 (43.0)  

BMI (kg/m
2
) 0 27.0 ± 4.7 

Random Glucose (mmol/l) 0 5.14 ± 1.50 

Fasting Insulin (pmol/l) 2555 53 ± 40 

Coffee (cups/d) 0 2.8 ± 2.1 

Whole Grain Bread (g/d) 0 44.2 ± 52.5 

Red Meat (g/d) 0 44.6 ± 30.7 

Waist circumference (cm) 0 88.9 ± 14.0 

 

Incident Type 2 diabetes (n (%)) 800 (26.7) 

Prevalent Type 2 diabetes (n (%)) NA 

Prevalent hypertension (n (%)) 1,630 (54.4) 

Lipid medication (Yes), (n (%)) 186 (6.2) 

Current smoking (n (%)) 617 (20.6) 

Fasting (Yes) (n (%)) 431 (14.3) 

Data are means ± SD or number (n). NA not available.  

The EPIC-Potsdam sample uses a case-cohort design including all incident cases of the whole 

cohort (n=27,548) and a randomly sample sub cohort (n=2,500) of which 2,197 healthy 

controls with Biocrates data were used in the current study (7). 

 

3.1.3. Leiden longevity study 

Leiden longevity study (LLS) is a family-based cohort that recruited 420 families [106]. 

Families were chosen if at least two long-lived siblings were alive and fulfilled the age-criterion 

of age 89 and older for men and 91 and older for women. There were no selection criteria on 

health or demographic characteristics [107]. Baseline characteristics of LLS are shown in Table 

3.4. 
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Table 3.4: The baseline characteristics of the LLS study population. 

Number of participants (n) 558 

 n missing  

Age (Years) 0 63.0 ± 6.5 

Gender (n male (%)) 0 267 (47.8)  

BMI (kg/m
2
) 0 25.6 ± 3.6 

Fasting Glucose (mmol/l) 327 5.09 ± 0.50 

Fasting Insulin (pmol/l) 327 45 ± 32 

 

Incident Type 2 diabetes (n (%)) NA 

Prevalent Type 2 diabetes (n (%)) 42 (7.5) 

Lipid medication (Yes), (n (%)) 47 (8.4) 

Current smoking (n (%)) 76 (13.6) 

Fasting (Yes) (n (%)) 239 (42.8) 

Data are means ± SD or number (n). NA not available. 

 

3.1.4. Netherlands twin register 

Netherlands twin register (NTR) is a family-based twin registry that recruited twin families 

between 2004 and 2008. Detailed information about study design, sampling method and data 

collection has been described elsewhere [108]. Baseline characteristics of NTR are shown in 

Table 3.5. 

Table 3.5: The baseline characteristics of the NTR T2D study sample. 

Number of participants (n) 1326 

 n missing  

Age (Years) 0 51.4 ± 14.0 

Gender (n male (%)) 0 888 (66.7) 

BMI (kg/m
2
) 7 26.0 ± 3.8 

Fasting Glucose (mmol/l) 1 5.71 ± 1.14 

Fasting Insulin (pmol/l) 1326 NA 
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Incident Type 2 diabetes (n (%)) NA 

Prevalent Type 2 diabetes (n (%)) 51 (3.9) 

Lipid medication (Yes), (n (%)) 167 (12.6) 

Current smoking (n (%)) NA 

Fasting (Yes) (n (%)) 1,255 (94.7) 

  Data are means ± SD or number (n). NA not available 

 

3.2. Metabolomic measurements and qualitiy control 

Two different platforms for measurements of metabolites provided by Metabolon and Biocrates 

are described in detail in the following two sections. Moreover, missing values of both 

measurements were imputed using the R package “mice” which is explained in section 3.2.3 

[109]. 

3.2.1. Biocrates platform  

For all five cohorts (KORA S4/F4, EPIC-Potsdam, LLS, NTR), metabolite concentrations were 

measured using the Biocrates AbsoluteIDQp150 kit or p180kit (BIOCRATES Life Sciences 

AG, Innsbruck, Austria) at the Metabolomics Platform of the Genome Analysis Center at the 

Helmholtz Zentrum München, Germany, following the instructions described in the 

manufacturers’ manual [5, 110-112]. Briefly, Biocrates uses a targeted Flow Injection Analysis 

tandem mass spectrometry (FIA-MS/MS) technique for quantification of known metabolites, 

163 for kit p150 or 186 for kit p180, measurements. The p180 kit is an extension of p150 that 

uses additional liquid chromatography tandem mass spectrometry (LC-MS/MS) separation. The 

analytical process was performed with the Analyst 1.4 software and the MetIQ
TM

 software 

package, integrated in the AbsoluteIDQ
TM

 kits. Internal standards serve as reference for the 

calculation of metabolite concentrations. With the used analytical technique, it is not possible to 

determine the precise position of the double bonds and the distribution of carbon atoms 

between two fatty acid side chains. Thus, the lipid side chain composition is abbreviated as 

Cx:y, where x denotes the number of carbons in the side chain and y the number of double 

bonds [110]. Metabolite concentrations are given in 𝜇mol/l. See in Appendix Table A.1 for a 

list of measured metabolites. 

For quality control, for each metabolite and plate the coefficient of variation was calculated. 

The coefficient of variation for metabolite 𝑖 and plate 𝑗 is defined as: 
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𝐶𝑉𝑖,𝑗 =
𝑠𝑑𝑖𝑗

𝑚𝑒𝑎𝑛𝑖,𝑗
, 

where 𝑠𝑑𝑖𝑗 is the standard deviation (sd) and 𝑚𝑒𝑎𝑛𝑖,𝑗 is the mean over all reference 

measurements per plate 𝑗 and metabolite 𝑖. If the coefficient of variation averaged over all 

plates of one metabolite exceeds 25% it was excluded from the dataset.  

Outlying metabolite concentration values and outlying samples were also removed. An outlier 

was defined as a metabolite concentration of one subject which is greater or less than the mean 

plus five standard deviations. The resulting dataset was naturally log-transformed to obtain a 

normal distribution. All missing values were imputed with the R package mice which uses a 

linear regression approach [109] (see section 3.2.3 for details).  

3.2.2. Metabolon platform  

For KORA F4 subjects’ metabolomics measurements were performed on two separate 

ultrahigh-performance liquid chromatography/tandem mass spectrometry (UHPLC/MS/MS2) 

injections and one gas chromatography/mass spectrometry (GC/MS) injections per sample. 

Measurements on the platform at the company Metabolon Inc. (Durham, NC, USA) is 

described in detail elsewhere [30, 32].  

After the relative quantifications, 325 of the in total 517 compounds could so far be identified 

based on a standard library of MS/MS spectra. The identified molecules belong to a variety of 

metabolite classes, namely, amino acids, peptides, carbohydrates, fatty acids, 

glycerophospholipids, acylcarnitines, sphingolipids, steroids, ketone bodies, bile acid 

metabolites, nucleotide metabolites, vitamins and xenobiotics, see in section Appendix Table 

A.2 for a list of measured metabolites. 

For quality control and normalization, the metabolite levels were divided by the median value 

of samples measured on the same day for each metabolite independently. Furthermore, 

metabolite levels having a value greater than four times the standard deviations from the mean 

of the respective metabolite on natural log scale were set to missing. Metabolites were 

excluded, if they had more than 40% missing values leading to a total of 406 remaining 

metabolites. All missing values were imputed with the R package mice (Multivariate 

imputation by chained equations) [109] (see section 3.2.3 for details). 
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3.2.3. Imputation 

Missing values are frequently observed in high-throughput mass spectrometry-based 

metabolomics measurements. However, for running association analyses, as conducted in this 

thesis, a complete data set is required. Therefore, such missing values either need to be handled 

during statistical analyses, e.g. using complete cases only, or by imputation approaches prior to 

analysis. In general, missing of values can occur for various reasons and are categorized into 

three groups [113-115]: Missing completely at random (MCAR), missing at random (MAR), 

and missing not at random (MNAR). In MCAR, the missing of an outcome is independent from 

any observed or unobserved variables. MCAR can occur because of technical reasons, e.g., the 

metabolite was not measured properly due to matrix or contamination effects preventing the 

quantification of a metabolite in a sample. In case of MAR, the missing values depend only on 

observed values and not on unobserved values. For example, the probability of missing values 

for the metabolite caffeine is increased in children, because it is less likely that children drink 

caffeinated beverages. In MNAR, the missing values depend on unobserved data, conditional 

on the observed data. For example, if the metabolite level is below the instrument sensitivity 

thresholds, it might not be detectable in a sample (limit of detection, LOD). 

Based on these categorizations, there are different ways to handle the missing values. For 

example, if we assume that they are MCAR, it is sufficient to use single imputation, i.e., one 

date set is generated by filling up the missing values through mean imputation or regression 

techniques. Otherwise in case of MAR or MNAR, it might be useful to compute and analyze 

multiple complete data sets [116] (at least five data sets [109]) and combine them based on 

rules by Rubin [117]. However, as huge data sets are used in this thesis, it would take too long 

to compute each data set separately. Therefore, we used a single imputation based on the R 

package mice [109].  

The chained equation process which is applied in the R package mice can be divided in several 

steps as introduced by Azur et al. [118]: 

1. The missing values are filled with arbitrary start values, such as mean 

2. The imputed values for one variable “var” are set back to missing 
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3. The variable “var” is then regressed on the other variables using only the observed 

variable from variable “var”, i.e., “var” is the dependent variable in a regression model 

and all the other variables are the independent variables. 

4. Subsequently, the missing values for “var” are replaced with values drawn from the 

conditional posterior distribution of the missing values. The conditional posterior 

distribution is computed from the estimates obtained from the regression. Then, the same 

procedure is applied for other variables, using “var” with imputed values as an 

independent variable in the regression model 

5. Steps 2-4 are repeated for each variable with missing values. In addition, they are 

repeated for several cycles, depending how many imputed data sets are wanted 

In this thesis, for the Biocrates as well as for the Metabolon measurements, five data sets were 

generated which were then averaged to obtain one data set. 

3.3. Genotyping and quality control 

Genotyping for the KORA F4 study was performed on the Affymetrix Axiom chip [119] and 

called with the Affymetrix software and annotated to NCBI 37 of 1000g phase 1. Genotypes 

were imputed against 1000g phase 1 integrated haplotypes reference set using IMPUTE v2.3.0 

[120], with SHAPEIT v2 [121] as a pre-phasing tool. For quality control, all subjects were 

removed who have discordances between phenotypic and genetic sex. Furthermore, all 

observations were removed which did not cluster with HapMap CEU population in a joint plot 

of the first two principle components or deviated by at least five standard deviations from the 

mean heterozygosity rate. 

In addition, a so called observation-wise call rate and a SNP-wise call rate was calculated. The 

observation-wise call rate is the proportion of SNPs per subject for which a reliable genotype 

assignment could be made based on the fluorescence signals obtained for the two alleles of the 

SNP. All subjects having a call rate below 97% were removed from the data set. The SNP-wise 

call rate is the proportion of observation per SNP for which a reliable genotype assignment 

could be made. All SNPs having a call rate below 98% were removed from the dataset. 

Furthermore, SNPs having a HWE p-value below 5 × 10−6 or having an imputation information 

score below 0.5 were also excluded from the dataset. Finally the data were transformed to 

dosages (i.e. estimated counts) of the reference allele, calculated as:  
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𝐷𝑜𝑠𝑎𝑔𝑒 =   2 ⋅ 𝑝(𝐴𝐴 ) +  1 ⋅ 𝑝( 𝐴𝐵),   where p(AA) is defined as the probability to be 

homozygous to the reference allele, and p(AB) the probability to be heterozygous. 

3.4. Array-based DNA methylation & quality control 

In KORA F4 genome-wide DNA methylation measurement at 485,577 genomic sites was 

performed using the Infinium HumanMethylation450K BeadChip (Illumina, Inc., CA, USA) 

and is described in detail elsewhere [92]. Briefly, the single-stranded genomic DNA underwent 

a bisulfite treatment using the EZ-96 DNA Methylation Kit (Zymo Research, Orange, CA, 

USA). Afterwards, samples were whole genome amplified, fragmented, resuspendated, and 

hybridized to the Bead Chips. Finally, arrays were stained with fluorescence and scanned with 

the Illumina HiScan SQ scanner resulting into a methylated and an unmethylated signal count 

per CpG site. These counts are then transformed into 𝛽-values, which represent the proportion 

of methylation at a given CpG site and are defined as the ratio of methylated signal intensity 

divided by the overall signal intensity [122]: 

𝛽 − 𝑣𝑎𝑙𝑢𝑒 =
max (𝑀, 0)

max (𝑀, 0) + max (𝑈, 0) + 𝛼
 

The 𝛼 is set to 100 as a regularization in case both methylated signal (𝑀) and unmethylated 

signal (𝑈) are to low [123].  

For quality control, the DNA methylation was corrected for possible background noise using the 

R package minfi, version 1.6.0 [124]. In addition, detection p-values, i.e. the probability of a 

signal being detected above the background signal level, are estimated from negative control 

probes. Thus, all signals having p-values ≥0.01 were removed. Furthermore, signals which 

came from less than three functional beads on the chip are potentially unreliable signals and 

therefore removed from the dataset.  

To reduce the non-biological variability between observations, data were normalized using the 

quantile-normalization (QN) with the R package limma, version3.16.5 [125]. 

Furthermore, to avoid false positive associations, all CpG sites which were listed by Chen et al. 

[126] as cross-reactive probes were removed. Cross-reactive probes bind on repetitive sequences 

or co-hybridize to alternate sequences which are highly homologous to the intended targets and 

could lead to false signals. 
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Moreover, an open challenge is the measurement of CpG sites from whole blood, and thus 

coming from a mixture of different cell types. To diminish cell type confounding, the model was 

adjusted by the so-called Houseman variables which reflect the blood cell proportions [127].  

Thus, CpG sites were represented by their residuals after regressing on age, sex, body mass index 

(BMI), Houseman variables, and the first 20 principal components of the principal component 

analysis control probes from 450K Illumina arrays. The control probes were used to adjust for 

technical confounding. According to Lehne et al. [128], the first 30 principal components are 

sufficient to almost entirely remove test statistic inflation consistent with effective correction for 

the batch and technical effects. However, in KORA it was observed that already 20 principal 

components were enough to remove technical confounding. 

3.5. Assessment of diabetes-status 

Incident and prevalent diabetes information in KORA were obtained by self-reported diabetes 

type and date of diagnosis. In addition, cases were validated by contacting their physician. All 

other subjects underwent an oral glucose tolerance test (OGTT) after overnight fasting. Thus, 

incident T2D was then defined based on either validation by physician diagnosis or newly 

diagnosed diabetes by the OGTT (≥ 7.0 mmol⁄l fasting or ≥ 11.1 mmol/l 2-h glucose) [129]. In 

EPIC-Potsdam follow-up questionnaires were sent to participant every 2-3 years to identify 

incident cases of T2D. Cases were further verified by medical records [46]. Information about 

T2D in LLS was requested from the participants’ treating physicians [106]. T2D information 

from the NTR was retrieved by questions in a survey asking whether a doctor ever diagnosed 

diabetes and whether any diabetes-related medication was used [42]. 
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4. Methods 

In this thesis, several statistical tests were applied to analyze the association between T2D and 

metabolite ratios as well as the association between metabolite levels and the interaction of SNPs 

and DNA methylation. For the analysis of T2D and metabolite ratios, a logistic regression and a 

Cox proportional hazard regression is used. For the interaction analysis, a linear regression with 

an interaction term is used. Here, they are briefly introduced. An overview is given in Figure 4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Schematic overview of the study design used in this thesis. Further details on the 

study samples can be found in the section 3. 
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4.1. Linear regression analysis 

The most common statistical test used in epidemiological studies is based upon the linear 

regression model. In this thesis, the univariate linear regression is used to examine the 

relationship between metabolite levels and the interaction between DNA methylation and 

genetic variants. 

The simple linear regression is the model that tries to find a linear relationship between one 

independent variable 𝑥 and the dependent variable 𝑦. In brief, a line between two variables gets 

fitted, that aims at minimizing the vertical differences (residuals) between 𝑛 predictions of 

outcome 𝑦 and n observations of 𝑥 (see Figure 4.2) [130]: 

𝑦 =  𝛽0 + 𝑥𝛽1 +  𝜖,   𝜖~𝑁(0, 𝜎
2𝐼𝑛), 

where 𝛽0 is the intercept, 𝛽1 is the slope of the regression line, and 𝜎2 is the variance of the 

error term 𝜖, which is independent and identical normally distributed with mean 0. Mostly, we 

are interested in obtaining the slope 𝛽1 which can be estimated by minimizing the error term 𝜖. 

Conventionally, the minimization of the error term 𝜖 is achieved by minimizing the sum of the 

squared error term leading to the name ordinary least squares (OLS) regression [130]. 

 

Figure 4.2: Schematic illustration of simple linear regression adapted from [130]. The regression 

line, 𝑦̂ = 𝛽0 + 𝛽1𝑥, is estimated by minimizing the sum of the squared vertical differences (the 

residuals, here shown as 𝜖) between the points and the regression line.  
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In a multiple linear regression, more than one independent variable is included into this model: 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑝𝑥𝑝 + 𝜖 = 𝑋𝛽 + 𝜖,   𝜖~𝑖. 𝑖. 𝑑. 𝑁(0, 𝜎
2𝐼𝑁), (4.1) 

where 𝑝 is the number of independent variables, 𝛽𝑇 = (𝛽0, 𝛽1, … , 𝛽𝑝) denotes the regression 

coefficients, i.e. slopes, of the corresponding independent matrix 𝑋 which contains 𝑝 + 1 

independent variables (1, 𝑥1, … , 𝑥𝑝). 

If the data is fitted with a regression line as illustrated in Figure 4.2 assuming model (4.1), and 

defining the error term as the difference between the observed value and the predicted value 

𝜖𝑖 =  𝑦𝑖 − 𝑦̂(𝑥𝑖) for each pair (𝑥𝑖 , 𝑦𝑖), the estimation of the regression coefficients in 𝛽 and the 

standard deviation 𝜎2 are then [130]: 

𝛽 = arg min 
𝛽

∑𝜖2 = arg min 
𝛽

∑(𝑦𝑖 − 𝑦̂(𝑥𝑖))
2
=

𝑁

𝑖=1

𝑁

𝑖=1

arg min 
𝛽

∑(𝑦𝑖 −  (𝛼 + 𝑥𝑖𝛽
𝑇))

2
𝑁

𝑖=1

 

The estimators (based on OLS) are thus [131]: 

𝛽̂ = (𝑋𝑇𝑋)−1𝑋𝑇𝑦, (4.2) 

𝜎̂2 =
𝜖𝑇𝜖

𝑁−𝑝−1
= 

(𝑦−𝑦̂)𝑇(𝑦−𝑦̂)

𝑁−𝑝−1
, 

(4.3) 

where 𝑝 is the number of independent variables and 𝑛 the number observations. 

Instead of computing the variance directly from the formula given in Equation (4.3), it is more 

common to use a form based on the relationship, 𝑆𝑆𝑇 = 𝑆𝑆𝑅 + 𝑆𝑆𝐸. 𝑆𝑆𝑇, in simple terms, may 

be regarded as the total variation of the dependent variable 𝑦. One part of its variation is reflected 

by the regression (𝑆𝑆𝑅) and the other part by its residuals (𝑆𝑆𝐸) [130]. 𝑆𝑆𝑇 describes the total 

sum of squares and is defined as: 

𝑆𝑆𝑇 =  ∑(𝑦𝑖 − 𝑦̅)
2

𝑁

𝑖=1

 

𝑆𝑆𝑅, the regression sum of squares, can be calculated as follows: 

𝑆𝑆𝑅 =∑[𝑦̂(𝑥𝑖) − 𝑦̅]
2,

𝑁

𝑖=1
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and the sum of squared errors is: 

𝑆𝑆𝐸 =∑𝜖𝑖
2.

𝑁

𝑖=1

 

4.1.1. Testing hypotheses on individual regression coefficients 
Testing a statistical hypothesis means always testing a null hypothesis 𝐻0 against an alternative 

hypothesis 𝐻1 and eventually failing to reject or rejecting the null hypothesis [132]. It is 

possible to come up with an incorrect decision, i.e., to reject 𝐻0 although it is true (Type I error 

or 𝛼 error), or to accept 𝐻0 although it is false (Type II error). Thus, a common practice to keep 

the Type I error low, is to set the significance level of the test to 𝛼 = 0.05.  

After estimating the coefficients 𝛽, we want to know whether the coefficients significantly 

differ from zero. Thus, we are testing whether to reject the null hypothesis 𝐻0: 𝛽𝑗 = 0 for 

𝑗 = 1,… , 𝑝.  

The student’s 𝑡 test statistic is applied to test the null hypothesis [133]: 

𝑡0 =
𝛽𝑗

𝑠𝑒(𝛽𝑗)
=

𝛽𝑗

√𝜎̂2𝐶𝑗𝑗

, for 𝑗 = 1, … , 𝑝, 

where 𝐶𝑗𝑗 is the diagonal element of (𝑋𝑇𝑋)−1 corresponding to 𝛽𝑗. The null hypothesis 

𝐻0: 𝛽𝑗 = 0 is rejected if |𝑡0| > 𝑡𝛼/2,𝑛−𝑝−1, meaning that 𝑡0 is drawn from a 𝑡 distribution with 

𝑛 − 𝑝 − 1 degrees of freedom. The null hypothesis is rejected when its value is higher than the 

𝑡 value corresponding to the same 𝑡 distribution when 𝛼 is set to 0.05. 

4.1.2. Coefficient of determination  
The coefficient of determination (𝑅2) is a measurement describing how good the linear model 

fit to a given data set. It is defined as: 

𝑅2 =
𝑆𝑆𝑅

𝑆𝑆𝑇
= 1 −

𝑆𝑆𝐸

𝑆𝑆𝑇
 

 

𝑅2 can also be interpreted as the proportion of variance of the predicted variable explained by the 

estimated model. Thus, if the regression line fits the data perfectly 𝑅2 is equal to 1, and if the 

model does not fit the data at all 𝑅2is equal to 0 [130]. 
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However, the 𝑅2 increases with every additional variable added to the model [134]. To avoid this 

problem the adjusted variable has been introduced which is given by: 

𝑅𝑎
2 = 𝑅2 − 𝑟(1 − 𝑅2), 𝑟 =

𝑝

𝑛−𝑝−1
> 0,  𝑛 is the sample size and 𝑝 the number of parameters.  

4.2. Logistic regression analysis 

To analyze relationships with a binary response, e.g., whether or not a patient suffers from 

diabetes, a logistic regression analysis can be applied [133]. The aim of a logistic regression is to 

model the expected value 𝔼(𝑦) or the probability of a certain outcome of 𝑦 in the presence of 

covariates [135]: 

𝔼(𝑦) = 𝑃(𝑦 = 0) ∙ 0 +  𝑃(𝑦 = 1) ∙ 1 =  𝑃(𝑦 = 1|𝑥1, . . 𝑥𝑘) = 𝜋 

To avoid problems caused by meeting appropriate requirements such as probabilities larger than 

0 or lower than 1, following model is assumed: 

𝜋𝑖 = 𝑃(𝑦𝑖 = 1) = 𝐹(𝛽0 + 𝛽1𝑥𝑖1 +⋯+ 𝛽𝑝𝑥𝑖𝑝), 

where 𝑥 = (1, 𝑥1, … , 𝑥𝑛) is the independent variable, 𝛽 = (𝛽0, 𝛽1, … , 𝛽𝑝) denotes the regression 

coefficients, the response 𝑦 takes the value 0 or 1 and function 𝐹 is restricted to be in interval 

[0,1]. Using the equation 

𝐹(𝜂) =
exp(𝜂)

1 + exp(𝜂)
, 

yields the logit model 

𝜋𝑖 = 𝑃(𝑦𝑖 = 1) =
exp(𝜂𝑖)

1 + exp(𝜂𝑖)
,  

with the linear predictor 

𝜂𝑖 = 𝛽0 + 𝛽1𝑥𝑖1…+ 𝛽𝑝𝑥𝑖𝑝. 

In section 5.1, four independent epidemiological studies were used to study the association with 

prevalent T2D (LLS [106, 107], NTR [11, 108], KORA F4 [136, 137]). In total, 306 subjects 

with prevalent T2D and 4619 non-diabetic controls were included. Logistic regression models 
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were adjusted for age, sex, BMI, use of lipid lowering medication, study specific covariates and 

fasting status (where appropriate) as covariates.  

4.3. Survival analysis  

In this section, the analysis of survival times is introduced. For this analysis, the time of the 

onset of T2D is analyzed as well as which factors influence this time point.  

In section 4.3.1 the Cox proportional hazards regression is described. This method is used to 

estimate the association between metabolite ratios and the onset of T2D. I assess 5-year event 

risk for models fitting T2D with different independent variables listed in Table 4.1 in section 

4.3.1. Their performances are estimated using two measurements: the time-dependent area under 

the receiver operating characteristic curve (time-dependent AUC) using Bayes’ theorem (section 

4.3.2), and the net reclassification improvement (NRI) to measure the differences between two 

models (section 4.3.3).  

In contrast to a logistic regression where the actual time point when the event occurs is 

irrelevant, the Cox proportional hazards regression analyzes data by taking into account the time 

until the event [138]. For the analyses, we need the survival distribution, which can be described 

by two functions, the survival function 𝑆(𝑡) and the hazard function ℎ(𝑡) [139]. 

