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nmany agricultural areas, farmers cultivate a large number
of small lots that are scattered across an extended region.
In a typical farming area in Bavaria, Germany, about 7 – 20

farmers cultivate between 300 and 1000 lots; Figure 1
provides a visual impression of a typical distribution.

In such a situation, the farmers face serious disadvantages.
Because the individual lots are scattered across a large
region, there is considerable overhead driving, resulting in
an excess of personal and transportation cost. Calculations of
the Bavarian State Institute for Agriculture show that these
additional costs often add up to more than 30% of the part of
the farmers’ net income coming from their agricultural pro-
duction. (EU- and other subsidies that constitute a substantial
additional part of the income are, of course, typically inde-
pendent of such aspects of cost-efficient production.) Also,
because the single separate lots are rather small, modern
heavy machinery cannot be used profitably. Hence, the cost
of cultivation is much higher than it would be for fewer,
larger lots of the same total size.

In its classical form, land consolidation consists of a
complete restructuring of the agricultural area, discarding
the current and creating a new lot structure. This process
involves extended surveying and new legal assignments of
property, and is hence costly, lengthy, and inflexible. After
the decision is made, farmers are forced to participate in this
process. A typical classical land consolidation process lasts
more than a decade and costs about 2500 Euro per hectare.
Of course, the land distribution is less rigid in agricultural
areas where farmers other than the lot owners cultivate the

majority of the lots, through lend–lease agreements. (This is
partly causedby inheritance regulations and partly due to the
tough economic situation of small farmers.) So, even districts
that underwent a classical form of land consolidation in the
recent pastmay look like rag rugs. This is a common situation
in Northern Bavaria.

On the other hand, a farmer who rents a lot for cultivation
is generally less tied to the lot, and is hence more willing to
‘‘trade’’ it to improve the overall cost structure for his oper-
ations. This opens the possibility for conceptually simple
lend–lease agreements based on the existing lot structure,
i.e., without the nullification of the property structure.

For an optimal redistribution there are some main
aspects to be considered. Because large connected pieces
of land are desirable for each farmer, while the lot struc-
ture, i.e., the dissection of the region into individual lots, is
not changed, one aims to assign adjacent lots to the same
farmer. Naturally, certain balancing constraints need to be
satisfied. For instance, the total size of each farmer’s land
should not change too much in the course of redistribution,
neither should its quality of soil, the EU-subsidies attached
to his lots, or other possibly relevant parameters. Also,
ecological constraints play a role.

The quality of soil, in particular, is typically different in
different parts of the region. This means that, in practice, the
assigned lots of each farmer will form certain connected
patches, which, in turn, should be as close to each other as
possible. The lend–lease agreements are completely volun-
tary. In particular, farmers are allowed to fix some of their lots
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and make only a subset available for redistribution. Then,
naturally, the redistributed lots should be adjacent to the
fixed ones.

The number of possible reassignments is typically very
large. In fact, for k farmers with m lots, it is km. So, even for
moderate sizes of seven farmers and 419 lots, as in Figure 1,
thenumber of possibilities exceeds 10354 and excludes ‘‘trial–
and–error approaches.’’ For this reason, the lend–lease ini-
tiative was first regarded as impractical by the farming
community and organizations.

Mathematically, even simple instances of the problem are
NP–hard or even harder. Further, standard graph-theoretical
methods of redistribution have problems with the balancing
constraints. Also, proper visualization and evaluation tools
are needed in practice.

The Basic Model
Naturally, there are various ways to model the lend–lease
task (isoperimetric models, graph k-partitioning, etc.)

Because all existing models had deficits for this particular
application, we developed in [12] the model of geometric
clustering. We will now introduce the model; the two sub-
sequent sections will then justify it by proving that it captures
the intuition behind ‘‘good clusterings’’ and is also compu-
tationally tractable.