The survival function,  𝑆(𝑡) = P(𝑇 > 𝑡), 0 < 𝑡 < ∞, defines the probability that the event does 

not occur up to a time point 𝑡. Time point 𝑡 represents a specific value of interest given that the 

event of the person`s event time 𝑇 does not occur before, i.e. 𝑡 is smaller than 𝑇 when the event 

occur and takes values between 0 and 1.  

In this analysis, the event is T2D. That is, 𝑆(𝑡) is the probability that T2D did not occur before 

time 𝑡. 𝑆(𝑡) = 1 at time point 0, i.e. all patients have not yet developed T2D at time point 0. The 

survival function must be non-increasing (monotone decreasing) over time.   

A characteristic in survival analysis is, in addition to the time being included, censoring. 

Censoring arises when the ending events are not observed, meaning, we know that the event 

does not occur up to a time point 𝑇, however we do not know if and when exactly the event will 

occur after time point 𝑇 [140]. 

To construct the survival distribution 𝑆(𝑡),  unparametric estimations, such as Kaplan-Meier 

estimator (KM estimator) [141], become popular. This estimator is the product of conditional 
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probability terms. That is, each term in the product is the probability that the event does not 

occur in a specific ordered time point 𝑡𝑖  given that a subject has not that event to that time point. 

𝑆̂𝐾𝑀(𝑡𝑖) = 𝑆̂𝐾𝑀(𝑡𝑖−1) ∙ 𝑃 ( 𝑇 > 𝑡𝑖⏟  
event does not occur before time point 𝑡𝑖

| 𝑇 ≥ 𝑡𝑖⏟  
event does not occur at least to time point 𝑡𝑖

)

=∏𝑃(𝑇 > 𝑡𝑘|𝑇 ≥ 𝑡𝑘) ∙ 𝑃(𝑇 > 𝑡𝑖|𝑇 ≥ 𝑡𝑖)

𝑖−1

𝑘=1

=∏𝑃(𝑇 > 𝑡𝑘|𝑇 ≥ 𝑡𝑘)

𝑖

𝑘=1

=∏(1 − 𝑃( 𝑇 = 𝑡𝑘⏟  
event occurs at time point 𝑡𝑘

))

𝑖

𝑘=1

=  ∏(1 −
∑ 𝟏(𝑍𝑗 = 𝑡𝑘)𝛿𝑗
𝑘
𝑗=1

∑ 𝟏(𝑍𝑗 ≥ 𝑡𝑘)
𝑘
𝑗=1

)

𝑖

𝑘=1

 

 

𝛿𝑗 = {
1 , subject 𝑗 has event up to time 𝑡𝑘 
0 , otherwise

, 

where 𝑍𝑗 = min (𝑇𝑗 , 𝐶𝑗) is the time when the event occurs and 𝐶𝑗  is the censoring time for 

subject 𝑗, and 𝛿𝑗  ensures that the numerator  ∑ 𝟏(𝑍𝑗 = 𝑡𝑘)𝛿𝑗
𝑘
𝑗=1  only counts the subjects which 

have the event, i.e., excluding subjects which are censored. The survival function can be also 

used to describe the distribution function of events, which is defined as 𝐹(𝑡) = 𝑃(𝑇 > 𝑡) = 1 −

𝑆(𝑡). 

The hazard function ℎ(𝑡), also called instantaneous event (death, failure) rate, is defined as the 

probability that the event will occur in the next small time interval Δ𝑡, given that this event has 

not occurred before this interval 

ℎ(𝑡) = lim
Δt→0

P(t≤T < t + Δt |T≥t)

Δ𝑡
. 
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4.3.1. Cox proportional hazards regression analysis 

The standard Cox proportional hazards model assumes a hazard function for individual 𝑖 of the 

form ℎ𝑖(𝑡) = ℎ0(𝑡)exp(𝛽𝑋𝑖) = ℎ0(𝑡)exp (𝛽0 + 𝑋𝑖1𝛽1 + 𝑋𝑖2𝛽2 +⋯+ 𝑋𝑖𝑝𝛽𝑝) [142], where 

ℎ0(𝑡) is an unspecified nonnegative function of time, also called the baseline hazard, 𝑋𝑖 are the 

covariates, and 𝛽 is a 𝑝 × 1 column vector of coefficients. The aim is now to estimate the 

hazard function and/or assess how the covariates affect it.  

The hazard ratio 𝐻𝑅̂ between two subjects with fixed covariates 𝑋𝑖 and 𝑋𝑗 with 

𝐻𝑅̂ =
ℎ𝑖(𝑡)

ℎ𝑗(𝑡)
=
ℎ0(𝑡) exp(𝛽𝑋𝑖)

ℎ0(𝑡) exp(𝛽𝑋𝑗)
=
exp(𝛽𝑋𝑖)

exp(𝛽𝑋𝑗)
= exp (𝛽(𝑋𝑖 − 𝑋𝑗)) 

is constant over time, leading to the name proportional hazards model. Estimation of 𝛽 is based 

on the partial likelihood function developed by D.R. Cox [143] and therefore is often referred 

to  the Cox proportional hazards model. The likelihood function is called “partial” because we 

do not consider probabilities for all subjects, i.e., only probabilities for those subjects who 

undergo the event were considered and not explicitly for those who are censored [140].  

For every time point 𝑡𝑗 a risk set is formed which denoted by 𝑅𝑗  containing all subjects for 

whom the event has not occurred yet and calculate the conditional probability that one of them, 

say subject 𝑖, among the subjects in the risk set 𝑅𝑗   has an event at time point 𝑡𝑗. The log-

likelihood is then the sum of these log-transformed conditional probabilities over all 𝑘 events 

[140]: 

𝐿(𝛽) = 𝐿1 + 𝐿2 +⋯+ 𝐿𝑘 =∑𝐿𝑗

𝑘

𝑗=1

, 

 

(4.1) 

𝐿𝑗 = log ( 
exp (𝑋𝑖𝛽)

∑ exp (𝑋𝑟𝛽)𝑟∈𝑅𝑗

) = log (exp (𝑋𝑖𝛽)) − log(∑ exp (𝑋𝑟𝛽)

𝑟∈𝑅𝑗

), 

 

 

(4.2) 
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where the expression 𝑟 ∈ 𝑅𝑗  denotes the sum is taken over all subjects in the risk set 𝑅𝑗 at time 

point 𝑡𝑗. 

Incident T2D was obtained from the KORA S4 to F4 prospective follow-up, and the EPIC-

Potsdam study. Both the KORA S4 to F4 and the EPIC-Potsdam study, have on average seven 

years of follow-up.  

Because EPIC-Potsdam used case-cohort data from a random sub cohort 𝐶 of size 𝑚 and all 

cases from the entire cohort, the relative risk parameter 𝛽 is estimated by maximizing the 

function suggested by Prentice [144]: 

𝐿̃(𝛽) = 𝐿̃1 + 𝐿̃2 +⋯+ 𝐿̃𝑘 =∑𝐿̃𝑗

𝑘

𝑗=1

, 

𝐿̃𝑗 = log (
exp(𝑋𝑖𝛽)

∑ exp (𝑋𝑟𝛽)𝑟∈𝑅̃𝑗

) = log(exp(𝑋𝑖𝛽)) − log(∑ exp (𝑋𝑟𝛽)

𝑟∈𝑅̃𝑗

), 

where the expression 𝑟 ∈ 𝑅̃𝑗  denotes the sum which is taken over all subjects at risk in the sub 

cohort 𝐶 and all cases from the entire cohort if they have an event at time point 𝑡𝑗. Thus, all 

subjects of the sub cohort are included in the analysis, while cases outside the sub cohort are only 

included in the risk set at their event time [145, 146]. To account for the case-cohort design in 

EPIC-Potsdam robust sandwich covariance estimates were used [147, 148]. The log-likelihood 

function is assumed to be the correct model and 𝛽0 the true value of 𝛽. Then, the log-likelihood 

function can be expanded in a Taylor series around 𝛽0 as introduced by Freedman [149]: 

𝐿(𝛽) = 𝐿(𝛽0) + 𝐿
′(𝛽0)(𝛽 − 𝛽0) +

1

2
(𝛽 − 𝛽0)

𝑇𝐿′′(𝛽0)(𝛽 − 𝛽0) + ⋯ . Eventually, higher-order 

terms are ignored, resulting to quadratic log-likelihood functions, whose maximum can found by 

solving the likelihood equation 𝐿′(𝛽) = 0: 

𝐿′(𝛽0) + (𝛽 − 𝛽0)
𝑇𝐿′′(𝛽0) = 0. 

Thus, 𝛽̂ − 𝛽0 ≈ [−𝐿
′′(𝛽0)]

−1𝐿′(𝛽0)
𝑇. Then the covariance is a symmetric 

𝑝 × 𝑝 matrix 𝑐𝑜𝑣𝛽0𝛽̂ ≈ [−𝐿
′′(𝛽0)]

−1[cov𝛽0𝐿
′(𝛽0)][−𝐿

′′(𝛽0)]
−1. The sandwich idea is to 

estimate 𝐿′′(𝛽0) directly from the sample data as well as cov𝛽0𝐿
′(𝛽0) . Thus, 𝑐𝑜𝑣𝛽0𝛽̂ can be 

estimated with the “Huber sandwich estimator” 𝑉̂ = (−𝐴)−1𝐵(−𝐴)−1, with 𝐴 = 𝐿′′(𝛽̂) and 

𝐵 = cov𝛽0𝐿
′(𝛽0). The square roots of the diagonal elements of 𝑉̂ are “robust standard errors” 
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[149]. For the analysis of incident diabetes, we included 910 participants who were free of 

diabetes at baseline when blood was drawn but who developed T2D during follow-up, and 3,367 

non-diabetic controls. For this association, a Cox proportional hazards regression analysis were 

performed with covariates as described by Wang-Sattler et al. [27] and Floegel et al. [46]. See 

Table 4.1 for details on the covariates included. The above described base model was expanded 

to include the ratio of valine to PC ae C32:2. The resulting model reflects a well-established 

prediction model for incident T2D and has been validated in several independent cohort studies 

[150-152].  Regression was performed using either the function coxph of the R package survival  

[153] or PROC PHREG in SAS [154].  

Table 4.1 Covariates used for adjustment of Cox proportional hazards regression for KORA S4 

to F4 and EPIC-Potsdam studies. 

Variable KORA S4 to 

F4 

EPIC-Potsdam 

Age years years 

BMI  kg/m
2
 kg/m

2
 

Sex (male/female) 0/1 0/1 

Whole-grain bread intake - g/day 

Waist circumference - cm 

Physical activity Active/inactive h/week 

Alcohol intake g/day from beverages (nonconsumers; women 

>0–6,6–12,and >12 g/day; and men >0–

12,12–24,and >24 g/day) 

Smoking Smoker/non-

smoker 

(never, former, current ≤20 

cigarettes/day, current >20 

cigarettes/day) 

Education - low, medium, high 

Coffee intake - cups/day 

Red meat intake - g/day 

Prevalent hypertension - Yes/no 

Systolic blood pressure mm Hg - 

Use of lipid lowering 

medication 

- Yes/no 

HDL cholesterol mg/dl - 

Additional adjustment 

fasting glucose mg/dl* mg/dl* 

Covariate selection based on previously published paper from Wang-Sattler et al. [27] and 

Floegel et al. [46]. Presented are the units of the included continuous covariates or definition of 

categories for categorical covariates in the two studies. * only used for the model with additional 

adjustment for glucose. 
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4.3.2. Time-dependent receiver operating characteristic curve 

Originating from the area  of signal processing, the receiver operating characteristics (ROC) 

analysis has become a standard evaluation tool in medical sciences to compare the true positive 

rate (𝑇𝑃𝑅) and the false positive rate (𝐹𝑃𝑅) [155]. Given a model which distinguishes between 

two classes, e.g. diabetes vs. non-diabetes, then 𝑇𝑃𝑅 is defined as the number of positives 

which were correctly classified (assigned to diabetes by the model and being diabetic in reality) 

divided by the number of total positives (assigned to diabetes by the model no matter whether 

or not diabetic in reality). This is also called sensitivity, i.e. the conditional probability that the 

diagnostic test is positive given the subject has the disease 𝑃(𝑋 > 𝑐|𝐷 = 1), where 𝑋 is the 

diagnostic marker, 𝑐 is the cut-off point, and 𝐷 is the binary disease variable. In contrast, 

the  𝐹𝑃𝑅  denotes the positive incorrectly (i.e. assigned to diabetic by the model but non-

diabetic in real) classified divided by the total number of positives (all samples assigned to 

diabetic).  

The 𝐹𝑃𝑅 is the same as 1- specificity, which itself denotes the conditional probability that the 

diagnostic test is negative given the subject does not have the disease (𝑃(𝑋 ≤ 𝑐|𝐷 = 0)). 

Visualization of these rates is achieved by the receiver operating characteristic (ROC) curve, 

which plots the 𝑇𝑃𝑅 against the 𝐹𝑃𝑅 for several possible cut-off points [156] (see Figure 4.3 

for visualization). A ROC curve is thus a visualization of how well a diagnostic marker can 

classify groups with or without prevalent disease [157].  

A good model shows a line close to the top-left corner whereas random decision making is 

reflected by a 45° line [156]. To compare different methods the area under the ROC curve 

(AUC) is computed. Thereby, an AUC close to 1 indicates a good model. However, many 

disease outcomes are time dependent. Thus it would be useful to estimate ROC curves that vary 

as a function of time. This was first introduced by Heagerty et al. [158]. In general, we want to 

assess how well a diagnostic marker measured at baseline can differentiate between subjects 

who become diseased and subjects who do not up to a time point 𝑡. Heagerty et al. presented 

two methods to estimate the time-dependent ROC curves [158]. The first is based on the 

Kaplan-Meier (KM) estimator [141] and Bayes’ theorem. However, due to possible problems 

with respect to non-monotonicity of specificity and sensitivity Heagerty et al. provide an 

alternative based on a nearest neighbor estimator for bivariate distribution functions [159]. 
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Figure 4.3: Two-gaussian model for the Receiver Operator Characteristic (ROC). Data are 

classified into positives and negatives based on a cut-off value for a biomarker: the classification 

results in true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) 

(upper Figure was adapted from [160]). The true negative probability is indicated by the blue 

Gaussian curve and the true positive probability by the red Gaussian curve. For various cut-off 

points TPR and FPR are estimated and plotted into a ROC curve (right). 

Cut-off point 

TP TN 

FP FN 

For various cut-off 

points specificity 

and sensitivity are 

computed 
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Therefore the definition of sensitivity and specificity are rewritten involving the time 

dependency: 

sensitivity(𝑐, 𝑡) = 𝑃(𝑋 > 𝑐|𝐷(𝑡) = 1) 

specificity(𝑐, 𝑡) = 𝑃(𝑋 ≤  𝑐|𝐷(𝑡) = 0) 

For the KM estimator, both functions were transformed using Bayes’ theorem [132]: 

𝑃(𝑋 > 𝑐|𝐷(𝑡) = 1) =
(1 − 𝑆(𝑡|𝑋 > 𝑐))𝑃(𝑋 > 𝑐)

(1 − 𝑆(𝑡))
 

 

𝑃(𝑋 ≤  𝑐|𝐷(𝑡) = 0) =
𝑆(𝑡|𝑋 ≤ 𝑐)𝑃(𝑋 ≤ 𝑐)

𝑆(𝑡)
, 

where 𝑆(𝑡) is the survival function and 𝑆(𝑡|𝑋 > 𝑐) the conditional survival function for the 

subset defined by 𝑋 > 𝑐 (i.e. classification of the disease for a given threshold 𝑐). A simple 

estimator for sensitivity and specificity at a particular time point 𝑡 is then given by combining the 

KM estimator and the empirical distribution function of the marker covariate, 𝑋, as 

𝑃̂𝐾𝑀(𝑋 > 𝑐|𝐷(𝑡) = 1) =
(1 − 𝑆̂𝐾𝑀(𝑡|𝑋 > 𝑐)) (1 − 𝐹̂𝑋(𝑐))

(1 − 𝑆̂𝐾𝑀(𝑡))
 

𝑃̂𝐾𝑀(𝑋 ≤  𝑐|𝐷(𝑡) = 0) =
𝑆̂𝐾𝑀(𝑡|𝑋 ≤ 𝑐)𝐹̂𝑋(𝑐)

𝑆̂𝐾𝑀(𝑡)
 

 

with  𝐹̂𝑋(𝑐) = ∑ 𝟏(𝑋𝑖 ≤ 𝑐)/𝑛𝑖 ,  

where 𝑋𝑖 indicates the marker covariate of subject 𝑖. Because there is no guarantee of 

monotonicity of specificity or sensitivity, the second approach presented by Heagerty et al. [158] 

involves nearest neighbour estimation of a bivariate distribution. The bivariate function can be 

defined as: 

𝐹(𝑐, 𝑡) = 𝑃(𝑋 ≤ 𝑐, 𝑇 ≤ 𝑡), 

or equivalently 

𝑆(𝑐, 𝑡) = 𝑃(𝑋 > 𝑐, 𝑇 > 𝑡). 
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The estimator is based on the representation 𝑆(𝑐, 𝑡) = ∫ 𝑆(𝑡|𝑋 = 𝑠)𝑑𝐹𝑋(𝑠),  where 𝐹𝑋(𝑠)
∞

𝑐
  is 

the distribution function for 𝑋. Shown by Akritas et al. [159], 𝑆(𝑐, 𝑡) can be estimated by 

𝑆̂𝜆𝑛(𝑐, 𝑡) =
1

𝑛
∑𝑆̂𝜆𝑛(𝑡|𝑋 = 𝑋𝑖)𝟏(𝑋𝑖 > 𝑐),

𝑖

 

where 𝑆̂(𝑡|𝑋 = 𝑋𝑖) denotes the estimator of the conditional survival function characterized by 

the smoothing parameter 𝜆𝑛 and 𝑋𝑖 is the covariate value for subject 𝑖.  

The weighted Kaplan-Meier estimator is 

𝑆̂𝜆𝑛(𝑡|𝑋 = 𝑋𝑖) =   ∏(1 −
∑ 𝐾𝜆𝑛(𝑋𝑗, 𝑋𝑖)𝟏(𝑍𝑗 = 𝑡𝑘)𝛿𝑗
𝑘
𝑗=1

∑ 𝐾𝜆𝑛(𝑋𝑗, 𝑋𝑖)𝟏(𝑍𝑗 ≥ 𝑡𝑘)
𝑘
𝑗=1

) .

𝑖

𝑘=1

 

Here, 𝛿𝑗  is a censor indicator with 𝛿𝑗 = 1 if subject 𝑗 has this event up to time 𝑇, 𝛿𝑗 = 0 

otherwise, 𝑍𝑗 is the follow-up time and 𝐾𝜆𝑛(𝑋𝑗, 𝑋𝑖) is a kernel function that depends on the 

smoothing parameter 𝜆𝑛: 

𝐾𝜆𝑛(𝑋𝑖, 𝑋𝑗) = 𝟏(−𝜆𝑛 < 𝐹̂𝑋(𝑋𝑖) − 𝐹̂𝑋(𝑋𝑗) < 𝜆𝑛). 

Consequently, 2𝜆𝑛 ∈ (0,1) represents the percentage of observations included in each 

neighbourhood, excluding the boundaries of the distribution of 𝑋. 

The estimated sensitivity and specificity are then: 

𝑃̂𝜆𝑛(𝑋 > 𝑐|𝐷(𝑡) = 1) =
(1 − 𝐹̂𝑋(𝑐)) − 𝑆̂𝜆𝑛(𝑐, 𝑡)

1 − 𝑆̂𝜆𝑛(𝑡)
 

 

𝑃̂𝜆𝑛(𝑋 ≤ 𝑐|𝐷(𝑡) = 0) = 1 −
𝑆̂𝜆𝑛(𝑐, 𝑡)

𝑆̂𝜆𝑛(𝑡)
, 

where 𝑆̂𝜆𝑛(𝑡) = 𝑆̂𝜆𝑛(−∞, 𝑡).  

The performance of the proportional hazards regression can now likewise be assessed by the 

area under the receiver-operating characteristic curves (AUCs). In my project, they were 

calculated using the R package survivalROC, v1.0.3 [161] in KORA S4 to F4.   
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In general, when the same data are used to generate the model and to compute the AUC, the 

performance is quite high. This is also called  “overfitting” [162]. Thus, it is recommended to 

estimate the performance of a model by using independent data drawn from the same underlying 

population. This means, to estimate the predictive performance by running internal validation 

approaches. In KORA, a 10-fold cross-validation was used. Here, the data got divided into ten 

parts (i.e. folds). The model was fitted on nine folds and evaluation was carried out on the 

remaining fold. This procedure of drawing the ten folds was repeated randomly 100 times to 

increase stability. Finally, performance estimates were averaged [163]. The R package cvTools, 

version 0.3.2 [164] was used for cross-validation. 

4.3.3. Net reclassification improvement 
The net reclassification improvement (NRI) was first introduced by Pencina et al. [165]. It 

describes a procedure to evaluate whether a new prediction is an improvement over an existing 

prediction model. This method is regarded a reasonable alternative to the comparison of AUCs 

[166] which can be very conservative in detecting clinically significant risk differences [165, 

167]. Instead of comparing the difference in AUCs, reclassification methods stratify the 

estimated absolute risk into categories, and then compare if the altered model of interest can 

classify subjects into higher or lower risk categories more accurately than the basic model 

[167]. Thus, NRI distinguishes between two different risk prediction algorithms, here defined 

as “new” and “old” [168]. For each algorithm, the predicted probabilities are classified to a set 

of meaningful ordinal categories of absolute risk. If the predicted probability of the new 

algorithm changed the classification of a single subject into a higher category, it is defined as 

upward movement (up) and if the change is in the opposite direction, downward movement 

(down) [168]. For survival data the NRI at time point 𝑡 is then computed as [167]: 

 
𝑁𝑅𝐼(𝑡) = 𝑃(𝑢𝑝|𝐷(𝑡) = 1) − 𝑃(𝑑𝑜𝑤𝑛|𝐷(𝑡) = 1) + 𝑃(𝑑𝑜𝑤𝑛|𝐷(𝑡) = 0) − 𝑃(𝑢𝑝|𝐷(𝑡) = 0)

= relative improvement among cases+relative improvement among controls  

Predicted probabilities can be estimated using the KM estimator as described in section 4.3. 

In our analysis, the analyzed disease was T2D. For various covariates, including the metabolite 

ratio valine to PC ae C32:2, the “new” model was defined, while the basic model contained 

only traditional covariates as used in the analysis from Wang-Sattler et al. [27]. NRI was used 

to assess the goodness of the models. The categories for the predicted probabilities to become 
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diabetic were set to 0–3.0%, 3.1–8.0%, 8.1–15.0%, and 15% [165, 169] . The analysis was 

performed using the R-package nricens [153] and compared the new model with the model 

using traditional risk factors and glucose as covariates.  

4.4. Confounding 

While computing associations it is very important to include appropriate covariates to ensure 

that model assumptions are met, to reduce the noise in the response variable, and to avoid 

confounding of the investigated association. Confounders are variables that are not under 

investigation but are related to both the response variable and independent variable [156].  

Thus, to avoid false associations between response and independent variable it is necessary to 

adjust for confounders, i.e., by including them as covariates in the model or computing the 

residuals of the association between the variable of interest and the confounder. For example, a 

specific age-related metabolite as a response variable is associated with age-related BMI. 

However, this association diminished as soon we include age into this model. Another example 

is the DNA methylation data which were measured from whole blood samples. Blood  is 

composed of different cell types that differ strongly in DNA methylation [127]. Therefore, the 

data of 500 most cell type-specific CpG sites was used to infer cell proportions from the whole 

blood data [127]. 

4.5. Violation of the assumption of the underlying regression model 

As described in section 4.1 and 4.2, the linear and logistic regression models are parametric 

models and thus, assume a certain distribution. Particularly, the linear model assumes a 

normally distributed error term, which is the same as assuming a normally distributed response 

conditioning on the covariates: 

𝜖~𝑁(0, 𝜎2𝑁𝑛) 

𝑦 = 𝑋𝛽 + 𝜖~𝑁(𝑋𝛽, 𝜎2𝐼𝑛). 

However, the metabolite levels which are used for the linear association analysis are not always 

normally distributed. Thus, to achieve approximate normality, the response variable is 

transformed in several ways, such as log transformation, inverse normal rank transformation 

[170] or Box-Cox transformation [171]. Log transformation does not always ensure normality 
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and inverse normal rank transformation is very conservative and can also reduce statistical 

power in some circumstances [170]. Thus, an alternative is the Box-Cox transformation, which 

is explained in more detail in the section 4.5.1.  

In section 4.5.2 the diagnostic plots are introduced. To check whether the assumptions for 

linear regression are still valid for the significant associations in the interaction analysis, four 

diagnostic plots are depicted: a plot of residuals against fitted values, a Scale-Location plot of 

the square root of the absolute values of the residuals (√|residuals|) against fitted values, a 

Normal Q-Q plot, and a plot of residuals against leverages. 

Furthermore, the proportional hazards assumption, that the hazard functions are proportional 

over time (see section 4.3.1), is the key to construct the partial likelihood, because of which the 

baseline hazard function is canceled out from the partial likelihood factors [139]. However, in 

practice the assumption is an approximation, and minor violations are unlikely to have major 

effects on inferences on model parameters [139]. For the Cox proportional hazards regression 

analysis, we used the plot of the Schoenfeld residuals against the time.  