In a first step, we abstract from the lot geometry and
replace each lot by its center. Our task then becomes that of
partitioning a finite weighted point set in some Minkowski
space ðRd ; k � kÞ, under certain balancing constraints, so as to
optimize a suitable distance-based function. Here are the
‘‘ingredients’’ of our problem (the interpretation in terms of
the consolidation of farmland is given in parentheses):

d is the dimension of the space of objects (two coordinates
for the lots), m is the number of objects (the number of lots),
V is the given point set in ðRd ; k � kÞ (the set of centers of the
lots); of course, |V| = m. Further, k denotes the number of
clusters (the number of farmers); typically, k� m. Also, s is
the number of features of the points (size of the lot, quality of
soil, EU-subsidies tied to the lot, etc.), the function
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x : V ! R
s associates with each lot its feature vector, and the

vectors b�1 ; . . .; b�k 2 R
s specify the tolerances (the allowed

intervals for each farmer for the total farm size and the other
features). Hence, the task is to construct a partition C ¼
fV1; . . .;Vkg of V satisfying the balancing constraints

b�i �
X

v2Vi

xðvÞ � bþi ði ¼ 1; . . .; kÞ

where, as usual, vector inequalities are to be understood
componentwise.

The special case of prescribed cardinality, i.e., s = 1 and
x: 1, and requiring the clusterings to be strongly balanced,
i.e., bi = bi

- = bi
+ for i ¼ 1; . . .; k andhence

��Vi

�� ¼ bi,will be
referred to as the combinatorial case.

The intuition behind the objective function is to move the
centers of gravity of the clusters apart. Its construction
involves the norm k � k on R

d (recall that for the consolida-
tion of farmland we have d = 2) and a second norm k � k� on
R

kðk�1Þ=2; where k is again the number of clusters (farmers).
k � k� is required to be monotone, i.e., kxk� � kyk� whenever
x; y 2 R

kðk�1Þ=2 with 0 B x B y. Then the objective function
is of the form

max
���
�
kc1 � c2k; kc1 � c3k; . . .; kck�1 � ckk

�T
���
�
;

where ci denotes the center of gravity of cluster Vi. Putting
things together, we obtain a nonlinear integer maximiza-
tion problem over a polytope.

Of course, given this kind of formulation it is not obvious,
hence important to show, that it models the key features of
the problemand that it is computationally efficient enough to
handle the problem sizes that are relevant in practice.

As a first hint that the seemingly intractable nonlinear
maximization problem might not be so bad after all, note that
the nonlinearity depends only on k and not on m. In the
example shown in Figure 1, we have k = 7 and m = 419.
Hence the nonlinear part of the problem ‘‘lives’’ only in
dimension kd = 14.

Capturing the Intuition
In a perfect world, any geometer would like to construct the
clustering from a cell-complex dissecting R

d ; see Figure 4.
This means one would like to find (optimal) clusterings that
are ‘‘cut out’’ by cell-decompositions of space; see Figure 5.
But is this always possible?

The simpleexample indimensionone,with threepoints, and
two clusters of Figure 6 exhibits some obstacles to perfection.

Hence, we have to be prepared to accept that certain
points are split among clusters. So, it is not enough to
consider clusters that are partitions of V, but we need to
resort to fractional assignments of points, i.e., the clusters
Ci must encode for each point of V the portion that belongs
to Ci, i.e., must be of the form Ci ¼ ðni;1; . . .; ni;mÞ with
ni;j 2 ½0; 1�.

The most important notion needed now is that of a gen-
eralized Voronoi diagram, the power diagram; see [1], [4] for
surveys. Let s1; . . .; sk 2 R

d denote control points (also called
sites) and r1; . . .; rk 2 R certain sizes, then the corresponding
power diagram is the cell decompositionP ¼ fP1; . . .;Pkg of
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Figure 1. An agricultural region with 7 farmers and 419 lots.

Different colors represent different farmerswhocultivate the lots.
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R
d defined by

Pi ¼
n

x : ksi � xk2ð2Þ � ri �ksj � xk2ð2Þ � rj for all j
o
:

First note that for r1 ¼ . . . ¼ rk ¼ 0, we obtain the classical
Voronoi or Dirichlet cells. Further, adding a real number r
to each of the sizes does not change the cells Pi. Hence we
may assume that all sizes are positive. Then the set of
points with ksi � xk2ð2Þ ¼ ri is a sphere of radius

ffiffiffiffi
ri
p

, and
the power diagram can be constructed geometrically; see
Figure 7.

Of course, we are mainly interested in power diagrams P
that are feasible for our clustering C; i.e., the support
suppðCiÞ ¼ fxj : ni;j 6¼ 0g of Ci is contained in Pi for all i. In

fact, we want an even stronger property: P supports C if
suppðCiÞ ¼ V \ Pi for all i.

Further, let us consider the support multigraph GðCÞ of
the clustering C ¼ ðC1; . . .;CkÞ: Its vertex set consists of the
clusters C1; . . .;Ck; there is an edge between Ci and Cl

precisely for every j for which xj 2 suppðCiÞ \ suppðClÞ,
and this edge is labeled with xj. A cycle in GðCÞ is called
colored if not all of its labels coincide, and GðCÞ is called
c-cycle-free if it does not contain any colored cycle. Then
we call the cell-complex P strongly feasible for C, if P
supports C and GðCÞ is c-cycle-free.

Interestingly enough, the existence of strongly feasible
power diagrams can be most easily accessed via another
geometric object that lies in R

kd . Let C ¼ fC1; . . .;Ckg be a
feasible clustering with corresponding centers of gravity
c1; . . .; ck. The gravity vector of C is then given by c :¼
ðcT

1 ; . . .; cT
k Þ

T , and the gravity body Q is defined by

Q :¼ conv
�

c 2 R
kd :

c is the gravity vector of a feasible clustering
�
:

In the case of strongly balanced clusterings, the gravity
bodies are in fact polytopes. As a simple example let us
consider the combinatorial case with d = 1, m = k, and
V ¼ f1; . . .;mg. Then the corresponding gravity polytope is
the well-known permutahedron, i.e.,

conv
n�

pð1Þ; . . .; pðmÞ
�T

: p is a permutation of 1; . . .;m
o
:

Figure 8 shows the permutahedron for m = 3.
As it turns out, the gravity bodies capture the main

properties of feasible power diagrams and allow us to grasp
all of them simultaneously. This is the key for finding ‘‘best-
fitting’’ power diagrams. In particular, we call C an extremal
clustering if C’s gravity vector is an extreme point of
Q. Recalling that a convex function attains its maximum over
a nonempty compact convex set at an extreme point, here is
the main justification that our model captures, indeed, the
intuition behind good clusterings.

THEOREM 1. [14]

(a) Each extremal clustering admits a strongly feasible
power diagram.

(b) At most, k - 1 of the (weighted) points are fractionally
assigned.

(c) In the strongly balanced case, a clustering C is extremal
if and only if C admits a strongly feasible power diagram.

Let us point out that Theorem 1 extends and generalizes
various previous results, most notably those for the combi-
natorial case of [6], [2], [3], and [7] (see [14] for further
references).

Let us mention that it is also possible to characterize
strongly feasible centroidal power diagrams (where centers
coincide with sites) in terms of the local optima of some
ellipsoidal function over the gravity body; [14]. The global
optima can also be characterized in terms of the separation
properties of the corresponding clusterings; [14]. Further,

Figure 2. An improved redistribution of lots for the agricul-

tural region of Figure 1.

Figure 3. Abstraction from the lot geometry; the lots in

Figure 1 are replaced by their centers; the coloring refers to

the original coloring.
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there are interpretations and extensions to the realm of
machine learning involving soft margins, [9].

Algorithmic Tractability
Of course, because of the potentially exponential number of
local maxima, convex maximization is in general NP-hard.
Hence it is necessary to resort to approximations. However,
[13] gives tight and very favorable worst-case error bounds
for these approximations that we will explain now. The main
objects are again geometric in nature, the clustering bodies

C :¼
c1

..