4.5.1. Box-Cox transformation 

Often transformation of data is necessary to ensure a symmetric distribution to use familiar and 

traditional statistical techniques, such as linear regression. 

One of the common transformations is the Box-Cox transformation introduced by G.E. Box and 

D.R. Cox in 1964 [171]. The aim of the Box-Cox transformation is to obtain normal 

distribution of the dependent variable 𝑦, thus trying to induce normally distributed residuals. 

The transformation has following form: 

𝑦(𝜆) = {
𝑦𝜆−1

𝜆
, 𝜆 ≠ 0

ln (𝑦) , 𝜆 = 0
 , with 𝜆 ∈ ℝ . 

 To accommodate also negative 𝑦 values, an extended method includes 𝜆2: 

𝑦(𝜆) = {
(𝑦+𝜆2)

𝜆1−1

𝜆1
, 𝜆1 ≠ 0

ln (𝑦 + 𝜆2) , 𝜆1 = 0
, with 𝜆 = (𝜆1, 𝜆2). 
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It is common to choose 𝜆2 such that 𝜆2 + 𝑦 > 0 for any 𝑦. Thus, an appropriate 𝜆1 can achieve a 

rough symmetry of the data. The parameter 𝜆1 can be estimated by maximizing the log-

likelihood function for the Gaussian distribution: 

𝐿(𝜆1) = −
𝑛

2
ln(𝑠2(𝜆1)) + (𝜆1 − 1)∑ln(𝑥𝑖) ,

𝑛

𝑖=1

 (4.4) 

  

with 𝑛 the sample size and 𝑠2(𝜆1) the sample variance of the data after transformation with the 

parameter 𝜆1.  The sum in the second term of Equation (4.4) uses the untransformed data. 

Hence, to ensure normal distribution, in the interaction analysis metabolite levels and 

metabolite ratios are represented by their Box–Cox transformed residuals after regressing on 

age, sex, and BMI. The R package car [172] was applied to compute the Box–Cox transforms.  

4.5.2. Diagnostic plots 
It is not sufficient to just compute the linear regression or Cox proportional hazards regression 

and accept the results uncritically. Unsatisfied assumptions underlying the computations might 

cause in wrong results [130]. Thus, to check that the assumptions of the linear regression and 

the Cox proportional hazard regression are valid, four diagnostic plots are introduced for the 

linear regression (section 4.5.2.1 - 4.5.2.4) and one additional for the Cox proportional hazard 

regression (section 4.5.2.5).  

4.5.2.1. Residuals vs. fitted values plot 

The most frequently created plot is a scatter plot of residuals on the y-axis and fitted values, 

i.e., estimated response on the x-axis. The plot is used to detect non-linearity, unequal error 

variances, and outliers. Since the assumptions of a linear regression pertain to the residuals, it 

is important to examine the residuals for consistency. Ideally, this plot should show a 

horizontal line with equally spread points. If the scatterplots between residuals and fitted 

values show a pattern, then the relationship may be nonlinear and the model or the response 

variable will need to be modified accordingly. Thus, in this case might be "heteroscedasticity" 

in the errors, i.e., the variance of the residuals may not be constant [130].  
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4.5.2.2. Scale-Location plot of the square root of the absolute values of the residuals 

(√|residuals| ) against fitted values 

Scale-Location plot is also called Spread-Location plot and is similar to the plot mentioned 

above. But instead of using linear residuals, the square root of the absolute values of the 

residuals is computed. Thus, it might be easier to reveal trends in the magnitudes of residuals. 

For a good model, the values should be randomly distributed. Thus, this plot shows if residuals 

are spread equally along the ranges of predictors [173] and is useful to check whether the 

assumption of equal variance (homoscedasticity) is valid.  

4.5.2.3. Normal Q-Q plot 

Normal Q-Q plot or Normal quantile-quantile plot is an easy graphical method to see whether 

the residuals are normally distributed. The idea is that if the residuals are normally distributed 

the empirical quantiles should correspond to the theoretical quantiles. Thus, this plot compares 

the shape of the distribution of the data to a normal (or bell-shaped) distribution [174]. 

If we have 𝑛 observations, we can compute 𝑛 empirical quantiles. The quantile for the 𝑖th 

observation (𝑖 = 1, … , 𝑛) of the sorted data is computed as 𝑝𝑖 =
𝑖−0.5

𝑛
. Since in the normal 

distribution the 100% quantile is infinity, 0.5 is subtracted in the equation. The observations 

are then standardized with mean 𝜇 = 0 and standard variance 𝜎2 = 1. The corresponding 

theoretical quantile is computed from the inverse normal distribution. The empirical quantiles 

are on the y-axis while the theoretical quantiles are on the x-axis. The data points fall along an 

approximately straight line when the data are from a normal distribution, otherwise the data are 

from other distributions [174]. 

4.5.2.4. Plot of residuals against leverages 

The influence of one particular observation on the estimation results in a linear model is 

measured by the leverage ℎ𝑖𝑖 [175] which is the 𝑖th diagonal element of the hat matrix 

𝐻 = 𝑋(𝑋𝑇𝑋)−1𝑋𝑇. The leverage ranges from 
1

𝑛
 to 1. If a leverage is large, i.e., close to 1, it 

has a considerable influence on the estimation results and indicate some unusual covariate 

values in 𝑥𝑖 [135]. Thus, the plot of residuals against leverages indicates potential influential 

cases. In addition, the Cook’s distance is plotted as a dashed red line. The Cook’s distance is 

defined by 𝐷𝑖 =
(𝑦̂𝑖−𝑦)

𝑇(𝑦̂𝑖−𝑦̂)

𝑝⋅𝜎̂2
, where 𝑦̂𝑖 denotes the estimator for  𝑦 that uses all observations 

with exception of the 𝑖th observation, 𝑦̂ the estimator for 𝑦 that uses all observations, 𝑝 is the 
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number of parameters, and 𝜎̂2 is the estimated standard variance [135]. According to Fahrmeir 

at al [135], observations that have a Cook’s distance 𝐷𝑖 > 1 should be always examined. 

4.5.2.5. Plot of Schoenfeld residuals against the time 

The plot of the Schoenfeld residuals against the time is an approach to check the proportional 

hazards assumption, i.e., that the hazard ratio comparing any two specification of independent 

variables is constant over time [140]. If this assumption is correct, a plot of the residuals of all 

individuals against the time for the examined covariate will yield a pattern of points that are 

centered at zero [139]. 

The residuals are derived from the partial log-likelihood function as described in section 4.3.1, 

Equation 4.1, and 4.2. The score function is then the derivative of Equation 4.1 (see section 

4.3.1):  

𝐿′(𝛽) =∑𝑋𝑖 − log(∑ 𝑋𝑟 ⋅  
exp(𝑋ℎ𝛽)

∑ exp(𝑋ℎ𝛽)ℎ∈𝑅𝑟𝑟∈𝑅𝑗

)

𝑘

𝑗=1

, 

where 𝑖 denotes subject 𝑖, 𝑘 is the number of events, and 𝑅𝑗 is a risk set containing all subjects 

for whom the event has not occurred yet at time point 𝑡𝑗, 𝑅𝑟 is a risk set containing all subjects 

for whom the event has not occurred yet for time point 𝑡𝑟 [140]. The Schoenfeld residuals are 

the individual terms of the score function, and each term is the observed value of the covariate 

for patient 𝑖 minus the expected value 𝐸(𝑋̅𝑗), which is a weighted sum, with weights given by 

exp (𝑋ℎ𝛽)

∑ exp (𝑋ℎ𝛽)ℎ∈𝑅𝑟

, of the covariate values for subjects at risk at that time. Each weight may be 

viewed as the probability of selecting a particular person from the risk set at time 𝑡𝑗 [139]. For 

an estimate 𝛽̂, the residual for the 𝑖th failure time is 

𝑟̂𝑗 = 𝑋𝑖 − ∑ 𝑋𝑟 ⋅

𝑘∈𝑅𝑗

exp(𝑋ℎ𝛽̂)

∑ exp(𝑋ℎ𝛽̂)ℎ∈𝑅𝑟

= 𝑋𝑖 − 𝑋̅𝑖. 

Thus, the Schoenfeld residual for a particular variable is the observed value of the variable 

minus a weighted average of the variable for the other subjects still at risk at time 𝑡𝑗 [140].  
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4.6. Multiple testing  

Testing many associated hypotheses simultaneously leads to a so called multiple testing problem 

[132]. This means that increasing the number of independent tests also increases the probability 

of Type I error: 

𝑃(Type I error) = 1 − 𝑃(no false rejection) =  1 −∏1− 𝛼 = 1 − (1 − 𝛼)𝑚,

𝑚

𝑗=1

 

where 𝑚 is the number of tests. To adjust for that, a “family-wise” error-rate is used, i.e. the p-

value threshold is set to 𝑝 ≤
𝛼

𝑚
, for each individual test, also known as the Bonferroni correction. 

4.7. Meta-analysis 

Meta-analysis is the procedure of combining and pooling results from different studies [176]. 

Thereby, a common true parameter 𝛽 underlying all studies is assumed which has to be 

estimated.  

In the fixed-effect meta-analysis all 𝐾 independent studies’ estimates 𝛽̂𝑘, 𝑘 = 1,… , 𝐾 are 

assumed to have a common mean 𝛽 and a common error variance 𝜎2 [177]. Thus, to obtain the 

pooled effect, all effect sizes across all studies are averaged: 

𝛽̂𝑢𝑛𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = ∑
1

𝐾
𝛽̂𝑘

𝐾

𝑘=1

 

However, to control for different contributions of studies, the estimated 𝛽 is calculated with 

different weights per study: 

𝛽̂𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =
∑ 𝑤𝑘𝛽̂𝑘
𝐾
𝑘=1

∑ 𝑤𝑘
𝐾
𝑘=1

. 

To increase the power to detect small metabolite ratio effects on T2D, results across the three 

studies, KORA, LLS, and NTR, are combined in a meta-analysis using the weighted mean of the 

individual 𝛽̂𝑘 , the coefficients from the logistic regressions. The weights are chosen to be the 

inverse variance from the coefficients 𝑤𝑘 = 1/𝑠𝑒(𝛽̂𝑘)
2
 (also called pooled inverse variance-

weighted beta coefficient)  as described by de Bakker et al. [178].  

In section 5.1, meta-analysis was only performed on those metabolites that were successfully 

measured in all three cohorts. Metabolite ratios are represented as the z-score 𝑧𝑚𝑒𝑡𝑎, i.e. a value 

following the 𝜒2 − distribution with mean 𝜇 = 0 and standard error 𝜎2 = 1, through following 
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formula: 𝑧𝑚𝑒𝑡𝑎 =
𝛽

𝑠𝑒(𝛽)
. The fixed-effects meta-analysis was done using the R package Meta 

v4.3-2 [179].  For the association between the ratios and incident diabetes a meta-analysis 

between KORA S4 to F4 and EPIC-Potsdam was conducted. To allow comparison across 

cohorts and facilitate meta-analysis metabolite level data were log-transformed followed by z-

scaling before analysis. 

4.8. P-gain 

As outlined in the introduction all possible combinations of ratios between metabolite pairs are 

analyzed in a hypothesis-free approach. To measure the improvement of using metabolite ratios 

instead of single metabolite concentrations in section 5.1 a so-called p-gain is computed [4, 180]. 

It compares the change of the p-value when using the ratio and the smaller of the two p-values 

when using the two single metabolite concentrations individually. 

 

𝑝 − 𝑔𝑎𝑖𝑛 (
𝑀1

𝑀2
|𝑋) ≔

min(𝑃(𝑀1|𝑋), 𝑃(𝑀2|𝑋))

𝑃 (
𝑀1
𝑀2 |𝑋)

,  

where 𝑃(𝑀1|𝑋) denotes the p-value of the association between trait 𝑋 and metabolite 𝑀1, 

𝑃(𝑀2|𝑋) the p-value of the association regression between trait 𝑋 and metabolite 𝑀2, and 

𝑃 (
𝑀1

𝑀2
|𝑋) is the p-value computed using the ratio between metabolites 𝑀1 and 𝑀2. In this thesis, 

𝑋 is binary and denotes the occurrence of T2D. 

A p-gain is considered to be significant if it is above the significance level-gain≥
𝐵

2∙𝛼
 , with 

𝐵=number of metabolites tested and significance level α (set to 0.05). If it is significant, it 

suggests that the metabolite ratio can explain the outcome better than the two single metabolites. 

4.9. Pulver 

In this section the R package pulver, which is implemented to compute linear regressions with 

interaction term for a very large number of linear regression models, is introduced in more 

detail. 
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4.9.1. Linear regression with interaction term 

As previously mentioned, I want to examine possible interactions between two variables, i.e., 

examine each combination of covariates from given matrices 𝑋 and 𝑍 and their impact on 𝑌.  

Assuming following model based on multiple linear regression: 

𝑦 =  𝛽0 + 𝛽1 𝑥𝑧 + 𝛽2 𝑥 + 𝛽3 𝑧 + 𝜖,   𝜖~𝑖. 𝑖. 𝑑. 𝑁(0, 𝜎
2), 

where 𝑦 is the outcome variable, 𝑥 and 𝑧 are covariates, and 𝑥𝑧 is the interaction (product) of 

covariates 𝑥 and 𝑧. All variables are quantitative and vectors. As outlined in the section 2.8 

there is still a lack of fast software computing the significance of the interaction term. For this 

reason, the R package pulver was implemented. The acronym pulver denotes parallel ultra-

rapid p-value computation for linear regression interaction terms. This R package tests the null-

hypothesis 𝛽1 = 0 against the alternative 𝛽1 ≠ 0. Estimating the coefficients 𝛽2 and 𝛽3 is not of 

relevance for this matter. Thus, it is possible to take a computational shortcut. By centering, 

such that ∑ 𝑦𝑖𝑖 = ∑ 𝑥𝑖𝑖 = ∑ 𝑧𝑖𝑖 = ∑ 𝑥𝑧𝑖𝑖 = 0, and orthogonalizing the variables, the multiple 

linear regression problem gets converted into a simple linear regression without intercept. Then, 

the Student’s 𝑡-test statistic was computed for the coefficient 𝛽1 as a function of the Pearson 

correlation coefficient 𝑟 between 𝑦 and the orthogonalized 𝑥𝑧: 𝑡𝛽1 =  𝑟√(𝐷𝐹/(1 − 𝑟
2)), where 

DF are the degrees of freedom of the linear regression model. By computing the 𝑡-test statistic 

based on the correlation coefficient, which itself has a very simple expression in the simplified 

model, fitting the entire model including estimation of coefficients 𝛽2 and 𝛽3 is avoided. 

Consequently, only the interaction’s regression coefficient is taken into account. The inputs 

𝑋 and 𝑍 for the interaction analysis can be either vectors or matrices. If matrices are given, the 

algorithm will iterate through all columns in order to compute the interaction analysis.  

4.9.2. Theory underlying pulver 

Let 𝑋 = (

1 𝑥1 𝑧1 𝑤1 = 𝑥1 ∙ 𝑧2
1 𝑥2 𝑧2 𝑤2 = 𝑥2 ∙ 𝑧2
⋮ ⋮ ⋮ ⋮
1 𝑥𝑛 𝑧𝑛 𝑤𝑛 = 𝑥𝑛 ∙ 𝑧𝑛

), with 𝑥𝑖 , 𝑧𝑖 , 𝑤𝑖 ∈ ℝ,  and the unknown regression 

coefficients 𝛽𝑇 = (𝛽0 𝛽1 𝛽2 𝛽3 ). Then, the general linear model given in Equation 4.1 

reduces to the following linear regression model 
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𝑌 =  𝑋𝛽 +  𝜖,    𝜖~ 𝑁(0, 𝜎2) , 

with 𝜖𝑇 = (𝜖1, … , 𝜖𝑛) being independent and identical distributed (𝑖. 𝑖. 𝑑.).  

The null hypothesis that 𝛽3 =  0 against the alternative hypothesis that 𝛽3 ≠  0 is tested, where 

𝛽3 is the regression coefficient of 𝑤. To eliminate the intercept 𝛽0, all variables are centered, 

such that ∑ 𝑦𝑖𝑖 = ∑ 𝑥𝑖𝑖 = ∑ 𝑧𝑖𝑖 = ∑ 𝑤𝑖𝑖 = 0, to obtain the following simplified regression model: 

    𝑦 =  𝛽1 𝑥 + 𝛽2 𝑧 +  𝛽3 𝑤 +  𝜖, 𝜖~ 𝑁(0, 𝜎2) 𝑖. 𝑖. 𝑑. 

(For simplicity, the notations from above are retained for the simplified model (for variable 

names 𝑦, x, 𝑧, and 𝑤 for the centered variables, regression coefficients, error term).) 

The vectors 𝑥, 𝑧 and 𝑤 span a subspace 𝑆 of ℝ𝑛. The ordinary least-squares (OLS) estimates 𝛽̂ 

of 𝛽 are found by minimizing the residual sum of squares over 𝑦 − 𝑋𝛽: 

𝛽̂  = arg min𝛽  (𝑦 − 𝑋𝛽)
𝑇(𝑦 − 𝑋𝛽). 

Geometrically, this means that 𝛽̂1, 𝛽̂2, and 𝛽̂3 must be selected such that 

𝑦′ = 𝛽̂1 𝑥 + 𝛽̂2 𝑧 + 𝛽̂3 𝑤               (4.5) 

is the orthogonal projection of 𝑦 onto 𝑆, the subspace spanned by 𝑤, 𝑥, and 𝑧. It can be shown 

that if 𝑤, 𝑥, and 𝑧 form an orthogonal basis of S, the coefficients of the orthogonal projection 𝑦′ 

of 𝑦 onto 𝑆 are given by 

𝛽̂1  =  
〈𝑦,𝑥〉

〈𝑥,𝑥〉
  , 𝛽̂2  =  

〈𝑦,𝑧〉

〈𝑧,𝑧〉
 , 𝛽̂3  =  

〈𝑦,𝑤〉

〈𝑤,𝑤〉
   [181]. 

Unlike the usual formula for computing OLS coefficient estimates (𝛽̂ = (𝑋𝑇𝑋)−1𝑋𝑇𝑦, see 

section 4.1), this new formula does not involve an expensive matrix inversion, but instead it is 

easy and fast to compute. 

In general, 𝑤, 𝑥, and 𝑧 do not form an orthogonal basis. Thus, to test the null hypothesis, the 

following steps are carried out: 

1. Create an orthogonal basis 𝑣1, 𝑣2,  and 𝑣3 for 𝑆 based on 𝑥, 𝑧, and 𝑤, respectively.  

2. Compute 𝑦′, the orthogonal projection of 𝑦 onto 𝑆, using the orthogonal basis created in 

step 1. 
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3. Deduce the estimate of the regression coefficient 𝛽̂3 for 𝑤 from the regression 

coefficients for 𝑦′. 

4. Compute the Student's t-test statistic to test 𝛽̂3 =  0 as a function of the correlation 

coefficient 𝑟 between 𝑦′ and 𝛽̂3𝑣3. 

 

1. Create an orthogonal basis for S 

Let 

    𝑣1  =  𝑥, 

    𝑣2  =  𝑧 −  𝑝𝑟𝑜𝑗(𝑧, 𝑣1), and 

   𝑣3  =  𝑤 −  𝑝𝑟𝑜𝑗(𝑤, 𝑣1)  −  𝑝𝑟𝑜𝑗(𝑤, 𝑣2), 

with 

𝑝𝑟𝑜𝑗(𝑎, 𝑏) =  
〈𝑎, 𝑏〉 

〈𝑏, 𝑏〉 
𝑏 

is the orthogonal projection of 𝑎 onto 𝑏. The vectors 𝑣1, 𝑣2 , and 𝑣3 form an orthogonal basis 

of 𝑆. By construction, we clearly observe that 𝑣1 is dependent on 𝑥 only, 𝑣2 is dependent on 

𝑧 and 𝑥 and 𝑣3 depends on 𝑥, 𝑧, and 𝑤.  

2. Orthogonally project 𝑦 onto 𝑆 

The orthogonal projection 𝑦′ of 𝑦 onto 𝑆 has the form 

𝑦′ = 𝛽1
′  𝑣1  +  𝛽2

′  𝑣2  +  𝛽3
′  𝑣3               (4.6) 

where 

𝛽𝑖
′  =  

〈𝑦, 𝑣𝑖〉

〈𝑣𝑖 , 𝑣𝑖〉
    (𝑖 =  1, 2, 3).   
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3. Deduce the estimate of 𝑤's regression coefficient 

We want to estimate the regression coefficient 𝛽3 of the vector 𝑤 given in Equation 4.5 using 

Equation 4.6. The vector 𝑤 occurs in the calculation of 𝑣3 but not in 𝑣1 or 𝑣2. This allows us to 

write 𝑦′ as 

  

 𝑦′ =  𝛽1
′  𝑣1  +  𝛽2

′  𝑣2  +  𝛽3
′  𝑣3

 
=  𝛽1

′  𝑣1  +  𝛽2
′  𝑣2  +   𝛽3

′  (𝑤 −  𝑝𝑟𝑜𝑗(𝑤, 𝑣1) −  𝑝𝑟𝑜𝑗(𝑤, 𝑣2))

=  𝛽1
′  𝑣1  +  𝛽2

′  𝑣2  +   𝛽3
′  𝑤 −  𝛽3

′  𝑝𝑟𝑜𝑗(𝑤, 𝑣1) − 𝛽3
′  𝑝𝑟𝑜𝑗(𝑤, 𝑣2)

=   𝛽3
′  𝑤 + 𝛽1

′  𝑣1  +  𝛽2
′  𝑣2  −   𝛽3

′  𝑝𝑟𝑜𝑗(𝑤, 𝑣1) − 𝛽3
′  𝑝𝑟𝑜𝑗(𝑤, 𝑣2)

 =  𝛽3
′  𝑤 + 𝛽1

′  𝑣1  +  𝛽2
′  𝑣2  −   𝛽3

′  
〈𝑤, 𝑣1〉 

〈𝑣1, 𝑣1〉 ⏟      
𝑠𝑐𝑎𝑙𝑎𝑟

𝑣1 − 𝛽3
′  
〈𝑤, 𝑣2〉 

〈𝑣2, 𝑣2〉 ⏟      
𝑠𝑐𝑎𝑙𝑎𝑟

𝑣2

= 𝛽3
′  𝑤 +  𝑐 ( 𝑣1⏟

𝑐(𝑥)

, 𝑣2⏟
𝑐(𝑥,𝑧)

)

=  𝛽3
′  𝑤 +  𝑐(𝑥, 𝑧)

 

where 𝑐(… ) represents a linear combination of 𝑥 or  𝑥 and 𝑧, accordingly. This allows us to 

identify 𝛽3, and we estimate the regression coefficient of 𝑤 in Equation 4.5: 

 𝛽̂3 = 𝛽3
′ =  

〈𝑦, 𝑣3〉

〈𝑣3, 𝑣3〉
 . 

4. Compute the Student`s 𝑡 −test statistic to test 𝛽3 = 0 as function of the correlation 

coefficient 𝑟 between 𝑦′ and 𝛽3𝑣3 

In this last step, it is presented how the Pearson’s correlation coefficient 𝑟 can be used to test 

𝛽3 = 0 in a linear regression model instead of using the Student's 𝑡-test statistic, i.e. testing 

𝑡 ≥ 𝑡∗ for significant threshold 𝑡∗. The Pearson’s correlation coefficient 𝑟 between 𝑦′ and 𝑣3 

(both centered) is computed as follows: 
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𝑟 =
∑ 𝑦𝑖

′2𝑣3𝑖
𝑁
𝑖=1

‖𝑦′‖‖𝑣3‖
=

∑ 𝑦𝑖
′2𝑣3𝑖

𝑁
𝑖=1

√∑ 𝑦𝑖
′2𝑁

𝑖=1 √∑ 𝑣3
2
𝑖

𝑁
𝑖=1

. 

with ‖𝑎‖ = √〈𝑎, 𝑎〉,  

 and 〈𝑎, 𝑏〉 =∑ 𝑎𝑖𝑏𝑖
𝑛

𝑖=1
 being the inner product of vectors 𝑎 and 𝑏 in ℝ𝑛. 

Then it follows that the null hypothesis 𝛽̂3 = 0 can be rejected if 𝑟 ≥ 𝑡∗ ∙ √
1

𝐷𝐹+𝑡∗2
  . 

The fact that 𝑣1, 𝑣2,  and 𝑣3 are orthogonal means that 𝛽̂3 is actually the OLS estimate of the 

correlation coefficient 𝑟 in the simple linear regression 

𝑦′ = 𝛽̂3  𝑣3   + 𝜖,    𝜖 ~ 𝑁(0, 𝜎
2)𝑖. 𝑖. 𝑑..                

The Student's 𝑡 statistic to test for coefficient 𝛽3 = 0 is given by 

    𝑡 =  
𝛽̂3

𝑠𝑒(𝛽̂3)
   

and it has a Student’s t distribution with 𝐷𝐹 =  𝑛 −  4 degrees of freedom. Subtracting four 

results from the number of regression coefficients in the initial model and the estimated 

variance of 𝜖: 𝛽̂1, 𝛽̂2, 𝛽̂3, 𝑠
2.  