.

ck

0
B@

1
CA 2 R

kd :

kc1 � c2k
..
.

kck�1 � ckk

0
B@

1
CA

�������

�������
�

� 1

8
><

>:

9
>=

>;
;

which are just the level sets of our objective functions.
Depending on the chosen norms, these bodies can be
polyhedral or smooth or a mixture of both. For instance, if
both norms are ‘1-norms, we obtain the polar of the
Cartesian product of permutahedra; if both norms
are Euclidean, we obtain a Euclidean cylinder with

d-dimensional lineality space; if the inner norm is arbitrary
while the outer norm is ‘1 or ‘1, the bodies turn out to be
the polars of the Minkowski sum or the convex hull of
certain diagonally embedded copies of scaled unit balls in
ðRd ; k � kÞ’s conjugate space.

These and other structural results can be used to obtain
tight polyhedral approximations for the corresponding
clustering bodies. But how can we use such approximations?

Suppose we have access to an approximation of a clus-
tering body by polyhedra with only polynomially many
facets. Then we can devise the following polynomial-time
algorithm:

Figure 7. Power diagram defined by four control points

s1, s2, s3, s4 (black dots) and positive sizes r1, r2, r3, r4. The

circles are centered at the si and have radius
ffiffiffiffi
ri
p

.

Figure 4. The point set V (left), and a partition of R2 (right).

Figure 5. Clustering defined by the membership of points

in 2-cells of the cell-decomposition of Figure 4 (right).

Figure 6. Illustration of an example with parameters d = 1,

m = 3, k = 2, x(v1) = x(v3) = 1, x(v2) = 2, b1 = b2 for

which there is no feasible clustering whose two point sets

are strictly separated. The different sizes of the discs indicate

the different weights of the corresponding points.
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• Solve a linear program for each facet (the objective
function vector is an outer normal of the facet).

• Take the maximum of the obtained values.

Naturally, the quality of the approximate solution of our
convex maximization task depends on the error of the
polyhedral approximation of the clustering body.

Here is the ‘‘fully Euclidean’’ case of the much more
general approximation results obtained in [13].

THEOREM 2. [13] Let k � k� ¼ k � k ¼ k � kð2Þ. Then the

clustering body can be approximated by a polytope with

polynomially many facets up to an error of

O
kd

logðkdÞ

	 
1
2

 !
:

Let us point out that this sharpens the results for general
‘p-norm-maximization of [5], [17], [15], [16] by a factor of

ffiffiffi
k
p

.
Further note that the worst-case upper bound does not
depend on m but only on d and k, confirming our heuristic
argument after the introduction of the objective function.

In addition to the results provided in detail here, [10]
studies an alternative approach for the case that farmers
actually prescribe certain lots as nuclei for redistribution
whereas [8] contains adetailed in-depth studyof thediameter
of the relevant partition polytopes in the combinatorial case.

It should be mentioned that the algorithms developed all
run on a laptop within a few seconds to half a minute for the
practically relevant sizes. The experience described in the
next section will make clear that flexibility and short
response times are essential for success in practice.

Practical Issues
In cooperationwith the Bavarian Association of Farmers,we
moderated lend–lease actions in some areas in Northern
Bavaria. As it turned out, the optimization tool was relevant
in different phases of the process. Of course, it was used up
front to show the potential that is inherent in the lend–lease
agreements in the specific region. Our tools for economic
evaluation were used to estimate the financial benefit for
each individual farmer; see Figure 9.

In practice, it was necessary to have a tool for manual
redistributions available; see Figure 10.