From the theory of simple linear regression, the following relationships are known (e.g., see 

Snedecor and Cochran 1967 [182], chapter 7.3, p. 175 ff.): 

a) 𝛽̂3 =  𝑟 
𝑠𝑒(𝑦′)

𝑠𝑒(𝑣3)
   

b) 𝑠𝑒(𝛽̂3)  = 𝑠 /√∑ 𝑣3𝑖
2  𝑛

𝑖=1   

c) 𝑠2  =
1 − 𝑟2

𝐷𝐹
 ∑ 𝑦𝑖

′2  𝑁
𝑖=1  

d) 𝑠𝑒(𝑎) = √
1

𝑛−1
∑ 𝑎𝑖

2𝑛
𝑖=1 , with 𝑎 ∈  ℝ𝑛 and ∑ 𝑎𝑖 = 0𝑖 , 
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where 𝛽̂3 is the OLS estimate of Equation 4.5; se(𝑦′) and se(𝑣3) are the sample estimates of 

the standard deviations of 𝑦 and 𝑣3, respectively; se(𝛽̂3) is the estimate of the standard 

deviation of 𝛽̂3; 𝑠
2 is the OLS estimate of 𝜎2, the variance of the error term 𝜖; 𝑟 is the 

Pearson’s correlation coefficient of 𝑦′ and 𝑣3; and 𝐷𝐹 is the degree of freedom. 

After plugging Equations a–d into the formula for the Student's t, we obtain the following: 

𝑡 =
𝛽̂3

𝑠𝑒(𝛽̂3)

=

𝑟 𝑠𝑒(𝑦′)√∑ 𝑣3
2
𝑖

𝑁
𝑖=1

𝑠𝑒(𝑣3 )√
(1 − 𝑟2)
𝐷𝐹

∑ 𝑦𝑖
′2𝑁

𝑖=1  

=
𝑟 √𝐷𝐹

√(1 − 𝑟2) 
∙

 𝑠𝑒(𝑦′)√∑ 𝑣3
2
𝑖

𝑛
𝑖=1

𝑠𝑒(𝑣3)√∑ 𝑦𝑖
′2𝑛

𝑖=1  

=
𝑟 √𝐷𝐹

√(1 − 𝑟2) 

     

 

Thus, as stated is above, 𝐻0 can be rejected if 𝑟 ≥ 𝑡∗ ∙ √
1

𝐷𝐹+𝑡∗2
, for significance threshold 𝑡∗. 

4.9.3. Avoiding redundant computations 

Computation time can be saved by sophisticated arrangement of computations. The naïve 

approach would be to iterate through three nested for-loops – one for each matrix – with all 

computations happening in the innermost loop. However, the pseudocode below shows how 

computations can be moved out of the innermost loop to avoid redundant computations (Figure 

4.4). 
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Figure 4.4: Pseudocode of the function pulverize. Here we choose as test statistic the sample 

correlation between response variable 𝑦 and the interaction of variables 𝑥 and 𝑧. Prior all 

variables must be orthogonal to each other to build the orthogonal projection of 𝑦 onto 𝑆 and 

thus only using the correlation as test statistic as explained in section 4.9.2. To avoid redundant 

computations, if possible, some computations were moved out of the innermost loop. 

4.9.4. Programming language and general information about the program 

The algorithm is provided in an R package called pulver. Due to speed considerations, the core 

of the algorithm is implemented in C++. pulver was implemented in R version 3.3.1 and the 

Input: matrices 

𝑋 (number of observations×number of variables),

 𝑌(number of observations×number of variables),

𝑍(number of observations×number of variables), 

p-value threshold 

Output: table with p-values < p-value threshold and columns 

matching variable names in 𝑋, 𝑌, 𝑍 

(number of identified associations × 4 (= p-value, 𝑋, 𝑌, 𝑍)) 

 

Compute r-value threshold using p-value threshold 

for 𝑥 in variables in matrix 𝑋 

for 𝑧 in variables in matrix 𝑍  

Orthogonalize 𝑧 wrt 𝑥 

  Compute interaction 𝑥𝑧 

  Center 𝑥𝑧 

Orthogonalize 𝑥𝑧 wrt 𝑥 and 𝑧 

Compute ‖𝑥𝑧‖ (norm of xz) 

  for 𝑦 in variables in matrix 𝑌 

 Orthogonalize 𝑦 wrt 𝑥 and 𝑧 

 Compute ‖𝑦‖ 

   Compute 𝑟 = 〈𝑦,  𝑥𝑧〉 / (‖𝑦‖ ∙ ‖𝑥𝑧‖) 

   if 𝑟 > r-value threshold 

    Calculate p-value 

 

Center variables of 𝑋, 𝑌, 𝑍  
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C++ code was compiled with the gcc compiler version 4.4.7.  To  integrate C++ into R the R 

package Rcpp [183] (version 0.12.7) is used. Additionally, to find out whether C/Fortran can 

improve on the performance of C++ the algorithm was also implemented in a combination of C 

and Fortran via the C interface provided by R. 

Parallelization of the middle loop was realized by OpenMP version 3.0 [184]. Furthermore, the 

order through which the matrices 𝑋 and 𝑍 will be iterated, is changed when the number of 

columns of matrix 𝑋 is greater than matrix 𝑍. The middle loop therefore runs over more 

variables than the outer loop, aiming at minimizing the amount of time required to coordinate 

parallel tasks. Thus the amount of work per thread was maximized. For efficiency reasons, the 

program does not allow additional covariates beyond 𝑥 and 𝑧. If additional covariates are 

desired, the outcome 𝑦 must be replaced by the residuals from the regression of 𝑦 on the 

additional covariates. Missing values in input matrices are replaced by the respective column 

mean. The pulver package can be used as a screening tool for scenarios where the number of 

models (number of variables in matrix 𝑋 × number of variables in matrix 𝑍 for several outcome 

variables) is too big for conventional tools. By specifying a p-value threshold saved results can 

be limited to models with interaction term p-values below the threshold. Thereby, the size of 

the output can be largely reduced. After initial screening, additional model characteristics for 

the significant models, e.g., effect estimates and standard errors, can be obtained via traditional 

methods such as R's lm function. 

The user has access to pulver’s functionality via two functions: pulverize and pulverize_all. The 

pulverize function expects three numeric matrices and returns a table with p-values for models 

with interaction term p-values below the (optionally specified) p-value threshold.  The wrapper 

function pulverize_all expects the names of files containing 𝑋, 𝑌, 𝑍 matrices, calls pulverize to 

do the actual computation, and returns a table in the same format as pulverize. 

4.9.5. Comparison with other R tools for running linear regressions 

As illustrated in Figure 4.5, the inputs for the interaction analysis can be vectors or matrices. 

Currently, pulver is the only available option for users who want all the inputs to be matrices. It 

is possible to adapt other tools to all-matrix inputs, but the resulting code is not optimized for 

this use and will be too slow for practical purposes. Thus, the speed of this package was 
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compared to that of R’s built-in lm function and the R package MatrixEQTL [19] (version 

2.1.1).  

The R package MatrixEQTL, written in R, uses for computation matrix operations leading to a 

rapid computation of linear regressions. Similar to the R package pulver it computes the 

correlation between the scaled and orthogonalized outcome and variable of interest. The p-

value is only computed if the correlation exceeds a specified p-value. However, as illustrated in 

Figure 4.5, MatrixEQTL currently only assesses the significance of the interaction between all 

variables of one matrix 𝑋 and the last variable of the other matrix 𝑍. Thus, for the benchmark, 

over all variables in matrix 𝑍 are iterated.  

R’s built-in lm function, written in Fortran, uses the standard approach for computation, thus 

estimates the beta coefficient via matrix inversion (𝛽̂ = ((𝑥 ⋅ 𝑧)𝑇(𝑥 ⋅ 𝑧))−1(𝑥 ⋅ 𝑧)𝑇𝑦). By 

calling the summary.lm function, written in R, the p-value and many other statistical variables, 

such as coefficient of determination, F-statistic, and square root of the estimated variance of the 

random error are computed. The lm function is only able to compute one outcome variable and 

one interaction term. For computation, the interaction of each variable of each matrix, the lm 

function is called in the inner most loop of the three for-loops, one for-loop for each matrix. 

The parallelization feature of the function pulverize that is part of the R package pulver was not 

used because it is not available in R’s lm function or MatrixEQTL and thus would lead to 

biased results if only the speed of the functions is considered. However, parallelization is 

possible and can lead to speedups, although sublinear. Each scenario was run 200 times using 

the R package microbenchmark (version 1.4-2.1, https://CRAN.R-

project.org/package=microbenchmark) and only results with a p-value below 0.05 were written 

into a file. 

The complexity of pulver in asymptotic notation is the product of the number of variables of 

the matrices 𝑋 (x-columns), 𝑌 (y-columns), 𝑍(z-columns), and the number of samples (𝑛): 

𝑂(x-columns ⋅ y-columns ⋅ z-columns ⋅ 𝑛). This is similar to the R package MatrixEQTL.  

In contrast, the complexity of R’s build-in function lm is 𝑂(x-columns ⋅ y-columns ⋅

z-columns ⋅ 𝑛2) as this function computes the linear regression by solving the Ordinary Least 

Squares problem 𝛽̂ = ((𝑥 ⋅ 𝑧)𝑇(𝑥 ⋅ 𝑧))−1(𝑥 ⋅ 𝑧)𝑇𝑦 [18].  

https://cran.r-project.org/package=microbenchmark
https://cran.r-project.org/package=microbenchmark
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Figure 4.5: Input types required for different R tools to run linear regressions. Comparison of 

different input types handled by the R tools lm, MatrixEQTL, and pulver for computation of the 

linear regression with interaction term. By the braces the dimensions of the matrices are 

depicted. The R’s build-in function lm can only compute the linear regression with interaction 

term using one variable with n observations per call. The R package MatrixEQTL can compute 

simultaneously the linear regression for each of 𝑝1 variables from the outcome matrix Y and the 

interaction term of the matrix 𝑋 with 𝑝2 variables and the vector 𝑍. In contrast, pulver in addition 

iterates through 𝑝3 variables of the matrix 𝑍 and finally computes the linear regression for each 

column of matrices 𝑌, 𝑋, and 𝑍. 

𝑝1, 𝑝2, and 𝑝3 are ∈N 

http://www.google.de/imgres?q=haken&um=1&hl=de&sa=N&biw=944&bih=635&tbm=isch&tbnid=2TtSMNyOrpH4FM:&imgrefurl=http://www.chryslerfreunde.de/stammtisch/Treffpunkt.html&imgurl=http://www.chryslerfreunde.de/stammtisch/media/haken.gif&w=570&h=542&ei=575AUIT5E_Pa4QSMxIHYCw&zoom=1&iact=hc&vpx=337&vpy=165&dur=93&hovh=219&hovw=230&tx=158&ty=92&sig=117256366315249568214&page=1&tbnh=123&tbnw=128&start=0&ndsp=17&ved=1t:429,r:2,s:0,i:145
http://www.google.de/imgres?q=haken&um=1&hl=de&sa=N&biw=944&bih=635&tbm=isch&tbnid=2TtSMNyOrpH4FM:&imgrefurl=http://www.chryslerfreunde.de/stammtisch/Treffpunkt.html&imgurl=http://www.chryslerfreunde.de/stammtisch/media/haken.gif&w=570&h=542&ei=575AUIT5E_Pa4QSMxIHYCw&zoom=1&iact=hc&vpx=337&vpy=165&dur=93&hovh=219&hovw=230&tx=158&ty=92&sig=117256366315249568214&page=1&tbnh=123&tbnw=128&start=0&ndsp=17&ved=1t:429,r:2,s:0,i:145
http://www.google.de/imgres?q=haken&um=1&hl=de&sa=N&biw=944&bih=635&tbm=isch&tbnid=2TtSMNyOrpH4FM:&imgrefurl=http://www.chryslerfreunde.de/stammtisch/Treffpunkt.html&imgurl=http://www.chryslerfreunde.de/stammtisch/media/haken.gif&w=570&h=542&ei=575AUIT5E_Pa4QSMxIHYCw&zoom=1&iact=hc&vpx=337&vpy=165&dur=93&hovh=219&hovw=230&tx=158&ty=92&sig=117256366315249568214&page=1&tbnh=123&tbnw=128&start=0&ndsp=17&ved=1t:429,r:2,s:0,i:145
http://www.google.de/imgres?q=haken&um=1&hl=de&sa=N&biw=944&bih=635&tbm=isch&tbnid=2TtSMNyOrpH4FM:&imgrefurl=http://www.chryslerfreunde.de/stammtisch/Treffpunkt.html&imgurl=http://www.chryslerfreunde.de/stammtisch/media/haken.gif&w=570&h=542&ei=575AUIT5E_Pa4QSMxIHYCw&zoom=1&iact=hc&vpx=337&vpy=165&dur=93&hovh=219&hovw=230&tx=158&ty=92&sig=117256366315249568214&page=1&tbnh=123&tbnw=128&start=0&ndsp=17&ved=1t:429,r:2,s:0,i:145
http://www.google.de/imgres?q=haken&um=1&hl=de&sa=N&biw=944&bih=635&tbm=isch&tbnid=2TtSMNyOrpH4FM:&imgrefurl=http://www.chryslerfreunde.de/stammtisch/Treffpunkt.html&imgurl=http://www.chryslerfreunde.de/stammtisch/media/haken.gif&w=570&h=542&ei=575AUIT5E_Pa4QSMxIHYCw&zoom=1&iact=hc&vpx=337&vpy=165&dur=93&hovh=219&hovw=230&tx=158&ty=92&sig=117256366315249568214&page=1&tbnh=123&tbnw=128&start=0&ndsp=17&ved=1t:429,r:2,s:0,i:145
http://www.google.de/imgres?q=haken&um=1&hl=de&sa=N&biw=944&bih=635&tbm=isch&tbnid=2TtSMNyOrpH4FM:&imgrefurl=http://www.chryslerfreunde.de/stammtisch/Treffpunkt.html&imgurl=http://www.chryslerfreunde.de/stammtisch/media/haken.gif&w=570&h=542&ei=575AUIT5E_Pa4QSMxIHYCw&zoom=1&iact=hc&vpx=337&vpy=165&dur=93&hovh=219&hovw=230&tx=158&ty=92&sig=117256366315249568214&page=1&tbnh=123&tbnw=128&start=0&ndsp=17&ved=1t:429,r:2,s:0,i:145
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4.9.6. Feature reduction 

This R package is in a first step applied to the KORA data set comprising 345,372 CpG sites, 

9,143,401 SNPs (coded as values between 0 and 2 according to an additive genetic model), and 

557 metabolites measured by the Biocrates and Metabolon platform.  

The whole analysis of 1.8 ∙ 1015 models would have taken a very long time even with pulver. 

For the estimation of the time required to analyze the whole dataset, scenarios using all CpG 

sites, all metabolites, and different numbers of SNPs (100, 1,000, 2,000, 4,000, and 5,000; 

see Figure 4.6) was run. Subsequently, the run time was extrapolated to estimate the required 

time to analyze all SNPs. Due to time limitations, each of the scenarios defined above was run 

only once. The required runtime to analyze the complete dataset with parallelizing the work 

across 40 processors was estimated to take 1.5 years. 

 

 

Figure 4.6: Time required to analyze 100, 1,000, 2,000, 4,000, and 5,000 SNPs and 345,372 

CpGs. A line was fitted through all time points. 

Therefore, only SNPs that had previously shown significant associations with at least one 

metabolite were selected [5, 185]. Subsequently, interaction terms DNA methylation and SNPs 

were added into the models. 

The final data set comprised 345,372 CpG sites, 117 SNPs, and 16 metabolites from the 

Biocrates and 345,372 CpG sites, 6,406 SNPs, and 376 metabolites from the Metabolon 
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platform. Only associations were considered that had a p-value less than the p-value threshold 

after adjusting for multiple testing, so a p-value threshold of 
0.05

345372⋅117⋅16+345372⋅6406⋅376
=

6.01 ⋅ 10−14 according to Bonferroni correction was used.  

Eventually, the number of associations was further reduced by taking the correlation among 

SNPs into account. SNPs were clustered together if they have a correlation greater than 60 %. 

For each cluster the top hit, i.e., the SNP-metabolite association with the lowest p-value, is 

included into the interaction analysis. 

Finally, pulver is applied to the metabolite ratios which are significant associated to T2D as 

described in section 5.1. To reduce the number of tests a two-stage analysis as introduced by 

Kooperberg and LeBlanc is applied [186]: only SNPs, having a minor allele frequency greater 

than 0.05, and CpG sites are included that are weakly associated to the corresponding metabolite 

ratio (𝑝 < 0.05). This computation is conducted using the R package MatrixEQTL [19]. Finally, 

22,112 CpG sites and 314,643 SNPs were included into the analysis. Associations with a p-

value less than the Bonferroni significance threshold  
0.05

22,112⋅314,643
≈ 7.19 ⋅ 10−12 are 

significant. 
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5. Results and discussion 

5.1. T2D and metabolite ratios analysis  

5.1.1. Results 

For the T2D and metabolite ratio analysis, the associations between metabolites and prevalent 

and incident T2D were computed using logistic regression and proportional hazard Cox 

regression models, respectively. This analysis is part of the IMI (Innovative Medicines 

Initiative) DIRECT (Diabetes Research on Patient Stratification) study [187, 188]. One of the 

aims of DIRECT is to use deep phenotyping to identify biomarkers for risk stratification and 

response to diabetes therapy. 

The analysis served as a validation of two prior studies from the Netherlands (LLS, Postpartum 

Outcomes in mothers with Gestational diabetes and their Offspring study (POGO) [189]) [103]. 

Both studies investigated the association of metabolite ratios and insulin secretion in a 

hyperglycaemic clamp study sample and an OGTT. In both analyses, the metabolite ratio valine 

to PC ae C32:2 was more strongly associated with insulin than the single metabolites, as 

indicated by a significant p-gain.  

5.1.1.1. Pairwise metabolite ratios and prevalent T2D 

In three different independent epidemiological studies, KORA F4, LLS, and NTR, the 

associations between pairwise metabolite ratios and prevalent T2D were analyzed (306 cases 

and 4,619 controls in total). Results were jointly analyzed in a fixed-effects meta-analysis 

using models adjusted for age, sex, BMI, and lipid lowering medications. Because this analysis 

is a validation of the clamp study that tested glucose-stimulated insulin response and 

metabolite ratios, only the p-gains from those metabolite ratios were considered which were 

also significantly associated with insulin secretion in the clamp study. Nine of the ten ratios 

were significantly associated with prevalent T2D (see Table 5.1, 𝑝 <
0.05

135+10
≈ 3.4 ⋅ 10−4 ). 

However, only the ratio of valine to PC ae C32:2 had a stronger association with prevalent 

T2D (𝑂𝑅𝑉𝑎𝑙_𝑃𝐶 𝑎𝑒 𝐶32:2  = 2.64 (beta(SE) = 0.97 (0.09)); 𝑝 = 1.0 ∙ 10
−27) than each of the 

two metabolites alone (pvaline = 2.22 ⋅ 10
−16;pPC ae C32:2 = 1.31 ⋅ 10−13; p-gain=2.2 ∙ 1011; see 
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Table 5.2 for all significant single metabolite associations). The association of the ratio valine 

to PC ae 

C32:2 being stronger was indicated by the p-gain being above the significance threshold 

(p-gain ≥
135

2⋅0.05
= 1,350, see methods).  

 

Table 5.1: Results of logistic regression of metabolite ratios and prevalent T2D in LLS, NTR, 

and KORA F4. 

 LLS NTR KORA S4 Meta-analysis 

Metabolite ratio 
Beta (SE) 

p-value 

Beta (SE) 

p-value 

Beta (SE) 

p-value 

Beta (SE) 

p-value 

P-

gain 

Val_PC aa C34:4 
0.387 (0.198) 

5.11 ⋅ 10−2 

0.399 (0.160) 

1.29 ⋅ 10−2 

0.381 (0.094) 

4.62 ⋅ 10−5 

0.386 (0.075) 

 2.69 ⋅ 10−7 
0 

xLeu_PC aa 

C34:3 

0.499 (0.220) 

2.28 ⋅ 10−2 

0.632 (0.180) 

4.56 ⋅ 10−4 

0.677 (0.100) 

1.03 ⋅ 10−11 

0.644 (0.081) 

 2.44 ⋅ 10−15 
0 

Val_PC aa C34:3 
0.654 (0.238) 

6.04 ⋅ 10−3 

0.565 (0.177) 

1.44 ⋅ 10−3 

0.657 (0.107) 

7.77 ⋅ 10−10 

0.635 (0.085) 

 1.07 ⋅ 10−13 
0 

Ser_PC ae C32:2 
0.537 (0.237) 

2.34 ⋅ 10−2 

0.227 (0.171) 

0.18 

0.505 (0.088) 

1.11 ⋅ 10−8 

0.456 (0.074) 

 8.65 ⋅ 10−10 
0 

Val_PC ae C32:2 
1.022 (0.283) 

2.99 ⋅ 10−4 

0.609 (0.180) 

7.10 ⋅ 10−4 

1.100 (0.110) 

2.33 ⋅ 10−23 

0.972 (0.089) 

 1.01 ⋅ 10−27 

2.2

⋅ 1011 

Val_PC ae C36:0 
0.922 (0.255) 

2.96 ⋅ 10−4 

0.270 (0.166) 

0.10 

0.593 (0.101) 

4.95 ⋅ 10−9 

0.548 (0.082) 

 1.93 ⋅ 10−11 
0 

Gln_PC ae C32:2 
0.747 (0.265) 

4.82 ⋅ 10−3 

0.221 (0.144) 

0.12 

0.467 (0.093) 

5.46 ⋅ 10−7 

0.423 (0.075) 

 1.68 ⋅ 10−8 
0 

PC aa C32:3_PC 

ae C34:3 

0.345 (0.199) 

8.33 ⋅ 10−2 

0.018 (0.201) 

0.93 

0.313 (0.081) 

1.04 ⋅ 10−4 

0.281 (0.070) 

 6.42 ⋅ 10−5 
0 

Val_lysoPC a 

C18:1 

0.528 (0.243) 

3.00 ⋅ 10−2 

0.311 (0.174) 

7.40 ⋅ 10−2 

0.526 (0.092) 

9.17 ⋅ 10−9 

0.484 (0.077) 

 3.50 ⋅ 10−10 
0 

PC ae C36:5_PC 

ae C38:4 

−0.212 (0.205) 

2.99 ⋅ 10−4 

−0.307 (0.157) 

5.11 ⋅ 10−2 

−0.193 (0.080) 

1.70 ⋅ 10−2 

−0.216(0.067) 

1.33 ⋅ 10−3 
0 

Model: T2D = standardized metabolite ratio + age + sex + BMI + lipid lowering medication + 

study specific covariates. Beta: estimated effect of the ratio, SE: standard error, p-value: p-value 

of the effect estimate of ratio in this model. The p-gain was calculated by dividing the lowest p-

value of the single metabolites by the p-value of the ratio [180]. Fixed effect meta-analysis was 

applied to calculate the common effect size and p-value across the three studies.  
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Table 5.2: Results of logistic regression of standardized metabolite levels and prevalent T2D in 

LLS, NTR, and KORA F4. 

 LLS NTR KORA F4 Meta-analysis 

Metabolite Beta (SE) 

p-value 

Beta (SE) 

p-value 

Beta (SE) 

p-value 

Beta (SE) 

p-value 

H1 
0.766 (0.166) 
4.03 ⋅ 10−6 

1.915 (0.240) 
4.62 ⋅ 10−16 

1.258 (0.083) 
2.08 ⋅ 10−52 

1.226 (0.071) 
6.06 ⋅ 10−67 

xLeu* 
0.120 (0.156) 

0.44 
0.426 (0.135) 
1.56 ∗ 10−3 

0.744 (0.086) 
6.26 ⋅ 10−18 

0.558 (0.066)  
2.29 ⋅ 10−17 

Gln 
−0.166 (0.184) 

0.37 
0.067 (0.147) 

0.65 
−0.244 (0.085) 
3.87 ⋅ 10−3 

−0.166 (0.068)  
0.015 

Gly 
−0.286 (0.256) 

0.26 
−0.536 (0.245) 

0.028 
−0.340 (0.101) 
7.16 ⋅ 10−4 

−0.359 (0.088) 
4.31 ⋅ 10−5 

Ser 
−0.137 (0.198) 

0.49 
0.057 (0.150) 

0.70 
−0.044 (0.084) 

0.61 
−0.034 (0.069)  

0.62 

Val 
0.309 (0.166) 

0.063 
0.410 (0.133) 
1.96 ⋅ 10 − 3 

0.753 (0.096) 
5.06 ⋅ 10−15 

0.577 (0.070)  
2.22 ⋅ 10−16 

PC aa C32:3 
−0.649 (0.299) 

0.030 
−0.423 (0.206) 

0.040 
−0.312 (0.093) 
8.15 ⋅ 10−4 

−0.354 (0.082) 
1.38 ⋅ 10−5 

PC aa C34:3 
−0.441 (0.311) 

0.16 
−0.222 (0.211) 

0.29 
−0.180 (0.098) 

0.065 
−0.207 (0.085)  

0.016 

PC aa C34:4 
−0.176 (0.248) 

0.48 
−0.153 (0.172) 

0.37 
−0.042 (0.087) 

0.63 
−0.089 (0.072)  

0.22 

PC ae C32:2 
−0.884 (0.330) 
7.34 ⋅ 10−3 

−0.329 (0.211) 
0.12 

−0.717 (0.103) 
3.76 ⋅ 10−12 

−0.660 (0.089) 
 1.31 ⋅ 10−13 

PC ae C34:3 
−0.923 (0.363) 

0.011 
−0.222 (0.222) 

0.32 
−0.550 (0.102) 
7.66 ⋅ 10−8 

−0.519 (0.090) 
7.43 ⋅ 10−9 

PC ae C36:0 
−0.698 (0.315) 

0.027 
0.000 (0.180) 

0.998 
−0.150 (0.083) 

0.072 
−0.155 (0.073)  

0.035 

PC ae C36:5 
−0.496 (0.295) 

0.092 
−0.434 (0.178) 

0.015 
−0.390 (0.090) 
1.38 ⋅ 10−5 

−0.406 (0.077) 
1.60 ⋅ 10−7 

PC ae C38:4 
−0.359 (0.223) 

0.11 
−0.267 (0.147) 

0.070 
−0.279 (0.091) 
2.11 ⋅ 10−3 

−0.285 (0.073) 
9.87 ⋅ 10−5 

LysoPC a 

C18:1 
−0.277 (0.297) 

0.35 
−0.057 (0.187) 

0.76 
−0.143 (0.092) 

0.12 
−0.137 (0.080)  

0.085 
Model: T2D = standardized metabolite concentration + age + sex + BMI + lipid lowering 

medication + study specific covariates. Beta: estimated effect of the ratio, SE: standard error, p-

value: p-value of the effect estimate of ratio in this model. * The AbsoluteIDQ
tm

 p150 kit does 

not distinguish between leucine and isoleucine, xLeu represents their combined levels. 