That may at first sound strange because we can produce
better redistributions with our optimization tools. However,
there are two reasons. Because the participation is voluntary
to the degree that the farmers can decide for each lot if it
should be subject to redistribution, at the beginning of the
process the farmers only entered lots of inferior quality.
Then, of course, the potential of the method is limited.
Having the chance to ‘‘play’’ with a comfortable, easy to
access, and transparent tool (with the results being projected
on a screen and hence visible to all participants) increased
the confidence in the self-determined and controlled char-
acter of the procedure. (Also a kind of ‘‘video-game fun
effect’’ took place that was favorable for the atmosphere of
the meeting.) After a certain ‘‘initializing phase’’ the farmers
were convinced of the potential and fairness of the method
and, hence, put most of their lots into the shared pool for
redistribution.

A second reason for needing the manual tool was that
there were many more restrictions on the redistribution of
lots than were ever specified explicitly in detail. For instance,
some farmers were willing to participate but were not willing
to trade a certain lot with a certain other farmer. Of course,
this was not discussed openly and was found out only
through the process of ‘‘manual post-optimization.’’

Since certain practically relevant classes of additional
constraints (such as which lots are allowed for redistribution,
or which farmers do not trade lots with certain others) can be
entered into the model very easily, the optimization tool
could also be applied at intermediate stages to foster the
dynamics of the meeting. Naturally, at the end, solutions
were available thatwere (at least nearly) optimalwith respect
to all identified additional restrictions.

Ludwig Geis, a farmer who has participated in one of the
lend–lease procedures in Northern Bavaria, assesses the
impact as follows: The consequences of the implementation
… are enormous, economically but also from an ecological
point of view. In particular, in addition to the lower cost of
cultivation, there is less need for pesticides, a higher yield,
and less trouble among neighbors.

The method has been applied in various regions. Even
more, our tools have already entered the curriculum for
farmers’ training. In fact, the examples in the Figures 1 and 2
were produced for visualization and training purposes for
schooling farmers. (Because of data protection regulations
we could not use the real data of the farmers of a region.)

In a separate project with the Bayerisches Staatsministe-
rium f€ur Landesentwicklung und Umweltfragen (Bavarian
Ministry for State Development and Environmental Matters)
our method was further applied with a special focus on
ecological issues related to aspects of environmental mea-
sures to foster biodiversity.

Additional Challenges in Forestry
In many forest regions in Northern Bavaria, an efficient and
sustainable cultivation has become virtually impossible
because of inheritance regulations and frequent changes of
ownership. In fact, the average sizes of the lots have become
less than a hectare. Further, the lots themselves often are of
a shape badly suited for cultivation (e.g., long, but very

Figure 8. The permutahedron in R
3.
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Figure 9. The tools include economic evaluations on various levels – depending on the specific structure of the region. Here

stars, spanning trees and traveling salesman tours play a role, but also empirical cost functions that depend on the size and shape

of collections of lots are incorporated.

Figure 10. A manual tool for drag and drop redistribution and assessment.
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narrow). Hence, in principle, the problem is the same as that
in agriculture. However, there are some new challenges in
practice related to the different time frame of production, the
different number of owners, and the different relation of the
owners to their particular lots. Currently, in a project funded
by the Bayerisches Staatsministerium f€ur Ern€ahrung,
Landwirtschaft und Forsten (Bavarian Ministry for Food,
Agriculture, and Forests) the tools are being customized for
specific applications in forestry.

To conclude, we mention one additional practical pre-
processing problem that is caused by the fact that even in
small regions there are often several hundred different
owners, many of whom own only some tiny lots. Figure 11
depicts an example; it consists of 460 lots that belong to 127
owners.

With so many different owners, it is very difficult, if not
virtually impossible in practice, to enter negotiations with all
stakeholders. Thus, the forestry offices want to select some
smaller subset of owners that are asked to participate. Nat-
urally, it is desirable to identify owners who provide
sufficient and somehow best room for improving the cost
structure in the region. After this is done, lend–lease agree-
ments are initiated just as in agriculture. The question of
identifying a best set of k owners leads mathematically to a
particularly structured weighted dense subgraph problem
that, while NP-hard in general, can be tackled surprisingly
efficiently; [11].
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