 

5.1.1.2. Pairwise metabolite ratios and incident T2D  

The Cox proportional hazards regression was first conducted in two independent studies, 

KORA S4 to F4 and EPIC Potsdam, and the results were subsequently combined in a meta-
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analysis. Altogether, 910 incident T2D cases and 3,367 controls were included. The analyses 

were adjusted for the covariates shown in Table 4.1 in section 4.3.1. Results of the single 

analyses as well as the meta-analysis are shown in Table 5.3. Similarly, to the observations on 

prevalent T2D described above, a significant association was observed between incident T2D 

and the ratio valine to PC ae C32:2 (Table 5.3; 𝐻𝑅𝑉𝑎𝑙_𝑃𝐶 𝑎𝑒 𝐶32:2 = 1.57 (Beta(SE) =

0.45 (0.06));  𝑝 = 1.3 ∙ 10−15). 

Table 5.3: Results of Cox proportional hazards regression of metabolite ratios and prevalent 

T2D in EPIC-Potsdam and KORA S4 to F4. 

 KORA-S4 to F4 EPIC-Potsdam Meta-analysis 

Metabolite ratio Beta (SE) 

p-value 

Beta (SE) 

p-value 

Beta (SE) 

p-value 

P-gain 

Ile_PC aa C34:3 

0.309 (0.121) 

1.07 ⋅ 10−2 

na  3𝑎  

Ile_PC aa C34:4 

0.175 (0.118) 

0.14 

na  0𝑎 

Val_PC aa C34:4 

0.085 (0.114) 

0.46 

0.147 (0.058) 

1.05 ⋅ 10−2 

0.135 (0.051) 

8.85 ⋅ 10−3 

0 

Leu_PC aa C34:3 

0.211 (0.116) 

7.01 ⋅ 10−2 
na 

 3𝑎 

Ile_PC aa C32:3 

0.406 (0.130) 

1.80 ⋅ 10−3 

na  19𝑎 

Ile_PC aa C36:4 

0.210 (0.114) 

6.61 ⋅ 10−2 

na  1𝑎 

Val_PC aa C34:3 

0.202 (0.113) 

7.36 ⋅ 10−2 

0.152 (0.054) 

4.99 ⋅ 10−3 

0.161 (0.049) 

9.32 ⋅ 10−4 

0 

Ser_PC ae C32:2 

−0.042 (0.108) 

0.70 

0.182 (0.055) 

8.48 ⋅ 10−4 

0.137 (0.049) 

5.01 ⋅ 10−3 

0 

Val_PC ae C32:2 

0.403 (0.132) 

2.26 ⋅ 10−3 

0.463 (0.065) 

9.41 ⋅ 10−13 

0.451 (0.058) 

7.10 ⋅ 10−15 

1.29 ⋅ 106 

Val_PC ae C36:0 

0.184 (0.117) 

0.11 

0.204 (0.057) 

3.77 ⋅ 10−4 

0.151 (0.052) 

3.40 ⋅ 10−3 

0 

Gln_PC ae C32:2 

0.050 (0.109) 

0.65 

0.090 (0.044) 

3.95 ⋅ 10−2 

0.084 (0.041) 

3.77 ⋅ 10−2 

0 

Ile_PC ae C36:0 

0.285 (0.122) 

1.92 ⋅ 10−2    

na  2𝑎 

PC aa C34:4_PC aa C38:1 

0.080 (0.100) 

0.43 

na  1𝑎 

Ala_Gly 

0.541 (0.111) 

1.11 ⋅ 10−6 

na  378𝑎 
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PC aa C32:3_PC ae C34:3 

0.146 (0.105) 

0.17 

0.293 (0.054) 

7.59 ⋅ 10−8 

0.262 (0.048) 

5.73 ⋅ 10−8 

0 

Ala_lysoPC a C18:1 

0.395 (0.1183) 

7.97 ⋅ 10−4 

na  11𝑎 

Val_lysoPC a C18:1 

0.271 (0.119) 

2.27 ⋅ 10−2 

0.317 (0.055) 

8.24 ⋅ 10−9 

0.309 (0.050) 

5.52 ⋅ 10−10 

65 

PC ae C36:5_PC ae C38:4 0.157 (0.102) 

0.13 

−0.076 (0.055) 

0.17 

−.023 (0.048) 

0.63 

0 

Model: T2D = standardized metabolite ratio + study specific covariates as given in Table 4.1 (in 

section 4.3.1.). The p-gain was calculated by dividing the lowest p-value of the single 

metabolites by the p-value of the ratio [180]. Fixed effect meta-analysis was applied to calculate 

the common effect size and p-value. na not available. 

𝑎 Only calculated for the KORA data.  

Beta: estimated effect of the ratio, SE: standard error, p-value: p-value of the estimated effect of 

ratio in this model. na not available. 

As described above for prevalent T2D, the p-value of the association with the metabolite ratio 

was again significantly stronger than those of the associations between T2D and the two 

metabolites alone (pvaline = 3.57 ⋅ 10
−8; pPC ae C32:2 = 9.16̇ ⋅ 10−9; p-gain = 1.3 ∙ 106; see Table 

5.4 for all significant single metabolite associations ). In addition, for all significant associations 

two diagnostic plots as described in section 4.5.2.5-4.5.2.6 were plotted to visually examine 

whether the assumptions for a Cox proportional regression are met. No violation for the 

metabolite ratio valine to PCaeC32:2 as well as for most of the other metabolite ratios was 

observed (see Figure A.5 in Appendix).  

In a next step, the association of incident T2D and the ratio between valine and PC ae C32:2 was 

further investigated with respect to additional covariates in KORA. Models were compared using 

time-dependent AUC and NRI, as shown in Table 5.5. Adjusting the model for glucose levels at 

baseline only marginally affected the results and the association remained highly significant 

(𝐻𝑅𝑉𝑎𝑙_𝑃𝐶 𝑎𝑒 𝐶32:2 = 1.45 (Beta(SE) = 0.37 (0.06));  𝑝 = 1.4 ∙ 10
−9). When the valine to PC ae 

C32:2 ratio was added to the traditional baseline prediction model comprising widely accepted 

traditional risk factors (TRF) as shown in Table 4.1 (in section 4.3.1.), the AUC estimated from 

the time-dependent ROC improved from 0.780 to 0.801 in the KORA S4 to F4 study (𝑝 = 3.2 ∙

10−2 for the ratio, Table 5.5). The area under the curve was marginally larger in a model 

comprising the metabolite ratio compared to that assessed in a model with the two single 

metabolites instead of the ratio (𝐴𝑈𝐶 = 0.793). The computed NRI compared the model with 

traditional risk factors and the model with additional covariates and supported these results. The 
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NRI showed a slightly improvement of the model with the metabolite ratio (NRI =  0.013) and a 

slightly worsening of the model with the single metabolites (NRI =  −0.016).  

Because both studies, KORA S4 to F4 as well as EPIC Potsdam adjusted for different covariates, 

accuracy of the predictive models was assessed using cross-validation. The cross-validation 

yielded comparable results to the estimated model using the total data, suggesting little 

overfitting in the present situation with large sample sizes and few added covariates (Table 5.5). 

Table 5.4: Results of Cox proportional hazards regression of standardized metabolite levels and 

prevalent T2D in EPIC-Potsdam and KORA S4 to F4. 

 KORA S4 to F4 EPIC-Potsdam Meta-analysis 

Metabolite Beta (SE) 

P-value 

Beta (SE) 

P-value 

Beta (SE) 

P-value 

H1 0.896 (0.084) 
3.00 ⋅ 10−26 

0.674 (0.056) 
3.46 ⋅ 10−33 

0.741 (0.046) 
2.04 ⋅ 10−57 

Ala 0.247 (0.094) 
9.03 ⋅ 10−3 

na   

Ile 0.220 (0.104) 
3.39 ⋅ 10−2 

na   

Leu 0.133 (0.104) 
0.20 

na   

Gln −0.229 (0.106) 
3.11 ⋅ 10−2 

−0.177 (0.051) 
4.72 ⋅ 10−4 

−0.187 (0.046) 
4.38 ⋅ 10−05 

Gly −0.449 (0.127) 
4.20 ⋅ 10−4 

−0.301 (0.063) 
1.84 ⋅ 10−6 

−0.330 (0.056) 
5.02 ⋅ 10−9 

Ser −0.298 (0.109) 
6.27 ⋅ 10−3 

−0.030 (0.057) 
0.59 

−0.087 (0.050) 
8.25 ⋅ 10−2 

Val 0.132 (0.105) 
0.21 

0.298 (0.054) 
3.29 ⋅ 10−8 

0.263 (0.048) 
 3.57 ⋅ 10−8 

PC aa C32:3 −0.263 (0.124) 
3.42 ⋅ 10−2 

−0.108 (0.056) 
0.055 

−0.135 (0.051) 
8.79 ⋅ 10−3 

PC aa C34:3 −0.104 (0.109) 
0.34 

0.050 (0.053) 
0.35 

0.021 (0.048) 
0.66 

PC aa C34:4 0.026 (0.114) 
0.82 

0.060 (0.057) 
0.29 

0.053 (0.051) 
0.30 

PC aa C38:1 −0.098 (0.102) 
0.33 

na  

PC ae C32:2 −0.469 (0.141) 
8.74 ⋅ 10−4 

−0.275 (0.057) 
1.30 ⋅ 10−6 

−0.302 (0.053) 
9.16 ⋅ 10−9 

PC ae C34:3 −0.531 (0.144) 
2.20 ⋅ 10−4 

−0.452 (0.064) 
1.12 ⋅ 10−12 

−0.465 (0.058) 
1.22 ⋅ 10−15 

PC ae C36:0 −0.059 (0.114) 
0.60 

0.038 (0.049) 
0.44 

0.023 (0.045) 
0.62 

PC ae C36:5 −0.025 (0.112) 
0.82 

−0.156 (0.051) 
2.39 ⋅ 10−3 

−0.125 (0.047) 
7.63 ⋅ 10−3 

PC ae C38:4 −0.139 (0.114) −0.117 (0.054) −0.121 (0.049) 
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0.22 3.03 ⋅ 10−2 1.32 ⋅ 10−2 
LysoPC a C18:1 −0.205 (0.123) 

9.61 ⋅ 10−2 
−0.176 (0.057) 
2.09 ⋅ 10−3 

−0.181 (0.052) 
4.81 ⋅ 10−4 

Model: T2D = standardized metabolite concentration + age + sex + BMI + lipid lowering 

medication + study specific covariates. The P-gain was calculated by dividing the lowest p-value 

of the single metabolites by the p-value of the ratio [180]. Fixed effect meta-analysis was applied 

to calculate the common effect size and p-value. 

Beta: estimated effect of the ratio, SE: standard error, p-value: p-value of the estimated effect of 

ratio in this model. na not available. 

 

Table 5.5: Apparent and cross-validated model performance for incident T2D in KORA S4 to 

F4. 

 KORA S4 to F4 

model 
AUC 

ROC 
NRI Beta (SE)* P-value* 

      

Val_PC 

ae C32:2 
0.697  −0.206 0.651 (0.102) 2.05 ⋅ 10−10 

Cross 

validation 

result 

0.693 −0.193   

      

Glucose + 

Val_PC 

ae C32:2 

0.782 0.036 0.562 (0.113) 6.43𝑒 ⋅ 10−7 

Cross 

validation 

result 

0.779 0.047   

      

Glucose + 

TRF 
0.780 - (Reference) - - 

Cross 

validation 

result 

0.766 - (Reference)   

     

Glucose + 

TRF + 

Val + PC 

ae C32:2 

0.793 −0.016 

Val:  

0.05 (0.12) 
PC ae C32:2: 

−0.48 (0.15) 

Val: 0.66 

PC ae C32:2: 2.1 ⋅  10−3 

Joint effect: 8.8 ⋅ 10−3 

Cross 

validation 

result 

0.774 −0.004   
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Glucose + 

TRF + 

Val_PC 

ae C32:2 

0.801 0.013 0.311 (0.145) 3.19 ⋅ 10−2 

Cross 

validation 

result 

0.781 0.019   

TRF = traditional risk factors as shown in Table 4.1. in section 4.3.1 

* Betas (SE) and p-values are provided for the ratio of valine and PC ae C32:2. NRI was 

calculated comparing the model in the given row and the model Glucose + TRF. 

AUC ROC: Area under curve of the Receiver Operating Characteristic Curve, Beta: estimated 

effect of the ratio, SE: standard error, p-value: p-value of the estimated effect of ratio in this 

model. 
 

5.1.2. Discussion 

In this analysis the association of the metabolite ratios with prevalent and incident T2D was 

investigated in four independent cohorts from the Netherlands and Germany.  

The analysis served as a validation of two prior studies investigating the association of 

metabolite ratios and insulin secretion [103]. In this thesis, the follow-up investigation, the 

association between the metabolite ratios and prevalent and incident T2D, was conducted.  

It has been shown that metabolite ratios can reveal perturbations in pathways relevant for a 

certain phenotype and may thus reveal stronger and more meaningful associations than 

associations with single metabolite levels [2, 190]. However, even if not directly involved in 

the associated pathways, metabolite ratios can serve as good biomarkers with predictive ability 

beyond that of the single constituents. It has been shown that this approach can reduce the 

variance of the single metabolite levels  and increases the statistical power [180]. Thus, the 

focus of the current study was to determine whether metabolite ratios improve the prediction of 

T2D when combined with known traditional risk factors. Note that this does not imply an 

optimal set of predictors for T2D. In the framework of this study, the p-gains of associations 

between metabolite ratios that were significantly associated with glucose-stimulated insulin in 

the clamp study and prevalent or incident T2D were computed. In both analyses only the 

metabolite ratio valine to PC ae C32:2 displayed a significant p-gain, an indicator that the 

metabolite ratio is more strongly associated than the metabolites individually. 

In T2D, the BCAA valine has been shown to be increased and responsive to glucose 

stimulation in several studies [46, 191, 192] but also to the glucose lowering drugs glipizide 
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and metformin [48, 193]. In general, it is known that BCAAs associate with insulin sensitivity 

[194, 195] and development of diabetes [50].  

The observed increase of BCAA levels may be the result of impaired metabolism, i.e., 

impairments of the branched-chain keto acid dehydrogenase complex, causing the 

accumulation of potentially toxic intermediates (branched-chain α-ketoacids) that may lead to 

β-cell mitochondrial dysfunction [196, 197]. A second hypothesis for the observed association 

between elevated BCAA levels and insulin resistance might be the permanent activation of the 

serine kinases S6K1 and the mammalian target of rapamycin complex 1 through BCAAs and 

together with insulin. This leads to serine phosphorylation of insulin receptor substrates-1 and 

insulin receptor substrates-2, which impede insulin signalling, such as inducing 

gluconeogenesis in the liver and translocation of glucose transporter type 4 in the skeletal 

muscle, resulting in increased insulin demand [40].  

However, other studies indicate that BCAA levels are probably not sufficient to trigger disease 

and rather being the consequence of impaired insulin action, as insulin resistance is associated 

to reduced expression of mitochondrial BCAA catabolic enzymes [196, 198]. Thus, BCAAs 

might serve only as a marker of increased insulin resistance [196, 198]. 

PC species are defined as a class of phospholipids with a choline as a head group. Like valine, 

PCs have been found to be associated with T2D [27]. As PCs cannot be detected by all 

metabolomics platforms, replication is less frequent compared to the BCAAs [27, 46, 50, 199]. 

However, PC ae C32:2 has been shown to be associated with prevalent [199] and incident T2D 

[46] and was also found to respond to glucose stimulation during OGTT [200]. Furthermore, 

the Biocrates kit which was used to detect the metabolites in the present study does not allow 

for a detailed analysis of the exact lipid composition of metabolites such as PC ae C32:2 (see 

Figure 5.1. for a skeletal formula). Thus, interpretation of results and literature searches for 

mechanistic validation are limited. According to the Human Metabolome data (HMDB) PC ae 

C32:2 as quantified by the Biocrates Kit is composed of either the fatty acids C16:1/C16:1, 

C18:1/C14:1 or C18:2/C14:0 (www.HMDB.org) [201].  

In general, phosphatidylcholines are constituents of cellular membranes and are suspected of 

playing an important role in cellular signal transduction [46, 202]. In addition, plasmalogens 

which are a subclass of acyl-alkyl-phosphatidylcholines, have been found to prevent lipoprotein 

oxidation [46, 190, 202, 203]. 

http://www.hmdb.org)/
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L-Valine     PC ae C32:2 

Figure 5.1: Structure of PC ae C32:2 and L-valine. Chemical formulas of PC ae 32:2 and L-

valine are shown. Please note that for PC ae 32:2 the carbon number is calculated as R1 + R2 +1 

=32, and the double bonds number is 2 for R1 + R2. It is not known which specific chain lengths 

are quantified by Biocrates.  

In previous studies by Floegel et al. and Wang-Sattler et al., phosphatidylcholines and 

sphingomyelins were found to be associated with increased risk of impaired glucose tolerance 

(IGT) and incident T2D [27, 46]. However, acyl-alkyl-phosphatidylcholines, such as PC ae 

C32:2, were associated with decreased risk of incident T2D [46]. Furthermore, it was observed 

that acyl-alkyl-phosphatidylcholine concentrations are significantly lower in the obese state in 

children and in adults compared to normal weight participants [190, 204]. Thus, the observed 

negative association between acyl-alkyl phosphatidylcholine levels and T2D or obesity may 

reflect an increased consumption of plasmalogens during oxidative stress [190]. 

In murine adipose tissue, several studies have shown that the BCAAs and lipogenesis are related 

[205-207]. The catabolism of the BCAAs contributes to the synthesis of odd-chain and even-

chain fatty acids, like C14, C16, and C18 chains which are components of PC ae C32:2 [206]. 

Jang et al [208] showed that 3-hydroxyisobutyrate (3-HIB), a catabolic intermediate of valine, is 

a paracrine regulator of trans-endothelial fatty acid transport. In particular, 3-HIB stimulates 

muscle fatty acid uptake and promotes lipid accumulation in muscle, eventually leading to 

insulin resistance in mice [208]. The insulin resistance is potentially driven by the increased fatty 

acid flux from the blood resulting to an increase in myocellular diacylglycerol in the muscle 

which leads to a decreased insulin-stimulated glucose-transport activity after several activation 

of enzymes [209]. Thus, the regulation of the fatty acid flux might be another link to the relation 

of fatty acids and BCAA catabolism, providing a new mechanistic explanation for how increased 

BCAA catabolic flux can cause diabetes [208]. 

At present it is not clear whether the metabolite ratio is causally related to diabetes risk. 

However, the time sequence implied in the Cox proportional hazards model is a first indicator for 
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a putative causal relationship. Furthermore, a recent Mendelian randomization study suggested a 

causal relationship between increased BCAA levels, such as valine, and T2D risk [210]. This 

does, however, not imply that the ratio is causal as well.  

Further research is necessary to investigate the possible functional relationship between valine 

and PC ae C32:2 and whether there is a direct causal relation underlying the observed 

associations with glucose-stimulated insulin secretion and risk of developing diabetes. 

A limitation of this study is that KORA S4 to F4 and EPIC-Potsdam used different covariates in 

the Cox proportional hazards regression because not all covariates were available in both 

cohorts. However, both sets of covariates comprised well established risk factors which had been 

previously used in similar metabolomic studies [27, 46] and results of those studies were 

validated in independent replication panels [150-152]. Furthermore, consistent results of both 

studies show that, despite the differences, the associations are robust and reliable.  

Moreover, because in KORA the same data was used to generate the model and to compute the 

AUC, it is expected that the performance is quite high [162]. Therefore, the accuracies of the 

predictive models in KORA were assessed using a cross-validation approach. Both, the apparent 

and cross-validated model yielded comparable results concerning the time-dependent AUC and 

NRI, and thus suggesting little overfitting.  

In this study, the valine to PC ae C32:2 metabolite ratio improved the prediction of incident T2D 

extending previous evidence of an association between the two constituent metabolites and T2D 

[27, 46]. Furthermore, it is important to note that in all analyses conducted in the present study 

the estimated accuracy of the prediction model containing the ratio was slightly larger than that 

of a model comprising the two constituent metabolite levels alone, suggesting that the use of 

ratios improves risk prediction. Large prospective studies aiming to identify the best set of 

predictors are needed to evaluate the clinical relevance of metabolite ratios in individual T2D 

risk prediction. The simple and relatively low invasive nature of metabolomics measurements 

and the fact that alterations in metabolite profiles can be detected years before disease 

manifestation, indicate that metabolomics might prove to be a useful instrument in personalizing 

prevention and treatment strategies for T2D. 

In conclusion, a novel association between the ratio of two metabolites, valine to PC ae C32:2, 

was identified and validated with both prevalent and incident T2D. This ratio significantly 

improved the prediction of future T2D manifestation beyond established traditional risk factors. 
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These findings open opportunities for future functional studies investigating the causality of the 

association as well as its clinical relevance as an early biomarker for T2D. 
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5.2. Interaction analysis 

 

5.2.1. Results 
The overall aim of this study was to implement and evaluate the R package pulver, which 

computes billions of linear regressions with an interaction terms in a reasonable amount of 

time. In the first part of this study, the performance of this R package was benchmarked against 

two other programs using simulated 𝑋, 𝑌, and 𝑍 matrices with different numbers of 

observations and variables. In the second part of this study, pulver was applied to real data from 

the KORA study, i.e., the interaction of SNPs and CpG sites on metabolite levels measured by 

the Biocrates platform and the Metabolon platform. Finally, the metabolite ratio valine to PC ae 

C32:2, identified in the analysis with incident and prevalent T2D, was investigated for potential 

associations with SNPs and CpG sites. 

5.2.1.1. Performance comparison using simulated data  

For the comparison of the R packages pulver using the C++ and Fortran version and 

MatrixEQTL and R’s built-in lm function four different scenarios were conducted. In the 

scenarios the number of columns in the 𝑋, 𝑌, and 𝑍 matrices, and the number of subjects were 

varied and the mean run times computed. Figure 5.2 shows the mean run times for all different 

scenarios (A-D). For all benchmark sets, pulver performed better than the alternatives. In all 

benchmark scenarios the results obtained for the lm function were so slow that only the first 

mean runtime was included into the corresponding chart for comparability. Most striking, in 

the scenario involving varying numbers of variables in matrix 𝑍 (see Figure 5.2 D), pulver 

outperformed the other methods by several orders of magnitude. Even the run times of 

MatrixEQTL are so slow that they are only partly included in the chart. The poor performance 

of MatrixEQTL is obtained because only one 𝑍 variable can be included into this function, 

forcing the user to repeatedly call MatrixEQTL for every variable in the 𝑍 matrix. This type of 

iteration is known to be slow in R. Thus, benchmark D reflects the intended user case for 

pulver where all input matrices contain many variables and pulver can be utilized optimally.  
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Figure 5.2: Mean run times and standard deviations for the interaction analysis using R’s lm 

function (orange), MatrixEQTL (blue), and pulver (black/dark grey). The execution times are in 

milliseconds. A line through the time points for each package was fitted. R’s lm function was 
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very inefficient for this type of interaction analysis, and only the first two points are shown for 

every benchmark. 

nobs: number of observations, xcols: number of columns in the 𝑋 matrix, ycols: number of 

columns in the 𝑌 matrix, zcols: number of columns in the 𝑍 matrix. 

 

5.2.1.2. SNP-CpG interaction and metabolite levels 

In the real world scenario, the association between the interaction of SNPs and CpG sites with 

metabolite levels measured by the Biocrates platform and the Metabolon platform were 

analyzed. The final data sets comprised 345,372 CpG sites, 117 SNPs, and 16 metabolites 

from the Biocrates kit and 345,372 CpG sites, 6,406 SNPs, and 376 metabolites from the 

Metabolon platform.  

Altogether, 27 significant associations for metabolites from the Biocrates platform (p-values 

ranging from 1.28 ⋅  10−29 to 5.17 ⋅  10−14) and 286 significant associations for metabolites 

from the Metabolon platform (p-values ranging from 1.15 ⋅  10−42 to 3.73 ⋅  10−14) were 

identified. All of the significant associations involved the metabolite butyrylcarnitine and 

SNPs and CpG sites located on chromosome 12 in close proximity to the ACADS gene (+ 

strand, see Figure 5.3, and Table A.3/A.4 in Appendix). More precisely, in total five CpG sites, 

cg06793505, cg21721566, cg21892295, cg23907586, and cg02419362, were associated with 

butyrylcarnitine. Comparing correlations between these five CpG sites revealed that CpG sites 

cg21721566 and cg21892295 as well as cg23907586 and cg21892295 were highly correlated 

with each other (Pearson correlation: 𝑟2 ≈ 0.7, r2 ≈ 0.6, respectively). 

After reducing the number of SNPs as described in section 4.9.6, there were ten significant 

associations with butyrylcarnitine in the Metabolon platform data. These associations involved 

four SNPs and five CpG sites (see Figure 5.4 lower panel): rs10774563, rs9431, rs1039302, 

rs7965649 and cg02419362, cg06793505, cg21721566, cg21892295, cg23907586. 
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Figure 5.3: Regional plot with significant associations among SNPs (circles), CpGs (squares), 

and butyrylcarnitine for the Biocrates platform (top) and Metabolon platform (bottom). 

Significant interactions between SNPs and CpGs are visualized by lines connecting SNPs and 

CpGs. 

For butyrylcarnitine measured using the Biocrates platform, five associations involving three 

SNPs (rs7964786, rs11065283, rs2001133) and three CpG sites (cg02419362, cg21721566, 

cg21892295) were significant (see Figure 5.4 upper panel). The scatterplots for all 16 significant 

associations are shown in Appendix Figure A.1 and A.2 in the left panel, whereas in the upper 

right the adjusted coefficients of determination are shown for different models: SNP ~ CpG, 

metabolite ~ CpG, metabolite ~ SNP, metabolite ~ SNP + CpG, and metabolite ~ SNP ⋅

CpG + SNP + CpG. The different models illustrate how the inclusion of an interaction term in 

the model increased the adjusted coefficient of determination R2 (computed using the 
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summary.lm function in R). For models including the interaction term the coefficient of 

determination ranged from 0.2491 to 0.3777 in the data assessed using the Metabolon platform 

and from 0.1689 to 0.2491 in the data assessed using the Biocrates platform. In the lower right 

panel, the beta coefficients of the CpG site, SNP and their interaction, computed by the linear 

regression model with interaction term, are depicted. In all associations the beta coefficient of the 

SNP alone was small compared to the beta coefficient of the interaction term or CpG site and 

had thus less impact on the outcome. For associations involving the metabolite butyrylcarnitine 

measured by the Biocrates platform the largest effect was observed for the interaction term, 

whereas for associations with butyrylcarnitine measured by the Metabolon platform the CpG site 

had, in some cases, the largest beta coefficient. 

 

 

Figure 5.4: Regional plot with significant associations between SNPs with correlation 

coefficient below 60% (circles), CpGs (squares), and butyrylcarnitine for data of the Biocrates 
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platform (top) and of the Metabolon platform (bottom). Significant interactions between SNPs 

and CpGs are visualized by lines connecting SNPs and CpGs. 

The positions of the five CpG sites are depicted in Figure 5.5. They indicate that the CpG sites 

are near to a CpG island but also to transcription factor binding sites. This CpG island is 

followed by the presence of the overlay of H3K4Me1 and H3K27Ac as well the overlay of 

H3K4Me3. H3K4Me1 denotes the methylation of histone H3 at lysine 4, H3K27Ac the 

acetylation of histone 3 at lysine 27 [81], and H3K4Me3 the trimethylation of histone H3 at 

lysine 4 [79]. H3K4me3 is primarily associated with active promoters and H3K27Ac  is 

associated with both active promoters and enhancers [211]. 

Furthermore, in this region a hypersensitivity of DNase enzyme was observed. All information 

was obtained from the UCSC Genome Browser (https://genome.ucsc.edu/). 

 

 

Figure 5.5: Regional plot of CpG sites on chromosome 12 in the ACADS region, created by the 

UCSC Genome Browser (https://genome.ucsc.edu/). Positions of exons and introns of genes, 

CpG islands, histone modifications, transcription factor binding sites, and CpG sites are shown. 

CpG sites for which the interaction with a SNP is significantly associated with butyrylcarnitine 

are marked with an arrow. The colors of the names of the CpG site represent different degrees of 

methylation: Orange indicates a high degree of methylation (𝛽 ⋅  1000 ≥ 600), purple indicates 

a modest degree of methylated (200 < 𝛽 ⋅  1000 ≤ 600), and blue indicates a low degree to no 

methylation (0 < 𝛽 ⋅  1000 ≤ 200), CpG sites where the methylated status is unknown are 

colored black. 

https://genome.ucsc.edu/
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In addition, four diagnostic plots associations as described in section 4.5.2.1-4.5.2.4 for all 

identified 15 significant associations were plotted to visually examine whether the assumptions 

for a normal distribution are met. No violation of the observations was observed (see Figure 

A.3 and A.4 in Appendix). 

5.2.1.3. SNP-CpG interaction and metabolite ratio  

In section 5.1 the metabolite ratio valine to PC ae C32:2 was identified to be significantly 

associated with incident and prevalent T2D. To elaborate potential epigenetic and genetic 

influence beyond this metabolite ratio, the R package pulver was applied for this ratio as well. 

No association could be identified that had a p-value less than the Bonferroni significance 

threshold of  7.19 ⋅ 10−12, i.e., there were no significant associations. The first ten associations 

with the lowest p-value between this metabolite ratio and the interaction SNP × CpG are 

depicted in Table 5.6. In contrast to the significant associations between butyrylcarnitine and 

the SNP-CpG interaction, some SNPs are located on different chromosomes than the CpG 

sites. 

 

Table 5.6: The first ten associations with the lowest p-value between metabolite ratio valine to 

PC ae C32:2 measured with the Biocrates platform and the interaction SNP × CpG.  
 

CpG SNP P-value 

Position 

(SNP) 

Chr. 

(SNP) 

Position  

(CpG) 

Chr. 

(CpG) 

cg13562917 rs61933106 9.95 ⋅ 10−10 115040096 12 90776873 15 

cg13562917 rs61933105 1 ⋅ 10−9 115039967 12 90776873 15 

cg27633287 rs142854002 1.06 ⋅ 10−9 130298443 12 130766243 12 

cg14669379 rs199825610 1.08 ⋅ 10−9 31378517 3 112058559 1 

cg14132884 rs10087554 1.16 ⋅ 10−9 70346293 8 75230010 14 

cg23850377 rs33922594 1.18 ⋅ 10−9 19614509 8 20251576 2 

cg03404572 rs62254320 1.27 ⋅ 10−9 53228655 3 61329252 18 

cg03404572 rs12490555 1.29 ⋅ 10−9 53228836 3 61329252 18 

cg03404572 rs12490645 1.44 ⋅ 10−9 53228919 3 61329252 18 

cg03404572 rs60520044 1.47 ⋅ 10−9 53238942 3 61329252 18 

Chr. = Chromosome. 

5.2.2. Discussion 

The interplay between metabolite levels, genetic variants, and CpG sites was examined from an 

omics-wide perspective. Previous interaction analyses in GWAS mainly considered interactions 
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between SNPs and thus ignored possible interactions between different “omics” layers, which 

are in general measured on a continuous scale. Thus, in this study the R package pulver was 

implemented. 

5.2.2.1. Performance comparison using simulated data  

Compared to its competitors, the R package MatrixEQTL [19] and R’s built-in lm, it is the 

fastest implementation available for calculating p-values for the interaction term of two 

quantitative variables given a huge number of linear regression models. In particular, in the 

case where interaction terms need to be calculated for many pairs of variables, pulver performs 

far better (see Figure 5.2). The run time differences between the programming languages 

Fortran and C++ were negligible. Time savings are achieved by avoiding redundant 

calculations, as also implemented in omicABEL [18]. However, this latter software is not 

flexible enough to compute regression with an interaction term.  

Similar to MatrixEQTL, computationally expensive p-values are only computed at the very end 

and only for results below the significance threshold determined using the (computationally 

cheap) Pearson’s correlation coefficient.  

To maximize the speedup, it is always worthwhile to specify a p-value threshold and use 

pulver as a filter to find models with significant or near-significant interaction terms. If a p-

value threshold is not specified, the time savings will be suboptimal and the number of results 

will be very high. Thus, we recommend using a p-value threshold to adjust for multiple testing, 

such as Bonferroni correction, i.e. 
0.05

number of tests
. 

The core algorithm of pulver was implemented in two languages namely C++ and C/Fortran to 

examine different performances due to programming languages. However, comparing the two 

different implementation of pulver reveals no striking differences. Thus, we continued to use 

the C++ version as it offered some useful implemented functions such as those implemented in 

the C++ Standard Library algorithms [212]. 

However, comparing the complexity between pulver and MatrixEQTL revealed that in theory 

for large matrices the two algorithms might have similar processing time. In practice, 

differences are seen, as we need to iterate through each variable of the 𝑍 matrix to call the 

function MatrixEQTL. In pulver, this is already implemented with the C++ programming 

language which is known to be faster than the script language R [213]. 
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The package pulver imputes missing values based on their column means. If this is not desired, 

then one can use other more sophisticated methods, such as the mice package in R [109], in 

order to impute missing values before applying pulver. Furthermore, pulver can typically only 

be used as a screening tool because it simply returns p-values. Other information regarding the 

fitted models, such as slope coefficients, standard errors, or residuals, must be computed in a 

second step using traditional tools.  

Moreover, further improvement might be achieved by integrating math libraries for 

computation of matrix operations into this package as used in MatrixEQTL. However, since 

through each variable of each matrix is iterated, only matrix-vector multiplication could be 

computed. According to Fabregat-Traver et al. for that kind of operations on small matrices 

using BLAS kernels an efficiency of approximately five percent could be achieved [18]. Thus, 

depending on sample sizes there might be only small benefits. 

In conclusion, pulver can be part of a processing pipeline focused on interaction terms in linear 

regression models and its main value is allowing users to conduct comprehensive screenings 

that are beyond the capabilities of existing tools regarding different “omics” layers.  

5.2.2.2. SNP-CpG interaction and metabolite levels 

Subsequently, the R package pulver was applied to data from the KORA data base to run just 

above 800 billion regressions. Only results with a p-value less than the Bonferroni-corrected 

threshold 6.01 ∙ 10−14 were stored, a total of 313 significant associations. To further reduce 

the number of associations, only the SNP with the lowest p-value was selected from clusters of 

correlated SNPs. This effort reduced the number of significant associations to 15. All SNPs 

and CpG sites reside within the chromosome 12 near the ACADS gene (OMIM: 606885), with 

butyrylcarnitine being the related metabolite in both platforms, Metabolon and Biocrates. The 

ACADS gene encodes the enzyme short-chain acyl-CoA dehydrogenase (SCAD), which 

catalyzes the initial reaction in the mitochondrial 𝛽-oxidation of short-chain fatty acids, i.e., 

C4 and C6 fatty acids [214, 215]. The ACADS gene is located in the terminal region of the 

long arm of chromosome 12, and covers approximately 14.2 kb, containing ten exons [216, 

217]. β-oxidation represents an important source of energy for the human body, particularly 

during times of fasting and metabolic stress generating an alternative source of different kinds 

of acetyl-CoA such as propionyl-, butyryl-, and crotonyl-CoA [218, 219] (Figure 5.6). Over 60 

inactivating mutations of the ACADS gene are known [220]. Inactivation results in an 
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accumulation of the encoded enzyme’s substrate, which includes butyryl-CoA. This substrate 

can be converted into different intermediates, such as butyrylcarnitine, butyrylglycine, 

ethylmalonic acid (EMA), and methylsuccinic acid in blood, urine, and cells [215, 221] 

(Figure 5.6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: Biochemical pathways for alternative metabolism of butyryl-CoA adapted from 

[215]. Metabolite levels of butryrylglycine, ethylmalonic acid, and methylsuccinic acid may 

elevated in urine and butrylrylcarnitine in the blood for SCAD deficient patients. Illustration was  

prepared using a template on the Servier medical art website 

(http://www.servier.com/Powerpoint-image-bank). 

 

Most of the gene variants in ACADS are missense variants impairing the correct folding and/or 

stability of the native protein structure [215]. Abnormally folded SCAD proteins and organic 

acids result in cellular toxicity and risk of acute metabolic acidosis and physiologic stress [215, 

222].  

Corydon et al. postulated that an interplay of genetic, cellular, and environmental factors leads 

to reduced catalytic activity of the enzyme SCAD [214]. Enzyme activity below a critical 

threshold may cause the onset of diverse clinical symptoms such as developmental delay, 

hyper- and hypotonia, ketotic hypoglycemia, and epilepsy due to a disease named Acyl-

Coenzyme A Dehydrogenase Deficiency (SCADD) [221]. One of the accumulated metabolites 

in SCADD is butyric acid [215]. In high concentration butyric acid can inhibit the activity of 
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the histone deacetylase and thus prevent gene expression [223]. The association between the 

manifestation of SCADD and a mutation of the enzyme SCAD is still under discussion 

because many individuals having genetic variations in the ACADS gene do not develop 

SCADD [215]. Thus, SCADD is not part of the newborn screening programs in most countries 

[215]. 

Butyrylcarnitine is a metabolite involved in BCAA catabolism and fatty acid metabolism and 

has been shown to be associated with higher visceral fat mass [224], obesity, and insulin 

resistance [225]. In addition, butyrylcarnitine is a known marker of excessive fatty acid 

oxidation [226] and its increased concentration in the plasma might reflect impaired 

mitochondrial function, which is characterized by an accumulation of intermediates of fatty 

acid oxidation [52].  

Previous findings had already suggested that butyrylcarnitine levels are strongly influenced by 

genetic variations [227, 228] and it had been shown that in the ACADS gene region SNPs and 

CpG sites (potentially also driven by SNPs in the neighborhood) are associated with 

butyrylcarnitine [5, 10, 185].  

In this thesis, the significant association between the interacting SNP and CpG site and the 

levels of butyrylcarnitine in addition to an increased coefficient of determination suggests that 

the strength of association of the methylation with the metabolite level varies depending on the 

number of alleles of the SNP (Figures A.1 and A.2). However, the identified SNPs reside 

within a cluster of SNPs in strong linkage disequilibrium. Thus, further studies are warranted 

to determine the truly functional SNP within this gene cluster. In this study, five CpG sites 

accounted for a total of 15 significant associations. Four of these (cg06793505, cg21721566, 

cg21892295, cg23907586) were located near a CpG island, suggesting an influence on the 

transcription start site of the ACADS gene. This is supported by the presence of major 

chromatin features at this locus, such as H3K4Me1, H3K27Ac, and H3K4Me3, which are 

often found in regions containing active enhancers or promotors [81].  

The interaction terms of the 15 associations showed both positive and negative associations 

with the metabolite butyrylcarnitine. As shown in Figures A.1 and A.2 in the Appendix the 

highest slope were mainly determined by the CpG site and the interaction 𝐶𝑝𝐺 ∙ 𝑆𝑁𝑃. For 

associations measured with the Biocrates platform the interaction term had the highest impact 

on the association.  
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Since associations do not allow to deduce causality it is possible that levels of butyrylcarnitine 

influence the degree of DNA methylation or that the degree of DNA methylation has an 

influence on the metabolite levels. However, the locations of all but one of the identified CpG 

sites being near a promotor region of the ACADS gene may indicate that the direction of 

causality is more likely from methylation to metabolite. It is assumed that CpG sites of the 

promotor region of the ACADS gene have an influence on transcription binding sites. The 

ACADS gene codes for the enzyme SCAD, which in turn influences the concentration of 

butyrylcarnitine [214, 215].   

One of the identified CpG sites, cg02419362, is located in the intronic region of the SPPL3 

gene. However, associations involving this CpG site should be considered carefully as an 

annotated SNP, rs35950819, encoding a deletion resides 49 bp upstream of this CpG site. 

Unfortunately, no further information about the allele frequency is available for this SNP and it 

was not measured in the KORA study. 

The correlation coefficient between butyrylcarnitine levels across different platforms was 72%. 

Yet et al. compared the platforms by comparing correlation coefficients and results of GWAS 

on metabolite levels measured using the Biocrates platform with those on metabolite levels 

measured using the Metabolon platform [229]. The mean correlation coefficient of the 43 

common metabolites was 0.44. Thus, the correlation of 0.72 is quite high. The differences 

between same metabolites measured from different platforms might result because of different 

types of measurements as the Biocrates kit uses a targeted approach whereas the Metabolon 

uses an untargeted. As mentioned in section 3.2.2, the Metabolon kit determines relative 

concentrations of as many metabolites as possible, using UHPLC/MS/MS2 injections and one 

GC/MS without absolute quantification. In contrast, the Biocrates kit uses a quantitative FIA-

MS/MS method and in addition, internal standards serve as reference for the calculation of 

metabolite concentrations. Moreover, as described in section 3.2.1 and 5.1.2, in the Biocrates 

kit it is not possible to determine the precise position of the double bonds and the distribution 

of carbon atoms between the two fatty acid side chains. Thus, the Biocrates kit quantify the 

sum of different forms which might cause different correlations [229]. The lower correlation 

might also be due to different quality of measurement for different metabolites [229]. 
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Furthermore, between the GWAS, Yet et al. found seven common loci which were associated 

with 16 metabolites including butyrylcarnitine, which were all located within the locus on 

chromosome 12 near the ACADS gene.  

Similarly to SNP-SNP interactions, CpG-SNP interactions are difficult to identify because of 

the increasing complexity and computational burden [58, 230]. Only one region within the 

genome was identified where the interaction between SNPs and CpG sites plays a role in 

metabolite levels. Some significant associations of previous studies analyzing SNP-SNP 

interactions on a genome-wide scale [231, 232] could be reduced to only one SNP association 

through complex linkage disequilibrium patterns [233]. In contrast, this is not possible in CpG-

SNP studies as DNA methylation is not lying in linkage disequilibrium and can change during 

time [79]. Furthermore, one cannot rule out other potential confounding for example SNPs not 

listed in currently available common databases or other regulatory elements/functionally 

relevant genomic features like microRNA within the probe-binding site of a CpG site. 

However, since the other identified CpG sites were located near a CpG island in the promotor 

region of the ACADS gene, it is rather unlikely that the CpG site is confounded by other 

regulatory elements/functionally relevant genomic features.  

5.2.2.3. SNP-CpG interaction and metabolite ratio  

In addition to the association analysis between metabolite levels and SNPs and CpG sites, an 

analysis regarding the metabolite ratio valine to PC ae C32:2 and SNPs and CpG sites was 

conducted. Unfortunately, no associations were identified that reached the Bonferroni 

threshold (p-value ≤ 7.19 ⋅ 10−12). In contrast to the significant associations of the metabolite 

butyrylcarnitine and SNPs and CpG sites are located near the ACADS gene that codes for an 

enzyme using butyryl-CoA as a substrate, it is rather unlikely that only one enzyme is 

responsible for the concentration level of this metabolite ratio. Valine is catalyzed in BCAA 

catabolism and PC ae C32:2 in fatty acid metabolism as well as in the metabolism of 

phosphatidylcholines [207]. As mentioned in section 5.1.2, recently, potential links between 

fatty acids and BCAA catabolism has been found, as 3-HIB, a catabolic intermediate of valine, 

is needed to enable the uptake of blood-borne lipid which initially traverse the blood vessel 

wall to the skeletal muscle stems [208]. Thus, multiple enzymes are responsible for the 

catabolism of valine and the synthesis of phosphatidylcholines and therefore, potentially the 

power is not enough to detect gene regions which are associated to the metabolite ratio. 
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5.2.2.4. Conclusion 

Since the results of association analysis without an interaction term, i.e. only linear regression 

with metabolites and SNPs or metabolites and CpGs, indicate small influence of the SNPs and 

CpGs individually, it might be plausible that the power to identify significant associations of 

the interaction term within the same data set is even more limited. It might also be that 

interactions between SNPs and CpG sites play only a minor role. 

Further large-scale studies with an increased sample size or studies following a candidate 

approach, i.e. analyzing only certain SNPs and CpG sites underlying a particular hypothesis, 

might be promising in the future.  
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6. Summary and future perspectives 

In this thesis, the associations between metabolite ratios and incident and prevalent T2D, as well 

as the associations between metabolites and the interaction of SNPs and CpG sites, were 

computed.  

The first analysis revealed an up-to-now unreported significant association between prevalent 

and incident T2D and the metabolite ratio valine to PC ae 32:2. These findings open 

opportunities for future functional studies investigating the causality of the association as well as 

its clinical relevance as an early biomarker for T2D. Furthermore, this result might serve as a 

starting point for finding prediction models incorporating combinations of metabolites and to test 

if such combinations show improved prediction compared to single metabolites or ratios. 

To better understand the genetic and environmental mechanisms which influence the metabolite 

levels in the blood, an interaction analysis between metabolite levels, CpG sites, and SNPs was 

conducted. To achieve this, an R package pulver was implemented. It was shown that this R 

package can compute interaction analyses faster than the existing R package MatrixEQTL and 

R’s built-in function lm.  

Applying pulver to the CpG sites, SNPs, and metabolite levels, only one locus, near the ACADS 

gene, achieved significance for an effect of an interaction between SNPs and CpG sites on a 

metabolite, here butyrylcarnitine. This suggests that the power to detect interactions was not 

sufficient or that interactions between SNPs and CpG sites play only a minor role in the 

determination of metabolite levels in the blood.  

In addition, the interaction between DNA methylation and SNPs and the metabolite ratio valine 

to PCae32:2 was investigated. However, no Bonferroni-corrected significant association was 

identified. 

Because the manifestation of complex diseases such as T2D is influenced by several genetic and 

environmental factors it is difficult to find genetic risk factors. Future approaches for analyzing 

T2D and understanding its pathophysiology might include identification of causal genes and 

variants through denser catalogues of variations, improved imputation methods, and 

resequencing approaches. In total, even common variants associated with T2D explain only a 

fraction of the heritability of this disease [234]. In addition, the majority of identified diabetes 

variants are in noncoding intronic or intergenic regions of the genome, and thus these variants 
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may not be true causal variants, but only proxies in linkage disequilibrium with the causal 

variants [235]. It might be that the true causal variants have larger effect sizes and therefore may 

improve prediction of the cumulative genetic information. 

Fuchsberger et al. assessed rarer variation that may not be well-tagged by GWAS arrays to test 

the hypothesis that lower-frequency variants explain much of the missing heritability [234]. 

However, they could not confirm that lower-frequency variants have a major role in 

predisposition to T2D [234]. This suggests that larger GWAS find more likely common than 

low-frequency SNPs related to T2D.  

Due to cheaper costs and advancements in the whole genome sequencing (WGS), it might 

become possible to analyze the full genomic sequence of many subjects. This can further 

improve our knowledge in biological mechanisms in health and disease. However, increasing 

data calls for advanced softwares and computer systems to process it. First attempts were to 

divide the data sets into smaller parts and analyze them one after the other. However, it is now 

becoming common to use a supercomputer which can run analyses with thousands of cores and 

have gigabytes of memory space. An alternative is the recently developed Hail framework (see 

https://github.com/hail-is/hail) [17]. Hail can query the collection of all genotypes in the dataset, 

e.g., from the Genome Aggregation Database (http://gnomad.broadinstitute.org/variant/11-

31809070-C-T) that has about 5 trillion unique genotypes that does not fit in one computer 

memory. 

Yet, in GWAS, only small effect sizes have been found for complex diseases. However, smaller 

effect sizes of variants do not mean that the biological mechanisms underlying these associations 

are less important. Thus, there are good reasons to perform even larger GWAS meta-analyses 

than those that have already been performed [235]. Analyses which include multiple ethnic 

groups, such as African Americans, Hispanics, and Asians, would help to localize the causing 

variant given that T2D prevalence varies by ancestry and the most useful biomarkers may also 

vary across ethnicities [235].  

Furthermore, the genes related to T2D could be validated by eQTL studies, i.e. associations of 

gene variants from GWAS studied in relation to gene transcripts from the region, or by targeted 

proteomics, i.e. proteins encoded by genes in the GWAS loci examined for associations with the 

outcome [235]. Recently, Suhre et al. conducted a GWAS with intermediate phenotypes, such as 

https://github.com/hail-is/hail
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changes in metabolite and protein levels, that might provide functional evidence to map disease 

associations and translate them into clinical applications [236]. 

To understand the pathophysiology underlying the genotype-T2D association it would be 

beneficial to combine animal and human studies to examine tissue-specific effects, and thus 

achieving a more complete understanding, as the methods are complementary [235]. For 

example, Adam et al. compared the effect of metformin, a first-line oral medication to increase 

insulin sensitivity in patients with T2D, on humans and multiple murine tissues, which 

corroborated and complemented the findings from the human cohort [237]. 

Further characterization of gene functions could be obtained by involving combinations of other 

“omics” data as done in this thesis by including three different “omics” layers in one model or 

analyzing many polygenic variants with the complex disease [70, 71]. As conducted in this thesis 

for the interaction analysis, the number of associations can be reduced by using the identified 

GWAS loci in order to conduct interaction analysis or pathway analysis. In previous studies, 

interactions between SNPs and environment, such as physical activity, BMI, and waist 

circumference, and T2D or fasting insulin and glucose, have been studied [238-240]. They 

showed some evidence of gene-environment interactions in T2D.  

Moreover, GWAS loci can be used to infer the causality between diseases such as T2D and 

environment through Mendelian randomization. For example, recently, Wahl et al. conducted a 

Mendelian randomization study relating DNA methylation and BMI and observed that changes 

in BMI appear to lead to changes in the DNA methylation, rather than the reverse [91]. Causality 

analysis of the ratio identified in this thesis and T2D could be similarly done using Mendelian 

randomization to find potential underlying biological mechanisms. 

Probably it will not be possible to eliminate complex diseases such as T2D, but with further 

understanding of the underlying biological mechanisms, the focus of the investigations will turn 

from treatment to prevention. 
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Appendix 

 
Table A.1: List of metabolites measured with the AbsoluteIDQ

tm
 p180 Kit  

* not measured with p150 Kit.

Acylcarnitines (40) 

C0 Carnitine C10:1 Decenoylcarnitine 

C2 Acetylcarnitine C10:2 Decadienylcarnitine 

C3 Propionylcarnitine C12 Dodecanoylcarnitine 

C3:1 Propenoylcarnitine C12:1 Dodecenoylcarnitine 

C3-OH Hydroxypropionylcarnitine C12-DC Dodecanedioylcarnitine 

C4 Butyrylcarnitine C14 Tetradecanoylcarnitine 

C4:1 Butenoylcarnitine C14:1 Tetradecenoylcarnitine 

C4-OH (C3-

DC) 

Hydroxybutyrylcarnitine C14:1-OH Hydroxytetradecenoylcarnitine 

C5 Valerylcarnitine C14:2 Tetradecadienylcarnitine 

C5:1 Tiglylcarnitine C14:2-OH Hydroxytetradecadienylcarnitine 

C5:1-DC Glutaconylcarnitine C16 Hexadecanoylcarnitine 

C5-DC (C6-

OH) 

Glutarylcarnitine  

(Hydroxyhexanoylcarnitine) 
C16:1 Hexadecenoylcarnitine 

C5-M-DC Methylglutarylcarnitine C16:1-OH Hydroxyhexadecenoylcarnitine 

C5-OH (C3-

DC-M) 

Hydroxyvalerylcarnitine  

(Methylmalonylcarnitine) 
C16:2 Hexadecadienylcarnitine 

C6 (C4:1-DC) Hexanoylcarnitine  

(Fumarylcarnitine) 

C16:2-OH Hydroxyhexadecadienylcarnitin

e 

C6:1 Hexenoylcarnitine C16-OH Hydroxyhexadecanoylcarnitine 

C7-DC Pimelylcarnitine C18 Octadecanoylcarnitine 

C8 Octanoylcarnitine C18:1 Octadecenoylcarnitine 

C9 Nonanoylcarnitine C18:1-OH Hydroxyoctadecenoylcarnitine 

C10 Decanoylcarnitine C18:2 Octadecadienylcarnitine 

 

Amino Acids (21) 

Ala* Alanine Lys* Lysine 

Arg Arginine Met Methionine 

Asn* Asparagine Orn Ornithine 

Asp* Aspartate Phe Phenylalanine 

Cit* Citrulline Pro Proline 



 

 

Gln Glutamine Ser Serine 

Glu* Glutamate Thr Threonine 

Gly Glycine Trp Tryptophan 

His Histidine Tyr Tyrosine 

Ile* Isoleucine Val Valine 

Leu* Leucine xLeu (p150 

only) 

Leucine/Isoleucine  

 

Monosaccharides (1) 

Sum of Hexoses (including Glucose) 

 

Glycerophospholipids (90) 

lysoPC=lysoPhosphatidylCholine; PC=PhosphatidylCholine; a=acyl; aa=diacyl; ae=acyl-alkyl) 

lysoPC a C14:0 PC aa C34:1 PC aa C42:0 PC ae C38:2 

lysoPC a C16:0 PC aa C34:2 PC aa C42:1 PC ae C38:3 

lysoPC a C16:1 PC aa C34:3 PC aa C42:2 PC ae C38:4 

lysoPC a C17:0 PC aa C34:4 PC aa C42:4 PC ae C38:5 

lysoPC a C18:0 PC aa C36:0 PC aa C42:5 PC ae C38:6 

lysoPC a C18:1 PC aa C36:1 PC aa C42:6 PC ae C40:1 

lysoPC a C18:2 PC aa C36:2 PC ae C30:0 PC ae C40:2 

lysoPC a C20:3 PC aa C36:3 PC ae C30:1 PC ae C40:3 

lysoPC a C20:4 PC aa C36:4 PC ae C30:2 PC ae C40:4 

lysoPC a C24:0 PC aa C36:5 PC ae C32:1 PC ae C40:5 

lysoPC a C26:0 PC aa C36:6 PC ae C32:2 PC ae C40:6 

lysoPC a C26:1 PC aa C38:0 PC ae C34:0 PC ae C42:0 

lysoPC a C28:0 PC aa C38:1 PC ae C34:1 PC ae C42:1 

lysoPC a C28:1 PC aa C38:3 PC ae C34:2 PC ae C42:2 

PC aa C24:0 PC aa C38:4 PC ae C34:3 PC ae C42:3 

PC aa C26:0 PC aa C38:5 PC ae C36:0 PC ae C42:4 

PC aa C28:1 PC aa C38:6 PC ae C36:1 PC ae C42:5 

PC aa C30:0 PC aa C40:1 PC ae C36:2 PC ae C44:3 

PC aa C30:2 PC aa C40:2 PC ae C36:3 PC ae C44:4 

PC aa C32:0 PC aa C40:3 PC ae C36:4 PC ae C44:5 

PC aa C32:1 PC aa C40:4 PC ae C36:5 PC ae C44:6 

PC aa C32:2 PC aa C40:5 PC ae C38:0  

PC aa C32:3 PC aa C40:6 PC ae C38:1  



Table A.1 XXXI 

 

 

Sphingolipids (15) 

SM=Sphingomyelin 

SM (OH) C14:1 SM C18:0 SM (OH) C22:1 SM (OH) C24:1 

SM C16:0 SM C18:1 SM (OH) C22:2 SM C26:0 

SM C16:1 SM C20:2 SM C24:0 SM C26:1 

SM (OH) C16:1 SM C22:3 SM C24:1  

 

Biogenic Amines (21) 

Ac-Orn Acetylornithine PEA, Phenylethylamine 

ADMA* Asymmetric 

dimethylarginine 

OH-Pro* 4-Hydroxyproline 

alpha-AAA* alpha-Aminoadipic acid Putrescine* Putrescine 

Carnosine* Carnosine Sarcosine* Sarcosine 

Creatinine* Creatinine SDMA* Symmetric dimethylarginine 

DOPA* DOPA Serotonin* Serotonin 

Dopamine* Dopamine Spermidine* Spermidine 

Histamine* Histamine Spermine* Spermine 

Kynurenine* Kynurenine Taurine* Taurine 

Met-SO* Methionine sulfoxide total DMA* Total dimethylarginine 

Nitro-Tyr* Nitrotyrosine   

 
 
 
Table A.2: List of metabolites measured with Metabolon 

Amino Acids (71) 

M00053 glutamine M22138 homocitrulline 

M00054 tryptophan M27513 indoleacetate 

M00059 histidine M27672 3-indoxyl sulfate 

M00060 leucine M27710 N-acetylglycine 

M00064 phenylalanine M27718 creatine 

M00513 creatinine M31453 cysteine 

M01125 isoleucine M31454 cystine 



 

 

M01284 threonine M32197 3-(4-hydroxyphenyl)lactate 

M01299 tyrosine M32315 serine 

M01301 lysine M32319 trans-4-hydroxyproline 

M01302 methionine M32322 glutamate 

M01444 pipecolate M32338 glycine 

M01493 ornithine M32339 alanine 

M01494 5-oxoproline M32348 2-aminobutyrate 

M01558 4-acetamidobutanoate M32405 indolepropionate 

M01585 N-acetylalanine M32553 phenol sulfate 

M01638 arginine M32672 pyroglutamine* 

M01649 valine M32675 C-glycosyltryptophan* 

M01670 urea M32709 
N-[3-(2-Oxopyrrolidin-1-

yl)propyl]acetamide 

M01898 proline M33131 methylcysteine 

M02132 citrulline M33441 isobutyrylcarnitine 

M02342 serotonin (5HT) M33515 hydroxytryptophane* 

M03141 betaine M33937 alpha-hydroxyisovalerate 

M12017 3-methoxytyrosine M33939 N-acetylthreonine 

M12129 beta-hydroxyisovalerate M34283 asparagine 

M15140 kynurenine M34407 isovalerylcarnitine 

M15630 N-acetylornithine M35126 phenylacetylglutamine 

M15676 3-methyl-2-oxovalerate M35159 cysteine-glutathione disulfide 

M15749 
3-phenylpropionate 

(hydrocinnamate) 
M35428 tiglylcarnitine 

M15996 aspartate M35431 2-methylbutyroylcarnitine 

M16822 3,4-dihydroxybutyrate* M35433 hydroxyisovaleroylcarnitine 

M18349 indolelactate M35439 glutaroylcarnitine 
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M21044 2-hydroxybutyrate (AHB) M36103 p-cresol sulfate 

M21047 3-methyl-2-oxobutyrate M36808 
dimethylarginine (SDMA + 

ADMA) 

M22030 2-hydroxyisobutyrate M37097 tryptophan betaine 

M22116 4-methyl-2-oxopentanoate   

 

Carbohydrate (12) 

M00527 lactate M15964 arabitol 

M00577 fructose M20489 glucose 

M00584 mannose M20675 1,5-anhydroglucitol (1,5-AG) 

M00599 pyruvate M27722 erythrose 

M01572 glycerate M33477 erythronate* 

M15335 mannitol M35854 threitol 

 

Cofactors and Vitamins (12) 

M01508 pantothenate M31555 pyridoxate 

M01561 alpha-tocopherol M32586 bilirubin (E;E)* 

M01640 ascorbate (Vitamin C) M32593 heme* 

M02137 biliverdin M32910 O-methylascorbate* 

M27716 bilirubin (Z;Z) M33138 oxidized bilirubin* 

M27738 threonate M34106 bilirubin (E;Z or Z;E)* 

 

Energy (6) 

M01303 malate M15488 acetylphosphate 

M01564 citrate M33453 alpha-ketoglutarate 

M11438 phosphate M37058 succinylcarnitine 

 



 

 

Lipids (114) 

M00063 cholesterol M33883 
12-hydroxyeicosatetraenoate 

(12-HETE) 

M00542 
3-hydroxybutyrate 

(BHBA) 
M33884 5,8-tetradecadienoate 

M01105 linoleate (18:2n6) M33936 octanoylcarnitine 

M01110 arachidonate (20:4n6) M33941 decanoylcarnitine 

M01114 deoxycholate M33955 

1-

palmitoylglycerophosphocholi

ne 

M01121 margarate (17:0) M33957 

1-

heptadecanoylglycerophospho

choline 

M01336 palmitate (16:0) M33960 
1-

oleoylglycerophosphocholine 

M01356 nonadecanoate (19:0) M33961 

1-

stearoylglycerophosphocholin

e 

M01358 stearate (18:0) M33968 5-dodecenoate (12:1n7) 

M01359 oleate (18:1n9) M33969 stearidonate (18:4n3) 

M01361 pentadecanoate (15:0) M33971 10-heptadecenoate (17:1n7) 

M01365 myristate (14:0) M33972 10-nonadecenoate (19:1n9) 

M01481 inositol 1-phosphate (I1P) M33973 epiandrosterone sulfate 

M01642 caprate (10:0) M34035 
linolenate [alpha or gamma; 

(18:3n3 or 6)] 

M01644 heptanoate (7:0) M34214 

1-

arachidonoylglycerophosphoin

ositol* 

M01645 laurate (12:0) M34409 stearoylcarnitine 

M01712 cortisol M34416 

1-

stearoylglycerophosphoethano

lamine 
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M01769 cortisone M34419 

1-

linoleoylglycerophosphocholin

e 

M12035 pelargonate (9:0) M34534 laurylcarnitine 

M12067 undecanoate (11:0) M34674 
docosapentaenoic acid (n6-

DPA) 

M15122 glycerol M34732 isovalerate 

M15365 
glycerol 3-phosphate 

(G3P) 
M34878 stearamide 

M15500 carnitine M35160 oleoylcarnitine 

M15506 choline M35186 

1-

arachidonoylglycerophosphoet

hanolamine* 

M15990 
glycerophosphorylcholine 

(GPC) 
M35189 nonanoylcarnitine* 

M17805 dihomo-linoleate (20:2n6) M35253 

2-

palmitoylglycerophosphocholi

ne* 

M17945 2-hydroxystearate M35254 
2-

oleoylglycerophosphocholine* 

M18467 
eicosapentaenoate (EPA; 

20:5n3) 
M35255 

2-

stearoylglycerophosphocholin

e* 

M18476 glycocholate M35257 

2-

linoleoylglycerophosphocholin

e* 

M19323 
docosahexaenoate (DHA; 

22:6n3) 
M35305 

1-

palmitoylglycerophosphoinosit

ol* 

M19324 

1-

stearoylglycerophosphoin

ositol 

M35472 2-tetradecenoylcarnitine 

M19934 myo-inositol M35626 

1-

myristoylglycerophosphocholi

ne 



 

 

M21127 
1-palmitoylglycerol (1-

monopalmitin) 
M35628 

1-

oleoylglycerophosphoethanola

mine 

M21184 
1-oleoylglycerol (1-

monoolein) 
M35631 

1-

palmitoylglycerophosphoethan

olamine 

M21188 
1-stearoylglycerol (1-

monostearin) 
M35675 2-hydroxypalmitate 

M22189 palmitoylcarnitine M35718 
dihomo-linolenate (20:3n3 or 

n6) 

M22842 cholate M36754 octadecanedioate 

M27447 
1-linoleoylglycerol (1-

monolinolein) 
M36776 

7-alpha-hydroxy-3-oxo-4-

cholestenoate (7-Hoca) 

M27531 hyodeoxycholate M36802 n-butyl oleate 

M31591 androsterone sulfate M36850 taurolithocholate 3-sulfate 

M31787 

3-carboxy-4-methyl-5-

propyl-2-furanpropanoate 

(CMPF) 

M37190 
5alpha-androstan-

3beta,17beta-diol disulfate 

M32198 acetylcarnitine M37202 
4-androsten-3beta,17beta-diol 

disulfate 1* 

M32328 hexanoylcarnitine M37203 
4-androsten-3beta,17beta-diol 

disulfate 2* 

M32346 glycochenodeoxycholate M37253 2-hydroxyglutarate 

M32379 scyllo-inositol M37506 palmitoyl sphingomyelin 

M32412 butyrylcarnitine M38178 cis-4-decenoylcarnitine 

M32418 myristoleate (14:1n5) M38768 
15-methylpalmitate (isobar 

with 2-methylpalmitate) 

M32425 
dehydroisoandrosterone 

sulfate (DHEA-S) 
M33230 

1-

palmitoleoylglycerophosphoch

oline* 

M32452 propionylcarnitine M33443 valerate 

M32455 linoleamide (18:2n6) M33447 palmitoleate (16:1n7) 
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M32458 oleamide M33587 eicosenoate (20:1n9 or 11) 

M32489 caproate (6:0) M33821 

1-

eicosatrienoylglycerophosphoc

holine* 

M32492 caprylate (8:0) M33822 

1-

docosahexaenoylglycerophosp

hocholine* 

M32497 10-undecenoate (11:1n1) M33871 

1-

eicosadienoylglycerophosphoc

holine* 

M32504 
docosapentaenoate (n3 

DPA; 22:5n3) 
M32762 

5alpha-androstan-

3beta,17beta-diol disulfate 

M32635 

1-

linoleoylglycerophosphoet

hanolamine* 

M32980 adrenate (22:4n6) 

M32654 3-dehydrocarnitine* M33228 

1-

arachidonoylglycerophosphoc

holine* 

 

Nucleotide (11) 

M00606 uridine M15650 N1-methyladenosine 

M01123 inosine M32739 xanthine 

M01573 guanosine M33442 pseudouridine 

M01604 urate M33510 
N1-methyl-3-pyridone-4-

carboxamide 

M03127 hypoxanthine M35114 7-methylguanine 

M03147 xanthine   

 

Peptide (21) 

M02730 
gamma-

glutamylglutamine 
M33422 gamma-glutamylphenylalanine 

M02734 gamma-glutamyltyrosine M33801 ADpSGEGDFXAEGGGVR* 



 

 

M18357 glycylvaline M34420 bradykinin; des-arg(9) 

M18369 gamma-glutamylleucine M35127 pro-hydroxy-pro 

M22175 aspartylphenylalanine M36115 leucylalanine 

M31548 
DSGEGDFXAEGGGVR

* 
M36131 alpha-glutamyltyrosine 

M32393 gamma-glutamylvaline M36134 phenylalanylserine 

M32836 HWESASXX* M36230 leucylalanine 

M33084 
ADSGEGDFXAEGGGV

R* 
M36376 phenylalanylleucine 

M33363 
gamma-

glutamylmethionine* 
M38150 phenylalanylphenylalanine 

M33364 
gamma-

glutamylthreonine* 
  

 

Xenobiotics (21) 

M00569 caffeine M33935 piperine 

M15753 hippurate M34384 stachydrine 

M15778 benzoate M34389 1-methylxanthine 

M18254 paraxanthine M34390 7-methylxanthine 

M18335 quinate M34395 1-methylurate 

M18392 theobromine M35320 catechol sulfate 

M18394 theophylline M36098 4-vinylphenol sulfate 

M20699 erythritol M36099 4-ethylphenylsulfate 

M27728 glycerol 2-phosphate M37004 vanillin 

M32445 3-methylxanthine M37459 ergothioneine 

M33009 homostachydrine*   

 

Unknown (138) 
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M12593 X-02973 M33140 X-11795 

M12626 X-03003 M33144 X-11799 

M12768 X-03088 M33150 X-11805 

M12770 X-03090 M33154 X-11809 

M12774 X-03094 M33163 X-11818 

M16634 X-04357 M33165 X-11820 

M16816 X-04494 M33190 X-11845 

M16818 X-04495 M33192 X-11847 

M16821 X-04498 M33194 X-11849 

M17807 X-18601 M33195 X-11850 

M18283 X-05426 M33204 X-11859 

M18929 X-05907 M33221 X-11876 

M19362 X-06226 M33225 X-11880 

M19363 X-06227 M33380 X-12029 

M19364 X-06246 M33389 X-12038 

M19368 X-06267 M33390 X-12039 

M19396 X-06307 M33408 X-12056 

M19414 X-06350 M33415 X-12063 

M21630 X-08402 M33507 X-12092 

M22481 X-08988 M33509 X-12094 

M22548 X-09026 M33627 X-12206 

M22649 X-09108 M33633 X-12212 

M24074 X-09706 M33637 X-12216 

M25459 X-10395 M33638 X-12217 

M25599 X-10429 M33652 X-12230 

M27256 X-10500 M33653 X-12231 



 

 

M27273 X-10506 M33666 X-12244 

M27278 X-10510 M33675 X-12253 

M28354 X-10675 M33833 X-12405 

M30805 X-10810 M33885 X-12443 

M32518 X-11204 M33901 X-12456 

M32549 X-02269 M33910 X-12465 

M32557 X-06126 M34040 X-12510 

M32564 X-11247 M34062 X-12524 

M32578 X-11261 M34112 X-12544 

M32587 X-02249 M34123 X-12556 

M32616 X-11299 M34221 X-12627 

M32632 X-11315 M34244 X-12644 

M32634 X-11317 M34289 X-12680 

M32644 X-11327 M34306 X-12696 

M32651 X-11334 M34359 X-12749 

M32691 X-11374 M34453 X-12776 

M32698 X-11381 M34469 X-12786 

M32729 X-11412 M34481 X-12798 

M32735 X-01911 M34499 X-12816 

M32740 X-11423 M34527 X-12844 

M32753 X-09789 M34533 X-12850 

M32754 X-11437 M34761 X-13069 

M32755 X-11438 M35072 X-13372 

M32757 X-11440 M35187 X-13429 

M32758 X-11441 M35193 X-13435 

M32759 X-11442 M35240 X-13477 
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M32761 X-11444 M35270 X-13496 

M32769 X-11452 M35326 X-13548 

M32786 X-11469 M35327 X-13549 

M32787 X-11470 M35331 X-13553 

M32802 X-11485 M35397 X-13619 

M32808 X-11491 M35464 X-13671 

M32814 X-11497 M35551 X-13741 

M32838 X-11521 M35754 X-13859 

M32846 X-11529 M35977 X-14056 

M32847 X-11530 M35978 X-14057 

M32854 X-11537 M36009 X-14086 

M32855 X-11538 M36300 X-14374 

M32857 X-11540 M36399 X-14473 

M32863 X-11546 M36515 X-14588 

M32867 X-11550 M36552 X-14625 

M32869 X-11552 M36553 X-14626 

M33132 X-11787 M36673 X-14745 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Table A.3: Significant associations between metabolite butyrylcarnitine measured with the 
Biocrates platform and the interaction SNP × CpG in chromosome 12.  
CpG SNP P-value Position 

(CpG) 

Minor 

allele 

frequency 

Reference 

allele 

Effect 

allele 

Position 

(SNP) 

cg02419362 rs3794214 4.97E-14 121168245 0.42539 T C 121203948 

cg02419362 rs7964786 2.99E-15 121132100 0.36557 C T 121203948 

cg21721566 rs11065283 6.17E-16 121266453 0.47831 T C 121163144 

cg21721566 rs11065324 3.72E-16 121346795 0.47883 G C 121163144 

cg21721566 rs1696357 1.55E-15 121348649 0.4815 T C 121163144 

cg21721566 rs11065311 6.42E-16 121324115 0.47994 T A 121163144 

cg21721566 rs2001133 5.17E-14 121056754 0.49814 T A 121163144 

cg21721566 rs3213572 6.99E-16 121205078 0.4783 G A 121163144 

cg21721566 rs2047568 1.01E-15 121243790 0.47938 G A 121163144 

cg21721566 rs1151849 3.11E-15 121340599 0.48635 G A 121163144 

cg21721566 rs3883901 9.16E-16 121256520 0.47936 T C 121163144 

cg21721566 rs4454799 4.52E-16 121317075 0.47891 G T 121163144 

cg21721566 rs531782 4.64E-15 121273247 0.48666 T C 121163144 

cg21892295 rs11065283 1.28E-29 121266453 0.47831 T C 121157589 

cg21892295 rs1696357 1.61E-28 121348649 0.4815 T C 121157589 

cg21892295 rs1151851 1.26E-14 121340139 0.40487 A T 121157589 

cg21892295 rs11065286 1.14E-15 121271734 0.43872 T C 121157589 

cg21892295 rs2047568 1.84E-29 121243790 0.47938 G A 121157589 

cg21892295 rs11065311 2.34E-29 121324115 0.47994 T A 121157589 

cg21892295 rs2001133 1.51E-16 121056754 0.49814 T A 121157589 

cg21892295 rs11065324 1.57E-29 121346795 0.47883 G C 121157589 

cg21892295 rs4454799 1.40E-29 121317075 0.47891 G T 121157589 

cg21892295 rs1151849 1.79E-28 121340599 0.48635 G A 121157589 

cg21892295 rs3883901 2.06E-29 121256520 0.47936 T C 121157589 

cg21892295 rs3213572 3.62E-29 121205078 0.4783 G A 121157589 

cg21892295 rs2062507 2.03E-23 121259051 0.38659 C T 121157589 

cg21892295 rs531782 2.26E-28 121273247 0.48666 T C 121157589 
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Table A.4: Significant associations between metabolite butyrylcarnitine measured with the 
Metabolon platform and the interaction SNP × CpG in the Metabolon platform in chromosome 
12.  
 

CpG SNP P-value Position 

(CpG) 

Minor allele 

frequency 

Reference 

allele 

Effect 

allele 

Position 

(SNP) 

cg02419362 rs556001 3.09E-20 121152967 0.44425 A G 121203948 

cg02419362 rs10774563 2.93E-14 121060780 0.45882 G A 121203948 

cg02419362 rs555379 1.75E-16 121090498 0.41397 C A 121203948 

cg02419362 rs17847 1.05E-18 121149475 0.46543 A G 121203948 

cg02419362 rs513175 2.57E-14 121086234 0.37259 A C 121203948 

cg02419362 rs7976497 7.19E-19 121135467 0.46449 T C 121203948 

cg02419362 rs10431385 4.46E-18 121128882 0.41883 T C 121203948 

cg02419362 rs2239760 3.77E-18 121163518 0.41888 C A 121203948 

cg02419362 rs2001133 1.15E-14 121056754 0.49814 T A 121203948 

cg02419362 rs526007 2.83E-14 121085884 0.37264 A G 121203948 

cg02419362 rs10431384 2.67E-15 121127347 0.33097 A G 121203948 

cg02419362 rs11065202 1.25E-17 121112429 0.42711 T C 121203948 

cg02419362 rs3914 9.93E-19 121174899 0.4638 T C 121203948 

cg02419362 rs3794214 5.83E-19 121168245 0.42539 T C 121203948 

cg02419362 rs10431386 2.46E-15 121128926 0.33102 C T 121203948 

cg02419362 rs3794215 5.89E-19 121168083 0.42539 T C 121203948 

cg02419362 rs2005455 4.45E-18 121128699 0.41869 A G 121203948 

cg02419362 rs4766975 1.21E-14 121069126 0.36972 G A 121203948 

cg02419362 rs3829290 1.16E-18 121126438 0.46357 T C 121203948 

cg02419362 rs696337 6.80E-19 121159380 0.46329 T C 121203948 

cg02419362 rs473121 1.93E-16 121089739 0.41381 T C 121203948 

cg02419362 rs9204 7.03E-18 121177778 0.3488 A G 121203948 

cg02419362 rs522632 1.67E-16 121088886 0.41427 G C 121203948 

cg02419362 rs7964786 6.26E-18 121132100 0.36557 C T 121203948 

cg06793505 rs1542859 8.55E-20 121336766 0.47882 A G 121164278 

cg06793505 rs1151862 7.82E-17 121331285 0.48632 G A 121164278 

cg06793505 rs10849791 8.37E-20 121235280 0.47753 T C 121164278 

cg06793505 rs4454799 8.38E-20 121317075 0.47891 G T 121164278 

cg06793505 rs2393717 1.14E-14 121220375 0.46065 G C 121164278 

cg06793505 rs610694 8.21E-17 121304826 0.48619 T C 121164278 

cg06793505 rs12824150 7.66E-16 121220031 0.38613 G C 121164278 

cg06793505 rs11065311 1.11E-19 121324115 0.47994 T A 121164278 

cg06793505 rs10774572 8.13E-20 121309561 0.4789 A G 121164278 

cg06793505 rs11065292 8.00E-20 121289155 0.48002 T C 121164278 

cg06793505 rs520753 9.35E-17 121298993 0.48661 T A 121164278 



 

 

cg06793505 rs661647 8.49E-17 121282659 0.48537 C T 121164278 

cg06793505 rs11065282 1.04E-19 121264415 0.47675 G T 121164278 

cg06793505 rs11065324 1.39E-19 121346795 0.47883 G C 121164278 

cg06793505 rs11065300 7.90E-20 121298512 0.47881 G C 121164278 

cg06793505 rs11611087 7.85E-20 121267126 0.48125 C T 121164278 

cg06793505 rs1151849 7.65E-17 121340599 0.48635 G A 121164278 

cg06793505 rs11065283 7.05E-20 121266453 0.47831 T C 121164278 

cg06793505 rs525425 1.01E-19 121195625 0.4779 A G 121164278 

cg06793505 rs11065301 5.22E-16 121304368 0.38637 C T 121164278 

cg06793505 rs10849807 1.09E-19 121314056 0.47997 T C 121164278 

cg06793505 rs4767935 6.49E-16 121216531 0.38657 T C 121164278 

cg06793505 rs7137504 8.40E-20 121221628 0.47752 C T 121164278 

cg06793505 rs531782 7.39E-17 121273247 0.48666 T C 121164278 

cg06793505 rs1696357 2.36E-19 121348649 0.4815 T C 121164278 

cg06793505 rs1177585 8.25E-17 121325321 0.48625 C T 121164278 

cg06793505 rs4767937 1.10E-19 121223244 0.47875 G C 121164278 

cg06793505 rs471688 7.57E-17 121285424 0.48647 A G 121164278 

cg06793505 rs13746 9.71E-17 121201167 0.48824 C T 121164278 

cg06793505 rs3809313 1.11E-19 121329967 0.47992 T C 121164278 

cg06793505 rs3213570 8.40E-20 121222411 0.47766 C G 121164278 

cg06793505 rs869781 1.13E-19 121340246 0.47994 T C 121164278 

cg06793505 rs3213572 1.05E-19 121205078 0.4783 G A 121164278 

cg06793505 rs3883901 9.25E-20 121256520 0.47936 T C 121164278 

cg06793505 rs12822123 1.04E-19 121298644 0.47986 C T 121164278 

cg06793505 rs909053 1.07E-19 121237668 0.47858 G A 121164278 

cg06793505 rs2047568 9.31E-20 121243790 0.47938 G A 121164278 

cg06793505 rs494632 1.51E-19 121189116 0.47928 C T 121164278 

cg06793505 rs3213566 1.14E-14 121222578 0.46062 T C 121164278 

cg06793505 rs3897746 1.11E-19 121324727 0.47994 A G 121164278 

cg06793505 rs2062507 5.35E-16 121259051 0.38659 C T 121164278 

cg06793505 rs3901854 8.40E-20 121225526 0.47753 C T 121164278 

cg06793505 rs9431 1.12E-16 121202664 0.48786 A C 121164278 

cg06793505 rs508595 9.65E-17 121198891 0.48823 C G 121164278 

cg06793505 rs12580949 7.66E-20 121298164 0.47873 A G 121164278 

cg21721566 rs11065292 1.42E-25 121289155 0.48002 T C 121163144 

cg21721566 rs10774572 8.61E-26 121309561 0.4789 A G 121163144 

cg21721566 rs1177585 2.01E-23 121325321 0.48625 C T 121163144 

cg21721566 rs3914 2.62E-19 121174899 0.4638 T C 121163144 

cg21721566 rs1168067 2.16E-18 121082469 0.42925 C T 121163144 

cg21721566 rs1542859 7.99E-26 121336766 0.47882 A G 121163144 

cg21721566 rs2239760 8.05E-19 121163518 0.41888 C A 121163144 
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cg21721566 rs525425 5.01E-26 121195625 0.4779 A G 121163144 

cg21721566 rs610578 4.44E-15 121194565 0.33012 A G 121163144 

cg21721566 rs11065324 1.31E-25 121346795 0.47883 G C 121163144 

cg21721566 rs482522 1.88E-15 121194862 0.33074 C T 121163144 

cg21721566 rs12824150 5.70E-22 121220031 0.38613 G C 121163144 

cg21721566 rs11065282 6.89E-25 121264415 0.47675 G T 121163144 

cg21721566 rs3794214 3.82E-17 121168245 0.42539 T C 121163144 

cg21721566 rs3213566 2.88E-21 121222578 0.46062 T C 121163144 

cg21721566 rs668622 6.38E-19 121198299 0.42714 G A 121163144 

cg21721566 rs11065301 4.98E-22 121304368 0.38637 C T 121163144 

cg21721566 rs674240 2.14E-15 121048935 0.36908 G A 121163144 

cg21721566 rs11065283 1.03E-25 121266453 0.47831 T C 121163144 

cg21721566 rs10774563 4.33E-23 121060780 0.45882 G A 121163144 

cg21721566 rs7137504 1.08E-25 121221628 0.47752 C T 121163144 

cg21721566 rs2062507 5.18E-22 121259051 0.38659 C T 121163144 

cg21721566 rs1168070 7.73E-20 121084654 0.42587 C A 121163144 

cg21721566 rs11065311 1.41E-25 121324115 0.47994 T A 121163144 

cg21721566 rs10431385 1.35E-18 121128882 0.41883 T C 121163144 

cg21721566 rs2001133 5.67E-25 121056754 0.49814 T A 121163144 

cg21721566 rs556001 7.36E-18 121152967 0.44425 A G 121163144 

cg21721566 rs11065300 9.32E-26 121298512 0.47881 G C 121163144 

cg21721566 rs3213570 1.08E-25 121222411 0.47766 C G 121163144 

cg21721566 rs1151849 1.78E-23 121340599 0.48635 G A 121163144 

cg21721566 rs11065202 4.86E-18 121112429 0.42711 T C 121163144 

cg21721566 rs509152 2.27E-18 121186549 0.43951 C G 121163144 

cg21721566 rs4767935 4.61E-22 121216531 0.38657 T C 121163144 

cg21721566 rs584001 6.94E-17 121228055 0.40535 G T 121163144 

cg21721566 rs520753 9.29E-24 121298993 0.48661 T A 121163144 

cg21721566 rs1696357 1.09E-24 121348649 0.4815 T C 121163144 

cg21721566 rs13746 9.06E-24 121201167 0.48824 C T 121163144 

cg21721566 rs522632 2.22E-19 121088886 0.41427 G C 121163144 

cg21721566 rs555379 1.75E-19 121090498 0.41397 C A 121163144 

cg21721566 rs12580949 9.56E-26 121298164 0.47873 A G 121163144 

cg21721566 rs2005455 1.35E-18 121128699 0.41869 A G 121163144 

cg21721566 rs3829290 8.41E-18 121126438 0.46357 T C 121163144 

cg21721566 rs558275 3.62E-17 121196891 0.40505 A G 121163144 

cg21721566 rs2708081 2.46E-14 121463288 0.48605 T C 121163144 

cg21721566 rs4454799 8.08E-26 121317075 0.47891 G T 121163144 

cg21721566 rs3883901 1.85E-25 121256520 0.47936 T C 121163144 

cg21721566 rs2859263 8.67E-18 121072799 0.42399 C T 121163144 

cg21721566 rs6553 8.49E-17 121202362 0.4051 T C 121163144 



 

 

cg21721566 rs9204 5.57E-18 121177778 0.3488 A G 121163144 

cg21721566 rs1151862 1.87E-23 121331285 0.48632 G A 121163144 

cg21721566 rs11611087 3.61E-25 121267126 0.48125 C T 121163144 

cg21721566 rs504403 1.20E-17 121133037 0.42635 G C 121163144 

cg21721566 rs4767938 5.66E-18 121261162 0.36469 C T 121163144 

cg21721566 rs3901854 1.08E-25 121225526 0.47753 C T 121163144 

cg21721566 rs2393717 2.88E-21 121220375 0.46065 G C 121163144 

cg21721566 rs12822123 1.60E-25 121298644 0.47986 C T 121163144 

cg21721566 rs4767918 4.94E-15 121053044 0.39216 T C 121163144 

cg21721566 rs10849807 1.42E-25 121314056 0.47997 T C 121163144 

cg21721566 rs2047568 2.18E-25 121243790 0.47938 G A 121163144 

cg21721566 rs3213572 1.93E-25 121205078 0.4783 G A 121163144 

cg21721566 rs531782 2.68E-23 121273247 0.48666 T C 121163144 

cg21721566 rs494632 1.12E-25 121189116 0.47928 C T 121163144 

cg21721566 rs17847 8.39E-18 121149475 0.46543 A G 121163144 

cg21721566 rs3897746 1.41E-25 121324727 0.47994 A G 121163144 

cg21721566 rs661647 1.52E-23 121282659 0.48537 C T 121163144 

cg21721566 rs3809313 1.39E-25 121329967 0.47992 T C 121163144 

cg21721566 rs7976497 5.84E-18 121135467 0.46449 T C 121163144 

cg21721566 rs610694 2.28E-23 121304826 0.48619 T C 121163144 

cg21721566 rs508595 9.50E-24 121198891 0.48823 C G 121163144 

cg21721566 rs2686552 4.33E-15 121075426 0.3732 C T 121163144 

cg21721566 rs11065286 9.67E-20 121271734 0.43872 T C 121163144 

cg21721566 rs1151851 5.10E-17 121340139 0.40487 A T 121163144 

cg21721566 rs869781 1.38E-25 121340246 0.47994 T C 121163144 

cg21721566 rs4767937 1.86E-25 121223244 0.47875 G C 121163144 

cg21721566 rs7964786 9.35E-17 121132100 0.36557 C T 121163144 

cg21721566 rs909053 1.86E-25 121237668 0.47858 G A 121163144 

cg21721566 rs471688 2.69E-23 121285424 0.48647 A G 121163144 

cg21721566 rs473121 2.13E-19 121089739 0.41381 T C 121163144 

cg21721566 rs4766975 2.28E-14 121069126 0.36972 G A 121163144 

cg21721566 rs625228 6.63E-19 121278266 0.42616 G A 121163144 

cg21721566 rs10849791 1.06E-25 121235280 0.47753 T C 121163144 

cg21721566 rs532703 7.37E-17 121273143 0.40521 C G 121163144 

cg21721566 rs3794215 3.83E-17 121168083 0.42539 T C 121163144 

cg21721566 rs9431 8.46E-24 121202664 0.48786 A C 121163144 

cg21721566 rs558314 7.02E-18 121171803 0.42718 C G 121163144 

cg21721566 rs696337 5.55E-18 121159380 0.46329 T C 121163144 

cg21721566 rs594507 7.29E-17 121280522 0.40518 A G 121163144 

cg21721566 rs513175 4.54E-16 121086234 0.37259 A C 121163144 

cg21721566 rs526007 5.67E-16 121085884 0.37264 A G 121163144 



Table A.4 XLVII 

 

cg21892295 rs1039302 8.49E-15 121236258 0.15562 C T 121157589 

cg21892295 rs610578 1.35E-21 121194565 0.33012 A G 121157589 

cg21892295 rs12580949 2.20E-41 121298164 0.47873 A G 121157589 

cg21892295 rs508595 1.37E-42 121198891 0.48823 C G 121157589 

cg21892295 rs11065300 2.23E-41 121298512 0.47881 G C 121157589 

cg21892295 rs10774563 1.19E-25 121060780 0.45882 G A 121157589 

cg21892295 rs10849791 5.70E-42 121235280 0.47753 T C 121157589 

cg21892295 rs625228 4.24E-18 121278266 0.42616 G A 121157589 

cg21892295 rs12822123 4.36E-41 121298644 0.47986 C T 121157589 

cg21892295 rs10774568 1.20E-14 121239696 0.15577 A G 121157589 

cg21892295 rs10774572 1.93E-41 121309561 0.4789 A G 121157589 

cg21892295 rs2859263 3.97E-19 121072799 0.42399 C T 121157589 

cg21892295 rs11065311 3.44E-41 121324115 0.47994 T A 121157589 

cg21892295 rs661647 4.64E-42 121282659 0.48537 C T 121157589 

cg21892295 rs10849778 2.93E-18 121135508 0.13239 G A 121157589 

cg21892295 rs10849786 1.06E-14 121209302 0.15656 A G 121157589 

cg21892295 rs11611087 3.78E-41 121267126 0.48125 C T 121157589 

cg21892295 rs11065360 6.60E-18 121386532 0.38257 A G 121157589 

cg21892295 rs4767938 4.12E-23 121261162 0.36469 C T 121157589 

cg21892295 rs11065301 8.92E-34 121304368 0.38637 C T 121157589 

cg21892295 rs10849807 3.51E-41 121314056 0.47997 T C 121157589 

cg21892295 rs1542859 1.87E-41 121336766 0.47882 A G 121157589 

cg21892295 rs1696357 6.49E-40 121348649 0.4815 T C 121157589 

cg21892295 rs1151851 1.49E-19 121340139 0.40487 A T 121157589 

cg21892295 rs494632 3.68E-41 121189116 0.47928 C T 121157589 

cg21892295 rs11065292 4.14E-41 121289155 0.48002 T C 121157589 

cg21892295 rs11065259 2.96E-14 121205604 0.15695 T C 121157589 

cg21892295 rs1151862 6.92E-42 121331285 0.48632 G A 121157589 

cg21892295 rs11065282 1.68E-41 121264415 0.47675 G T 121157589 

cg21892295 rs9431 1.15E-42 121202664 0.48786 A C 121157589 

cg21892295 rs2001133 1.14E-24 121056754 0.49814 T A 121157589 

cg21892295 rs2393717 3.96E-18 121220375 0.46065 G C 121157589 

cg21892295 rs3213570 5.72E-42 121222411 0.47766 C G 121157589 

cg21892295 rs11065283 9.70E-42 121266453 0.47831 T C 121157589 

cg21892295 rs1151849 6.95E-42 121340599 0.48635 G A 121157589 

cg21892295 rs2047568 1.13E-41 121243790 0.47938 G A 121157589 

cg21892295 rs11065286 8.39E-20 121271734 0.43872 T C 121157589 

cg21892295 rs12824150 2.76E-34 121220031 0.38613 G C 121157589 

cg21892295 rs6553 1.34E-19 121202362 0.4051 T C 121157589 

cg21892295 rs594507 1.82E-19 121280522 0.40518 A G 121157589 

cg21892295 rs2062507 2.66E-34 121259051 0.38659 C T 121157589 



 

 

cg21892295 rs3213566 3.96E-18 121222578 0.46062 T C 121157589 

cg21892295 rs11065324 5.30E-41 121346795 0.47883 G C 121157589 

cg21892295 rs4767937 1.11E-41 121223244 0.47875 G C 121157589 

cg21892295 rs13746 1.35E-42 121201167 0.48824 C T 121157589 

cg21892295 rs2708081 8.19E-22 121463288 0.48605 T C 121157589 

cg21892295 rs695950 1.10E-14 121175560 0.10176 G C 121157589 

cg21892295 rs1168067 6.81E-20 121082469 0.42925 C T 121157589 

cg21892295 rs3213572 1.15E-41 121205078 0.4783 G A 121157589 

cg21892295 rs7965649 1.37E-18 121084678 0.16728 C T 121157589 

cg21892295 rs531782 4.68E-42 121273247 0.48666 T C 121157589 

cg21892295 rs4454799 1.75E-41 121317075 0.47891 G T 121157589 

cg21892295 rs471688 8.95E-42 121285424 0.48647 A G 121157589 

cg21892295 rs4767941 6.77E-16 121359586 0.36177 G A 121157589 

cg21892295 rs532703 1.75E-19 121273143 0.40521 C G 121157589 

cg21892295 rs3809313 3.58E-41 121329967 0.47992 T C 121157589 

cg21892295 rs610694 8.31E-42 121304826 0.48619 T C 121157589 

cg21892295 rs1177585 6.90E-42 121325321 0.48625 C T 121157589 

cg21892295 rs4767935 2.11E-34 121216531 0.38657 T C 121157589 

cg21892295 rs3901854 5.72E-42 121225526 0.47753 C T 121157589 

cg21892295 rs584001 1.57E-19 121228055 0.40535 G T 121157589 

cg21892295 rs668622 2.24E-18 121198299 0.42714 G A 121157589 

cg21892295 rs520753 6.24E-42 121298993 0.48661 T A 121157589 

cg21892295 rs1168070 4.20E-21 121084654 0.42587 C A 121157589 

cg21892295 rs7137504 5.72E-42 121221628 0.47752 C T 121157589 

cg21892295 rs909053 1.26E-41 121237668 0.47858 G A 121157589 

cg21892295 rs482522 1.53E-21 121194862 0.33074 C T 121157589 

cg21892295 rs3897746 3.43E-41 121324727 0.47994 A G 121157589 

cg21892295 rs525425 1.57E-41 121195625 0.4779 A G 121157589 

cg21892295 rs7135147 1.17E-14 121259984 0.15474 T C 121157589 

cg21892295 rs3883901 1.61E-41 121256520 0.47936 T C 121157589 

cg21892295 rs6489782 1.31E-14 121247491 0.15568 C A 121157589 

cg21892295 rs869781 3.68E-41 121340246 0.47994 T C 121157589 

cg21892295 rs558275 2.91E-19 121196891 0.40505 A G 121157589 

cg23907586 rs471688 1.67E-19 121285424 0.48647 A G 121163367 

cg23907586 rs10849791 1.56E-19 121235280 0.47753 T C 121163367 

cg23907586 rs1151862 1.77E-19 121331285 0.48632 G A 121163367 

cg23907586 rs10774572 1.39E-19 121309561 0.4789 A G 121163367 

cg23907586 rs11065324 1.81E-19 121346795 0.47883 G C 121163367 

cg23907586 rs11065300 1.43E-19 121298512 0.47881 G C 121163367 

cg23907586 rs12580949 1.37E-19 121298164 0.47873 A G 121163367 

cg23907586 rs11065283 1.31E-19 121266453 0.47831 T C 121163367 



Table A.4 XLIX 

 

cg23907586 rs12824150 5.33E-18 121220031 0.38613 G C 121163367 

cg23907586 rs12822123 1.22E-19 121298644 0.47986 C T 121163367 

cg23907586 rs7137504 1.57E-19 121221628 0.47752 C T 121163367 

cg23907586 rs4767935 4.84E-18 121216531 0.38657 T C 121163367 

cg23907586 rs11065301 3.92E-18 121304368 0.38637 C T 121163367 

cg23907586 rs1696357 2.56E-19 121348649 0.4815 T C 121163367 

cg23907586 rs3213570 1.57E-19 121222411 0.47766 C G 121163367 

cg23907586 rs525425 6.11E-20 121195625 0.4779 A G 121163367 

cg23907586 rs2062507 4.03E-18 121259051 0.38659 C T 121163367 

cg23907586 rs473121 3.02E-15 121089739 0.41381 T C 121163367 

cg23907586 rs1151849 1.77E-19 121340599 0.48635 G A 121163367 

cg23907586 rs1168067 1.18E-16 121082469 0.42925 C T 121163367 

cg23907586 rs3901854 1.57E-19 121225526 0.47753 C T 121163367 

cg23907586 rs10849807 1.14E-19 121314056 0.47997 T C 121163367 

cg23907586 rs3213572 1.39E-19 121205078 0.4783 G A 121163367 

cg23907586 rs909053 1.37E-19 121237668 0.47858 G A 121163367 

cg23907586 rs11065311 1.13E-19 121324115 0.47994 T A 121163367 

cg23907586 rs522632 3.89E-15 121088886 0.41427 G C 121163367 

cg23907586 rs494632 8.00E-20 121189116 0.47928 C T 121163367 

cg23907586 rs508595 2.00E-19 121198891 0.48823 C G 121163367 

cg23907586 rs610578 2.73E-14 121194565 0.33012 A G 121163367 

cg23907586 rs11065282 2.24E-19 121264415 0.47675 G T 121163367 

cg23907586 rs11611087 1.74E-19 121267126 0.48125 C T 121163367 

cg23907586 rs4767938 4.06E-15 121261162 0.36469 C T 121163367 

cg23907586 rs1542859 1.47E-19 121336766 0.47882 A G 121163367 

cg23907586 rs2047568 1.19E-19 121243790 0.47938 G A 121163367 

cg23907586 rs520753 1.79E-19 121298993 0.48661 T A 121163367 

cg23907586 rs3883901 1.13E-19 121256520 0.47936 T C 121163367 

cg23907586 rs482522 3.73E-14 121194862 0.33074 C T 121163367 

cg23907586 rs661647 1.75E-19 121282659 0.48537 C T 121163367 

cg23907586 rs2859263 2.00E-16 121072799 0.42399 C T 121163367 

cg23907586 rs11065292 1.86E-19 121289155 0.48002 T C 121163367 

cg23907586 rs13746 1.99E-19 121201167 0.48824 C T 121163367 

cg23907586 rs3809313 1.21E-19 121329967 0.47992 T C 121163367 

cg23907586 rs4767937 1.33E-19 121223244 0.47875 G C 121163367 

cg23907586 rs610694 1.87E-19 121304826 0.48619 T C 121163367 

cg23907586 rs2001133 2.12E-20 121056754 0.49814 T A 121163367 

cg23907586 rs1168070 6.48E-18 121084654 0.42587 C A 121163367 

cg23907586 rs1177585 1.71E-19 121325321 0.48625 C T 121163367 

cg23907586 rs10774563 4.59E-19 121060780 0.45882 G A 121163367 

cg23907586 rs4454799 1.34E-19 121317075 0.47891 G T 121163367 



 

 

cg23907586 rs3897746 1.13E-19 121324727 0.47994 A G 121163367 

cg23907586 rs531782 1.73E-19 121273247 0.48666 T C 121163367 

cg23907586 rs555379 2.51E-15 121090498 0.41397 C A 121163367 

cg23907586 rs9431 7.64E-20 121202664 0.48786 A C 121163367 

cg23907586 rs869781 1.25E-19 121340246 0.47994 T C 121163367 
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Figure A.1 LIII 

 

 

 

 



 

 

 

 

 



Figure A.1 LV 

 

 

 

 



 

 

 

 

 



Figure A.1 LVII 

 

 

 

 



 

 

 

 

 



Figure A.1 LIX 

 

 

 

 



 

 

 

 

 
 

Figure A.1: Scatterplot of CpG site against metabolite levels of butyrylcarnitine measured in the 

Metabolon platform, genotypes are color-coded (left) and the improvement of the coefficient of 

determination 𝑅2 in the models with and without the interaction term (right) as well as the 

𝛽 coefficient of the linear regression with interaction term (right).  
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Figure A.2 LXIII 

 

 

 

 



 

 

 

 

 



Figure A.2 LXV 

 

 

 

 
 

Figure A.2: Scatterplot of CpG sites against metabolite levels of butyrylcarnitine measured in the 

Biocrates platform, genotypes are color-coded (left) and the improvement of the coefficient of 

determination 𝑅2 in the models with and without the interaction term (right). 
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Figure A.3 LXVII 

 

 

 



 

 

 

 



Figure A.3 LXIX 

 

 

 



 

 

 

 
 

Figure A.3: Four plots for each significant association between butyrylcarnitine measured in the 

Metabolon platform and the SNP-CpG-interaction to examine whether the assumptions for the 

linear regression are satisfied: a plot of residuals against fitted values, a Scale-Location plot of 



Figure A.4 LXXI 

 

sqrt(| residuals |) against fitted values, a Normal Q-Q plot, and a plot of residuals against 

leverages. 
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Figure A.4 LXXIII 

 

 
 

Figure A.4: Four plots for each significant association between butyrylcarnitine measured in the 

Biocrates platform and the SNP-CpG-interaction to examine whether the assumptions for the 

linear regression are satisfied: a plot of residuals against fitted values, a Scale-Location plot of 

sqrt(| residuals |) against fitted values, a Normal Q-Q plot, and a plot of residuals against 

leverages.  
 

 

 



 

 

  
  

  
  



Figure A.5 LXXV 

 

  
  

  
  



 

 

  

Figure A.5: Plot of Schoenfeld residuals against the time for each significant association between 

T2D and the metabolite ratios measured in the Biocrates platform to examine whether the 

assumptions for the Cox proportional hazards regression are satisfied.   
 

 


